Health-Beneficial Phenolic Aldehyde in Antigonon leptopus Tea
Mulabagal, Vanisree; Alexander-Lindo, Ruby L.; DeWitt, David L.; Nair, Muraleedharan G.
2011-01-01
Tea prepared from the aerial parts of Antigonon leptopus is used as a remedy for cold and pain relief in many countries. In this study, A. leptopus tea, prepared from the dried aerial parts, was evaluated for lipid peroxidation (LPO) and cyclooxygenase (COX-1 and COX-2) enzyme inhibitory activities. The tea as a dried extract inhibited LPO, COX-1 and COX-2 enzymes by 78%, 38% and 89%, respectively, at 100 μg/mL. Bioassay-guided fractionation of the extract yielded a selective COX-2 enzyme inhibitory phenolic aldehyde, 2,3,4-trihydroxy benzaldehyde. Also, it showed LPO inhibitory activity by 68.3% at 6.25 μg/mL. Therefore, we have studied other hydroxy benzaldehydes and their methoxy analogs for LPO, COX-1 and COX-2 enzymes inhibitory activities and found that compound 1 gave the highest COX-2 enzyme inhibitory activity as indicated by a 50% inhibitory concentration (IC50) at 9.7 μg/mL. The analogs showed only marginal LPO activity at 6.25 μg/mL. The hydroxy analogs 6, 7 and 9 showed 55%, 61% and 43% of COX-2 inhibition at 100 μg/mL. However, hydroxy benzaldehydes 3 and 12 showed selective COX-1 inhibition while compounds 4 and 10 gave little or no COX-2 enzyme inhibition at 100 μg/mL. At the same concentration, compounds 14, 21 and 22 inhibited COX-1 by 83, 85 and 70%, respectively. Similarly, compounds 18, 19 and 23 inhibited COX-2 by 68%, 72% and 70%, at 100 μg/mL. This is the first report on the isolation of compound 1 from A. leptopus tea with selective COX-2 enzyme and LPO inhibitory activities. PMID:19454555
NASA Astrophysics Data System (ADS)
Kavitha, T.; Velraj, G.
2018-03-01
The molecule 1,3-diphenylpyrazole-4-propionic acid (DPPA) was optimized to its minimum energy level using density functional theory (DFT) calculations. The vibrational frequencies of DPPA were calculated along with their potential energy distribution (PED) and the obtained values are validated with the help of experimental calculations. The reactivity nature of the molecule was investigated with the aid of various DFT methods such as global reactivity descriptors, local reactivity descriptors, molecular electrostatic potential (MEP), natural bond orbitals (NBOs), etc. The prediction of activity spectra for substances (PASS) result forecast that, DPPA can be more active as a prostaglandin (PG) reductase inhibitor. The PGs are biologically synthesized by the cyclooxygenase (COX) enzyme which exists in COX1 and COX2 forms. The PGs produced by COX2 enzyme induces inflammation and fungal infections and hence the inhibition of COX2 enzyme is indispensable in anti-inflammation and anti-fungal activities. The docking analysis of DPPA with COX enzymes (both COX1 and COX2) were carried out and eventually, it was found that DPPA can selectively inhibit COX2 enzyme and can serve as a PG reductase inhibitor thereby acting as a lead compound for the treatment of inflammation and fungal diseases.
2015-01-01
The cyclooxygenase enzymes (COX-1 and COX-2) are the therapeutic targets of nonsteroidal anti-inflammatory drugs (NSAIDs). Neutralization of the carboxylic acid moiety of the NSAID indomethacin to an ester or amide functionality confers COX-2 selectivity, but the molecular basis for this selectivity has not been completely revealed through mutagenesis studies and/or X-ray crystallographic attempts. We expressed and assayed a number of divergent secondary shell COX-2 active site mutants and found that a COX-2 to COX-1 change at position 472 (Leu in COX-2, Met in COX-1) reduced the potency of enzyme inhibition by a series of COX-2-selective indomethacin amides and esters. In contrast, the potencies of indomethacin, arylacetic acid, propionic acid, and COX-2-selective diarylheterocycle inhibitors were either unaffected or only mildly affected by this mutation. Molecular dynamics simulations revealed identical equilibrium enzyme structures around residue 472; however, calculations indicated that the L472M mutation impacted local low-frequency dynamical COX constriction site motions by stabilizing the active site entrance and slowing constriction site dynamics. Kinetic analysis of inhibitor binding is consistent with the computational findings. PMID:26704937
Lokwani, Deepak; Azad, Rajaram; Sarkate, Aniket; Reddanna, Pallu; Shinde, Devanand
2015-08-01
The various scaffolds containing 1,4-dihydropyrimidine ring were designed by considering the environment of the active site of COX-1/COX-2 and 5-LOX enzymes. The structure-based library design approach, including the focused library design (Virtual Combinatorial Library Design) and virtual screening was used to select the 1,4-dihydropyrimidine scaffold for simultaneous inhibition of both enzyme pathways (COX-1/COX-2 and 5-LOX). The virtual library on each 1,4-dihydropyrimidine scaffold was enumerated in two alternative ways. In first way, the chemical reagents at R groups were filtered by docking of scaffold with single position substitution, that is, only at R1, or R2, or R3, … Rn on COX-2 enzyme using Glide XP docking mode. The structures that do not dock well were removed and the library was enumerated with filtered chemical reagents. In second alternative way, the single position docking stage was bypassed, and the entire library was enumerated using all chemical reagents by docking on the COX-2 enzyme. The entire library of approximately 15,629 compounds obtained from both ways after screening for drug like properties, were further screened for their binding affinity against COX-1 and 5-LOX enzymes using Virtual Screening Workflow. Finally, 142 hits were obtained and divided into two groups based on their binding affinity for COX-1/COX-2 and for both enzyme pathways (COX-1/COX-2 and 5-LOX). The ten molecules were selected, synthesized and evaluated for their COX-1, COX-2 and 5-LOX inhibiting activity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhu, Bao Ting
2010-01-01
Background Recent studies showed that some of the dietary bioflavonoids can strongly stimulate the catalytic activity of cyclooxygenase (COX) I and II in vitro and in vivo, presumably by facilitating enzyme re-activation. In this study, we sought to understand the structural basis of COX activation by these dietary compounds. Methodology/Principal Findings A combination of molecular modeling studies, biochemical analysis and site-directed mutagenesis assay was used as research tools. Three-dimensional quantitative structure-activity relationship analysis (QSAR/CoMFA) predicted that the ability of bioflavonoids to activate COX I and II depends heavily on their B-ring structure, a moiety known to be associated with strong antioxidant ability. Using the homology modeling and docking approaches, we identified the peroxidase active site of COX I and II as the binding site for bioflavonoids. Upon binding to this site, bioflavonoid can directly interact with hematin of the COX enzyme and facilitate the electron transfer from bioflavonoid to hematin. The docking results were verified by biochemical analysis, which reveals that when the cyclooxygenase activity of COXs is inhibited by covalent modification, myricetin can still stimulate the conversion of PGG2 to PGE2, a reaction selectively catalyzed by the peroxidase activity. Using the site-directed mutagenesis analysis, we confirmed that Q189 at the peroxidase site of COX II is essential for bioflavonoids to bind and re-activate its catalytic activity. Conclusions/Significance These findings provide the structural basis for bioflavonoids to function as high-affinity reducing co-substrates of COXs through binding to the peroxidase active site, facilitating electron transfer and enzyme re-activation. PMID:20808785
Houttuynia cordata, a novel and selective COX-2 inhibitor with anti-inflammatory activity.
Li, Weifeng; Zhou, Ping; Zhang, Yanmin; He, Langchong
2011-01-27
Houttuynia cordata Thunb. (Saururaceae; HC) has been long used in traditional oriental medicine for the treatment of inflammation diseases. Modern research has implicated inducible cyclooxygenase-2 (COX-2) as a key regulator of the inflammatory process. In the present study, we aimed to investigate the effect of HC on COX-2. We examined the effects of HC on lipopolysaccharide (LPS)-induced prostaglandin (PG) E(2) production, an indirect indicator of COX-2 activity, and COX-2 gene and protein expression in mouse peritoneal macrophages. LPS-induced mouse peritoneal macrophages were employed as an in vitro model system. LPS-induced PGE(2) production was assessed by enzyme-linked immunosorbant assay and COX-2 protein expression was assessed by Western blot assay. The results showed that HC was able to inhibit the release of LPS-induced PGE(2) from mouse peritoneal macrophages (IC50 value: 44.8 μg/mL). Moreover, the inhibitory activity of HC essential oil elicited a dose-dependent inhibition of COX-2 enzyme activity (IC50 value: 30.9 μg/mL). HC was also found to cause reduction in LPS-induced COX-2 mRNA and protein expression, but did not affect COX-1 expression. The non-steroidal anti-inflammatory drug (NSAID) and specific COX-2 inhibitor NS398 functioned similarly in LPS-induced mouse peritoneal macrophages. Taken together, our data suggest HC mediates inhibition of COX-2 enzyme activity and can affect related gene and protein expression. HC works by a mechanism of action similar to that of NSAIDs. These results add a novel aspect to the biological profile of HC. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Cyclooxygenase-2 inhibitory and antioxidant compounds from the truffle Elaphomyces granulatus
Rita Stanikunaite; Shabana I. Khan; James M. Trappe; Samir A. Ross
2009-01-01
The ethanol extract of fruiting bodies of Elaphomyces granulatus, a truffle-like fungus, was evaluated for cyclooxygenase-2 (COX-2) enzyme inhibitory and antioxidant activities. Inhibition of COX-2 activity was evaluated in mouse macrophages (RAW 264.7). The extract of E. granulatus caused a 68% inhibition of COX-2 activity at...
Ranjbar, Mohammad Mehdi; Assadolahi, Vahideh; Yazdani, Mohsen; Nikaein, Donya; Rashidieh, Behnam
2016-01-01
Hydro-alcoholic fruit extract of Cordia myxa was considerably effective on curing acute inflammation in mouse model. Previous studies suggested significant anti-inflammatory activities as well as potential anticancer agent of α-amyrins in seeds. Inhibition of Cyclooxygenase-2 (COX-2) and 5-Lipooxygenase (5-LOX) is significant in cancer prevention and therapeutics although this inhibition with chemo-drugs has its own side-effects. It is shown that these enzymes pathways are related to several cancers including colon, breast and lung cancer. This study was conducted based on Cordia species' α-amyrins as a safer natural anti-cancer compound for inhibition of COX-2 and 5-LOX enzymes by molecular docking. The X-ray crystal structure of COX2 / 5-LOX enzymes and α-amyrins was retrieved and energetically minimized respectively. The binding site and surface of enzymes were detected. Docking studies were performed by AutoDock 4.2 using Lamarckian genetic algorithm (LGA). Finally drug likeness, molecular pharmacokinetic properties and toxicity of α-amyrins was calculated. Molecular Docking revealed hydrogen and hydrophobic interactions between α-amyrins with both active sites of COX-2 and 5-LOX enzymes. Interestingly, it covalently bonded to Fe cofactor of 5-LOX enzyme and chelated this molecule. Base on binding energies (∆G) α-amyrin has more inhibitory effects on 5-LOX (-10.45 Kcal/mol) than COX-2 (-8.02 Kcal/mol). Analysis of molecular pharmacokinetic parameters suggested that α-amyrins complied with most sets of Lipinski's rules, and so it could be a suitable ligand for docking studies. Eventually, bioactivity score showed α-amyrins possess considerable biological activities as nuclear receptor, enzyme inhibitor, GPCR and protease inhibitor ligand. These results clearly demonstrate that α-amyrins could act as potential highly selective COX-/5-LOX inhibitor. Also, it is a safe compound in comparison with classical non-steroidal anti-inflammatory drugs (NSAIDs) that are known as cancer preventive agents, since it is free of side effects on human body and it can be a promising drug for cancer therapeutics.
Ranjbar, Mohammad Mehdi; Assadolahi, Vahideh; Yazdani, Mohsen; Nikaein, Donya; Rashidieh, Behnam
2016-01-01
Hydro-alcoholic fruit extract of Cordia myxa was considerably effective on curing acute inflammation in mouse model. Previous studies suggested significant anti-inflammatory activities as well as potential anticancer agent of α-amyrins in seeds. Inhibition of Cyclooxygenase-2 (COX-2) and 5-Lipooxygenase (5-LOX) is significant in cancer prevention and therapeutics although this inhibition with chemo-drugs has its own side-effects. It is shown that these enzymes pathways are related to several cancers including colon, breast and lung cancer. This study was conducted based on Cordia species' α-amyrins as a safer natural anti-cancer compound for inhibition of COX-2 and 5-LOX enzymes by molecular docking. The X-ray crystal structure of COX2 / 5-LOX enzymes and α-amyrins was retrieved and energetically minimized respectively. The binding site and surface of enzymes were detected. Docking studies were performed by AutoDock 4.2 using Lamarckian genetic algorithm (LGA). Finally drug likeness, molecular pharmacokinetic properties and toxicity of α-amyrins was calculated. Molecular Docking revealed hydrogen and hydrophobic interactions between α-amyrins with both active sites of COX-2 and 5-LOX enzymes. Interestingly, it covalently bonded to Fe cofactor of 5-LOX enzyme and chelated this molecule. Base on binding energies (∆G) α-amyrin has more inhibitory effects on 5-LOX (-10.45 Kcal/mol) than COX-2 (-8.02 Kcal/mol). Analysis of molecular pharmacokinetic parameters suggested that α-amyrins complied with most sets of Lipinski's rules, and so it could be a suitable ligand for docking studies. Eventually, bioactivity score showed α-amyrins possess considerable biological activities as nuclear receptor, enzyme inhibitor, GPCR and protease inhibitor ligand. These results clearly demonstrate that α-amyrins could act as potential highly selective COX-/5-LOX inhibitor. Also, it is a safe compound in comparison with classical non-steroidal anti-inflammatory drugs (NSAIDs) that are known as cancer preventive agents, since it is free of side effects on human body and it can be a promising drug for cancer therapeutics. PMID:27231478
Dewi, Lestari
2016-01-01
Introduction: The enzyme cyclooxygenase (COX) is an enzyme that catalyzes the formation of one of the mediators of inflammation, the prostaglandins. Inhibition of COX allegedly can improve inflammation-induced pathological conditions. Aim: The purpose of the present study was to evaluate the potential of Sargassum sp. components, Fucoidan and alginate, as COX inhibitors. Material and methods: The study was conducted by means of a computational (in silico) method. It was performed in two main stages, the docking between COX-1 and COX-2 with Fucoidan, alginate and aspirin (for comparison) and the analysis of the amount of interactions formed and the residues directly involved in the process of interaction. Results: Our results showed that both Fucoidan and alginate had an excellent potential as inhibitors of COX-1 and COX-2. Fucoidan had a better potential as an inhibitor of COX than alginate. COX inhibition was expected to provide a more favorable effect on inflammation-related pathological conditions. Conclusion: The active compounds Fucoidan and alginate derived from Sargassum sp. were suspected to possess a good potential as inhibitors of COX-1 and COX-2. PMID:27594740
Dewi, Lestari
2016-06-01
The enzyme cyclooxygenase (COX) is an enzyme that catalyzes the formation of one of the mediators of inflammation, the prostaglandins. Inhibition of COX allegedly can improve inflammation-induced pathological conditions. The purpose of the present study was to evaluate the potential of Sargassum sp. components, Fucoidan and alginate, as COX inhibitors. The study was conducted by means of a computational (in silico) method. It was performed in two main stages, the docking between COX-1 and COX-2 with Fucoidan, alginate and aspirin (for comparison) and the analysis of the amount of interactions formed and the residues directly involved in the process of interaction. Our results showed that both Fucoidan and alginate had an excellent potential as inhibitors of COX-1 and COX-2. Fucoidan had a better potential as an inhibitor of COX than alginate. COX inhibition was expected to provide a more favorable effect on inflammation-related pathological conditions. The active compounds Fucoidan and alginate derived from Sargassum sp. were suspected to possess a good potential as inhibitors of COX-1 and COX-2.
Burnett, B P; Jia, Q; Zhao, Y; Levy, R M
2007-09-01
A mixed extract containing two naturally occurring flavonoids, baicalin from Scutellaria baicalensis and catechin from Acacia catechu, was tested for cyclooxygenase (COX) and 5-lipoxygenase (5-LOX) inhibition via enzyme, cellular, and in vivo models. The 50% inhibitory concentration for inhibition of both ovine COX-1 and COX-2 peroxidase enzyme activities was 15 microg/mL, while the mixed extract showed a value for potato 5-LOX enzyme activity of 25 microg/mL. Prostaglandin E2 generation was inhibited by the mixed extract in human osteosarcoma cells expressing COX-2, while leukotriene production was inhibited in both human cell lines, immortalized THP-1 monocyte and HT-29 colorectal adenocarcinoma. In an arachidonic acid-induced mouse ear swelling model, the extract decreased edema in a dose-dependent manner. When arachidonic acid was injected directly into the intra-articular space of mouse ankle joints, the mixed extract abated the swelling and restored function in a rotary drum walking model. These results suggest that this natural, flavonoid mixture acts via "dual inhibition" of COX and LOX enzymes to reduce production of pro-inflammatory eicosanoids and attenuate edema in an in vivo model of inflammation.
Son, Dong Ju; Akiba, Satoshi; Hong, Jin Tae; Yun, Yeo Pyo; Hwang, Seock Yeon; Park, Young Hyun; Lee, Sung Eun
2014-01-01
PURPOSE: Piperine, a major alkaloid of black pepper (Piper nigrum) and long pepper (Piper longum), was shown to have anti-inflammatory activity through the suppression of cyclooxygenase (COX)-2 gene expression and enzyme activity. It is also reported to exhibit anti-platelet activity, but the mechanism underlying this action remains unknown. In this study, we investigated a putative anti-platelet aggregation mechanism involving arachidonic acid (AA) metabolism and how this compares with the mechanism by which it inhibits macrophage inflammatory responses; METHODS: Rabbit platelets and murine macrophage RAW264.7 cells were treated with piperine, and the effect of piperine on the activity of AA-metabolizing enzymes, including cytosolic phospholipase A2 (cPLA2), COX-1, COX-2, and thromboxane A2 (TXA2) synthase, as well as its effect on AA liberation from the plasma membrane components, were assessed using isotopic labeling methods and enzyme immunoassay kit; RESULTS: Piperine significantly suppressed AA liberation by attenuating cPLA2 activity in collagen-stimulated platelets. It also significantly inhibited the activity of TXA2 synthase, but not of COX-1, in platelets. These results suggest that piperine inhibits platelet aggregation by attenuating cPLA2 and TXA2 synthase activities, rather than through the inhibition of COX-1 activity. On the other hand, piperine significantly inhibited lipopolysaccharide-induced generation of prostaglandin (PG)E2 and PGD2 in RAW264.7 cells by suppressing the activity of COX-2, without effect on cPLA2; CONCLUSION: Our findings indicate that piperine inhibits platelet aggregation and macrophage inflammatory response by different mechanisms. PMID:25153972
Kutil, Zsofia; Temml, Veronika; Maghradze, David; Pribylova, Marie; Dvorakova, Marcela; Schuster, Daniela; Vanek, Tomas; Landa, Premysl
2014-01-01
Cyclooxygenases and lipoxygenases are proinflammatory enzymes; the former affects platelet aggregation, vasoconstriction, vasodilatation and later the development of atherosclerosis. Red wines from Georgia and central and western Europe inhibited cyclooxygenase-1 (COX-1) activity in the range of 63-94%, cyclooxygenase-2 (COX-2) activity in the range of 20-44% (tested at a concentration of 5 mL/L), and 5-lipoxygenase (5-LOX) activity in the range of 72-84% (at a concentration of 18.87 mL/L). White wines inhibited 5-LOX in the range of 41-68% at a concentration of 18.87 mL/L and did not inhibit COX-1 and COX-2. Piceatannol (IC50 = 0.76 μM) was identified as a strong inhibitor of 5-LOX followed by luteolin (IC50 = 2.25 μM), quercetin (IC50 = 3.29 μM), and myricetin (IC50 = 4.02 μM). trans-Resveratrol was identified as an inhibitor of COX-1 (IC50 = 2.27 μM) and COX-2 (IC50 = 3.40 μM). Red wine as a complex mixture is a powerful inhibitor of COX-1, COX-2, and 5-LOX, the enzymes involved in eicosanoid biosynthetic pathway.
Temml, Veronika; Maghradze, David; Vanek, Tomas
2014-01-01
Cyclooxygenases and lipoxygenases are proinflammatory enzymes; the former affects platelet aggregation, vasoconstriction, vasodilatation and later the development of atherosclerosis. Red wines from Georgia and central and western Europe inhibited cyclooxygenase-1 (COX-1) activity in the range of 63–94%, cyclooxygenase-2 (COX-2) activity in the range of 20–44% (tested at a concentration of 5 mL/L), and 5-lipoxygenase (5-LOX) activity in the range of 72–84% (at a concentration of 18.87 mL/L). White wines inhibited 5-LOX in the range of 41–68% at a concentration of 18.87 mL/L and did not inhibit COX-1 and COX-2. Piceatannol (IC50 = 0.76 μM) was identified as a strong inhibitor of 5-LOX followed by luteolin (IC50 = 2.25 μM), quercetin (IC50 = 3.29 μM), and myricetin (IC50 = 4.02 μM). trans-Resveratrol was identified as an inhibitor of COX-1 (IC50 = 2.27 μM) and COX-2 (IC50 = 3.40 μM). Red wine as a complex mixture is a powerful inhibitor of COX-1, COX-2, and 5-LOX, the enzymes involved in eicosanoid biosynthetic pathway. PMID:24976682
Amat, Samat; Hendrick, Steve; Moshynskyy, Igor; Simko, Elemir
2017-01-01
Sulfur-induced polioencephalomalacia (PEM) is an important disease affecting cattle in certain geographical regions. However, the pathogenesis of brain damage is not completely understood. We previously observed that excess dietary sulfur may influence thiamine status and altered thiamine metabolism may be involved in the pathogenesis of sulfur-induced PEM in cattle. In this study, we evaluated the activities of thiamine-dependent enzymes [α-ketogluterate dehydrogenase (α-KGDH) and pyruvate dehydrogenase (PDH)] and cytochrome c oxidase (COX) in the cerebral cortex of sulfur-induced PEM-affected cattle (n = 9) and clinically normal cattle (n = 8, each group) exposed to low or high dietary sulfur [LS = 0.30% versus HS = 0.67% sulfur on a dry matter (DM) basis]. Enzyme activities in PEM brains were measured from the brain tissue regions and examined using ultraviolent (UV) light illumination to show fluorescence or non-fluorescence regions. No gross changes under regular or UV light, or histopathological changes indicative of PEM were detected in the brains of cattle exposed to LS or HS diets. The PDH, α-KGDH, and COX activities did not differ between LS and HS brains, but all enzymes showed significantly lower (P < 0.05) activities in UV-positive region of PEM brains compared with LS and HS brains. The UV-negative regions of PEM brain had similar PDH activities to LS and HS brains, but the activities of α-KGDH and COX were significantly lower than in LS and HS brains. The results of this study suggest that reduced enzyme activities of brain PHD, α-KGDH, and COX are associated with the pathogenesis of sulfur-induced PEM. PMID:29081580
Differences in activity of cytochrome C oxidase in brain between sleep and wakefulness.
Nikonova, Elena V; Vijayasarathy, Camasamudram; Zhang, Lin; Cater, Jacqueline R; Galante, Raymond J; Ward, Stephen E; Avadhani, Narayan G; Pack, Allan I
2005-01-01
Increased mRNA level of subunit 1 cytochrome c oxidase (COXI) during wakefulness and after short-term sleep deprivation has been described in brain. We hypothesized that this might contribute to increased activity of cytochrome oxidase (COX) enzyme during wakefulness, as part of the mechanisms to provide sufficient amounts of adenosine triphosphate to meet increased neuronal energy demands. COX activity was measured in isolated mitochondria from different brain regions in groups of rats with 3 hours of spontaneous sleep, 3 hours of spontaneous wake, and 3 hours of sleep deprivation. The group with 3 hours of spontaneous wake was added to delineate the circadian component of changes in the enzyme activity. Northern blot analysis was performed to examine the mRNA levels of 2 subunits of the enzyme COXI and COXIV, encoded by mitochondrial and nuclear DNA, respectively. Laboratory of Biochemistry, Department of Animal Biology, and Center for Sleep and Respiratory Neurobiology, University of Pennsylvania. 2-month-old male Fischer rats (N = 21) implanted for polygraphic recording. For COX activity, there was a main effect by analysis of variance of experimental group (P < .0001) with significant increases in COX activity in wake and sleep-deprived groups as compared to the sleep group. A main effect of brain region was also significant (P < .001). There was no difference between brain regions in the degree of increase in enzyme activity in wakefulness. Both COXI and COXIV mRNA were increased with wakefulness as compared to sleep. There is an increase in COX activity after both 3 hours of spontaneous wake and 3 hours of sleep deprivation as compared with 3 hours of spontaneous sleep in diverse brain regions, which could be, in part, explained by the increased levels of bigenomic transcripts of the enzyme. This likely contributes to increased adenosine triphosphate production during wakefulness. ADP, adenosine diphosphate; ATP, adenosine triphosphate; COXI, cytochrome c oxidase subunit 1 mRNA; COX, cytochrome c oxidase (protein); CREB, cyclic AMP response element binding protein; DNA, deoxyribonucleic acid; EDTA, ethylenediaminetetraacetic acid; EEG, electroencephalography; EMG, electromyography; GABP, GA binding protein; HEPES, 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid; mRNA, messenger ribonucleic acid; NADH, nicotinamid adenine dinucleotide, reduced; NDII, NADH dehydrogenase subunit 2 mRNA; NRF, nuclear respiratory factor.
Hüttemann, Maik; Lee, Icksoo; Gao, Xiufeng; Pecina, Petr; Pecinova, Alena; Liu, Jenney; Aras, Siddhesh; Sommer, Natascha; Sanderson, Thomas H.; Tost, Monica; Neff, Frauke; Aguilar-Pimentel, Juan Antonio; Becker, Lore; Naton, Beatrix; Rathkolb, Birgit; Rozman, Jan; Favor, Jack; Hans, Wolfgang; Prehn, Cornelia; Puk, Oliver; Schrewe, Anja; Sun, Minxuan; Höfler, Heinz; Adamski, Jerzy; Bekeredjian, Raffi; Graw, Jochen; Adler, Thure; Busch, Dirk H.; Klingenspor, Martin; Klopstock, Thomas; Ollert, Markus; Wolf, Eckhard; Fuchs, Helmut; Gailus-Durner, Valérie; Hrabě de Angelis, Martin; Weissmann, Norbert; Doan, Jeffrey W.; Bassett, David J. P.; Grossman, Lawrence I.
2012-01-01
Cytochrome c oxidase (COX) is the terminal enzyme of the mitochondrial electron transport chain. The purpose of this study was to analyze the function of lung-specific cytochrome c oxidase subunit 4 isoform 2 (COX4i2) in vitro and in COX4i2-knockout mice in vivo. COX was isolated from cow lung and liver as control and functionally analyzed. COX4i2-knockout mice were generated and the effect of the gene knockout was determined, including COX activity, tissue energy levels, noninvasive and invasive lung function, and lung pathology. These studies were complemented by a comprehensive functional screen performed at the German Mouse Clinic (Neuherberg, Germany). We show that isolated cow lung COX containing COX4i2 is about twice as active (88 and 102% increased activity in the presence of allosteric activator ADP and inhibitor ATP, respectively) as liver COX, which lacks COX4i2. In COX4i2-knockout mice, lung COX activity and cellular ATP levels were significantly reduced (−50 and −29%, respectively). Knockout mice showed decreased airway responsiveness (60% reduced Penh and 58% reduced airway resistance upon challenge with 25 and 100 mg methacholine, respectively), and they developed a lung pathology deteriorating with age that included the appearance of Charcot-Leyden crystals. In addition, there was an interesting sex-specific phenotype, in which the knockout females showed reduced lean mass (−12%), reduced total oxygen consumption rate (−8%), improved glucose tolerance, and reduced grip force (−14%) compared to wild-type females. Our data suggest that high activity lung COX is a central determinant of airway function and is required for maximal airway responsiveness and healthy lung function. Since airway constriction requires energy, we propose a model in which reduced tissue ATP levels explain protection from airway hyperresponsiveness, i.e., absence of COX4i2 leads to reduced lung COX activity and ATP levels, which results in impaired airway constriction and thus reduced airway responsiveness; long-term lung pathology develops in the knockout mice due to impairment of energy-costly lung maintenance processes; and therefore, we propose mitochondrial oxidative phosphorylation as a novel target for the treatment of respiratory diseases, such as asthma.—Hüttemann, M., Lee, I., Gao, X., Pecina, P., Pecinova, A., Liu, J., Aras, S., Sommer, N., Sanderson, T. H., Tost, M., Neff, F., Aguilar-Pimentel, J. A., Becker, L., Naton, B., Rathkolb, B., Rozman, J., Favor, J., Hans, W., Prehn, C., Puk, O., Schrewe, A., Sun, M., Höfler, H., Adamski, J., Bekeredjian, R., Graw, J., Adler, T., Busch, D. H., Klingenspor, M., Klopstock, T., Ollert, M., Wolf, E., Fuchs, H., Gailus-Durner, V., Hrabě de Angelis, M., Weissmann, N., Doan, J. W., Bassett, D. J. P., Grossman, L. I. Cytochrome c oxidase subunit 4 isoform 2-knockout mice show reduced enzyme activity, airway hyporeactivity, and lung pathology. PMID:22730437
Jachak, Sanjay M; Gautam, Raju; Selvam, C; Madhan, Himanshu; Srivastava, Amit; Khan, Taj
2011-03-01
The standardized EtOAc, MeOH and 70% EtOH extracts of Tridax procumbens aerial parts showed significant inhibition of rat paw edema at a medium dose of 200mg/kg and the EtOAC extract was the most active. These extracts were standardized by HPLC with the help of chemical markers. Further, the extracts were evaluated for COX-1 and COX-2 inhibitory activity and EtOAc extract exhibited the highest inhibition of COX-1 and COX-2 at 50 μg/mL. Cent aurein, centaureidin and bergenin were isolated as COX-1 and COX-2 inhibitory principles from the EtOAc extract. The extracts also exhibited antioxidant activity against DPPH and ABTS free radicals. The anti-inflammatory activity of T. procumbens aerial parts could be at least in part due to COX-1, COX-2 enzyme inhibition and free radical-scavenging activities which may be attributed to the presence of flavonoids and other polyphenols in the extracts. Copyright © 2010 Elsevier B.V. All rights reserved.
Mello, S B; Barros, D M; Silva, A S; Laurindo, I M; Novaes, G S
2000-05-01
To investigate the regulation of whole-blood cyclooxygenase-1 and -2 (COX-2 and COX-1) activities by methotrexate (MTX) in rheumatoid arthritis (RA) patients. Whole blood was withdrawn from nine healthy volunteers, 12 RA patients treated with MTX (RA/MTX) and six RA patients treated with chloroquine (RA/CQ). COX-1 activity was quantified as platelet thromboxane B(2) production in unstimulated blood and COX-2 activity was measured as prostaglandin E(2) (PGE(2)) production in whole blood stimulated with LPS. Thromboxane B(2) and PGE(2) were measured by radioimmunoassay. We studied the drug effect in vitro by direct incubation of MTX with blood obtained from normal donors. Ex vivo assays were performed with blood collected from RA/MTX and RA/CQ patients. The influence of serum factors on enzyme activities was analysed in blood collected from normal donors and incubated with RA/MTX, autologous or heterologous serum. In vitro assays showed no direct action of MTX on the activity of either enzyme. Assays performed with blood from RA/MTX patients showed preferential inhibition of COX-2 activity (PGE(2) = 10.11 +/- 2.42 ng/ml) when compared with blood of normal donors (PGE(2) = 37.7 +/- 4.36 ng/ml; P = 0.001). Inhibition of COX-2 activity was also observed when blood of normal donors was co-incubated with RA/MTX serum. Our results clearly show that the anti-inflammatory action of low-dose MTX is partly mediated by a serum factor induced by MTX or a MTX metabolite that preferentially inhibits the activity of COX-2.
Abad, T; McNaughton-Smith, G; Fletcher, W Q; Echeverri, F; Diaz-Peñate, R; Tabraue, C; Ruiz de Galarreta, C M; López-Blanco, F; Luis, J G
2000-06-01
The isolation and characterisation of (S)-(+)-6-methoxy-alpha-methyl-2-naphthaleneacetic acid, a well known synthetic non-steroidal anti-inflammatory drug (naproxene), from a natural source is described for the first time. We evaluated the ability of naproxene and its 7-methoxy isomer to abrogate constitutive COX-1 and inducible COX-2 activity in human A549 cells. Naproxene inhibited COX-1 (IC50 = 3.42 microM) and COX-2 (IC50 = 1.53 microM), whereas the 7-methoxy isomer had no appreciable effect on COX-1 (IC50 > 100 microM) but also abrogated the activity of COX-2 enzyme (IC50 = 14.42 microM).
Fawole, O A; Amoo, S O; Ndhlala, A R; Light, M E; Finnie, J F; Van Staden, J
2010-02-03
Extracts of seven South African medicinal plants used traditionally for the treatment of pain-related ailments were evaluated. The study was aimed at evaluating medicinal and therapeutic potentials of the investigated traditional medicinal plants. Plant extracts were evaluated for anti-inflammatory activity and other pharmacological properties such as anticholinesterase and antioxidant activities. Phytochemical analysis of total phenolic contents, condensed tannins, gallotannins and flavonoids in the aqueous methanol extracts of the medicinal plants were also carried out. The evaluation of anti-inflammatory activity of 50% methanol (50% MeOH), petroleum ether (PE), dichloromethane (DCM) and ethanol (EtOH) plant extracts was done against cyclooxygenase-1 and -2 (COX-1 and COX-2) enzymes. 50% MeOH, PE, DCM and EtOH extracts were tested for acetylcholinesterase (AChE) inhibition, while 50% MeOH extracts were tested for 2,2-diphenyl-1-picryl hydrazyl (DPPH) radical scavenging activity and ferric-reducing power in the antioxidant assays. Total phenolic compounds, condensed tannins, gallotannins and flavonoids were quantitatively determined using spectrophotometric methods. At the screening assay concentration (0.25 microg/microl), 13 extracts showed good COX-1 inhibitory activity (>50%), while good activity was observed in 15 extracts against COX-2 enzyme. All the extracts of Crinum moorei (bulbs) showed good inhibition against both COX-1 and COX-2 enzymes. Though not significantly different (P=0.05), the highest COX-1 percentage inhibition (100%) was shown by Aloe ferox leaf PE and Colocasia antiquorum tuber DCM extracts, while Colocasia antiquorum tuber PE extract exhibited the highest (92.7%) percentage inhibition against COX-2. Crinum moorei bulb DCM extract showed the lowest EC(50) value (2.9 microg/ml) in the AChE assay. In addition, good to moderate bioactivities were observed in some extracts of Aloe ferox (leaves), Crinum moorei (bulbs) and Pycnostachys reticulata (leaves) in all the assays. The presence and/or amounts of phenolic compounds varied with plant species. The results obtained in this study validate the use of the investigated medicinal plants in South African traditional medicine for pain-related ailments. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Kothencz, Anna; Hajagos-Tóth, Judit; Csányi, Adrienn; Gáspár, Róbert
2018-01-01
Lipid soluble vitamin E plays a role in several physiological mechanisms, however, the mechanism of this action is controversial. We investigated how tocopherol (α-tocopherol acid succinate) influences the effects of cyclooxygenase inhibitors (COXi) in the smooth muscles. The contractility of the samples from 22-day-pregnant myometrium and non-pregnant myometrium and trachea was determined in an isolated organ bath in vitro. The activity of cyclooxygenase enzymes (COX) was also measured in the tissues. Diclofenac (10 -9 -10 -5 M) and rofecoxib (10 -10 -10 -5 M) decreased the contractions in non-pregnant and 22-day-pregnant uteri. Tocopherol (10 -7 M) increased the relaxant effect only in pregnant uteri. Both diclofenac (10 -9 -10 -5 M) and rofecoxib (10 -10 -10 -5 M) reduced the tracheal tones, while they were slightly intensified by pretreatment with tocopherol (10 -7 M). Tocopherol enhanced the contractions of pregnant uteri. Tocopherol (10 -7 M) itself can induce the cyclooxygenase activity and shift the COX-1 and COX-2 ratio to COX-2. The lowest COX activity was found in non-pregnant uteri, while the highest one was in the trachea. The COX enzymes, especially COX-2, play an important role in the contraction of pregnant uteri in rat. Tocopherol has a tissue specific COX-2 activity increasing effect in pregnant rat uterus but has no such action in non-pregnant uteri or tracheal tissue. Hereby, tocopherol may intensify selectively the uterine relaxing effect of COX-2 inhibitors in preterm contractions. However, tocopherol can enhance the contractile response of pregnant uterus that may increase the risk of premature contractions. Copyright © 2017 Elsevier Inc. All rights reserved.
Riendeau, Denis; Salem, Myriam; Styhler, Angela; Ouellet, Marc; Mancini, Joseph A; Li, Chun Sing
2004-03-08
Loxoprofen, its trans-alcohol and cis-alcohol metabolites were evaluated for selectivity of inhibition of COX-2 over COX-1. The (2S,1'R,2'S)-trans-alcohol derivative was found to be the most active metabolite and to be a potent and nonselective inhibitor of COX-2 and COX-1 in both enzyme and human whole blood assays.
Anti-inflammatory Activity of Grains of Paradise (Aframomum melegueta Schum) Extract
2015-01-01
The ethanolic extract of grains of paradise (Aframomum melegueta Schum, Zingiberaceae) has been evaluated for inhibitory activity on cyclooxygenase-2 (COX-2) enzyme, in vivo for the anti-inflammatory activity and expression of several pro-inflammatory genes. Bioactivity-guided fractionation showed that the most active COX-2 inhibitory compound in the extract was [6]-paradol. [6]-Shogaol, another compound from the extract, was the most active inhibitory compound in pro-inflammatory gene expression assays. In a rat paw edema model, the whole extract reduced inflammation by 49% at 1000 mg/kg. Major gingerols from the extract [6]-paradol, [6]-gingerol, and [6]-shogaol reduced inflammation by 20, 25 and 38%. respectively when administered individually at a dose of 150 mg/kg. [6]-Shogaol efficacy was at the level of aspirin, used as a positive control. Grains of paradise extract has demonstrated an anti-inflammatory activity, which is in part due to the inhibition of COX-2 enzyme activity and expression of pro-inflammatory genes. PMID:25293633
Direct and irreversible inhibition of cyclooxygenase-1 by nitroaspirin (NCX 4016).
Corazzi, Teresa; Leone, Mario; Maucci, Raffaella; Corazzi, Lanfranco; Gresele, Paolo
2005-12-01
Benzoic acid, 2-(acetyl-oxy)-3-[(nitrooxy)methyl]phenyl ester (NCX 4016), a new drug made by an aspirin molecule linked, through a spacer, to a nitric oxide (NO)-donating moiety, is now under clinical testing for the treatment of atherothrombotic conditions. Aspirin exerts its antithrombotic activity by irreversibly inactivating platelet cyclooxygenase (COX)-1. NCX 4016 in vivo undergoes metabolism into deacetylated and/or denitrated metabolites, and it is not known whether NCX 4016 needs to liberate aspirin to inhibit COX-1, or whether it can block it as a whole molecule. The aim of our study was to evaluate the effects of NCX 4016 and its analog or metabolites on platelet COX-1 and whole blood COX-2 and on purified ovine COX (oCOX)-1 and oCOX-2. In particular, we have compared the mechanism by which NCX 4016 inhibits purified oCOX enzymes with that of aspirin using a spectrophotometric assay. All the NCX 4016 derivatives containing acetylsalicylic acid inhibited the activity of oCOX-1 and oCOX-2, whereas the deacetylated metabolites and the nitric oxide-donating moiety were inactive. Dialysis experiments showed that oCOX-1 inhibition by NCX 4016, similar to aspirin, is irreversible. Reversible COX inhibitors (indomethacin) or salicylic acid incubated with the enzyme before NCX 4016 prevent the irreversible inhibition of oCOX-1 by NCX 4016 as well as by aspirin. In conclusion, our data show that NCX 4016 acts as a direct and irreversible inhibitor of COX-1 and that the presence of a spacer and NO-donating moiety in the molecule slows the kinetics of COX-1 inhibition by NCX 4016, compared with aspirin.
Sriramula, Srinivas; Xia, Huijing; Xu, Ping; Lazartigues, Eric
2014-01-01
Overactivity of the renin angiotensin system (RAS), oxidative stress, and cyclooxygenases (COX) in the brain are implicated in the pathogenesis of hypertension. We previously reported that Angiotensin-Converting Enzyme 2 (ACE2) overexpression in the brain attenuates the development of DOCA-salt hypertension, a neurogenic hypertension model with enhanced brain RAS and sympathetic activity. To elucidate the mechanisms involved, we investigated whether oxidative stress, mitogen activated protein kinase signaling and cyclooxygenase (COX) activation in the brain are modulated by ACE2 in neurogenic hypertension. DOCA-salt hypertension significantly increased expression of Nox-2 (+61 ±5 %), Nox-4 (+50 ±13 %) and nitrotyrosine (+89 ±32 %) and reduced activity of the antioxidant enzymes, catalase (−29 ±4 %) and SOD (−31 ±7 %), indicating increased oxidative stress in the brain of non-transgenic mice. This increased oxidative stress was attenuated in transgenic mice overexpressing ACE2 in the brain. DOCA-salt-induced reduction of nNOS expression (−26 ±7 %) and phosphorylated eNOS/total eNOS (−30 ±3 %), and enhanced phosphorylation of Akt and ERK1/2 in the paraventricular nucleus (PVN), were reversed by ACE2 overexpression. In addition, ACE2 overexpression blunted the hypertension-mediated increase in gene and protein expression of COX-1 and COX-2 in the PVN. Furthermore, gene silencing of either COX-1 or COX-2 in the brain, reduced microglial activation and accompanied neuro-inflammation, ultimately attenuating DOCA-salt hypertension. Together, these data provide evidence that brain ACE2 overexpression reduces oxidative stress and COX-mediated neuro-inflammation, improves anti-oxidant and nitric oxide signaling, and thereby attenuates the development of neurogenic hypertension. PMID:25489058
Cytochrome oxidase assembly does not require catalytically active cytochrome C.
Barrientos, Antoni; Pierre, Danielle; Lee, Johnson; Tzagoloff, Alexander
2003-03-14
Cytochrome c oxidase (COX), the terminal enzyme of the mitochondrial respiratory chain, catalyzes the transfer of electrons from reduced cytochrome c to molecular oxygen. COX assembly requires the coming together of nuclear- and mitochondrial-encoded subunits and the assistance of a large number of nuclear gene products acting at different stages of maturation of the enzyme. In Saccharomyces cerevisiae, expression of cytochrome c, encoded by CYC1 and CYC7, is required not only for electron transfer but also for COX assembly through a still unknown mechanism. We have attempted to distinguish between a functional and structural requirement of cytochrome c in COX assembly. A cyc1/cyc7 double null mutant strain was transformed with the cyc1-166 mutant gene (Schweingruber, M. E., Stewart, J. W., and Sherman, F. (1979) J. Biol. Chem. 254, 4132-4143) that expresses stable but catalytically inactive iso-1-cytochrome c. The COX content of the cyc1/cyc7 double mutant strain harboring non-functional iso-1-cytochrome c has been characterized spectrally, functionally, and immunochemically. The results of these studies demonstrate that cytochrome c plays a structural rather than functional role in assembly of cytochrome c oxidase. In addition to its requirement for COX assembly, cytochrome c also affects turnover of the enzyme. Mutants containing wild type apocytochrome c in mitochondria lack COX, suggesting that only the folded and mature protein is able to promote COX assembly.
Down-regulation of Cyclooxygenase-2 by the Carboxyl Tail of the Angiotensin II Type 1 Receptor*
Sood, Rapita; Minzel, Waleed; Rimon, Gilad; Tal, Sharon; Barki-Harrington, Liza
2014-01-01
The enzyme cyclooxygenase-2 (COX-2) plays an important role in the kidney by up-regulating the production of the vasoconstrictor hormone angiotensin II (AngII), which in turn down-regulates COX-2 expression via activation of the angiotensin II type 1 receptor (AT1) receptor. Chemical inhibition of the catalytic activity of COX-2 is a well-established strategy for treating inflammation but little is known of cellular mechanisms that dispose of the protein itself. Here we show that in addition to its indirect negative feedback on COX-2, AT1 also down-regulates the expression of the COX-2 protein via a pathway that does not involve G-protein or β-arrestin-dependent signaling. Instead, AT1 enhances the ubiquitination and subsequent degradation of the enzyme in the proteasome through elements in its cytosolic carboxyl tail (CT). We find that a mutant receptor that lacks the last 35 amino acids of its CT (Δ324) is devoid of its ability to reduce COX-2, and that expression of the CT sequence alone is sufficient to down-regulate COX-2. Collectively these results propose a new role for AT1 in regulating COX-2 expression in a mechanism that deviates from its canonical signaling pathways. Down-regulation of COX-2 by a short peptide that originates from AT1 may present as a basis for novel therapeutic means of eliminating excess COX-2 protein. PMID:25231994
Design, Synthesis, and Evaluation of New Tripeptides as COX-2 Inhibitors.
Vernieri, Ermelinda; Gomez-Monterrey, Isabel; Milite, Ciro; Grieco, Paolo; Musella, Simona; Bertamino, Alessia; Scognamiglio, Ilaria; Alcaro, Stefano; Artese, Anna; Ortuso, Francesco; Novellino, Ettore; Sala, Marina; Campiglia, Pietro
2013-01-01
Cyclooxygenase (COX) is a key enzyme in the biosynthetic pathway leading to the formation of prostaglandins, which are mediators of inflammation. It exists mainly in two isoforms COX-1 and COX-2. The conventional nonsteroidal anti-inflammatory drugs (NSAIDs) have gastrointestinal side effects because they inhibit both isoforms. Recent data demonstrate that the overexpression of these enzymes, and in particular of cyclooxygenases-2, promotes multiple events involved in tumorigenesis; in addition, numerous studies show that the inhibition of cyclooxygenases-2 can delay or prevent certain forms of cancer. Agents that inhibit COX-2 while sparing COX-1 represent a new attractive therapeutic development and offer a new perspective for a further use of COX-2 inhibitors. The present study extends the evaluation of the COX activity to all 20(3) possible natural tripeptide sequences following a rational approach consisting in molecular modeling, synthesis, and biological tests. Based on data obtained from virtual screening, only those peptides with better profile of affinity have been selected and classified into two groups called S and E. Our results suggest that these novel compounds may have potential as structural templates for the design and subsequent development of the new selective COX-2 inhibitors drugs.
Farzaneh, Shabnam; Zeinalzadeh, Elnaz; Daraei, Bahram; Shahhosseini, Soraya; Zarghi, Afshin
2018-01-01
Due to the astonishing properties of ferrocene and its derivatives, it has a broad application in diverse areas. Numerous ferrocene derivatives demonstrated anti-proliferative activity. Also COX-2, as a key isoenzyme for production of prostaglandins, is frequently overexpressed in various cancers. It is now recognized that COX-2 over expression promotes tumorigenic functions which can be suppressed by COX-2 inhibitors, a phenomenon useful for the preventing of tumor progression. The combination of COX-2 inhibitors with other anti-cancer or cancer prevention drugs may reduce their side effects in future cancer prevention and treatment. Owing to high anticancer potential of ferrocene derivatives and considerable COX-2 inhibitory and cytotoxicity effects of our previously synthesized chalcones, we decided to incorporate the ferrocenyl moiety into appropriate COX-2 inhibitor chalcone based scaffold, to evaluate COX-2 inhibitory activity as well as anticancer activities. Chalcones were synthesized via clasien-schmidt condensation of methylsulfonyl aldehyde and acetyl ferrocene. Further different amines with solvent free and ultra sound condition were reacted with chalcones to have different 1-ferrocenyl-3-amino carbonyl compounds. Docking study was carried out with Auto Dock vina software. All the newly-synthesized compounds were evaluated for their cyclooxygenase-2 (COX-2) inhibitory activity using chemiluminescent enzyme assays as well as cytotoxicity activity against MCF-7 and T47D and fibroblast cell lines by MTT assay. In vitro COX-1/COX-2 inhibition studies demonstrated that all compounds were selective inhibitors of the COX-2 isozyme with IC50 values in the highly potent 0.05-0.12 µM range, and COX-2 selectivity indexes (SI) in the 148.3-313.7 range. These results indicated that either potency or selectivity of COX-2 inhibitory activity was affected by the nature and size of the substituents on C-3 of propane-1-one. Also anti-proliferative and toxicity activities of synthesized compounds against breast cancer cell lines MCF-7 and T47D and fibroblast cell lines showed that the synthesized compounds had mild to moderate cytotoxicity against MCT7 and T47D breast cancer cell lines at 10 µM concentration. In vitro COX-1/COX-2 inhibition studies and anticancer activity against MCF-7, identified 1-ferrocenyl-3-(4-methylsulfonylphenyl) propen-1-one as a potent compound (IC50 COX-2 = 0.05 µM, MCF-7: % inhibition (at concentration of 10 µM) = 32.7%), and also 1-ferrocenyl-3- (propan-1-amine)-3-(4-methylsulfonylphenyl) propan-1-one showed the most selectivity on COX-2 inhibition (selectivity index= 313.7). A novel group of ferrocene compounds, possessing a methyl sulfonyl COX-2 pharmacophore were synthesized to investigate the effect of different substituents on selectivity and potency of COX-2 inhibitory activity and their cytotoxicity effects. This study indicates that 1-ferrocenyl-3-amino carbonyl compounds having ferrocene motif and methyl sulfonyl COX-2 pharmacophore is a suitable scaffold to design COX-2 inhibitors and anti-cancer agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Havemeyer, Antje; Grünewald, Sanja; Wahl, Bettina; Bittner, Florian; Mendel, Ralf; Erdélyi, Péter; Fischer, János; Clement, Bernd
2010-11-01
Purification of the mitochondrial enzyme responsible for reduction of N-hydroxylated amidine prodrugs led to the identification of two newly discovered mammalian molybdenum-containing proteins, the mitochondrial amidoxime reducing components mARC-1 and mARC-2 (Gruenewald et al., 2008). These 35-kDa proteins represent a novel group of molybdenum proteins in eukaryotes as they form a molybdenum cofactor-dependent enzyme system consisting of three separate proteins (Havemeyer et al., 2006). Each mARC protein reduces N-hydroxylated compounds after reconstitution with the electron transport proteins cytochrome b(5) and b(5) reductase. In continuation of our drug metabolism investigations (Havemeyer et al., 2006; Gruenewald et al., 2008), we present data from reconstituted enzyme systems with recombinant human and native porcine enzymes showing the reduction of N-hydroxy-sulfonamides (sulfohydroxamic acids) to sulfonamides: the N-hydroxy-sulfonamide N-hydroxy-valdecoxib (N-hydroxy-4-[5-methyl-3-phenyl-4-isoxazolyl]-benzenesulfonamide) represents a novel cyclooxygenase (COX)-2 inhibitor and is therefore a drug candidate in the treatment of diseases associated with rheumatic inflammation, pain, and fever. It was synthesized as an analog of the known COX-2 inhibitor valdecoxib (4-[5-methyl-3-phenyl-4-isoxazolyl]-benzenesulfonamide) (Talley et al., 2000). N-Hydroxy-valdecoxib had low in vitro COX-2 activity but showed significant analgesic activity in vivo and a prolonged therapeutic effect compared with valdecoxib (Erdélyi et al., 2008). In this report, we demonstrate that N-hydroxy-valdecoxib is enzymatically reduced to its pharmacologically active metabolite valdecoxib. Thus, N-hydroxy-valdecoxib acts as prodrug that is activated by the molybdenum-containing enzyme mARC.
Badie, Behnam; Schartner, Jill M; Hagar, Aaron R; Prabakaran, Sakthivel; Peebles, Todd R; Bartley, Becky; Lapsiwala, Samir; Resnick, Daniel K; Vorpahl, Jessica
2003-02-01
Cerebral edema is responsible for significant morbidity and mortality in patients harboring malignant gliomas. To examine the role of inflammatory cells in brain edema formation, we studied the expression cyclooxygenase (COX)-2, a key enzyme in arachidonic acid metabolism, by microglia in the C6 rodent glioma model. The expression of COX-2 in primary microglia cultures obtained from intracranial rat C6 gliomas was examined using reverse transcription-PCR, Western analysis, and prostaglandin E(2) (PGE(2)) enzyme immunoassay. Blood-tumor barrier permeability was studied in the same tumor model using magnetic resonance imaging. In contrast to C6 glioma cells, microglia isolated from intracranial C6 tumors produced high levels of PGE(2) through a COX-2-dependent pathway. To test whether the observed microglia COX-2 activity played a role in brain edema formation in gliomas, tumor-bearing rats were treated with rofecoxib, a selective COX-2 inhibitor. Rofecoxib was as effective as dexamethasone in decreasing the diffusion of contrast material into the brain parenchyma (P = 0.01, rofecoxib versus control animals), suggesting a reduction in blood-tumor barrier permeability. These findings suggest that glioma-infiltrating microglia are a major source of PGE(2) production through the COX-2 pathway and support the use of COX-2 inhibitors as possible alternatives to glucocorticoids in the treatment of peritumoral edema in patients with malignant brain tumors.
Berg, J; Fellier, H; Christoph, T; Kremminger, P; Hartmann, M; Blaschke, H; Rovensky, F; Towart, R; Stimmeder, D
2000-04-01
HN-56249 (3-(2,4-dichlorothiophenoxy)-4-methylsulfonylamino-benzenesu lfonamide), a highly selective cyclooxygenase (COX)-2 inhibitor, is the prototype of a novel series of COX inhibitors comprising bicyclic arylethersulfonamides; of this series HN-56249 is the most potent and selective human COX-2 inhibitor. HN-56249 inhibited platelet aggregation as a measure of COX-1 activity only moderately (IC50 26.5+/-1.7 microM). In LPS-stimulated monocytic cells the release of prostaglandin (PG) F1alpha as a measure of COX-2 was markedly inhibited (IC50 0.027+/-0.001 microM). Thus, HN-56249 showed an approximately 1000-fold selectivity for COX-2 in intact cells. In whole blood assays HN-56249 showed a potent inhibitory activity for COX-2 (IC50 0.78+/-0.37 microM) only. COX-1 was only weakly inhibited (IC50 867+/-181 microM). Hence, HN-56249 exhibited a greater than 1000-fold selectivity for whole blood COX-2. HN-56249 surpassed the COX-2 selectivities of the COX-2 selective inhibitors 3-cyclohexyloxy-4-methylsulfonylamino-nitrobenzene (NS-398) and 6-(2,4-difluorophenoxy)-5-methyl-sulfonylamino-1-indanone (flosulide) in the intact cell assays by eight- and threefold, respectively, and in the whole blood assays by approximately 40-fold. Following i.v. administration HN-56249 inhibited carrageenan-induced rat paw oedema only moderately (ID50 26.2+/-5.7 mg/kg, mean +/- SEM), approximately tenfold less potent than indomethacin (ID50 2.1+/-0.2 mg/kg, mean +/- SEM). After oral administration HN-56249 reversed thermal hyperalgesia in the carrageenan-induced rat paw oedema test, however, some 30-fold less potently than diclofenac. Comparing the inhibitory potency of HN-56249 against human COX-2 with that against murine COX-2 in intact cells revealed a 300-fold selectivity for the human enzyme. Similar effects were observed with other COX-2-selective arylethersulfonamides. In contrast, non-COX-2-selective arylethersulfonamides, including a highly selective COX-1 inhibitor, inhibited human and murine COX-2 approximately equipotently. In conclusion, HN-56249 is a novel potent and highly selective COX-2 inhibitor with a marked preference for the human COX-2 enzyme in vitro. Despite excellent bioavailability and the long plasma half-life of HN-56249, anti-inflammatory effects in rodents were only moderate. We suggest these differing in vitro-in vivo effects observed could be due to significant inflammatory prostaglandin synthesis by COX-1, or to the genetic differences between human and rodent COX-2, or to both.
Chiu, Wen-Ta; Shen, Shing-Chuan; Chow, Jyh-Ming; Lin, Cheng-Wei; Shia, Ling-Tin; Chen, Yen-Chou
2010-01-01
In the presence of 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulation, an increase in the migration/invasion of U87 glioblastoma cells was detected by a wound healing assay, transwell analysis, and spheroid formation assay by inducing matrix metalloproteinase-9 (MMP-9) enzyme activity via a gelatin zymographic analysis. A dose- and time-dependent increase in cyclooxygenase-2 (COX-2) gene expression with elevated prostaglandin E(2) (PGE(2)) production was identified in TPA- but not in 4alpha-TPA (a respective inactive compound)-treated U87 cells TPA-induced migration/invasion was significantly blocked by adding the COX-2-specific inhibitor, NS398, through a reduction in PGE(2) production. Data from the pharmacological studies using specific chemical inhibitors showed that activation of protein kinase C (PKC) and extracellular signal-regulated kinases (ERKs) was involved in TPA-induced migration/invasion, COX-2 protein expression, and MMP-9 activation. Stimulation of intracellular peroxide production by TPA was detected by a DCHF-DA assay, and the addition of superoxide dismutase (SOD) or tempol significantly inhibited TPA-induced migration/invasion and COX-2 protein expression accompanied by a decrease in peroxide production. An increase in NADPH oxidase activity by TPA was examined, and TPA-induced migration/invasion was blocked by adding DPI, an NADPH oxidase inhibitor. Additionally, the natural flavonoids quercetin (QE), baicalein (BE), and myricetin (ME) effectively blocked TPA-induced migration/invasion while simultaneously inhibiting COX-2/PGE(2) production, MMP-9 enzyme activity, and peroxide production in U87 cells. The contribution of ROS production to the migration/invasion of U87 glioblastoma cells via ERK-activated COX-2/PGE(2) and MMP-9 induction was first investigated here, and agents such as QE, BE, and ME with the ability to block these events possess the potential to be developed for use against migration/invasion by glioblastomas.
Ahmaditaba, Mohammad Ali; Houshdar Tehrani, Mohammad Hassan; Zarghi, Afshin; Shahosseini, Sorayya; Daraei, Bahram
2018-01-01
A new series of peptide-like derivatives containing different aromatic amino acids and possessing pharmacophores of COX-2 inhibitors as SO2Me or N3 attached to the para position of an end phenyl ring was synthesized for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. The synthetic reactions were based on the solid phase peptide synthesis method using Wang resin. One of the analogues, i.e., compound 2d, as the representative of these series was recognized as the most effective and the highest selective COX-2 inhibitor with IC50 value of 0.08 μM and COX-2 selectivity index of 351.2, among the other synthesized compounds. Molecular docking study was operated to determine possible binding models of compound 2d to COX-2 enzyme. The study showed that the p-azido-phenyl fragment of 2d occupied inside the secondary COX-2 binding site (Arg513, and His90). The structure-activity relationships acquired disclosed that compound 2d with 4-(azido phenyl) group as pharmacophore and histidine as amino acid gives the essential geometry to provide inhibition of the COX-2 enzyme with high selectivity. Compound 2d can be a good candidate for the development of new hits of COX-2 inhibitors.
Alkaloids as Cyclooxygenase Inhibitors in Anticancer Drug Discovery.
Hashmi, Muhammad Ali; Khan, Afsar; Farooq, Umar; Khan, Sehroon
2018-01-01
Cancer is the leading cause of death worldwide and anticancer drug discovery is a very hot area of research at present. There are various factors which control and affect cancer, out of which enzymes like cyclooxygenase-2 (COX-2) play a vital role in the growth of tumor cells. Inhibition of this enzyme is a very useful target for the prevention of various types of cancers. Alkaloids are a diverse group of naturally occurring compounds which have shown great COX-2 inhibitory activity both in vitro and in vivo. In this mini-review, we have discussed different alkaloids with COX-2 inhibitory activities and anticancer potential which may act as leads in modern anticancer drug discovery. Different classes of alkaloids including isoquinoline alkaloids, indole alkaloids, piperidine alkaloids, quinazoline alkaloids, and various miscellaneous alkaloids obtained from natural sources have been discussed in detail in this review. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Kavitha, T.; Velraj, G.
2017-08-01
The molecular structure of 1-(2, 5-Dichloro-4-Sulfophenyl)-3-Methyl-5-Pyrazolone (DSMP) was optimized using DFT/B3LYP/6-31++G(d,p) level and its corresponding experimental as well as theoretical FT-IR, FT-Raman vibrational frequencies and UV-Vis spectral analysis were carried out. The vibrational assignments and total energy distributions of each vibration were presented with the aid of Veda 4xx software. The molecular electrostatic potential, HOMO-LUMO energies, global and local reactivity descriptors and natural bond orbitals were analyzed in order to find the most possible reactive sites of the molecule and it was found that DSMP molecule possess enhanced nucleophilic activity. One of the common known COX2 inhibitor, celecoxib (CXB) was also found to exhibit similar reactivity properties and hence DSMP was also expected to inhibit COX enzymes. In order to detect the COX inhibition nature of DSMP, molecular docking analysis was carried out with the help of Autodock software. For that, the optimized structure was in turn used for docking DSMP with COX enzymes. The binding energy scores and inhibitory constant values reveal that the DSMP molecule possess good binding affinity and low inhibition constant towards COX2 enzyme and hence it can be used as an anti-inflammatory drug after carrying out necessary biological tests.
Gautam, Raju; Karkhile, Kailas V; Bhutani, Kamlesh K; Jachak, Sanjay M
2010-10-01
Evaluation of the topical anti-inflammatory activity of chloroform and ethyl acetate extracts of RUMEX NEPALENSIS roots in a TPA-induced acute inflammation mouse model demonstrated a significant reduction in ear edema. The extracts were further tested on purified enzymes for COX-1 and COX-2 inhibition to elucidate their mechanism of action, and a strong inhibition was observed. Six anthraquinones and two naphthalene derivatives were isolated from the ethyl acetate extract. Among the isolated compounds, emodin was found to be a potent inhibitor with slight selectivity towards COX-2, and nepodin exhibited selectivity towards COX-1. Emodin, endocrocin, and nepodin also exhibited significant topical anti-inflammatory activity in mice. Interestingly, nepodin showed better radical scavenging activity than trolox and ascorbic acid against DPPH and ABTS radicals. The strong radical scavenging activity of chloroform and ethyl acetate extracts could be explained by the presence of nepodin as well as by the high phenolic content of the ethyl acetate extract. Thus, the anti-inflammatory effect of R. NEPALENSIS roots was assumed to be mediated through COX inhibition by anthraquinones and naphthalene derivatives and through the radical scavenging activities of naphthalene derivatives. © Georg Thieme Verlag KG Stuttgart · New York.
Ooka, Hideshi; Hashimoto, Kazuhito; Nakamura, Ryuhei
2018-05-14
Understanding the design strategy of photosynthetic and respiratory enzymes is important to develop efficient artificial catalysts for oxygen evolution and reduction reactions. Here, based on a bioinformatic analysis of cyanobacterial oxygen evolution and reduction enzymes (photosystem II: PS II and cytochrome c oxidase: COX, respectively), the gene encoding the catalytic D1 subunit of PS II was found to be expressed individually across 38 phylogenetically diverse strains, which is in contrast to the operon structure of the genes encoding major COX subunits. Selective synthesis of the D1 subunit minimizes the repair cost of PS II, which allows compensation for its instability by lowering the turnover number required to generate a net positive energy yield. The different bioenergetics observed between PS II and COX suggest that in addition to the catalytic activity rationalized by the Sabatier principle, stability factors have also provided a major influence on the design strategy of biological multi-electron transfer enzymes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Yuxia; Ren, Biao; Zhou, Xuedong; Liu, Shiyu; Zhou, Yujie; Li, Bolei; Jiang, Yaling; Li, Mingyun; Feng, Mingye
2017-01-01
Staphylococcus aureus is a major pathogen of varieties of oral mucous infection. Prostaglandin E2 (PGE2) is a pro-inflammatory factor and Cyclooxygenase 2 (COX-2) is a critical enzyme of PGE2 biosynthesis. The purpose of this study is to investigate whether Staphylococcus aureus can increase PGE2 production of oral epithelial cells and how PGE2 functions in the growth and adherence of Staphylococcus aureus. mRNA levels of COX-2, fnbpA and fnbpB were estimated by quantitative PCR. PGE2 production was measured by Enzyme Linked Immunosorbent Assay (ELISA). The binding biomass of Staphylococcus aureus to human fibronectin was investigated by crystal violet staining and confocal laser scanning microscopy and the adherent force was measured by atomic force microscope (AFM). The COX-2 mRNA level and PGE2 production were increased by Staphylococcus aureus. PGE2 promoted the growth and biofilm formation of Staphylococcus aureus, enhanced the attachment of Staphylococcus aureus to the human fibronectin as well as to the HOK cells. The transcription of fnbpB was up-regulated by PGE2 in both early and middle exponential phase but not fnbpA. These results suggest that the activation of COX-2/PGE2 pathway in oral epithelial cell by Staphylococcus aureus can in turn facilitate the growth and the ability to adhere of the pathogen. These findings uncover a new function of PGE2 and may lead to the potential of COX-2/PGE2 targeting in the therapy of inflammation and cancer in both which the COX-2/PGE2 pathway were observed activated. PMID:28472126
Wang, Yuxia; Ren, Biao; Zhou, Xuedong; Liu, Shiyu; Zhou, Yujie; Li, Bolei; Jiang, Yaling; Li, Mingyun; Feng, Mingye; Cheng, Lei
2017-01-01
Staphylococcus aureus is a major pathogen of varieties of oral mucous infection. Prostaglandin E2 (PGE2) is a pro-inflammatory factor and Cyclooxygenase 2 (COX-2) is a critical enzyme of PGE2 biosynthesis. The purpose of this study is to investigate whether Staphylococcus aureus can increase PGE2 production of oral epithelial cells and how PGE2 functions in the growth and adherence of Staphylococcus aureus. mRNA levels of COX-2, fnbpA and fnbpB were estimated by quantitative PCR. PGE2 production was measured by Enzyme Linked Immunosorbent Assay (ELISA). The binding biomass of Staphylococcus aureus to human fibronectin was investigated by crystal violet staining and confocal laser scanning microscopy and the adherent force was measured by atomic force microscope (AFM). The COX-2 mRNA level and PGE2 production were increased by Staphylococcus aureus. PGE2 promoted the growth and biofilm formation of Staphylococcus aureus, enhanced the attachment of Staphylococcus aureus to the human fibronectin as well as to the HOK cells. The transcription of fnbpB was up-regulated by PGE2 in both early and middle exponential phase but not fnbpA. These results suggest that the activation of COX-2/PGE2 pathway in oral epithelial cell by Staphylococcus aureus can in turn facilitate the growth and the ability to adhere of the pathogen. These findings uncover a new function of PGE2 and may lead to the potential of COX-2/PGE2 targeting in the therapy of inflammation and cancer in both which the COX-2/PGE2 pathway were observed activated.
Chamomile, a novel and selective COX-2 inhibitor with anti-inflammatory activity
Srivastava, Janmejai K; Pandey, Mitali; Gupta, Sanjay
2009-01-01
Aims Inducible cyclooxygenase (COX-2) has been implicated in the process of inflammation and carcinogenesis. Chamomile has long been used in traditional medicine for the treatment of inflammatory diseases. In this study we aimed to investigate whether chamomile interferes with the COX-2 pathway. Main Methods We used lipopolysaccharide (LPS)-activated RAW 264.7 macrophages as an in vitro model for our studies. Key Findings Chamomile treatment inhibited the release of LPS-induced prostaglandin E(2) in RAW 264.7 macrophages. This effect was found to be due to inhibition of COX-2 enzyme activity by chamomile. In addition, chamomile caused reduction in LPS-induced COX-2 mRNA and protein expression, without affecting COX-1 expression. The non-steroidal anti-inflammatory drug, sulindac and a specific COX-2 inhibitor, NS398, were shown to act similarly in LPS-activated RAW 264.7 cells. Our data suggest that chamomile works by a mechanism of action similar to that attributed to non-steroidal anti-inflammatory drugs. Significance These findings add a novel aspect to the biological profile of chamomile which might be important for understanding the usefulness of aqueous chamomile extract in the form of tea in preventing inflammation and cancer. PMID:19788894
Chamomile, a novel and selective COX-2 inhibitor with anti-inflammatory activity.
Srivastava, Janmejai K; Pandey, Mitali; Gupta, Sanjay
2009-11-04
Inducible cyclooxygenase (COX-2) has been implicated in the process of inflammation and carcinogenesis. Chamomile has long been used in traditional medicine for the treatment of inflammatory diseases. In this study we aimed to investigate whether chamomile interferes with the COX-2 pathway. We used lipopolysaccharide (LPS)-activated RAW 264.7 macrophages as an in vitro model for our studies. Chamomile treatment inhibited the release of LPS-induced prostaglandin E(2) in RAW 264.7 macrophages. This effect was found to be due to inhibition of COX-2 enzyme activity by chamomile. In addition, chamomile caused reduction in LPS-induced COX-2 mRNA and protein expression, without affecting COX-1 expression. The non-steroidal anti-inflammatory drug, sulindac and a specific COX-2 inhibitor, NS398, were shown to act similarly in LPS-activated RAW 264.7 cells. Our data suggest that chamomile works by a mechanism of action similar to that attributed to non-steroidal anti-inflammatory drugs. These findings add a novel aspect to the biological profile of chamomile which might be important for understanding the usefulness of aqueous chamomile extract in the form of tea in preventing inflammation and cancer.
Cingolani, Gino; Panella, Andrea; Perrone, Maria Grazia; Vitale, Paola; Di Mauro, Giuseppe; Fortuna, Cosimo G; Armen, Roger S; Ferorelli, Savina; Smith, William L; Scilimati, Antonio
2017-09-29
The diarylisoxazole molecular scaffold is found in several NSAIDs, especially those with high selectivity for COX-1. Here, we have determined the structural basis for COX-1 binding to two diarylisoxazoles: mofezolac, which is polar and ionizable, and 3-(5-chlorofuran-2-yl)-5-methyl-4-phenylisoxazole (P6) that has very low polarity. X-ray analysis of the crystal structures of COX-1 bound to mofezolac and 3-(5-chlorofuran-2-yl)-5-methyl-4-phenylisoxazole allowed the identification of specific binding determinants within the enzyme active site, relevant to generate structure/activity relationships for diarylisoxazole NSAIDs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Abdelwahab, Siddig Ibrahim; Hassan, Loiy Elsir Ahmed; Sirat, Hasnah Mohd; Yagi, Sakina M Ahmed; Koko, Waleed S; Mohan, Syam; Taha, Manal Mohamed Elhassan; Ahmad, Syahida; Chuen, Cheah Shiau; Narrima, Putri; Rais, Mohd Mustafa; Hadi, A Hamid A
2011-12-01
The in vivo and in vitro mechanistic anti-inflammatory actions of cucurbitacin E (CE) (Citrullus lanatus var. citroides) were examined. The results showed that LPS/INF-γ increased NO production in RAW264.7 macrophages, whereas L-NAME and CE curtailed it. CE did not reveal any cytotoxicity on RAW264.7 and WRL-68 cells. CE inhibited both COX enzymes with more selectivity toward COX-2. Intraperitoneal injection of CE significantly suppressed carrageenan-induced rat's paw edema. ORAC and FRAP assays showed that CE is not a potent ROS scavenger. It could be concluded that CE is potentially useful in treating inflammation through the inhibition of COX and RNS but not ROS. Copyright © 2011 Elsevier B.V. All rights reserved.
Park, Eun Jung
2011-01-01
Cyclooxygenase-2 (COX-2) is an important enzyme in inflammation. In this study, we investigated the underlying molecular mechanism of the synergistic effect of rottlerin on interleukin1β (IL-1β)-induced COX-2 expression in MDA-MB-231 human breast cancer cell line. Treatment with rottlerin enhanced IL-1β-induced COX-2 expression at both the protein and mRNA levels. Combined treatment with rottlerin and IL-1β significantly induced COX-2 expression, at least in part, through the enhancement of COX-2 mRNA stability. In addition, rottlerin and IL-1β treatment drove sustained activation of p38 Mitogen-activated protein kinase (MAPK), which is involved in induced COX-2 expression. Also, a pharmacological inhibitor of p38 MAPK (SB 203580) and transient transfection with inactive p38 MAPK inhibited rottlerin and IL-1β-induced COX-2 upregulation. However, suppression of protein kinase C δ (PKC δ) expression by siRNA or overexpression of dominant-negative PKC δ (DN-PKC-δ) did not abrogate the rottlerin plus IL-1β-induced COX-2 expression. Furthermore, rottlerin also enhanced tumor necrosis factor-α (TNF-α), phorbol myristate acetate (PMA), and lipopolysaccharide (LPS)-induced COX-2 expression. Taken together, our results suggest that rottlerin causes IL-1β-induced COX-2 upregulation through sustained p38 MAPK activation in MDA-MB-231 human breast cancer cells. PMID:21971413
Kim, Sangwon F.; Mollace, Vincenzo
2013-01-01
The nitric oxide (NO) and cyclooxygenase (COX) pathways share a number of similarities. Nitric oxide is the mediator generated from the NO synthase (NOS) pathway, and COX converts arachidonic acid to prostaglandins, prostacyclin, and thromboxane A2. Two major forms of NOS and COX have been identified to date. The constitutive isoforms critically regulate several physiological states. The inducible isoforms are overexpressed during inflammation in a variety of cells, producing large amounts of NO and prostaglandins, which may underlie pathological processes. The cross-talk between the COX and NOS pathways was initially reported by Salvemini and colleagues in 1993, when they demonstrated in a series of in vitro and in vivo studies that NO activates the COX enzymes to produce increased amounts of prostaglandins. Those studies led to the concept that COX enzymes represent important endogenous “receptor” targets for amplifying or modulating the multifaceted roles of NO in physiology and pathology. Since then, numerous studies have furthered our mechanistic understanding of these interactions in pathophysiological settings and delineated potential clinical outcomes. In addition, emerging evidence suggests that the canonical nitroxidative species (NO, superoxide, and/or peroxynitrite) modulate biosynthesis of prostaglandins through non-COX-related pathways. This article provides a comprehensive state-of-the art overview in this area. PMID:23389111
Burnett, Bruce P.; Bitto, Alessandra; Altavilla, Domenica; Squadrito, Francesco; Levy, Robert M.; Pillai, Lakshmi
2011-01-01
The multiple mechanisms of action for flavocoxid relating to arachidonic acid (AA) formation and metabolism were studied in vitro. Flavocoxid titrated into rat peritoneal macrophage cultures inhibited cellular phospholipase A2 (PLA2) (IC50 = 60 μg/mL). In in vitro enzyme assays, flavocoxid showed little anti-cyclooxygenase (CO) activity on COX-1/-2 enzymes, but inhibited the COX-1 (IC50 = 12.3) and COX-2 (IC50 = 11.3 μg/mL) peroxidase (PO) moieties as well as 5-lipoxygenase (5-LOX) (IC50 = 110 μg/mL). No detectable 5-LOX inhibition was found for multiple traditional and COX-2 selective NSAIDs. Flavocoxid also exhibited strong and varied antioxidant capacities in vitro and decreased nitrite levels (IC50 = 38 μg/mL) in rat peritoneal macrophages. Finally, in contrast to celecoxib and ibuprofen, which upregulated the cox-2 gene, flavocoxid strongly decreased expression. This work suggests that clinically favourable effects of flavocoxid for management of osteoarthritis (OA) are achieved by simultaneous modification of multiple molecular pathways relating to AA metabolism, oxidative induction of inflammation, and neutralization of reactive oxygen species (ROS). PMID:21765617
Burnett, Bruce P; Bitto, Alessandra; Altavilla, Domenica; Squadrito, Francesco; Levy, Robert M; Pillai, Lakshmi
2011-01-01
The multiple mechanisms of action for flavocoxid relating to arachidonic acid (AA) formation and metabolism were studied in vitro. Flavocoxid titrated into rat peritoneal macrophage cultures inhibited cellular phospholipase A2 (PLA(2)) (IC(50) = 60 μg/mL). In in vitro enzyme assays, flavocoxid showed little anti-cyclooxygenase (CO) activity on COX-1/-2 enzymes, but inhibited the COX-1 (IC(50) = 12.3) and COX-2 (IC(50) = 11.3 μg/mL) peroxidase (PO) moieties as well as 5-lipoxygenase (5-LOX) (IC(50) = 110 μg/mL). No detectable 5-LOX inhibition was found for multiple traditional and COX-2 selective NSAIDs. Flavocoxid also exhibited strong and varied antioxidant capacities in vitro and decreased nitrite levels (IC(50) = 38 μg/mL) in rat peritoneal macrophages. Finally, in contrast to celecoxib and ibuprofen, which upregulated the cox-2 gene, flavocoxid strongly decreased expression. This work suggests that clinically favourable effects of flavocoxid for management of osteoarthritis (OA) are achieved by simultaneous modification of multiple molecular pathways relating to AA metabolism, oxidative induction of inflammation, and neutralization of reactive oxygen species (ROS).
NASA Astrophysics Data System (ADS)
Sayers, Brian C.
Exposure to multiwalled carbon nanotubes (MWCNT) has been demonstrated to exacerbate airway inflammation and fibrosis in allergen-challenged mouse model. These data have led to concern that individuals with asthma could represent a susceptible population to adverse health effects following exposure to MWCNT, and possibly other engineered nanoparticles. Asthma pathogenesis is caused by the interaction of a complex genetic predisposition and environmental exposures. Because chronic airway inflammation is common to all asthma phenotypes, it is logical to investigate genes that are involved in inflammatory pathways in order to understand the genetic basis of asthma. The metabolism of arachidonic acid by cyclooxygenase (COX) enzymes is the rate-determining step in the synthesis of prostanoids, which are biologically active lipids that are important modulators of inflammation. Based on the role of COX enzymes in inflammatory pathways, we sought to investigate how COX enzymes are involved in the inflammatory response following MWCNT exposure in asthmatic airways. We report that MWCNT significantly exacerbated allergen-induced airway inflammation and mucus cell metaplasia in COX-2 deficient mice compared to wild type mice. In addition, MWCNTs significantly enhanced allergen-induced cytokines involved in Th2 (IL-13, IL-5), Th1 (CXCL10), and Th17 (IL-17A) inflammatory responses in COX-2 deficient mice but not in WT mice. We conclude that exacerbation of allergen-induced airway inflammation and mucus cell metaplasia by MWCNTs is enhanced by deficiency in COX-2 and associated with activation of a mixed Th1/Th2/Th17 immune response. Based on our observation that COX-2 deficient mice developed a mixed Th immune response following MWCNT exposure, we sought to evaluate how cytokines associated with different Th immune responses alter COX expression following MWCNT exposure. For this study, a mouse macrophage cell line (RAW264.7) was used because MWCNT were largely sequestered within alveolar macrophages with 24 hours after aspiration in mice. We report that the Th1 cytokine interferon gamma (IFNgamma) causes decreased COX-1 expression but increased prostaglandin E2 (PGE 2) production in mouse macrophages exposed to nickel nanoparticles (NiNP), a residual impurity found in MWCNT from the catalytic synthesis process. NiNP exposure alone increased COX-2 and decreased COX-1 in the absence of exogenous cytokines. IFNgamma further reduced COX-1 levels suppressed by NiNP. IL-4, IL-13, or IL-17 did not reduce COX-1 expression alone or in combination with NiNP. Exogenous PGE2 enhanced NiNP- or IFN-gamma-mediated COX-1 suppression. Pharmacologic inhibition of ERK1,2 or JAK/STAT-1 cell signaling pathways inhibited PGE2 production in all dose groups and restored COX-1 expression in cells treated with IFNgamma and NiNP. These data show that PGE2 production is induced in macrophages exposed to IFNgamma and NiNP and suggest that macrophages could be an important source of the anti-inflammatory mediator PGE2 following nanoparticle exposure in a Th1 immune microenvironment. In summary, these studies highlight an important role for COX enzymes in regulating inflammation in response to engineered nanoparticles and show that prostanoid production in response to nanoparticle exposure could be determined in part by the Th immune microenvironment.
Mogana, R; Teng-Jin, K; Wiart, C
2013-01-01
The barks and leaves extracts of Canarium patentinervium Miq. (Burseraceae Kunth.) were investigated for cyclooxygenase (COX) and 5-lipoxygenase (LOX) inhibition via in vitro models. The corresponding antioxidative power of the plant extract was also tested via nonenzyme and enzyme in vitro assays. The ethanolic extract of leaves inhibited the enzymatic activity of 5-LOX, COX-1, and COX-2 with IC50 equal to 49.66 ± 0.02 μg/mL, 0.60 ± 0.01 μg/mL, and 1.07 ± 0.01 μg/mL, respectively, with selective COX-2 activity noted in ethanolic extract of barks with COX-1/COX-2 ratio of 1.22. The ethanol extract of barks confronted oxidation in the ABTS, DPPH, and FRAP assay with EC50 values equal to 0.93 ± 0.01 μg/mL, 2.33 ± 0.02 μg/mL, and 67.00 ± 0.32 μg/mL, respectively, while the ethanol extract of leaves confronted oxidation in β-carotene bleaching assay and superoxide dismutase (SOD) assay with EC50 value of 6.04 ± 0.02 μg/mL and IC50 value of 3.05 ± 0.01 μg/mL. The ethanol extract acts as a dual inhibitor of LOX and COX enzymes with potent antioxidant capacity. The clinical significance of these data is quite clear that they support a role for Canarium patentinervium Miq. (Burseraceae Kunth.) as a source of lead compounds in the management of inflammatory diseases.
NASA Astrophysics Data System (ADS)
Constant, P.; Quiza, L.; Lalonde, I.
2013-12-01
Soil bacteria scavenging carbon monoxide (CO) are responsible for the biological sink of atmospheric CO. These bacteria mitigate an important fraction of the global emissions of CO from natural and anthropogenic sources. This ubiquitous soil ecosystem service is of critical importance since CO indirectly regulates the atmospheric lifetime of methane - the second most powerful greenhouse gas. So far, only few carboxydovore bacteria were shown to oxidize atmospheric CO. The CO-dehydrogenase (CODH) is the enzyme catalyzing the CO oxidation reaction in these bacteria. The enzyme is a dimer of heterotrimers encoded by the genes coxS, coxM and coxL. CoxL is the large subunit of the CODH. Phylogenetic analyzes revealed that coxL gene sequences encompass two main clusters: BMS and OMP groups but the version conferring a high affinity for CO and the ability to scavenge atmospheric CO is unknown. The objective of this investigation was to relate the diversity of coxL gene sequences with CO soil uptake activity and soil physicochemical properties. For this purpose, we collected soil samples in three neighbouring sites encompassing different land-use types: an undisturbed deciduous forest, a maize field and a larch monoculture. We analyzed (i) coxL diversity in the three environments, using a new coxL PCR detection assay targeting both OMP and BMS groups, (ii) CO oxidation activity using a gas chromatography assay and, (iii) soil physicochemical properties. Our results demonstrate that land-use change exerts a significant impact on coxL diversity as well as CO oxidation activity, with significant loss of the potential CO soil uptake activity following the conversion of native forest to maize or larch plantation. Most of the coxL gene sequences retrieved from the soil samples were not affiliated to sequences derived from microbial genome databases, impairing a taxonomic identification of the potential CO-oxidizing bacteria detected in soil. Canonical ordination analysis allowed us to identify coxL sequences belonging to potential high affinity CO-oxidizing bacteria, in addition to recognise environmental factors influencing their distribution and CO soil uptake activity. The activity increased with total carbon and nitrogen in soil and was inversely correlated to water content, pH, potassium and phosphorus. Candidates belonging to OMP group were identified as potential high affinity CO oxidizing bacteria. These bacteria were enriched in the laboratory and tested for their CO uptake activity. Work is currently in progress to assess the abundance and the CO uptake activity of these microorganisms in soil. Taken together, these results will be implemented into molecular models aimed at predicting CO uptake activity in soil. These models will be utilized to predict the response of the biological sink of CO to global change, while determining how land management practices could protect this important ecosystem service.
Patel, Sravan Kumar; Zhang, Yang; Pollock, John A.; Janjic, Jelena M.
2013-01-01
Cylcooxgenase-2 (COX-2) expressing macrophages, constituting a major portion of tumor mass, are involved in several pro-tumorigenic mechanisms. In addition, macrophages are actively recruited by the tumor and represent a viable target for anticancer therapy. COX-2 specific inhibitor, celecoxib, apart from its anticancer properties was shown to switch macrophage phenotype from tumor promoting to tumor suppressing. Celecoxib has low aqueous solubility, which may limit its tumor inhibiting effect. As opposed to oral administration, we propose that maximum anticancer effect may be achieved by nanoemulsion mediated intravenous delivery. Here we report multifunctional celecoxib nanoemulsions that can be imaged by both near-infrared fluorescence (NIRF) and 19F magnetic resonance. Celecoxib loaded nanoemulsions showed a dose dependent uptake in mouse macrophages as measured by 19F NMR and NIRF signal intensities of labeled cells. Dramatic inhibition of intracellular COX-2 enzyme was observed in activated macrophages upon nanoemulsion uptake. COX-2 enzyme inhibition was statistically equivalent between free drug and drug loaded nanoemulsion. However, nanoemulsion mediated drug delivery may be advantageous, helping to avoid systemic exposure to celecoxib and related side effects. Dual molecular imaging signatures of the presented nanoemulsions allow for future in vivo monitoring of the labeled macrophages and may help in examining the role of macrophage COX-2 inhibition in inflammation-cancer interactions. These features strongly support the future use of the presented nanoemulsions as anti-COX-2 theranostic nanomedicine with possible anticancer applications. PMID:23409048
Hess, Kenneth C.; Liu, Jingjing; Manfredi, Giovanni; Mühlschlegel, Fritz A.; Buck, Jochen; Levin, Lonny R.; Barrientos, Antoni
2014-01-01
Mitochondria, the major source of cellular energy in the form of ATP, respond to changes in substrate availability and bioenergetic demands by employing rapid, short-term, metabolic adaptation mechanisms, such as phosphorylation-dependent protein regulation. In mammalian cells, an intramitochondrial CO2-adenylyl cyclase (AC)-cyclic AMP (cAMP)-protein kinase A (PKA) pathway regulates aerobic energy production. One target of this pathway involves phosphorylation of cytochrome c oxidase (COX) subunit 4-isoform 1 (COX4i1), which modulates COX allosteric regulation by ATP. However, the role of the CO2-sAC-cAMP-PKA signalosome in regulating COX activity and mitochondrial metabolism and its evolutionary conservation remain to be fully established. We show that in Saccharomyces cerevisiae, normoxic COX activity measured in the presence of ATP is 55% lower than in the presence of ADP. Moreover, the adenylyl cyclase Cyr1 activity is present in mitochondria, and it contributes to the ATP-mediated regulation of COX through the normoxic subunit Cox5a, homologue of human COX4i1, in a bicarbonate-sensitive manner. Furthermore, we have identified 2 phosphorylation targets in Cox5a (T65 and S43) that modulate its allosteric regulation by ATP. These residues are not conserved in the Cox5b-containing hypoxic enzyme, which is not regulated by ATP. We conclude that across evolution, a CO2-sAC-cAMP-PKA axis regulates normoxic COX activity.—Hess, K. C., Liu, J., Manfredi, G., Mühlschlegel, F. A., Buck, J., Levin, L. R., Barrientos, A. A mitochondrial CO2-adenylyl cyclase-cAMP signalosome controls yeast normoxic cytochrome c oxidase activity. PMID:25002117
Flavocoxid, a Nutraceutical Approach to Blunt Inflammatory Conditions
Squadrito, Francesco; Mecchio, Anna
2014-01-01
Flavonoids, from Scutellaria baicalensis (Chinese skullcap) and Acacia catechu (black catechu), have been shown to exert a variety of therapeutic effects, including anti-inflammatory, antiviral, antibacterial, and anticancer activities. Flavocoxid is a mixed extract containing baicalin and catechin and it acts as a dual balanced inhibitor of cyclooxygenase-1 (COX-1) and COX-2 peroxidase enzyme activities with a significant inhibition of 5-lipoxygenase (5-LOX) enzyme activity in vitro. Flavocoxid downregulates gene or protein expression of several inflammatory markers and exerts also strong antioxidant activity in several experimental models. Controlled clinical trials and a postmarketing study have clearly shown that flavocoxid is as effective as naproxen in managing the signs and symptoms of osteoarthritis of the knee and it has better upper gastrointestinal, renal, and respiratory safety profile than naproxen. Flavocoxid may therefore provide a potential therapeutic approach to the treatment of chronic inflammatory conditions. PMID:25242871
Flavocoxid, a nutraceutical approach to blunt inflammatory conditions.
Bitto, Alessandra; Squadrito, Francesco; Irrera, Natasha; Pizzino, Gabriele; Pallio, Giovanni; Mecchio, Anna; Galfo, Federica; Altavilla, Domenica
2014-01-01
Flavonoids, from Scutellaria baicalensis (Chinese skullcap) and Acacia catechu (black catechu), have been shown to exert a variety of therapeutic effects, including anti-inflammatory, antiviral, antibacterial, and anticancer activities. Flavocoxid is a mixed extract containing baicalin and catechin and it acts as a dual balanced inhibitor of cyclooxygenase-1 (COX-1) and COX-2 peroxidase enzyme activities with a significant inhibition of 5-lipoxygenase (5-LOX) enzyme activity in vitro. Flavocoxid downregulates gene or protein expression of several inflammatory markers and exerts also strong antioxidant activity in several experimental models. Controlled clinical trials and a postmarketing study have clearly shown that flavocoxid is as effective as naproxen in managing the signs and symptoms of osteoarthritis of the knee and it has better upper gastrointestinal, renal, and respiratory safety profile than naproxen. Flavocoxid may therefore provide a potential therapeutic approach to the treatment of chronic inflammatory conditions.
Mercury exposure induces proinflammatory enzymes in vascular fibroblasts.
Millán Longo, Alberto; Montero Saiz, Óscar; Sarró Fuente, Claudia; Aguado Martínez, Andrea; Salaices Sánchez, Mercedes
Previous studies show that mercury exposure increases cardiovascular risk, although the underlying cellular mechanisms have still not been fully studied. The aim of this project is to study, in vascular fibroblasts (VF), the effect of HgCl 2 exposure on the expression of enzymes involved in the synthesis of prostanoids and reactive oxygen species (ROS). These molecules have been shown to participate in the inflammatory response associated with cardiovascular diseases. Adventitial VF cultures of Sprague-Dawley rat aortas, shown to be α-actin negative by immunofluorescence, were exposed to HgCl 2 (0.05-5μg/mL) for 48h. mRNA and protein levels of cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase 1 (mPGES-1), thromboxane A 2 synthase (TXAS), NADPH oxidase 1 (NOX-1), and 4 (NOX-4) where analyzed using qRT-PCR and western blot, respectively. NOX activity was determined by chemiluminescence. HgCl 2 exposure increased COX-2, mPGES-1, TXAS, and NOX-1 expression and NOX activity, and decreased NOX-4 expression. The increase in NOX-1 and COX-2 expression was abolished by the treatment with inhibitors of COX-2 (10μM celecoxib) and NOX (300μM apocynin, 0.5μM ML-171). 1) HgCl 2 increases the expression of pro-inflammatory enzymes involved in ROS and prostanoid synthesis in VF. 2) There is a reciprocal regulation between COX-2 and NOX-1 pathways. 3) These effects can contribute to explain the increase in cardiovascular risk associated to mercury. Copyright © 2017 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.
Joshi, Vikram; Umashankara, M; Ramakrishnan, Chandrasekaran; Nanjaraj Urs, Ankanahalli N; Suvilesh, Kanve Nagaraj; Velmurugan, Devadasan; Rangappa, Kanchugarakoppal S; Vishwanath, Bannikuppe Sannanaik
2016-05-15
Overproduction of arachidonic acid (AA) mediated by secretory phospholipase A2 group IIA (sPLA2IIA) is a hallmark of many inflammatory disorders. AA is subsequently converted into pro-inflammatory eicosanoids through 5-lipoxygenase (5-LOX) and cyclooxygenase-1/2 (COX-1/2) activities. Hence, inhibition of sPLA2IIA, 5-LOX and COX-1/2 activities is critical in regulating inflammation. We have previously reported unconjugated bilirubin (UCB), an endogenous antioxidant, as sPLA2IIA inhibitor. However, lipophilic UCB gets conjugated in liver with glucuronic acid into hydrophilic conjugated bilirubin (CB). Since hydrophobicity is pre-requisite for sPLA2IIA inhibition, conjugation reduces the efficacy of UCB. In this regard, UCB was chemically modified and derivatives were evaluated for sPLA2IIA, 5-LOX and COX-1/2 inhibition. Among the derivatives, BD1 (dimethyl ester of bilirubin) exhibited ∼ 3 fold greater inhibitory potency towards sPLA2IIA compared to UCB. Both UCB and BD1 inhibited human 5-LOX and COX-2 activities; however only BD1 inhibited AA induced platelet aggregation. Molecular docking studies demonstrated BD1 as better inhibitor of aforesaid enzymes than UCB and other endogenous antioxidants. These data suggest that BD1 exhibits strong anti-inflammatory activity through inhibition of AA cascade enzymes which is of great therapeutic importance. Copyright © 2016 Elsevier Inc. All rights reserved.
Khoshneviszadeh, Mehdi; Shahraki, Omolbanin; Khoshneviszadeh, Mahsima; Foroumadi, Alireza; Firuzi, Omidreza; Edraki, Najmeh; Nadri, Hamid; Moradi, Alireza; Shafiee, Abbas; Miri, Ramin
2016-12-01
A set of 1,2,4-triazine derivatives were designed as cyclooxygenase-2 (COX-2) inhibitors. These compounds were synthesized and screened for inhibition of cyclooxygenases (COX-1 and COX-2) based on a cellular assay using human whole blood (HWB) and lipoxygenase (LOX-15) that are key enzymes in inflammation. The results showed that 3-(2-(benzo[d][1,3]dioxol-5-ylmethylene)hydrazinyl)-5,6-bis(4-methoxyphenyl)-1,2,4-triazine (G11) was identified as the most potent COX-2 inhibitor (78%) relative to COX-1 (50%). Ferric reducing anti-oxidant power (FRAP) assay revealed that compound G10 possesses the highest anti-oxidant activity. The compound G3 with IC50 value of 124 μM was the most potent compound in LOX inhibitory assay. Molecular docking was performed and a good agreement was observed between computational and experimental results.
Li, Ching-Ju; Chang, Je-Ken; Wang, Gwo-Jaw; Ho, Mei-Ling
2011-02-01
Cyclooxygenase-2 (COX-2) is thought to be an inducible enzyme, but increasing reports indicate that COX-2 is constitutively expressed in several organs. The status of COX-2 expression in bone and its physiological role remains undefined. Non-selective non-steroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 inhibitors, which commonly suppress COX-2 activity, were reported to suppress osteoblast proliferation via Akt/FOXO3a/p27(Kip1) signaling, suggesting that COX-2 may be the key factor of the suppressive effects of NSAIDs on proliferation. Although Akt activation correlates with PTEN deficiency and cell viability, the role of COX-2 on PTEN/Akt regulation remains unclear. In this study, we hypothesized that COX-2 may be constitutively expressed in osteoblasts and regulate PTEN/Akt-related proliferation. We examined the localization and co-expression of COX-2 and p-Akt in normal mouse femurs and in cultured mouse (mOBs) and human osteoblasts (hOBs). Our results showed that osteoblasts adjacent to the trabeculae, periosteum and endosteum in mouse femurs constitutively expressed COX-2, while COX-2 co-expressed with p-Akt in osteoblasts sitting adjacent to trabeculae in vivo, and in mOBs and hOBs in vitro. We further used COX-2 siRNA to test the role of COX-2 in Akt signaling in hOBs; COX-2 silencing significantly inhibited PTEN phosphorylation, enhanced PTEN activity, and suppressed p-Akt level and proliferation. However, replenishment of the COX-2 enzymatic product, PGE2, failed to reverse COX-2-dependent Akt phosphorylation. Furthermore, transfection with recombinant human COX-2 (rhCOX-2) significantly reversed COX-2 siRNA-suppressed PTEN phosphorylation, but this effect was reduced when the enzymatic activity of rhCOX-2 was blocked. This finding indicated that the effect of COX-2 on PTEN/Akt signaling is not related to PGE2 but still dependent on COX-2 enzymatic activity. Conversely, COX-1 silencing did not affect PTEN/Akt signaling. Our findings provide new insight into bone physiology; namely, that COX-2 is constitutively expressed in osteoblasts in the dynamic bone growth area, which facilitates osteoblast proliferation via PTEN/Akt/p27(Kip1) signaling. Copyright © 2010 Elsevier Inc. All rights reserved.
Cyclooxygenase-2 inhibitors in ginger (Zingiber officinale)
van Breemen, Richard B.; Tao, Yi; Li, Wenkui
2010-01-01
Ginger roots have been used to treat inflammation and have been reported to inhibit cyclooxygenase (COX). Ultrafiltration liquid chromatography mass spectrometry was used to screen a chloroform partition of a methanol extract of ginger roots for COX-2 ligands, and 10-gingerol, 12-gingerol, 8-shogaol, 10-shogaol, 6-gingerdione, 8-gingerdione, 10-gingerdione, 6-dehydro-10-gingerol, 6-paradol, and 8-paradol bound to the enzyme active site. Purified 10-gingerol, 8-shogaol and 10-shogaol inhibited COX-2 with IC50 values of 32 μM, 17.5 μM and 7.5 μM, respectively. No inhibition of COX-1 was detected. Therefore, 10-gingerol, 8-shogaol and 10-shogaol inhibit COX-2 but not COX-1, which can explain, in part, anti-inflammatory properties of ginger. PMID:20837112
Anti-inflammatory activity of copao (Eulychnia acida Phil., Cactaceae) fruits.
Jiménez-Aspee, Felipe; Alberto, Maria Rosa; Quispe, Cristina; Soriano, Maria del Pilar Caramantin; Theoduloz, Cristina; Zampini, Iris Catiana; Isla, Maria Ines; Schmeda-Hirschmann, Guillermo
2015-06-01
Copao (Eulychnia acida Phil., Cactaceae) is an endemic species occurring in northern Chile. The edible fruits of this plant are valued for its acidic and refreshing taste. Phenolic-enriched extracts from copao fruit pulp and epicarp, collected in the Elqui and Limari river valleys, were assessed by its in vitro ability to inhibit the pro-inflammatory enzymes lipoxygenase (LOX) and cyclooxygenases (COX-1 and COX-2). At 100 μg/mL, pulp extracts showed better effect towards LOX than epicarp extract, while COX-2 inhibition was observed for both epicarp and pulp samples. In general, the extracts were inactive towards COX-1. A positive correlation was observed between the anti-inflammatory activity and the main phenolic compounds found in this fruit. Copao fruits from the Limari valley, a main place of collection and commercialization, showed major activity, adding evidence on the possible health-beneficial effects of this native Chilean fruit.
Lee, Young H.; Suzuki, Yuichiro J.; Griffin, Autumn J.; Day, Regina M.
2008-01-01
Hepatocyte growth factor (HGF) is upregulated in response to lung injury and has been implicated in tissue repair through its antiapoptotic and proliferative activities. Cyclooxygenase-2 (COX-2) is an inducible enzyme in the biosynthetic pathway of prostaglandins, and its activation has been shown to play a role in cell growth. Here, we report that HGF induces gene transcription of COX-2 in human bronchial epithelial cells (HBEpC). Treatment of HBEpC with HGF resulted in phosphorylation of the HGF receptor (c-Met), activation of Akt, and upregulation of COX-2 mRNA. Adenovirus-mediated gene transfer of a dominant negative (DN) Akt mutant revealed that HGF increased COX-2 mRNA in an Akt-dependent manner. COX-2 promoter analysis in luciferase reporter constructs showed that HGF regulation required the β-catenin-responsive T cell factor-4 binding element (TBE). The HGF activation of the COX-2 gene transcription was blocked by DN mutant of β-catenin or by inhibitors that blocked activation of Akt. Inhibition of p42/p44 MAPK pathway blocked HGF-mediated activation of β-catenin gene transcription but not Akt activation, suggesting that p42/p44 MAPK acts in a parallel mechanism for β-catenin activation. We also found that inhibition of COX-2 with NS-398 blocked HGF-induced growth in HBEpC. Together, the results show that the HGF increases COX-2 gene expression via an Akt-, MAPK-, and β-catenin-dependent pathway in HBEpC. PMID:18245266
Liu, Yunbao; Roy, Subhra Saikat; Nebie, Roger H C; Zhang, Yanjun; Nair, Muraleedharan G
2013-03-01
Curcuma spp. (Zingiberaceae) is one of the significant ingredients in food and traditional medicines. The current study was to investigate health-benefits of the rhizomes of endemic Curcuma caesia, Curcuma zedoaria and Curcuma aeruginosa using in vitro antioxidant, antiinflammatory and human tumor cell proliferation inhibitory activities. Among these, C. caesia (black turmeric) showed the best overall biological activities based on [3-(4, 5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) and lipid peroxidation (LPO), cyclooxygenase (COX-1 and -2) enzymes, and tumor cell growth inhibitory assays. The hexane and methanolic extracts of C. caesia (CCH and CCM) showed LPO inhibition by 31 and 43 %, and COX-2 enzyme by 29 and 38 %, respectively, at 100 μg/ml. Eleven terpenoids were isolated and identified. The MTT antioxidant assay revealed that the extracts of three Curcuma spp. at 250 μg/ml and isolates at 5 μg/ml demonstrated activity comparable to positive controls vitamin C and t-butyl hydroquinone (TBHQ) at 25 μg/ml. The extracts inhibited LPO by 40 % at 250 μg/ml whereas pure isolates 1-11 by about 20 %. The extracts and isolates inhibited COX-1 and -2 enzymes between the ranges of 3-56 and 5-30 %, respectively. The in vitro biological activity exhibited by the extracts and isolates of C. caesia rhizome further supported its use in traditional medicine.
