Hiesel, Rudolf; Schobel, Werner; Schuster, Wolfgang; Brennicke, Axel
1987-01-01
Two loci encoding subunit III of the cytochrome oxidase (COX) in Oenothera mitochondria have been identified from a cDNA library of mitochondrial transcripts. A 657-bp sequence block upstream from the open reading frame is also present in the two copies of the COX subunit I gene and is presumably involved in homologous sequence rearrangement. The proximal points of sequence rearrangements are located 3 bp upstream from the COX I and 1139 bp upstream from the COX III initiation codons. The 5'-termini of both COX I and COX III mRNAs have been mapped in this common sequence confining the promoter region for the Oenothera mitochondrial COX I and COX III genes to the homologous sequence block. ImagesFig. 5. PMID:15981332
Li, Wen Hui; Jia, Wan Zhong; Qu, Zi Gang; Xie, Zhi Zhou; Luo, Jian Xun; Yin, Hong; Sun, Xiao Lin; Blaga, Radu; Fu, Bao Quan
2013-04-01
A total of 16 Taenia multiceps isolates collected from naturally infected sheep or goats in Gansu Province, China were characterized by sequences of mitochondrial cytochrome c oxidase subunit 1 (cox1) gene. The complete cox1 gene was amplified for individual T. multiceps isolates by PCR, ligated to pMD18T vector, and sequenced. Sequence analysis indicated that out of 16 T. multiceps isolates 10 unique cox1 gene sequences of 1,623 bp were obtained with sequence variation of 0.12-0.68%. The results showed that the cox1 gene sequences were highly conserved among the examined T. multiceps isolates. However, they were quite different from those of the other Taenia species. Phylogenetic analysis based on complete cox1 gene sequences revealed that T. multiceps isolates were composed of 3 genotypes and distinguished from the other Taenia species.
Li, Wen Hui; Jia, Wan Zhong; Qu, Zi Gang; Xie, Zhi Zhou; Luo, Jian Xun; Yin, Hong; Sun, Xiao Lin; Blaga, Radu
2013-01-01
A total of 16 Taenia multiceps isolates collected from naturally infected sheep or goats in Gansu Province, China were characterized by sequences of mitochondrial cytochrome c oxidase subunit 1 (cox1) gene. The complete cox1 gene was amplified for individual T. multiceps isolates by PCR, ligated to pMD18T vector, and sequenced. Sequence analysis indicated that out of 16 T. multiceps isolates 10 unique cox1 gene sequences of 1,623 bp were obtained with sequence variation of 0.12-0.68%. The results showed that the cox1 gene sequences were highly conserved among the examined T. multiceps isolates. However, they were quite different from those of the other Taenia species. Phylogenetic analysis based on complete cox1 gene sequences revealed that T. multiceps isolates were composed of 3 genotypes and distinguished from the other Taenia species. PMID:23710087
Johar, Kaid; Priya, Anusha; Dhar, Shilpa; Liu, Qiuli; Wong-Riley, Margaret T T
2013-11-01
Neurons are highly dependent on oxidative metabolism for their energy supply, and cytochrome c oxidase (COX) is a key energy-generating enzyme in the mitochondria. A unique feature of COX is that it is one of only four proteins in mammalian cells that are bigenomically regulated. Of its thirteen subunits, three are encoded in the mitochondrial genome and ten are nuclear-encoded on nine different chromosomes. The mechanism of regulating this multisubunit, bigenomic enzyme poses a distinct challenge. In recent years, we found that nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2) mediate such bigenomic coordination. The latest candidate is the specificity factor (Sp) family of proteins. In N2a cells, we found that Sp1 regulates all 13 COX subunits. However, we discovered recently that in primary neurons, it is Sp4 and not Sp1 that regulates some of the key glutamatergic receptor subunit genes. The question naturally arises as to the role of Sp4 in regulating COX in primary neurons. The present study utilized multiple approaches, including chromatin immunoprecipitation, promoter mutational analysis, knockdown and over-expression of Sp4, as well as functional assays to document that Sp4 indeed functionally regulate all 13 subunits of COX as well as mitochondrial transcription factors A and B. The present study discovered that among the specificity family of transcription factors, it is the less known neuron-specific Sp4 that regulates the expression of all 13 subunits of mitochondrial cytochrome c oxidase (COX) enzyme in primary neurons. Sp4 also regulates the three mitochondrial transcription factors (TFAM, TFB1M, and TFB2M) and a COX assembly protein SURF-1 in primary neurons. © 2013 International Society for Neurochemistry.
Analysis of the cytochrome c oxidase subunit II (COX2) gene in giant panda, Ailuropoda melanoleuca.
Ling, S S; Zhu, Y; Lan, D; Li, D S; Pang, H Z; Wang, Y; Li, D Y; Wei, R P; Zhang, H M; Wang, C D; Hu, Y D
2017-01-23
The giant panda, Ailuropoda melanoleuca (Ursidae), has a unique bamboo-based diet; however, this low-energy intake has been sufficient to maintain the metabolic processes of this species since the fourth ice age. As mitochondria are the main sites for energy metabolism in animals, the protein-coding genes involved in mitochondrial respiratory chains, particularly cytochrome c oxidase subunit II (COX2), which is the rate-limiting enzyme in electron transfer, could play an important role in giant panda metabolism. Therefore, the present study aimed to isolate, sequence, and analyze the COX2 DNA from individuals kept at the Giant Panda Protection and Research Center, China, and compare these sequences with those of the other Ursidae family members. Multiple sequence alignment showed that the COX2 gene had three point mutations that defined three haplotypes, with 60% of the sequences corresponding to haplotype I. The neutrality tests revealed that the COX2 gene was conserved throughout evolution, and the maximum likelihood phylogenetic analysis, using homologous sequences from other Ursidae species, showed clustering of the COX2 sequences of giant pandas, suggesting that this gene evolved differently in them.
Masha, Roland T; Houreld, Nicolette N; Abrahamse, Heidi
2013-02-01
Low-intensity laser irradiation (LILI) has been shown to stimulate cellular functions leading to increased adenosine triphosphate (ATP) synthesis. This study was undertaken to evaluate the effect of LILI on genes involved in the mitochondrial electron transport chain (ETC, complexes I-IV) and oxidative phosphorylation (ATP synthase). Four human skin fibroblast cell models were used in this study: normal non-irradiated cells were used as controls while wounded, diabetic wounded, and ischemic cells were irradiated. Cells were irradiated with a 660 nm diode laser with a fluence of 5 J/cm(2) and gene expression determined by quantitative real-time reverse transcription (RT) polymerase chain reaction (PCR). LILI upregulated cytochrome c oxidase subunit VIb polypeptide 2 (COX6B2), cytochrome c oxidase subunit VIc (COX6C), and pyrophosphatase (inorganic) 1 (PPA1) in diabetic wounded cells; COX6C, ATP synthase, H+transporting, mitochondrial Fo complex, subunit B1 (ATP5F1), nicotinamide adenine dinucleotide (NADH) dehydrogenase (ubiquinone) 1 alpha subcomplex, 11 (NDUFA11), and NADH dehydrogenase (ubiquinone) Fe-S protein 7 (NDUFS7) in wounded cells; and ATPase, H+/K+ exchanging, beta polypeptide (ATP4B), and ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C2 (subunit 9) (ATP5G2) in ischemic cells. LILI at 660 nm stimulates the upregulation of genes coding for subunits of enzymes involved in complexes I and IV and ATP synthase.
The complete mitochondrial genome sequence of Eimeria magna (Apicomplexa: Coccidia).
Tian, Si-Qin; Cui, Ping; Fang, Su-Fang; Liu, Guo-Hua; Wang, Chun-Ren; Zhu, Xing-Quan
2015-01-01
In the present study, we determined the complete mitochondrial DNA (mtDNA) sequence of Eimeria magna from rabbits for the first time, and compared its gene contents and genome organizations with that of seven Eimeria spp. from domestic chickens. The size of the complete mt genome sequence of E. magna is 6249 bp, which consists of 3 protein-coding genes (cytb, cox1 and cox3), 12 gene fragments for the large subunit (LSU) rRNA, and 7 gene fragments for the small subunit (SSU) rRNA, without transfer RNA genes, in accordance with that of Eimeria spp. from chickens. The putative direction of translation for three genes (cytb, cox1 and cox3) was the same as those of Eimeria species from domestic chickens. The content of A + T is 65.16% for E. magna mt genome (29.73% A, 35.43% T, 17.09 G and 17.75% C). The E. magna mt genome sequence provides novel mtDNA markers for studying the molecular epidemiology and population genetics of Eimeria spp. and has implications for the molecular diagnosis and control of rabbit coccidiosis.
Hardy, C M; Clark-Walker, G D
1991-07-01
The cytochrome oxidase subunit 1 gene (COX1) in K. lactis K8 mtDNA spans 8,826 bp and contains five exons (termed E1-E5) totalling 1,602 bp that show 88% nucleotide base matching and 91% amino acid homology to the equivalent gene in S. cerevisiae. The four introns (termed K1 cox1.1-1.4) contain open reading frames encoding proteins of 786, 333, 319 and 395 amino acids respectively that potentially encode maturase enzymes. The first intron belongs to group II whereas the remaining three are group I type B. Introns K1 cox1.1, 1.3, and 1.4 are found at identical locations to introns Sc cox1.2, 1.5 a, and 1.5 b respectively from S. cerevisiae. Horizontal transfer of an intron between recent progenitors of K. lactis and S. cerevisiae is suggested by the observation that K1 cox1.1 and Sc cox1.2 show 96% base matching. Sequence comparisons between K1 cox1.3/Sc cox1.5 a and K1 cox1.4/Sc cox1.5 b suggest that these introns are likely to have been present in the ancestral COX1 gene of these yeasts. Intron K1 cox1.2 is not found in S. cerevisiae and appears at an unique location in K. lactis. A feature of the DNA sequences of the group I introns K1 cox1.2, 1.3, and 1.4 is the presence of 11 GC-rich clusters inserted into both coding and noncoding regions. Immediately downstream of the COX1 gene is the ATPase subunit 8 gene (A8) that shows 82.6% base matching to its counterpart in S. cerevisiae mtDNA.
The complete mitochondrial genome sequence of Eimeria innocua (Eimeriidae, Coccidia, Apicomplexa).
Hafeez, Mian Abdul; Vrba, Vladimir; Barta, John Robert
2016-07-01
The complete mitochondrial genome of Eimeria innocua KR strain (Eimeriidae, Coccidia, Apicomplexa) was sequenced. This coccidium infects turkeys (Meleagris gallopavo), Bobwhite quails (Colinus virginianus), and Grey partridges (Perdix perdix). Genome organization and gene contents were comparable with other Eimeria spp. infecting galliform birds. The circular-mapping mt genome of E. innocua is 6247 bp in length with three protein-coding genes (cox1, cox3, and cytb), 19 gene fragments encoding large subunit (LSU) rRNA and 14 gene fragments encoding small subunit (SSU) rRNA. Like other Apicomplexa, no tRNA was encoded. The mitochondrial genome of E. innocua confirms its close phylogenetic affinities to Eimeria dispersa.
Utility of the cytochrome c oxidase subunit I gene for the diagnosis of toxoplasmosis using PCR.
Feng, Xue; Norose, Kazumi; Li, Kexin; Hikosaka, Kenji
2017-10-01
Toxoplasmosis is caused by the protozoan parasite Toxoplasma gondii, which belongs to the phylum Apicomplexa. Since this parasite causes severe clinical symptoms in immunocompromised patients, early diagnosis of toxoplasmosis is essential. PCR is currently used for early diagnosis, but there is no consensus regarding the most effective method for amplifying Toxoplasma DNA. In this study, we considered the utility of the cytochrome c subunit I (cox1) gene, which is encoded in the mitochondrial DNA of this parasite, as a novel target of PCR for the diagnosis of toxoplasmosis. To do this, we compared its copy number per haploid nuclear genome and the detection sensitivity of cox1-PCR with the previously reported target genes B1 and 18S rRNA and the AF146527 repeat element. We found that the copy number of cox1 was high and that the PCR using cox1 primers was more efficient at amplifying Toxoplasma DNA than the other PCR targets examined. In addition, PCR using clinical samples indicated that the cox1 gene would be useful for the diagnosis of toxoplasmosis. These findings suggest that use of cox1-PCR would facilitate the diagnosis of toxoplasmosis in clinical laboratories. Copyright © 2017 Elsevier B.V. All rights reserved.
Ono, Sayaka; Morimoto, Norihito; Korenaga, Masataka; Kumazawa, Hideo; Komatsu, Yutaka; Kuge, Itsu; Higashidani, Yoshihumi; Ogura, Katsumi; Sugiura, Tetsuro
2010-11-01
Identification of Diphyllobothrium species has been carried out based on their morphology, especially sexual organs. In addition to these criteria, PCR-based identification methods have been developed recently. A 20 year-old Japanese living in Kochi Prefecture passed tapeworm. He was successfully treated with single dose of gastrografin. We examined the morphologic features of the proglottids and eggs using histology and scanning electron microscope. We also analyzed mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of the proglottids. The causative tapeworm species was identified as D. nihonkaiense based on the results of morphologic features and genetic analysis. We discussed the advantage of PCR-based identification methods of Diphyllobothrium species using cox1 sequence in the clinical laboratory.
Loh, Jin Phang; Gao, Qiu Han Christine; Lee, Vernon J; Tetteh, Kevin; Drakeley, Chris
2016-01-01
INTRODUCTION Although there have been several phylogenetic studies on Plasmodium knowlesi (P. knowlesi), only cytochrome c oxidase subunit 1 (COX1) gene analysis has shown some geographical differentiation between the isolates of different countries. METHODS Phylogenetic analysis of locally acquired P. knowlesi infections, based on circumsporozoite, small subunit ribosomal ribonucleic acid (SSU rRNA), merozoite surface protein 1 and COX1 gene targets, was performed. The results were compared with the published sequences of regional isolates from Malaysia and Thailand. RESULTS Phylogenetic analysis of the circumsporozoite, SSU rRNA and merozoite surface protein 1 gene sequences for regional P. knowlesi isolates showed no obvious differentiation that could be attributed to their geographical origin. However, COX1 gene analysis showed that it was possible to differentiate between Singapore-acquired P. knowlesi infections and P. knowlesi infections from Peninsular Malaysia and Sarawak, Borneo, Malaysia. CONCLUSION The ability to differentiate between locally acquired P. knowlesi infections and imported P. knowlesi infections has important utility for the monitoring of P. knowlesi malaria control programmes in Singapore. PMID:26805667
Loh, Jin Phang; Gao, Qiu Han Christine; Lee, Vernon J; Tetteh, Kevin; Drakeley, Chris
2016-12-01
Although there have been several phylogenetic studies on Plasmodium knowlesi (P. knowlesi), only cytochrome c oxidase subunit 1 (COX1) gene analysis has shown some geographical differentiation between the isolates of different countries. Phylogenetic analysis of locally acquired P. knowlesi infections, based on circumsporozoite, small subunit ribosomal ribonucleic acid (SSU rRNA), merozoite surface protein 1 and COX1 gene targets, was performed. The results were compared with the published sequences of regional isolates from Malaysia and Thailand. Phylogenetic analysis of the circumsporozoite, SSU rRNA and merozoite surface protein 1 gene sequences for regional P. knowlesi isolates showed no obvious differentiation that could be attributed to their geographical origin. However, COX1 gene analysis showed that it was possible to differentiate between Singapore-acquired P. knowlesi infections and P. knowlesi infections from Peninsular Malaysia and Sarawak, Borneo, Malaysia. The ability to differentiate between locally acquired P. knowlesi infections and imported P. knowlesi infections has important utility for the monitoring of P. knowlesi malaria control programmes in Singapore. Copyright: © Singapore Medical Association
Bar-Yaacov, Dan; Bouskila, Amos; Mishmar, Dan
2013-01-01
Recently, we found dramatic mitochondrial DNA divergence of Israeli Chamaeleo chamaeleon populations into two geographically distinct groups. We aimed to examine whether the same pattern of divergence could be found in nuclear genes. However, no genomic resource is available for any chameleon species. Here we present the first chameleon transcriptome, obtained using deep sequencing (SOLiD). Our analysis identified 164,000 sequence contigs of which 19,000 yielded unique BlastX hits. To test the efficacy of our sequencing effort, we examined whether the chameleon and other available reptilian transcriptomes harbored complete sets of genes comprising known biochemical pathways, focusing on the nDNA-encoded oxidative phosphorylation (OXPHOS) genes as a model. As a reference for the screen, we used the human 86 (including isoforms) known structural nDNA-encoded OXPHOS subunits. Analysis of 34 publicly available vertebrate transcriptomes revealed orthologs for most human OXPHOS genes. However, OXPHOS subunit COX8 (Cytochrome C oxidase subunit 8), including all its known isoforms, was consistently absent in transcriptomes of iguanian lizards, implying loss of this subunit during the radiation of this suborder. The lack of COX8 in the suborder Iguania is intriguing, since it is important for cellular respiration and ATP production. Our sequencing effort added a new resource for comparative genomic studies, and shed new light on the evolutionary dynamics of the OXPHOS system. PMID:24009133
Bar-Yaacov, Dan; Bouskila, Amos; Mishmar, Dan
2013-01-01
Recently, we found dramatic mitochondrial DNA divergence of Israeli Chamaeleo chamaeleon populations into two geographically distinct groups. We aimed to examine whether the same pattern of divergence could be found in nuclear genes. However, no genomic resource is available for any chameleon species. Here we present the first chameleon transcriptome, obtained using deep sequencing (SOLiD). Our analysis identified 164,000 sequence contigs of which 19,000 yielded unique BlastX hits. To test the efficacy of our sequencing effort, we examined whether the chameleon and other available reptilian transcriptomes harbored complete sets of genes comprising known biochemical pathways, focusing on the nDNA-encoded oxidative phosphorylation (OXPHOS) genes as a model. As a reference for the screen, we used the human 86 (including isoforms) known structural nDNA-encoded OXPHOS subunits. Analysis of 34 publicly available vertebrate transcriptomes revealed orthologs for most human OXPHOS genes. However, OXPHOS subunit COX8 (Cytochrome C oxidase subunit 8), including all its known isoforms, was consistently absent in transcriptomes of iguanian lizards, implying loss of this subunit during the radiation of this suborder. The lack of COX8 in the suborder Iguania is intriguing, since it is important for cellular respiration and ATP production. Our sequencing effort added a new resource for comparative genomic studies, and shed new light on the evolutionary dynamics of the OXPHOS system.
Mam33 promotes cytochrome c oxidase subunit I translation in Saccharomyces cerevisiae mitochondria.
Roloff, Gabrielle A; Henry, Michael F
2015-08-15
Three mitochondrial DNA-encoded proteins, Cox1, Cox2, and Cox3, comprise the core of the cytochrome c oxidase complex. Gene-specific translational activators ensure that these respiratory chain subunits are synthesized at the correct location and in stoichiometric ratios to prevent unassembled protein products from generating free oxygen radicals. In the yeast Saccharomyces cerevisiae, the nuclear-encoded proteins Mss51 and Pet309 specifically activate mitochondrial translation of the largest subunit, Cox1. Here we report that Mam33 is a third COX1 translational activator in yeast mitochondria. Mam33 is required for cells to adapt efficiently from fermentation to respiration. In the absence of Mam33, Cox1 translation is impaired, and cells poorly adapt to respiratory conditions because they lack basal fermentative levels of Cox1. © 2015 Roloff and Henry. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Ooka, Hideshi; Hashimoto, Kazuhito; Nakamura, Ryuhei
2018-05-14
Understanding the design strategy of photosynthetic and respiratory enzymes is important to develop efficient artificial catalysts for oxygen evolution and reduction reactions. Here, based on a bioinformatic analysis of cyanobacterial oxygen evolution and reduction enzymes (photosystem II: PS II and cytochrome c oxidase: COX, respectively), the gene encoding the catalytic D1 subunit of PS II was found to be expressed individually across 38 phylogenetically diverse strains, which is in contrast to the operon structure of the genes encoding major COX subunits. Selective synthesis of the D1 subunit minimizes the repair cost of PS II, which allows compensation for its instability by lowering the turnover number required to generate a net positive energy yield. The different bioenergetics observed between PS II and COX suggest that in addition to the catalytic activity rationalized by the Sabatier principle, stability factors have also provided a major influence on the design strategy of biological multi-electron transfer enzymes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Isolation and characterization of the pea cytochrome c oxidase Vb gene.
Kubo, Nakao; Arimura, Shin-Ichi; Tsutsumi, Nobuhiro; Kadowaki, Koh-Ichi; Hirai, Masashi
2006-11-01
Three copies of the gene that encodes cytochrome c oxidase subunit Vb were isolated from the pea (PscoxVb-1, PscoxVb-2, and PscoxVb-3). Northern Blot and reverse transcriptase-PCR analyses suggest that all 3 genes are transcribed in the pea. Each pea coxVb gene has an N-terminal extended sequence that can encode a mitochondrial targeting signal, called a presequence. The localization of green fluorescent proteins fused with the presequence strongly suggests the targeting of pea COXVb proteins to mitochondria. Each pea coxVb gene has 5 intron sites within the coding region. These are similar to Arabidopsis and rice, although the intron lengths vary greatly. A phylogenetic analysis of coxVb suggests the occurrence of gene duplication events during angiosperm evolution. In particular, 2 duplication events might have occurred in legumes, grasses, and Solanaceae. A comparison of amino acid sequences in COXVb or its counterpart shows the conservation of several amino acids within a zinc finger motif. Interestingly, a homology search analysis showed that bacterial protein COG4391 and a mitochondrial complex I 13 kDa subunit also have similar amino acid compositions around this motif. Such similarity might reflect evolutionary relationships among the 3 proteins.
Kher, Chandni P; Doerder, F Paul; Cooper, Jason; Ikonomi, Pranvera; Achilles-Day, Undine; Küpper, Frithjof C; Lynn, Denis H
2011-01-01
DNA barcoding using the mitochondrial cytochromecoxidase subunit I (cox-1) gene has recently gained popularity as a tool for species identification of a variety of taxa. The primary objective of our research was to explore the efficacy of using cox-1 barcoding for species identification within the genusTetrahymena. We first increased intraspecific sampling forTetrahymena canadensis, Tetrahymena hegewischi, Tetrahymena pyriformis, Tetrahymena rostrata, Tetrahymena thermophila, and Tetrahymena tropicalis. Increased sampling efforts show that intraspecific sequence divergence is typically less than 1%, though it may be more in some species. The barcoding also showed that some strains might be misidentified or mislabeled. We also used cox-1 barcodes to provide species identifications for 51 unidentified environmental isolates, with a success rate of 98%. Thus, cox-1 barcoding is an invaluable tool for protistologists, especially when used in conjunction with morphological studies. 2010 Elsevier GmbH. All rights reserved.
Hallmann, Kerstin; Kudin, Alexei P; Zsurka, Gábor; Kornblum, Cornelia; Reimann, Jens; Stüve, Burkhard; Waltz, Stephan; Hattingen, Elke; Thiele, Holger; Nürnberg, Peter; Rüb, Cornelia; Voos, Wolfgang; Kopatz, Jens; Neumann, Harald; Kunz, Wolfram S
2016-02-01
Isolated cytochrome c oxidase (complex IV) deficiency is one of the most frequent respiratory chain defects in humans and is usually caused by mutations in proteins required for assembly of the complex. Mutations in nuclear-encoded structural subunits are very rare. In a patient with Leigh-like syndrome presenting with leukodystrophy and severe epilepsy, we identified a homozygous splice site mutation in COX8A, which codes for the ubiquitously expressed isoform of subunit VIII, the smallest nuclear-encoded subunit of complex IV. The mutation, affecting the last nucleotide of intron 1, leads to aberrant splicing, a frame-shift in the highly conserved exon 2, and decreased amount of the COX8A transcript. The loss of the wild-type COX8A protein severely impairs the stability of the entire cytochrome c oxidase enzyme complex and manifests in isolated complex IV deficiency in skeletal muscle and fibroblasts, similar to the frequent c.845_846delCT mutation in the assembly factor SURF1 gene. Stability and activity of complex IV could be rescued in the patient's fibroblasts by lentiviral expression of wild-type COX8A. Our findings demonstrate that COX8A is indispensable for function of human complex IV and its mutation causes human disease. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Carnevale, Silvana; Malandrini, Jorge Bruno; Pantano, María Laura; Soria, Claudia Cecilia; Rodrigues-Silva, Rosângela; Machado-Silva, José Roberto; Velásquez, Jorge Néstor; Kamenetzky, Laura
2017-10-15
Fasciola hepatica is a trematode showing genetic variation among isolates from different regions of the world. The objective of this work was to characterize for the first time F. hepatica isolates circulating in different regions of Argentina. Twenty-two adult flukes were collected from naturally infected bovine livers in different areas from Argentina and used for DNA extraction. We carried out PCR amplification and sequence analysis of the ribosomal internal transcribed spacer 1 (ITS1), mitochondrial nicotinamide adenine dinucleotide dehydrogenase subunits 4 and 5 (nad4 and nad5) and mitochondrial cytochrome c oxidase subunit I (cox1) genes as genetic markers. Phylogenies were reconstructed using maximum parsimony algorithm. A total of 6 haplotypes were found for cox1, 4 haplotypes for nad4 and 3 haplotypes for nad5. The sequenced ITS1 fragment was identical in all samples. The analyzed cox1 gene fragment is the most variable marker and is recommended for future analyses. No geographic association was found in the Argentinean samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Hu, Yao-Dong; Pang, Hui-Zhong; Li, De-Sheng; Ling, Shan-Shan; Lan, Dan; Wang, Ye; Zhu, Yun; Li, Di-Yan; Wei, Rong-Ping; Zhang, He-Min; Wang, Cheng-Dong
2016-11-05
As the rate-limiting enzyme of the mitochondrial respiratory chain, cytochrome c oxidase (COX) plays a crucial role in biological metabolism. "Living fossil" giant panda (Ailuropoda melanoleuca) is well-known for its special bamboo diet. In an effort to explore functional variation of COX1 in the energy metabolism behind giant panda's low-energy bamboo diet, we looked at genetic variation of COX1 gene in giant panda, and tested for its selection effect. In 1545 base pairs of the gene from 15 samples, 9 positions were variable and 1 mutation leaded to an amino acid sequence change. COX1 gene produces six haplotypes, nucleotide (pi), haplotype diversity (Hd). In addition, the average number of nucleotide differences (k) is 0.001629±0.001036, 0.8083±0.0694 and 2.517, respectively. Also, dN/dS ratio is significantly below 1. These results indicated that giant panda had a low population genetic diversity, and an obvious purifying selection of the COX1 gene which reduces synthesis of ATP determines giant panda's low-energy bamboo diet. Phylogenetic trees based on the COX1 gene were constructed to demonstrate that giant panda is the sister group of other Ursidae. Copyright © 2016 Elsevier B.V. All rights reserved.
Poyau, A; Buchet, K; Bouzidi, M F; Zabot, M T; Echenne, B; Yao, J; Shoubridge, E A; Godinot, C
2000-02-01
We have studied the fibroblasts of three patients suffering from Leigh syndrome associated with cytochrome c oxidase deficiency (LS-COX-). Their mitochondrial DNA was functional and all nuclear COX subunits had a normal sequence. The expression of transcripts encoding mitochondrial and nuclear COX subunits was normal or slightly increased. Similarly, the OXA1 transcript coding for a protein involved in COX assembly was increased. However, several COX-protein subunits were severely depressed, indicating deficient COX assembly. Surf1, a factor involved in COX biogenesis, was recently reported as mutated in LS-COX- patients, all mutations predicting a truncated protein. Sequence analysis of SURF1 gene in our three patients revealed seven heterozygous mutations, six of which were new : an insertion, a nonsense mutation, a splicing mutation of intron 7 in addition to three missense mutations. The mutation G385 A (Gly124-->Glu) changes a Gly that is strictly conserved in Surfl homologs of 12 species. The substitution G618 C (Asp202-->His), changing an Asp that is conserved only in mammals, appears to be a polymorphism. The mutation T751 C changes Ile246 to Thr, a position at which a hydrophobic amino acid is conserved in all eukaryotic and some bacterial species. Replacing Ile246 by Thr disrupts a predicted beta sheet structure present in all higher eukaryotes. COX activity could be restored in fibroblasts of the three patients by complementation with a retroviral vector containing normal SURF1 cDNA. These mutations identify domains essential to Surf1 protein structure and/or function.
Mutant POLG2 Disrupts DNA Polymerase γ Subunits and Causes Progressive External Ophthalmoplegia
Longley, Matthew J.; Clark, Susanna; Yu Wai Man, Cynthia; Hudson, Gavin; Durham, Steve E.; Taylor, Robert W.; Nightingale, Simon; Turnbull, Douglass M.; Copeland, William C.; Chinnery, Patrick F.
2006-01-01
DNA polymerase γ (pol γ) is required to maintain the genetic integrity of the 16,569-bp human mitochondrial genome (mtDNA). Mutation of the nuclear gene for the catalytic subunit of pol γ (POLG) has been linked to a wide range of mitochondrial diseases involving mutation, deletion, and depletion of mtDNA. We describe a heterozygous dominant mutation (c.1352G→A/p.G451E) in POLG2, the gene encoding the p55 accessory subunit of pol γ, that causes progressive external ophthalmoplegia with multiple mtDNA deletions and cytochrome c oxidase (COX)–deficient muscle fibers. Biochemical characterization of purified, recombinant G451E-substituted p55 protein in vitro revealed incomplete stimulation of the catalytic subunit due to compromised subunit interaction. Although G451E p55 retains a wild-type ability to bind DNA, it fails to enhance the DNA-binding strength of the p140-p55 complex. In vivo, the disease most likely arises through haplotype insufficiency or heterodimerization of the mutated and wild-type proteins, which promote mtDNA deletions by stalling the DNA replication fork. The progressive accumulation of mtDNA deletions causes COX deficiency in muscle fibers and results in the clinical phenotype. PMID:16685652
Almeida, Daniela; Maldonado, Emanuel; Vasconcelos, Vitor; Antunes, Agostinho
2015-01-01
Mitochondrial protein-coding genes (mt genes) encode subunits forming complexes of crucial cellular pathways, including those involved in the vital process of oxidative phosphorylation (OXPHOS). Despite the vital role of the mitochondrial genome (mt genome) in the survival of organisms, little is known with respect to its adaptive implications within marine invertebrates. The molluscan Class Cephalopoda is represented by a marine group of species known to occupy contrasting environments ranging from the intertidal to the deep sea, having distinct metabolic requirements, varied body shapes and highly advanced visual and nervous systems that make them highly competitive and successful worldwide predators. Thus, cephalopods are valuable models for testing natural selection acting on their mitochondrial subunits (mt subunits). Here, we used concatenated mt genes from 17 fully sequenced mt genomes of diverse cephalopod species to generate a robust mitochondrial phylogeny for the Class Cephalopoda. We followed an integrative approach considering several branches of interest–covering cephalopods with distinct morphologies, metabolic rates and habitats–to identify sites under positive selection and localize them in the respective protein alignment and/or tridimensional structure of the mt subunits. Our results revealed significant adaptive variation in several mt subunits involved in the energy production pathway of cephalopods: ND5 and ND6 from Complex I, CYTB from Complex III, COX2 and COX3 from Complex IV, and in ATP8 from Complex V. Furthermore, we identified relevant sites involved in protein-interactions, lining proton translocation channels, as well as disease/deficiencies related sites in the aforementioned complexes. A particular case, revealed by this study, is the involvement of some positively selected sites, found in Octopoda lineage in lining proton translocation channels (site 74 from ND5) and in interactions between subunits (site 507 from ND5) of Complex I. PMID:26285039
Pietan, Lucas L.; Spradling, Theresa A.
2016-01-01
In animals, mitochondrial DNA (mtDNA) typically occurs as a single circular chromosome with 13 protein-coding genes and 22 tRNA genes. The various species of lice examined previously, however, have shown mitochondrial genome rearrangements with a range of chromosome sizes and numbers. Our research demonstrates that the mitochondrial genomes of two species of chewing lice found on pocket gophers, Geomydoecus aurei and Thomomydoecus minor, are fragmented with the 1,536 base-pair (bp) cytochrome-oxidase subunit I (cox1) gene occurring as the only protein-coding gene on a 1,916–1,964 bp minicircular chromosome in the two species, respectively. The cox1 gene of T. minor begins with an atypical start codon, while that of G. aurei does not. Components of the non-protein coding sequence of G. aurei and T. minor include a tRNA (isoleucine) gene, inverted repeat sequences consistent with origins of replication, and an additional non-coding region that is smaller than the non-coding sequence of other lice with such fragmented mitochondrial genomes. Sequences of cox1 minichromosome clones for each species reveal extensive length and sequence heteroplasmy in both coding and noncoding regions. The highly variable non-gene regions of G. aurei and T. minor have little sequence similarity with one another except for a 19-bp region of phylogenetically conserved sequence with unknown function. PMID:27589589
Nikmanesh, Bahram; Mirhendi, Hossein; Mahmoudi, Shahram; Rokni, Mohammad Bagher
2017-12-01
Echinococcus granulosus is now considered a complex consisting of at least four species and ten genotypes. Different molecular targets have been described for molecular characterization of E. granulosus; however, in almost all studies only one or two of the targets have been used, and only limited data is available on the utilization of multiple loci. Therefore, we investigated the genetic diversity among 64 strains isolated from 138 cyst specimens of human and animal isolates, using a set of nuclear and mitochondrial genes; i.e., cytochrome c oxidase subunit 1 (cox1), NADH dehydrogenase subunit 1 (nad1), ATPase subunit 6 (atp6), 12S rRNA (12S), and Actin II (act II). In comparison to the use of molecular reference targets (nad1 + cox1), using singular target (act II or 12S or atp6) yielded lower discriminatory power. Act II and 12S genes could accurately discriminate the G6 genotype, but they were not able to differentiate between G1 and G3 genotypes. As the G1 and G3 genotypes belong to the E. granulosus sensu stricto, low intra-species variation was observed for act II and 12S. The atp6 gene could identify the G3 genotype but could not differentiate G6 and G1 genotypes. Using concatenated sequence of five genes (cox1 + nad1 + atp6 + 12S + act II), genotypes were identified accurately, and markedly higher resolution was obtained in comparison with the use of reference markers (nad1 + cox1) only. Application of multilocus sequence analysis (MLSA) to large-scale studies could provide valuable epidemiological data to make efficient control and management measures for cystic echinococcosis. Copyright © 2017 Elsevier Inc. All rights reserved.
Genotypes and clinical phenotypes in children with cytochrome-c oxidase deficiency.
Darin, N; Moslemi, A-R; Lebon, S; Rustin, P; Holme, E; Oldfors, A; Tulinius, M
2003-12-01
Cytochrome c oxidase (COX) deficiency has been associated with a wide spectrum of clinical features and may be caused by mutations in different genes of both the mitochondrial and the nuclear DNA. In an attempt to correlate the clinical phenotype with the genotype in 16 childhood cases, mtDNA was analysed for deletion, depletion, and mutations in the three genes encoding COX subunits and the 22 tRNA genes. Furthermore, nuclear DNA was analysed for mutations in the SURF1, SCO2, COX10, and COX17 genes and cases with mtDNA depletion were analysed for mutations in the TK2 gene. SURF1-mutations were identified in three out of four cases with Leigh syndrome while a mutation in the mitochondrial tRNA (trp) gene was identified in the fourth. One case with mtDNA depletion had mutations in the TK2 gene. In two cases with leukoencephalopathy, one case with encephalopathy, five cases with fatal infantile myopathy and cardiomyopathy, two cases with benign infantile myopathy, and one case with mtDNA depletion, no mutations were identified. We conclude that COX deficiency in childhood should be suspected in a wide range of clinical settings and although an increasing number of genetic defects have been identified, the underlying mutations remain unclear in the majority of the cases.
Priya, Anusha; Johar, Kaid; Wong-Riley, Margaret T T
2013-01-01
Neuronal activity and energy metabolism are tightly coupled processes. Previously, we found that nuclear respiratory factor 1 (NRF-1) transcriptionally co-regulates energy metabolism and neuronal activity by regulating all 13 subunits of the critical energy generating enzyme, cytochrome c oxidase (COX), as well as N-methyl-d-aspartate (NMDA) receptor subunits 1 and 2B, GluN1 (Grin1) and GluN2B (Grin2b). We also found that another transcription factor, nuclear respiratory factor 2 (NRF-2 or GA-binding protein) regulates all subunits of COX as well. The goal of the present study was to test our hypothesis that NRF-2 also regulates specific subunits of NMDA receptors, and that it functions with NRF-1 via one of three mechanisms: complementary, concurrent and parallel, or a combination of complementary and concurrent/parallel. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, in vivo chromatin immunoprecipitation of mouse neuroblastoma cells and rat visual cortical tissue, promoter mutations, real-time quantitative PCR, and western blot analysis, NRF-2 was found to functionally regulate Grin1 and Grin2b genes, but not any other NMDA subunit genes. Grin1 and Grin2b transcripts were up-regulated by depolarizing KCl, but silencing of NRF-2 prevented this up-regulation. On the other hand, over-expression of NRF-2 rescued the down-regulation of these subunits by the impulse blocker TTX. NRF-2 binding sites on Grin1 and Grin2b are conserved among species. Our data indicate that NRF-2 and NRF-1 operate in a concurrent and parallel manner in mediating the tight coupling between energy metabolism and neuronal activity at the molecular level. Copyright © 2012 Elsevier B.V. All rights reserved.
Deng, Youjin; Zhang, Qihui; Ming, Ray; Lin, Longji; Lin, Xiangzhi; Lin, Yiying; Li, Xiao; Xie, Baogui; Wen, Zhiqiang
2016-06-30
Hypomyces aurantius is a mycoparasite that causes cobweb disease, a most serious disease of cultivated mushrooms. Intra-species identification is vital for disease control, however the lack of genomic data makes development of molecular markers challenging. Small size, high copy number, and high mutation rate of fungal mitochondrial genome makes it a good candidate for intra and inter species differentiation. In this study, the mitochondrial genome of H. H.a0001 was determined from genomic DNA using Illumina sequencing. The roughly 72 kb genome shows all major features found in other Hypocreales: 14 common protein genes, large and small subunit rRNAs genes and 27 tRNAs genes. Gene arrangement comparison showed conserved gene orders in Hypocreales mitochondria are relatively conserved, with the exception of Acremonium chrysogenum and Acremonium implicatum. Mitochondrial genome comparison also revealed that intron length primarily contributes to mitogenome size variation. Seventeen introns were detected in six conserved genes: five in cox1, four in rnl, three in cob, two each in atp6 and cox3, and one in cox2. Four introns were found to contain two introns or open reading frames: cox3-i2 is a twintron containing two group IA type introns; cox2-i1 is a group IB intron encoding two homing endonucleases; and cox1-i4 and cox1-i3 both contain two open reading frame (ORFs). Analyses combining secondary intronic structures, insertion sites, and similarities of homing endonuclease genes reveal two group IA introns arranged side by side within cox3-i2. Mitochondrial data for H. aurantius provides the basis for further studies relating to population genetics and species identification.
Deng, Youjin; Zhang, Qihui; Ming, Ray; Lin, Longji; Lin, Xiangzhi; Lin, Yiying; Li, Xiao; Xie, Baogui; Wen, Zhiqiang
2016-01-01
Hypomyces aurantius is a mycoparasite that causes cobweb disease, a most serious disease of cultivated mushrooms. Intra-species identification is vital for disease control, however the lack of genomic data makes development of molecular markers challenging. Small size, high copy number, and high mutation rate of fungal mitochondrial genome makes it a good candidate for intra and inter species differentiation. In this study, the mitochondrial genome of H. H.a0001 was determined from genomic DNA using Illumina sequencing. The roughly 72 kb genome shows all major features found in other Hypocreales: 14 common protein genes, large and small subunit rRNAs genes and 27 tRNAs genes. Gene arrangement comparison showed conserved gene orders in Hypocreales mitochondria are relatively conserved, with the exception of Acremonium chrysogenum and Acremonium implicatum. Mitochondrial genome comparison also revealed that intron length primarily contributes to mitogenome size variation. Seventeen introns were detected in six conserved genes: five in cox1, four in rnl, three in cob, two each in atp6 and cox3, and one in cox2. Four introns were found to contain two introns or open reading frames: cox3-i2 is a twintron containing two group IA type introns; cox2-i1 is a group IB intron encoding two homing endonucleases; and cox1-i4 and cox1-i3 both contain two open reading frame (ORFs). Analyses combining secondary intronic structures, insertion sites, and similarities of homing endonuclease genes reveal two group IA introns arranged side by side within cox3-i2. Mitochondrial data for H. aurantius provides the basis for further studies relating to population genetics and species identification. PMID:27376282
Coxibs interfere with the action of aspirin by binding tightly to one monomer of cyclooxygenase-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rimon, Gilad; Sidhu, Ranjinder S.; Lauver, D. Adam
Pain associated with inflammation involves prostaglandins synthesized from arachidonic acid (AA) through cyclooxygenase-2 (COX-2) pathways while thromboxane A{sub 2} formed by platelets from AA via cyclooxygenase-1 (COX-1) mediates thrombosis. COX-1 and COX-2 are both targets of nonselective nonsteroidal antiinflammatory drugs (nsNSAIDs) including aspirin whereas COX-2 activity is preferentially blocked by COX-2 inhibitors called coxibs. COXs are homodimers composed of identical subunits, but we have shown that only one subunit is active at a time during catalysis; moreover, many nsNSAIDS bind to a single subunit of a COX dimer to inhibit the COX activity of the entire dimer. Here, we reportmore » the surprising observation that celecoxib and other coxibs bind tightly to a subunit of COX-1. Although celecoxib binding to one monomer of COX-1 does not affect the normal catalytic processing of AA by the second, partner subunit, celecoxib does interfere with the inhibition of COX-1 by aspirin in vitro. X-ray crystallographic results obtained with a celecoxib/COX-1 complex show how celecoxib can bind to one of the two available COX sites of the COX-1 dimer. Finally, we find that administration of celecoxib to dogs interferes with the ability of a low dose of aspirin to inhibit AA-induced ex vivo platelet aggregation. COX-2 inhibitors such as celecoxib are widely used for pain relief. Because coxibs exhibit cardiovascular side effects, they are often prescribed in combination with low-dose aspirin to prevent thrombosis. Our studies predict that the cardioprotective effect of low-dose aspirin on COX-1 may be blunted when taken with coxibs.« less
COX16 promotes COX2 metallation and assembly during respiratory complex IV biogenesis
Aich, Abhishek; Wang, Cong; Chowdhury, Arpita; Ronsör, Christin; Pacheu-Grau, David; Richter-Dennerlein, Ricarda; Dennerlein, Sven
2018-01-01
Cytochrome c oxidase of the mitochondrial oxidative phosphorylation system reduces molecular oxygen with redox equivalent-derived electrons. The conserved mitochondrial-encoded COX1- and COX2-subunits are the heme- and copper-center containing core subunits that catalyze water formation. COX1 and COX2 initially follow independent biogenesis pathways creating assembly modules with subunit-specific, chaperone-like assembly factors that assist in redox centers formation. Here, we find that COX16, a protein required for cytochrome c oxidase assembly, interacts specifically with newly synthesized COX2 and its copper center-forming metallochaperones SCO1, SCO2, and COA6. The recruitment of SCO1 to the COX2-module is COX16- dependent and patient-mimicking mutations in SCO1 affect interaction with COX16. These findings implicate COX16 in CuA-site formation. Surprisingly, COX16 is also found in COX1-containing assembly intermediates and COX2 recruitment to COX1. We conclude that COX16 participates in merging the COX1 and COX2 assembly lines. PMID:29381136
The complete mitochondrial genomes of five Eimeria species infecting domestic rabbits.