Strobel, Anneli; Leo, Elettra; Pörtner, Hans O; Mark, Felix C
2013-09-01
Mitochondrial plasticity plays a central role in setting the capacity for acclimation of aerobic metabolism in ectotherms in response to environmental changes. We still lack a clear picture if and to what extent the energy metabolism and mitochondrial enzymes of Antarctic fish can compensate for changing temperatures or PCO2 and whether capacities for compensation differ between tissues. We therefore measured activities of key mitochondrial enzymes (citrate synthase (CS), cytochrome c oxidase (COX)) from heart, red muscle, white muscle and liver in the Antarctic fish Notothenia rossii after warm- (7°C) and hypercapnia- (0.2kPa CO2) acclimation vs. control conditions (1°C, 0.04kPa CO2). In heart, enzymes showed elevated activities after cold-hypercapnia acclimation, and a warm-acclimation-induced upward shift in thermal optima. The strongest increase in enzyme activities in response to hypercapnia occurred in red muscle. In white muscle, enzyme activities were temperature-compensated. CS activity in liver decreased after warm-normocapnia acclimation (temperature-compensation), while COX activities were lower after cold- and warm-hypercapnia exposure, but increased after warm-normocapnia acclimation. In conclusion, warm-acclimated N. rossii display low thermal compensation in response to rising energy demand in highly aerobic tissues, such as heart and red muscle. Chronic environmental hypercapnia elicits increased enzyme activities in these tissues, possibly to compensate for an elevated energy demand for acid-base regulation or a compromised mitochondrial metabolism, that is predicted to occur in response to hypercapnia exposure. This might be supported by enhanced metabolisation of liver energy stores. These patterns reflect a limited capacity of N. rossii to reorganise energy metabolism in response to rising temperature and PCO2. © 2013.
Changes in mitochondrial electron transport chain activity during insect metamorphosis.
Chamberlin, M E
2007-02-01
The midgut of the tobacco hornworm (Manduca sexta) is a highly aerobic tissue that is destroyed by programmed cell death during larval-pupal metamorphosis. The death of the epithelium begins after commitment to pupation, and the oxygen consumption of isolated midgut mitochondria decreases soon after commitment. To assess the role of the electron transport chain in this decline in mitochondrial function, the maximal activities of complexes I-IV of the respiratory chain were measured in isolated midgut mitochondria. Whereas there were no developmental changes in the activity of complex I or III, activities of complexes II and IV [cytochrome c oxidase (COX)] were higher in mitochondria from precommitment than postcommitment larvae. This finding is consistent with a higher rate of succinate oxidation in mitochondria isolated from precommitment larvae and reveals that the metamorphic decline in mitochondrial respiration is due to the targeted destruction or inactivation of specific sites within the mitochondria, rather than the indiscriminate destruction of the organelles. The COX turnover number (e- x s(-1) x cytochrome aa3(-1)) was greater for the enzyme from precommitment than postcommitment larvae, indicating a change in the enzyme structure and/or its lipid environment during the early stages of metamorphosis. The turnover number of COX in the intact mitochondria (in organello COX) was also lower in postcommitment larvae. In addition to changes in the protein or membrane phospholipids, the metamorphic decline in this rate constant may be a result of the observed loss of endogenous cytochrome c.
Adebayo, Salmon A; Shai, Leshweni J; Eloff, Jacobus N
2017-01-01
To investigate the anti-inflammatory activity of different fractions and glutinol (isolated compound), using nitric oxide synthase and cyclooxygenase (COX) inhibition as an indication of anti-inflammatory activity. Anti-inflammatory activity was evaluated using an in vitro assay determining the inhibition of the activity of pro-inflammatory enzyme model. Cyclooxygenases and inducible nitric oxide synthase are crucial enzymes involved in the pathogenesis of many chronic inflammatory conditions. Sub-fraction F3.3 that was derived from n-hexane fraction of PA leaves significantly inhibited (P = 0.01) the catalytic activity of COX-2 (IC 50 = 0.67 μg/mL) better than isolated compound, glutinol (IC 50 = 1.22 μg/mL), compound 2 (CP2) (IC 50 = 1.71 μg/mL) and sub-fraction F3.3.0 (IC 50 = 1.30 μg/mL). A similar trend was observed in investigation of the inhibition of nitric oxide synthesis in RAW 264.7 cells by F3.3, glutinol, CP2 and F3.3.0. Inducible COX-2 and inducible nitric oxide synthase are among potent signalling enzymes that exacerbate inflammation. Bioactive sub-fractions (F3.3 and F3.3.0) derived from the n-hexane fraction of PA had good anti-inflammatory activity, and the isolated compound, and glutinol may be useful as a template for the development of new anti-inflammatory drugs. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.
Mohammed, Khaled O; Nissan, Yassin M
2014-10-01
2-Hydrazinyl-N-(4-sulfamoylphenyl)acetamide 3 was the key intermediate for the synthesis of novel hydrazones 4-10 and pyrazole derivatives 11-17. All compounds were tested for their in vivo anti-inflammatory activity and their ability to inhibit the production of PGE(2) in serum samples of rats. IC(50) values for the most active compounds for inhibition of COX-1 and COX-2 enzymes were determined in vitro, and they were also tested for their ulcerogenic effect. Molecular docking was performed on the active site of COX-2 to predict their mode of binding to the amino acids. Most of the synthesized compounds showed good anti-inflammatory activity especially compounds 3, 4, 8, 9, 15, and 17 which showed better activity than diclofenac as the reference drug. Compounds 3, 8, 9, 13, and 15-17 were less ulcerogenic than indomethacine as the reference drug. Most of the synthesized compounds interacted with Tyr 385 and Ser 530 in molecular docking study with additional hydrogen bond for compound 17. Compound 17 showed good selectivity index value of 11.1 for COX-1/COX-2 inhibition in vitro. © 2014 John Wiley & Sons A/S.
Ma, Xinyan; Liao, Xiudong; Lu, Lin; Li, Sufen; Zhang, Liyang; Luo, Xugang
2016-11-01
The current dietary iron requirement (80 mg/kg) of broilers is mainly based on growth, hemoglobin concentration, or hematocrit data obtained in a few early studies; however, expressions of iron-containing enzymes might be more sensitive novel criteria to evaluate dietary iron requirements. The objective of this study was to determine dietary iron requirements of broilers for the full expression of succinate dehydrogenase (SDH), catalase, and cytochrome c oxidase (COX) in various tissues. A total of 336 1-d-old Arbor Acres male chicks were randomly assigned to 1 of 7 treatments with 6 replicates and fed a basal corn and soybean-meal diet (control, containing 67 mg Fe/kg) and the basal diet supplemented with 20, 40, 60, 80, 100, or 120 mg Fe/kg from FeSO 4 ⋅ 7H 2 O for 21 d. Regression analysis was performed to estimate the optimal dietary iron concentration with the use of broken-line or quadratic models. SDH activity in the liver and heart, COX and catalase activity in the liver, Sdh mRNA levels in the liver, and Cox mRNA levels in the liver and heart of broilers were affected (P < 0.027) by supplemental iron concentration, and increased quadratically (P < 0.004) as dietary iron concentration increased. Dietary iron requirements estimated on the basis of fitted broken-line or quadratic-curve models (P < 0.005) of the above indexes were 97-136 mg/kg. SDH activity in the liver and heart, COX and catalase activity in the liver, Sdh mRNA levels in the liver, and Cox mRNA levels in the liver and heart are, to our knowledge, new and sensitive criteria to evaluate the dietary iron requirements of broilers, and the dietary iron requirements would be 97-136 mg/kg to support the full expression of the above iron-containing enzymes in various tissues of broiler chicks from 1 to 21 d of age, which are higher than the current NRC iron requirement. © 2016 American Society for Nutrition.
Aid, Saba; Parikh, Nishant; Palumbo, Sara; Bosetti, Francesca
2010-07-12
Neuroinflammation is a critical component in the progression of several neurological and neurodegenerative diseases and cyclooxygenases (COX)-1 and -2 are key regulators of innate immune responses. We recently demonstrated that COX-1 deletion attenuates, whereas COX-2 deletion enhances, the neuroinflammatory response, blood-brain barrier permeability and leukocyte recruitment during lipopolysaccharide (LPS)-induced innate immune activation. Here, we used transgenic mice, which overexpressed human COX-2 via neuron-specific Thy-1 promoter (TgCOX-2), causing elevated prostaglandins (PGs) levels. We tested whether neuronal COX-2 overexpression affects the glial response to a single intracerebroventricular injection of LPS, which produces a robust neuroinflammatory reaction. Relative to non-transgenic controls (NTg), 7 month-old TgCOX-2 did not show any basal neuroinflammation, as assessed by gene expression of markers of inflammation and oxidative stress, neuronal damage, as assessed by Fluoro-JadeB staining, or systemic inflammation, as assessed by plasma levels of IL-1beta and corticosterone. Twenty-four hours after LPS injection, all mice showed increased microglial activation, as indicated by Iba1 immunostaining, neuronal damage, mRNA expression of cytokines (TNF-alpha, IL-6), reactive oxygen expressing enzymes (iNOS and NADPH oxidase subunits), endogenous COX-2, cPLA(2) and mPGES-1, and hippocampal and cortical IL-1beta levels. However, the increases were similar in TgCOX-2 and NTg. In NTg, LPS increased brain PGE(2) to the levels observed in TgCOX-2. These results suggest that PGs derived from neuronal COX-2 do not play a role in the neuroinflammatory response to acute activation of brain innate immunity. This is likely due to the direct effect of LPS on glial rather than neuronal cells. Published by Elsevier Ireland Ltd.
Protective effects of gallic acid against spinal cord injury-induced oxidative stress.
Yang, Yong Hong; Wang, Zao; Zheng, Jie; Wang, Ran
2015-08-01
The present study aimed to investigate the role of gallic acid in oxidative stress induced during spinal cord injury (SCI). In order to measure oxidative stress, the levels of lipid peroxide, protein carbonyl, reactive oxygen species and nitrates/nitrites were determined. In addition, the antioxidant status during SCI injury and the protective role of gallic acid were investigated by determining glutathione levels as well as the activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione-S-transferase. Adenosine triphophatase (ATPase) enzyme activities were determined to evaluate the role of gallic acid in SCI-induced deregulation of the activity of enzymes involved in ion homeostasis. The levels of inflammatory markers such as nuclear factor (NF)-κB and cycloxygenase (COX)-2 were determined by western blot analysis. Treatment with gallic acid was observed to significantly mitigate SCI-induced oxidative stress and the inflammatory response by reducing the oxidative stress, decreasing the expression of NF-κB and COX-2 as well as increasing the antioxidant status of cells. In addition, gallic acid modulated the activity of ATPase enzymes. Thus the present study indicated that gallic acid may have a role as a potent antioxidant and anti-inflammatory agent against SCI.
Can, Nafiz Öncü; Çevik, Ulviye Acar; Sağlık, Begüm Nurpelin; Özkay, Yusuf; Atlı, Özlem; Baysal, Merve; Özkay, Ümide Demir; Can, Özgür Devrim
2017-08-19
The aim of this study was to investigate acetylcholinesterase (AChE), monoamine oxidase A (MAO-A), monoamine oxidase B (MAO-B), cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) enzyme inhibitory, and antimicrobial activities of a new series of 2-(4-substituted phenyl)-1-[2-(morpholin-4-yl)ethyl]-1 H -benzimidazole derivatives, for their possible use as multi-action therapeutic agents. Target compounds ( n = 15) were synthesized under microwave irradiation conditions in two steps, and their structures were elucidated by FT-IR, ¹H-NMR, 13 C-NMR and high resolution mass spectroscopic analyses. Pharmacological screening studies revealed that two of the compounds ( 2b and 2j ) have inhibitory potential on both COX-1 and COX-2 enzymes. In addition, cytotoxic and genotoxic properties of the compounds 2b , 2j and 2m were investigated via the well-known MTT and Ames tests, which revealed that the mentioned compounds are non-cytotoxic and non-genotoxic. As a concise conclusion, two novel compounds were characterized as potential candidates for treatment of frequently encountered inflammatory diseases.
Cyclooxygenase-1 and -2 Play Contrasting Roles in Listeria-Stimulated Immunity.
Theisen, Erin; McDougal, Courtney E; Nakanishi, Masako; Stevenson, David M; Amador-Noguez, Daniel; Rosenberg, Daniel W; Knoll, Laura J; Sauer, John-Demian
2018-06-01
Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit cyclooxygenase (COX) activity and are commonly used for pain relief and fever reduction. NSAIDs are used following childhood vaccinations and cancer immunotherapies; however, how NSAIDs influence the development of immunity following these therapies is unknown. We hypothesized that NSAIDs would modulate the development of an immune response to Listeria monocytogenes -based immunotherapy. Treatment of mice with the nonspecific COX inhibitor indomethacin impaired the generation of cell-mediated immunity. This phenotype was due to inhibition of the inducible COX-2 enzyme, as treatment with the COX-2-selective inhibitor celecoxib similarly inhibited the development of immunity. In contrast, loss of COX-1 activity improved immunity to L. monocytogenes Impairments in immunity were independent of bacterial burden, dendritic cell costimulation, or innate immune cell infiltrate. Instead, we observed that PGE 2 production following L. monocytogenes is critical for the formation of an Ag-specific CD8 + T cell response. Use of the alternative analgesic acetaminophen did not impair immunity. Taken together, our results suggest that COX-2 is necessary for optimal CD8 + T cell responses to L. monocytogenes , whereas COX-1 is detrimental. Use of pharmacotherapies that spare COX-2 activity and the production of PGE 2 like acetaminophen will be critical for the generation of optimal antitumor responses using L. monocytogenes . Copyright © 2018 by The American Association of Immunologists, Inc.
Comba, Andrea; Maestri, Damian M; Berra, María A; Garcia, Carolina Paola; Das, Undurti N; Eynard, Aldo R; Pasqualini, María E
2010-10-08
Nutritional factors play a major role in cancer initiation and development. Dietary polyunsaturated fatty acids (PUFAs) have the ability to induce modifications in the activity of lipoxygenase (LOX) and cyclooxygenase (COX) enzymes that affect tumour growth. We studied the effect of two diets enriched in 6% Walnut and Peanut oils that are rich in ω-3 and ω9 PUFAs respectively on a murine mammary gland adenocarcinoma as compared with the control (C) that received commercial diet. Peanut oil enriched diet induced an increase in membrane arachidonic acid (AA) content and the cyclooxygenase enzyme derived 12-HHT (p < 0.05) and simultaneously showed decrease in 12-LOX, 15-LOX-2, 15-LOX-1 and PGE activities (p < 0.05) that corresponded to higher apoptosis and lower mitosis seen in this group (p < 0.05). Furthermore, Peanut oil group showed lower T-cell infiltration (p < 0.05), number of metastasis (p < 0.05) and tumour volume (p < 0.05) and longer survival rate compared to other groups. The results of the present study showed that Peanut oil-enriched diet protects against mammary cancer development by modulating tumour membrane fatty acids composition and LOX and COX enzyme activities.
Bekhit, Adnan A; Farghaly, Ahmed M; Shafik, Ragab M; Elsemary, Mona Ma; El-Shoukrofy, Mai S; Bekhit, Alaa El-Din A; Ibrahim, Tamer M
2017-06-01
New triazolotetrahydrobenzothienopyrimidinone derivatives were synthesized. Their structures were confirmed, and their anti-inflammatory, antimicrobial activities and ulcerogenic potentials were evaluated. Compounds 7a, 10a and 11a showed minimal ulcerogenic effect and high selectivity toward human recombinant COX-2 over COX-1 enzyme with IC 50 values of 1.39, 1.22 and 0.56 μM, respectively. Their docking outcome correlated with their biological activity and confirmed the high selectivity binding toward COX-2. Compound 12b displayed antimicrobial activity comparable to that of ampicillin against Escherichia coli while compounds 6 and 11c were similar to ampicillin against Staphylococcus aureus. In addition, compounds 7a, 9a, 10b and 11c showed dual anti-inflammatory/antimicrobial activities. This work represents a promising matrix for developing new potential anti-inflammatory, antimicrobial and dual antimicrobial/anti-inflammatory candidates. [Formula: see text].
Leliebre-Lara, Vivian; Pferschy-Wenzig, Eva-Maria; Widowitz, Ute; Ortmann, Sabine; Lima, Clara Nogueiras; Bauer, Rudolf
2015-01-01
In vitro anti-inflammatory activity of 4 extracts with different polarity from the basidiomycete Navisporus floccosus was evaluated by determination of the inhibition of prostaglandin E2 formation catalyzed by purified cyclooxygenase (COX)-1 and COX-2 enzymes, and of the inhibition of leukotriene (LT) B4 formation in human polymorphonuclear leukocytes. The n-hexane extract showed the highest activity in all 3 assays. Through analysis by gas chromatography coupled with mass spectrometry (GC-MS), 9 fatty acids and fatty acid esters were identified as the major constituents of this extract. As several of them also showed inhibitory activity in the COX and LTB4 formation assays, it can be assumed that the unsaturated as well as the saturated fatty acids, and maybe also the fatty acid esters, present in the extract synergistically contribute to its in vitro anti-inflammatory activity.
Stress-Induced Enzyme Compounds Methamphetamine Neurotoxicity
... two exposures. They implicate ketoprofen’s main target, the pro-inflammatory enzyme cyclooxygenase (COX-1/COX-2), in ... Illegal Drugs Inhalants K2/Spice Kratom LSD (Acid) Marijuana MDMA (Ecstasy) Methamphetamine Opioids Other Drugs Over-the- ...
Savjani, Jignasa K; Mulamkattil, Suja; Variya, Bhavesh; Patel, Snehal
2017-04-15
Drug induced gastrointestinal ulceration, renal side effects and hepatotoxicity are the main causes of numerous Non-Steroidal Anti-inflammatory Drugs (NSAIDs). Cyclooxygenase-2 (COX-2) inhibitors discovered to decrease the gastrointestinal issues, but unfortunately, most of them are associated with major cardiovascular adverse effects. Along these lines, various new strategies and frameworks were developed wherein basic alterations of the present medications were accounted for. The aim of the study was to prepare derivatives of mefenamic acid to evaluate anti-inflammatory activity with fewer adverse reactions. In this study, molecular docking investigations of outlined derivatives were done utilizing Protein Data Bank (PDB ID-4PH9). Synthesis of heterocyclic compounds was carried out utilizing Dicyclohexylcarbodiimide/4-Dimethylaminopyridine (DCC/DMAP) coupling. Acute toxicity prediction was performed using free online GUSAR (General Unrestricted Structure-Activity Relationships) software. The study indicated most of the compounds under safe category. In-vitro pharmacological assessment of heterocyclic compounds was done for COX-1 and COX-2 enzymes for the determination of selectivity. In vivo pharmacological screening for anti-inflammatory activity and ED 50 value were determined utilizing carrageenan induced rat paw edema. Gastro intestinal safety study was carried out on selected compounds and found to be devoid of any gastric ulcer toxicity. Most of the compounds indicated high scores as compared to standard during molecular modelling, analysis and displayed interactions with active amino acids of a COX-2 enzyme. The pharmacological screening uncovered that compound substituted with p-bromophenyl indicated maximum potency. Copyright © 2017 Elsevier B.V. All rights reserved.
Vannini, Federica; Chattopadhyay, Mitali; Kodela, Ravinder; Rao, Praveen P N; Kashfi, Khosrow
2015-12-01
We recently reported the synthesis of NOSH-aspirin, a novel hybrid that releases both nitric oxide (NO) and hydrogen sulfide (H2S). In NOSH-aspirin, the two moieties that release NO and H2S are covalently linked at the 1, 2 positions of acetyl salicylic acid, i.e. ortho-NOSH-aspirin (o-NOSH-aspirin). In the present study, we compared the effects of the positional isomers of NOSH-ASA (o-NOSH-aspirin, m-NOSH-aspirin and p-NOSH-aspirin) to that of aspirin on growth of HT-29 and HCT 15 colon cancer cells, belonging to the same histological subtype, but with different expression of cyclooxygenase (COX) enzymes; HT-29 express both COX-1 and COX-2, whereas HCT 15 is COX-null. We also analyzed the effect of these compounds on proliferation and apoptosis in HT-29 cells. Since the parent compound aspirin, inhibits both COX-1 and COX-2, we also evaluated the effects of these compounds on COX-1 and COX-2 enzyme activities and also performed modeling of the interactions between the positional isomers of NOSH-aspirin and COX-1 and COX-2 enzymes. We observed that the three positional isomers of NOSH aspirin inhibited the growth of both colon cancer cell lines with IC50s in the nano-molar range. In particular in HT-29 cells the IC50s for growth inhibition were: o-NOSH-ASA, 0.04±0.011 µM; m-NOSH-ASA, 0.24±0.11 µM; p-NOSH-ASA, 0.46±0.17 µM; and in HCT 15 cells the IC50s for o-NOSH-ASA, m-NOSH-ASA, and p-NOSH-ASA were 0.062 ±0.006 µM, 0.092±0.004 µM, and 0.37±0.04 µM, respectively. The IC50 for aspirin in both cell lines was >5mM at 24h. The reduction of cell growth appeared to be mediated through inhibition of proliferation, and induction of apoptosis. All 3 positional isomers of NOSH-aspirin preferentially inhibited COX-1 over COX-2. These results suggest that the three positional isomers of NOSH-aspirin have the same biological actions, but that o-NOSH-ASA displayed the strongest anti-neoplastic potential. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Sansone, Pasquale; Piazzi, Giulia; Paterini, Paola; Strillacci, Antonio; Ceccarelli, Claudio; Minni, Francesco; Biasco, Guido; Chieco, Pasquale; Bonafè, Massimiliano
2009-01-01
Inflammation promotes colorectal carcinogenesis. Tumour growth often generates a hypoxic environment in the inner tumour mass. We here report that, in colon cancer cells, the expression of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2) associates with that of the hypoxia response gene carbonic anhydrase-IX (CA-IX). The COX-2 knockdown, achieved by the stable infection of a COX-2 specific short harpin RNA interference (shCOX-2), down-regulates CA-IX gene expression. In colorectal cancer (CRC) cells, PGE2, the main COX-2 gene products, promotes CA-IX gene expression by ERK1/2 activation. In normoxic environment, shCOX-2 infected/CA-IX siRNA transfected CRC cells show a reduced level of active metalloproteinase-2 (MMP-2) that associates with a decreased extracellular matrix invasion capacity. In presence of hypoxia, COX-2 gene expression and PGE2 production increase. The knockdown of COX-2/CA-IX blunts the survival capability of CRC cells in hypoxia. At a high cell density, a culture condition that creates a mild pericellular hypoxic environment, the expression of COX-2/CA-IX genes is increased and triggers the invasive potential of colon cancer cells. In human colon cancer tissues, COX-2/CA-IX protein expression levels, assessed by Western blot and immunohistochemistry, correlate each other and increase with tumour stage. In conclusion, these data indicate that COX-2/CA-IX interplay promotes the aggressive behaviour of CRC cells. PMID:19017360
Setia, Shruti; Vaish, Vivek; Sanyal, Sankar Nath
2012-07-01
Roles of cyclooxygenase (COX) enzyme and intrinsic pathway of apoptosis have been explored for the chemopreventive effects of non-steroidal anti-inflammatory drugs (NSAIDs) on 9,10-dimethyl benz(a)anthracene (DMBA)-induced lung cancer in rat model. 16 weeks after the administration of DMBA, morphological analysis revealed the occurrences of tumours and lesions, which were regressed considerably with the co-administration of indomethacin and etoricoxib, the two NSAIDs under investigation. DMBA group was marked by hyperplasia and dysplasia as observed by histological examination, and these features were corrected to a large extent by the two NSAIDs. Elevated levels of COX-2 were seen in the DMBA group, the enzyme responsible for prostaglandin synthesis during inflammation and cancer, whilst the expression of the constitutive isoform, COX-1, was equally expressed in all the groups. Apoptosis was quantified by studying the activities of apaf-1, caspase-9, and 3 by immunofluorescence and western blots. Their activities were found to diminish in the DMBA-treated animals as compared to the other groups. Fluorescent co-staining of the isolated broncho-alveolar lavage cells showed reduced number of apoptotic cells in the DMBA group, indicating decrease in apoptosis after carcinogen administration. The present results thus suggest that the mechanism of cancer chemoprevention of NSAIDs may include the suppression of COX-2 and the induction of apoptosis.
The cardiovascular biology of microsomal prostaglandin E synthase-1
Wang, Miao; FitzGerald, Garret A.
2011-01-01
Both traditional and purpose designed nonsteroidal anti-inflammatory drugs (NSAIDs), selective for inhibition of cyclooxygenase (COX) -2 alleviate pain and inflammation but confer a cardiovascular hazard, attributable to inhibition of COX-2 derived prostacyclin (PGI2). Deletion of microsomal PGE synthase–1 (mPGES-1), the dominant enzyme that converts the COX derived intermediate product, PGH2, to form PGE2, modulates inflammatory pain in rodents. By contrast with COX-2 deletion or inhibition, PGI2 formation is augmented in mPGES-1−/− mice an effect which may confer cardiovascular benefit, yet undermine the analgesic potential of inhibitors of this enzyme. This review will consider the cardiovascular biology of mPGES1, and the complex challenge of developing inhibitors of this enzyme. PMID:22137640
Induction of cyclooxygenase-2 expression by allergens in lymphocytes from allergic patients.
Chacón, Pedro; Vega, Antonio; Monteseirín, Javier; El Bekay, Rajaa; Alba, Gonzalo; Pérez-Formoso, José Luis; Msartínez, Alberto; Asturias, Juan A; Pérez-Cano, Ramón; Sobrino, Francisco; Conde, José
2005-08-01
Cyclooxygenase (COX) is a key enzyme in prostaglandin (PG) synthesis. Up-regulation of COX-2 expression is responsible for increased PG release during inflammatory conditions and is thought to be also involved in allergic states. In this study, we demonstrate that in human T, B and natural killer lymphocytes from allergic patients, COX-2 expression became induced upon cell challenge with specific allergens and that this process is presumably IgE dependent and occurs after CD23 receptor ligation. This induction took place at both mRNA and protein levels and was accompanied by PGD2 release. IgE-dependent lymphocyte treatment elicited, in parallel, an activation of the MAPK p38 and extracellular signal-regulated kinase 1/2, an enhancement of calcineurin (CaN) activity, and an increase of the DNA-binding activity of the nuclear factor of activated T cells and of NF-kappaB, with a concomitant decrease in the levels of the cytosolic inhibitor of kappaB, IkappaB. In addition, specific chemical inhibitors of MAPK, such as PD098059 and SB203580, as well as MG-132, an inhibitor of proteasomal activity, abolished allergen-induced COX-2 up-regulation, suggesting that this process is mediated by MAPK and NF-kappaB. However, induction of COX-2 expression was not hampered by the CaN inhibitor cyclosporin A. We also examined the effect of a selective COX-2 inhibitor, NS-398, on cytokine production by human lymphocytes. Treatment with NS-398 severely diminished the IgE-dependently induced production of IL-8 and TNF-alpha. These results underscore the relevant role of lymphocyte COX-2 in allergy and suggest that COX-2 inhibitors may contribute to the improvement of allergic inflammation through the reduction of inflammatory mediator production by human lymphocytes.
COX-2/PGE2: molecular ambassadors of Kaposi's sarcoma-associated herpes virus oncoprotein-v-FLIP
Sharma-Walia, N; Patel, K; Chandran, K; Marginean, A; Bottero, V; Kerur, N; Paul, A G
2012-01-01
Kaposi's sarcoma herpesvirus (KSHV) latent oncoprotein viral FLICE (FADD-like interferon converting enzyme)-like inhibitory protein (v-FLIP) or K13, a potent activator of NF-κB, has well-established roles in KSHV latency and oncogenesis. KSHV-induced COX-2 represents a novel strategy employed by KSHV to promote latency and inflammation/angiogenesis/invasion. Here, we demonstrate that v-FLIP/K13 promotes tumorigenic effects via the induction of host protein COX-2 and its inflammatory metabolite PGE2 in an NF-κB-dependent manner. In addition to our previous studies demonstrating COX-2/PGE2's role in transcriptional regulation of KSHV latency promoter and latent gene expression, the current study adds to the complexity that though LANA-1 (latency associated nuclear antigen) is utilizing COX-2/PGE2 as critical factors for its transcriptional regulation, it is the v-FLIP/K13 gene in the KSHV latency cluster that maintains continuous COX-2/PGE2 levels in the infected cells. We demonstrate that COX-2 inhibition, via its chemical inhibitors (NS-398 or celecoxib), reduced v-FLIP/K13-mediated NF-κB induction, and extracellular matrix (ECM) interaction-mediated signaling, mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD) levels, and subsequently downregulated detachment-induced apoptosis (anoikis) resistance. vFLIP expression mediated the secretion of cytokines, and spindle cell differentiation activated the phosphorylation of p38, RSK, FAK, Src, Akt and Rac1-GTPase. The COX-2 inhibition in v-FLIP/K13-HMVECs reduced inflammation and invasion/metastasis-related genes, along with reduced anchorage-independent colony formation via modulating ‘extrinsic' as well as ‘intrinsic' cell death pathways. COX-2 blockade in v-FLIP/K13-HMVEC cells drastically augmented cell death induced by removal of essential growth/survival factors secreted in the microenvironment. Transformed cells obtained from anchorage-independent colonies of COX-2 inhibitor-treated v-FLIP/K13-HMVEC cells expressed lower levels of endothelial–mesenchymal transition genes such as slug, snail and twist, and higher expression of the tumor-suppressor gene, E-cadherin. Taken together, our study provides strong evidences that FDA-approved COX-2 inhibitors have great potential in blocking tumorigenic events linked to KSHV's oncogenic protein v-FLIP/K13. PMID:23552603
Predictors of cardiovascular fitness in sedentary men.
Riou, Marie-Eve; Pigeon, Etienne; St-Onge, Josée; Tremblay, Angelo; Marette, André; Weisnagel, S John; Joanisse, Denis R
2009-04-01
The relative contribution of anthropometric and skeletal muscle characteristics to cardiorespiratory fitness was studied in sedentary men. Cardiorespiratory fitness (maximal oxygen consumption) was assessed using an incremental bicycle ergometer protocol in 37 men aged 34-53 years. Vastus lateralis muscle biopsy samples were used to assess fiber type composition (I, IIA, IIX) and areas, capillary density, and activities of glycolytic and oxidative energy metabolic pathway enzymes. Correlations (all p < 0.05) were observed between maximal oxygen consumption (L.min-1) and body mass (r = 0.53), body mass index (r = 0.39), waist circumference (r = 0.34), fat free mass (FFM; r = 0.68), fat mass (r = 0.33), the enzyme activity of cytochrome c oxidase (COX; r = 0.39), muscle type IIA (r = 0.40) and IIX (r = 0.50) fiber area, and the number of capillaries per type IIA (r = 0.39) and IIX (r = 0.37) fiber. When adjusted for FFM in partial correlations, all correlations were lost, with the exception of COX (r = 0.48). Stepwise multiple regression revealed that maximal oxygen consumption was independently predicted by FFM, COX activity, mean capillary number per fiber, waist circumference, and, to a lesser extent, muscle capillary supply. In the absence of regular physical activity, cardiorespiratory fitness is strongly predicted by the potential for aerobic metabolism of skeletal muscle and negatively correlated with abdominal fat deposition.
Götz, Christine; Pfeiffer, Roland; Tigges, Julia; Blatz, Veronika; Jäckh, Christine; Freytag, Eva-Maria; Fabian, Eric; Landsiedel, Robert; Merk, Hans F; Krutmann, Jean; Edwards, Robert J; Pease, Camilla; Goebel, Carsten; Hewitt, Nicola; Fritsche, Ellen
2012-05-01
Skin is important for the absorption and metabolism of exposed chemicals such as cosmetics or pharmaceuticals. The Seventh Amendment to the EU Cosmetics Directive prohibits the use of animals for cosmetic testing for certain endpoints, such as genotoxicity; therefore, there is an urgent need to understand the xenobiotic metabolizing capacities of human skin and to compare these activities with reconstructed 3D skin models developed to replace animal testing. We have measured Phase I enzyme activities of cytochrome P450 (CYP) and cyclooxygenase (COX) in ex vivo human skin, the 3D skin model EpiDerm™ (EPI-200), immortalized keratinocyte-based cell lines and primary normal human epidermal keratinocytes. Our data demonstrate that basal CYP enzyme activities are very low in whole human skin and EPI-200 as well as keratinocytes. In addition, activities in monolayer cells differed from organotypic tissues after induction. COX activity was similar in skin, EPI-200 and NHEK cells, but was significantly lower in immortalized keratinocytes. Hence, the 3D model EPI-200 might represent a more suitable model for dermatotoxicological studies. Altogether, these data help to better understand skin metabolism and expand the knowledge of in vitro alternatives used for dermatotoxicity testing. © 2012 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Yatam, Satayanarayana; Gundla, Rambabu; Jadav, Surender Singh; Pedavenkatagari, Narayana reddy; Chimakurthy, Jithendra; Rani B, Namratha; Kedam, Thyagaraju
2018-05-01
Mercapto benzothiazole linked 1,2,4-oxadiazole derivatives were designed (4a-u) as new anti-inflammatory agents using bioisosteric approach and docking studies. The docking results clearly indicated that the compounds 4a-u shown good docking interaction towards COX-2 enzyme. In silico drug-like properties were also calculated for compounds (4a-u) and exhibited significant H-bond acceptor ratio. All compounds were synthesized and biologically evaluated using in vitro COX-1, COX-2 and 5-LOX assays. Compound 4k and 4q (IC50 = 6.8 μM and IC50 = 5.0 μM) found to be potent, selective COX-2 inhibitors and display better anti-inflammatory activity than standard Ibuprofen. Compound 4l and 4e found to be potent inhibitors against 5-LOX (IC50 = 5.1 μM and IC50 = 5.5 μM). The in vivo anti-inflammatory activity studies shown that the compounds 4q and 4k effectively reducing the paw edema volume at 3h and 5h than standard drug Ibuprofen. The DPPH radical scavenging activity provided anti-oxidant activity of compound 4e (IC50 = 25.6 μM) than reference standard Ascorbic acid.
Cai, T.; Li, X.; Ding, J.; Luo, W.; Li, J.; Huang, C.
2013-01-01
Cyclooxygenase-2 (COX-2) is a critical enzyme implicated in chronic inflammation-associated cancer development. Our studies have shown that the exposure of Beas-2B cells, a human bronchial epithelial cell line, to lung carcinogenic nickel compounds results in increased COX-2 expression. However, the signaling pathways leading to nickel-induced COX-2 expression are not well understood. In the current study, we found that the exposure of Beas-2B cells to nickel compounds resulted in the activation of both nuclear factor of activated T cell (NFAT) and nuclear factor-κB (NF-κB). The expression of COX-2 induced upon nickel exposure was inhibited by either a NFAT pharmacological inhibitor or the knockdown of NFAT3 by specific siRNA. We further found that the activation of NFAT and NF-κB was dependent on each other. Since our previous studies have shown that NF-κB activation is critical for nickel-induced COX-2 expression in Beas-2B cells exposed to nickel compounds under same experimental condition, we anticipate that there might be a cross-talk between the activation of NFAT and NF-κB for the COX-2 induction due to nickel exposure in Beas-2B cells. Furthermore, we showed that the scavenging of reactive oxygen species (ROS) by introduction of mitochondrial catalase inhibited the activation of both NFAT and NF-κB, and the induction of COX-2 due to nickel exposure. Taken together, our results defining the evidence showing a key role of the cross-talk between NFAT and NF-κB pathways in regulating nickel-induced COX-2 expression, further provide insight into the understanding of the molecular mechanisms linking nickel exposure to its lung carcinogenic effects. PMID:21486220
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghezali, Lamia; Leger, David Yannick; Limami, Youness
2013-04-15
Erythroleukemia is generally associated with a very poor response and survival to current available therapeutic agents. Cyclooxygenase-2 (COX-2) has been described to play a crucial role in the proliferation and differentiation of leukemia cells, this enzyme seems to play an important role in chemoresistance in different cancer types. Previously, we demonstrated that diosgenin, a plant steroid, induced apoptosis in HEL cells with concomitant COX-2 overexpression. In this study, we investigated the antiproliferative and apoptotic effects of cyclopamine and jervine, two steroidal alkaloids with similar structures, on HEL and TF1a human erythroleukemia cell lines and, for the first time, their effectmore » on COX-2 expression. Cyclopamine, but not jervine, inhibited cell proliferation and induced apoptosis in these cells. Both compounds induced COX-2 overexpression which was responsible for apoptosis resistance. In jervine-treated cells, COX-2 overexpression was NF-κB dependent. Inhibition of NF-κB reduced COX-2 overexpression and induced apoptosis. In addition, cyclopamine induced apoptosis and COX-2 overexpression via PKC activation. Inhibition of the PKC pathway reduced both apoptosis and COX-2 overexpression in both cell lines. Furthermore, we demonstrated that the p38/COX-2 pathway was involved in resistance to cyclopamine-induced apoptosis since p38 inhibition reduced COX-2 overexpression and increased apoptosis in both cell lines. - Highlights: ► Cyclopamine alone but not jervine induces apoptosis in human erythroleukemia cells. ► Cyclopamine and jervine induce COX-2 overexpression. ► COX-2 overexpression is implicated in resistance to cyclopamine-induced apoptosis. ► Apoptotic potential of jervine is restrained by NF-κB pathway activation. ► PKC is involved in cyclopamine-induced apoptosis and COX-2 overexpression.« less
Redox and non-redox mechanism of in vitro cyclooxygenase inhibition by natural quinones.
Landa, Premysl; Kutil, Zsofia; Temml, Veronika; Vuorinen, Anna; Malik, Jan; Dvorakova, Marcela; Marsik, Petr; Kokoska, Ladislav; Pribylova, Marie; Schuster, Daniela; Vanek, Tomas
2012-03-01
In this study, ten anthra-, nine naphtho-, and five benzoquinone compounds of natural origin and five synthetic naphthoquinones were assessed, using an enzymatic in vitro assay, for their potential to inhibit cyclooxygenase-1 and -2 (COX-1 and COX-2), the key enzymes of the arachidonic acid cascade. IC₅₀ values comparable with COX reference inhibitor indomethacin were recorded for several quinones (primin, alkannin, diospyrin, juglone, 7-methyljuglone, and shikonin). For some of the compounds, we suggest the redox potential of quinones as the mechanism responsible for in vitro COX inhibition because of the quantitative correlation with their pro-oxidant effect. Structure-relationship activity studies revealed that the substitutions at positions 2 and 5 play the key roles in the COX inhibitory and pro-oxidant actions of naphthoquinones. In contrast, the redox mechanism alone could not explain the activity of primin, embelin, alkannin, and diospyrin. For these four quinones, molecular modeling suggested similar binding modes as for conventional nonsteroidal anti-inflammatory drugs (NSAIDs). © Georg Thieme Verlag KG Stuttgart · New York.
Thill, Marc; Fischer, Dorothea; Becker, Steffi; Cordes, Tim; Dittmer, Christine; Diedrich, Klaus; Salehin, Darius; Friedrich, Michael
2009-09-01
The antiproliferative effects of calcitriol (1,25(OH)2D3) mediated via the vitamin D receptor (VDR), render the biologically active form of vitamin D a promising target in breast cancer therapy. Furthermore, breast cancer is associated with inflammatory processes based on an up-regulation of cyclooxygenase-2 (COX-2) expression, the prostaglandin E2 (PGE2) synthesizing enzyme. The PGE2 metabolizing enzyme, 15-hydroxyprostaglandin dehydrogenase (15-PGDH) is described as a tumor suppressor in cancer. First references suggest a correlation between vitamin D and prostaglandin metabolism through the impact of 1,25(OH)2D3 on the expression of COX-2 and 15-PGDH. The expression of VDR, COX-2 and 15-PGDH in benign MCF-10F and malignant MCF-7 breast cells was determined by real-time PCR (RT-PCR) and Western blot analysis. Although the RT-PCR data were divergent from those obtained from the Western blot analysis, the COX-2 protein expression was MCF-7 2-fold higher in the MCF-7 compared to the MCF-10F cells. Moreover, a correlation of 15-PGDH to VDR by RT-PCR was found in both cell lines. The VDR protein levels were inversely correlated to the 15-PGDH protein levels and revealed that the MCF-10F cells had the highest VDR expression. A possible link between VDR-associated target genes and prostaglandin metabolism is suggested.
Weil, Marvin J; Zhang, Yanjun; Nair, Muraleedharan G
2005-03-09
Cyclooxygenase and human tumor cell growth inhibitory extracts of horseradish (Armoracia rusticana) and wasabi (Wasabia japonica) rhizomes upon purification yielded active compounds 1-3 from horseradish and 4 and 5 from wasabi rhizomes. Spectroscopic analyses confirmed the identities of these active compounds as plastoquinone-9 (1), 6-O-acyl-beta-d-glucosyl-beta-sitosterol (2), 1,2-dilinolenoyl-3-galactosylglycerol (3), linolenoyloleoyl-3-beta-galactosylglycerol (4), and 1,2-dipalmitoyl-3-beta-galactosylglycerol (5). 3-Acyl-sitosterols, sinigrin, gluconasturtiin, and phosphatidylcholines isolated from horseradish and alpha-tocopherol and ubiquinone-10 from wasabi rhizomes isolated were inactive in our assays. At a concentration of 60 microg/mL, compounds 1 and 2 selectively inhibited COX-1 enzyme by 28 and 32%, respectively. Compounds 3, 4, and 5 gave 75, 42, and 47% inhibition of COX-1 enzyme, respectively, at a concentration of 250 microg/mL. In a dose response study, compound 3 inhibited the proliferation of colon cancer cells (HCT-116) by 21.9, 42.9, 51.2, and 68.4% and lung cancer cells (NCI-H460) by 30, 39, 44, and 71% at concentrations of 7.5, 15, 30, and 60 microg/mL, respectively. At a concentration of 60 microg/mL, compound 4 inhibited the growth of colon, lung, and stomach cancer cells by 28, 17, and 44%, respectively. This is the first report of the COX-1 enzyme and cancer cell growth inhibitory monogalactosyl diacylglycerides from wasabi and horseradish rhizomes.
Paulino, Margot; Alvareda, Elena; Iribarne, Federico; Miranda, Pablo; Espinosa, Victoria; Aguilera, Sara; Pardo, Helena
2016-12-01
Propolis and grape pomace have significant amounts of phenols which can take part in anti-inflammatory mechanisms. As the cyclooxygenases 1 and 2 (COX-1 and COX-2) are involved in said mechanisms, the possibility for a selective inhibition of COX-2 was analyzed in vitro and in silico. Propolis and grape pomace from Uruguayan species were collected, extracted in hydroalcoholic mixture and analyzed. Based on phenols previously identified, and taking as reference the crystallographic structures of COX-1 and COX-2 in complex with the commercial drug Celecoxib, a molecular docking procedure was devised to adjust 123 phenolic molecular models at the enzyme-binding sites. The most important results of this work are that the extracts have an overall inhibition activity very similar in COX-1 and COX-2, i.e. they do not possess selective inhibition activity for COX-2. Nevertheless, 10 compounds of the phenolic database turned out to be more selective and 94 phenols resulted with similar selectivity than Celecoxib, an outcome that accounts for the overall experimental inhibition measures. Binding site environment observations showed increased polarity in COX-2 as compared with COX-1, suggesting that polarity is the key for selectivity. Accordingly, the screening of molecular contacts pointed to the residues: Arg106, Gln178, Leu338, Ser339, Tyr341, Tyr371, Arg499, Ala502, Val509, and Ser516, which would explain, at the atomic level, the anti-inflammatory effect of the phenolic compounds. Among them, Gln178 and Arg499 appear to be essential for the selective inhibition of COX-2.
Liu, Yunbao; Yadev, Vivek R; Aggarwal, Bharat B; Nair, Muraleedharan G
2010-08-01
Black pepper (Piper nigrum) and hot pepper (Capsicum spp.) are widely used in traditional medicines. Although hot Capsicum spp. extracts and its active principles, capsaicinoids, have been linked with anticancer and anti-inflammatory activities, whether black pepper and its active principle exhibit similar activities is not known. In this study, we have evaluated the antioxidant, anti-inflammatory and anticancer activities of extracts and compounds from black pepper by using proinflammatory transcription factor NF-kappaB, COX-1 and -2 enzymes, human tumor cell proliferation and lipid peroxidation (LPO). The capsaicinoids, the alkylamides, isolated from the hot pepper Scotch Bonnet were also used to compare the bioactivities of alkylamides and piperine from black pepper. All compounds derived from black pepper suppressed TNF-induced NF-kappaB activation, but alkyl amides, compound 4 from black pepper and 5 from hot pepper, were most effective. The human cancer cell proliferation inhibitory activities of piperine and alklyl amides in Capsicum and black pepper were dose dependant. The inhibitory concentrations 50% (IC50) of the alklylamides were in the range 13-200 microg/mL. The extracts of black pepper at 200 microg/mL and its compounds at 25 microg/mL inhibited LPO by 45-85%, COX enzymes by 31-80% and cancer cells proliferation by 3.5-86.8%. Overall, these results suggest that black pepper and its constituents like hot pepper, exhibit anti-inflammatory, antioxidant and anticancer activities.
Pleiotropic mechanisms facilitated by resveratrol and its metabolites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calamini, Barbara; Ratia, Kiira; Malkowski, Michael G.
2010-07-01
Resveratrol has demonstrated cancer chemopreventive activity in animal models and some clinical trials are underway. In addition, resveratrol was shown to promote cell survival, increase lifespan and mimic caloric restriction, thereby improving health and survival of mice on high-calorie diet. All of these effects are potentially mediated by the pleiotropic interactions of resveratrol with different enzyme targets including COX-1 (cyclo-oxygenase-1) and COX-2, NAD{sup +}-dependent histone deacetylase SIRT1 (sirtuin 1) and QR2 (quinone reductase 2). Nonetheless, the health benefits elicited by resveratrol as a direct result of these interactions with molecular targets have been questioned, since it is rapidly and extensivelymore » metabolized to sulfate and glucuronide conjugates, resulting in low plasma concentrations. To help resolve these issues, we tested the ability of resveratrol and its metabolites to modulate the function of some known targets in vitro. In the present study, we have shown that COX-1, COX-2 and QR2 are potently inhibited by resveratrol, and that COX-1 and COX-2 are also inhibited by the resveratrol 4{prime}-O-sulfate metabolite. We determined the X-ray structure of resveratrol bound to COX-1 and demonstrate that it occupies the COX active site similar to other NSAIDs (non-steroidal anti-inflammatory drugs). Finally, we have observed that resveratrol 3- and 4?-O-sulfate metabolites activate SIRT1 equipotently to resveratrol, but that activation is probably a substrate-dependent phenomenon with little in vivo relevance. Overall, the results of this study suggest that in vivo an interplay between resveratrol and its metabolites with different molecular targets may be responsible for the overall beneficial health effects previously attributed only to resveratrol itself.« less
Molecular basis of cyclooxygenase enzymes (COXs) selective inhibition
Limongelli, Vittorio; Bonomi, Massimiliano; Marinelli, Luciana; Gervasio, Francesco Luigi; Cavalli, Andrea; Novellino, Ettore; Parrinello, Michele
2010-01-01
The widely used nonsteroidal anti-inflammatory drugs block the cyclooxygenase enzymes (COXs) and are clinically used for the treatment of inflammation, pain, and cancers. A selective inhibition of the different isoforms, particularly COX-2, is desirable, and consequently a deeper understanding of the molecular basis of selective inhibition is of great demand. Using an advanced computational technique we have simulated the full dissociation process of a highly potent and selective inhibitor, SC-558, in both COX-1 and COX-2. We have found a previously unreported alternative binding mode in COX-2 explaining the time-dependent inhibition exhibited by this class of inhibitors and consequently their long residence time inside this isoform. Our metadynamics-based approach allows us to illuminate the highly dynamical character of the ligand/protein recognition process, thus explaining a wealth of experimental data and paving the way to an innovative strategy for designing new COX inhibitors with tuned selectivity. PMID:20215464
Mercau, M E; Astort, F; Giordanino, E F; Martinez Calejman, C; Sanchez, R; Caldareri, L; Repetto, E M; Coso, O A; Cymeryng, C B
2014-03-25
Previous studies from our laboratory demonstrated the involvement of COX-2 in the stimulation of steroid production by LPS in murine adrenocortical Y1 cells, as well as in the adrenal cortex of male Wistar rats. In this paper we analyzed signaling pathways involved in the induction of this key regulatory enzyme in adrenocortical cells and demonstrated that LPS triggers an increase in COX-2 mRNA levels by mechanisms involving the stimulation of reactive oxygen species (ROS) generation and the activation of p38 MAPK and Akt, in addition to the previously demonstrated increase in NFκB activity. In this sense we showed that: (1) inhibition of p38 MAPK or PI3K/Akt (pharmacological or molecular) prevented the increase in COX-2 protein levels by LPS, (2) LPS induced p38 MAPK and Akt phosphorylation, (3) antioxidant treatment blocked the effect of LPS on p38 MAPK phosphorylation and in COX-2 protein levels, (4) PI3K inhibition with LY294002 prevented p38 MAPK phosphorylation and, (5) the activity of an NFκB reporter was decreased by p38 MAPK or PI3K inhibition. These results suggest that activation of both p38 MAPK and PI3K/Akt pathways promote the stimulation of NFκB activity and that PI3K/Akt activity might regulate both p38 MAPK and NFκB signaling pathways. In summary, in this study we showed that in adrenal cells, LPS induces COX-2 expression by activating p38 MAPK and PI3K/Akt signaling pathways and that both pathways converge in the modulation of NFκB transcriptional activity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Kinetics and docking studies of a COX-2 inhibitor isolated from Terminalia bellerica fruits.
Reddy, Tamatam Chandramohan; Aparoy, Polamarasetty; Babu, Neela Kishore; Kumar, Kotha Anil; Kalangi, Suresh Kumar; Reddanna, Pallu
2010-10-01
Triphala is an Ayurvedic herbal formulation consisting of equal parts of three myrobalans: Terminalia chebula, Terminalia bellerica and Emblica officinalis. We recently reported that chebulagic acid (CA) isolated from Terminalia chebula is a potent COX-2/5-LOX dual inhibitor. In this study, compounds isolated from Terminalia bellerica were tested for inhibition against COX and 5-LOX. One of the fractionated compounds showed potent inhibition against COX enzymes with no inhibition against 5-LOX. It was identified as gallic acid (GA) by LC-MS, NMR and IR analyses. We report here the inhibitory effects of GA, with an IC(50) value of 74 nM against COX-2 and 1500 nM for COX-1, showing ≈20 fold preference towards COX-2. Further docking studies revealed that GA binds in the active site of COX-2 at the non-steroidal anti-inflammatory drug (NSAID) binding site. The carboxylate moiety of GA interacts with Arg120 and Glu524. Based on substrate dependent kinetics, GA was found to be a competitive inhibitor of both COX-1 and COX-2, with more affinity towards COX-2. Taken together, our studies indicate that GA is a selective inhibitor of COX-2. Being a small natural product with selective and reversible inhibition of COX-2, GA would form a lead molecule for developing potent anti-inflammatory drug candidates.
Association of COX-2 Promoter Polymorphisms -765G/C and -1195A/G with Migraine.
Mozaffari, Elahe; Doosti, Abbas; Arshi, Asghar; Faghani, Mostafa
2016-12-01
Migraine is a common debilitating primary headache disorder with current head pain attacks, which contributes to physical activity dysfunctions in chronic pain phase. PGE2 and PGI2 are two important prostaglandins synthesised by COX-2 enzymes, involved in migraine pain signals. COX-2 modulation is essential in treatment and pathogenesis of migraine. This study aimed to investigating the association between COX-2 gene polymorphisms with the risk of migraine susceptibility in migraine patients with related and unrelated parents. This case- control study was based on 100 migraine patients and 100 non-migraine subjects in Bushehr province, Iran in 2013. Genomic DNA of blood samples was extracted and genotyping of COX-2-765G>C (rs20417) and COX-2-1195A>G (rs689466) gene variants was investigated by PCR-RFLP method. Statistical analyses were accomplished using the SPSS software package. There was a significant differences in the frequencies of the COX-2-765G>C and COX-2-1195A>G genotypes between migraine patients and controls ( P ≤0.05). COX-2-765CC , COX-2-765CG , COX-2-1195GG and COX-2-1195AG genotypes can increase the risk of migraine significantly. As the first study in Iran, we are hopeful to achieve greater results about the relevancy of COX-2 gene, migraine and pain signals pathway by repeating these experiments on more samples.
Ethnopharmacological study of plants from Pondoland used against diarrhoea.
Madikizela, B; Ndhlala, A R; Finnie, J F; Van Staden, J
2012-05-07
Waterborne diseases such as diarrhoea are common world wide, including in Bizana, South Africa where the majority of rural dwellers depend largely on water from unprotected sources. The people from Bizana use medicinal plants as their first line of health care to cure and prevent diarrhoea. To record and document plants used for the treatment of diarrhoea in Bizana, to evaluate antibacterial and anti-inflammatory activities of selected plant extracts as well as to perform genotoxicity testing of evaluated plants. An ethnobotanical approach was used to select plants used for treating diarrhoea in Bizana for pharmacological assays using questionnaires. Nine plants were selected for bioassays based on their frequency index and the fact that they have never been evaluated against diarrhoea causing-microorganisms. The petroleum ether (PE), dichloromethane (DCM), 70% ethanol (EtOH), and water extracts were evaluated for antibacterial (Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli and Shigella flexneri) activity using the microdilution technique, their ability to inhibit COX-1 and COX-2 enzymes. Genotoxicity was evaluated using the Salmonella microsome assay. This study revealed that 34 plant species belonging to 27 families are used for the treatment of diarrhoea in Bizana. The extracts showed good inhibitory activity with MIC values ranging from 0.39 to 12.5mg/ml. The best activity was exhibited by DCM extracts of Rapanea melanophloeos, and EtOH extracts of Ficus craterostoma and Maesa lanceolata with MIC values of 0.098mg/ml. The inhibitory activity against COX-1 enzyme was higher than COX-2, with 19 plant extracts for the former and 7 for the latter. All the tested plant extracts were not mutagenic at all concentrations tested against all tester strains of bacteria. In view of the fact that the plants were selected based on their ethnobotanical usage for treating diarrhoea, the activities reported here goes a long way in validating the plants for traditional use. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
XRCC5 cooperates with p300 to promote cyclooxygenase-2 expression and tumor growth in colon cancers
Hao, Jiajiao; Chen, Miao; Yu, Wendan; Guo, Wei; Chen, Yiming; Huang, Wenlin; Deng, Wuguo
2017-01-01
Cyclooxygenase (COX) is the rate-limiting enzyme in prostaglandins (PGs) biosynthesis. Previous studies indicate that COX-2, one of the isoforms of COX, is highly expressed in colon cancers and plays a key role in colon cancer carcinogenesis. Thus, searching for novel transcription factors regulating COX-2 expression will facilitate drug development for colon cancer. In this study, we identified XRCC5 as a binding protein of the COX-2 gene promoter in colon cancer cells with streptavidin-agarose pulldown assay and mass spectrometry analysis, and found that XRCC5 promoted colon cancer growth through modulation of COX-2 signaling. Knockdown of XRCC5 by siRNAs inhibited the growth of colon cancer cells in vitro and of tumor xenografts in a mouse model in vivo by suppressing COX-2 promoter activity and COX-2 protein expression. Conversely, overexpression of XRCC5 promoted the growth of colon cancer cells by activating COX-2 promoter and increasing COX-2 protein expression. Moreover, the role of p300 (a transcription co-activator) in acetylating XRCC5 to co-regulate COX-2 expression was also evaluated. Immunofluorescence assay and confocal microscopy showed that XRCC5 and p300 proteins were co-located in the nucleus of colon cancer cells. Co-immunoprecipitation assay also proved the interaction between XRCC5 and p300 in nuclear proteins of colon cancer cells. Cell viability assay indicated that the overexpression of wild-type p300, but not its histone acetyltransferase (HAT) domain deletion mutant, increased XRCC5 acetylation, thereby up-regulated COX-2 expression and promoted the growth of colon cancer cells. In contrast, suppression of p300 by a p300 HAT-specific inhibitor (C646) inhibited colon cancer cell growth by suppressing COX-2 expression. Taken together, our results demonstrated that XRCC5 promoted colon cancer growth by cooperating with p300 to regulate COX-2 expression, and suggested that the XRCC5/p300/COX-2 signaling pathway was a potential target in the treatment of colon cancers. PMID:29049411
Wenzig, E M; Widowitz, U; Kunert, O; Chrubasik, S; Bucar, F; Knauder, E; Bauer, R
2008-10-01
The aim of the present study was to compare powdered rose hip with and without fruits (Rosae pseudofructus cum/sine fructibus, Rosa canina L., Rosaceae) with regard to their phytochemical profile and their in vitro anti-inflammatory and radical-scavenging properties. The two powders were subsequently extracted with solvents of increasing polarity and tested for inhibition of cyclooxygenase (COX-1, COX-2) and of 5-LOX-mediated leukotriene B(4) (LTB(4)) formation as well as for DPPH-radical-scavenging capacity. While the water and methanol extracts were inactive in the COX-1, COX-2 and LTB(4) inhibition assays, the n-hexane and the dichloromethane extracts inhibited all three enzymes. In the active extracts, the triterpenoic acids ursolic acid, oleanolic acid and betulinic acid were identified, although only in minute amounts. Furthermore, oleic, linoleic and alpha-linolenic acid were identified apart from several saturated fatty acids. Even though unsaturated fatty acids are known to be good inhibitors of COX-1, COX-2 and LT formation, no clear correlation between their concentration in the extracts and their activity was found. We suggest that other, yet unidentified, lipophilic constituents might play a more important role for the observed in vitro inhibitory activity on arachidonic acid metabolism. Some of the extracts also showed considerable DPPH radical scavenging activity, the methanolic extracts being most potent. The radical scavenging activity of the extracts correlated very well with their total phenolic content, while ascorbic acid contributes only little to the radical-scavenging activity due to its low concentration present in the extracts. In summary, extracts derived from powdered rose hip without fruits were more effective in all assays carried out compared with extracts derived from powdered rose hip with fruits.
Induction of cyclo-oxygenase-2 mRNA by prostaglandin E2 in human prostatic carcinoma cells
NASA Technical Reports Server (NTRS)
Tjandrawinata, R. R.; Dahiya, R.; Hughes-Fulford, M.
1997-01-01
Prostaglandins are synthesized from arachidonic acid by the enzyme cyclo-oxygenase. There are two isoforms of cyclooxygenases: COX-1 (a constitutive form) and COX-2 (an inducible form). COX-2 has recently been categorized as an immediate-early gene and is associated with cellular growth and differentiation. The purpose of this study was to investigate the effects of exogenous dimethylprostaglandin E2 (dmPGE2) on prostate cancer cell growth. Results of these experiments demonstrate that administration of dmPGE2 to growing PC-3 cells significantly increased cellular proliferation (as measured by the cell number), total DNA content and endogenous PGE2 concentration. DmPGE2 also increased the steady-state mRNA levels of its own inducible synthesizing enzyme, COX-2, as well as cellular growth to levels similar to those seen with fetal calf serum and phorbol ester. The same results were observed in other human cancer cell types, such as the androgen-dependent LNCaP cells, breast cancer MDA-MB-134 cells and human colorectal carcinoma DiFi cells. In PC-3 cells, the dmPGE2 regulation of the COX-2 mRNA levels was both time dependent, with maximum stimulation seen 2 h after addition, and dose dependent on dmPGE2 concentration, with maximum stimulation seen at 5 microg ml(-1). The non-steroidal anti-inflammatory drug flurbiprofen (5 microM), in the presence of exogenous dmPGE2, inhibited the up-regulation of COX-2 mRNA and PC-3 cell growth. Taken together, these data suggest that PGE2 has a specific role in the maintenance of human cancer cell growth and that the activation of COX-2 expression depends primarily upon newly synthesized PGE2, perhaps resulting from changes in local cellular PGE2 concentrations.
Hall-Pogar, Tyra; Liang, Songchun; Hague, Lisa K.; Lutz, Carol S.
2007-01-01
Two cyclooxygenase (COX) enzymes, COX-1 and COX-2, are present in human cells. While COX-1 is constitutively expressed, COX-2 is inducible and up-regulated in response to many signals. Since increased transcriptional activity accounts for only part of COX-2 up-regulation, we chose to explore other RNA processing mechanisms in the regulation of this gene. Previously, we showed that COX-2 is regulated by alternative polyadenylation, and that the COX-2 proximal polyadenylation signal contains auxiliary upstream sequence elements (USEs) that are very important in efficient polyadenylation. To explore trans-acting protein factors interacting with these cis-acting RNA elements, we performed pull-down assays with HeLa nuclear extract and biotinylated RNA oligonucleotides representing COX-2 USEs. We identified PSF, p54nrb, PTB, and U1A as proteins specifically bound to the COX-2 USEs. We further explored their participation in polyadenylation using MS2 phage coat protein-MS2 RNA binding site tethering assays, and found that tethering any of these four proteins to the COX-2 USE mutant RNA can compensate for these cis-acting elements. Finally, we suggest that these proteins (p54nrb, PTB, PSF, and U1A) may interact as a complex since immunoprecipitations of the transfected MS2 fusion proteins coprecipitate the other proteins. PMID:17507659
Fakhrudin, Nanang; Dwi Astuti, Eny; Sulistyawati, Rini; Santosa, Djoko; Susandarini, Ratna; Nurrochmad, Arief; Wahyuono, Subagus
2017-03-13
Inflammation is involved in the progression of many disorders, such as tumors, arthritis, gastritis, and atherosclerosis. Thus, the development of new agents targeting inflammation is still challenging. Medicinal plants have been used traditionally to treat various diseases including inflammation. A previous study has indicated that dichloromethane extract of P. lanceolata leaves exerts anti-inflammatory activity in an in vitro model. Here, we examined the in vivo anti-inflammatory activities of a n -hexane insoluble fraction of P. lanceolata leaves dichloromethane extract (HIFPL). We first evaluated its potency to reduce paw edema induced by carrageenan, and the expression of the proinflammatory enzyme, cyclooxygenase (COX)-2, in mice. The efficacy of HIFPL to inhibit COX-2 was also evaluated in an in vitro enzymatic assay. We further studied the effect of HIFPL on leukocytes migration in mice induced by thioglycollate. The level of chemokines facilitating the migration of leukocytes was also measured. We found that HIFPL (40, 80, 160 mg/kg) demonstrated anti-inflammatory activities in mice. The HIFPL reduced the volume of paw edema and COX-2 expression. However, HIFPL acts as an unselective COX-2 inhibitor as it inhibited COX-1 with a slightly higher potency. Interestingly, HIFPL strongly inhibited leukocyte migration by reducing the level of chemokines, Interleukine-8 (IL-8) and Monocyte chemoattractant protein-1 (MCP-1).
Gueto, Carlos; Torres, Juan; Vivas-Reyes, Ricardo
2009-09-01
Aromatase, the enzyme responsible for estrogen biosynthesis, is an attractive target in the treatment of hormone-dependent breast cancer. In this manuscript, the structure-based drug design approach of sulfonanilide analogues as potential selective aromatase expression regulators (SAERs) is described. Receptor-independent CoMFA (Comparative Molecular Field Analysis) maps were employed for generating a pseudocavity for LeapFrog calculation. A robust model, using 45 and 10 molecules in the training and test sets, respectively, was developed producing statistically significant results with cross-validated and conventional correlation coefficients of 0.656 and 0.956, respectively. This model was used to predict the activity of newly proposed molecules as SAERs candidates being two magnitude orders more potent than the previously reported compounds. Also in the present study, the computational blind docking method using eHiTS is tested on molecules study group and COX-2 enzyme. Future perspectives of the method in the screening of SAERs candidates with no COX-2 inhibitory activity are discussed.
Jia, Yimin; Song, Haogang; Gao, Guichao; Cai, Demin; Yang, Xiaojing; Zhao, Ruqian
2015-11-25
Betaine has been widely used in animal and human nutrition to promote muscle growth and performance, yet it remains unknown whether maternal betaine supplementation during gestation affects the metabolic characteristics of neonatal skeletal muscles. In the present study, feeding sows with betaine-supplemented diets throughout gestation significantly upregulated the expression of mtDNA-encoded OXPHOS genes (p < 0.05), including COX1, COX2, and ND5, in the muscle of newborn piglets, which was associated with enhanced mitochondrial COX enzyme activity (p < 0.05). Concurrently, maternal betaine supplementation increased the plasma betaine concentration and muscle expression of methyl transfer enzymes (p < 0.05), BHMT and GNMT, in offspring piglets. Nevertheless, Dnmt3a was downregulated at the level of both mRNA and protein, which was associated with a hypomethylated mtDNA D-loop region (p < 0.05). These results suggest that maternal betaine supplementation during gestation enhances expression of mtDNA-encoded genes through D-loop DNA hypomethylation in the skeletal muscle of newborn piglets.
Liao, Xiudong; Ma, Chunyan; Lu, Lin; Zhang, Liyang; Luo, Xugang
2017-10-01
The present study was carried out to determine dietary Fe requirements for the full expression of Fe-containing enzyme in broilers chicks from 22 to 42 d of age. At 22 d of age, 288 Arbor Acres male chicks were randomly assigned to one of six treatments with six replicates and fed a basal maize-soyabean-meal diet (control, containing 47·0 mg Fe/kg) or the basal diet supplemented with 20, 40, 60, 80 or 100 mg Fe/kg from FeSO4.7H2O for 21 d. Regression analysis was performed to estimate the optimal dietary Fe level using quadratic models. Liver cytochrome c oxidase (Cox), heart Cox and kidney succinate dehydrogenase mRNA levels as well as heart COX activity were affected (P<0·08) by dietary Fe level, and COX mRNA level and activity in heart of broilers increased quadratically (P<0·03) as dietary Fe level increased. The estimates of dietary Fe requirements were 110 and 104 mg/kg for the full expression of Cox mRNA and for its activity in the heart of broilers, respectively. The results from this study indicate that COX mRNA level and activity in the heart are new and sensitive criteria to evaluate the dietary Fe requirements of broilers, and the dietary Fe requirements would be 104-110 mg/kg to support the full expression of COX in the heart of broiler chicks from 22 to 42 d of age, which are higher than the current National Research Council Fe requirement (80 mg/kg) of broiler chicks from 1 to 21 d or 22 to 42 d of age.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lei; Hitron, John Andrew; Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536
Arsenic is a known carcinogen to humans, and chronic exposure to environmental arsenic is a worldwide health concern. As a dietary factor, ethanol carries a well-established risk for malignancies, but the effects of co-exposure to arsenic and ethanol on tumor development are not well understood. In the present study, we hypothesized that ethanol would enhance the function of an environmental carcinogen such as arsenic through increase in COX-2 expression. Our in vitro results show that ethanol enhanced arsenic-induced COX-2 expression. We also show that the increased COX-2 expression associates with intracellular ROS generation, up-regulated AKT signaling, with activation of bothmore » NFAT and NF-κB pathways. We demonstrate that antioxidant enzymes have an inhibitory effect on arsenic/ethanol-induced COX-2 expression, indicating that the responsive signaling pathways from co-exposure to arsenic and ethanol relate to ROS generation. In vivo results also show that co-exposure to arsenic and ethanol increased COX-2 expression in mice. We conclude that ethanol enhances arsenic-induced COX-2 expression in colorectal cancer cells via both the NFAT and NF-κB pathways. These results imply that, as a common dietary factor, ethanol ingestion may be a compounding risk factor for arsenic-induced carcinogenesis/cancer development. - Highlights: • Arsenic is able to induce Cox-2 expression in colorectal cancer cells. • Ethanol, a diet nutritional factor, could enhance arsenic-induced Cox-2. • The up-regulation of Cox-2 via both NFAT and NF-κB activities.« less
Mechanism of acetaminophen inhibition of cyclooxygenase isoforms.
Ouellet, M; Percival, M D
2001-03-15
Acetaminophen has similar analgesic and antipyretic properties to nonsteroidal antiinflammatory drugs (NSAIDs), which act via inhibition of cyclooxygenase enzymes. However, unlike NSAIDs, acetaminophen is at best weakly antiinflammatory. The mechanism by which acetaminophen exerts its therapeutic action has yet to be fully determined, as under most circumstances, acetaminophen is a very weak cyclooxygenase inhibitor. The potency of acetaminophen against both purified ovine cyclooxygenase-1 (oCOX-1) and human cyclooxygenase-2 (hCOX-2) was increased approximately 30-fold by the presence of glutathione peroxidase and glutathione to give IC50 values of 33 microM and 980 microM, respectively. Acetaminophen was found to be a good reducing agent of both oCOX-1 and hCOX-2. The results are consistent with a mechanism of inhibition of acetaminophen in which it acts to reduce the active oxidized form of COX to the resting form. Inhibition would therefore be more effective under conditions of low peroxide concentration, consistent with the known tissue selectivity of acetaminophen.
Okuda-Tanino, Asa; Sugawara, Daiki; Tashiro, Takumi; Iwashita, Masaya; Obara, Yutaro; Moriya, Takahiro; Tsushima, Chisato; Saigusa, Daisuke; Tomioka, Yoshihisa; Ishii, Kuniaki; Nakahata, Norimichi
2017-01-01
Licochalcones extracted from Glycyrrhiza inflata are known to have a variety of biological properties such as anti-inflammatory, anti-bacterial, and anti-tumor activities, but their action on platelet aggregation has not yet been reported. Therefore, in this study we investigated the effects of licochalcones on platelet aggregation. Collagen and U46619, a thromboxane A2 receptor agonist, caused rabbit platelet aggregation, which was reversed by pretreatment with licochalcones A, C and D in concentration-dependent manners. Among these compounds, licochalcone A caused the most potent inhibitory effect on collagen-induced platelet aggregation. However, the licochalcones showed marginal inhibitory effects on thrombin or ADP-induced platelet aggregation. In addition to rabbit platelets, licochalcone A attenuated collagen-induced aggregation in human platelets. Because licochalcone A also inhibited arachidonic acid-induced platelet aggregation and production of thromboxane A2 induced by collagen in intact platelets, we further examined the direct interaction of licochalcone A with cyclooxygenase (COX)-1. As expected, licochalcone A caused an inhibitory effect on both COX-1 and COX-2 in vitro. Regarding the effect of licochalcone A on COX-1 enzyme reaction kinetics, although licochalcone A showed a stronger inhibition of prostaglandin E2 synthesis induced by lower concentrations of arachidonic acid, Vmax values in the presence or absence of licochalcone A were comparable, suggesting that it competes with arachidonic acid at the same binding site on COX-1. These results suggest that licochalcones inhibit collagen-induced platelet aggregation accompanied by inhibition of COX-1 activity. PMID:28282426
Expression of prostaglandin metabolising enzymes COX-2 and 15-PGDH and VDR in human granulosa cells.
Thill, Marc; Becker, Steffi; Fischer, Dorothea; Cordes, Tim; Hornemann, Amadeus; Diedrich, Klaus; Salehin, Darius; Friedrich, Michael
2009-09-01
Prostaglandins (PGs) within the periovulatory follicle are essential for various female reproductive functions such as follicular development and maturation. In animal models, granulosa cells express the PG synthesizing enzyme cyclooxygenase-2 (COX-2) and the PG inactivating enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH). First references suggest a correlation between vitamin D and prostaglandin metabolism through the impact of 1,25(OH)2D3 (calcitriol) on the expression of COX-2 and 15-PGDH. The expression of COX-2, 15-PGDH and the vitamin D receptor (VDR) in human granulosa cells (COV434, hGC and HGL5), which were originally isolated from different stages of follicular maturation, was determined by real-time PCR (RT-PCR) and Western blot analysis. A positive correlation of COX-2 and VDR protein was found in the COV434 and HGL5 cells and an inverse correlation of 15-PGDH and VDR protein levels in all the investigated cell types. There may be a link between VDR, associated target genes and prostaglandin metabolism in human follicular maturation and luteolysis.
Carrarelli, Patrizia; Funghi, Lucia; Bruni, Simone; Luisi, Stefano; Arcuri, Felice; Petraglia, Felice
2016-01-01
Dysmenorrhea, defined as painful cramps occurring immediately before or during the menstrual period, is a common symptom of different gynecological diseases. An acute uterine inflammatory response driven by prostaglandins (PGs) is responsible for painful symptoms. Progesterone withdrawal is responsible for activation of cyclooxygenase (COX-2) enzyme and decrease of hydroxyprostaglandin dehydrogenase (HPDG) with consequent increased secretion of PGs secretion, inducing uterine contractility and pain. The most widely used drugs for the treatment of pelvic pain associated with menstrual cycle are non steroidal anti-inflammatory drugs (NSAIDs). The uterine site of action of these drugs is still not defined and the present study evaluated the effect of naproxen sodium in cultured human endometrial stromal cells (HESC) collected from healthy women. PGE2 release was measured by ELISA; COX-2 and HPDG mRNA expression were assessed by qRT-PCR. Naproxen sodium did not affect HESC vitality. Naproxen sodium significantly decreased PGE2 secretion (p < 0.01) and COX-2 mRNA expression (p < 0.01). TNF-α induced PGE2 release was reduced in presence of naproxen sodium (p < 0.05), in association with decreased COX-2 and increased HPDG mRNAs expression. Naproxen sodium decreases endometrial PGE2 release induced by inflammatory stimulus acting on endometrial COX-2 and HPDG expression, suggesting endometrial synthesis of prostaglandins as a possible target for reduction of uterine inflammatory mechanism in dysmenorrhea.
Intravenous anesthetic propofol suppresses prostaglandin E2 production in murine dendritic cells.
Inada, Takefumi; Kubo, Kozue; Ueshima, Hironobu; Shingu, Koh
2011-01-01
Propofol is an intravenous anesthetic that is widely used for anesthesia and sedation. Dendritic cells (DC) are one of the crucial immune cells that bridge innate and adaptive immunity, in which DC process antigens during innate immune responses to present them to naïve T-cells, leading to an establishment of adaptive immunity. Prostaglandin (PG)-E(2) may be secreted by DC into the microenvironment, considerably influencing DC phenotype and function, and thus determining the fate of adaptive immunity. Since propofol suppresses PGE(2) production in murine macrophages, the primary purpose of the present study was to determine whether propofol also suppresses PGE(2) production in DC. Assuming a positive finding of such suppression, we tested whether this also leads to alterations of interleukin (IL)-12 and IL-10 production and DC surface marker expression, both of which can be modulated by PGE(2). In bone marrow-derived DC, propofol significantly suppressed the PGE(2) production after lipopolysaccharide stimulation. Cyclo-oxygenase (COX) protein expression and arachidonic acid release were unaffected, while COX enzyme activity was significantly inhibited by propofol. The propofol-induced COX inhibition did not lead to the increased production of cysteinyl leukotrienes and leukotriene-B(4). Endogenous COX inhibition with propofol, as well as with the selective COX-2 inhibitor, NS-398, did not affect IL-12 and IL-10 production from DC. The surface expression of I-A(b) and CD40 on DC was not changed, while that of CD86 slightly increased, with both propofol and NS-398; expression of CD80 was not affected with propofol, but increased slightly with NS-398. Finally, endogenous COX inhibition with either propofol or NS-398 did not significantly affect the ability of DC to induce allogeneic T-cell proliferation. It is concluded that the intravenous anesthetic propofol suppresses COX enzyme activity in DC, with no consequences with respect to IL-12/IL-10 production and allogeneic T-cell proliferation, while minimal consequences were observed in surface molecule expression.
Redox and Reactive Oxygen Species Regulation of Mitochondrial Cytochrome c Oxidase Biogenesis
Bourens, Myriam; Fontanesi, Flavia; Soto, Iliana C.; Liu, Jingjing
2013-01-01
Abstract Significance: Cytochrome c oxidase (COX), the last enzyme of the mitochondrial respiratory chain, is the major oxygen consumer enzyme in the cell. COX biogenesis involves several redox-regulated steps. The process is highly regulated to prevent the formation of pro-oxidant intermediates. Recent Advances: Regulation of COX assembly involves several reactive oxygen species and redox-regulated steps. These include: (i) Intricate redox-controlled machineries coordinate the expression of COX isoenzymes depending on the environmental oxygen concentration. (ii) COX is a heme A-copper metalloenzyme. COX copper metallation involves the copper chaperone Cox17 and several other recently described cysteine-rich proteins, which are oxidatively folded in the mitochondrial intermembrane space. Copper transfer to COX subunits 1 and 2 requires concomitant transfer of redox power. (iii) To avoid the accumulation of reactive assembly intermediates, COX is regulated at the translational level to minimize synthesis of the heme A-containing Cox1 subunit when assembly is impaired. Critical Issues: An increasing number of regulatory pathways converge to facilitate efficient COX assembly, thus preventing oxidative stress. Future Directions: Here we will review on the redox-regulated COX biogenesis steps and will discuss their physiological relevance. Forthcoming insights into the precise regulation of mitochondrial COX biogenesis in normal and stress conditions will likely open future perspectives for understanding mitochondrial redox regulation and prevention of oxidative stress. Antioxid. Redox Signal. 19, 1940–1952. PMID:22937827
Up-regulation of cyclooxygenase-2 by product-prostaglandin E2
NASA Technical Reports Server (NTRS)
Tjandrawinata, R. R.; Hughes-Fulford, M.
1997-01-01
The development of prostate cancer has been linked to high level of dietary fat intake. Our laboratory investigates the connection between cancer cell growth and fatty acid products. Studying human prostatic carcinoma PC-3 cells, we found that prostaglandin E2 (PGE2) increased cell growth and up-regulated the gene expression of its own synthesizing enzyme, cyclooxygenase-2 (COX-2). PGE2 increased COX-2 mRNA expression dose-dependently with the highest levels of stimulation seen at the 3-hour period following PGE2 addition. The NSAID flurbiprofen (5 microM), in the presence of exogenous PGE2, inhibited the up-regulation of COX-2 mRNA and cell growth. These data suggest that the levels of local intracellular PGE2 play a major role in the growth of prostate cancer cells through an activation of COX-2 gene expression.
Angoa-Pérez, Mariana; Kreipke, Christian W; Thomas, David M; Van Shura, Kerry E; Lyman, Megan; McDonough, John H; Kuhn, Donald M
2010-12-01
Nerve agent-induced seizures cause neuronal damage in brain limbic and cortical circuits leading to persistent behavioral and cognitive deficits. Without aggressive anticholinergic and benzodiazepine therapy, seizures can be prolonged and neuronal damage progresses for extended periods of time. The objective of this study was to determine the effects of the nerve agent soman on expression of cyclooxygenase-2 (COX-2), the initial enzyme in the biosynthetic pathway of the proinflammatory prostaglandins and a factor that has been implicated in seizure initiation and propagation. Rats were exposed to a toxic dose of soman and scored behaviorally for seizure intensity. Expression of COX-2 was determined throughout brain from 4h to 7 days after exposure by immunohistochemistry and immunoblotting. Microglial activation and astrogliosis were assessed microscopically over the same time-course. Soman increased COX-2 expression in brain regions known to be damaged by nerve agents (e.g., hippocampus, amygdala, piriform cortex and thalamus). COX-2 expression was induced in neurons, and not in microglia or astrocytes, and remained elevated through 7 days. The magnitude of COX-2 induction was correlated with seizure intensity. COX-1 expression was not changed by soman. Increased expression of neuronal COX-2 by soman is a late-developing response relative to other signs of acute physiological distress caused by nerve agents. COX-2-mediated production of prostaglandins is a consequence of the seizure-induced neuronal damage, even after survival of the initial cholinergic crisis is assured. COX-2 inhibitors should be considered as adjunct therapy in nerve agent poisoning to minimize nerve agent-induced seizure activity. Published by Elsevier B.V.
Woodling, Nathaniel S.; Colas, Damien; Wang, Qian; Minhas, Paras; Panchal, Maharshi; Liang, Xibin; Mhatre, Siddhita D.; Brown, Holden; Ko, Novie; Zagol-Ikapitte, Irene; van der Hart, Marieke; Khroyan, Taline V.; Chuluun, Bayarsaikhan; Priyam, Prachi G.; Milne, Ginger L.; Rassoulpour, Arash; Boutaud, Olivier; Manning-Boğ, Amy B.; Heller, H. Craig
2016-01-01
Abstract Identifying preventive targets for Alzheimer’s disease is a central challenge of modern medicine. Non-steroidal anti-inflammatory drugs, which inhibit the cyclooxygenase enzymes COX-1 and COX-2, reduce the risk of developing Alzheimer’s disease in normal ageing populations. This preventive effect coincides with an extended preclinical phase that spans years to decades before onset of cognitive decline. In the brain, COX-2 is induced in neurons in response to excitatory synaptic activity and in glial cells in response to inflammation. To identify mechanisms underlying prevention of cognitive decline by anti-inflammatory drugs, we first identified an early object memory deficit in APP Swe -PS1 ΔE9 mice that preceded previously identified spatial memory deficits in this model. We modelled prevention of this memory deficit with ibuprofen, and found that ibuprofen prevented memory impairment without producing any measurable changes in amyloid-β accumulation or glial inflammation. Instead, ibuprofen modulated hippocampal gene expression in pathways involved in neuronal plasticity and increased levels of norepinephrine and dopamine. The gene most highly downregulated by ibuprofen was neuronal tryptophan 2,3-dioxygenase ( Tdo2 ), which encodes an enzyme that metabolizes tryptophan to kynurenine. TDO2 expression was increased by neuronal COX-2 activity, and overexpression of hippocampal TDO2 produced behavioural deficits. Moreover, pharmacological TDO2 inhibition prevented behavioural deficits in APP Swe -PS1 ΔE9 mice. Taken together, these data demonstrate broad effects of cyclooxygenase inhibition on multiple neuronal pathways that counteract the neurotoxic effects of early accumulating amyloid-β oligomers. PMID:27190010
Nucleobindin Co-Localizes and Associates with Cyclooxygenase (COX)-2 in Human Neutrophils
Leclerc, Patrick; Biarc, Jordane; St-Onge, Mireille; Gilbert, Caroline; Dussault, Andrée-Anne; Laflamme, Cynthia; Pouliot, Marc
2008-01-01
The inducible cyclooxygenase isoform (COX-2) is associated with inflammation, tumorigenesis, as well as with physiological events. Despite efforts deployed in order to understand the biology of this multi-faceted enzyme, much remains to be understood. Nucleobindin (Nuc), a ubiquitous Ca2+-binding protein, possesses a putative COX-binding domain. In this study, we investigated its expression and subcellular localization in human neutrophils, its affinity for COX-2 as well as its possible impact on PGE2 biosynthesis. Complementary subcellular localization approaches including nitrogen cavitation coupled to Percoll fractionation, immunofluorescence, confocal and electron microscopy collectively placed Nuc, COX-2, and all of the main enzymes involved in prostanoid synthesis, in the Golgi apparatus and endoplasmic reticulum of human neutrophils. Immunoprecipitation experiments indicated a high affinity between Nuc and COX-2. Addition of human recombinant (hr) Nuc to purified hrCOX-2 dose-dependently caused an increase in PGE2 biosynthesis in response to arachidonic acid. Co-incubation of Nuc with COX-2-expressing neutrophil lysates also increased their capacity to produce PGE2. Moreover, neutrophil transfection with hrNuc specifically enhanced PGE2 biosynthesis. Together, these results identify a COX-2-associated protein which may have an impact in prostanoid biosynthesis. PMID:18493301
Adaptation of rat gastric tissue against indomethacin toxicity.
Polat, Beyzagul; Suleyman, Halis; Alp, Hamit Hakan
2010-06-07
Indomethacin is used in the treatment of inflammatory diseases. But the drug toxicity limits its usage. This study investigated whether adaptation occurred after various dosages of repeated (chronic) indomethacin in rats to the gastro-toxic effects of indomethacin. It also examined whether the adaptation was related to oxidant-antioxidant mechanisms and oxidative DNA damage in gastric tissue. To illuminate the adaptation mechanism in the gastric tissue of rats given various dosages of chronic indomethacin, the levels of oxidants and antioxidants (GSH, MDA, NO, SOD and MPO), activities of COX-1 and COX-2 enzymes and oxidative DNA damage (8-OHd Gua/10(5) Gua) were measured. Results were compared to 25-mg/kg single-dose indomethacin group, and the role of oxidant and antioxidant parameters and oxidative DNA damage in the adaptation mechanism was evaluated. The average ulcer areas of gastric tissue of the 0.5-, 1-, 2-, 3-, 4-, and 5-mg/kg dosages of chronic indomethacin given to rats were 19.5+/-3.7, 12.5+/-3.3, 10+/-5.2, 4.5+/-3.6, 8.6+/-2.4, and 9.5+/-2.1mm(2), respectively. This rate was measured as 21.3+/-2.6mm(2) in the single-dose indomethacin group. Consequently, after various dosages of repeated (chronic) indomethacin administration in rats, it was observed that a clear adaptation developed against gastric damage and that gastric damage was reduced. The best adaptation was observed in the gastric tissue of the 3-mg/kg chronic indomethacin group. In parallel with the damage reduction, the oxidant parameters (MDA and MPO) and oxidative DNA damage (8-OHd Gua/10(5) Gua) were reduced, and the antioxidant parameters (GSH, NO and SOD) were increased. There is no relation between COX enzymes and adaptation mechanism. This circumstance shows that not COX-1 and COX-2 enzymes, oxidant and antioxidant parameters may play a role in the adaptation mechanism. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Modulation of IgE-dependent COX-2 gene expression by reactive oxygen species in human neutrophils.
Vega, Antonio; Chacón, Pedro; Alba, Gonzalo; El Bekay, Rajaa; Martín-Nieto, José; Sobrino, Francisco
2006-07-01
Cyclooxygenase (COX) is a key enzyme in prostaglandin (PG) synthesis. Up-regulation of its COX-2 isoform is responsible for the increased PG release, taking place under inflammatory conditions, and also, is thought to be involved in allergic and inflammatory diseases. In the present work, we demonstrate that COX-2 expression becomes highly induced by anti-immunoglobulin E (IgE) antibodies and by antigens in human neutrophils from allergic patients. This induction was detected at mRNA and protein levels and was accompanied by a concomitant PGE(2) and thromboxane A(2) release. We also show evidence that inhibitors of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, such as 4-(2-aminoethyl)benzenesulphonyl fluoride and 4-hydroxy-3-methoxyaceto-phenone, completely cancelled anti-IgE-induced COX-2 protein up-regulation, suggesting that this process is mediated by reactive oxygen species (ROS) derived from NADPH oxidase activity. Moreover, the mitogen-activated protein kinases (MAPKs), p38 and extracellular signal-regulated kinase, and also, the transcription factor, nuclear factor (NF)-kappaB, are involved in the up-regulation of COX-2 expression, as specific chemical inhibitors of these two kinases, such as SB203580 and PD098059, and of the NF-kappaB pathway, such as N(alpha)-benzyloxycarbonyl-l-leucyl-l-leucyl-l-leucinal, abolished IgE-dependent COX-2 induction. Evidence is also presented, using Fe(2)(+)/Cu(2)(+) ions, that hydroxyl radicals generated from hydrogen peroxide through Fenton reactions could constitute candidate modulators able to directly trigger anti-IgE-elicited COX-2 expression through MAPK and NF-kappaB pathways. Present results underscore a new role for ROS as second messengers in the modulation of COX-2 expression by human neutrophils in allergic conditions.
Matralis, Alexios N; Bavavea, Eugenia-Ismini; Incerpi, Sandra; Pedersen, Jens Z; Kourounakis, Angeliki P
2017-01-01
In line with our previous studies, novel morpholine and benzoxa(or thia)zine lead compounds have been developed through a rational design that modulate a multiplicity of targets against atherosclerosis. We have evaluated the most promising compounds for their efficiency to a) intercept and scavenge free radicals, b) inhibit the metal ion (Cu2+)- induced LDL oxidation c) act intracellularly as antioxidants in THP-1 monocytes from a leukemic patient and d) inhibit the pro-inflammatory enzymes cyclooxygenase-1 (COX-1) and -2 (COX-2) in vitro. Furthermore, two representative compounds were tested for their potential to decrease lipidemic parameters (TC, LDL and TG) in hyperlipidemic mice. Most derivatives indicated a remarkable antioxidant activity, while at the same time exhibited a significant in vitro anti-inflammatory activity, inhibiting COX-1 or/and COX-2 activity at 20 μΜ. In addition, after their long-term administration, compounds 6 and 8 afforded considerable activity in a chronic experimental animal model of hyperlipidemia (after high fat diet administration). The multifunctional pharmacological profile exhibited by the compounds of this study renders them interesting lead compounds for the development of novel agents against atherosclerosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Singh, Mohan; Chaudhry, Parvesh; Parent, Sophie; Asselin, Eric
2012-01-01
Cyclooxygenase (COX)-2 is a key regulatory enzyme in the production of prostaglandins (PG) during various physiological processes. Mechanisms of COX-2 regulation in human endometrial stromal cells (human endometrial stromal cells) are not fully understood. In this study, we investigate the role of TGF-β in the regulation of COX-2 in human uterine stromal cells. Each TGF-β isoform decreases COX-2 protein level in human uterine stromal cells in Smad2/3-dependent manner. The decrease in COX-2 is accompanied by a decrease in PG synthesis. Knockdown of Smad4 using specific small interfering RNA prevents the decrease in COX-2 protein, confirming that Smad pathway is implicated in the regulation of COX-2 expression in human endometrial stromal cells. Pretreatment with 26S proteasome inhibitor, MG132, significantly restores COX-2 protein and PG synthesis, indicating that COX-2 undergoes proteasomal degradation in the presence of TGF-β. In addition, each TGF-β isoform up-regulates endoplasmic reticulum (ER)-mannosidase I (ERManI) implying that COX-2 degradation is mediated through ER-associated degradation pathway in these cells. Furthermore, inhibition of ERManI activity using the mannosidase inhibitor (kifunensine), or small interfering RNA-mediated knockdown of ERManI, prevents TGF-β-induced COX-2 degradation. Taken together, these studies suggest that TGF-β promotes COX-2 degradation in a Smad-dependent manner by up-regulating the expression of ERManI and thereby enhancing ER-associated degradation and proteasomal degradation pathways.
Curcuma longa and Curcuma mangga leaves exhibit functional food property.
Liu, Yunbao; Nair, Muraleedharan G
2012-11-15
Although leaves of Curcuma mangga and Curcuma longa are used in food preparations, the bioactive components in it are not known. In this study, antioxidant, antiinflammatory and anticancer activities of leave extracts and its isolates were investigated using established bioassay procedures in our laboratory. The leaf extracts of both plants gave similar bioassay and chromatographic profiles. The methanolic and water extracts of C. mangga (CMM and CMW) and C. longa (CLM and CLW), at 100 μg/mL, inhibited lipid peroxidation (LPO) by 78%, 63%, 81% and 43%, cyclooxygenase enzymes COX-1 by 55%, 33%, 43% and 24% and COX-2 by 65%, 55%, 77% and 69%, respectively. At same concentration, CMM, CMW, CLM and CLW showed growth inhibition of human tumour cell lines by 0-46%. Therefore, a bioassay-guided isolation of water and methanolic extracts of C. longa was carried out and afforded nine isolates. At 25 μg/mL, these compounds inhibited LPO by 11-87%, COX-1 and -2 enzymes by 0-35% and 0-82% and growth of human tumour cells by 0-36%, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cyclooxygenase inhibitory natural products: current status.
Jachak, Sanjay M
2006-01-01
Non-steroidal anti-inflammatory drugs (NSAIDs) are of huge therapeutic benefit in the treatment of rheumatoid arthritis and various types of inflammatory conditions. The target for these drugs is cyclooxygenase (COX), a rate-limiting enzyme involved in the conversion of arachidonic acid into inflammatory prostaglandins. COX-2 selective inhibitors are believed to have the same anti-inflammatory, anti-pyretic and analgesic activities as that of nonselective inhibitor NSAIDs with little or none of the gastrointestinal side effects. Thus, in the last 6-7 years several selective COX-2 inhibitors including coxibs were discovered and introduced into clinic. Recent reports evidence that selective COX-2 inhibitor such as rofecoxib, can lead to thrombotic cardiovascular events through inhibition of prostacyclin formation in the infracted heart. This has resulted in withdrawal of rofecoxib from the clinic in September 2004. Moreover, the COX-2/COX-1 selectivity ratio is vital in the design of COX-2 inhibitory drugs, as it is clear from rofecoxib, which is more than 50-fold COX-2 selective. After looking at all above mentioned facts, natural product-based compounds seem better as these compounds are generally supposed to be devoid of severe side effects. The literature indicates that natural product-based compounds are mainly COX-1 selective. Through minor semi-synthetic changes in the structures, their selectivity towards COX-2 can be increased. The present review article addresses natural product COX inhibitors of plant and marine origin, reported during last ten years and their advantages, possible leads for further development and current status. In addition we describe our experience in the characterization, design and synthesis of potential natural COX inhibitors.
Abuo-Rahma, Gamal El-Din A A; Abdel-Aziz, Mohamed; Farag, Nahla A; Kaoud, Tamer S
2014-08-18
A novel series of 1,2,4-triazole derivatives were synthesized and confirmed with different spectroscopic techniques. The prepared compounds exhibited remarkable anti-inflammatory activity comparable to that of indomethacin and celecoxib after 3 h. The tested compounds exhibited very low incidence of gastric ulceration compared to indomethacin. Most of the newly developed compounds showed excellent selectivity towards human COX-2 with selectivity indices (COX-1 IC50/COX-2 IC50) ranged from 62.5 to 2127. Docking studies results revealed that the highly selective tested compounds 6h and 6j showed lower CDOCKER energies, which means that they require less energy for proper interaction with the enzyme. The additional H-bonds with the oxygen of the amide and/or H of NH of the amide with the amino acid residues may be responsible for the higher binding affinity of this group of compounds towards COX-2. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Kirkby, Nicholas S; Sampaio, Walkyria; Etelvino, Gisele; Alves, Daniele T; Anders, Katie L; Temponi, Rafael; Shala, Fisnik; Nair, Anitha S; Ahmetaj-Shala, Blerina; Jiao, Jing; Herschman, Harvey R; Xiaomeng, Wang; Wahli, Walter; Santos, Robson A; Mitchell, Jane A
2018-02-01
Cyclooxygenase-2 (COX-2) is an inducible enzyme expressed in inflammation and cancer targeted by nonsteroidal anti-inflammatory drugs. COX-2 is also expressed constitutively in discreet locations where its inhibition drives gastrointestinal and cardiovascular/renal side effects. Constitutive COX-2 expression in the kidney regulates renal function and blood flow; however, the global relevance of the kidney versus other tissues to COX-2-dependent blood flow regulation is not known. Here, we used a microsphere deposition technique and pharmacological COX-2 inhibition to map the contribution of COX-2 to regional blood flow in mice and compared this to COX-2 expression patterns using luciferase reporter mice. Across all tissues studied, COX-2 inhibition altered blood flow predominantly in the kidney, with some effects also seen in the spleen, adipose, and testes. Of these sites, only the kidney displayed appreciable local COX-2 expression. As the main site where COX-2 regulates blood flow, we next analyzed the pathways involved in kidney vascular responses using a novel technique of video imaging small arteries in living tissue slices. We found that the protective effect of COX-2 on renal vascular function was associated with prostacyclin signaling through PPARβ/δ (peroxisome proliferator-activated receptor-β/δ). These data demonstrate the kidney as the principle site in the body where local COX-2 controls blood flow and identifies a previously unreported PPARβ/δ-mediated renal vasodilator pathway as the mechanism. These findings have direct relevance to the renal and cardiovascular side effects of drugs that inhibit COX-2, as well as the potential of the COX-2/prostacyclin/PPARβ/δ axis as a therapeutic target in renal disease. © 2018 The Authors.
Ziegler, E A; Brieger, J; Heinrich, U R; Mann, W J
2004-01-01
Prostaglandins have been used in experimental models and clinical studies for the therapy of sudden hearing loss and tinnitus with conflicting results. However, little is known about the rate-limiting enzymes of prostaglandin synthesis in the inner ear, the generally constitutively expressed cyclooxygenase 1 (COX-1) and the distress-inducible cyclooxygenase 2 (COX-2). To extend our knowledge concerning the physiological expression and localization of these two enzymes, immunohistochemical stainings of the guinea pig cochlea were performed. Light microscopical analysis revealed a homogenous distribution of COX-1 within nearly all cell types of the organ of Corti, but no COX-1 expression in the cuticular plates of pillar cells. COX-2 was found to be expressed in all cell types, with much stronger expression in Hensen cells, neighboring Deiters cells and cuticular plates of outer hair cells. Both COX-1 and COX-2 immunoreactions were also found in the spiral ganglion. We conclude that both COX subtypes are expressed in the guinea pig cochlea under physiological conditions. The prominent expression of the distress-inducible COX-2 isoform in cell types under mechanical stress during noise reception might support the hypothesis of a cytoprotective function of COX products in hearing and in cellular stress situations like intense noise exposure. Copyright (c) 2004 S. Karger AG, Basel.
Kugathas, Subramaniam; Audouze, Karine; Ermler, Sibylle; Orton, Frances; Rosivatz, Erika; Scholze, Martin; Kortenkamp, Andreas
2016-04-01
There are concerns that diminished prostaglandin action in fetal life could increase the risk of congenital malformations. Many endocrine-disrupting chemicals have been found to suppress prostaglandin synthesis, but to our knowledge, pesticides have never been tested for these effects. We assessed the ability of pesticides that are commonly used in the European Union to suppress prostaglandin D2 (PGD2) synthesis. Changes in PGD2 secretion in juvenile mouse Sertoli cells (SC5 cells) were measured using an ELISA. Coincubation with arachidonic acid (AA) was conducted to determine the site of action in the PGD2 synthetic pathway. Molecular modeling studies were performed to assess whether pesticides identified as PGD2-active could serve as ligands of the cyclooxygenase-2 (COX-2) binding pocket. The pesticides boscalid, chlorpropham, cypermethrin, cyprodinil, fenhexamid, fludioxonil, imazalil (enilconazole), imidacloprid, iprodione, linuron, methiocarb, o-phenylphenol, pirimiphos-methyl, pyrimethanil, and tebuconazole suppressed PGD2 production. Strikingly, some of these substances-o-phenylphenol, cypermethrin, cyprodinil, linuron, and imazalil (enilconazole)-showed potencies (IC50) in the range between 175 and 1,500 nM, similar to those of analgesics intended to block COX enzymes. Supplementation with AA failed to reverse this effect, suggesting that the sites of action of these pesticides are COX enzymes. The molecular modeling studies revealed that the COX-2 binding pocket can accommodate most of the pesticides shown to suppress PGD2 synthesis. Some of these pesticides are also capable of antagonizing the androgen receptor. Chemicals with structural features more varied than previously thought can suppress PGD2 synthesis. Our findings signal a need for in vivo studies to establish the extent of endocrine-disrupting effects that might arise from simultaneous interference with PGD2 signaling and androgen action. Kugathas S, Audouze K, Ermler S, Orton F, Rosivatz E, Scholze M, Kortenkamp A. 2016. Effects of common pesticides on prostaglandin D2 (PGD2) inhibition in SC5 mouse Sertoli cells, evidence of binding at the COX-2 active site, and implications for endocrine disruption. Environ Health Perspect 124:452-459; http://dx.doi.org/10.1289/ehp.1409544.