Liu, Guo-Hua; Tian, Si-Qin; Cui, Ping; Fang, Su-Fang; Wang, Chun-Ren; Zhu, Xing-Quan
2015-12-01
Rabbit coccidiosis caused by members of the genus Eimeria can cause enormous economic impact worldwide, but the genetics, epidemiology and biology of these parasites remain poorly understood. In the present study, we sequenced and annotated the complete mitochondrial (mt) genomes of five Eimeria species that commonly infect the domestic rabbits. The complete mt genomes of Eimeria intestinalis, Eimeria flavescens, Eimeria media, Eimeria vejdovskyi and Eimeria irresidua were 6261bp, 6258bp, 6168bp, 6254bp, 6259bp in length, respectively. All of the mt genomes consist of 3 genes for proteins (cytb, cox1, and cox3), 14 gene fragments for the large subunit (LSU) rRNA and 11 gene fragments for the small subunit (SSU) rRNA, but no transfer RNA (tRNA) genes. The gene order of the mt genomes is similar to that of Plasmodium, but distinct from Haemosporida and Theileria. Phylogenetic analyses based on full nucleotide sequences using Bayesian analysis revealed that the monophyly of the Eimeria of rabbits was strongly statistically supported with a Bayesian posterior probabilities. These data provide novel mtDNA markers for studying the population genetics and molecular epidemiology of the Eimeria species, and should have implications for the molecular diagnosis, prevention and control of coccidiosis in rabbits. Copyright © 2015 Elsevier Inc. All rights reserved.
Wang, Pengfei; Sha, Tao; Zhang, Yunrun; Cao, Yang; Mi, Fei; Liu, Cunli; Yang, Dan; Tang, Xiaozhao; He, Xiaoxia; Dong, Jianyong; Wu, Jinyan; Yoell, Shanze; Yoell, Liam; Zhang, Ke-Qin; Zhang, Ying; Xu, Jianping
2017-05-09
In the majority of sexual eukaryotes, the mitochondrial genomes are inherited uniparentally. As a result, individual organisms are homoplasmic, containing mitochondrial DNA (mtDNA) from a single parent. Here we analyzed the mitochondrial genotypes in Clade I of the gourmet mushroom Thelephora ganbajun from its broad geographic distribution range. A total of 299 isolates from 28 geographic locations were sequenced at three mitochondrial loci: the mitochondrial small ribosomal RNA gene, and the cytochrome c oxidase subunits I (COX1) and III (COX3) genes. Quantitative PCR analyses showed that the strains had about 60-160 copies of mitochondrial genomes per cell. Interestingly, while no evidence of heteroplasmy was found at the 12S rRNA gene, 262 of the 299 isolates had clear evidence of heterogeneity at either the COX1 (261 isolates) or COX3 (12 isolates) gene fragments. The COX1 heteroplasmy was characterized by two types of introns residing at different sites of the same region and at different frequencies among the isolates. Allelic association analyses of the observed mitochondrial polymorphic nucleotide sites suggest that mtDNA recombination is common in natural populations of this fungus. Our results contrast the prevailing view that heteroplasmy, if exists, is only transient in basidiomycete fungi.
Eya, Jonathan C.; Ukwuaba, Vitalis O.; Yossa, Rodrigue; Gannam, Ann L.
2015-01-01
A 2 × 3 factorial study was conducted to evaluate the effects of dietary lipid level on the expression of mitochondrial and nuclear genes involved in electron transport chain in all-female rainbow trout Oncorhynchus mykiss. Three practical diets with a fixed crude protein content of 40%, formulated to contain 10% (40/10), 20% (40/20) and 30% (40/30) dietary lipid, were fed to apparent satiety to triplicate groups of either low-feed efficient (F120; 217.66 ± 2.24 g initial average mass) or high-feed efficient (F136; 205.47 ± 1.27 g) full-sib families of fish, twice per day, for 90 days. At the end of the experiment, the results showed that there is an interactive effect of the dietary lipid levels and the phenotypic feed efficiency (growth rate and feed efficiency) on the expression of the mitochondrial genes nd1 (NADH dehydrogenase subunit 1), cytb (Cytochrome b), cox1 (Cytochrome c oxidase subunits 1), cox2 (Cytochrome c oxidase subunits 2) and atp6 (ATP synthase subunit 6) and nuclear genes ucp2α (uncoupling proteins 2 alpha), ucp2β (uncoupling proteins 2 beta), pparα (peroxisome proliferator-activated receptor alpha), pparβ (peroxisome proliferatoractivated receptor beta) and ppargc1α (proliferator-activated receptor gamma coactivator 1 alpha) in fish liver, intestine and muscle, except on ppargc1α in the muscle which was affected by the diet and the family separately. Also, the results revealed that the expression of mitochondrial genes is associated with that of nuclear genes involved in electron transport chain in fish liver, intestine and muscle. Furthermore, this work showed that the expression of mitochondrial genes parallels with the expression of genes encoding uncoupling proteins (UCP) in the liver and the intestine of rainbow trout. This study for the first time presents the molecular basis of the effects of dietary lipid level on mitochondrial and nuclear genes involved in mitochondrial electron transport chain in fish. PMID:25853266
Yong, Hoi-Sen; Lim, Phaik-Eem; Eamsobhana, Praphathip
2017-01-01
The tephritid fruit fly Zeugodacus tau (Walker) is a polyphagous fruit pest of economic importance in Asia. Studies based on genetic markers indicate that it forms a species complex. We report here (1) the complete mitogenome of Z. tau from Malaysia and comparison with that of China as well as the mitogenome of other congeners, and (2) the relationship of Z. tau taxa from different geographical regions based on sequences of cytochrome c oxidase subunit I gene. The complete mitogenome of Z. tau had a total length of 15631 bp for the Malaysian specimen (ZT3) and 15835 bp for the China specimen (ZT1), with similar gene order comprising 37 genes (13 protein-coding genes—PCGs, 2 rRNA genes, and 22 tRNA genes) and a non-coding A + T-rich control region (D-loop). Based on 13 PCGs and 15 mt-genes, Z. tau NC_027290 (China) and Z. tau ZT1 (China) formed a sister group in the lineage containing also Z. tau ZT3 (Malaysia). Phylogenetic analysis based on partial sequences of cox1 gene indicates that the taxa from China, Japan, Laos, Malaysia, Bangladesh, India, Sri Lanka, and Z. tau sp. A from Thailand belong to Z. tau sensu stricto. A complete cox1 gene (or 13 PCGs or 15 mt-genes) instead of partial sequence is more appropriate for determining phylogenetic relationship. PMID:29216281
Johar, Kaid; Priya, Anusha; Wong-Riley, Margaret T T
2014-02-01
A major source of energy demand in neurons is the Na(+)/K(+)-ATPase pump that restores the ionic gradient across the plasma membrane subsequent to depolarizing neuronal activity. The energy comes primarily from mitochondrial oxidative metabolism, of which cytochrome c oxidase (COX) is a key enzyme. Recently, we found that all 13 subunits of COX are regulated by specificity (Sp) factors, and that the neuron-specific Sp4, but not Sp1 or Sp3, regulates the expression of key glutamatergic receptor subunits as well. The present study sought to test our hypothesis that Sp4 also regulates Na(+)/K(+)-ATPase subunit genes in neurons. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, chromatin immunoprecipitation, promoter mutational analysis, over-expression, and RNA interference studies, we found that Sp4, with minor contributions from Sp1 and Sp3, functionally regulate the Atp1a1, Atp1a3, and Atp1b1 subunit genes of Na(+)/K(+)-ATPase in neurons. Transcripts of all three genes were up-regulated by depolarizing KCl stimulation and down-regulated by the impulse blocker tetrodotoxin (TTX), indicating that their expression was activity-dependent. Silencing of Sp4 blocked the up-regulation of these genes induced by KCl, whereas over-expression of Sp4 rescued them from TTX-induced suppression. The effect of silencing or over-expressing Sp4 on primary neurons was much greater than those of Sp1 or Sp3. The binding sites of Sp factors on these genes are conserved among mice, rats and humans. Thus, Sp4 plays an important role in the transcriptional coupling of energy generation and energy consumption in neurons. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
USDA-ARS?s Scientific Manuscript database
An extensive phylogenetic analysis and genus-level taxonomic revision of Paranoplocephala Lühe, 1910 -like cestodes (Cyclophyllidea, Anoplocephalidae) are presented. The phylogenetic analysis is based on DNA sequences of two partial mitochondrial genes, i.e. cytochrome c oxidase subunit 1 (cox1) and...
Schäfer, B; Merlos-Lange, A M; Anderl, C; Welser, F; Zimmer, M; Wolf, K
1991-01-01
In this paper we report the inability of four group I introns in the gene encoding subunit I of cytochrome c oxidase (cox1) and the group II intron in the apocytochrome b gene (cob) to splice autocatalytically. Furthermore we present the characterization of the first cox1 intron in the mutator strain anar-14 and the construction and characterization of strains with intronless mitochondrial genomes. We provide evidence that removal of introns at the DNA level (termed DNA splicing) is dependent on an active RNA maturase. Finally we demonstrate that the absence of introns does not abolish homologous mitochondrial recombination.
Devarapalli, Pratap; Kumavath, Ranjith N; Barh, Debmalya; Azevedo, Vasco
2014-01-01
Turritopsis nutricula (T. nutricula) is the one of the known reported organisms that can revert its life cycle to the polyp stage even after becoming sexually mature, defining itself as the only immortal organism in the animal kingdom. Therefore, the animal is having prime importance in basic biological, aging, and biomedical researches. However, till date, the genome of this organism has not been sequenced and even there is no molecular phylogenetic study to reveal its close relatives. Here, using phylogenetic analysis based on available 16s rRNA gene and protein sequences of Cytochrome oxidase subunit-I (COI or COX1) of T. nutricula, we have predicted the closest relatives of the organism. While we found Nemopsis bachei could be closest organism based on COX1 gene sequence; T. dohrnii may be designated as the closest taxon to T. nutricula based on rRNA. Moreover, we have figured out four species that showed similar root distance based on COX1 protein sequence.
Changes in gene expression linked to methamphetamine-induced dopaminergic neurotoxicity.
Xie, Tao; Tong, Liqiong; Barrett, Tanya; Yuan, Jie; Hatzidimitriou, George; McCann, Una D; Becker, Kevin G; Donovan, David M; Ricaurte, George A
2002-01-01
The purpose of these studies was to examine the role of gene expression in methamphetamine (METH)-induced dopamine (DA) neurotoxicity. First, the effects of the mRNA synthesis inhibitor, actinomycin-D, and the protein synthesis inhibitor, cycloheximide, were examined. Both agents afforded complete protection against METH-induced DA neurotoxicity and did so independently of effects on core temperature, DA transporter function, or METH brain levels, suggesting that gene transcription and mRNA translation play a role in METH neurotoxicity. Next, microarray technology, in combination with an experimental approach designed to facilitate recognition of relevant gene expression patterns, was used to identify gene products linked to METH-induced DA neurotoxicity. This led to the identification of several genes in the ventral midbrain associated with the neurotoxic process, including genes for energy metabolism [cytochrome c oxidase subunit 1 (COX1), reduced nicotinamide adenine dinucleotide ubiquinone oxidoreductase chain 2, and phosphoglycerate mutase B], ion regulation (members of sodium/hydrogen exchanger and sodium/bile acid cotransporter family), signal transduction (adenylyl cyclase III), and cell differentiation and degeneration (N-myc downstream-regulated gene 3 and tau protein). Of these differentially expressed genes, we elected to further examine the increase in COX1 expression, because of data implicating energy utilization in METH neurotoxicity and the known role of COX1 in energy metabolism. On the basis of time course studies, Northern blot analyses, in situ hybridization results, and temperature studies, we now report that increased COX1 expression in the ventral midbrain is linked to METH-induced DA neuronal injury. The precise role of COX1 and other genes in METH neurotoxicity remains to be elucidated.
Wolff, G; Burger, G; Lang, B F; Kück, U
1993-01-01
The mitochondrial DNA from the colourless alga Prototheca wickerhamii contains two mosaic genes as was revealed from complete sequencing of the circular extranuclear genome. The genes for the large subunit of the ribosomal RNA (LSUrRNA) as well as for subunit I of the cytochrome oxidase (coxI) carry two and three intronic sequences respectively. On the basis of their canonical nucleotide sequences they can be classified as group I introns. Phylogenetic comparisons of the coxI protein sequences allow us to conclude that the P.wickerhamii mtDNA is much closer related to higher plant mtDNAs than to those of the chlorophyte alga C.reinhardtii. The comparison of the intron sequences revealed several unusual features: (1) The P.wickerhamii introns are structurally related to mitochondrial introns from various ascomycetous fungi. (2) Phylogenetic analyses indicate a close relationship between fungal and algal intronic sequences. (3) The P. wickerhamii introns are located at positions within the structural genes which can be considered as preferred intron insertion sites in homologous mitochondrial genes from fungi or liverwort. In all cases, the sequences adjacent to the insertion sites are very well conserved over large evolutionary distances. Our finding of highly similar introns in fungi and algae is consistent with the idea that introns have already been present in the bacterial ancestors of present day mitochondria and evolved concomitantly with the organelles. PMID:7680126
Xie, Yue; Zhou, Xuan; Zhang, Zhihe; Wang, Chengdong; Sun, Yun; Liu, Tianyu; Gu, Xiaobin; Wang, Tao; Peng, Xuerong; Yang, Guangyou
2014-12-23
Infection with the parasitic nematode, Baylisascaris schroederi (Ascaridida: Nematoda), is one of the most important causes of death in giant pandas, and was responsible for half of deaths between 2001 and 2005. Mitochondrial (mt) DNA sequences of parasites can unveil their genetic diversity and depict their likely dynamic evolution and therefore may provide insights into parasite survival and responses to host changes, as well as parasite control. Based on previous studies, the present study further annotated the genetic variability and structure of B. schroederi populations by combining two different mtDNA markers, ATPase subunit 6 (atp6) and cytochrome c oxidase subunit I (cox1). Both sequences were completely amplified and genetically analyzed among 57 B. schroederi isolates, which were individually collected from ten geographical regions located in three important giant panda habitats in China (Minshan, Qionglai and Qinling mountain ranges). For the DNA dataset, we identified 20 haplotypes of atp6, 24 haplotypes of cox1, and 39 haplotypes of atp6 + cox1. Further haplotype network and phylogenetic analyses demonstrated that B. schroederi populations were predominantly driven by three common haplotypes, atp6 A1, cox1 C10, and atp6 + cox1 H11. However, due to low rates of gene differentiation between the three populations, both the atp6 and cox1 genes appeared not to be significantly associated with geographical divisions. In addition, high gene flow was detected among the B. schroederi populations, consistent with previous studies, suggesting that this parasite may be essentially homogenous across endemic areas. Finally, neutrality tests and mismatch analysis indicated that B. schroederi had undergone earlier demographic expansion. These results confirmed that B. schroederi populations do not follow a pattern of isolation by distance, further revealing the possible existence of physical connections before geographic separation. This study should also contribute to an improved understanding of the population genetics and evolutionary biology of B. schroederi and assist in the control of baylisascariasis in giant pandas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Haipeng; Xu Beibei; Sheveleva, Elena
2008-10-01
Glucocorticoids induce COX-2 expression in rat cardiomyocytes. While investigating whether phosphatidylinositol 3 kinase (PI3K) plays a role in corticosterone (CT)-induced COX-2, we found that LY294002 (LY29) but not wortmannin (WM) attenuates CT from inducing COX-2 gene expression. Expression of a dominant-negative mutant of p85 subunit of PI3K failed to inhibit CT from inducing COX-2 expression. CT did not activate PI3K/AKT signaling pathway whereas LY29 and WM decreased the activity of PI3K. LY303511 (LY30), a structural analogue and a negative control for PI3K inhibitory activity of LY29, also suppressed COX-2 induction. These data suggest PI3K-independent mechanisms in regulating CT-induced COX-2 expression.more » LY29 and LY30 do not inhibit glucocorticoid receptor transactivity. Both compounds have been reported to inhibit Casein Kinase 2 activity and modulate potassium and calcium levels independent of PI3K, while LY29 has been reported to inhibit mammalian Target of Rapamycin (mTOR), and DNA-dependent Protein Kinase (DNA-PK). Inhibitor of Casein Kinase 2 (CK2), mTOR or DNA-PK failed to prevent CT from inducing COX-2 expression. Tetraethylammonium (TEA), a potassium channel blocker, and nimodipine, a calcium channel blocker, both attenuated CT from inducing COX-2 gene expression. CT was found to increase intracellular Ca{sup 2+} concentration, which can be inhibited by LY29, TEA or nimodipine. These data suggest a possible role of calcium instead of PI3K in CT-induced COX-2 expression in cardiomyocytes.« less
Kuzmenko, Anton; Derbikova, Ksenia; Salvatori, Roger; Tankov, Stoyan; Atkinson, Gemma C; Tenson, Tanel; Ott, Martin; Kamenski, Piotr; Hauryliuk, Vasili
2016-01-05
The mitochondrial genome almost exclusively encodes a handful of transmembrane constituents of the oxidative phosphorylation (OXPHOS) system. Coordinated expression of these genes ensures the correct stoichiometry of the system's components. Translation initiation in mitochondria is assisted by two general initiation factors mIF2 and mIF3, orthologues of which in bacteria are indispensible for protein synthesis and viability. mIF3 was thought to be absent in Saccharomyces cerevisiae until we recently identified mitochondrial protein Aim23 as the missing orthologue. Here we show that, surprisingly, loss of mIF3/Aim23 in S. cerevisiae does not indiscriminately abrogate mitochondrial translation but rather causes an imbalance in protein production: the rate of synthesis of the Atp9 subunit of F1F0 ATP synthase (complex V) is increased, while expression of Cox1, Cox2 and Cox3 subunits of cytochrome c oxidase (complex IV) is repressed. Our results provide one more example of deviation of mitochondrial translation from its bacterial origins.
Cytochrome oxidase assembly does not require catalytically active cytochrome C.
Barrientos, Antoni; Pierre, Danielle; Lee, Johnson; Tzagoloff, Alexander
2003-03-14
Cytochrome c oxidase (COX), the terminal enzyme of the mitochondrial respiratory chain, catalyzes the transfer of electrons from reduced cytochrome c to molecular oxygen. COX assembly requires the coming together of nuclear- and mitochondrial-encoded subunits and the assistance of a large number of nuclear gene products acting at different stages of maturation of the enzyme. In Saccharomyces cerevisiae, expression of cytochrome c, encoded by CYC1 and CYC7, is required not only for electron transfer but also for COX assembly through a still unknown mechanism. We have attempted to distinguish between a functional and structural requirement of cytochrome c in COX assembly. A cyc1/cyc7 double null mutant strain was transformed with the cyc1-166 mutant gene (Schweingruber, M. E., Stewart, J. W., and Sherman, F. (1979) J. Biol. Chem. 254, 4132-4143) that expresses stable but catalytically inactive iso-1-cytochrome c. The COX content of the cyc1/cyc7 double mutant strain harboring non-functional iso-1-cytochrome c has been characterized spectrally, functionally, and immunochemically. The results of these studies demonstrate that cytochrome c plays a structural rather than functional role in assembly of cytochrome c oxidase. In addition to its requirement for COX assembly, cytochrome c also affects turnover of the enzyme. Mutants containing wild type apocytochrome c in mitochondria lack COX, suggesting that only the folded and mature protein is able to promote COX assembly.
The alpaca (Vicugna pacos) as a natural intermediate host of Taenia omissa (Cestoda: Taeniidae).
Gomez-Puerta, Luis A; Yucra, Dora; Lopez-Urbina, Maria T; Gonzalez, Armando E
2017-11-15
Three metacestodes were collected from the mesentery and the surface of the liver of three adult alpacas (Vicugna pacos) in a slaughterhouse located in Puno, Peru. Various features of the metacestodes were observed for morphological identification. A molecular diagnosis was performed by PCR-based sequencing of mitochondrial genes of cytochrome c oxidase subunit 1 (cox1) and the NADH dehydrogenase subunit 1 (nad1). All metacestodes were identified as Taenia omissa by morphology and molecular methods The isolates from alpacas showed significant sequence similarity with previously reported isolates of T. omissa (95.7-98.1% in cox1 and 94.6-95.1% in nad1). Our report is the first to detect T. omissa metacestodes in alpacas and to reveal that alpacas are natural intermediate hosts for this parasite. Copyright © 2017 Elsevier B.V. All rights reserved.
Zeng, Zhaolin; Zhao, Wei; Liu, Aiqin; Piao, Daxun; Jiang, Tao; Cao, Jianping; Shen, Yujuan; Liu, Hua; Zhang, Weizhe
2014-01-01
Cystic echinococcosis (CE) caused by the larval stage of Echinococcus granulosus sensu lato (s.l.) is one of the most important zoonotic parasitic diseases worldwide and 10 genotypes (G1–G10) have been reported. In China, almost all the epidemiological and genotyping studies of E. granulosus s.l. are from the west and northwest pasturing areas. However, in Heilongjiang Province of northeastern China, no molecular information is available on E. granulosus s.l. To understand and to speculate on possible transmission patterns of E. granulosus s.l., we molecularly identified and genotyped 10 hydatid cysts from hepatic CE patients in Heilongjiang Province based on mitochondrial cytochrome c oxidase subunit I (cox1), cytochrome b (cytb) and NADH dehydrogenase subunit 1 (nad1) genes. Two genotypes were identified, G1 genotype (n = 6) and G7 genotype (n = 4). All the six G1 genotype isolates were identical to each other at the cox1 locus; three and two different sequences were obtained at the cytb and nad1 loci, respectively, with two cytb gene sequences not being described previously. G7 genotype isolates were identical to each other at the cox1, cytb and nad1 loci; however, the cytb gene sequence was not described previously. This is the first report of G7 genotype in humans in China. Three new cytb gene sequences from G1 and G7 genotypes might reflect endemic genetic characterizations. Pigs might be the main intermediate hosts of G7 genotype in our investigated area by homology analysis. The results will aid in making more effective control strategies for the prevention of transmission of E. granulosus s.l. PMID:25329820
NASA Astrophysics Data System (ADS)
Stump, Craig S.; Short, Kevin R.; Bigelow, Maureen L.; Schimke, Jill M.; Sreekumaran Nair, K.
2003-06-01
Mitochondria are the primary site of skeletal muscle fuel metabolism and ATP production. Although insulin is a major regulator of fuel metabolism, its effect on mitochondrial ATP production is not known. Here we report increases in vastus lateralis muscle mitochondrial ATP production capacity (32-42%) in healthy humans (P < 0.01) i.v. infused with insulin (1.5 milliunits/kg of fat-free mass per min) while clamping glucose, amino acids, glucagon, and growth hormone. Increased ATP production occurred in association with increased mRNA levels from both mitochondrial (NADH dehydrogenase subunit IV) and nuclear [cytochrome c oxidase (COX) subunit IV] genes (164-180%) encoding mitochondrial proteins (P < 0.05). In addition, muscle mitochondrial protein synthesis, and COX and citrate synthase enzyme activities were increased by insulin (P < 0.05). Further studies demonstrated no effect of low to high insulin levels on muscle mitochondrial ATP production for people with type 2 diabetes mellitus, whereas matched nondiabetic controls increased 16-26% (P < 0.02) when four different substrate combinations were used. In conclusion, insulin stimulates mitochondrial oxidative phosphorylation in skeletal muscle along with synthesis of gene transcripts and mitochondrial protein in human subjects. Skeletal muscle of type 2 diabetic patients has a reduced capacity to increase ATP production with high insulin levels. cytochrome c oxidase | NADH dehydrogenase subunit IV | amino acids | citrate synthase
Liu, Mingjian; Fan, Xinpeng; Gao, Feng; Gao, Shan; Yu, Yuhe; Warren, Alan; Huang, Jie
2016-11-01
A cryptic species of the Tetrahymena pyriformis complex, Tetrahymena australis, has been known for a long time but never properly diagnosed based on taxonomic methods. The species name is thus invalid according to the International Code of Zoological Nomenclature. Recently, a population isolated from a freshwater lake in Wuhan, China was investigated using live observations, silver staining methods and gene sequence data. This organism can be separated from other described species of the T. pyriformis complex by its relatively small body size, the number of somatic kineties and differences in sequences of two genes, namely the small subunit ribosomal RNA (SSU rRNA) and the mitochondrial cytochrome c oxidase subunit I (cox1). We compared the SSU rRNA gene sequences of all available Tetrahymena species to reveal the nucleotide differences within this genus. The sequence of the Wuhan population is identical to two sequences of a previously isolated strain of T. australis (ATCC #30831). Phylogenetic analyses indicate that these three sequences (X56167, M98015, KT334373) cluster with Tetrahymena shanghaiensis (EF070256) in a polytomy. However, sequence divergence of the cox1 gene between the Wuhan population and another strain of T. australis (ATCC #30271) is 1.4%, suggesting that these may represent different subspecies. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.
Mahami-Oskouei, Mahmoud; Kaseb-Yazdanparast, Azam; Spotin, Adel; Shahbazi, Abbas; Adibpour, Mohammad; Ahmadpour, Ehsan; Ghabouli-Mehrabani, Nader
2016-12-01
In genetic diversity and population structure of Echinococcus granulosus, the gene flow can illustrate how the Echinococcus isolates have epidemiologically drifted among endemic neighboring countries. 51 isolates of hydatid cysts were collected from human, dog, cattle and sheep in northwest Iran, where placed co-border with Turkey. DNA samples were extracted, amplified and subjected to sequence analysis of NADH dehydrogenase subunit 1 (nad1) and cytochrome oxidase subunit 1 (cox1) genes. As well, sequences of Echinococcus at east to the southeast regions of Turkey were retrieved from GenBank database for the cox1 gene. The confirmed isolates were grouped as G1 (n = 74) and G3 (n = 6) genotypes. 31 unique haplotypes were identified inferred by the analyzed sequences of cox1 among two distinct populations. A parsimonious network of the sequence haplotypes displayed star-like features in the overall population containing TUR1, IR15 and IR22 as the most common haplotypes. According to AMOVA test, the high value of haplotype diversity (0.94758-0.98901) of E. granulosus was reflected the total genetic variability within populations while nucleotide diversity was low (0.00727-0.01046) in Iranian and Turkish metapopulations. Neutrality indices of the cox1 were shown negative values (-15.078 to -10.057) in Echinococcus populations which indicating a significant divergence from neutrality. A pairwise fixation index (Fst) as a degree of gene flow was partially high value for all populations (0.151). The statistically Fst value indicates that E. granulosus sensu stricto (G1-G3) are genetically moderate differentiated among Iranian and Turkish isolates. The occurrence of TUR1 and IR15 elucidate that there is possibly the dawn of domestication due to transfer of alleles between populations through the diffusion of stock raising or anthropogenic movements. To evaluate the hypothetical evolutionary scenario, further exploration is necessitated to analyze isolates from various host species in rest Middle East countries. Copyright © 2016 Elsevier Inc. All rights reserved.
Mutations in the SURF1 gene associated with Leigh syndrome and cytochrome C oxidase deficiency.
Péquignot, M O; Dey, R; Zeviani, M; Tiranti, V; Godinot, C; Poyau, A; Sue, C; Di Mauro, S; Abitbol, M; Marsac, C
2001-05-01
Cytochrome c oxidase (COX) deficiency is one of the major causes of Leigh Syndrome (LS), a fatal encephalopathy of infancy or childhood, characterized by symmetrical lesions in the basal ganglia and brainstem. Mutations in the nuclear genes encoding COX subunits have not been found in patients with LS and COX deficiency, but mutations have been identified in SURF1. SURF1 encodes a factor involved in COX biogenesis. To date, 30 different mutations have been reported in 40 unrelated patients. We aim to provide an overview of all known mutations in SURF1, and to propose a common nomenclature. Twelve of the mutations were insertion/deletion mutations in exons 1, 4, 6, 8, and 9; 10 were missense/nonsense mutations in exons 2, 4, 5, 7, and 8; and eight were detected at splicing sites in introns 3 to 7. The most frequent mutation was 312_321del 311_312insAT which was found in 12 patients out of 40. Twenty mutations have been described only once. We also list all polymorphisms discovered to date. Copyright 2001 Wiley-Liss, Inc.
Genetic Identification of Orientobilharzia turkestanicum from Sheep Isolates in Iran.
Tabaripour, Reza; Youssefi, Mohammad Reza; Tabaripour, Rabeeh
2015-01-01
Adult worms of Orientobilharzia turkestanicum live in the portal veins, or intestinal veins of cattle, sheep, goat and many other mammals causing orientobilharziasis. Orientobilharziasis causes significant economic losses to livestock industry of Iran. However, there is limited information about genotypes of O. turkestanicum in Iran. In this study, 30 isolates of O. turkestanicum obtained from sheep were characterized by sequencing mitochondrial cytochrome c oxidase subunit 1 (cox1) and nicotinamide adenine dinucleotide dehydrogenase subunit 1 (nad1) gene. The mitochondrial cox1 and nad1 DNA were amplified by polymerase chain reaction (PCR) and then sequenced and compared with O. turkestanicum and that of other members of the Schistosomatidae available in Gen-Bank(™). Phylogenetic relationships between them were re-constructed using the maximum parsimony method. Phylogenetic analyses done in present study placed O. turkestanicum within the Schistosoma genus, and indicates that O. turkestanicum was phylogenetically closer to the African schistosome group than to the Asian schistosome group. Comparison of nad1 and cox1 sequences of O. turkestanicum obtained in this study with corresponding sequences available in Genbank(™) revealed some sequence variations and provided evidence for presence of microvarients in Iran.
Control of human energy expenditure by cytochrome c oxidase subunit IV-2.
Schiffer, Tomas A; Peleli, Maria; Sundqvist, Michaela L; Ekblom, Björn; Lundberg, Jon O; Weitzberg, Eddie; Larsen, Filip J
2016-09-01
Resting metabolic rate (RMR) in humans shows pronounced individual variations, but the underlying molecular mechanism remains elusive. Cytochrome c oxidase (COX) plays a key role in control of metabolic rate, and recent studies of the subunit 4 isoform 2 (COX IV-2) indicate involvement in the cellular response to hypoxia and oxidative stress. We evaluated whether the COX subunit IV isoform composition may explain the pronounced individual variations in resting metabolic rate (RMR). RMR was determined in healthy humans by indirect calorimetry and correlated to levels of COX IV-2 and COX IV-1 in vastus lateralis. Overexpression and knock down of the COX IV isoforms were performed in primary myotubes followed by evaluation of the cell respiration and production of reactive oxygen species. Here we show that COX IV-2 protein is constitutively expressed in human skeletal muscle and strongly correlated to RMR. Primary human myotubes overexpressing COX IV-2 displayed markedly (>60%) lower respiration, reduced (>50%) cellular H2O2 production, higher resistance toward both oxidative stress, and severe hypoxia compared with control cells. These results suggest an important role of isoform COX IV-2 in the control of energy expenditure, hypoxic tolerance, and mitochondrial ROS homeostasis in humans. Copyright © 2016 the American Physiological Society.
Lisenkova, A A; Grigorenko, A P; Tyazhelova, T V; Andreeva, T V; Gusev, F E; Manakhov, A D; Goltsov, A Yu; Piraino, S; Miglietta, M P; Rogaev, E I
2017-02-01
Turritopsis dohrnii (Cnidaria, Hydrozoa, Hydroidolina, Anthoathecata) is the only known metazoan that is capable of reversing its life cycle via morph rejuvenation from the adult medusa stage to the juvenile polyp stage. Here, we present a complete mitochondrial (mt) genome sequence of T. dohrnii, which harbors genes for 13 proteins, two transfer RNAs, and two ribosomal RNAs. The T. dohrnii mt genome is characterized by typical features of species in the Hydroidolina subclass, such as a high A+T content (71.5%), reversed transcriptional orientation for the large rRNA subunit gene, and paucity of CGN codons. An incomplete complementary duplicate of the cox1 gene was found at the 5' end of the T. dohrnii mt chromosome, as were variable repeat regions flanking the chromosome. We identified species-specific variations (nad5, nad6, cob, and cox1 genes) and putative selective constraints (atp8, nad1, nad2, and nad5 genes) in the mt genes of T. dohrnii, and predicted alterations in tertiary structures of respiratory chain proteins (NADH4, NADH5, and COX1 proteins) of T. dohrnii. Based on comparative analyses of available hydrozoan mt genomes, we also determined the taxonomic relationships of T. dohrnii, recovering Filifera IV as a paraphyletic taxon, and assessed intraspecific diversity of various Hydrozoa species. Copyright © 2016 Elsevier Inc. All rights reserved.
Hüttemann, Maik; Lee, Icksoo; Gao, Xiufeng; Pecina, Petr; Pecinova, Alena; Liu, Jenney; Aras, Siddhesh; Sommer, Natascha; Sanderson, Thomas H.; Tost, Monica; Neff, Frauke; Aguilar-Pimentel, Juan Antonio; Becker, Lore; Naton, Beatrix; Rathkolb, Birgit; Rozman, Jan; Favor, Jack; Hans, Wolfgang; Prehn, Cornelia; Puk, Oliver; Schrewe, Anja; Sun, Minxuan; Höfler, Heinz; Adamski, Jerzy; Bekeredjian, Raffi; Graw, Jochen; Adler, Thure; Busch, Dirk H.; Klingenspor, Martin; Klopstock, Thomas; Ollert, Markus; Wolf, Eckhard; Fuchs, Helmut; Gailus-Durner, Valérie; Hrabě de Angelis, Martin; Weissmann, Norbert; Doan, Jeffrey W.; Bassett, David J. P.; Grossman, Lawrence I.
2012-01-01
Cytochrome c oxidase (COX) is the terminal enzyme of the mitochondrial electron transport chain. The purpose of this study was to analyze the function of lung-specific cytochrome c oxidase subunit 4 isoform 2 (COX4i2) in vitro and in COX4i2-knockout mice in vivo. COX was isolated from cow lung and liver as control and functionally analyzed. COX4i2-knockout mice were generated and the effect of the gene knockout was determined, including COX activity, tissue energy levels, noninvasive and invasive lung function, and lung pathology. These studies were complemented by a comprehensive functional screen performed at the German Mouse Clinic (Neuherberg, Germany). We show that isolated cow lung COX containing COX4i2 is about twice as active (88 and 102% increased activity in the presence of allosteric activator ADP and inhibitor ATP, respectively) as liver COX, which lacks COX4i2. In COX4i2-knockout mice, lung COX activity and cellular ATP levels were significantly reduced (−50 and −29%, respectively). Knockout mice showed decreased airway responsiveness (60% reduced Penh and 58% reduced airway resistance upon challenge with 25 and 100 mg methacholine, respectively), and they developed a lung pathology deteriorating with age that included the appearance of Charcot-Leyden crystals. In addition, there was an interesting sex-specific phenotype, in which the knockout females showed reduced lean mass (−12%), reduced total oxygen consumption rate (−8%), improved glucose tolerance, and reduced grip force (−14%) compared to wild-type females. Our data suggest that high activity lung COX is a central determinant of airway function and is required for maximal airway responsiveness and healthy lung function. Since airway constriction requires energy, we propose a model in which reduced tissue ATP levels explain protection from airway hyperresponsiveness, i.e., absence of COX4i2 leads to reduced lung COX activity and ATP levels, which results in impaired airway constriction and thus reduced airway responsiveness; long-term lung pathology develops in the knockout mice due to impairment of energy-costly lung maintenance processes; and therefore, we propose mitochondrial oxidative phosphorylation as a novel target for the treatment of respiratory diseases, such as asthma.—Hüttemann, M., Lee, I., Gao, X., Pecina, P., Pecinova, A., Liu, J., Aras, S., Sommer, N., Sanderson, T. H., Tost, M., Neff, F., Aguilar-Pimentel, J. A., Becker, L., Naton, B., Rathkolb, B., Rozman, J., Favor, J., Hans, W., Prehn, C., Puk, O., Schrewe, A., Sun, M., Höfler, H., Adamski, J., Bekeredjian, R., Graw, J., Adler, T., Busch, D. H., Klingenspor, M., Klopstock, T., Ollert, M., Wolf, E., Fuchs, H., Gailus-Durner, V., Hrabě de Angelis, M., Weissmann, N., Doan, J. W., Bassett, D. J. P., Grossman, L. I. Cytochrome c oxidase subunit 4 isoform 2-knockout mice show reduced enzyme activity, airway hyporeactivity, and lung pathology. PMID:22730437
Song, Hao; Dang, Xin; He, Yuan-Qiu; Zhang, Tao; Wang, Hai-Yan
2017-01-01
The veined rapa whelk Rapana venosa is an important commercial shellfish in China and quantitative real-time PCR (qRT-PCR) has become the standard method to study gene expression in R. venosa . For accurate and reliable gene expression results, qRT-PCR assays require housekeeping genes as internal controls, which display highly uniform expression in different tissues or stages of development. However, to date no studies have validated housekeeping genes in R. venosa for use as internal controls for qRT-PCR. In this study, we selected the following 13 candidate genes for suitability as internal controls: elongation factor-1 α ( EF-1α ), α -actin ( ACT ), cytochrome c oxidase subunit 1 ( COX1 ), nicotinamide adenine dinucleotide dehydrogenase (ubiquinone) 1 α subcomplex subunit 7 ( NDUFA7 ), 60S ribosomal protein L5 ( RL5 ), 60S ribosomal protein L28 ( RL28 ), glyceraldehyde 3-phosphate dehydrogenase ( GAPDH ), β -tubulin ( TUBB ), 40S ribosomal protein S25 ( RS25 ), 40S ribosomal protein S8 ( RS8 ), ubiquitin-conjugating enzyme E2 ( UBE2 ), histone H3 ( HH3 ), and peptidyl-prolyl cis-trans isomerase A ( PPIA ). We measured the expression levels of these 13 candidate internal controls in eight different tissues and twelve larvae developmental stages by qRT-PCR. Further analysis of the expression stability of the tested genes was performed using GeNorm and RefFinder algorithms. Of the 13 candidate genes tested, we found that EF-1α was the most stable internal control gene in almost all adult tissue samples investigated with RL5 and RL28 as secondary choices. For the normalization of a single specific tissue, we suggested that EF-1α and NDUFA7 are the best combination in gonad, as well as COX1 and RL28 for intestine, EF-1α and RL5 for kidney, EF-1α and COX1 for gill, EF-1α and RL28 for Leiblein and mantle, EF-1α , RL5 , and NDUFA7 for liver , GAPDH , PPIA , and RL28 for hemocyte. From a developmental perspective, we found that RL28 was the most stable gene in all developmental stages measured, and COX1 and RL5 were appropriate secondary choices. For the specific developmental stage, we recommended the following combination for normalization, PPIA , RS25 , and RL28 for stage 1, RL5 and RL28 for stage 2 and 5, RL28 and NDUFA7 for stage 3, and PPIA and TUBB for stage 4. Our results are instrumental for the selection of appropriately validated housekeeping genes for use as internal controls for gene expression studies in adult tissues or larval development of R. venosa in the future.
Imanian, Behzad; Keeling, Patrick J
2007-01-01
Background The dinoflagellates Durinskia baltica and Kryptoperidinium foliaceum are distinguished by the presence of a tertiary plastid derived from a diatom endosymbiont. The diatom is fully integrated with the host cell cycle and is so altered in structure as to be difficult to recognize it as a diatom, and yet it retains a number of features normally lost in tertiary and secondary endosymbionts, most notably mitochondria. The dinoflagellate host is also reported to retain mitochondrion-like structures, making these cells unique in retaining two evolutionarily distinct mitochondria. This redundancy raises the question of whether the organelles share any functions in common or have distributed functions between them. Results We show that both host and endosymbiont mitochondrial genomes encode genes for electron transport proteins. We have characterized cytochrome c oxidase 1 (cox1), cytochrome oxidase 2 (cox2), cytochrome oxidase 3 (cox3), cytochrome b (cob), and large subunit of ribosomal RNA (LSUrRNA) of endosymbiont mitochondrial ancestry, and cox1 and cob of host mitochondrial ancestry. We show that all genes are transcribed and that those ascribed to the host mitochondrial genome are extensively edited at the RNA level, as expected for a dinoflagellate mitochondrion-encoded gene. We also found evidence for extensive recombination in the host mitochondrial genes and that recombination products are also transcribed, as expected for a dinoflagellate. Conclusion Durinskia baltica and K. foliaceum retain two mitochondria from evolutionarily distinct lineages, and the functions of these organelles are at least partially overlapping, since both express genes for proteins in electron transport. PMID:17892581
West, Michael D.; Labat, Ivan; Sternberg, Hal; Larocca, Dana; Nasonkin, Igor; Chapman, Karen B.; Singh, Ratnesh; Makarev, Eugene; Aliper, Alex; Kazennov, Andrey; Alekseenko, Andrey; Shuvalov, Nikolai; Cheskidova, Evgenia; Alekseev, Aleksandr; Artemov, Artem; Putin, Evgeny; Mamoshina, Polina; Pryanichnikov, Nikita; Larocca, Jacob; Copeland, Karen; Izumchenko, Evgeny; Korzinkin, Mikhail; Zhavoronkov, Alex
2018-01-01
Here we present the application of deep neural network (DNN) ensembles trained on transcriptomic data to identify the novel markers associated with the mammalian embryonic-fetal transition (EFT). Molecular markers of this process could provide important insights into regulatory mechanisms of normal development, epimorphic tissue regeneration and cancer. Subsequent analysis of the most significant genes behind the DNNs classifier on an independent dataset of adult-derived and human embryonic stem cell (hESC)-derived progenitor cell lines led to the identification of COX7A1 gene as a potential EFT marker. COX7A1, encoding a cytochrome C oxidase subunit, was up-regulated in post-EFT murine and human cells including adult stem cells, but was not expressed in pre-EFT pluripotent embryonic stem cells or their in vitro-derived progeny. COX7A1 expression level was observed to be undetectable or low in multiple sarcoma and carcinoma cell lines as compared to normal controls. The knockout of the gene in mice led to a marked glycolytic shift reminiscent of the Warburg effect that occurs in cancer cells. The DNN approach facilitated the elucidation of a potentially new biomarker of cancer and pre-EFT cells, the embryo-onco phenotype, which may potentially be used as a target for controlling the embryonic-fetal transition. PMID:29487692
West, Michael D; Labat, Ivan; Sternberg, Hal; Larocca, Dana; Nasonkin, Igor; Chapman, Karen B; Singh, Ratnesh; Makarev, Eugene; Aliper, Alex; Kazennov, Andrey; Alekseenko, Andrey; Shuvalov, Nikolai; Cheskidova, Evgenia; Alekseev, Aleksandr; Artemov, Artem; Putin, Evgeny; Mamoshina, Polina; Pryanichnikov, Nikita; Larocca, Jacob; Copeland, Karen; Izumchenko, Evgeny; Korzinkin, Mikhail; Zhavoronkov, Alex
2018-01-30
Here we present the application of deep neural network (DNN) ensembles trained on transcriptomic data to identify the novel markers associated with the mammalian embryonic-fetal transition (EFT). Molecular markers of this process could provide important insights into regulatory mechanisms of normal development, epimorphic tissue regeneration and cancer. Subsequent analysis of the most significant genes behind the DNNs classifier on an independent dataset of adult-derived and human embryonic stem cell (hESC)-derived progenitor cell lines led to the identification of COX7A1 gene as a potential EFT marker. COX7A1 , encoding a cytochrome C oxidase subunit, was up-regulated in post-EFT murine and human cells including adult stem cells, but was not expressed in pre-EFT pluripotent embryonic stem cells or their in vitro -derived progeny. COX7A1 expression level was observed to be undetectable or low in multiple sarcoma and carcinoma cell lines as compared to normal controls. The knockout of the gene in mice led to a marked glycolytic shift reminiscent of the Warburg effect that occurs in cancer cells. The DNN approach facilitated the elucidation of a potentially new biomarker of cancer and pre-EFT cells, the embryo-onco phenotype, which may potentially be used as a target for controlling the embryonic-fetal transition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oostra, R.J.; Bleeker-Wagemakers, E.M.; Zwart, R.