Kugathas, Subramaniam; Audouze, Karine; Ermler, Sibylle; Orton, Frances; Rosivatz, Erika; Scholze, Martin; Kortenkamp, Andreas
2015-01-01
Background: There are concerns that diminished prostaglandin action in fetal life could increase the risk of congenital malformations. Many endocrine-disrupting chemicals have been found to suppress prostaglandin synthesis, but to our knowledge, pesticides have never been tested for these effects. Objectives: We assessed the ability of pesticides that are commonly used in the European Union to suppress prostaglandin D2 (PGD2) synthesis. Methods: Changes in PGD2 secretion in juvenile mouse Sertoli cells (SC5 cells) were measured using an ELISA. Coincubation with arachidonic acid (AA) was conducted to determine the site of action in the PGD2 synthetic pathway. Molecular modeling studies were performed to assess whether pesticides identified as PGD2-active could serve as ligands of the cyclooxygenase-2 (COX-2) binding pocket. Results: The pesticides boscalid, chlorpropham, cypermethrin, cyprodinil, fenhexamid, fludioxonil, imazalil (enilconazole), imidacloprid, iprodione, linuron, methiocarb, o-phenylphenol, pirimiphos-methyl, pyrimethanil, and tebuconazole suppressed PGD2 production. Strikingly, some of these substances—o-phenylphenol, cypermethrin, cyprodinil, linuron, and imazalil (enilconazole)—showed potencies (IC50) in the range between 175 and 1,500 nM, similar to those of analgesics intended to block COX enzymes. Supplementation with AA failed to reverse this effect, suggesting that the sites of action of these pesticides are COX enzymes. The molecular modeling studies revealed that the COX-2 binding pocket can accommodate most of the pesticides shown to suppress PGD2 synthesis. Some of these pesticides are also capable of antagonizing the androgen receptor. Conclusions: Chemicals with structural features more varied than previously thought can suppress PGD2 synthesis. Our findings signal a need for in vivo studies to establish the extent of endocrine-disrupting effects that might arise from simultaneous interference with PGD2 signaling and androgen action. Citation: Kugathas S, Audouze K, Ermler S, Orton F, Rosivatz E, Scholze M, Kortenkamp A. 2016. Effects of common pesticides on prostaglandin D2 (PGD2) inhibition in SC5 mouse Sertoli cells, evidence of binding at the COX-2 active site, and implications for endocrine disruption. Environ Health Perspect 124:452–459; http://dx.doi.org/10.1289/ehp.1409544 PMID:26359731
Miyamoto, H; Saura, R; Harada, T; Doita, M; Mizuno, K
2000-04-01
Lumbar disc herniation (LDH) is the disease which is the major cause of radiculopathy. In terms of the pathogenesis of disease, it is reported that prostaglandinE2 (PGE2) plays an important role to induce radiculopathy. Arachidonate cascade, which is the process of PGE2 synthesis, is mainly regulated by two kinds of enzymes, phospholipaseA2 (PLA2) and cyclooxy genase (COX). Previously, PLA2 was recognized as the rate-limiting enzyme of this cascade, and some authors reported the clinical significance of PLA2 at the site of LDH concerning the radicular pain. Recently, COX was elucidated to consist of 2 types of isoform, a constitutive form of COX-1 and an inducible form of COX-2. COX-2 has been focused as a key enzyme to regulate PGE2 synthesis and plays an important role in inflammation, because COX-2 was induced in many types of cells by the stimulation of inflammatory cytokines such as interleukin-1 beta (IL-1 beta) and tumor necrosis factor alpha (TNF alpha). However, it is not fully discussed whether or not, COX-2 is induced in lumbar disc tissue and if it plays a significant role in the pathogenesis of LDH. To clarify the role of COX-2 in the pathomechanism of radiculopathy of LDH, we have investigated the expression of COX-2, IL-1 beta and TNF alpha in herniated lumbar disc tissue. Immunohistologically, they were detected in the cytosol of chondrocytes constituting the disc tissue. RT-PCR showed that herniated lumbar disc-derived cells expressed mRNA of COX-2, IL-1 beta and TNF alpha in the presence of inflammatory cytokines in vitro. The disc-derived cells also produced much PGE2 by stimulating of inflammatory cytokines at the same time and this PGE2 production was distinctly suppressed by a selective inhibitor of COX-2, 6-methoxy-2-naphtyl acetic acids (6MNA). These results suggest that COX-2 and inflammatory cytokines might play a causative role in the radiculopathy of LDH through upregulating PGE2 synthesis.
Pils, D; Schmetterer, G
2001-09-25
Synechocystis sp. PCC 6803 contains three respiratory terminal oxidases (RTOs): cytochrome c oxidase (Cox), quinol oxidase (Cyd), and alternate RTO (ARTO). Mutants lacking combinations of the RTOs were used to characterize these key enzymes of respiration. Pentachlorophenol and 2-heptyl-4-hydroxy-quinoline-N-oxide inhibited Cyd completely, but had little effect on electron transport to the other RTOs. KCN inhibited all three RTOs but the in vivo K(I) for Cox and Cyd was quite different (7 vs. 27 microM), as was their affinity for oxygen (K(M) 1.0 vs. 0.35 microM). ARTO has a very low respiratory activity. However, when uptake of 3-O-methylglucose, an active H+ co-transport, was used to monitor energization of the cytoplasmic membrane, ARTO was similarly effective as the other RTOs. As removal of the gene for cytochrome c(553) had the same effects as removal of ARTO genes, we propose that the ARTO might be a second Cox. The possible functions, localization and regulation of the RTOs are discussed.
Pfister, Christina; Ritz, Rainer; Pfrommer, Heike; Bornemann, Antje; Tatagiba, Marcos S; Roser, Florian
2007-01-01
The current treatment for recurrent or malignant meningiomas with adjuvant therapies has not been satisfactory, and there is an intense interest in evaluating new molecular markers to act as therapeutic targets. Enzymes of the arachidonic acid (AA) cascade such as cyclooxygenase (COX)-2 or 5-lipoxygenase (5-LO) are upregulated in a number of epithelial tumors, but to date there are hardly any data about the expression of these markers in meningiomas. To find possible targets for chemotherapeutic intervention, the authors evaluated the expression of AA derivatives at different molecular levels in meningiomas. One hundred and twenty-four meningioma surgical specimens and normal human cortical tissue samples were immunohistochemically and cytochemically stained for COX-2, COX-1, 5-LO, and prostaglandin E receptor 4 (PTGER4). In addition, Western blot and polymerase chain reaction (PCR) analyses were performed to detect the presence of eicosanoids in vivo and in vitro. Sixty (63%) of 95 benign meningiomas, 21 (88%) of 24 atypical meningiomas, all five malignant meningiomas, and all normal human cortex samples displayed high COX-2 immunoreactivity. All cultured specimens and IOMM-Lee cells stained positive for COX-2, COX-1, 5-LO, and PTGER4. The PCR analysis demonstrated no changes in eicosanoid expression among meningiomas of different World Health Organization grades and in normal human cortical and dura mater tissue. Eicosanoid derivatives COX-1, COX-2, 5-LO, and PTGER4 enzymes show a high universal expression in meningiomas but are not upregulated in normal human cortex and dura tissue. This finding of the ubiquitous presence of these enzymes in meningiomas offers an excellent baseline for testing upcoming chemotherapeutic treatments.
CD40 engagement on dendritic cells induces cyclooxygenase-2 and EP2 receptor via p38 and ERK MAPKs.
Harizi, Hedi; Limem, Ilef; Gualde, Norbert
2011-02-01
We have previously reported that cyclooxygenase (COX)-2-derived prostaglandin (PG)E2 critically regulates dendritic cell (DC) inflammatory phenotype and function through EP2/EP4 receptor subtypes. As genes activated by CD40 engagement are directly relevant to inflammation, we examined the effects of CD40 activation on inflammatory PGs in murine bone marrow-derived DC (mBM-DC). We showed for the first time that activation of mBM-DC with agonist anti-CD40 monoclonal antibody (anti-CD40 mAb) dose dependently induces the synthesis of significant amounts of PGE2 via inducible expression of COX-2 enzyme, as NS-398, a COX-2-selective inhibitor reduces this upregulation. In contrast to lipopolysaccharide, which upregulates mBM-DC surface levels of EP2 and EP4 receptors, CD40 crosslinking on mBM-DC increases EP2, but not EP4, receptor expression. Flow cytometry analysis and radioligand-binding assay showed that EP2 was the major EP receptor subtype, which binds to PGE2 at the surface of anti-CD40-activated mBM-DC. Upregulation of COX-2 and EP2 levels by CD40 engagement was accompanied by dose-dependent phosphorylation of p38 and ERK1/2 mitogen-activated protein kinase (MAPK) and was abrogated by inhibitors of both pathways. Collectively, we demonstrated that CD40 engagement on mBM-DC upregulates COX-2 and EP2 receptor expression through activation of p38 and ERK1/2 MAPK signaling. Triggering the PGE2/EP2 pathway by anti-CD40 mAb resulted on the induction of Th2 immune response. Thus, CD40-induced production of PGE2 by mBM-DC could represent a negative feedback mechanism involving EP2 receptor and limiting the propagation of Th1 responses. Blocking CD40 pathway may represent a novel therapeutic pathway of inhibiting COX-2-derived prostanoids in chronically inflamed tissues (that is, arthritis).
Yu, Gang; Praveen Rao, P N; Chowdhury, Morshed A; Abdellatif, Khaled R A; Dong, Ying; Das, Dipankar; Velázquez, Carlos A; Suresh, Mavanur R; Knaus, Edward E
2010-04-01
A new group of acetic acid (7a-c, R(1) = H), and propionic acid (7d-f, R(1) = Me), regioisomers wherein a N-difluoromethyl-1,2-dihydropyrid-2-one moiety is attached via its C-3, C-4, and C-5 position was synthesized. This group of compounds exhibited a more potent inhibition, and hence selectivity, for the cyclooxygenase-2 (COX-2) relative to the COX-1 isozyme. Attachment of the N-difluoromethyl-1,2-dihydropyrid-2-one ring system to an acetic acid, or propionic acid, moiety confers potent 5-LOX inhibitory activity, that is, absent in traditional arylacetic acid NSAIDs. 2-(1-Difluoromethyl-2-oxo-1,2-dihydropyridin-5-yl)acetic acid (7c) exhibited the best combination of dual COX-2 and 5-LOX inhibitory activities. Molecular modeling (docking) studies showed that the highly electronegative CHF(2) substituent present in 7c, that showed a modest selectivity for the COX-2 isozyme, is oriented within the secondary pocket (Val523) present in COX-2 similar to the sulfonamide (SO(2)NH(2)) COX-2 pharmacophore present in celecoxib, and that the N-difluoromethyl-1,2-dihydropyrid-2-one pharmacophore is oriented close to the region containing the LOX enzyme catalytic iron (His361, His366, and His545). Accordingly, the N-difluoromethyl-1,2-dihyrdopyrid-2-one moiety possesses properties suitable for the design of dual COX-2/5-LOX inhibitory drugs. 2010 Elsevier Ltd. All rights reserved.
Fiber-type differences in muscle mitochondrial profiles.
Leary, S C; Lyons, C N; Rosenberger, A G; Ballantyne, J S; Stillman, J; Moyes, C D
2003-10-01
Although striated muscles differ in mitochondrial content, the extent of fiber-type specific mitochondrial specializations is not well known. To address this issue, we compared mitochondrial structural and functional properties in red muscle (RM), white muscle (WM), and cardiac muscle of rainbow trout. Overall preservation of the basic relationships between oxidative phosphorylation complexes among fiber types was confirmed by kinetic analyses, immunoblotting of native holoproteins, and spectroscopic measurements of cytochrome content. Fiber-type differences in mitochondrial properties were apparent when parameters were expressed per milligram mitochondrial protein. However, the differences diminished when expressed relative to cytochrome oxidase (COX), possibly a more meaningful denominator than mitochondrial protein. Expressed relative to COX, there were no differences in oxidative phosphorylation enzyme activities, pyruvate-based respiratory rates, H2O2 production, or state 4 proton leak respiration. These data suggest most mitochondrial qualitative properties are conserved across fiber types. However, there remained modest differences ( approximately 50%) in stoichiometries of selected enzymes of the Krebs cycle, beta-oxidation, and antioxidant enzymes. There were clear differences in membrane fluidity (RM > cardiac, WM) and proton conductance (H+/min/mV/U COX: WM > RM > cardiac). The pronounced differences in mitochondrial content between fiber types could be attributed to a combination of differences in myonuclear domain and modest effects on the expression of nuclear- and mitochondrially encoded respiratory genes. Collectively, these studies suggest constitutive pathways that transcend fiber types are primarily responsible for determining most quantitative and qualitative properties of mitochondria.
Chua, Li-Min; Lim, Mei-Li; Wong, Boon-Seng
2013-08-09
Mitochondrial dysfunction is a prominent feature of Alzheimer's disease (AD) and this can be contributed by aberrant metabolic enzyme function. But, the mechanism causing this enzymatic impairment is unclear. Amyloid precursor protein (APP) is known to be alternatively spliced to produce three major isoforms in the brain (APP695, APP751, APP770). Both APP770 and APP751 contain the Kunitz Protease Inhibitory (KPI) domain, but the former also contain an extra OX-2 domain. APP695 on the other hand, lacks both domains. In AD, up-regulation of the KPI-containing APP isoforms has been reported. But the functional contribution of this elevation is unclear. In the present study, we have expressed and compared the effect of the non-KPI containing APP695 and the KPI-containing APP751 on mitochondrial function. We found that the KPI-containing APP751 significantly decreased the expression of three major mitochondrial metabolic enzymes; citrate synthase, succinate dehydrogenase and cytochrome c oxidase (COX IV). This reduction lowers the NAD(+)/NADH ratio, COX IV activity and mitochondrial membrane potential. Overall, this study demonstrated that up-regulation of the KPI-containing APP isoforms is likely to contribute to the impairment of metabolic enzymes and mitochondrial function in AD. Copyright © 2013 Elsevier Inc. All rights reserved.
Identification and characterization of carprofen as a multi-target FAAH/COX inhibitor
Favia, Angelo D.; Habrant, Damien; Scarpelli, Rita; Migliore, Marco; Albani, Clara; Bertozzi, Sine Mandrup; Dionisi, Mauro; Tarozzo, Glauco; Piomelli, Daniele; Cavalli, Andrea; De Vivo, Marco
2013-01-01
Pain and inflammation are major therapeutic areas for drug discovery. Current drugs for these pathologies have limited efficacy, however, and often cause a number of unwanted side effects. In the present study, we identify the non-steroid anti-inflammatory drug, carprofen, as a multi-target-directed ligand that simultaneously inhibits cyclooxygenase-1 (COX-1), COX-2 and fatty acid amide hydrolase (FAAH). Additionally, we synthesized and tested several racemic derivatives of carprofen, sharing this multi-target activity. This may result in improved analgesic efficacy and reduced side effects (Naidu, et al (2009) J Pharmacol Exp Ther 329, 48-56; Fowler, C.J. et al. (2012) J Enzym Inhib Med Chem Jan 6; Sasso, et al (2012) Pharmacol Res 65, 553). The new compounds are among the most potent multi-target FAAH/COXs inhibitors reported so far in the literature, and thus may represent promising starting points for the discovery of new analgesic and anti-inflammatory drugs. PMID:23043222
Ndhlala, A R; Finnie, J F; Van Staden, J
2011-01-27
Imbiza ephuzwato is a traditional herbal tonic made from a mixture of extracts of roots, bulbs, rhizomes and leaves of 21 medicinal plants and is used in traditional medicine as a multipurpose remedy. To compile and investigate the bioactivity and mutagenic effects of extracts of the 21 plant species used in the preparation of Imbiza ephuzwato herbal tonic. The 21 plant species used to make Imbiza ephuzwato herbal mixture were each investigated for their pharmacological properties. Petroleum ether (PE), dichloromethane (DCM), 80% ethanol (EtOH) and water extracts of the 21 plants were evaluated against two gram-positive, two gram-negative bacteria and a fungus Candida albicans. The extracts were also evaluated for their inhibitory effects against cyclooxygenase (COX-1 and -2) and acetylcholinesterase AChE enzymes. Mutagenic effects of the water extracts were evaluated using the Ames test. Gunnera perpensa and Rubia cordifolia were the only plant species used to manufacture Imbiza ephuzwato that had water extracts which showed good antibacterial activity. The extracts of G. perpensa (EtOH), Hypericum aethiopicum (DCM) and Urginea physodes (EtOH) showed the best antifungal activity. The water extracts of H. aethiopicum, G. perpensa, Drimia robusta, Vitellariopsis marginata, Scadoxus puniceus and Momordica balsamina showed percentage inhibition of COX-1 that was over 70%. For COX-2 enzyme, the water extracts of G. perpensa, Cyrtanthus obliquus, M. balsamina and Tetradenia riparia exhibited inhibitory activity above 70%. Water extracts of G. perpensa, C. obliquus, V. marginata, Asclepias fruticosa and Watsonia densiflora showed good AChE inhibitory activity (>80%). The Ames test results revealed that all the water extracts of the 21 plant species used to make Imbiza ephuzwato were non-mutagenic towards the Salmonella typhimurium TA98 strain for the assay with and without S9 metabolic activation. In contrast, Imbiza ephuzwato showed mutagenic effects after exposure to S9 enzyme mixture. The observed activities of some plant extracts, if supported by other confirmatory tests, may justify their inclusion in the makeup of Imbiza ephuzwato herbal mixture as well as their use in traditional medicine. Further studies aimed at investigating possible synergistic effects as a result of mixing plant extracts are necessary. The reported mutagenicity in Imbiza ephuzwato could be as a result of interaction of biomolecules in the heterogeneous mixture, yielding compounds that are converted to mutagenic agents by xenobiotic metabolizing enzymes. It is therefore important to carry out further studies aimed at identifying and eliminating the sources of the mutagenic compounds in the heterogeneous mixture. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Circulating interleukin-6 induces fever through a STAT3-linked activation of COX-2 in the brain.
Rummel, Christoph; Sachot, Christelle; Poole, Stephen; Luheshi, Giamal N
2006-11-01
Interleukin (IL)-6 is an important humoral mediator of fever following infection and inflammation and satisfies a number of criteria for a circulating pyrogen. However, evidence supporting such a role is diminished by the moderate or even absent ability of the recombinant protein to induce fever and activate the cyclooxygenase-2 (COX-2) pathway in the brain, a prerequisite step in the initiation and maintenance of fever. In the present study, we investigated the role of endogenous circulating IL-6 in a rodent model of localized inflammation, by neutralizing its action using a specific antiserum (IL-6AS). Rats were injected with LPS (100 microg/kg) or saline into a preformed air pouch in combination with an intraperitoneal injection of either normal sheep serum or IL-6AS (1.8 ml/rat). LPS induced a febrile response, which was accompanied by a significant rise in plasma IL-6 and nuclear STAT3 translocation in endothelial cells throughout the brain 2 h after treatment, including areas surrounding the sensory circumventricular organs and the median preoptic area (MnPO), important regions in mediating fever. These responses were abolished in the presence of the IL-6AS, which also significantly inhibited the LPS-induced upregulation of mRNA expression or immunoreactivity (IR) of the inducible form of COX, the rate-limiting enzyme for PGE2-synthesis. Interestingly, nuclear signal transducer and activator of transcription (STAT)3-positive cells colocalized with COX-2-IR, signifying that IL-6-activated cells are directly involved in PGE2 production. These observations suggest that IL-6 is an important circulating pyrogen that activates the COX-2-pathway in cerebral microvasculature, most likely through a STAT3-dependent pathway.
The role of COX-2 and Nrf2/ARE in anti-inflammation and antioxidative stress: Aging and anti-aging.
Luo, Cheng; Urgard, Egon; Vooder, Tõnu; Metspalu, Andres
2011-08-01
Oxidative stress and inflammation are constant features of many chronic diseases and complications, and have been linked to carcinogenesis. Cyclooxygenase 2 (COX-2), a rate-limiting enzyme for the synthesis of prostaglandins, plays important roles in physiology and pathology, but has been a source of controversy within the scientific and clinical community. However, recent work has shown that nuclear factor erythroid-2-related factor-2 (Nrf2) confers protection against oxidative stress. Furthermore, COX-2-dependent electrophile oxo-derivative (EFOX) molecules have been shown to act as anti-inflammatory mediators via activation of the Nrf2-dependent antioxidant response element (ARE). These studies have provided more insight into COX-2-mediated events. The function of all tissues, especially epithelial and endothelial tissues, declines with age, leading to the production of reactive oxygen species (ROS). COX-2 expression increases with aging in most tissues, due in part to ROS, chemical reactions, physical shearing, and dietary molecules. Here we discuss new findings related to COX-2 inflammatory and anti-inflammatory responses. Taken together, we hypothesize that COX-2 levels increase during the aging process because increasing levels of ROSs necessitate the involvement of COX-2-dependent EFOXs for anti-inflammation and Nrf2/ARE signaling for antioxidation. We also propose that COX-2 may act as an intrinsic biological aging clock due to its role in balancing inflammatory and anti-inflammatory responses. Copyright © 2011 Elsevier Ltd. All rights reserved.
Effects of acetyl salycilic acid and ibuprofen in chronic liver damage induced by CCl4.
Chávez, Enrique; Castro-Sánchez, Luis; Shibayama, Mineko; Tsutsumi, Victor; Pérez Salazar, Eduardo; Moreno, Mario G; Muriel, Pablo
2012-01-01
Non-steroidal anti-inflammatory drugs (NSAIDs) are drugs used primarily to treat inflammation, pain and fever. Their main mechanism of action is cyclooxygenase (COX) inhibition, and this enzyme has been linked to hepatotoxicity. The association of COX and liver injury has been, in part, due to the presence of COX-2 isoform in damaged liver and the possible induction of this enzyme by profibrotic molecules like Transforming Growth Factor-β (TGF-β). The aim of this work was to evaluate the effects of two of the most used NSAIDs, acetyl salicylic acid (ASA) and ibuprofen (IBP), on experimental liver fibrosis. We formed experimental groups of rats including vehicle and drug controls, damage induced by chronic CCl4 (0.4 g kg(-1) , i.p., three times per week, for 8 weeks) administration, and CCl4 plus ASA (100 mg kg(-1) , p.o., daily) or IBP (30 mg kg(-1) , p.o., daily). Both drugs showed important antifibrotic properties. They inhibited COX-2 activity, prevented oxidative stress measured as lipid peroxidation and glutathione content, and ASA inhibited partially and IBP totally increased TGF-β expression and collagen content. ASA and IBP prevented translocation of NFκB to the nucleus and, interestingly, ASA induced MMP-2 and MMP-13 whereas IBP induced MMP-2, MMP-9 and MMP-13. As a whole, these effects explain the beneficial effects of ASA and IBP on experimental liver fibrosis. Copyright © 2011 John Wiley & Sons, Ltd.
COX-2-derived endocannabinoid metabolites as novel inflammatory mediators.
Alhouayek, Mireille; Muccioli, Giulio G
2014-06-01
Cyclooxygenase-2 (COX-2) is an enzyme that plays a key role in inflammatory processes. Classically, this enzyme is upregulated in inflammatory situations and is responsible for the generation of prostaglandins (PGs) from arachidonic acid (AA). One lesser-known property of COX-2 is its ability to metabolize the endocannabinoids, N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG). Endocannabinoid metabolism by COX-2 is not merely a means to terminate their actions. On the contrary, it generates PG analogs, namely PG-glycerol esters (PG-G) for 2-AG and PG-ethanolamides (PG-EA or prostamides) for AEA. Although the formation of these COX-2-derived metabolites of the endocannabinoids has been known for a while, their biological effects remain to be fully elucidated. Recently, several studies have focused on the role of these PG-G or PG-EA in vivo. In this review we take a closer look at the literature concerning these novel bioactive lipids and their role in inflammation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kadenbach, Bernhard; Ramzan, Rabia; Vogt, Sebastian
2013-01-01
Degenerative diseases are in part based on elevated production of ROS (reactive oxygen species) in mitochondria, mainly during stress and excessive work under stress (strenuous exercise). The production of ROS increases with increasing mitochondrial membrane potential (ΔΨ(m)). A mechanism is described which is suggested to keep ΔΨ(m) at low values under normal conditions thus preventing ROS formation, but is switched off under stress and excessive work to maximize the rate of ATP synthesis, accompanied by decreased efficiency. Low ΔΨ(m) and low ROS production are suggested to occur by inhibition of respiration at high [ATP]/[ADP] ratios. The nucleotides interact with phosphorylated cytochrome c oxidase (COX), representing the step with the highest flux-control coefficient of mitochondrial respiration. At stress and excessive work neural signals are suggested to dephosphorylate the enzyme and abolish the control of COX activity (respiration) by the [ATP]/[ADP] ratio with consequent increase of ΔΨ(m) and ROS production. The control of COX by the [ATP]/[ADP] ratio, in addition, is proposed to increase the efficiency of ATP production via a third proton pumping pathway, identified in eukaryotic but not in prokaryotic COX. We conclude that 'oxidative stress' occurs when the control of COX activity by the [ATP]/[ADP] ratio is switched off via neural signals. 2012 Elsevier B.V. All rights reserved
Johar, Kaid; Priya, Anusha; Dhar, Shilpa; Liu, Qiuli; Wong-Riley, Margaret T T
2013-11-01
Neurons are highly dependent on oxidative metabolism for their energy supply, and cytochrome c oxidase (COX) is a key energy-generating enzyme in the mitochondria. A unique feature of COX is that it is one of only four proteins in mammalian cells that are bigenomically regulated. Of its thirteen subunits, three are encoded in the mitochondrial genome and ten are nuclear-encoded on nine different chromosomes. The mechanism of regulating this multisubunit, bigenomic enzyme poses a distinct challenge. In recent years, we found that nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2) mediate such bigenomic coordination. The latest candidate is the specificity factor (Sp) family of proteins. In N2a cells, we found that Sp1 regulates all 13 COX subunits. However, we discovered recently that in primary neurons, it is Sp4 and not Sp1 that regulates some of the key glutamatergic receptor subunit genes. The question naturally arises as to the role of Sp4 in regulating COX in primary neurons. The present study utilized multiple approaches, including chromatin immunoprecipitation, promoter mutational analysis, knockdown and over-expression of Sp4, as well as functional assays to document that Sp4 indeed functionally regulate all 13 subunits of COX as well as mitochondrial transcription factors A and B. The present study discovered that among the specificity family of transcription factors, it is the less known neuron-specific Sp4 that regulates the expression of all 13 subunits of mitochondrial cytochrome c oxidase (COX) enzyme in primary neurons. Sp4 also regulates the three mitochondrial transcription factors (TFAM, TFB1M, and TFB2M) and a COX assembly protein SURF-1 in primary neurons. © 2013 International Society for Neurochemistry.
Melendez-Ferro, Miguel; Perez-Costas, Emma; Glover, Matthew E.; Jackson, Nateka L.; Stringfellow, Sara A.; Pugh, Phyllis C.; Fant, Andrew D.; Clinton, Sarah M.
2016-01-01
Individual differences in human temperament can increase risk for psychiatric disorders like depression and anxiety. Our laboratory utilized a rat model of temperamental differences to assess neurodevelopmental factors underlying emotional behavior differences. Rats selectively bred for low novelty exploration (Low Responders, LR) display high levels of anxiety- and depression-like behavior compared to High Novelty Responder (HR) rats. Using transcriptome profiling, the present study uncovered vast gene expression differences in the early postnatal HR versus LR limbic brain, including changes in genes involved in cellular metabolism. These data led us to hypothesize that rats prone to high (versus low) anxiety/depression-like behavior exhibit distinct patterns of brain metabolism during the first weeks of life, which may reflect disparate patterns of synaptogenesis and brain circuit development. Thus, in a second experiment we examined activity of Cytochrome C Oxidase (COX), an enzyme responsible for ATP production and a correlate of metabolic activity, to explore functional energetic differences in HR/LR early postnatal brain. We found that HR rats display higher COX activity in the amygdala and specific hippocampal subregions compared to LRs during the first 2 weeks of life. Correlational analysis examining COX levels across several brain regions and multiple early postnatal time points suggested desynchronization in the developmental timeline of the limbic HR versus LR brain during the first two postnatal weeks. These early divergent COX activity levels may reflect altered circuitry or synaptic activity in the early postnatal HR/LR brain, which could contribute to the emergence of their distinct behavioral phenotypes. PMID:26979051
Thill, Marc; Cordes, Tim; Hoellen, Friederike; Becker, Steffi; Dittmer, Christine; Kümmel, Sherko; Salehin, Darius; Friedrich, Michael; Diedrich, Klaus; Köster, Frank
2012-01-01
Cyclooxygenase-2 (COX-2) is a potential molecular prognostic factor for breast cancer, and calcitriol [1,25(OH)(2)D(3)], the biologically active form of vitamin D, is a promising target in breast cancer therapy. The influence of calcitriol on the proliferation and the effects of calcitriol on the expression of prostaglandin- and vitamin D-metabolising enzymes were examined in benign and malignant breast cells. Calcitriol inhibited the proliferation of MCF-10F and MCF-7 cells but not of invasive MDA-MB-231 cells and reduced the expression of COX-2 and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) in the benign breast cell line MCF-10F. Furthermore, dysregulation in vitamin D-metabolising proteins was detected, especially in MDA-MB-231 cells. These results suggest dysregulation of vitamin D metabolism and a lack of a possible influence of calcitriol on the metabolism of prostaglandins in the malignant breast cell lines.
Altavilla, D; Squadrito, F; Bitto, A; Polito, F; Burnett, B P; Di Stefano, V; Minutoli, L
2009-08-01
The flavonoids, baicalin and catechin, from Scutellaria baicalensis and Acacia catechu, respectively, have been used for various clinical applications. Flavocoxid is a mixed extract containing baicalin and catechin, and acts as a dual inhibitor of cyclooxygenase (COX) and 5-lipoxygenase (LOX) enzymes. The anti-inflammatory activity, measured by protein and gene expression of inflammatory markers, of flavocoxid in rat peritoneal macrophages stimulated with Salmonella enteritidis lipopolysaccharide (LPS) was investigated. LPS-stimulated (1 microg.mL(-1)) peritoneal rat macrophages were co-incubated with different concentrations of flavocoxid (32-128 microg.mL(-1)) or RPMI medium for different incubation times. Inducible COX-2, 5-LOX, inducible nitric oxide synthase (iNOS) and inhibitory protein kappaB-alpha (IkappaB-alpha) levels were evaluated by Western blot analysis. Nuclear factor kappaB (NF-kappaB) binding activity was investigated by electrophoretic mobility shift assay. Tumour necrosis factor-alpha (TNF-alpha) gene and protein expression were measured by real-time polymerase chain reaction and enzyme-linked immunosorbent assay respectively. Finally, malondialdehyde (MDA) and nitrite levels in macrophage supernatants were evaluated. LPS stimulation induced a pro-inflammatory phenotype in rat peritoneal macrophages. Flavocoxid (128 microg.mL(-1)) significantly inhibited COX-2 (LPS = 18 +/- 2.1; flavocoxid = 3.8 +/- 0.9 integrated intensity), 5-LOX (LPS = 20 +/- 3.8; flavocoxid = 3.1 +/- 0.8 integrated intensity) and iNOS expression (LPS = 15 +/- 1.1; flavocoxid = 4.1 +/- 0.4 integrated intensity), but did not modify COX-1 expression. PGE(2) and LTB(4) levels in culture supernatants were consequently decreased. Flavocoxid also prevented the loss of IkappaB-alpha protein (LPS = 1.9 +/- 0.2; flavocoxid = 7.2 +/- 1.6 integrated intensity), blunted increased NF-kappaB binding activity (LPS = 9.2 +/- 2; flavocoxid = 2.4 +/- 0.7 integrated intensity) and the enhanced TNF-alpha mRNA levels (LPS = 8 +/- 0.9; flavocoxid = 1.9 +/- 0.8 n-fold/beta-actin) induced by LPS. Finally, flavocoxid decreased MDA, TNF and nitrite levels from LPS-stimulated macrophages. Flavocoxid might be useful as a potential anti-inflammatory agent, acting at the level of gene and protein expression.
Cyclooxygenase-2 inhibitors: promise or peril?
Mengle-Gaw, Laurel J; Schwartz, Benjamin D
2002-01-01
The discovery of two isoforms of the cyclooxygenase enzyme, COX-1 and COX-2, and the development of COX-2-specific inhibitors as anti-inflammatories and analgesics have offered great promise that the therapeutic benefits of NSAIDs could be optimized through inhibition of COX-2, while minimizing their adverse side effect profile associated with inhibition of COX-1. While COX-2 specific inhibitors have proven to be efficacious in a variety of inflammatory conditions, exposure of large numbers of patients to these drugs in postmarketing studies have uncovered potential safety concerns that raise questions about the benefit/risk ratio of COX-2-specific NSAIDs compared to conventional NSAIDs. This article reviews the efficacy and safety profiles of COX-2-specific inhibitors, comparing them with conventional NSDAIDs. PMID:12467519
Favia, Angelo D; Habrant, Damien; Scarpelli, Rita; Migliore, Marco; Albani, Clara; Bertozzi, Sine Mandrup; Dionisi, Mauro; Tarozzo, Glauco; Piomelli, Daniele; Cavalli, Andrea; De Vivo, Marco
2012-10-25
Pain and inflammation are major therapeutic areas for drug discovery. Current drugs for these pathologies have limited efficacy, however, and often cause a number of unwanted side effects. In the present study, we identify the nonsteroidal anti-inflammatory drug carprofen as a multitarget-directed ligand that simultaneously inhibits cyclooxygenase-1 (COX-1), COX-2, and fatty acid amide hydrolase (FAAH). Additionally, we synthesized and tested several derivatives of carprofen, sharing this multitarget activity. This may result in improved analgesic efficacy and reduced side effects (Naidu et al. J. Pharmacol. Exp. Ther.2009, 329, 48-56; Fowler, C. J.; et al. J. Enzyme Inhib. Med. Chem.2012, in press; Sasso et al. Pharmacol. Res.2012, 65, 553). The new compounds are among the most potent multitarget FAAH/COX inhibitors reported so far in the literature and thus may represent promising starting points for the discovery of new analgesic and anti-inflammatory drugs.
Qu, Mei-Hua; Ji, Wan-Sheng; Zhao, Ting-Kun; Fang, Chun-Yan; Mao, Shu-Mei; Gao, Zhi-Qin
2016-02-15
To investigate the mechanism for bradykinin (BK) to stimulate intestinal secretomotor neurons and intestinal chloride secretion. Muscle-stripped guinea pig ileal preparations were mounted in Ussing flux chambers for the recording of short-circuit current (Isc). Basal Isc and Isc stimulated by BK when preincubated with the BK receptors antagonist and other chemicals were recorded using the Ussing chamber system. Prostaglandin E2 (PGE2) production in the intestine was determined by enzyme immunologic assay (EIA). Application of BK or B2 receptor (B2R) agonist significantly increased the baseline Isc compared to the control. B2R antagonist, tetrodotoxin and scopolamine (blockade of muscarinic receptors) significantly suppressed the increase in Isc evoked by BK. The BK-evoked Isc was suppressed by cyclooxygenase (COX)-1 or COX-2 specific inhibitor as well as nonselective COX inhibitors. Preincubation of submucosa/mucosa preparations with BK for 10 min significantly increased PGE2 production and this was abolished by the COX-1 and COX-2 inhibitors. The BK-evoked Isc was suppressed by nonselective EP receptors and EP4 receptor antagonists, but selective EP1 receptor antagonist did not have a significant effect on the BK-evoked Isc. Inhibitors of PLC, PKC, calmodulin or CaMKII failed to suppress BK-induced PGE2 production. The results suggest that BK stimulates neurogenic chloride secretion in the guinea pig ileum by activating B2R, through COX increasing PGE2 production. The post-receptor transduction cascade includes activation of PLC, PKC, CaMK, IP3 and MAPK.
Protective effect of magnolol on lipopolysaccharide-induced acute lung injury in mice.
Ni, Yun Feng; Jiang, Tao; Cheng, Qing Shu; Gu, Zhong Ping; Zhu, Yi Fang; Zhang, Zhi Pei; Wang, Jian; Yan, Xiao Long; Wang, Wu Ping; Ke, Chang Kang; Han, Yong; Li, Xiao Fei
2012-12-01
Magnolol, a tradition Chinese herb, displays an array of activities including antifungal, antibacterial, and antioxidant effects. To investigate the protective effect of magnolol on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. ALI was induced in mice by intratracheal instillation of LPS (1 mg/kg). The mice received intratracheal instillation of magnolol (5 μg/kg) 30 min before LPS administration. Pulmonary histological changes were evaluated by hematoxylin-eosin stain and lung wet/dry weight ratios were observed. Concentrations of tumor necrosis factor (TNF)-α and interleukin (IL)-1β, and myeloperoxidase (MPO) activity were measured by enzyme-linked immunosorbent assay. Expression of cyclooxygenase (COX)-2 in lung tissues was determined by Western blot analysis. Magnolol pretreatment significantly attenuated the severity of lung injury and inhibited the production of TNF-α and IL-1β in mice with ALI. After LPS administration, the lung wet/dry weight ratios, as an index of lung edema, and MPO activity were also markedly reduced by magnolol pretreatment. The expression of COX-2 was significantly suppressed by magnolol pretreatment. Magnolol potently protected against LPS-induced ALI and the protective effects of magnolol may attribute partly to the suppression of COX-2 expression.
Fang, L; Chatterjee, S; Dong, Y L; Gangula, P R; Yallampalli, C
1998-06-01
The uterus is a rich source of eicosanoids synthesized from arachidonic acid metabolism through the cyclo-oxygenase pathway. Two isoforms of cyclo-oxygenase, constitutive (COX-I) and inducible (COX-II) enzyme, have been reported. In the present study, we have immunohistochemically mapped the distribution of both COX-I and COX-II during various physiological states of the rat uterus. Uterine tissue was collected from female rats (a) during different stages of the oestrous cycle, (b) on days 1, 4, 8 and 18 of gestation, (c) after spontaneous delivery and (d) post partum, and fixed in Bouin's fixative. After paraffin wax embedding, 5-microm-thick sections were immunohistochemically stained by the ABC technique. Observation of the stained sections under the light microscope revealed that, in non-pregnant rat uterus, both COX-I and COX-II were abundantly expressed in the endometrium, with minimal staining observed in the myometrium. Staining was more prominent in epithelial cells than in stromal cells. The intensity of staining in epithelial cells was highest at pro-oestrus and oestrus and lowest at dioestrus. In pregnant rats, although the expression of both COX-I and COX-II was localized primarily to the endometrium with very little staining in the myometrium on day 1 of gestation, both of these enzymes were also apparent in myometrial cells by day 4 of gestation. The staining intensity of endometrial and myometrial cells increased further with the progression of gestation, being maximal at the time of spontaneous delivery. During the post-partum period, however, the staining intensity for both of the enzymes in endometrium and myometrium was decreased. Thus, our studies show that the expression of cyclo-oxygenases in various uterine cells vary with the oestrous cycle and with pregnancy. Furthermore, prominent increases in the expression of cyclo-oxygenases in the myometrium during pregnancy and parturition imply that the cyclo-oxygenase system in the myometrium may play a major role in modulating uterine contractility during pregnancy and labour.
A case report on toxic epidermal necrolysis with etoricoxib
Kameshwari, J. S.; Devde, Raju
2015-01-01
Etoricoxib is a selective cyclo-oxygenase 2 (COX-2) enzyme inhibitor and is exploited for its analgesic activity in various disease conditions like osteoarthritis, gouty arthritis, acute pain including postoperative dental pain and primary dysmenorrhea, etc. Although highly efficacious in pain management the safety profile of this COX-2 inhibitor is yet to be established in a broader sense. Short-term clinical trials and postmarketing surveillance have shown a very rare incidence of very serious skin reactions like Steven Johnson syndrome or toxic epidermal necrolysis (TEN). In this case report, we summarize regarding a patient who developed TEN after treatment with etoricoxib for osteoarthritis that later resolved in 15 days after withdrawal and symptomatic treatment. PMID:25878388
Verma, Saguna; Kumar, Mukesh; Nerurkar, Vivek R
2011-03-01
Inflammatory immune responses triggered initially to clear West Nile virus (WNV) infection later become detrimental and contribute to the pathological processes such as blood-brain barrier (BBB) disruption and neuronal death, thus complicating WNV-associated encephalitis (WNVE). It has been demonstrated previously that WNV infection in astrocytes results in induction of multiple matrix metalloproteinases (MMPs), which mediate BBB disruption. Cyclooxygenase (COX) enzymes and their product, prostaglandin E2 (PGE2), modulate neuroinflammation and regulate the production of multiple inflammatory molecules including MMPs. Therefore, this study determined and characterized the pathophysiological consequences of the expression of COX enzymes in human brain cortical astrocytes (HBCAs) following WNV infection. Whilst COX-1 mRNA expression did not change, WNV infection significantly induced RNA and protein expression of COX-2 in HBCAs. Similarly, PGE2 production was also enhanced significantly in infected HBCAs and was blocked in the presence of the COX-2-specific inhibitor NS-398, thus suggesting that COX-2, and not COX-1, was the source of the increased PGE2. Treatment of infected HBCAs with NS-398 attenuated the expression of MMP-1, -3 and -9 in a dose-dependent manner. Similarly, expression of interleukin-1β, -6 and -8, which were markedly elevated in infected HBCAs, exhibited a significant reduction in their levels in the presence of NS-398. These results provide direct evidence that WNV-induced COX-2/PGE2 is involved in modulating the expression of multiple neuroinflammatory mediators, thereby directly linking COX-2 with WNV disease pathogenesis. The ability of COX-2 inhibitors to modulate WNV-induced COX-2 and PGE2 signalling warrants further investigation in an animal model as a potential approach for clinical management of neuroinflammation associated with WNVE.
Chagas-Paula, Daniela A.; Zhang, Tong; Da Costa, Fernando B.; Edrada-Ebel, RuAngelie
2015-01-01
The application of metabolomics in phytochemical analysis is an innovative strategy for targeting active compounds from a complex plant extract. Species of the Asteraceae family are well-known to exhibit potent anti-inflammatory (AI) activity. Dual inhibition of the enzymes COX-1 and 5-LOX is essential for the treatment of several inflammatory diseases, but there is not much investigation reported in the literature for natural products. In this study, 57 leaf extracts (EtOH-H2O 7:3, v/v) from different genera and species of the Asteraceae family were tested against COX-1 and 5-LOX while HPLC-ESI-HRMS analysis of the extracts indicated high diversity in their chemical compositions. Using O2PLS-DA (R2 > 0.92; VIP > 1 and positive Y-correlation values), dual inhibition potential of low-abundance metabolites was determined. The O2PLS-DA results exhibited good validation values (cross-validation = Q2 > 0.7 and external validation = P2 > 0.6) with 0% of false positive predictions. The metabolomic approach determined biomarkers for the required biological activity and detected active compounds in the extracts displaying unique mechanisms of action. In addition, the PCA data also gave insights on the chemotaxonomy of the family Asteraceae across its diverse range of genera and tribes. PMID:26184333
Costa, C; Soares, R; Reis-Filho, J S; Leitão, D; Amendoeira, I; Schmitt, F C
2002-06-01
Cyclo-oxygenases 1 and 2 (COX-1 and COX-2) are key enzymes in prostaglandin biosynthesis. COX-2 is induced by a wide variety of stimuli, and present during inflammation. COX-2 overexpression has been observed in colon, head and neck, lung, prostate, stomach, and breast cancer. In colon and gastric cancer, COX-2 expression was associated with angiogenesis. The aim of this study was to determine the relation between COX-2 expression and angiogenesis in breast cancer, and to correlate the expression of this enzyme with classic clinicopathological parameters. COX-2 expression was investigated by immunohistochemistry and western blotting analysis. The expression of COX-2 was then related to age, histological grade, nodal status, oestrogen receptor status, p53 expression,c-erb-B2 overexpression, mitotic counts, MIB-1 labelling index, apoptotic index, sialyl-Tn expression, transforming growth factor alpha expression, microvessel density, and disease free survival in 46 patients with invasive ductal breast carcinoma. By means of immunohistochemistry, COX-2 expression was detected in eight of the 46 carcinomas studied. Western blotting showed COX-2 protein expression in the same breast tumours, but not in normal adjacent tissues. The density of microvessels immunostained with anti-F-VIII related antigen was significantly higher in patients with COX-2 expression than in those without expression (p = 0.03). In addition, COX-2 was significantly associated with the presence of sialyl-Tn expression (p = 0.02), lymph node metastasis (p = 0.03), a high apoptotic index (p = 0.03), and a short disease free survival (p = 0.03) in univariate analyses. These data suggest that COX-2 expression is associated with angiogenesis, lymph node metastasis, and apoptosis in human breast cancer. Moreover, these results warrant further studies with larger series of patients to confirm the association with short disease free survival in patients with breast cancer.
Goppelt-Struebe, M; Schaefer, D; Habenicht, A J
1997-10-01
1. The objective of the present study was to determine the effects of dexamethasone on key constituents of prostaglandin and leukotriene biosynthesis, cyclo-oxygenase-2 (COX-2) and 5-lipoxygenase activating protein (FLAP). The human monocytic cell line THP-1 was used as a model system. mRNA and protein levels of COX-2 and FLAP were determined by Northern and Western blot analyses, respectively. 2. Low levels of COX-2 and FLAP mRNA were expressed in undifferentiated THP-1 cells, but were induced upon differentiation of the cells along the monocytic pathway by treatment with phorbol ester (TPA, 5 nM). Maximal expression was observed after two days. 3. Coincubation of the undifferentiated cells with dexamethasone (10(-9) - 10(-6) M) and phorbol ester prevented induction of COX-2 mRNA, but did not affect the induction of FLAP mRNA. 4. Dexamethasone downregulated COX-2 mRNA and protein in differentiated, monocyte-like THP-1 cells. In contrast, FLAP mRNA and protein were upregulated by dexamethasone in differentiated THP-1 cells. After 24 h, FLAP mRNA levels were increased more than 2 fold. Dexamethasone did not change 5-lipoxygenase mRNA expression. 5. Release of prostaglandin E2 (PGE2) and peptidoleukotrienes was determined in cell culture supernatants of differentiated THP-1 cells by ELISA. Calcium ionophore-dependent PGE2 synthesis was associated with COX-2 expression, whereas COX-1 and COX-2 seemed to participate in arachidonic acid-dependent PGE2 synthesis. Very low levels of peptidoleukotrienes were released from differentiated THP-1 cells upon incubation with ionophore. Treatment with dexamethasone did not significantly affect leukotriene release. 6. These data provide evidence that prostaglandin synthesis is consistently downregulated by glucocorticoids. However, the glucocorticoid-mediated induction of FLAP may provide a mechanism to maintain leukotriene biosynthesis through more efficient transfer of arachidonic acid to the 5-lipoxygenase reaction, in spite of inhibitory effects on other enzymes of the biosynthetic pathway.
Pouliot, Marc; Fiset, Marie-Elaine; Massé, Mireille; Naccache, Paul H; Borgeat, Pierre
2002-11-01
Polymorphonuclear neutrophils (granulocytes; PMNs) are often the first blood cells to migrate toward inflammatory lesions to perform host defense functions. PMNs respond to specific stimuli by releasing several factors and generate lipid mediators of inflammation from the 5-lipoxygenase and the inducible cyclooxygenase (COX)-2 pathways. In view of adenosine's anti-inflammatory properties and suppressive impact on the 5-lipoxygenase pathway, we addressed in this study the impact of this autacoid on the COX-2 pathway. We observed that adenosine up-regulates the expression of the COX-2 enzyme and mRNA. Production of PGE(2) in response to exogenous arachidonic acid was also increased by adenosine and correlated with COX-2 protein levels. The potentiating effect of adenosine on COX-2 could be mimicked by pharmacological increases of intracellular cAMP levels, involving the latter as a putative second messenger for the up-regulation of COX-2 by adenosine. Specific COX-2 inhibitors were used to confirm the predominant role of the COX-2 isoform in the formation of prostanoids by stimulated PMNs. Withdrawal of extracellular adenosine strikingly emphasized the inhibitory potential of PGE(2) on leukotriene B(4) formation and involved the EP(2) receptor subtype in this process. Thus, adenosine may promote a self-limiting regulatory process through the increase of PGE(2) generation, which may result in the inhibition of PMN functions. This study identifies a new aspect of the anti-inflammatory properties of adenosine in leukocytes, introducing the concept that this autacoid may exert its immunomodulatory activities in part by modifying the balance of lipid mediators generated by PMNs.
Molecular Basis for Cyclooxygenase Inhibition by the Non-steroidal Anti-inflammatory Drug Naproxen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duggan, Kelsey C.; Walters, Matthew J.; Musee, Joel
Naproxen ((S)-6-methoxy-{alpha}-methyl-2-naphthaleneacetic acid) is a powerful non-selective non-steroidal anti-inflammatory drug that is extensively used as a prescription and over-the-counter medication. Naproxen exhibits gastrointestinal toxicity, but its cardiovascular toxicity may be reduced compared with other drugs in its class. Despite the fact that naproxen has been marketed for many years, the molecular basis of its interaction with cyclooxygenase (COX) enzymes is unknown. We performed a detailed study of naproxen-COX-2 interactions using site-directed mutagenesis, structure-activity analysis, and x-ray crystallography. The results indicate that each of the pendant groups of the naphthyl scaffold are essential for COX inhibition, and only minimal substitutions aremore » tolerated. Mutation of Trp-387 to Phe significantly reduced inhibition by naproxen, a result that appears unique to this inhibitor. Substitution of S or CH2 for the O atom of the p-methoxy group yielded analogs that were not affected by the W387F substitution and that exhibited increased COX-2 selectivity relative to naproxen. Crystallization and x-ray analysis yielded structures of COX-2 complexed to naproxen and its methylthio analog at 1.7 and 2.3 {angstrom} resolution, respectively. The combination of mutagenesis, structure analysis, and x-ray crystallography provided comprehensive information on the unique interactions responsible for naproxen binding to COX-2.« less
Angiotensin-(1-7)-Induced Plasticity Changes in the Lateral Amygdala Are Mediated by COX-2 and NO
ERIC Educational Resources Information Center
Albrecht, Doris
2007-01-01
It is known from studies outside the brain that upon binding to its receptor, angiotensin-(1-7) elicits the release of prostanoids and nitric oxide (NO). Cyclooxygenase (COX) is a key enzyme that converts arachidonic acid to prostaglandins. Since there are no data available so far on the role of COX-2 in the amygdala, in a first step we…
Bader, Ammar; Martini, Francesca; Schinella, Guillermo R; Rios, Jose L; Prieto, Jose M
2015-01-01
Acanthus mollis (Acanthaceae), Achillea ligustica, Artemisia arborescens and Inula viscosa (Asteraceae) are used in Southern Italy against psoriasis and other skin diseases that occur with an imbalanced production of eicosanoids. We here assessed their in vitro effects upon 5-, 12-, 15-LOX and COX-1 enzymes as well as NFκB activation in intact cells as their possible therapeutic targets. All methanol crude extracts inhibited both 5-LOX and COX-1 activities under 200 µg/mL, without significant effects on the 12-LOX pathway or any relevant in vitro free radical scavenging activity. NFκB activation was prevented by all extracts but A. mollis. Interestingly, A. ligustica, A. arborescens and A. mollis increased the biosynthesis of 15(S)-HETE, an anti-inflammatory eicosanoid. A. ligustica (IC50 =49.5 µg/mL) was superior to Silybum marianum (IC50 =147.8 µg/mL), which we used as antipsoriatic herbal medicine of reference. Its n-hexane, dichloromethane and ethyl acetate fractions had also inhibitory effects on the LTB4 biosynthesis (IC50 s=9.6, 20.3 and 68 µg/mL, respectively) evidencing that the apolar extracts of A. ligustica are promising active herbal ingredients for future phytotherapeutical products targeting psoriasis. © 2014 The Authors. Phytotherapy Research published by John Wiley & Sons Ltd.
Strugała, Paulina; Cyboran-Mikołajczyk, Sylwia; Dudra, Anna; Mizgier, Paulina; Kucharska, Alicja Z; Olejniczak, Teresa; Gabrielska, Janina
2016-06-01
The aim of the study was to determine in vitro biological activity of fruit ethanol extract from Chaenomeles speciosa (Sweet) Nakai (Japanese quince, JQ) and its important constituents (-)-epicatechin (EC) and chlorogenic acid (CA). The study also investigated the structural changes in phosphatidylcholine (PC) liposomes, dipalmitoylphosphatidylcholine liposomes, and erythrocyte membranes (RBC) induced by the extract. It was found that the extract effectively inhibits oxidation of RBC, induced by 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH), and PC liposomes, induced by UVB radiation and AAPH. Furthermore, JQ extract to a significant degree inhibited the activity of the enzymes COX-1 and COX-2, involved in inflammatory reactions. The extract has more than 2 times greater activity in relation to COX-2 than COX-1 (selectivity ratio 0.48). JQ extract stimulated growth of the beneficial intestinal bacteria Lactobacillus casei and Lactobacillus plantarum. In the fluorimetric method by means of the probes Laurdan, DPH and TMA-DPH, and (1)H-NMR, we examined the structural changes induced by JQ and its EC and CA components. The results show that JQ and its components induce a considerable increase of the packing order of the polar heads of lipids with a slight decrease in mobility of the acyl chains. Lipid membrane rigidification could hinder the diffusion of free radicals, resulting in inhibition of oxidative damage induced by physicochemical agents. JQ extract has the ability to quench the intrinsic fluorescence of human serum albumin through static quenching. This report thus could be of huge significance in the food industry, pharmacology, and clinical medicine.
Choi, Youn-Hee; Back, Keum Ok; Kim, Hee Ja; Lee, Sang Yeul; Kook, Koung Hoon
2013-08-01
The aim of this study was to determine the effect of pirfenidone on interleukin (IL)-1β-induced cyclooxygenase (COX)-2 and prostaglandin (PG)E2 expression in orbital fibroblasts from patients with thyroid-associated ophthalmopathy (TAO). Primary cultures of orbital fibroblasts from patients with TAO (n = 4) and non-TAO subjects (n = 4) were prepared. The level of PGE2 in orbital fibroblasts treated with IL-1β in the presence or absence of pirfenidone was measured using an enzyme-linked immunosorbent assay. The effect of pirfenidone on IL-1β-induced COX-2 expression in orbital fibroblasts from patients with TAO was evaluated by reverse transcription-polymerase chain reaction (PCR) and quantitative real-time PCR analyses, and verified by Western blot. Activation of nuclear factor-κB (NF-κB) was evaluated by immunoblotting for inhibitor of κB (IκB)α and phosphorylated IκBα, and DNA-binding activity of p50/p65 NF-κB was analyzed by electrophoretic mobility shift assay. In addition, IL-1 receptor type 1 (IL-1R1) expression was assessed by RT-PCR in IL-1β-treated cells with or without pirfenidone. Pirfenidone significantly attenuated IL-1β-induced PGE2 release in both TAO and non-TAO cells. IL-1β-induced COX-2 mRNA and protein expression decreased significantly following co-treatment with pirfenidone. IL-1β-induced IκBα phosphorylation and degradation decreased in the presence of pirfenidone and led to decreased nuclear translocation and DNA binding of the active NF-κB complex. In our system, neither IL-1β nor pirfenidone co-treatment influenced IL-1R1 expression. Our results suggest that pirfenidone attenuates the IL-1β-induced PGE2/COX-2 production in TAO orbital fibroblasts, which is related with suppression of the NF-κB activation. Copyright © 2013 Elsevier Ltd. All rights reserved.
CRE-Mediated Transcription and COX-2 Expression in the Pilocarpine Model of Status Epilepticus
Lee, Boyoung; Dziema, Heather; Lee, Kyu Hyun; Choi, Yun-Sik; Obrietan, Karl
2007-01-01
Status epilepticus (SE) triggers neuronal death, reactive gliosis and remodeling of synaptic circuitry, thus leading to profound pathological alterations in CNS physiology. These processes are, in part, regulated by the rapid upregulation of both cytotoxic and cytoprotective genes. One pathway that may couple SE to transcriptionally-dependent alterations in CNS physiology is the CREB (cAMP response element-binding protein)/CRE (cAMP response element) cascade. Here, we utilized the pilocarpine model of SE on a mouse strain transgenic for a CRE-reporter construct (β-galactosidase) to begin to characterize how seizure activity regulates the activation state of the CREB/CRE pathway in both glia and neurons of the hippocampus. SE triggered a rapid (4–8 hrs post SE) but transient increase in CRE-mediated gene expression in the neuronal sublayers. In contrast to neurons, SE induced a lasting increase (up to 20 days) in CRE-mediated transcription in both reactive astrocytes and microglia. CRE-mediated gene expression correlated with expression of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2). To examine the role of CREB in SE-induced COX-2 expression, we generated a transgenic mouse strain that expresses A-CREB, a potent repressor of CREB-dependent transcription. In these animals, the capacity of SE to stimulate COX-2 expression was markedly attenuated, indicating that CREB is a key intermediate in SE-induced COX-2 expression. Collectively these data show that SE triggers two waves of CREB-mediated gene expression, a transient wave in neurons and a long-lasting wave in reactive glial cells, and that CREB couples SE to COX-2 expression. PMID:17029965
Madikizela, B; Ndhlala, A R; Finnie, J F; Van Staden, J
2014-04-28
Emergence of drug-resistant tuberculosis strains and long duration of treatment has established an urgent need to search for new effective agents. The great floral diversity of South Africa has potential for producing new bioactive compounds, therefore pharmacological screening of plant extracts within this region offers much potential. To assess the in vitro antimycobacterial, anti-inflammatory and genotoxicity activity of selected plants that are used for the treatment of TB and related symptoms in South Africa. Ground plant materials from 10 plants were extracted sequentially with four solvents (petroleum ether, dichloromethane, 80% ethanol and water) and a total of 68 extracts were produced. A broth microdilution method was used to screen extracts against Mycobacterium tuberculosis H37Ra. The cyclooxygenase-2 (COX-2) enzyme was used to evaluate the anti-inflammatory activity of the extracts and the Salmonella microsome assay using two Salmonella typhimurium strains (TA98 and TA100) to establish genotoxicity. Six out of 68 extracts showed good antimycobacterial activity. Three extracts showed good inhibition (>70%) of COX-2 enzyme. All the extracts tested were non-genotoxic against the tested Salmonella strains. The results observed in this study indicate that some of the plants such as Abrus precatorius subsp. africanus, Ficus sur, Pentanisia prunelloides and Terminalia phanerophlebia could be investigated further against drug-resistant TB strains. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Ding, Qian-Hai; Cheng, Ye; Chen, Wei-Ping; Zhong, Hui-Ming; Wang, Xiang-Hua
2013-05-15
Overexpression of matrix metalloproteinases (MMPs), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) have long been suggested to play crucial roles in the progression of osteoarthritis. Studies have showed that selective MMPs, iNOS and COX-2 inhibitors possess great potential as chondroprotective agents for osteoarthritis. Therefore, there have been intensive efforts to develop novel natural compounds that target MMPs, iNOS and COX-2 activation. As interleukin-1β (IL-1β) is one of the key proinflammatory cytokines contributing to the progression in osteoarthritis, we investigated the effect of celastrol, a triterpenoid compound extracted from the Chinese herb Tript erygium wilfordii Hook F, in neutralizing the inflammatory effects of IL-1β on MMPs, iNOS and COX-2 expression as well as nitric oxide (NO) and prostaglandin E2 (PGE2) production. Protein expression was detected by Western blotting or by enzyme-linked immunosorbent assay (ELISA); messenger RNA (mRNA) expression was examined by real-time reverse transcription-polymerase chain reaction analysis and the involvement of signal pathway was assessed by transient transfection and luciferase activity assay. We found that treatment of primary human osteoarthritic chondrocytes with various concentrations of celastrol resulted in striking decrease in the expression of MMP-1, MMP-3, MMP-13, iNOS-2 and COX-2. In addition, celastrol treatment of cells also inhibited the activation of nuclear factor-kappa B (NF-kappaB). Taken together, we provide evidence that celastrol can protect human chondrocytes by downregulating the expression of MMPs, iNOS and COX-2. We suggest that celastrol could be a useful agent for prevention and treatment of osteoarthritis. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kundu, Joydeb Kumar; Liu, Lijia; Shin, Jun-Wan
2013-09-06
Highlights: •Thymoquinone inhibits phorbol ester-induced COX-2 expression in mouse skin. •Thymoquinone attenuates phosphorylation of IκBα and DNA binding of NF-κB in mouse skin. •Thymoquinone inhibits phosphorylation of p38 MAP kinase, JNK and Akt in mouse skin. •Thymoquinone induces the expression of cytoprotective proteins in mouse skin. -- Abstract: Thymoquinone (TQ), the active ingredient of Nigella sativa, has been reported to possess anti-inflammatory and chemopreventive properties. The present study was aimed at elucidating the molecular mechanisms of anti-inflammatory and antioxidative activities of thymoquinone in mouse skin. Pretreatment of female HR-1 hairless mouse skin with TQ attenuated 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced expression of cyclooxygenase-2more » (COX-2). TQ diminished nuclear translocation and the DNA binding of nuclear factor-kappaB (NF-κB) via the blockade of phosphorylation and subsequent degradation of IκBα in TPA-treated mouse skin. Pretreatment with TQ attenuated the phosphorylation of Akt, c-Jun-N-terminal kinase and p38 mitogen-activated protein kinase, but not that of extracellular signal-regulated kinase-1/2. Moreover, topical application of TQ induced the expression of heme oxygenase-1, NAD(P)H-quinoneoxidoreductase-1, glutathione-S-transferase and glutamate cysteine ligase in mouse skin. Taken together, the inhibitory effects of TQ on TPA-induced COX-2 expression and NF-κB activation, and its ability to induce the expression of cytoprotective proteins provide a mechanistic basis of anti-inflammatory and antioxidative effects of TQ in hairless mouse skin.« less
Murakami, Yukio; Kawata, Akifumi; Seki, Yuya; Koh, Teho; Yuhara, Kenji; Maruyama, Takehisa; Machino, Mamoru; Ito, Shigeru; Kadoma, Yoshinori; Fujisawa, Seiichiro
2012-01-01
The anti-inflammatory activity of magnolol and related compounds is currently a focus of interest. In the present study, the inhibitory effects of these compounds on cyclooxygenase (COX-2) expression and nuclear factor-kappa B (NF-κB) activation were investigated in RAW264.7 macrophage-like cells stimulated with the fimbriae of Porphyromonas gingivalis, an oral anaerobe. The cytotoxicity of magnolol, honokiol, eugenol and bis-eugenol against RAW264.7 cells was determined using a cell counting kit (CCK-8). The regulatory effect of these compounds on the expression of COX-2 mRNA, stimulated by exposure to the fimbriae was investigated by real-time polymerase chain reaction (PCR). NF-κB activation was evaluated by enzyme-linked immunosorbent assay (ELISA)-like microwell colorimetric transcription factor activity assay (Trans-AM) and western blot analysis. The radical-scavenging activity was determined using the induction period method in the methyl methacrylate-azobisisobutyronitrile (AIBN) polymerization system under nearly anaerobic conditions. The phenolic bond dissociation enthalpy (BDE) and orbital energy were calculated at the density functional theory (DFT) B3LYP/6-31G* level. The cytotoxicity against RAW264.7 cells declined in the order bis-eugenol>eugenol> honokiol>magnolol, whereas the radical-scavenging activity declined in the order honokiol, bis-eugenol>magnolol> eugenol. Magnolol and honokiol significantly inhibited the fimbria-induced expression of COX-2 at non-cytotoxic concentrations. Both the fimbria-stimulated binding of NF-κB to its consensus sequence and phosphorylation-dependent proteolysis of inhibitor κB-α were markedly inhibited by magnilol and honokiol, whereas eugenol and bis-eugenol did not inhibit COX-2 expression and NF-κB activation. Magnolol and honokiol possessed a high electronegativity (χ) value. Magnolol and honokiol exhibit antioxidative activity, low cytotoxicity, and anti-inflammatory activity. These compounds may be capable of preventing chronic inflammatory diseases induced by oral bacteria.
Ketogal: A Derivative Ketorolac Molecule with Minor Ulcerogenic and Renal Toxicity.
Russo, Roberto; De Caro, Carmen; Avallone, Bice; Magliocca, Salvatore; Nieddu, Maria; Boatto, Gianpiero; Troiano, Roberta; Cuomo, Rosario; Cirillo, Carla; Avagliano, Carmen; Cristiano, Claudia; La Rana, Giovanna; Sarnelli, Giovanni; Calignano, Antonio; Rimoli, Maria G
2017-01-01
Ketorolac is a powerful non-steroidal anti-inflammatory drug (NSAID), with a great analgesic activity, present on the Italian market since 1991. Despite the excellent therapeutic activity, the chronic use of ketorolac has long been limited owing to the high incidence of gastrointestinal and kidney side events. In our previous study, we demonstrated that ketorolac-galactose conjugate (ketogal), synthesized and tested in a single-dose study, was able to reduce ulcerogenicity, while preserving the high pharmacological efficacy of its parent drug. In this paper, in order to verify the suitability of this compound, for repeated administration, ex vivo experiments on naïve mice were performed. Mice were treated for 5 or 7 days with the highest doses of two drugs (ketorolac 10 mg/kg and ketogal 16.3 mg/kg), and the expression of both gastric COX-1 and PGsyn was evaluated. Results showed that oral ketorolac treatment significantly reduced both enzymes; surprisingly, oral treatment with ketogal did not produce significant variation in the expression of the two constitutive enzymes. Moreover, histological experiments on stomach and kidneys clearly indicated that repeated administration of ketogal induced lower toxicity than ketorolac. At same time, in vivo results clearly showed that both ketorolac and ketogal had a similar therapeutic activity in a model of inflammation and in pain perception. These effects were accompanied by the reduction of enzyme expression such as COX-2 and iNOS, and by the modulation of levels of nuclear NF-κB and cytosolic IκB-α in the inflamed paws. These very encouraging results demonstrate for the first time that ketogal could represent a valid and novel therapeutic alternative to the ketorolac and might pave the way for clinical studies.
"Selective" switching from non-selective to selective non-steroidal anti-inflammatory drugs.
Bennett, Kathleen; Teeling, Mary; Feely, John
2003-11-01
Non-steroidal anti inflammatory drugs (NSAIDs) are thought to account for almost 25% of all reported adverse drug reactions, primarily gastrointestinal (GI) toxicity. Selective cyclo-oxygenase-2 (COX-2) inhibitors have been shown to preferentially inhibit activity of the COX-2 enzyme, which maintains anti-inflammatory activity but reduces GI toxicity. To determine the degree of switching from non-selective NSAIDs to COX-2 inhibitors and to examine the factors that were associated with switching. The General Medical Services prescription database (1.2 million people) was examined for NSAID prescriptions from December 1999 through November 2001. All those receiving non-selective NSAIDs and those switching to selective COX-2 inhibitors after at least 1 month on a non-selective NSAID were identified (non-switchers and switchers, respectively). Age, sex, dose of non-selective NSAID and co-prescribing of anti-peptic ulcer (anti-PU) drugs were considered between switchers and non-switchers, and odds ratios (OR) calculated using logistic regression. The effect of chronic use (> or =3 months prescription of a non-selective NSAID during the study period) on switching was also evaluated. A total of 81,538 of 480,573 patients (17%) initially prescribed non-selective NSAIDs were switched to COX-2 inhibitors during the study. The elderly (65 years or older) were more likely to be switched to a COX-2 inhibitor [OR=1.81, 95% confidence interval (CI) 1.79, 1.84]. Women were also more likely to be switched to COX-2 inhibitor therapy (OR=1.25, 95% CI 1.23, 1.27). Previous but not subsequent prescribing of anti-PU drugs was also associated with switching. Chronic users showed similar switching patterns. Prescribers are more likely to switch older female patients and those with a past history of peptic ulcers from non-selective NSAIDs to COX-2 inhibitors. This suggests that doctors take risk factors into consideration when prescribing NSAIDs. The relatively low rate of switching may suggest that prescribers still have concerns over the place of COX-2 inhibitors and reserve their use to those patients particularly at risk of NSAID-induced GI toxicity.
Li, Qianhong; Guo, Yiru; Xuan, Yu-Ting; Lowenstein, Charles J.; Stevenson, Susan C.; Prabhu, Sumanth D.; Wu, Wen-Jian; Zhu, Yanqing; Bolli, Roberto
2013-01-01
Although the inducible isoform of NO synthase (iNOS) mediates late preconditioning (PC), it is unknown whether iNOS gene transfer can replicate the cardioprotective effects of late PC, and the role of this protein in myocardial ischemia is controversial. Thus, the cDNA for human iNOS was cloned behind the Rous sarcoma virus (RSV) promoter to create adenovirus (Ad) 5/iNOS lacking E1, E2a, and E3 regions. Intramyocardial injection of Ad5/iNOS in mice increased local iNOS protein expression and activity and markedly reduced infarct size. The infarct-sparing effects of Ad5/iNOS were at least as powerful as those of ischemic PC. The increased iNOS expression was associated with increased cyclooxygenase-2 (COX-2) protein expression and prostanoid levels. Pretreatment with the COX-2–selective inhibitor NS-398 completely abrogated the infarct-sparing actions of Ad5/iNOS, demonstrating that COX-2 is an obligatory downstream effector of iNOS-dependent cardioprotection. We conclude that gene transfer of iNOS (an enzyme commonly thought to be detrimental) affords powerful cardioprotection the magnitude of which is equivalent to that of late PC. This is the first report that upregulation of iNOS, in itself, is sufficient to reduce infarct size. The results provide proof-of-principle for gene therapy against ischemia/reperfusion injury, which increases local myocardial NO synthase levels without the need for continuous intravenous infusion of NO donors and without altering systemic hemodynamics. The data also reveal the existence of a close coupling between iNOS and COX-2, whereby induction of the former enzyme leads to secondary induction of the latter, which in turn mediates the cytoprotective effects of iNOS. We propose that iNOS and COX-2 form a stress-responsive functional module that mitigates ischemia/reperfusion injury. PMID:12702642
Rai-Bhogal, Ravneet; Ahmad, Eizaaz; Li, Hongyan; Crawford, Dorota A
2018-03-01
The cellular and molecular events that take place during brain development play an important role in governing function of the mature brain. Lipid-signalling molecules such as prostaglandin E 2 (PGE 2 ) play an important role in healthy brain development. Abnormalities along the COX-PGE 2 signalling pathway due to genetic or environmental causes have been linked to autism spectrum disorder (ASD). This study aims to evaluate the effect of altered COX-PGE 2 signalling on development and function of the prenatal brain using male mice lacking cyclooxygenase-1 and cyclooxygenase-2 (COX-1 -/- and COX-2 -/- ) as potential model systems of ASD. Microarray analysis was used to determine global changes in gene expression during embryonic days 16 (E16) and 19 (E19). Gene Ontology: Biological Process (GO:BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were implemented to identify affected developmental genes and cellular processes. We found that in both knockouts the brain at E16 had nearly twice as many differentially expressed genes, and affected biological pathways containing various ASD-associated genes important in neuronal function. Interestingly, using GeneMANIA and Cytoscape we also show that the ASD-risk genes identified in both COX-1 -/- and COX-2 -/- models belong to protein-interaction networks important for brain development despite of different cellular localization of these enzymes. Lastly, we identified eight genes that belong to the Wnt signalling pathways exclusively in the COX-2 -/- mice at E16. The level of PKA-phosphorylated β-catenin (S552), a major activator of the Wnt pathway, was increased in this model, suggesting crosstalk between the COX-2-PGE 2 and Wnt pathways during early brain development. Overall, these results provide further molecular insight into the contribution of the COX-PGE 2 pathways to ASD and demonstrate that COX-1 -/- and COX-2 -/- animals might be suitable new model systems for studying the disorders. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Chemical and protein structural basis for biological crosstalk between PPAR α and COX enzymes
NASA Astrophysics Data System (ADS)
Cleves, Ann E.; Jain, Ajay N.
2015-02-01
We have previously validated a probabilistic framework that combined computational approaches for predicting the biological activities of small molecule drugs. Molecule comparison methods included molecular structural similarity metrics and similarity computed from lexical analysis of text in drug package inserts. Here we present an analysis of novel drug/target predictions, focusing on those that were not obvious based on known pharmacological crosstalk. Considering those cases where the predicted target was an enzyme with known 3D structure allowed incorporation of information from molecular docking and protein binding pocket similarity in addition to ligand-based comparisons. Taken together, the combination of orthogonal information sources led to investigation of a surprising predicted relationship between a transcription factor and an enzyme, specifically, PPAR α and the cyclooxygenase enzymes. These predictions were confirmed by direct biochemical experiments which validate the approach and show for the first time that PPAR α agonists are cyclooxygenase inhibitors.
Prima, Victor; Kaliberova, Lyudmila N.; Kaliberov, Sergey; Curiel, David T.; Kusmartsev, Sergei
2017-01-01
In recent years, it has been established that programmed cell death protein ligand 1 (PD-L1)–mediated inhibition of activated PD-1+ T lymphocytes plays a major role in tumor escape from immune system during cancer progression. Lately, the anti–PD-L1 and –PD-1 immune therapies have become an important tool for treatment of advanced human cancers, including bladder cancer. However, the underlying mechanisms of PD-L1 expression in cancer are not fully understood. We found that coculture of murine bone marrow cells with bladder tumor cells promoted strong expression of PD-L1 in bone marrow–derived myeloid cells. Tumor-induced expression of PD-L1 was limited to F4/80+ macrophages and Ly-6C+ myeloid-derived suppressor cells. These PD-L1–expressing cells were immunosuppressive and were capable of eliminating CD8 T cells in vitro. Tumor-infiltrating PD-L1+ cells isolated from tumor-bearing mice also exerted morphology of tumor-associated macrophages and expressed high levels of prostaglandin E2 (PGE2)-forming enzymes microsomal PGE2 synthase 1 (mPGES1) and COX2. Inhibition of PGE2 formation, using pharmacologic mPGES1 and COX2 inhibitors or genetic overexpression of PGE2-degrading enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH), resulted in reduced PD-L1 expression. Together, our study demonstrates that the COX2/mPGES1/PGE2 pathway involved in the regulation of PD-L1 expression in tumor-infiltrating myeloid cells and, therefore, reprogramming of PGE2 metabolism in tumor microenvironment provides an opportunity to reduce immune suppression in tumor host. PMID:28096371
In vitro and in vivo assessment of meadowsweet (Filipendula ulmaria) as anti-inflammatory agent.
Katanić, Jelena; Boroja, Tatjana; Mihailović, Vladimir; Nikles, Stefanie; Pan, San-Po; Rosić, Gvozden; Selaković, Dragica; Joksimović, Jovana; Mitrović, Slobodanka; Bauer, Rudolf
2016-12-04
Meadowsweet (Filipendula ulmaria (L.) Maxim, Rosaceae) has been traditionally used in most European countries for the treatment of inflammatory diseases due to its antipyretic, analgesic, astringent, and anti-rheumatic properties. However, there is little scientific evidence on F. ulmaria anti-inflammatory effects regarding its impact on cyclooxygenases enzymatic activity and in vivo assessment of anti-inflammatory potential. This study aims to reveal the anti-inflammatory activity of methanolic extracts from the aerial parts (FUA) and roots (FUR) of F. ulmaria, both in in vitro and in vivo conditions. The characteristic phenolic compounds in F. ulmaria extracts were monitored via high performance thin layer chromatography (HPTLC). The in vitro anti-inflammatory activity of F. ulmaria extracts was evaluated using cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) enzyme assays, and an assay for determining COX-2 gene expression. The in vivo anti-inflammatory effect of F. ulmaria extracts was determined in two doses (100 and 200 mg/kg b.w.) with hot plate test and carrageenan-induced paw edema test in rats. Inflammation was also evaluated by histopathological and immunohistochemical analysis. FUA extract showed the presence of rutoside, spiraeoside, and isoquercitrin. Both F. ulmaria extracts at a concentration of 50μg/mL were able to inhibit COX-1 and -2 enzyme activities, whereby FUA extract (62.84% and 46.43% inhibition, respectively) was double as effective as the root extract (32.11% and 20.20%, respectively). Extracts hardly inhibited the level of COX-2 gene expression in THP-1 cells at a concentration of 25μg/mL (10.19% inhibition by FUA and 8.54% by FUR). In the hot plate test, both extracts in two doses (100 and 200mg/kg b.w.), exhibited an increase in latency time when compared with the control group (p<0.05). In the carrageenan-induced acute inflammation test, FUA at doses of 100 and 200mg/kg b.w., and FUR at 200mg/kg, were able to significantly reduce the mean maximal swelling of rat paw until 6h of treatment. Indomethacin, FUA, and FUR extracts significantly decreased inflammation score and this effect was more pronounced after 24h, compared to the control group (p<0.05). The observed results of in vitro and, for the first time, in vivo anti-inflammatory activity of meadowsweet extracts, provide support of the traditional use of this plant in the treatment of different inflammatory conditions. Further investigation of the anti-inflammatory compounds could reveal the mechanism of anti-inflammatory action of these extracts. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Daing, Anika; Singh, Sarvendra Vikram; Saimbi, Charanjeet Singh; Khan, Mohammad Akhlaq
2012-01-01
Purpose Cyclooxygenase (COX) enzyme catalyzes the production of prostaglandins, which are important mediators of tissue destruction in periodontitis. Single nucleotide polymorphisms of COX2 enzyme have been associated with increasing susceptibility to inflammatory diseases. The present study evaluates the association of two single nucleotide polymorphisms in COX2 gene (-1195G>A and 8473C>T) with chronic periodontitis in North Indians. Methods Both SNPs and their haplotypes were used to explore the associations between COX2 polymorphisms and chronic periodontitis in 56 patients and 60 controls. Genotyping was done by polymerase chain reaction followed by restriction fragment length polymorphism. Chi-square test and logistic regression analysis were performed for association analysis. Results By the individual genotype analysis, mutant genotypes (GA and AA) of COX2 -1195 showed more than a two fold risk (odds ratio [OR]>2) and COX2 8473 (TC and CC) showed a reduced risk for the disease, but the findings were not statistically significant. Haplotype analysis showed that the frequency of the haplotype AT was higher in the case group and a significant association was found for haplotype AT (OR, 1.79; 95% confidence interval, 1.03 to 3.11; P=0.0370) indicating an association between the AT haplotype of COX2 gene SNPs and chronic periodontitis. Conclusions Individual genotypes of both the SNPs were not associated while haplotype AT was found to be associated with chronic periodontitis in North Indians. PMID:23185695
Chang, M C; Uang, B J; Tsai, C Y; Wu, H L; Lin, B R; Lee, C S; Chen, Y J; Chang, C H; Tsai, Y L; Kao, C J; Jeng, J H
2007-09-01
Platelet hyperactivity is important in the pathogenesis of cardiovascular diseases. Betel leaf (PBL) is consumed by 200-600 million betel quid chewers in the world. Hydroxychavicol (HC), a betel leaf component, was tested for its antiplatelet effect. We tested the effect of HC on platelet aggregation, thromboxane B(2) (TXB(2)) and reactive oxygen species (ROS) production, cyclooxygenase (COX) activity, ex vivo platelet aggregation and mouse bleeding time and platelet plug formation in vivo. The pharmacokinetics of HC in rats was also assessed. HC inhibited arachidonic acid (AA) and collagen-induced platelet aggregation and TXB(2) production. HC inhibited the thrombin-induced TXB(2) production, but not platelet aggregation. SQ29548, suppressed collagen- and thrombin-induced TXB(2) production, but not thrombin-induced platelet aggregation. HC also suppressed COX-1/COX-2 enzyme activity and the AA-induced ROS production and Ca(2+) mobilization. HC further inhibited the ex vivo platelet aggregation of platelet-rich plasma (>100 nmole/mouse) and prolonged platelet plug formation (>300 nmole/mouse) in mesenteric microvessels, but showed little effect on bleeding time in mouse tail. Moreover, pharmacokinetics analysis found that more than 99% of HC was metabolized within 3 min of administration in Sprague-Dawley rats in vivo. HC is a potent COX-1/COX-2 inhibitor, ROS scavenger and inhibits platelet calcium signaling, TXB(2) production and aggregation. HC could be a potential therapeutic agent for prevention and treatment of atherosclerosis and other cardiovascular diseases through its anti-inflammatory and antiplatelet effects, without effects on haemostatic functions.
Verma, Nandini; Chakrabarti, Rina; Das, Rakha H; Gautam, Hemant K
2012-01-12
Shea butter is traditionally used in Africa for its anti-inflammatory and analgesic effects. In this study we explored the anti-inflammatory activities of the methanolic extract of shea butter (SBE) using lipopolysaccharide (LPS)-induced murine macrophage cell line J774. It was observed that SBE significantly reduced the levels of LPS-induced nitric oxide, Tumor necrosis factor-α (TNF-α), interleukins, 1β (IL-1β), and -12 (IL-12) in the culture supernatants in a dose dependent manner. Expression of pro-inflammatory enzymes, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were also inhibited by SBE. These anti-inflammatory effects were due to an inhibitory action of SBE on LPS-induced iNOS, COX-2, TNF-α, IL-1β, and IL-12 mRNA expressions. Moreover, SBE efficiently suppressed IκB phosphorylation and NF-κB nuclear translocation induced by LPS. These findings explain the molecular bases of shea butter's bioactivity against various inflammatory conditions and substantiate it as a latent source of novel therapeutic agents.
Hsu, Hsi-Hsien; Chen, Ming-Cheng; Day, Cecilia Hsuan; Lin, Yueh-Min; Li, Shin-Yi; Tu, Chuan-Chou; Padma, Viswanadha Vijaya; Shih, Hui-Nung; Kuo, Wei-Wen; Huang, Chih-Yang
2017-02-21
To identify potential anti-cancer constituents in natural extracts that inhibit cancer cell growth and migration. Our experiments used high dose thymoquinone (TQ) as an inhibitor to arrest LoVo (a human colon adenocarcinoma cell line) cancer cell growth, which was detected by cell proliferation assay and immunoblotting assay. Low dose TQ did not significantly reduce LoVo cancer cell growth. Cyclooxygenase 2 (COX-2) is an enzyme that is involved in the conversion of arachidonic acid into prostaglandin E2 (PGE2) in humans. PGE2 can promote COX-2 protein expression and tumor cell proliferation and was used as a control. Our results showed that 20 μmol/L TQ significantly reduced human LoVo colon cancer cell proliferation. TQ treatment reduced the levels of p-PI3K, p-Akt, p-GSK3β, and β-catenin and thereby inhibited the downstream COX-2 expression. Results also showed that the reduction in COX-2 expression resulted in a reduction in PGE2 levels and the suppression of EP2 and EP4 activation. Further analysis showed that TG treatment inhibited the nuclear translocation of β-catenin in LoVo cancer cells. The levels of the cofactors LEF-1 and TCF-4 were also decreased in the nucleus following TQ treatment in a dose-dependent manner. Treatment with low dose TQ inhibited the COX-2 expression at the transcriptional level and the regulation of COX-2 expression efficiently reduced LoVo cell migration. The results were further verified in vivo by confirming the effects of TQ and/or PGE2 using tumor xenografts in nude mice. TQ inhibits LoVo cancer cell growth and migration, and this result highlights the therapeutic advantage of using TQ in combination therapy against colorectal cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teraoka, Hiroki; Kubota, Akira; Dong, Wu
2009-01-01
Previously, we reported that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) evoked developmental toxicity required activation of aryl hydrocarbon receptor type 2 (AHR2), using zebrafish embryos. However, the downstream molecular targets of AHR2 activation are largely unknown and are the focus of the present investigation. TCDD induces cyclooxygenase 2 (COX2), a rate-limiting enzyme for prostaglandin synthesis in certain cells. In the present study, we investigated the role of the COX2-thromboxane pathway in causing a specific endpoint of TCDD developmental toxicity in the zebrafish embryo, namely, a decrease in regional blood flow in the dorsal midbrain. It was found that the TCDD-induced reduction in mesencephalic veinmore » blood flow was markedly inhibited by selective COX2 inhibitors, NS-398 and SC-236, and by a general COX inhibitor, indomethacin, but not by a selective COX1 inhibitor, SC-560. Gene knock-down of COX2 by two different types of morpholino antisense oligonucleotides, but not by their negative homologs, also protected the zebrafish embryos from mesencephalic vein circulation failure caused by TCDD. This inhibitory effect of TCDD on regional blood flow in the dorsal midbrain was also blocked by selective antagonists of the thromboxane receptor (TP). Treatment of control zebrafish embryos with a TP agonist also caused a reduction in mesencephalic vein blood flow and it too was blocked by a TP antagonist, without any effect on trunk circulation. Finally, gene knock-down of thromboxane A synthase 1 (TBXS) with morpholinos but not by the morpholinos' negative homologs provided significant protection against TCDD-induced mesencephalic circulation failure. Taken together, these results point to a role of the prostanoid synthesis pathway via COX2-TBXS-TP in the local circulation failure induced by TCDD in the dorsal midbrain of the zebrafish embryo.« less
Altavilla, D; Squadrito, F; Bitto, A; Polito, F; Burnett, BP; Di Stefano, V; Minutoli, L
2009-01-01
Background and purpose: The flavonoids, baicalin and catechin, from Scutellaria baicalensis and Acacia catechu, respectively, have been used for various clinical applications. Flavocoxid is a mixed extract containing baicalin and catechin, and acts as a dual inhibitor of cyclooxygenase (COX) and 5-lipoxygenase (LOX) enzymes. The anti-inflammatory activity, measured by protein and gene expression of inflammatory markers, of flavocoxid in rat peritoneal macrophages stimulated with Salmonella enteritidis lipopolysaccharide (LPS) was investigated. Experimental approach: LPS-stimulated (1 µg·mL−1) peritoneal rat macrophages were co-incubated with different concentrations of flavocoxid (32–128 µg·mL−1) or RPMI medium for different incubation times. Inducible COX-2, 5-LOX, inducible nitric oxide synthase (iNOS) and inhibitory protein κB-α (IκB-α) levels were evaluated by Western blot analysis. Nuclear factor κB (NF-κB) binding activity was investigated by electrophoretic mobility shift assay. Tumour necrosis factor-α (TNF-α) gene and protein expression were measured by real-time polymerase chain reaction and enzyme-linked immunosorbent assay respectively. Finally, malondialdehyde (MDA) and nitrite levels in macrophage supernatants were evaluated. Key results: LPS stimulation induced a pro-inflammatory phenotype in rat peritoneal macrophages. Flavocoxid (128 µg·mL−1) significantly inhibited COX-2 (LPS = 18 ± 2.1; flavocoxid = 3.8 ± 0.9 integrated intensity), 5-LOX (LPS = 20 ± 3.8; flavocoxid = 3.1 ± 0.8 integrated intensity) and iNOS expression (LPS = 15 ± 1.1; flavocoxid = 4.1 ± 0.4 integrated intensity), but did not modify COX-1 expression. PGE2 and LTB4 levels in culture supernatants were consequently decreased. Flavocoxid also prevented the loss of IκB-α protein (LPS = 1.9 ± 0.2; flavocoxid = 7.2 ± 1.6 integrated intensity), blunted increased NF-κB binding activity (LPS = 9.2 ± 2; flavocoxid = 2.4 ± 0.7 integrated intensity) and the enhanced TNF-α mRNA levels (LPS = 8 ± 0.9; flavocoxid = 1.9 ± 0.8 n-fold/β-actin) induced by LPS. Finally, flavocoxid decreased MDA, TNF and nitrite levels from LPS-stimulated macrophages. Conclusion and implications: Flavocoxid might be useful as a potential anti-inflammatory agent, acting at the level of gene and protein expression. PMID:19681869
Expression of cyclooxygenase-1 and -2 in canine nasal carcinomas.
Borzacchiello, G; Paciello, O; Papparella, S
2004-07-01
Cyclooxygenase-1 (COX-1) and cyclooxygenase -2 (COX-2) are known to play a role in the carcinogenesis of many human and animal primary epithelial tumours. However, expression of COX-1 and -2 has not been investigated in canine nasal epithelial carcinoma, a rare form of neoplasia. COX-1 immunolabelling was demonstrated in normal canine nasal mucosa and in a minority of neoplastic specimens. Cytoplasmic COX-2, however, was strongly expressed in the majority of canine nasal carcinomas. In addition, COX-2 expression was demonstrated in dysplastic epithelium and in a proportion of stromal cells. Co-expression of both enzyme isoforms was revealed by confocal laser scanning microscopy. The results indicate that COX-2 is overexpressed in a proportion of naturally occurring canine nasal carcinomas, suggesting its possible role in canine nasal tumorigenesis. Copyright 2004 Elsevier Ltd.
Wong, Jeffrey L; Obermajer, Nataša; Odunsi, Kunle; Edwards, Robert P; Kalinski, Pawel
2016-04-01
Maintenance of CTL-, Th1-, and NK cell-mediated type-1 immunity is essential for effective antitumor responses. Unexpectedly, we observed that the critical soluble mediators of type-1 immune effector cells, IFNγ and TNFα, synergize in the induction of cyclooxygenase 2 (COX2), the key enzyme in prostaglandin (PG)E2 synthesis, and the subsequent hyperactivation of myeloid-derived suppressor cells (MDSC) within the tumor microenvironment (TME) of ovarian cancer patients. MDSC hyperactivation by type-1 immunity and the resultant overexpression of indoleamine 2,3-dioxygenase (IDO), inducible nitric oxide synthase (iNOS/NOS2), IL10, and additional COX2 result in strong feedback suppression of type-1 immune responses. This paradoxical immune suppression driven by type-1 immune cell activation was found to depend on the synergistic action of IFNγ and TNFα, and could not be reproduced by either of these factors alone. Importantly, from a therapeutic standpoint, these negative feedback limiting type-1 responses could be eliminated by COX2 blockade, allowing amplification of type-1 immunity in the ovarian cancer TME. Our data demonstrate a new mechanism underlying the self-limiting nature of type-1 immunity in the human TME, driven by the synergistic induction of COX2 by IFNγ and TNFα, and provide a rationale for targeting the COX2-PGE2 axis to enhance the effectiveness of cancer immunotherapies. ©2016 American Association for Cancer Research.
Hallmann, Kerstin; Kudin, Alexei P; Zsurka, Gábor; Kornblum, Cornelia; Reimann, Jens; Stüve, Burkhard; Waltz, Stephan; Hattingen, Elke; Thiele, Holger; Nürnberg, Peter; Rüb, Cornelia; Voos, Wolfgang; Kopatz, Jens; Neumann, Harald; Kunz, Wolfram S
2016-02-01
Isolated cytochrome c oxidase (complex IV) deficiency is one of the most frequent respiratory chain defects in humans and is usually caused by mutations in proteins required for assembly of the complex. Mutations in nuclear-encoded structural subunits are very rare. In a patient with Leigh-like syndrome presenting with leukodystrophy and severe epilepsy, we identified a homozygous splice site mutation in COX8A, which codes for the ubiquitously expressed isoform of subunit VIII, the smallest nuclear-encoded subunit of complex IV. The mutation, affecting the last nucleotide of intron 1, leads to aberrant splicing, a frame-shift in the highly conserved exon 2, and decreased amount of the COX8A transcript. The loss of the wild-type COX8A protein severely impairs the stability of the entire cytochrome c oxidase enzyme complex and manifests in isolated complex IV deficiency in skeletal muscle and fibroblasts, similar to the frequent c.845_846delCT mutation in the assembly factor SURF1 gene. Stability and activity of complex IV could be rescued in the patient's fibroblasts by lentiviral expression of wild-type COX8A. Our findings demonstrate that COX8A is indispensable for function of human complex IV and its mutation causes human disease. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Khalfaoui-Hassani, Bahia; Wu, Hongjiang; Blaby-Haas, Crysten E.; ...
2018-02-27
ABSTRACT Cytochromecoxidases are members of the heme-copper oxidase superfamily. These enzymes have different subunits, cofactors, and primary electron acceptors, yet they all contain identical heme-copper (Cu B) binuclear centers within their catalytic subunits. The uptake and delivery pathways of the Cu Batom incorporated into this active site, where oxygen is reduced to water, are not well understood. Our previous work with the facultative phototrophic bacteriumRhodobacter capsulatusindicated that the copper atom needed for the Cu Bsite ofcbb 3-type cytochromecoxidase (cbb 3-Cox) is imported to the cytoplasm by a major facilitator superfamily-type transporter, CcoA. In this study, a comparative genomic analysis ofmore » CcoA orthologs in alphaproteobacterial genomes showed that CcoA is widespread among organisms and frequently co-occurs with cytochromecoxidases. To define the specificity of CcoA activity, we investigated its function inRhodobacter sphaeroides, a close relative ofR. capsulatusthat contains bothcbb 3- andaa 3-Cox. Phenotypic, genetic, and biochemical characterization of mutants lacking CcoA showed that in its absence, or even in the presence of its bypass suppressors, only the production ofcbb 3-Cox and not that ofaa 3-Cox was affected. We therefore concluded that CcoA is dedicated solely tocbb 3-Cox biogenesis, establishing that distinct copper uptake systems provide the Cu Batoms to the catalytic sites of these two similar cytochromecoxidases. These findings illustrate the large variety of strategies that organisms employ to ensure homeostasis and fine control of copper trafficking and delivery to the target cuproproteins under different physiological conditions. IMPORTANCEThecbb 3- andaa 3-type cytochromecoxidases belong to the widespread heme-copper oxidase superfamily. They are membrane-integral cuproproteins that catalyze oxygen reduction to water under hypoxic and normoxic growth conditions. These enzymes diverge in terms of subunit and cofactor composition, yet they all share a conserved heme-copper binuclear site within their catalytic subunit. In this study, we show that the copper atoms of the catalytic center of two similar cytochromecoxidases from this superfamily are provided by different copper uptake systems during their biogenesis. This finding illustrates different strategies by which organisms fine-tune the trafficking of copper, which is an essential but toxic micronutrient.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalfaoui-Hassani, Bahia; Wu, Hongjiang; Blaby-Haas, Crysten E.
ABSTRACT Cytochromecoxidases are members of the heme-copper oxidase superfamily. These enzymes have different subunits, cofactors, and primary electron acceptors, yet they all contain identical heme-copper (Cu B) binuclear centers within their catalytic subunits. The uptake and delivery pathways of the Cu Batom incorporated into this active site, where oxygen is reduced to water, are not well understood. Our previous work with the facultative phototrophic bacteriumRhodobacter capsulatusindicated that the copper atom needed for the Cu Bsite ofcbb 3-type cytochromecoxidase (cbb 3-Cox) is imported to the cytoplasm by a major facilitator superfamily-type transporter, CcoA. In this study, a comparative genomic analysis ofmore » CcoA orthologs in alphaproteobacterial genomes showed that CcoA is widespread among organisms and frequently co-occurs with cytochromecoxidases. To define the specificity of CcoA activity, we investigated its function inRhodobacter sphaeroides, a close relative ofR. capsulatusthat contains bothcbb 3- andaa 3-Cox. Phenotypic, genetic, and biochemical characterization of mutants lacking CcoA showed that in its absence, or even in the presence of its bypass suppressors, only the production ofcbb 3-Cox and not that ofaa 3-Cox was affected. We therefore concluded that CcoA is dedicated solely tocbb 3-Cox biogenesis, establishing that distinct copper uptake systems provide the Cu Batoms to the catalytic sites of these two similar cytochromecoxidases. These findings illustrate the large variety of strategies that organisms employ to ensure homeostasis and fine control of copper trafficking and delivery to the target cuproproteins under different physiological conditions. IMPORTANCEThecbb 3- andaa 3-type cytochromecoxidases belong to the widespread heme-copper oxidase superfamily. They are membrane-integral cuproproteins that catalyze oxygen reduction to water under hypoxic and normoxic growth conditions. These enzymes diverge in terms of subunit and cofactor composition, yet they all share a conserved heme-copper binuclear site within their catalytic subunit. In this study, we show that the copper atoms of the catalytic center of two similar cytochromecoxidases from this superfamily are provided by different copper uptake systems during their biogenesis. This finding illustrates different strategies by which organisms fine-tune the trafficking of copper, which is an essential but toxic micronutrient.« less
Bader, Ammar; Martini, Francesca; Schinella, Guillermo R; Rios, Jose L; Prieto, Jose M
2015-01-01
Acanthus mollis (Acanthaceae), Achillea ligustica, Artemisia arborescens and Inula viscosa (Asteraceae) are used in Southern Italy against psoriasis and other skin diseases that occur with an imbalanced production of eicosanoids. We here assessed their in vitro effects upon 5-, 12-, 15-LOX and COX-1 enzymes as well as NFκB activation in intact cells as their possible therapeutic targets. All methanol crude extracts inhibited both 5-LOX and COX-1 activities under 200 µg/mL, without significant effects on the 12-LOX pathway or any relevant in vitro free radical scavenging activity. NFκB activation was prevented by all extracts but A. mollis. Interestingly, A. ligustica, A. arborescens and A. mollis increased the biosynthesis of 15(S)-HETE, an anti-inflammatory eicosanoid. A. ligustica (IC50 = 49.5 µg/mL) was superior to Silybum marianum (IC50 = 147.8 µg/mL), which we used as antipsoriatic herbal medicine of reference. Its n-hexane, dichloromethane and ethyl acetate fractions had also inhibitory effects on the LTB4 biosynthesis (IC50s = 9.6, 20.3 and 68 µg/mL, respectively) evidencing that the apolar extracts of A. ligustica are promising active herbal ingredients for future phytotherapeutical products targeting psoriasis. © 2014 The Authors. Phytotherapy Research published by John Wiley & Sons Ltd. PMID:25278440
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trasnea, Petru -Iulian; Utz, Marcel; Khalfaoui-Hassani, Bahia
Copper (Cu) is an essential micronutrient that functions as a cofactor in several important enzymes, like respiratory heme-copper oxygen reductases. Yet, Cu is also toxic and therefore cells engage a highly coordinated Cu uptake and delivery system to prevent the accumulation of toxic Cu concentrations. In the current work we analyzed Cu delivery to the cbb 3-type cytochrome c oxidase ( cbb 3-Cox) of Rhodobacter capsulatus. We identified the PCu AC-like periplasmic chaperone PccA and analyzed its contribution to cbb 3-Cox assembly. Our data demonstrate that PccA is a Cu-binding protein with a preference for Cu(I), which is required formore » efficient cbb 3-Cox assembly, in particular at low Cu concentrations. By using in vivo and in vitro crosslinking we show that PccA forms a complex with the Sco1-homologue SenC. This complex is stabilized in the absence of the cbb 3-Cox specific assembly factors CcoGHIS. In cells lacking SenC, the cytoplasmic Cu content is significantly increased, but the simultaneous absence of PccA prevents this Cu accumulation. Lastly, these data demonstrate that the interplay between PccA and SenC is not only required for Cu delivery during cbb 3-Cox assembly, but that it also regulates Cu homeostasis in R. capsulatus.« less
Liu, Teresa T.; Grubisha, Melanie J.; Frahm, Krystle A.; Wendell, Stacy G.; Liu, Jiayan; Ricke, William A.; Auchus, Richard J.; DeFranco, Donald B.
2016-01-01
Current pharmacotherapies for symptomatic benign prostatic hyperplasia (BPH), an androgen receptor-driven, inflammatory disorder affecting elderly men, include 5α-reductase (5AR) inhibitors (i.e. dutasteride and finasteride) to block the conversion of testosterone to the more potent androgen receptor ligand dihydrotestosterone. Because dihydrotestosterone is the precursor for estrogen receptor β (ERβ) ligands, 5AR inhibitors could potentially limit ERβ activation, which maintains prostate tissue homeostasis. We have uncovered signaling pathways in BPH-derived prostate epithelial cells (BPH-1) that are impacted by 5AR inhibition. The induction of apoptosis and repression of the cell adhesion protein E-cadherin by the 5AR inhibitor dutasteride requires both ERβ and TGFβ. Dutasteride also induces cyclooxygenase type 2 (COX-2), which functions in a negative feedback loop in TGFβ and ERβ signaling pathways as evidenced by the potentiation of apoptosis induced by dutasteride or finasteride upon pharmacological inhibition or shRNA-mediated ablation of COX-2. Concurrently, COX-2 positively impacts ERβ action through its effect on the expression of a number of steroidogenic enzymes in the ERβ ligand metabolic pathway. Therefore, effective combination pharmacotherapies, which have included non-steroidal anti-inflammatory drugs, must take into account biochemical pathways affected by 5AR inhibition and opposing effects of COX-2 on the tissue-protective action of ERβ. PMID:27226548
Trasnea, Petru -Iulian; Utz, Marcel; Khalfaoui-Hassani, Bahia; ...