1995-10-01
Three mtDNA point mutations at nucleotide position (np) 3460, at np 11778 and at np 14484, are thought to be of primary importance in the pathogenesis of Leber hereditary optic neuropathy (LHON), a maternally inherited disease characterized by subacute central vision loss. These mutations are present in genes coding for subunits of complex I (NADH dehydrogenase) of the respiratory chain, occur exclusively in LHON maternal pedigrees, and have never been reported to occur together. Johns and Neufeld postulated that an mtDNA mutation at np 9438, in the gene coding for one of the subunits (COX III) of complex IV (cytochromemore » c oxidase), was also of primary importance. Johns and Neufeld (1993) found this mutation, which changed a conserved glycine to a serine, in 5 unrelated LHON probands who did not carry one of the presently known primary mutations, but they did not find it in 400 controls. However, the role of this sequence variant has been questioned in the Journal when it has been found to occur in apparently healthy African and Cuban individuals. Subsequently, Johns et al. described this mutation in two Cuban individuals presenting with optic and peripheral neuropathy. 22 refs., 1 fig., 1 tab.« less
Masuda, Isao; Matsuzaki, Motomichi; Kita, Kiyoshi
2010-10-01
Diverse mitochondrial (mt) genetic systems have evolved independently of the more uniform nuclear system and often employ modified genetic codes. The organization and genetic system of dinoflagellate mt genomes are particularly unusual and remain an evolutionary enigma. We determined the sequence of full-length cytochrome c oxidase subunit 1 (cox1) mRNA of the earliest diverging dinoflagellate Perkinsus and show that this gene resides in the mt genome. Apparently, this mRNA is not translated in a single reading frame with standard codon usage. Our examination of the nucleotide sequence and three-frame translation of the mRNA suggest that the reading frame must be shifted 10 times, at every AGG and CCC codon, to yield a consensus COX1 protein. We suggest two possible mechanisms for these translational frameshifts: a ribosomal frameshift in which stalled ribosomes skip the first bases of these codons or specialized tRNAs recognizing non-triplet codons, AGGY and CCCCU. Regardless of the mechanism, active and efficient machinery would be required to tolerate the frameshifts predicted in Perkinsus mitochondria. To our knowledge, this is the first evidence of translational frameshifts in protist mitochondria and, by far, is the most extensive case in mitochondria.
Analysis of barosensitive mechanisms in yeast for Pressure Regulated Fermentation
NASA Astrophysics Data System (ADS)
Nomura, Kazuki; Iwahashi, Hitoshi; Iguchi, Akinori; Shigematsu, Toru
2013-06-01
Introduction: We are intending to develop a novel food processing technology, Pressure Regulated Fermentation (PReF), using pressure sensitive (barosensitive) fermentation microorganisms. Objectives of our study are to clarify barosensitive mechanisms for application to PReF technology. We isolated Saccharomyces cerevisiae barosensitive mutant a924E1 that was derived from the parent KA31a. Methods: Gene expression levels were analyzed by DNA microarray. The altered genes of expression levels were classified according to the gene function. Mutated genes were estimated by mating and producing diploid strains and confirmed by PCR of mitochondrial DNA (mtDNA). Results and Discussion: Gene expression profiles showed that genes of `Energy' function and that of encoding protein localized in ``Mitochondria'' were significantly down regulated in the mutant. These results suggest the respiratory deficiency and relationship between barosensitivity and respiratory deficiency. Since the respiratory functions of diploids showed non Mendelian inheritance, the respiratory deficiency was indicated to be due to mtDNA mutation. PCR analysis showed that the region of COX1 locus was deleted. COX1 gene encodes the subunit 1 of cytochrome c oxidase. For this reason, barosensitivity is strongly correlated with mitochondrial functions.
Boufana, Belgees; Scala, Antonio; Lahmar, Samia; Pointing, Steve; Craig, Philip S; Dessì, Giorgia; Zidda, Antonella; Pipia, Anna Paola; Varcasia, Antonio
2015-11-30
Cysticercosis caused by the metacestode stage of Taenia hydatigena is endemic in Sardinia. Information on the genetic variation of this parasite is important for epidemiological studies and implementation of control programs. Using two mitochondrial genes, the cytochrome c oxidase subunit 1 (cox1) and the NADH dehydrogenase subunit 1 (ND1) we investigated the genetic variation and population structure of Cysticercus tenuicollis from Sardinian intermediate hosts and compared it to that from other hosts from various geographical regions. The parsimony cox1 network analysis indicated the existence of a common lineage for T. hydatigena and the overall diversity and neutrality indices indicated demographic expansion. Using the cox1 sequences, low pairwise fixation index (Fst) values were recorded for Sardinian, Iranian and Palestinian sheep C. tenuicollis which suggested the absence of genetic differentiation. Using the ND1 sequences, C. tenuicollis from Sardinian sheep appeared to be differentiated from those of goat and pig origin. In addition, goat C. tenuicollis were genetically different from adult T. hydatigena as indicated by the statistically significant Fst value. Our results are consistent with biochemical and morphological studies that suggest the existence of variants of T. hydatigena. Copyright © 2015 Elsevier B.V. All rights reserved.
Sharma, Deep Raj; Sunkaria, Aditya; Wani, Willayat Yousuf; Sharma, Reeta Kumari; Kandimalla, Ramesh J L; Bal, Amanjit; Gill, Kiran Dip
2013-12-01
The present investigation was carried out to elucidate a possible molecular mechanism related to the effects of aluminium-induced oxidative stress on various mitochondrial respiratory complex subunits with special emphasis on the role of Peroxisome proliferator activated receptor gamma co-activator 1α (PGC-1α) and its downstream targets i.e. Nuclear respiratory factor-1(NRF-1), Nuclear respiratory factor-2(NRF-2) and Mitochondrial transcription factor A (Tfam) in mitochondrial biogenesis. Aluminium lactate (10mg/kgb.wt./day) was administered intragastrically to rats for 12 weeks. After 12 weeks of exposure, we found an increase in ROS levels, mitochondrial DNA oxidation and decrease in citrate synthase activity in the Hippocampus (HC) and Corpus striatum (CS) regions of rat brain. On the other hand, there was a decrease in the mRNA levels of the mitochondrial encoded subunits-NADH dehydrogenase (ND) subunits i.e. ND1, ND2, ND3, Cytochrome b (Cytb), Cytochrome oxidase (COX) subunits i.e. COX1, COX3, ATP synthase (ATPase) subunit 6 along with reduced expression of nuclear encoded subunits COX4, COX5A, COX5B of Electron transport chain (ETC). Besides, a decrease in mitochondrial DNA copy number and mitochondrial content in both regions of rat brain was observed. The PGC-1α was down-regulated in aluminium treated rats along with NRF-1, NRF-2 and Tfam, which act downstream from PGC-1α in aluminium treated rats. Electron microscopy results revealed a significant increase in the mitochondrial swelling, loss of cristae, chromatin condensation and decreases in mitochondrial number in case of aluminium treated rats as compared to control. So, PGC-1α seems to be a potent target for aluminium neurotoxicity, which makes it an almost ideal target to control or limit the damage that has been associated with the defective mitochondrial function seen in neurodegenerative diseases. © 2013.
Hwang, Juen-Haur; Chen, Jin-Cherng; Chan, Yin-Ching
2013-01-01
Effects of C-phycocyanin (C-PC), the active component of Spirulina platensis water extract on the expressions of N-methyl D-aspartate receptor subunit 2B (NR2B), tumor necrosis factor–α (TNF-α), interleukin-1β (IL-1β), and cyclooxygenase type 2 (COX-2) genes in the cochlea and inferior colliculus (IC) of mice were evaluated after tinnitus was induced by intraperitoneal injection of salicylate. The results showed that 4-day salicylate treatment (unlike 4-day saline treatment) caused a significant increase in NR2B, TNF-α, and IL-1β mRNAs expression in the cochlea and IC. On the other hand, dietary supplementation with C-PC or Spirulina platensis water extract significantly reduced the salicylate-induced tinnitus and down-regulated the mRNAs expression of NR2B, TNF-α, IL-1β mRNAs, and COX-2 genes in the cochlea and IC of mice. The changes of protein expression levels were generally correlated with those of mRNAs expression levels in the IC for above genes. PMID:23533584
Gao, Lijun; Xia, Wei; Ai, Jinxia; Li, Mingcheng; Yuan, Guanxin; Niu, Jiamu; Fu, Guilian; Zhang, Lihua
2016-07-01
This study describes a method for discriminating the true Cervus antlers from its counterfeits using multiplex PCR. Bioinformatics were carried out to design the specific alleles primers for mitochondrial (mt) cytochrome b (Cyt b) and cytochrome C oxidase subunit 1 (Cox 1) genes. The mt DNA and genomic DNA were extracted from Cervi Cornu Pantotrichum through the modified alkaline and the salt-extracting method in addition to its counterfeits, respectively. Sufficient DNA templates were extracted from all samples used in two methods, and joint fragments of 354 bp and 543 bp that were specifically amplified from both of true Cervus antlers served as a standard control. The data revealed that the multiplex PCR-based assays using two primer sets can be used for forensic and quantitative identification of original Cervus deer products from counterfeit antlers in a single step.
Song, Hao; Dang, Xin; He, Yuan-qiu
2017-01-01
Background The veined rapa whelk Rapana venosa is an important commercial shellfish in China and quantitative real-time PCR (qRT-PCR) has become the standard method to study gene expression in R. venosa. For accurate and reliable gene expression results, qRT-PCR assays require housekeeping genes as internal controls, which display highly uniform expression in different tissues or stages of development. However, to date no studies have validated housekeeping genes in R. venosa for use as internal controls for qRT-PCR. Methods In this study, we selected the following 13 candidate genes for suitability as internal controls: elongation factor-1α (EF-1α), α-actin (ACT), cytochrome c oxidase subunit 1 (COX1), nicotinamide adenine dinucleotide dehydrogenase (ubiquinone) 1α subcomplex subunit 7 (NDUFA7), 60S ribosomal protein L5 (RL5), 60S ribosomal protein L28 (RL28), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), β-tubulin (TUBB), 40S ribosomal protein S25 (RS25), 40S ribosomal protein S8 (RS8), ubiquitin-conjugating enzyme E2 (UBE2), histone H3 (HH3), and peptidyl-prolyl cis-trans isomerase A (PPIA). We measured the expression levels of these 13 candidate internal controls in eight different tissues and twelve larvae developmental stages by qRT-PCR. Further analysis of the expression stability of the tested genes was performed using GeNorm and RefFinder algorithms. Results Of the 13 candidate genes tested, we found that EF-1α was the most stable internal control gene in almost all adult tissue samples investigated with RL5 and RL28 as secondary choices. For the normalization of a single specific tissue, we suggested that EF-1α and NDUFA7 are the best combination in gonad, as well as COX1 and RL28 for intestine, EF-1α and RL5 for kidney, EF-1α and COX1 for gill, EF-1α and RL28 for Leiblein and mantle, EF-1α, RL5, and NDUFA7 for liver, GAPDH, PPIA, and RL28 for hemocyte. From a developmental perspective, we found that RL28 was the most stable gene in all developmental stages measured, and COX1 and RL5 were appropriate secondary choices. For the specific developmental stage, we recommended the following combination for normalization, PPIA, RS25, and RL28 for stage 1, RL5 and RL28 for stage 2 and 5, RL28 and NDUFA7 for stage 3, and PPIA and TUBB for stage 4. Discussion Our results are instrumental for the selection of appropriately validated housekeeping genes for use as internal controls for gene expression studies in adult tissues or larval development of R. venosa in the future. PMID:28584723
Ostergaard, Elsebet; Weraarpachai, Woranontee; Ravn, Kirstine; Born, Alfred Peter; Jønson, Lars; Duno, Morten; Wibrand, Flemming; Shoubridge, Eric A; Vissing, John
2015-03-01
We investigated a subject with an isolated cytochrome c oxidase (COX) deficiency presenting with an unusual phenotype characterised by neuropathy, exercise intolerance, obesity, and short stature. Blue-native polyacrylamide gel electrophoresis (BN-PAGE) analysis showed an almost complete lack of COX assembly in subject fibroblasts, consistent with the very low enzymatic activity, and pulse-labelling mitochondrial translation experiments showed a specific decrease in synthesis of the COX1 subunit, the core catalytic subunit that nucleates assembly of the holoenzyme. Whole exome sequencing identified compound heterozygous mutations (c.199dupC, c.215A>G) in COA3, a small inner membrane COX assembly factor, resulting in a pronounced decrease in the steady-state levels of COA3 protein. Retroviral expression of a wild-type COA3 cDNA completely rescued the COX assembly and mitochondrial translation defects, confirming the pathogenicity of the mutations, and resulted in increased steady-state levels of COX1 in control cells, demonstrating a role for COA3 in the stabilisation of this subunit. COA3 exists in an early COX assembly complex that contains COX1 and other COX assembly factors including COX14 (C12orf62), another single pass transmembrane protein that also plays a role in coupling COX1 synthesis with holoenzyme assembly. Immunoblot analysis showed that COX14 was undetectable in COA3 subject fibroblasts, and that COA3 was undetectable in fibroblasts from a COX14 subject, demonstrating the interdependence of these two COX assembly factors. The mild clinical course in this patient contrasts with nearly all other cases of severe COX assembly defects that are usually fatal early in life, and underscores the marked tissue-specific involvement in mitochondrial diseases. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Kobayashi, Misato; Hoshinaga, Yukiko; Miura, Natsuko; Tokuda, Yuki; Shigeoka, Shigeru; Murai, Atsushi; Horio, Fumihiko
2014-01-01
The mechanisms underlying the decrease in hepatic cytochrome P-450 (CYP) content in ascorbic acid deficiency was investigated in scurvy-prone ODS rats. First, male ODS rats were fed a diet containing sufficient ascorbic acid (control) or a diet without ascorbic acid (deficient) for 18 days, with or without the intraperitoneal injection of phenobarbital. Ascorbic acid deficiency decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial cytochrome oxidase (COX) complex IV subunit I protein, and simultaneously increased heme oxygenase-1 protein in microsomes and mitochondria. Next, heme oxygenase-1 inducers, that is lipopolysaccharide and hemin, were administered to phenobaribital-treated ODS rats fed sufficient ascorbic acid. The administration of these inducers decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial COX complex IV subunit I protein. These results suggested that the stimulation of hepatic heme oxygenase-1 expression by ascorbic acid deficiency caused the decrease in CYP content in liver.
Pezeshki, A; Akhlaghi, L; Sharbatkhori, M; Razmjou, E; Oormazdi, H; Mohebali, M; Meamar, A R
2013-12-01
Cystic echinococcosis is endemic in Iran, particularly in Ardabil Province, where it causes health and economic problems. The genetic pattern of Echinococcus granulosus has been determined in most parts of Iran, except in this area. In the present investigation, 55 larval isolates were collected from humans (11), sheep (19), goats (4) and cattle (21). For analysis of the genetic characteristics of E. granulosus isolates, DNA sequencing of mitochondrial cytochrome c oxidase subunit 1 (cox1) and NADH dehydrogenase subunit 1 (nad1) genes was applied. Fifty isolates were successfully analysed, with 92% (46) and 8% (4) identified as G1 and G3 genotypes, respectively. The sequence analyses of the isolates displayed nine characteristic profiles in cox1 sequences and eight characteristic profiles in nad1 sequences. Based on these results, the sheep strain (G1 genotype) was the most prevalent in humans, sheep, goats and cattle. The buffalo strain (G3 genotype) was not only demonstrated in sheep (1 isolate) and cattle (1 isolate), but also for the first time in two human isolates. These findings will provide information for local control of echinococcosis.
Infection of Taenia asiatica in a Bai Person in Dali, China.
Wang, Li; Luo, Xuenong; Hou, Junling; Guo, Aijiang; Zhang, Shaohua; Li, Hailong; Cai, Xuepeng
2016-02-01
We report here a human case of Taenia asiatica infection which was confirmed by genetic analyses in Dali, China. A patient was found to have symptoms of taeniasis with discharge of tapeworm proglottids. By sequencing of the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene, we observed nucleotide sequence identity of 99% with T. asiatica and 96% with T. saginata. Using the cytochrome b (cytb) gene, 99% identity with T. asiatica and 96% identity with T. saginata were found. Our findings suggest that taeniasis of people in Dali, China may be mainly caused by T. asiatica.
Infection of Taenia asiatica in a Bai Person in Dali, China
Wang, Li; Luo, Xuenong; Hou, Junling; Guo, Aijiang; Zhang, Shaohua; Li, Hailong; Cai, Xuepeng
2016-01-01
We report here a human case of Taenia asiatica infection which was confirmed by genetic analyses in Dali, China. A patient was found to have symptoms of taeniasis with discharge of tapeworm proglottids. By sequencing of the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene, we observed nucleotide sequence identity of 99% with T. asiatica and 96% with T. saginata. Using the cytochrome b (cytb) gene, 99% identity with T. asiatica and 96% identity with T. saginata were found. Our findings suggest that taeniasis of people in Dali, China may be mainly caused by T. asiatica. PMID:26951981
Safa, Ahmad Hosseini; Harandi, Majid Fasihi; Tajaddini, Mohammadhasan; Rostami-Nejad, Mohammad; Mohtashami-Pour, Mehdi; Pestehchian, Nader
2016-07-22
High-resolution melting (HRM) is a reliable and sensitive scanning method to detect variation in DNA sequences. We used this method to better understand the epidemiology and transmission of Echinococcus granulosus. We tested the use of HRM to discriminate the genotypes of E. granulosus and E. canadensis. One hundred forty-one hydatid cysts were collected from slaughtered animals in different parts of Isfahan-Iran in 2013. After DNA extraction, the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene was amplified using PCR coupled with the HRM curve. The result of HRM analysis using partial the sequences of cox1 gene revealed that 93, 35, and 2 isolates were identified as G1, G3, and G6 genotypes, respectively. A single nucleotide polymorphism (SNP) was found in locus 9867 of the cox1 gene. This is a critical locus for the differentiation between the G6 and G7 genotypes. In the phylogenic tree, the sample with a SNP was located between the G6 and G7 genotypes, which suggest that this isolate has a G6/G7 genotype. The HRM analysis developed in the present study provides a powerful technique for molecular and epidemiological studies on echinococcosis in humans and animals.
Mitochondrial Copper Metabolism and Delivery to Cytochrome c Oxidase
Horn, Darryl; Barrientos, Antoni
2010-01-01
Summary Metals are essential elements of all living organisms. Among them, copper is required for a multiplicity of functions including mitochondrial oxidative phosphorylation and protection against oxidative stress. Here we will focus on describing the pathways involved in the delivery of copper to cytochrome c oxidase (COX), a mitochondrial metalloenzyme acting as the terminal enzyme of the mitochondrial respiratory chain. The catalytic core of COX is formed by three mitochondrially-encoded subunits and contains three copper atoms. Two copper atoms bound to subunit 2 constitute the CuA site, the primary acceptor of electrons from ferrocytochrome c. The third copper, CuB, is associated with the high-spin heme a3 group of subunit 1. Recent studies, mostly performed in the yeast Saccharomyces cerevisiae, have provided new clues about 1- the source of the copper used for COX metallation; 2- the roles of Sco1p and Cox11p, the proteins involved in the direct delivery of copper to the CuA and CuB sites, respectively; 3- the action mechanism of Cox17p, a copper chaperone that provides copper to Sco1p and Cox11p; 4- the existence of at least four Cox17p homologues carrying a similar twin CX9C domain suggestive of metal binding, Cox19p, Cox23p, Pet191p and Cmc1p, that could be part of the same pathway; and 5- the presence of a disulfide relay system in the intermembrane space of mitochondria that mediates import of proteins with conserved cysteines motifs such as the CX9C characteristic of Cox17p and its homologues. The different pathways are reviewed and discussed in the context of both mitochondrial COX assembly and copper homeostasis. PMID:18459161
Hahm, J E; Kim, C W; Kim, S S
2018-04-06
A widespread scabies infestation, associated to long-term residence in nursing homes, is becoming a serious issue in developed countries. Mineral oil examination is regarded as the gold standard in diagnosing scabies, but the sensitivity of this method is generally low-approximately 50%. Molecular tests may contribute to enhance the sensitivity of current tests for laboratory diagnosis of human scabies. In this study, we developed new primers for a nested PCR for the cytochrome c oxidase subunit 1 (cox1) gene of Sarcoptes scabiei var. hominis to increase the sensitivity of a previously developed conventional PCR. Clinically suspected scabies patients underwent dermoscopy-guided skin scraping with microscopic examination. The diagnosis was positive for scabies when mites or eggs were found under the microscope, and patients were then designated as 'microscopy-positive'. Patients in the 'microscopy-negative' group presented with negative microscopic results. Skin scrapings were collected from both groups for PCR. Of the total 63 samples, 28 were microscopy-positive and 35 were negative with no differences in sex and age between the two groups. All microscopically proven scabies cases were positive with the cox1 nested PCR. Among microscopy-negative ones, S. scabiei DNA was detected in 9 samples. If sensitivity of the cox1 nested PCR is considered 100% (95% CI, 90.51-100), then sensitivity of microscopy is 75.68% (95% CI, 58.80-88.23; P = 0.004). Nested PCR can be successfully used as an alternative method for diagnosing suspected scabies patient. Therefore, infection control measures and treatments can be initiated before significant transmission occurs, minimizing the risk of outbreaks. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Thaenkham, U; Phuphisut, O; Nuamtanong, S; Yoonuan, T; Sa-Nguankiat, S; Vonghachack, Y; Belizario, V Y; Dung, D T; Dekumyoy, P; Waikagul, J
2017-09-01
Haplorchis taichui is an intestinal heterophyid fluke that is pathogenic to humans. It is widely distributed in Asia, with a particularly high prevalence in Indochina. Previous work revealed that the lack of gene flow between three distinct populations of Vietnamese H. taichui can be attributed to their geographic isolation with no interconnected river basins. To test the hypothesis that interconnected river basins allow gene flow between otherwise isolated populations of H. taichui, as previously demonstrated for another trematode, Opisthorchis viverrini, we compared the genetic structures of seven populations of H. taichui from various localities in the lower Mekong Basin, in Thailand and Laos, with those in Vietnam, using the mitochondrial cytochrome c oxidase subunit 1 (COX1) gene. To determine the gene flow between these H. taichui populations, we calculated their phylogenetic relationships, genetic distances and haplotype diversity. Each population showed very low nucleotide diversity at this locus. However, high levels of genetic differentiation between the populations indicated very little gene flow. A phylogenetic analysis divided the populations into four clusters that correlated with the country of origin. The negligible gene flow between the Thai and Laos populations, despite sharing the Mekong Basin, caused us to reject our hypothesis. Our data suggest that the distribution of H. taichui populations was incidentally associated with national borders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomita, Hiroshi, E-mail: htomita@iwate-u.ac.jp; Soft-Path Engineering Research Center; Clinical Research, Innovation and Education Center, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai, Miyagi 980-8574
2016-05-13
The transcription factor nuclear factor kappaB (NF-κB) plays various roles in cell survival, apoptosis, and inflammation. In the rat retina, NF-κB activity increases after exposure to damaging light, resulting in degeneration of photoreceptors. Here, we report that in dark-adapted rats exposed for 6 h to bright white light, the p65 subunit of retinal NF-κB translocates to the mitochondria, an event associated with a decrease in expression of cytochrome c oxidase subunit III (COX III). However, sustained exposure for 12 h depleted p65 from the mitochondria, and enhanced COX III expression. Treatment with the protective antioxidant PBN prior to light exposure prevents p65more » depletion in the mitochondria and COX III upregulation during prolonged exposure, and apoptosis in photoreceptor cells. These results indicate that COX III expression is sensitive to the abundance of NF-κB p65 in the mitochondria, which, in turn, is affected by exposure to damaging light. - Highlights: • Damaging light exposure of the retina induces NF-κB p65 mitochondrial translocation. • NF-κB p65 mitochondrial translocation is associated with the decrease of COX III expression. • Prolonged light exposure depletes mitochondrial p65 resulting in the increase in COX III expression. • NF-κB p65 and COX III expression play an important role in the light-induced photoreceptor degeneration.« less
Redox and Reactive Oxygen Species Regulation of Mitochondrial Cytochrome c Oxidase Biogenesis
Bourens, Myriam; Fontanesi, Flavia; Soto, Iliana C.; Liu, Jingjing
2013-01-01
Abstract Significance: Cytochrome c oxidase (COX), the last enzyme of the mitochondrial respiratory chain, is the major oxygen consumer enzyme in the cell. COX biogenesis involves several redox-regulated steps. The process is highly regulated to prevent the formation of pro-oxidant intermediates. Recent Advances: Regulation of COX assembly involves several reactive oxygen species and redox-regulated steps. These include: (i) Intricate redox-controlled machineries coordinate the expression of COX isoenzymes depending on the environmental oxygen concentration. (ii) COX is a heme A-copper metalloenzyme. COX copper metallation involves the copper chaperone Cox17 and several other recently described cysteine-rich proteins, which are oxidatively folded in the mitochondrial intermembrane space. Copper transfer to COX subunits 1 and 2 requires concomitant transfer of redox power. (iii) To avoid the accumulation of reactive assembly intermediates, COX is regulated at the translational level to minimize synthesis of the heme A-containing Cox1 subunit when assembly is impaired. Critical Issues: An increasing number of regulatory pathways converge to facilitate efficient COX assembly, thus preventing oxidative stress. Future Directions: Here we will review on the redox-regulated COX biogenesis steps and will discuss their physiological relevance. Forthcoming insights into the precise regulation of mitochondrial COX biogenesis in normal and stress conditions will likely open future perspectives for understanding mitochondrial redox regulation and prevention of oxidative stress. Antioxid. Redox Signal. 19, 1940–1952. PMID:22937827
Molecular characterization of freshwater snails in the genus Bulinus: a role for barcodes?
Kane, Richard A; Stothard, J Russell; Emery, Aidan M; Rollinson, David
2008-01-01
Background Reliable and consistent methods are required for the identification and classification of freshwater snails belonging to the genus Bulinus (Gastropoda, Planorbidae) which act as intermediate hosts for schistosomes of both medical and veterinary importance. The current project worked towards two main objectives, the development of a cost effective, simple screening method for the routine identification of Bulinus isolates and the use of resultant sequencing data to produce a model of relationships within the group. Results Phylogenetic analysis of the DNA sequence for a large section (1009 bp) of the mitochondrial gene cytochrome oxidase subunit 1 (cox1) for isolates of Bulinus demonstrated superior resolution over that employing the second internal transcribed spacer (its2) of the ribosomal gene complex. Removal of transitional substitutions within cox1 because of saturation effects still allowed identification of snails at species group level. Within groups, some species could be identified with ease but there were regions where the high degree of molecular diversity meant that clear identification of species was problematic, this was particularly so within the B. africanus group. Conclusion The sequence diversity within cox1 is such that a barcoding approach may offer the best method for characterization of populations and species within the genus from different geographical locations. The study has confirmed the definition of some accepted species within the species groups but additionally has revealed some unrecognized isolates which underlines the need to use molecular markers in addition to more traditional methods of identification. A barcoding approach based on part of the cox1 gene as defined by the Folmer primers is proposed. PMID:18544153
Δ9-THC-caused synaptic and memory impairments are mediated through COX-2 signaling
Yang, Hongwei; Tang, Ya-ping; Sun, Hao; Song, Yunping; Chen, Chu
2013-01-01
SUMMARY Marijuana has been used for thousands of years as a treatment for medical conditions. However, untoward side effects limit its medical value. Here we show that synaptic and cognitive impairments following repeated exposure to Δ9-tetrahydrocannabinol (Δ9-THC) are associated with the induction of cyclooxygenase-2 (COX-2), an inducible enzyme that converts arachidonic acid to prostanoids, in the brain. COX-2 induction by Δ9-THC is mediated via CB1 receptor-coupled G-protein βγ subunits. Pharmacological or genetic inhibition of COX-2 blocks down-regulation and internalization of glutamate receptor subunits and alterations of the dendritic spine density of hippocampal neurons induced by repeated Δ9-THC exposures. Ablation of COX-2 also eliminates Δ9-THC-impaired hippocampal long-term synaptic plasticity, spatial, and fear memories. Importantly, the beneficial effects of decreasing β-amyloid plaques and neurodegeneration by Δ9-THC in Alzheimer’s disease animals are retained in the presence of COX-2 inhibition. These results suggest that the applicability of medical marijuana would be broadened by concurrent inhibition of COX-2. PMID:24267894
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Deep Raj; Sunkaria, Aditya; Wani, Willayat Yousuf
The present investigation was carried out to elucidate a possible molecular mechanism related to the effects of aluminium-induced oxidative stress on various mitochondrial respiratory complex subunits with special emphasis on the role of Peroxisome proliferator activated receptor gamma co-activator 1α (PGC-1α) and its downstream targets i.e. Nuclear respiratory factor-1(NRF-1), Nuclear respiratory factor-2(NRF-2) and Mitochondrial transcription factor A (Tfam) in mitochondrial biogenesis. Aluminium lactate (10 mg/kg b.wt./day) was administered intragastrically to rats for 12 weeks. After 12 weeks of exposure, we found an increase in ROS levels, mitochondrial DNA oxidation and decrease in citrate synthase activity in the Hippocampus (HC) andmore » Corpus striatum (CS) regions of rat brain. On the other hand, there was a decrease in the mRNA levels of the mitochondrial encoded subunits–NADH dehydrogenase (ND) subunits i.e. ND1, ND2, ND3, Cytochrome b (Cytb), Cytochrome oxidase (COX) subunits i.e. COX1, COX3, ATP synthase (ATPase) subunit 6 along with reduced expression of nuclear encoded subunits COX4, COX5A, COX5B of Electron transport chain (ETC). Besides, a decrease in mitochondrial DNA copy number and mitochondrial content in both regions of rat brain was observed. The PGC-1α was down-regulated in aluminium treated rats along with NRF-1, NRF-2 and Tfam, which act downstream from PGC-1α in aluminium treated rats. Electron microscopy results revealed a significant increase in the mitochondrial swelling, loss of cristae, chromatin condensation and decreases in mitochondrial number in case of aluminium treated rats as compared to control. So, PGC-1α seems to be a potent target for aluminium neurotoxicity, which makes it an almost ideal target to control or limit the damage that has been associated with the defective mitochondrial function seen in neurodegenerative diseases. - Highlights: • Aluminium decreases the mRNA levels of mitochondrial and nuclear encoded subunits. • It decreases the mtDNA copy number and mitochondrial content in rat brain. • It down-regulates the mRNA and protein levels of PGC-1α, NRF-1, NRF-2 and Tfam. • It also disturbs the mitochondrial or nuclear architecture of neurons. • Finally it also decreases mitochondrial number in HC and CS regions of rat brain.« less
A Mutation of COX6A1 Causes a Recessive Axonal or Mixed Form of Charcot-Marie-Tooth Disease
Tamiya, Gen; Makino, Satoshi; Hayashi, Makiko; Abe, Akiko; Numakura, Chikahiko; Ueki, Masao; Tanaka, Atsushi; Ito, Chizuru; Toshimori, Kiyotaka; Ogawa, Nobuhiro; Terashima, Tomoya; Maegawa, Hiroshi; Yanagisawa, Daijiro; Tooyama, Ikuo; Tada, Masayoshi; Onodera, Osamu; Hayasaka, Kiyoshi
2014-01-01
Charcot-Marie-Tooth disease (CMT) is the most common inherited neuropathy characterized by clinical and genetic heterogeneity. Although more than 30 loci harboring CMT-causing mutations have been identified, many other genes still remain to be discovered for many affected individuals. For two consanguineous families with CMT (axonal and mixed phenotypes), a parametric linkage analysis using genome-wide SNP chip identified a 4.3 Mb region on 12q24 showing a maximum multipoint LOD score of 4.23. Subsequent whole-genome sequencing study in one of the probands, followed by mutation screening in the two families, revealed a disease-specific 5 bp deletion (c.247−10_247−6delCACTC) in a splicing element (pyrimidine tract) of intron 2 adjacent to the third exon of cytochrome c oxidase subunit VIa polypeptide 1 (COX6A1), which is a component of mitochondrial respiratory complex IV (cytochrome c oxidase [COX]), within the autozygous linkage region. Functional analysis showed that expression of COX6A1 in peripheral white blood cells from the affected individuals and COX activity in their EB-virus-transformed lymphoblastoid cell lines were significantly reduced. In addition, Cox6a1-null mice showed significantly reduced COX activity and neurogenic muscular atrophy leading to a difficulty in walking. Those data indicated that COX6A1 mutation causes the autosomal-recessive axonal or mixed CMT. PMID:25152455
Deciphering amphibian diversity through DNA barcoding: chances and challenges.
Vences, Miguel; Thomas, Meike; Bonett, Ronald M; Vieites, David R
2005-10-29
Amphibians globally are in decline, yet there is still a tremendous amount of unrecognized diversity, calling for an acceleration of taxonomic exploration. This process will be greatly facilitated by a DNA barcoding system; however, the mitochondrial population structure of many amphibian species presents numerous challenges to such a standardized, single locus, approach. Here we analyse intra- and interspecific patterns of mitochondrial variation in two distantly related groups of amphibians, mantellid frogs and salamanders, to determine the promise of DNA barcoding with cytochrome oxidase subunit I (cox1) sequences in this taxon. High intraspecific cox1 divergences of 7-14% were observed (18% in one case) within the whole set of amphibian sequences analysed. These high values are not caused by particularly high substitution rates of this gene but by generally deep mitochondrial divergences within and among amphibian species. Despite these high divergences, cox1 sequences were able to correctly identify species including disparate geographic variants. The main problems with cox1 barcoding of amphibians are (i) the high variability of priming sites that hinder the application of universal primers to all species and (ii) the observed distinct overlap of intraspecific and interspecific divergence values, which implies difficulties in the definition of threshold values to identify candidate species. Common discordances between geographical signatures of mitochondrial and nuclear markers in amphibians indicate that a single-locus approach can be problematic when high accuracy of DNA barcoding is required. We suggest that a number of mitochondrial and nuclear genes may be used as DNA barcoding markers to complement cox1.
Wang, Yan; Liu, Guo-Hua; Li, Jia-Yuan; Xu, Min-Jun; Ye, Yong-Gang; Zhou, Dong-Hui; Song, Hui-Qun; Lin, Rui-Qing; Zhu, Xing-Quan
2013-02-01
This study examined sequence variation in three mitochondrial DNA (mtDNA) regions, namely cytochrome c oxidase subunit 1 (cox1), NADH dehydrogenase subunit 5 (nad5) and cytochrome b (cytb), among Trichuris ovis isolates from different hosts in Guangdong Province, China. A portion of the cox1 (pcox1), nad5 (pnad5) and cytb (pcytb) genes was amplified separately from individual whipworms by PCR, and was subjected to sequencing from both directions. The size of the sequences of pcox1, pnad5 and pcytb was 618, 240 and 464 bp, respectively. Although the intra-specific sequence variations within T. ovis were 0-0.8% for pcox1, 0-0.8% for pnad5 and 0-1.9% for pcytb, the inter-specific sequence differences among members of the genus Trichuris were significantly higher, being 24.3-26.5% for pcox1, 33.7-56.4% for pnad5 and 24.8-26.1% for pcytb, respectively. Phylogenetic analyses using combined sequences of pcox1, pnad5 and pcytb, with three different computational algorithms (maximum likelihood, maximum parsimony and Bayesian inference), indicated that all of the T. ovis isolates grouped together with high statistical support. These findings demonstrated the existence of intra-specific variation in mtDNA sequences among T. ovis isolates from different hosts, and have implications for studying molecular epidemiology and population genetics of T. ovis.
Aid, Saba; Parikh, Nishant; Palumbo, Sara; Bosetti, Francesca
2010-07-12
Neuroinflammation is a critical component in the progression of several neurological and neurodegenerative diseases and cyclooxygenases (COX)-1 and -2 are key regulators of innate immune responses. We recently demonstrated that COX-1 deletion attenuates, whereas COX-2 deletion enhances, the neuroinflammatory response, blood-brain barrier permeability and leukocyte recruitment during lipopolysaccharide (LPS)-induced innate immune activation. Here, we used transgenic mice, which overexpressed human COX-2 via neuron-specific Thy-1 promoter (TgCOX-2), causing elevated prostaglandins (PGs) levels. We tested whether neuronal COX-2 overexpression affects the glial response to a single intracerebroventricular injection of LPS, which produces a robust neuroinflammatory reaction. Relative to non-transgenic controls (NTg), 7 month-old TgCOX-2 did not show any basal neuroinflammation, as assessed by gene expression of markers of inflammation and oxidative stress, neuronal damage, as assessed by Fluoro-JadeB staining, or systemic inflammation, as assessed by plasma levels of IL-1beta and corticosterone. Twenty-four hours after LPS injection, all mice showed increased microglial activation, as indicated by Iba1 immunostaining, neuronal damage, mRNA expression of cytokines (TNF-alpha, IL-6), reactive oxygen expressing enzymes (iNOS and NADPH oxidase subunits), endogenous COX-2, cPLA(2) and mPGES-1, and hippocampal and cortical IL-1beta levels. However, the increases were similar in TgCOX-2 and NTg. In NTg, LPS increased brain PGE(2) to the levels observed in TgCOX-2. These results suggest that PGs derived from neuronal COX-2 do not play a role in the neuroinflammatory response to acute activation of brain innate immunity. This is likely due to the direct effect of LPS on glial rather than neuronal cells. Published by Elsevier Ireland Ltd.
Yang, Dong; Zhang, Tiemin; Zeng, Zhaolin; Zhao, Wei; Zhang, Weizhe; Liu, Aiqin
2015-10-01
Cystic echinococcosis (CE) is one of the most important parasitic zoonoses. 10 distinct genotypes, designated G1-G10 genotypes of Echinococcus granulosus sensu lato (s.l.), have been split into 4 species: Echinococcus granulosus sensu stricto (s.s.) (G1-G3), Echinococcus equinus (G4), Echinococcus ortleppi (G5) and Echinococcus canadensis (G6-G10); Echinococcus felidis has also been suggested as a sister taxon of E. granulosus s.s. recently. Four genotypes belonging to two species (G1 and G3 genotypes of E. granulosus s.s., and G6 and G7 genotypes of E. canadensis) have been identified in humans and animals in China. In the present study, a human-derived hydatid cyst from a patient in northeastern China's Heilongjiang Province was identified as G10 genotype of E. canadensis based on mitochondrial cytochrome c oxidase subunit I (cox1), cytochrome b (cytb) and NADH dehydrogenase subunit 1 (nad1) genes. Homology analysis showed the cox1 gene sequence of G10 genotype of E. canadensis had 100% homology with those from wolves in Mongolia and from a moose in Russia. The cytb and nad1 gene sequences of G10 genotype of E. canadensis had 100% homology with the complete sequence from a moose in Finland at an amino acid level. The infection source of the CE patient here might be primarily attributable to wolves. This is the first report of G10 genotype of E. canadensis in a human in China. The finding of G10 genotype of E. canadensis in China shows that this genotype possibly has a more wide geographical distribution than previously considered. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Dhar, Shilpa S; Liang, Huan Ling; Wong-Riley, Margaret T T
2009-10-01
Neuronal activity is highly dependent on energy metabolism; yet, the two processes have traditionally been regarded as independently regulated at the transcriptional level. Recently, we found that the same transcription factor, nuclear respiratory factor 1 (NRF-1) co-regulates an important energy-generating enzyme, cytochrome c oxidase, as well as critical subunits of glutamatergic receptors. The present study tests our hypothesis that the co-regulation extends to the next level of glutamatergic synapses, namely, neuronal nitric oxide synthase, which generates nitric oxide as a downstream signaling molecule. Using in silico analysis, electrophoretic mobility shift assay, chromatin immunoprecipitation, promoter mutations, and NRF-1 silencing, we documented that NRF-1 functionally bound to Nos1, but not Nos2 (inducible) and Nos3 (endothelial) gene promoters. Both COX and Nos1 transcripts were up-regulated by depolarizing KCl treatment and down-regulated by TTX-mediated impulse blockade in neurons. However, NRF-1 silencing blocked the up-regulation of both Nos1 and COX induced by KCl depolarization, and over-expression of NRF-1 rescued both Nos1 and COX transcripts down-regulated by TTX. These findings are consistent with our hypothesis that synaptic neuronal transmission and energy metabolism are tightly coupled at the molecular level.
Δ9-THC-caused synaptic and memory impairments are mediated through COX-2 signaling.
Chen, Rongqing; Zhang, Jian; Fan, Ni; Teng, Zhao-Qian; Wu, Yan; Yang, Hongwei; Tang, Ya-Ping; Sun, Hao; Song, Yunping; Chen, Chu
2013-11-21
Marijuana has been used for thousands of years as a treatment for medical conditions. However, untoward side effects limit its medical value. Here, we show that synaptic and cognitive impairments following repeated exposure to Δ(9)-tetrahydrocannabinol (Δ(9)-THC) are associated with the induction of cyclooxygenase-2 (COX-2), an inducible enzyme that converts arachidonic acid to prostanoids in the brain. COX-2 induction by Δ(9)-THC is mediated via CB1 receptor-coupled G protein βγ subunits. Pharmacological or genetic inhibition of COX-2 blocks downregulation and internalization of glutamate receptor subunits and alterations of the dendritic spine density of hippocampal neurons induced by repeated Δ(9)-THC exposures. Ablation of COX-2 also eliminates Δ(9)-THC-impaired hippocampal long-term synaptic plasticity, working, and fear memories. Importantly, the beneficial effects of decreasing β-amyloid plaques and neurodegeneration by Δ(9)-THC in Alzheimer's disease animals are retained in the presence of COX-2 inhibition. These results suggest that the applicability of medical marijuana would be broadened by concurrent inhibition of COX-2. Copyright © 2013 Elsevier Inc. All rights reserved.
Lai, Ching-Shu; Lee, Jong Hun; Ho, Chi-Tang; Liu, Cheng Bin; Wang, Ju-Ming; Wang, Ying-Jan; Pan, Min-Hsiung
2009-11-25
Rosmanol is a natural polyphenol from the herb rosemary (Rosmarinus officinalis L.) with high antioxidant activity. In this study, we investigated the inhibitory effects of rosmanol on the induction of NO synthase (NOS) and COX-2 in RAW 264.7 cells induced by lipopolysaccharide (LPS). Rosmanol markedly inhibited LPS-stimulated iNOS and COX-2 protein and gene expression, as well as the downstream products, NO and PGE2. Treatment with rosmanol also reduced translocation of the nuclear factor-kappaB (NF-kappaB) subunits by prevention of the degradation and phosphorylation of inhibitor kappaB (IkappaB). Western blot analysis showed that rosmanol significantly inhibited translocation and phosphorylation of NF-kappaB, signal transducer and activator of transcription-3 (STAT3), and the protein expression of C/EBPbeta and C/EBPdelta. We also found that rosmanol suppressed LPS-induced phosphorylation of ERK1/2, p38 mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/Akt signaling. Our results demonstrate that rosmanol downregulates inflammatory iNOS and COX-2 gene expression by inhibiting the activation of NF-kappaB and STAT3 through interfering with the activation of PI3K/Akt and MAPK signaling. Taken together, rosmanol might contribute to the potent anti-inflammatory effect of rosemary and may have potential to be developed into an effective anti-inflammatory agent.
Genetic variability and haplotypes of Echinococcus isolates from Tunisia.
Boufana, Belgees; Lahmar, Samia; Rebaï, Waël; Ben Safta, Zoubeir; Jebabli, Leïla; Ammar, Adel; Kachti, Mahmoud; Aouadi, Soufia; Craig, Philip S
2014-11-01
The species/genotypes of Echinococcus infecting a range of intermediate, canid and human hosts were examined as well as the intraspecific variation and population structure of Echinococcus granulosus sensu lato (s.l.) within these hosts. A total of 174 Echinococcus isolates from humans and ungulate intermediate hosts and adult tapeworms from dogs and jackals were used. Genomic DNA was used to amplify a fragment within a mitochondrial gene and a nuclear gene, coding for cytochrome c oxidase subunit 1 (cox1; 828 bp) and elongation factor 1-alpha (ef1a; 656 bp), respectively. E. granulosus sensu stricto was identified from all host species examined, E. canadensis (G6) in a camel and, for the first time, fertile cysts of E. granulosus (s.s.) and E. equinus in equids (donkeys) and E. granulosus (s.s.) from wild boars and goats. Considerable genetic variation was seen only for the cox1 sequences of E. granulosus (s.s.). The pairwise fixation index (Fst) for cox1 E. granulosus (s.s.) sequences from donkeys was high and was statistically significant compared with that of E. granulosus populations from other intermediate hosts. A single haplotype (EqTu01) was identified for the cox1 nucleotide sequences of E. equinus. The role of donkeys in the epidemiology of echinococcosis in Tunisia requires further investigation. © The Author 2014. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Sharma, Monika; Devi, Kangjam Rekha; Sehgal, Rakesh; Narain, Kanwar; Mahanta, Jagadish; Malla, Nancy
2014-01-01
Taenia solium taeniasis/cysticercosis is a major public health problem in developing countries. This study reports genotypic analysis of T. solium cysticerci collected from two different endemic areas of North (Chandigarh) and North East India (Dibrugarh) by the sequencing of mitochondrial cytochrome c oxidase subunit 1 (cox1) gene. The variation in cox1 sequences of samples collected from these two different geographical regions located at a distance of 2585 km was minimal. Alignment of the nucleotide sequences with different species of Taenia showed the similarity with Asian genotype of T. solium. Among 50 isolates, 6 variant nucleotide positions (0.37% of total length) were detected. These results suggest that population in these geographical areas are homogenous. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Constant, P.; Quiza, L.; Lalonde, I.
2013-12-01
Soil bacteria scavenging carbon monoxide (CO) are responsible for the biological sink of atmospheric CO. These bacteria mitigate an important fraction of the global emissions of CO from natural and anthropogenic sources. This ubiquitous soil ecosystem service is of critical importance since CO indirectly regulates the atmospheric lifetime of methane - the second most powerful greenhouse gas. So far, only few carboxydovore bacteria were shown to oxidize atmospheric CO. The CO-dehydrogenase (CODH) is the enzyme catalyzing the CO oxidation reaction in these bacteria. The enzyme is a dimer of heterotrimers encoded by the genes coxS, coxM and coxL. CoxL is the large subunit of the CODH. Phylogenetic analyzes revealed that coxL gene sequences encompass two main clusters: BMS and OMP groups but the version conferring a high affinity for CO and the ability to scavenge atmospheric CO is unknown. The objective of this investigation was to relate the diversity of coxL gene sequences with CO soil uptake activity and soil physicochemical properties. For this purpose, we collected soil samples in three neighbouring sites encompassing different land-use types: an undisturbed deciduous forest, a maize field and a larch monoculture. We analyzed (i) coxL diversity in the three environments, using a new coxL PCR detection assay targeting both OMP and BMS groups, (ii) CO oxidation activity using a gas chromatography assay and, (iii) soil physicochemical properties. Our results demonstrate that land-use change exerts a significant impact on coxL diversity as well as CO oxidation activity, with significant loss of the potential CO soil uptake activity following the conversion of native forest to maize or larch plantation. Most of the coxL gene sequences retrieved from the soil samples were not affiliated to sequences derived from microbial genome databases, impairing a taxonomic identification of the potential CO-oxidizing bacteria detected in soil. Canonical ordination analysis allowed us to identify coxL sequences belonging to potential high affinity CO-oxidizing bacteria, in addition to recognise environmental factors influencing their distribution and CO soil uptake activity. The activity increased with total carbon and nitrogen in soil and was inversely correlated to water content, pH, potassium and phosphorus. Candidates belonging to OMP group were identified as potential high affinity CO oxidizing bacteria. These bacteria were enriched in the laboratory and tested for their CO uptake activity. Work is currently in progress to assess the abundance and the CO uptake activity of these microorganisms in soil. Taken together, these results will be implemented into molecular models aimed at predicting CO uptake activity in soil. These models will be utilized to predict the response of the biological sink of CO to global change, while determining how land management practices could protect this important ecosystem service.
Elanchezhian, R; Sakthivel, M; Geraldine, P; Thomas, P A
2010-03-30
Differential expression of apoptotic genes has been demonstrated in selenite-induced cataract. Acetyl-l-carnitine (ALCAR) has been shown to prevent selenite cataractogenesis by maintaining lenticular antioxidant enzyme and redox system components at near normal levels and also by inhibiting lenticular calpain activity. The aim of the present experiment was to investigate the possibility that ALCAR also prevents selenite-induced cataractogenesis by regulating the expression of antioxidant (catalase) and apoptotic [caspase-3, early growth response protein-1 (EGR-1) and cytochrome c oxidase subunit I (COX-I)] genes. The experiment was conducted on 9-day-old Wistar rat pups, which were divided into normal, cataract-untreated and cataract-treated groups. Putative changes in gene expression in whole lenses removed from the rats were determined by measuring mRNA transcript levels of the four genes by RT-PCR analysis, using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as an internal control. The expression of lenticular caspase-3 and EGR-1 genes appeared to be upregulated, as inferred by detecting increased mRNA transcript levels, while that of COX-I and catalase genes appeared to be downregulated (lowered mRNA transcript levels) in the lenses of cataract-untreated rats. However, in rats treated with ALCAR, the lenticular mRNA transcript levels were maintained at near normal (control) levels. These results suggest that ALCAR may prevent selenite-induced cataractogenesis by preventing abnormal expression of lenticular genes governing apoptosis.
Jiang, Shao-Tong; Hong, Gui-Yun; Yu, Miao; Li, Na; Yang, Ying; Liu, Yan-Qun; Wei, Zhao-Jun
2009-05-22
The complete mitochondrial genome (mitogenome) of Eriogyna pyretorum (Lepidoptera: Saturniidae) was determined as being composed of 15,327 base pairs (bp), including 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes, and a control region. The arrangement of the PCGs is the same as that found in the other sequenced lepidopteran. The AT skewness for the E. pyretorum mitogenome is slightly negative (-0.031), indicating the occurrence of more Ts than As. The nucleotide composition of the E. pyretorum mitogenome is also biased toward A + T nucleotides (80.82%). All PCGs are initiated by ATN codons, except for cytochrome c oxidase subunit 1 and 2 (cox1 and cox2). Two of the 13 PCGs harbor the incomplete termination codon by T. All tRNA genes have a typical clover-leaf structure of mitochondrial tRNA, with the exception of trnS1(AGN) and trnS2(UCN). Phylogenetic analysis among the available lepidopteran species supports the current morphology-based hypothesis that Bombycoidea, Geometroidea, Notodontidea, Papilionoidea and Pyraloidea are monophyletic. As has been previously suggested, Bombycidae (Bombyx mori and Bombyx mandarina), Sphingoidae (Manduca sexta) and Saturniidae (Antheraea pernyi, Antheraea yamamai, E. pyretorum and Caligula boisduvalii) formed a group.
Jiang, Shao-Tong; Hong, Gui-Yun; Yu, Miao; Li, Na; Yang, Ying; Liu, Yan-Qun; Wei, Zhao-Jun
2009-01-01
The complete mitochondrial genome (mitogenome) of Eriogyna pyretorum (Lepidoptera: Saturniidae) was determined as being composed of 15,327 base pairs (bp), including 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes, and a control region. The arrangement of the PCGs is the same as that found in the other sequenced lepidopteran. The AT skewness for the E. pyretorum mitogenome is slightly negative (-0.031), indicating the occurrence of more Ts than As. The nucleotide composition of the E. pyretorum mitogenome is also biased toward A + T nucleotides (80.82%). All PCGs are initiated by ATN codons, except for cytochrome c oxidase subunit 1 and 2 (cox1 and cox2). Two of the 13 PCGs harbor the incomplete termination codon by T. All tRNA genes have a typical clover-leaf structure of mitochondrial tRNA, with the exception of trnS1(AGN) and trnS2(UCN). Phylogenetic analysis among the available lepidopteran species supports the current morphology-based hypothesis that Bombycoidea, Geometroidea, Notodontidea, Papilionoidea and Pyraloidea are monophyletic. As has been previously suggested, Bombycidae (Bombyx mori and Bombyx mandarina), Sphingoidae (Manduca sexta) and Saturniidae (Antheraea pernyi, Antheraea yamamai, E. pyretorum and Caligula boisduvalii) formed a group. PMID:19471586
2012-01-01
Background Constitutive activation of Ras in immortalized bronchial epithelial cells increases electron transport chain activity, oxygen consumption and tricarboxylic acid cycling through unknown mechanisms. We hypothesized that members of the Ras family may stimulate respiration by enhancing the expression of the Vb regulatory subunit of cytochrome c oxidase (COX). Results We found that the introduction of activated H-RasV12 into immortalized human bronchial epithelial cells increased eIF4E-dependent COX Vb protein expression simultaneously with an increase in COX activity and oxygen consumption. In support of the regulation of COX Vb expression by the Ras family, we also found that selective siRNA-mediated inhibition of K-Ras expression in A549 lung adenocarcinoma cells reduced COX Vb protein expression, COX activity, oxygen consumption and the steady-state concentration of ATP. We postulated that COX Vb-mediated activation of COX activity may be required for the anchorage-independent growth of A549 cells as soft agar colonies or as lung xenografts. We transfected the A549 cells with COX Vb small interfering or shRNA and observed a significant reduction of their COX activity, oxygen consumption, ATP and ability to grow in soft agar and as poorly differentiated tumors in athymic mice. Conclusion Taken together, our findings indicate that the activation of Ras increases COX activity and mitochondrial respiration in part via up-regulation of COX Vb and that this regulatory subunit of COX may have utility as a Ras effector target for the development of anti-neoplastic agents. PMID:22917272
Evert, M; Frau, M; Tomasi, M L; Latte, G; Simile, M M; Seddaiu, M A; Zimmermann, A; Ladu, S; Staniscia, T; Brozzetti, S; Solinas, G; Dombrowski, F; Feo, F; Pascale, R M; Calvisi, D F
2013-11-12
The DNA-repair gene DNA-dependent kinase catalytic subunit (DNA-PKcs) favours or inhibits carcinogenesis, depending on the cancer type. Its role in human hepatocellular carcinoma (HCC) is unknown. DNA-dependent protein kinase catalytic subunit, H2A histone family member X (H2AFX) and heat shock transcription factor-1 (HSF1) levels were assessed by immunohistochemistry and/or immunoblotting and qRT-PCR in a collection of human HCC. Rates of proliferation, apoptosis, microvessel density and genomic instability were also determined. Heat shock factor-1 cDNA or DNA-PKcs-specific siRNA were used to explore the role of both genes in HCC. Activator protein 1 (AP-1) binding to DNA-PKcs promoter was evaluated by chromatin immunoprecipitation. Kaplan-Meier curves and multivariate Cox model were used to study the impact on clinical outcome. Total and phosphorylated DNA-PKcs and H2AFX were upregulated in HCC. Activated DNA-PKcs positively correlated with HCC proliferation, genomic instability and microvessel density, and negatively with apoptosis and patient's survival. Proliferation decline and massive apoptosis followed DNA-PKcs silencing in HCC cell lines. Total and phosphorylated HSF1 protein, mRNA and activity were upregulated in HCC. Mechanistically, we demonstrated that HSF1 induces DNA-PKcs upregulation through the activation of the MAPK/JNK/AP-1 axis. DNA-dependent protein kinase catalytic subunit transduces HSF1 effects in HCC cells, and might represent a novel target and prognostic factor in human HCC.
Goodall-Copestake, W P; Tarling, G A; Murphy, E J
2012-07-01
Estimates of genetic diversity represent a valuable resource for biodiversity assessments and are increasingly used to guide conservation and management programs. The most commonly reported estimates of DNA sequence diversity in animal populations are haplotype diversity (h) and nucleotide diversity (π) for the mitochondrial gene cytochrome c oxidase subunit I (cox1). However, several issues relevant to the comparison of h and π within and between studies remain to be assessed. We used population-level cox1 data from peer-reviewed publications to quantify the extent to which data sets can be re-assembled, to provide a standardized summary of h and π estimates, to explore the relationship between these metrics and to assess their sensitivity to under-sampling. Only 19 out of 42 selected publications had archived data that could be unambiguously re-assembled; this comprised 127 population-level data sets (n ≥ 15) from 23 animal species. Estimates of h and π were calculated using a 456-base region of cox1 that was common to all the data sets (median h=0.70130, median π=0.00356). Non-linear regression methods and Bayesian information criterion analysis revealed that the most parsimonious model describing the relationship between the estimates of h and π was π=0.0081 h(2). Deviations from this model can be used to detect outliers due to biological processes or methodological issues. Subsampling analyses indicated that samples of n>5 were sufficient to discriminate extremes of high from low population-level cox1 diversity, but samples of n ≥ 25 are recommended for greater accuracy.
Cheng, T-C; Lai, Y-S; Lin, I-Y; Wu, C-P; Chang, S-L; Chen, T-I; Su, M-S
2010-02-01
Establishment and characterization of two cobia, Rachycentron canadum, cell lines derived from cobia brain (CB) and cobia fin (CF) are described. Caudal fin and brain from juvenile cobia were dissociated for 30 and 10 min, respectively, in phosphate-buffered saline containing 0.25% trypsin at 25 degrees C. The optimal culture condition for both dissociated cells (primary cell culture) was at 28 degrees C in Leibovitz-15 medium containing 10% foetal bovine serum. The cells have been sub-cultured at a ratio of 1:2 for more than 160 passages over a period of 3 years. Origin of the cultured cells was verified by comparison of their sequences of mitochondrial cytochrome oxidase subunit I genes (cox I) with the cox 1 sequence from cobia muscle tissue. The cell lines showed polyploidy. No mycoplasma contamination was detected. Susceptibility to grouper iridovirus was observed for the CB cell line but not the CF cell line. Both cell lines expressed green fluorescent protein after being transfected with green fluorescent reporter gene driven by the cytomegalovirus promoter.
A MELAS syndrome family harboring two mutations in mitochondrial genome.
Choi, Byung-Ok; Hwang, Jung Hee; Kim, Joonki; Cho, Eun Min; Cho, Sun Young; Hwang, Su Jin; Lee, Hyang Woon; Kim, Song Ja; Chung, Ki Wha
2008-06-30
Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a genetically heterogeneous mitochondrial disorder with variable clinical symptoms. Here, from the sequencing of the entire mitochondrial genome, we report a Korean MELAS family harboring two homoplasmic missense mutations, which were reported 9957T>C (Phe251Leu) transition mutation in the cytochrome c oxidase subunit 3 (COX3) gene and a novel 13849A>C (Asn505His) transversion mutation in the NADH dehydrogenase subunit 5 (ND5) gene. Neither of these mutations was found in 205 normal controls. Both mutations were identified from the proband and his mother, but not his father. The patients showed cataract symptom in addition to MELAS phenotype. We believe that the 9957T>C mutation is pathogenic, however, the 13849A>C mutation is of unclear significance. It is likely that the 13849A>C mutation might function as the secondary mutation which increase the expressivity of overlapping phenotypes of MELAS and cataract. This study also demonstrates the importance of full sequencing of mtDNA for the molecular genetic understanding of mitochondrial disorders.
A MELAS syndrome family harboring two mutations in mitochondrial genome
Choi, Byung-Ok; Hwang, Jung Hee; Kim, Joonki; Cho, Eun Min; Cho, Sun Young; Hwang, Su Jin; Lee, Hyang Woon; Kim, Song Ja
2008-01-01
Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a genetically heterogeneous mitochondrial disorder with variable clinical symptoms. Here, from the sequencing of the entire mitochondrial genome, we report a Korean MELAS family harboring two homoplasmic missense mutations, which were reported 9957T > C (Phe251Leu) transition mutation in the cytochrome c oxidase subunit 3 (COX3) gene and a novel 13849A > C (Asn505His) transversion mutation in the NADH dehydrogenase subunit 5 (ND5) gene. Neither of these mutations was found in 205 normal controls. Both mutations were identified from the proband and his mother, but not his father. The patients showed cataract symptom in addition to MELAS phenotype. We believe that the 9957T > C mutation is pathogenic, however, the 13849A > C mutation is of unclear significance. It is likely that the 13849A > C mutation might function as the secondary mutation which increase the expressivity of overlapping phenotypes of MELAS and cataract. This study also demonstrates the importance of full sequencing of mtDNA for the molecular genetic understanding of mitochondrial disorders. PMID:18587274
Ngui, Romano; Mahdy, Mohammed A K; Chua, Kek Heng; Traub, Rebecca; Lim, Yvonne A L
2013-10-01
Ancylostoma ceylanicum is the only zoonotic hookworm species that is able to produce patent infections in humans with the majority of cases reported in South East Asia. Over the past few years, there have been an increasing number of studies investigating the prevalence of this parasitic zoonosis using molecular diagnostic tools and a single genetic locus as marker for species identification. As there can be limitations in using a single genetic locus for epidemiological studies and genetic discrimination, the complementary use of a more variable locus will provide additional evidence to support the zoonotic exchange of hookworm species between humans and animals. In the present study, the cytochrome c oxidase subunit 1 (cox 1) sequence of A. ceylanicum from positive human and animal fecal samples were determined and compared with published reference sequences. Phylogenetic analysis demonstrated that isolates of A. ceylanicum were divided into two clusters, one consisting 3 human isolates and the other comprising 19 isolates of human and animal origin from different geographical locations within Malaysia. The two groups of A. ceylanicum could be distinguished from one another through five fixed nucleotide differences at locations 891, 966, 1008, 1077 and 1083. The detection of genetically distinct groups and considerable level of genetic variation within the cox 1 sequence of A. ceylanicum might suggest potential haplotype-linked differences in zoonotic, epidemiological and pathobiological characteristics, a hypothesis that still needs further investigation. Copyright © 2013 Elsevier B.V. All rights reserved.
Marangi, M; Cantacessi, C; Sparagano, O A E; Camarda, A; Giangaspero, A
2014-12-01
In order to investigate the genetic relationships between Dermanyssus gallinae (Metastigmata: Dermanyssidae) (de Geer) isolates from poultry farms in Italy and other European countries, phylogenetic analysis was performed using a portion of the cytochrome c oxidase subunit 1 (cox1) gene of the mitochondrial DNA and the internal transcribed spacers (ITS1+5.8S+ITS2) of the ribosomal DNA. A total of 360 cox1 sequences and 360 ITS+ sequences were obtained from mites collected on 24 different poultry farms in 10 different regions of Northern and Southern Italy. Phylogenetic analysis of the cox1 sequences resulted in the clustering of two groups (A and B), whereas phylogenetic analysis of the ITS+ resulted in largely unresolved clusters. Knowledge of the genetic make-up of mite populations within countries, together with comparative analyses of D. gallinae isolates from different countries, will provide better understanding of the population dynamics of D. gallinae. This will also allow the identification of genetic markers of emerging acaricide resistance and the development of alternative strategies for the prevention and treatment of infestations. © 2014 The Royal Entomological Society.
Huang, Wen-Chung; Wu, Shu-Ju; Tu, Rong-Syuan; Lai, You-Rong; Liou, Chian-Jiun
2015-06-01
Phloretin, a flavonoid isolated from the apple tree, is reported to have anti-inflammatory, anti-oxidant, and anti-adiposity effects. In this study, we evaluated the suppressive effects of phloretin on intercellular adhesion molecule 1 (ICAM-1) and cyclooxygenase (COX)-2 expression in IL-1β-stimulated human lung epithelial A549 cells. The cells were pretreated with various concentrations of phloretin (3-100 μM), followed by induced inflammation by IL-1β. Phloretin inhibited levels of prostaglandin E2, decreased COX-2 expression, and suppressed IL-8, monocyte chemotactic protein 1, and IL-6 production. It also decreased ICAM-1 gene and protein expression and suppressed monocyte adhesion to inflammatory A549 cells. Phloretin also significantly inhibited Akt and mitogen-activated protein kinase (MAPK) phosphorylation and decreased nuclear transcription factor kappa-B (NF-κB) subunit p65 protein translocation into the nucleus. In addition, ICAM-1 and COX-2 expression was suppressed by pretreatment with both MAPK inhibitors and phloretin in inflammatory A549 cells. However, phlorizin, a derivative of phloretin, did not suppress the inflammatory response in IL-1β-stimulated A549 cells. These results suggest that phloretin might have an anti-inflammatory effect by inhibiting proinflammatory cytokine, COX-2, and ICAM-1 expression via blocked NF-κB and MAPK signaling pathways.
Genetic homogeneity of Fascioloides magna in Austria.
Husch, Christian; Sattmann, Helmut; Hörweg, Christoph; Ursprung, Josef; Walochnik, Julia
2017-08-30
The large American liver fluke, Fascioloides magna, is an economically relevant parasite of both domestic and wild ungulates. F. magna was repeatedly introduced into Europe, for the first time already in the 19th century. In Austria, a stable population of F. magna has established in the Danube floodplain forests southeast of Vienna. The aim of this study was to determine the genetic diversity of F. magna in Austria. A total of 26 individuals from various regions within the known area of distribution were investigated for their cytochrome oxidase subunit 1 (cox1) and nicotinamide dehydrogenase subunit 1 (nad1) gene haplotypes. Interestingly, all 26 individuals revealed one and the same haplotype, namely concatenated haplotype Ha5. This indicates a homogenous population of F. magna in Austria and may argue for a single introduction. Alternatively, genetic homogeneity might also be explained by a bottleneck effect and/or genetic drift. Copyright © 2017 Elsevier B.V. All rights reserved.
Laker, R C; Wadley, G D; McConell, G K; Wlodek, M E
2012-02-01
Foetal growth restriction impairs skeletal muscle development and adult muscle mitochondrial biogenesis. We hypothesized that key genes involved in muscle development and mitochondrial biogenesis would be altered following uteroplacental insufficiency in rat pups, and improving postnatal nutrition by cross-fostering would ameliorate these deficits. Bilateral uterine vessel ligation (Restricted) or sham (Control) surgery was performed on day 18 of gestation. Males and females were investigated at day 20 of gestation (E20), 1 (PN1), 7 (PN7) and 35 (PN35) days postnatally. A separate cohort of Control and Restricted pups were cross-fostered onto a different Control or Restricted mother and examined at PN7. In both sexes, peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α), cytochrome c oxidase subunits 3 and 4 (COX III and IV) and myogenic regulatory factor 4 expression increased from late gestation to postnatal life, whereas mitochondrial transcription factor A, myogenic differentiation 1 (MyoD), myogenin and insulin-like growth factor I (IGF-I) decreased. Foetal growth restriction increased MyoD mRNA in females at PN7, whereas in males IGF-I mRNA was higher at E20 and PN1. Cross-fostering Restricted pups onto a Control mother significantly increased COX III mRNA in males and COX IV mRNA in both sexes above controls with little effect on other genes. Developmental age appears to be a major factor regulating skeletal muscle mitochondrial and developmental genes, with growth restriction and cross-fostering having only subtle effects. It therefore appears that reductions in adult mitochondrial biogenesis markers likely develop after weaning.
Echinococcus granulosus Sensu Stricto in Dogs and Jackals from Caspian Sea Region, Northern Iran
GHOLAMI, Shirzad; JAHANDAR, Hefzallah; ABASTABAR, Mahdi; PAGHEH, Abdolsatar; MOBEDI, Iraj; SHARBATKHORI, Mitra
2016-01-01
Background: The aim of the present study was genotyping of Echinococcus granulosus isolates from dogs and jackals in Mazandaran Province, northern Iran, and using partial sequence of the mitochondrial cytochrome c oxidase subunit 1 gene (cox1). Methods: E. granulosus isolates (n = 15) were collected from 42 stray dogs and 16 jackals found in south of the Caspian Sea in northern Iran. After morphological study, the isolates were genetically characterized using consensus sequences (366bp) of the cox1 gene. Phylogenetic analysis of cox1 nucleotide sequence data was performed using a Bayesian Inference approach. Results: Four different sequences were observed among the isolates. Two genotypes [G1 (66.7%) and G3 (33.3%)] were identified among the isolates. The G1 sequences indicated three sequence profiles. One profile (Maz1) had 100% homology with reference sequence (AN: KP339045). Two other profiles, designated Maz2 and Maz3, had 99% homology with the G1 genotype (ANs: KP339046 and KP339047). A G3 sequence designated Maz4 showed 100% homology with a G3 reference sequence (AN: KP339048). Conclusion: The occurrence of the G1 genotype of E. granulosus sensu stricto as a frequent genotype in dogs is emphasized. This study established the first molecular characterization of E. granulosus in the province. PMID:28096852
Molecular characterization of Echinococcus granulosus isolated from sheep in Palestine.
Adwan, Ghaleb; Adwan, Kamel; Bdir, Sami; Abuseir, Sameh
2013-06-01
A total of twenty-three Echinococcus granulosus hydatid cysts were collected from infected sheep slaughtered in Nablus abattoir, Nablus - Palestine. Protoscoleces or germinal membranes were used for DNA extraction followed by PCR amplification. Amplified products were analyzed the presence of a fragment of 444bp of the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene followed by nucleotide sequencing. Overall, 21 hydatid cysts were positive compared to a negative control. The partial sequences of cox1 gene of E. granulosus strains indicated that the sheep in Palestine were infected with genotype 1 (G1), genotype 2 (G2) and genotype 3 (G3). The prevalence of these genotypes was (14/21) 66.7%, (4/21) 19.0% and (3/21) 14.3% for G1, G2 and G3, respectively. Our results showed that twelve strains of G1 belonged to the common haplotype EG01 which is the major haplotype in all the geographic populations. Phylogenetic analysis also showed that two sequences of G1 genotype which have GenBank accession No. KC109657 and KC109659 were corresponding to G1.4 micro-variants. Only the sequence of GenBank accession No. KC109652 identified in our study as G2 was found to have complete identity to the original sequence described for the cox1 gene (GenBank accession No. M84662). It is concluded that G1 genotype is the predominant genotype in sheep in Palestine. Therefore, these findings should be taken into consideration in developing prevention strategies and control programs for hydatidosis in Palestine. Copyright © 2013 Elsevier Inc. All rights reserved.
Hess, Kenneth C.; Liu, Jingjing; Manfredi, Giovanni; Mühlschlegel, Fritz A.; Buck, Jochen; Levin, Lonny R.; Barrientos, Antoni
2014-01-01
Mitochondria, the major source of cellular energy in the form of ATP, respond to changes in substrate availability and bioenergetic demands by employing rapid, short-term, metabolic adaptation mechanisms, such as phosphorylation-dependent protein regulation. In mammalian cells, an intramitochondrial CO2-adenylyl cyclase (AC)-cyclic AMP (cAMP)-protein kinase A (PKA) pathway regulates aerobic energy production. One target of this pathway involves phosphorylation of cytochrome c oxidase (COX) subunit 4-isoform 1 (COX4i1), which modulates COX allosteric regulation by ATP. However, the role of the CO2-sAC-cAMP-PKA signalosome in regulating COX activity and mitochondrial metabolism and its evolutionary conservation remain to be fully established. We show that in Saccharomyces cerevisiae, normoxic COX activity measured in the presence of ATP is 55% lower than in the presence of ADP. Moreover, the adenylyl cyclase Cyr1 activity is present in mitochondria, and it contributes to the ATP-mediated regulation of COX through the normoxic subunit Cox5a, homologue of human COX4i1, in a bicarbonate-sensitive manner. Furthermore, we have identified 2 phosphorylation targets in Cox5a (T65 and S43) that modulate its allosteric regulation by ATP. These residues are not conserved in the Cox5b-containing hypoxic enzyme, which is not regulated by ATP. We conclude that across evolution, a CO2-sAC-cAMP-PKA axis regulates normoxic COX activity.—Hess, K. C., Liu, J., Manfredi, G., Mühlschlegel, F. A., Buck, J., Levin, L. R., Barrientos, A. A mitochondrial CO2-adenylyl cyclase-cAMP signalosome controls yeast normoxic cytochrome c oxidase activity. PMID:25002117
2013-01-01
Background Echinococcus granulosus (EG) complex, the cause of cystic echinococcosis (CE), infects humans and several other animal species worldwide and hence the disease is of public health importance. Ten genetic variants, or genotypes designated as (G1-G10), are distributed worldwide based on genetic diversity. The objective of this study was to provide some sequence data and phylogeny of EG isolates recovered from the Sudanese one-humped camel (Camelus dromedaries). Fifty samples of hydatid cysts were collected from the one- humped camels (Camelus dromedaries) at Taboul slaughter house, central Sudan. DNAs were extracted from protoscolices and/or associated germinal layers of hydatid cysts using a commercial kit. The mitochondrial NADH dehydrogenase subunit 1 (NADH1) gene and the cytochrome C oxidase subunit 1 (cox1) gene were used as targets for polymerase chain reaction (PCR) amplification. The PCR products were purified and partial sequences were generated. Sequences were further examined by sequence analysis and subsequent phylogeny to compare these sequences to those from known strains of EG circulating globally. Results The identity of the PCR products were confirmed as NADH1 and cox1 nucleotide sequences using the Basic Local Alignment Search Tool (BLAST) of NCBI (National Center for Biotechnology Information, Bethesda, MD). The phylogenetic analysis showed that 98% (n = 49) of the isolates clustered with Echinococcus canadensis genotype 6 (G6), whereas only one isolate (2%) clustered with Echinococcus ortleppi (G5). Conclusions This investigation expands on the existing sequence data generated from EG isolates recovered from camel in the Sudan. The circulation of the cattle genotype (G5) in the one-humped camel is reported here for the first time. PMID:23800362
Ahmed, Mohamed E; Eltom, Kamal H; Musa, Nasreen O; Ali, Ibtisam A; Elamin, Fatima M; Grobusch, Martin P; Aradaib, Imadeldin E
2013-06-25
Echinococcus granulosus (EG) complex, the cause of cystic echinococcosis (CE), infects humans and several other animal species worldwide and hence the disease is of public health importance. Ten genetic variants, or genotypes designated as (G1-G10), are distributed worldwide based on genetic diversity. The objective of this study was to provide some sequence data and phylogeny of EG isolates recovered from the Sudanese one-humped camel (Camelus dromedaries). Fifty samples of hydatid cysts were collected from the one- humped camels (Camelus dromedaries) at Taboul slaughter house, central Sudan. DNAs were extracted from protoscolices and/or associated germinal layers of hydatid cysts using a commercial kit. The mitochondrial NADH dehydrogenase subunit 1 (NADH1) gene and the cytochrome C oxidase subunit 1 (cox1) gene were used as targets for polymerase chain reaction (PCR) amplification. The PCR products were purified and partial sequences were generated. Sequences were further examined by sequence analysis and subsequent phylogeny to compare these sequences to those from known strains of EG circulating globally. The identity of the PCR products were confirmed as NADH1 and cox1 nucleotide sequences using the Basic Local Alignment Search Tool (BLAST) of NCBI (National Center for Biotechnology Information, Bethesda, MD). The phylogenetic analysis showed that 98% (n = 49) of the isolates clustered with Echinococcus canadensis genotype 6 (G6), whereas only one isolate (2%) clustered with Echinococcus ortleppi (G5). This investigation expands on the existing sequence data generated from EG isolates recovered from camel in the Sudan. The circulation of the cattle genotype (G5) in the one-humped camel is reported here for the first time.
Suzuki, Hideaki; Yu, Jiwen; Wang, Fei; Zhang, Jinfa
2013-06-01
Cytoplasmic male sterility (CMS), which is a maternally inherited trait and controlled by novel chimeric genes in the mitochondrial genome, plays a pivotal role in the production of hybrid seed. In cotton, no PCR-based marker has been developed to discriminate CMS-D8 (from Gossypium trilobum) from its normal Upland cotton (AD1, Gossypium hirsutum) cytoplasm. The objective of the current study was to develop PCR-based single nucleotide polymorphic (SNP) markers from mitochondrial genes for the CMS-D8 cytoplasm. DNA sequence variation in mitochondrial genes involved in the oxidative phosphorylation chain including ATP synthase subunit 1, 4, 6, 8 and 9, and cytochrome c oxidase 1, 2 and 3 subunits were identified by comparing CMS-D8, its isogenic maintainer and restorer lines on the same nuclear genetic background. An allelic specific PCR (AS-PCR) was utilized for SNP typing by incorporating artificial mismatched nucleotides into the third or fourth base from the 3' terminus in both the specific and nonspecific primers. The result indicated that the method modifying allele-specific primers was successful in obtaining eight SNP markers out of eight SNPs using eight primer pairs to discriminate two alleles between AD1 and CMS-D8 cytoplasms. Two of the SNPs for atp1 and cox1 could also be used in combination to discriminate between CMS-D8 and CMS-D2 cytoplasms. Additionally, a PCR-based marker from a nine nucleotide insertion-deletion (InDel) sequence (AATTGTTTT) at the 59-67 bp positions from the start codon of atp6, which is present in the CMS and restorer lines with the D8 cytoplasm but absent in the maintainer line with the AD1 cytoplasm, was also developed. A SNP marker for two nucleotide substitutions (AA in AD1 cytoplasm to CT in CMS-D8 cytoplasm) in the intron (1,506 bp) of cox2 gene was also developed. These PCR-based SNP markers should be useful in discriminating CMS-D8 and AD1 cytoplasms, or those with CMS-D2 cytoplasm as a rapid, simple, inexpensive, and reliable genotyping tool to assist hybrid cotton breeding.
Shi, Ju; Johansson, Jenny; Woodling, Nathaniel S; Wang, Qian; Montine, Thomas J; Andreasson, Katrin
2010-06-15
Peripheral inflammation leads to immune responses in brain characterized by microglial activation, elaboration of proinflammatory cytokines and reactive oxygen species, and secondary neuronal injury. The inducible cyclooxygenase (COX), COX-2, mediates a significant component of this response in brain via downstream proinflammatory PG signaling. In this study, we investigated the function of the PGE2 E-prostanoid (EP) 4 receptor in the CNS innate immune response to the bacterial endotoxin LPS. We report that PGE2 EP4 signaling mediates an anti-inflammatory effect in brain by blocking LPS-induced proinflammatory gene expression in mice. This was associated in cultured murine microglial cells with decreased Akt and I-kappaB kinase phosphorylation and decreased nuclear translocation of p65 and p50 NF-kappaB subunits. In vivo, conditional deletion of EP4 in macrophages and microglia increased lipid peroxidation and proinflammatory gene expression in brain and in isolated adult microglia following peripheral LPS administration. Conversely, EP4 selective agonist decreased LPS-induced proinflammatory gene expression in hippocampus and in isolated adult microglia. In plasma, EP4 agonist significantly reduced levels of proinflammatory cytokines and chemokines, indicating that peripheral EP4 activation protects the brain from systemic inflammation. The innate immune response is an important component of disease progression in a number of neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In addition, recent studies demonstrated adverse vascular effects with chronic administration of COX-2 inhibitors, indicating that specific PG signaling pathways may be protective in vascular function. This study supports an analogous and beneficial effect of PGE2 EP4 receptor signaling in suppressing brain inflammation.
Differences in activity of cytochrome C oxidase in brain between sleep and wakefulness.
Nikonova, Elena V; Vijayasarathy, Camasamudram; Zhang, Lin; Cater, Jacqueline R; Galante, Raymond J; Ward, Stephen E; Avadhani, Narayan G; Pack, Allan I
2005-01-01
Increased mRNA level of subunit 1 cytochrome c oxidase (COXI) during wakefulness and after short-term sleep deprivation has been described in brain. We hypothesized that this might contribute to increased activity of cytochrome oxidase (COX) enzyme during wakefulness, as part of the mechanisms to provide sufficient amounts of adenosine triphosphate to meet increased neuronal energy demands. COX activity was measured in isolated mitochondria from different brain regions in groups of rats with 3 hours of spontaneous sleep, 3 hours of spontaneous wake, and 3 hours of sleep deprivation. The group with 3 hours of spontaneous wake was added to delineate the circadian component of changes in the enzyme activity. Northern blot analysis was performed to examine the mRNA levels of 2 subunits of the enzyme COXI and COXIV, encoded by mitochondrial and nuclear DNA, respectively. Laboratory of Biochemistry, Department of Animal Biology, and Center for Sleep and Respiratory Neurobiology, University of Pennsylvania. 2-month-old male Fischer rats (N = 21) implanted for polygraphic recording. For COX activity, there was a main effect by analysis of variance of experimental group (P < .0001) with significant increases in COX activity in wake and sleep-deprived groups as compared to the sleep group. A main effect of brain region was also significant (P < .001). There was no difference between brain regions in the degree of increase in enzyme activity in wakefulness. Both COXI and COXIV mRNA were increased with wakefulness as compared to sleep. There is an increase in COX activity after both 3 hours of spontaneous wake and 3 hours of sleep deprivation as compared with 3 hours of spontaneous sleep in diverse brain regions, which could be, in part, explained by the increased levels of bigenomic transcripts of the enzyme. This likely contributes to increased adenosine triphosphate production during wakefulness. ADP, adenosine diphosphate; ATP, adenosine triphosphate; COXI, cytochrome c oxidase subunit 1 mRNA; COX, cytochrome c oxidase (protein); CREB, cyclic AMP response element binding protein; DNA, deoxyribonucleic acid; EDTA, ethylenediaminetetraacetic acid; EEG, electroencephalography; EMG, electromyography; GABP, GA binding protein; HEPES, 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid; mRNA, messenger ribonucleic acid; NADH, nicotinamid adenine dinucleotide, reduced; NDII, NADH dehydrogenase subunit 2 mRNA; NRF, nuclear respiratory factor.
Adams, Keith L.; Song, Keming; Roessler, Philip G.; Nugent, Jacqueline M.; Doyle, Jane L.; Doyle, Jeff J.; Palmer, Jeffrey D.
1999-01-01
The respiratory gene cox2, normally present in the mitochondrion, was previously shown to have been functionally transferred to the nucleus during flowering plant evolution, possibly during the diversification of legumes. To search for novel intermediate stages in the process of intracellular gene transfer and to assess the evolutionary timing and frequency of cox2 transfer, activation, and inactivation, we examined nuclear and mitochondrial (mt) cox2 presence and expression in over 25 legume genera and mt cox2 presence in 392 genera. Transfer and activation of cox2 appear to have occurred during recent legume evolution, more recently than previously inferred. Many intermediate stages of the gene transfer process are represented by cox2 genes in the studied legumes. Nine legumes contain intact copies of both nuclear and mt cox2, although transcripts could not be detected for some of these genes. Both cox2 genes are transcribed in seven legumes that are phylogenetically interspersed with species displaying only nuclear or mt cox2 expression. Inactivation of cox2 in each genome has taken place multiple times and in a variety of ways, including loss of detectable transcripts or transcript editing and partial to complete gene loss. Phylogenetic evidence shows about the same number (3–5) of separate inactivations of nuclear and mt cox2, suggesting that there is no selective advantage for a mt vs. nuclear location of cox2 in plants. The current distribution of cox2 presence and expression between the nucleus and mitochondrion in the studied legumes is probably the result of chance mutations silencing either cox2 gene. PMID:10570164
Pesce, Vito; Fracasso, Flavio; Cassano, Pierluigi; Lezza, Angela Maria Serena; Cantatore, Palmiro; Gadaleta, Maria Nicola
2010-01-01
The age-related decay of mitochondrial function is a major contributor to the aging process. We tested the effects of 2-month-daily acetyl-L-carnitine (ALCAR) supplementation on mitochondrial biogenesis in the soleus muscle of aged rats. This muscle is heavily dependent on oxidative metabolism. Mitochondrial (mt) DNA content, citrate synthase activity, transcript levels of some nuclear- and mitochondrial-coded genes (cytochrome c oxidase subunit IV [COX-IV], 16S rRNA, COX-I) and of some factors involved in the mitochondrial biogenesis signaling pathway (peroxisome proliferator-activated receptor gamma [PPARgamma] coactivator-1alpha [PGC-1alpha], mitochondrial transcription factor A mitochondrial [TFAM], mitochondrial transcription factor 2B [TFB2]), as well as the protein content of PGC-1alpha were determined. The results suggest that the ALCAR treatment in old rats activates PGC-1alpha-dependent mitochondrial biogenesis, thus partially reverting the age-related mitochondrial decay.