2016-02-28
Copper (Cu) is an essential micronutrient that functions as a cofactor in several important enzymes, like respiratory heme-copper oxygen reductases. Yet, Cu is also toxic and therefore cells engage a highly coordinated Cu uptake and delivery system to prevent the accumulation of toxic Cu concentrations. In the current work we analyzed Cu delivery to the cbb 3-type cytochrome c oxidase ( cbb 3-Cox) of Rhodobacter capsulatus. We identified the PCu AC-like periplasmic chaperone PccA and analyzed its contribution to cbb 3-Cox assembly. Our data demonstrate that PccA is a Cu-binding protein with a preference for Cu(I), which is required formore » efficient cbb 3-Cox assembly, in particular at low Cu concentrations. By using in vivo and in vitro crosslinking we show that PccA forms a complex with the Sco1-homologue SenC. This complex is stabilized in the absence of the cbb 3-Cox specific assembly factors CcoGHIS. In cells lacking SenC, the cytoplasmic Cu content is significantly increased, but the simultaneous absence of PccA prevents this Cu accumulation. Lastly, these data demonstrate that the interplay between PccA and SenC is not only required for Cu delivery during cbb 3-Cox assembly, but that it also regulates Cu homeostasis in R. capsulatus.« less
Different mechanisms lead to the angiogenic process induced by three adenocarcinoma cell lines.
Davel, Lilia E; Rimmaudo, Laura; Español, Alejandro; de la Torre, Eulalia; Jasnis, María Adela; Ribeiro, María Laura; Gotoh, Tomomi; de Lustig, Eugenia Sacerdote; Sales, María Elena
2004-01-01
Neoangiogenesis is essential for tumor and metastasis growth, but this complex process does not follow the same activation pathway, at least in tumor cell lines originated from different murine mammary adenocarcinomas. LMM3 cells were the most potent to stimulate new blood vessel formation. This response was significantly reduced by preincubating cells with indomethacin and NS-398, non-selective cyclooxygenase (COX) and COX-2 selective inhibitors, respectively. COX-1 and COX-2 isoenzymes were both highly expressed in LMM3 cells, and we observed that indomethacin was more effective than NS-398 to inhibit prostaglandin E2 (PGE2) synthesis. In addition, nitric oxide synthase (NOS) inhibitors, Nomega monomethyl L-arginine and aminoguanidine, also reduced LMM3-induced angiogenesis and nitric oxide (NO) synthesis as well. NOS2 > NOS3 proteins and arginase II isoform were detected in LMM3 cells by Western blot. The latter enzyme was also involved in the LMM3 neovascular response, since the arginase inhibitor, Nomega hydroxy L-arginine reduced the angiogenic cascade. On the other hand, parental LM3 cells were able to stimulate neovascularization via COX-1 and arginase products since only indomethacin and Nomega hydroxy L-arginine, which diminished PGE2 and urea synthesis, respectively, also reduced angiogenesis. In turn, LM2 cells angiogenic response could be due in fact to PGE2-induced VEGF liberation that stimulated neoangiogenesis at very low levels of NO.
Altavilla, D; Minutoli, L; Polito, F; Irrera, N; Arena, S; Magno, C; Rinaldi, M; Burnett, BP; Squadrito, F; Bitto, A
2012-01-01
BACKGROUND AND PURPOSE Inflammation plays a key role in the development of benign prostatic hyperplasia (BPH). Eicosanoids derived from the COX and 5-lipoxygenase (5-LOX) pathways are elevated in the enlarging prostate. Flavocoxid is a novel flavonoid–based ‘dual inhibitor’ of the COX and 5-LOX enzymes. This study evaluated the effects of flavocoxid in experimental BPH. EXPERIMENTAL APPROACH Rats were treated daily with testosterone propionate (3 mg·kg−1 s.c.) or its vehicle for 14 days to induce BPH. Animals receiving testosterone were randomized to receive vehicle (1 mL·kg−1, i.p.) or flavocoxid (20 mg·kg−1, i.p.) for 14 days. Histological changes, eicosanoid content and mRNA and protein levels for apoptosis-related proteins and growth factors were assayed in prostate tissue. The effects of flavocoxid were also tested on human prostate carcinoma PC3 cells. KEY RESULTS Flavocoxid reduced prostate weight and hyperplasia, blunted inducible expression of COX-2 and 5-LOX as well as the increased production of PGE2 and leukotriene B4 (LTB4), enhanced pro-apoptotic Bax and caspase-9 and decreased the anti-apoptotic Bcl-2 mRNA. Flavocoxid also reduced EGF and VEGF expression. In PC3 cells, flavocoxid stimulated apoptosis and inhibited growth factor expression. Flavocoxid-mediated induction of apoptosis was inhibited by the pan-caspase inhibitor, Z-VAD-FMK, in PC3 cells, suggesting an essential role of caspases in flavocoxid-mediated apoptosis during prostatic growth. CONCLUSION AND IMPLICATIONS Our results show that a ‘dual inhibitor’ of the COX and 5-LOX enzymes, such as flavocoxid, might represent a rational approach to reduce BPH through modulation of eicosanoid production and a caspase-induced apoptotic mechanism. PMID:22471974
Altavilla, D; Minutoli, L; Polito, F; Irrera, N; Arena, S; Magno, C; Rinaldi, M; Burnett, B P; Squadrito, F; Bitto, A
2012-09-01
Inflammation plays a key role in the development of benign prostatic hyperplasia (BPH). Eicosanoids derived from the COX and 5-lipoxygenase (5-LOX) pathways are elevated in the enlarging prostate. Flavocoxid is a novel flavonoid-based 'dual inhibitor' of the COX and 5-LOX enzymes. This study evaluated the effects of flavocoxid in experimental BPH. Rats were treated daily with testosterone propionate (3 mg·kg(-1) s.c.) or its vehicle for 14 days to induce BPH. Animals receiving testosterone were randomized to receive vehicle (1 mL·kg(-1) , i.p.) or flavocoxid (20 mg·kg(-1) , i.p.) for 14 days. Histological changes, eicosanoid content and mRNA and protein levels for apoptosis-related proteins and growth factors were assayed in prostate tissue. The effects of flavocoxid were also tested on human prostate carcinoma PC3 cells. Flavocoxid reduced prostate weight and hyperplasia, blunted inducible expression of COX-2 and 5-LOX as well as the increased production of PGE(2) and leukotriene B(4) (LTB(4) ), enhanced pro-apoptotic Bax and caspase-9 and decreased the anti-apoptotic Bcl-2 mRNA. Flavocoxid also reduced EGF and VEGF expression. In PC3 cells, flavocoxid stimulated apoptosis and inhibited growth factor expression. Flavocoxid-mediated induction of apoptosis was inhibited by the pan-caspase inhibitor, Z-VAD-FMK, in PC3 cells, suggesting an essential role of caspases in flavocoxid-mediated apoptosis during prostatic growth. Our results show that a 'dual inhibitor' of the COX and 5-LOX enzymes, such as flavocoxid, might represent a rational approach to reduce BPH through modulation of eicosanoid production and a caspase-induced apoptotic mechanism. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.
Transgenic expression of cyclooxygenase-2 (COX2) causes premature aging phenotypes in mice.
Kim, Joohwee; Vaish, Vivek; Feng, Mingxiao; Field, Kevin; Chatzistamou, Ioulia; Shim, Minsub
2016-10-07
Cyclooxygenase (COX) is a key enzyme in the biosynthesis of prostanoids, lipid signaling molecules that regulate various physiological processes. COX2, one of the isoforms of COX, is highly inducible in response to a wide variety of cellular and environmental stresses. Increased COX2 expression is thought to play a role in the pathogenesis of many age-related diseases. COX2 expression is also reported to be increased in the tissues of aged humans and mice, which suggests the involvement of COX2 in the aging process. However, it is not clear whether the increased COX2 expression is causal to or a result of aging. We have now addressed this question by creating an inducible COX2 transgenic mouse model. Here we show that post-natal expression of COX2 led to a panel of aging-related phenotypes. The expression of p16, p53, and phospho-H2AX was increased in the tissues of COX2 transgenic mice. Additionally, adult mouse lung fibroblasts from COX2 transgenic mice exhibited increased expression of the senescence-associated β-galactosidase. Our study reveals that the increased COX2 expression has an impact on the aging process and suggests that modulation of COX2 and its downstream signaling may be an approach for intervention of age-related disorders.
Biological activities of polyphenols-enriched propolis from Argentina arid regions.
Salas, Ana Lilia; Alberto, María Rosa; Zampini, Iris Catiana; Cuello, Ana Soledad; Maldonado, Luis; Ríos, José Luis; Schmeda-Hirschmann, Guillermo; Isla, María Inés
2016-01-15
Propolis is a bioactive natural product collected by honeybees (Apis mellifera) from plant sources. This study was undertaken to determine the effect of propolis extracts from arid region of Argentina, on the activity/expression of pro-inflammatory enzymes, and as potential free radical scavenger, antifungal and anthelmintic agent as well as to get a first insight into the polyphenolic profile of the active fractions. Two propolis samples were collected in different time from hives located in Tucumán, Argentina. They are representative of the collection time of the raw material for phytotherapeutical purposes. Ethanolic extracts from both propolis were obtained. The PEEs were analyzed for total polyphenol (TP), non-flavonoid phenols (NFP) and flavonoid (FP) content followed by HPLC-DAD analysis and identification of components by HPLC-MS/MS(n). The potentiality as anti-inflammatory (LOX, COX, iNOS enzymes), antioxidant, antifungal and nematicidal was determined. PEEs contain high levels of TP, NFP and FP, including cinnamic acid, caffeic acid prenyl ester, caffeoyl dihydrocaffeate and caffeic acid 3,4-dihydroxyphenethyl ester, liquiritigenin, 2',4'-dihydroxychalcone and 2',4'-dihydroxy-3'-methoxychalcone. The PEEs in vitro reduced the activity of LOX and COX-2. Pretreatment of RAW 264.7 cells with PEEs before the induction of inflammatory state, inhibited NO overproduction and the iNOS protein expression was significantly decreased. The PEEs exhibited antioxidant, antifungal (Candida sp.) and nematicidal effect (C. elegans). These findings show the potential use of characterized PEEs from arid regions of Argentina as phytomedicine. Copyright © 2015 Elsevier GmbH. All rights reserved.
Lamraoui, Amal; Adi-Bessalem, Sonia; Laraba-Djebari, Fatima
2015-10-01
Scorpion venoms are known to cause different inflammatory disorders through complex mechanisms in various tissues. In the study here, the involvement of phospholipase A2 (PLA2) and cyclo-oxygenase (COX)-derived metabolites in hepatic and renal inflammation responses were examined. Mice were envenomed with Androctonus australis hector scorpion venom in the absence or presence of inhibitors that can interfere with lipid inflammatory mediator synthesis, i.e., dexamethasone (PLA2 inhibitor), indomethacin (non-selective COX-1/COX-2 inhibitor), or celecoxib (selective COX-2 inhibitor). The inflammatory response was assessed by evaluating vascular permeability changes, inflammatory cell infiltration, oxidative/nitrosative stress marker levels, and by histologic and functional analyses of the liver and kidney. Results revealed that the venom alone induced an inflammatory response in this tissues marked by increased microvascular permeability and inflammatory cell infiltration, increases in levels of nitric oxide and lipid peroxidation, and decreases in antioxidant defense. Moreover, significant alterations in the histological architecture of these organs were associated with increased serum levels of some metabolic enzymes, as well as urea and uric acid. Pre-treatment of mice with dexamethasone led to significant decreases of the inflammatory disorders in the hepatic parenchyma; celecoxib pre-treatment seemed to be more effective against renal inflammation. Indomethacin pre-treatment only slightly reduced the inflammatory disorders in the tissues. These results suggest that the induced inflammation response in liver was mediated mainly by PLA2 activation, while the renal inflammatory process was mediated by prostaglandin formation by COX-2. These findings provide additional insight toward the understanding of activated pathways and related mechanisms involved in scorpion envenoming syndrome.
Chang, M C; Uang, B J; Tsai, C Y; Wu, H L; Lin, B R; Lee, C S; Chen, Y J; Chang, C H; Tsai, Y L; Kao, C J; Jeng, J H
2007-01-01
Background and purpose: Platelet hyperactivity is important in the pathogenesis of cardiovascular diseases. Betel leaf (PBL) is consumed by 200-600 million betel quid chewers in the world. Hydroxychavicol (HC), a betel leaf component, was tested for its antiplatelet effect. Experimental approach: We tested the effect of HC on platelet aggregation, thromboxane B2 (TXB2) and reactive oxygen species (ROS) production, cyclooxygenase (COX) activity, ex vivo platelet aggregation and mouse bleeding time and platelet plug formation in vivo. The pharmacokinetics of HC in rats was also assessed. Key results: HC inhibited arachidonic acid (AA) and collagen-induced platelet aggregation and TXB2 production. HC inhibited the thrombin-induced TXB2 production, but not platelet aggregation. SQ29548, suppressed collagen- and thrombin-induced TXB2 production, but not thrombin-induced platelet aggregation. HC also suppressed COX-1/COX-2 enzyme activity and the AA-induced ROS production and Ca2+ mobilization. HC further inhibited the ex vivo platelet aggregation of platelet-rich plasma (>100 nmole/mouse) and prolonged platelet plug formation (>300 nmole/mouse) in mesenteric microvessels, but showed little effect on bleeding time in mouse tail. Moreover, pharmacokinetics analysis found that more than 99% of HC was metabolized within 3 min of administration in Sprague-Dawley rats in vivo. Conclusions and implications: HC is a potent COX-1/COX-2 inhibitor, ROS scavenger and inhibits platelet calcium signaling, TXB2 production and aggregation. HC could be a potential therapeutic agent for prevention and treatment of atherosclerosis and other cardiovascular diseases through its anti-inflammatory and antiplatelet effects, without effects on haemostatic functions. PMID:17641677
Viji, V; Helen, A
2008-07-23
Bacopa monniera Linn is described in the Ayurvedic Materia Medica, as a therapeutically useful herb for the treatment of inflammation. In the current study, we investigated the anti-inflammatory activity of methanolic extract of Bacopa monniera (BME). For some experiments EtOAc and bacoside fractions were prepared from BME. The effect of these extracts in modulating key mediators of inflammation was evaluated. Carrageenan-induced rat paw edema, rat mononuclear cells and human whole blood assay were employed as in vivo and in vitro models. In carrageenan-induced rat paw edema, BME brought about 82% edema inhibition at a dose of 100mg/kg i.p. when compared to indomethacin (INDO) (3mg/kg) that showed 70% edema inhibition. BME also significantly inhibited 5-lipoxygenase (5-LOX), 15-LOX and cyclooxygenase-2 (COX-2) activities in rat monocytes in vivo. Among the fractions tested in vitro, EtOAc fraction possessed significant 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity with IC(50) value of 30 microg/ml compared to butylated hydroxyl toluene (IC(50) = 13 microg/ml). This fraction also exerted significant hydroxyl radical scavenging activity with IC(50) value of 25 microg/ml in comparison with quercetin (IC(50) = 5 microg/ml). Inhibitory effects of EtOAc and bacoside fractions on LOX and COX activities in Ca-A23187 stimulated rat mononuclear cells were also assessed. 5-LOX IC(50) values were 25 microg/ml for EtOAc, 68 microg/ml for bacosides and 2 microg/ml for nordihydroguaiaretic acid (NDGA) where as COX-2 IC(50) values were 1.32 microg/ml for EtOAc, 1.19 microg/ml for bacoside fraction and 0.23 microg/ml for indomethacin. EtOAc and bacoside fractions also brought about significant decrease in TNF-alpha release ex vivo. Bacopa monniera possesses anti-inflammatory activity through inhibition of COX and LOX and downregulation of TNF-alpha.
Park, Seok-Woo; Kim, Hyo-Sun; Choi, Myung-Sun; Kim, Ji-Eun; Jeong, Woo-Jin; Heo, Dae-Seog; Sung, Myung-Whun
2011-06-01
We have previously observed that cyclooxygenase-2 (COX-2) inhibition blocked the production of vascular endothelial growth factor (VEGF) in some head and neck squamous cell carcinoma (HNSCC) cells. However, as some HNSCC cells showed little response to COX-2 inhibition, although they highly expressed COX-2 and prostaglandin E2, we set out to elucidate what made this difference between them and focused on the possibility of the differential expression of COX-1. In western blotting, we found that COX-1 was expressed in SNU-1041 and SNU-1066, but not in SNU-1076 and PCI-50. Only in those cell lines without expression of COX-1 was VEGF production blocked meaningfully by small interfering RNA of COX-2. However, by cotreating with small interfering RNAs of COX-2 and COX-1, VEGF synthesis and prostaglandin E2 were inhibited in SNU-1041 and SNU-1066, similarly in SNU-1076 and PCI-50 with high expression of only COX-2. We also found that there was no difference in the pattern of prostaglandin synthesis between COX-2 and COX-1 through enzyme-linked immunosorbent assay for various prostaglandins. Our study suggests that, as COX-1 and COX-2 express and affect VEGF synthesis in HNSCC cells, we should check COX-1 expression in investigations on cancer treatment by inhibiting COX-2-induced prostaglandins.
Sawdy, R J; Slater, D M; Dennes, W J; Sullivan, M H; Bennett, P R
2000-01-01
The aim of this study was to determine the relative contributions of cyclo-oxygenase (COX) types 1 and 2 to prostaglandin synthesis at term. Fetal membranes were collected from 6 pregnancies after elective caesarean section at term, prior to labour. The presence of COX-1 and COX-2 protein was determined using Western analysis. The relative contributions of the two isoforms of COX to prostaglandin synthesis were determined by incubation of fetal membrane discs with either a COX-2 selective inhibitor, SC236, or a COX-1 selective inhibitor, SC560, and measurement of prostaglandin release during 24 h using enzyme-linked immuno-sorbent assay (ELISA). Both COX-1 and COX-2 protein were demonstrated in amnion and chorion-decidua. The COX-2 selective inhibitor, SC-236, significantly reduced prostaglandin synthesis, both in its COX-2 specific and higher, non-specific concentration ranges. The COX-1 selective inhibitor, SC-560, had no effect upon prostaglandin synthesis in its COX-1 specific concentration range, but did significantly reduce prostaglandin synthesis at higher, non-selective concentrations. Fetal membranes contain both COX-1 and COX-2 at term, but only COX-2 contributes towards prostaglandin synthesis. COX-2 selective NSAI drugs will be as effective as non-selective agents in inhibition of fetal membrane prostaglandin synthesis and may represent a new strategy for tocolysis. Copyright 2000 Harcourt Publishers Ltd.
Araujo, Magali; Welch, William J.
2009-01-01
Thromboxane (TxA2) and nitric oxide (NO) are potent vasoactive autocoids that modulate tubuloglomerular feedback (TGF). Each is produced in the macula densa (MD) by cyclooxygenase-2 (COX-2) and neuronal nitric oxide synthase (nNOS), respectively. Both enzymes are similarly regulated in the MD and their interaction may be an important factor in the regulation of TGF and glomerular filtration rate. We tested the hypothesis that TGF is modified by the balance between MD nNOS-dependent NO and MD COX-2-dependent TxA2. We measured maximal TGF during perfusion of the loop of Henle (LH) by continuous recording of the proximal tubule stopped flow pressure response to LH perfusion of artificial tubular fluid (ATF) at 0 and 40 nl/min. The response to inhibitors of COX-1 (SC-560), COX-2 [parecoxib (Pxb)], and nNOS (l-NPA) added to the ATF solution was measured in separate nephrons. COX-2 inhibition with Pxb reduced TGF by 46% (ATF + vehicle vs. ATF + Pxb), whereas COX-1 inhibition with SC-560 reduced TGF by only 23%. Pretreatment with intravenous infusion of SQ-29,548, a selective thromboxone/PGH2 receptor (TPR) antagonist, blocked all of the SC-560 effect on TGF, suggesting that this effect was due to activation of TPR. However, SQ-29,548 only partially diminished the effect of Pxb (−66%). Specific inhibition of nNOS with l-NPA increased TGF, as expected. However, the ability of Pxb to reduce TGF was significantly impaired with comicroperfusion of l-NPA. These data suggest that COX-2 modulates TGF by two proconstrictive actions: generation of TxA2 acting on TPR and by simultaneous reduction of NO. PMID:19144694
Enhancing radiotherapy with cyclooxygenase-2 enzyme inhibitors: a rational advance?
Choy, Hak; Milas, Luka
2003-10-01
Results of preclinical studies suggesting that the efficacy of molecular therapies is enhanced when they are combined with radiation have generated a surge of clinical trials combining these modalities. We reviewed the literature to identify the rationale and experimental foundation supporting the use of cyclooxygenase-2 (COX-2) inhibitors with standard radiotherapy regimens in current clinical trials. Radiation affects the ability of cells to divide and proliferate and induces the expression of genes involved in signaling pathways that promote cell survival or trigger cell death. Future advances in radiotherapy will hinge on understanding mechanisms by which radiation-induced transcription of genes governs cell death and survival, the selective control of this process, and the optimal approaches to combining this knowledge with existing therapeutic modalities. COX-2 is expressed in all stages of cancer, and in several cancers its overexpression is associated with poor prognosis. Evidence from clinical and preclinical studies indicates that COX-2-derived prostaglandins participate in carcinogenesis, inflammation, immune response suppression, apoptosis inhibition, angiogenesis, and tumor cell invasion and metastasis. Clinical trial results have demonstrated that selective inhibition of COX-2 can alter the development and the progression of cancer. In animal models, selective inhibition of COX-2 activity is associated with the enhanced radiation sensitivity of tumors without appreciably increasing the effects of radiation on normal tissue, and preclinical evidence suggests that the principal mechanism of radiation potentiation through selective COX-2 inhibition is the direct increase in cellular radiation sensitivity and the direct inhibition of tumor neovascularization. Results of current early-phase studies of non-small-cell lung, esophageal, cervical, and brain cancers will determine whether therapies that combine COX-2 inhibitors and radiation will enter randomized clinical trials.
Nile, Christopher J; de Vente, Jan; Gillespie, James I
2010-02-01
To use an isolated preparation of the guinea-pig bladder lamina propria (LP) to investigate the effects of adenosine tri-phosphate (ATP) and nitric oxide (NO) on the release of prostaglandin E(2) (PGE(2)). The bladders of female guinea-pigs (200-400 g) were isolated and opened to expose the urothelial surface. The LP was dissected free of the underlying detrusor muscle and cut into strips from the dome to base. Strips were then incubated in Krebs buffer at 37 degrees C. Each tissue piece was then exposed to the stable ATP analogue, BzATP, and a NO donor, diethylamine-NONOate (DEANO), and the effect on PGE(2) output into the supernatant determined using the Parameter(TM) PGE(2) enzyme immunoassay kit (R & D Systems, Abingdon, UK). Experiments were repeated in the presence of purinergic receptor and cyclooxygenase (COX) enzymes, COX I and COX II, antagonists. The cellular location of COX I, COX II and neuronal NO synthase (nNOS) within the bladder LP was also determined by immunohistochemistry. PGE(2) production was significantly increased by BzATP. Antagonist studies showed the purinergic stimulation involved both P(2)X and P(2)Y receptors. The BzATP response was inhibited by the COX inhibitor indomethacin (COX I >COX II) but not by DUP 697 (COX II >COX I). Thus, BzATP stimulation occurs because of COX I stimulation. NO had no effect on PGE(2) production over the initial 10 min of an exposure. However, PGE(2) output was increased 100 min after exposure to the NO donor. In the presence of NO, the BzATP stimulation was abolished. Immunohistochemistry was used to confirm the location of COX I to the basal and inner intermediate urothelial layers and to cells within the diffuse layer of LP interstitial cells. In addition, nNOS was also located in the basal urothelial layers whilst COX II was found in the interstitial cell layers. There is complex interaction between ATP and NO to modulate PGE(2) release from the bladder LP in the un-stretched preparation. Such interactions suggest a complex interrelationship of signals derived from this region of the bladder wall. The importance of these interactions in relation to the physiology of the LP remains to be determined.
Involvement of PLA2, COX and LOX in Rhinella arenarum oocyte maturation.
Ortiz, Maria Eugenia; Bühler, Marta Inés; Zelarayán, Liliana Isabel
2014-11-01
In Rhinella arenarum, progesterone is the physiological nuclear maturation inducer that interacts with the oocyte surface and starts a cascade of events that leads to germinal vesicle breakdown (GVBD). Polyunsaturated fatty acids and their metabolites produced through cyclooxygenase (COX) and lipoxygenase (LOX) pathways play an important role in reproductive processes. In amphibians, to date, the role of arachidonic acid (AA) metabolites in progesterone (P4)-induced oocyte maturation has not been clarified. In this work we studied the participation of three enzymes involved in AA metabolism - phospholipase A2 (PLA2), COX and LOX in Rhinella arenarum oocyte maturation. PLA2 activation induced maturation in Rhinella arenarum oocytes in a dose-dependent manner. Oocytes when treated with 0.08 μM melittin showed the highest response (78 ± 6% GVBD). In follicles, PLA2 activation did not significantly induce maturation at the assayed doses (12 ± 3% GVBD). PLA2 inhibition with quinacrine prevented melittin-induced GVBD in a dose-dependent manner, however PLA2 inactivation did not affect P4-induced maturation. This finding suggests that PLA2 is not the only phospholipase involved in P4-induced maturation in this species. P4-induced oocyte maturation was inhibited by the COX inhibitors indomethacin and rofecoxib (65 ± 3% and 63 ± 3% GVBD, respectively), although COX activity was never blocked by their addition. Follicles showed a similar response following the addition of these inhibitors. Participation of LOX metabolites in maturation seems to be correlated with seasonal variation in ovarian response to P4. During the February to June period (low P4 response), LOX inhibition by nordihydroguaiaretic acid or lysine clonixinate increased maturation by up to 70%. In contrast, during the July to January period (high P4 response), LOX inhibition had no effect on hormone-induced maturation.
Lescano, Caroline Honaiser; Arrigo, Jucicléia da Silva; Cardoso, Cláudia Andrea Lima; Coutinho, Janclei Pereira; Moslaves, Iluska Senna Bonfá; Ximenes, Thalita Vieira do Nascimento; Kadri, Monica Cristina Toffoli; Weber, Simone Schneider; Perdomo, Renata Trentin; Kassuya, Cândida Aparecida Leite; Vieira, Maria do Carmo; Sanjinez-Argandoña, Eliana Janet
2018-01-01
The anti-inflammatory, antiproliferative and cytoprotective activity of the Attalea phalerata Mart. ex Spreng pulp oil was evaluated by in vitro and in vivo methods. As for the chemical profile, the antioxidant activity was performed by spectrophotometry, and the profile of carotenoids and amino acids by chromatography. Our data demonstrated that A. phalerata oil has high carotenoid content, antioxidant activity and the presence of 5 essential amino acids. In the in vitro models of inflammation, the oil demonstrated the capacity to inhibit COX1 and COX2 enzymes, the production of nitric oxide and also induces macrophages to spreading. In the in vivo models of inflammation, the oil inhibited edema and leukocyte migration in the Wistar rats. In the in vitro model of antiproliferative and cytoprotective activity, the oil was shown inactive against the kidney carcinoma and prostate carcinoma lineage cells and with cytoprotective capacity in murine fibroblast cells, inhibiting the cytotoxic action of doxorubicin. Therefore, it is concluded that A. phalerata pulp oil has anti-inflammatory effects with nutraceutical properties potential due to the rich composition. Moreover, the oil also has cytoprotective activity probably because of its ability to inhibit the action of free radicals. PMID:29634766
Ludwig, Bernd
2017-01-01
Biogenesis of mitochondrial cytochrome c oxidase (COX) is a complex process involving the coordinate expression and assembly of numerous subunits (SU) of dual genetic origin. Moreover, several auxiliary factors are required to recruit and insert the redox-active metal compounds, which in most cases are buried in their protein scaffold deep inside the membrane. Here we used a combination of gel electrophoresis and pull-down assay techniques in conjunction with immunostaining as well as complexome profiling to identify and analyze the composition of assembly intermediates in solubilized membranes of the bacterium Paracoccus denitrificans. Our results show that the central SUI passes through at least three intermediate complexes with distinct subunit and cofactor composition before formation of the holoenzyme and its subsequent integration into supercomplexes. We propose a model for COX biogenesis in which maturation of newly translated COX SUI is initially assisted by CtaG, a chaperone implicated in CuB site metallation, followed by the interaction with the heme chaperone Surf1c to populate the redox-active metal-heme centers in SUI. Only then the remaining smaller subunits are recruited to form the mature enzyme which ultimately associates with respiratory complexes I and III into supercomplexes. PMID:28107462
Green, Howard J; Bombardier, Eric; Burnett, Margaret; Iqbal, Sobia; D'Arsigny, Christine L; O'Donnell, Dennis E; Ouyang, Jing; Webb, Katherine A
2008-09-01
The objective of this study was to determine whether patients with chronic obstructive lung disease (COPD) display differences in organization of the metabolic pathways and segments involved in energy supply compared with healthy control subjects. Metabolic pathway potential, based on the measurement of the maximal activity (V(max)) of representative enzymes, was assessed in tissue extracted from the vastus lateralis in seven patients with COPD (age 67 +/- 4 yr; FEV(1)/FVC = 44 +/- 3%, where FEV(1) is forced expiratory volume in 1 s and FVC is forced vital capacity; means +/- SE) and nine healthy age-matched controls (age 68 +/- 2 yr; FEV(1)/FVC = 75 +/- 2%). Compared with control, the COPD patients displayed lower (P < 0.05) V(max) (mol.kg protein(-1).h(-1)) for cytochrome c oxidase (COX; 21.2 +/- 2.0 vs. 28.7 +/- 2.2) and 3-hydroxyacyl-CoA dehydrogenase (HADH; 2.54 +/- 0.14 vs. 3.74 +/- 0.12) but not citrate synthase (CS; 2.20 +/- 0.16 vs. 3.19 +/- 0.5). While no differences between groups were observed in V(max) for creatine phosphokinase, phosphorylase (PHOSPH), phosphofructokinase (PFK), pyruvate kinase, and lactate dehydrogenase, hexokinase (HEX) was elevated in COPD (P < 0.05). Enzyme activity ratios were higher (P < 0.05) for HEX/CS, HEX/COX, PHOSPH/HADH and PFK/HADH in COPD compared with control. It is concluded that COPD patients exhibit a reduced potential for both the electron transport system and fat oxidation and an increased potential for glucose phosphorylation while the potential for glycogenolysis and glycolysis remains normal. A comparison of enzyme ratios indicated greater potentials for glucose phosphorylation relative to the citric acid cycle and the electron transport chain and glycogenolysis and glycolysis relative to beta-oxidation.
[Cyclooxygenase-2: a new therapeutic target in atherosclerosis?].
Páramo, José A; Beloqui, Oscar; Orbe, Josune
2006-05-27
It is now widely accepted that atherosclerosis is a complex chronic inflammatory disorder of the arterial tree associated with several risk factors. From the initial phases to eventual rupture of vulnerable atherosclerotic plaques, a low-grade inflammation, also termed microinflammation, appears to play a key pathogenetic role. Systemic inflammatory markers (C reactive protein, cytokines adhesion molecules) also play a role in this process. Experimental and clinical evidence suggests that cyclooxygenase-2 (COX-2), an enzyme which catalyzes the generation of prostaglandins from arachidonic acid, also contributes to lesion formation. Recent reports by our group have demonstrated increased monocyte COX-2 activity and the production of prostaglandin E2 in relation to cardiovascular risk factors and subclinical atherosclerosis in asymptomatic subjects. Our findings support the notion that the COX-2/prostaglandin E2 axis may have a role, raising the question as to whether its selective inhibition might be an attractive therapeutic target in atherosclerosis. COX-2 inhibitors, collectively called "coxibs" (celecoxib, rofecoxib, valdecoxib, lumiracoxib, etc), held a promise as anti-inflammatory drugs without the some of the side effects of aspirin or non steroidal antiinflammatory agents. However, clinical studies raise several clinically relevant questions as to their beneficial role in atherosclerosis prevention, because of increased thrombogenicity and cardiovascular risk, and therefore coxibs should be restricted in atherosclerosis-prone patients.
Rapid development of colitis in NSAID-treated IL-10-deficient mice.
Berg, Daniel J; Zhang, Juan; Weinstock, Joel V; Ismail, Hanan F; Earle, Keith A; Alila, Hector; Pamukcu, Rifat; Moore, Steven; Lynch, Richard G
2002-11-01
Interleukin (IL)-10 is an anti-inflammatory and immune regulatory cytokine. IL-10-deficient mice (IL-10(-/-)) develop chronic inflammatory bowel disease (IBD), indicating that endogenous IL-10 is a central regulator of the mucosal immune response. Prostaglandins are lipid mediators that may be important mediators of intestinal inflammation. In this study we assessed the role of prostaglandins in the regulation of mucosal inflammation in the IL-10(-/-) mouse model of IBD. Prostaglandin (PG) synthesis was inhibited with nonselective or cyclooxygenase (COX)-isoform selective inhibitors. Severity of inflammation was assessed histologically. Cytokine production was assessed by ribonuclease protection analysis and enzyme-linked immunosorbent assay. PGE(2) levels were assessed by enzyme immunoassay. COX-1 and COX-2 expression was assessed by Western blot analysis. Nonsteroidal anti-inflammatory drug (NSAID) treatment of wild-type mice had minimal effect on the colon. In contrast, NSAID treatment of 4-week-old IL-10(-/-) mice resulted in rapid development of colitis characterized by infiltration of the lamina propria with macrophages and interferon gamma-producing CD4(+) T cells. Colitis persisted after withdrawal of the NSAID. NSAID treatment decreased colonic PGE(2) levels by 75%. Treatment of IL-10(-/-) mice with sulindac sulfone (which does not inhibit PG production) did not induce colitis whereas the NSAID sulindac induced severe colitis. COX-1- or COX-2-selective inhibitors used alone did not induce IBD in IL-10(-/-) mice. However, the combination of COX-1- and COX-2-selective inhibitors did induce colitis. NSAID treatment of IL-10(-/-) mice results in the rapid development of severe, chronic IBD. Endogenous PGs are important inhibitors of the development of intestinal inflammation in IL-10(-/-) mice.
Kirkby, Nicholas S.; Lundberg, Martina H.; Harrington, Louise S.; Leadbeater, Philip D. M.; Milne, Ginger L.; Potter, Claire M. F.; Al-Yamani, Malak; Adeyemi, Oladipupo; Warner, Timothy D.; Mitchell, Jane A.
2012-01-01
Prostacyclin is an antithrombotic hormone produced by the endothelium, whose production is dependent on cyclooxygenase (COX) enzymes of which two isoforms exist. It is widely believed that COX-2 drives prostacyclin production and that this explains the cardiovascular toxicity associated with COX-2 inhibition, yet the evidence for this relies on indirect evidence from urinary metabolites. Here we have used a range of experimental approaches to explore which isoform drives the production of prostacyclin in vitro and in vivo. Our data show unequivocally that under physiological conditions it is COX-1 and not COX-2 that drives prostacyclin production in the cardiovascular system, and that urinary metabolites do not reflect prostacyclin production in the systemic circulation. With the idea that COX-2 in endothelium drives prostacyclin production in healthy individuals removed, we must seek new answers to why COX-2 inhibitors increase the risk of cardiovascular events to move forward with drug discovery and to enable more informed prescribing advice. PMID:23045674
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Yoke-Chen; Wang, James D.; Hahn, Rita A.
Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to themore » skin 24, 48, and 72 h post-SM exposure. After 96 h, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermal–epidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure. - Highlights: • Bifunctional anti-inflammatory prodrug (NDH4338) tested on SM exposed mouse skin • The prodrug NDH4338 was designed to target COX2 and acetylcholinesterase. • The application of NDH4338 improved cutaneous wound repair after SM induced injury. • NDH4338 treatment demonstrated a reduction in COX2 expression on SM injured skin. • Changes of skin repair markers are associated with NDH4438 treatment on SM injury.« less
Li, Tingting; Hu, Jianyan; Du, Shanshan; Chen, Yongdong; Wang, Shuai
2014-01-01
Purpose Retinal vascular dysfunction caused by vascular endothelial growth factor (VEGF) is the major pathological change that occurs in diabetic retinopathy (DR). It has recently been demonstrated that G protein-coupled receptor 91 (GPR91) plays a major role in both vasculature development and retinal angiogenesis. In this study, we examined the signaling pathways involved in GPR91-dependent VEGF release during the early stages of retinal vascular change in streptozotocin-induced diabetes. Methods Diabetic rats were assigned randomly to receive intravitreal injections of shRNA lentiviral particles targeting GPR91 (LV.shGPR91) or control particles (LV.shScrambled). Accumulation of succinate was assessed by gas chromatography-mass spectrometry (GC-MS). At 14 weeks, the ultrastructure and function of the retinal vessels of diabetic retinas with or without shRNA treatment were assessed using hematoxylin and eosin (HE) staining, transmission electron microscopy (TEM), and Evans blue dye permeability. The expression of GPR91, extracellular signal-regulated kinases 1 and 2 (ERK1/2) and cyclooxygenase-2 (COX-2) were measured using immunofluorescence and western blotting. COX-2 and VEGF mRNA were determined by quantitative RT–PCR. Prostaglandin E2 (PGE2) and VEGF secretion were detected using an enzyme-linked immunosorbent assay. Results Succinate exhibited abundant accumulation in diabetic rat retinas. The retinal telangiectatic vessels, basement membrane thickness, and Evans blue dye permeability were attenuated by treatment with GPR91 shRNA. In diabetic rats, knockdown of GPR91 inhibited the activities of ERK1/2 and COX-2 as well as the expression of PGE2 and VEGF. Meanwhile, COX-2, PGE2, and VEGF expression was inhibited by ERK1/2 inhibitor U0126 and COX-2 inhibitor NS-398. Conclusions Our data suggest that hyperglycemia causes succinate accumulation and GPR91 activity in retinal ganglion cells, which mediate VEGF-induced retinal vascular change via the ERK1/2/COX-2/PGE2 pathway. This study highlights the signaling pathway as a potential target for intervention in DR. PMID:25324681
NASA Astrophysics Data System (ADS)
Kumbar, Mahadev N.; Kamble, Ravindra R.; Dasappa, Jagadeesh Prasad; Bayannavar, Praveen K.; Khamees, Hussien Ahmed; Mahendra, M.; Joshi, Shrinivas D.; Dodamani, Suneel; Rasal, V. P.; Jalalpure, Sunil
2018-05-01
A series of novel 5-(1-aryl-3-(thiophen-2-yl)-1H-pyrazol-4-yl)-1H-tetrazoles 7(h-s) were designed and synthesized. Structural characterization was done by spectral and single crystal X-ray studies. The intermolecular interactions of compound 7n were quantified and visualized using Hirshfeld surface analysis. Structures of newly synthesized compounds were docked into active site of COX-2 enzyme PDB:
Infrared (810-nm) low-level laser therapy on rat experimental knee inflammation.
Pallotta, Rodney Capp; Bjordal, Jan Magnus; Frigo, Lúcio; Leal Junior, Ernesto Cesar Pinto; Teixeira, Simone; Marcos, Rodrigo Labat; Ramos, Luciano; Messias, Felipe de Moura; Lopes-Martins, Rodrigo Alvaro Brandão
2012-01-01
Arthritis of the knee is the most common type of joint inflammatory disorder and it is associated with pain and inflammation of the joint capsule. Few studies address the effects of the 810-nm laser in such conditions. Here we investigated the effects of low-level laser therapy (LLLT; infrared, 810-nm) in experimentally induced rat knee inflammation. Thirty male Wistar rats (230-250 g) were anesthetized and injected with carrageenan by an intra-articular route. After 6 and 12 h, all animals were killed by CO(2) inhalation and the articular cavity was washed for cellular and biochemical analysis. Articular tissue was carefully removed for real-time PCR analysis in order to evaluate COX-1 and COX-2 expression. LLLT was able to significantly inhibit the total number of leukocytes, as well as the myeloperoxidase activity with 1, 3, and 6 J (Joules) of energy. This result was corroborated by cell counting showing the reduction of polymorphonuclear cells at the inflammatory site. Vascular extravasation was significantly inhibited at the higher dose of energy of 10 J. Both COX-1 and 2 gene expression were significantly enhanced by laser irradiation while PGE(2) production was inhibited. Low-level laser therapy operating at 810 nm markedly reduced inflammatory signs of inflammation but increased COX-1 and 2 gene expression. Further studies are necessary to investigate the possible production of antiinflammatory mediators by COX enzymes induced by laser irradiation in knee inflammation.
Chang, Yoke-Chen; Wang, James D.; Hahn, Rita A.; Gordon, Marion K.; Joseph, Laurie B.; Heck, Diane E.; Heindel, Ned D.; Young, Sherri C.; Sinko, Patrick J.; Casillas, Robert P.; Laskin, Jeffrey D.; Laskin, Debra L.; Gerecke, Donald R.
2014-01-01
Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to the skin 24, 48, and 72 hr post-SM exposure. After 96 hr, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermalepidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure. PMID:25127551
Chang, Yoke-Chen; Wang, James D; Hahn, Rita A; Gordon, Marion K; Joseph, Laurie B; Heck, Diane E; Heindel, Ned D; Young, Sherri C; Sinko, Patrick J; Casillas, Robert P; Laskin, Jeffrey D; Laskin, Debra L; Gerecke, Donald R
2014-10-15
Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to the skin 24, 48, and 72 h post-SM exposure. After 96 h, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermal-epidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Furong; Yu, Xuming; He, Chunyan
The arachidonic acid (AA) metabolizing enzymes are the potential therapeutic targets of cardiovascular diseases (CVDs). As sex differences have been shown in the risk and outcome of CVDs, we investigated the regulation of heart AA metabolizing enzymes (COXs, LOXs, and CYPs) by sex-dependent growth hormone (GH) secretory patterns. The pulsatile (masculine) GH secretion at a physiological concentration decreased CYP1A1 and CYP2J3 mRNA levels more efficiently in the H9c2 cells compared with the constant (feminine) GH secretion; however, CYP1B1 mRNA levels were higher following the pulsatile GH secretion. Sex differences in CYP1A1, CYP1B1, and CYP2J11 mRNA levels were observed in bothmore » the wild-type and GHR deficient mice. No sex differences in the mRNA levels of COXs, LOXs, or CYP2E1 were observed in the wild-type mice. The constant GH infusion induced heart CYP1A1 and CYP2J11, and decreased CYP1B1 in the male C57/B6 mice constantly infused with GH (0.4 μg/h, 7 days). The activity of rat Cyp2j3 promoter was inhibited by the STAT5B protein, but was activated by C/EBPα (CEBPA). Compared with the constant GH administration, the levels of the nuclear phosphorylated STAT5B protein and its binding to the rat Cyp2j3 promoter were higher following the pulsatile GH administration. The constant GH infusion decreased the binding of the nuclear phosphorylated STAT5B protein to the mouse Cyp2j11 promoter. The data suggest the sexually dimorphic transcription of heart AA metabolizing enzymes, which might alter the risk and outcome of CVDs. GHR-STAT5B signal transduction pathway may be involved in the sex difference in heart CYP2J levels. - Highlights: • The transcription of heart Cyp1a1, Cyp1b1 and Cyp2j genes is sexually dimorphic. • There are no sex differences in the mRNA levels of heart COXs, LOXs, or CYP2E1. • GHR-STAT5B pathway is involved in sexually dimorphic transcription of heart Cpy2j genes. • Heart CYPs-mediated metabolism pathway of arachidonic acid may be sex different.« less
2012-01-01
Introduction Cecal ligation and puncture (CLP) is an inflammatory condition that leads to multisystemic organ failure. Flavocoxid, a dual inhibitor of cyclooxygenase (COX-2) and 5-lipoxygenase (5-LOX), has been shown in vitro to possess antiinflammatory activity in lipopolysaccharide (LPS)-stimulated rat macrophages by reducing nuclear factor (NF)-κB activity and COX-2, 5-LOX and inducible nitric oxide synthase (iNOS) expression. The aim of this study was to evaluate the effects of flavocoxid in a murine model of CLP-induced polymicrobial sepsis. Methods C57BL/6J mice were subjected to CLP or sham operation. In a first set of experiments, an intraperitoneal injection of flavocoxid (20 mg/kg) or vehicle was administered 1 hour after surgery and repeated every 12 hours. Survival rate was monitored every 24 hours throughout 120 hours. Furthermore, additional groups of sham and CLP mice were killed 18 hours after surgical procedures for blood-sample collection and the lung and liver were collected for biomolecular, biochemical and histopathologic studies. Results COX-2, 5-LOX, tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-10, extracellular-regulated-kinase 1/2 (ERK), JunN-terminal kinase (JNK), NF-κB, and β-arrestin 2 protein expression were evaluated in lung and liver with Western blot analysis. In addition, leukotriene B4 (LTB4), prostaglandin E2 (PGE2), cytokines, and lipoxin A4 serum content were measured with an enzyme-linked immunosorbent assay (ELISA). Flavocoxid administration improved survival, reduced the expression of NF-κB, COX-2, 5-LOX, TNF-α and IL-6 and increased IL-10 production. Moreover, flavocoxid inhibited the mitogen-activated protein kinases (MAPKs) pathway, preserved β-arrestin 2 expression, reduced blood LTB4, PGE2, TNF-α and IL-6, and increased IL-10 and lipoxin A4 serum levels. The treatment with flavocoxid also protected against the histologic damage induced by CLP and reduced the myeloperoxidase (MPO) activity in the lung and liver. Conclusions Flavocoxid protects mice from sepsis, suggesting that this dual inhibitor may represent a promising approach in such a life-threatening condition. PMID:22356547
Bitto, Alessandra; Minutoli, Letteria; David, Antonio; Irrera, Natasha; Rinaldi, Mariagrazia; Venuti, Francesco S; Squadrito, Francesco; Altavilla, Domenica
2012-02-22
Cecal ligation and puncture (CLP) is an inflammatory condition that leads to multisystemic organ failure. Flavocoxid, a dual inhibitor of cyclooxygenase (COX-2) and 5-lipoxygenase (5-LOX), has been shown in vitro to possess antiinflammatory activity in lipopolysaccharide (LPS)-stimulated rat macrophages by reducing nuclear factor (NF)-κB activity and COX-2, 5-LOX and inducible nitric oxide synthase (iNOS) expression. The aim of this study was to evaluate the effects of flavocoxid in a murine model of CLP-induced polymicrobial sepsis. C57BL/6J mice were subjected to CLP or sham operation. In a first set of experiments, an intraperitoneal injection of flavocoxid (20 mg/kg) or vehicle was administered 1 hour after surgery and repeated every 12 hours. Survival rate was monitored every 24 hours throughout 120 hours. Furthermore, additional groups of sham and CLP mice were killed 18 hours after surgical procedures for blood-sample collection and the lung and liver were collected for biomolecular, biochemical and histopathologic studies. COX-2, 5-LOX, tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-10, extracellular-regulated-kinase 1/2 (ERK), JunN-terminal kinase (JNK), NF-κB, and β-arrestin 2 protein expression were evaluated in lung and liver with Western blot analysis. In addition, leukotriene B4 (LTB4), prostaglandin E2 (PGE2), cytokines, and lipoxin A4 serum content were measured with an enzyme-linked immunosorbent assay (ELISA). Flavocoxid administration improved survival, reduced the expression of NF-κB, COX-2, 5-LOX, TNF-α and IL-6 and increased IL-10 production. Moreover, flavocoxid inhibited the mitogen-activated protein kinases (MAPKs) pathway, preserved β-arrestin 2 expression, reduced blood LTB4, PGE2, TNF-α and IL-6, and increased IL-10 and lipoxin A4 serum levels. The treatment with flavocoxid also protected against the histologic damage induced by CLP and reduced the myeloperoxidase (MPO) activity in the lung and liver. Flavocoxid protects mice from sepsis, suggesting that this dual inhibitor may represent a promising approach in such a life-threatening condition.
Min, Sung-Won; Kim, Nam-Jae; Baek, Nam-In; Kim, Dong-Hyun
2009-09-25
Artemisia princeps Pampanini (family Asteraceae) is an herbal medicine widely used as a hepatoprotective, antioxidative, anti-inflammatory, and antibacterial agent in Korea, China, and Japan. This study aimed to elucidate the anti-inflammatory effect of the main constituents, eupatilin and jaceosidin, isolated from Artemisia princeps. We used carrageenan-induced inflammation in an air pouch on the back of mice and carrageenan-induced hind paw edema in rats to determine the anti-inflammatory effects of eupatilin and jaceosidin. Inflammatory makers, such as expression of pro-inflammatory cytokines and cyclooxygenase (COX)-2, and activation of nuclear factor-kappa B (NF-kappaB), were measured by enzyme-linked immunosorbent assays and immunoblot analyses. Eupatilin and jaceosidin blocked carrageenan-induced increase in leukocyte number and protein levels in air pouch exudates. Eupatilin and jaceosidin inhibited COX-2 expression and NF-kappaB activation, and markedly reduced TNF-alpha, IL-1beta, and prostaglandin E2 (PGE(2)) levels. They also inhibited hind paw edema induced by carrageenan. Eupatilin and jaceosidin had similar activity. These findings suggest that eupatilin and jaceosidin may reduce inflammation by inhibiting NF-kappaB activation, and that Artemisia princeps inhibits inflammation because of these constituents.
Abdel-Azeem, Ahmed Z; Abdel-Hafez, Atef A; El-Karamany, Gamal S; Farag, Hassan H
2009-05-15
The discovery of the inducible isoform of cyclooxygenase enzyme (COX-2) spurred the search for anti-inflammatory agents devoid of the undesirable effects associated with classical NSAIDs. New chlorzoxazone ester prodrugs (6-8) of some acidic NSAIDs (1-3) were designed, synthesized and evaluated as mutual prodrugs with the aim of improving the therapeutic potency and retard the adverse effects of gastrointestinal origin. The structure of the synthesized mutual ester prodrugs (6-8) were confirmed by IR, (1)H NMR, mass spectroscopy (MS) and their purity was ascertained by TLC and elemental analyses. In vitro chemical stability revealed that the synthesized ester prodrugs (6-8) are chemically stable in hydrochloric acid buffer pH 1.2 as a non-enzymatic simulated gastric fluid (SGF) and in phosphate buffer pH 7.4 as non-enzymatic simulated intestinal fluid (SIF). In 80% human plasma, the mutual prodrugs were found to be susceptible to enzymatic hydrolysis at relatively faster rate (t(1/2) approximately 37 and 34 min for prodrugs 6 and 7, respectively). Mutual ester prodrugs (6-8) were evaluated for their anti-inflammatory and muscle relaxation activities. Scanning electromicrographs of the stomach showed that the ester prodrugs induced very little irritancy in the gastric mucosa of rats after oral administration for 4days. In addition, docking of the mutual ester prodrugs (6-8) into COX-2 active site was conducted in order to predict the affinity and orientation of these prodrugs at the enzyme active site.
An assay of optimal cytochrome c oxidase activity in fish gills.
Hu, Yau-Chung; Chung, Meng-Han; Lee, Tsung-Han
2018-07-15
Cytochrome c oxidase (COX) catalyzes the terminal oxidation reaction in the electron transport chain (ETC) of aerobic respiratory systems. COX activity is an important indicator for the evaluation of energy production by aerobic respiration in various tissues. On the basis of the respiratory characteristics of muscle, we established an optimal method for the measurement of maximal COX activity. To validate the measurement of cytochrome c absorbance, different ionic buffer concentrations and tissue homogenate protein concentrations were used to investigate COX activity. The results showed that optimal COX activity is achieved when using 50-100 μg fish gill homogenate in conjunction with 75-100 mM potassium phosphate buffer. Furthermore, we compared branchial COX activities among three species of euryhaline teleost (Chanos chanos, Oreochromis mossambicus, and Oryzias dancena) to investigate differences in aerobic respiration of osmoregulatory organs. COX activities in the gills of these three euryhaline species were compared with COX subunit 4 (COX4) protein levels. COX4 protein abundance and COX activity patterns in the three species occurring in environments with various salinities increased when fish encountered salinity challenges. This COX activity assay therefore provides an effective and accurate means of assessing aerobic metabolism in fish. Copyright © 2018 Elsevier Inc. All rights reserved.
Martín-Aragón, Sagrario; Villar, Ángel; Benedí, Juana
2016-02-04
Dietary antioxidants might exert an important role in the aging process by relieving oxidative damage, a likely cause of age-associated brain dysfunctions. This study aims to investigate the influence of esculetin (6,7-dihydroxycoumarin), a naturally occurring antioxidant in the diet, on mood-related behaviors and cognitive function and its relation with age and brain oxidative damage. Behavioral tests were employed in 11-, 17- and 22-month-old male C57BL/6J mice upon an oral 35day-esculetin treatment (25mg/kg). Activity of antioxidant enzymes, GSH and GSSG levels, GSH/GSSG ratio, and mitochondrial function were analyzed in brain cortex at the end of treatment in order to assess the oxidative status related to mouse behavior. Esculetin treatment attenuated the increased immobility time and enhanced the diminished climbing time in the forced swim task elicited by acute restraint stress (ARS) in the 11- and 17-month-old mice versus their counterpart controls. Furthermore, ARS caused an impairment of contextual memory in the step-through passive avoidance both in mature adult and aged mice which was partially reversed by esculetin only in the 11-month-old mice. Esculetin was effective to prevent the ARS-induced oxidative stress mostly in mature adult mice by restoring antioxidant enzyme activities, augmenting the GSH/GSSG ratio and increasing cytochrome c oxidase (COX) activity in cortex. Modulation of the mood-related behavior and cognitive function upon esculetin treatment in a mouse model of ARS depends on age and is partly due to the enhancement of redox status and levels of COX activity in cortex. Copyright © 2015. Published by Elsevier Inc.
Xu, Weijun; Lucke, Andrew J; Fairlie, David P
2015-04-01
Accurately predicting relative binding affinities and biological potencies for ligands that interact with proteins remains a significant challenge for computational chemists. Most evaluations of docking and scoring algorithms have focused on enhancing ligand affinity for a protein by optimizing docking poses and enrichment factors during virtual screening. However, there is still relatively limited information on the accuracy of commercially available docking and scoring software programs for correctly predicting binding affinities and biological activities of structurally related inhibitors of different enzyme classes. Presented here is a comparative evaluation of eight molecular docking programs (Autodock Vina, Fitted, FlexX, Fred, Glide, GOLD, LibDock, MolDock) using sixteen docking and scoring functions to predict the rank-order activity of different ligand series for six pharmacologically important protein and enzyme targets (Factor Xa, Cdk2 kinase, Aurora A kinase, COX-2, pla2g2a, β Estrogen receptor). Use of Fitted gave an excellent correlation (Pearson 0.86, Spearman 0.91) between predicted and experimental binding only for Cdk2 kinase inhibitors. FlexX and GOLDScore produced good correlations (Pearson>0.6) for hydrophilic targets such as Factor Xa, Cdk2 kinase and Aurora A kinase. By contrast, pla2g2a and COX-2 emerged as difficult targets for scoring functions to predict ligand activities. Although possessing a high hydrophobicity in its binding site, β Estrogen receptor produced reasonable correlations using LibDock (Pearson 0.75, Spearman 0.68). These findings can assist medicinal chemists to better match scoring functions with ligand-target systems for hit-to-lead optimization using computer-aided drug design approaches. Copyright © 2015 Elsevier Inc. All rights reserved.
Karlsson, Jessica; Gouveia-Figueira, Sandra; Alhouayek, Mireille; Fowler, Christopher J
2017-01-01
Tumour necrosis factor α (TNFα) is involved in the pathogenesis of prostate cancer, a disease where disturbances in the endocannabinoid system are seen. In the present study we have investigated whether treatment of DU145 human prostate cancer cells affects anandamide (AEA) catabolic pathways. Additionally, we have investigated whether cyclooxygenase-2 (COX-2) can regulate the uptake of AEA into cells. Levels of AEA synthetic and catabolic enzymes were determined by qPCR. AEA uptake and hydrolysis in DU145 and RAW264.7 macrophage cells were assayed using AEA labeled in the arachidonic and ethanolamine portions of the molecule, respectively. Levels of AEA, related N-acylethanolamines (NAEs), prostaglandins (PG) and PG-ethanolamines (PG-EA) in DU145 cells and medium were quantitated by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis. TNFα treatment of DU145 cells increased mRNA levels of PTSG2 (gene of COX-2) and decreased the mRNA of the AEA synthetic enzyme N-acyl-phosphatidylethanolamine selective phospholipase D. mRNA levels of the AEA hydrolytic enzymes fatty acid amide hydrolase (FAAH) and N-acylethanolamine-hydrolyzing acid amidase were not changed. AEA uptake in both DU145 and RAW264.7 cells was inhibited by FAAH inhibition, but not by COX-2 inhibition, even in RAW264.7 cells where the expression of this enzyme had greatly been induced by lipopolysaccharide + interferon γ treatment. AEA and related NAEs were detected in DU145 cells, but PGs and PGE2-EA were only detected when the cells had been preincubated with 100 nM AEA. The data demonstrate that in DU145 cells, TNFα treatment changes the relative expression of the enzymes involved in the hydrolytic and oxygenation catabolic pathways for AEA. In RAW264.7 cells, COX-2, in contrast to FAAH, does not regulate the cellular accumulation of AEA. Further studies are necessary to determine the extent to which inflammatory mediators are involved in the abnormal endocannabinoid signalling system in prostate cancer.
Carroll, Chad C; O'Connor, Devin T; Steinmeyer, Robert; Del Mundo, Jonathon D; McMullan, David R; Whitt, Jamie A; Ramos, Jahir E; Gonzales, Rayna J
2013-07-01
This study evaluated the activity and content of cyclooxygenase (COX)-1 and -2 in response to acute resistance exercise (RE) in human skeletal muscle. Previous work suggests that COX-1, but not COX-2, is the primary COX isoform elevated with resistance exercise in human skeletal muscle. COX activity, however, has not been assessed after resistance exercise in humans. It was hypothesized that RE would increase COX-1 but not COX-2 activity. Muscle biopsies were taken from the vastus lateralis of nine young men (25 ± 1 yr) at baseline (preexercise), 4, and 24 h after a single bout of knee extensor RE (three sets of 10 repetitions at 70% of maximum). Tissue lysate was assayed for COX-1 and COX-2 activity. COX-1 and COX-2 protein levels were measured via Western blot analysis. COX-1 activity increased at 4 h (P < 0.05) compared with preexercise, but returned to baseline at 24 h (PRE: 60 ± 10, 4 h: 106 ± 22, 24 h: 72 ± 8 nmol PGH2·g total protein(-1)·min(-1)). COX-2 activity was elevated at 4 and 24 h after RE (P < 0.05, PRE: 51 ± 7, 4 h: 100 ± 19, 24 h: 98 ± 14 nmol PGH2·g total protein(-1)·min(-1)). The protein level of COX-1 was not altered (P > 0.05) with acute RE. In contrast, COX-2 protein levels were nearly 3-fold greater (P > 0.05) at 4 h and 5-fold greater (P = 0.06) at 24 h, compared with preexercise. In conclusion, COX-1 activity increases transiently with exercise independent of COX-1 protein levels. In contrast, both COX-2 activity and protein levels were elevated with exercise, and this elevation persisted to at least 24 h after RE.
Inada, Takefumi; Kubo, Kozue; Shingu, Koh
2010-10-01
Propofol is an intravenous anesthetic, widely used for general anesthesia during surgery, which inevitably involves tissue trauma with inflammation. At sites of inflammation, prostanoids, especially prostaglandin E₂ (PGE₂), are abundant. This study addresses the effect of propofol on macrophage PGE₂ production. Using thioglycollate-elicited murine peritoneal macrophages, propofol (7.5-30 μM) suppressed lipopolysaccharide-induced PGE₂ production. The suppression was via the direct inhibition of cyclooxygenase (COX) enzyme activity and due neither to the downregulation of COX expression nor the inhibition of arachidonic acid release from plasma membranes. In macrophage:natural killer (NK) cell co-culture, propofol dramatically increased interferon-gamma (IFN-γ) production, and the actions of propofol were mimicked by a selective COX-2 inhibitor, NS-398, as well as the selective EP4 receptor antagonist L-161,982, suggesting a role of PGE₂ suppression in the upregulation of IFN-γ production. Furthermore, in purified NK cell culture, PGE₂ directly suppressed the production of IFN-γ by activated NK cells, which was reversed by selective inhibition of EP4 activity. Taken together, our results show that, in macrophage:NK cell co-culture, propofol, through the suppression of macrophage PGE₂ production, upregulates NK cell IFN-γ production by alleviating EP4 receptor-mediated suppression of IFN-γ production. Propofol may potentially exert considerable influence on inflammation and immunity by suppressing PGE₂ synthesis. Copyright © 2010 Elsevier B.V. All rights reserved.
Sanjeewa, Kalu Kapuge Asanka; Fernando, Ilekkuttige Priyan Shanura; Kim, Eun-A; Ahn, Ginnae; Jee, Youngheun; Jeon, You-Jin
2017-02-01
Sargassum horneri is an edible brown alga that grows in the subtidal zone as an annual species along the coasts of South Korea, China, and Japan. Recently, an extreme amount of S. horneri moved into the coasts of Jeju Island from the east coast of China, which made huge economic and environmental loss to the Jeju Island. Thus, utilization of this biomass becomes a big issue with the local authorities. Therefore, the present study was performed to evaluate the anti-inflammatory potential of crude polysaccharides (CPs) extracted from S. horneri China strain in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. CPs were precipitated from S. horneri digests prepared by enzyme assistant extraction using four food-grade enzymes (AMG, Celluclast, Viscozyme, and Alcalase). The production levels of nitric oxide (NO) and pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α and interleukin (IL)-1β were measured by Griess assay and enzyme-linked immunosorbent assay, respectively. The levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), nuclear factor (NF)-κB, and mitogen-activated protein kinases (MAPKs) were measured by using western blot. The IR spectrums of the CPs were recorded using a fourier transform infrared spectroscopy (FT-IR) spectrometer. The polysaccharides from the Celluclast enzyme digest (CCP) showed the highest inhibition of NO production in LPS-stimulated RAW 264.7 cells (IC 50 value: 95.7 µg/mL). Also, CCP dose-dependently down-regulated the protein expression levels of iNOS and COX-2 as well as the production of inflammatory cytokines, including TNF-α and IL-1β, compared to the only LPS-treated cells. In addition, CCP inhibited the activation of NF-κB p50 and p65 and the phosphorylation of MAPKs, including p38 and extracellular signal-regulated kinase, in LPS-stimulated RAW 264.7 cells. Furthermore, FT-IR analysis showed that the FT-IR spectrum of CCP is similar to that of commercial fucoidan. Our results suggest that CCP has anti-inflammatory activities and is a potential candidate for the formulation of a functional food ingredient or/and drug to treat inflammatory diseases.
Sanjeewa, Kalu Kapuge Asanka; Fernando, Ilekkuttige Priyan Shanura; Kim, Eun-A; Jee, Youngheun
2017-01-01
BACKGROUND/OBJECTIVES Sargassum horneri is an edible brown alga that grows in the subtidal zone as an annual species along the coasts of South Korea, China, and Japan. Recently, an extreme amount of S. horneri moved into the coasts of Jeju Island from the east coast of China, which made huge economic and environmental loss to the Jeju Island. Thus, utilization of this biomass becomes a big issue with the local authorities. Therefore, the present study was performed to evaluate the anti-inflammatory potential of crude polysaccharides (CPs) extracted from S. horneri China strain in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. MATERIALS/METHODS CPs were precipitated from S. horneri digests prepared by enzyme assistant extraction using four food-grade enzymes (AMG, Celluclast, Viscozyme, and Alcalase). The production levels of nitric oxide (NO) and pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α and interleukin (IL)-1β were measured by Griess assay and enzyme-linked immunosorbent assay, respectively. The levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), nuclear factor (NF)-κB, and mitogen-activated protein kinases (MAPKs) were measured by using western blot. The IR spectrums of the CPs were recorded using a fourier transform infrared spectroscopy (FT-IR) spectrometer. RESULTS The polysaccharides from the Celluclast enzyme digest (CCP) showed the highest inhibition of NO production in LPS-stimulated RAW 264.7 cells (IC50 value: 95.7 µg/mL). Also, CCP dose-dependently down-regulated the protein expression levels of iNOS and COX-2 as well as the production of inflammatory cytokines, including TNF-α and IL-1β, compared to the only LPS-treated cells. In addition, CCP inhibited the activation of NF-κB p50 and p65 and the phosphorylation of MAPKs, including p38 and extracellular signal-regulated kinase, in LPS-stimulated RAW 264.7 cells. Furthermore, FT-IR analysis showed that the FT-IR spectrum of CCP is similar to that of commercial fucoidan. CONCLUSIONS Our results suggest that CCP has anti-inflammatory activities and is a potential candidate for the formulation of a functional food ingredient or/and drug to treat inflammatory diseases. PMID:28194259
Mikaeili, Fattaneh; Mathis, Alexander; Deplazes, Peter; Mirhendi, Hossein; Barazesh, Afshin; Ebrahimi, Sepideh; Kia, Eshrat Beigom
2017-09-26
The definitive genetic identification of Toxocara species is currently based on PCR/sequencing. The objectives of the present study were to design and conduct an in silico polymerase chain reaction-restriction fragment length polymorphism method for identification of Toxocara species. In silico analyses using the DNASIS and NEBcutter softwares were performed with rDNA internal transcribed spacers, and mitochondrial cox1 and nad1 sequences obtained in our previous studies along with relevant sequences deposited in GenBank. Consequently, RFLP profiles were designed and all isolates of T. canis and T. cati collected from dogs and cats in different geographical areas of Iran were investigated with the RFLP method using some of the identified suitable enzymes. The findings of in silico analyses predicted that on the cox1 gene only the MboII enzyme is appropriate for PCR-RFLP to reliably distinguish the two species. No suitable enzyme for PCR-RFLP on the nad1 gene was identified that yields the same pattern for all isolates of a species. DNASIS software showed that there are 241 suitable restriction enzymes for the differentiation of T. canis from T. cati based on ITS sequences. RsaI, MvaI and SalI enzymes were selected to evaluate the reliability of the in silico PCR-RFLP. The sizes of restriction fragments obtained by PCR-RFLP of all samples consistently matched the expected RFLP patterns. The ITS sequences are usually conserved and the PCR-RFLP approach targeting the ITS sequence is recommended for the molecular differentiation of Toxocara species and can provide a reliable tool for identification purposes particularly at the larval and egg stages.
2012-01-01
Background Constitutive activation of Ras in immortalized bronchial epithelial cells increases electron transport chain activity, oxygen consumption and tricarboxylic acid cycling through unknown mechanisms. We hypothesized that members of the Ras family may stimulate respiration by enhancing the expression of the Vb regulatory subunit of cytochrome c oxidase (COX). Results We found that the introduction of activated H-RasV12 into immortalized human bronchial epithelial cells increased eIF4E-dependent COX Vb protein expression simultaneously with an increase in COX activity and oxygen consumption. In support of the regulation of COX Vb expression by the Ras family, we also found that selective siRNA-mediated inhibition of K-Ras expression in A549 lung adenocarcinoma cells reduced COX Vb protein expression, COX activity, oxygen consumption and the steady-state concentration of ATP. We postulated that COX Vb-mediated activation of COX activity may be required for the anchorage-independent growth of A549 cells as soft agar colonies or as lung xenografts. We transfected the A549 cells with COX Vb small interfering or shRNA and observed a significant reduction of their COX activity, oxygen consumption, ATP and ability to grow in soft agar and as poorly differentiated tumors in athymic mice. Conclusion Taken together, our findings indicate that the activation of Ras increases COX activity and mitochondrial respiration in part via up-regulation of COX Vb and that this regulatory subunit of COX may have utility as a Ras effector target for the development of anti-neoplastic agents. PMID:22917272
Early increased density of cyclooxygenase-2 (COX-2) immunoreactive neurons in Down syndrome.
Mulet, Maria; Blasco-Ibáńez, José Miguel; Crespo, Carlos; Nácher, Juan; Varea, Emilio
2017-01-01
Neuroinflammation is one of the hallmarks of Alzheimer's disease. One of the enzymes involved in neuroinflammation, even in early stages of the disease, is COX-2, an inducible cyclooxygenase responsible for the generation of eicosanoids and for the generation of free radicals. Individuals with Down syndrome develop Alzheimer's disease early in life. Previous studies pointed to the possible overexpression of COX-2 and correlated it to brain regions affected by the disease. We analysed the COX-2 expression levels in individuals with Down syndrome and in young, adult and old mice of the Ts65Dn mouse model for Down syndrome. We have observed an overexpression of COX-2 in both, Down syndrome individuals and mice. Importantly, mice already presented an overexpression of COX-2 at postnatal day 30, before neurodegeneration begins; which suggests that neuroinflammation may underlie the posterior neurodegeneration observed in individuals with Down syndrome and in Ts65Dn mice and could be a factor for the premature appearance of Alzheimer's disease..
Δ9-THC-caused synaptic and memory impairments are mediated through COX-2 signaling
Yang, Hongwei; Tang, Ya-ping; Sun, Hao; Song, Yunping; Chen, Chu
2013-01-01
SUMMARY Marijuana has been used for thousands of years as a treatment for medical conditions. However, untoward side effects limit its medical value. Here we show that synaptic and cognitive impairments following repeated exposure to Δ9-tetrahydrocannabinol (Δ9-THC) are associated with the induction of cyclooxygenase-2 (COX-2), an inducible enzyme that converts arachidonic acid to prostanoids, in the brain. COX-2 induction by Δ9-THC is mediated via CB1 receptor-coupled G-protein βγ subunits. Pharmacological or genetic inhibition of COX-2 blocks down-regulation and internalization of glutamate receptor subunits and alterations of the dendritic spine density of hippocampal neurons induced by repeated Δ9-THC exposures. Ablation of COX-2 also eliminates Δ9-THC-impaired hippocampal long-term synaptic plasticity, spatial, and fear memories. Importantly, the beneficial effects of decreasing β-amyloid plaques and neurodegeneration by Δ9-THC in Alzheimer’s disease animals are retained in the presence of COX-2 inhibition. These results suggest that the applicability of medical marijuana would be broadened by concurrent inhibition of COX-2. PMID:24267894
Trettin, Arne; Böhmer, Anke; Suchy, Maria-Theresia; Probst, Irmelin; Staerk, Ulrich; Stichtenoth, Dirk O.; Frölich, Jürgen C.
2014-01-01
Paracetamol (acetaminophen) is a widely used analgesic drug. It interacts with various enzyme families including cytochrome P450 (CYP), cyclooxygenase (COX), and nitric oxide synthase (NOS), and this interplay may produce reactive oxygen species (ROS). We investigated the effects of paracetamol on prostacyclin, thromboxane, nitric oxide (NO), and oxidative stress in four male subjects who received a single 3 g oral dose of paracetamol. Thromboxane and prostacyclin synthesis was assessed by measuring their major urinary metabolites 2,3-dinor-thromboxane B2 and 2,3-dinor-6-ketoprostaglandin F1α, respectively. Endothelial NO synthesis was assessed by measuring nitrite in plasma. Urinary 15(S)-8-iso-prostaglanding F2α was measured to assess oxidative stress. Plasma oleic acid oxide (cis-EpOA) was measured as a marker of cytochrome P450 activity. Upon paracetamol administration, prostacyclin synthesis was strongly inhibited, while NO synthesis increased and thromboxane synthesis remained almost unchanged. Paracetamol may shift the COX-dependent vasodilatation/vasoconstriction balance at the cost of vasodilatation. This effect may be antagonized by increasing endothelial NO synthesis. High-dosed paracetamol did not increase oxidative stress. At pharmacologically relevant concentrations, paracetamol did not affect NO synthesis/bioavailability by recombinant human endothelial NOS or inducible NOS in rat hepatocytes. We conclude that paracetamol does not increase oxidative stress in humans. PMID:24799980
Anaphylaxis to ibuprofen in a 12-year-old boy
Kay, Emily; Ben-Shoshan, Moshe
2013-01-01
Non-steroidal anti-inflammatory (NSAIDs) drugs are a group of medications acting through cyclooxygenase (COX-1) and cyclooxygenase (COX-2) enzymes inhibition. Hypersensitivity reactions to NSAIDs, although not rare, are poorly characterised and often go undiagnosed especially in children. We present in this paper a case of ibuprofen anaphylaxis that exemplifies the challenges involved in diagnosis and management of hypersensitivity reactions to NSAIDs. PMID:23322307
Kilico, Ismail; Kokcu, Arif; Kefeli, Mehmet; Kandemir, Bedri
2014-01-01
Cyclooxygenase-2 (COX-2) levels increase in women with endometriosis. COX-2, via increasing prostaglandin E2, contributes to an increase in vascular endothelial growth factor. In this way, COX-2 may contribute to the progression and continuity of endometriosis. We investigated the effect of dexketoprofen trometamol, a new selective COX-2 enzyme inhibitor, on experimentally induced endometriotic cysts. Experimental endometriotic cysts were created in 60 adult female Wistar albino rats. The rats were randomized to 2 equal groups, a control (group Con) and a dexketoprofen (group Dex) group. Six weeks later, cyst volumes were measured as in vivo (volume 1). Following volume 1 measurement, for 4 weeks group Con received 0.1 ml distilled water; group Dex received 0.375 mg dexketoprofen trometamol/0.1 ml distilled water, intramuscularly, twice a day. At the end of administration, the cyst volumes were remeasured (volume 2), and the cysts totally excised and weighed. Glandular (GT) and stromal tissues (ST) and natural killer (NK) cell contents in the cyst wall were scored. NK cell content and volume 1 were not different between the 2 groups. Volume 2, cyst weight, and GT and ST contents in group Dex were significantly lower than those in group Con. Dexketoprofen trometamol significantly reduced the development of experimentally induced endometriotic cysts both macroscopically and microscopically.
Progesterone and the Repression of Myometrial Inflammation: The Roles of MKP-1 and the AP-1 System
Lei, K.; Georgiou, E. X.; Chen, L.; Yulia, A.; Sooranna, S. R.; Brosens, J. J.; Bennett, P. R.
2015-01-01
Progesterone (P4) maintains uterine quiescence during pregnancy and its functional withdrawal is associated with increased prostaglandin synthesis and the onset of labor. In primary human myometrial cells, the glucocorticoid receptor (GR) rather than the P4 receptor mediates P4 antagonism of IL-1β-induced cyclooxygenase-2 (COX-2) expression, the rate-limiting enzyme in prostaglandin synthesis. We now report that P4 also acts via GR to induce MAPK phosphatase (MKP)-1 and knockdown of MKP-1 impairs the ability of P4 to repress IL-1β-dependent COX-2 induction. Microarray analysis revealed that P4 repressed preferentially activator protein-1-responsive genes in response to IL-1β. Consistent with these observations, we found that the ability of P4 to reduce c-Jun activation was lost upon GR as well as MKP-1 knockdown. Interestingly, c-Jun levels in human myometrial cells declined upon GR and MKP-1 knockdown, which suggests the presence of an activator protein-1 feedback loop. This is supported by our observation that c-Jun levels declined after an initial rise in primary myometrial cells treated with phorbol 12-myrisatate 13-acetate, a potent activator of c-Jun N-terminal kinase. Finally, we show that MKP-1 is an intermediate in P4-mediated repression of some but not all IL-1β-responsive genes. For example, P4 repression of IL11 and IRAK3 was maintained upon MKP-1 knockdown. Taken together, the data show that P4 acts via GR to drive MKP-1 expression, which in turn inhibits IL-1β-dependent c-Jun activation and COX-2 expression. PMID:26280733
Gao, Mingzhang; Wang, Min; Miller, Kathy D; Zheng, Qi-Huang
2011-09-01
The enzyme cyclooxygenase-2 (COX-2) is overexpressed in a variety of malignant tumors. This study was designed to develop new radiotracers for imaging of COX-2 in cancer using biomedical imaging technique positron emission tomography (PET). Carbon-11-labeled celecoxib derivatives, [(11)C]4a-c and [(11)C]8a-d, were prepared by O-[(11)C] methylation of their corresponding precursors using [(11)C]CH(3)OTf under basic conditions and isolated by a simplified solid-phase extraction (SPE) method in 52 ± 2% (n = 5) and 57 ± 3% (n = 5) radiochemical yields based on [(11)C]CO(2) and decay corrected to end of bombardment (EOB). The overall synthesis time from EOB was 23 min, the radiochemical purity was >99%, and the specific activity at end of synthesis (EOS) was 277.5 ± 92.5 GBq/μmol (n = 5). The IC(50) values to block COX-2 for known compounds celecoxib (4d), 4a and 4c were 40, 290 and 8 nM, respectively, and preliminary findings from in vitro biological assay indicated that the synthesized new compounds 4b and 8a-d display similar strong inhibitory effectiveness in the MDA-MB-435 human cancer cell line in comparison with the parent compound 4d. These results encourage further in vivo evaluation of carbon-11-labeled celecoxib derivatives as new potential PET radiotracers for imaging of COX-2 expression in cancer. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Exogenous fatty acids and niacin on acute prostaglandin D2 production in human myeloid cells.
Montserrat-de la Paz, Sergio; Bermudez, Beatriz; Lopez, Sergio; Naranjo, Maria C; Romero, Yolanda; Bando-Hidalgo, Maria J; Abia, Rocio; Muriana, Francisco J G
2017-01-01
Niacin activates HCA 2 receptor that results in the release of PGD 2 . However, little is known on PGD 2 -producing cells and the role of fatty acids. Notably M-CSF macrophages exhibited a timely dependent PGD 2 production upon niacin challenge. Short pretreatment of M-CSF macrophages with autologous postprandial TRLs induced the down-regulation of HCA 2 gene and up-regulation of genes encoding COX1 and COX2 enzymes in a fatty acid-dependent manner. These effects were paralleled by a higher PGD 2 production with postprandial TRL-SFAs. The niacin-mediated transcriptional activity of all genes involved in PGD 2 biosynthesis was desensitized in a time-dependent manner by postprandial TRLs, leading to a decreased PGD 2 release. In vivo, the net excursions of PGD 2 in plasma followed similar fatty acid-dependent patterns as those found for PGD 2 release in vitro. The predominant fatty acid class in the diet acutely modulates PGD 2 biosynthetic pathway both in vitro and in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.
Wang, Peng; Li, Xiao-Tao; Sun, Lei; Shen, Lei
2013-01-01
In the present study, we investigated the anti-inflammatory activity of water-soluble polysaccharide of Agaricus blazei Murill (WSP-AbM) on ovariectomized osteopenic rats. The rats were administered orally WSP-AbM (200 mg/kg BW) for 8 weeks. Subsequent serum maleic dialdehyde (MDA) level, total antioxidant status (TAOS), nuclear factor kappa B (NF-κB) level, polymorphonuclear (PMN) cells level, interleukin-1β (IL-1β) level, inducible nitric oxide synthase (iNOS) level, tumor necrosis factor-α (TNF-α) level, adhesion molecule (ICAM-1), and cyclooxygenase-2 (COX-2) were determined by enzyme linked immunosorbent assay (ELISA) and immunohistochemistry, respectively. WSP-AbM administration markedly (P < 0.05) decreased serum IL-1β and TNF-α levels and the expressions of ICAM-1, COX-2, and iNOS NF-κB compared with OVX rats. WSP-AbM administration alsomarkedly (P < 0.05) decreased PMN infiltration. In conclusion, we observed that WSP-AbM supplementation had anti-inflammatory effects in a model of osteoporosis disease. PMID:24348690
Chattopadhyay, Pronobesh; Hazarika, Soilyadhar; Dhiman, Sunil; Upadhyay, Aadesh; Pandey, Anurag; Karmakar, Sanjeev; Singh, Lokendra
2012-01-01
Background: Vitex negundo L. (Verbenaceae) is a hardy plant widely distributed in the Indian subcontinent and used for treatment of a wide spectrum of health disorders in traditional and folk medicine, some of which have been experimentally validated. In present study, we aimed to investigate the anti-inflammatory effects of V. negundo in carrageenan-induced paw edema in rats, and to investigate the probable mechanism of anti-inflammatory action. Materials and Methods: Paw edema was produced by injecting 1% solution of carrageenan, and the paw volume was measured before and after carrageenan injection up to 5 h. V. negundo leaf oil was extracted using a Clevenger apparatus and administered by a trans-dermal route to Wistar rats and the percentage of inhibition of inflammation was observed using a Plethysmometer by comparing a compound aerosol-based formulation with 1 mg diclofinac diethylamine BP and 7 mg methyl salicylate IP/kg body weight served as a standard drug whereas paraffin oil served as the placebo group. After withdrawing of blood, serum was separated and cyclooxygenase (COX)-1 and COX-2 inhibitory activities were measured by the enzyme immuno assay (EIA) method by using a COX inhibitor screening assay kit. Results and Discussion: V. negundo leaf oil significantly (P < 0.05) reduced the carrageenan-induced paw edema as compared to the placebo group (paraffin oil) and 1 mg diclofinac diethylamine BP and 7 mg methyl salicylate IP showed the maximum inhibition of paw edema as compared to the V. negundo leaf oil treated group and the control group. Also in the present study V. negundo leaf oil showed significantly (P < 0.05) inhibits COX-1 pathways rather than COX-2 pathways as compared to the V. negundo leaf oil treated group. Conclusion: It is suggested that the V. negundo leaf oil is a potent anti-inflammatory agent and acts via inhibition of COX-2 without much interfering COX-1 pathways. PMID:22923950
Boolbol, S K; Dannenberg, A J; Chadburn, A; Martucci, C; Guo, X J; Ramonetti, J T; Abreu-Goris, M; Newmark, H L; Lipkin, M L; DeCosse, J J; Bertagnolli, M M
1996-06-01
Inducible cyclooxygenase (Cox-2), also known as prostaglandin H synthase 2 (PGH-2) is a key enzyme in the formation of prostaglandins and thromboxanes. Cox-2 is the product of an immediate-early gene that is expressed in response to growth factors, tumor promoters, or cytokines. Overexpression of Cox-2 is associated with both human colon cancers and suppression of apoptosis in cultured epithelia] cells, an activity that is reversed by the nonsteroidal anti-inflammatory drug, sulindac sulfide. To address the relationship between Cox-2, apoptosis, and tumor development in vivo, we studied C57BL/6J-Min/+(Min) mice, a strain containing a fully penetrant dominant mutation in the Apc gene, leading to the development of gastrointestinal adenomas by 110 days of age. Min mice were fed AIN-76A chow diet and given sulindac (0.5 +/- 0.1 mg/day) in drinking water. Control Min mice and homozygous C57BL/6J-+/+ normal littermates lacking the Apc mutation (+/+) were fed AIN-76A diet and given tap water to drink. At 110 days of age, all mice were sacrificed, and their intestinal tracts were examined. Control Min mice had 11.9 +/- 7.8 tumors per mouse compared to 0.1 +/- 0.1 tumors for sulindac-treated Min mice. As expected, +/+ littermates had no macroscopic tumors. Examination of histologically normal-appearing small bowel from Min animals revealed increased amounts of Cox-2 and prostaglandin E(2) compared to +/+ littermates. Using two different in situ techniques, terminal transferase-mediated dUTP nick end labeling and a direct immunoperoxidase method, Min animals also demonstrated a 27-47% decrease in enterocyte apoptosis compared to +/+ animals. Treatment with sulindac not only inhibited tumor formation but decreased small bowel Cox-2 and prostaglandin E(2) to baseline and restored normal levels of apoptosis. These data suggest that overexpression of Cox-2 is associated with tumorigenesis in the gastrointestinal epithelium, and that both are inhibited by sulindac administration.
Chen, Jing-Yi; Li, Chien-Feng; Kuo, Cheng-Chin; Tsai, Kelvin K; Hou, Ming-Feng; Hung, Wen-Chun
2014-07-25
Expression of indoleamine 2,3-dioxygenase (IDO) in primary breast cancer increases tumor growth and metastasis. However, the clinical significance of stromal IDO and the regulation of stromal IDO are unclear. Metabolomics and enzyme-linked immunosorbent assay (ELISA) were used to study the effect of cyclooxygenase-2 (COX-2)-overexpressing breast cancer cells on IDO expression in co-cultured human breast fibroblasts. Biochemical inhibitors and short-hairpin RNA (shRNA) were used to clarify how prostaglandin E2 (PGE2) upregulates IDO expression. Associations of stromal IDO with clinicopathologic parameters were tested in tumor specimens. An orthotopic animal model was used to examine the effect of COX-2 and IDO inhibitors on tumor growth. Kynurenine, the metabolite generated by IDO, increases in the supernatant of fibroblasts co-cultured with COX-2-overexpressing breast cancer cells. PGE2 released by cancer cells upregulates IDO expression in fibroblasts through an EP4/signal transducer and activator of transcription 3 (STAT3)-dependent pathway. Conversely, fibroblast-secreted kynurenine promotes the formation of the E-cadherin/Aryl hydrocarbon receptor (AhR)/S-phase kinase-associated protein 2 (Skp2) complex, resulting in degradation of E-cadherin to increase breast cancer invasiveness. The enhancement of motility of breast cancer cells induced by co-culture with fibroblasts is suppressed by the IDO inhibitor 1-methyl-tryptophan. Pathological analysis demonstrates that upregulation of stromal IDO is a poor prognosis factor and is associated with of COX-2 overexpression. Co-expression of cancer COX-2 and stromal IDO predicts a worse disease-free and metastasis-free survival. Finally, COX-2 and IDO inhibitors inhibit tumor growth in vivo. Integration of metabolomics and molecular and pathological approaches reveals the interplay between cancer and stroma via COX-2, and IDO promotes tumor progression and predicts poor patient survival.
Palumbo, S; Toscano, C D; Parente, L; Weigert, R; Bosetti, F
2011-07-01
Phospholipases A(2) (PLA(2)) are the enzymatic keys for the activation of the arachidonic acid (AA) cascade and the subsequent synthesis of pro-inflammatory prostanoids (prostaglandins and tromboxanes). Prostanoids play critical roles in the initiation and modulation of inflammation and their levels have been reported increased in several neurological and neurodegenerative disorders, including multiple sclerosis (MS). Here, we aimed to determine whether brain expression PLA(2) enzymes and the terminal prostagland in levels are changed during cuprizone-induced demyelination and in the subsequent remyelination phase. Mice were given the neurotoxicant cuprizone through the diet for six weeks to induce brain demyelination. Then, cuprizone was withdrawn and mice were returned to a normal diet for 6 weeks to allow spontaneous remyelination. We found that after 4-6 weeks of cuprizone, sPLA(2)(V) and cPLA(2), but not iPLA(2)(VI), gene expression was upregulated in the cortex, concomitant with an increase in the expression of astrocyte and microglia markers. Cyclooxygenase (COX)-2 gene expression was consistently upregulated during all the demyelination period, whereas COX-1 sporadically increased only at week 5 of cuprizone exposure. However, we found that at the protein level only sPLA(2)(V) and COX-1 were elevated during demyelination, with COX-1 selectively expressed by activated and infiltrated microglia/macrophages and astrocytes. Levels of PGE(2), PGD(2), PGI(2) and TXB(2) were also increased during demyelination. During remyelination, none of the PLA(2) isoforms was significantly changed, whereas COX-1 and -2 were sporadically upregulated only at the gene expression level. PGE(2), PGI(2) and PGD(2) levels returned to normal, whereas TXB(2) was still upregulated after 3 weeks of cuprizone withdrawal. Our study characterizes for the first time time-dependent changes in the AA metabolic pathway during cuprizone-induced demyelination and the subsequent remyelination and suggests that sPLA(2)(V) is the major isoform contributing to AA release. Published by Elsevier Ltd.
Palumbo, S.; Toscano, C.D.; Parente, L.; Weigert, R.; Bosetti, F.
2011-01-01
Phospholipases A2 (PLA2) are the enzymatic keys for the activation of the arachidonic acid (AA) cascade and the subsequent synthesis of proinflammatory prostanoids (prostaglandins and tromboxanes). Prostanoids play critical roles in the initiation and modulation of inflammation and their levels have been reported increased in several neurological and neurodegenerative disorders, including multiple sclerosis (MS). Here, we aimed to determine whether brain expression PLA2 enzymes and the terminal prostaglandin levels are changed during cuprizone-induced demyelination and in the subsequent remyelination phase. Mice were given the neurotoxicant cuprizone through the diet for six weeks to induce brain demyelination. Then, cuprizone was withdrawn and mice were returned to a normal diet for six weeks to allow spontaneous remyelination. We found that after 4–6 weeks of cuprizone, sPLA2(V) and cPLA2, but not iPLA2(VI), gene expression was upregulated in the cortex, concomitant with an increase in the expression of astrocyte and microglia markers. Cyclooxygenase (COX)-2 gene expression was consistently upregulated during all the demyelination period, whereas COX-1 sporadically increased only at week 5 of cuprizone exposure. However, we found that at the protein level only sPLA2(V) and COX-1 were elevated during demyelination, with COX-1 selectively expressed by activated and infiltrated microglia/macrophages and astrocytes. Levels of PGE2, PGD2, PGI2 and TXB2 were also increased during demyelination. During remyelination, none of the PLA2 isoforms was significantly changed, whereas COX-1 and -2 were sporadically upregulated only at the gene expression level. PGE2, PGI2, and PGD2 levels returned to normal, whereas TXB2 was still upregulated after 3 weeks of cuprizone withdrawal. Our study characterizes for the first time time-dependent changes in the AA metabolic pathway during cuprizone-induced demyelination and the subsequent remyelination and suggests that sPLA2(V) is the major isoform contributing to AA release. PMID:21530210
Colon cancer proliferating desulfosinigrin in wasabi (Wasabia japonica).
Weil, Marvin J; Zhang, Yanjun; Nair, Muraleedharan G
2004-01-01
A reduced incidence of different types of cancer has been linked to consumption of Brassica vegetables, and there is evidence that glucosinolates (GSLs) and their hydrolysis products play a role in reducing cancer risk. Wasabi (Wasabia japonica) and horseradish (Armoracia rusticana), both Brassica vegetables, are widely used condiments both in Japanese cuisine and in the United States. Desulfosinigrin (DSS) (1) was isolated from a commercially available wasabi powder and from fresh wasabi roots. Sinigrin (2) was isolated from horseradish roots. DSS and sinigrin were evaluated for their inhibitory effects on cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) enzymes, on lipid peroxidation, and on the proliferation of human colon (HCT-116), breast (MCF-7), lung (NCIH460), and central nervous system (CNS, SF-268) cancer cell lines. DSS did not inhibit COX enzymes or lipid peroxidation at 250 microg/ml. Sinigrin inhibited lipid peroxidation by 71% at 250 microg/ml. However, DSS promoted the growth of HCT-116 (colon) and NCI H460 (lung) human cancer cells as determined by the MTT assay in a concentration-dependent manner. At 3.72 microg/ml, a 27% increase in the number of viable human HCT-116 colon cancer cells was observed; the corresponding increases at 7.50 and 15 microg/ml were 42 and 69%, respectively. At 60 microg/ml, DSS doubled the number of HCT-16 colon cancer cells. For NCI H460 human lung cancer cells, DSS at 60 microg/ml increased the cell number by 20%. Sinigrin showed no proliferating effect on the tumor cells tested. This is the first report of the tumor cell-proliferating activity by a desulfoglucosinolate, the biosynthetic precursor of GSLs found in Brassica spp.
Oike, Hideaki; Wakamori, Minoru; Mori, Yasuo; Nakanishi, Hiroki; Taguchi, Ryo; Misaka, Takumi; Matsumoto, Ichiro; Abe, Keiko
2006-09-01
Vertebrate sensory cells such as vomeronasal neurons and Drosophila photoreceptor cells use TRP channels to respond to exogenous stimuli. In mammalian taste cells, bitter and sweet substances as well as some amino acids are received by G protein-coupled receptors (T2Rs or T1Rs). As a result of activation of G protein and phospholipase Cbeta2, the TRPM5 channel is activated. Intracellular Ca(2+) is known to be a TRPM5 activator, but the participation of lipid activators remains unreported. To clarify the effect of arachidonic acid on TRPM5 in taste cells, we investigated the expression profile of a series of enzymes involved in controlling the intracellular free arachidonic acid level, with the result that in a subset of taste bud cells, monoglyceride lipase (MGL) and cyclooxygenase-2 (COX-2) are expressed as well as the previously reported group IIA phospholipase A(2) (PLA(2)-IIA). Double-labeling analysis revealed that MGL, COX-2 and PLA(2)-IIA are co-expressed in some cells that express TRPM5. We then investigated whether arachidonic acid activates TRPM5 via a heterologous expression system in HEK293 cells, and found that its activation occurred at 10 microM arachidonic acid. These results strongly suggest the possibility that arachidonic acid acts as a modulator of TRPM5 in taste signaling pathways.
Majed, Batoule H.
2012-01-01
Prostacyclin (PGI2) is a member of the prostanoid group of eicosanoids that regulate homeostasis, hemostasis, smooth muscle function and inflammation. Prostanoids are derived from arachidonic acid by the sequential actions of phospholipase A2, cyclooxygenase (COX), and specific prostaglandin (PG) synthases. There are two major COX enzymes, COX1 and COX2, that differ in structure, tissue distribution, subcellular localization, and function. COX1 is largely constitutively expressed, whereas COX2 is induced at sites of inflammation and vascular injury. PGI2 is produced by endothelial cells and influences many cardiovascular processes. PGI2 acts mainly on the prostacyclin (IP) receptor, but because of receptor homology, PGI2 analogs such as iloprost may act on other prostanoid receptors with variable affinities. PGI2/IP interaction stimulates G protein-coupled increase in cAMP and protein kinase A, resulting in decreased [Ca2+]i, and could also cause inhibition of Rho kinase, leading to vascular smooth muscle relaxation. In addition, PGI2 intracrine signaling may target nuclear peroxisome proliferator-activated receptors and regulate gene transcription. PGI2 counteracts the vasoconstrictor and platelet aggregation effects of thromboxane A2 (TXA2), and both prostanoids create an important balance in cardiovascular homeostasis. The PGI2/TXA2 balance is particularly critical in the regulation of maternal and fetal vascular function during pregnancy and in the newborn. A decrease in PGI2/TXA2 ratio in the maternal, fetal, and neonatal circulation may contribute to preeclampsia, intrauterine growth restriction, and persistent pulmonary hypertension of the newborn (PPHN), respectively. On the other hand, increased PGI2 activity may contribute to patent ductus arteriosus (PDA) and intraventricular hemorrhage in premature newborns. These observations have raised interest in the use of COX inhibitors and PGI2 analogs in the management of pregnancy-associated and neonatal vascular disorders. The use of aspirin to decrease TXA2 synthesis has shown little benefit in preeclampsia, whereas indomethacin and ibuprofen are used effectively to close PDA in the premature newborn. PGI2 analogs have been used effectively in primary pulmonary hypertension in adults and have shown promise in PPHN. Careful examination of PGI2 metabolism and the complex interplay with other prostanoids will help design specific modulators of the PGI2-dependent pathways for the management of pregnancy-related and neonatal vascular disorders. PMID:22679221
Majed, Batoule H; Khalil, Raouf A
2012-07-01
Prostacyclin (PGI(2)) is a member of the prostanoid group of eicosanoids that regulate homeostasis, hemostasis, smooth muscle function and inflammation. Prostanoids are derived from arachidonic acid by the sequential actions of phospholipase A(2), cyclooxygenase (COX), and specific prostaglandin (PG) synthases. There are two major COX enzymes, COX1 and COX2, that differ in structure, tissue distribution, subcellular localization, and function. COX1 is largely constitutively expressed, whereas COX2 is induced at sites of inflammation and vascular injury. PGI(2) is produced by endothelial cells and influences many cardiovascular processes. PGI(2) acts mainly on the prostacyclin (IP) receptor, but because of receptor homology, PGI(2) analogs such as iloprost may act on other prostanoid receptors with variable affinities. PGI(2)/IP interaction stimulates G protein-coupled increase in cAMP and protein kinase A, resulting in decreased [Ca(2+)](i), and could also cause inhibition of Rho kinase, leading to vascular smooth muscle relaxation. In addition, PGI(2) intracrine signaling may target nuclear peroxisome proliferator-activated receptors and regulate gene transcription. PGI(2) counteracts the vasoconstrictor and platelet aggregation effects of thromboxane A(2) (TXA(2)), and both prostanoids create an important balance in cardiovascular homeostasis. The PGI(2)/TXA(2) balance is particularly critical in the regulation of maternal and fetal vascular function during pregnancy and in the newborn. A decrease in PGI(2)/TXA(2) ratio in the maternal, fetal, and neonatal circulation may contribute to preeclampsia, intrauterine growth restriction, and persistent pulmonary hypertension of the newborn (PPHN), respectively. On the other hand, increased PGI(2) activity may contribute to patent ductus arteriosus (PDA) and intraventricular hemorrhage in premature newborns. These observations have raised interest in the use of COX inhibitors and PGI(2) analogs in the management of pregnancy-associated and neonatal vascular disorders. The use of aspirin to decrease TXA(2) synthesis has shown little benefit in preeclampsia, whereas indomethacin and ibuprofen are used effectively to close PDA in the premature newborn. PGI(2) analogs have been used effectively in primary pulmonary hypertension in adults and have shown promise in PPHN. Careful examination of PGI(2) metabolism and the complex interplay with other prostanoids will help design specific modulators of the PGI(2)-dependent pathways for the management of pregnancy-related and neonatal vascular disorders.
Riehl, Terrence E; George, Robert J; Sturmoski, Mark A; May, Randal; Dieckgraefe, Brian; Anant, Shrikant; Houchen, Courtney W
2006-12-01
Azoxymethane (AOM) is a potent DNA-damaging agent and carcinogen that induces intestinal and colonic tumors in rodents. Evaluation of the stem cell population by colony formation assay reveals that, within 8 h after treatment, AOM (10 mg/kg) elicited a prosurvival response. In wild-type (WT) mice, AOM treatment induced a 2.5-fold increase in intestinal crypt stem cell survival. AOM treatment increased stem cell survival in cyclooxygenase (COX)-2(-/-) but not COX-1(-/-) mice, confirming a role of COX-1 in the AOM-induced increase in stem cell survival. COX-1 mRNA and protein expression as well as COX-1-derived PGE(2) synthesis were increased 8 h after AOM treatment. Immunohistochemical staining of COX-1 demonstrated expression of the enzyme in the crypt epithelial cells, especially in the columnar epithelial cells between the Paneth cells adjacent to the stem cell zone. WT mice receiving AOM exhibited increased intestinal apoptosis and a simultaneous reduction in crypt mitotic figures within 8 h of injection. There were no significant differences in baseline or AOM-induced intestinal epithelial apoptosis between WT and COX-1(-/-) mice, but there was a complete reversal of the AOM-mediated reduction in mitosis in COX-1(-/-) mice. This suggests that COX-1-derived PGE(2) may play a key role in the early phase of intestinal tumorigenesis in response to DNA damage and suggests that COX-1 may be a potential therapeutic target in this model of colon cancer.
Gautam, Raju; Jachak, Sanjay M; Kumar, Vivek; Mohan, C Gopi
2011-03-15
Stellatin (4), isolated from Dysophylla stellata is a cyclooxygenase (COX) inhibitor. The present study reports the synthesis and biological evaluation of new stellatin derivatives for COX-1, COX-2 inhibitory and anti-inflammatory activities. Eight derivatives showed more pronounced COX-2 inhibition than stellatin and, 17 and 21 exhibited the highest COX-2 inhibition. They also exhibited the significant anti-inflammatory activity in TPA-induced mouse ear edema assay and their anti-inflammatory effects were more than that of stellatin and indomethacin at 0.5mg/ear. The derivatives were further evaluated for antioxidant activity wherein 16 and 17 showed potent free radical scavenging activity against DPPH and ABTS radicals. Molecular docking study revealed the binding orientations of stellatin and its derivatives into the active sites of COX-1 and COX-2 and thereby helps to design the potent inhibitors. Copyright © 2011 Elsevier Ltd. All rights reserved.