Ludwig, Bernd
2017-01-01
Biogenesis of mitochondrial cytochrome c oxidase (COX) is a complex process involving the coordinate expression and assembly of numerous subunits (SU) of dual genetic origin. Moreover, several auxiliary factors are required to recruit and insert the redox-active metal compounds, which in most cases are buried in their protein scaffold deep inside the membrane. Here we used a combination of gel electrophoresis and pull-down assay techniques in conjunction with immunostaining as well as complexome profiling to identify and analyze the composition of assembly intermediates in solubilized membranes of the bacterium Paracoccus denitrificans. Our results show that the central SUI passes through at least three intermediate complexes with distinct subunit and cofactor composition before formation of the holoenzyme and its subsequent integration into supercomplexes. We propose a model for COX biogenesis in which maturation of newly translated COX SUI is initially assisted by CtaG, a chaperone implicated in CuB site metallation, followed by the interaction with the heme chaperone Surf1c to populate the redox-active metal-heme centers in SUI. Only then the remaining smaller subunits are recruited to form the mature enzyme which ultimately associates with respiratory complexes I and III into supercomplexes. PMID:28107462
Genetic Alterations in Gastric Cancer Associated with Helicobacter pylori Infection.
Rivas-Ortiz, Claudia I; Lopez-Vidal, Yolanda; Arredondo-Hernandez, Luis Jose Rene; Castillo-Rojas, Gonzalo
2017-01-01
Gastric cancer is a world health problem and depicts the fourth leading mortality cause from malignancy in Mexico. Causation of gastric cancer is not only due to the combined effects of environmental factors and genetic variants. Recent molecular studies have transgressed a number of genes involved in gastric carcinogenesis. The aim of this review is to understand the recent basics of gene expression in the development of the process of gastric carcinogenesis. Genetic variants, polymorphisms, desoxyribonucleic acid methylation, and genes involved in mediating inflammation have been associated with the development of gastric carcinogenesis. Recently, these genes (interleukin 10, Il-17, mucin 1, β-catenin, CDX1, SMAD4, SERPINE1, hypoxia-inducible factor 1 subunit alpha, GSK3β, CDH17, matrix metalloproteinase 7, RUNX3, RASSF1A, TFF1, HAI-2, and COX-2) have been studied in association with oncogenic activation or inactivation of tumor suppressor genes. All these mechanisms have been investigated to elucidate the process of gastric carcinogenesis, as well as their potential use as biomarkers and/or molecular targets to treatment of disease.
Genetic Alterations in Gastric Cancer Associated with Helicobacter pylori Infection
Rivas-Ortiz, Claudia I.; Lopez-Vidal, Yolanda; Arredondo-Hernandez, Luis Jose Rene; Castillo-Rojas, Gonzalo
2017-01-01
Gastric cancer is a world health problem and depicts the fourth leading mortality cause from malignancy in Mexico. Causation of gastric cancer is not only due to the combined effects of environmental factors and genetic variants. Recent molecular studies have transgressed a number of genes involved in gastric carcinogenesis. The aim of this review is to understand the recent basics of gene expression in the development of the process of gastric carcinogenesis. Genetic variants, polymorphisms, desoxyribonucleic acid methylation, and genes involved in mediating inflammation have been associated with the development of gastric carcinogenesis. Recently, these genes (interleukin 10, Il-17, mucin 1, β-catenin, CDX1, SMAD4, SERPINE1, hypoxia-inducible factor 1 subunit alpha, GSK3β, CDH17, matrix metalloproteinase 7, RUNX3, RASSF1A, TFF1, HAI-2, and COX-2) have been studied in association with oncogenic activation or inactivation of tumor suppressor genes. All these mechanisms have been investigated to elucidate the process of gastric carcinogenesis, as well as their potential use as biomarkers and/or molecular targets to treatment of disease. PMID:28512631
Wiley, J C; Wailes, L A; Idzerda, R L; McKnight, G S
1999-03-05
Regulation of protein kinase A by subcellular localization may be critical to target catalytic subunits to specific substrates. We employed epitope-tagged catalytic subunit to correlate subcellular localization and gene-inducing activity in the presence of regulatory subunit or protein kinase inhibitor (PKI). Transiently expressed catalytic subunit distributed throughout the cell and induced gene expression. Co-expression of regulatory subunit or PKI blocked gene induction and prevented nuclear accumulation. A mutant PKI lacking the nuclear export signal blocked gene induction but not nuclear accumulation, demonstrating that nuclear export is not essential to inhibit gene induction. When the catalytic subunit was targeted to the nucleus with a nuclear localization signal, it was not sequestered in the cytoplasm by regulatory subunit, although its activity was completely inhibited. PKI redistributed the nuclear catalytic subunit to the cytoplasm and blocked gene induction, demonstrating that the nuclear export signal of PKI can override a strong nuclear localization signal. With increasing PKI, the export process appeared to saturate, resulting in the return of catalytic subunit to the nucleus. These results demonstrate that both the regulatory subunit and PKI are able to completely inhibit the gene-inducing activity of the catalytic subunit even when the catalytic subunit is forced to concentrate in the nuclear compartment.
Quarterman, Josh; Kim, Soo Rin; Kim, Pan-Jun; Jin, Yong-Su
2015-01-20
In order to determine beneficial gene deletions for ethanol production by the yeast Saccharomyces cerevisiae, we performed an in silico gene deletion experiment based on a genome-scale metabolic model. Genes coding for two oxidative phosphorylation reactions (cytochrome c oxidase and ubiquinol cytochrome c reductase) were identified by the model-based simulation as potential deletion targets for enhancing ethanol production and maintaining acceptable overall growth rate in oxygen-limited conditions. Since the two target enzymes are composed of multiple subunits, we conducted a genetic screening study to evaluate the in silico results and compare the effect of deleting various portions of the respiratory enzyme complexes. Over two-thirds of the knockout mutants identified by the in silico study did exhibit experimental behavior in qualitative agreement with model predictions, but the exceptions illustrate the limitation of using a purely stoichiometric model-based approach. Furthermore, there was a substantial quantitative variation in phenotype among the various respiration-deficient mutants that were screened in this study, and three genes encoding respiratory enzyme subunits were identified as the best knockout targets for improving hexose fermentation in microaerobic conditions. Specifically, deletion of either COX9 or QCR9 resulted in higher ethanol production rates than the parental strain by 37% and 27%, respectively, with slight growth disadvantages. Also, deletion of QCR6 led to improved ethanol production rate by 24% with no growth disadvantage. The beneficial effects of these gene deletions were consistently demonstrated in different strain backgrounds and with four common hexoses. The combination of stoichiometric modeling and genetic screening using a systematic knockout collection was useful for narrowing a large set of gene targets and identifying targets of interest. Copyright © 2014 Elsevier B.V. All rights reserved.
Genetic diversity of Echinococcus granulosus in center of Iran.
Pestechian, Nader; Hosseini Safa, Ahmad; Tajedini, Mohammadhasan; Rostami-Nejad, Mohammad; Mousavi, Mohammad; Yousofi, Hosseinali; Haghjooy Javanmard, Shaghayegh
2014-08-01
Hydatid cyst caused by Echinococcus granulosus is one of the most important parasitic diseases around the world and many countries in Asia, including Iran, are involved with this infection. This disease can cause high mortality in humans as well as economic losses in livestock. To date, several molecular methods have been used to determine the genetic diversity of E. granulosus. So far, identification of E. granulosus using real-time PCR fluorescence-based quantitative assays has not been studied worldwide, also in Iran. Therefore, the aim of this study was to investigate the genetic diversity of E. granulosus from center of Iran using real-time PCR method. A total of 71 hydatid cysts were collected from infected sheep, goat, and cattle slaughtered in Isfahan, Iran during 2013. DNA was extracted from protoscolices and/or germinal layers from each individual cyst and used as template to amplify the mitochondrial cytochrome c oxidase subunit 1 gene (cox1) (420 bp). Five cattle isolates out of 71 isolates were sterile and excluded from further investigation. Overall, of 66 isolates, partial sequences of the cox1 gene of E. granulosus indicated the presence of genotypes G1 in 49 isolates (74.2%), G3 in 15 isolates (22.7%), and G6 in 2 isolates (3.0%) in infected intermediate hosts. Sixteen sequences of G1 genotype had microgenetic variants, and they were compared to the original sequence of cox1. However, isolates identified as G3 and G6 genotypes were completely consistent with original sequences. G1 genotype in livestock was the dominant genotype in Isfahan region, Iran.
Broda, Lukasz; Dabert, Miroslawa; Glowska, Eliza
2016-09-01
A new quill mite species, Aulonastus similis n. sp. (Acariformes: Syringophilidae), parasitising Myiozetetes similis (Spix) (Tyrannidae) and Habia fuscicauda (Cabanis) (Cardinalidae) in Mexico is described and DNA barcode sequences of the mitochondrial cytochrome c oxidase subunit I (cox1) and D1-D3 region of the nuclear 28S rRNA gene are provided. Morphologically, females of A. similis are close to A. euphagus Skoracki, Hendricks & Spicer, 2010 but differ from this species in the length ratios of the idiosomal setae: ve:si (2-2.3:1 vs 1:1) and f2:f1 (4.7-6.3:1 vs 3.3:1).
Palomares-Rius, J E; Cantalapiedra-Navarrete, C; Archidona-Yuste, A; Subbotin, S A; Castillo, P
2017-09-07
The traditional identification of plant-parasitic nematode species by morphology and morphometric studies is very difficult because of high morphological variability that can lead to considerable overlap of many characteristics and their ambiguous interpretation. For this reason, it is essential to implement approaches to ensure accurate species identification. DNA barcoding aids in identification and advances species discovery. This study sought to unravel the use of the mitochondrial marker cytochrome c oxidase subunit 1 (coxI) as barcode for Longidoridae species identification, and as a phylogenetic marker. The results showed that mitochondrial and ribosomal markers could be used as barcoding markers, except for some species from the Xiphinema americanum group. The ITS1 region showed a promising role in barcoding for species identification because of the clear molecular variability among species. Some species presented important molecular variability in coxI. The analysis of the newly provided sequences and the sequences deposited in GenBank showed plausible misidentifications, and the use of voucher species and topotype specimens is a priority for this group of nematodes. The use of coxI and D2 and D3 expansion segments of the 28S rRNA gene did not clarify the phylogeny at the genus level.
Nakao, Minoru; Li, Tiaoying; Han, Xiumin; Ma, Xiumin; Xiao, Ning; Qiu, Jiamin; Wang, Hu; Yanagida, Tetsuya; Mamuti, Wulamu; Wen, Hao; Moro, Pedro L.; Giraudoux, Patrick; Craig, Philip S.; Ito, Akira
2009-01-01
The genetic polymorphisms of Echinococcus spp. in the eastern Tibetan Plateau and the Xinjiang Uyghur Autonomous Region were evaluated by DNA sequencing analyses of genes for mitochondrial cytochrome c oxidase subunit 1 (cox1) and nuclear elongation factor-1 alpha (ef1a). We collected 68 isolates of Echinococcus granulosus sensu stricto (s.s.) from Xinjiang and 113 isolates of E. granulosus s. s., 49 isolates of Echinococcus multilocularis and 34 isolates of Echinococcus shiquicus from the Tibetan Plateau. The results of molecular identification by mitochondrial and nuclear markers were identical, suggesting the infrequency of introgressive hybridization. A considerable intraspecific variation was detected in mitochondrial cox1 sequences. The parsimonious network of cox1 haplotypes showed star-like features in E. granulosus s. s. and E. multilocularis, but a divergent feature in E. shiquicus. The cox1 neutrality indexes computed by Tajima's D and Fu's Fs tests showed high negative values in E. granulosus s. s. and E. multilocularis, indicating significant deviations from neutrality. In contrast, the low positive values of both tests were obtained in E. shiquicus. These results suggest the following hypotheses: (i) recent founder effects arose in E. granulosus and E. multilocularis after introducing particular individuals into the endemic areas by anthropogenic movement or natural migration of host mammals, and (ii) the ancestor of E. shiquicus was segregated into the Tibetan Plateau by colonizing alpine mammals and its mitochondrial locus has evolved without bottleneck effects. PMID:19800346
Cyclooxygenase and lipoxygenase gene expression in the inflammogenesis of breast cancer.
Kennedy, Brian M; Harris, Randall E
2018-05-07
We examined the expression of major inflammatory genes, cyclooxygenase-1 and 2 (COX1, COX2) and arachidonate 5-lipoxygenase (ALOX5) in 1090 tumor samples of invasive breast cancer from The Cancer Genome Atlas (TCGA). Mean cyclooxygenase expression (COX1 + COX2) ranked in the upper 99th percentile of all 20,531 genes and surprisingly, the mean expression of COX1 was more than tenfold higher than COX2. Highly significant correlations were observed between COX2 with eight tumor-promoting genes (EGR2, IL6, RGS2, B3GNT5, SGK1, SLC2A3, SFRP1 and ETS2) and between ALOX5 and ten tumor promoter genes (CD33, MYOF1, NLRP1, GAB3, CD4, IFR8, CYTH4, BTK, FGR, CD37). Expression of CYP19A1 (aromatase) was significantly correlated with COX2, but only in tumors positive for ER, PR and HER2. Tumor-promoting genes correlated with the expression of COX1, COX2, and ALOX5 are known to effectively increase mitogenesis, mutagenesis, angiogenesis, cell survival, immunosuppression and metastasis in the pathogenesis of breast cancer.
Moghaddas, E; Borji, H; Naghibi, A; Shayan, P; Razmi, G R
2015-01-01
With the aim of genotyping Echinococcus granulosus cysts found in Iranian dromedaries (Camelus dromedarius), 50 cysts of E. granulosus were collected from five geographical regions in Iran. Cysts were characterized using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of the internal transcribed spacer 1 (ITS1) gene and sequencing fragments of the genes coding for mitochondrial cytochrome c oxidase subunit 1 (cox1). Morphological criteria using rostellar hook dimensions were also undertaken. The present results have shown that 27 out of 50 E. granulosus cysts (54%) were determined as the G1 strain, and the other (46%) were determined as the G6 strain. The molecular analysis of the ITS1 region of ribosomal DNA corresponded with the morphological findings. Because of its recognized infectivity in humans, the G1 genotype is a direct threat to human health and its presence in Iranian dromedaries is of urgent public health importance.
Sharma, Deep Raj; Sunkaria, Aditya; Wani, Willayat Yousuf; Sharma, Reeta Kumari; Verma, Deepika; Priyanka, Kumari; Bal, Amanjit; Gill, Kiran Dip
2015-12-01
The present investigation was carried out to elucidate a possible molecular mechanism related to the protective effect of quercetin administration against aluminium-induced oxidative stress on various mitochondrial respiratory complex subunits with special emphasis on the role of PGC-1α and its downstream targets, i.e. NRF-1, NRF-2 and Tfam in mitochondrial biogenesis. Aluminium lactate (10mg/kg b.wt./day) was administered intragastrically to rats, which were pre-treated with quercetin 6h before aluminium (10mg/kg b.wt./day, intragastrically) for 12 weeks. We found a decrease in ROS levels, mitochondrial DNA oxidation and citrate synthase activity in the hippocampus (HC) and corpus striatum (CS) regions of rat brain treated with quercetin. Besides this an increase in the mRNA levels of the mitochondrial encoded subunits - ND1, ND2, ND3, Cyt b, COX1, COX3 and ATPase6 along with increased expression of nuclear encoded subunits COX4, COX5A and COX5B of electron transport chain (ETC). In quercetin treated group an increase in the mitochondrial DNA copy number and mitochondrial content in both the regions of rat brain was observed. The PGC-1α was up regulated in quercetin treated rats along with NRF-1, NRF-2 and Tfam, which act downstream from PGC-1α. Electron microscopy results revealed a significant decrease in the mitochondrial cross-section area, mitochondrial perimeter length and increase in mitochondrial number in case of quercetin treated rats as compared to aluminium treated ones. Therefore it seems quercetin increases mitochondrial biogenesis and makes it an almost ideal flavanoid to control or limit the damage that has been associated with the defective mitochondrial function seen in many neurodegenerative diseases. Copyright © 2015 Elsevier Inc. All rights reserved.
Sánchez, E; Perrone, T; Recchimuzzi, G; Cardozo, I; Biteau, N; Aso, P M; Mijares, A; Baltz, T; Berthier, D; Balzano-Nogueira, L; Gonzatti, M I
2015-10-15
Livestock trypanosomoses, caused by three species of the Trypanozoon subgenus, Trypanosoma brucei brucei, T. evansi and T. equiperdum is widely distributed throughout the world and constitutes an important limitation for the production of animal protein. T. evansi and T. equiperdum are morphologically indistinguishable parasites that evolved from a common ancestor but acquired important biological differences, including host range, mode of transmission, distribution, clinical symptoms and pathogenicity. At a molecular level, T. evansi is characterized by the complete loss of the maxicircles of the kinetoplastic DNA, while T. equiperdum has retained maxicircle fragments similar to those present in T. brucei. T. evansi causes the disease known as Surra, Derrengadera or "mal de cadeiras", while T. equiperdum is the etiological agent of dourine or "mal du coit", characterized by venereal transmission and white patches in the genitalia. Nine Venezuelan Trypanosoma spp. isolates, from horse, donkey or capybara were genotyped and classified using microsatellite analyses and maxicircle genes. The variables from the microsatellite data and the Procyclin PE repeats matrices were combined using the Hill-Smith method and compared to a group of T. evansi, T. equiperdum and T. brucei reference strains from South America, Asia and Africa using Coinertia analysis. Four maxicircle genes (cytb, cox1, a6 and nd8) were amplified by PCRfrom TeAp-N/D1 and TeGu-N/D1, the two Venezuelan isolates that grouped with the T. equiperdum STIB841/OVI strain. These maxicircle sequences were analyzed by nucleotide BLAST and aligned toorthologous genes from the Trypanozoon subgenus by MUSCLE tools. Phylogenetic trees were constructed using Maximum Parsimony (MP) and Maximum Likelihood (ML) with the MEGA5.1® software. We characterized microsatellite markers and Procyclin PE repeats of nine Venezuelan Trypanosoma spp. isolates with various degrees of virulence in a mouse model, and compared them to a panel of T. evansi and T. equiperdum reference strains. Coinertia analysis of the combined repeats and previously reported T. brucei brucei microsatellite genotypes revealed three distinct groups. Seven of the Venezuelan isolates grouped with globally distributed T. evansi strains, while TeAp-N/D1 and TeGu-N/D1 strains clustered in a separate group with the T. equiperdum STIB841/OVI strain isolated in South Africa. A third group included T. brucei brucei, two strains previously classified as T. evansi (GX and TC) and one as T. equiperdum (BoTat-1.1). Four maxicircle genes, Cytochrome b, Cythocrome Oxidase subunit 1, ATP synthase subunit 6 and NADH dehydrogenase subunit 8, were identified in the two Venezuelan strains clustering with the T. equiperdum STIB841/OVI strain. Phylogenetic analysis of the cox1 gene sequences further separated these two Venezuelan T. equiperdum strains: TeAp-N/D1 grouped with T. equiperdum strain STIB818 and T. brucei brucei, and TeGu-N/D1 with the T. equiperdum STIB841/OVI strain. Based on the Coinertia analysis and maxicircle gene sequence phylogeny, TeAp-N/D1 and TeGu-N/D1 constitute the first confirmed T. equiperdum strains described from Latin America.
Khalfaoui-Hassani, Bahia; Wu, Hongjiang; Blaby-Haas, Crysten E.; ...
2018-02-27
ABSTRACT Cytochromecoxidases are members of the heme-copper oxidase superfamily. These enzymes have different subunits, cofactors, and primary electron acceptors, yet they all contain identical heme-copper (Cu B) binuclear centers within their catalytic subunits. The uptake and delivery pathways of the Cu Batom incorporated into this active site, where oxygen is reduced to water, are not well understood. Our previous work with the facultative phototrophic bacteriumRhodobacter capsulatusindicated that the copper atom needed for the Cu Bsite ofcbb 3-type cytochromecoxidase (cbb 3-Cox) is imported to the cytoplasm by a major facilitator superfamily-type transporter, CcoA. In this study, a comparative genomic analysis ofmore » CcoA orthologs in alphaproteobacterial genomes showed that CcoA is widespread among organisms and frequently co-occurs with cytochromecoxidases. To define the specificity of CcoA activity, we investigated its function inRhodobacter sphaeroides, a close relative ofR. capsulatusthat contains bothcbb 3- andaa 3-Cox. Phenotypic, genetic, and biochemical characterization of mutants lacking CcoA showed that in its absence, or even in the presence of its bypass suppressors, only the production ofcbb 3-Cox and not that ofaa 3-Cox was affected. We therefore concluded that CcoA is dedicated solely tocbb 3-Cox biogenesis, establishing that distinct copper uptake systems provide the Cu Batoms to the catalytic sites of these two similar cytochromecoxidases. These findings illustrate the large variety of strategies that organisms employ to ensure homeostasis and fine control of copper trafficking and delivery to the target cuproproteins under different physiological conditions. IMPORTANCEThecbb 3- andaa 3-type cytochromecoxidases belong to the widespread heme-copper oxidase superfamily. They are membrane-integral cuproproteins that catalyze oxygen reduction to water under hypoxic and normoxic growth conditions. These enzymes diverge in terms of subunit and cofactor composition, yet they all share a conserved heme-copper binuclear site within their catalytic subunit. In this study, we show that the copper atoms of the catalytic center of two similar cytochromecoxidases from this superfamily are provided by different copper uptake systems during their biogenesis. This finding illustrates different strategies by which organisms fine-tune the trafficking of copper, which is an essential but toxic micronutrient.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalfaoui-Hassani, Bahia; Wu, Hongjiang; Blaby-Haas, Crysten E.
ABSTRACT Cytochromecoxidases are members of the heme-copper oxidase superfamily. These enzymes have different subunits, cofactors, and primary electron acceptors, yet they all contain identical heme-copper (Cu B) binuclear centers within their catalytic subunits. The uptake and delivery pathways of the Cu Batom incorporated into this active site, where oxygen is reduced to water, are not well understood. Our previous work with the facultative phototrophic bacteriumRhodobacter capsulatusindicated that the copper atom needed for the Cu Bsite ofcbb 3-type cytochromecoxidase (cbb 3-Cox) is imported to the cytoplasm by a major facilitator superfamily-type transporter, CcoA. In this study, a comparative genomic analysis ofmore » CcoA orthologs in alphaproteobacterial genomes showed that CcoA is widespread among organisms and frequently co-occurs with cytochromecoxidases. To define the specificity of CcoA activity, we investigated its function inRhodobacter sphaeroides, a close relative ofR. capsulatusthat contains bothcbb 3- andaa 3-Cox. Phenotypic, genetic, and biochemical characterization of mutants lacking CcoA showed that in its absence, or even in the presence of its bypass suppressors, only the production ofcbb 3-Cox and not that ofaa 3-Cox was affected. We therefore concluded that CcoA is dedicated solely tocbb 3-Cox biogenesis, establishing that distinct copper uptake systems provide the Cu Batoms to the catalytic sites of these two similar cytochromecoxidases. These findings illustrate the large variety of strategies that organisms employ to ensure homeostasis and fine control of copper trafficking and delivery to the target cuproproteins under different physiological conditions. IMPORTANCEThecbb 3- andaa 3-type cytochromecoxidases belong to the widespread heme-copper oxidase superfamily. They are membrane-integral cuproproteins that catalyze oxygen reduction to water under hypoxic and normoxic growth conditions. These enzymes diverge in terms of subunit and cofactor composition, yet they all share a conserved heme-copper binuclear site within their catalytic subunit. In this study, we show that the copper atoms of the catalytic center of two similar cytochromecoxidases from this superfamily are provided by different copper uptake systems during their biogenesis. This finding illustrates different strategies by which organisms fine-tune the trafficking of copper, which is an essential but toxic micronutrient.« less
Jeng, Jaan-Yeh; Yeh, Tien-Shun; Lee, Jing-Wen; Lin, Shyh-Hsiang; Fong, Tsorng-Han; Hsieh, Rong-Hong
2008-02-01
To examine whether a reduction in the mtDNA level will compromise mitochondrial biogenesis and mitochondrial function, we created a cell model with depleted mtDNA. Stable transfection of small interfering (si)RNA of mitochondrial transcription factor A (Tfam) was used to interfere with Tfam gene expression. Selected stable clones showed 60-95% reduction in Tfam gene expression and 50-90% reduction in cytochrome b (Cyt b) gene expression. Tfam gene knockdown clones also showed decreased mtDNA-encoded cytochrome c oxidase subunit I (COX I) protein expression. However, no significant differences in protein expression were observed in nuclear DNA (nDNA)-encoded mitochondrial respiratory enzyme subunits. The cell morphology changed from a rhombus-like to a spindle-like form as determined in clones with decreased expressions of Tfam, mtRNA, and mitochondrial proteins. The mitochondrial respiratory enzyme activities and ATP production in such clones were significantly lower. The proportions of mtDNA mutations including 8-hydroxy-2'-deoxyguanosine (8-OHdG), a 4,977-bp deletion, and a 3,243-point mutation were also examined in these clones. No obvious increase in mtDNA mutations was observed in mitochondrial dysfunctional cell clones. The mitochondrial respiratory activity and ATP production ability recovered in cells with increased mtDNA levels after removal of the specific siRNA treatment. These experimental results provide direct evidence to substantiate that downregulation of mtDNA copy number and expression may compromise mitochondrial function and subsequent cell growth and morphology. (c) 2007 Wiley-Liss, Inc.
Limited mitogenomic degradation in response to a parasitic lifestyle in Orobanchaceae
Fan, Weishu; Zhu, Andan; Kozaczek, Melisa; Shah, Neethu; Pabón-Mora, Natalia; González, Favio; Mower, Jeffrey P.
2016-01-01
In parasitic plants, the reduction in plastid genome (plastome) size and content is driven predominantly by the loss of photosynthetic genes. The first completed mitochondrial genomes (mitogenomes) from parasitic mistletoes also exhibit significant degradation, but the generality of this observation for other parasitic plants is unclear. We sequenced the complete mitogenome and plastome of the hemiparasite Castilleja paramensis (Orobanchaceae) and compared them with additional holoparasitic, hemiparasitic and nonparasitic species from Orobanchaceae. Comparative mitogenomic analysis revealed minimal gene loss among the seven Orobanchaceae species, indicating the retention of typical mitochondrial function among Orobanchaceae species. Phylogenetic analysis demonstrated that the mobile cox1 intron was acquired vertically from a nonparasitic ancestor, arguing against a role for Orobanchaceae parasites in the horizontal acquisition or distribution of this intron. The C. paramensis plastome has retained nearly all genes except for the recent pseudogenization of four subunits of the NAD(P)H dehydrogenase complex, indicating a very early stage of plastome degradation. These results lend support to the notion that loss of ndh gene function is the first step of plastome degradation in the transition to a parasitic lifestyle. PMID:27808159
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boulet, L.; Karpati, G.; Shoubridge, E.A.
1992-12-01
The authors investigated the distribution and expression of mutant mtDNAs carrying the A-to-G mutation at position 8344 in the tRNA[sup Lys] gene in the skeletal muscle of four patients with myoclonus epilepsy and ragged-red fibers (MERRF). The proportion of mutant genomes was greater than 80% of total mtDNAs in muscle samples of all patients and was associated with a decrease in the activity of cytochrome c oxidase (COX). The vast majority of myoblasts, cloned from the satellite-cell population in the same muscles, were homoplasmic for the mutation. The overall proportion of mutant mtDNAs in this population was similar to thatmore » in differentiated muscle, suggesting that the ratio of mutant to wild-type mtDNAs in skeletal muscle is determined either in the ovum or during early development and changes little with age. Translation of all mtDNA-encoded genes was severely depressed in homoplasmic mutant myoblast clones but not in heteroplasmic or wild-type clones. The threshold for biochemical expression of the mutation was determined in heteroplasmic myotubes formed by fusion of different proportions of mutant and wild-type myoblasts. The magnitude of the decrease in translation in myotubes containing mutant mtDNAs was protein specific. Complex I and IV subunits were more affected than complex V subunits, and there was a rough correlation with both protein size and number of lysine residues. Approximately 15% wild-type mtDNAs restored translation and COX activity to near normal levels. These results show that the A-to-G substitution in tRNA[sup Lys] is a functionally recessive mutation that can be rescued by intraorganellar complementation with a small proportion of wild-type mtDNAs and explain the steep threshold for expression of the MERRF clinical phenotype. 40 refs., 7 figs., 2 tabs.« less
Identification of novel Cyclooxygenase-2-dependent genes in Helicobacter pylori infection in vivo
Walduck, Anna K; Weber, Matthias; Wunder, Christian; Juettner, Stefan; Stolte, Manfred; Vieth, Michael; Wiedenmann, Bertram; Meyer, Thomas F; Naumann, Michael; Hoecker, Michael
2009-01-01
Background Helicobacter pylori is a crucial determining factor in the pathogenesis of benign and neoplastic gastric diseases. Cyclooxygenase-2 (Cox-2) is the inducible key enzyme of arachidonic acid metabolism and is a central mediator in inflammation and cancer. Expression of the Cox-2 gene is up-regulated in the gastric mucosa during H. pylori infection but the pathobiological consequences of this enhanced Cox-2 expression are not yet characterized. The aim of this study was to identify novel genes down-stream of Cox-2 in an in vivo model, thereby identifying potential targets for the study of the role of Cox- 2 in H. pylori pathogenesis and the initiation of pre- cancerous changes. Results Gene expression profiles in the gastric mucosa of mice treated with a specific Cox-2 inhibitor (NS398) or vehicle were analysed at different time points (6, 13 and 19 wk) after H. pylori infection. H. pylori infection affected the expression of 385 genes over the experimental period, including regulators of gastric physiology, proliferation, apoptosis and mucosal defence. Under conditions of Cox-2 inhibition, 160 target genes were regulated as a result of H. pylori infection. The Cox-2 dependent subset included those influencing gastric physiology (Gastrin, Galr1), epithelial barrier function (Tjp1, connexin45, Aqp5), inflammation (Icam1), apoptosis (Clu) and proliferation (Gdf3, Igf2). Treatment with NS398 alone caused differential expression of 140 genes, 97 of which were unique, indicating that these genes are regulated under conditions of basal Cox-2 expression. Conclusion This study has identified a panel of novel Cox-2 dependent genes influenced under both normal and the inflammatory conditions induced by H. pylori infection. These data provide important new links between Cox-2 and inflammatory processes, epithelial repair and integrity. PMID:19317916
Dong, Liang; Zou, Hechang; Yuan, Chong; Hong, Yu H.; Kuklev, Dmitry V.; Smith, William L.
2016-01-01
Prostaglandin endoperoxide H synthases (PGHSs), also called cyclooxygenases (COXs), convert arachidonic acid (AA) to PGH2. PGHS-1 and PGHS-2 are conformational heterodimers, each composed of an (Eallo) and a catalytic (Ecat) monomer. Previous studies suggested that the binding to Eallo of saturated or monounsaturated fatty acids (FAs) that are not COX substrates differentially regulate PGHS-1 versus PGHS-2. Here, we substantiate and expand this concept to include polyunsaturated FAs known to modulate COX activities. Non-substrate FAs like palmitic acid bind Eallo of PGHSs stimulating human (hu) PGHS-2 but inhibiting huPGHS-1. We find the maximal effects of non-substrate FAs on both huPGHSs occurring at the same physiologically relevant FA/AA ratio of ∼20. This inverse allosteric regulation likely underlies the ability of PGHS-2 to operate at low AA concentrations, when PGHS-1 is effectively latent. Unlike FAs tested previously, we observe that C-22 FAs, including ω-3 fish oil FAs, have higher affinities for Ecat than Eallo subunits of PGHSs. Curiously, C-20 ω-3 eicosapentaenoate preferentially binds Ecat of huPGHS-1 but Eallo of huPGHS-2. PGE2 production decreases 50% when fish oil consumption produces tissue EPA/AA ratios of ≥0.2. However, 50% inhibition of huPGHS-1 itself is only seen with ω-3 FA/AA ratios of ≥5.0. This suggests that fish oil-enriched diets disfavor AA oxygenation by altering the composition of the FA pool in which PGHS-1 functions. The distinctive binding specificities of PGHS subunits permit different combinations of non-esterified FAs, which can be manipulated dietarily, to regulate AA binding to Eallo and/or Ecat thereby controlling COX activities. PMID:26703471
Jiao, Jing; Ishikawa, Tomo-O; Dumlao, Darren S; Norris, Paul C; Magyar, Clara E; Mikulec, Carol; Catapang, Art; Dennis, Edward A; Fischer, Susan M; Herschman, Harvey R
2014-11-01
Pharmacologic and global gene deletion studies demonstrate that cyclooxygenase-2 (PTGS2/COX-2) plays a critical role in DMBA/TPA-induced skin tumor induction. Although many cell types in the tumor microenvironment express COX-2, the cell types in which COX-2 expression is required for tumor promotion are not clearly established. Here, cell type-specific Cox-2 gene deletion reveals a vital role for skin epithelial cell COX-2 expression in DMBA/TPA tumor induction. In contrast, myeloid Cox-2 gene deletion has no effect on DMBA/TPA tumorigenesis. The infrequent, small tumors that develop on mice with an epithelial cell-specific Cox-2 gene deletion have decreased proliferation and increased cell differentiation properties. Blood vessel density is reduced in tumors with an epithelial cell-specific Cox-2 gene deletion, compared with littermate control tumors, suggesting a reciprocal relationship in tumor progression between COX-2-expressing tumor epithelial cells and microenvironment endothelial cells. Lipidomics analysis of skin and tumors from DMBA/TPA-treated mice suggests that the prostaglandins PGE2 and PGF2α are likely candidates for the epithelial cell COX-2-dependent eicosanoids that mediate tumor progression. This study both illustrates the value of cell type-specific gene deletions in understanding the cellular roles of signal-generating pathways in complex microenvironments and emphasizes the benefit of a systems-based lipidomic analysis approach to identify candidate lipid mediators of biologic responses. Cox-2 gene deletion demonstrates that intrinsic COX-2 expression in initiated keratinocytes is a principal driver of skin carcinogenesis; lipidomic analysis identifies likely prostanoid effectors. ©2014 American Association for Cancer Research.
Pan, Min-Hsiung; Hsieh, Min-Chi; Hsu, Ping-Chi; Ho, Sheng-Yow; Lai, Ching-Shu; Wu, Hou; Sang, Shengmin; Ho, Chi-Tang
2008-12-01
Ginger, the rhizome of Zingiber officinale, is a traditional medicine with carminative effect, antinausea, anti-inflammatory, and anticarcinogenic properties. In this study, we investigated the inhibitory effects of 6-shogaol and a related compound, 6-gingerol, on the induction of nitric oxide synthase (NOS) and cyclooxygenase-2 (COX-2) in murine RAW 264.7 cells activated with LPS. Western blotting and reverse transcription-PCR analyses demonstrated that 6-shogaol significantly blocked protein and mRNA expression of inducible NOS (iNOS) and COX-2 in LPS-induced macrophages. The in vivo anti-inflammatory activity was evaluated by a topical 12-O-tetradecanoylphorbol 13-acetate (TPA) application to mouse skin. When applied topically onto the shaven backs of mice prior to TPA, 6-shogaol markedly inhibited the expression of iNOS and COX-2 proteins. Treatment with 6-shogaol resulted in the reduction of LPS-induced nuclear translocation of nuclear factor-kappaB (NF kappaB) subunit and the dependent transcriptional activity of NF kappaB by blocking phosphorylation of inhibitor kappaB (I kappaB)alpha and p65 and subsequent degradation of I kappaB alpha. Transient transfection experiments using NF kappaB reporter constructs indicated that 6-shogaol inhibits the transcriptional activity of NF kappaB in LPS-stimulated mouse macrophages. We found that 6-shogaol also inhibited LPS-induced activation of PI3K/Akt and extracellular signal-regulated kinase 1/2, but not p38 mitogen-activated protein kinase (MAPK). Taken together, these results show that 6-shogaol downregulates inflammatory iNOS and COX-2 gene expression in macrophages by inhibiting the activation of NF kappaB by interfering with the activation PI3K/Akt/I kappaB kinases IKK and MAPK.
Molecular genotyping of Echinococcus granulosus in the North of Iraq.
Hammad, Salam Jumaah; Cavallero, Serena; Milardi, Giovanni Luigi; Gabrielli, Simona; D Amelio, Stefano; Al-Nasiri, Fatima Shihab
2018-01-15
Cystic echinococcosis/hydatidosis is an important cosmopolitan zoonotic disease that causes large economic losses and human suffering. The larval stages of Echinococcus granulosus are the etiological agents of cystic echinococcosis that showed different genotypes in different regions in the world. The present study was aimed at the detection of E. granulosus strains circulating in two cities from north of Iraq (Kirkuk and Sulaimania). A total of 47 specimens of hydatid cysts were collected from patients and from different domestic intermediate hosts including cattle, sheep, goat and buffalo from slaughterhouses. Molecular characterization was performed by direct sequencing of the mitochondrial DNA (mtDNA) genes coding for the cytochrome c oxidase I (cox1) and the small subunit ribosomal RNA (rrnS). The results showed a high prevalence for the sheep strain (G1), an isolated finding of the buffalo strain (G3) and the presence of seven and three different microvariants for cox1 and rrnS, respectively. This is the first contribution on molecular genotyping of E. granulosus in Iraq with the observation of genotypes other than G1. Copyright © 2017 Elsevier B.V. All rights reserved.
Yamasaki, Hiroshi; Muto, Maki; Yamada, Minoru; Arizono, Naoki; Rausch, Robert L
2012-12-01
The bear tapeworm Diphyllobothrium ursi is described based upon the morphology of adult tapeworms recovered from the brown bear (Ursus arctos middendorffi) and larval plerocercoids found in sockeye salmon (Oncorhynchus nerka) from Kodiak Island in Alaska in 1952. However, in 1987 D. ursi was synonymized with Diphyllobothrium dendriticum, and the taxonomic relationship between both species has not subsequently been revised. In this study mitochondrial cytochrome c oxidase subunit 1 gene (cox1) sequences of holotype and paratype D. ursi specimens that had been preserved in a formalin-acetic acid-alcohol solution since the time the species was initially described approximately 60 yr ago were analyzed. Molecular and phylogenetic analysis of the cox1 sequences revealed that D. ursi is more closely related to D. dendriticum than it is to Diphyllobothrium nihonkaiense and Diphyllobothrium latum. In addition to molecular evidence, differences in the life cycle and ecology of the larval plerocercoids between D. ursi and D. dendriticum also suggest that D. ursi is a distinct species, separate from D. dendriticum and D. nihonkaiense, and also possibly from D. latum .
Cervantes, Fernando A; Arcangeli, Jésica; Hortelano-Moncada, Yolanda; Borisenko, Alex V
2010-12-01
Two morphologically similar species of opossum from the genus Didelphis-Didelphis virginiana and Didelphis marsupialis-cooccur sympatrically in Mexico. High intraspecific variation complicates their morphological discrimination, under both field and museum conditions. This study aims to evaluate the utility and reliability of using DNA barcodes (short standardized genome fragments used for DNA-based identification) to distinguish these two species. Sequences of the cytochrome c oxidase subunit I (Cox1) mitochondrial gene were obtained from 12 D. marsupialis and 29 D. virginiana individuals and were compared using the neighbor-joining (NJ) algorithm with Kimura's two-parameter (K2P) model of nucleotide substitution. Average K2P distances were 1.56% within D. virginiana and 1.65% in D. marsupialis. Interspecific distances between D. virginiana and D. marsupialis varied from 7.8 to 9.3% and their barcode sequences formed distinct non-overlapping clusters on NJ trees. All sympatric specimens of both species were effectively discriminated, confirming the utility of Cox1 barcoding as a tool for taxonomic identification of these morphologically similar taxa.
Rai-Bhogal, Ravneet; Ahmad, Eizaaz; Li, Hongyan; Crawford, Dorota A
2018-03-01
The cellular and molecular events that take place during brain development play an important role in governing function of the mature brain. Lipid-signalling molecules such as prostaglandin E 2 (PGE 2 ) play an important role in healthy brain development. Abnormalities along the COX-PGE 2 signalling pathway due to genetic or environmental causes have been linked to autism spectrum disorder (ASD). This study aims to evaluate the effect of altered COX-PGE 2 signalling on development and function of the prenatal brain using male mice lacking cyclooxygenase-1 and cyclooxygenase-2 (COX-1 -/- and COX-2 -/- ) as potential model systems of ASD. Microarray analysis was used to determine global changes in gene expression during embryonic days 16 (E16) and 19 (E19). Gene Ontology: Biological Process (GO:BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were implemented to identify affected developmental genes and cellular processes. We found that in both knockouts the brain at E16 had nearly twice as many differentially expressed genes, and affected biological pathways containing various ASD-associated genes important in neuronal function. Interestingly, using GeneMANIA and Cytoscape we also show that the ASD-risk genes identified in both COX-1 -/- and COX-2 -/- models belong to protein-interaction networks important for brain development despite of different cellular localization of these enzymes. Lastly, we identified eight genes that belong to the Wnt signalling pathways exclusively in the COX-2 -/- mice at E16. The level of PKA-phosphorylated β-catenin (S552), a major activator of the Wnt pathway, was increased in this model, suggesting crosstalk between the COX-2-PGE 2 and Wnt pathways during early brain development. Overall, these results provide further molecular insight into the contribution of the COX-PGE 2 pathways to ASD and demonstrate that COX-1 -/- and COX-2 -/- animals might be suitable new model systems for studying the disorders. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Chang, Fung-Wei; Fan, Hueng-Chuen; Liu, Jui-Ming; Fan, Tai-Ping; Jing, Jin; Yang, Chia-Ling; Hsu, Ren-Jun
2017-01-14
Multidrug resistance is a major obstacle in the successful therapy of breast cancer. Studies have proved that this kind of drug resistance happens in both human cancers and cultured cancer cell lines. Understanding the molecular mechanisms of drug resistance is important for the reasonable design and use of new treatment strategies to effectively confront cancers. In our study, ATP-binding cassette sub-family G member 2 (ABCG2), adenosine triphosphate (ATP) synthase and cytochrome c oxidase subunit VIc (COX6C) were over-expressed more in the MCF-7/MX cell line than in the normal MCF7 cell line. Therefore, we believe that these three genes increase the tolerance of MCF7 to mitoxantrone (MX). The data showed that the high expression of COX6C made MCF-7/MX have more stable on mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) expression than normal MCF7 cells under hypoxic conditions. The accumulation of MX was greater in the ATP-depleted treatment MCF7/MX cells than in normal MCF7/MX cells. Furthermore, E2 increased the tolerance of MCF7 cells to MX through inducing the expression of ABCG2. However, E2 could not increase the expression of ABCG2 after the inhibition of estrogen receptor α (ERα) in MCF7 cells. According to the above data, under the E2 treatment, MDA-MB231, which lacks ER, had a higher sensitivity to MX than MCF7 cells. E2 induced the expression of ABCG2 through ERα and the over-expressed ABCG2 made MCF7 more tolerant to MX. Moreover, the over-expressed ATP synthase and COX6c affected mitochondrial genes and function causing the over-expressed ABCG2 cells pumped out MX in a concentration gradient from the cell matrix. Finally lead to chemoresistance.
Chang, Fung-Wei; Fan, Hueng-Chuen; Liu, Jui-Ming; Fan, Tai-Ping; Jing, Jin; Yang, Chia-Ling; Hsu, Ren-Jun
2017-01-01
Background: Multidrug resistance is a major obstacle in the successful therapy of breast cancer. Studies have proved that this kind of drug resistance happens in both human cancers and cultured cancer cell lines. Understanding the molecular mechanisms of drug resistance is important for the reasonable design and use of new treatment strategies to effectively confront cancers. Results: In our study, ATP-binding cassette sub-family G member 2 (ABCG2), adenosine triphosphate (ATP) synthase and cytochrome c oxidase subunit VIc (COX6C) were over-expressed more in the MCF-7/MX cell line than in the normal MCF7 cell line. Therefore, we believe that these three genes increase the tolerance of MCF7 to mitoxantrone (MX). The data showed that the high expression of COX6C made MCF-7/MX have more stable on mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) expression than normal MCF7 cells under hypoxic conditions. The accumulation of MX was greater in the ATP-depleted treatment MCF7/MX cells than in normal MCF7/MX cells. Furthermore, E2 increased the tolerance of MCF7 cells to MX through inducing the expression of ABCG2. However, E2 could not increase the expression of ABCG2 after the inhibition of estrogen receptor α (ERα) in MCF7 cells. According to the above data, under the E2 treatment, MDA-MB231, which lacks ER, had a higher sensitivity to MX than MCF7 cells. Conclusions: E2 induced the expression of ABCG2 through ERα and the over-expressed ABCG2 made MCF7 more tolerant to MX. Moreover, the over-expressed ATP synthase and COX6c affected mitochondrial genes and function causing the over-expressed ABCG2 cells pumped out MX in a concentration gradient from the cell matrix. Finally lead to chemoresistance. PMID:28098816
Bazsalovicsová, Eva; Králová-Hromadová, Ivica; Stefka, Jan; Scholz, Tomáš
2012-05-01
Sequence structure of complete internal transcribed spacer 1 and 2 (ITS1 and ITS2) of the ribosomal DNA region and partial mitochondrial cytochrome c oxidase subunit I (cox1) gene sequences were studied in the monozoic tapeworm Atractolytocestus sagittatus (Kulakovskaya et Akhmerov, 1965) (Cestoda: Caryophyllidea), a parasite of common carp (Cyprinus carpio carpio L.). Intraindividual sequence diversity was observed in both ribosomal spacers. In ITS1, a total number of 19 recombinant clones yielded eight different sequence types (pairwise sequence identity, 99.7-100%) which, however, did not resemble the structure typical for divergent intragenomic ITS copies (paralogues). Polymorphism was displayed by several single nucleotide mutations present exclusively in single clones, but variation in the number of short repetitive motifs was not observed. In ITS2, a total of 21 recombinant clones yielded ten different sequence types (pairwise sequence identity, 97.5-100%). They were mostly characterized by a varying number of (TCGT)(n) repeats resulting in assortment of ITS2 sequences into two sequence variants, which reflected the structure specific for ITS paralogues. The third DNA region analysed, mitochondrial cox1 gene (669 bp) was detected to be 100% identical in all studied A. sagittatus individuals. Comparison of molecular data on A. sagittatus with those on Atractolytocestus huronensis Anthony, 1958, an invasive parasite of common carp, has shown that interspecific differences significantly exceeded intraspecific variation in both ribosomal spacers (81.4-82.5% in ITS1, 74.4-75.2% in ITS2) as well as in mitochondrial cox1, which confirms validity of both congeneric tapeworms parasitic in the same fish host.
Jiao, Jing; Ishikawa, Tomo-o; Dumlao, Darren S.; Norris, Paul C.; Magyar, Clara E.; Mikulec, Carol; Catapang, Art; Dennis, Edward A.; Fischer, Susan M.; Herschman, Harvey R.
2014-01-01
Pharmacologic and global gene deletion studies demonstrate that cyclooxygenase-2 (PTGS2/COX2) plays a critical role in DMBA/TPA-induced skin tumor induction. While many cell types in the tumor microenvironment express COX-2, the cell types in which COX-2 expression is required for tumor promotion are not clearly established. Here, cell-type specific Cox-2 gene deletion reveals a vital role for skin epithelial cell COX-2 expression in DMBA/TPA tumor induction. In contrast, myeloid Cox-2 gene deletion has no effect on DMBA/TPA tumorigenesis. The infrequent, small tumors that develop on mice with an epithelial cell-specific Cox-2 gene deletion have decreased proliferation and increased cell differentiation properties. Blood vessel density is reduced in tumors with an epithelial cell-specific Cox-2 gene deletion, compared to littermate control tumors, suggesting a reciprocal relationship in tumor progression between COX-2 expressing tumor epithelial cells and microenvironment endothelial cells. Lipidomics analysis of skin and tumors from DMBA/TPA-treated mice suggests that the prostaglandins PGE2 and PGF2α are likely candidates for the epithelial cell COX-2-dependent eicosanoids that mediate tumor progression. This study both illustrates the value of cell-type specific gene deletions in understanding the cellular roles of signal-generating pathways in complex microenvironments and emphasizes the benefit of a systems-based lipidomic analysis approach to identify candidate lipid mediators of biological responses. PMID:25063587
Sansone, Pasquale; Piazzi, Giulia; Paterini, Paola; Strillacci, Antonio; Ceccarelli, Claudio; Minni, Francesco; Biasco, Guido; Chieco, Pasquale; Bonafè, Massimiliano
2009-01-01
Inflammation promotes colorectal carcinogenesis. Tumour growth often generates a hypoxic environment in the inner tumour mass. We here report that, in colon cancer cells, the expression of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2) associates with that of the hypoxia response gene carbonic anhydrase-IX (CA-IX). The COX-2 knockdown, achieved by the stable infection of a COX-2 specific short harpin RNA interference (shCOX-2), down-regulates CA-IX gene expression. In colorectal cancer (CRC) cells, PGE2, the main COX-2 gene products, promotes CA-IX gene expression by ERK1/2 activation. In normoxic environment, shCOX-2 infected/CA-IX siRNA transfected CRC cells show a reduced level of active metalloproteinase-2 (MMP-2) that associates with a decreased extracellular matrix invasion capacity. In presence of hypoxia, COX-2 gene expression and PGE2 production increase. The knockdown of COX-2/CA-IX blunts the survival capability of CRC cells in hypoxia. At a high cell density, a culture condition that creates a mild pericellular hypoxic environment, the expression of COX-2/CA-IX genes is increased and triggers the invasive potential of colon cancer cells. In human colon cancer tissues, COX-2/CA-IX protein expression levels, assessed by Western blot and immunohistochemistry, correlate each other and increase with tumour stage. In conclusion, these data indicate that COX-2/CA-IX interplay promotes the aggressive behaviour of CRC cells. PMID:19017360
NASA Astrophysics Data System (ADS)
Lynch, R. C.; King, A. J.; FaríAs, Mariá E.; Sowell, P.; Vitry, Christian; Schmidt, S. K.
2012-06-01
Here we present the first culture-independent microbiological and biogeochemical study of the mineral soils from 6000 m above sea level (m.a.s.l.) on some the highest volcanoes in the Atacama region of Argentina and Chile. These soils experience some of the harshest environmental conditions on Earth including daily temperature fluctuations across the freezing point (with an amplitude of up to 70°C) and intense solar radiation. Soil carbon and water levels are among the lowest yet measured for a terrestrial ecosystem and enzyme activity was near or below detection limits for all microbial enzymes measured. The soil microbial communities were among the simplest yet studied in a terrestrial environment and contained novel Bacteria and Fungi and only one Archaeal phylotype. No photosynthetic organisms were detected but several of the dominant bacterial phylotypes are related to organisms involved in carbon monoxide oxidation on other volcanoes (e.g.,Pseudonocardia and Ktedonobacter spp.). Focused studies of a gene responsible for carbon monoxide oxidation, the large subunit of carbon monoxide dehydrogenase (coxL of CODH), revealed several novel lineages and a broad diversity of coxL genes. Overall our results suggest that a unique microbial community, sustained by diffuse atmospheric and volcanic gases, is barely functioning on these volcanoes, which represent the highest terrestrial ecosystems yet studied.
Kim, Hak-Su; Kim, Myung-Jin; Kim, Eun Ju; Yang, Young; Lee, Myeong-Sok; Lim, Jong-Seok
2012-02-01
Berberine is clinically important natural isoquinoline alkaloid that affects various biological functions, such as cell proliferation, migration and survival. The activation of AMP-activated protein kinase (AMPK) regulates tumor cell migration. However, the specific role of AMPK on the metastatic potential of cancer cells remains largely unknown. The present study investigated whether berberine induces AMPK activation and whether this induction directly affects mouse melanoma cell migration, adhesion and invasion. Berberine strongly increased AMPK phosphorylation via reactive oxygen species (ROS) production. 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), a well-known AMPK activator, also inhibited tumor cell adhesion and invasion and reduced the expression of epithelial to mesenchymal transition (EMT)-related genes. Knockdown of AMPKα subunits using siRNAs significantly abated the berberine-induced inhibition of tumor cell invasion. Furthermore, berberine inhibited the metastatic potential of melanoma cells through a decrease in ERK activity and protein levels of cyclooxygenase-2 (COX-2) by a berberine-induced AMPK activation. These data were confirmed using specific MEK inhibitor, PD98059, and a COX-2 inhibitor, celecoxib. Berberine- and AICAR-treated groups demonstrated significantly decreased lung metastases in the pulmonary metastasis model in vivo. Treatment with berberine also decreased the metastatic potential of A375 human melanoma cells. Collectively, our results suggest that berberine-induced AMPK activation inhibits the metastatic potential of tumor cells through a reduction in the activity of the ERK signaling pathway and COX-2 protein levels. Copyright © 2011 Elsevier Inc. All rights reserved.
Cat fleas (Ctenocephalides felis) carrying Rickettsia felis and Bartonella species in Hong Kong.
Šlapeta, Jan; Lawrence, Andrea; Reichel, Michael P
2018-04-01
Fleas are commonly recorded on stray as well as domestic dogs and cats in Hong Kong. Fleas can be a major cause of pruritus in dogs and cats and also vectors of potentially zoonotic bacteria in the genera Rickettsia and Bartonella. Morphological examination of 174 fleas from dogs and cats living in Hong Kong revealed only cat fleas (Ctenocephalides felis). Cytochrome c oxidase subunit 1 gene (cox1) genotyping of 20 randomly selected specimens, revealed three cox1 haplotypes (HK-h1 to HK-h3). The most common haplotype was HK-h1 with 17 specimens (17/20, 85%). HK-h1 was identical to cox1 sequences of fleas in Thailand and Fiji. HK-h1 and HK-h2 form a distinct cat flea cox1 clade previously recognized as the Clade 3. HK-h3 forms a new Clade 6. A multiplex Bartonella and Rickettsia real-time PCR of DNA from 20 C. felis found Bartonella and Rickettsia DNA in three (15%) and ten (50%) C. felis, respectively. DNA sequencing confirmed the presence of R. felis, B. clarridgeiae and Bartonella henselae. This is the first reported study of that kind in Hong Kong, and further work is required to expand the survey of companion animals in the geographical region. The sampling of fleas on domestic cats and dogs in Hong Kong revealed them to be exclusively infested by the cat flea and to be harbouring pathogens of zoonotic potential. Copyright © 2017 Elsevier B.V. All rights reserved.
LOPES, Estela Gallucci; GERALDO, Carlos Alberto; MARCILI, Arlei; SILVA, Ricardo Duarte; KEID, Lara Borges; OLIVEIRA, Trícia Maria Ferreira da Silva; SOARES, Rodrigo Martins
2016-01-01
In visceral leishmaniasis, the detection of the agent is of paramount importance to identify reservoirs of infection. Here, we evaluated the diagnostic attributes of PCRs based on primers directed to cytochrome-B (cytB), cytochrome-oxidase-subunit II (coxII), cytochrome-C (cytC), and the minicircle-kDNA. Although PCRs directed to cytB, coxII, cytC were able to detect different species of Leishmania, and the nucleotide sequence of their amplicons allowed the unequivocal differentiation of species, the analytical and diagnostic sensitivity of these PCRs were much lower than the analytical and diagnostic sensitivity of the kDNA-PCR. Among the 73 seropositive animals, the asymptomatic dogs had spleen and bone marrow samples collected and tested; only two animals were positive by PCRs based on cytB, coxII, and cytC, whereas 18 were positive by the kDNA-PCR. Considering the kDNA-PCR results, six dogs had positive spleen and bone marrow samples, eight dogs had positive bone marrow results but negative results in spleen samples and, in four dogs, the reverse situation occurred. We concluded that PCRs based on cytB, coxII, and cytC can be useful tools to identify Leishmania species when used in combination with automated sequencing. The discordance between the results of the kDNA-PCR in bone marrow and spleen samples may indicate that conventional PCR lacks sensitivity for the detection of infected dogs. Thus, primers based on the kDNA should be preferred for the screening of infected dogs. PMID:27253743
Hemsley, Piers A; Hurst, Charlotte H; Kaliyadasa, Ewon; Lamb, Rebecca; Knight, Marc R; De Cothi, Elizabeth A; Steele, John F; Knight, Heather
2014-01-01
The Mediator16 (MED16; formerly termed SENSITIVE TO FREEZING6 [SFR6]) subunit of the plant Mediator transcriptional coactivator complex regulates cold-responsive gene expression in Arabidopsis thaliana, acting downstream of the C-repeat binding factor (CBF) transcription factors to recruit the core Mediator complex to cold-regulated genes. Here, we use loss-of-function mutants to show that RNA polymerase II recruitment to CBF-responsive cold-regulated genes requires MED16, MED2, and MED14 subunits. Transcription of genes known to be regulated via CBFs binding to the C-repeat motif/drought-responsive element promoter motif requires all three Mediator subunits, as does cold acclimation-induced freezing tolerance. In addition, these three subunits are required for low temperature-induced expression of some other, but not all, cold-responsive genes, including genes that are not known targets of CBFs. Genes inducible by darkness also required MED16 but required a different combination of Mediator subunits for their expression than the genes induced by cold. Together, our data illustrate that plants control transcription of specific genes through the action of subsets of Mediator subunits; the specific combination defined by the nature of the stimulus but also by the identity of the gene induced.
Mitochondrial Complex IV Subunit 4 Isoform 2 Is Essential for Acute Pulmonary Oxygen Sensing.
Sommer, Natascha; Hüttemann, Maik; Pak, Oleg; Scheibe, Susan; Knoepp, Fenja; Sinkler, Christopher; Malczyk, Monika; Gierhardt, Mareike; Esfandiary, Azadeh; Kraut, Simone; Jonas, Felix; Veith, Christine; Aras, Siddhesh; Sydykov, Akylbek; Alebrahimdehkordi, Nasim; Giehl, Klaudia; Hecker, Matthias; Brandes, Ralf P; Seeger, Werner; Grimminger, Friedrich; Ghofrani, Hossein A; Schermuly, Ralph T; Grossman, Lawrence I; Weissmann, Norbert
2017-08-04
Acute pulmonary oxygen sensing is essential to avoid life-threatening hypoxemia via hypoxic pulmonary vasoconstriction (HPV) which matches perfusion to ventilation. Hypoxia-induced mitochondrial superoxide release has been suggested as a critical step in the signaling pathway underlying HPV. However, the identity of the primary oxygen sensor and the mechanism of superoxide release in acute hypoxia, as well as its relevance for chronic pulmonary oxygen sensing, remain unresolved. To investigate the role of the pulmonary-specific isoform 2 of subunit 4 of the mitochondrial complex IV (Cox4i2) and the subsequent mediators superoxide and hydrogen peroxide for pulmonary oxygen sensing and signaling. Isolated ventilated and perfused lungs from Cox4i2 -/- mice lacked acute HPV. In parallel, pulmonary arterial smooth muscle cells (PASMCs) from Cox4i2 -/- mice showed no hypoxia-induced increase of intracellular calcium. Hypoxia-induced superoxide release which was detected by electron spin resonance spectroscopy in wild-type PASMCs was absent in Cox4i2 -/- PASMCs and was dependent on cysteine residues of Cox4i2. HPV could be inhibited by mitochondrial superoxide inhibitors proving the functional relevance of superoxide release for HPV. Mitochondrial hyperpolarization, which can promote mitochondrial superoxide release, was detected during acute hypoxia in wild-type but not Cox4i2 -/- PASMCs. Downstream signaling determined by patch-clamp measurements showed decreased hypoxia-induced cellular membrane depolarization in Cox4i2 -/- PASMCs compared with wild-type PASMCs, which could be normalized by the application of hydrogen peroxide. In contrast, chronic hypoxia-induced pulmonary hypertension and pulmonary vascular remodeling were not or only slightly affected by Cox4i2 deficiency, respectively. Cox4i2 is essential for acute but not chronic pulmonary oxygen sensing by triggering mitochondrial hyperpolarization and release of mitochondrial superoxide which, after conversion to hydrogen peroxide, contributes to cellular membrane depolarization and HPV. These findings provide a new model for oxygen-sensing processes in the lung and possibly also in other organs. © 2017 American Heart Association, Inc.
An assay of optimal cytochrome c oxidase activity in fish gills.
Hu, Yau-Chung; Chung, Meng-Han; Lee, Tsung-Han
2018-07-15
Cytochrome c oxidase (COX) catalyzes the terminal oxidation reaction in the electron transport chain (ETC) of aerobic respiratory systems. COX activity is an important indicator for the evaluation of energy production by aerobic respiration in various tissues. On the basis of the respiratory characteristics of muscle, we established an optimal method for the measurement of maximal COX activity. To validate the measurement of cytochrome c absorbance, different ionic buffer concentrations and tissue homogenate protein concentrations were used to investigate COX activity. The results showed that optimal COX activity is achieved when using 50-100 μg fish gill homogenate in conjunction with 75-100 mM potassium phosphate buffer. Furthermore, we compared branchial COX activities among three species of euryhaline teleost (Chanos chanos, Oreochromis mossambicus, and Oryzias dancena) to investigate differences in aerobic respiration of osmoregulatory organs. COX activities in the gills of these three euryhaline species were compared with COX subunit 4 (COX4) protein levels. COX4 protein abundance and COX activity patterns in the three species occurring in environments with various salinities increased when fish encountered salinity challenges. This COX activity assay therefore provides an effective and accurate means of assessing aerobic metabolism in fish. Copyright © 2018 Elsevier Inc. All rights reserved.
Mongini, Patricia K. A.; Kramer, Jill M.; Ishikawa, Tomo-o; Herschman, Harvey; Esposito, Donna
2014-01-01
Sjogren’s syndrome (SS) is characterized by salivary gland leukocytic infiltrates and impaired salivation (xerostomia). Cox-2 (Ptgs2) is located on chromosome 1 within the span of the Aec2 region. In an attempt to demonstrate that COX-2 drives antibody-dependent hyposalivation, NOD.B10 congenic mice bearing a Cox-2flox gene were generated. A congenic line with non-NOD alleles in Cox-2-flanking genes failed manifest xerostomia. Further backcrossing yielded disease-susceptible NOD.B10 Cox-2flox lines; fine genetic mapping determined that critical Aec2 genes lie within a 1.56 to 2.17 Mb span of DNA downstream of Cox-2. Bioinformatics analysis revealed that susceptible and non-susceptible lines exhibit non-synonymous coding SNPs in 8 protein-encoding genes of this region, thereby better delineating candidate Aec2 alleles needed for SS xerostomia. PMID:24685748
Hirai, M Y; Fujiwara, T; Chino, M; Naito, S
1995-10-01
Transgenic expression of genes encoding the alpha' and beta subunits of beta-conglycinin, one of the major seed storage proteins of soybean (Glycine max [L.] Merr.), was analyzed in Arabidopsis thaliana (L.) Heynh. under conditions of sulfate deficiency. Temporal patterns of expression of both the intact beta subunit gene and the beta subunit gene promoter fused to the beta-glucuronidase (GUS) gene are similar in soil-less cultures using rockwool, suggesting that the response to sulfate deficiency is regulated mainly at the level of transcription. In hydroponic cultures with various concentrations of sulfate, expression of both the intact beta subunit gene and the beta subunit gene promoter-GUS fusion gene were negatively correlated to increased sulfate concentrations in the culture medium. Transfer of transgenic A. thaliana plants carrying the beta subunit gene promoter-GUS fusion from sulfate-deficient to sulfate-sufficient control medium caused GUS activity in developing siliques to be repressed within two days. A reverse shift, where the plants were transferred from the control to sulfate-deficient medium, caused GUS activity to become higher than that in seeds of the control plants within two days. These results indicate that the expression of the beta subunit gene promoter responds rapidly to changes of sulfate availability.
Hao, Xiao-Dan; Chen, Zhao-Li; Qu, Ming-Li; Zhao, Xiao-Wen; Li, Su-Xia; Chen, Peng
2016-01-01
Oxidative stress may play an important role in the pathogenesis of keratoconus (KC). Mitochondrial DNA (mtDNA) is involved in mitochondrial function, and the mtDNA content, integrity, and transcript level may affect the generation of reactive oxygen species (ROS) and be involved in the pathogenesis of KC. We designed a case-control study to research the relationship between KC and mtDNA integrity, content and transcription. One-hundred ninety-eight KC corneas and 106 normal corneas from Chinese patients were studied. Quantitative real-time PCR was used to measure the relative mtDNA content, transcript levels of mtDNA and related genes. Long-extension PCR was used to detect mtDNA damage. ROS, mitochondrial membrane potential and ATP were measured by respective assay kit, and Mito-Tracker Green was used to label the mitochondria. The relative mtDNA content of KC corneas was significantly lower than that of normal corneas (P = 9.19×10−24), possibly due to decreased expression of the mitochondrial transcription factor A (TFAM) gene (P = 3.26×10−3). In contrast, the transcript levels of mtDNA genes were significantly increased in KC corneas compared with normal corneas (NADH dehydrogenase subunit 1 [ND1]: P = 1.79×10−3; cytochrome c oxidase subunit 1 [COX1]: P = 1.54×10−3; NADH dehydrogenase subunit 1, [ND6]: P = 4.62×10−3). The latter may be the result of increased expression levels of mtDNA transcription-related genes mitochondrial RNA polymerase (POLRMT) (P = 2.55×10−4) and transcription factor B2 mitochondrial (TFB2M) (P = 7.88×10−5). KC corneas also had increased mtDNA damage (P = 3.63×10−10), higher ROS levels, and lower mitochondrial membrane potential and ATP levels compared with normal corneas. Decreased integrity, content and increased transcript level of mtDNA are associated with KC. These changes may affect the generation of ROS and play a role in the pathogenesis of KC. PMID:27783701
Bode, Manuela; Woellhaf, Michael W.; Bohnert, Maria; van der Laan, Martin; Sommer, Frederik; Jung, Martin; Zimmermann, Richard; Schroda, Michael; Herrmann, Johannes M.
2015-01-01
Members of the twin Cx9C protein family constitute the largest group of proteins in the intermembrane space (IMS) of mitochondria. Despite their conserved nature and their essential role in the biogenesis of the respiratory chain, the molecular function of twin Cx9C proteins is largely unknown. We performed a SILAC-based quantitative proteomic analysis to identify interaction partners of the conserved twin Cx9C protein Cox19. We found that Cox19 interacts in a dynamic manner with Cox11, a copper transfer protein that facilitates metalation of the Cu(B) center of subunit 1 of cytochrome c oxidase. The interaction with Cox11 is critical for the stable accumulation of Cox19 in mitochondria. Cox19 consists of a helical hairpin structure that forms a hydrophobic surface characterized by two highly conserved tyrosine-leucine dipeptides. These residues are essential for Cox19 function and its specific binding to a cysteine-containing sequence in Cox11. Our observations suggest that an oxidative modification of this cysteine residue of Cox11 stimulates Cox19 binding, pointing to a redox-regulated interplay of Cox19 and Cox11 that is critical for copper transfer in the IMS and thus for biogenesis of cytochrome c oxidase. PMID:25926683
Jeong, J; Bong, J; Kim, G D; Joo, S T; Lee, H-J; Baik, M
2013-10-01
Castration increases intramuscular fat (IMF) deposition, improving beef quality in cattle. The present study was performed to determine the global transcriptome changes following castration of bulls and to identify genes associated with IMF deposition in the longissimus dorsi (LM) of Korean cattle. A customized bovine CombiMatrix oligonucleotide microarray was constructed, and transcriptome changes following castration were determined by microarray hybridization. Transcriptome comparison between bulls and steers indicated that 428 of 8,407 genes were differentially expressed in the LM by greater than two fold (P < 0.05). Gene expression profiling indicated alterations in several pathways, including adipogenesis, fatty acid oxidation, tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OP), following castration. Castration upregulated transcription of adipogenic perilipin 2 (PLIN2) and visfatin, lipogenic fatty acid synthase, fatty acid esterification 1-acylglycerol-3-phosphate O-acyltransferase 5, and many fatty acid oxidation-related genes. Many TCA cycle and OP genes were also transcriptionally upregulated. Correlation analysis indicated that the IMF content in the LM was highly correlated with mRNA levels of PLIN2 (r = 0.70, P < 0.001), adenosine triphosphatase (ATPase), H(+)-transporting, lysosomal 42 kDa, V1 subunit C1 (ATP6V1C1: r = 0.66, P < 0.001), and cytochrome c oxidase assembly homolog 11 (COX11: r = 0.72, P < 0.001) genes in a pooled animal group of steers plus bulls, and significant correlations in the steer-alone group were maintained in the 3 genes, PLIN2 (r = 0.47, P < 0.05), ATP6V1C1 (r = 0.50, P < 0.05), and COX11 (r = 0.60, P < 0.01). In conclusion, our study provided evidence that castration shifts transcription of lipid metabolism genes, favoring IMF deposition by increasing adipogenesis, lipogenesis, and triglyceride synthesis. This study also indicated that castration increases transcription of genes involved in fatty acid oxidation and subsequent energy production (TCA and OP genes). Our microarray analysis provided novel information that castration alters the transcriptome associated with lipid/energy metabolism, favoring IMF deposition in the LM.
Hemsley, Piers A.; Hurst, Charlotte H.; Kaliyadasa, Ewon; Lamb, Rebecca; Knight, Marc R.; De Cothi, Elizabeth A.; Steele, John F.; Knight, Heather
2014-01-01
The Mediator16 (MED16; formerly termed SENSITIVE TO FREEZING6 [SFR6]) subunit of the plant Mediator transcriptional coactivator complex regulates cold-responsive gene expression in Arabidopsis thaliana, acting downstream of the C-repeat binding factor (CBF) transcription factors to recruit the core Mediator complex to cold-regulated genes. Here, we use loss-of-function mutants to show that RNA polymerase II recruitment to CBF-responsive cold-regulated genes requires MED16, MED2, and MED14 subunits. Transcription of genes known to be regulated via CBFs binding to the C-repeat motif/drought-responsive element promoter motif requires all three Mediator subunits, as does cold acclimation–induced freezing tolerance. In addition, these three subunits are required for low temperature–induced expression of some other, but not all, cold-responsive genes, including genes that are not known targets of CBFs. Genes inducible by darkness also required MED16 but required a different combination of Mediator subunits for their expression than the genes induced by cold. Together, our data illustrate that plants control transcription of specific genes through the action of subsets of Mediator subunits; the specific combination defined by the nature of the stimulus but also by the identity of the gene induced. PMID:24415770
Protective effect of hydroxytyrosol in arsenic-induced mitochondrial dysfunction in rat brain.
Soni, Manisha; Prakash, Chandra; Sehwag, Sfurti; Kumar, Vijay
2017-07-01
The present study was planned to investigate the protective effect of hydroxytyrosol (HT) against arsenic (As)-induced mitochondrial dysfunction in rat brain. Rats exposed to sodium arsenite (25 ppm for 8 weeks) showed decreased mitochondrial complexes (I, II, IV) activities, mitochondrial superoxide dismutase (MnSOD), and catalase activities in brain mitochondria. As-treated rats showed reduced mRNA expression of complex I (ND-1, ND-2), IV (COX-1, COX-4) subunits, and uncoupling protein-2 (UCP-2). In addition to this, As exposure downregulated the protein expression of MnSOD. Administration of HT with As restored the enzymatic activities of mitochondrial complexes, MnSOD and catalase, increased the mRNA levels of complexes subunits and UCP-2 as well as proteins level of MnSOD. These results suggest that HT efficiently restores mitochondrial dysfunction in As neurotoxicity and might be used as potential mitoprotective agent in future. © 2017 Wiley Periodicals, Inc.
Liu, Miao; Boussetta, Tarek; Makni-Maalej, Karama; Fay, Michèle; Driss, Fathi; El-Benna, Jamel; Lagarde, Michel; Guichardant, Michel
2014-01-01
Neutrophils play a major role in inflammation by releasing large amounts of reactive oxygen species (ROS) produced by NADPH oxidase (NOX) and myeloperoxidase (MPO). This ROS overproduction is mediated by phosphorylation of the NOX subunits with an uncontrolled manner. Therefore, targeting neutrophil subunits would represent a promising strategy to moderate NOX activity, lower ROS, and other inflammatory agents, such as cytokines and leukotrienes, produced by neutrophils. For this purpose, we investigated the effects of protectin DX (PDX) - a docosahexaenoic acid (DHA) di-hydroxylated product which inhibits blood platelet aggregation - on neutrophil activation in vitro. We found that PDX decreases ROS production, inhibits NOX activation and MPO release from neutrophils. We also confirm, that PDX is an anti-aggregatory and anti-inflammatory agent by inhibiting both cyclooxygenase-1 and -2 (COX-1 and COX-2, E.C. 1.14.99.1) as well as COX-2 in lipopolysaccharides (LPS)-treated human neutrophils. However, PDX has no effect on the 5-lipoxygenase pathway that produces the chemotactic agent leukotriene B4 (LTB4). Taken together, our results suggest that PDX could be a protective agent against neutrophil invasion in chronic inflammatory diseases. PMID:24254970
Vaughn, J C; Mason, M T; Sper-Whitis, G L; Kuhlman, P; Palmer, J D
1995-11-01
We present phylogenetic evidence that a group I intron in an angiosperm mitochondrial gene arose recently by horizontal transfer from a fungal donor species. A 1,716-bp fragment of the mitochondrial coxI gene from the angiosperm Peperomia polybotrya was amplified via the polymerase chain reaction and sequenced. Comparison to other coxI genes revealed a 966-bp group I intron, which, based on homology with the related yeast coxI intron aI4, potentially encodes a 279-amino-acid site-specific DNA endonuclease. This intron, which is believed to function as a ribozyme during its own splicing, is not present in any of 19 coxI genes examined from other diverse vascular plant species. Phylogenetic analysis of intron origin was carried out using three different tree-generating algorithms, and on a variety of nucleotide and amino acid data sets from the intron and its flanking exon sequences. These analyses show that the Peperomia coxI gene intron and exon sequences are of fundamentally different evolutionary origin. The Peperomia intron is more closely related to several fungal mitochondrial introns, two of which are located at identical positions in coxI, than to identically located coxI introns from the land plant Marchantia and the green alga Prototheca. Conversely, the exon sequence of this gene is, as expected, most closely related to other angiosperm coxI genes. These results, together with evidence suggestive of co-conversion of exonic markers immediately flanking the intron insertion site, lead us to conclude that the Peperomia coxI intron probably arose by horizontal transfer from a fungal donor, using the double-strand-break repair pathway. The donor species may have been one of the symbiotic mycorrhizal fungi that live in close obligate association with most plants.
Nine Human Sparganosis Cases in Thailand with Molecular Identification of Causative Parasite Species
Boonyasiri, Adhiratha; Cheunsuchon, Pornsuk; Suputtamongkol, Yupin; Yamasaki, Hiroshi; Sanpool, Oranuch; Maleewong, Wanchai; Intapan, Pewpan M.
2014-01-01
Human sparganosis is one of the neglected diseases but important food-borne parasitic zoonoses. The disease is caused by larvae (spargana) of diphyllobothriidean tapeworm. Here, we describe nine cases of human sparganosis, caused by Spirometra erinaceieuropaei in a hospital in Thailand during 2001–2012. Clinical characteristics, treatment, and outcome of cases were revealed. Diagnosis and identification of causative parasite species was made by histopathological investigations followed by a polymerase chain reaction-based molecular method using formalin-fixed paraffin embedded tissues. The DNA samples were extracted from tissues and a partial fragment of cytochrome c oxidase subunit 1 (cox1) gene was amplified for the detection of parasitic DNA. Infection could be prevented by increasing activities on health communication by responsible public health agencies. PMID:24842879
García-Varela, Martín; Mendoza-Garfias, Berenit; Choudhury, Anindo; Pérez-Ponce de León, Gerardo
2017-11-01
Pomphorhynchus purhepechus n. sp. is described from the intestine of the Mexican redhorse Moxostoma austrinum Bean (Catostomidae) in central Mexico. The new species can be distinguished from the other seven described species of Pomphorhynchus Monticelli, 1905 in the Americas by a subspherical proboscis and 14 longitudinal rows with 16-18 hooks each; the third and the fourth row of hooks are alternately longest. Sequences of the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene and the large subunit (LSU) rDNA (including the domains D2-D3) were used to corroborate the morphological distinction between the new species and Pomphorhynchus bulbocolli Linkins in Van Cleave, 1919, a species widely distributed in several freshwater fish species across Canada, USA, and Mexico. The genetic divergence estimated between the new species and the isolates of P. bulbocolli ranged between 13 and 14% for cox1, and between 0.6 and 0.8% for LSU. Maximum likelihood and Bayesian inference analyses of each dataset showed that the isolates of P. bulbocolli parasitising freshwater fishes from three families, the Catostomidae, Cyprinidae and Centrarchidae, represent a separate lineage, and that the acanthocephalans collected from two localities in central Mexico comprise an independent lineage. In addition, our analysis of the genetic variation of P. bulbocolli demonstrates that individuals of this acanthocephalan from different host species are conspecific. Finally, the distribution, host-association, and phylogenetic relationship of the new species, when placed in the context of the region's geological history, suggest that both host and parasite underwent speciation after their ancestors became isolated in Central Mexico.
Wu, Yantao; Li, Li; Zhu, Guoqiang; Li, Wenhui; Zhang, Nianzhang; Li, Shuangnan; Yao, Gang; Tian, Wenjun; Fu, Baoquan; Yin, Hong; Zhu, Xingquan; Yan, Hongbin; Jia, Wanzhong
2018-03-09
Cervids used to be considered the only animal intermediate hosts of the G10 genotype of Echinococcus canadensis. Yaks are often herded in the Qinghai-Tibet Plateau, China, where echinococcosis remains prevalent. However, no E. canadensis G10 cases have been recorded in yaks until now. The aim of our study was to identify causative agents of echinococcosis in yaks in this region. Total genomic DNA was extracted from the germinal layer of one hydatid using a Blood and Tissue Kit. Full-length mitochondrial (mt) cytochrome c oxidase subunit 1 (cox1) and NADH dehydrogenase subunit 1 (nad1) genes were amplified by PCR. All purified PCR products were directly sequenced in both directions. Then seven pairs of overlap primers were designed to amplify the entire mt genome sequence of a suspected E. canadensis G10 isolate. Phylogenetic analyses were performed based on concatenated nucleotides from the 12 protein-coding genes of mt genomes of Echinococcus species in a Bayesian framework using MrBayes v3.1 and implementing the GTR + I + G model. Hydatids were found in yaks (n = 129) when organs were inspected at the slaughterhouse in Maqu county, Gannan Tibetan Autonomous Prefecture, Gansu Province, China in October 2016. Of these, 33 (25.6%) harbored up to a dozen hydatid cysts. One cyst from each yak was characterized by sequencing its mitochondrial (mt) cox1 and nad1 genes. On the basis of these sequence data, 32 cysts were identified as Echinococcus granulosus (sensu stricto) (G1-G3) and the remaining one was identified as the G10 genotype of E. canadensis. Its mt genome was then fully sequenced and compared with that of the G10 genotype in GenBank (AB745463). Phylogenetic analysis using complete mt genomes confirmed the Chinese cyst as belonging to the G10 genotype. To our knowledge, this is the first report globally of E. canadensis (G10) from yaks in China, which suggests that the G10 genotype has a wider geographical distribution and broader host range than previously believed. This genotype has therefore potential risks to human health and animal husbandry.
Zhao, Zhong-Hui; Bian, Qing-Qing; Ren, Wan-Xin; Cheng, Wen-Yu; Jia, Yan-Qing; Fang, Yan-Qin; Zhao, Guang-Hui
2014-06-01
The present study examined the variations in three mitochondrial (mt) DNA sequences, namely cytochrome b (cytb), cytochrome c oxidase subunit 3 (cox3) and NADH dehydrogenase subunit 5 (nad5), among Baylisascaris schroederi isolates from the Qinling subspecies of the giant panda in Shaanxi province, northwestern China. No differences in length were detected in the three mt fragments from different isolates. The intra-specific sequence variations within all B. schroederi samples were 0-2.6% for pcytb, 0-1.8% for pcox3 and 0-2.1% for pnad5, while the inter-specific sequence differences among members of the genus Baylisascaris were 8.2-15.2%, 6.2-15.9% and 8.4-16.0% for pcytb, pcox3, pnad5, respectively. A phylogenetic analysis of the combined sequences of pcytb, pcox3 and pnad 5 showed that all B. schroederi samples in the present study were located in two large clusters, with one cluster containing samples from giant pandas in Sichuan province. These findings provide basic information for further study of molecular epidemiology and control of B. schroederi infection in the Qinling subspecies of the giant panda and throughout China.
Hasegawa, Hideo; Modrý, David; Kitagawa, Masahiro; Shutt, Kathryn A.; Todd, Angelique; Kalousová, Barbora; Profousová, Ilona; Petrželková, Klára J.
2014-01-01
Background Hookworms are important pathogens of humans. To date, Necator americanus is the sole, known species of the genus Necator infecting humans. In contrast, several Necator species have been described in African great apes and other primates. It has not yet been determined whether primate-originating Necator species are also parasitic in humans. Methodology/Principal Findings The infective larvae of Necator spp. were developed using modified Harada-Mori filter-paper cultures from faeces of humans and great apes inhabiting Dzanga-Sangha Protected Areas, Central African Republic. The first and second internal transcribed spacers (ITS-1 and ITS-2) of nuclear ribosomal DNA and partial cytochrome c oxidase subunit 1 (cox1) gene of mtDNA obtained from the hookworm larvae were sequenced and compared. Three sequence types (I–III) were recognized in the ITS region, and 34 cox1 haplotypes represented three phylogenetic groups (A–C). The combinations determined were I-A, II-B, II-C, III-B and III-C. Combination I-A, corresponding to N. americanus, was demonstrated in humans and western lowland gorillas; II-B and II-C were observed in humans, western lowland gorillas and chimpanzees; III-B and III-C were found only in humans. Pairwise nucleotide difference in the cox1 haplotypes between the groups was more than 8%, while the difference within each group was less than 2.1%. Conclusions/Significance The distinctness of ITS sequence variants and high number of pairwise nucleotide differences among cox1 variants indicate the possible presence of several species of Necator in both humans and great apes. We conclude that Necator hookworms are shared by humans and great apes co-habiting the same tropical forest ecosystems. PMID:24651493
Rofecoxib modulates multiple gene expression pathways in a clinical model of acute inflammatory pain
Wang, Xiao-Min; Wu, Tian-Xia; Hamza, May; Ramsay, Edward S.; Wahl, Sharon M.; Dionne, Raymond A.