Thill, Marc; Fischer, Dorothea; Kelling, Katharina; Hoellen, Friederike; Dittmer, Christine; Hornemann, Amadeus; Salehin, Darius; Diedrich, Klaus; Friedrich, Michael; Becker, Steffi
2010-07-01
Ovarian carcinomas are associated with increased inflammation which is based upon an up-regulation of inducible cyclooxygenase-2 (COX-2). Moreover, based on our previous published data, the extra-renal vitamin D metabolism seems to be dysregulated in comparison to healthy tissue. In order to gain further insight into the prostaglandin (PG)- and vitamin D-metabolism in ovarian carcinomas, the study aimed to evaluate the expression of the PG metabolising enzymes COX-2 and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) compared to the vitamin D receptor (VDR) in benign and malignant ovarian tissues. Additionally, we determined the 25-hydroxycholecalciferol (25(OH2)D3) serum levels. Expression of VDR, COX-2 and 15-PGDH was determined by Western blot analysis. Serum levels of 25(OH2)D3 and PGE2 were measured by chemiluminescence-based and colorimetric immunoassay. We detected significantly higher expressions of the PG metabolising enzymes 15-PGDH and COX-2 in malignant tissue and PGE2 serum levels were 2-fold higher in tumour patients. Furthermore, we found an inverse correlation to the VDR-expression which was 62.1% lower in malignant tissues compared to that in benign tissues. Surprisingly, we could not detect any differences between the 25(OH2)D3 serum levels in either group (n=20). These data suggest a correlation between PG- and vitamin D-metabolism in ovarian carcinomas. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Chen, Lin-Lin; Zhang, Hao-Jun; Chao, Jung; Liu, Jun-Feng
2017-05-23
Artemisia argyi is a herbal medicine traditionally used in Asia for the treatment of bronchitis, dermatitis and arthritis. Recent studies revealed the anti-inflammatory effect of essential oil in this plant. However, the mechanisms underlying the therapeutic potential have not been well elucidated. The present study is aimed to verify its anti-inflammatory effect and investigate the probable mechanisms. The essential oil from Artemisia argyi (AAEO) was initially tested against LPS-induced production of inflammatory mediators and cytokines in RAW264.7 macrophages. Protein and mRNA expressions of iNOS and COX-2 were determined by Western blotting and RT-PCR analysis, respectively. The effects on the activation of MAPK/NF-κB/AP-1 and JAK/STATs pathway were also investigated by western blot. Meanwhile, in vivo anti-inflammatory effect was examined by histologic and immunohistochemical analysis in TPA-induced mouse ear edema model. The results of in vitro experiments showed that AAEO dose-dependently suppressed the release of pro-inflammatory mediators (NO, PGE 2 and ROS) and cytokines (TNF-α, IL-6, IFN-β and MCP-1) in LPS-induced RAW264.7 macrophages. It down-regulated iNOS and COX-2 protein and mRNA expression but did not affect the activity of these two enzymes. AAEO significantly inhibited the phosphorylation of JAK2 and STAT1/3, but not the activation of MAPK and NF-κB cascades. In animal model, oral administration of AAEO significantly attenuated TPA-induced mouse ear edema and decreased the protein level of COX-2. AAEO suppresses inflammatory responses via down-regulation of the JAK/STATs signaling and ROS scavenging, which could contribute, at least in part, to the anti-inflammatory effect of AAEO. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Les, Francisco; Prieto, Jose M; Arbonés-Mainar, Jose Miguel; Valero, Marta Sofía; López, Víctor
2015-06-01
Pomegranate juice and related products have long been used either in traditional medicine or as nutritional supplements claiming beneficial effects. Although there are several studies on this food plant, only a few studies have been performed with pomegranate juice or marketed products. The aim of this work is to evaluate the antioxidant effects of pomegranate juice on cellular models using hydrogen peroxide as an oxidizing agent or DPPH and superoxide radicals in cell free systems. The antiproliferative effects of the juice were measured on HeLa and PC-3 cells by the MTT assay and pharmacologically relevant enzymes (cyclooxygenases, xanthine oxidase, acetylcholinesterase and monoamine oxidase A) were selected for enzymatic inhibition assays. Pomegranate juice showed significant protective effects against hydrogen peroxide induced toxicity in the Artemia salina and HepG2 models; these effects may be attributed to radical scavenging properties of pomegranate as the juice was able to reduce DPPH and superoxide radicals. Moderate antiproliferative activities in HeLa and PC-3 cancer cells were observed. However, pomegranate juice was also able to inhibit COX-2 and MAO-A enzymes. This study reveals some mechanisms by which pomegranate juice may have interesting and beneficial effects in human health.
Δ9-THC-caused synaptic and memory impairments are mediated through COX-2 signaling.
Chen, Rongqing; Zhang, Jian; Fan, Ni; Teng, Zhao-Qian; Wu, Yan; Yang, Hongwei; Tang, Ya-Ping; Sun, Hao; Song, Yunping; Chen, Chu
2013-11-21
Marijuana has been used for thousands of years as a treatment for medical conditions. However, untoward side effects limit its medical value. Here, we show that synaptic and cognitive impairments following repeated exposure to Δ(9)-tetrahydrocannabinol (Δ(9)-THC) are associated with the induction of cyclooxygenase-2 (COX-2), an inducible enzyme that converts arachidonic acid to prostanoids in the brain. COX-2 induction by Δ(9)-THC is mediated via CB1 receptor-coupled G protein βγ subunits. Pharmacological or genetic inhibition of COX-2 blocks downregulation and internalization of glutamate receptor subunits and alterations of the dendritic spine density of hippocampal neurons induced by repeated Δ(9)-THC exposures. Ablation of COX-2 also eliminates Δ(9)-THC-impaired hippocampal long-term synaptic plasticity, working, and fear memories. Importantly, the beneficial effects of decreasing β-amyloid plaques and neurodegeneration by Δ(9)-THC in Alzheimer's disease animals are retained in the presence of COX-2 inhibition. These results suggest that the applicability of medical marijuana would be broadened by concurrent inhibition of COX-2. Copyright © 2013 Elsevier Inc. All rights reserved.
The Molecular Basis for Dual Fatty Acid Amide Hydrolase (FAAH)/Cyclooxygenase (COX) Inhibition.
Palermo, Giulia; Favia, Angelo D; Convertino, Marino; De Vivo, Marco
2016-06-20
The design of multitarget-directed ligands is a promising strategy for discovering innovative drugs. Here, we report a mechanistic study that clarifies key aspects of the dual inhibition of the fatty acid amide hydrolase (FAAH) and the cyclooxygenase (COX) enzymes by a new multitarget-directed ligand named ARN2508 (2-[3-fluoro-4-[3-(hexylcarbamoyloxy)phenyl]phenyl]propanoic acid). This potent dual inhibitor combines, in a single scaffold, the pharmacophoric elements often needed to block FAAH and COX, that is, a carbamate moiety and the 2-arylpropionic acid functionality, respectively. Molecular modeling and molecular dynamics simulations suggest that ARN2508 uses a noncovalent mechanism of inhibition to block COXs, while inhibiting FAAH via the acetylation of the catalytic Ser241, in line with previous experimental evidence for covalent FAAH inhibition. This study proposes the molecular basis for the dual FAAH/COX inhibition by this novel hybrid scaffold, stimulating further experimental studies and offering new insights for the rational design of novel anti-inflammatory agents that simultaneously act on FAAH and COX. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Durán-Barragán, S; McGwin, G; Vilá, L M; Reveille, J D; Alarcón, G S
2008-07-01
To examine if angiotensin-converting enzyme (ACE) inhibitor use delays the occurrence of renal involvement and decreases the risk of disease activity in SLE patients. SLE patients (Hispanics, African Americans and Caucasians) from the lupus in minorities: nature vs nurture (LUMINA) cohort were studied. Renal involvement was defined as ACR criterion and/or biopsy-proven lupus nephritis. Time-to-renal involvement was examined by univariable and multivariable Cox proportional hazards regression analyses. Disease activity was examined with a case-crossover design and a conditional logistic regression model; in the case intervals, a decrease in the SLAM-R score >or=4 points occurred but not in the control intervals. Eighty of 378 patients (21%) were ACE inhibitor users; 298 (79%) were not. The probability of renal involvement free-survival at 10 yrs was 88.1% for users and 75.4% for non-users (P = 0.0099, log rank test). Users developed persistent proteinuria and/or biopsy-proven lupus nephritis (7.1%) less frequently than non-users (22.9%), P = 0.016. By multivariable Cox proportional hazards regression analyses, ACE inhibitors use [hazard ratio (HR) 0.27; 95% CI 0.09, 0.78] was associated with a longer time-to-renal involvement occurrence whereas African American ethnicity (HR 3.31; 95% CI 1.44, 7.61) was with a shorter time. ACE inhibitor use (54/288 case and 254/1148 control intervals) was also associated with a decreased risk of disease activity (HR 0.56; 95% CI 0.34, 0.94). ACE inhibitor use delays the development of renal involvement and associates with a decreased risk of disease activity in SLE; corroboration of these findings in other lupus cohorts is desirable before practice recommendations are formulated.
Anti-inflammatory effects of fish oil in ovaries of laying hens target prostaglandin pathways.
Eilati, Erfan; Small, Carolynn C; McGee, Stacey R; Kurrey, Nawneet K; Hales, Dale Buchanan
2013-10-24
An effective way to control cancer is by prevention. Ovarian cancer is the most lethal gynecological malignancy. Progress in the treatment and prevention of ovarian cancer has been hampered due to the lack of an appropriate animal model and absence of effective chemo-prevention strategies. The domestic hens spontaneously develop ovarian adenocarcinomas that share similar histological appearance and symptoms such as ascites and metastasis with humans. There is a link between chronic inflammation and cancer. Prostaglandin E2 (PGE2) is the most pro-inflammatory ecoisanoid and one of the downstream products of two isoforms of cyclooxygenase (COX) enzymes: COX-1 and COX-2. PGE2 exerts its effects on target cells by coupling to four subtypes of receptors which have been classified as EP1-4. Fish oil is a source of omega-3 fatty acids (OM-3FAs) which may be effective in prevention of ovarian cancer. Our objective was to assess the potential impact of fish oil on expression of COX enzymes, PGE2 concentration, apoptosis and proliferation in ovaries of laying hens. 48 white Leghorn hens were fed 50, 100, 175, 375 and 700 mg/kg fish oil for 21 days. The OM3-FAs and omega-6 fatty acids contents of egg yolks were determined by Gas Chromatography. Proliferation, apoptosis, COX-1, COX-2 and prostaglandin receptor subtype 4 (EP4) protein and mRNA expression and PGE2 concentration in ovaries were measured by PCNA, TUNEL, Western blot, quantitative real-time qPCR and ELISA, respectively. Consumption of fish oil increased the incorporation of OM-3FAs into yolks and decreased both COX-1 and COX-2 protein and mRNA expression. In correlation with COXs down-regulation, fish oil significantly reduced the concentrations of PGE2 in ovaries. EP4 protein and mRNA expression in ovaries of hens was not affected by fish oil treatment. A lower dose of fish oil increased the egg laying frequency. 175 and 700 mg/kg fish oil reduced proliferation and 700 mg/kg increased apoptosis in hen ovaries. Our findings suggest that the lower doses of fish oil reduce inflammatory PG and may be an effective approach in preventing ovarian carcinogenesis. These findings may provide the basis for clinical trials utilizing fish oil as a dietary intervention targeting prostaglandin biosynthesis for the prevention and treatment of ovarian cancer.
Nonsteroidal anti-inflammatory drugs for dysmenorrhoea.
Marjoribanks, Jane; Ayeleke, Reuben Olugbenga; Farquhar, Cindy; Proctor, Michelle
2015-07-30
Dysmenorrhoea is a common gynaecological problem consisting of painful cramps accompanying menstruation, which in the absence of any underlying abnormality is known as primary dysmenorrhoea. Research has shown that women with dysmenorrhoea have high levels of prostaglandins, hormones known to cause cramping abdominal pain. Nonsteroidal anti-inflammatory drugs (NSAIDs) are drugs that act by blocking prostaglandin production. They inhibit the action of cyclooxygenase (COX), an enzyme responsible for the formation of prostaglandins. The COX enzyme exists in two forms, COX-1 and COX-2. Traditional NSAIDs are considered 'non-selective' because they inhibit both COX-1 and COX-2 enzymes. More selective NSAIDs that solely target COX-2 enzymes (COX-2-specific inhibitors) were launched in 1999 with the aim of reducing side effects commonly reported in association with NSAIDs, such as indigestion, headaches and drowsiness. To determine the effectiveness and safety of NSAIDs in the treatment of primary dysmenorrhoea. We searched the following databases in January 2015: Cochrane Menstrual Disorders and Subfertility Group Specialised Register, Cochrane Central Register of Controlled Trials (CENTRAL, November 2014 issue), MEDLINE, EMBASE and Web of Science. We also searched clinical trials registers (ClinicalTrials.gov and ICTRP). We checked the abstracts of major scientific meetings and the reference lists of relevant articles. All randomised controlled trial (RCT) comparisons of NSAIDs versus placebo, other NSAIDs or paracetamol, when used to treat primary dysmenorrhoea. Two review authors independently selected the studies, assessed their risk of bias and extracted data, calculating odds ratios (ORs) for dichotomous outcomes and mean differences for continuous outcomes, with 95% confidence intervals (CIs). We used inverse variance methods to combine data. We assessed the overall quality of the evidence using GRADE methods. We included 80 randomised controlled trials (5820 women). They compared 20 different NSAIDs (18 non-selective and two COX-2-specific) versus placebo, paracetamol or each other. NSAIDs versus placeboAmong women with primary dysmenorrhoea, NSAIDs were more effective for pain relief than placebo (OR 4.37, 95% CI 3.76 to 5.09; 35 RCTs, I(2) = 53%, low quality evidence). This suggests that if 18% of women taking placebo achieve moderate or excellent pain relief, between 45% and 53% taking NSAIDs will do so.However, NSAIDs were associated with more adverse effects (overall adverse effects: OR 1.29, 95% CI 1.11 to 1.51, 25 RCTs, I(2) = 0%, low quality evidence; gastrointestinal adverse effects: OR 1.58, 95% CI 1.12 to 2.23, 14 RCTs, I(2) = 30%; neurological adverse effects: OR 2.74, 95% CI 1.66 to 4.53, seven RCTs, I(2) = 0%, low quality evidence). The evidence suggests that if 10% of women taking placebo experience side effects, between 11% and 14% of women taking NSAIDs will do so. NSAIDs versus other NSAIDsWhen NSAIDs were compared with each other there was little evidence of the superiority of any individual NSAID for either pain relief or safety. However, the available evidence had little power to detect such differences, as most individual comparisons were based on very few small trials. Non-selective NSAIDs versus COX-2-specific selectorsOnly two of the included studies utilised COX-2-specific inhibitors (etoricoxib and celecoxib). There was no evidence that COX-2-specific inhibitors were more effective or tolerable for the treatment of dysmenorrhoea than traditional NSAIDs; however data were very scanty. NSAIDs versus paracetamolNSAIDs appeared to be more effective for pain relief than paracetamol (OR 1.89, 95% CI 1.05 to 3.43, three RCTs, I(2) = 0%, low quality evidence). There was no evidence of a difference with regard to adverse effects, though data were very scanty.Most of the studies were commercially funded (59%); a further 31% failed to state their source of funding. NSAIDs appear to be a very effective treatment for dysmenorrhoea, though women using them need to be aware of the substantial risk of adverse effects. There is insufficient evidence to determine which (if any) individual NSAID is the safest and most effective for the treatment of dysmenorrhoea. We rated the quality of the evidence as low for most comparisons, mainly due to poor reporting of study methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Yingting, E-mail: yitizhu@yahoo.com; Tissue Tech Inc., Miami, FL 33173; Zhu, Min
2012-08-31
Highlights: Black-Right-Pointing-Pointer Human colonic cancer associated fibroblasts are major sources of COX-2 and PGE{sub 2}. Black-Right-Pointing-Pointer The fibroblasts interact with human colonic epithelial cancer cells. Black-Right-Pointing-Pointer Activation of COX-2 signaling in the fibroblasts affects behavior of the epithelia. Black-Right-Pointing-Pointer Protein Kinase C controls the activation of COX-2 signaling. -- Abstract: COX-2 is a major regulator implicated in colonic cancer. However, how COX-2 signaling affects colonic carcinogenesis at cellular level is not clear. In this article, we investigated whether activation of COX-2 signaling by deoxycholic acid (DCA) in primary human normal and cancer associated fibroblasts play a significant role in regulationmore » of proliferation and invasiveness of colonic epithelial cancer cells. Our results demonstrated while COX-2 signaling can be activated by DCA in both normal and cancer associated fibroblasts, the level of activation of COX-2 signaling is significantly greater in cancer associated fibroblasts than that in normal fibroblasts. In addition, we discovered that the proliferative and invasive potential of colonic epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts pre-treated with DCA than with normal fibroblasts pre-treated with DCA. Moreover, COX-2 siRNA attenuated the proliferative and invasive effect of both normal and cancer associate fibroblasts pre-treated with DCA on the colonic cancer cells. Further studies indicated that the activation of COX-2 signaling by DCA is through protein kinase C signaling. We speculate that activation of COX-2 signaling especially in cancer associated fibroblasts promotes progression of colonic cancer.« less
Celecoxib: a potent cyclooxygenase-2 inhibitor in cancer prevention.
Kismet, Kemal; Akay, M Turan; Abbasoglu, Osman; Ercan, Aygün
2004-01-01
Non-steroidal anti-inflammatory drugs (NSAIDs) are the most widely used therapeutic agents in the treatment of pain, inflammation and fever. They may also have a role in the management of cancer prevention, Alzheimer's disease and prophylaxis against cardiovascular disease. These drugs act primarily by inhibiting cyclooxygenase enzyme, which has two isoforms, cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2). Selective COX-2 inhibitors provide potent anti-inflammatory and analgesic effects without the side effects of gastric and renal toxicity and inhibition of platelet function. Celecoxib is a potent COX-2 inhibitor being developed for the treatment of rheumatoid arthritis and osteoarthritis. Chemoprevention is the use of pharmacological or natural agents to prevent, suppress, interrupt or reverse the process of carcinogenesis. For this purpose, celecoxib is being used for different cancer types. The effects of NSAIDs on tumor growth remain unclear, but are most likely to be multifocal. In this article, we reviewed COX-2 selectivity, the pharmacological properties of celecoxib, the use of celecoxib for cancer prevention and the mechanisms of chemoprevention.
Demir, Hülya; Ciftçi, Mehmet; Küfrevioğlu, O Irfan
2003-02-01
In this study, 6-phosphogluconate dehydrogenase (E.C.1.1.44; 6PGD) was purified from parsley (Petroselinum hortense) leaves, and analysis of the kinetic behavior and some properties of the enzyme were investigated. The purification consisted of three steps that are preparation of homogenate ammonium sulfate fractionation and on DEAE-Sephadex A50 ion exchange. The enzyme was obtained with a yield of 49% and had a specific activity of 18.3 U (mg proteins)(-1) (Lehninger, A.L.; Nelson, D.L.; Cox, M.M. Principles of Biochemistry, 2nd Ed.; Worth Publishers Inc.: N.Y., 2000, 558-560). The overall purification was about 339-fold. A temperature of +4 degrees C was maintained during the purification process. Enzyme activity was spectrophotometrically measured according to the Beutler method at 340 mn. In order to control the purification of the enzyme, SDS-polyacrylamide gel electrophoresis was carried out in 4% and 10% acrylamide for stacking and running gel, respectively. SDS-polyacrylamide gel electrophoresis showed a single band for enzyme. The molecular weight was found to be 97.5 kDa by Sephadex G-150 gel filtration chromatography. A protein band corresponding to a subunit molecular weight of 24.1 kDa was obtained on SDS-polyacrylamide gel electrophoresis. For the enzymes, the stable pH, optimum pH, and optimum temperature were found as 8.0, 8.0, and 50 degrees C, respectively. In addition, KM and Vmax values for NADP+ and G6-P at optimum pH and 25 degrees C were determined by means of Lineweaver-Burk plots.
Wun, Zih-Yi; Lin, Chwan-Fwu; Huang, Wen-Chung; Huang, Yu-Ling; Xu, Pei-Yin; Chang, Wei-Tien; Wu, Shu-Ju; Liou, Chian-Jiun
2013-12-01
Sophoraflavanone G (SG; 5,7,D, 2',4'-tetrahydroxy-8-lavandulylflavanone) has been isolated from Sophora flavescens and found to be effective against bacteria and to decrease cyclooxygenase (COX)-2 expression in RAW 264.7 macrophage. However, the anti-inflammatory mechanisms of SG are not well understood. RAW 264.7 cells were pretreated with various concentrations of SG (2.5-20 μM) and inflammatory responses were induced with lipopolysaccharide. Using enzyme-linked immunosorbent assay, the levels of pro-inflammatory cytokines and prostaglandin E2 (PGE2) were determined. Western blot was used to examine the protein expression of inducible nitric oxide synthase (iNOS), COX-2, and heme oxygenase-1 (HO-1). To investigate the molecular mechanism, we analyzed inflammatory-associated signaling pathways, including nuclear transcription factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK). SG inhibited the levels of nitric oxide and PGE2 and decreased the production of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor α. The expression of iNOS and COX-2 was also suppressed. However, SG increased HO-1 production in a concentration-dependent manner and significantly decreased MAPK activation and inhibited NF-κB subunit p65 proteins to translocate into the nucleus. These results suggest that SG has an anti-inflammatory effect, inhibiting pro-inflammatory cytokines and mediators production via interruption of the NF-κB and MAPK signaling pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.
D-002 (beeswax alcohols): concurrent joint health benefits and gastroprotection.
Molina, Vivian; Mas, R; Carbajal, D
2015-01-01
Nonsteroidal antiinflammatory drugs include the traditional drugs and more selective COX-2 inhibitors. Traditional nonsteroidal antiinflammatory drug use is hampered by their gastrotoxicity, while COX-2-inhibitors increase the cardiovascular risk. The search of safer substances for managing inflammatory conditions is updated, a challenge wherein dual COX/5-LOX inhibitors have a place. This review summarizes the benefits of D-002, a mixture of higher aliphatic beeswax alcohols, on joint health and gastric mucosa. D-002 elicits gastroprotection through a multiple mechanism that involves the increased secretion and improved quality of the gastric mucus, the reduction of hydroxyl radical, lipid peroxidation, protein oxidation, neutrophil infiltration and the increase of antioxidant enzymes on the gastric mucosa. Consistently, D-002 inhibits NSAIDs, ethanol, pylorus-ligation and acetic acid-induced gastric ulceration in rats, and has reduced gastrointestinal symptoms in clinical studies. Early results found that D-002 was effective in the cotton pellet-induced granuloma and carrageenan-induced pleurisy model in rats, lowering pleural leukotriene B4 levels without causing gastrointestinal ulceration. However, D-002 effects on inflammation received little attention for years. Recent data have shown that D-002 inhibited both COX and 5-LOX activities with a greater affinity for 5-LOX and could act as a dual COX/5-LOX inhibitor. This mechanism might explain efficacy in experimental inflammatory and osteoarthritic models as well as clinical efficacy in osteoarthritic patients while supporting the lack of D-002 gastrotoxicity, but not the gastroprotective effects, which appear to be due to multiple mechanisms. In summary oral D-002 intake could help manage inflammatory conditions that impair joint health, while offering gastroprotection.
The Role of mPGES-1 in Inflammatory Brain Diseases.
Ikeda-Matsuo, Yuri
2017-01-01
Prostaglandin E 2 (PGE 2 ) has been thought to be an important mediator of inflammation in peripheral tissues, but recent studies clearly show the involvement of PGE 2 in inflammatory brain diseases. In some animal models of brain disease, the genetic disruption and chemical inhibition of cyclooxygenase (COX)-2 resulted in the reduction of PGE 2 and amelioration of symptoms, and it had been thought that PGE 2 produced by COX-2 may be involved in the progression of injuries. However, COX-2 produces not only PGE 2 , but also some other prostanoids, and thus the protective effects of COX-2 inhibition, as well as severe side effects, may be caused by the inhibition of prostanoids other than PGE 2 . Therefore, to elucidate the role of PGE 2 , studies of microsomal prostaglandin E synthase-1 (mPGES-1), an inducible terminal enzyme for PGE 2 synthesis, have recently been an active area of research. Studies from mPGES-1 deficient mice provide compelling evidence for its role in a variety of inflammatory brain diseases, such as ischemic stroke, Alzheimer's disease and epilepsy, and clues for developing new therapeutic treatments for brain diseases by targeting mPGES-1. Considering that COX inhibitors may non-selectively suppress the production of many types of prostanoids that are essential for normal physiological functioning of the brain and peripheral tissues, as well as induce gastro-intestinal, renal and cardiovascular complications, mPGES-1 inhibitors are expected to be injury-selective and have fewer side-effects when treating human brain diseases. Thus, this paper focuses on recent studies that have demonstrated the involvement of mPGES-1 in pathological brain diseases.
Säfholm, J; Dahlén, S-E; Delin, I; Maxey, K; Stark, K; Cardell, L-O; Adner, M
2013-01-01
Background and Purpose The guinea pig trachea (GPT) is commonly used in airway pharmacology. The aim of this study was to define the expression and function of EP receptors for PGE2 in GPT as there has been ambiguity concerning their role. Experimental Approach Expression of mRNA for EP receptors and key enzymes in the PGE2 pathway were assessed by real-time PCR using species-specific primers. Functional studies of GPT were performed in tissue organ baths. Key Results Expression of mRNA for the four EP receptors was found in airway smooth muscle. PGE2 displayed a bell-shaped concentration–response curve, where the initial contraction was inhibited by the EP1 receptor antagonist ONO-8130 and the subsequent relaxation by the EP2 receptor antagonist PF-04418948. Neither EP3 (ONO-AE5-599) nor EP4 (ONO-AE3-208) selective receptor antagonists affected the response to PGE2. Expression of COX-2 was greater than COX-1 in GPT, and the spontaneous tone was most effectively abolished by selective COX-2 inhibitors. Furthermore, ONO-8130 and a specific PGE2 antibody eliminated the spontaneous tone, whereas the EP2 antagonist PF-04418948 increased it. Antagonists of other prostanoid receptors had no effect on basal tension. The relaxant EP2 response to PGE2 was maintained after long-term culture, whereas the contractile EP1 response showed homologous desensitization to PGE2, which was prevented by COX-inhibitors. Conclusions and Implications Endogenous PGE2, synthesized predominantly by COX-2, maintains the spontaneous tone of GPT by a balance between contractile EP1 receptors and relaxant EP2 receptors. The model may be used to study interactions between EP receptors. PMID:22934927
Synthesis and biological evaluation of loxoprofen derivatives.
Yamakawa, Naoki; Suemasu, Shintaro; Matoyama, Masaaki; Tanaka, Ken-Ichiro; Katsu, Takashi; Miyata, Keishi; Okamoto, Yoshinari; Otsuka, Masami; Mizushima, Tohru
2011-06-01
Non-steroidal anti-inflammatory drugs (NSAIDs) achieve their anti-inflammatory actions through an inhibitory effect on cyclooxygenase (COX). Two COX subtypes, COX-1 and COX-2, are responsible for the majority of COX activity at the gastrointestinal mucosa and in tissues with inflammation, respectively. We previously suggested that both gastric mucosal cell death due to the membrane permeabilization activity of NSAIDs and COX-inhibition at the gastric mucosa are involved in NSAID-induced gastric lesions. We have also reported that loxoprofen has the lowest membrane permeabilization activity among the NSAIDs we tested. In this study, we synthesized a series of loxoprofen derivatives and examined their membrane permeabilization activities and inhibitory effects on COX-1 and COX-2. Among these derivatives, 2-{4'-hydroxy-5-[(2-oxocyclopentyl)methyl]biphenyl-2-yl}propanoate 31 has a specificity for COX-2 over COX-1. Compared to loxoprofen, oral administration of 31 to rats produced fewer gastric lesions but showed an equivalent anti-inflammatory effect. These results suggest that 31 is likely to be a therapeutically beneficial and safer NSAID. Copyright © 2011. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Lynch, R. C.; King, A. J.; FaríAs, Mariá E.; Sowell, P.; Vitry, Christian; Schmidt, S. K.
2012-06-01
Here we present the first culture-independent microbiological and biogeochemical study of the mineral soils from 6000 m above sea level (m.a.s.l.) on some the highest volcanoes in the Atacama region of Argentina and Chile. These soils experience some of the harshest environmental conditions on Earth including daily temperature fluctuations across the freezing point (with an amplitude of up to 70°C) and intense solar radiation. Soil carbon and water levels are among the lowest yet measured for a terrestrial ecosystem and enzyme activity was near or below detection limits for all microbial enzymes measured. The soil microbial communities were among the simplest yet studied in a terrestrial environment and contained novel Bacteria and Fungi and only one Archaeal phylotype. No photosynthetic organisms were detected but several of the dominant bacterial phylotypes are related to organisms involved in carbon monoxide oxidation on other volcanoes (e.g.,Pseudonocardia and Ktedonobacter spp.). Focused studies of a gene responsible for carbon monoxide oxidation, the large subunit of carbon monoxide dehydrogenase (coxL of CODH), revealed several novel lineages and a broad diversity of coxL genes. Overall our results suggest that a unique microbial community, sustained by diffuse atmospheric and volcanic gases, is barely functioning on these volcanoes, which represent the highest terrestrial ecosystems yet studied.
2011-01-01
Background COX-2 is an enzyme isoform that catalyses the formation of prostanoids from arachidonic acid. An increased COX-2 gene expression is believed to participate in carcinogenesis. Recent studies have shown that COX-2 up-regulation is associated with the development of numerous neoplasms, including skin, colorectal, breast, lung, stomach, pancreas and liver cancers. COX-2 products stimulate endothelial cell proliferation and their overexpression has been demonstrated to be involved in the mechanism of decreased resistance to apoptosis. Suppressed angiogenesis was found in experimental animal studies as a consequence of null mutation of COX-2 gene in mice. Despite the role of COX-2 expression remains a subject of numerous studies, its participation in carcinogenesis or the thyroid cancer progression remains unclear. Methods Twenty three (23) patients with cytological diagnosis of PTC were evaluated. After FNAB examination, the needle was washed out with a lysis buffer and the obtained material was used for COX-2 expression estimation. Total RNA was isolated (RNeasy Micro Kit), and RT reactions were performed. β-actin was used as endogenous control. Relative COX-2 expression was assessed in real-time PCR reactions by an ABI PRISM 7500 Sequence Detection System, using the ΔΔCT method. Results COX-2 gene expression was higher in patients with PTC, when compared to specimens from patients with non-toxic nodular goitre (NTG). Conclusions The preliminary results may indicate COX-2 role in thyroid cancer pathogenesis, however the observed variability in results among particular subjects requires additional clinical data and tumor progression analysis. PMID:21214962
Krawczyk-Rusiecka, Kinga; Wojciechowska-Durczyńska, Katarzyna; Cyniak-Magierska, Anna; Adamczewski, Zbigniew; Gałecka, Elżbieta; Lewiński, Andrzej
2011-01-10
COX-2 is an enzyme isoform that catalyses the formation of prostanoids from arachidonic acid. An increased COX-2 gene expression is believed to participate in carcinogenesis. Recent studies have shown that COX-2 up-regulation is associated with the development of numerous neoplasms, including skin, colorectal, breast, lung, stomach, pancreas and liver cancers. COX-2 products stimulate endothelial cell proliferation and their overexpression has been demonstrated to be involved in the mechanism of decreased resistance to apoptosis. Suppressed angiogenesis was found in experimental animal studies as a consequence of null mutation of COX-2 gene in mice. Despite the role of COX-2 expression remains a subject of numerous studies, its participation in carcinogenesis or the thyroid cancer progression remains unclear. Twenty three (23) patients with cytological diagnosis of PTC were evaluated. After FNAB examination, the needle was washed out with a lysis buffer and the obtained material was used for COX-2 expression estimation. Total RNA was isolated (RNeasy Micro Kit), and RT reactions were performed. β-actin was used as endogenous control. Relative COX-2 expression was assessed in real-time PCR reactions by an ABI PRISM 7500 Sequence Detection System, using the ΔΔCT method. COX-2 gene expression was higher in patients with PTC, when compared to specimens from patients with non-toxic nodular goitre (NTG). The preliminary results may indicate COX-2 role in thyroid cancer pathogenesis, however the observed variability in results among particular subjects requires additional clinical data and tumor progression analysis.
Novel Fatty Acid Lipoxygenases in the Development of Human and Murine Prostate Cancer
2000-10-01
expression of COX-2 mRNA in benign and malignant prostate samples by RNase protection assays in collaboration with Dr. Matthew Breyer at Vanderbilt. COX-2...Shappell,* William E. Boeglin,t prostate adenocarcinomas. (Am J Pathol 1999, Sandy J. Olson,* Susan Kasper,f and 155:235-245) Alan R. Brasht From the...possible role of this novel enzyme in secretory function, 33157-331605. Samuelssor,- B. Dahlen SE, Lindgren JA, Rouzer CA, Serhan CN: Reduced expression in
Methotrexate in Atherogenesis and Cholesterol Metabolism
Coomes, Eric; Chan, Edwin S. L.; Reiss, Allison B.
2011-01-01
Methotrexate is a disease-modifying antirheumatic drug commonly used to treat inflammatory conditions such as rheumatoid arthritis which itself is linked to increased cardiovascular risk. Treatments that target inflammation may also impact the cardiovascular system. While methotrexate improves cardiovascular risk, inhibition of the cyclooxygenase (COX)-2 enzyme promotes atherosclerosis. These opposing cardiovascular influences may arise from differing effects on the expression of proteins involved in cholesterol homeostasis. These proteins, ATP-binding cassette transporter (ABC) A1 and cholesterol 27-hydroxylase, facilitate cellular cholesterol efflux and defend against cholesterol overload. Methotrexate upregulates expression of cholesterol 27-hydroxylase and ABCA1 via adenosine release, while COX-2 inhibition downregulates these proteins. Adenosine, acting through the A2A and A3 receptors, may upregulate proteins involved in reverse cholesterol transport by cAMP-PKA-CREB activation and STAT inhibition, respectively. Elucidating underlying cardiovascular mechanisms of these drugs provides a framework for developing novel cardioprotective anti-inflammatory medications, such as selective A2A receptor agonists. PMID:21490773
Dhar, Shilpa S; Liang, Huan Ling; Wong-Riley, Margaret T T
2009-10-01
Neuronal activity is highly dependent on energy metabolism; yet, the two processes have traditionally been regarded as independently regulated at the transcriptional level. Recently, we found that the same transcription factor, nuclear respiratory factor 1 (NRF-1) co-regulates an important energy-generating enzyme, cytochrome c oxidase, as well as critical subunits of glutamatergic receptors. The present study tests our hypothesis that the co-regulation extends to the next level of glutamatergic synapses, namely, neuronal nitric oxide synthase, which generates nitric oxide as a downstream signaling molecule. Using in silico analysis, electrophoretic mobility shift assay, chromatin immunoprecipitation, promoter mutations, and NRF-1 silencing, we documented that NRF-1 functionally bound to Nos1, but not Nos2 (inducible) and Nos3 (endothelial) gene promoters. Both COX and Nos1 transcripts were up-regulated by depolarizing KCl treatment and down-regulated by TTX-mediated impulse blockade in neurons. However, NRF-1 silencing blocked the up-regulation of both Nos1 and COX induced by KCl depolarization, and over-expression of NRF-1 rescued both Nos1 and COX transcripts down-regulated by TTX. These findings are consistent with our hypothesis that synaptic neuronal transmission and energy metabolism are tightly coupled at the molecular level.
NASA Astrophysics Data System (ADS)
Peana, A. T.; Marzocco, S.; Bianco, G.; Autore, G.; Pinto, A.; Pippia, P.
2008-06-01
The aim of this work is to evaluate the rat intestinal transit as well as the expression of enzymes involved in this process and in gastrointestinal homeostasis as ciclooxygenase (COX-1 and COX-2), the inducibile isoform of nitric oxide synthase (iNOS), ICAM-1 and heat shock proteins HSP70 and HSP90. The modeled microgravity conditions were performed utilizing a three-dimensional clinostat, the Random Positioning Machine (RPM). Our results indicate that modeled microgravity significantly reduce rat intestinal transit. Western blot analysis on small intestine tissues of RPM rats reveals a significant increase in iNOS expression, a significant reduction in COX-2 levels, while COX-1 expression remains unaltered, and a significant increase in ICAM-1 and HSP 70 expression. Also a significant increase in HSP 90 stomach expression indicates a strong effect of simulated low g on gastrointestinal homeostasis.
Pal, A K; Sen, S; Ghosh, S; Bera, A K; Bhattacharya, S; Chakraborty, S; Banerjee, A
2001-08-01
Despite the fact that many modern drug therapies are based on the concept of enzyme inhibition, inhibition of several enzymes leads to pathological disorders. Clinically used nonsteroidal anti-inflammatory drugs (NSAIDs) bind to the active site of the membrane protein, cyclooxygenase (COX) and inhibit the synthesis of prostaglandins, the mediators for causing inflammation. At the same time, inhibition of hepatic cysteine proteases by some NSAID metabolites like NAPQI is implicated in the pathogenesis of hepatotoxicity. As a part of our efforts to develop new effective NSAIDs, a comprehensive investigation starting from synthesis to the study of the final metabolism of acetanilide group of compound has been envisaged with appropriate feedback from kinetic studies to enhance our knowledge and technical competency to feed the know-how to the medicinal chemist to screen out and design new acetanilide derivatives of high potency and low toxicity. Structure-function relationship based on the interaction of acetanilide with its cognate enzyme, cyclooxygenase has been studied critically with adequate comparison with several other available crystal structures of COX-NSAID complexes. Furthermore, to make the receptor based drug design strategy a novel and comprehensive one, both the mechanism of metabolism of acetanilide and structural basis of inhibition of cysteine proteases by the reactive metabolite (NAPQI) formed by cytochrome P450 oxidation of acetanilide have been incorporated in the study. It is hoped that this synergistic approach and the results obtained from such consorted structural investigation at atomic level may guide to dictate synthetic modification with judicious balance between cyclooxygenase inhibition and hepatic cysteine protease inhibition to enhance the potential of such molecular medicine to relieve inflammation on one hand and low hepatic toxicity on the other.
Koeberle, Andreas; Rossi, Antonietta; Bauer, Julia; Dehm, Friederike; Verotta, Luisella; Northoff, Hinnak; Sautebin, Lidia; Werz, Oliver
2010-01-01
The acylphloroglucinol hyperforin (Hyp) from St. John's wort possesses anti-inflammatory and anti-carcinogenic properties which were ascribed among others to the inhibition of 5-lipoxygenase. Here, we investigated whether Hyp also interferes with prostanoid generation in biological systems, particularly with key enzymes participating in prostaglandin (PG)E2 biosynthesis, i.e., cyclooxygenases (COX)-1/2 and microsomal PGE2 synthase (mPGES)-1 which play key roles in inflammation and tumorigenesis. Similar to the mPGES-1 inhibitors MK-886 and MD-52, Hyp significantly suppressed PGE2 formation in whole blood assays starting at 0.03–1 μM, whereas the concomitant generation of COX-derived 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid, thromboxane B2, and 6-keto PGF1α was not significantly suppressed up to 30 μM. In cell-free assays, Hyp efficiently blocked the conversion of PGH2 to PGE2 mediated by mPGES-1 (IC50 = 1 μM), and isolated COX enzymes were not (COX-2) or hardly (COX-1) suppressed. Intraperitoneal (i.p.) administration of Hyp (4 mg kg−1) to rats impaired exudate volume and leukocyte numbers in carrageenan-induced pleurisy associated with reduced PGE2 levels, and Hyp (given i.p.) inhibited carrageenan-induced mouse paw edema formation (ED50 = 1 mg kg−1) being superior over indomethacin (ED50 = 5 mg kg−1). We conclude that the suppression of PGE2 biosynthesis in vitro and in vivo by acting on mPGES-1 critically contributes to the anti-inflammatory efficiency of Hyp. PMID:21687502
Hardy, C M; Clark-Walker, G D
1991-07-01
The cytochrome oxidase subunit 1 gene (COX1) in K. lactis K8 mtDNA spans 8,826 bp and contains five exons (termed E1-E5) totalling 1,602 bp that show 88% nucleotide base matching and 91% amino acid homology to the equivalent gene in S. cerevisiae. The four introns (termed K1 cox1.1-1.4) contain open reading frames encoding proteins of 786, 333, 319 and 395 amino acids respectively that potentially encode maturase enzymes. The first intron belongs to group II whereas the remaining three are group I type B. Introns K1 cox1.1, 1.3, and 1.4 are found at identical locations to introns Sc cox1.2, 1.5 a, and 1.5 b respectively from S. cerevisiae. Horizontal transfer of an intron between recent progenitors of K. lactis and S. cerevisiae is suggested by the observation that K1 cox1.1 and Sc cox1.2 show 96% base matching. Sequence comparisons between K1 cox1.3/Sc cox1.5 a and K1 cox1.4/Sc cox1.5 b suggest that these introns are likely to have been present in the ancestral COX1 gene of these yeasts. Intron K1 cox1.2 is not found in S. cerevisiae and appears at an unique location in K. lactis. A feature of the DNA sequences of the group I introns K1 cox1.2, 1.3, and 1.4 is the presence of 11 GC-rich clusters inserted into both coding and noncoding regions. Immediately downstream of the COX1 gene is the ATPase subunit 8 gene (A8) that shows 82.6% base matching to its counterpart in S. cerevisiae mtDNA.
Montoya, Tatiana; Aparicio-Soto, Marina; Castejón, María Luisa; Rosillo, María Ángeles; Sánchez-Hidalgo, Marina; Begines, Paloma; Fernández-Bolaños, José G; Alarcón-de-la-Lastra, Catalina
2018-03-18
The present study was designed to investigate the anti-inflammatory effects of a new derivative of hydroxytyrosol (HTy), peracetylated hydroxytyrosol (Per-HTy), compared with its parent, HTy, on lipopolysaccharide (LPS)-stimulated murine macrophages as well as potential signaling pathways involved. In particular, we attempted to characterize the role of the inflammasome underlying Per-HTy possible anti-inflammatory effects. Isolated murine peritoneal macrophages were treated with HTy or its derivative in the presence or absence of LPS (5 μg/ml) for 18 h. Cell viability was determined using sulforhodamine B (SRB) assay. Nitric oxide (NO) production was analyzed by Griess method. Production of pro-inflammatory cytokines was evaluated by enzyme-linked immunosorbent assay (ELISA) and inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway (STAT3), haem oxigenase 1 (HO1), nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression and mitogen-activated protein kinases (MAPKs) activation was determined by Western blot. Per-HTy significantly reduced the levels of NO and pro-inflammatory cytokines as well as both COX-2 and iNOS expressions. Furthermore, Per-HTy treatment inhibited STAT3 and increased Nrf2 and HO1 protein levels in murine macrophages exposed to LPS. In addition, Per-HTy anti-inflammatory activity was related with an inhibition of non-canonical nucleotide binding domain (NOD)-like receptor (NLRP3) inflammasome pathways by decreasing pro-inflammatory interleukin (IL)-1β and IL-18 cytokine levels as consequence of regulation of cleaved caspase-11 enzyme. These results support that this new HTy derivative may offer a new promising nutraceutical therapeutic strategy in the management of inflammatory-related pathologies. Copyright © 2018. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Zhen; Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081; Gan, Ye-Hua, E-mail: kqyehuagan@bjmu.edu.cn
2015-05-01
Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocationmore » and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.« less
Hu, Yao-Dong; Pang, Hui-Zhong; Li, De-Sheng; Ling, Shan-Shan; Lan, Dan; Wang, Ye; Zhu, Yun; Li, Di-Yan; Wei, Rong-Ping; Zhang, He-Min; Wang, Cheng-Dong
2016-11-05
As the rate-limiting enzyme of the mitochondrial respiratory chain, cytochrome c oxidase (COX) plays a crucial role in biological metabolism. "Living fossil" giant panda (Ailuropoda melanoleuca) is well-known for its special bamboo diet. In an effort to explore functional variation of COX1 in the energy metabolism behind giant panda's low-energy bamboo diet, we looked at genetic variation of COX1 gene in giant panda, and tested for its selection effect. In 1545 base pairs of the gene from 15 samples, 9 positions were variable and 1 mutation leaded to an amino acid sequence change. COX1 gene produces six haplotypes, nucleotide (pi), haplotype diversity (Hd). In addition, the average number of nucleotide differences (k) is 0.001629±0.001036, 0.8083±0.0694 and 2.517, respectively. Also, dN/dS ratio is significantly below 1. These results indicated that giant panda had a low population genetic diversity, and an obvious purifying selection of the COX1 gene which reduces synthesis of ATP determines giant panda's low-energy bamboo diet. Phylogenetic trees based on the COX1 gene were constructed to demonstrate that giant panda is the sister group of other Ursidae. Copyright © 2016 Elsevier B.V. All rights reserved.
Crystallization of recombinant cyclo-oxygenase-2
NASA Astrophysics Data System (ADS)
Stevens, Anna M.; Pawlitz, Jennifer L.; Kurumbail, Ravi G.; Gierse, James K.; Moreland, Kirby T.; Stegeman, Roderick A.; Loduca, Jina Y.; Stallings, William C.
1999-01-01
The integral membrane protein, prostaglandin H 2 synthase, or cyclo-oxygenase (COX), catalyses the first step in the conversion of arachidonic acid to prostaglandins (PGs) and is the target of nonsteroidal anti-inflammatory drugs (NSAIDs). Two isoforms are known. The constitutive enzyme, COX-1, is present in most tissues and is responsible for the physiological production of PGs. The isoform responsible for the elevated production of PGs during inflammation is COX-2 which is induced specifically at inflammatory sites. Three-dimensional structures of inhibitor complexes of COX-2, and of site variants of COX-2 which mimic COX-1, provide insight into the structural basis for selective inhibition of COX-2. Additionally, structures of COX-2 mutants and complexes with the substrate can provide a clearer understanding of the catalytic mechanism of the reaction. A crystallization protocol has been developed for COX-2 which reproducibly yields diffraction quality crystals. Polyethyleneglycol 550 monomethylether (MMP550) and MgCl 2 were systematically varied and used in conjunction with the detergent β- D-octylglucopyranoside ( β-OG). As a result of many crystallization trials, we determined that the initial β-OG concentration should be held constant, allowing the salt concentration to modulate the critical micelle concentration (CMC) of the detergent. Over 25 crystal structures have been solved using crystals generated from this system. Most crystals belong to the space group P2 12 12, with lattice constants of a=180, b=134, c=120 Å in a pseudo body-centered lattice.
Synthesis and anti-inflammatory activity of some benzofuran and benzopyran-4-one derivatives.
Ragab, Fatma Abd El-Fattah; Eid, Nahed Mahmoud; Hassan, Ghaneya Sayed; Nissan, Yassin Mohammed
2012-01-01
New series of furosalicylic acids 3a-c, furosalicylanilides 6a-n, furobenzoxazines 8a-f, 1-benzofuran-3-arylprop-2-en-1-ones 12a,b, 6-(aryl-3-oxoprop-1-enyl)-4H-chromen-4-ones 16a-c and 6-[6-aryl-2-thioxo-2,5-dihydropyrimidin-4-yl]-4H-chromen-4-ones 17a-c were synthesized. Anti-inflammatory activity evaluation was performed using carrageenan-induced paw edema model in rats and prostaglandin E(2) (PGE(2)) synthesis inhibition activity. Some of the tested compounds revealed comparable activity with less ulcerogenic effect than Diclofenac at a dose 100 mg/kg. All the synthesized compounds were docked on the active site of cyclooxygenase-2 (COX-2) enzyme and most of them showed good interactions with the amino acids of the active site comparable to the interactions exhibited by Diclofenac.
Ackerman, William E.; Zhang, Xiaolan L.; Rovin, Brad H.; Kniss, Douglas A.
2006-01-01
Cyclooxygenase (COX) activity increases in the human amnion in the settings of term and idiopathic preterm labor, contributing to the generation of uterotonic prostaglandins (PGs) known to participate in mammalian parturition. Augmented COX activity is highly correlated with increased COX2 (also known as prostaglandin-endoperoxide synthase 2, PTGS2) gene expression. We and others have demonstrated an essential role for nuclear factor κB (NFκB) in cytokine-driven COX2 expression. Peroxisome proliferator-activated receptor gamma (PPARG), a member of the nuclear hormone receptor superfamily, has been shown to antagonize NFκB activation and inflammatory gene expression, including COX2. We hypothesized that PPARG activation might suppress COX2 expression during pregnancy. Using primary amnion and WISH cells, we evaluated the effects of pharmacological (thiazolidinediones) and putative endogenous (15-deoxy-Δ12,14-prostaglandin J2, 15d-PGJ2) PPARG ligands on cytokine-induced NFκB activation, COX2 expression, and PGE2 production. We observed that COX2 expression and PGE2 production induced by tumor necrosis factor alpha (TNF) were significantly abrogated by 15d-PGJ2. The thiazolidinediones rosiglitazone (ROSI) and troglitazone (TRO) had relatively little effect on cytokine-induced COX2 expression except at high concentrations, at which these agents tended to increase COX2 abundance relative to cells treated with TNF alone. Interestingly, treatment with ROSI, but not TRO, led to augmentation of TNF-stimulated PGE2 production. Mechanistically, we observed that 15d-PGJ2 markedly diminished cytokine-induced activity of the NFκB transcription factor, whereas thiazolidinediones had no discernable effect on this system. Our data suggest that pharmacological and endogenous PPARG ligands use both receptor-dependent and -independent mechanisms to influence COX2 expression. PMID:15843495
Analysis of the cytochrome c oxidase subunit II (COX2) gene in giant panda, Ailuropoda melanoleuca.
Ling, S S; Zhu, Y; Lan, D; Li, D S; Pang, H Z; Wang, Y; Li, D Y; Wei, R P; Zhang, H M; Wang, C D; Hu, Y D
2017-01-23
The giant panda, Ailuropoda melanoleuca (Ursidae), has a unique bamboo-based diet; however, this low-energy intake has been sufficient to maintain the metabolic processes of this species since the fourth ice age. As mitochondria are the main sites for energy metabolism in animals, the protein-coding genes involved in mitochondrial respiratory chains, particularly cytochrome c oxidase subunit II (COX2), which is the rate-limiting enzyme in electron transfer, could play an important role in giant panda metabolism. Therefore, the present study aimed to isolate, sequence, and analyze the COX2 DNA from individuals kept at the Giant Panda Protection and Research Center, China, and compare these sequences with those of the other Ursidae family members. Multiple sequence alignment showed that the COX2 gene had three point mutations that defined three haplotypes, with 60% of the sequences corresponding to haplotype I. The neutrality tests revealed that the COX2 gene was conserved throughout evolution, and the maximum likelihood phylogenetic analysis, using homologous sequences from other Ursidae species, showed clustering of the COX2 sequences of giant pandas, suggesting that this gene evolved differently in them.
Denda, Ayumi; Kitayama, Wakashi; Murata, Akiko; Kishida, Hideki; Sasaki, Yasutaka; Kusuoka, Osamu; Tsujiuchi, Toshifumi; Tsutsumi, Masahiro; Nakae, Dai; Takagi, Hidetoshi; Konishi, Yoichi
2002-02-01
Expression of cyclooxygenase (COX)-2 protein during rat hepatocarcinogenesis associated with fatty change, fibrosis, cirrhosis and oxidative DNA damage, caused by a choline-deficient, L-amino acid-defined (CDAA) diet were investigated in F344 male rats, along with the chemopreventive efficacy of the specific COX-2 inhibitor, nimesulide (NIM). Nimesulide, which was administered in the diet at concentrations of 200, 400, 600 and 800 p.p.m. for 12 weeks, decreased the number and size of preneoplastic enzyme-altered liver foci, levels of oxidative DNA damage, and the grade and incidence of fibrosis in a dose-dependent manner. A preliminary long-term study of 65 weeks also revealed that 800 p.p.m. NIM decreased the multiplicity of neoplastic nodules and hepatocellular carcinomas and prevented the development of cirrhosis. Western blot analysis revealed that COX-2 protein was barely expressed in control livers and increased approximately 2.9-fold in the livers of rats fed on a CDAA diet for 12 weeks and approximately 4.5-5.4-fold in tumors, with a diameter larger than 5 mm, at 80 weeks. Immunohistochemically, COX-2 protein was positive in sinusoidal and stromal cells in fibrotic septa, which were identified by immunoelectron microscopy as Kupffer cells, macrophages, either activated Ito cells or fibroblasts, after exposure to the CDAA diet for 12 weeks, whereas it was only occasionally weakly positive in sinusoidal, probably Kupffer, cells in control livers. In neoplastic nodules in rats fed on a CDAA diet for 30 and 80 weeks, sinusoidal cells and cells with relatively large round nuclei and scanty cytoplasm were strongly positive for COX-2 protein, with the neoplastic hepatocytes in the minority of the nodules, but not the cancer cells, being moderately positive. These results clearly indicate that rat hepatocarcinogenesis, along with fatty change, fibrosis and cirrhosis, is associated with increased expression of COX-2 protein, and point to the chemopreventive efficacy of a selective COX-2 inhibitor against, at least, the early stages of hepatocarcinogenesis.
Su, Shao-Hua; Wu, Yi-Fang; Lin, Qi; Hai, Jian
2017-12-01
The present study explored the protective effects of cannabinoid receptor agonist WIN55,212-2 (WIN) and fatty acid amide hydrolase inhibitor URB597 (URB) against neuroinflammation in rats with chronic cerebral hypoperfusion (CCH). Activated microglia, astrocytes, and nuclear factor kappa B (NF-κB) p65-positive cells were measured by immunofluorescence. Reactive oxygen species (ROS) was assessed by dihydroethidium staining. The protein levels of cluster of differentiation molecule 11b (OX-42), glial fibrillary acidic protein (GFAP), NF-κB p65, inhibitor of kappa B alpha (IκB-a), IκB kinase a/β (IKK a/β), phosphorylated IKK a/β (p-IKK a/β), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, and interleukin-1β (IL-1β) were examined by western blotting or enzyme-linked immunosorbent assay. All the protein levels of OX-42, GFAP, TNF-a, IL-1β, COX-2, and iNOS are increased in CCH rats. WIN and URB downregulated the levels of OX-42, GFAP, TNF-α, IL-1β, COX-2 and iNOS and inhibited CCH-induced ROS accumulation in CCH rats, indicating that WIN and URB might exert their neuroprotective effects by inhibiting the neuroinflammatory response. In addition, the NF-κB signaling pathway was activated by CCH in frontal cortex and hippocampus, while the aforementioned changes were reversed by WIN and URB treatment. These findings suggest that WIN and URB treatment ameliorated CCH-induced neuroinflammation through inhibition of the classical pathway of NF-κB activation, resulting in mitigation of chronic ischemic injury.
Bomfim, Gisele F.; Dos Santos, Rosangela A.; Oliveira, Maria Aparecida; Giachini, Fernanda R.; Akamine, Eliana H.; Tostes, Rita C.; Fortes, Zuleica B.; Webb, R. Clinton; Carvalho, Maria Helena C.
2014-01-01
Activation of Toll-like receptors (TLR) induces gene expression of proteins involved in the immune system response. TLR4 has been implicated in the development and progression of cardiovascular diseases. Innate and adaptive immunity contribute to hypertension-associated end-organ damage, although the mechanism by which this occurs remains unclear. In the present study we hypothesize that inhibition of TLR4 decreases blood pressure and improves vascular contractility in resistance arteries from spontaneously hypertensive rats (SHR). TLR4 protein expression in mesenteric resistance arteries was higher in 15 weeks-old SHR than in same age Wistar controls or in 5 weeks-old SHR. In order to decrease activation of TLR4, 15 weeks-old SHR and Wistar rats were treated with anti-TLR4 antibody or non-specific IgG control antibody for 15 days (1µg per day, i.p.). Treatment with anti-TLR4 decreased mean arterial pressure as well as TLR4 protein expression in mesenteric resistance arteries and interleukin-6 (IL-6) serum levels from SHR when compared to SHR treated with IgG. No changes in these parameters were found in Wistar treated rats. Mesenteric resistance arteries from anti-TLR4-treated SHR exhibited decreased maximal contractile response to noradrenaline compared to IgG-treated-SHR. Inhibition of cyclooxygenase-1 (Cox) and Cox-2, enzymes related to inflammatory pathways, decreased noradrenaline responses only in mesenteric resistance arteries of SHR treated with IgG. Cox-2 expression and thromboxane A2 release were decreased in SHR treated with anti-TLR4 compared with IgG-treated-SHR. Our results suggest that TLR4 activation contributes to increased blood pressure, low grade inflammation and plays a role in the augmented vascular contractility displayed by SHR. PMID:22233532
Regression of endometrial explants in a rat model of endometriosis treated with melatonin.
Güney, Mehmet; Oral, Baha; Karahan, Nermin; Mungan, Tamer
2008-04-01
To determine the antioxidant, antiinflammatory, and immunomodulatory effects of melatonin on endometrial explants, the distribution of cyclooxygenase-2 (COX-2), the activity of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), and levels of malondialdehyde (MDA) in the rat endometriosis model. Prospective, placebo-controlled experimental study. Experimental surgery laboratory in a university department. Twenty-five rats with experimentally induced endometriosis. Endometriosis was surgically induced in 25 rats by transplanting an autologous fragment of endometrial tissue onto the inner surface of the abdominal wall. Four weeks later, three rats were killed and the remaining 22 rats given second-look laparotomies to identify and measure ectopic uterine tissue in three dimensions. After the second laparotomy, 4 weeks of vehicle and melatonin treatment were administered, then all of the rats were given a third laparotomy and killed. The volume and weight of the implants were measured. The remaining rats were randomly divided into two groups. In control group (group 1; n = 11) no medication was given. To the rats in melatonin-treated group (group 2; n = 11), 10 mg/kg a day of melatonin was administered intraperitoneally. Four weeks later, after the second laparotomy, the endometrial explants were reevaluated morphologically, and COX-2 expression was evaluated immunohistochemically and histologically. In addition, endometrial explants were analyzed for the antioxidant enzymes SOD, CAT, and MDA, a marker of lipid peroxidation. A scoring system was used to evaluate expression of COX-2 and preservation of epithelia. The pretreatment and posttreatment volumes within the control group were 135.9 +/- 31.5 and 129.4 +/- 28.7, respectively. The mean explant volume was 141.4 +/- 34.4 within the melatonin group before the treatment and 42.9 +/- 14.0 after 4 weeks of treatment. There was a statistically significant difference in spherical volumes (129.4 +/- 28.7 versus 42.9 +/- 14.0 mm(3)) of explant weights (155.8 +/- 27.1 versus 49.6 +/- 19.5 mg) and COX-2 positivity (91% versus 18.1%) between groups after the third laparotomy. In the melatonin-treated group, the endometrial explant levels of MDA statistically significantly decreased and activities of SOD and CAT significantly increased when compared with the control group. The epithelia showed statistically significantly better preservation in the control group when compared with the melatonin-treated group (2.54 +/- 0.52 versus 0.63 +/- 0.50). Melatonin causes regression and atrophy of the endometriotic lesions in rats.
Cárdeno, A; Sánchez-Hidalgo, M; Aparicio-Soto, M; Sánchez-Fidalgo, S; Alarcón-de-la-Lastra, C
2014-06-01
Extra virgin olive oil (EVOO) is obtained from the fruit of the olive tree Olea europaea L. Phenolic compounds present in EVOO have recognized anti-oxidant and anti-inflammatory properties. However, the activity of the total phenolic fraction extracted from EVOO and the action mechanisms involved are not well defined. The present study was designed to evaluate the potential anti-inflammatory mechanisms of the polyphenolic extract (PE) from EVOO on LPS-stimulated peritoneal murine macrophages. Nitric oxide (NO) production was analyzed by the Griess method and intracellular reactive oxygen species (ROS) by fluorescence analysis. Moreover, changes in the protein expression of the pro-inflammatory enzymes, inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and microsomal prostaglandin E synthase-1 (mPGES-1), as well as the role of nuclear transcription factor kappa B (NFκB) and mitogen-activated protein kinase (MAPK) signalling pathways, were analyzed by Western blot. PE from EVOO reduced LPS-induced oxidative stress and inflammatory responses through decreasing NO and ROS generation. In addition, PE induced a significant down-regulation of iNOS, COX-2 and mPGES-1 protein expressions, reduced MAPK phosphorylation and prevented the nuclear NFκB translocation. This study establishes that PE from EVOO possesses anti-inflammatory activities on LPS-stimulated murine macrophages.
NASA Astrophysics Data System (ADS)
Joy, Monu; Elrashedy, Ahmed A.; Mathew, Bijo; Pillay, Ashona Singh; Mathews, Annie; Dev, Sanal; Soliman, Mahmoud E. S.; Sudarsanakumar, C.
2018-04-01
Two novel isoxazole derivatives were synthesized and characterized by NMR and single crystal X-ray crystallography techniques. The methoxy and dimethoxy functionalized variants of isoxazole were screened for its anti-inflammatory profile using cyclooxygenase fluorescent inhibitor screening assay methods along with standard drugs, Celecoxib and Diclofenac. The potent and selective nature of the two isoxazole derivatives on COX-II isoenzyme with a greater magnitude of inhibitory concentration, as compared to the standard drugs and further exploited through molecular dynamics (MD) simulation. Classical, accelerated and multiple MD simulations were performed to investigate the actual binding mode of the two non-steroidal anti-inflammatory drug candidates and addressed their functional selectivity towards COX-II enzyme inhibitory nature.
COX2 Inhibition Reduces Aortic Valve Calcification In Vivo
Wirrig, Elaine E.; Gomez, M. Victoria; Hinton, Robert B.; Yutzey, Katherine E.
2016-01-01
Objective Calcific aortic valve disease (CAVD) is a significant cause of morbidity and mortality, which affects approximately 1% of the US population and is characterized by calcific nodule formation and stenosis of the valve. Klotho-deficient mice were used to study the molecular mechanisms of CAVD as they develop robust aortic valve (AoV) calcification. Through microarray analysis of AoV tissues from klotho-deficient and wild type mice, increased expression of the gene encoding cyclooxygenase 2/COX2 (Ptgs2) was found. COX2 activity contributes to bone differentiation and homeostasis, thus the contribution of COX2 activity to AoV calcification was assessed. Approach and Results In klotho-deficient mice, COX2 expression is increased throughout regions of valve calcification and is induced in the valvular interstitial cells (VICs) prior to calcification formation. Similarly, COX2 expression is increased in human diseased AoVs. Treatment of cultured porcine aortic VICs with osteogenic media induces bone marker gene expression and calcification in vitro, which is blocked by inhibition of COX2 activity. In vivo, genetic loss of function of COX2 cyclooxygenase activity partially rescues AoV calcification in klotho-deficient mice. Moreover, pharmacologic inhibition of COX2 activity in klotho-deficient mice via celecoxib-containing diet reduces AoV calcification and blocks osteogenic gene expression. Conclusions COX2 expression is upregulated in CAVD and its activity contributes to osteogenic gene induction and valve calcification in vitro and in vivo. PMID:25722432
Mitochondrial Copper Metabolism and Delivery to Cytochrome c Oxidase
Horn, Darryl; Barrientos, Antoni
2010-01-01
Summary Metals are essential elements of all living organisms. Among them, copper is required for a multiplicity of functions including mitochondrial oxidative phosphorylation and protection against oxidative stress. Here we will focus on describing the pathways involved in the delivery of copper to cytochrome c oxidase (COX), a mitochondrial metalloenzyme acting as the terminal enzyme of the mitochondrial respiratory chain. The catalytic core of COX is formed by three mitochondrially-encoded subunits and contains three copper atoms. Two copper atoms bound to subunit 2 constitute the CuA site, the primary acceptor of electrons from ferrocytochrome c. The third copper, CuB, is associated with the high-spin heme a3 group of subunit 1. Recent studies, mostly performed in the yeast Saccharomyces cerevisiae, have provided new clues about 1- the source of the copper used for COX metallation; 2- the roles of Sco1p and Cox11p, the proteins involved in the direct delivery of copper to the CuA and CuB sites, respectively; 3- the action mechanism of Cox17p, a copper chaperone that provides copper to Sco1p and Cox11p; 4- the existence of at least four Cox17p homologues carrying a similar twin CX9C domain suggestive of metal binding, Cox19p, Cox23p, Pet191p and Cmc1p, that could be part of the same pathway; and 5- the presence of a disulfide relay system in the intermembrane space of mitochondria that mediates import of proteins with conserved cysteines motifs such as the CX9C characteristic of Cox17p and its homologues. The different pathways are reviewed and discussed in the context of both mitochondrial COX assembly and copper homeostasis. PMID:18459161
Targeted Deletions of COX-2 and Atherogenesis in Mice
Hui, Yiqun; Ricciotti, Emanuela; Crichton, Irene; Yu, Zhou; Wang, Dairong; Stubbe, Jane; Wang, Miao; Puré, Ellen; FitzGerald, Garret A.
2010-01-01
Background While the dominant product of vascular cyclooxygenase (COX)-2, prostacyclin (PGI2), restrains atherogenesis, inhibition and deletion of COX-2 have yielded conflicting results in mouse models of atherosclerosis. Floxed mice were used to parse distinct cellular contributions of COX-2 in macrophages (Mac) and T cells (TC) to atherogenesis. Methods and Results Deletion of Mac COX-2 (MacKO) was attained using LysMCre mice and suppressed completely lipopolysaccharide (LPS) stimulated Mac prostaglandin (PG) formation and LPS evoked systemic PG biosynthesis by ∼ 30%. LPS stimulated COX-2 expression was suppressed in polymorphonuclear leucocytes (PMN) isolated from MacKOs, but PG formation was not even detected in PMN supernatants from control mice. Atherogenesis was attenuated when MacKOs were crossed into hyperlipidemic LdlR KOs. Deletion of Mac COX-2 appeared to remove a restraint on COX-2 expression in lesional non-leukocyte (CD45 and CD11b negative) vascular cells that express vascular cell adhesion molecule and variably, α-smooth muscle actin and vimentin, portending a shift in PG profile and consequent atheroprotection. Basal expression of COX-2 was minimal in TCs, but use of CD4Cre to generate TC knockouts (TCKOs) depressed its modest upregulation by anti-CD3ε. However, biosynthesis of PGs, TC composition in lymphatic organs and atherogenesis in LDLR KOs were unaltered in TCKOs. Conclusions Mac COX-2, primarily a source of thromboxane A2 and PGE2, promotes atherogenesis and exerts a restraint on enzyme expression by lesional cells suggestive of vascular smooth muscle cells, a prominent source of atheroprotective PGI2. TC COX-2 does not influence detectably TC development or function nor atherogenesis in mice. PMID:20530000
Cancer-induced anorexia in tumor-bearing mice is dependent on cyclooxygenase-1.
Ruud, Johan; Nilsson, Anna; Engström Ruud, Linda; Wang, Wenhua; Nilsberth, Camilla; Iresjö, Britt-Marie; Lundholm, Kent; Engblom, David; Blomqvist, Anders
2013-03-01
It is well-established that prostaglandins (PGs) affect tumorigenesis, and evidence indicates that PGs also are important for the reduced food intake and body weight loss, the anorexia-cachexia syndrome, in malignant cancer. However, the identity of the PGs and the PG producing cyclooxygenase (COX) species responsible for cancer anorexia-cachexia is unknown. Here, we addressed this issue by transplanting mice with a tumor that elicits anorexia. Meal pattern analysis revealed that the anorexia in the tumor-bearing mice was due to decreased meal frequency. Treatment with a non-selective COX inhibitor attenuated the anorexia, and also tumor growth. When given at manifest anorexia, non-selective COX-inhibitors restored appetite and prevented body weight loss without affecting tumor size. Despite COX-2 induction in the cerebral blood vessels of tumor-bearing mice, a selective COX-2 inhibitor had no effect on the anorexia, whereas selective COX-1 inhibition delayed its onset. Tumor growth was associated with robust increase of PGE(2) levels in plasma - a response blocked both by non-selective COX-inhibition and by selective COX-1 inhibition, but not by COX-2 inhibition. However, there was no increase in PGE(2)-levels in the cerebrospinal fluid. Neutralization of plasma PGE(2) with specific antibodies did not ameliorate the anorexia, and genetic deletion of microsomal PGE synthase-1 (mPGES-1) affected neither anorexia nor tumor growth. Furthermore, tumor-bearing mice lacking EP(4) receptors selectively in the nervous system developed anorexia. These observations suggest that COX-enzymes, most likely COX-1, are involved in cancer-elicited anorexia and weight loss, but that these phenomena occur independently of host mPGES-1, PGE(2) and neuronal EP(4) signaling. Copyright © 2013 Elsevier Inc. All rights reserved.
Identification of novel Cyclooxygenase-2-dependent genes in Helicobacter pylori infection in vivo
Walduck, Anna K; Weber, Matthias; Wunder, Christian; Juettner, Stefan; Stolte, Manfred; Vieth, Michael; Wiedenmann, Bertram; Meyer, Thomas F; Naumann, Michael; Hoecker, Michael
2009-01-01
Background Helicobacter pylori is a crucial determining factor in the pathogenesis of benign and neoplastic gastric diseases. Cyclooxygenase-2 (Cox-2) is the inducible key enzyme of arachidonic acid metabolism and is a central mediator in inflammation and cancer. Expression of the Cox-2 gene is up-regulated in the gastric mucosa during H. pylori infection but the pathobiological consequences of this enhanced Cox-2 expression are not yet characterized. The aim of this study was to identify novel genes down-stream of Cox-2 in an in vivo model, thereby identifying potential targets for the study of the role of Cox- 2 in H. pylori pathogenesis and the initiation of pre- cancerous changes. Results Gene expression profiles in the gastric mucosa of mice treated with a specific Cox-2 inhibitor (NS398) or vehicle were analysed at different time points (6, 13 and 19 wk) after H. pylori infection. H. pylori infection affected the expression of 385 genes over the experimental period, including regulators of gastric physiology, proliferation, apoptosis and mucosal defence. Under conditions of Cox-2 inhibition, 160 target genes were regulated as a result of H. pylori infection. The Cox-2 dependent subset included those influencing gastric physiology (Gastrin, Galr1), epithelial barrier function (Tjp1, connexin45, Aqp5), inflammation (Icam1), apoptosis (Clu) and proliferation (Gdf3, Igf2). Treatment with NS398 alone caused differential expression of 140 genes, 97 of which were unique, indicating that these genes are regulated under conditions of basal Cox-2 expression. Conclusion This study has identified a panel of novel Cox-2 dependent genes influenced under both normal and the inflammatory conditions induced by H. pylori infection. These data provide important new links between Cox-2 and inflammatory processes, epithelial repair and integrity. PMID:19317916
The role of prostaglandins in spinal transmission of the exercise pressor reflex in decerebrate rats
Stone, Audrey J.; Copp, Steven W.; Kaufman, Marc P.
2014-01-01
Previous studies found that prostaglandins in skeletal muscle play a role in evoking the exercise pressor reflex; however the role played by prostaglandins in the spinal transmission of the reflex is not known. We determined, therefore, whether or not spinal blockade of cyclooxygenase (COX) activity and/or spinal blockade of endoperoxide receptor (EP) 2 or EP4 receptors attenuated the exercise pressor reflex in decerebrate rats. We first established that intrathecal doses of a non-specific COX inhibitor Ketorolac (100ug in 10ul), a COX-2 specific inhibitor Celecoxib (100μg in 10μl), an EP2 antagonist PF-04418948 (10μg in 10μl), and an EP4 antagonist L-161,982 (4μg in 10μl) effectively attenuated the pressor responses to intrathecal injections of Arachidonic Acid (100μg in 10μl), EP2 agonist Butaprost (4ng in 10 μl), and EP4 agonist TCS 2510 (6.25μg in 2.5 μl), respectively. Once effective doses were established, we statically contracted the hindlimb before and after intrathecal injections of Ketorolac, Celecoxib, the EP2 antagonist and the EP4 antagonist. We found that Ketorolac significantly attenuated the pressor response to static contraction (before Ketorolac: 23±5 mmHg, after Ketorolac 14±5 mmHg; p<0.05) whereas Celecoxib had no effect. We also found that 8μg of L-161,982, but not 4 μg of L-161,982, significantly attenuated the pressor response to static contraction (before L-161,982: 21±4 mmHg, after L-161,982 12±3 mmHg; p<0.05), whereas PF-04418948 (10μg) had no effect. We conclude that spinal COX-1, but not COX-2, plays a role in evoking the exercise pressor reflex, and that the spinal prostaglandins produced by this enzyme are most likely activating spinal EP4 receptors, but not EP2 receptors. PMID:25003710
2013-01-01
Background Mitrella kentii (M. kentii) (Bl.) Miq, is a tree-climbing liana that belongs to the family Annonaceae. The plant is rich with isoquinoline alkaloids, terpenylated dihydrochalcones and benzoic acids and has been reported to possess anti-inflammatory activity. The purpose of this study is to assess the gastroprotective effects of desmosdumotin C (DES), a new isolated bioactive compound from M. kentii, on gastric ulcer models in rats. Methods DES was isolated from the bark of M. kentii. Experimental rats were orally pretreated with 5, 10 and 20 mg/kg of the isolated compound and were subsequently subjected to absolute ethanol-induced acute gastric ulcer. Gross evaluation, mucus content, gastric acidity and histological gastric lesions were assessed in vivo. The effects of DES on the anti-oxidant system, non-protein sulfhydryl (NP-SH) content, nitric oxide (NO)level, cyclooxygenase-2 (COX-2) enzyme activity, bcl-2-associated X (Bax) protein expression and Helicabacter pylori (H pylori) were also investigated. Results DES pre-treatment at the administered doses significantly attenuated ethanol-induced gastric ulcer; this was observed by decreased gastric ulcer area, reduced or absence of edema and leucocytes infiltration compared to the ulcer control group. It was found that DES maintained glutathione (GSH) level, decreased malondialdehyde (MDA) level, increased NP-SH content and NO level and inhibited COX-2 activity. The compound up regulated heat shock protein-70 (HSP-70) and down regulated Bax protein expression in the ulcerated tissue. DES showed interesting anti-H pylori effects. The efficacy of DES was accomplished safely without any signs of toxicity. Conclusions The current study reveals that DES demonstrated gastroprotective effects which could be attributed to its antioxidant effect, activation of HSP-70 protein, intervention with COX-2 inflammatory pathway and potent anti H pylori effect. PMID:23866830
Anti-inflammatory effects of fish oil in ovaries of laying hens target prostaglandin pathways
2013-01-01
Background An effective way to control cancer is by prevention. Ovarian cancer is the most lethal gynecological malignancy. Progress in the treatment and prevention of ovarian cancer has been hampered due to the lack of an appropriate animal model and absence of effective chemo-prevention strategies. The domestic hens spontaneously develop ovarian adenocarcinomas that share similar histological appearance and symptoms such as ascites and metastasis with humans. There is a link between chronic inflammation and cancer. Prostaglandin E2 (PGE2) is the most pro-inflammatory ecoisanoid and one of the downstream products of two isoforms of cyclooxygenase (COX) enzymes: COX-1 and COX-2. PGE2 exerts its effects on target cells by coupling to four subtypes of receptors which have been classified as EP1-4. Fish oil is a source of omega-3 fatty acids (OM-3FAs) which may be effective in prevention of ovarian cancer. Our objective was to assess the potential impact of fish oil on expression of COX enzymes, PGE2 concentration, apoptosis and proliferation in ovaries of laying hens. Methods 48 white Leghorn hens were fed 50, 100, 175, 375 and 700 mg/kg fish oil for 21 days. The OM3-FAs and omega-6 fatty acids contents of egg yolks were determined by Gas Chromatography. Proliferation, apoptosis, COX-1, COX-2 and prostaglandin receptor subtype 4 (EP4) protein and mRNA expression and PGE2 concentration in ovaries were measured by PCNA, TUNEL, Western blot, quantitative real-time qPCR and ELISA, respectively. Results Consumption of fish oil increased the incorporation of OM-3FAs into yolks and decreased both COX-1 and COX-2 protein and mRNA expression. In correlation with COXs down-regulation, fish oil significantly reduced the concentrations of PGE2 in ovaries. EP4 protein and mRNA expression in ovaries of hens was not affected by fish oil treatment. A lower dose of fish oil increased the egg laying frequency. 175 and 700 mg/kg fish oil reduced proliferation and 700 mg/kg increased apoptosis in hen ovaries. Conclusions Our findings suggest that the lower doses of fish oil reduce inflammatory PG and may be an effective approach in preventing ovarian carcinogenesis. These findings may provide the basis for clinical trials utilizing fish oil as a dietary intervention targeting prostaglandin biosynthesis for the prevention and treatment of ovarian cancer. PMID:24156238
Mi, Wen-Li; Mao-Ying, Qi-Liang; Liu, Qiong; Wang, Xiao-Wei; Wang, Yan-Qing; Wu, Gen-Cheng
2008-09-30
Electroacupuncture (EA) can effectively control the exaggerated pain in humans with inflammatory disease and animals with experimental inflammatory pain. However, there have been few investigations on the effect of co-administration of EA and analgesics and the underlying synergistic mechanism. Using behavioral test, RT-PCR analysis, enzyme immunoassay (EIA) and enzyme-linked immunosorbent assay (ELISA), the present study demonstrated that (1) Unilateral intra-articular injection of complete Freund's adjuvant (CFA) produced a constant hyperalgesia and an up-regulation of the prostaglandin E(2) (PGE(2)) level as well as the tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, and IL-6 levels in the spinal cord; (2) Celecoxib, a selective inhibitor of cyclooxygenase-2 (COX-2), at a dose of 2, 10, and 20 mg/kg (twice daily, p.o.), presented a dose-dependent anti-hyperalgesic effect; (3) Repeated EA stimulation of ipsilateral 'Huan-Tiao' (GB30) and 'Yang-Ling-Quan' (GB34) acupoints significantly suppressed CFA-induced hyperalgesia, and markedly inhibited the CFA-induced increase of the level of PGE(2) as well as IL-1beta, IL-6, and TNF-alpha in the spinal cord; (4) EA combined with low dose of celecoxib (2 mg/kg, twice daily, p.o.) greatly enhanced the anti-hyperalgesic effects of EA, with a synergistic reversing effect on CFA-induced up-regulation of spinal PGE(2), but not on the IL-1beta, IL-6, or TNF-alpha. These data indicated that repeated EA combined with low dose of celecoxib produced synergistic anti-hyperalgesic effect in the CFA-induced monoarthritic rats, which could be made possible by regulating the activity of spinal COX, hence the spinal PGE(2) level. Thus, this combination may provide an effective strategy for pain management.
Inhibitory activity of tryptanthrin on prostaglandin and leukotriene synthesis.
Danz, Henning; Stoyanova, Stefka; Thomet, Olivier A R; Simon, Hans-Uwe; Dannhardt, Gerd; Ulbrich, Holger; Hamburger, Matthias
2002-10-01
The indolo[2,1- b]quinazoline alkaloid tryptanthrin has previously been identified as the cyclooxygenase-2 (COX-2) inhibitory principle in the extract ZE550 prepared from the medicinal plant Isatis tinctoria (Brassicaceae). We here investigated the potential inhibitory activity of tryptanthrin and ZE550 on COX-2, COX-1 in cellular and cell-free systems. A certain degree of selectivity towards COX-2 was observed when COX-1-dependent formation of thromboxane B(2) (TxB(2)) in HEL cells and COX-2-dependent formation of 6-ketoprostaglandin F(1alpha) (6-keto-PGF(1alpha)) in Mono Mac 6 and RAW 264.7 cells were compared. Preferential inhibition of COX-2 by two orders of magnitude was found in phorbol myristate acetate (PMA) activated bovine aortic coronary endothelial cells (BAECs). Assays with purified COX isoenzymes from sheep confirmed the high selectivity towards COX-2. The leukotriene B(4) (LTB(4)) release from calcium ionophore-stimulated human granulocytes (neutrophils) was used as a model to determine 5-lipoxygenase (5-LOX) activity. Tryptanthrin and the extract ZE550 inhibited LTB(4) release in a dose dependent manner and with a potency comparable to that of the clinically used 5-LOX inhibitor zileuton.
Benamouzig, Robert; Uzzan, Bernard; Martin, Antoine; Deyra, Jacques; Little, Julian; Girard, Bernard; Chaussade, Stanislas
2010-05-01
Low-dose aspirin reduces the incidence of colorectal cancer and recurrence of adenomas. Cyclooxygenase-2 (COX-2), one of its main target enzymes, is reportedly over-expressed in colorectal adenomas. To assess COX-2 expression, in relation to adenoma recurrence and the protective effect of aspirin, in a large series of colorectal adenomas, recruited from a double-blind randomised controlled trial comparing recurrences after low-dose aspirin or placebo. Follow-up colonoscopies were performed after 1 and 4 years to assess adenoma recurrence. COX-2 expression was assessed by immunohistochemistry for each adenoma obtained at baseline colonoscopy, separately for epithelium, deep stroma and overall. Architecture, grade of dysplasia, K-ras mutation, p53 and cyclin D1 expression were studied. COX-2 expression could be assessed in 219 adenomas from 136 128 adenomas (58%) from 59 patients strongly expressed COX-2. Strong COX-2 expression predominated in adenomas larger than 10 mm (84/129 vs 44/90; p=0.02) and in adenomas showing high-grade dysplasia (22/29 vs 104/188; p=0.04). Deep stromal but not epithelial initial expression of COX-2 predicted adenoma recurrence in the whole population (30/72 patients or 42% strongly expressed deep stromal COX-2 compared with 16/64 or 25% without recurrent adenoma; p=0.04). The protective effect of aspirin was mainly observed in patients in whom COX-2 initial expression was low (RR for recurrence in patients taking aspirin with low COX-2 expression: 0.59; 95% CI 0.39 to 0.90; p=0.02). There was no significant effect of aspirin at the end of the trial. Over-expression of COX-2 was frequent and predominated in large and high-grade dysplasia adenomas. Deep stromal but not epithelial initial expression of COX-2 predicted recurrence of adenomas. Aspirin did not act preferentially on patients whose initial adenomas strongly expressed COX-2.
Cyclooxygenase-2 inhibitors modulate skin aging in a catalytic activity-independent manner
Lee, Mi Eun; Kim, So Ra; Lee, Seungkoo; Jung, Yu-Jin; Choi, Sun Shim; Kim, Woo Jin
2012-01-01
It has been proposed that the pro-inflammatory catalytic activity of cyclooxygenase-2 (COX-2) plays a key role in the aging process. However, it remains unclear whether the COX-2 activity is a causal factor for aging and whether COX-2 inhibitors could prevent aging. We here examined the effect of COX-2 inhibitors on aging in the intrinsic skin aging model of hairless mice. We observed that among two selective COX-2 inhibitors and one non-selective COX inhibitor studied, only NS-398 inhibited skin aging, while celecoxib and aspirin accelerated skin aging. In addition, NS-398 reduced the expression of p53 and p16, whereas celecoxib and aspirin enhanced their expression. We also found that the aging-modulating effect of the inhibitors is closely associated with the expression of type I procollagen and caveolin-1. These results suggest that pro-inflammatory catalytic activity of COX-2 is not a causal factor for aging at least in skin and that COX-2 inhibitors might modulate skin aging by regulating the expression of type I procollagen and caveolin-1. PMID:22771771
Zhong, Ying; Huang, Yi; Santoso, Marcel B; Wu, Li-Dong
2015-01-01
Sclareol is a natural product initially isolated form Salvia sclarea which possesses immune-regulation and anti-inflammatory activities. However, the anti-osteoarthritic properties of sclareol have not been investigated. The present study is aimed at evaluating the potential effects of sclareol in interleukin-1β (IL-1β)-induced rabbit chondrocytes as well as an experimental rabbit knee osteoarthritis model induced by anterior cruciate ligament transection (ACLT). Cultured rabbit chondrocytes were pretreated with 1, 5 and 10 μg/mL sclareol for 1 h and followed by stimulation of IL-1β (10 ng/mL) for 24 h. Gene expression of matrix metalloproteinase-1 (MMP-1), MMP-3, MMP-13, tissue inhibitors of metalloproteinase-1 (TIMP-1), inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 was determined by quantitative real-time polymerase chain reaction (qRT-PCR). MMP-3, TIMP-1, iNOS and COX-2 proteins were measured by Western blotting. Enzyme-linked immunosorbent assay (ELISA) was applied for nitric oxide (NO) and prostaglandin E2 (PGE2) assessment. For the in vivo study, rabbits received six weekly 0.3 mL sclareol (10 μg/mL) intra-articular injections in the knees four weeks after ACLT surgery. Cartilage was harvested for measurement of MMP-1, MMP-3, MMP-13, TIMP-1, iNOS and COX-2 by qRT-PCR, while femoral condyles were used for histological evaluation. The in vitro results we obtained showed that sclareol inhibited the MMPs, iNOS and COX-2 expression on mRNA and protein levels, while increased the TIMP-1 expression. And over-production of NO and PGE2 was also suppressed. For the in vivo study, both qRT-PCR results and histological evaluation confirmed that sclareol ameliorated cartilage degradation. Hence, we speculated that sclareol may be an ideal approach for treating osteoarthritis.
A novel nitro-oxy substituted analogue of rofecoxib reduces human colon cancer cell growth.
Bocca, Claudia; Bozzo, Francesca; Ievolella, Monica; Miglietta, Antonella
2012-02-01
Rofecoxib is a specific COX-2 inhibitor able to exert antiproliferative activity against colorectal cancer cells. It was withdrawn from the market after the demonstration of an increased risk of cardiovascular complications after prolonged use. Nevertheless, it remains an interesting compound for laboratory research as an experimental COX-2 inhibitor. In this study, the antiproliferative activity of a novel dinitro-oxy-substituted analogue of rofecoxib (NO-rofe), potentially less cardiotoxic, has been investigated in vitro on human colon cancer cells and compared with the action of the parent drug. Due to the fact that COX-2 inhibition is the main characteristic of coxibs, we performed all experiments in COX-2-overexpressing (HT-29) and COX-2-negative (SW-480) human colon cancer cells, to elucidate whether the observed effects were dependent on COX-2 inhibition. Moreover, experiments were performed in order to evaluate whether COX-2 pharmacological inhibition may affect beta-catenin/E-cadherin signaling pathway. NO-rofe exerted a significant antiproliferative activity on COX-2 positive HT-29 human colon cancer cells, being less effective on the COX-2 negative SW-480 human colon cancer cell line. In particular, the rofecoxib analogue retained similar potencies with respect to COX-2 inhibition but was much more active than rofecoxib in inhibiting the growth of human colon cancer cells in vitro. In addition, this novel compound resulted in the induction of membrane β-catenin/E-cadherin expression, a feature that may significantly contribute to its antiproliferative activity.
Papanicolaou, Kyriakos N.; Streicher, John M.; Ishikawa, Tomo-o; Herschman, Harvey; Wang, Yibin; Walsh, Kenneth
2010-01-01
Cyclooxygenase-1 and -2 are rate-limiting enzymes in the formation of a wide array of bioactive lipid mediators collectively known as prostanoids (prostaglandins, prostacyclins, thromboxanes). Evidence from clinical trials shows that selective inhibition of the second isoenzyme (cyclooxygenase-2, or Cox-2) is associated with increased risk for serious cardiovascular events and findings from animal-based studies have suggested protective roles of Cox-2 for the heart. To further characterize the function of Cox-2 in the heart, mice with loxP sites flanking exons 4 and 5 of Cox-2 were rendered knockout specifically in cardiac myocytes (Cox-2 CKO mice) via cre-mediated recombination. Baseline cardiac performance of CKO mice remained unchanged and closely resembled that of control mice. Furthermore, myocardial infarct size induced after in vivo ischemia/reperfusion (I/R) injury was comparable between CKO and control mice. In addition, cardiac hypertrophy and function four weeks after transverse aortic constriction (TAC) was found to be similar between the two groups. Assessment of Cox-2 expression in purified adult cardiac cells isolated after I/R and TAC suggests that the dominant source of Cox-2 is found in the non-myocyte fraction. In conclusion, our animal-based analyses together with the cell-based observations portray a limited role of cardiomyocyte-produced Cox-2 at baseline and in the context of ischemic or hemodynamic challenge. PMID:20399788
Setia, Shruti; Sanyal, Sankar N
2012-01-01
Non-steroidal anti-inflammatory drugs (NSAIDs) act by inhibition of cyclooxygenase-2 (COX-2), which is overexpressed in cancer. The role of COX-2 and apoptosis were evaluated in 9,10-dimethylbenz(a)anthracene (DMBA)-induced lung cancer in rat and chemoprevention with indomethacin, a traditional NSAID and etoricoxib, a selective COX-2 inhibitor. The animals were divided into Control, DMBA, DMBA+ indomethacin and DMBA+ etoricoxib groups. They received a single intratracheal instillation of DMBA while NSAIDs were given orally daily for 32 weeks. Besides morphology and histology of lungs, RT-PCR, western blots and immunohistochemistry were performed for the expression of apoptotic proteins and COX enzymes. Apoptosis was studied by DNA fragmentation and fluorescent staining. The occurrence of tumors and lesions was noted in the DMBA animals, besides constricted alveolar spaces and hyperplasia. COX-1 was found to be uniformly expressed while COX-2 level was raised significantly in DMBA group. The apoptotic proteins, apaf-1, caspase-9 and caspase-3 were highly diminished in DMBA group but restored to normal level in NSAIDs groups. Also, apoptosis was suppressed in carcinogen group by DNA fragmentation analysis and fluorescent staining of the lung cells while co-administration of NSAIDs along with DMBA led to the restoration of apoptosis. DMBA administration to the rats led to tumorigenesis in the lungs, had no effects on COX-1 expression, while elevating the COX-2 levels and suppressing apoptosis. The treatment with NSAIDs led to the amelioration of these effects. However, etoricoxib which is a COX-2 specific inhibitor, was found to be more effective than the traditional NSAID, indomethacin.
Selective Synthesis and Biological Evaluation of Sulfate-Conjugated Resveratrol Metabolites
Hoshino, Juma; Park, Eun-Jung; Kondratyuk, Tamara P.; Marler, Laura; Pezzuto, John M.; van Breemen, Richard B.; Mo, Shunyan; Li, Yongchao; Cushman, Mark
2010-01-01
Five resveratrol sulfate metabolites were synthesized and assessed for activities known to be mediated by resveratrol: inhibition of tumor necrosis factor (TNF)-α-induced NFκB activity, cylcooxygenases (COX-1 and COX-2), aromatase, nitric oxide production in endotoxin-stimulated macrophages, and proliferation of KB or MCF7 cells, induction of quinone reductase 1 (QR1), accumulation in the sub-G1 phase of the cell cycle, and quenching of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical. Two metabolites showed activity in these assays; the 3-sulfate exhibited QR1 induction, DPPH free radical scavenging, and COX-1 and COX-2 inhibitory activities, and the 4′-sulfate inhibited NFκB induction, as well as COX-1 and COX-2 activities. Resveratrol, as well as its 3′-sulfate and 4-sulfate, inhibit NO production by NO scavenging and down-regulation of iNOS expression in RAW 264.7 cells. Resveratrol sulfates displayed low antiproliferative activity and negligible uptake in MCF7 cells. PMID:20527891
Oesch, F; Fabian, E; Landsiedel, Robert
2018-06-18
Studies on the metabolic fate of medical drugs, skin care products, cosmetics and other chemicals intentionally or accidently applied to the human skin have become increasingly important in order to ascertain pharmacological effectiveness and to avoid toxicities. The use of freshly excised human skin for experimental investigations meets with ethical and practical limitations. Hence information on xenobiotic-metabolizing enzymes (XME) in the experimental systems available for pertinent studies compared with native human skin has become crucial. This review collects available information of which-taken with great caution because of the still very limited data-the most salient points are: in the skin of all animal species and skin-derived in vitro systems considered in this review cytochrome P450 (CYP)-dependent monooxygenase activities (largely responsible for initiating xenobiotica metabolism in the organ which provides most of the xenobiotica metabolism of the mammalian organism, the liver) are very low to undetectable. Quite likely other oxidative enzymes [e.g. flavin monooxygenase, COX (cooxidation by prostaglandin synthase)] will turn out to be much more important for the oxidative xenobiotic metabolism in the skin. Moreover, conjugating enzyme activities such as glutathione transferases and glucuronosyltransferases are much higher than the oxidative CYP activities. Since these conjugating enzymes are predominantly detoxifying, the skin appears to be predominantly protected against CYP-generated reactive metabolites. The following recommendations for the use of experimental animal species or human skin in vitro models may tentatively be derived from the information available to date: for dermal absorption and for skin irritation esterase activity is of special importance which in pig skin, some human cell lines and reconstructed skin models appears reasonably close to native human skin. With respect to genotoxicity and sensitization reactive-metabolite-reducing XME in primary human keratinocytes and several reconstructed human skin models appear reasonably close to human skin. For a more detailed delineation and discussion of the severe limitations see the Conclusions section in the end of this review.
Li, Lingyun; Steinauer, Kirsten K; Dirks, Amie J; Husbeck, Bryan; Gibbs, Iris; Knox, Susan J
2003-12-01
Cyclooxygenase 2 (COX2) is the inducible isozyme of COX, a key enzyme in arachidonate metabolism and the conversion of arachidonic acid (AA) to prostaglandins (PGs) and other eicosanoids. Previous studies have demonstrated that the COX2 protein is up-regulated in prostate cancer cells after irradiation and that this results in elevated levels of PGE(2). In the present study, we further investigated whether radiation-induced COX2 up-regulation is dependent on the redox status of cells from the prostate cancer cell line PC-3. l-Buthionine sulfoximine (BSO), which inhibits gamma glutamyl cysteine synthetase (gammaGCS), and the antioxidants alpha-lipoic acid and N-acetyl-l-cysteine (NAC) were used to modulate the cellular redox status. BSO decreased the cellular GSH level and increased cellular reactive oxygen species (ROS) in PC-3 cells, whereas alpha-lipoic acid and NAC increased the GSH level and decreased cellular ROS. Both radiation and the oxidant H(2)O(2) had similar effects on COX2 up-regulation and PGE(2) production in PC-3 cells, suggesting that radiation-induced COX2 up-regulation is secondary to the production of ROS. The relative increases in COX2 expression and PGE(2) production induced by radiation and H(2)O(2) were even greater when PC-3 cells were pretreated with BSO. When the cells were pretreated with alpha-lipoic acid or NAC for 24 h, both radiation- and H(2)O(2)-induced COX2 up-regulation and PGE(2) production were markedly inhibited. These results demonstrate that radiation-induced COX2 up-regulation in prostate cancer cells is modulated by the cellular redox status. Radiation-induced increases in ROS levels contribute to the adaptive response of PC-3 cells, resulting in elevated levels of COX2.
Okoro, Uchechukwu Chris; Ahmad, Hilal
2017-01-01
Sixteen new carboxamide derivatives bearing substituted benzenesulphonamide moiety (7a-p) were synthesized by boric acid mediated amidation of appropriate benzenesulphonamide with 2-amino-4-picoline and tested for anti-inflammatory activity. One compound 7c showed more potent anti-inflammatory activity than celecoxib at 3 h in carrageenan-induced rat paw edema bioassay. Compounds 7g and 7k also showed good anti-inflammatory activity comparable to celecoxib. Compound 7c appeared selectivity index (COX-2/COX-1) better than celecoxib. Compound 7k appeared selectivity index (COX-2/COX-1) a little higher than the half of celecoxib while compound 7g is non-selective for COX-2. The LD50 of compounds 7c, 7g and 7k were comparable to celecoxib. PMID:28922386
Coxibs interfere with the action of aspirin by binding tightly to one monomer of cyclooxygenase-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rimon, Gilad; Sidhu, Ranjinder S.; Lauver, D. Adam
Pain associated with inflammation involves prostaglandins synthesized from arachidonic acid (AA) through cyclooxygenase-2 (COX-2) pathways while thromboxane A{sub 2} formed by platelets from AA via cyclooxygenase-1 (COX-1) mediates thrombosis. COX-1 and COX-2 are both targets of nonselective nonsteroidal antiinflammatory drugs (nsNSAIDs) including aspirin whereas COX-2 activity is preferentially blocked by COX-2 inhibitors called coxibs. COXs are homodimers composed of identical subunits, but we have shown that only one subunit is active at a time during catalysis; moreover, many nsNSAIDS bind to a single subunit of a COX dimer to inhibit the COX activity of the entire dimer. Here, we reportmore » the surprising observation that celecoxib and other coxibs bind tightly to a subunit of COX-1. Although celecoxib binding to one monomer of COX-1 does not affect the normal catalytic processing of AA by the second, partner subunit, celecoxib does interfere with the inhibition of COX-1 by aspirin in vitro. X-ray crystallographic results obtained with a celecoxib/COX-1 complex show how celecoxib can bind to one of the two available COX sites of the COX-1 dimer. Finally, we find that administration of celecoxib to dogs interferes with the ability of a low dose of aspirin to inhibit AA-induced ex vivo platelet aggregation. COX-2 inhibitors such as celecoxib are widely used for pain relief. Because coxibs exhibit cardiovascular side effects, they are often prescribed in combination with low-dose aspirin to prevent thrombosis. Our studies predict that the cardioprotective effect of low-dose aspirin on COX-1 may be blunted when taken with coxibs.« less
DPPC regulates COX-2 expression in monocytes via phosphorylation of CREB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, R.H.K.; Tonks, A.J.; Jones, K.P.
2008-05-23
The major phospholipid in pulmonary surfactant dipalmitoyl phosphatidylcholine (DPPC) has been shown to modulate inflammatory responses. Using human monocytes, this study demonstrates that DPPC significantly increased PGE{sub 2} (P < 0.05) production by 2.5-fold when compared to untreated monocyte controls. Mechanistically, this effect was concomitant with an increase in COX-2 expression which was abrogated in the presence of a COX-2 inhibitor. The regulation of COX-2 expression was independent of NF-{kappa}B activity. Further, DPPC increased the phosphorylation of the cyclic AMP response element binding protein (CREB; an important nuclear transcription factor important in regulating COX-2 expression). In addition, we also showmore » that changing the fatty acid groups of PC (e.g. using L-{alpha}-phosphatidylcholine {beta}-arachidonoyl-{gamma}-palmitoyl (PAPC)) has a profound effect on the regulation of COX-2 expression and CREB activation. This study provides new evidence for the anti-inflammatory activity of DPPC and that this activity is at least in part mediated via CREB activation of COX-2.« less
Immunosensors for quantifying cyclooxygenase 2 pain biomarkers.
Noah, Naumih M; Mwilu, Samuel K; Sadik, Omowunmi A; Fatah, Alim A; Arcilesi, Richard D
2011-07-15
Cyclooxygenase 2 (COX-2) is a key enzyme in pain biomarkers, inflammation and cancer cell proliferation. Thus biosensors that can quantify pain mediators based on biochemical mechanism are imperative. Biomolecular recognition and affinity of antigenic COX-2 with the antibody were investigated using surface plasmon resonance (SPR) and ultra-sensitive portable capillary (UPAC) fluorescence sensors. Polyclonal goat anti-COX-2 (human) antibodies were covalently immobilized on gold SPR surface and direct recognition for the COX-2 antigen assessed. The UPAC sensor utilized an indirect sandwich design involving covalently attached goat anti-COX-2 as the capture antibody and rabbit anti-COX-2 (human) antibody as the secondary antibody. UPAC fluorescence signals were directly proportional to COX-2 at a linear range of 7.46×10⁻⁴-7.46×10¹ ng/ml with detection limit of 1.02×10⁻⁴ ng/ml. With SPR a linear range was 3.64×10⁻⁴-3.64×10² ng/ml was recorded and a detection limit of 1.35×10⁻⁴ ng/ml. Validation was achieved in simulated blood samples with percent recoveries of 81.39% and 87.23% for SPR and UPAC respectively. The developed sensors have the potential to provide objective characterization of pain biomarkers for clinical diagnoses. Copyright © 2011 Elsevier B.V. All rights reserved.
López-Torres, M; Pérez-Campo, R; Barja de Quiroga, G
1991-01-01
A study of the physiological role of oxygen free radicals in relation to the ageing process was performed using the liver of Rana perezi, an animal with a moderate rate of oxygen consumption and a life span substantially longer than that of laboratory rodents. Among the five different antioxidant enzymes only superoxide dismutase (SOD) showed an age-dependent decrease. Cytochrome oxidase (COX), glutathione status, in vivo and in vitro liver peroxidation, and metabolic rate did not vary as a function of age. Long-term (2.5 months) treatment with aminotriazole and diethyldithiocarbamate depleted catalase (CAT) activity and did not change both glutathione peroxidases (GPx), COX, reduced (GSH) and oxidized (GSSG) glutathione, or metabolic rate. This treatment resulted in great compensatory increases in SOD (to 250-460% of controls) and glutathione reductase (GR) (to 200%) which are possibly responsible for the lack of increase of in vivo and in vitro liver peroxidation and for the absence of changes in survival rate. The comparison of these results with previous data from other species suggests the possibility that decreases in antioxidant capacity in old age are restricted to animal species with high metabolic rates. Nevertheless, ageing can still be due to the continuous presence of small concentrations of O2 radicals in the tissues throughout life in animals with either high or low metabolic rates, because radical scavenging can not be 100% effective. Compensatory homeostasis among antioxidants seems to be a general phenomenon in different species.
Antiinflammatory effect of Japanese horse chestnut (Aesculus turbinata) seeds.