2007-01-01
New insights into the biological properties of cyclooxygenase-2 (COX-2) and its response pathway challenge the hypothesis that COX-2 is simply pro-inflammatory and inhibition of COX-2 solely prevents the development of inflammation and ameliorates inflammatory pain. The present study performed a comprehensive analysis of gene/protein expression induced by a selective inhibitor of COX-2, rofecoxib, compared with a non-selective COX inhibitor, ibuprofen, and placebo in a clinical model of acute inflammatory pain (the surgical extraction of impacted third molars) using microarray analysis followed by quantitative RT-PCR verification and Western blotting. Inhibition of COX-2 modulated gene expression related to inflammation and pain, the arachidonic acid pathway, apoptosis/angiogenesis, cell adhesion and signal transduction. Compared to placebo, rofecoxib treatment increased the gene expression of ANXA3 (annexin 3), SOD2 (superoxide dismutase 2), SOCS3 (suppressor of cytokine signaling 3) and IL1RN (IL1 receptor antagonist) which are associated with inhibition of phospholipase A2 and suppression of cytokine signaling cascades, respectively. Both rofecoxib and ibuprofen treatment increased the gene expression of the pro-inflammatory mediators, IL6 and CCL2 (chemokine C-C motif ligand 2), following tissue injury compared to the placebo treatment. These results indicate a complex role for COX-2 in the inflammatory cascade in addition to the well-characterized COX-dependent pathway, as multiple pathways are also involved in rofecoxib-induced anti-inflammatory and analgesic effects at the gene expression level. These findings may also suggest an alternative hypothesis for the adverse effects attributed to selective inhibition of COX-2. PMID:17070997
Li, Li; Yan, Hong-Bin; Blair, David; Lei, Meng-Tong; Cai, Jin-Zhong; Fan, Yan-Lei; Li, Jian-Qiu; Fu, Bao-Quan; Yang, Yu-Rong; McManus, Donald P.; Jia, Wan-Zhong
2015-01-01
Background Infections of Echinococcus granulosus sensu stricto (s.s), E. multilocularis and E. shiquicus are commonly found co-endemic on the Qinghai-Tibet plateau, China, and an efficient tool is needed to facilitate the detection of infected hosts and for species identification. Methodology/Principal Findings A single-tube multiplex PCR assay was established to differentiate the Echinococcus species responsible for infections in intermediate and definitive hosts. Primers specific for E. granulosus, E. multilocularis and E. shiquicus were designed based on sequences of the mitochondrial NADH dehydrogenase subunit 1 (nad1), NADH dehydrogenase subunit 5 (nad5) and cytochrome c oxidase subunit 1 (cox1) genes, respectively. This multiplex PCR accurately detected Echinococcus DNA without generating nonspecific reaction products. PCR products were of the expected sizes of 219 (nad1), 584 (nad5) and 471 (cox1) bp. Furthermore, the multiplex PCR enabled diagnosis of multiple infections using DNA of protoscoleces and copro-DNA extracted from fecal samples of canine hosts. Specificity of the multiplex PCR was 100% when evaluated using DNA isolated from other cestodes. Sensitivity thresholds were determined for DNA from protoscoleces and from worm eggs, and were calculated as 20 pg of DNA for E. granulosus and E. shiquicus, 10 pg of DNA for E. multilocularis, 2 eggs for E. granulosus, and 1 egg for E. multilocularis. Positive results with copro-DNA could be obtained at day 17 and day 26 after experimental infection of dogs with larval E. multilocularis and E. granulosus, respectively. Conclusions/Significance The multiplex PCR developed in this study is an efficient tool for discriminating E. granulosus, E. multilocularis and E. shiquicus from each other and from other taeniid cestodes. It can be used for the detection of canids infected with E. granulosus s.s. and E. multilocularis using feces collected from these definitive hosts. It can also be used for the identification of the Echinococcus metacestode larva in intermediate hosts, a stage that often cannot be identified to species on visual inspection. PMID:26393793
The genome and transcriptome of perennial ryegrass mitochondria
2013-01-01
Background Perennial ryegrass (Lolium perenne L.) is one of the most important forage and turf grass species of temperate regions worldwide. Its mitochondrial genome is inherited maternally and contains genes that can influence traits of agricultural importance. Moreover, the DNA sequence of mitochondrial genomes has been established and compared for a large number of species in order to characterize evolutionary relationships. Therefore, it is crucial to understand the organization of the mitochondrial genome and how it varies between and within species. Here, we report the first de novo assembly and annotation of the complete mitochondrial genome from perennial ryegrass. Results Intact mitochondria from perennial ryegrass leaves were isolated and used for mtDNA extraction. The mitochondrial genome was sequenced to a 167-fold coverage using the Roche 454 GS-FLX Titanium platform, and assembled into a circular master molecule of 678,580 bp. A total of 34 proteins, 14 tRNAs and 3 rRNAs are encoded by the mitochondrial genome, giving a total gene space of 48,723 bp (7.2%). Moreover, we identified 149 open reading frames larger than 300 bp and covering 67,410 bp (9.93%), 250 SSRs, 29 tandem repeats, 5 pairs of large repeats, and 96 pairs of short inverted repeats. The genes encoding subunits of the respiratory complexes – nad1 to nad9, cob, cox1 to cox3 and atp1 to atp9 – all showed high expression levels both in absolute numbers and after normalization. Conclusions The circular master molecule of the mitochondrial genome from perennial ryegrass presented here constitutes an important tool for future attempts to compare mitochondrial genomes within and between grass species. Our results also demonstrate that mitochondria of perennial ryegrass contain genes crucial for energy production that are well conserved in the mitochondrial genome of monocotyledonous species. The expression analysis gave us first insights into the transcriptome of these mitochondrial genes in perennial ryegrass. PMID:23521852
Zooplankton community analysis in the Changjiang River estuary by single-gene-targeted metagenomics
NASA Astrophysics Data System (ADS)
Cheng, Fangping; Wang, Minxiao; Li, Chaolun; Sun, Song
2014-07-01
DNA barcoding provides accurate identification of zooplankton species through all life stages. Single-gene-targeted metagenomic analysis based on DNA barcode databases can facilitate longterm monitoring of zooplankton communities. With the help of the available zooplankton databases, the zooplankton community of the Changjiang (Yangtze) River estuary was studied using a single-gene-targeted metagenomic method to estimate the species richness of this community. A total of 856 mitochondrial cytochrome oxidase subunit 1 (cox1) gene sequences were determined. The environmental barcodes were clustered into 70 molecular operational taxonomic units (MOTUs). Forty-two MOTUs matched barcoded marine organisms with more than 90% similarity and were assigned to either the species (similarity>96%) or genus level (similarity<96%). Sibling species could also be distinguished. Many species that were overlooked by morphological methods were identified by molecular methods, especially gelatinous zooplankton and merozooplankton that were likely sampled at different life history phases. Zooplankton community structures differed significantly among all of the samples. The MOTU spatial distributions were influenced by the ecological habits of the corresponding species. In conclusion, single-gene-targeted metagenomic analysis is a useful tool for zooplankton studies, with which specimens from all life history stages can be identified quickly and effectively with a comprehensive database.
Sun, Yu; Chen, Chen; Gao, Jin; Abbas, Muhammad Nadeem; Kausar, Saima; Qian, Cen; Wang, Lei; Wei, Guoqing; Zhu, Bao-Jian
2017-01-01
In the present study, the complete sequence of the mitochondrial genome (mitogenome) of Daphnis nerii (Lepidoptera: Sphingidae) is described. The mitogenome (15,247 bp) of D.nerii encodes13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs) and an adenine (A) + thymine (T)-rich region. Its gene complement and order is similar to that of other sequenced lepidopterans. The 12 PCGs initiated by ATN codons except for cytochrome c oxidase subunit 1 (cox1) gene that is seemingly initiated by the CGA codon as documented in other insect mitogenomes. Four of the 13 PCGs have the incomplete termination codon T, while the remainder terminated with the canonical stop codon. This mitogenome has six major intergenic spacers, with the exception of A+T-rich region, spanning at least 10 bp. The A+T-rich region is 351 bp long, and contains some conserved regions, including ‘ATAGA’ motif followed by a 17 bp poly-T stretch, a microsatellite-like element (AT)9 and also a poly-A element. Phylogenetic analyses based on 13 PCGs using maximum likelihood (ML) and Bayesian inference (BI) revealed that D. nerii resides in the Sphingidae family. PMID:28598968
MITOCHONDRIAL DNA DEPLETION SYNDROME DUE TO MUTATIONS IN THE RRM2B GENE
Bornstein, Belén; Area, Estela; Flanigan, Kevin M.; Ganesh, Jaya; Jayakar, Parul; Swoboda, Kathryn J.; Coku, Jorida; Naini, Ali; Shanske, Sara; Tanji, Kurenai; Hirano, Michio; DiMauro, Salvatore
2014-01-01
Mitochondrial DNA depletion syndrome (MDS) is characterized by a reduction in mtDNA copy number and has been associated with mutations in eight nuclear genes, including enzymes involved in mitochondrial nucleotide metabolism (POLG, TK2, DGUOK, SUCLA2, SUCLG1, PEO1) and MPV17. Recently, mutations in The RRM2B gene, encoding the p53-controlled ribonucleotide reductase subunit, have been described in 7 infants from 4 families, who presented with various combinations of hypotonia, tubulopathy, seizures, respiratory distress, diarrhea, and lactic acidosis. All children died before 4 months of age. We sequenced the RRM2B gene in three unrelated cases with unexplained severe mtDNA depletion. The first patient developed intractable diarrhea, profound weakness, respiratory distress, and died at three months. The other two unrelated patients had a much milder phenotype and are still alive at ages 27 and 36 months. All three patients had lactic acidosis and severe depletion of mtDNA in muscle. Muscle histochemistry showed RRF and COX deficiency. Sequencing the RRM2B gene revealed three missense mutations and two single nucleotide deletions in exon 6, 8 and 9, confirming that RRM2B mutations are important causes of MDS and that the clinical phenotype is heterogeneous and not invariably fatal in infancy. PMID:18504129
Mitochondrial DNA depletion syndrome due to mutations in the RRM2B gene.
Bornstein, Belén; Area, Estela; Flanigan, Kevin M; Ganesh, Jaya; Jayakar, Parul; Swoboda, Kathryn J; Coku, Jorida; Naini, Ali; Shanske, Sara; Tanji, Kurenai; Hirano, Michio; DiMauro, Salvatore
2008-06-01
Mitochondrial DNA depletion syndrome (MDS) is characterized by a reduction in mtDNA copy number and has been associated with mutations in eight nuclear genes, including enzymes involved in mitochondrial nucleotide metabolism (POLG, TK2, DGUOK, SUCLA2, SUCLG1, PEO1) and MPV17. Recently, mutations in the RRM2B gene, encoding the p53-controlled ribonucleotide reductase subunit, have been described in seven infants from four families, who presented with various combinations of hypotonia, tubulopathy, seizures, respiratory distress, diarrhea, and lactic acidosis. All children died before 4 months of age. We sequenced the RRM2B gene in three unrelated cases with unexplained severe mtDNA depletion. The first patient developed intractable diarrhea, profound weakness, respiratory distress, and died at 3 months. The other two unrelated patients had a much milder phenotype and are still alive at ages 27 and 36 months. All three patients had lactic acidosis and severe depletion of mtDNA in muscle. Muscle histochemistry showed RRF and COX deficiency. Sequencing the RRM2B gene revealed three missense mutations and two single nucleotide deletions in exons 6, 8, and 9, confirming that RRM2B mutations are important causes of MDS and that the clinical phenotype is heterogeneous and not invariably fatal in infancy.
Getz, Jean; Lin, Dingbo; Medeiros, Denis M
2011-10-01
Copper is ferried in a cell complexed to chaperone proteins, and in the heart much copper is required for cytochrome c oxidase (Cox). It is not completely understood how copper status affects the levels of these proteins. Here we determined if dietary copper deficiency could up- or down-regulate select copper chaperone proteins and Cox subunits 1 and 4 in cardiac tissue of rats. Sixteen weanling male Long-Evans rats were randomized into treatment groups, one group receiving a copper-deficient diet (<1 mg Cu/kg diet) and one group receiving a diet containing adequate copper (6 mg Cu/kg diet) for 5 weeks. Hearts were removed, weighed, and non-myofibrillar proteins separated to analyze for levels of CCS, Sco1, Ctr1, Cox17, Cox1, and Cox4 by SDS-PAGE and Western blotting. No changes were observed in the concentrations of CTR1 and Cox17 between copper-adequate and copper-deficient rats. CCS and Sco1 were up-regulated and Cox1 and Cox4 were both down-regulated as a result of copper deficiency. These data suggest that select chaperone proteins and may be up-regulated, and Cox1 and 4 down-regulated, by a dietary copper deficiency, whereas others appear not to be affected by copper status.
Hernández-Mena, David Iván; García-Prieto, Luís; García-Varela, Martín
2014-04-01
Parastrigea plataleae n. sp. (Digenea: Strigeidae) is described from the intestine of the roseate spoonbill Platalea ajaja (Threskiornithidae) from four localities on the Pacific coast of Mexico. The new species is mainly distinguished from the other 18 described species of Parastrigea based on the ratio of its hindbody length to forebody length. A principal component analysis (PCA) of 16 morphometric traits for 15 specimens of P. plataleae n. sp., five of Parastrigea cincta and 11 of Parastrigea diovadena previously recorded in Mexico, clearly shows three clusters, which correspond to the three species. DNA sequences of the internal transcribed spacers (ITSs) of ribosomal DNA and the mitochondrial gene cytochrome c oxidase subunit I (cox 1) were used to corroborate this morphological distinction. The genetic divergence estimated among P. plataleae n. sp., P. cincta and P. diovadena ranged from 0.5 to 1.48% for ITSs and from 9.31 to 11.47% for cox 1. Maximum parsimony (MP) and maximum likelihood (ML) analyses were performed on the combined datasets (ITSs+cox 1) and on each dataset alone. All of the phylogenetic analyses indicated that the specimens from the roseate spoonbill represent a clade with strong bootstrap support. The morphological evidence and the genetic divergence in combination with the reciprocal monophyly in all of the phylogenetic trees support the hypothesis that the digeneans found in the intestines of roseate spoonbills represent a new species. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Weber, Carolyn F; King, Gary M
2012-01-01
Burkholderia is a physiologically and ecologically diverse genus that occurs commonly in assemblages of soil and rhizosphere bacteria. Although Burkholderia is known for its heterotrophic versatility, we demonstrate that 14 distinct environmental isolates oxidized carbon monoxide (CO) and possessed the gene encoding the catalytic subunit of form I CO dehydrogenase (coxL). DNA from a Burkholderia isolate obtained from a passalid beetle also contained coxL as do the genomic sequences of species H160 and Ch1-1. Isolates were able to consume CO at concentrations ranging from 100 ppm (vol/vol) to sub-ambient (< 60 ppb (vol/vol)). High concentrations of pyruvate inhibited CO uptake (> 2.5 mM), but mixotrophic consumption of CO and pyruvate occurred when initial pyruvate concentrations were lower (c. 400 lM). With the exception of an isolate most closely related to Burkholderia cepacia, all CO-oxidizing isolates examined were members of a nonpathogenic clade and were most closely related to Burkholderia species, B. caledonica, B. fungorum, B. oxiphila, B. mimosarum, B. nodosa, B. sacchari, B. bryophila, B. ferrariae, B. ginsengesoli, and B. unamae. However, none of these type strains oxidized CO or contained coxL based on results from PCR analyses. Collectively, these results demonstrate that the presence of CO oxidation within members of the Burkholderia genus is variable but it is most commonly found among rhizosphere inhabitants that are not closely related to B. cepacia.
Wu, Hou; Hsieh, Min-Chi; Lo, Chih-Yu; Liu, Cheng Bin; Sang, Shengmin; Ho, Chi-Tang; Pan, Min-Hsiung
2010-09-01
We previously reported that 6-shogaol strongly suppressed lipopolysaccharide-induced overexpression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in murine macrophages. In this study, we further compared curcumin, 6-gingerol, and 6-shogaol's molecular mechanism of action and their anti-tumor properties. We demonstrate that topical application of 6-shogaol more effectively inhibited 12-O-tetradecanoylphorbol 13-acetate (TPA)-stimulated transcription of iNOS and COX-2 mRNA expression in mouse skin than curcumin and 6-gingerol. Pretreatment with 6-shogaol has resulted in the reduction of TPA-induced nuclear translocation of the nuclear factor-kappaB subunits. 6-Shogaol also reduced TPA-induced phosphorylation of IkappaBalpha and p65, and caused subsequent degradation of IkappaBalpha. Moreover, 6-shogaol markedly suppressed TPA-induced activation of extracellular signal-regulate kinase1/2, p38 mitogen-activated protein kinase, JNK1/2, and phosphatidylinositol 3-kinase/Akt, which are upstream of nuclear factor-kappaB and AP-1. Furthermore, 6-shogaol significantly inhibited 7,12-dimethylbenz[a]anthracene/TPA-induced skin tumor formation measured by the tumor multiplicity of papillomas at 20 wk. Presented data reveal for the first time that 6-shogaol is an effective anti-tumor agent that functions by down-regulating inflammatory iNOS and COX-2 gene expression in mouse skin. It is suggested that 6-shogaol is a novel functional agent capable of preventing inflammation-associated tumorigenesis.
Pombert, Jean-François; Otis, Christian; Turmel, Monique; Lemieux, Claude
2013-01-01
Organelle genes are often interrupted by group I and or group II introns. Splicing of these mobile genetic occurs at the RNA level via serial transesterification steps catalyzed by the introns'own tertiary structures and, sometimes, with the help of external factors. These catalytic ribozymes can be found in cis or trans configuration, and although trans-arrayed group II introns have been known for decades, trans-spliced group I introns have been reported only recently. In the course of sequencing the complete mitochondrial genome of the prasinophyte picoplanktonic green alga Prasinoderma coloniale CCMP 1220 (Prasinococcales, clade VI), we uncovered two additional cases of trans-spliced group I introns. Here, we describe these introns and compare the 54,546 bp-long mitochondrial genome of Prasinoderma with those of four other prasinophytes (clades II, III and V). This comparison underscores the highly variable mitochondrial genome architecture in these ancient chlorophyte lineages. Both Prasinoderma trans-spliced introns reside within the large subunit rRNA gene (rnl) at positions where cis-spliced relatives, often containing homing endonuclease genes, have been found in other organelles. In contrast, all previously reported trans-spliced group I introns occur in different mitochondrial genes (rns or coxI). Each Prasinoderma intron is fragmented into two pieces, forming at the RNA level a secondary structure that resembles those of its cis-spliced counterparts. As observed for other trans-spliced group I introns, the breakpoint of the first intron maps to the variable loop L8, whereas that of the second is uniquely located downstream of P9.1. The breakpoint In each Prasinoderma intron corresponds to the same region where the open reading frame (ORF) occurs when present in cis-spliced orthologs. This correlation between the intron breakpoint and the ORF location in cis-spliced orthologs also holds for other trans-spliced introns; we discuss the possible implications of this interesting observation for trans-splicing of group I introns. PMID:24386369
Wong, Samson S. Y.; Poon, Rosana W. S.; Chau, Sandy; Wong, Sally C. Y.; To, Kelvin K. W.; Cheng, Vincent C. C.; Fung, Kitty S. C.
2015-01-01
Scabies remains the most prevalent, endemic, and neglected ectoparasitic infestation globally and can cause institutional outbreaks. The sensitivity of routine microscopy for demonstration of Sarcoptes scabiei mites or eggs in skin scrapings is only about 50%. Except for three studies using conventional or two-tube nested PCR on a small number of cases, no systematic study has been performed to improve the laboratory diagnosis of this important infection. We developed a conventional and a real-time quantitative PCR (qPCR) assay based on the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of S. scabiei. The cox1 gene is relatively well conserved, with its sequence having no high levels of similarity to the sequences of other human skin mites, pathogenic zoonotic mites, or common house dust mite species. This mitochondrial gene is also present in large quantities in arthropod cells, potentially improving the sensitivity of a PCR-based assay. In our study, both assays were specific and were more sensitive than microscopy in diagnosing scabies, with positive and negative predictive values of 100%. The S. scabiei DNA copy number in the microscopy-positive specimens was significantly higher than that in the microscopy-negative specimens (median S. scabiei DNA copy number, 3.604 versus 2.457 log10 copies per reaction; P = 0.0213). In the patient with crusted scabies, the qPCR assay performed on lesional skin swabs instead of scrapings revealed that the parasite DNA load took about 2 weeks to become negative after treatment. The utility of using lesional skin swabs as an alternative sample for diagnosis of scabies by PCR should be further evaluated. PMID:25903566
Wong, Samson S Y; Poon, Rosana W S; Chau, Sandy; Wong, Sally C Y; To, Kelvin K W; Cheng, Vincent C C; Fung, Kitty S C; Yuen, K Y
2015-07-01
Scabies remains the most prevalent, endemic, and neglected ectoparasitic infestation globally and can cause institutional outbreaks. The sensitivity of routine microscopy for demonstration of Sarcoptes scabiei mites or eggs in skin scrapings is only about 50%. Except for three studies using conventional or two-tube nested PCR on a small number of cases, no systematic study has been performed to improve the laboratory diagnosis of this important infection. We developed a conventional and a real-time quantitative PCR (qPCR) assay based on the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of S. scabiei. The cox1 gene is relatively well conserved, with its sequence having no high levels of similarity to the sequences of other human skin mites, pathogenic zoonotic mites, or common house dust mite species. This mitochondrial gene is also present in large quantities in arthropod cells, potentially improving the sensitivity of a PCR-based assay. In our study, both assays were specific and were more sensitive than microscopy in diagnosing scabies, with positive and negative predictive values of 100%. The S. scabiei DNA copy number in the microscopy-positive specimens was significantly higher than that in the microscopy-negative specimens (median S. scabiei DNA copy number, 3.604 versus 2.457 log10 copies per reaction; P = 0.0213). In the patient with crusted scabies, the qPCR assay performed on lesional skin swabs instead of scrapings revealed that the parasite DNA load took about 2 weeks to become negative after treatment. The utility of using lesional skin swabs as an alternative sample for diagnosis of scabies by PCR should be further evaluated. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Armand-Ugon, Mercedes; Ansoleaga, Belen; Berjaoui, Sara; Ferrer, Isidro
2017-01-01
It is well established that mitochondrial damage plays a role in the pathophysiology of Alzheimer's disease (AD). However, studies carried out in humans barely contemplate regional differences with disease progression. To study the expression of selected nuclear genes encoding subunits of the mitochondrial complexes and the activity of mitochondrial complexes in AD, in two regions: the entorhinal cortex (EC) and frontal cortex area 8 (FC). Frozen samples from 148 cases processed for gene expression by qRT-PCR and determination of individual activities of mitochondrial complexes I, II, IV and V using commercial kits and home-made assays. Decreased expression of NDUFA2, NDUFB3, UQCR11, COX7C, ATPD, ATP5L and ATP50, covering subunits of complex I, II, IV and V, occurs in total homogenates of the EC in AD stages V-VI when compared with stages I-II. However reduced activity of complexes I, II and V of isolated mitochondria occurs as early as stages I-II when compared with middle-aged individuals in the EC. In contrast, no alterations in the expression of the same genes and no alterations in the activity of mitochondrial complexes are found in the FC in the same series. Different mechanisms of impaired energy metabolism may occur in AD, one of them, represented by the EC, is the result of primary and early alteration of mitochondria; the other one is probably the result, at least in part, of decreased functional input and is represented by hypometabolism in the FC in AD patients aged 86 or younger. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Brancaccio, Mariarita; Coretti, Lorena; Florio, Ermanno; Pezone, Antonio; Calabrò, Viola; Falco, Geppino; Keller, Simona; Lembo, Francesca; Avvedimento, Vittorio Enrico; Chiariotti, Lorenzo
2016-01-01
Bacterial lipopolysaccharide (LPS) induces release of inflammatory mediators both in immune and epithelial cells. We investigated whether changes of epigenetic marks, including selected histone modification and DNA methylation, may drive or accompany the activation of COX-2 gene in HT-29 human intestinal epithelial cells upon exposure to LPS. Here we describe cyclical histone acetylation (H3), methylation (H3K4, H3K9, H3K27) and DNA methylation changes occurring at COX-2 gene promoter overtime after LPS stimulation. Histone K27 methylation changes are carried out by the H3 demethylase JMJD3 and are essential for COX-2 induction by LPS. The changes of the histone code are associated with cyclical methylation signatures at the promoter and gene body of COX-2 gene. PMID:27253528
Association of COX-2 Promoter Polymorphisms -765G/C and -1195A/G with Migraine.
Mozaffari, Elahe; Doosti, Abbas; Arshi, Asghar; Faghani, Mostafa
2016-12-01
Migraine is a common debilitating primary headache disorder with current head pain attacks, which contributes to physical activity dysfunctions in chronic pain phase. PGE2 and PGI2 are two important prostaglandins synthesised by COX-2 enzymes, involved in migraine pain signals. COX-2 modulation is essential in treatment and pathogenesis of migraine. This study aimed to investigating the association between COX-2 gene polymorphisms with the risk of migraine susceptibility in migraine patients with related and unrelated parents. This case- control study was based on 100 migraine patients and 100 non-migraine subjects in Bushehr province, Iran in 2013. Genomic DNA of blood samples was extracted and genotyping of COX-2-765G>C (rs20417) and COX-2-1195A>G (rs689466) gene variants was investigated by PCR-RFLP method. Statistical analyses were accomplished using the SPSS software package. There was a significant differences in the frequencies of the COX-2-765G>C and COX-2-1195A>G genotypes between migraine patients and controls ( P ≤0.05). COX-2-765CC , COX-2-765CG , COX-2-1195GG and COX-2-1195AG genotypes can increase the risk of migraine significantly. As the first study in Iran, we are hopeful to achieve greater results about the relevancy of COX-2 gene, migraine and pain signals pathway by repeating these experiments on more samples.
Yang, Huirong; Zhang, Jia-En; Guo, Jing; Deng, Zhixin; Luo, Hao; Luo, Mingzhu; Zhao, Benliang
2016-05-01
We present the complete mitochondrial genome of the Achatina fulica in this study. The results show that the mitochondrial genome is 15,057 bp in length, which is comprised of 13 protein-coding genes, 2 rRNA genes, 21 tRNA genes. The nucleotide compositions of the light strand are 35.47% of A, 27.97% of T 19.46% of C, and 17.10% of G. Except the ND3, 7 tRNA, ATP6, ATP8, COX3 and 12S-rRNA on the light strand, the rest are encoded on the heavy strand. Five types of inferred initiation codons are ATA (ND1, ND5), GTG (ND6), ATG (COX3, COX2), ATT (ND4) and TTG (COX1, ND2, ND3, ND4L, ATP6, ATP8, Cytb), and 3 types of inferred termination codons are T (COX3, ND2), TAA (ND1, ND4L, ND5, ND6, ATP6), and TAG (ND3, ND4, COX1, COX2, Cytb, ATP8). There are 24 intergenic spacers and 6 gene overlaps. The tandem repeat sequence (total 52 bp) of (AATAATT)n is observed in 16S-rRNA. Gene arrangement and distribution are inconsistent with the typical vertebrates.
de Melo, Thais Regina Ferreira; Chelucci, Rafael Consolin; Pires, Maria Elisa Lopes; Dutra, Luiz Antonio; Barbieri, Karina Pereira; Bosquesi, Priscila Longhin; Trossini, Gustavo Henrique Goulart; Chung, Man Chin; dos Santos, Jean Leandro
2014-01-01
A series of anti-inflammatory derivatives containing an N-acyl hydrazone subunit (4a–e) were synthesized and characterized. Docking studies were performed that suggest that compounds 4a–e bind to cyclooxygenase (COX)-1 and COX-2 isoforms, but with higher affinity for COX-2. The compounds display similar anti-inflammatory activities in vivo, although compound 4c is the most effective compound for inhibiting rat paw edema, with a reduction in the extent of inflammation of 35.9% and 52.8% at 2 and 4 h, respectively. The anti-inflammatory activity of N-acyl hydrazone derivatives was inferior to their respective parent drugs, except for compound 4c after 5 h. Ulcerogenic studies revealed that compounds 4a–e are less gastrotoxic than the respective parent drug. Compounds 4b–e demonstrated mucosal damage comparable to celecoxib. The in vivo analgesic activities of the compounds are higher than the respective parent drug for compounds 4a–b and 4d–e. Compound 4a was more active than dipyrone in reducing acetic-acid-induced abdominal constrictions. Our results indicate that compounds 4a–e are anti-inflammatory and analgesic compounds with reduced gastrotoxicity compared to their respective parent non-steroidal anti-inflammatory drugs. PMID:24714090
Hu, Yau-Chung; Chu, Keng-Fu; Yang, Wen-Kai; Lee, Tsung-Han
2017-10-01
The euryhaline milkfish (Chanos chanos) is a popular aquaculture species that can be cultured in fresh water, brackish water, or seawater in Southeast Asia. In gills of the milkfish, Na + , K + -ATPase (i.e., NKA; sodium pump) responds to salinity challenges including changes in mRNA abundance, protein amount, and activity. The functional pump is composed of a heterodimeric protein complex composed of α- and β-subunits. Among the NKA genes, α1-β1 isozyme comprises the major form of NKA subunits in mammalian osmoregulatory organs; however, most studies on fish gills have focused on the α1 subunit and did not verify the α1-β1 isozyme. Based on the sequenced milkfish transcriptome, an NKA β1 subunit gene was identified that had the highest amino acid homology to β233, a NKA β1 subunit paralog originally identified in the eel. Despite this high level of homology to β233, phylogenetic analysis and the fact that only a single NKA β1 subunit gene exists in the milkfish suggest that the milkfish gene should be referred to as the NKA β1 subunit gene. The results of accurate domain prediction of the β1 subunit, co-localization of α1 and β1 subunits in epithelial ionocytes, and co-immunoprecipitation of α1 and β1 subunits, indicated the formation of a α1-β1 complex in milkfish gills. Moreover, when transferred to hyposmotic media (fresh water) from seawater, parallel increases in branchial mRNA and protein expression of NKA α1 and β1 subunits suggested their roles in hypo-osmoregulation of euryhaline milkfish. This study molecularly characterized the NKA β1 subunit and provided the first evidence for an NKA α1-β1 association in gill ionocytes of euryhaline teleosts.
COX2 Inhibition Reduces Aortic Valve Calcification In Vivo
Wirrig, Elaine E.; Gomez, M. Victoria; Hinton, Robert B.; Yutzey, Katherine E.
2016-01-01
Objective Calcific aortic valve disease (CAVD) is a significant cause of morbidity and mortality, which affects approximately 1% of the US population and is characterized by calcific nodule formation and stenosis of the valve. Klotho-deficient mice were used to study the molecular mechanisms of CAVD as they develop robust aortic valve (AoV) calcification. Through microarray analysis of AoV tissues from klotho-deficient and wild type mice, increased expression of the gene encoding cyclooxygenase 2/COX2 (Ptgs2) was found. COX2 activity contributes to bone differentiation and homeostasis, thus the contribution of COX2 activity to AoV calcification was assessed. Approach and Results In klotho-deficient mice, COX2 expression is increased throughout regions of valve calcification and is induced in the valvular interstitial cells (VICs) prior to calcification formation. Similarly, COX2 expression is increased in human diseased AoVs. Treatment of cultured porcine aortic VICs with osteogenic media induces bone marker gene expression and calcification in vitro, which is blocked by inhibition of COX2 activity. In vivo, genetic loss of function of COX2 cyclooxygenase activity partially rescues AoV calcification in klotho-deficient mice. Moreover, pharmacologic inhibition of COX2 activity in klotho-deficient mice via celecoxib-containing diet reduces AoV calcification and blocks osteogenic gene expression. Conclusions COX2 expression is upregulated in CAVD and its activity contributes to osteogenic gene induction and valve calcification in vitro and in vivo. PMID:25722432
RNA interference as a key to knockdown overexpressed cyclooxygenase-2 gene in tumour cells
Strillacci, A; Griffoni, C; Spisni, E; Manara, M C; Tomasi, V
2006-01-01
Silencing those genes that are overexpressed in cancer and contribute to the survival and progression of tumour cells is the aim of several researches. Cyclooxygenase-2 (COX-2) is one of the most intensively studied genes since it is overexpressed in most tumours, mainly in colon cancer. The use of specific COX-2 inhibitors to treat colon cancer has generated great enthusiasm. Yet, the side effects of some inhibitors emerging during long-term treatment have caused much concern. Genes silencing by RNA interference (RNAi) has led to new directions in the field of experimental oncology. In this study, we detected sequences directed against COX-2 mRNA, that potently downregulate COX-2 gene expression and inhibit phorbol 12-myristate 13-acetate-induced angiogenesis in vitro in a specific, nontoxic manner. Moreover, we found that the insertion of a specific cassette carrying anti-COX-2 short hairpin RNA sequence into a viral vector (pSUPER.retro) greatly increased silencing potency in a colon cancer cell line (HT29) without activating any interferon response. Phenotypically, COX-2 deficient HT29 cells showed a significant impairment of their in vitro malignant behaviour. Thus, the retroviral approach enhancing COX-2 knockdown, mediated by RNAi, proved to be an useful tool to better understand the role of COX-2 in colon cancer. Furthermore, the higher infection efficiency we observed in tumour cells, if compared to normal endothelial cells, may disclose the possibility to specifically treat tumour cells without impairing endothelial COX-2 activity. PMID:16622456
Uni, Shigehiko; Mat Udin, Ahmad Syihan; Agatsuma, Takeshi; Saijuntha, Weerachai; Junker, Kerstin; Ramli, Rosli; Omar, Hasmahzaiti; Lim, Yvonne Ai-Lian; Sivanandam, Sinnadurai; Lefoulon, Emilie; Martin, Coralie; Belabut, Daicus Martin; Kasim, Saharul; Abdullah Halim, Muhammad Rasul; Zainuri, Nur Afiqah; Bhassu, Subha; Fukuda, Masako; Matsubayashi, Makoto; Harada, Masashi; Low, Van Lun; Chen, Chee Dhang; Suganuma, Narifumi; Hashim, Rosli; Takaoka, Hiroyuki; Azirun, Mohd Sofian
2017-04-20
The filarial nematodes Wuchereria bancrofti (Cobbold, 1877), Brugia malayi (Brug, 1927) and B. timori Partono, Purnomo, Dennis, Atmosoedjono, Oemijati & Cross, 1977 cause lymphatic diseases in humans in the tropics, while B. pahangi (Buckley & Edeson, 1956) infects carnivores and causes zoonotic diseases in humans in Malaysia. Wuchereria bancrofti, W. kalimantani Palmieri, Pulnomo, Dennis & Marwoto, 1980 and six out of ten Brugia spp. have been described from Australia, Southeast Asia, Sri Lanka and India. However, the origin and evolution of the species in the Wuchereria-Brugia clade remain unclear. While investigating the diversity of filarial parasites in Malaysia, we discovered an undescribed species in the common treeshrew Tupaia glis Diard & Duvaucel (Mammalia: Scandentia). We examined 81 common treeshrews from 14 areas in nine states and the Federal Territory of Peninsular Malaysia for filarial parasites. Once any filariae that were found had been isolated, we examined their morphological characteristics and determined the partial sequences of their mitochondrial cytochrome c oxidase subunit 1 (cox1) and 12S rRNA genes. Polymerase chain reaction (PCR) products of the internal transcribed spacer 1 (ITS1) region were then cloned into the pGEM-T vector, and the recombinant plasmids were used as templates for sequencing. Malayfilaria sofiani Uni, Mat Udin & Takaoka, n. g., n. sp. is described based on the morphological characteristics of adults and microfilariae found in common treeshrews from Jeram Pasu, Kelantan, Malaysia. The Kimura 2-parameter distance between the cox1 gene sequences of the new species and W. bancrofti was 11.8%. Based on the three gene sequences, the new species forms a monophyletic clade with W. bancrofti and Brugia spp. The adult parasites were found in tissues surrounding the lymph nodes of the neck of common treeshrews. The newly described species appears most closely related to Wuchereria spp. and Brugia spp., but differs from these in several morphological characteristics. Molecular analyses based on the cox1 and 12S rRNA genes and the ITS1 region indicated that this species differs from both W. bancrofti and Brugia spp. at the genus level. We thus propose a new genus, Malayfilaria, along with the new species M. sofiani.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabebi, Mouna, E-mail: mouna.biologiste@yahoo.com; Mkaouar-Rebai, Emna; Mnif, Mouna
Mitochondrial diabetes (MD) is a heterogeneous disorder characterized by a chronic hyperglycemia, maternal transmission and its association with a bilateral hearing impairment. Several studies reported mutations in mitochondrial genes as potentially pathogenic for diabetes, since mitochondrial oxidative phosphorylation plays an important role in glucose-stimulated insulin secretion from beta cells. In the present report, we studied a Tunisian family with mitochondrial diabetes (MD) and deafness associated with nephropathy. The mutational analysis screening revealed the presence of a novel heteroplasmic mutation m.9276G>C in the mitochondrial COIII gene, detected in mtDNA extracted from leukocytes of a mother and her two daughters indicating thatmore » this mutation is maternally transmitted and suggest its implication in the observed phenotype. Bioinformatic tools showed that m.9267G>C mutation (p.A21P) is « deleterious » and it can modify the function and the stability of the MT-COIII protein by affecting the assembly of mitochondrial COX subunits and the translocation of protons then reducing the activity of the respective OXPHOS complexes of ATP synthesis. The nonsynonymous mutation (p.A21P) has not been reported before, it is the first mutation described in the COXIII gene which is related to insulin dependent mitochondrial diabetes and deafness and could be specific to the Tunisian population. The m.9267G>C mutation was present with a nonsynonymous inherited mitochondrial homoplasmic variation MT-COI m.5913 G>A (D4N) responsible of high blood pressure, a clinical feature detected in all explored patients. - Highlights: • MT-COX3 m.9267G>C (p.A21P), heteroplasmic substitution, is not reported in any database. • m.9267G>C can be responsible of the MIDD associated with nephropaty. • This substitution can modify the function and the stability of the MT-CO3 protein. • This substitution can modify MT-CO3 structure (2D and 3D). • MT-COX3 m.9267G>C is associated with MT-CO1 m.5913G>A a homoplasmic substitution.« less
Spotin, Adel; Mahami-Oskouei, Mahmoud; Harandi, Majid Fasihi; Baratchian, Mehdi; Bordbar, Ali; Ahmadpour, Ehsan; Ebrahimi, Sahar
2017-01-01
To investigate the genetic variability and population structure of Echinococcus granulosus complex, 79 isolates were sequenced from different host species covering human, dog, camel, goat, sheep and cattle as of various geographical sub-populations of Iran (Northwestern, Northern, and Southeastern). In addition, 36 sequences of other geographical populations (Western, Southeastern and Central Iran), were directly retrieved from GenBank database for the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene. The confirmed isolates were grouped as G1 genotype (n=92), G6 genotype (n=14), G3 genotype (n=8) and G2 genotype (n=1). 50 unique haplotypes were identified based on the analyzed sequences of cox1. A parsimonious network of the sequence haplotypes displayed star-like features in the overall population containing IR23 (22: 19.1%) as the most common haplotype. According to the analysis of molecular variance (AMOVA) test, the high value of haplotype diversity of E. granulosus complex was shown the total genetic variability within populations while nucleotide diversity was low in all populations. Neutrality indices of the cox1 (Tajima's D and Fu's Fs tests) were shown negative values in Western-Northwestern, Northern and Southeastern populations which indicating significant divergence from neutrality and positive but not significant in Central isolates. A pairwise fixation index (Fst) as a degree of gene flow was generally low value for all populations (0.00647-0.15198). The statistically Fst values indicate that Echinococcus sensu stricto (genotype G1-G3) populations are not genetically well differentiated in various geographical regions of Iran. To appraise the hypothetical evolutionary scenario, further study is needed to analyze concatenated mitogenomes and as well a panel of single locus nuclear markers should be considered in wider areas of Iran and neighboring countries. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spreitzer, Robert Joseph
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of CO 2 fixation in photosynthesis. However, it is a slow enzyme, and O 2 competes with CO 2 at the active site. Oxygenation initiates the photorespiratory pathway, which also results in the loss of CO 2. If carboxylation could be increased or oxygenation decreased, an increase in net CO 2 fixation would be realized. Because Rubisco provides the primary means by which carbon enters all life on earth, there is much interest in engineering Rubisco to increase the production of food and renewable energy. Rubisco is located in the chloroplasts of plants,more » and it is comprised of two subunits. Much is known about the chloroplast-gene-encoded large subunit (rbcL gene), which contains the active site, but much less is known about the role of the nuclear-gene-encoded small subunit in Rubisco function (rbcS gene). Both subunits are coded by multiple genes in plants, which makes genetic engineering difficult. In the eukaryotic, green alga Chlamydomonas reinhardtii, it has been possible to eliminate all the Rubisco genes. These Rubisco-less mutants can be maintained by providing acetate as an alternative carbon source. In this project, focus has been placed on determining whether the small subunit might be a better genetic-engineering target for improving Rubisco. Analysis of a variable-loop structure (βA-βB loop) of the small subunit by genetic selection, directed mutagenesis, and construction of chimeras has shown that the small subunit can influence CO 2/O 2 specificity. X-ray crystal structures of engineered chimeric-loop enzymes have indicated that additional residues and regions of the small subunit may also contribute to Rubisco function. Structural dynamics of the small-subunit carboxyl terminus was also investigated. Alanine-scanning mutagenesis of the most-conserved small-subunit residues has identified a possible structural pathway between the small-subunit βA-βB loop and alpha-helix 8 of the large-subunit α/β-barrel active site. Hybrid enzymes were also created comprised of plant small subunits and Chlamydomonas large subunits, and these enzymes have increases in CO 2/O 2 specificity, further indicating that small subunits may be the key for ultimately engineering an improved Rubisco enzyme.« less
Tropak, Michael B; Yonekawa, Sayuri; Karumuthil-Melethil, Subha; Thompson, Patrick; Wakarchuk, Warren; Gray, Steven J; Walia, Jagdeep S; Mark, Brian L; Mahuran, Don
2016-01-01
Tay-Sachs or Sandhoff disease result from mutations in either the evolutionarily related HEXA or HEXB genes encoding respectively, the α- or β-subunits of β-hexosaminidase A (HexA). Of the three Hex isozymes, only HexA can interact with its cofactor, the GM2 activator protein (GM2AP), and hydrolyze GM2 ganglioside. A major impediment to establishing gene or enzyme replacement therapy based on HexA is the need to synthesize both subunits. Thus, we combined the critical features of both α- and β-subunits into a single hybrid µ-subunit that contains the α-subunit active site, the stable β-subunit interface and unique areas in each subunit needed to interact with GM2AP. To facilitate intracellular analysis and the purification of the µ-homodimer (HexM), CRISPR-based genome editing was used to disrupt the HEXA and HEXB genes in a Human Embryonic Kidney 293 cell line stably expressing the µ-subunit. In association with GM2AP, HexM was shown to hydrolyze a fluorescent GM2 ganglioside derivative both in cellulo and in vitro. Gene transfer studies in both Tay-Sachs and Sandhoff mouse models demonstrated that HexM expression reduced brain GM2 ganglioside levels.