Sato, Itaru; Kofujita, Hisayoshi; Suzuki, Tadahiko; Kobayashi, Haruo; Tsuda, Shuji
2006-05-01
The antiinflammatory effects of Japanese horse chestnut (Aesculus turbinata) seeds were examined in vivo and in vitro. The extract of this seed (HCSE) inhibited croton oil-induced swelling of the mouse concha. HCSE inhibited cyclooxygenase (COX) -1 and -2 activities, but had no effect on 15-lipoxygenase and phospholipase A2 activities. Inhibition of COX-2 occurred at a lower concentration of HCSE than for COX-1. Japanese horse chestnut seeds contain coumarins and saponins, but these chemicals did not inhibit COX activities. These results suggest that the antiinflammatory effect of Japanese horse chestnut seeds is caused, at least partly, by the inhibition of COX. The inhibitor of COX in this seed may be a chemical(s) other than coumarins and saponins.
Huang, Fengying; Cao, Jing; Liu, Qiuhong; Zou, Ying; Li, Hongyun; Yin, Tuanfang
2013-01-01
Objective: Now there are more and more evidences that Cyclooxygenase-2 (COX-2) plays an important role in angiogenesis of endometriosis (EMs). Vascular endothelial growth factor (VEGF) has a potent angiogenic activity. However, it is worth studying about the regulating mechanism of COX-2/COX-1 and VEGF in the development of human endometriosis in vitro. The current study was designed to investigate the effect of 4 cytokines on COX-2/COX-1 expression and the effect of IL-1β on VEGF release in human endometriosis stromal cells (ESC), and to explore the related signaling pathways involved in vitro. Methods: Isolation, culture and identification of ESC. Cells were treated with 4 cytokines, and the inhibitor mitogen-activated protein-Erk (MEK) and the inhibitor p38 mitogen-activated protein kinase (MAPK) prior to adding cytokine IL-1β. COX-2 protein expression was measured by western blot and VEGF secretion was determined by ELISA. Results: Among four kinds of cytokines, IL-1β treatment increased COX-2 protein expression and VEGF release in three ESC, and TNF-α had the same effect on COX-2 protein level as IL-1β only in ectopic and eutopic ESC, and MCSF had only slight effect on ectopic ESC. In contrast, cytokines had no effect on COX-1 expression. We also demonstrated that MAPK reduced the synthesis of COX-2 by IL-1β induced. COX-2 inhibitor reduced VEGF release by IL-1β induced. Conclusions: i) In human ESC in vitro, IL-1β up-regulated the COX-2 expression through the activation of p38 MAPK pathway, and not to COX-1. ii) Up-regulation of VEGF level by IL-1β treatment was found in human endometriosis stromal cell and COX-2 inhibitor was involved in this process. PMID:24133591
Woo, Kyung Jin; Kwon, Taeg Kyu
2007-12-15
Sulforaphane is a natural, biologically active compound extracted from cruciferous vegetables such as broccoli and cabbage. It possesses potent anti-inflammation and anti-cancer properties. The mechanism by which sulforaphane suppresses COX-2 expression remains poorly understood. In the present report, we investigated the effect of sulforaphane on the expression of COX-2 in lipopolysaccharide (LPS)-activated Raw 264.7 cells. Sulforaphane significantly suppressed the LPS-induced COX-2 protein and mRNA expression in a dose-dependent manner. The ability of sulforaphane to suppress the expression of the COX-2 was investigated using luciferase reporters controlled by various cis-elements in COX-2 promoter region. Electrophoretic mobility shift assay (EMSA) verified that NF-kappaB, C/EBP, CREB and AP-1 were identified as responsible for the sulforaphane-mediated COX-2 down-regulation. In addition, we demonstrated the signal transduction pathway of mitogen-activated protein kinase (MAP kinase) in LPS-induced COX-2 expression. Taken together, these results demonstrate that sulforaphane effectively suppressed the LPS-induced COX-2 protein via modulation of multiple core promoter elements (NF-kappaB, C/EBP, CREB and AP-1) in the COX-2 transcriptional regulation. These results will provide new insights into the anti-inflammatory and anti-carcinogenic properties of sulforaphane.
Isothiocyanates: cholinesterase inhibiting, antioxidant, and anti-inflammatory activity.
Burčul, Franko; Generalić Mekinić, Ivana; Radan, Mila; Rollin, Patrick; Blažević, Ivica
2018-12-01
Finding a new type of cholinesterase inhibitor that would overcome the brain availability and pharmacokinetic parameters or hepatotoxic liability has been a focus of investigations dealing with the treatment of Alzheimer's disease. Isothiocyanates have not been previously investigated as potential cholinesterase inhibitors. These compounds can be naturally produced from their glucosinolate precursors, secondary metabolites widely distributed in our daily Brassica vegetables. Among 11 tested compounds, phenyl isothiocyanate and its derivatives showed the most promising inhibitory activity. 2-Methoxyphenyl ITC showed best inhibition on acetylcholinesterase with IC 50 of 0.57 mM, while 3-methoxyphenyl ITC showed the best inhibition on butyrylcholinesterase having 49.2% at 1.14 mM. Assessment of the antioxidant efficacy using different methods led to a similar conclusion. The anti-inflammatory activity was also tested using human COX-2 enzyme, ranking phenyl isothiocyanate, and 3-methoxyphenyl isothiocyanate as most active, with ∼99% inhibition at 50 μM.
Singh, Palwinder; Mittal, Anu; Kaur, Satwinderjeet; Kumar, Subodh
2008-12-01
5-Hydroxymethyl-/carboxyl-2,3-diaryl-tetrahydro-furan-3-ols have been investigated for their COX-1 and COX-2 inhibitory activities. Compounds 17, 18 and 20 have been identified as showing appreciable COX-2 inhibition and selectivity. The group present at C-5 of tetrahydrofuran and the substituents at the two phenyl rings, through their interactions with active site amino acid residues, significantly affect the activities of these molecules. The quantitative structure-activity relationship studies indicate the role of logP, TPSA, molecular connectivity and valence connectivity towards the activities of these molecules.
Rehman, Muneeb U; Tahir, Mir; Khan, Abdul Quaiyoom; Khan, Rehan; Oday-O-Hamiza; Lateef, Abdul; Hassan, Syed Kazim; Rashid, Sumaya; Ali, Nemat; Zeeshan, Mirza; Sultana, Sarwat
2014-04-01
D-limonene is a naturally occurring monoterpene and has been found to posses numerous therapeutic properties. In this study, we used D-limonene as a protective agent against the nephrotoxic effects of anticancer drug doxorubicin (Dox). Rats were given D-limonene at doses of 5% and 10% mixed with diet for 20 consecutive days. Dox was give at the dose of 20 mg/kg body weight intraperitoneally. The protective effects of D-limonene on Dox-induced oxidative stress and inflammation were investigated by assaying oxidative stress biomarkers, lipid peroxidation, serum toxicity markers, proinflammatory cytokines, and expression of nuclear factor kappa B (NFκB), cyclo-oxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) and Nitrite levels. Administration of Dox (20 mg/kg body weight) in rats enhanced renal lipid peroxidation; depleted glutathione content and anti-oxidant enzymes; elevated levels of kidney toxicity markers viz. kidney injury molecule-1 (KIM-1), blood urea nitrogen (BUN), and creatinine; enhanced expression of NFκB, COX-2, and iNOS and nitric oxide. Treatment with D-limonene prevented oxidative stress by restoring the levels of antioxidant enzymes, further both doses of 5% and 10% showed significant decrease in inflammatory response. Both the doses of D-limonene significantly decreased the levels of kidney toxicity markers KIM-1, BUN, and creatinine. D-limonene also effectively decreased the Dox induced overexpression of NF-κB, COX-2, and iNOS and nitric oxide. Data from the present study indicate the protective role of D-limonene against Dox-induced renal damage.
Chang, Feng-Peng; Chen, Yi-Ping; Mou, Chung-Yuan
2014-11-01
An approach for enzyme therapeutics is elaborated with cell-implanted nanoreactors that are based on multiple enzymes encapsulated in hollow silica nanospheres (HSNs). The synthesis of HSNs is carried out by silica sol-gel templating of water-in-oil microemulsions so that polyethyleneimine (PEI) modified enzymes in aqueous phase are encapsulated inside the HSNs. PEI-grafted superoxide dismutase (PEI-SOD) and catalase (PEI-CAT) encapsulated in HSNs are prepared with quantitative control of the enzyme loadings. Excellent activities of superoxide dismutation by PEI-SOD@HSN are found and transformation of H2 O2 to water by PEI-CAT@HSN. When PEI-SOD and PEI-CAT are co-encapsulated, cascade transformation of superoxide through hydrogen peroxide to water was facile. Substantial fractions of HSNs exhibit endosome escape to cytosol after their delivery to cells. The production of downstream reactive oxygen species (ROS) and COX-2/p-p38 expression show that co-encapsulated SOD/CAT inside the HSNs renders the highest cell protection against the toxicant N,N'-dimethyl-4,4'-bipyridinium dichloride (paraquat). The rapid cell uptake and strong detoxification effect on superoxide radicals by the SOD/CAT-encapsulated hollow mesoporous silica nanoparticles demonstrate the general concept of implanting catalytic nanoreactors in biological cells with designed functions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reactive metabolites and antioxidant gene polymorphisms in Type 2 diabetes mellitus☆
Banerjee, Monisha; Vats, Pushpank
2013-01-01
Type 2 diabetes mellitus (T2DM), by definition is a heterogeneous, multifactorial, polygenic syndrome which results from insulin receptor dysfunction. It is an outcome of oxidative stress caused by interactions of reactive metabolites (RMs) interactions with lipids, proteins and other mechanisms of human body. Production of RMs mainly superoxide (O2−) has been found in a variety of predominating cellular enzyme systems including NAD(P)H oxidase, xanthine oxidase (XO), cyclooxygenase (COX), uncoupled endothelial nitric oxide synthase (eNOS) and myeloperoxidase (MPO). The four main RM related molecular mechanisms are: increased polyol pathway flux; increased advanced glycation end-product (AGE) formation; activation of protein kinase C (PKC) isoforms and increased hexosamine pathway flux which have been implicated in glucose-mediated vascular damage. Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), nitric oxide synthase (NOS) are antioxidant enzymes involved in scavenging RMs in normal individuals. Functional polymorphisms of these antioxidant enzymes have been reported to be involved in pathogenesis of T2DM individuals. The low levels of antioxidant enzymes or their non-functionality results in excessive RMs which initiate stress related pathways thereby leading to insulin resistance and T2DM. An attempt has been made to review the role of RMs and antioxidant enzymes in oxidative stress resulting in T2DM. PMID:25460725
Sato, Itaru; Kofujita, Hisayoshi; Tsuda, Shuji
2007-07-01
Japanese horse chestnut (Aesculus turbinata) seed extract inhibits the activity of cyclooxygenase (COX), but its active constituents have not been identified. In the present study, COX inhibitors were isolated from the hexane extract of this seed by means of 4 steps of liquid chromatography and were identified by gas chromatography/mass spectrometry and nuclear magnetic resonance. The COX inhibitors in the extract of Japanese horse chestnut seeds were identified as linoleic acid, linolenic acid, and oleic acid. Their efficacies were in the following order: linolenic acid = linoleic acid > oleic acid. These active constituents are C18 unsaturated fatty acids; stearic acid, a C18 saturated fatty acid, had no activity. Linolenic acid and linoleic acid had high selectivity toward COX-2 (selectivity index = 10), whereas oleic acid had no selectivity. Considering the efficacy and yield of each fatty acid, linoleic acid may be the principal COX inhibitor in this seed.
Raaben, Matthijs; Einerhand, Alexandra WC; Taminiau, Lucas JA; van Houdt, Michel; Bouma, Janneke; Raatgeep, Rolien H; Büller, Hans A; de Haan, Cornelis AM; Rossen, John WA
2007-01-01
Cyclooxygenases (COXs) play a significant role in many different viral infections with respect to replication and pathogenesis. Here we investigated the role of COXs in the mouse hepatitis coronavirus (MHV) infection cycle. Blocking COX activity by different inhibitors or by RNA interference affected MHV infection in different cells. The COX inhibitors reduced MHV infection at a post-binding step, but early in the replication cycle. Both viral RNA and viral protein synthesis were affected with subsequent loss of progeny virus production. Thus, COX activity appears to be required for efficient MHV replication, providing a potential target for anti-coronaviral therapy. PMID:17555580
Murakami, Yukio; Kawata, Akifumi; Ito, Shigeru; Katayama, Tadashi; Fujisawa, Seiichiro
2014-01-01
Phenolic compounds, particularly dihydroxybiphenyl-related compounds, possess efficient anti-oxidative and anti-inflammatory activity. We investigated the anti-inflammatory activity of 2,2'-dihydroxy-5,5'-dimethylbiphenol (p-cresol dimer), 2,2'-dihydroxy-5,5'-dimethoxybiphenol (pHA dimer), p-cresol, p-hydroxyanisole (pHA) and 2-t-butyl-4-hydroxyanisole (BHA). The cytotoxicity of the investigated compounds against RAW264.7 cells was determined using a cell counting kit (CCK-8). Their inhibitory effects on cyclooxygenase-2 (Cox2) mRNA expression stimulated by lipopolysaccharide (LPS) were determined using northern blot analysis, and their inhibition of LPS-stimulated nuclear factor-kappa B (Nf-κb) activation was evaluated using enzyme-linked immunosorbent assay-like microwell colorimetric transcription factor activity assay. The molecular orbital energy was calculated on the basis of density function theory BLYP/6-31G*. The cytotoxicity of the compounds declined in the order pHA dimer > p-cresol dimer > BHA > p-cresol > pHA. The inhibitory effect on Cox2 expression and Nf-κb activation was enhanced by p-cresol dimer and pHA dimer, particularly the former, suggesting potent anti-inflammatory activity, whereas p-cresol and pHA showed weak activity, and BHA no activity. Both p-cresol dimer and pHA dimer were highly electronegative, as determined by quantum chemical calculations. Dimerization of p-cresol and pHA enhances their anti-inflammatory activity. p-Cresol dimer and pHA dimer, particularly the former, are potent anti-inflammatory agents. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Choi, Hyowon; Chaiyamongkol, Weera; Doolittle, Alexandra C; Johnson, Zariel I; Gogate, Shilpa S; Schoepflin, Zachary R; Shapiro, Irving M; Risbud, Makarand V
2018-06-08
The nucleus pulposus (NP) of intervertebral discs experiences dynamic changes in tissue osmolarity because of diurnal loading of the spine. TonEBP/NFAT5 is a transcription factor that is critical in osmoregulation as well as survival of NP cells in the hyperosmotic milieu. The goal of this study was to investigate whether cyclooxygenase-2 (COX-2) expression is osmoresponsive and dependent on TonEBP, and whether it serves an osmoprotective role. NP cells up-regulated COX-2 expression in hyperosmotic media. The induction of COX-2 depended on elevation of intracellular calcium levels and p38 MAPK pathway, but independent of calcineurin signaling as well as MEK/ERK and JNK pathways. Under hyperosmotic conditions, both COX-2 mRNA stability and its proximal promoter activity were increased. The proximal COX-2 promoter (-1840/+123 bp) contained predicted binding sites for TonEBP, AP-1, NF-κB, and C/EBP-β. While COX-2 promoter activity was positively regulated by both AP-1 and NF-κB, AP-1 had no effect and NF-κB negatively regulated COX-2 protein levels under hyperosmotic conditions. On the other hand, TonEBP was necessary for both COX-2 promoter activity and protein up-regulation in response to hyperosmotic stimuli. Ex vivo disc organ culture studies using hypomorphic TonEBP +/- mice confirmed that TonEBP is required for hyperosmotic induction of COX-2. Importantly, the inhibition of COX-2 activity under hyperosmotic conditions resulted in decreased cell viability, suggesting that COX-2 plays a cytoprotective and homeostatic role in NP cells for their adaptation to dynamically loaded hyperosmotic niches. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Bacopa monnieri (L.) exerts anti-inflammatory effects on cells of the innate immune system in vitro.
Williams, Roderick; Münch, Gerald; Gyengesi, Erika; Bennett, Louise
2014-03-01
Bacopa monnieri (L., BM) is a traditional Ayurvedic medicinal herb recognised for its efficacy in relieving acute pain and inflammation, as related to selective inhibition of cyclo-oxygenase-2 (COX-2) enzyme and consequent reduction in COX-2-mediated prostanoid mediators. BM is also associated with cognitive enhancing (nootropic) activity including improving memory free recall, observed after prolonged intake (>3 months). It is likely that the time frame required to exert an effect in the brain reflects regulation by BM of chronic inflammation and oxidative stress associated with aging and chronic diseases, and other polypharmacological effects. We report down-regulation by BM of NO and TNF-α in stimulated RAW 246.7 macrophages and of IFN-γ in stimulated human blood cells. Furthermore, in human blood cells, IL-10 was slightly elevated indicating polarisation towards a regulatory T cell phenotype. These results provide further supportive evidence to justify the clinical evaluation of BM for managing diseases involving chronic systemic and brain inflammation driven by the innate immune system.
Anti-thrombotic and anti-inflammatory activities of protopine.
Saeed, S A; Gilani, A H; Majoo, R U; Shah, B H
1997-07-01
The effects of protopine on human platelet aggregation and arachidonic acid (AA) metabolism via cyclooxygenase (COX) and lipoxygenase (LOP) enzymes were examined. Platelet aggregation induced by various platelet agonists (AA, ADP, collagen and PAF) was strongly inhibited by protopine in a concentration-related manner. The IC50 values (microM) of protopine (mean +/- SEM) against: AA; 12 +/- 2: ADP; 9 +/- 2: collagen; 16 +/- 2 and PAF; 11 +/- 1, were much less than those observed for aspirin. In addition, protopine selectively inhibited the synthesis of thromboxane A2 (TXA2) via COX pathway and had no effect on the LOP pathway in platelets. In vivo, pretreatment with protopine (50-100 mg kg-1) protected rabbits from the lethal effects of AA (2 mg kg-1) or PAF (11 micrograms kg-1) in dose-dependent fashion. Protopine (50-100 mg kg-1) also inhibited carrageenan-induced rat paw oedema with a potency of three-fold as compared to aspirin. These results are suggestive that protopine acts as a potent inhibitor of thromboxane synthesis and PAF with anti-inflammatory properties.
IL-1β Stimulates COX-2 Dependent PGE2 Synthesis and CGRP Release in Rat Trigeminal Ganglia Cells
Neeb, Lars; Hellen, Peter; Boehnke, Carsten; Hoffmann, Jan; Schuh-Hofer, Sigrid; Dirnagl, Ulrich; Reuter, Uwe
2011-01-01
Objective Pro-inflammatory cytokines like Interleukin-1 beta (IL-1β) have been implicated in the pathophysiology of migraine and inflammatory pain. The trigeminal ganglion and calcitonin gene-related peptide (CGRP) are crucial components in the pathophysiology of primary headaches. 5-HT1B/D receptor agonists, which reduce CGRP release, and cyclooxygenase (COX) inhibitors can abort trigeminally mediated pain. However, the cellular source of COX and the interplay between COX and CGRP within the trigeminal ganglion have not been clearly identified. Methods and Results 1. We used primary cultured rat trigeminal ganglia cells to assess whether IL-1β can induce the expression of COX-2 and which cells express COX-2. Stimulation with IL-1β caused a dose and time dependent induction of COX-2 but not COX-1 mRNA. Immunohistochemistry revealed expression of COX-2 protein in neuronal and glial cells. 2. Functional significance was demonstrated by prostaglandin E2 (PGE2) release 4 hours after stimulation with IL-1β, which could be aborted by a selective COX-2 (parecoxib) and a non-selective COX-inhibitor (indomethacin). 3. Induction of CGRP release, indicating functional neuronal activation, was seen 1 hour after PGE2 and 24 hours after IL-1β stimulation. Immunohistochemistry showed trigeminal neurons as the source of CGRP. IL-1β induced CGRP release was blocked by parecoxib and indomethacin, but the 5-HT1B/D receptor agonist sumatriptan had no effect. Conclusion We identified a COX-2 dependent pathway of cytokine induced CGRP release in trigeminal ganglia neurons that is not affected by 5-HT1B/D receptor activation. Activation of neuronal and glial cells in the trigeminal ganglion by IL-β leads to an elevated expression of COX-2 in these cells. Newly synthesized PGE2 (by COX-2) in turn activates trigeminal neurons to release CGRP. These findings support a glia-neuron interaction in the trigeminal ganglion and demonstrate a sequential link between COX-2 and CGRP. The results could help to explain the mechanism of action of COX-2 inhibitors in migraine. PMID:21394197
PAR-2 regulates dental pulp inflammation associated with caries.
Lundy, F T; About, I; Curtis, T M; McGahon, M K; Linden, G J; Irwin, C R; El Karim, I A
2010-07-01
Protease-activated receptors (PARs) are G-protein-coupled receptors that are activated enzymatically by proteolysis of an N-terminal domain. The cleavage and activation of PARs by serine proteases represent a novel mechanism by which such enzymes could influence the host inflammatory response. The aim of this study was to determine whether PAR-2 expression and activation were increased in dental caries. Using immunohistochemistry, we showed PAR-2 to be localized to pulp cells subjacent to caries lesions, but minimally expressed by healthy pulp tissue. Trypsin and the PAR-2 agonist (PAR2-AP) activated PAR-2 in an in vitro functional assay. Endogenous molecules present in pulp cell lysates from carious teeth specifically activated PAR-2, but those from healthy teeth failed to do so. The activation of PAR-2 in vitro was shown to increase the expression of the pro-inflammatory mediator cyclo-oxygenase-2 (COX-2), providing a mechanism whereby PAR-2 could modulate pulpal inflammation.
Cespedes, Carlos L; Pavon, Natalia; Dominguez, Mariana; Alarcon, Julio; Balbontin, Cristian; Kubo, Isao; El-Hafidi, Mohammed; Avila, Jose G
2017-10-01
The effects of phytochemicals occurred in fractions and extracts of fruits of "Maqui-berry" (Aristotelia chilensis), on the expression of cyclooxygenase-2 (COX-2), inducible-nitric oxide synthases (iNOS) and the production of proinflammatory mediators were investigated in lipopolysaccharide (LPS)-activated murine macrophage RAW-264 cells, as well as their antioxidant activities. The MeOH extract (A), acetone/methanol extract (B), fractions F3, F4, subfractions (SF4-SF6, SF7, SF8-SF10, SF11-SF15, SF16-SF20), quercetin, gallic acid, luteolin, myricetin, mixtures M1, M2 and M3 exhibited potent anti-inflammatory and antioxidant activities. The results indicated that anthocyanins, flavonoids and its mixtures suppressed the LPS induced production of nitric oxide (NO), through the down-regulation of iNOS and COX-2 protein expressions and showed a potent antioxidant activity against SOD, ABTS, TBARS, ORAC, FRAP and DCFH. The inhibition of enzymes and NO production by selected fractions and compounds was dose-dependent with significant effects seen at concentration as low as 1.0-50.0 (ppm) and 5.0-10.0 μM, for samples (extracts, fractions, subfractions and mixtures) and pure compounds, respectively. Thus, the phenolics (anthocyanins, flavonoids, and organic acids) as the fractions and mixtures may provide a potential therapeutic approach for inflammation associated disorders and therefore might be used as antagonizing agents to ameliorate the effects of oxidative stress. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cardiorespiratory fitness and components of the metabolic syndrome in sedentary men.
Riou, Marie-Eve; Pigeon, Etienne; St-Onge, Josée; Tremblay, Angelo; Marette, André; Weisnagel, John; Joanisse, Denis R
2009-01-01
To investigate the relationships between fitness and components of the metabolic syndrome in sedentary men. 39 subjects (34-53 years) were evaluated for fitness (VO(2max)) and anthropometric, metabolic, and skeletal muscle phenotypes. VO(2max) was assessed on a bicycle ergometer whereas other variables were obtained from an oral glucose tolerance test (OGTT), hydrostatic weighing, and a muscle biopsy. Pearson and partial correlations adjusted for fat mass (FM), waist circumference (WC), muscle enzyme activities (citrate synthase (CS), cytochrome c oxidase (COX)), and capillary density were used to investigate the independent relationships be tween variables. Negative correlations between VO(2max) and WC as well as blood pressure and OGTT test were observed. When adjusted for FM, correlations remained between VO(2max) and WC (r = -0.46, p < 0.01) and systolic blood pressure (r = -0.35, p < 0.05). When adjusted for WC and CS activity, all correlations were lost except for high-sensitivity C-reactive protein (hs-CRP) (r = -0.34, p < 0.05) which remained when adjusted for CS activity. Adjustment for COX activity failed to remove correlations with hs-CRP (r = -0.36, p < 0.05), age (r = 0.34, p < 0.05), WC (r = -0.35, p < 0.05), and blood pressure. Negative correlations persisted when fitness was adjusted for the mean number of capillaries. The effects of fitness on components of the metabolic syndrome in sedentary men are explained by abdominal obesity and muscle phenotypes.
Rodríguez-Enríquez, Sara; Hernández-Esquivel, Luz; Marín-Hernández, Alvaro; El Hafidi, Mohammed; Gallardo-Pérez, Juan Carlos; Hernández-Reséndiz, Ileana; Rodríguez-Zavala, José S; Pacheco-Velázquez, Silvia C; Moreno-Sánchez, Rafael
2015-08-01
Oxidative phosphorylation (OxPhos) is functional and sustains tumor proliferation in several cancer cell types. To establish whether mitochondrial β-oxidation of free fatty acids (FFAs) contributes to cancer OxPhos functioning, its protein contents and enzyme activities, as well as respiratory rates and electrical membrane potential (ΔΨm) driven by FFA oxidation were assessed in rat AS-30D hepatoma and liver (RLM) mitochondria. Higher protein contents (1.4-3 times) of β-oxidation (CPT1, SCAD) as well as proteins and enzyme activities (1.7-13-times) of Krebs cycle (KC: ICD, 2OGDH, PDH, ME, GA), and respiratory chain (RC: COX) were determined in hepatoma mitochondria vs. RLM. Although increased cholesterol content (9-times vs. RLM) was determined in the hepatoma mitochondrial membranes, FFAs and other NAD-linked substrates were oxidized faster (1.6-6.6 times) by hepatoma mitochondria than RLM, maintaining similar ΔΨm values. The contents of β-oxidation, KC and RC enzymes were also assessed in cells. The mitochondrial enzyme levels in human cervix cancer HeLa and AS-30D cells were higher than those observed in rat hepatocytes whereas in human breast cancer biopsies, CPT1 and SCAD contents were lower than in human breast normal tissue. The presence of CPT1 and SCAD in AS-30D mitochondria and HeLa cells correlated with an active FFA utilization in HeLa cells. Furthermore, the β-oxidation inhibitor perhexiline blocked FFA utilization, OxPhos and proliferation in HeLa and other cancer cells. In conclusion, functional mitochondria supported by FFA β-oxidation are essential for the accelerated cancer cell proliferation and hence anti-β-oxidation therapeutics appears as an alternative promising approach to deter malignant tumor growth. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mohan, Syam; Syam, Suvitha; Abdelwahab, Siddig Ibrahim; Thangavel, Neelaveni
2018-06-28
α-Mangostin (αMN) is a xanthone present in the pericarp of Garcinia mangostana Linn. which is mentioned in Ayurveda and is a widely used functional food supplement. However, its anti-inflammatory mechanism is not well studied. Hence, we used in silico, in vitro and in vivo models to provide information of the mechanism on how αMN could prevent inflammation. Firstly, molecular docking was used to find out the binding energy of αMN with NFκB and COX proteins. Secondly, LPS induced RAW 264.7 cells were used to measure the production of cytokines, the prevention of translocation of NFκB and the inhibition of COX-1 and -2 enzymes. Finally, carrageenan-induced peritonitis was used in vivo to check cytokine release, leukocyte migration and vascular permeability. The in silico modelling had showed that αMN has the lowest binding energy with COX-2 and NFκB proteins. αMN has been found to inhibit the production of PGE2 and nitric oxide, and iNOS protein expression. TNF-α and IL-6 cytokines were inhibited significantly (p < 0.05) at 8 and 14 μg ml-1 concentration. αMN at higher doses inhibits the translocation of NFκB together with suppressing the COX-2 enzymes, but not COX-1. αMN inhibited the total leukocyte migration, predominantly, neutrophils in vivo. The level of TNFα and IL-1β was significantly (p < 0.05) reduced in the peritoneal fluids as measured by ELISA analysis. Taken together, these results demonstrate that αMN acts well as an anti-inflammatory agent via inhibiting the hallmark mechanisms of inflammation. It can be considered as a potential alternative lead compound. In addition, the current results support the traditional use of this fruit pericarp as a functional food.
Ludwig, Hilary C; Birdwhistell, Kate E; Brainard, Benjamin M; Franklin, Samuel P
2017-12-01
It remains unestablished whether use of cyclooxygenase (COX)-2 inhibitors impairs platelet activation and anabolic growth factor release from platelets in platelet-rich plasma (PRP). The purpose of this study was to assess the effects of a COX-2 inhibitor on platelet activation and anabolic growth factor release from canine PRP when using a clinically applicable PRP activator and to determine whether a 3-day washout would be sufficient to abrogate any COX-2 inhibitor-related impairment on platelet function. Controlled laboratory study. Ten healthy dogs underwent blood collection and PRP preparation. Dogs were then administered a COX-2 inhibitor for 7 days, after which PRP preparation was repeated. The COX-2 inhibitor was continued for 4 more days and PRP preparation performed a third time, 3 days after discontinuation of the COX-2 inhibitor. Immediately after PRP preparation, the PRP was divided into 4 aliquots: 2 unactivated and 2 activated using human γ-thrombin (HGT). One activated and 1 unactivated sample were assessed using flow cytometry for platelet expression of CD62P and platelet-bound fibrinogen using the canine activated platelet-1 (CAP1) antibody. The 2 remaining samples were centrifuged and the supernatant assayed for transforming growth factor-β1 (TGF-β1), platelet-derived growth factor-BB (PDGF-BB), and thromboxane B2 (TXB2) concentrations. Differences in platelet activation and TGF-β1, PDGF-BB, and TXB2 concentrations over the 3 study weeks were evaluated using a 1-way repeated-measures ANOVA, and comparisons between activated and unactivated samples within a study week were assessed with paired t tests. There were no statistically significant ( P > .05) effects of the COX-2 inhibitor on percentage of platelets positive for CD62P or CAP1 or on concentrations of TGF-β1, PDGF-BB, or TXB2. All unactivated samples had low levels of activation or growth factor concentrations and significantly ( P < .05) greater activation and growth factor concentrations in HGT-activated samples. This COX-2 inhibitor did not impair platelet activation, growth factor release, or TXB2 production in this canine PRP when using HGT as an activator. Studies are warranted to determine whether COX-2 inhibitors affect platelet activation and growth factor release from human PRPs. These results suggest that there is no need to withhold a COX-2 inhibitor before PRP preparation, particularly if thrombin is going to be used to activate the PRP. This is clinically relevant information because many patients who are candidates for PRP therapy for treatment of musculoskeletal injury are also using COX-2 inhibitors.
Depboylu, Candan; Weihe, Eberhard; Eiden, Lee E.
2011-01-01
The simian immunodeficiency virus (SIV) macaque model resembles human HIV-AIDS and associated brain dysfunction. Altered expression of synaptic markers and transmitters in neuro-AIDS has been reported, but limited data exist for the cholinergic system and lipid mediators such as prostaglandins. Here, we analyzed cholinergic basal forebrain neurons with their telencephalic projections and the rate-limiting enzymes for prostaglandin synthesis, cyclooxygenases 1 and 2 (COX1 and 2) in brains of SIV-infected macaques with and without encephalitis and antiretroviral therapy, and uninfected controls. COX1 but not COX2 was co-expressed with markers of cholinergic phenotype, i.e. choline acetyltransferase and vesicular acetylcholine transporter (VAChT), in basal forebrain neurons of monkey, as well as human samples. COX1 was decreased in basal forebrain neurons in macaques with AIDS vs. uninfected and asymptomatic SIV-infected macaques. VAChT-positive fiber density was reduced in frontal, parietal and hippocampal-entorhinal cortex. Although brain SIV burden and associated COX1- and COX2-positive mononuclear and endothelial inflammatory reactions were mostly reversed in AIDS-diseased macaques that received 6-chloro-2′,3′-dideoxyguanosine treatment, decreased VAChT-positive terminal density and reduced cholinergic COX1 expression were not. Thus, COX1 expression is a feature of primate cholinergic basal forebrain neurons; it may be functionally important and a critical biomarker of cholinergic dysregulation accompanying lentiviral encephalopathy. These results imply that insufficiently prompt initiation of antiretroviral therapy in lentiviral infection may lead to neurostructurally unremarkable but neurochemically prominent, irreversible brain damage. PMID:22157616
Ku80 cooperates with CBP to promote COX-2 expression and tumor growth
Qin, Yu; Xuan, Yang; Jia, Yunlu; Hu, Wenxian; Yu, Wendan; Dai, Meng; Li, Zhenglin; Yi, Canhui; Zhao, Shilei; Li, Mei; Du, Sha; Cheng, Wei; Xiao, Xiangsheng; Chen, Yiming; Wu, Taihua; Meng, Songshu; Yuan, Yuhui; Liu, Quentin; Huang, Wenlin; Guo, Wei; Wang, Shusen; Deng, Wuguo
2015-01-01
Cyclooxygenase-2 (COX-2) plays an important role in lung cancer development and progression. Using streptavidin-agarose pulldown and proteomics assay, we identified and validated Ku80, a dimer of Ku participating in the repair of broken DNA double strands, as a new binding protein of the COX-2 gene promoter. Overexpression of Ku80 up-regulated COX-2 promoter activation and COX-2 expression in lung cancer cells. Silencing of Ku80 by siRNA down-regulated COX-2 expression and inhibited tumor cell growth in vitro and in a xenograft mouse model. Ku80 knockdown suppressed phosphorylation of ERK, resulting in an inactivation of the MAPK pathway. Moreover, CBP, a transcription co-activator, interacted with and acetylated Ku80 to co-regulate the activation of COX-2 promoter. Overexpression of CBP increased Ku80 acetylation, thereby promoting COX-2 expression and cell growth. Suppression of CBP by a CBP-specific inhibitor or siRNA inhibited COX-2 expression as well as tumor cell growth. Tissue microarray immunohistochemical analysis of lung adenocarcinomas revealed a strong positive correlation between levels of Ku80 and COX-2 and clinicopathologic variables. Overexpression of Ku80 was associated with poor prognosis in patients with lung cancers. We conclude that Ku80 promotes COX-2 expression and tumor growth and is a potential therapeutic target in lung cancer. PMID:25797267
Ding, Hsiou-Yu; Wu, Pei-Shan; Wu, Ming-Jiuan
2016-01-01
Cleome rutidosperma DC. and Euphorbia thymifolia L. are herbal medicines used in traditional Indian and Chinese medicine to treat various illnesses. Reports document that they have antioxidant and anti-inflammatory activities; nonetheless, the molecular mechanisms involved in their anti-inflammatory actions have not yet been elucidated. The anti-neuroinflammatory activities and underlying mechanisms of ethanol extracts of Cleome rutidosperma (CR) and Euphorbia thymifolia (ET) were studied using lipopolysaccharide (LPS)-stimulated microglial cell line BV2. The morphology changes and production of pro-inflammatory mediators were assayed. Gene expression of inflammatory genes such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, interleukin (IL)-1β, and CC chemokine ligand (CCL)-2, as well as phase II enzymes such as heme oxygenase (HO)-1, the modifier subunit of glutamate cysteine ligase (GCLM) and NAD(P)H quinone dehydrogenase 1 (NQO1), were further investigated using reverse transcription quantitative-PCR (RT-Q-PCR) and Western blotting. The effects of CR and ET on mitogen activated protein kinases (MAPKs) and nuclear factor (NF)-κB signaling pathways were examined using Western blotting and specific inhibitors. CR and ET suppressed BV2 activation, down-regulated iNOS and COX-2 expression and inhibited nitric oxide (NO) overproduction without affecting cell viability. They reduced LPS-mediated tumor necrosis factor (TNF) and IL-6 production, attenuated IL-1β and CCL2 expression, but upregulated HO-1, GCLM and NQO1 expression. They also inhibited p65 NF-κB phosphorylation and modulated Jun-N terminal kinase (JNK) activation in BV2 cells. SP600125, the JNK inhibitor, significantly augmented the anti-IL-6 activity of ET. NF-κB inhibitor, Bay 11-7082, enhanced the anti-IL-6 effects of both CR and ET. Znpp, a competitive inhibitor of HO-1, attenuated the anti-NO effects of CR and ET. Our results show that CR and ET exhibit anti-neuroinflammatory activities by inhibiting pro-inflammatory mediator expression and production, upregulating HO-1, GCLM and NQO1, blocking NF-κB and modulating JNK signaling pathways. They may offer therapeutic potential for suppressing overactivated microglia and alleviating neurodegeneration. PMID:27618898
Kim, Seokwoon; Choi, Youngsok; Spencer, Thomas E; Bazer, Fuller W
2003-01-01
In sheep, the uterus produces luteolytic pulses of prostaglandin F2α (PGF) on Days 15 to 16 of estrous cycle to regress the corpus luteum (CL). These PGF pulses are produced by the endometrial lumenal epithelium (LE) and superficial ductal glandular epithelium (sGE) in response to binding of pituitary and/or luteal oxytocin to oxytocin receptors (OTR) and liberation of arachidonic acid, the precursor of PGF. Cyclooxygenase-one (COX-1) and COX-2 are rate-limiting enzymes in PGF synthesis, and COX-2 is the major form expressed in ovine endometrium. During pregnancy recognition, interferon tau (IFNτ), produced by the conceptus trophectoderm, acts in a paracrine manner to suppress development of the endometrial epithelial luteolytic mechanism by inhibiting transcription of estrogen receptor α (ERα) (directly) and OTR (indirectly) genes. Conflicting studies indicate that IFNτ increases, decreases or has no effect on COX-2 expression in bovine and ovine endometrial cells. In Study One, COX-2 mRNA and protein were detected solely in endometrial LE and sGE of both cyclic and pregnant ewes. During the estrous cycle, COX-2 expression increased from Days 10 to 12 and then decreased to Day 16. During early pregnancy, COX-2 expression increased from Days 10 to 12 and remained higher than in cyclic ewes. In Study Two, intrauterine infusion of recombinant ovine IFNτ in cyclic ewes from Days 11 to 16 post-estrus did not affect COX-2 expression in the endometrial epithelium. These results clearly indicate that IFNτ has no effect on expression of the COX-2 gene in the ovine endometrium. Therefore, antiluteolytic effects of IFNτ are to inhibit ERα and OTR gene transcription, thereby preventing endometrial production of luteolytic pulses of PGF. Indeed, expression of COX-2 in the endometrial epithelia as well as conceptus is likely to have a beneficial regulatory role in implantation and development of the conceptus. PMID:12956885
Rueda, Elda M.; Johnson, Jerry E.; Giddabasappa, Anand; Swaroop, Anand; Brooks, Matthew J.; Sigel, Irena; Chaney, Shawnta Y.
2016-01-01
Purpose The homeostatic regulation of cellular ATP is achieved by the coordinated activity of ATP utilization, synthesis, and buffering. Glucose is the major substrate for ATP synthesis through glycolysis and oxidative phosphorylation (OXPHOS), whereas intermediary metabolism through the tricarboxylic acid (TCA) cycle utilizes non-glucose-derived monocarboxylates, amino acids, and alpha ketoacids to support mitochondrial ATP and GTP synthesis. Cellular ATP is buffered by specialized equilibrium-driven high-energy phosphate (~P) transferring kinases. Our goals were twofold: 1) to characterize the gene expression, protein expression, and activity of key synthesizing and regulating enzymes of energy metabolism in the whole mouse retina, retinal compartments, and/or cells and 2) to provide an integrative analysis of the results related to function. Methods mRNA expression data of energy-related genes were extracted from our whole retinal Affymetrix microarray data. Fixed-frozen retinas from adult C57BL/6N mice were used for immunohistochemistry, laser scanning confocal microscopy, and enzymatic histochemistry. The immunoreactivity levels of well-characterized antibodies, for all major retinal cells and their compartments, were obtained using our established semiquantitative confocal and imaging techniques. Quantitative cytochrome oxidase (COX) and lactate dehydrogenase (LDH) activity was determined histochemically. Results The Affymetrix data revealed varied gene expression patterns of the ATP synthesizing and regulating enzymes found in the muscle, liver, and brain. Confocal studies showed differential cellular and compartmental distribution of isozymes involved in glucose, glutamate, glutamine, lactate, and creatine metabolism. The pattern and intensity of the antibodies and of the COX and LDH activity showed the high capacity of photoreceptors for aerobic glycolysis and OXPHOS. Competition assays with pyruvate revealed that LDH-5 was localized in the photoreceptor inner segments. The combined results indicate that glycolysis is regulated by the compartmental expression of hexokinase 2, pyruvate kinase M1, and pyruvate kinase M2 in photoreceptors, whereas the inner retinal neurons exhibit a lower capacity for glycolysis and aerobic glycolysis. Expression of nucleoside diphosphate kinase, mitochondria-associated adenylate kinase, and several mitochondria-associated creatine kinase isozymes was highest in the outer retina, whereas expression of cytosolic adenylate kinase and brain creatine kinase was higher in the cones, horizontal cells, and amacrine cells indicating the diversity of ATP-buffering strategies among retinal neurons. Based on the antibody intensities and the COX and LDH activity, Müller glial cells (MGCs) had the lowest capacity for glycolysis, aerobic glycolysis, and OXPHOS. However, they showed high expression of glutamate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate thiokinase, GABA transaminase, and ~P transferring kinases. This suggests that MGCs utilize TCA cycle anaplerosis and cataplerosis to generate GTP and ~P transferring kinases to produce ATP that supports MGC energy requirements. Conclusions Our comprehensive and integrated results reveal that the adult mouse retina expresses numerous isoforms of ATP synthesizing, regulating, and buffering genes; expresses differential cellular and compartmental levels of glycolytic, OXPHOS, TCA cycle, and ~P transferring kinase proteins; and exhibits differential layer-by-layer LDH and COX activity. New insights into cell-specific and compartmental ATP and GTP production, as well as utilization and buffering strategies and their relationship with known retinal and cellular functions, are discussed. Developing therapeutic strategies for neuroprotection and treating retinal deficits and degeneration in a cell-specific manner will require such knowledge. This work provides a platform for future research directed at identifying the molecular targets and proteins that regulate these processes. PMID:27499608
Rueda, Elda M; Johnson, Jerry E; Giddabasappa, Anand; Swaroop, Anand; Brooks, Matthew J; Sigel, Irena; Chaney, Shawnta Y; Fox, Donald A
2016-01-01
The homeostatic regulation of cellular ATP is achieved by the coordinated activity of ATP utilization, synthesis, and buffering. Glucose is the major substrate for ATP synthesis through glycolysis and oxidative phosphorylation (OXPHOS), whereas intermediary metabolism through the tricarboxylic acid (TCA) cycle utilizes non-glucose-derived monocarboxylates, amino acids, and alpha ketoacids to support mitochondrial ATP and GTP synthesis. Cellular ATP is buffered by specialized equilibrium-driven high-energy phosphate (~P) transferring kinases. Our goals were twofold: 1) to characterize the gene expression, protein expression, and activity of key synthesizing and regulating enzymes of energy metabolism in the whole mouse retina, retinal compartments, and/or cells and 2) to provide an integrative analysis of the results related to function. mRNA expression data of energy-related genes were extracted from our whole retinal Affymetrix microarray data. Fixed-frozen retinas from adult C57BL/6N mice were used for immunohistochemistry, laser scanning confocal microscopy, and enzymatic histochemistry. The immunoreactivity levels of well-characterized antibodies, for all major retinal cells and their compartments, were obtained using our established semiquantitative confocal and imaging techniques. Quantitative cytochrome oxidase (COX) and lactate dehydrogenase (LDH) activity was determined histochemically. The Affymetrix data revealed varied gene expression patterns of the ATP synthesizing and regulating enzymes found in the muscle, liver, and brain. Confocal studies showed differential cellular and compartmental distribution of isozymes involved in glucose, glutamate, glutamine, lactate, and creatine metabolism. The pattern and intensity of the antibodies and of the COX and LDH activity showed the high capacity of photoreceptors for aerobic glycolysis and OXPHOS. Competition assays with pyruvate revealed that LDH-5 was localized in the photoreceptor inner segments. The combined results indicate that glycolysis is regulated by the compartmental expression of hexokinase 2, pyruvate kinase M1, and pyruvate kinase M2 in photoreceptors, whereas the inner retinal neurons exhibit a lower capacity for glycolysis and aerobic glycolysis. Expression of nucleoside diphosphate kinase, mitochondria-associated adenylate kinase, and several mitochondria-associated creatine kinase isozymes was highest in the outer retina, whereas expression of cytosolic adenylate kinase and brain creatine kinase was higher in the cones, horizontal cells, and amacrine cells indicating the diversity of ATP-buffering strategies among retinal neurons. Based on the antibody intensities and the COX and LDH activity, Müller glial cells (MGCs) had the lowest capacity for glycolysis, aerobic glycolysis, and OXPHOS. However, they showed high expression of glutamate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate thiokinase, GABA transaminase, and ~P transferring kinases. This suggests that MGCs utilize TCA cycle anaplerosis and cataplerosis to generate GTP and ~P transferring kinases to produce ATP that supports MGC energy requirements. Our comprehensive and integrated results reveal that the adult mouse retina expresses numerous isoforms of ATP synthesizing, regulating, and buffering genes; expresses differential cellular and compartmental levels of glycolytic, OXPHOS, TCA cycle, and ~P transferring kinase proteins; and exhibits differential layer-by-layer LDH and COX activity. New insights into cell-specific and compartmental ATP and GTP production, as well as utilization and buffering strategies and their relationship with known retinal and cellular functions, are discussed. Developing therapeutic strategies for neuroprotection and treating retinal deficits and degeneration in a cell-specific manner will require such knowledge. This work provides a platform for future research directed at identifying the molecular targets and proteins that regulate these processes.
Chlorogenic acid suppresses interleukin-1β-induced inflammatory mediators in human chondrocytes.
Chen, Wei-Ping; Wu, Li-Dong
2014-01-01
We investigated the anti-inflammatory properties of chlorogenic acid (CGA) in interleukin-1β-induced chondrocytes. The nitric oxide (NO) and prostaglandin E2 (PGE2) were detected by Griess and Enzyme-linked immunosorbent assay (ELISA) respectively. Quantitative real-time PCR and western blot were performed to measure the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2. Our results indicate that CGA inhibited the production of NO and PGE2 as well as the expression of iNOS and COX-2 in chondrocytes. Our data suggest that CGA possess potential value in the treatment of OA.
Mast cells exert pro-inflammatory effects of relevance to the pathophyisology of tendinopathy.
Behzad, Hayedeh; Sharma, Aishwariya; Mousavizadeh, Rouhollah; Lu, Alex; Scott, Alex
2013-01-01
We have previously found an increased mast cell density in tendon biopsies from patients with patellar tendinopathy compared to controls. This study examined the influence of mast cells on basic tenocyte functions, including production of the inflammatory mediator prostaglandin E2 (PGE2), extracellular matrix remodeling and matrix metalloproteinase (MMP) gene transcription, and collagen synthesis. Primary human tenocytes were stimulated with an established human mast cell line (HMC-1). Extracellular matrix remodeling was studied by culturing tenocytes in a three-dimensional collagen lattice. Survival/proliferation was assessed with the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium salt (MTS) assay. Levels of mRNA for COX-2, COL1A1, MMP1, and MMP7 were determined by quantitative real-time polymerase chain reaction (qPCR). Cox-2 protein level was assessed by Western blot analysis and type I procollagen was detected by immunofluorescent staining. PGE2 levels were determined using an enzyme-linked immunosorbent assay (ELISA). Mast cells stimulated tenocytes to produce increased levels of COX-2 and the pro-inflammatory mediator PGE2, which in turn decreased COL1A1 mRNA expression. Additionally, mast cells reduced the type I procollagen protein levels produced by tenocytes. Transforming growth factor beta 1 (TGF-β1) was responsible for the induction of Cox-2 and PGE2 by tenocytes. Mast cells increased MMP1 and MMP7 transcription and increased the contraction of a three-dimensional collagen lattice by tenocytes, a phenomenon which was blocked by a pan-MMP inhibitor (Batimastat). Our data demonstrate that mast cell-derived PGE2 reduces collagen synthesis and enhances expression and activities of MMPs in human tenocytes.
Carbonic anhydrase inhibition: insight into non-COX-2 pharmacological effect of some coxibs.
Dogné, Jean-Michel; Thiry, Anne; Supuran, Claudiu T
2008-01-01
Nonsteroidal anti-inflammatory drugs (NSAIDs) represent the most commonly used medications for the treatment of pain and inflammation, but numerous well-described adverse drug reactions (ADRs) limit their use. These drugs act via the inhibition of cyclooxygenase (COX) enzyme of which at least two isoforms were described: COX-1 which plays important roles in homeostatic processes such as thrombogenesis and homeostasis of the gastrointestinal tract and kidneys and COX-2 expressed in pathological conditions such as inflammation or cancer proliferation. Selective COX-2 inhibitors or "coxibs" were initially developed as a therapeutic strategy to avoid not only the gastrointestinal but also the renal and cardiovascular side effects of non specific NSAIDs. However, this class of drug did not fulfill all their promises. Indeed, numerous unexpected side effects have limited their use and some of them have been withdrawn or suspended from the market for different safety reasons including cardiovascular, hepatic and skin adverse reactions. For instance, cardiovascular warnings have been applied to the whole class of coxibs and more recently for all classical NSAIDs as well. However, differences in the chemical structures should be taken into consideration in order to discriminate between coxibs and the development of some ADRs of which renal events and hypertension. The aim of this paper is to focus on the differences in chemical structures of all marketed COX-2 inhibitors and their unexpected effects on carbonic anhydrase in order to provide non-COX-2 mechanistic insights into some of the differences observed between coxibs.
Sunitha, Balaraju; Gayathri, Narayanappa; Kumar, Manish; Keshava Prasad, Thottethodi Subrahmanya; Nalini, Atchayaram; Padmanabhan, Balasundaram; Srinivas Bharath, Muchukunte Mukunda
2016-07-01
Muscle diseases are clinically and genetically heterogeneous and manifest as dystrophic, inflammatory and myopathic pathologies, among others. Our previous study on the cardiotoxin mouse model of myodegeneration and inflammation linked muscle pathology with mitochondrial damage and oxidative stress. In this study, we investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies from muscle disease patients, represented by dysferlinopathy (dysfy) (dystrophic pathology; n = 43), polymyositis (PM) (inflammatory pathology; n = 24), and distal myopathy with rimmed vacuoles (DMRV) (distal myopathy; n = 31) were analyzed. Mitochondrial damage (ragged blue and COX-deficient fibers) was revealed in dysfy, PM, and DMRV cases by enzyme histochemistry (SDH and COX-SDH), electron microscopy (vacuolation and altered cristae) and biochemical assays (significantly increased ADP/ATP ratio). Proteomic analysis of muscle mitochondria from all three muscle diseases by isobaric tag for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis demonstrated down-regulation of electron transport chain (ETC) complex subunits, assembly factors and Krebs cycle enzymes. Interestingly, 80 of the under-expressed proteins were common among the three pathologies. Assay of ETC and Krebs cycle enzyme activities validated the MS data. Mitochondrial proteins from muscle pathologies also displayed higher tryptophan (Trp) oxidation and the same was corroborated in the cardiotoxin model. Molecular modeling predicted Trp oxidation to alter the local structure of mitochondrial proteins. Our data highlight mitochondrial alterations in muscle pathologies, represented by morphological changes, altered mitochondrial proteome and protein oxidation, thereby establishing the role of mitochondrial damage in human muscle diseases. We investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies from dysferlinopathy (Dysfy), polymyositis (PM), and distal myopathy with rimmed vacuoles (DMRV) displayed morphological and biochemical evidences of mitochondrial dysfunction. Proteomic analysis revealed down-regulation of electron transport chain (ETC) subunits, assembly factors, and tricarboxylic acid (TCA) cycle enzymes, with 80 proteins common among the three pathologies. Mitochondrial proteins from muscle pathologies also displayed higher Trp oxidation that could alter the local structure. Cover image for this issue: doi: 10.1111/jnc.13324. © 2016 International Society for Neurochemistry.
Zhu, Ningxia; Liu, Bin; Luo, Wenhong; Zhang, Yingzhan; Li, Hui; Li, Shasha; Zhou, Yingbi
2014-08-01
This study tested the hypothesis that in diabetic arteries, cyclooxygenase (COX)-1 mediates endothelial prostacyclin (PGI2) synthesis, which evokes vasoconstrictor activity under the pathological condition. Non-insulin-dependent diabetes was induced to C57BL/6 mice and those with COX-1 deficiency (COX-1(-/-) mice) using a high-fat diet in combination with streptozotocin injection. In vitro analyses were performed 3 mo after. Results showed that in diabetic aortas, the endothelial muscarinic receptor agonist ACh evoked an endothelium-dependent production of the PGI2 metabolite 6-keto-PGF1α, which was abolished in COX-1(-/-) mice. Meanwhile, COX-1 deficiency or COX-1 inhibition prevented vasoconstrictor activity in diabetic abdominal aortas, resulting in enhanced relaxation evoked by ACh. In a similar manner, COX-1 deficiency increased the relaxation evoked by ACh in nitric oxide synthase-inhibited diabetic renal arteries. Also, in diabetic abdominal aortas and/or renal arteries, both PGI2 and the COX substrate arachidonic acid evoked contractions similar to those of nondiabetic mice. However, the contraction to arachidonic acid, but not that to PGI2, was abolished in vessels from COX-1(-/-) mice. Moreover, we found that 3 mo after streptozotocin injection, systemic blood pressure increased in diabetic C57BL/6 mice but not in diabetic COX-1(-/-) mice. These results explicitly demonstrate that in the given arteries from non-insulin-dependent diabetic mice, COX-1 remains a major contributor to the endothelial PGI2 synthesis that evokes vasoconstrictor activity under the pathological condition. Also, our data suggest that COX-1 deficiency prevents or attenuates diabetic hypertension in mice, although this could be related to the loss of COX-1-mediated activities derived from both vascular and nonvascular tissues. Copyright © 2014 the American Physiological Society.
Wu, Man-Ru; Hou, Ming-Hon; Lin, Ya-Lin; Kuo, Chia-Feng
2012-07-25
Obesity is a global health problem. Because of the high costs and side effects of obesity-treatment drugs, the potential of natural products as alternatives for treating obesity is under exploration. 2,4,5-Trimethoxybenzaldehyde (2,4,5-TMBA) present in plant roots, seeds, and leaves was reported to be a significant inhibitor of cyclooxygenase-2 (COX-2) activity at the concentration of 100 μg/mL. Because COX-2 is associated with differentiation of preadipocytes, the murine 3T3-L1 cells were cultured with 100 μg/mL of 2,4,5-TMBA during differentiation and after the cells were fully differentiated to study the effect of 2,4,5-TMBA on adipogenesis and lipolysis. Oil Red O staining and triglyceride assay revealed that 2,4,5-TMBA inhibited the formation of lipid droplets during differentiation; moreover, 2,4,5-TMBA down-regulated the protein levels of adipogenic signaling molecules and transcription factors MAP kinase kinase (MEK), extracellular signal-regulated kinase (ERK), CCAAT/enhancer binding protein (C/EBP)α, β, and δ, peroxisome proliferator-activated receptor (PPAR)γ, adipocyte determination and differentiation-dependent factor 1 (ADD1), and the rate-limiting enzyme for lipid synthesis acetyl-CoA carboxylase (ACC). In fully differentiated adipocytes, treatment with 2,4,5-TMBA for 72 h significantly decreased lipid accumulation by increasing the hydrolysis of triglyceride through suppression of perilipin A (lipid droplet coating protein) and up-regulation of hormone-sensitive lipase (HSL). The results of this in vitro study will pioneer future in vivo studies on antiobesity effects of 2,4,5-TMBA and selective COX-2 inhibitors.
2012-01-01
Background This study aims to investigate anti-inflammatory effect of ethanolic extract of Myagropsis myagroides (EMM) in the lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and the phorbol 12-myristate 13-acetate (PMA)-induced ear edema in mice, and to clarify its underlying molecular mechanisms. Methods The levels of nitric oxide (NO), prostaglandin E2 (PGE2), and pro-inflammatory cytokines were measured by Griess assay and enzyme linked immunosorbent assay. The expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), mitogen-activated protein kinases (MAPKs), and Akt were measured using Western blotting. Nuclear translocation and transcriptional activation of nuclear factor-κB (NF-κB) were determined by immunocytochemistry and reporter gene assay, respectively. PMA-induced mouse ear edema was used as the animal model of inflammation. Anti-inflammatory compounds in EMM were isolated using high-performance liquid chromatography and identified by nuclear magnetic resonance. Results EMM significantly inhibited the production of NO, PGE2, and pro-inflammatory cytokines in a dose-dependent manner and suppressed the expression of iNOS and COX-2 in LPS-stimulated RAW 264.7 cells. EMM strongly suppressed nuclear translocation of NF-κB by preventing degradation of inhibitor of κB-α as well as by inhibiting phosphorylation of Akt and MAPKs. EMM reduced ear edema in PMA-induced mice. One of the anti-inflammatory compounds in EMM was identified as 6,6’-bieckol. Conclusions These results suggest that the anti-inflammatory properties of EMM are associated with the down-regulation of iNOS, COX-2, and pro-inflammatory cytokines through the inhibition of NF-κB pathway in LPS-stimulated macrophages. PMID:23031211
Yimam, Mesfin; Lee, Young-Chul; Moore, Breanna; Jiao, Ping; Hong, Mei; Nam, Jeong-Bum; Kim, Mi-Ran; Hyun, Eu-Jin; Chu, Min; Brownell, Lidia; Jia, Qi
2016-01-01
Though the initial etiologies of arthritis are multifactorial, clinically, patients share the prime complaints of the disease, pain. Here the authors assessed the analgesic and anti-inflammatory effects of UP1304, a composite that contains a standardized blend of extracts from the rhizome of Curcuma longa and the root bark of Morus alba, on rats with carrageenan-induced paw edema. A plant library was screened for bradykinin receptor antagonists. In vivo, the anti-inflammatory and analgesic effects of the standardized composite, UP1304, were evaluated in rats with carrageenan-induced paw edema using oral dose ranges of 100-400 mg/kg. Ibuprofen, at a dose of 200 mg/kg, was used as a reference compound. In vitro, cyclooxygenase (COX) and lipoxygenase (LOX) inhibition assays were performed to evaluate the degree of inflammation. Statistically significant improvements in pain resistance and paw edema suppression were observed in animals treated with UP1304, when compared to vehicle-treated rats. Results from the highest dose of UP1304 (400 mg/kg) were similar to those achieved by ibuprofen treatment at 200 mg/kg. In vitro, UP1304 showed dose-dependent inhibition of the enzymatic activities of COX and LOX. A half-maximal inhibitory concentration of 9.6 μg/mL for bradykinin B1 inhibition was calculated for the organic extract of C. longa. Curcumin showed Ki values of 2.73 and 58 μg/mL for bradykinin receptors B1 and B2, respectively. Data presented here suggest that UP1304, analgesic and anti-inflammatory agent of botanical origin, acted as a bradykinin receptor B1 and B2 antagonist, and inhibited COX and LOX enzyme activities. This compound should be considered for the management of symptoms associated with arthritis.
Gutiérrez, Rosa Martha Pérez
2017-05-01
One new oleanolic acid derivative, 2α,3β,23α,29α tetrahydroxyolean-12(13)-en-28-oic acid (1) was isolated from the aerial parts of Malva parviflora. Their structure was characterized by spectroscopic methods. The hypolipidemic and hypoglycemic activities of 1 was analyzed in in streptozotocin (STZ)-nicotinamide-induced type 2 diabetes in mice (MD) and type 1 diabetes in streptozotocin-induced diabetic mice (SD). Triterpene was administered orally at doses of 20 mg/kg for 4 weeks. Organ weight, body weight, glucose, fasting insulin, cholesterol-related lipid profile parameters, glutamate oxaloacetate transaminase (SGOT), glutamate pyruvate transaminase (SGPT), serum alkaline phosphatase (SALP), glucokinase, hexokinase, glucose-6-phosphatase activities and glycogen in liver were measured after 4 weeks of treatment. The results indicated that 1 regulate glucose metabolism, lipid profile, lipid peroxidation, increased body weight, glucokinase and hexokinase activities inhibited triglycerides, total cholesterol, low density lipoproteins level, SGOT, SGPT, SALP, glycogen in liver and glucose-6-phosphatase. In addition, improvement of insulin resistance and protective effect for pancreatic β-cells, also 1 may changes the expression of pro-inflammatory cytokine (IL-6 and TNF-α levels) and enzymes (PAL2, COX-2, and LOX). The results suggest that 1 has hypolipidemic and hypoglycemic, anti-inflammatory, activities, improve insulin resistance and hepatic enzymes in streptozotocin-induced diabetic mice.
Liu, Xiaozhen; Nie, Shaoping; Huang, Danfei; Xie, Mingyong
2015-09-01
The aim of this study was to investigate the signaling pathways involved in the cyclooxygenase (COX)-2 regulation induced by nonylphenol (NP) in mouse testis Sertoli TM4 cells. Our results showed that treatment of TM4 cells with NP increased COX-2 protein expression and interleukin-6 (IL)-6 and prostaglandin E2 (PGE2) secretion in a dose-dependent manner. Pretreatment with reactive oxygen species (ROS) scavenger, N-acetylcysteine (NAC), attenuated NP-induced ROS production, COX-2 expression, and IL-6 and PGE2 release in TM4 cells. Exposure to NP stimulated activation of NF-κB, whereas the NF-κB inhibitor, pyrrolidine dithiocarbamate, attenuated NP-enhanced COX-2 expression and IL-6 and PGE2 release in TM4 cells in a dose-dependent manner. Furthermore, NAC blocked NP-induced activation of NF-κB. In addition, inhibition of COX-2 mitigated NP-induced IL-6 release. In conclusion, NP induced ROS generation, activation of NF-κB pathway, COX-2 upregulation, and IL-6 and PGE2 secretion in TM4 cells. NP may regulate COX-2 expression via ROS-activated NF-κB pathway in Sertoli TM4 cells. © 2014 Wiley Periodicals, Inc.
2014-01-01
Background Excessive pro-inflammatory cytokine production from activated microglia contributes to neurodegenerative diseases, thus, microglial inactivation may delay the progress of neurodegeneration by attenuating the neuroinflammation. Among 5 selected brown algae, we found the highest antioxidant and anti-neuroinflammatory activities from Myagropsis myagroides ethanolic extract (MME) in lipopolysaccharide (LPS)-stimulated BV-2 cells. Methods The levels of nitric oxide (NO), prostaglandin E2 (PGE2), and pro-inflammatory cytokines were measured by Griess assay and enzyme linked immunesorbent assay. The levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), mitogen-activated protein kinases (MAPKs), and Akt were measured using Western blot. Nuclear translocation and transcriptional activation of nuclear factor-κB (NF-κB) were determined by immunefluorescence and reporter gene assay, respectively. Results MME inhibited the expression of iNOS and COX-2 at mRNA and protein levels, resulting in reduction of NO and PGE2 production. As a result, pro-inflammatory cytokines were reduced by MME. MME also inhibited the activation and translocation of NF-κB by preventing inhibitor κB-α (IκB-α) degradation. Moreover, MME inhibited the phosphorylation of extracellular signal regulated kinases (ERKs) and c-Jun N-terminal kinases (JNKs). Main anti-inflammatory compound in MME was identified as sargachromenol by NMR spectroscopy. Conclusions These results indicate that the anti-inflammatory effect of sargachromenol-rich MME on LPS-stimulated microglia is mainly regulated by the inhibition of IκB-α/NF-κB and ERK/JNK pathways. PMID:25005778
Huang, Xuan; Chen, Li; Xia, You-Bing; Xie, Min; Sun, Qin; Yao, Bing
2018-03-15
Electroacupuncture (EA) is an effective and safe therapeutic method widely used for treating clinical diseases. Previously, we found that EA could decrease serum hormones and reduce ovarian size in ovarian hyperstimulation syndrome (OHSS) rat model. Nevertheless, the mechanisms that contribute to these improvements remain unclear. HE staining was used to count the number of corpora lutea (CL) and follicles. Immunohistochemical and ELISA were applied to examine luteal functional and structural regression. Immunoprecipitation was used for analyzing the interaction between NPY (neuropeptide Y) and COX-2; western blotting and qRT-PCR were used to evaluate the expressions of steroidogenic enzymes and PKA/CREB pathway. EA treatment significantly reduced the ovarian weight and the number of CL, also decreased ovarian and serum levels of PGE2 and COX-2 expression; increased ovarian PGF2α levels and PGF2α/PGE2 ratio; decreased PCNA expression and distribution; and increased cyclin regulatory inhibitor p27 expression to have further effect on the luteal formation, and promote luteal functional and structural regression. Moreover, expression of COX-2 in ovaries was possessed interactivity increased expression of NPY. Furthermore, EA treatment lowered the serum hormone levels, inhibited PKA/CREB pathway and decreased the expressions of steroidogenic enzymes. Hence, interaction with COX-2, NPY may affect the levels of PGF2α and PGE2 as well as impact the proliferation of granulosa cells in ovaries, thus further reducing the luteal formation, and promoting luteal structural and functional regression, as well as the ovarian steroidogenesis following EA treatment. EA treatment could be an option for preventing OHSS in ART. Copyright © 2018 Elsevier Inc. All rights reserved.
Minimizing the cancer-promotional activity of cox-2 as a central strategy in cancer prevention.
McCarty, Mark F
2012-01-01
A recent meta-analysis examining long-term mortality in subjects who participated in controlled studies evaluating the impact of daily aspirin on vascular risk, has concluded that aspirin confers substantial protection from cancer mortality. Remarkably, low-dose aspirin was as effective as higher-dose regimens; hence this protection may be achievable with minimal risk. There is reason to believe that this protection stems primarily from inhibition of cox-2 in pre-neoplastic lesions. Since safe aspirin regimens can only achieve a partial and transitory inhibition of cox-2, it may be feasible to complement the cancer-protective benefit of aspirin with other measures which decrease cox-2 expression or which limit the bioactivity of cox-2-derived PGE2. Oxidative stress boosts cox-2 expression by up-regulating activation of NF-kappaB and MAP kinases; NADPH oxidase activation may thus promote carcinogenesis by increasing cox-2 expression while also amplifying oxidant-mediated mutagenesis. A prospective cohort study has observed that relatively elevated serum bilirubin levels are associated with a marked reduction in subsequent cancer mortality; this may reflect bilirubin's physiological role as a potent inhibitor of NADPH oxidase. It may be feasible to mimic this protective effect by supplementing with spirulina, a rich source of a phycobilin which shares bilirubin's ability to inhibit NADPH oxidase. Ancillary antioxidant measures - phase 2 inducing phytochemicals, melatonin, N-acetylcysteine, and astaxanthin - may also aid cox-2 down-regulation. The cancer protection often associated with high-normal vitamin D status may be attributable, in part, to the ability of the activated vitamin D receptor to decrease cox-2 expression while promoting PGE2 catabolism and suppressing the expression of PGE2 receptors. Diets with a relatively low ratio of omega-6 to long-chain omega-3 fats may achieve cancer protection by antagonizing the production and bioactivity of PGE2. Growth factors such as IGF-I increase cox-2 expression by several complementary mechanisms; hence, decreased cox-2 activity may play a role in the remarkably low mortality from "Western" cancers enjoyed by Third World cultures in which systemic growth factor activity was minimized by quasi-vegan diets complemented by leanness and excellent muscle insulin sensitivity. Practical strategies for achieving a modest degree of calorie restriction may also have potential for down-regulating cox-2 expression while decreasing cancer risk. Soy isoflavones, linked to reduced cancer risk in Asian epidemiology, may suppress cox-2 induction by activating ERbeta. In aggregate, these considerations suggest that a comprehensive lifestyle strategy targeting cox-2 expression and bioactivity may have tremendous potential for cancer prevention. Copyright © 2011 Elsevier Ltd. All rights reserved.
COX-2 contributes to LPS-induced Stat3 activation and IL-6 production in microglial cells
Zhu, Jie; Li, Shuzhen; Zhang, Yue; Ding, Guixia; Zhu, Chunhua; Huang, Songming; Zhang, Aihua; Jia, Zhanjun; Li, Mei
2018-01-01
Many stimuli including lipopolysaccharide (LPS) could activate microglial cells to subsequently cause inflammatory nerve injury. However, the mechanism of LPS-induced neuroinflammation in microglial cells is still elusive. Thus, the present study was undertaken to examine the role of COX-2 in mediating the activation of Stat3 and the production of IL-6 in BV2 cells challenged with LPS. After 24 h treatment, LPS dose-dependently enhanced COX-2 expression at both mRNA and protein levels. Meanwhile, IL-6 with other inflammatory cytokines including IL-1β, TNF-α, and MCP-1 were similarly enhanced by LPS. Then a specific COX-2 inhibitor (NS-398) was administered to BV2 before LPS treatment. Significantly, COX-2 inhibition suppressed the upregulation of IL-6 at both mRNA and protein levels in line with the trend blockade on IL-1β, TNF-α, and MCP-1. Stat3 drives proinflammatory signaling pathways and contributes to IL-6 production via a transcriptional mechanism in many diseases. Here we found that inhibition of COX-2 entirely blocked LPS-induced Stat3 phosphorylation, which might contribute to the blockade of IL-6 production to some extent. Meanwhile, COX-2 siRNA approach largely reproduced the phenotypes shown by specific COX-2 inhibitor in LPS-treated BV2 cells. Together, these findings suggested that COX-2 might contribute to LPS-induced IL-6 production possibly through activating Stat3 signaling pathway in microglial cells. PMID:29636886
In vitro enantioselective pharmacodynamics of Carprofen and Flunixin-meglumine in feedlot cattle.
Miciletta, M; Cuniberti, B; Barbero, R; Re, G
2014-02-01
The activity of the anti-inflammatory agents Flunixin-meglumine (FLU), RS (±) Carprofen (CPF) and S (+) CPF on bovine cyclooxygenases (COXs) has been characterized in feedlot calves using an in vitro whole blood model. The drugs showed equivalent efficacy in their inhibitory activity on COXs, and the rank order of potency for both COX-1 and COX-2 inhibition was FLU > S (+) CPF > RS (±) CPF. Our results indicated that FLU is a nonselective inhibitor of bovine COXs, whereas RS (±) CPF and S (+) CPF exhibited different degrees of preferential inhibition of COX-2 isoenzyme. The rank order of IC50 COX-1: IC50 COX-2 potency ratios was in fact S (+) CPF (51.882) > RS (±) CPF (13.964) > FLU (0.606), and the calculated percentage inhibition of COX-1 corresponding to COX-2 inhibition values comprised between 80% and 95% was comprised between 57.697 and 79.865 for FLU, 33.373 and 51.319 for RS (±) CPF, and 0.230 and 4.622 for S (+) CPF, respectively. These findings are discussed in relation to the prediction of the clinical relevance of COX inhibition by the test drugs in cattle. © 2013 John Wiley & Sons Ltd.
Levy, Robert M; Khokhlov, Alexander; Kopenkin, Sergey; Bart, Boris; Ermolova, Tatiana; Kantemirova, Raiasa; Mazurov, Vadim; Bell, Marjorie; Caldron, Paul; Pillai, Lakshmi; Burnett, Bruce P
2010-10-01
Flavocoxid is a novel flavonoid-based "dual inhibitor" of the 5-lipoxygenase (5-LOX) enzyme and the cyclooxygenase (COX) enzymes. This study was designed to compare the effectiveness and safety of flavocoxid to naproxen in subjects with moderate to severe osteoarthritis (OA) of the knee. In this randomized, multicenter, double-blind study, 220 subjects were assigned to receive either flavocoxid (500 mg twice daily) or naproxen (500 mg twice daily) for 12 weeks. The trial was structured to show noninferiority of flavocoxid to naproxen. Primary outcome measures included the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and subscales and a timed walk. More than 90% of the subjects in both groups noted significant reduction in the signs and symptoms of knee OA. There were no statistically significant differences in efficacy between the flavocoxid and naproxen groups when the entire intent-to-treat population was analyzed. The flavocoxid group had significantly fewer upper gastrointestinal (UGI) and renal (edema) adverse events (AEs) as well as a strong trend toward fewer respiratory AEs. Flavocoxid, a first-in-class flavonoid-based therapeutic that inhibits COX-1 and COX-2 as well as 5-LOX, was as effective as naproxen in managing the signs and symptoms of OA of the knee. Flavocoxid demonstrated better UGI, renal (edema), and respiratory safety profiles than naproxen.
Rubak, Peter; Kristensen, Steen D; Hvas, Anne-Mette
2017-06-01
Immature platelets may contain more platelet enzymes such as cyclooxygenase (COX)-1 and COX-2 than mature platelets. Patients with immune thrombocytopenia (ITP) have a higher fraction of immature platelets and can therefore be utilized as a biological model for investigating COX-1 and COX-2 platelet expression. The aims were to develop flow cytometric assays for platelet COX-1 and COX-2 and to investigate the COX-1 and COX-2 platelet expression, platelet turnover, and platelet glycoproteins in ITP patients (n = 10) compared with healthy individuals (n = 30). Platelet count and platelet turnover parameters (mean platelet volume (MPV), immature platelet fraction (IPF), and immature platelet count (IPC)) were measured by flow cytometry (Sysmex XE-5000). Platelet COX-1, COX-2, and the glycoproteins (GP)IIb, IX, Ib, Ia, and IIIa were all analyzed by flow cytometry (Navios) and expressed as median fluorescence intensity. COX analyses were performed in both whole blood and platelet rich plasma (PRP), whereas platelet glycoproteins were analyzed in whole blood only. ITP patients had significantly lower platelet count (55 × 10 9 /L) than healthy individuals (240 × 10 9 /L, p < 0.01), but a higher MPV (p = 0.03) and IPF (p < 0.01). IPC was similar for the two groups (p = 0.74). PRP had significantly lower MPV (p < 0.01) and significantly higher platelet count and IPC (both p-values <0.03) when compared with whole blood. IPF was similar for PRP and whole blood (p = 0.18). COX-1 expression was 10 times higher and COX-2 expression was 50% higher in PRP than in whole blood (p COX-1 < 0.01, p COX-2 < 0.01). Platelet COX-1 expression was higher in ITP patients than healthy individuals using whole blood (p COX-1 < 0.01) and PRP, though this was nonsignificant in PRP (p COX-1 = 0.17). In ITP patients, positive correlations were found between platelet turnover and COX-1 expression (all p-values <0.01, rho = 0.80-0.94), whereas healthy individuals showed significant though weaker correlations between platelet turnover and COX-1 and COX-2 expressions (all p-values <0.03, rho = 0.44-0.71). GPIIb, IX, and Ib expression was increased in ITP patients compared with healthy individuals (all p-values < 0.03). GPIIb, IX, Ib, and IIIa showed positive correlations with platelet turnover in ITP patients (all p-values <0.02, rho = 0.71-0.94), but weak and nonsignificant correlations in healthy individuals (all p-values >0.14, rho = 0.11-0.28). In conclusion, ITP patients expressed higher COX-1 and platelet glycoprotein levels than healthy individuals. COX-1 and platelet glycoproteins demonstrated positive correlations with platelet turnover in ITP patients. In healthy individuals, COX-1 and COX-2 expression correlated positively with platelet turnover. PRP was more sensitive compared with whole blood as regards determination of COX. Therefore, PRP is the recommended matrix for investigating COX-1 and COX-2 in platelets.
Shin, Soon Young; Kim, Heon-Woong; Jang, Hwan-Hee; Hwang, Yu-Jin; Choe, Jeong-Sook; Kim, Jung-Bong; Lim, Yoongho; Lee, Young Han
2017-09-16
Cyclooxygenase (COX)-2 produces prostanoids, which contribute to inflammatory responses. Nuclear factor (NF)-κB is a key transcription factor mediating COX-2 expression. γ-Oryzanol is an active component in rice bran oil, which inhibits lipopolysaccharide (LPS)-mediated COX-2 expression by inhibiting NF-κB. However, the inhibition of COX-2 expression by γ-oryzanol independently of NF-κB is poorly understood. We found that LPS upregulated Egr-1 expression at the transcriptional level. Forced expression of Egr-1 trans-activated the Cox-2 promoter independently of NF-κB. In contrast, silencing of Egr-1 abrogated LPS-mediated COX-2 expression. LPS produced reactive oxygen species (ROS), which, in turn, induced Egr-1 expression via the Erk1/2 MAPK pathway. ROS scavenging activity of γ-oryzanol suppressed Egr-1 expression by inhibiting the Erk1/2 MAPK pathway. Our results suggest that γ-oryzanol inhibits LPS-mediated COX-2 expression by suppressing Erk1/2-mediated Egr-1 expression. This study supports that γ-oryzanol may be useful for ameliorating LPS-mediated inflammatory responses. Copyright © 2017 Elsevier Inc. All rights reserved.
Park, Ju Ho; Choi, Ji Yeon; Son, Dong Ju; Park, Eun Kyung; Song, Min Jong; Hellström, Mats; Hong, Jin Tae
2017-01-01
Centella asiatica has potent antioxidant and anti-inflammatory properties. However, its anti-dermatitic effect has not yet been reported. In this study, we investigated the anti-dermatitic effects of titrated extract of Centella asiatica (TECA) in a phthalic anhydride (PA)-induced atopic dermatitis (AD) animal model as well as in vitro model. An AD-like lesion was induced by the topical application of five percent PA to the dorsal skin or ear of Hos:HR-1 mouse. After AD induction, 100 μL of 0.2% and 0.4% of TECA (40 μg or 80 μg/cm2) was spread on the dorsum of the ear or back skin three times a week for four weeks. We evaluated dermatitis severity, histopathological changes and changes in protein expression by Western blotting for inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and NF-κB activity, which were determined by electromobility shift assay (EMSA). We also measured TNF-α, IL-1β, IL-6, and IgE concentration in the blood of AD mice by enzyme-linked immunosorbent assay (ELISA). TECA treatment attenuated the development of PA-induced atopic dermatitis. Histological analysis showed that TECA inhibited hyperkeratosis, mast cells and infiltration of inflammatory cells. TECA treatment inhibited expression of iNOS and COX-2, and NF-κB activity as well as the release of TNF-α, IL-1β, IL-6, and IgE. In addition, TECA (1, 2, 5 μg/mL) potently inhibited Lipopolysaccharide (LPS) (1 μg/mL)-induced NO production, expression of iNOS and COX-2, and NF-κB DNA binding activities in RAW264.7 macrophage cells. Our data demonstrated that TECA could be a promising agent for AD by inhibition of NF-κB signaling. PMID:28358324
Park, Ju Ho; Yeo, In Jun; Han, Ji Hye; Suh, Jeong Won; Lee, Hee Pom; Hong, Jin Tae
2018-04-01
In this study, we investigated anti-dermatitic effects of astaxanthin (AST) in phthalic anhydride (PA)-induced atopic dermatitis (AD) animal model as well as in vitro model. AD-like lesion was induced by the topical application of 5% PA to the dorsal skin or ear of Hos:HR-1 mouse. After AD induction, 100 μL of 1 mg/mL and 2 mg/mL of AST (10 μg or 20 μg/cm 2 ) was spread on the dorsum of ear or back skin three times a week for four weeks. We evaluated dermatitis severity, histopathological changes and changes in protein expression by Western blotting for inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and nuclear factor-κB (NF-κB) activity. We also measured tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and immunoglobulin E (IgE) concentration in the blood of AD mice by enzyme-linked immunosorbent assay (ELISA). AST treatment attenuated the development of PA-induced AD. Histological analysis showed that AST inhibited hyperkeratosis, mast cells and infiltration of inflammatory cells. AST treatment inhibited expression of iNOS and COX-2, and NF-κB activity as well as release of TNF-α, IL-1β, IL-6 and IgE. In addition, AST (5, 10 and 20 μM) potently inhibited lipopolysaccharide (LPS) (1 μg/mL)-induced nitric oxide (NO) production, expression of iNOS and COX-2 and NF-κB DNA binding activities in RAW 264.7 macrophage cells. Our data demonstrated that AST could be a promising agent for AD by inhibition of NF-κB signalling. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Ai, Guo; Huang, Zheng-Ming; Liu, Qing-Chuan; Han, Yan-Quan; Chen, Xi
2016-06-20
Water dropwort [Oenanthe javanica (O. javanica)] is an aquatic perennial herb cultivated in East Asian countries. It has been popularly used in traditional Chinese medicine which is beneficial for the treatment of many diseases, including jaundice and various types of chronic and acute hepatitis. In the present study, we investigated the hepatoprotective effect of total phenolics from O. javanica (TPOJ) against D-galactosamine (D-GalN) induced liver injury in mice. The hepatoprotective activity of TPOJ (125, 250 and 500mg/kg) was investigated on D-GalN (800mg/kg)-induced liver damages in mice. Blood and liver were collected for biochemical and microscopic analysis. RT-PCR was used to determine the changes in hepatic nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Protein levels of iNOS, COX-2, superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were determined by western blotting. In the animal studies, TPOJ could improve the survival of acute liver failure model significantly and prevente the D-GalN-induced elevation of the serum enzymatic markers and nonenzymatic markers levels significantly. Meanwhile, TPOJ-treatment decreased the malondialdehyde (MDA) level and elevated the content of glutathione (GSH) in the liver as compared to those in the D-GalN group. Hepatic activities and protein expressions of antioxidative enzymes, including SOD, GPx, and CAT were enhanced dose dependently with TPOJ. At the same time, application of TPOJ effectively suppressed the D-GalN-induced proinflammatory mRNA and protein expression of iNOS and COX-2. Subsequently, the serum levels of proinflammatory mediators, nitric oxide (NO) and prostaglandin E2 (PGE2) were reduced. Additionally, histological analyses also showed that TPOJ reduced the extent of liver lesions induced by D-GalN. Our investigation demonstrated the hepatoprotective activity of TPOJ and revealed that TPOJ attributed its significance in the traditional use for treating liver diseases. Copyright © 2016. Published by Elsevier Ireland Ltd.
Evaluation of anti-acne properties of phloretin in vitro and in vivo.
Kum, H; Roh, K-B; Shin, S; Jung, K; Park, D; Jung, E
2016-02-01
This study aimed to investigate the anti-acne properties of phloretin in vitro and in vivo. Anti-microbial activity against Propionibacterium acnes (P. acnes), Propionibacterium granulosum (P. granulosum) and Staphylococcus epidermidis (S. epidermidis) were observed by the minimum inhibitory concentration (MIC) and disc diffusion methods. The anti-inflammatory effects were studied in HaCaT cells based on P. acnes-induced inflammatory mediators, including PGE2 and COX-2, examined through enzyme-linked immunosorbent assay (ELISA) and luciferase reporter gene assay. Thirty healthy subjects with whiteheads participated in the clinical study. Comedo counting, and the amount of sebum and porphyrin were measured before treatment and following 4 consecutive weeks of treatment with phloretin. Phloretin showed anti-microbial activities against P. acnes, P. granulosum, S. epidermidis with the MIC of 0.5, 0.5 and 0.25 mg mL(-1) , respectively. P. acnes-induced activation of the COX-2 promoter was markedly attenuated by phloretin treatment. Consistent with these results, inhibition of PGE2 production was also observed. In 1-month, placebo-controlled trials, phloretin showed clinically and statistically significant reduction of comedo counts and sebum output level. Compared to before treatment, whiteheads, blackheads, papules, sebum output level and amount of sebum and porphyrin were significantly decreased at 4 weeks in the test group. This study revealed that phloretin inhibits the growth of P. acnes, P. granulosum, and S. epidermidis. In addition, we demonstrated that phloretin attenuates COX-2 and PGE2 expression during the P. acnes-induced upregulation of inflammatory signalling. Clinical studies further suggested that treatment with formulations containing phloretin confers anti-acne benefits. Based on these results, we suggest that phloretin may be introduced as a possible acne-mitigating agent. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Oxidative Capacity and Fatigability in Run Trained Malignant Hyperthermia Susceptible Mice
Rouviere, Clement; Corona, Benjamin T.; Ingalls, Christopher P.
2011-01-01
Introduction The purpose of this study was to test the hypothesis that Malignant Hyperthermia model mice (RyR1Y522S/wt) are more vulnerable to exercise-induced muscle injury and fatigability and adapt less to run training. Methods Following 6 weeks of voluntary wheel running, we measured anterior crural muscle fatigability, muscle injury, and cytochrome oxidase (COX) and citrate synthase (CS). Results Although RyR1Y522S/wt mice ran without experiencing MH episodes, they ran 42% less distance than wild type (WT) mice. Muscles from WT mice exhibited increased fatigue resistance and COX content after training. Muscles from RyR1Y522S/wt mice demonstrated no significant change in fatigability or COX and CS after training. However, muscles from RyR1Y522S/wt mice displayed less intrinsic fatigability and greater COX/CS content and muscle damage than WT mice. Discussion RyR1Y522S/wt mice can run without experiencing rhabdomyolysis, and their inability to adapt to training appears to stem from intrinsic enhancement of mitochondrial enzymes and fatigue resistance. PMID:22431093
Oxidative capacity and fatigability in run-trained malignant hyperthermia-susceptible mice.
Rouviere, Clement; Corona, Benjamin T; Ingalls, Christopher P
2012-04-01
The purpose of this study was to test the hypothesis that malignant hyperthermia model mice (RyR1Y522S/wt) are more vulnerable to exercise-induced muscle injury and fatigability and adapt less to run training. After 6 weeks of voluntary wheel running, we measured anterior crural muscle fatigability, muscle injury, and cytochrome oxidase (COX) and citrate synthase (CS). Although RyR1Y522S/wt mice ran without undergoing MH episodes, they ran 42% less distance than wild-type (WT) mice. Muscles from WT mice exhibited increased fatigue resistance and COX content after training. Muscles from RyR1Y522S/wt mice demonstrated no significant change in fatigability or COX and CS after training. However, muscles from RyR1Y522S/wt mice displayed less intrinsic fatigability and greater COX/CS content and muscle damage than WT mice. RyR1Y522S/wt mice can run without having rhabdomyolysis, and their inability to adapt to training appears to stem from intrinsic enhancement of mitochondrial enzymes and fatigue resistance. Copyright © 2012 Wiley Periodicals, Inc.
Salidroside suppresses solar ultraviolet-induced skin inflammation by targeting cyclooxygenase-2.
Wu, Dan; Yuan, Ping; Ke, Changshu; Xiong, Hua; Chen, Jingwen; Guo, Jinguang; Lu, Mingmin; Ding, Yanyan; Fan, Xiaoming; Duan, Qiuhong; Shi, Fei; Zhu, Feng
2016-05-03
Solar ultraviolet (SUV) irradiation causes skin disorders such as inflammation, photoaging, and carcinogenesis. Cyclooxygenase-2 (COX-2) plays a key role in SUV-induced skin inflammation, and targeting COX-2 may be a strategy to prevent skin disorders. In this study, we found that the expression of COX-2, phosphorylation of p38 or JNKs were increased in human solar dermatitis tissues and SUV-irradiated human skin keratinocyte HaCaT cells and mouse epidermal JB6 Cl41 cells. Knocking down COX-2 inhibited the production of prostaglandin E2 (PGE2), the phosphorylation of p38 or JNKs in SUV-irradiated cells, which indicated that COX-2 is not only the key enzyme for PGs synthesis, but also an upstream regulator of p38 or JNKs after SUV irradiation. The virtual ligand screening assay was used to search for natural drugs in the Chinese Medicine Database, and indicated that salidroside might be a COX-2 inhibitor. Molecule modeling indicated that salidroside can directly bind with COX-2, which was proved by in vitro pull-down binding assay. Ex vivo studies showed that salidroside has no toxicity to cells, and inhibits the production of PGE2, phosphorylation of p38 or JNKs, and secretion of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) caused by SUV irradiation. In vivo studies demonstrated that salidroside attenuates the skin inflammation induced by SUV. In brief, our data provided the evidences for the protective role of salidroside against SUV-induced inflammation by targeting COX-2, and salidroside might be a promising drug for the treatment of SUV-induced skin inflammation.
Ferruelo, A; de Las Heras, M M; Redondo, C; Ramón de Fata, F; Romero, I; Angulo, J C
2014-09-01
Mediterranean diet may play a role in the prevention of prostate cancer (PCa) development and progression. Cyclooxygenase-2 (COX-2) expression is associated with increased cellular proliferation, prevents apoptosis and favors tumor invasion. We intend to clarify whether resveratrol and other polyphenols effectively inhibit COX-2 activity and induce apoptosis in hormone-resistant PC-3 cell line. PC-3 cells were cultured and treated with different concentrations of gallic acid, tannic acid, quercetin, and resveratrol in presence of phorbol myristate acetate (PMA; 50 μg/ml) that induces COX-2 expression. Total RNA was extracted and COX-2 expression was analyzed by relative quantification real-time PCR (ΔΔCt method). COX-2 activity was determined by PGE-2 detection using ELISA. Caspase 3/7 luminescence assay was used to disclose apoptosis. Transitory transfection with short human COX-2 (phPES2 -327/+59) and p5xNF-kβ-Luc plasmids determined COX-2 promoter activity and specifically that dependant of NF-kβ. COX-2 expression was not modified in media devoid of PMA. However, under PMA induction tannic acid (2.08 ±.21), gallic acid (2.46 ±.16), quercetin (1.78 ±.14) and resveratrol (1.15 ±.16) significantly inhibited COX-2 mRNA with respect to control (3.14 ±.07), what means a 34%, 23%, 46% and 61% reduction, respectively. The inhibition in the levels of PGE-2 followed a similar pattern. All compounds studied induced apoptosis at 48 h, although at a different rate. PMA caused a rise in activity 7.4 ±.23 times phPES2 -327/+59 and 2.0 ±.1 times p5xNF-kβ-Luc at 6h compared to basal. Resveratrol suppressed these effects 17.1 ±.21 and 32.4 ±.18 times, respectively. Similarly, but to a lesser extent, the rest of evaluated polyphenols diminished PMA inductor effect on the activity of both promoters. Polyphenols inhibit transcriptional activity of COX-2 promoter mediated by NF-kβ. This effect could explain, at least in part, the induction of apoptosis in vitro by these substances in castration resistant PCa. Copyright © 2014 AEU. Published by Elsevier Espana. All rights reserved.
Fornai, M; Colucci, R; Antonioli, L; Ippolito, C; Segnani, C; Buccianti, P; Marioni, A; Chiarugi, M; Villanacci, V; Bassotti, G; Blandizzi, C; Bernardini, N
2014-08-01
The COX isoforms (COX-1, COX-2) regulate human gut motility, although their role under pathological conditions remains unclear. This study examines the effects of COX inhibitors on excitatory motility in colonic tissue from patients with diverticular disease (DD). Longitudinal muscle preparations, from patients with DD or uncomplicated cancer (controls), were set up in organ baths and connected to isotonic transducers. Indomethacin (COX-1/COX-2 inhibitor), SC-560 (COX-1 inhibitor) or DFU (COX-2 inhibitor) were assayed on electrically evoked, neurogenic, cholinergic and tachykininergic contractions, or carbachol- and substance P (SP)-induced myogenic contractions. Distribution and expression of COX isoforms in the neuromuscular compartment were assessed by RT-PCR, Western blot and immunohistochemical analysis. In control preparations, neurogenic cholinergic contractions were enhanced by COX inhibitors, whereas tachykininergic responses were blunted. Carbachol-evoked contractions were increased by indomethacin or SC-560, but not DFU, whereas all inhibitors reduced SP-induced motor responses. In preparations from DD patients, COX inhibitors did not affect electrically evoked cholinergic contractions. Both indomethacin and DFU, but not SC-560, decreased tachykininergic responses. COX inhibitors did not modify carbachol-evoked motor responses, whereas they counteracted SP-induced contractions. COX-1 expression was decreased in myenteric neurons, whereas COX-2 was enhanced in glial cells and smooth muscle. In control colon, COX-1 and COX-2 down-regulate cholinergic motility, whereas both isoforms enhance tachykininergic motor activity. In the presence of DD, there is a loss of modulation by both COX isoforms on the cholinergic system, whereas COX-2 displays an enhanced facilitatory control on tachykininergic contractile activity. © 2014 The British Pharmacological Society.
Fornai, M; Colucci, R; Antonioli, L; Ippolito, C; Segnani, C; Buccianti, P; Marioni, A; Chiarugi, M; Villanacci, V; Bassotti, G; Blandizzi, C; Bernardini, N
2014-01-01
BACKGROUND AND PURPOSE The COX isoforms (COX-1, COX-2) regulate human gut motility, although their role under pathological conditions remains unclear. This study examines the effects of COX inhibitors on excitatory motility in colonic tissue from patients with diverticular disease (DD). EXPERIMENTAL APPROACH Longitudinal muscle preparations, from patients with DD or uncomplicated cancer (controls), were set up in organ baths and connected to isotonic transducers. Indomethacin (COX-1/COX-2 inhibitor), SC-560 (COX-1 inhibitor) or DFU (COX-2 inhibitor) were assayed on electrically evoked, neurogenic, cholinergic and tachykininergic contractions, or carbachol- and substance P (SP)-induced myogenic contractions. Distribution and expression of COX isoforms in the neuromuscular compartment were assessed by RT-PCR, Western blot and immunohistochemical analysis. KEY RESULTS In control preparations, neurogenic cholinergic contractions were enhanced by COX inhibitors, whereas tachykininergic responses were blunted. Carbachol-evoked contractions were increased by indomethacin or SC-560, but not DFU, whereas all inhibitors reduced SP-induced motor responses. In preparations from DD patients, COX inhibitors did not affect electrically evoked cholinergic contractions. Both indomethacin and DFU, but not SC-560, decreased tachykininergic responses. COX inhibitors did not modify carbachol-evoked motor responses, whereas they counteracted SP-induced contractions. COX-1 expression was decreased in myenteric neurons, whereas COX-2 was enhanced in glial cells and smooth muscle. CONCLUSIONS AND IMPLICATIONS In control colon, COX-1 and COX-2 down-regulate cholinergic motility, whereas both isoforms enhance tachykininergic motor activity. In the presence of DD, there is a loss of modulation by both COX isoforms on the cholinergic system, whereas COX-2 displays an enhanced facilitatory control on tachykininergic contractile activity. PMID:24758697
Ryan, Veronica H; Primiani, Christopher T; Rao, Jagadeesh S; Ahn, Kwangmi; Rapoport, Stanley I; Blanchard, Helene
2014-01-01
The polyunsaturated arachidonic and docosahexaenoic acids (AA and DHA) participate in cell membrane synthesis during neurodevelopment, neuroplasticity, and neurotransmission throughout life. Each is metabolized via coupled enzymatic reactions within separate but interacting metabolic cascades. AA and DHA pathway genes are coordinately expressed and underlie cascade interactions during human brain development and aging. The BrainCloud database for human non-pathological prefrontal cortex gene expression was used to quantify postnatal age changes in mRNA expression of 34 genes involved in AA and DHA metabolism. Expression patterns were split into Development (0 to 20 years) and Aging (21 to 78 years) intervals. Expression of genes for cytosolic phospholipases A2 (cPLA2), cyclooxygenases (COX)-1 and -2, and other AA cascade enzymes, correlated closely with age during Development, less so during Aging. Expression of DHA cascade enzymes was less inter-correlated in each period, but often changed in the opposite direction to expression of AA cascade genes. Except for the PLA2G4A (cPLA2 IVA) and PTGS2 (COX-2) genes at 1q25, highly inter-correlated genes were at distant chromosomal loci. Coordinated age-related gene expression during the brain Development and Aging intervals likely underlies coupled changes in enzymes of the AA and DHA cascades and largely occur through distant transcriptional regulation. Healthy brain aging does not show upregulation of PLA2G4 or PTGS2 expression, which was found in Alzheimer's disease.
Kim, Ha-Na; Kim, Do-Hee; Kim, Eun-Hee; Lee, Mee-Hyun; Kundu, Joydeb Kumar; Na, Hye-Kyung; Cha, Young-Nam; Surh, Young-Joon
2014-08-28
Sulforaphane, an isothiocyanate present in cruciferous vegetables, has been reported to possess anti-inflammatory and cancer chemopreventive properties. However, the molecular mechanisms by which sulforaphane suppresses inflammation and carcinogenesis are yet to be fully elucidated. Since the aberrant expression of cyclooxygenase-2 (COX-2) links inflammation and cancer, the present study was aimed to elucidate the mechanisms by which sulforaphane modulates COX-2 overexpression in human mammary epithelial (MCF-10A) cells stimulated with a prototypic tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Treatment of MCF-10A cells with sulforaphane significantly inhibited TPA-induced expression of COX-2 protein and its mRNA transcript. Transient transfection of cells with deletion mutant constructs of COX-2 promoter revealed that the transcription factor nuclear factor-kappaB (NF-κB) plays a key role in TPA-induced COX-2 expression in MCF-10A cells. Pretreatment with sulforaphane significantly attenuated nuclear localization, DNA binding and the transcriptional activity of NF-κB through inhibition of phosphorylation and subsequent degradation of IκBα in MCF-10A cells stimulated with TPA. Sulforaphane also attenuated TPA-induced activation of IκB kinases (IKK), NF-κB-activating kinase (NAK) and extracellular signal-regulated kinase-1/2 (ERK1/2). Pharmacological inhibition of IKK or transient transfection of cells with dominant-negative mutant forms of this kinase abrogated TPA-induced NF-κB activation and COX-2 expression. In addition, the blockade of ERK1/2 activation negated the catalytic activity of IKKα, but not that of IKKβ, whereas silencing NAK by specific siRNA abrogated the IKKβ activity in TPA-treated cells. Taken together, sulforaphane inhibits TPA-induced NF-κB activation and COX-2 expression in MCF-10A cells by blocking two distinct signaling pathways mediated by ERK1/2-IKKα and NAK-IKKβ. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Quantifying Intrinsic Specificity: A Potential Complement to Affinity in Drug Screening
NASA Astrophysics Data System (ADS)
Wang, Jin; Zheng, Xiliang; Yang, Yongliang; Drueckhammer, Dale; Yang, Wei; Verkhivker, Gennardy; Wang, Erkang
2007-11-01
We report here the investigation of a novel description of specificity in protein-ligand binding based on energy landscape theory. We define a new term, intrinsic specificity ratio (ISR), which describes the level of discrimination in binding free energies of the native basin for a protein-ligand complex from the weaker binding states of the same ligand. We discuss the relationship between the intrinsic specificity we defined here and the conventional definition of specificity. In a docking study of molecules with the enzyme COX-2, we demonstrate a statistical correspondence between ISR value and geometrical shapes of the small molecules binding to COX-2. We further observe that the known selective (nonselective) inhibitors of COX-2 have higher (lower) ISR values. We suggest that intrinsic specificity ratio may be a useful new criterion and a complement to affinity in drug screening and in searching for potential drug lead compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Haipeng; Xu Beibei; Sheveleva, Elena
2008-10-01
Glucocorticoids induce COX-2 expression in rat cardiomyocytes. While investigating whether phosphatidylinositol 3 kinase (PI3K) plays a role in corticosterone (CT)-induced COX-2, we found that LY294002 (LY29) but not wortmannin (WM) attenuates CT from inducing COX-2 gene expression. Expression of a dominant-negative mutant of p85 subunit of PI3K failed to inhibit CT from inducing COX-2 expression. CT did not activate PI3K/AKT signaling pathway whereas LY29 and WM decreased the activity of PI3K. LY303511 (LY30), a structural analogue and a negative control for PI3K inhibitory activity of LY29, also suppressed COX-2 induction. These data suggest PI3K-independent mechanisms in regulating CT-induced COX-2 expression.more » LY29 and LY30 do not inhibit glucocorticoid receptor transactivity. Both compounds have been reported to inhibit Casein Kinase 2 activity and modulate potassium and calcium levels independent of PI3K, while LY29 has been reported to inhibit mammalian Target of Rapamycin (mTOR), and DNA-dependent Protein Kinase (DNA-PK). Inhibitor of Casein Kinase 2 (CK2), mTOR or DNA-PK failed to prevent CT from inducing COX-2 expression. Tetraethylammonium (TEA), a potassium channel blocker, and nimodipine, a calcium channel blocker, both attenuated CT from inducing COX-2 gene expression. CT was found to increase intracellular Ca{sup 2+} concentration, which can be inhibited by LY29, TEA or nimodipine. These data suggest a possible role of calcium instead of PI3K in CT-induced COX-2 expression in cardiomyocytes.« less
Lim, Tae-Gyu; Kim, Jong-Eun; Jung, Sung Keun; Li, Yan; Bode, Ann M; Park, Jun-Seong; Yeom, Myeong Hun; Dong, Zigang; Lee, Ki Won
2013-10-01
Solar UV (sUV) is an important environmental carcinogen. Recent studies have shown that sUV is associated with numerous human skin disorders, such as wrinkle formation and inflammation. In this study, we found that the isoflavone, biochanin A, inhibited the expression of sUV-induced COX-2, which is a well-characterized sUV-induced enzyme, in both human HaCaT keratinocytes and JB6 P+ mouse skin epidermal cells. Several studies have demonstrated the beneficial effects of biochanin A. However, its direct molecular target is unknown. We found that biochanin A inhibited sUV-induced phosphorylation of MKK4/JNK/c-Jun and MKK3/6/p38/MSK1. Mixed-lineage kinase 3 (MLK3) is an upstream kinase of MKK4 and MKK3/6. Thus, we evaluated the effect of biochanin A on MLK3. We found that sUV-induced MLK3 phosphorylation was not affected, whereas MLK3 kinase activity was significantly suppressed by biochanin A. Furthermore, direct binding of biochanin A in the MLK3 ATP-binding pocket was detected using pull-down assays. Computer modeling supported our observation that MLK3 is a novel target of biochanin A. These results suggest that biochanin A exerts chemopreventive effects by suppressing sUV-induced COX-2 expression mediated through MLK3 inhibition. Copyright © 2013 Elsevier Inc. All rights reserved.
Mam33 promotes cytochrome c oxidase subunit I translation in Saccharomyces cerevisiae mitochondria.
Roloff, Gabrielle A; Henry, Michael F
2015-08-15
Three mitochondrial DNA-encoded proteins, Cox1, Cox2, and Cox3, comprise the core of the cytochrome c oxidase complex. Gene-specific translational activators ensure that these respiratory chain subunits are synthesized at the correct location and in stoichiometric ratios to prevent unassembled protein products from generating free oxygen radicals. In the yeast Saccharomyces cerevisiae, the nuclear-encoded proteins Mss51 and Pet309 specifically activate mitochondrial translation of the largest subunit, Cox1. Here we report that Mam33 is a third COX1 translational activator in yeast mitochondria. Mam33 is required for cells to adapt efficiently from fermentation to respiration. In the absence of Mam33, Cox1 translation is impaired, and cells poorly adapt to respiratory conditions because they lack basal fermentative levels of Cox1. © 2015 Roloff and Henry. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Kumagai, Kousuke; Kubo, Mitsuhiko; Imai, Shinji; Toyoda, Futoshi; Maeda, Tsutomu; Okumura, Noriaki; Matsuura, Hiroshi; Matsusue, Yoshitaka
2013-01-01
Chondrocyte apoptosis contributes to the disruption of cartilage integrity in osteoarthritis (OA). Recently, we reported that activation of volume-sensitive Cl− current (ICl,vol) mediates cell shrinkage, triggering apoptosis in rabbit articular chondrocytes. A cyclooxygenase (COX) blocker is frequently used for the treatment of OA. In the present study, we examined in vitro effects of selective blockers of COX on the TNFα-induced activation of ICl,vol in rabbit chondrocytes using the patch-clamp technique. Exposure of isolated chondrocytes to TNFα resulted in an obvious increase in membrane Cl− conductance. The TNFα-evoked Cl− current exhibited electrophysiological and pharmacological properties similar to those of ICl,vol. Pretreatment of cells with selective COX-2 blocker etodolac markedly inhibited ICl,vol activation by TNFα as well as subsequent apoptotic events such as apoptotic cell volume decrease (AVD) and elevation of caspase-3/7 activity. In contrast, a COX-1 blocker had no effect on the decrease in cell volume or the increase in caspase-3/7 activity induced by TNFα. Thus, the COX-2-selective blocker had an inhibitory effect on TNFα-induced apoptotic events, which suggests that this drug would have efficacy for the treatment of OA. PMID:24084720
Zhao, Min; Davis, Linda S.; Blackwell, Timothy S.; Yull, Fiona; Breyer, Matthew D.; Hao, Chuan-Ming
2013-01-01
High salt diet induces renal medullary COX2 expression. Selective blockade of renal medullary COX2 activity in rats causes salt sensitive hypertension, suggesting a role for renal medullary COX2 in maintaining systemic sodium balance. The present study characterized the cellular location of COX2 induction in the kidney of mice following high salt diet and examined the role of NFκB in mediating this COX2 induction in response to increased dietary salt. High salt diet (8% NaCl) for 3 days markedly increased renal medullary COX2 expression in C57Bl/6J mice. Co-immunofluorescence using a COX2 antibody and antibodies against AQP2, ClC-K, AQP1 and CD31 showed that high salt diet-induced COX2 was selectively expressed in renal medullary interstitial cells. By using NFκB reporter transgenic mice, we observed a 7 fold increase of luciferase activity in the renal medulla of the NFκB-luciferase reporter mice following high salt diet, and a robust induction of EGFP expression mainly in renal medullary interstitial cells of the NFκB-EGFP reporter mice following high salt diet. Treating high salt diet fed C57Bl/6J mice with selective IκB kinase inhibitor IMD-0354 (8mg/kg bw) substantially suppressed COX2 induction in renal medulla, and also significantly reduced urinary PGE2. These data therefore suggest that renal medullary interstitial cell NFκB plays an important role in mediating renal medullary COX2 expression and promoting renal PGE2 synthesis in response to increased dietary sodium. PMID:23900806
El-Hawash, Soad A M; Soliman, Raafat; Youssef, Amal M; Ragab, Hanan M A; Elzahhar, Perihan A S; El-Ashmawey, Ibrahim M; Abdel Wahab, Abeer E; Shaat, Iman A
2014-05-01
A series of substituted pyridinylpyrazole (or isoxazole) derivatives were synthesized and evaluated for their anti-inflammatory (AI) activity using formalin-induced paw edema bioassays. Their inhibitory activities of cyclooxygenase-1 and cyclooxygenase-2 (COX-1 and COX-2) were also determined. The analgesic activity of the same compounds was evaluated using rat-tail withdrawal technique. Their antipyretic activity was also evaluated. The results revealed that compounds 4a,b, 6a, 8a, 14c and 15a exhibited significant AI and analgesic activities. Compounds 5a, 6a and 8a displayed good antipyretic activity. Compounds 14c and 15a showed good COX-2 inhibitory activity and weak inhibition of COX-1. Additionally, the most active compounds were shown to have a large safety margin (ALD50 >300-400 mg / Kg) and minimal ulcerogenic potentialities when administered orally at a dose of 300 mg/Kg. Docking studies for 14c and 15a with COX-2 showed good binding profile. Antimicrobial evaluation proved that most of the compounds exhibited distinctive activity against the gram negative bacteria, P. aeruginosa and E coli.
Chlorogenic acid suppresses interleukin-1β-induced inflammatory mediators in human chondrocytes
Chen, Wei-Ping; Wu, Li-Dong
2014-01-01
We investigated the anti-inflammatory properties of chlorogenic acid (CGA) in interleukin-1β-induced chondrocytes. The nitric oxide (NO) and prostaglandin E2 (PGE2) were detected by Griess and Enzyme-linked immunosorbent assay (ELISA) respectively. Quantitative real-time PCR and western blot were performed to measure the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2. Our results indicate that CGA inhibited the production of NO and PGE2 as well as the expression of iNOS and COX-2 in chondrocytes. Our data suggest that CGA possess potential value in the treatment of OA. PMID:25674248
Lee, Sunyoung; Jeong, Seongkeun; Kim, Wooseong; Kim, Dohoon; Yang, Yejin; Yoon, Jeong-Hyun; Kim, Byung Joo; Min, Do Sik; Jung, Yunjin
2017-01-29
Rebamipide, an amino acid derivative of 2(1H)-quinolinone, has been used for mucosal protection, healing of gastroduodenal ulcers, and treatment of gastritis. Induction of cyclooxygenase (COX)-2, a gastric mucosal protective factor, by rebamipide has been suggested as the major mechanism of the drug action. However, how rebamipide induces COX-2 at the molecular level needs further investigation. In this study, the molecular mechanism underlying the induction of COX-2 by rebamipide was investigated. In gastric carcinoma cells and macrophage cells, rebamipide induced phosphorylation of AMP-activated protein kinase (AMPK), leading to phosphorylation of acetyl-CoA carboxylase (ACC), a substrate of AMPK. The induction of COX-2 by rebamipide was dependent on AMPK activation because compound C, an AMPK inhibitor, abolished COX-2 induction by rebamipide. In a mouse ulcer model, rebamipide protected against hydrochloric acid/ethanol-induced gastric ulcer, and these protective effects were deterred by co-administration of compound C. In parallel, in the gastric tissues, rebamipide increased the phosphorylation AMPK, whereas compound C reduced the levels of COX-2 and phosphorylated ACC, which were increased by rebamipide. Taken together, the activation of AMPK by rebamipide may be a molecular mechanism that contributes to induction of COX-2, probably resulting in protection against gastric ulcers. Copyright © 2016 Elsevier Inc. All rights reserved.
Khan, Abdul Quaiyoom; Khan, Rehan; Qamar, Wajhul; Lateef, Abdul; Rehman, Muneeb U; Tahir, Mir; Ali, Farrah; Hamiza, Oday O; Hasan, Syed Kazim; Sultana, Sarwat
2013-06-01
Abnormal production of reactive oxygen species (ROS) and proinflammatory cytokines often act as trigger for development of most of the chronic human diseases including cancer via up-regulation of transcription factors and activation of MAP kinases. We investigated the protective effects of geraniol (GOH) against 12-O-tetradecanoyl phorbol-13-acetate (TPA) induced oxidative and inflammatory responses, expression of p38MAPK, NF-κB and COX-2 in mouse skin. Animals were divided into four groups I-IV (n=6). Group II and III received topical application of TPA at the dose of 10 nmol/0.2 ml of acetone/animal/day, for two days. Group III was pre-treated with GOH (250 μg) topically 30 min prior to each TPA administration. While group I and IV were given acetone (0.2 ml) and GOH respectively. Our results show that GOH significantly inhibited TPA induced lipid peroxidation (LPO), inflammatory responses, proinflammatory cytokine release, up regulates reduced glutathione (GSH) content and the activity of different antioxidant enzymes. Interestingly, GOH also inhibited TPA induced altered activity of p38MAPK. Further, TPA induced altered expression of NF-κB (p65) and COX-2 was also attenuated by GOH. Thus, our results suggest that GOH attenuates early tumor promotional changes, and it may serve as one of the various ways to prevent carcinogenesis. Copyright © 2013 Elsevier Inc. All rights reserved.
Gomez, Nidia N; Davicino, Roberto C; Biaggio, Veronica S; Bianco, German A; Alvarez, Silvina M; Fischer, Patricia; Masnatta, Lucas; Rabinovich, Gabriel A; Gimenez, María S
2006-02-01
Reactive oxygen and nitrogen species have been implicated in the pathogenesis of pulmonary diseases. The goal of this study was to measure the response of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 enzymes (COX-2) in lung with moderate zinc deficiency. Adult male Wistar rats were divided into two groups receiving (1) a zinc-deficient diet (ZD) or (2) a zinc-adequate control diet. After 2 months of treatment, the zinc-deficient group showed a significant pulmonary edema. This was associated to a reduction of protein thiols and to a significant increase of metallothionein and glutathione disulfide levels. In addition, a higher serum and lung NO production in ZD group was positively related to the higher activity and expression of iNOS and COX-2 found in lungs. Western blot analysis revealed increased IkappaBalpha degradation, an indicator of NF-kappaB activation in ZD lungs. Anatomopathologic analysis of ZD lungs showed an increase of connective tissue fibers with an influx of polymorphonuclear cells. These cells and type II cells from the alveoli showed specific immunohistochemical signals for iNOS. The conclusion is that, during the development of zinc-deficiency, iNOS activity increases in lung and contributes to lung injury. Zinc deficiency implications must be taken into account to design therapies and public health interventions involving targeted zinc supplementation for high-risk subjects or certain diseases, such as asthma.
Oh, Sa-Rang; Ok, Seon; Jung, Tae-Sung; Jeon, Sang-Ok; Park, Ji-Min; Jung, Ji-Wook; Ryu, Deok-Seon
2017-09-01
To investigate the anti-inflammatory effects of decursin and decursinol angelate-rich Angelica gigas Nakai (AGNE) on dextran sulfate sodium (DSS)-induced murine ulcerative colitis (UC). The therapeutic effect of an AGNE was analyzed in a mouse model of UC induced by DSS. Disease activity index values were measured by clinical signs such as a weight loss, stool consistency, rectal bleeding and colon length. A histological analysis was performed using hematoxylin and eosin staining. Key inflammatory cytokines and mediators including IL-6, TNF-α, PGE 2 , COX-2 and HIF-1α were assayed by enzyme-linked immunosorbent assay or western blotting. Treatment with the AGNE at 10, 20, and 40 mg/kg alleviated weight loss, decreased disease activity index scores, and reduced colon shortening in mice with DSS-induced UC. AGNE inhibited the production of IL-6 and TNF-α in serum and colon tissue. Moreover, AGNE suppressed the increased expression of COX-2 and HIF-1α and the increased production of PGE 2 in colon tissue were observed in mice with DSS-induced UC. Additionally, histological damage was also alleviated by AGNE treatment. The findings of this study verified that AGNE significantly improves clinical symptoms and reduces the activity of various inflammatory mediators. These results indicate the AGNE has the therapeutic potential in mice with DSS-induced UC. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Atherosclerosis is a well-known inflammatory cardiovascular disease. Recent studies suggested potential anti-atherosclerosis effects of becatamide found in Houttuynia cordata. Therefore, in this study, we investigated the potential effect of becatamide (1) and its analogues (enferamide (2), veskamid...
Martin, Emily M; Jones, Samuel L
2017-10-01
Inhibition of prostaglandin E 2 (PGE 2 ) production effectively limits inflammation in horses, however nonspecific prostaglandin blockade via cyclooxygenase (COX) inhibition elicits deleterious gastrointestinal side effects in equine patients. Thus, more selective PGE 2 targeting therapeutics are needed to treat inflammatory disease in horses. One potential target is microsomal prostaglandin E-synthase-1 (mPGES-1), which is the terminal enzyme downstream of COX-2 in the inducible PGE 2 synthesis cascade. This enzyme has yet to be studied in equine leukocytes, which play a pivotal role in equine inflammatory disease. The objective of this study was to determine if mPGES-1 is a PGE 2 -selective anti-inflammatory target in equine leukocytes. To evaluate this objective, leukocyte-rich plasma (LRP) was isolated from equine whole blood collected via jugular venipuncture of six healthy adult horses of mixed breeds and genders. LRP was primed with granulocyte-monocyte colony-stimulating factor (GM-CSF) and stimulated with lipopolysaccharide (LPS) in the presence or absence of an mPGES-1 inhibitor (MF63), a COX-2 inhibitor (NS-398), or a nonselective COX inhibitor (indomethacin). Following treatment, mPGES-1 and COX-2 mRNA and protein levels were measured via qPCR and western blot, respectively, and PGE 2 , thromboxane (TXA 2 ) and prostacyclin (PGI 2 ) levels were measured in cellular supernatants via ELISA. This study revealed that LPS significantly increased mPGES-1 mRNA, but not protein levels in equine LRP as measured by qPCR and western blot, respectively. In contrast, COX-2 mRNA and protein were coordinately induced by LPS. Importantly, treatment of LPS-stimulated leukocytes with indomethacin and NS-398 significantly reduced extracellular concentrations of multiple prostanoids (PGE 2 , TXA 2 and PGI 2 ), while the mPGES-1 inhibitor MF63 selectively inhibited PGE 2 production only. mPGES-1 inhibition also preserved higher basal levels of PGE 2 production when compared to either COX inhibitor, which might be beneficial in a clinical setting. In conclusion, this work identifies mPGES-1 as a key regulator of PGE 2 production and a PGE 2 -selective target in equine leukocytes. This study demonstrates that mPGES-1 is a potentially safer and effective therapeutic target for treatment of equine inflammatory disease when compared to traditional non-steroidal anti-inflammatory drugs. Copyright © 2017 Elsevier B.V. All rights reserved.
A nuclear factor kappa B-derived inhibitor tripeptide inhibits UVB-induced photoaging process.
Oh, Jee Eun; Kim, Min Seo; Jeon, Woo-Kwang; Seo, Young Kwon; Kim, Byung-Chul; Hahn, Jang Hee; Park, Chang Seo
2014-12-01
Ultraviolet (UV) irradiation on the skin induces photoaging which is characterized by keratinocyte hyperproliferation, generation of coarse wrinkles, worse of laxity and roughness. Upon UV irradiation, nuclear factor kappa B (NF-κB) is activated which plays a key role in signaling pathway leading to inflammation cascade and this activation stimulates expression of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin-1alpha (IL-1α) and a stress response gene cyclooxygenase-2 (COX-2). In addition, activation of NF-κB up-regulates the expression of matrix metalloprotease-1 (MMP-1) and consequently collagen in dermis is degraded. In this study, the effects of a NF-κB-derived inhibitor tripeptide on the UVB-induced photoaging and inflammation were investigated in vitro and in vivo. A NF-κB-derived inhibitor tripeptide (NF-κB-DVH) was synthesized based on the sequence of dimerization region of the subunit p65 of NF-κB. Its inhibitory activity was confirmed using chromatin immunoprecipitation assay and in situ proximate ligation assay. The effects of anti-photoaging and anti-inflammation were analyzed by Enzyme-linked immunosorbent assay (ELISA), immunoblotting and immunochemistry. NF-κB-DVH significantly decreased UV-induced expression of TNF-α, IL-1α, MMP-1 and COX-2 while increased production of type I procollagen. Results showed NF-κB-DVH had strong anti-inflammatory activity probably by inhibiting NF-κB activation pathway and suggested to be used as a novel agent for anti-photoaging. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simões, Maylla Ronacher, E-mail: yllars@hotmail.com; Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz; Aguado, Andrea
Chronic exposure to low lead concentration produces hypertension; however, the underlying mechanisms remain unclear. We analyzed the role of oxidative stress, cyclooxygenase-2-dependent pathways and MAPK in the vascular alterations induced by chronic lead exposure. Aortas from lead-treated Wistar rats (1st dose: 10 μg/100 g; subsequent doses: 0.125 μg/100 g, intramuscular, 30 days) and cultured aortic vascular smooth muscle cells (VSMCs) from Sprague Dawley rats stimulated with lead (20 μg/dL) were used. Lead blood levels of treated rats attained 21.7 ± 2.38 μg/dL. Lead exposure increased systolic blood pressure and aortic ring contractile response to phenylephrine, reduced acetylcholine-induced relaxation and didmore » not affect sodium nitroprusside relaxation. Endothelium removal and L-NAME left-shifted the response to phenylephrine more in untreated than in lead-treated rats. Apocynin and indomethacin decreased more the response to phenylephrine in treated than in untreated rats. Aortic protein expression of gp91(phox), Cu/Zn-SOD, Mn-SOD and COX-2 increased after lead exposure. In cultured VSMCs lead 1) increased superoxide anion production, NADPH oxidase activity and gene and/or protein levels of NOX-1, NOX-4, Mn-SOD, EC-SOD and COX-2 and 2) activated ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized superoxide anion production, NADPH oxidase activity and mRNA levels of NOX-1, NOX-4 and COX-2. Blockade of the ERK1/2 and p38 signaling pathways abolished lead-induced NOX-1, NOX-4 and COX-2 expression. Results show that lead activation of the MAPK signaling pathways activates inflammatory proteins such as NADPH oxidase and COX-2, suggesting a reciprocal interplay and contribution to vascular dysfunction as an underlying mechanisms for lead-induced hypertension. - Highlights: • Lead-exposure increases oxidative stress, COX-2 expression and vascular reactivity. • Lead exposure activates MAPK signaling pathway. • ROS and COX-2 activation by MAPK in lead exposure • Relationship between vascular ROS and COX-2 products in lead exposure.« less
Cell-type-specific roles for COX-2 in UVB-induced skin cancer
Herschman, Harvey
2014-01-01
In human tumors, and in mouse models, cyclooxygenase-2 (COX-2) levels are frequently correlated with tumor development/burden. In addition to intrinsic tumor cell expression, COX-2 is often present in fibroblasts, myofibroblasts and endothelial cells of the tumor microenvironment, and in infiltrating immune cells. Intrinsic cancer cell COX-2 expression is postulated as only one of many sources for prostanoids required for tumor promotion/progression. Although both COX-2 inhibition and global Cox-2 gene deletion ameliorate ultraviolet B (UVB)-induced SKH-1 mouse skin tumorigenesis, neither manipulation can elucidate the cell type(s) in which COX-2 expression is required for tumorigenesis; both eliminate COX-2 activity in all cells. To address this question, we created Cox-2 flox/flox mice, in which the Cox-2 gene can be eliminated in a cell-type-specific fashion by targeted Cre recombinase expression. Cox-2 deletion in skin epithelial cells of SKH-1 Cox-2 flox/flox;K14Cre + mice resulted, following UVB irradiation, in reduced skin hyperplasia and increased apoptosis. Targeted epithelial cell Cox-2 deletion also resulted in reduced tumor incidence, frequency, size and proliferation rate, altered tumor cell differentiation and reduced tumor vascularization. Moreover, Cox-2 flox/flox;K14Cre + papillomas did not progress to squamous cell carcinomas. In contrast, Cox-2 deletion in SKH-1 Cox-2 flox/flox; LysMCre + myeloid cells had no effect on UVB tumor induction. We conclude that (i) intrinsic epithelial COX-2 activity plays a major role in UVB-induced skin cancer, (ii) macrophage/myeloid COX-2 plays no role in UVB-induced skin cancer and (iii) either there may be another COX-2-dependent prostanoid source(s) that drives UVB skin tumor induction or there may exist a COX-2-independent pathway(s) to UVB-induced skin cancer. PMID:24469308
Cell-type-specific roles for COX-2 in UVB-induced skin cancer.
Jiao, Jing; Mikulec, Carol; Ishikawa, Tomo-o; Magyar, Clara; Dumlao, Darren S; Dennis, Edward A; Fischer, Susan M; Herschman, Harvey
2014-06-01
In human tumors, and in mouse models, cyclooxygenase-2 (COX-2) levels are frequently correlated with tumor development/burden. In addition to intrinsic tumor cell expression, COX-2 is often present in fibroblasts, myofibroblasts and endothelial cells of the tumor microenvironment, and in infiltrating immune cells. Intrinsic cancer cell COX-2 expression is postulated as only one of many sources for prostanoids required for tumor promotion/progression. Although both COX-2 inhibition and global Cox-2 gene deletion ameliorate ultraviolet B (UVB)-induced SKH-1 mouse skin tumorigenesis, neither manipulation can elucidate the cell type(s) in which COX-2 expression is required for tumorigenesis; both eliminate COX-2 activity in all cells. To address this question, we created Cox-2(flox/flox) mice, in which the Cox-2 gene can be eliminated in a cell-type-specific fashion by targeted Cre recombinase expression. Cox-2 deletion in skin epithelial cells of SKH-1 Cox-2(flox/flox);K14Cre(+) mice resulted, following UVB irradiation, in reduced skin hyperplasia and increased apoptosis. Targeted epithelial cell Cox-2 deletion also resulted in reduced tumor incidence, frequency, size and proliferation rate, altered tumor cell differentiation and reduced tumor vascularization. Moreover, Cox-2(flox/flox);K14Cre(+) papillomas did not progress to squamous cell carcinomas. In contrast, Cox-2 deletion in SKH-1 Cox-2(flox/flox); LysMCre(+) myeloid cells had no effect on UVB tumor induction. We conclude that (i) intrinsic epithelial COX-2 activity plays a major role in UVB-induced skin cancer, (ii) macrophage/myeloid COX-2 plays no role in UVB-induced skin cancer and (iii) either there may be another COX-2-dependent prostanoid source(s) that drives UVB skin tumor induction or there may exist a COX-2-independent pathway(s) to UVB-induced skin cancer. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Azizian, Homa; Mousavi, Zahra; Faraji, Hamidreza; Tajik, Mohammad; Bagherzadeh, Kowsar; Bayat, Peyman; Shafiee, Abbas; Almasirad, Ali
2016-06-01
A series of new arylidenehydrazone derivatives of naproxen were synthesized and evaluated for their analgesic and anti-inflammatory activities. Some of the synthesized analogues showed comparable activities when compared against naproxen for their analgesic and anti-inflammatory properties. 2-(6-methoxy-2-naphthyl)-N'-[(pyridine-4-yl)methylene]propanoic acid hydrazide 4j was found to be the most active analgesic agent. 2-(6-methoxy-2-naphthyl)-N'-[4-nitrobenzylidene]propanoic acid hydrazide 4g showed highest anti-inflammatory activity in comparison to the naproxen. Molecular modeling study of the synthesized compounds suggested that the designed molecules were well located and bound to the COX-1 and COX-2 active sites. Compound 4g showed the highest selectivity for COX-2 (RCOX-2/COX-1=1.94) and higher affinity rather than naproxen in COX-2 active site (RCOX-2/naproxen=1.28). Moreover, the structural analyses confirmed that the E-ap rotamer is the preferred structure for the arylidenehydrazone derivatives. Copyright © 2016 Elsevier Inc. All rights reserved.
Guo, Chun Yu; Yin, Hui Jun; Jiang, Yue Rong; Xue, Mei; Zhang, Lu; Shi, Da Zhuo
2008-06-18
To construct the differential genes expressed profile in the ischemic myocardium tissue reduced from acute myocardial infarction(AMI), and determine the biological functions of target genes. AMI model was generated by ligation of the left anterior descending coronary artery in Wistar rats. Total RNA was extracted from the normal and the ischemic heart tissues under the ligation point 7 days after the operation. Differential gene expression profiles of the two samples were constructed using Long Serial Analysis of Gene Expression(LongSAGE). Real time fluorescence quantitative PCR was used to verify gene expression profile and to identify the expression of 2 functional genes. The activities of enzymes from functional genes were determined by histochemistry. A total of 15,966 tags were screened from the normal and the ischemic LongSAGE maps. The similarities of the sequences were compared using the BLAST algebra in NCBI and 7,665 novel tags were found. In the ischemic tissue 142 genes were significantly changed compared with those in the normal tissue (P<0.05). These differentially expressed genes represented the proteins which might play important roles in the pathways of oxidation and phosphorylation, ATP synthesis and glycolysis. The partial genes identified by LongSAGE were confirmed using real time fluorescence quantitative PCR. Two genes related to energy metabolism, COX5a and ATP5e, were screened and quantified. Expression of two functional genes down-regulated at their mRNA levels and the activities of correlative functional enzymes decreased compared with those in the normal tissue. AMI causes a series of changes in gene expression, in which the abnormal expression of genes related to energy metabolism could be one of the molecular mechanisms of AMI. The intervention of the expressions of COX5a and ATP5e may be a new target for AMI therapy.
Grover, Jagdeep; Kumar, Vivek; Sobhia, M Elizabeth; Jachak, Sanjay M
2014-10-01
As a part of our continued efforts to discover new COX inhibitors, a series of 3-methyl-1-phenylchromeno[4,3-c]pyrazol-4(1H)-ones were synthesized and evaluated for in vitro COX inhibitory potential. Within this series, seven compounds (3a-d, 3h, 3k and 3q) were identified as potential and selective COX-2 inhibitors (COX-2 IC50's in 1.79-4.35μM range; COX-2 selectivity index (SI)=6.8-16.7 range). Compound 3b emerged as most potent (COX-2 IC50=1.79μM; COX-1 IC50 >30μM) and selective COX-2 inhibitor (SI >16.7). Further, compound 3b displayed superior anti-inflammatory activity (59.86% inhibition of edema at 5h) in comparison to celecoxib (51.44% inhibition of edema at 5h) in carrageenan-induced rat paw edema assay. Structure-activity relationship studies suggested that N-phenyl ring substituted with p-CF3 substituent (3b, 3k and 3q) leads to more selective inhibition of COX-2. To corroborate obtained experimental biological data, molecular docking study was carried out which revealed that compound 3b showed stronger binding interaction with COX-2 as compared to COX-1. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hirata, T; Ukawa, H; Yamakuni, H; Kato, S; Takeuchi, K
1997-10-01
1. We examined the effects of selective and nonselective cyclo-oxygenase (COX) inhibitors on various functional changes in the rat stomach induced by topical application of taurocholate (TC) and investigated the preferential role of COX isozymes in these responses. 2. Rat stomachs mounted in ex vivo chambers were perfused with 50 mM HCl and transmucosal potential difference (p.d.), mucosal blood flow (GMBF), luminal acid loss and luminal levels of prostaglandin E2 (PGE2) were measured before, during and after exposure to 20 mM TC. 3. Mucosal application of TC in control rats caused a reduction in p.d., followed by an increase of luminal acid loss and GMBF, and produced only minimal damage in the mucosa 2 h later. Pretreatment with indomethacin (10 mg kg[-1], s.c.), a nonselective COX-1 and COX-2 inhibitor, attenuated the gastric hyperaemic response caused by TC without affecting p.d. and acid loss, resulting in haemorrhagic lesions in the mucosa. In contrast, selective COX-2 inhibitors, such as NS-398 and nimesulide (10 mg kg[-1], s.c.), had no effect on any of the responses induced by TC and did not cause gross damage in the mucosa. 4. Luminal PGE2 levels were markedly increased during and after exposure to TC and this response was significantly inhibited by indomethacin but not by either NS-398 or nimesulide. The expression of COX-1-mRNA was consistently detected in the gastric mucosa before and after TC treatment, while a faint expression of COX-2-mRNA was detected only 2 h after TC treatment. 5. Both NS-398 and nimesulide significantly suppressed carrageenan-induced rat paw oedema, similar to indomethacin. 6. These results confirmed a mediator role for prostaglandins in the gastric hyperaemic response following TC-induced barrier disruption, and suggest that COX-1 but not COX-2 is a key enzyme in maintaining 'housekeeping' functions in the gastric mucosa under both normal and adverse conditions.
Potential interaction of natural dietary bioactive compounds with COX-2.
Maldonado-Rojas, Wilson; Olivero-Verbel, Jesus
2011-09-01
Bioactive natural products present in the diet play an important role in several biological processes, and many have been involved in the alleviation and control of inflammation-related diseases. These actions have been linked to both gene expression modulation of pro-inflammatory enzymes, such as cyclooxygenase 2 (COX-2), and to an action involving a direct inhibitory binding on this protein. In this study, several food-related compounds with known gene regulatory action on inflammation have been examined in silico as COX-2 ligands, utilizing AutoDock Vina, GOLD and Surflex-Dock (SYBYL) as docking protocols. Curcumin and all-trans retinoic acid presented the maximum absolute AutoDock Vina-derived binding affinities (9.3 kcal/mol), but genistein, apigenin, cyanidin, kaempferol, and docosahexaenoic acid, were close to this value. AutoDock Vina affinities and GOLD scores for several known COX-2 inhibitors significatively correlated with reported median inhibitory concentrations (R² = 0.462, P < 0.001 and R² = 0.238, P = 0.029, respectively), supporting the computational reliability of the predictions made by our docking simulations. Moreover, docking analysis insinuate the synergistic action of curcumin on celecoxib-induced inhibition of COX-2 may occur allosterically, as this natural compound docks to a place different from the inhibitor binding site. These results suggest that the anti-inflammatory properties of some food-derived molecules could be the result of their direct binding capabilities to COX-2, and this process can be modeled using protein-ligand docking methodologies. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Yingting, E-mail: yitizhu@yahoo.com; Tissue Tech Inc, Miami, FL 33173; Zhu, Min
2012-11-15
COX-2 is a major inflammatory mediator implicated in colorectal inflammation and cancer. However, the exact origin and role of COX-2 on colorectal inflammation and carcinogenesis are still not well defined. Recently, we reported that COX-2 and iNOS signalings interact in colonic CCD18Co fibroblasts. In this article, we investigated whether activation of COX-2 signaling by IL1{beta} in primary colonic fibroblasts obtained from normal and cancer patients play a critical role in regulation of proliferation and invasiveness of human colonic epithelial cancer cells. Our results demonstrated that COX-2 level was significantly higher in cancer associated fibroblasts than that in normal fibroblasts withmore » or without stimulation of IL-1{beta}, a powerful stimulator of COX-2. Using in vitro assays for estimating proliferative and invasive potential, we discovered that the proliferation and invasiveness of the epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts than with normal fibroblasts, with or without stimulation of IL1{beta}. Further analysis indicated that the major COX-2 product, prostaglandin E{sub 2}, directly enhanced proliferation and invasiveness of the epithelial cancer cells in the absence of fibroblasts. Moreover, a selective COX-2 inhibitor, NS-398, blocked the proliferative and invasive effect of both normal and cancer associate fibroblasts on the epithelial cancer cells, with or without stimulation of IL-1{beta}. Those results indicate that activation of COX-2 signaling in the fibroblasts plays a major role in promoting proliferation and invasiveness of the epithelial cancer cells. In this process, PKC is involved in the activation of COX-2 signaling induced by IL-1{beta} in the fibroblasts.« less
He, Wenjuan; Zhang, Min; Zhao, Min; Davis, Linda S; Blackwell, Timothy S; Yull, Fiona; Breyer, Matthew D; Hao, Chuan-Ming
2014-02-01
High salt diet induces renal medullary cyclooxygenase 2 (COX2) expression. Selective blockade of renal medullary COX2 activity in rats causes salt-sensitive hypertension, suggesting a role for renal medullary COX2 in maintaining systemic sodium balance. The present study characterized the cellular location of COX2 induction in the kidney of mice following high salt diet and examined the role of NFκB in mediating this COX2 induction in response to increased dietary salt. High salt diet (8 % NaCl) for 3 days markedly increased renal medullary COX2 expression in C57Bl/6 J mice. Co-immunofluorescence using a COX2 antibody and antibodies against aquaporin-2, ClC-K, aquaporin-1, and CD31 showed that high salt diet-induced COX2 was selectively expressed in renal medullary interstitial cells. By using NFκB reporter transgenic mice, we observed a sevenfold increase of luciferase activity in the renal medulla of the NFκB-luciferase reporter mice following high salt diet, and a robust induction of enhanced green fluorescent protein (EGFP) expression mainly in renal medullary interstitial cells of the NFκB-EGFP reporter mice following high salt diet. Treating high salt diet-fed C57Bl/6 J mice with selective IκB kinase inhibitor IMD-0354 (8 mg/kg bw) substantially suppressed COX2 induction in renal medulla, and also significantly reduced urinary prostaglandin E2 (PGE2). These data therefore suggest that renal medullary interstitial cell NFκB plays an important role in mediating renal medullary COX2 expression and promoting renal PGE2 synthesis in response to increased dietary sodium.
Chandak, Navneet; Kumar, Pawan; Kaushik, Pawan; Varshney, Parul; Sharma, Chetan; Kaushik, Dhirender; Jain, Sudha; Aneja, Kamal R; Sharma, Pawan K
2014-08-01
Synthesis of total eighteen 2-amino-substituted 4-coumarinylthiazoles including sixteen new compounds (3a-o and 5b) bearing the benzenesulfonamide moiety is described in the present report. All the synthesized target compounds were examined for their in vivo anti-inflammatory (AI) activity and in vitro antimicrobial activity. Results revealed that six compounds (3 d, 3 f, 3 g, 3 h, 3 j and 3 n) exhibited pronounced anti-inflammatory activity comparable to the standard drug indomethacin. AI results were further confirmed by the docking studies of the most active (3n) and the least active compound (3a) with COX-1 and COX-2 active sites. In addition, most of the compounds exhibited moderate antimicrobial activity against Gram-positive bacteria as well as fungal yeast, S. cervisiae. Comparison between 3 and 5 indicated that incorporation of additional substituted pyrazole nucleus into the scaffold significantly enhanced AI activity.
Ramchand, Jay; Patel, Sheila K; Srivastava, Piyush M; Farouque, Omar; Burrell, Louise M
2018-01-01
Angiotensin converting enzyme 2 (ACE2) is an endogenous regulator of the renin angiotensin system. Increased circulating ACE2 predicts adverse outcomes in patients with heart failure (HF), but it is unknown if elevated plasma ACE2 activity predicts major adverse cardiovascular events (MACE) in patients with obstructive coronary artery disease (CAD). We prospectively recruited patients with obstructive CAD (defined as ≥50% stenosis of the left main coronary artery and/or ≥70% stenosis in ≥ 1 other major epicardial vessel on invasive coronary angiography) and measured plasma ACE2 activity. Patients were followed up to determine if circulating ACE2 activity levels predicted the primary endpoint of MACE (cardiovascular mortality, HF or myocardial infarction). We recruited 79 patients with obstructive coronary artery disease. The median (IQR) plasma ACE2 activity was 29.3 pmol/ml/min [21.2-41.2]. Over a median follow up of 10.5 years [9.6-10.8years], MACE occurred in 46% of patients (36 events). On Kaplan-Meier analysis, above-median plasma ACE2 activity was associated with MACE (log-rank test, p = 0.035) and HF hospitalisation (p = 0.01). After Cox multivariable adjustment, log ACE2 activity remained an independent predictor of MACE (hazard ratio (HR) 2.4, 95% confidence interval (CI) 1.24-4.72, p = 0.009) and HF hospitalisation (HR: 4.03, 95% CI: 1.42-11.5, p = 0.009). Plasma ACE2 activity independently increased the hazard of adverse long-term cardiovascular outcomes in patients with obstructive CAD.
Adams, Keith L.; Song, Keming; Roessler, Philip G.; Nugent, Jacqueline M.; Doyle, Jane L.; Doyle, Jeff J.; Palmer, Jeffrey D.
1999-01-01
The respiratory gene cox2, normally present in the mitochondrion, was previously shown to have been functionally transferred to the nucleus during flowering plant evolution, possibly during the diversification of legumes. To search for novel intermediate stages in the process of intracellular gene transfer and to assess the evolutionary timing and frequency of cox2 transfer, activation, and inactivation, we examined nuclear and mitochondrial (mt) cox2 presence and expression in over 25 legume genera and mt cox2 presence in 392 genera. Transfer and activation of cox2 appear to have occurred during recent legume evolution, more recently than previously inferred. Many intermediate stages of the gene transfer process are represented by cox2 genes in the studied legumes. Nine legumes contain intact copies of both nuclear and mt cox2, although transcripts could not be detected for some of these genes. Both cox2 genes are transcribed in seven legumes that are phylogenetically interspersed with species displaying only nuclear or mt cox2 expression. Inactivation of cox2 in each genome has taken place multiple times and in a variety of ways, including loss of detectable transcripts or transcript editing and partial to complete gene loss. Phylogenetic evidence shows about the same number (3–5) of separate inactivations of nuclear and mt cox2, suggesting that there is no selective advantage for a mt vs. nuclear location of cox2 in plants. The current distribution of cox2 presence and expression between the nucleus and mitochondrion in the studied legumes is probably the result of chance mutations silencing either cox2 gene. PMID:10570164
Liu, Chang; Gao, Jing; Chen, Bing; Chen, Lin; Belguise, Karine; Yu, Weifeng; Lu, Kaizhi; Wang, Xiaobo; Yi, Bin
2017-08-15
One central factor in hepatopulmonary syndrome (HPS) pathogenesis is intravascular accumulation of activated macrophages in small pulmonary arteries. However, molecular mechanism underlying the macrophage accumulation in HPS is unknown. In this study, we aimed to explore whether elevated COX-2 induces the Bone morphogenic protein-2 (BMP-2)/Crossveinless-2 (CV-2) imbalance and then activation of BMP signaling pathway promotes the macrophage accumulation in Common Bile Duct Ligation (CBDL) rat lung. The COX-2/PGE2 signaling activation, the BMP-2/CV-2 imbalance and the activation of Smad1 were evaluated in CBDL rat lung and in cultured pulmonary microvascular endothelial cells (PMVECs) under the HPS serum stimulation. The effects of Parecoxib (COX-2 inhibitor), BMP-2 and CV-2 recombinant proteins on 4-week CBDL rat lung were determined, respectively. The COX-2/PGE2 signaling pathway was activated in CBDL rat lung in vivo and PMVECs in vitro, which was due to the activation of NF-κB P65. The inhibition of COX-2 by Parecoxib reduced macrophage accumulation, decreased lung angiogenesis and improved HPS. Meanwhile, the CBDL rat lung secreted more BMP-2 but less CV-2, and the imbalance between BMP-2 and CV-2 exacerbated the BMP signaling activation thus promoting the macrophage accumulation and lung angiogenesis. The BMP-2/CV-2 imbalance is dependent on the COX-2/PGE2 signaling pathway, and thus the effects of this imbalance can be reversed by adminstration of Parecoxib. Our findings indicate that inhibition of COX-2 by parecoxib can improve the HPS through the repression of BMP signaling and macrophage accumulation. Copyright © 2017 Elsevier Inc. All rights reserved.
Lin, Chun-Kuang; Tseng, Chin-Kai; Chen, Kai-Hsun; Wu, Shih-Hsiung; Liaw, Chih-Chuang; Lee, Jin-Ching
2015-06-23
This study was designed to evaluate the effect of betulinic acid (BA), extracted from Avicennia marina, on the replication of hepatitis C virus (HCV) and to investigate the mechanism of this BA-mediated anti-HCV activity. HCV replicon and infectious systems were used to evaluate the anti-HCV activity of BA. Exogenous COX-2 or knock-down of COX-2 expression was used to investigate the role of COX-2 in the anti-HCV activity of BA. The effects of BA on the phosphorylation of NF-κB and on kinases in the MAPK signalling pathway were determined. The anti-HCV activity of BA in combination with other HCV inhibitors was also determined to assess its use as an anti-HCV supplement. BA inhibited HCV replication in both Ava5 replicon cells and in a cell culture-derived infectious HCV particle system. Treatment with a combination of BA and IFN-α, the protease inhibitor telaprevir or the NS5B polymerase inhibitor sofosbuvir resulted in the synergistic suppression of HCV RNA replication. Exogenous overexpression of COX-2 gradually attenuated the inhibitory effect of BA on HCV replication, suggesting that BA reduces HCV replication by suppressing the expression of COX-2. In particular, BA down-regulated HCV-induced COX-2 expression by reducing the phosphorylation of NF-κB and ERK1/2 of the MAPK signalling pathway. BA inhibits HCV replication by suppressing the NF-κB- and ERK1/2-mediated COX-2 pathway and may serve as a promising compound for drug development or as a potential supplement for use in the treatment of HCV-infected patients. © 2015 The British Pharmacological Society.
Zhou, Teng-Jian; Zhang, Shi-Li; He, Cheng-Yong; Zhuang, Qun-Ying; Han, Pei-Yu; Jiang, Sheng-Wei; Yao, Huan; Huang, Yi-Jun; Ling, Wen-Hua; Lin, Yu-Chun; Lin, Zhong-Ning
2017-01-01
Cancer stem cells (CSCs) are a small subset of malignant cells, possessing stemness, with strong tumorigenic capability, conferring resistance to therapy and leading to the relapse of nasopharyngeal carcinoma (NPC). Our previous study suggested that cyclooxygenase-2 (COX-2) would be a novel target for the CSCs-like side population (SP) cells in NPC. In the present study, we further found that COX-2 maintained the stemness of NPC by enhancing the activity of mitochondrial dynamin-related protein 1 (Drp1), a mitochondrial fission mediator, by studying both sorted SP cells from NPC cell lines and gene expression analyses in NPC tissues. Using both overexpression and knockdown of COX-2, we demonstrated that the localization of COX-2 at mitochondria promotes the stemness of NPC by recruiting the mitochondrial translocation of p53, increasing the activity of Drp1 and inducing mitochondrial fisson. Inhibition of the expression or the activity of Drp1 by siRNA or Mdivi-1 downregulates the stemness of NPC. The present study also found that inhibition of mitochondrial COX-2 with resveratrol (RSV), a natural phytochemical, increased the sensitivity of NPC to 5-fluorouracil (5-FU), a classical chemotherapy drug for NPC. The underlying mechanism is that RSV suppresses mitochondrial COX-2, thereby reducing NPC stemness by inhibiting Drp1 activity as demonstrated in both the in vitro and the in vivo studies. Taken together, the results of this study suggest that mitochondrial COX-2 is a potential theranostic target for the CSCs in NPC. Inhibition of mitochondrial COX-2 could be an attractive therapeutic option for the effective clinical treatment of therapy-resistant NPC. PMID:28435473
Antioxidant and anti-inflammatory effects of flavocoxid in high-cholesterol-fed rabbits.
El-Sheakh, Ahmed R; Ghoneim, Hamdy A; Suddek, Ghada M; Ammar, El-Sayed M
2015-12-01
Flavocoxid is a mixed extract containing baicalin and catechin, and it acts as a dual balanced inhibitor of cyclooxygenase-1 (COX-1) and COX-2 peroxidase enzyme activities with a significant inhibition of 5-lipoxygenase (5-LOX) enzyme activity in vitro. Flavocoxid downregulates gene or protein expression of several inflammatory markers and exerts also strong antioxidant activity in several experimental models. Inflammation and oxidative stress contribute in the pathogenesis of atherosclerosis. In the present study, an experimental rabbit model of hypercholesterolemia was developed and the effects of flavocoxid were evaluated. Rabbits were divided into four groups-normal control, high-cholesterol-diet (HCD)-fed group, HCD plus flavocoxid (20 mg/kg/day), or HCD plus atorvastatin (10 mg/kg/day). Blood samples were collected at the end of the experiment for measuring serum total cholesterol (TC), triglycerides (TGs), high-density lipoprotein cholesterol (HDL-C), C-reactive protein (CRP), malondialdehyde (MDA), reduced glutathione (GSH), and superoxide dismutase (SOD). In addition, the aorta was removed for measurement of antioxidant status, vascular reactivity, and intima/media (I/M) ratio. Elevated levels of serum TC, TGs, LDL-C, and CRP were measured in HCD group. Moreover, HCD caused a significant increase in serum and aortic MDA concomitantly with a reduction in serum and aortic GSH and SOD. Immunohistochemical staining of aortic specimens from HCD-fed rabbits revealed high expression levels of both tumor necrosis factor-alpha (TNF-α) and nuclear factor (NF)-κB. Rabbits in flavocoxid group showed significantly lower levels of serum CRP, serum, and aortic MDA and higher levels of serum HDL-C, serum, and aortic GSH and SOD compared to HCD group. HCD-induced elevations in serum TC and LDL-C did not significantly affected by flavocoxid treatment. Additionally, flavocoxid significantly enhanced rabbit aortic endothelium-dependent relaxation to acetylcholine and decreased the elevated I/M ratio. This effect was confirmed by histopathological examination of the aorta. Moreover, flavocoxid effectively suppresses the release of inflammatory markers. In conclusion, these findings demonstrated that flavocoxid would be useful in preventing oxidative stress, inflammation, and vascular dysfunction induced by HCD.
Leptin induces CREB-dependent aromatase activation through COX-2 expression in breast cancer cells.
Kim, Hyung Gyun; Jin, Sun Woo; Kim, Yong An; Khanal, Tilak; Lee, Gi Ho; Kim, Se Jong; Rhee, Sang Dal; Chung, Young Chul; Hwang, Young Jung; Jeong, Tae Cheon; Jeong, Hye Gwang
2017-08-01
Leptin plays a key role in the control of adipocyte formation, as well as in the associated regulation of energy intake and expenditure. The goal of this study was to determine if leptin-induced aromatase enhances estrogen production and induces tumor cell growth stimulation. To this end, breast cancer cells were incubated with leptin in the absence or presence of inhibitor pretreatment, and changes in aromatase and cyclooxygenase-2 (COX-2) expression were evaluated at the mRNA and protein levels. Transient transfection assays were performed to examine the aromatase and COX-2 gene promoter activities and immunoblot analysis was used to examine protein expression. Leptin induced aromatase expression, estradiol production, and promoter activity in breast cancer cells. Protein levels of phospho-STAT3, PKA, Akt, ERK, and JNK were increased by leptin. Leptin also significantly increased cAMP levels, cAMP response element (CRE) activation, and CREB phosphorylation. In addition, leptin induced COX-2 expression, promoter activity, and increased the production of prostaglandin E 2 . Finally, a COX-2 inhibitor and aromatase inhibitor suppressed leptin-induced cell proliferation in MCF-7 breast cancer cells. Together, our data show that leptin increased aromatase expression in breast cancer cells, which was correlated with COX-2 upregulation, mediated through CRE activation and cooperation among multiple signaling pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.
Faustini, Massimo; Torre, Maria Luisa; Stacchezzini, Simona; Norberti, Roberta; Consiglio, Anna Lange; Porcelli, Franca; Conte, Ubaldo; Munari, Eleonora; Russo, Vincenzo; Vigo, Daniele
2004-01-01
The customary dilution of boar semen for subsequent artificial insemination (AI) procedures damages the cell membrane of spermatozoa, resulting in a loss of enzymes and other cytoplasmic contents and acrosomal reactions. We encapsulated non-diluted boar semen in barium alginate membranes to optimize AI procedures and to improve the functional integrity of spermatozoal membranes during storage. The percentage of non-reacted acrosomes (NRA) and measurements of enzyme leakage (cytochrome c oxidase (COX), lactate dehydrogenase (LDH), and glucose-6-phosphate dehydrogenase (G6PDH)) were used as indices of the functional status of diluted, unencapsulated and encapsulated spermatozoa, stored for 72 h at 18 degrees C. Enzymatic activity was assessed in situ by microdensitometry, and non-reacted acrosomes were microscopically determined by staining. The percentage of acrosome integrity and the intracellular enzymatic activities during storage were different for unencapsulated and encapsulated semen. Semen dilution caused a rapid decline in enzymatic activities and concomitant acrosomal reactions. Encapsulated spermatozoa had significantly higher acrosome integrity (77% versus 55%; P < 0.01 after 72 h) and an overall higher in situ enzymatic activity. For cytochrome c oxidase and lactate dehydrogenase the greatest differences between encapsulated and unencapsulated spermatozoa were present after 72 h whereas for glucose-6-phosphate dehydrogenase significant differences were found within 24h of storage. The encapsulation process maintains a better preservation environment for boar spermatozoa and could be a promising, innovative technique to improve storage of these cells.
Ojha, Shreesh; Javed, Hayate; Azimullah, Sheikh; Haque, M Emdadul
2016-07-01
Parkinson disease (PD) is a neurodegenerative disease characterized by progressive dopaminergic neurodegeneration in the substantia nigra pars compacta (SNc) area. The present study was undertaken to evaluate the neuroprotective effect of β-caryophyllene (BCP) against rotenone-induced oxidative stress and neuroinflammation in a rat model of PD. In the present study, BCP was administered once daily for 4 weeks at a dose of 50 mg/kg body weight prior to a rotenone (2.5 mg/kg body weight) challenge to mimic the progressive neurodegenerative nature of PD. Rotenone administration results in oxidative stress as evidenced by decreased activities of superoxide dismutase, catalase, and depletion of glutathione with a concomitant rise in lipid peroxidation product, malondialdehyde. Rotenone also significantly increased pro-inflammatory cytokines in the midbrain region and elevated the inflammatory mediators such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in the striatum. Further, immunohistochemical analysis revealed loss of dopaminergic neurons in the SNc area and enhanced expression of ionized calcium-binding adaptor molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP), indicators of microglia activation, and astrocyte hypertrophy, respectively, as an index of inflammation. However, treatment with BCP rescued dopaminergic neurons and decreased microglia and astrocyte activation evidenced by reduced Iba-1 and GFAP expression. BCP in addition to attenuation of pro-inflammatory cytokines and inflammatory mediators such as COX-2 and iNOS, also restored antioxidant enzymes and inhibited lipid peroxidation as well as glutathione depletion. The findings demonstrate that BCP provides neuroprotection against rotenone-induced PD and the neuroprotective effects can be ascribed to its potent antioxidant and anti-inflammatory activities.
Sahu, Ravi P.; Petrache, Irina; Van Demark, Mary J; Rashid, Badri M.; Ocana, Jesus A.; Tang, Yuxuan; Yi, Qiaofang; Turner, Matthew J.; Konger, Raymond L.; Travers, Jeffrey B.
2013-01-01
Previous studies have established that pro-oxidative stressors suppress host immunity due to their ability to generate oxidized lipids with PAF-receptor (PAF-R) agonist activity. Although exposure to the pro-oxidative stressor cigarette smoke (CS) is known to exert immunomodulatory effects, little is known regarding the role of platelet-activating factor (PAF) in these events. The current studies sought to determine the role of PAF-R signaling in CS-mediated immunomodulatory effects. We demonstrate that CS exposure induces the generation of a transient PAF-R agonistic activity in the blood of mice. CS exposure inhibits contact hypersensitivity in a PAF-R-dependent manner as PAF-R-deficient mice were resistant to these effects. Blocking PAF-R agonist production either by systemic antioxidants or treatment with serum PAF-acetyl hydrolase enzyme blocked both the CS-mediated generation of PAF-R-agonists and PAF-R dependent inhibition of CHS reactions, indicating a role for oxidized glycerophosphocholines with PAF-R agonistic activity in this process. In addition, cyclooxygenase-2 (COX-2) inhibition did not block PAF-R agonist production but prevented CS-induced inhibition of CHS. This suggests that COX-2 acts downstream of the PAF-R in mediating CS-induced systemic immunosuppression. Moreover, CS-exposure induced a significant increase in the expression of the regulatory T cell reporter gene in FoxP3EGFP mice but not in FoxP3EGFP mice on a PAF-R-deficient background. Finally, Treg depletion via anti-CD25 antibodies blocked CS-mediated inhibition of CHS, indicating the potential involvement of Tregs in CS-mediated systemic immunosuppression. These studies provide the first evidence that the pro-oxidative stressor CS can modulate cutaneous immunity via the generation of PAF-R agonists produced through lipid oxidation. PMID:23355733
Hosseinzadeh, Leila; Monaghash, Hoda; Ahmadi, Farahnaz; Ghiasvand, Nastaran; Shokoohinia, Yalda
2017-01-01
Objective: Parkinson's disease, a slowly progressive neurological disease, is associated with degeneration of the basal ganglia of the brain and a deficiency of the neurotransmitter dopamine. The main aspects of researches are the protection of normal neurons against degeneration. Fatty acids (FAs), the key structural elements of dietary lipids, are carboxylic straight chains and notable parameters in nutritional and industrial usefulness of a plant. Materials and Methods: Black cumin, a popular anti-inflammatory and antioxidant food seasoning, contains nonpolar constituents such as FAs which were extracted using hexane. Different fractions and subfractions were apt to cytoprotection against apoptosis and inflammation induced by 1-methyl-4-phenylpyridinium (MPP+) in rat pheochromocytoma cell line (PC12) as a neural cell death model. The experiment consisted of examination of cell viability assessment, mitochondrial membrane potential (MMP), caspase-3 and -9 activity, and measurement of cyclooxygenase (COX) activity. Results: MPP+ induced neurotoxicity in PC12 cells. Pretreatment with subfractions containing FA mixtures attenuated MPP+-mediated apoptosis partially dependent on the inhibition of caspase-3 and -9 activity and increasing the MMP. A mixture of linoleic acid, oleic acid, and palmitic acid also decreased the COX activity induced by MPP+ in PC12 cells. Conclusion: Our observation indicated that subtoxic concentration of FA from Nigella sativa may exert cytoprotective effects through their anti-apoptotic and anti-inflammation actions and could be regarded as a dietary supplement. SUMMARY MPP+ induced neurotoxicity in PC12 cellsNigella sativa contains bioactive fatty acidsPretreatment with fatty acids attenuated MPP+ mediated apoptosis through inhibition of caspase 3 and 9 activityA mixture of linoleic acid, oleic acid, and palmitic acid decreased the COX activity induced by MPP+ in PC12 cellsDue to cytoprotective, anti apoptotic and anti inflammation actions of N. sativa, it could be regarded as a dietary supplement. Abbreviations used: ANOVA: Analysis of variance; Ca: Calcium; CDCl3: Chloroform; COX: Cyclooxygenase; DMSO: Dimethyl sulfoxide; EA: Elidic acid; EDTA: Ethylene diamine tetraacetic acid; ELISA: Enzyme Linked Immunosorbent Assay; ESI-MS: Electron spray mass spectroscopy; FAs: Fatty acids; FBS: Fetal bovine serum; GC: Gas chromatography; 1HNMR: Hydrogen nuclear magnetic resonance; LA: Linoleic acid; MPP+: 1-Methyl-4-phenylpyridinium; MPTP: 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine; MTT: 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide; N. sativa: Nigella sativa; OA: Oleic acid; PA: Palmitic acid; PBS: Phosphate buffer saline; PC12: Rat pheochromocytoma cell line; PD: Parkinson's disease; PDA: Photo diode array detector; PGE2: Prostaglandin E2; TLC: Thin layer chromatography; TMPD: N,N,N’,N’-tetramethyl-p-phenylenediamine; USA: United states of America. PMID:29200724
Du, Yipeng; Cao, Lin-lin; Li, Meiting; Shen, Changchun; Hou, Tianyun; Zhao, Ying; Wang, Haiying; Deng, Dajun; Wang, Lina; He, Qihua; Zhu, Wei-Guo
2015-01-01
Cyclooxygenase-2 (COX-2) is overexpressed in a variety of human epithelial cancers, including lung cancer, and is highly associated with a poor prognosis and a low survival rate. Understanding how COX-2 is regulated in response to carcinogens will offer insight into designing anti-cancer strategies and preventing cancer development. Here, we analyzed COX-2 expression in several human lung cancer cell lines and found that COX-2 expression was absent in the H719 and H460 cell lines by a DNA methylation-independent mechanism. The re-expression of COX-2 was observed after 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment in both cell lines. Further investigation found that H3K36 dimethylation was significantly reduced near the COX-2 promoter because histone demethylase 2A (KDM2A) was recruited to the COX-2 promoter after TPA treatment. In addition, the transcription factor c-Fos was found to be required to recruit KDM2A to the COX-2 promoter for reactivation of COX-2 in response to TPA treatment in both the H719 and H460 cell lines. Together, our data reveal a novel mechanism by which the carcinogen TPA activates COX-2 expression by regulating H3K36 dimethylation near the COX-2 promoter. PMID:26430963
Inhibition of cyclooxygenase (COX)-2 affects endothelial progenitor cell proliferation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colleselli, Daniela; Bijuklic, Klaudija; Mosheimer, Birgit A.
2006-09-10
Growing evidence indicates that inducible cyclooxygenase-2 (COX-2) is involved in the pathogenesis of inflammatory disorders and various types of cancer. Endothelial progenitor cells recruited from the bone marrow have been shown to be involved in the formation of new vessels in malignancies and discussed for being a key point in tumour progression and metastasis. However, until now, nothing is known about an interaction between COX and endothelial progenitor cells (EPC). Expression of COX-1 and COX-2 was detected by semiquantitative RT-PCR and Western blot. Proliferation kinetics, cell cycle distribution and rate of apoptosis were analysed by MTT test and FACS analysis.more » Further analyses revealed an implication of Akt phosphorylation and caspase-3 activation. Both COX-1 and COX-2 expression can be found in bone-marrow-derived endothelial progenitor cells in vitro. COX-2 inhibition leads to a significant reduction in proliferation of endothelial progenitor cells by an increase in apoptosis and cell cycle arrest. COX-2 inhibition leads further to an increased cleavage of caspase-3 protein and inversely to inhibition of Akt activation. Highly proliferating endothelial progenitor cells can be targeted by selective COX-2 inhibition in vitro. These results indicate that upcoming therapy strategies in cancer patients targeting COX-2 may be effective in inhibiting tumour vasculogenesis as well as angiogenic processes.« less
Cathcart, Mary-Clare; Reynolds, John V; O'Byrne, Kenneth J; Pidgeon, Graham P
2010-04-01
Prostacyclin synthase and thromboxane synthase signaling via arachidonic acid metabolism affects a number of tumor cell survival pathways such as cell proliferation, apoptosis, tumor cell invasion and metastasis, and angiogenesis. However, the effects of these respective synthases differ considerably with respect to the pathways described. While prostacyclin synthase is generally believed to be anti-tumor, a pro-carcinogenic role for thromboxane synthase has been demonstrated in a variety of cancers. The balance of oppositely-acting COX-derived prostanoids influences many processes throughout the body, such as blood pressure regulation, clotting, and inflammation. The PGI(2)/TXA(2) ratio is of particular interest in-vivo, with the corresponding synthases shown to be differentially regulated in a variety of disease states. Pharmacological inhibition of thromboxane synthase has been shown to significantly inhibit tumor cell growth, invasion, metastasis and angiogenesis in a range of experimental models. In direct contrast, prostacyclin synthase overexpression has been shown to be chemopreventive in a murine model of the disease, suggesting that the expression and activity of this enzyme may protect against tumor development. In this review, we discuss the aberrant expression and known functions of both prostacyclin synthase and thromboxane synthase in cancer. We discuss the effects of these enzymes on a range of tumor cell survival pathways, such as tumor cell proliferation, induction of apoptosis, invasion and metastasis, and tumor cell angiogenesis. As downstream signaling pathways of these enzymes have also been implicated in cancer states, we examine the role of downstream effectors of PGIS and TXS activity in tumor growth and progression. Finally, we discuss current therapeutic strategies aimed at targeting these enzymes for the prevention/treatment of cancer.
Jevtić, Gordana; Nikolić, Tatjana; Mirčić, Aleksandar; Stojković, Tihomir; Velimirović, Milica; Trajković, Vladimir; Marković, Ivanka; Trbovich, Alexander M; Radonjić, Nevena V; Petronijević, Nataša D
2016-04-03
Phencyclidine (PCP) acts as a non-competitive antagonist of glutamatergic N-methyl-d-aspartate receptor. Its perinatal administration to rats causes pathophysiological changes that mimick some pathological features of schizophrenia (SCH). Numerous data indicate that abnormalities in mitochondrial structure and function could be associated with the development of SCH. Mitochondrial dysfunction could result in the activation of apoptosis and/or autophagy. The aim of this study was to assess immediate and long-term effects of perinatal PCP administration and acute restraint stress on the activity of respiratory chain enzymes, expression of apoptosis and autophagy markers and ultrastructural changes in the cortex and hippocampus of the rat brain. Six groups of rats were subcutaneously treated on 2nd, 6th, 9th and 12th postnatal days (P), with either PCP (10mg/kg) or saline (0.9% NaCl). One NaCl and one PCP group were sacrificed on P13, while other two NaCl and PCP groups were sacrificed on P70. The remaining two NaCl and PCP groups were subjected to 1h restraint stress prior sacrifice on P70. Activities of respiratory chain enzymes were assessed spectrophotometrically. Expression of caspase 3 and AIF as markers of apoptosis and Beclin 1, p62 and LC3, as autophagy markers, was assessed by Western blot. Morphological changes of cortical and hippocampal ultrastructure were determined by transmission electron microscopy. Immediate effects of perinatal PCP administration at P13 were increased activities of complex I in the hippocampus and cytochrome c oxidase (COX) in the cortex and hippocampus implying mitochondrial dysfunction. These changes were followed by increased expression of apoptotic markers. However the measurement of autophagy markers at this time point has revealed decrease of this process in cortex and the absence of changes in hippocampus. At P70 the activity of complex I was unchanged while COX activity was significantly decreased in cortex and increased in the hippocampus. Expressions of apoptotic markers were still significantly higher in PCP perinatally treated rats in all investigated structures, but the changes of autophagy markers have indicated increased level of autophagy also in both structures. Restraint stress on P70 has caused increase of COX activity both in NaCl and PCP perinatally treated rats, but this increase was lower in PCP group. Also, restraint stress resulted in decrease of apoptotic and increase of autophagy processes especially in the hippocampus of PCP perinatally treated group. The presence of apoptosis and autophagy in the brain was confirmed by transmission electron microscopy. In this study we have demonstrated for the first time the presence of autophagy in PCP model of SCH. Also, we have shown increased sensitivity of PCP perinatally treated rats to restraint stress, manifested in alterations of apoptotic and autophagy markers. The future studies are necessary to elucidate the role of mitochondria in the pathophysiology of SCH and putative significance for development of novel therapeutic strategies. Copyright © 2015 Elsevier Inc. All rights reserved.
Russell-Puleri, Sparkle; Dela Paz, Nathaniel G; Adams, Diana; Chattopadhyay, Mitali; Cancel, Limary; Ebong, Eno; Orr, A Wayne; Frangos, John A; Tarbell, John M
2017-03-01
Vascular endothelial cells play an important role in the regulation of vascular function in response to mechanical stimuli in both healthy and diseased states. Prostaglandin I 2 (PGI 2 ) is an important antiatherogenic prostanoid and vasodilator produced in endothelial cells through the action of the cyclooxygenase (COX) isoenzymes COX-1 and COX-2. However, the mechanisms involved in sustained, shear-induced production of COX-2 and PGI 2 have not been elucidated but are determined in the present study. We used cultured endothelial cells exposed to steady fluid shear stress (FSS) of 10 dyn/cm 2 for 5 h to examine shear stress-induced induction of COX-2/PGI 2 Our results demonstrate the relationship between the mechanosensor platelet endothelial cell adhesion molecule-1 (PECAM-1) and the intracellular mechanoresponsive molecules phosphatidylinositol 3-kinase (PI3K), focal adhesion kinase (FAK), and mitogen-activated protein kinase p38 in the FSS induction of COX-2 expression and PGI 2 release. Knockdown of PECAM-1 (small interference RNA) expression inhibited FSS-induced activation of α 5 β 1 -integrin, upregulation of COX-2, and release of PGI 2 in both bovine aortic endothelial cells (BAECs) and human umbilical vein endothelial cells (HUVECs). Furthermore, inhibition of the PI3K pathway (LY294002) substantially inhibited FSS activation of α 5 β 1 -integrin, upregulation of COX-2 gene and protein expression, and release of PGI 2 in BAECs. Inhibition of integrin-associated FAK (PF573228) and MAPK p38 (SB203580) also inhibited the shear-induced upregulation of COX-2. Finally, a PECAM-1 -/- mouse model was characterized by reduced COX-2 immunostaining in the aorta and reduced plasma PGI 2 levels compared with wild-type mice, as well as complete inhibition of acute flow-induced PGI 2 release compared with wild-type animals. NEW & NOTEWORTHY In this study we determined the major mechanotransduction pathway by which blood flow-driven shear stress activates cyclooxygenase-2 (COX-2) and prostaglandin I 2 (PGI 2 ) release in endothelial cells. Our work has demonstrated for the first time that COX-2/PGI 2 mechanotransduction is mediated by the mechanosensor platelet endothelial cell adhesion molecule-1 (PECAM-1). Copyright © 2017 the American Physiological Society.
Russell-Puleri, Sparkle; dela Paz, Nathaniel G.; Adams, Diana; Chattopadhyay, Mitali; Cancel, Limary; Ebong, Eno; Orr, A. Wayne; Frangos, John A.
2017-01-01
Vascular endothelial cells play an important role in the regulation of vascular function in response to mechanical stimuli in both healthy and diseased states. Prostaglandin I2 (PGI2) is an important antiatherogenic prostanoid and vasodilator produced in endothelial cells through the action of the cyclooxygenase (COX) isoenzymes COX-1 and COX-2. However, the mechanisms involved in sustained, shear-induced production of COX-2 and PGI2 have not been elucidated but are determined in the present study. We used cultured endothelial cells exposed to steady fluid shear stress (FSS) of 10 dyn/cm2 for 5 h to examine shear stress-induced induction of COX-2/PGI2. Our results demonstrate the relationship between the mechanosensor platelet endothelial cell adhesion molecule-1 (PECAM-1) and the intracellular mechanoresponsive molecules phosphatidylinositol 3-kinase (PI3K), focal adhesion kinase (FAK), and mitogen-activated protein kinase p38 in the FSS induction of COX-2 expression and PGI2 release. Knockdown of PECAM-1 (small interference RNA) expression inhibited FSS-induced activation of α5β1-integrin, upregulation of COX-2, and release of PGI2 in both bovine aortic endothelial cells (BAECs) and human umbilical vein endothelial cells (HUVECs). Furthermore, inhibition of the PI3K pathway (LY294002) substantially inhibited FSS activation of α5β1-integrin, upregulation of COX-2 gene and protein expression, and release of PGI2 in BAECs. Inhibition of integrin-associated FAK (PF573228) and MAPK p38 (SB203580) also inhibited the shear-induced upregulation of COX-2. Finally, a PECAM-1−/− mouse model was characterized by reduced COX-2 immunostaining in the aorta and reduced plasma PGI2 levels compared with wild-type mice, as well as complete inhibition of acute flow-induced PGI2 release compared with wild-type animals. NEW & NOTEWORTHY In this study we determined the major mechanotransduction pathway by which blood flow-driven shear stress activates cyclooxygenase-2 (COX-2) and prostaglandin I2 (PGI2) release in endothelial cells. Our work has demonstrated for the first time that COX-2/PGI2 mechanotransduction is mediated by the mechanosensor platelet endothelial cell adhesion molecule-1 (PECAM-1). PMID:28011582
Shi, Rong; Wang, Qing; Ouyang, Yang; Wang, Qian; Xiong, Xudong
2016-02-01
The present study aimed to investigate the effect of picfeltarraenin IA (IA) on respiratory inflammation by analyzing its effect on interleukin (IL)-8 and prostaglandin E2 (PGE2) production. The expression of cyclooxygenase 2 (COX2) in human pulmonary adenocarcinoma epithelial A549 cells in culture was also examined. Human pulmonary epithelial A549 cells and the human monocytic leukemia THP-1 cell line were used in the current study. Cell viability was measured using a methylthiazol tetrazolium assay. The production of IL-8 and PGE2 was investigated using an enzyme-linked immunosorbent assay. The expression of COX2 and nuclear factor-κB (NF-κB)-p65 was examined using western blot analysis. Treatment with lipopolysaccharide (LPS; 10 µg/ml) resulted in the increased production of IL-8 and PGE2, and the increased expression of COX2 in the A549 cells. Furthermore, IA (0.1-10 µmol/l) significantly inhibited PGE2 production and COX2 expression in cells with LPS-induced IL-8, in a concentration-dependent manner. The results suggested that IA downregulates LPS-induced COX2 expression, and inhibits IL-8 and PGE2 production in pulmonary epithelial cells. Additionally, IA was observed to suppress the expression of COX2 in THP-1 cells, and also to regulate the expression of COX2 via the NF-κB pathway in the A549 cells, but not in the THP-1 cells. These results indicate that IA regulates LPS-induced cytokine release in A549 cells via the NF-κB pathway.
Tunstall, R G; Sharma, R A; Perkins, S; Sale, S; Singh, R; Farmer, P B; Steward, W P; Gescher, A J
2006-02-01
The natural polphenol, curcumin, retards the growth of intestinal adenomas in the Apc(Min+) mouse model of human familial adenomatous polyposis. In other preclinical models, curcumin downregulates the transcription of the enzyme cyclooxygenase-2 (COX-2) and decreases levels of two oxidative DNA adducts, the pyrimidopurinone adduct of deoxyguanosine (M1dG) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG). We have studied COX-2 protein expression and oxidative DNA adduct levels in intestinal adenoma tissue from Apc(Min+) mice to try and differentiate between curcumin's direct pharmacodynamic effects and indirect effects via its inhibition of adenoma growth. Mice received dietary curcumin (0.2%) for 4 or 14 weeks. COX-2 protein, M1dG and 8-oxo-dG levels were measured by Western blot, immunochemical assay and liquid chromatography-mass spectrometry, respectively. In control Apc(Min+) mice, the levels of all three indices measured in adenoma tissue were significantly higher than levels in normal mucosa. Lifetime administration of curcumin reduced COX-2 expression by 66% (P = 0.01), 8-oxo-dG levels by 24% (P < 0.05) and M1dG levels by 39% (P < 0.005). Short-term feeding did not affect total adenoma number or COX-2 expression, but decreased M1dG levels by 43% (P < 0.01). COX-2 protein levels related to adenoma size. These results demonstrate the utility of measuring these oxidative DNA adduct levels to show direct antioxidant effects of dietary curcumin. The effects of long-term dietary curcumin on COX-2 protein levels appear to reflect retardation of adenoma development.
Cyclooxygenase-2 and 5-lipoxygenase in dogs with chronic enteropathies.
Dumusc, S D; Ontsouka, E C; Schnyder, M; Hartnack, S; Albrecht, C; Bruckmaier, R M; Burgener, I A
2014-01-01
Cyclooxygenase-2 (COX-2) is a key enzyme in the synthesis of pro-inflammatory prostaglandins and 5-lipoxygenase (5-LO) is the major source of leukotrienes. Their role in IBD has been demonstrated in humans and animal models, but not in dogs with chronic enteropathies (CCE). COX-2 and 5-LO are upregulated in dogs with CCE. Fifteen healthy control dogs (HCD), 10 dogs with inflammatory bowel disease (IBD), and 15 dogs with food-responsive diarrhea (FRD). Prospective study. mRNA expression of COX-2, 5-LO, IL-1b, IL-4, IL-6, TNF, IL-10 and TFG-β was evaluated by quantitative real-time RT-PCR in duodenal and colonic biopsies before and after treatment. COX-2 expression in the colon was significantly higher in IBD and FRD before and after treatment (all P < .01). IL-1b was higher in FRD in the duodenum after treatment (P = .021). TGF-β expression was significantly higher in the duodenum of HCD compared to FRD/IBD before treatment (both P < .001) and IBD after treatment (P = .012). There were no significant differences among groups and within groups before and after treatment for IL-4, IL-6, TNF, and IL-10. There was a significant correlation between COX-2 and IL-1b in duodenum and colon before treatment in FRD and IBD, whereas 5-LO correlated better with IL-6 and TNF. IL-10 and TGF-β usually were correlated. COX-2 is upregulated in IBD and FRD, whereas IL-1b and TGF-β seem to be important pro- and anti-inflammatory cytokines, respectively. The use of dual COX/5-LO inhibitors could be an interesting alternative in the treatment of CCE. Copyright © 2014 by the American College of Veterinary Internal Medicine.
Lewis, C J; Lamb, C A; Kanakala, V; Pritchard, S; Armstrong, G R; Attwood, S E A
2009-01-01
Recent research suggests that allergy may be the key factor in the etiology of eosinophilic esophagitis (EE); however, historically, the condition was hypothesized as related to reflux injury to the esophageal mucosa. We studied this hypothesis by comparing markers of inflammation and cellular proliferation in EE and reflux esophagitis. Lower esophageal biopsies of adult patients with EE (n = 10), reflux esophagitis (n = 8), and normal controls (n = 13) were assessed quantitatively for the expression of the cyclooxygenase-2 (COX-2) enzyme, cellular proliferation, and oncogenic resistance to apoptosis using monoclonal antibodies for COX-2, Ki-67, and Bcl-2, respectively. Normal esophageal epithelium demonstrated weak diffuse uptake of COX-2 stain in the basal layer. No COX-2 expression was demonstrated in the EE group, significantly less than the control and reflux groups (P < 0.01 and P < 0.001, respectively). Cellular proliferation measured by Ki-67 expression was higher in EE and reflux compared with control (P < 0.001 and P < 0.01). Ki-67 expression, and thus degree of hyperplasia, appeared greater in EE than reflux, but was not statistically significant (P = 0.228). The degree of apoptosis was similar in all study groups. EE and reflux esophagitis are proliferative conditions expressing Ki-67 in higher concentrations than control. Mucosal proliferation in reflux esophagitis is COX-2 dependent. This novel research in EE has demonstrated downregulation of COX-2 expression compared with reflux esophagitis and control. We hypothesize that the allergy-related cytokine IL-13 known to inhibit COX-2 expression and found in high concentrations in EE as responsible for this. The pathogenesis of EE is likely dependent on allergy rather than reflux injury to the esophagus.
NASA Technical Reports Server (NTRS)
Lum, D. F.; McQuaid, K. R.; Gilbertson, V. L.; Hughes-Fulford, M.
1999-01-01
Many colorectal cancers have high levels of cyclo-oxygenase 2 (COX-2), an enzyme that metabolizes the essential fatty acids into prostaglandins. Since the low-density lipoprotein receptor (LDLr) is involved in the uptake of essential fatty acids, we studied the effect of LDL on growth and gene regulation in colorectal cancer cells. DiFi cells grown in lipoprotein-deficient sera (LPDS) grew more slowly than cells with LDL. LDLr antibody caused significant inhibition of tumor cell growth but did not affect controls. In addition, LDL uptake did not change in the presence of excess LDL, suggesting that ldlr mRNA lacks normal feedback regulation in some colorectal cancers. Analysis of the ldlr mRNA showed that excess LDL in the medium did not cause down-regulation of the message even after 24 hr. The second portion of the study examined the mRNA expression of ldlr and its co-regulation with cox-2 in normal and tumor specimens from patients with colorectal adenocarcinomas. The ratio of tumor:paired normal mucosa of mRNA expression of ldlr and of cox-2 was measured in specimens taken during colonoscopy. ldlr and cox-2 transcripts were apparent in 11 of 11 carcinomas. There was significant coordinate up-regulation both of ldlr and of cox-2 in 6 of 11 (55%) tumors compared with normal colonic mucosa. There was no up-regulation of cox-2 without concomitant up-regulation of ldlr. These data suggest that the LDLr is abnormally regulated in some colorectal tumors and may play a role in the up-regulation of cox-2. Copyright 1999 Wiley-Liss, Inc.
Depboylu, Candan; Weihe, Eberhard; Eiden, Lee E
2012-01-01
The simian immunodeficiency virus (SIV) macaque model resembles human immunodeficiency virus-acquired immunodeficiency syndrome (AIDS) and associated brain dysfunction. Altered expression of synaptic markers and transmitters in neuro-AIDS has been reported, but limited data exist for the cholinergic system and lipid mediators such as prostaglandins. Here, we analyzed cholinergic basal forebrain neurons with their telencephalic projections and the rate-limiting enzymes for prostaglandin synthesis, cyclooxygenase isotypes 1 and 2 (COX1 and COX2) in the brains of SIV-infected macaques with or without encephalitis and antiretroviral therapy and uninfected controls.Cyclooxygenase isotype 1, but not COX2, was coexpressed with markers of cholinergic phenotype, that is, choline acetyltransferase and vesicular acetylcholine transporter (VAChT), in basal forebrain neurons of monkey, as well as human, brain. Cyclooxygenase isotype 1 was decreased in basal forebrain neurons in macaques with AIDS versus uninfected and asymptomatic SIV-infected macaques. The VAChT-positive fiber density was reduced in frontal, parietal, and hippocampal-entorhinal cortex. Although brain SIV burden and associated COX1- and COX2-positive mononuclear and endothelial inflammatory reactions were mostly reversed in AIDS-diseased macaques that received 6-chloro-2',3'-dideoxyguanosine treatment, decreased VAChT-positive terminal density and reduced cholinergic COX1 expression were not. Thus, COX1 expression is a feature of primate cholinergic basal forebrain neurons; it may be functionally important and a critical biomarker of cholinergic dysregulation accompanying lentiviral encephalopathy. These results further imply that insufficiently prompt initiation of antiretroviral therapy in lentiviral infection may lead to neurostructurally unremarkable but neurochemically prominent irreversible brain damage.
Genetic deletion of COX-2 diminishes VEGF production in mouse retinal Müller cells.
Yanni, Susan E; McCollum, Gary W; Penn, John S
2010-07-01
Non-steroidal anti-inflammatory drugs (NSAIDs), which inhibit COX activity, reduce the production of retinal VEGF and neovascularization in relevant models of ocular disease. We hypothesized that COX-2 mediates VEGF production in retinal Müller cells, one of its primary sources in retinal neovascular disease. The purpose of this study was to determine the role of COX-2 and its products in VEGF expression and secretion. These studies have more clearly defined the role of COX-2 and COX-2-derived prostanoids in retinal angiogenesis. Müller cells derived from wild-type and COX-2 null mice were exposed to hypoxia for 0-24 h. COX-2 protein and activity were assessed by western blot analysis and GC-MS, respectively. VEGF production was assessed by ELISA. Wild-type mouse Müller cells were treated with vehicle (0.1% DMSO), 10 microM PGE(2), or PGE(2) + 5 microM H-89 (a PKA inhibitor), for 12 h. VEGF production was assessed by ELISA. Hypoxia significantly increased COX-2 protein (p < 0.05) and activity (p < 0.05), and VEGF production (p < 0.0003). COX-2 null Müller cells produced significantly less VEGF in response to hypoxia (p < 0.05). Of the prostanoids, PGE(2) was significantly increased by hypoxia (p < 0.02). Exogenous PGE(2) significantly increased VEGF production by Müller cells (p < 0.0039), and this effect was inhibited by H-89 (p < 0.055). These data demonstrate that hypoxia induces COX-2, prostanoid production, and VEGF synthesis in Müller cells, and that VEGF production is at least partially COX-2-dependent. Our study suggests that PGE(2), signaling through the EP(2) and/or EP(4) receptor and PKA, mediates the VEGF response of Müller cells. Copyright 2010 Elsevier Ltd. All rights reserved.
COX-1 Inhibitors: Beyond Structure Toward Therapy.
Vitale, Paola; Panella, Andrea; Scilimati, Antonio; Perrone, Maria Grazia
2016-07-01
Biosynthesis of prostaglandins from arachidonic acid (AA) is catalyzed by cyclooxygenase (COX), which exists as COX-1 and COX-2. AA is in turn released from the cell membrane upon neopathological stimuli. COX inhibitors interfere in this catalytic and disease onset process. The recent prominent discovery involvements of COX-1 are mainly in cancer and inflammation. Five classes of COX-1 inhibitors are known up to now and this classification is based on chemical features of both synthetic compounds and substances from natural sources. Physicochemical interactions identification between such molecules and COX-1 active site was achieved through X-ray, mutagenesis experiments, specific assays and docking investigations, as well as through a pharmacometric predictive model building. All these insights allowed the design of new highly selective COX-1 inhibitors to be tested into those disease models in which COX-1 is involved. Particularly, COX-1 is expressed at high levels in the early to advanced stages of human epithelial ovarian cancer, and it also seems to play a pivotal role in cancer progression. The refinement of COX-1 selective inhibitor structure has progressed to the stage that some of the inhibitors described in this review could be considered as promising active principle ingredients of drugs and hence part of specific therapeutic protocols. This review aims to outline achievements, in the last 5 years, dealing with the identification of highly selective synthetic and from plant extracts COX-1 inhibitors and their theranostic use in neuroinflammation and ovarian cancer. Their gastrotoxic effect is also discussed. © 2016 Wiley Periodicals, Inc.
Ryan, Veronica H.; Primiani, Christopher T.; Rao, Jagadeesh S.; Ahn, Kwangmi; Rapoport, Stanley I.; Blanchard, Helene
2014-01-01
Background The polyunsaturated arachidonic and docosahexaenoic acids (AA and DHA) participate in cell membrane synthesis during neurodevelopment, neuroplasticity, and neurotransmission throughout life. Each is metabolized via coupled enzymatic reactions within separate but interacting metabolic cascades. Hypothesis AA and DHA pathway genes are coordinately expressed and underlie cascade interactions during human brain development and aging. Methods The BrainCloud database for human non-pathological prefrontal cortex gene expression was used to quantify postnatal age changes in mRNA expression of 34 genes involved in AA and DHA metabolism. Results Expression patterns were split into Development (0 to 20 years) and Aging (21 to 78 years) intervals. Expression of genes for cytosolic phospholipases A2 (cPLA2), cyclooxygenases (COX)-1 and -2, and other AA cascade enzymes, correlated closely with age during Development, less so during Aging. Expression of DHA cascade enzymes was less inter-correlated in each period, but often changed in the opposite direction to expression of AA cascade genes. Except for the PLA2G4A (cPLA2 IVA) and PTGS2 (COX-2) genes at 1q25, highly inter-correlated genes were at distant chromosomal loci. Conclusions Coordinated age-related gene expression during the brain Development and Aging intervals likely underlies coupled changes in enzymes of the AA and DHA cascades and largely occur through distant transcriptional regulation. Healthy brain aging does not show upregulation of PLA2G4 or PTGS2 expression, which was found in Alzheimer's disease. PMID:24963629
Angiogenic function of prostacyclin biosynthesis in human endothelial progenitor cells
He, Tongrong; Lu, Tong; d’Uscio, Livius V.; Lam, Chen-Fuh; Lee, Hon-Chi; Katusic, Zvonimir S.
2009-01-01
The role of prostaglandins production in the control of regenerative function of endothelial progenitor cells (EPCs) has not been studied. We hypothesized that activation of cyclooxygenase (COX) enzymatic activity and the subsequent production of prostacyclin (PGI2) is an important mechanism responsible for the regenerative function of EPCs. In the present study, we detected high levels of COX-1 protein expression and PGI2 biosynthesis in human EPCs outgrown from blood mononuclear cells. Expression of COX-2 protein was almost undetectable under basal conditions but significantly elevated after treatment with tumor necrosis factor-α. Condition medium derived from EPCs hyperpolarized human coronary artery smooth muscle cells, similar to the effect of the PGI2 analogue iloprost. The proliferation and in vitro tube formation by EPCs were inhibited by the COX inhibitor indomethacin, or by genetic inactivation of COX-1 or PGI2 synthase (PGIS) with small interfering RNA (siRNA). Impaired tube formation and cell proliferation induced by inactivation of COX-1 were rescued by the treatment with iloprost or selective peroxisome-proliferator activated receptor-δ (PPARδ) agonist, GW501516, but not by the selective PGI2 receptor agonist, cicaprost. Down regulation of PPARδ by siRNA also reduced angiogenic capacity of EPCs. Iloprost failed to reverse PPARδ-siRNA-induced impairment of angiogenesis. Furthermore, transfection of PGIS-siRNA, COX-1-siRNA, or PPARδ-siRNA into EPCs decreased the capillary formation in vivo after transplantation of human EPCs into the nude mice. These results suggest that activation of COX-1-PGI2-PPARδ pathway is an important mechanism underlying pro-angiogenic function of EPCs. PMID:18511850
Ponglowhapan, S; Church, D B; Khalid, M
2009-05-01
As pituitary gonadotrophins can induce prostaglandin (PG) synthesis and receptors for LH and FSH are present in the canine lower urinary tract (LUT), the objectives of this study were to (i) investigate the expression of COX-2, a key rate-limiting enzyme in PG production, in the canine LUT and (ii) determine if COX-2 expression differs between gender, gonadal status (intact and gonadectomised) and LUT regions. Four regions (body and neck of the bladder as well as proximal and distal urethra) of the LUT were obtained from 20 clinically healthy dogs (5 intact males, 5 intact anoestrous females, 4 castrated males, 6 spayed females). In situ hybridization and immunohistochemistry were performed to determine the presence of COX-2 mRNA and protein, respectively. The mRNA and protein expression was semi-quantitatively assessed. The scoring system combined both the distribution and intensity of positive staining and was carried out separately on the three tissue layers (epithelium, sub-epithelial stroma and muscle) for each of four regions of the LUT. In comparison to intact dogs, lower expression (P<0.001) of COX-2 and its mRNA in gonadectomised males and females was observed in all tissue layers of each region of the LUT except in the distal urethra where there was no difference in mRNA expression between gonadal statuses. Regardless of region and tissue layer, intact females expressed more (P<0.05) COX-2 and its mRNA than intact males. However, in gonadectomised dogs, mRNA expression of COX-2 did not differ between genders; males had higher (P<0.001) protein level of COX-2 compared to females. In conclusion, both COX-2 and its mRNA were expressed in the canine LUT and COX-2-regulated PG synthesis in the canine LUT may differ between gonadal statuses and genders. The lower expression of COX-2 in gonadectomised dogs may impair normal function of the LUT and probably implicated in the development of neutering-induced urinary incontinence in the dog.
[Effect of vitamin C on the condition of NO-synthase system in experimental stomach ulcer].
Zhuroms'kyĭ, V S; Skliarov, O Ia
2011-01-01
We investigated the effect of Vitamin C (Vit C) on the changes of activity of the enzymes of NO-synthase system, nitric oxide content, lipoperoxidation processes, activity of SOD and catalase in gastric mucosa (GM), and concentrations of L-arginine, Vit C and Vit E in the blood of rats under conditions of experimental ulcer of the stomach caused by adrenaline injection. Vit C displayed a pronounced antioxidant action, reduced the degree of destructive affections, diminished the activity of iNOS and lipoperoxidation processes, decreased the NO content and SOD activity. Furthermore, the concentration of L-arginine and Vit C in the blood was increased. Combined action of Vit C with L-arginine reduced the degree of GM lesions, activity of eNOS and the content of NO in GM whereas the concentration of L-arginine in blood was increased. Under conditions of Vit C action and iNOS and COX-2 blockage, the activity of NO-synthases and lipoperoxidation processes were slightly decreased, indicating on dominant action of Vit C.
Fathi-Moghaddam, Hadi; Shafiee Ardestani, Mehdi; Saffari, Mostafa; Jabbari Arabzadeh, Ali; Elmi, Mitra
2010-01-01
A substantial amount of evidence has proposed an important role for Cyclooxygenase-2 (COX-2) enzyme in brain diseases and affiliate disorders. The purpose of this research was studying the effects of COX-2 selective inhibition on haloperidol-induced catatonia in an animal model of drug overdose and Parkinson’s disease (PD). In this study, the effect of acute and Sub-chronic oral administration of a new selective COX-2 inhibitor, i.e. the compound 11b or 1-(Phenyl)-5-(4-methylsulfonylphenyl)-2-ethylthioimidazole, in a dosage of 2, 4 and 8 mg/kg on haloperidol-induced catatonia was evaluated and compared to the standard drug scopolamine (1 mg/kg) by microanalysis of Striatum dopaminergic neurotransmission. The results showed a very high potency for 11b in improving the catalepsy by enhancing the dopaminergic neurotranmission (p < 0.05). In addition, statistical analysis showed the dose- and time-dependent behavior of the observed protective effect of 11b against the haloperidol-induced catatonia and enhancement of the dopaminergic neurotransmission. These findings are additional pharmacological data that suggest the effectiveness of COX-2 inhibition in treatment of schizophreny-associated rigidity. PMID:24381603
OH, Namgil; KIM, Sangho; HOSOYA, Kenji; OKUMURA, Masahiro
2014-01-01
ABSTRACT The suppressive effects of nonsteroidal anti-inflammatory drugs (NSAIDs) on the bone healing process have remained controversial, since no clinical data have clearly shown the relationship between NSAIDs and bone healing. The aim of this study was to assess the compensatory response of canine bone marrow-derived mesenchymal stem cells (BMSCs) to several classes of NSAIDs, including carprofen, meloxicam, indomethacin and robenacoxib, on osteogenic differentiation. Each of the NSAIDs (10 µM) was administered during 20 days of the osteogenic process with human recombinant IL-1β (1 ng/ml) as an inflammatory stimulator. Gene expression of osteoblast differentiation markers (alkaline phosphatase and osteocalcin), receptors of PGE2 (EP2 and EP4) and enzymes for prostaglandin (PG) E2 synthesis (COX-1, COX-2, cPGES and mPGES-1) was measured by using quantitative reverse transcription-polymerase chain reaction. Protein production levels of alkaline phosphatase, osteocalcin and PGE2 were quantified using an alkaline phosphatase activity assay, osteocalcin immunoassay and PGE2 immunoassay, respectively. Histologic analysis was performed using alkaline phosphatase staining, von Kossa staining and alizarin red staining. Alkaline phosphatase and calcium deposition were suppressed by all NSAIDs. However, osteocalcin production showed no significant suppression by NSAIDs. Gene expression levels of PGE2-related receptors and enzymes were upregulated during continuous treatment with NSAIDs, while certain channels for PGE2 synthesis were utilized differently depending on the kind of NSAIDs. These data suggest that canine BMSCs have a compensatory mechanism to restore PGE2 synthesis, which would be an intrinsic regulator to maintain differentiation of osteoblasts under NSAID treatment. PMID:24419976
Nakano, Rei; Kitanaka, Taku; Namba, Shinichi; Kitanaka, Nanako; Sugiya, Hiroshi
2018-06-04
The proinflammatory mediator bradykinin stimulated cyclooxygenase-2 (COX-2) expression and subsequently prostaglandin E 2 synthesis in dermal fibroblasts. The involvement of B2 receptors and Gαq in the role of bradykinin was suggested by using pharmacological inhibitors. The PKC activator PMA stimulated COX-2 mRNA expression. Bradykinin failed to induce COX-2 mRNA expression in the presence of PKC inhibitors, whereas the effect of bradykinin was observed in the absence of extracellular Ca 2+ . Bradykinin-induced COX-2 mRNA expression was inhibited in cells transfected with PKCε siRNA. These observations suggest that the novel PKCε is concerned with bradykinin-induced COX-2 expression. Bradykinin-induced PKCε phosphorylation and COX-2 mRNA expression were inhibited by an inhibitor of 3-phosphoinositide-dependent protein kinase-1 (PDK-1), and bradykinin-induced PDK-1 phosphorylation was inhibited by phospholipase D (PLD) inhibitors, suggesting that PLD/PDK-1 pathway contributes to bradykinin-induced PKCε activation. Pharmacological and knockdown studies suggest that the extracellular signal-regulated kinase 1 (ERK1) MAPK signaling is involved in bradykinin-induced COX-2 expression. Bradykinin-induced ERK phosphorylation was attenuated in the cells pretreated with PKC inhibitors or transfected with PKCε siRNA. We observed the interaction between PKCε and ERK by co-immunoprecipitation experiments. These observations suggest that PKCε activation contributes to the regulation of ERK1 activation. Bradykinin stimulated the accumulation of phosphorylated ERK in the nuclear fraction, that was inhibited in the cells treated with PKC inhibitors or transfected with PKCε siRNA. Consequently, we concluded that bradykinin activates PKCε via the PLD/PDK-1 pathway, which subsequently induces activation and translocation of ERK1 into the nucleus, and contributes to COX-2 expression for prostaglandin E 2 synthesis in dermal fibroblasts.
Current approaches to prevent NSAID-induced gastropathy – COX selectivity and beyond
Becker, Jan C; Domschke, Wolfram; Pohle, Thorsten
2004-01-01
Gastrointestinal (GI) toxicity associated with nonsteroidal anti-inflammatory drugs (NSAIDs) is still an important medical and socio-economic problem – despite recent pharmaceutical advances. To prevent NSAID-induced gastropathy, three strategies are followed in clinical routine: (i) coprescription of a gastroprotective drug, (ii) use of selective COX-2 inhibitors, and (iii) eradication of Helicobacter pylori. Proton pump inhibitors are the comedication of choice as they effectively reduce gastrointestinal adverse events of NSAIDs and are safe even in long-term use. Co-medication with vitamin C has only been little studied in the prevention of NSAID-induced gastropathy. Apart from scavenging free radicals it is able to induce haeme-oxgenase 1 in gastric cells, a protective enzyme with antioxidant and vasodilative properties. Final results of the celecoxib outcome study (CLASS study) attenuated the initial enthusiasm about the GI safety of selective COX-2 inhibitors, especially in patients concomitantly taking aspirin for cardiovascular prophylaxis. Helicobacter pylori increases the risk for ulcers particularly in NSAID-naive patients and therefore eradication is recommended prior to long-term NSAID therapy at least in patients at high risk. New classes of COX-inhibitors are currently evaluated in clinical studies with very promising results: NSAIDs combined with a nitric oxide releasing moiety (NO-NSAID) and dual inhibitors of COX and 5-LOX. These drugs offer extended anti-inflammatory potency while sparing gastric mucosa. PMID:15563357
Prostaglandin E(2) synthase inhibition as a therapeutic target.
Iyer, Jitesh P; Srivastava, Punit K; Dev, Rishabh; Dastidar, Sunanda G; Ray, Abhijit
2009-07-01
Most NSAIDs function by inhibiting biosynthesis of PGE(2) by inhibition of COX-1 and/or COX-2. Since COX-1 has a protective function in the gastro-intestinal tract (GIT), non-selective inhibition of both cycloxy genases leads to moderate to severe gastro-intestinal intolerance. Attempts to identify selective inhibitors of COX-2, led to the identification of celecoxib and rofecoxib. However, long-term use of these drugs has serious adverse effects of sudden myocardial infarction and thrombosis. Drug-mediated imbalance in the levels of prostaglandin I(2) (PGI(2)) and thromboxane A(2) (TXA(2)) with a bias towards TXA(2) may be the primary reason for these events. This resulted in the drugs being withdrawn from the market, leaving a need for an effective and safe anti-inflammatory drug. Recently, the focus of research has shifted to enzymes downstream of COX in the prosta glandin biosynthetic pathway such as prostaglandin E(2) synthases. Microsomal prostaglandin E(2) synthase-1 (mPGES-1) specifically isomerizes PGH(2) to PGE(2), under inflammatory conditions. In this review, we examine the biology of mPGES-1 and its role in disease. Progress in designing molecules that can selectively inhibit mPGES-1 is reviewed. mPGES-1 has the potential to be a target for anti-inflammatory therapy, devoid of adverse GIT and cardiac effects and warrants further investigation.
Lim, Tae-Gyu; Kwon, Jung Yeon; Kim, Jiyoung; Song, Nu Ry; Lee, Kyung Mi; Heo, Yong-Seok; Lee, Hyong Joo; Lee, Ki Won
2011-07-15
Benzo[a]pyrene-7,8-diol-9,10-epoxide (B[a]PDE) is a well-known carcinogen that is associated with skin cancer. Abnormal expression of cyclooxygenase-2 (COX-2) is an important mediator in inflammation and tumor promotion. We investigated the inhibitory effect of cyanidin-3-glucoside (C3G), an anthocyanin present in fruits, on B[a]PDE-induced COX-2 expression in mouse epidermal JB6 P+ cells. Pretreatment with C3G resulted in the reduction of B[a]PDE-induced expression of COX-2 and COX-2 promoter activity. The activation of activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) induced by B[a]PDE was also attenuated by C3G. C3G attenuated the B[a]PDE-induced phosphorylation of MEK, MKK4, Akt, and mitogen-activated protein kinases (MAPKs), but no effect on the phosphorylation of the upstream MAPK regulator Fyn. However, kinase assays demonstrated that C3G suppressed Fyn kinase activity and C3G directly binds Fyn kinase noncompetitively with ATP. By using PP2, a pharmacological inhibitor for SFKs, we showed that Fyn kinase regulates B[a]PDE-induced COX-2 expression by activating MAPKs, AP-1 and NF-κB. These results suggest that C3G suppresses B[a]PDE-induced COX-2 expression mainly by blocking the activation of the Fyn signaling pathway, which may contribute to its chemopreventive potential. Copyright © 2011 Elsevier Inc. All rights reserved.
Nitric Oxide Synthase and Cyclooxygenase Pathways: A Complex Interplay in Cellular Signaling.
Sorokin, Andrey
2016-01-01
The cellular reaction to external challenges is a tightly regulated process consisting of integrated processes mediated by a variety of signaling molecules, generated as a result of modulation of corresponding biosynthetic systems. Both, nitric oxide synthase (NOS) and cyclooxygenase (COX) systems, consist of constitutive forms (NOS1, NOS3 and COX-1), which are mostly involved in housekeeping tasks, and inducible forms (NOS2 and COX-2), which shape the cellular response to stress and variety of bioactive agents. The complex interplay between NOS and COX pathways can be observed at least at three levels. Firstly, products of NOS and Cox systems can mediate the regulation and the expression of inducible forms (NOS2 and COX-2) in response of similar and dissimilar stimulus. Secondly, the reciprocal modulation of cyclooxygenase activity by nitric oxide and NOS activity by prostaglandins at the posttranslational level has been shown to occur. Mechanisms by which nitric oxide can modulate prostaglandin synthesis include direct S-nitrosylation of COX and inactivation of prostaglandin I synthase by peroxynitrite, product of superoxide reaction with nitric oxide. Prostaglandins, conversely, can promote an increased association of dynein light chain (DLC) (also known as protein inhibitor of neuronal nitric oxide synthase) with NOS1, thereby reducing its activity. The third level of interplay is provided by intracellular crosstalk of signaling pathways stimulated by products of NOS and COX which contributes significantly to the complexity of cellular signaling. Since modulation of COX and NOS pathways was shown to be principally involved in a variety of pathological conditions, the dissection of their complex relationship is needed for better understanding of possible therapeutic strategies. This review focuses on implications of interplay between NOS and COX for cellular function and signal integration.
Shafi, Syed; Alam, Mohammad Mahboob; Mulakayala, Naveen; Mulakayala, Chaitanya; Vanaja, G; Kalle, Arunasree M; Pallu, Reddanna; Alam, M S
2012-03-01
A focused library of novel bis-heterocycles encompassing 2-mercapto benzothiazole and 1,2,3-triazoles were synthesized using click chemistry approach. The synthesized compounds have been tested for their anti-inflammatory activity by using biochemical cyclooxygenase (COX) activity assays and carrageenan-induced hind paw edema. Among the tested compounds, compound 4d demonstrated a potent selective COX-2 inhibition with COX-2/COX-1 ratio of 0.44. Results from carrageenan-induced hind paw edema showed that compounds 4a, 4d, 4e and 4f posses significant anti-inflammatory activity as compared to the standard drug Ibuprofen. The compounds showing significant activity were further subjected to anti-nociceptive activity by writhing test. These four compounds have shown comparable activity with the standard Ibuprofen. Further ulcerogenic studies shows that none of these compounds causing gastric ulceration. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Parrado, Concepcion; Mascaraque, Marta; Gilaberte, Yolanda; Juarranz, Angeles; Gonzalez, Salvador
2016-01-01
Healthier life styles include increased outdoors time practicing sports and walking. This means increased exposure to the sun, leading to higher risk of sunburn, photoaging and skin cancer. In addition to topical barrier products, oral supplementations of various botanicals endowed with antioxidant activity are emerging as novel method of photoprotection. Polypodium leucotomos extract (PL, commercial name Fernblock®, IFC Group, Spain) is a powerful antioxidant due to its high content of phenolic compounds. PL is administered orally, with proven safety, and it can also be used topically. Its mechanisms include inhibition of the generation and release of reactive oxygen species (ROS) by ultraviolet (UV) light. It also prevents UV- and ROS-induced DNA damage with inhibition of AP1 and NF-κB and protection of natural antioxidant enzyme systems. At the cellular level, PL decreases cellular apoptosis and necrosis mediated UV and inhibits abnormal extracellular matrix remodeling. PL reduces inflammation, prevents immunosuppression, activates tumor suppressor p53 and inhibits UV-induced cyclooxygenase-2 (COX-2) enzyme expression. In agreement with increased p53 activity, PL decreased UV radiation-induced cell proliferation. PL also prevents common deletions mitochondrial DNA damage induced by UVA, and MMP-1 expression induced Visible Light and Infrared Radiation. These cellular and molecular effects are reflected in inhibitions of carcinogenesis and photoaging. PMID:27367679
Parrado, Concepcion; Mascaraque, Marta; Gilaberte, Yolanda; Juarranz, Angeles; Gonzalez, Salvador
2016-06-29
Healthier life styles include increased outdoors time practicing sports and walking. This means increased exposure to the sun, leading to higher risk of sunburn, photoaging and skin cancer. In addition to topical barrier products, oral supplementations of various botanicals endowed with antioxidant activity are emerging as novel method of photoprotection. Polypodium leucotomos extract (PL, commercial name Fernblock(®), IFC Group, Spain) is a powerful antioxidant due to its high content of phenolic compounds. PL is administered orally, with proven safety, and it can also be used topically. Its mechanisms include inhibition of the generation and release of reactive oxygen species (ROS) by ultraviolet (UV) light. It also prevents UV- and ROS-induced DNA damage with inhibition of AP1 and NF-κB and protection of natural antioxidant enzyme systems. At the cellular level, PL decreases cellular apoptosis and necrosis mediated UV and inhibits abnormal extracellular matrix remodeling. PL reduces inflammation, prevents immunosuppression, activates tumor suppressor p53 and inhibits UV-induced cyclooxygenase-2 (COX-2) enzyme expression. In agreement with increased p53 activity, PL decreased UV radiation-induced cell proliferation. PL also prevents common deletions mitochondrial DNA damage induced by UVA, and MMP-1 expression induced Visible Light and Infrared Radiation. These cellular and molecular effects are reflected in inhibitions of carcinogenesis and photoaging.
Cannabidiolic acid as a selective cyclooxygenase-2 inhibitory component in cannabis.
Takeda, Shuso; Misawa, Koichiro; Yamamoto, Ikuo; Watanabe, Kazuhito
2008-09-01
In the present study it was revealed that cannabidiolic acid (CBDA) selectively inhibited cyclooxygenase (COX)-2 activity with an IC(50) value (50% inhibition concentration) around 2 microM, having 9-fold higher selectivity than COX-1 inhibition. In contrast, Delta(9)-tetrahydrocannabinolic acid (Delta(9)-THCA) was a much less potent inhibitor of COX-2 (IC(50) > 100 microM). Nonsteroidal anti-inflammatory drugs containing a carboxyl group in their chemical structures such as salicylic acid are known to inhibit nonselectively both COX-1 and COX-2. CBDA and Delta(9)-THCA have a salicylic acid moiety in their structures. Thus, the structural requirements for the CBDA-mediated COX-2 inhibition were next studied. There is a structural difference between CBDA and Delta(9)-THCA; phenolic hydroxyl groups of CBDA are freed from the ring formation with the terpene moiety, although Delta(9)-THCA has dibenzopyran ring structure. It was assumed that the whole structure of CBDA is important for COX-2 selective inhibition because beta-resorcylic acid itself did not inhibit COX-2 activity. Methylation of the carboxylic acid moiety of CBDA led to disappearance of COX-2 selectivity. Thus, it was suggested that the carboxylic acid moiety in CBDA is a key determinant for the inhibition. Furthermore, the crude extract of cannabis containing mainly CBDA was shown to have a selective inhibitory effect on COX-2. Taken together, these lines of evidence in this study suggest that naturally occurring CBDA in cannabis is a selective inhibitor for COX-2.
Mosconi, Lisa; de Leon, Mony; Murray, John; E, Lezi; Lu, Jianghua; Javier, Elizabeth; McHugh, Pauline; Swerdlow, Russell H
2011-01-01
Biomarker studies demonstrate inheritance of glucose hypometabolism and increased amyloid-β deposition in adult offspring of mothers, but not fathers, affected by late-onset Alzheimer's disease (LOAD). The underlying genetic mechanisms are unknown. We investigated whether cognitively normal (NL) individuals with a maternal history of LOAD (MH) have reduced platelet mitochondrial cytochrome oxidase activity (COX, electron transport chain complex IV) compared to those with paternal (PH) or negative family history (NH). Thirty-six consecutive NL individuals (age 55 ± 15 y, range 27-71 y, 56% female, CDR = 0, MMSE ≥28, 28% APOE-4 carriers), including 12 NH, 12 PH, and 12 MH, received a blood draw to measure platelet mitochondrial COX activity. Citrate synthase activity (CS) was measured as a reference. Groups were comparable for clinical and neuropsychological measures. We found that after correcting for CS, COX activity was reduced by 29% in MH compared to NH, and by 30% in MH compared to PH (p ≤ 0.006). Results remained significant controlling for age, gender, education, and APOE. No differences were found between PH and NH. COX measures discriminated MH from the other groups with accuracy ≥75%, and relative risk ≥3 (p ≤ 0.005). Among NL with LOAD-parents, only those with MH showed reduced COX activity in platelet mitochondria compared to PH and NH. The association between maternal history of LOAD and systemic COX reductions suggests transmission via mitochondrial DNA, which is exclusively maternally inherited in humans.
Kapoor, Vaishali; Singh, Abhay K; Dey, Sharmistha; Sharma, Suresh C; Das, Satya N
2010-12-01
The aim of this study was to quantitate circulating COX-2 levels in patients with tobacco-related intraoral cancer and to evaluate antitumor activities of COX-2 peptide inhibitors in vitro on KB cell lines. We used a novel biosensor-based surface plasmon resonance (SPR) technique for estimation of circulating COX-2 levels in 76 patients with oral cancer and 43 normal individuals. Antitumor activities of five COX-2 inhibitory peptides were evaluated using propidium iodide labeling and flow cytometry, alamar blue, MTS, and annexin-V binding assays. Patients with oral cancer showed threefold increase in serum COX-2 level when compared to normal controls (P < 0.0001). Further, late-stage tumors and lymph node metastasis were associated with significant increase in serum COX-2 levels. Patients with higher circulating COX-2 also showed higher immunoreactivity to anti-COX-2 antibody in the lesions. The peptides significantly reduced viability and inhibited growth/proliferation, induced cytotoxicity and apoptosis in tumor cells. However, no such effect was observed either on normal human leukocytes or on MCF-7 cell line that did not over express COX-2. Our results indicate that SPR may be a useful proteomic technique for quantitative assessment of COX-2 and to identify patients with high-risk oral premalignant or occult cancer, as well as in monitoring response to novel COX-2 targeting strategies. Furthermore, COX-2 peptide inhibitors appear to be a new class of potent anticancer agent for human oral carcinoma.
Bi, Yanmin; Guo, Xue-kun; Zhao, Haiyan; Gao, Li; Wang, Lianghai; Tang, Jun
2014-01-01
ABSTRACT Atypical porcine reproductive and respiratory syndrome (PRRS) caused by highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) is characterized by high fever and high mortality. However, the mechanism underlying the fever induction is still unknown. Prostaglandin E2 (PGE2), synthesized by cyclooxygenase type 1/2 (COX-1/2) enzymes, is essential for inducing fever. In this study, we found that PGE2, together with COX-1, was significantly elevated by HP-PRRSV. We subsequently demonstrated that extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphorylated ERK (p-ERK) were the key nodes to trigger COX-1 expression after HP-PRRSV infection. Furthermore, we proved the direct binding of p-C/EBP-β to the COX-1 promoter by luciferase reporter and chromatin immunoprecipitation assays. In addition, silencing of C/EBP-β remarkably impaired the enhancement of COX-1 production induced by HP-PRRSV infection. Taken together, our results indicate that HP-PPRSV elicits the expression of COX-1 through the ERK1/2-p-C/EBP-β signaling pathway, resulting in the increase of PGE2, which might be the cause of high fever in infected pigs. Our findings might provide new insights into the molecular mechanisms underlying the pathogenesis of HP-PRRSV infection. IMPORTANCE The atypical PRRS caused by HP-PRRSV was characterized by high fever, high morbidity, and high mortality in pigs of all ages, yet how HP-PRRSV induces high fever in pigs remains unknown. In the present study, we found out that HP-PRRSV infection could increase PGE2 production by upregulation of COX-1, and we subsequently characterized the underlying mechanisms about how HP-PRRSV enhances COX-1 production. PGE2 plays a critical role in inducing high temperature in hosts during pathogen infections. Thus, our findings here could help us have a better understanding of HP-PRRSV pathogenesis. PMID:24352469
Liu, Xinning; Wang, Decai; Yu, Cuixiang; Li, Tao; Liu, Jianqiao; Sun, Shujuan
2016-01-01
Candida is an important opportunistic fungal pathogen, especially in biofilm associated infections. The formation of a Candida biofilm can decrease Candida sensitivity to antifungal drugs and cause drug resistance. Although many effective antifungal drugs are available, their applications are limited due to their high toxicity and cost. Seeking new antifungal agents that are effective against biofilm-associated infection is an urgent need. Many research efforts are underway, and some progress has been made in this field. It has been shown that the arachidonic acid cascade plays an important role in fungal morphogenesis and pathogenicity. Notably, prostaglandin E2 (PGE2) can promote the formation of a Candida biofilm. Recently, the inhibition of PGE2 has received much attention. Studies have shown that cyclooxygenase (COX) inhibitors, such as aspirin, ibuprofen, and indomethacin, combined with fluconazole can significantly reduce Candida adhesion and biofilm development and increase fluconazole susceptibility; the MIC of fluconazole can be decrease from 64 to 2 μg/ml when used in combination with ibuprofen. In addition, in vivo studies have also confirmed the antifungal activities of these inhibitors. In this article, we mainly review the relationship between PGE2 and Candida biofilm, summarize the antifungal activities of COX inhibitors and analyze the possible antifungal activity of microsomal prostaglandin E synthase-1 (MPGES-1) inhibitors; additionally, other factors that influence PGE2 production are also discussed. Hopefully this review can disclose potential antifungal targets based on the arachidonic acid cascade and provide a prevailing strategy to alleviate Candida albicans biofilm formation. PMID:27999568
Hsieh, Shu-Chen; Liu, Jui-Ming; Pua, Xiao-Hui; Ting, Yuwen; Hsu, Ren-Jun; Cheng, Kuan-Chen
2016-03-01
In this study, taro waste (TW) was utilized for Lactobacillus acidophilus BCRC 14079 cultivation and the anti-tumor and immune-modulatory properties of heat-killed cells (HKCs), cytoplasmic fraction (CF), and exopolysaccharide (EPS) were evaluated. The optimum liquefaction enzyme dosage, temperature, and time determined by Box-Behnken design response surface methodology (BBD-RSM) were 9 mL/L of α-amylase, 79.2 °C, and 5 h of reaction, respectively. The optimum temperature and reaction time for saccharification were determined as 60 °C and 3 h. The optimum medium, CGMY1 medium, constitutes of TW hydrolysate containing 37 g/L of glucose, 25 g/L of corn gluten meal (CGM), and 1 g/L of yeast extract (YE). Results of MTT assay showed that HKCs and EPS from CGM medium exhibited the highest anti-proliferative in HT-29 (IC50 of HKCs, 467.25 μg/mL; EPS, 716.10 μg/mL) and in Caco-2 cells (IC50 of EPS, 741.60 μg/mL). Luciferase-based NF-ΚB and COX-2 systems indicated HKCs from CGM medium stimulated the highest expression of luciferin in both systems. The luciferase activities by using 100 and 500 μg/mL of HKCs from CGM were 24.30- and 45.83-fold in NF-ΚB system and 11.54- and 4.93-fold in COX-2 system higher than the control. In conclusion, this study demonstrated the potential of TW medium for L. acidophilus cultivation and the production of non-viable probiotics with enhanced biological activities.
Zeng, Tao; Li, Jin-jun; Wang, De-qian; Li, Guo-qin; Wang, Gen-lin; Lu, Li-zhi
2014-11-01
Rising temperatures are severely affecting the mortality, laying performance, and meat quality of duck. Our aim was to investigate the effect of acute heat stress on the expression of heat shock proteins (HSPs: HSP90, 70, 60, 40, and 10) and inflammatory factors (nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2)) and antioxidant enzyme activity (superoxide dismutase (SOD), malondialdehybe (MDA), catalase (CAT), total antioxidant capacity (T-AOC)) in livers of ducks and to compare the thermal tolerance of Pekin and Muscovy ducks exposed to acute heat stress. Ducks were exposed to heat at 39 ± 0.5 °C for 1 h and then returned to 20 °C for 1 h followed by a 3-h recovery period. The liver and other tissues were collected from each individual for analysis. The mRNA levels of HSPs (70, 60, and 40) increased in both species, except for HSP10, which was upregulated in Muscovy ducks and had no difference in Pekin ducks after heat stress. Simultaneously, the mRNA level of HSP90 decreased in the stress group in both species. Morphological analysis indicated that heat stress induced tissue injury in both species, and the liver of Pekin ducks was severely damaged. The activities of several antioxidant enzymes increased in Muscovy duck liver, but decreased in Pekin duck. The mRNA levels of inflammatory factors were increased after heat stress in both duck species. These results suggested that heat stress could influence HSPs, inflammatory factors expression, and the activities of antioxidant enzymes. Moreover, the differential response to heat stress indicated that the Muscovy duck has a better thermal tolerance than does the Pekin duck.
Chang, Hui-Hua; Song, Zuohe; Wisner, Lee; Tripp, Tina; Gokhale, Vijay
2011-01-01
Summary Chronic inflammation is associated with 25% of all cancers. In the inflammation-cancer axis, prostaglandin E2 (PGE2) is one of the major players. PGE2 synthases (PGES) are the enzymes downstream of the cyclooxygenases (COXs) in the PGE2 biosynthesis pathway. Microsomal prostaglandin E2 synthase 1 (mPGES-1) is inducible by pro-inflammatory stimuli and constitutively expressed in a variety of cancers. The potential role for this enzyme in tumorigenesis has been reported and mPGES-1 represents a novel therapeutic target for cancers. In order to identify novel small molecule inhibitors of mPGES-1, we screened the ChemBridge library and identified 13 compounds as potential hits. These compounds were tested for their ability to bind directly to the enzyme using surface plasmon resonance spectroscopy and to decrease cytokine-stimulated PGE2 production in various cancer cell lines. We demonstrate that the compound PGE0001 (ChemBridge ID number 5654455) binds to human mPGES-1 recombinant protein with good affinity (KD = 21.3 ± 7.8 μM). PGE0001 reduces IL-1β-induced PGE2 release in human HCA-7 colon and A549 lung cancer cell lines with EC50 in the submicromolar range. Although PGE0001 may have alternative targets based on the results from in vitro assays, it shows promising effects in vivo. PGE0001 exhibits significant anti-tumor activity in SW837 rectum and A549 lung cancer xenografts in SCID mice. Single injection i.p. of PGE0001 at 100 mg/kg decreases serum PGE2 levels in mice within 5 h. In summary, our data suggest that the identified compound PGE0001 exerts anti-tumor activity via the inhibition of the PGE2 synthesis pathway. PMID:21931968
Lim, Tae-Gyu; Lee, Bo Kyung; Kwon, Jung Yeon; Jung, Sung Keun; Lee, Ki Won
2011-06-01
Acrylamide is formed during cooking processes and is present in many foods. Accumulating evidence suggests that AA is carcinogenic, but the underlying mechanism remains unclear. Here, we investigated the carcinogenesis mechanisms of AA. AA increased the COX-2 expression. Two major transcription factors, AP-1 and NF-κB, were activated by AA treatment. AA induced the ERK phosphorylation, and this was abolished by the treatment of U0126, a pharmacological inhibitor of MEK, an upstream kinase of ERK. AA-induced expression and promoter activity of COX-2 were suppressed by U0126. U0126 treatment attenuated AA-induced transactivation of AP-1 and NF-κB, suggesting that the MEK/ERK signaling pathway regulates COX-2 expression. In addition, myricetin, a natural inhibitor of the MEK/ERK signal pathway, reduced AA-induced activation of the COX-2 promoter as well as activation of AP-1 and NF-κB. Collectively, these results suggest that the ability of AA to up-regulate COX-2 expression through the MEK/ERK signaling pathway underlies AA carcinogenicity. Copyright © 2011 Elsevier Ltd. All rights reserved.
GUAN, FUQIN; WANG, HAITING; SHAN, YU; CHEN, YU; WANG, MING; WANG, QIZHI; YIN, MIN; ZHAO, YOUYI; FENG, XU; ZHANG, JIANHUA
2014-01-01
Lonimacranthoide VI, first isolated from the flower buds of Lonicera macranthoides in our previous study, is a rare chlorogenic acid ester acylated at C-23 of hederagenin. In the present study, the anti-inflammatory effects of lonimacranthoide VI were studied. Lipopolysaccharides (LPS) induced an inflammatory response through the production of prostaglandin E2 (PGE2), and these levels were reduced when lonimacranthoide VI was pre-administered. Additionally, the mechanism of the anti-inflammatory effects of lonimacranthoide VI was investigated by measuring cyclooxygenase (COX) activity and mRNA expression. The results showed that lonimacranthoide VI inhibited mRNA expression and in vitro activity of COX-2 in a dose-dependent manner, whereas only the higher lonimacranthoide VI concentration possibly reduced COX-1 expression and in vitro activity. Taken together, these results indicate that lonimacranthoide VI is an important anti-inflammatory constituent of Lonicera macranthoides and that the anti-inflammatory effect is attributed to the inhibition of PGE2 production through COX activity and mRNA expression. PMID:25054024
Dawood, Dina H; Batran, Rasha Z; Farghaly, Thoraya A; Khedr, Mohammed A; Abdulla, Mohamed M
2015-12-01
Two new series of coumarin derivatives incorporating thiazoline and thiazolidinone moieties were designed, synthesized, and investigated in vivo for their anti-inflammatory activities using the carrageenan-induced rat paw edema model and in vitro for their inhibitory activities against the human cyclooxygenase (COX)-1 and COX-2 isoforms. Most of the synthesized compounds demonstrated exceptionally high in vivo anti-inflammatory activity and displayed superior GI safety profiles (0-7% ulceration) as compared to indomethacin. All the bioactive compounds showed in vitro high affinity and selectivity toward the COX-2 isoenzyme, compared to the reference celecoxib with IC50 values ranging from 0.31 to 0.78 μM. The ethyl thiosemicarbazone 2b, thiazoline derivatives 3a, 3b, 5b, 6a, and 7f, and the thiazolidinone compounds 8b and 9a showed the highest in vivo and in vitro anti-inflammatory activities with remarkable COX-2 selectivity. Quantitative structure-activity relationship study (QSAR) was done and resulted in a highly predictive power R(2) (0.908). A molecular docking study revealed a relationship between the docking affinity and the biological results. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Somvanshi, Rishi K; Kumar, Ashwini; Kant, Shashi; Gupta, Deepti; Singh, S Bhaskar; Das, Utpal; Srinivasan, Alagiri; Singh, Tej P; Dey, Sharmistha
2007-09-14
Cyclooxygenase (COX) is a key enzyme in the biosynthetic pathway leading to the formation of prostaglandins, which are mediators of inflammation [D.L. Dewitt, W.L. Smith, Primary structure of prostaglandin G/H synthase from sheep vesicular gland determined from the complementary DNA sequence, Proc. Natl. Acad. Sci. USA 85 (1988) 1412-1416, 1]. It exists mainly in two isoforms COX-1 and COX-2 [A. Raz, A. Wyche, N. Siegel, P. Needleman, Regulation of fibroblast cyclooxygenase synthesis by interleukin-1, J. Biol. Chem. 263 (1988) 3022-3028, 2]. The conventional non-steroidal anti-inflammatory drugs (NSAIDs) have adverse gastrointestinal side-effects, because they inhibit both isoforms [T.D. Warner, F. Guiliano, I. Vojnovic, A. Bukasa, J.A. Mitchell, J.P. Vane, Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis, Proc. Natl. Acad. Sci. USA 96 (1999) 7563-7568, 3; L.J. Marnett, A.S. Kalgutkar, Cyclooxygenase 2 inhibitors: discovery, selectivity and the future, Trends Pharmacol. Sci. 20 (1999) 465-469, 4; J.R. Vane, NSAIDs, Cox-2 inhibitors, and the gut, Lancet 346 (1995) 1105-1106, 5]. Therefore drugs which selectively inhibit COX-2, known as coxibs were developed. Recent reports on the harmful cardiovascular and renovascular side-effects of the anti-inflammatory drugs have led to the quest for a novel class of COX-2 selective inhibitors. Keeping this in mind, we have used the X-ray crystal structures of the complexes of the COX-1 and COX-2 with the known inhibitors for a rational, structure based approach to design a small peptide, which is potent inhibitor for COX-2. The peptides have been checked experimentally by in-vitro kinetic studies using surface plasmon resonance (SPR) and other biochemical methods. We have identified a tripeptide inhibitor which is a potential lead for a new class of COX-2 inhibitor. The dissociation constant (K(D)) determined for COX-2 with peptide WCS is 1.90x10(-10)M, the kinetic constant (K(i)) determined by spectrophotometry is 4.85x10(-9)M and the IC(50) value is 1.5x10(-8)M by ELISA test.
Chakraborty, Santanu; Sengupta, Chandana; Roy, Kunal
2005-04-01
Considering the current need for development of selective cyclooxygenase-2 (COX-2) inhibitors, an attempt has been made to explore physico-chemical requirements of 2-(5-phenyl-pyrazol-1-yl)-5-methanesulfonylpyridines for binding with COX-1 and COX-2 enzyme subtypes and also to explore the selectivity requirements. In this study, E-states of different common atoms of the molecules (calculated according to Kier & Hall), first order valence connectivity and physicochemical parameters (hydrophobicity pi, Hammett sigma and molar refractivity MR of different ring substituents) were used as independent variables along with suitable dummy parameters in the stepwise regression method. The best equation describing COX-1 binding affinity [n = 25, Q2 = 0.606, R(a)2 = 0.702, R2 = 0.752, R = 0.867, s = 0.447, F = 15.2 (df 4, 20)] suggests that the COX-1 binding affinity increases in the presence of a halogen substituent at R1 position and a p-alkoxy or p-methylthio substituent at R2 position. Furthermore, a difluoromethyl group is preferred over a trifluoromethyl group at R position for the COX-1 binding. The best equation describing COX-2 binding affinity [n = 32, Q2 = 0.622, R(a)2= 0.692, R2 = 0.732, R = 0.856, s = 0.265, F = 18.4 (df 4, 27)] shows that the COX-2 binding affinity increases with the presence of a halogen substituent at R1 position and increase of size of R2 substituents. However, it decreases in case of simultaneous presence of 3-chloro and 4-methoxy groups on the phenyl nucleus and in the presence of highly lipophilic R2 substituents. The best selectivity relation [n = 25, Q2 = 0.455, R(a)2 = 0.605, R2 = 0.670, R = 0.819, s = 0.423, F = 10.2 (df 4, 20)] suggests that the COX-2 selectivity decreases in the presence of p-alkoxy group and electron-withdrawing para substituents at R2 position. Again, a trifluoro group is conductive for the selectivity instead of a difluoromethyl group at R position. Furthermore, branching may also play significant role in determining the selectivity as evidenced from the connectivity parameter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Vivian Yvonne; Jin, H.C.; Ng, Enders K.O.
Induction of cyclooxygenase-2 (COX-2) associates with cigarette smoke exposure in many malignancies. Nicotine and its derivative, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are the two important components in cigarette smoke that contributes to cancer development. However, the molecular mechanism(s) by which nicotine or NNK promotes gastric carcinogenesis remains largely unknown. We found that nicotine and NNK significantly enhanced cell proliferation in AGS cells that expressed both alpha7 nicotinic acetylcholine receptor ({alpha}7 nAChR) and {beta}-adrenergic receptors. Treatment of cells with {alpha}-bungarotoxin ({alpha}-BTX, {alpha}7nAChR antagonist) or propranolol ({beta}-adrenergic receptor antagonist) blocked NNK-induced COX-2/PGE{sub 2} and cell proliferation, while nicotine-mediated cell growth and COX-2/PGE{sub 2} induction canmore » only be suppressed by propranolol, but not {alpha}-BTX. Moreover, in contrast to the dependence of growth promoting effect of nicotine on Erk activation, inhibitor of p38 mitogen-activated protein kinase (MAPK) repressed NNK-induced COX-2 upregulation and resulted in suppression of cell growth. In addition, nicotine and NNK mediated COX-2 induction via different receptors to modulate several G1/S transition regulatory proteins and promote gastric cancer cell growth. Selective COX-2 inhibitor (SC-236) caused G1 arrest and abrogated nicotine/NNK-induced cell proliferation. Aberrant expression of cyclin D1 and other G1 regulatory proteins are reversed by blockade of COX-2. These results pointed to the importance of adrenergic and nicotinic receptors in gastric tumor growth through MAPK/COX-2 activation, which may perhaps provide a chemoprevention strategy for cigarette smoke-related gastric carcinogenesis.« less
PCBs Alter Dopamine Mediated Function in Aging Workers
2010-01-01
sympathomimetic agents, beta-adrenergic blocking agents, angiotensin-converting enzyme inhibitors, COX-2 inhibitors, other non - steroidal anti - inflammatory ...other non - steroidal anti - inflammatory agents, opiate agonists, miscellaneous analgesics and antipyretics, thyroid agents and antithyroid agents. ⁎ p...fold from peak values during occupational PCB use but remain elevated (two-fold) compared to a similar-aged non -occupationally exposed population
Galusca, Bogdan; Verney, Julien; Meugnier, Emmanuelle; Ling, Yiin; Edouard, Pascal; Feasson, Leonard; Ravelojaona, Marion; Vidal, Hubert; Estour, Bruno; Germain, Natacha
2018-05-13
Constitutional thinness (CT) is a rare condition of natural low bodyweight, with no psychological issues, no marker of undernutrition and a resistance to weight gain. This study evaluated the skeletal muscle phenotype of CT women by comparison to a normal BMI control group. 10 CT women (BMI< 17.5 kg/m2) and 10 female controls (BMI: 18.5-25 kg/m2) underwent metabolic and hormonal assessment along with muscle biopsies to analyse the skeletal muscular fibers pattern, capillarity, enzymes activities and transcriptomics. CTs displayed similar energy balance metabolic and hormonal profile to controls. CTs presented with lower mean area of all the skeletal muscular fibers (-24%, p= 0.01) and percentage of slow-twitch type I fibers (-25%, p=0.02, respectively). Significant down regulation of the mRNA expression of several mitochondrial related genes and triglycerides metabolism was found along with low Cytochrome C Oxydase (COX) activity and capillary network in type I fibers. Pre and post mitochondrial respiratory chain enzymes levels were found similar to controls. Transcriptomics also revealed downregulation of cytoskeletal related genes. Diminished type I fibers, decreased mitochondrial and metabolic activity suggested by these results are discordant with normal resting metabolic rate of CT subjects. Downregulated genes related to cytoskeletal proteins and myocyte differentiation could account for CT's resistance to weight gain. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Fractals and self-organized criticality in anti-inflammatory drugs
NASA Astrophysics Data System (ADS)
Phillips, J. C.
2014-12-01
Nonsteroidal anti-inflammatory drugs (NSAIDs) act through inhibiting prostaglandin synthesis, a catalytic activity possessed by two distinct cyclooxygenase (COX-1 and COX-2) isozymes encoded by separate genes. The discovery of COX-2 launched a new era in NSAID pharmacology, resulting in the synthesis, marketing, and widespread use of COX-2 selective inhibitors. Extensive structural studies of the biology of prostaglandin synthesis and inhibition have explained some of the differences between COX-1 and COX-2 functionality, but others are still unexplained. Notably these include molecular differences that cause COX-1 inhibitors to produce a slight decrease, and COX-2 inhibitors to induce a significant increase, in heart attacks and strokes. These differences were unexpected because of the 60% overall COX-1 and COX-2 sequence similarity and the 1-2 conservation of catalytic sites. Hydropathic analysis shows important bicyclic differences between COX-1 and COX-2 on a large scale outside the catalytic pocket. These differences involve much stronger amphiphilic interactions in COX-2 than in COX-1, and may explain the selective antiplatelet effectiveness of COX-2. Success of the non-Euclidean structural analysis is the result of using the new Brazilian hydropathicity scale based on self-organized criticality (SOC) of universal protein modules.
Inhibition of the protein kinase MK-2 protects podocytes from nephrotic syndrome-related injury
Pengal, Ruma; Guess, Adam J.; Agrawal, Shipra; Manley, Joshua; Ransom, Richard F.; Mourey, Robert J.; Smoyer, William E.
2011-01-01
While mitogen-activated protein kinase (MAPK) activation has been implicated in the pathogenesis of various glomerular diseases, including nephrotic syndrome (NS), its specific role in podocyte injury is not known. We hypothesized that MK-2, a downstream substrate of p38 MAPK, mediates the adverse effects of this pathway and that inhibition of MK-2 would protect podocytes from NS-related injury. Using cultured podocytes, we analyzed 1) the roles of MK-2 and p38 MAPK in puromycin aminonucleoside (PAN)-induced podocyte injury; 2) the ability of specific MK-2 and p38 MAPK inhibitors to protect podocytes against injury; 3) the role of serum albumin, known to induce podocyte injury, in activating p38 MAPK/MK-2 signaling; and 4) the role of p38 MAPK/MK-2 signaling in the expression of Cox-2, an enzyme associated with podocyte injury. Treatment with protein kinase inhibitors specific for both MK-2 (C23, a pyrrolopyridine-type compound) or p38 MAPK (SB203580) reduced PAN-induced podocyte injury and actin cytoskeletal disruption. Both inhibitors reduced baseline podocyte p38 MAPK/MK-2 signaling, as measured by the degree of phosphorylation of HSPB1, a downstream substrate of MK-2, but exhibited disparate effects on upstream signaling. Serum albumin activated p38 MAPK/MK-2 signaling and induced Cox-2 expression, and these responses were blocked by both inhibitors. Given the critical importance of podocyte injury to both NS and other progressive glomerular diseases, these data suggest an important role for p38 MAPK/MK-2 signaling in podocyte injury and identify MK-2 inhibition as a promising potential therapeutic strategy to protect podocytes in various glomerular diseases. PMID:21613416
Discrimination of haptens from prohaptens using the metabolically deficient Cpr{sup low/low} mouse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chipinda, Itai, E-mail: IChipinda@cdc.gov; Blachere, Francoise M.; Anderson, Stacey E.
2011-05-01
The murine local lymph node assay (LLNA) is a validated, well accepted method for identification of chemical contact allergens. Both direct acting haptens and prohaptens (requiring metabolic activation) can be identified, but not differentiated by this assay. This study was used to assess the utility of a pan microsomal metabolic deficient mouse to distinguish between direct acting haptens and prohaptens in the LLNA. Hapten and prohapten induced cell proliferation was compared in C57BL/6J (B6) wild type (WT) versus homozygous (HO) knockout mice with a hypomorphic NADPH-Cytochrome P450 Reductase (CPR) gene (termed Cpr{sup low/low}) resulting in low CPR enzyme activity. Micemore » were dosed with known prohaptens; benzo(a)pyrene (BaP), carvone oxime (COx) and paracetamol (PCM) and haptens; oxazolone (OX), 4-ethoxymethylene-2-phenyl-2-oxazolin-5-one (EtOX), and N-acetylbenzoquinoneimine (NABQI) in this study. Skin microsomes from the WT, HO and heterozygous (HT) Cpr{sup low/low} mice were compared and evaluated for CPR activity. Lymphocyte proliferative responses to BaP, COx and PCM were significantly abrogated by 36.4%, 45.2% and 50.8%, respectively; in Cpr{sup low/low} knock out (KO) mice versus WT mice; while the lymphocyte proliferative responses to the direct acting haptens OX, EtOX and NABQI were comparable. CPR activity, determined as Units/mg protein, was determined to be significantly lower in the Cpr{sup low/low} mice compared to the WT. Results of the present study suggest potential utility of the Cpr{sup low/low} mice in the LLNA to differentiate prohaptens from direct acting haptens.« less
Locklear, Tracie D.; Huang, Yue; Frasor, Jonna; Doyle, Brian J.; Perez, Alice; Gomez-Laurito, Jorge; Mahady, Gail. B.
2010-01-01
Objectives To investigate the biological activities of Justicia pectoralis Jacq. (Acanthaceae), an herbal medicine used in Costa Rica (CR) for the management of menopausal symptoms and dysmenorrhea. Study design The aerial parts of Justicia pectoralis were collected, dried and extracted in methanol. To establish possible mechanisms of action of JP for the treatment of menopausal symptoms, the estrogenic and progesterone agonist, and antiinflammatory activities were investigated. Main outcome measures The methanol extract (JP-M) was tested in ER and PR binding assays, a COX-2 enzyme inhibition assay, the ERβ-CALUX assay in U2-OS cells, as well as reporter and endogenous gene assays in MCF-7 K1 cells. Results The JP-M extract inhibited COX-2 catalytic activity (IC50 4.8µg/ml); bound to both ERα and ERβ (IC50 50 µg/ml and 23.1µg/ml, respectively); induced estrogen-dependent transcription in the ERβ-CALUX; and bound to the progesterone receptor (IC50 22.8 µg/ml). The extract also modulated the expression of endogenous estrogen responsive genes pS2, PR, and PTGES in MCF-7 cells at a concentration of 20 µg/ml. Activation of a 2 ERE-construct in transiently transfected MCF-7 cells by the extract was inhibited by the estrogen receptor antagonist ICI 182,780, indicating that the effects were mediated through the estrogen receptor. Finally, the extract weakly enhanced the proliferation of MCF-7 cells, however this was not statistically significant as compared with DMSO controls. Conclusions Extracts of J. pectoralis have estrogenic, progestagenic and anti-inflammatory effects, and thus have a plausible mechanism of action, explaining its traditional use for menopause and PMS. PMID:20452152
Nitric oxide signaling and the cross talk with prostanoids pathways in vascular system.
Silva, Bruno R; Paula, Tiago D; Paulo, Michele; Bendhack, Lusiane M
2016-12-28
This review provides an overview of the cellular signaling of nitric oxide (NO) and prostanoids in vascular cells and the possible cross talk between their pathways, mainly in hypertension, since the imbalance of these two systems has been attributed to development of some cardiovascular diseases. It also deals with the modulation of vasodilation induced by NO donors. NO is a well-known second messenger involved in many cellular functions. In the vascular system, the NO produced by endothelial NO-synthase (eNOS) or released by NO donors acts in vascular smooth muscle cells, the binding of NO to Fe2+-heme of soluble guanylyl-cyclase (sGC) activates sGC and the production of cyclic guanosine-3-5-monophosphate (cGMP). The second messenger (cGMP) activates protein kinase G and the signaling cascade, including K+ channels. Activation of K+ channels leads to cell membrane hyperpolarization and Ca2+ channels blockade, which induce vascular relaxation. Moreover, the enzyme cyclooxygenase (COX) is also an important regulator of the vascular function by prostanoids production such as thromboxane A2 (TXA2) and prostacyclin (PGI2), which classically induce contraction and relaxation, respectively. Additionaly, studies indicate that the activity of both enzymes can be modulated by their products and reactive oxygen species (ROS) in cardiovascular diseases such as hypertension. The interaction of NO with cellular molecules, particularly the reaction of NO with ROS, determines the biological mechanisms of action and short half-life of NO. We have been working on the vascular effects of ruthenium-derived complexes that release NO. Our research group has published works on the vasodilating effects of ruthenium-derived NO donors and the mechanisms of vascular cells involved in the relaxation of the vascular smooth muscle in health and hypertensive rats. In our previous studies, we have compared the new NO donors synthesized by our group to SNP. It shows the cellular signaling of NO in the endothelial and vascular smooth muscle cells. This work focuses on the cellular mechanisms involved in the vasodilation induced by NO and the role of prostanoids in contractile or relaxing vascular responses. Since the NO is produced by NO-synthase (NOS) or released from NO donors we also discussed the perspectives to cross talk between NO and COX pathways on the vascular tone control.
Thill, Marc; Hoellen, Friederike; Becker, Steffi; Dittmer, Christine; Fischer, Dorothea; Kümmel, Sherko; Salehin, Darius; Friedrich, Michael; Köster, Frank; Diedrich, Klaus; Cordes, Tim
2012-01-01
Cyclooxygenase-2 (COX-2) plays a crucial role in prognosis of malignancy and has been associated with carcinogenesis, particularly neoangiogenesis and tumor progression. 15-Hydroxyprostaglandin dehydrogenase (15-PGDH) is described as a tumour suppressor in cancer. The antiproliferative effects of calcitriol [1,25(OH)(2)D(3)] mediated via the vitamin D receptor (VDR) render vitamin D a promising target in breast cancer therapy. The expression of prostaglandin (PG)-metabolizing enzymes, vitamin D-metabolising enzymes and VDR were determined in benign and malignant breast cell lines using western blot analysis. We detected an inverse correlation between the two types of metabolism, a reduced VDR expression in the malignant breast cell lines, and therefore an insufficient induction of 24-hydroxylase in the malignant cells. We suggest the possibility of dysregulation of vitamin D-metabolizing enzymes in malignant breast cell lines.
Chen, Kuan-Hung; Weng, Meng-Shih; Lin, Jen-Kun
2007-01-15
Tangeretin (5,6,7,8,4'-pentamethoxyflavone) is a polymethoxylated flavonoid concentrated in the peel of citrus fruits. Recent studies have shown that tangeretin exhibits anti-proliferative, anti-invasive, anti-metastatic, and antioxidant activities. However, the anti-inflammatory properties of tangeretin are unclear. In this study, we examine the effects of tangeretin and its structure-related compound, nobiletin, on the expression of cyclooxygenases-2 (COX-2) in human lung epithelial carcinoma cells, A549, and human non-small cell lung carcinoma cells, H1299. Tangeretin exerts a much better inhibitory activity than nobiletin against IL-1beta-induced production of COX-2 in A549 cells, and it effectively represses the constitutively expressed COX-2 in H1299. RT-PCR was used to investigate the transcriptional inhibition of COX-2 by tangeretin. COX-2 mRNA was rapidly induced by IL-1beta in 3h and markedly suppressed by tangeretin. IL-1beta-induced the activation of ERK, p38 MAPK, JNK, and AKT in A549 cells. COX-2 expression in response to IL-1beta was attenuated by pretreatment with SB203580, SP600125, and LY294002, but not with PD98059, suggesting the involvement of p38 MAPK, JNK, and PI3K in this response. Pretreatment of cells with tangeretin inhibited IL-1beta-induced p38 MAPK, JNK, and AKT phosphorylation and the downstream activation of NF-kappaB. These results may reveal that the tangeretin inhibition of IL-1beta-induced COX-2 expression in A549 cells is, at least in part, mediated through suppression of NF-kappaB transcription factor as well as through suppression of the signaling proteins of p38 MAPK, JNK, and PI3K, but not of ERK.
Atar, Shaul; Ye, Yumei; Lin, Yu; Freeberg, Sheldon Y; Nishi, Shawn P; Rosanio, Salvatore; Huang, Ming-He; Uretsky, Barry F; Perez-Polo, Jose R; Birnbaum, Yochai
2006-05-01
We determined the effects of cyclooxygenase-1 (COX-1; SC-560), COX-2 (SC-58125), and inducible nitric oxide synthase (iNOS; 1400W) inhibitors on atorvastatin (ATV)-induced myocardial protection and whether iNOS mediates the ATV-induced increases in COX-2. Sprague-Dawley rats received 10 mg ATV.kg(-1).day(-1) added to drinking water or water alone for 3 days and received intravenous SC-58125, SC-560, 1400W, or vehicle alone. Anesthesia was induced with ketamine and xylazine and maintained with isoflurane. Fifteen minutes after intravenous injection rats underwent 30-min myocardial ischemia followed by 4-h reperfusion [infarct size (IS) protocol], or the hearts were explanted for biochemical analysis and immunoblotting. Left ventricular weight and area at risk (AR) were comparable among groups. ATV reduced IS to 12.7% (SD 3.1) of AR, a reduction of 64% vs. 35.1% (SD 7.6) in the sham-treated group (P < 0.001). SC-58125 and 1400W attenuated the protective effect without affecting IS in the non-ATV-treated rats. ATV increased calcium-independent NOS (iNOS) [11.9 (SD 0.8) vs. 3.9 (SD 0.1) x 1,000 counts/min; P < 0.001] and COX-2 [46.7 (SD 1.1) vs. 6.5 (SD 1.4) pg/ml of 6-keto-PGF(1alpha); P < 0.001] activity. Both SC-58125 and 1400W attenuated this increase. SC-58125 did not affect iNOS activity, whereas 1400W blocked iNOS activity. COX-2 was S-nitrosylated in ATV-treated but not sham-treated rats or rats pretreated with 1400W. COX-2 immunoprecipitated with iNOS but not with endothelial nitric oxide synthase. We conclude that ATV reduced IS by increasing the activity of iNOS and COX-2, iNOS is upstream to COX-2, and iNOS activates COX-2 by S-nitrosylation. These results are consistent with the hypothesis that preconditioning effects are mediated via PG.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jeeyun; Im, Young-Hyuck; Jung, Hae Hyun
2005-08-26
The A549 cells, non-small cell lung cancer cell line from human, were resistant to interferon (IFN)-{alpha} treatment. The IFN-{alpha}-treated A549 cells showed increase in protein expression levels of NF-{kappa}B and COX-2. IFN-{alpha} induced NF-{kappa}B binding activity within 30 min and this increased binding activity was markedly suppressed with inclusion of curcumin. Curcumin also inhibited IFN-{alpha}-induced COX-2 expression in A549 cells. Within 10 min, IFN-{alpha} rapidly induced the binding activity of a {gamma}-{sup 32}P-labeled consensus GAS oligonucleotide probe, which was profoundly reversed by curcumin. Taken together, IFN-{alpha}-induced activations of NF-{kappa}B and COX-2 were inhibited by the addition of curcumin in A549more » cells.« less
Schmetterer, Georg; Valladares, Ana; Pils, Dietmar; Steinbach, Susanne; Pacher, Margit; Muro-Pastor, Alicia M.; Flores, Enrique; Herrero, Antonia
2001-01-01
Three genes, coxB, coxA, and coxC, found in a clone from a gene library of the cyanobacterium Anabaena variabilis strain ATCC 29413, were identified by hybridization with an oligonucleotide specific for aa3-type cytochrome c oxidases. Deletion of these genes from the genome of A. variabilis strain ATCC 29413 FD yielded strain CSW1, which displayed no chemoheterotrophic growth and an impaired cytochrome c oxidase activity. Photoautotrophic growth of CSW1, however, was unchanged, even with dinitrogen as the nitrogen source. A higher cytochrome c oxidase activity was detected in membrane preparations from dinitrogen-grown CSW1 than from nitrate-grown CSW1, but comparable activities of respiratory oxygen uptake were found in the wild type and in CSW1. Our data indicate that the identified cox gene cluster is essential for fructose-dependent growth in the dark, but not for growth on dinitrogen, and that other terminal respiratory oxidases are expressed in this cyanobacterium. Transcription analysis showed that coxBAC constitutes an operon which is expressed from two transcriptional start points. The use of one of them was stimulated by fructose. PMID:11591688
Enzymologic and pharmacologic profile of loxoprofen sodium and its metabolites.
Noguchi, Masahiro; Kimoto, Aishi; Gierse, James Kevin; Walker, Mark Crossfield; Zweifel, Ben Scott; Nozaki, Kazutoshi; Sasamata, Masao
2005-11-01
We investigated the mechanism of inhibition of loxoprofen sodium, a non-steroidal anti-inflammatory drug (NSAID), and its active metabolite (loxoprofen-SRS) on cyclooxygenase (COX). In in vitro assays, loxoprofen sodium appeared inactive against recombinant human COX-1 and COX-2, whereas loxoprofen-SRS inhibited both. In the investigation of kinetic behavior, loxoprofen-SRS showed time-dependent inhibition for both isozymes. Human whole blood assay also showed that loxoprofen-SRS possesses the profile of a non-selective inhibitor for COX. In a rat air pouch model, oral administration of loxoprofen sodium lowered prostaglandin (PG) E2 in both fluid exudates of the inflammatory pouch and stomach tissue with ED50 values of 2.0 and 2.1 mg/kg, respectively. Additionally, platelet thromboxane B2 production was also inhibited by loxoprofen sodium (ED50 of 0.34 mg/kg). In a rat carrageenan-induced paw edema model, loxoprofen sodium dose-dependently reduced the paw edema, accompanied by a decrease in PGE2 content in inflamed paw exudates. These findings suggest that the COX inhibitory activity of loxoprofen sodium is attributable to its active metabolite, loxoprofen-SRS, and that loxoprofen-SRS shows non-selective inhibition for COX.
Brentnall, Claire; Cheng, Zhangrui; McKellar, Quintin A; Lees, Peter
2012-12-01
Whole blood in vitro assays were used to determine the potency and selectivity of carprofen enantiomers for inhibition of the isoforms of cyclooxygenase (COX), COX-1 and COX-2, in the calf. S(+)-carprofen possessed preferential activity for COX-2 inhibition but, because the slopes of inhibition curves differed, the COX-1:COX-2 inhibition ratio decreased from 9.04:1 for inhibitory concentration (IC)10 to 1.84:1 for IC95. R(-) carprofen inhibited COX-2 preferentially only for low inhibition of the COX isoforms (IC10 COX-1:COX-2=6.63:1), whereas inhibition was preferential for COX-1 for a high level of inhibition (IC95 COX-1:COX-2=0.20:1). S(+) carprofen was the more potent inhibitor of COX isoforms; potency ratios S(+):R(-) carprofen were 11.6:1 for IC10 and 218:1 for IC90. Based on serum concentrations of carprofen enantiomers obtained after administration of a therapeutic dose of 1.4 mg/kg to calves subcutaneously, S(+)-carprofen concentrations exceeded the in vitro IC80 COX-2 value for 32 h and the IC20 for COX-1 for 33 h. The findings are discussed in relation to efficacy and safety of carprofen in calves. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ueki, Takuro; Akaishi, Tatsuhiro; Okumura, Hidenobu; Abe, Kazuho
2012-01-01
Extract from fruits of Nandina domestica THUNBERG (NDE) has been used to improve cough and breathing difficulty in Japan for many years. To explore whether NDE may alleviate respiratory inflammation, we investigated its effect on expression of cyclooxygenase-2 (COX-2) and production of prostaglandin E₂ (PGE₂) in human pulmonary epithelial A549 cells in culture. Treatment with lipopolysaccharide (LPS; 6 µg/mL) resulted in an increase of COX-2 expression and PGE₂ production in A549 cells. Both the LPS-induced COX-2 expression and PGE₂ production were significantly inhibited by NDE (1-10 µg/mL) in a concentration-dependent manner. NDE did not affect COX-1 expression nor COX activity. These results suggest that NDE downregulates LPS-induced COX-2 expression and inhibits PGE₂ production in pulmonary epithelial cells. Furthermore, higenamine and nantenine, two major constituents responsible for tracheal relaxing effect of NDE, did not mimic the inhibitory effect of NDE on LPS-induced COX-2 expression in A549 cells. To identify active constituent(s) of NDE responsible for the anti-inflammatory effect, NDE was introduced in a polyaromatic absorbent resin column and stepwise eluted to yield water fraction, 20% methanol fraction, 40% methanol fraction, 99.8% methanol fraction, and 99.5% acetone fraction. However, none of these five fractions alone inhibited LPS-induced COX-2 expression. On the other hand, exclusion of water fraction from NDE abolished the inhibitory effect of NDE on LPS-induced COX-2 expression. These results suggest that constituent(s) present in water fraction is required but not sufficient for the anti-inflammatory activity of NDE, which may result from interactions among multiple constituents.
Triptolide inhibits COX-2 expression by regulating mRNA stability in TNF-{alpha}-treated A549 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Lixin; Zhang, Shuang; Jiang, Zhenzhou
2011-12-09
Highlights: Black-Right-Pointing-Pointer Triptolide inhibited COX-2 expression and the half-life of COX-2 mRNA is decreased. Black-Right-Pointing-Pointer The HuR protein shuttling from nucleus to cytoplasm is inhibited by triptolide. Black-Right-Pointing-Pointer Triptolide inhibited 3 Prime -UTR fluorescence reporter gene activity. Black-Right-Pointing-Pointer COX-2 mRNA binding to HuR is decreased by triptolide in pull-down experiments. -- Abstract: Cyclooxygenase-2 (COX-2) over-expression is frequently associated with human non-small-cell lung cancer (NSCLC) and involved in tumor proliferation, invasion, angiogenesis and resistance to apoptosis. In the present study, the effects of triptolide on COX-2 expression in A549 cells were investigated and triptolide was found to inhibit TNF-{alpha}-induced COX-2 expression.more » In our further studies, it was found that triptolide decreased the half-life of COX-2 mRNA dramatically and that it inhibited 3 Prime -untranslated region (3 Prime -UTR) fluorescence reporter gene activity. Meanwhile, triptolide inhibited the HuR shuttling from nucleus to cytoplasm. After triptolide treatment, decreased COX-2 mRNA in pull-down experiments with anti-HuR antibodies was observed, indicating that the decreased cytoplasmic HuR is responsible for the decreased COX-2 mRNA. Taken together, our results provided evidence for the first time that triptolide inhibited COX-2 expression by COX-2 mRNA stability modulation and post-transcriptional regulation. These results provide a novel mechanism of action for triptolide which may be important in the treatment of lung cancer.« less
Abdel-Latif, Mohamed M; Inoue, Hiroyasu; Reynolds, John V
2016-09-01
Ursodeoxycholic acid (UDCA) was reported to reduce bile acid toxicity, but the mechanisms underlying its cytoprotective effects are not fully understood. The aim of the present study was to examine the effects of UDCA on the modulation of deoxycholic acid (DCA)-induced signal transduction in oesophageal cancer cells. Nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) activity was assessed using a gel shift assay. NF-κB activation and translocation was performed using an ELISA-based assay and immunofluorescence analysis. COX-2 expression was analysed by western blotting and COX-2 promoter activity was assessed by luciferase assay. DCA induced NF-κB and AP-1 DNA-binding activities in SKGT-4 and OE33 cells. UDCA pretreatment inhibited DCA-induced NF-κB and AP-1 activation and NF-κB translocation. This inhibitory effect was coupled with a blockade of IκB-α degradation and inhibition of phosphorylation of IKK-α/β and ERK1/2. Moreover, UDCA pretreatment inhibited COX-2 upregulation. Using transient transfection of the COX-2 promoter, UDCA pretreatment abrogated DCA-induced COX-2 promoter activation. In addition, UDCA protected oesophageal cells from the apoptotic effects of deoxycholate. Our findings indicate that UDCA inhibits DCA-induced signalling pathways in oesophageal cancer cells. These data indicate a possible mechanistic role for the chemopreventive actions of UDCA in oesophageal carcinogenesis.
Zhao, Feng; Wang, Lu; Liu, Ke
2009-04-21
Arctigenin, a bioactive constituent from dried seeds of Arctium lappa L. (Compositae) which has been widely used as a Traditional Chinese Medicine for dispelling wind and heat included in Chinese Pharmacophere, was found to exhibit anti-inflammatory activities but its molecular mechanism remains unknown yet. To investigate the anti-inflammatory mechanism of arctigenin. Cultured macrophage RAW 264.7 cells and THP-1 cells were used for the experiments. Griess assay was used to evaluate the inhibitory effect of arctigenin on the overproduction of nitric oxide (NO). ELISA was used to determine the level of pro-inflammatory cytokines including tumor necrosis factor alpha (TNF-alpha) and interleukin-6 (IL-6). The inhibitory effect on the enzymatic activity of cyclooxygenase-2 (COX-2) was tested by colorimetric method. Western blot was used to detect the expression of inducible nitric oxide synthase (iNOS) and COX-2. Arctigenin suppressed lipopolysaccharide (LPS)-stimulated NO production and pro-inflammatory cytokines secretion, including TNF-alpha and IL-6 in a dose-dependent manner. Arctigenin also strongly inhibited the expression of iNOS and iNOS enzymatic activity, whereas the expression of COX-2 and COX-2 enzymatic activity were not affected by arctigenin. These results indicated that potent inhibition on NO, TNF-alpha and IL-6, but not COX-2 expression and COX-2 activity, might constitute the anti-inflammatory mechanism of arctigenin. Arctigenin suppressed the overproduction of NO through down-regulation of iNOS expression and iNOS enzymatic activity in LPS-stimulated macrophage.
Abd El-Mawla, Ahmed M. A.; Osman, Husam Eldien H.
2011-01-01
Background: Non-steroidal anti-inflammatory drugs (NSAIDs) cause gastrointestinal damage both in the upper and lower gastrointestinal tract, in addition to their undesirable side effects on the pancreas. Meloxicam like all NSAIDs has damaging effects on the gastrointestinal tract including perforations, ulcers and bleeding. Objective: The present work describes the effects of Gum acacia aqueous extract on the histology of intestine and enzymes of both intestine and Pancreas of albino rats treated with Meloxicam. Materials and Methods: This study was performed on four groups of equally weighed male rats, each group included ten animals; the first group was received a diet containing 0.2 mg/kg bw meloxicam per day; the second was given 1gm Gum acacia per day in its diet; the third was given meloxicam followed by gum in the same doses per day; while the fourth group (control rats) was placed on a normal diet and water. All rats were received their diet for a period of 21 days. Results: A considerable protective effect of Gum acacia aqueous extract on the histology of intestine of albino rats treated with meloxicam was recorded. In addition, the study displayed a significant increase (P < 0.001) in the intestinal enzymes; lipase, amylase, alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) in the 1st and 3rd groups animals while these enzymes were significantly decreased (P < 0.001) in the 2nd group when compared with the 4th control group. Conclusion: This study concluded that Gum acacia provides a protection and defense against the harmful effects of meloxicam therapy used as one of the novel anti-Cox-1 and Cox-2 NSAIDs. PMID:21772755
Abd El-Mawla, Ahmed M A; Osman, Husam Eldien H
2011-04-01
Non-steroidal anti-inflammatory drugs (NSAIDs) cause gastrointestinal damage both in the upper and lower gastrointestinal tract, in addition to their undesirable side effects on the pancreas. Meloxicam like all NSAIDs has damaging effects on the gastrointestinal tract including perforations, ulcers and bleeding. The present work describes the effects of Gum acacia aqueous extract on the histology of intestine and enzymes of both intestine and Pancreas of albino rats treated with Meloxicam. This study was performed on four groups of equally weighed male rats, each group included ten animals; the first group was received a diet containing 0.2 mg/kg bw meloxicam per day; the second was given 1gm Gum acacia per day in its diet; the third was given meloxicam followed by gum in the same doses per day; while the fourth group (control rats) was placed on a normal diet and water. All rats were received their diet for a period of 21 days. A considerable protective effect of Gum acacia aqueous extract on the histology of intestine of albino rats treated with meloxicam was recorded. In addition, the study displayed a significant increase (P < 0.001) in the intestinal enzymes; lipase, amylase, alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) in the 1(st) and 3(rd) groups animals while these enzymes were significantly decreased (P < 0.001) in the 2(nd) group when compared with the 4(th) control group. This study concluded that Gum acacia provides a protection and defense against the harmful effects of meloxicam therapy used as one of the novel anti-Cox-1 and Cox-2 NSAIDs.
Jochmans-Lemoine, Alexandra; Revollo, Susana; Villalpando, Gabriella; Valverde, Ibana; Gonzales, Marcelino; Laouafa, Sofien; Soliz, Jorge; Joseph, Vincent
2018-01-01
Compared with mice, adult rats living at 3,600 m above sea level (SL-La Paz, Bolivia) have high hematocrit, signs of pulmonary hypertension, and low lung volume with reduced alveolar surface area. This phenotype is associated with chronic mountain sickness in humans living at high altitude (HA). We tested the hypothesis that this phenotype is associated with impaired gas exchange and oxidative stress in the lungs. We used rats and mice (3 months old) living at HA (La Paz) and SL (Quebec City, Canada) to measure arterial oxygen saturation under graded levels of hypoxia (by pulse oximetry), the alveolar surface area in lung slices and the activity of pro- (NADPH and xanthine oxidases-NOX and XO) and anti- (superoxide dismutase, and glutathione peroxidase-SOD and GPx) oxidant enzymes in cytosolic and mitochondrial lung protein extracts. HA rats have a lower arterial oxygen saturation and reduced alveolar surface area compared to HA mice and SL rats. Enzymatic activities (NOX, XO, SOD, and GPx) in the cytosol were similar between HA and SL animals, but SOD and GPx activities in the mitochondria were 2-3 times higher in HA vs. SL rats, and only marginally higher in HA mice vs. SL mice. Furthermore, the maximum activity of cytochrome oxidase-c (COX) measured in mitochondrial lung extracts was also 2 times higher in HA rats compared with SL rats, while there was only a small increase in HA mice vs. SL mice. Interestingly, compared with SL controls, alterations in lung morphology are not observed for young rats at HA (15 days after birth), and enzymatic activities are only slightly altered. These results suggest that rats living at HA have a gradual reduction of their alveolar surface area beyond the postnatal period. We can speculate that the elevation of SOD, GPx, and COX activities in the lung mitochondria are not sufficient to compensate for oxidative stress, leading to damage of the lung tissue in rats.
Jochmans-Lemoine, Alexandra; Revollo, Susana; Villalpando, Gabriella; Valverde, Ibana; Gonzales, Marcelino; Laouafa, Sofien; Soliz, Jorge; Joseph, Vincent
2018-01-01
Compared with mice, adult rats living at 3,600 m above sea level (SL—La Paz, Bolivia) have high hematocrit, signs of pulmonary hypertension, and low lung volume with reduced alveolar surface area. This phenotype is associated with chronic mountain sickness in humans living at high altitude (HA). We tested the hypothesis that this phenotype is associated with impaired gas exchange and oxidative stress in the lungs. We used rats and mice (3 months old) living at HA (La Paz) and SL (Quebec City, Canada) to measure arterial oxygen saturation under graded levels of hypoxia (by pulse oximetry), the alveolar surface area in lung slices and the activity of pro- (NADPH and xanthine oxidases—NOX and XO) and anti- (superoxide dismutase, and glutathione peroxidase—SOD and GPx) oxidant enzymes in cytosolic and mitochondrial lung protein extracts. HA rats have a lower arterial oxygen saturation and reduced alveolar surface area compared to HA mice and SL rats. Enzymatic activities (NOX, XO, SOD, and GPx) in the cytosol were similar between HA and SL animals, but SOD and GPx activities in the mitochondria were 2–3 times higher in HA vs. SL rats, and only marginally higher in HA mice vs. SL mice. Furthermore, the maximum activity of cytochrome oxidase-c (COX) measured in mitochondrial lung extracts was also 2 times higher in HA rats compared with SL rats, while there was only a small increase in HA mice vs. SL mice. Interestingly, compared with SL controls, alterations in lung morphology are not observed for young rats at HA (15 days after birth), and enzymatic activities are only slightly altered. These results suggest that rats living at HA have a gradual reduction of their alveolar surface area beyond the postnatal period. We can speculate that the elevation of SOD, GPx, and COX activities in the lung mitochondria are not sufficient to compensate for oxidative stress, leading to damage of the lung tissue in rats. PMID:29670534
Effusanin E suppresses nasopharyngeal carcinoma cell growth by inhibiting NF-κB and COX-2 signaling.
Zhuang, Mingzhu; Zhao, Mouming; Qiu, Huijuan; Shi, Dingbo; Wang, Jingshu; Tian, Yun; Lin, Lianzhu; Deng, Wuguo
2014-01-01
Rabdosia serra is well known for its antibacterial, anti-inflammatory and antitumor activities, but no information has been available for the active compounds derived from this plant in inhibiting human nasopharyngeal carcinoma (NPC) cell growth. In this study, we isolated and purified a natural diterpenoid from Rabdosia serra and identified its chemical structure as effusanin E and elucidated its underlying mechanism of action in inhibiting NPC cell growth. Effusanin E significantly inhibited cell proliferation and induced apoptosis in NPC cells. Effusanin E also induced the cleavage of PARP, caspase-3 and -9 proteins and inhibited the nuclear translocation of p65 NF-κB proteins. Moreover, effusanin E abrogated the binding of NF-κB to the COX-2 promoter, thereby inhibiting the expression and promoter activity of COX-2. Pretreatment with a COX-2 or NF-κB-selective inhibitor (celecoxib or ammonium pyrrolidinedithiocarbamate) had an additive effect on the effusanin E-mediated inhibition of proliferation, while pretreatment with an activator of NF-κB/COX-2 (lipopolysaccharides) abrogated the effusanin E-mediated inhibition of proliferation. Effusanin E also significantly suppressed tumor growth in a xenograft mouse model without obvious toxicity, furthermore, the expression of p50 NF-κB and COX-2 were down-regulated in the tumors of nude mice. These data suggest that effusanin E suppresses p50/p65 proteins to down-regulate COX-2 expression, thereby inhibiting NPC cell growth. Our findings provide new insights into exploring effusanin E as a potential therapeutic compound for the treatment of human nasopharyngeal carcinoma.
Brancaccio, Mariarita; Coretti, Lorena; Florio, Ermanno; Pezone, Antonio; Calabrò, Viola; Falco, Geppino; Keller, Simona; Lembo, Francesca; Avvedimento, Vittorio Enrico; Chiariotti, Lorenzo
2016-01-01
Bacterial lipopolysaccharide (LPS) induces release of inflammatory mediators both in immune and epithelial cells. We investigated whether changes of epigenetic marks, including selected histone modification and DNA methylation, may drive or accompany the activation of COX-2 gene in HT-29 human intestinal epithelial cells upon exposure to LPS. Here we describe cyclical histone acetylation (H3), methylation (H3K4, H3K9, H3K27) and DNA methylation changes occurring at COX-2 gene promoter overtime after LPS stimulation. Histone K27 methylation changes are carried out by the H3 demethylase JMJD3 and are essential for COX-2 induction by LPS. The changes of the histone code are associated with cyclical methylation signatures at the promoter and gene body of COX-2 gene. PMID:27253528
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Haige; Hiroi, Toyoko; Hansen, Baranda S.
2009-11-27
Vascular endothelial cells respond to biomechanical forces, such as cyclic stretch and shear stress, by altering gene expression. Since endothelial-derived prostanoids, such as prostacyclin and thromboxane A{sub 2}, are key mediators of endothelial function, we investigated the effects of cyclic stretch on the expression of genes in human umbilical vein endothelial cells controlling prostanoid synthesis: cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), prostacyclin synthase (PGIS) and thromboxane A{sub 2} synthase (TXAS). COX-2 and TXAS mRNAs were upregulated by cyclic stretch for 24 h. In contrast, PGIS mRNA was decreased and stretch had no effect on COX-1 mRNA expression. We further show that stretch-inducedmore » upregulation of COX-2 is mediated by activation of the NF-{kappa}{beta} signaling pathway.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Ming-Horng; Lin, Zih-Chan; Liang, Chan-Jung
2014-09-01
Eupafolin, a major active component found in the methanol extracts of Phyla nodiflora, has been used to treat inflammation of skin. We examined its effects on cyclooxygenase-2 (COX-2) expression in LPS-treated human dermal fibroblasts. Lipopolysaccharide (LPS) significantly increased prostaglandin-E2 (PGE2) production associated with increased COX-2 expression in Hs68 cells. This effect was blocked by eupafolin, TLR-4 antibody, antioxidants (APO and NAC), as well as inhibitors, including U0126 (ERK1/2), SB202190 (p38), SP600125 (JNK1/2), and Tanshinone IIA (AP-1). In gene regulation level, qPCR and promoter assays revealed that COX-2 expression was attenuated by eupafolin. In addition, eupafolin also ameliorated LPS-induced p47 phoxmore » activation and decreased reactive oxygen species (ROS) generation and NADPH oxidase (Nox) activity. Moreover, pretreatment with eupafolin and APO led to reduced LPS-induced phosphorylation of ERK1/2, JNK, and p38. Further, eupafolin attenuated LPS-induced increase in AP-1 transcription factor binding activity as well as the increase in the phosphorylation of c-Jun and c-Fos. In vivo studies have shown that in dermal fibroblasts of LPS treated mice, eupafolin exerted anti-inflammation effects by decreasing COX-2 protein levels. Our results reveal a novel mechanism for anti-inflammatory and anti-oxidative effects of eupafolin that involved inhibition of LPS-induced ROS generation, suppression of MAPK phosphorylation, diminished DNA binding activity of AP-1 and attenuated COX-2 expression leading to reduced production of prostaglandin E2 (PGE2). Our results demonstrate that eupafolin may be used to treat inflammatory responses associated with dermatologic diseases. - Highlights: • LPS activates the Nox2/p47{sup phox}/JNK/AP-1 and induces COX2 expression in Hs68 cells. • Eupafolin inhibits LPS-induced COX-2 expression via Nox2/p47{sup phox} inhibition. • Eupafolin may be used in the treatment of skin diseases involving inflammation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Eun Hee; Kim, Ji Young; Kim, Hyung-Kyun
Dichlorodiphenyltrichloroethane (DDT) has been used as an insecticide to prevent the devastation of malaria in tropical zones. However, many reports suggest that DDT may act as an endocrine disruptor and may have possible carcinogenic effects. Cyclooxygenase-2 (COX-2) acts as a link between inflammation and carcinogenesis through its involvement in tumor promotion. In the present study, we examined the effect of o,p'-DDT on COX-2 gene expression and analyzed the molecular mechanism of its activity in murine RAW 264.7 macrophages. Exposure to o,p'-DDT markedly enhanced the production of prostaglandin E{sub 2} (PGE{sub 2}), a major COX-2 metabolite, in murine macrophages. Furthermore, o,p'-DDTmore » dose-dependently increased the levels of COX-2 protein and mRNA. Transfection with human COX-2 promoter construct, electrophoretic mobility shift assays and DNA-affinity protein-binding assay experiments revealed that o,p'-DDT activated the activator protein 1 (AP-1) and cyclic AMP response element (CRE) sites, but not the NF-{kappa}B site. Phosphatidylinositol 3 (PI3)-kinase, its downstream signaling molecule, Akt, and mitogen-activated protein kinases (MAPK) were also significantly activated by the o,p'-DDT-induced AP-1 and CRE activation. These results demonstrate that o,p'-DDT induced COX-2 expression via AP-1 and CRE activation through the PI3-K/Akt/ERK, JNK, and p38 MAP kinase pathways. These findings provide further insight into the signal transduction pathways involved in the carcinogenic effects of o,p'-DDT.« less
Effects of lysine clonixinate on cyclooxygenase I and II in rat lung and stomach preparations.
Franchi, A M; Di Girolamo, G; de los Santos, A R; Martí, M L; Gimeno, M A
1998-06-01
Lysine clonixinate (LC) is a drug of antiinflammatory antipyretic and analgesic activity that produces minor digestive side-effects. This fact induced us to think that LC is possibly a weak COX-1 inhibitor. In order to investigate our hypothesis we inhibited cyclooxygenase activity with LC or indomethacin (INDO) in rat lung and stomach obtained from rats treated with lipopolysacharide (LPS) and control rats. Rat lung preparations incubated with 14C-arachidonic acid synthesise mainly PGE2. LC at 2.5 and 4.1 x 10(-5) M does not modify the basal production of PGE2 (probably COX-1) but at 6.8 x 10(-5) M significantly inhibited PGE2 production (approximately 48.5% inhibition, P<0.001). On the other hand, INDO at 10(-6) inhibited the basal production of PGE2 by around 73%. In LPS-treated rats, the production of PGE2 was significantly higher than in the lungs of control rats, probably due to the induction of COX-2. The addition of LC at 2.7 and 4.1 x 10(-5) M recovered the control values of PGE2 inhibiting, probably only from COX-2 activity. LC at higher concentrations (6.8 x 10(-5) M) and INDO 10(-6) M inhibited PGE2 formed by COX-2 and also partly by COX-1 activity.
Shin, Jun-Wan; Kundu, Joydeb Kumar
2012-01-01
Abstract The present study investigated the effect of phloretin [2′,4′,6′-trihydroxy-3-(4-hydroxyphenyl)-propiophenone] on 12-O-tetradecanoylphorbol 13-acetate (TPA)–induced cyclooxygenase-2 (COX-2) expression and tumor promotion in mouse skin and explored the underlying molecular mechanisms. Topical application of phloretin significantly inhibited 7,12-dimethylbenz[a]anthracene-initiated and TPA-promoted mouse skin carcinogenesis. Pretreatment with phloretin on the dorsal skin of mice inhibited TPA-induced COX-2 expression in a dose-dependent manner. To elucidate the molecular mechanism underlying COX-2 inhibition by phloretin, we examined its effect on TPA-induced activation of nuclear factor-κB (NF-κB), a ubiquitous transcription factor responsible for TPA-induced COX-2 expression in mouse skin. Topically applied phloretin decreased the TPA-induced DNA binding of NF-κB. In addition, phloretin inhibited the phosphorylation as well as the catalytic activity of extracellular signal-regulated kinase (ERK), which was previously found to activate NF-κB and induce COX-2 expression in TPA-treated mouse skin. Taken together, the inhibitory effects of phloretin on TPA-induced NF-κB activation and COX-2 expression through the modulation of ERK signaling may partly account for its antitumor-promoting effect on mouse skin carcinogenesis. PMID:22181070
Shin, Jun-Wan; Kundu, Joydeb Kumar; Surh, Young-Joon
2012-03-01
The present study investigated the effect of phloretin [2',4',6'-trihydroxy-3-(4-hydroxyphenyl)-propiophenone] on 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced cyclooxygenase-2 (COX-2) expression and tumor promotion in mouse skin and explored the underlying molecular mechanisms. Topical application of phloretin significantly inhibited 7,12-dimethylbenz[a]anthracene-initiated and TPA-promoted mouse skin carcinogenesis. Pretreatment with phloretin on the dorsal skin of mice inhibited TPA-induced COX-2 expression in a dose-dependent manner. To elucidate the molecular mechanism underlying COX-2 inhibition by phloretin, we examined its effect on TPA-induced activation of nuclear factor-κB (NF-κB), a ubiquitous transcription factor responsible for TPA-induced COX-2 expression in mouse skin. Topically applied phloretin decreased the TPA-induced DNA binding of NF-κB. In addition, phloretin inhibited the phosphorylation as well as the catalytic activity of extracellular signal-regulated kinase (ERK), which was previously found to activate NF-κB and induce COX-2 expression in TPA-treated mouse skin. Taken together, the inhibitory effects of phloretin on TPA-induced NF-κB activation and COX-2 expression through the modulation of ERK signaling may partly account for its antitumor-promoting effect on mouse skin carcinogenesis.
Yoshida, Kenji; Fujino, Hiromichi; Otake, Sho; Seira, Naofumi; Regan, John W; Murayama, Toshihiko
2013-10-15
Increased expressions of cyclooxygenase-2 (COX-2) and its downstream metabolite, prostaglandin E2 (PGE2), are well documented events in the development of colorectal cancer. Interestingly, PGE2 itself can induce the expression of COX-2 thereby creating the potential for positive feedback. Although evidence for such a positive feedback has been previously described, the specific E-type prostanoid (EP) receptor subtype that mediates this response, as well as the relevant signaling pathways, remain unclear. We now report that the PGE2 stimulated induction of COX-2 expression in human colon cancer HCA-7 cells is mediated by activation of the prostanoid EP4 receptor subtype and is followed by coupling of the receptor to Gαi and the activation of phosphatidylinositol 3-kinase. Subsequent activation of metalloproteinases releases membrane bound heparin-binding epidermal growth factor-like growth factor resulting in the transactivation of epidermal growth factor receptors and the activation of the extracellular signal-regulated kinases and induction of COX-2 expression. This induction of COX-2 expression by PGE2 stimulation of the prostanoid EP4 receptor may underlie the upregulation of COX-2 during colorectal cancer and appears to be an early event in the process of tumorigenesis. © 2013 Elsevier B.V. All rights reserved.
Fardid, Reza; Salajegheh, Ashkan; Mosleh-Shirazi, Mohammad Amin; Sharifzadeh, Sedigheh; Okhovat, Mohammad Ali; Najafi, Masoud; Rezaeyan, Abolhasan; Abaszadeh, Akbar
2017-01-01
In this study, we evaluated the bystander effect of radiation on the regulation of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and 8-hydroxydeoxyguanosine (8-OHdG) in lung tissues of Sprague-Dawley rats with and without pre-administration of melatonin. A 2×2 cm 2 area of the pelvis of male Sprague-Dawley rats with and without pre-administration of melatonin (100 mg/kg) by oral and intraperitoneal injection was irradiated with a 3 Gy dose of 1.25 MeV γ-rays. Alterations in the levels of COX-2, iNOS, and 8-OHdG in the out-of-field lung areas of the animals were detected by enzyme immunoassay. The bystander effect significantly increased COX-2, iNOS, and 8-OHdG levels in non-targeted lung tissues (P<0.05). Melatonin ameliorated the bystander effect of radiation and significantly reduced the level of all examined biomarkers (P<0.05). The results indicated that the ameliorating effect of a pre-intraperitoneal (IP) injection of melatonin was noticeably greater compared to oral pre-administration. Our findings revealed that the bystander effect of radiation could induce oxidative DNA damage and increase the levels of imperative COX-2 and iNOS in non-targeted lung tissues. Interestingly, melatonin could modulate the indirect destructive effect of radiation and reduce DNA damage in non-targeted cells.
Aldosterone stimulates superoxide production in macula densa cells.
Zhu, Xiaolong; Manning, R Davis; Lu, Deyin; Gomez-Sanchez, Celso E; Fu, Yiling; Juncos, Luis A; Liu, Ruisheng
2011-09-01
Two major factors which regulate tubuloglomerular feedback (TGF)-mediated constriction of the afferent arteriole are release of superoxide (O(2)(-)) and nitric oxide (NO) by macula densa (MD) cells. MD O(2)(-) inactivates NO; however, among the factors that increase MD O(2)(-) release, the role of aldosterone is unclear. We hypothesize that aldosterone activates the mineralocorticoid receptor (MR) on MD cells, resulting in increased O(2)(-) production due to upregulation of cyclooxygenase-1 (COX-2) and NOX-2, and NOX-4, isoforms of NAD(P)H oxidase. Studies were performed on MMDD1 cells, a renal epithelial cell line with properties of MD cells. RT-PCR and Western blotting confirmed the expression of MR. Aldosterone (10(-8) mol/l for 30 min) doubled MMDD1 cell O(2)(-) production, and this was completely blocked by MR inhibition with 10(-5) mol/l eplerenone. RT-PCR, real-time PCR, and Western blotting demonstrated aldosterone-induced increases in COX-2, NOX-2, and NOX-4 expression. Inhibition of COX-2 (NS398), NADPH oxidase (apocynin), or a combination blocked aldosterone-induced O(2)(-) production to the same degree. These data suggest that aldosterone-stimulated MD O(2)(-) production is mediated by COX-2 and NADPH oxidase. Next, COX-2 small-interfering RNA (siRNA) specifically decreased COX-2 mRNA without affecting NOX-2 or NOX-4 mRNAs. In the presence of the COX-2 siRNA, the aldosterone-induced increases in COX-2, NOX-2, and NOX-4 mRNAs and O(2)(-) production were completely blocked, suggesting that COX-2 causes increased expression of NOX-2 and NOX-4. In conclusion 1) MD cells express MR; 2) aldosterone increases O(2)(-) production by activating MR; and 3) aldosterone stimulates COX-2, which further activates NOX-2 and NOX-4 and generates O(2)(-). The resulting balance between O(2)(-) and NO in the MD is important in modulating TGF.
Ackerman, William E.; Rovin, Brad H.; Kniss, Douglas A.
2006-01-01
In human parturition, uterotonic prostaglandins (PGs) arise predominantly via increased expression of cyclooxygenase-2 (COX-2 [also known as prostaglandin synthase 2]) within intra-uterine tissues. Interleukin-1 (IL-1) and epidermal growth factor (EGF), both inducers of COX-2 transcription, are among numerous factors that accumulate within amniotic fluid with advancing gestation. It was previously demonstrated that EGF could potentiate IL-1β-driven PGE2 production in amnion and amnion-derived (WISH) cells. To define the mechanism for this observation, we hypothesized that EGF and IL-1β might exhibit synergism in regulating COX-2 gene expression. In WISH cells, combined treatment with EGF and IL-1β resulted in a greater-than-additive increase in COX-2 mRNA relative to challenge with either agent independently. Augmentation of IL-1β-induced transactivation by EGF was not observed in cells harboring reporter plasmids bearing nuclear factor-kappa B (NFκB) regulatory elements alone, but was evident when a fragment (−891/+9) of the COX-2 gene 5′-promoter was present. Both agents transiently activated intermediates of multiple signaling pathways potentially involved in the regulation of COX-2 gene expression. The 26 S proteasome inhibitor, MG-132, selectively abrogated IL-1β-driven NFκB activation and COX-2 mRNA expression. Only pharmacologic blockade of the p38 mitogen-activated protein kinase eliminated COX-2 expression following EGF stimulation. We conclude that EGF and IL-1β appear to signal through different signaling cascades leading to COX-2 gene expression. IL-1β employs the NFκB pathway predominantly, while the spectrum of EGF signaling is broader and includes p38 kinase. The synergism observed between IL-1β and EGF does not rely on augmented NFκB function, but rather, occurs through differential use of independent response elements within the COX-2 promoter. PMID:15329330
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Haibo; Tian, Yue; Yang, Yang
2015-05-08
The histone ubiquitin hydrolase ubiquitin-specific protease 22 (USP22) is an epigenetic modifier and an oncogene that is upregulated in many types of cancer. In non-small cell lung cancer (NSCLC), aberrant expression of USP22 is a predictor of poor survival, as is high expression of cyclooxygenase-2 (COX-2). Despite its oncogenic role, few substrates of USP22 have been identified and its mechanism of action in cancer remains unclear. Here, we identified COX-2 as a direct substrate of USP22 and showed that its levels are modulated by USP22 mediated deubiquitination. Silencing of USP22 downregulated COX-2, decreased its half-life, and inhibited lung carcinoma cellmore » proliferation by directly interacting with and modulating the stability and activity of COX-2 through the regulation of its ubiquitination status. The findings of the present study suggest a potential mechanism underlying the oncogenic role of USP22 mediated by the modulation of the stability and activity of COX-2. - Highlights: • USP22 interacts with COX-2. • USP22 deubiquitinates and stabilizes COX-2. • USP22 is required for COX-2-mediated upregulation of prostaglandin E2.« less
Shan, Haiyan; Chu, Yang; Chang, Pan; Yang, Lijun; Wang, Yi; Zhu, Shaohua; Zhang, Mingyang; Tao, Luyang
2017-11-01
Sodium azide (NaN3) is a chemical of rapidly growing commercial importance. It is very acutely toxic and inhibits cytochrome oxidase (COX) by binding irreversibly to the heme cofactor. A previous study from our group demonstrated that hydrogen sulfide (H2S), the third endogenous gaseous mediator identified, had protective effects against neuronal damage induced by traumatic brain injury (TBI). It is well‑known that TBI can reduce the activity of COX and have detrimental effects on the central nervous system metabolism. Therefore, in the present study, it was hypothesized that H2S may provide neuroprotection against NaN3 toxicity. The current results revealed that NaN3 treatment induced non‑apoptotic cell death, namely autophagic cell death, in PC12 cells. Expression of the endogenous H2S‑producing enzymes, cystathionine‑β‑synthase and 3‑mercaptopyruvate sulfurtransferase, decreased in a dose‑dependent manner following NaN3 treatment. Pretreatment with H2S markedly attenuated the NaN3‑induced cell viability loss and autophagic cell death in a dose‑dependent manner. The present study suggests that H2S‑based strategies may have future potential in the prevention and/or therapy of neuronal damage following NaN3 exposure.
Cailleteau, C; Liagre, B; Battu, S; Jayat-Vignoles, C; Beneytout, J L
2008-09-01
Differentiation induction as a therapeutic strategy has, so far, the greatest impact in hematopoietic malignancies, most notably leukemia. Diosgenin is a very interesting natural product because, depending on the specific dose used, its biological effect is very different in HEL (human erythroleukemia) cells. For example, at 10 microM, diosgenin induced megakaryocytic differentiation, in contrast to 40 microM diosgenin, which induced apoptosis in HEL cells previously demonstrated using sedimentation field-flow fractionation (SdFFF). The goal of this work focused on the correlation between cyclooxygenase-2 (COX-2) and thromboxane synthase (TxS) and megakaryocytic differentiation induced by diosgenin in HEL cells. Furthermore, the technique of SdFFF, having been validated in our models, was used in this new study as an analytical tool that provided us with more or less enriched differentiated cell fractions that could then be used for further analyses of enzyme protein expression and activity for the first time. In our study, we showed the implication of COX-2 and TxS in diosgenin-induced megakaryocytic differentiation in HEL cells. Furthermore, we showed that the analytical technique of SdFFF may be used as a tool to confirm our results as a function of the degree of cell differentiation.
Anti-Inflammatory Activity of Haskap Cultivars is Polyphenols-Dependent.
Rupasinghe, H P Vasantha; Boehm, Mannfred M A; Sekhon-Loodu, Satvir; Parmar, Indu; Bors, Bob; Jamieson, Andrew R
2015-06-02
Haskap (Lonicera caerulea L.) berries have long been used for their health promoting properties against chronic conditions. The current study investigated the effect of Canadian haskap berry extracts on pro-inflammatory cytokines using a human monocytic cell line THP-1 derived macrophages stimulated by lipopolysaccharide. Methanol extracts of haskap from different growing locations in Canada were prepared and characterized for their total phenolic profile using colorimetric assays and liquid chromatography-Mass spectrometry (UPLC-MS/MS). Human THP-1 monocytes were seeded in 24-well plates (5 × 10⁵/well) and treated with phorbol 12-myristate 13-acetate (PMA, 0.1 μg/mL) for 48 h to induce macrophage differentiation. After 48 h, the differentiated macrophages were washed with Hank's buffer and treated with various concentrations of test compounds for 4 h, followed by the lipopolysaccharide (LPS)-stimulation (18 h). Borealis cultivar showed the highest phenolic content, flavonoid content and anthocyanin content (p < 0.05). A negative correlation existed between the polyphenol concentration of the extracts and pro-inflammatory cytokines: Interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α), prostaglandin (PGE2), and cyclooxygenase-2 (COX-2) enzyme. Borealis exhibited comparable anti-inflammatory effects to COX inhibitory drug, diclofenac. The results showed that haskap berry polyphenols has the potential to act as an effective inflammation inhibitor.
Anti-Inflammatory Activity of Haskap Cultivars is Polyphenols-Dependent
Rupasinghe, H. P. Vasantha; Boehm, Mannfred M. A.; Sekhon-Loodu, Satvir; Parmar, Indu; Bors, Bob; Jamieson, Andrew R.
2015-01-01
Haskap (Lonicera caerulea L.) berries have long been used for their health promoting properties against chronic conditions. The current study investigated the effect of Canadian haskap berry extracts on pro-inflammatory cytokines using a human monocytic cell line THP-1 derived macrophages stimulated by lipopolysaccharide. Methanol extracts of haskap from different growing locations in Canada were prepared and characterized for their total phenolic profile using colorimetric assays and liquid chromatography—Mass spectrometry (UPLC-MS/MS). Human THP-1 monocytes were seeded in 24-well plates (5 × 105/well) and treated with phorbol 12-myristate 13-acetate (PMA, 0.1 μg/mL) for 48 h to induce macrophage differentiation. After 48 h, the differentiated macrophages were washed with Hank’s buffer and treated with various concentrations of test compounds for 4 h, followed by the lipopolysaccharide (LPS)-stimulation (18 h). Borealis cultivar showed the highest phenolic content, flavonoid content and anthocyanin content (p < 0.05). A negative correlation existed between the polyphenol concentration of the extracts and pro-inflammatory cytokines: Interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α), prostaglandin (PGE2), and cyclooxygenase-2 (COX-2) enzyme. Borealis exhibited comparable anti-inflammatory effects to COX inhibitory drug, diclofenac. The results showed that haskap berry polyphenols has the potential to act as an effective inflammation inhibitor. PMID:26043379
Kumar, Rahul; Dhar, Deepanshi; Agarwal, Chapla; Bergman, Bryan; Graner, Michael; Maroni, Paul; Singh, Rana P.; Agarwal, Rajesh; Deep, Gagan
2015-01-01
Hypoxia is an independent prognostic indicator of poor outcome in several malignancies. However, precise mechanism through which hypoxia promotes disease aggressiveness is still unclear. Here, we report that under hypoxia (1% O2), human prostate cancer (PCA) cells, and extracellular vesicles (EVs) released by these cells, are significantly enriched in triglycerides due to the activation of lipogenesis-related enzymes and signaling molecules. This is likely a survival response to hypoxic stress as accumulated lipids could support growth following reoxygenation. Consistent with this, significantly higher proliferation was observed in hypoxic PCA cells following reoxygenation associated with rapid use of accumulated lipids. Importantly, lipid utilization inhibition by CPT1 inhibitor etomoxir and shRNA-mediated CPT1-knockdown significantly compromised hypoxic PCA cell proliferation following reoxygenation. Furthermore, COX2 inhibitor celecoxib strongly reduced growth and invasiveness following hypoxic PCA cells reoxygenation, and inhibited invasiveness induced by hypoxic PCA EVs. This establishes a role for COX2 enzymatic products in the enhanced PCA growth and invasiveness. Importantly, concentration and loading of EVs secreted by PCA cells were significantly compromised under delipidized serum condition and by lipogenesis inhibitors (fatostatin and silibinin). Overall, present study highlights the biological significance of lipid accumulation in hypoxic PCA cells and its therapeutic relevance in PCA. PMID:26087400
Kelsen, Jesper; Kjaer, Katrine; Chen, Gang; Pedersen, Michael; Røhl, Lisbeth; Frøkiaer, Jørgen; Nielsen, Søren; Nyengaard, Jens R; Rønn, Lars Christian B
2006-12-06
Anti-inflammatory treatment affects ischemic damage and neurogenesis in rodent models of cerebral ischemia. We investigated the potential benefit of COX-2 inhibition with parecoxib in spontaneously hypertensive rats (SHRs) subjected to transient middle cerebral artery occlusion (tMCAo). Sixty-four male SHRs were randomized to 90 min of intraluminal tMCAo or sham surgery. Parecoxib (10 mg/kg) or isotonic saline was administered intraperitoneally (IP) during the procedure, and twice daily thereafter. Nineteen animals were euthanized after 24 hours, and each hemisphere was examined for mRNA expression of pro-inflammatory cytokines and COX enzymes by quantitative RT-PCR. Twenty-three tMCAo animals were studied with diffusion and T2 weighted MRI within the first 24 hours, and ten of the SHRs underwent follow-up MRI six days later. Thirty-three SHRs were given 5-bromo-2'-deoxy-uridine (BrdU) twice daily on Day 4 to 7 after tMCAo. Animals were euthanized on Day 8 and the brains were studied with free-floating immunohistochemistry for activated microglia (ED-1), hippocampal granule cell BrdU incorporation, and neuronal nuclei (NeuN). Infarct volume estimation was done using the 2D nucleator and Cavalieri principle on NeuN-stained coronal brain sections. The total number of BrdU+ cells in the dentate gyrus (DG) of the hippocampus was estimated using the optical fractionator. We found a significant reduction in infarct volume in parecoxib treated animals one week after tMCAo (p < 0.03). Cortical ADC values in the parecoxib group were markedly less increased on Day 8 (p < 0.01). Interestingly, the parecoxib treated rats were segregated into two subgroups, suggesting a responder vs. non-responder phenomenon. We found indications of mRNA up-regulation of IL-1beta, IL-6, TNF-alpha and COX-2, whereas COX-1 remained unaffected. Hippocampal granule cell BrdU incorporation was not affected by parecoxib treatment. Presence of ED-1+ activated microglia in the hippocampus was related to an increase in BrdU uptake in the DG. IP parecoxib administration during tMCAo was neuroprotective, as evidenced by a large reduction in mean infarct volume and a lower cortical ADC increment. Increased pro-inflammatory cytokine mRNA levels and hippocampal granule cell BrdU incorporation remained unaffected.
Thill, Marc; Fischer, Dorothea; Hoellen, Friederike; Kelling, Katharina; Dittmer, Christine; Landt, Solveig; Salehin, Darius; Diedrich, Klaus; Friedrich, Michael; Becker, Steffi
2010-05-01
Breast cancer is associated with inflammatory processes based on an up-regulation of cyclooxygenase-2 (COX-2) expression. The antiproliferative effects of calcitriol (1,25(OH)(2)D(3)) mediated via the vitamin D receptor (VDR) render vitamin D a promising target in breast cancer therapy. First data suggest a correlation between vitamin D and prostaglandin metabolism. We determined the expression of VDR, COX-2, 15-PGDH and the prostaglandin receptors EP(2)/EP(4) in normal and malignant breast tissue by real-time PCR and Western blot analysis, as well as 25(OH)(2)D(3) and PGE(2) plasma levels from healthy and breast cancer patients. Significantly higher COX-2, lower VDR and lower EP(2) and EP(4) receptor protein levels in the malignant tissue and a significantly lower 15-PGDH protein level in normal breast tissue were detected. Breast cancer patients older than 45 years, diagnosed and sampled in the winter time had significantly lower 25(OH)(2)D(3) and higher PGE(2) serum levels. The inverse correlation between VDR and both COX-2 and 15-PGDH, as well as between PGE(2) and 25(OH)(2)D(3) levels, suggests a possible link between VDR-associated target genes and prostaglandin metabolism.
Comparative Bioavailability of Sulindac in Capsule and Tablet Formulations
Reid, Joel M.; Mandrekar, Sumithra J.; Carlson, Elsa C.; Harmsen, W. Scott; Green, Erin M.; McGovern, Renee M.; Szabo, Eva; Ames, Matthew M.; Boring, Daniel; Limburg, Paul J.
2008-01-01
The cyclooxygenase-2 (COX-2) enzyme appears to be an important target for cancer chemoprevention. Given the recent emergence of potentially serious cardiovascular toxicity associated with selective COX-2 inhibitors, nonsteroidal antiinflammatory drugs (NSAIDs), which inhibit both COX-1 and COX-2, have received renewed attention as candidate chemoprevention agents. Sulindac has demonstrated consistent chemopreventive potential in preclinical studies, as well as in a limited number of clinical trials reported to date. For the current pharmacokinetic study, sulindac capsules were prepared to facilitate ample agent supplies for future intervention studies. Encapsulation of the parent compound (sulindac sulfoxide) can be readily accomplished, but the effects of alternate formulations on bioavailability have not been rigorously examined. In the present single-dose, two-period crossover trial, we conducted pharmacokinetic analyses of sulindac in capsule (test) versus tablet (reference) formulations. Overall, bioavailability appeared to be higher for the capsule compared to the tablet formulation, based on test-to-reference pharmacokinetic parameter ratios for the parent compound. However, additional analyses based on the sulfide and sulfone metabolites of sulindac with the same pharmacokinetic parameters indicated similar chemopreventive exposures between the capsule and tablet formulations. These data support the use of sulindac capsules, which can be readily prepared with matching placebos, in future blinded chemoprevention trials. PMID:18349286
Lee, Kyung Mi; Kang, Nam Joo; Han, Jin Hee; Lee, Ki Won; Lee, Hyong Joo
2007-11-14
Abnormal expression of cyclooxygenase-2 (COX-2) has been implicated in the development of cancer. There are multiple lines of evidence that red wine exerts chemopreventive effects, and 3,5,4'-trihydroxy- trans-stilbene (resveratrol), which is a non-flavonoid polyphenol found in red wine, has been reported to be a natural chemopreventive agent. However, other phytochemicals might contribute to the cancer-preventive activities of red wine, and the flavonol content of red wines is about 30 times higher than that of resveratrol. Here we report that 3,3',4',5,5',7-hexahydroxyflavone (myricetin), one of the major flavonols in red wine, inhibits 12-O-tetradecanoylphorbol-13-acetate (phorbol ester)-induced COX-2 expression in JB6 P+ mouse epidermal (JB6 P+) cells by suppressing activation of nuclear factor kappa B (NF-kappaB). Myricetin at 10 and 20 microM inhibited phorbol ester-induced upregulation of COX-2 protein, while resveratrol at the same concentration did not exert significant effects. The phorbol ester-induced production of prostaglandin E 2 was also attenuated by myricetin treatment. Myricetin inhibited both COX-2 and NF-kappaB transactivation in phorbol ester-treated JB6 P+ cells, as determined using a luciferase assay. Myricetin blocked the phorbol ester-stimulated DNA binding activity of NF-kappaB, as determined using an electrophoretic mobility shift assay. Moreover, TPCK (N-tosyl-l-phenylalanine chloromethyl ketone), a NF-kappaB inhibitor, significantly attenuated COX-2 expression and NF-kappaB promoter activity in phorbol ester-treated JB6 P+ cells. In addition, red wine extract inhibited phorbol ester-induced COX-2 expression and NF-kappaB transactivation in JB6 P+ cells. Collectively, these data suggest that myricetin contributes to the chemopreventive effects of red wine through inhibition of COX-2 expression by blocking the activation of NF-kappaB.
Erukainure, Ochuko L; Mesaik, Ahmed M; Muhammad, Aliyu; Chukwuma, Chika I; Manhas, Neha; Singh, Parvesh; Aremu, Oluwole S; Islam, Md Shahidul
2016-10-01
The immunomodulatory potentials of the crude methanolic extract and fractions [n-hexane (Hex), n-dichloromethane (DCM), ethyl acetate (EtOAc) and n-butanol (BuOH)] of Clerodendrum volubile flowers were investigated on whole blood phagocytic oxidative burst using luminol-amplified chemiluminescence technique. They were also investigated for their free radicals scavenging activities. The DCM fraction showed significant (p<0.05) anti-oxidative burst and free radical scavenging activities indicating high immunomodulatory and antioxidant potencies respectively. Cytotoxicity assay of the DCM fraction revealed a cytotoxic effect on CC-1 normal cell line. GCMS analysis revealed the presence of triacetin; 3,6-dimethyl-3-octanol; 2R - Acetoxymethyl-1,3,3-trimethtyl - 4t - (3-methyl-2-buten-1-yl) - 1c - cyclohexanol and Stigmastan - 3,5-diene in DCM fraction. These compounds were docked with the active sites of cyclooxygenase-2 (COX-2). Triacetin, 3,6-dimethyl-3-Octanol, and 2R-Acetoxymethyl-1,3,3-trimethtyl-4t-(3-methyl-2-buten-1-yl)-1c-cyclohexanol docked comfortably with COX-2 with good scoring function (-CDocker energy) indicating their inhibitory potency against COX-2. 3,6-dimethyl-3-Octanol, displayed the lowest predicted free energy of binding (-21.4kcalmol -1 ) suggesting its stronger interaction with COX-2, this was followed by 2R - Acetoxymethyl-1, 3, 3-trimethtyl-4t-(3-methyl-2-buten-1-yl)-1c-cyclhexanol (BE=-20.5kcalmol -1 ), and triacetin (BE=-10.9kcalmol -1 ). Stigmastan - 3,5-diene failed to dock with COX-2. The observed suppressive effect of the DCM fraction of C. volubile flower methanolic extract on phagocytic oxidative burst indicates an immunomodulatory potential. This is further reflected in its free scavenging activities and synergetic modulation of COX-2 activities by its identified compounds in silico. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Hye Gwang; Pokharel, Yuba Raj; Han, Eun Hee
2007-07-20
Panax ginseng is a widely used herbal medicine in East Asia and is reported to have a variety of pharmacological effects against cardiovascular diseases and cancers. Here we show a unique effect of ginsenoside Rd (Rd) on cyclooxygenase-2 (COX-2) expression in RAW264.7 macrophages. Rd (100 {mu}g/ml), but not other ginsenosides induced COX-2 and increased prostaglandin E{sub 2} production. Gel shift and Western blot analyses using nuclear fractions revealed that Rd increased both the DNA binding of and the nuclear levels of CCAAT/enhancer binding protein (C/EBP){alpha}/{beta} and cyclic AMP response element binding protein (CREB), but not of p65, in RAW264.7 cells.more » Moreover, Rd increased the luciferase reporter gene activity in cells transfected with a 574-bp mouse COX-2 promoter construct. Site-specific mutation analyses confirmed that Rd-mediated transcriptional activation of COX-2 gene was regulated by C/EBP and CREB. These results provide evidence that Rd activated C/EBP and CREB, and that the activation of C/EBP and CREB appears to be essential for induction of COX-2 in RAW264.7 cells.« less
Bauer, Jochen; Ripperger, Anne; Frantz, Stefan; Ergün, Süleyman; Schwedhelm, Edzard; Benndorf, Ralf A
2014-01-01
Isoprostanes are free radical-catalysed PG-like products of unsaturated fatty acids, such as arachidonic acid, which are widely recognized as reliable markers of systemic lipid peroxidation and oxidative stress in vivo. Moreover, activation of enzymes, such as COX-2, may contribute to isoprostane formation. Indeed, formation of isoprostanes is considerably increased in various diseases which have been linked to oxidative stress, such as cardiovascular disease (CVD), and may predict the atherosclerotic burden and the risk of cardiovascular complications in the latter patients. In addition, several isoprostanes may directly contribute to the functional consequences of oxidant stress via activation of the TxA2 prostanoid receptor (TP), for example, by affecting endothelial cell function and regeneration, vascular tone, haemostasis and ischaemia/reperfusion injury. In this context, experimental and clinical data suggest that selected isoprostanes may represent important alternative activators of the TP receptor when endogenous TxA2 levels are low, for example, in aspirin-treated individuals with CVD. In this review, we will summarize the current understanding of isoprostane formation, biochemistry and (patho) physiology in the cardiovascular context. PMID:24646155
Mallery, Susan R.; Zwick, Jared C.; Pei, Ping; Tong, Meng; Larsen, Peter E.; Shumway, Brian S.; Lu, Bo; Fields, Henry W.; Mumper, Russell J.; Stoner, Gary D.
2010-01-01
Reduced expression of proapoptotic and terminal differentiation genes in conjunction with increased levels of the proinflammatory and angiogenesis-inducing enzymes, cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS), correlate with malignant transformation of oral intraepithelial neoplasia (IEN). Accordingly, this study investigated the effects of a 10% (w/w) freeze-dried black raspberry gel on oral IEN histopathology, gene expression profiles, intraepithelial COX-2 and iNOS proteins, and microvascular densities. Our laboratories have shown that freeze-dried black raspberries possess antioxidant properties and also induce keratinocyte apoptosis and terminal differentiation. Oral IEN tissues were hemisected to provide samples for pretreatment diagnoses and establish baseline biochemical and molecular variables. Treatment of the remaining lesional tissue (0.5 g gel applied four times daily for 6 weeks) began 1 week after the initial biopsy. RNA was isolated from snap-frozen IEN lesions for microarray analyses, followed by quantitative reverse transcription-PCR validation. Additional epithelial gene-specific quantitative reverse transcription-PCR analyses facilitated the assessment of target tissue treatment effects. Surface epithelial COX-2 and iNOS protein levels and microvascular densities were determined by image analysis quantified immunohistochemistry. Topical berry gel application uniformly suppressed genes associated with RNA processing, growth factor recycling, and inhibition of apoptosis. Although the majority of participants showed posttreatment decreases in epithelial iNOS and COX-2 proteins, only COX-2 reductions were statistically significant. These data show that berry gel application modulated oral IEN gene expression profiles, ultimately reducing epithelial COX-2 protein. In a patient subset, berry gel application also reduced vascular densities in the superficial connective tissues and induced genes associated with keratinocyte terminal differentiation. PMID:18559542