Tropak, Michael B; Yonekawa, Sayuri; Karumuthil-Melethil, Subha; Thompson, Patrick; Wakarchuk, Warren; Gray, Steven J; Walia, Jagdeep S; Mark, Brian L; Mahuran, Don
2016-01-01
Tay-Sachs or Sandhoff disease result from mutations in either the evolutionarily related HEXA or HEXB genes encoding respectively, the α- or β-subunits of β-hexosaminidase A (HexA). Of the three Hex isozymes, only HexA can interact with its cofactor, the GM2 activator protein (GM2AP), and hydrolyze GM2 ganglioside. A major impediment to establishing gene or enzyme replacement therapy based on HexA is the need to synthesize both subunits. Thus, we combined the critical features of both α- and β-subunits into a single hybrid µ-subunit that contains the α-subunit active site, the stable β-subunit interface and unique areas in each subunit needed to interact with GM2AP. To facilitate intracellular analysis and the purification of the µ-homodimer (HexM), CRISPR-based genome editing was used to disrupt the HEXA and HEXB genes in a Human Embryonic Kidney 293 cell line stably expressing the µ-subunit. In association with GM2AP, HexM was shown to hydrolyze a fluorescent GM2 ganglioside derivative both in cellulo and in vitro. Gene transfer studies in both Tay-Sachs and Sandhoff mouse models demonstrated that HexM expression reduced brain GM2 ganglioside levels. PMID:26966698
Gjerde, Bjørn; Josefsen, Terje D
2015-03-01
Sarcocysts were detected in routinely processed histological sections of skeletal muscle, but not cardiac muscle, of two adult male otters (Lutra lutra; Mustelidae) from northern Norway following their post-mortem examination in 1999 and 2000. The sarcocysts were slender, spindle-shaped, up to 970 μm long and 35-70 μm in greatest diameter. The sarcocyst wall was thin (∼ 0.5 μm) and smooth with no visible protrusions. Portions of unfixed diaphragm of both animals were collected at the autopsies and kept frozen for about 14 years pending further examination. When the study was resumed in 2013, the thawed muscle samples were examined for sarcocysts under a stereo microscope, but none could be found. Genomic DNA was therefore extracted from a total of 36 small pieces of the diaphragm from both otters, and samples found to contain Sarcocystidae DNA were used selectively for PCR amplification and sequencing of the nuclear 18S and 28S ribosomal (r) RNA genes and internal transcribed spacer 1 (ITS1) region, as well as the mitochondrial cytochrome b (cytb) and cytochrome c oxidase subunit 1 (cox1) genes. Sequence comparisons revealed that both otters were infected by the same Sarcocystis sp. and that there was no genetic variation (100 % identity) among sequenced isolates at the 18S and 28S rRNA genes (six identical isolates at both loci) or at cox1 (13 identical isolates). PCR products comprising the ITS1 region, on the other hand, had to be cloned before sequencing due to intraspecific sequence variation. A total of 33 clones were sequenced, and the identities between them were 97.9-99.9 %. These sequences were most similar (93.7-96.0 % identity) to a sequence of Sarcocystis kalvikus from the wolverine in Canada, but the phylogenetic analyses placed all of them as a monophyletic sister group to S. kalvikus. Hence, they were considered to represent a novel species, which was named Sarcocystis lutrae. Sequence comparisons and phylogenetic analyses based on sequences of the 18S and 28S rRNA genes and cox1, for which little or no sequence data were available for S. kalvikus, revealed that S. lutrae otherwise was most closely related to various Sarcocystis spp. using birds or carnivores as intermediate hosts. The cox1 sequences of S. lutrae from the otters were identical to two sequences from an arctic fox, which in a previous study had been assigned to Sarcocystis arctica due to a high identity (99.4 %) with the latter species at this gene and a complete identity with S. arctica at three other loci when using the same DNA samples as templates for PCR reactions. Additional PCR amplifications and sequencing of cox1 (ten sequences) and the ITS1 region (four sequences) using four DNA samples from this fox as templates again generated cox1 sequences exclusively of S. lutrae, but ITS1 sequences of S. arctica, and thus confirmed that this arctic fox had acted as intermediate host for both S. arctica and S. lutrae. Based on the phylogenetic placement of S. lutrae, the geographical location of infected animals (otters, arctic fox) and the distribution of carnivores/raptors which may have interacted with them, the white-tailed eagle (Haliaeetus albicilla) seems to be a possible definitive host of S. lutrae. Some of the muscle samples from both otters were shown to harbour stages of Toxoplasma gondii through PCR amplification and sequencing of the entire ITS1 region (five isolates) and/or the partial cytb (eight isolates) and cox1 (one isolate). These sequences were identical to several previous sequences of T. gondii in GenBank. Thus, both otters had a dual infection with S. lutrae and T. gondii.
Yang, Huirong; Zhang, Jia-En; Luo, Hao; Luo, Mingzhu; Guo, Jing; Deng, Zhixin; Zhao, Benliang
2016-05-01
We present the complete mitochondrial genome of Cipangopaludina cathayensis in this study. The mitochondrial genome is 17,157 bp in length, containing 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes. All of them are encoded on the heavy strand except 7 tRNA genes on the light strand. Overall nucleotide compositions of the light strand are 44.51% of A, 26.74% of T, 20.48% of C and 8.28% of G. All the protein-coding genes start with ATG initiation codon except ATP6 with ATA and ND4 with TTG, and 2 types of termination codons are TAA (ATP6, ND2, COX1, COX2, ATP8, ND1, ND6, Cytb, COX3, ND4) and TAG (ND4L, ND5, ND3). There are 29 intergenic spacers and 5 gene overlaps. The tandem repeat sequences are observed in COX2, tRNA(Asp), ATP6, tRNA(Cys), S-rRNA, ND1, Cytb, ND4 and COX3 genes. Gene arrangement and distribution are different from the typical vertebrates. The absence of D-loop is consistent with the Gastropoda, but at least one lengthy non-coding region is essential regulatory element for the initiation of transcription and replication.
Quach, Tommy; Brooks, Daniel M; Miranda, Hector C
2016-01-01
The complete mitochondrial genome of the Palawan peacock-pheasant Polyplectron napoleonis is 16,710 bp and contains 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and a control-region. All protein-coding genes use the standard ATG start codon, except for cox1 which has GTG start codon. Seven out of 13 PCGs have TAA stop codons, two have AGG (cox1 and nd6), and three PCGs (nd2, cox2 and nd4) have incomplete stop codon of just T- - nucleotide.
Magnotta, Scot M; Gogarten, Johann Peter
2002-01-01
Background Vacuolar type H+-ATPases play a critical role in the maintenance of vacuolar homeostasis in plant cells. V-ATPases are also involved in plants' defense against environmental stress. This research examined the expression and regulation of the catalytic subunit of the vacuolar type H+-ATPase in Arabidopsis thaliana and the effect of environmental stress on multiple transcripts generated by this gene. Results Evidence suggests that subunit A of the vacuolar type H+-ATPase is encoded by a single gene in Arabidopsis thaliana. Genome blot analysis showed no indication of a second subunit A gene being present. The single gene identified was shown by whole RNA blot analysis to be transcribed in all organs of the plant. Subunit A was shown by sequencing the 3' end of multiple cDNA clones to exhibit multi site polyadenylation. Four different poly (A) tail attachment sites were revealed. Experiments were performed to determine the response of transcript levels for subunit A to environmental stress. A PCR based strategy was devised to amplify the four different transcripts from the subunit A gene. Conclusions Amplification of cDNA generated from seedlings exposed to cold, salt stress, and etiolation showed that transcript levels for subunit A of the vacuolar type H+-ATPase in Arabidopsis were responsive to stress conditions. Cold and salt stress resulted in a 2–4 fold increase in all four subunit A transcripts evaluated. Etiolation resulted in a slight increase in transcript levels. All four transcripts appeared to behave identically with respect to stress conditions tested with no significant differential regulation. PMID:11985780
Nawathean, P; Maslov, D A
2000-08-01
By completing the sequencing of the maxicircle conserved region in the kinetoplast DNA of Phytomonas serpens, we showed that the genes for subunits I and II (COI and COII) of cytochrome c oxidase in this organism were missing. We had previously shown that the genes for cytochrome c oxidase subunit III and apocytochrome b were also missing. These deletions did not affect the structure or expression of the remaining genes. Partial editing of the mRNA for NADH dehydrogenase subunit 8, previously found in strain IG from insects, was complete in two other strains isolated from plants. The appearance of a novel maxicircle gene for MURF2 block I gRNA, which substitutes for the gene missing due to the COII gene deletion, may illustrate a general mechanism for the origin of gRNAs.
Bak, Min-Ji; Truong, Van Long; Kang, Hey-Sook; Jun, Mira; Jeong, Woo-Sik
2013-01-01
In the present study, the anti-inflammatory effect and underlying mechanisms of wild grape seeds procyanidins (WGP) were examined using lipopolysaccharide- (LPS-) stimulated RAW 264.7 cells. We used nitric oxide (NO) and prostaglandin E2 (PGE2) and reactive oxygen species (ROS) assays to examine inhibitory effect of WGP and further investigated the mechanisms of WGP suppressed LPS-mediated genes and upstream expression by Western blot and confocal microscopy analysis. Our data indicate that WGP significantly reduced NO, PGE2, and ROS production and also inhibited the expression of proinflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expressions. Consistently, WGP significantly reduced LPS-stimulated expression of proinflammatory cytokines such as tumor necrosis factor α (TNF-α) and interleukin- (IL-) 1 β . Moreover, WGP prevented nuclear translocation of nuclear factor- κ B (NF κ B) p65 subunit by reducing inhibitory κ B- α (I κ B α) and NF κ B phosphorylation. Furthermore, we found that WGP inhibited LPS-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK). Taken together, our results demonstrated that WGP exerts potent anti-inflammatory activity through the inhibition of iNOS and COX-2 by regulating NF κ B and p38 MAPK pathway.
Sharma-Walia, Neelam; Sadagopan, Sathish; Veettil, Mohanan Valiya; Kerur, Nagaraj; Chandran, Bala
2010-01-01
Kaposi's sarcoma (KS), an enigmatic endothelial cell vascular neoplasm, is characterized by the proliferation of spindle shaped endothelial cells, inflammatory cytokines (ICs), growth factors (GFs) and angiogenic factors. KSHV is etiologically linked to KS and expresses its latent genes in KS lesion endothelial cells. Primary infection of human micro vascular endothelial cells (HMVEC-d) results in the establishment of latent infection and reprogramming of host genes, and cyclooxygenase-2 (COX-2) is one of the highly up-regulated genes. Our previous study suggested a role for COX-2 in the establishment and maintenance of KSHV latency. Here, we examined the role of COX-2 in the induction of ICs, GFs, angiogenesis and invasive events occurring during KSHV de novo infection of endothelial cells. A significant amount of COX-2 was detected in KS tissue sections. Telomerase-immortalized human umbilical vein endothelial cells supporting KSHV stable latency (TIVE-LTC) expressed elevated levels of functional COX-2 and microsomal PGE2 synthase (m-PGES), and secreted the predominant eicosanoid inflammatory metabolite PGE2. Infected HMVEC-d and TIVE-LTC cells secreted a variety of ICs, GFs, angiogenic factors and matrix metalloproteinases (MMPs), which were significantly abrogated by COX-2 inhibition either by chemical inhibitors or by siRNA. The ability of these factors to induce tube formation of uninfected endothelial cells was also inhibited. PGE2, secreted early during KSHV infection, profoundly increased the adhesion of uninfected endothelial cells to fibronectin by activating the small G protein Rac1. COX-2 inhibition considerably reduced KSHV latent ORF73 gene expression and survival of TIVE-LTC cells. Collectively, these studies underscore the pivotal role of KSHV induced COX-2/PGE2 in creating KS lesion like microenvironment during de novo infection. Since COX-2 plays multiple roles in KSHV latent gene expression, which themselves are powerful mediators of cytokine induction, anti-apoptosis, cell survival and viral genome maintainence, effective inhibition of COX-2 via well-characterized clinically approved COX-2 inhibitors could potentially be used in treatment to control latent KSHV infection and ameliorate KS. PMID:20169190
Lee, Young H.; Suzuki, Yuichiro J.; Griffin, Autumn J.; Day, Regina M.
2008-01-01
Hepatocyte growth factor (HGF) is upregulated in response to lung injury and has been implicated in tissue repair through its antiapoptotic and proliferative activities. Cyclooxygenase-2 (COX-2) is an inducible enzyme in the biosynthetic pathway of prostaglandins, and its activation has been shown to play a role in cell growth. Here, we report that HGF induces gene transcription of COX-2 in human bronchial epithelial cells (HBEpC). Treatment of HBEpC with HGF resulted in phosphorylation of the HGF receptor (c-Met), activation of Akt, and upregulation of COX-2 mRNA. Adenovirus-mediated gene transfer of a dominant negative (DN) Akt mutant revealed that HGF increased COX-2 mRNA in an Akt-dependent manner. COX-2 promoter analysis in luciferase reporter constructs showed that HGF regulation required the β-catenin-responsive T cell factor-4 binding element (TBE). The HGF activation of the COX-2 gene transcription was blocked by DN mutant of β-catenin or by inhibitors that blocked activation of Akt. Inhibition of p42/p44 MAPK pathway blocked HGF-mediated activation of β-catenin gene transcription but not Akt activation, suggesting that p42/p44 MAPK acts in a parallel mechanism for β-catenin activation. We also found that inhibition of COX-2 with NS-398 blocked HGF-induced growth in HBEpC. Together, the results show that the HGF increases COX-2 gene expression via an Akt-, MAPK-, and β-catenin-dependent pathway in HBEpC. PMID:18245266
The nicotinic acetylcholine receptor gene family of the silkworm, Bombyx mori
Shao, Ya-Ming; Dong, Ke; Zhang, Chuan-Xi
2007-01-01
Background Nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic cholinergic transmission in the insect central nervous system. The insect nAChR is the molecular target of a class of insecticides, neonicotinoids. Like mammalian nAChRs, insect nAChRs are considered to be made up of five subunits, coded by homologous genes belonging to the same family. The nAChR subunit genes of Drosophila melanogaster, Apis mellifera and Anopheles gambiae have been cloned previously based on their genome sequences. The silkworm Bombyx mori is a model insect of Lepidoptera, among which are many agricultural pests. Identification and characterization of B. mori nAChR genes could provide valuable basic information for this important family of receptor genes and for the study of the molecular mechanisms of neonicotinoid action and resistance. Results We searched the genome sequence database of B. mori with the fruit fly and honeybee nAChRs by tBlastn and cloned all putative silkworm nAChR cDNAs by reverse transcriptase-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) methods. B. mori appears to have the largest known insect nAChR gene family to date, including nine α-type subunits and three β-type subunits. The silkworm possesses three genes having low identity with others, including one α and two β subunits, α9, β2 and β3. Like the fruit fly and honeybee counterparts, silkworm nAChR gene α6 has RNA-editing sites, and α4, α6 and α8 undergo alternative splicing. In particular, alternative exon 7 of Bmα8 may have arisen from a recent duplication event. Truncated transcripts were found for Bmα4 and Bmα5. Conclusion B. mori possesses a largest known insect nAChR gene family characterized to date, including nine α-type subunits and three β-type subunits. RNA-editing, alternative splicing and truncated transcripts were found in several subunit genes, which might enhance the diversity of the gene family. PMID:17868469
Guo, Xiao-Hui; Bi, Zhe-Guang; Wu, Bi-Hua; Wang, Zhen-Zhen; Hu, Ji-Liang; Zheng, You-Liang; Liu, Deng-Cai
2013-12-01
High-molecular-weight glutenin subunits (HMW-GSs) are of considerable interest, because they play a crucial role in determining dough viscoelastic properties and end-use quality of wheat flour. In this paper, ChAy/Bx, a novel chimeric HMW-GS gene from Triticum turgidum ssp. dicoccoides (AABB, 2n=4x=28) accession D129, was isolated and characterized. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that the electrophoretic mobility of the glutenin subunit encoded by ChAy/Bx was slightly faster than that of 1Dy12. The complete ORF of ChAy/Bx contained 1,671 bp encoding a deduced polypeptide of 555 amino acid residues (or 534 amino acid residues for the mature protein), making it the smallest HMW-GS gene known from Triticum species. Sequence analysis showed that ChAy/Bx was neither a conventional x-type nor a conventional y-type subunit gene, but a novel chimeric gene. Its first 1305 nt sequence was highly homologous with the corresponding sequence of 1Ay type genes, while its final 366 nt sequence was highly homologous with the corresponding sequence of 1Bx type genes. The mature ChAy/Bx protein consisted of the N-terminus of 1Ay type subunit (the first 414 amino acid residues) and the C-terminus of 1Bx type subunit (the final 120 amino acid residues). Secondary structure prediction showed that ChAy/Bx contained some domains of 1Ay subunit and some domains of 1Bx subunit. The special structure of this HMW glutenin chimera ChAy/Bx subunit might have unique effects on the end-use quality of wheat flour. Here we propose that homoeologous recombination might be a novel pathway for allelic variation or molecular evolution of HMW-GSs. © 2013.
Li, Xiaofang; Tian, Run; Gao, Hugh; Yan, Feng; Ying, Le; Yang, Yongkang; Yang, Pei
2018-01-01
Cervical cancer is the leading cause of death with gynecological malignancies. We aimed to explore the molecular mechanism of carcinogenesis and biomarkers for cervical cancer by integrated bioinformatic analysis. We employed RNA-sequencing details of 254 cervical squamous cell carcinomas and 3 normal samples from The Cancer Genome Atlas. To explore the distinct pathways, messenger RNA expression was submitted to a Gene Set Enrichment Analysis. Kyoto Encyclopedia of Genes and Genomes and protein–protein interaction network analysis of differentially expressed genes were performed. Then, we conducted pathway enrichment analysis for modules acquired in protein–protein interaction analysis and obtained a list of pathways in every module. After intersecting the results from the 3 approaches, we evaluated the survival rates of both mutual pathways and genes in the pathway, and 5 survival-related genes were obtained. Finally, Cox hazards ratio analysis of these 5 genes was performed. DNA replication pathway (P < .001; 12 genes included) was suggested to have the strongest association with the prognosis of cervical squamous cancer. In total, 5 of the 12 genes, namely, minichromosome maintenance 2, minichromosome maintenance 4, minichromosome maintenance 5, proliferating cell nuclear antigen, and ribonuclease H2 subunit A were significantly correlated with survival. Minichromosome maintenance 5 was shown as an independent prognostic biomarker for patients with cervical cancer. This study identified a distinct pathway (DNA replication). Five genes which may be prognostic biomarkers and minichromosome maintenance 5 were identified as independent prognostic biomarkers for patients with cervical cancer. PMID:29642758
Molecular cloning and expression of heteromeric ACCase subunit genes from Jatropha curcas.
Gu, Keyu; Chiam, Huihui; Tian, Dongsheng; Yin, Zhongchao
2011-04-01
Acetyl-CoA carboxylase (ACCase) catalyzes the biotin-dependent carboxylation of acetyl-CoA to produce malonyl-CoA, which is the essential first step in the biosynthesis of long-chain fatty acids. ACCase exists as a multi-subunit enzyme in most prokaryotes and the chloroplasts of most plants and algae, while it is present as a multi-domain enzyme in the endoplasmic reticulum of most eukaryotes. The heteromeric ACCase of higher plants consists of four subunits: an α-subunit of carboxyltransferase (α-CT, encoded by accA gene), a biotin carboxyl carrier protein (BCCP, encoded by accB gene), a biotin carboxylase (BC, encoded by accC gene) and a β-subunit of carboxyltransferase (β-CT, encoded by accD gene). In this study, we cloned and characterized the genes accA, accB1, accC and accD that encode the subunits of heteromeric ACCase in Jatropha (Jatropha curcas), a potential biofuel plant. The full-length cDNAs of the four subunit genes were isolated from a Jatropha cDNA library and by using 5' RACE, whereas the genomic clones were obtained from a Jatropha BAC library. They encode a 771 amino acid (aa) α-CT, a 286-aa BCCP1, a 537-aa BC and a 494-aa β-CT, respectively. The single-copy accA, accB1 and accC genes are nuclear genes, while the accD gene is located in chloroplast genome. Jatropha α-CT, BCCP1, BC and β-CT show high identity to their homologues in other higher plants at amino acid level and contain all conserved domains for ACCase activity. The accA, accB1, accC and accD genes are temporally and spatially expressed in the leaves and endosperm of Jatropha plants, which are regulated by plant development and environmental factors. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Ackerman, William E.; Rovin, Brad H.; Kniss, Douglas A.
2006-01-01
In human parturition, uterotonic prostaglandins (PGs) arise predominantly via increased expression of cyclooxygenase-2 (COX-2 [also known as prostaglandin synthase 2]) within intra-uterine tissues. Interleukin-1 (IL-1) and epidermal growth factor (EGF), both inducers of COX-2 transcription, are among numerous factors that accumulate within amniotic fluid with advancing gestation. It was previously demonstrated that EGF could potentiate IL-1β-driven PGE2 production in amnion and amnion-derived (WISH) cells. To define the mechanism for this observation, we hypothesized that EGF and IL-1β might exhibit synergism in regulating COX-2 gene expression. In WISH cells, combined treatment with EGF and IL-1β resulted in a greater-than-additive increase in COX-2 mRNA relative to challenge with either agent independently. Augmentation of IL-1β-induced transactivation by EGF was not observed in cells harboring reporter plasmids bearing nuclear factor-kappa B (NFκB) regulatory elements alone, but was evident when a fragment (−891/+9) of the COX-2 gene 5′-promoter was present. Both agents transiently activated intermediates of multiple signaling pathways potentially involved in the regulation of COX-2 gene expression. The 26 S proteasome inhibitor, MG-132, selectively abrogated IL-1β-driven NFκB activation and COX-2 mRNA expression. Only pharmacologic blockade of the p38 mitogen-activated protein kinase eliminated COX-2 expression following EGF stimulation. We conclude that EGF and IL-1β appear to signal through different signaling cascades leading to COX-2 gene expression. IL-1β employs the NFκB pathway predominantly, while the spectrum of EGF signaling is broader and includes p38 kinase. The synergism observed between IL-1β and EGF does not rely on augmented NFκB function, but rather, occurs through differential use of independent response elements within the COX-2 promoter. PMID:15329330
Hernández-Orts, Jesus S; Hernández-Mena, David I; Alama-Bermejo, Gema; Kuchta, Roman; Jacobson, Kym C
2017-09-01
Aporocotylid blood flukes conspecific with Aporocotyle margolisi Smith, 1967 were collected from the bulbus arteriosus of the North Pacific hake Merluccius productus (Ayres). This study revisits the morphology of A. margolisi, including drawings, measurements and scanning electron microscopy images, and provides for the first time molecular data for the large subunit of the ribosomal RNA (28S rDNA) and the mitochondrial cytochrome c oxidase subunit 1 (cox1) genes for this species. A 28S rDNA phylogenetic study of A. margolisi, and all available Aporocotyle spp., was also performed. The distribution range of A. margolisi is extended to the Pacific coast of the USA. We provide a morphological comparison of Aporocotyle spp. from the Pacific coast in North America as well as other Aporocotyle spp. infecting hake. Comparisons with the original description revealed that the new specimens of A. margolisi were considerably larger with respect to all morphological features, except for shorter spines. Molecular results showed a close relationship between A. margolisi and A. argentinensis Smith, 1969 from the Argentine hake Merluccius hubbsi Marini. The phylogenetic relationships of Aporocotyle spp. point to a possible co-speciation of hakes species and these blood fluke parasites.
Sharma, Manoj Kumar; Jani, Dewal; Thungapathra, M; Gautam, J K; Meena, L S; Singh, Yogendra; Ghosh, Amit; Tyagi, Akhilesh Kumar; Sharma, Arun Kumar
2008-05-20
In earlier study from our group, cholera toxin B subunit had been expressed in tomato for developing a plant-based vaccine against cholera. In the present investigation, gene for accessory colonization factor (acf) subunit A, earlier reported to be essential for efficient colonization in the intestine, has been expressed in Escherichia coli as well as tomato plants. Gene encoding for a chimeric protein having a fusion of cholera toxin B subunit and accessory colonization factor A was also expressed in tomato to generate more potent combinatorial antigen. CaMV35S promoter with a duplicated enhancer sequence was used for expression of these genes in tomato. Integration of transgenes into tomato genome was confirmed by PCR and Southern hybridization. Expression of the genes was confirmed at transcript and protein levels. Accessory colonization factor A and cholera toxin B subunit fused to this protein accumulated up to 0.25% and 0.08% of total soluble protein, respectively, in the fruits of transgenic plants. Whereas protein purified from E. coli, in combination with cholera toxin B subunit can be used for development of conventional subunit vaccine, tomato fruits expressing these proteins can be used together with tomato plants expressing cholera toxin B subunit for development of oral vaccine against cholera.
NASA Astrophysics Data System (ADS)
Deb, Rajib; Sajjanar, Basavaraj; Singh, Umesh; Alex, Rani; Raja, T. V.; Alyethodi, Rafeeque R.; Kumar, Sushil; Sengar, Gyanendra; Sharma, Sheetal; Singh, Rani; Prakash, B.
2015-12-01
Na+/K+-ATPase is an integral membrane protein composed of a large catalytic subunit (alpha), a smaller glycoprotein subunit (beta), and gamma subunit. The beta subunit is essential for ion recognition as well as maintenance of the membrane integrity. Present study was aimed to analyze the expression pattern of ATPase beta subunit genes (ATPase B1, ATPase B2, and ATPase B3) among the crossbred bulls under different ambient temperatures (20-44 °C). The present study was also aimed to look into the relationship of HSP70 with the ATPase beta family genes. Our results demonstrated that among beta family genes, transcript abundance of ATPase B1 and ATPase B2 is significantly ( P < 0.05) higher during the thermal stress. Pearson correlation coefficient analysis revealed that the expression of ATPase Β1, ATPase B2, and ATPase B3 is highly correlated ( P < 0.01) with HSP70, representing that the change in the expression pattern of these genes is positive and synergistic. These may provide a foundation for understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in cattle.
Singh, Satyendra K; Prasad, Kashi N; Singh, Aloukick K; Gupta, Kamlesh K; Chauhan, Ranjeet S; Singh, Amrita; Singh, Avinash; Rai, Ravi P; Pati, Binod K
2016-10-01
Taenia solium is the major cause of taeniasis and cysticercosis/neurocysticercosis (NCC) in the developing countries including India, but the existence of other Taenia species and genetic variation have not been studied in India. So, we studied the existence of different Taenia species, and sequence variation in Taenia isolates from human (proglottids and cysticerci) and swine (cysticerci) in North India. Amplification of cytochrome c oxidase subunit 1 gene (cox1) was done by polymerase chain reaction (PCR) followed by sequencing and phylogenetic analysis. We identified two species of Taenia i.e. T. solium and Taenia asiatica in our isolates. T. solium isolates showed similarity with Asian genotype and nucleotide variations from 0.25 to 1.01 %, whereas T. asiatica displayed nucleotide variations ranged from 0.25 to 0.5 %. These findings displayed the minimal genetic variations in North Indian isolates of T. solium and T. asiatica.
De Wachter, R; Neefs, J M; Goris, A; Van de Peer, Y
1992-01-01
The nucleotide sequence of the gene coding for small ribosomal subunit RNA in the basidiomycete Ustilago maydis was determined. It revealed the presence of a group I intron with a length of 411 nucleotides. This is the third occurrence of such an intron discovered in a small subunit rRNA gene encoded by a eukaryotic nuclear genome. The other two occurrences are in Pneumocystis carinii, a fungus of uncertain taxonomic status, and Ankistrodesmus stipitatus, a green alga. The nucleotides of the conserved core structure of 101 group I intron sequences present in different genes and genome types were aligned and their evolutionary relatedness was examined. This revealed a cluster including all group I introns hitherto found in eukaryotic nuclear genes coding for small and large subunit rRNAs. A secondary structure model was designed for the area of the Ustilago maydis small ribosomal subunit RNA precursor where the intron is situated. It shows that the internal guide sequence pairing with the intron boundaries fits between two helices of the small subunit rRNA, and that minimal rearrangement of base pairs suffices to achieve the definitive secondary structure of the 18S rRNA upon splicing. PMID:1561081
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Haige; Hiroi, Toyoko; Hansen, Baranda S.
2009-11-27
Vascular endothelial cells respond to biomechanical forces, such as cyclic stretch and shear stress, by altering gene expression. Since endothelial-derived prostanoids, such as prostacyclin and thromboxane A{sub 2}, are key mediators of endothelial function, we investigated the effects of cyclic stretch on the expression of genes in human umbilical vein endothelial cells controlling prostanoid synthesis: cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), prostacyclin synthase (PGIS) and thromboxane A{sub 2} synthase (TXAS). COX-2 and TXAS mRNAs were upregulated by cyclic stretch for 24 h. In contrast, PGIS mRNA was decreased and stretch had no effect on COX-1 mRNA expression. We further show that stretch-inducedmore » upregulation of COX-2 is mediated by activation of the NF-{kappa}{beta} signaling pathway.« less
Meléndez-Hernández, Mayra Gisela; Barrios, María Luisa Labra; Orozco, Esther; Luna-Arias, Juan Pedro
2008-12-23
Entamoeba histolytica is a professional phagocytic cell where the vacuolar ATPase plays a key role. This enzyme is a multisubunit complex that regulates pH in many subcellular compartments, even in those that are not measurably acidic. It participates in a wide variety of cellular processes such as endocytosis, intracellular transport and membrane fusion. The presence of a vacuolar type H+-ATPase in E. histolytica trophozoites has been inferred previously from inhibition assays of its activity, the isolation of the Ehvma1 and Ehvma3 genes, and by proteomic analysis of purified phagosomes. We report the isolation and characterization of the Ehvma2 gene, which encodes for the subunit B of the vacuolar ATPase. This polypeptide is a 55.3 kDa highly conserved protein with 34 to 80% identity to orthologous proteins from other species. Particularly, in silico studies showed that EhV-ATPase subunit B displays 78% identity and 90% similarity to its Dictyostelium ortholog. A 462 bp DNA fragment of the Ehvma2 gene was expressed in bacteria and recombinant polypeptide was used to raise mouse polyclonal antibodies. EhV-ATPase subunit B antibodies detected a 55 kDa band in whole cell extracts and in an enriched fraction of DNA-containing organelles named EhkOs. The V-ATPase subunit B was located by immunofluorescence and confocal microscopy in many vesicles, in phagosomes, plasma membrane and in EhkOs. We also identified the genes encoding for the majority of the V-ATPase subunits in the E. histolytica genome, and proposed a putative model for this proton pump. We have isolated the Ehvma2 gene which encodes for the V-ATPase subunit B from the E. histolytica clone A. This gene has a 154 bp intron and encodes for a highly conserved polypeptide. Specific antibodies localized EhV-ATPase subunit B in many vesicles, phagosomes, plasma membrane and in EhkOs. Most of the orthologous genes encoding for the EhV-ATPase subunits were found in the E. histolytica genome, indicating the conserved nature of V-ATPase in this parasite.
Colucci, Rocchina; Fornai, Matteo; Duranti, Emiliano; Antonioli, Luca; Rugani, Ilaria; Aydinoglu, Fatma; Ippolito, Chiara; Segnani, Cristina; Bernardini, Nunzia; Taddei, Stefano; Blandizzi, Corrado; Virdis, Agostino
2013-01-01
Background and Purpose NAD(P)H oxidase and COX-1 participate in vascular damage induced by angiotensin II. We investigated the effect of rosuvastatin on endothelial dysfunction, vascular remodelling, changes in extracellular matrix components and mechanical properties of small mesenteric arteries from angiotensin II-infused rats. Experimental Approach Male rats received angiotensin II (120 ng·kg−1·min−1, subcutaneously) for 14 days with or without rosuvastatin (10 mg·kg−1·day−1, oral gavage) or vehicle. Vascular functions and morphological parameters were assessed by pressurized myography. Key Results In angiotensin II-infused rats, ACh-induced relaxation was attenuated compared with controls, less sensitive to L-NAME, enhanced by SC-560 (COX-1 inhibitor) or SQ-29548 (prostanoid TP receptor antagonist), and normalized by the antioxidant ascorbic acid or NAD(P)H oxidase inhibitors. After rosuvastatin, relaxations to ACh were normalized, fully sensitive to L-NAME, and no longer affected by SC-560, SQ-29548 or NAD(P)H oxidase inhibitors. Angiotensin II enhanced intravascular superoxide generation, eutrophic remodelling, collagen and fibronectin depositions, and decreased elastin content, resulting in increased vessel stiffness. All these changes were prevented by rosuvastatin. Angiotensin II increased phosphorylation of NAD(P)H oxidase subunit p47phox and its binding to subunit p67phox, effects inhibited by rosuvastatin. Rosuvastatin down-regulated vascular Nox4/NAD(P)H isoform and COX-1 expression, attenuated the vascular release of 6-keto-PGF1α, and enhanced copper/zinc-superoxide dismutase expression. Conclusion and Implications Rosuvastatin prevents angiotensin II-induced alterations in resistance arteries in terms of function, structure, mechanics and composition. These effects depend on restoration of NO availability, prevention of NAD(P)H oxidase-derived oxidant excess, reversal of COX-1 induction and its prostanoid production, and stimulation of endogenous vascular antioxidant defences. PMID:22817606
Schmetterer, Georg; Valladares, Ana; Pils, Dietmar; Steinbach, Susanne; Pacher, Margit; Muro-Pastor, Alicia M.; Flores, Enrique; Herrero, Antonia
2001-01-01
Three genes, coxB, coxA, and coxC, found in a clone from a gene library of the cyanobacterium Anabaena variabilis strain ATCC 29413, were identified by hybridization with an oligonucleotide specific for aa3-type cytochrome c oxidases. Deletion of these genes from the genome of A. variabilis strain ATCC 29413 FD yielded strain CSW1, which displayed no chemoheterotrophic growth and an impaired cytochrome c oxidase activity. Photoautotrophic growth of CSW1, however, was unchanged, even with dinitrogen as the nitrogen source. A higher cytochrome c oxidase activity was detected in membrane preparations from dinitrogen-grown CSW1 than from nitrate-grown CSW1, but comparable activities of respiratory oxygen uptake were found in the wild type and in CSW1. Our data indicate that the identified cox gene cluster is essential for fructose-dependent growth in the dark, but not for growth on dinitrogen, and that other terminal respiratory oxidases are expressed in this cyanobacterium. Transcription analysis showed that coxBAC constitutes an operon which is expressed from two transcriptional start points. The use of one of them was stimulated by fructose. PMID:11591688
Wang, Yaqiong; Ma, Hong
2015-09-01
Proteins often function as complexes, yet little is known about the evolution of dissimilar subunits of complexes. DNA-directed RNA polymerases (RNAPs) are multisubunit complexes, with distinct eukaryotic types for different classes of transcripts. In addition to Pol I-III, common in eukaryotes, plants have Pol IV and V for epigenetic regulation. Some RNAP subunits are specific to one type, whereas other subunits are shared by multiple types. We have conducted extensive phylogenetic and sequence analyses, and have placed RNAP gene duplication events in land plant history, thereby reconstructing the subunit compositions of the novel RNAPs during land plant evolution. We found that Pol IV/V have experienced step-wise duplication and diversification of various subunits, with increasingly distinctive subunit compositions. Also, lineage-specific duplications have further increased RNAP complexity with distinct copies in different plant families and varying divergence for subunits of different RNAPs. Further, the largest subunits of Pol IV/V probably originated from a gene fusion in the ancestral land plants. We propose a framework of plant RNAP evolution, providing an excellent model for protein complex evolution. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Mining gene link information for survival pathway hunting.
Jing, Gao-Jian; Zhang, Zirui; Wang, Hong-Qiang; Zheng, Hong-Mei
2015-08-01
This study proposes a gene link-based method for survival time-related pathway hunting. In this method, the authors incorporate gene link information to estimate how a pathway is associated with cancer patient's survival time. Specifically, a gene link-based Cox proportional hazard model (Link-Cox) is established, in which two linked genes are considered together to represent a link variable and the association of the link with survival time is assessed using Cox proportional hazard model. On the basis of the Link-Cox model, the authors formulate a new statistic for measuring the association of a pathway with survival time of cancer patients, referred to as pathway survival score (PSS), by summarising survival significance over all the gene links in the pathway, and devise a permutation test to test the significance of an observed PSS. To evaluate the proposed method, the authors applied it to simulation data and two publicly available real-world gene expression data sets. Extensive comparisons with previous methods show the effectiveness and efficiency of the proposed method for survival pathway hunting.
Yang, Qing-Li; Shen, Ji-Qing; Jiang, Zhi-Hua; Yang, Yi-Chao; Li, Hong-Mei; Chen, Ying-Dan; Zhou, Xiao-Nong
2014-06-01
To identify Clonorchis sinensis metacercariae using PCR targeting ribosomal DNA ITS region and COX1 gene. Pseudorasbora parva were collected from Hengxian County of Guangxi at the end of May 2013. Single metacercaria of C. sinensis and other trematodes were separated from muscle tissue of P. parva by digestion method. Primers targeting ribosomal DNA ITS region and COX1 gene of C. sinensis were designed for PCR and the universal primers were used as control. The sensitivity and specificity of the PCR detection were analyzed. C. sinensis metacercariae at different stages were identified by PCR. DNA from single C. sinensis metacercaria was detected by PCR targeting ribosomal DNA ITS region and COX1 gene. The specific amplicans have sizes of 437/549, 156/249 and 195/166 bp, respectively. The ratio of the two positive numbers in PCR with universal primers and specific primers targeting C. sinensis ribosomal DNA ITS1 and ITS2 regions was 0.905 and 0.952, respectively. The target gene fragments were amplified by PCR using COX1 gene-specific primers. The PCR with specific primers did not show any non-specific amplification. However, the PCR with universal primers targeting ribosomal DNA ITS regions performed serious non-specific amplification. C. sinensis metacercariae at different stages are identified by morphological observation and PCR method. Species-specific primers targeting ribosomal DNA ITS region show higher sensitivity and specificity than the universal primers. PCR targeting COX1 gene shows similar sensitivity and specificity to PCR with specific primers targeting ribosomal DNA ITS regions.
Mutational analysis of the Saccharomyces cerevisiae cytochrome c oxidase assembly protein Cox11p.
Banting, Graham S; Glerum, D Moira
2006-03-01
Cox11p is an integral protein of the inner mitochondrial membrane that is essential for cytochrome c oxidase assembly. The bulk of the protein is located in the intermembrane space and displays high levels of evolutionary conservation. We have analyzed a collection of site-directed and random cox11 mutants in an effort to further define essential portions of the molecule. Of the alleles studied, more than half had no apparent effect on Cox11p function. Among the respiration deficiency-encoding alleles, we identified three distinct phenotypes, which included a set of mutants with a misassembled or partially assembled cytochrome oxidase, as indicated by a blue-shifted cytochrome aa(3) peak. In addition to the shifted spectral signal, these mutants also display a specific reduction in the levels of subunit 1 (Cox1p). Two of these mutations are likely to occlude a surface pocket behind the copper-binding domain in Cox11p, based on analogy with the Sinorhizobium meliloti Cox11 solution structure, thereby suggesting that this pocket is crucial for Cox11p function. Sequential deletions of the matrix portion of Cox11p suggest that this domain is not functional beyond the residues involved in mitochondrial targeting and membrane insertion. In addition, our studies indicate that Deltacox11, like Deltasco1, displays a specific hypersensitivity to hydrogen peroxide. Our studies provide the first evidence at the level of the cytochrome oxidase holoenzyme that Cox1p is the in vivo target for Cox11p and suggest that Cox11p may also have a role in the response to hydrogen peroxide exposure.
Tyler, S D; Johnson, W M; Lior, H; Wang, G; Rozee, K R
1991-01-01
A set of synthetic oligonucleotide primers was designed for use in a polymerase chain reaction protocol to specifically detect the B subunit genes in vtx2ha and vtx2hb, which code for the production of the VT2 (Shiga-like toxin II) variant cytotoxins VT2v-a and VT2v-b, respectively. An additional set of primers amplified a fragment common to the B subunits of the VT2 and the VT2 variant genes. Subsequent restriction endonuclease digestion of this amplicon permitted prediction of specific VT2 and variant genotypes on the basis of predetermined restriction fragment length polymorphisms. Genotypes of 21 VT2-producing strains of Escherichia coli were determined using this polymerase chain reaction-restriction fragment length polymorphism procedure. Four strains contained B subunit target sequences only for VT2 genes, 9 strains contained sequences only for VT2v-a genes, and 3 strains contained sequences only for VT2v-b. For genes in combination, one strain contained B subunit genes for both VT2 and VT2v-a and two strains contained B subunit genes for VT2 and VT2v-b. Two strains of E. coli O91:H21 contained both VT2v-a and VT2v-b B subunit genes. The VT2 reference strain of E. coli, E32511, was found to contain the targeted sequences from both VT2 and VT2v-a genes, whereas the recombinant E. coli, pEB1, possessed only that of the VT2 gene. The specific activities of extracellular VT2 determined in HeLa cells ranged from 0.3 to 41.7 TCD50 per microgram of protein in strains carrying the VT2 gene target and from 0 to 50.0 TCD50 per microgram of protein in strains carrying only the VT2 variant target (TCD50 is the tissue culture dose by which 50% of the cells were affected), suggesting that phenotypic expression does not correlate with genotype. Images PMID:1679436
Weber, Carolyn F.; King, Gary M.
2017-01-01
Previous studies showed that members of the Burkholderiales were important in the succession of aerobic, molybdenum-dependent CO oxidizing-bacteria on volcanic soils. During these studies, four isolates were obtained from Kilauea Volcano (Hawai‘i, USA); one strain was isolated from Pico de Orizaba (Mexico) during a separate study. Based on 16S rRNA gene sequence similarities, the Pico de Orizaba isolate and the isolates from Kilauea Volcano were provisionally assigned to the genera Burkholderia and Paraburkholderia, respectively. Each of the isolates possessed a form I coxL gene that encoded the catalytic subunit of carbon monoxide dehydrogenase (CODH); none of the most closely related type strains possessed coxL or oxidized CO. Genome sequences for Paraburkholderia type strains facilitated an analysis of 16S rRNA gene sequence similarities and average nucleotide identities (ANI). ANI did not exceed 95% (the recommended cutoff for species differentiation) for any of the pairwise comparisons among 27 reference strains related to the new isolates. However, since the highest 16S rRNA gene sequence similarity among this set of reference strains was 98.93%, DNA-DNA hybridizations (DDH) were performed for two isolates whose 16S rRNA gene sequence similarities with their nearest phylogenetic neighbors were 98.96 and 99.11%. In both cases DDH values were <16%. Based on multiple variables, four of the isolates represent novel species within the Paraburkholderia: Paraburkholderia hiiakae sp. nov. (type strain I2T = DSM 28029T = LMG 27952T); Paraburkholderia paradisi sp. nov. (type strain WAT = DSM 28027T = LMG 27949T); Paraburkholderia peleae sp. nov. (type strain PP52-1T = DSM 28028T = LMG 27950T); and Paraburkholderia metrosideri sp. nov. (type strain DNBP6-1T = DSM 28030T = LMG 28140T). The remaining isolate represents the first CO-oxidizing member of the Burkholderia cepacia complex: Burkholderia alpina sp. nov. (type strain PO-04-17-38T = DSM 28031T = LMG 28138T). PMID:28270796
Weber, Carolyn F; King, Gary M
2017-01-01
Previous studies showed that members of the Burkholderiales were important in the succession of aerobic, molybdenum-dependent CO oxidizing-bacteria on volcanic soils. During these studies, four isolates were obtained from Kilauea Volcano (Hawai'i, USA); one strain was isolated from Pico de Orizaba (Mexico) during a separate study. Based on 16S rRNA gene sequence similarities, the Pico de Orizaba isolate and the isolates from Kilauea Volcano were provisionally assigned to the genera Burkholderia and Paraburkholderia , respectively. Each of the isolates possessed a form I coxL gene that encoded the catalytic subunit of carbon monoxide dehydrogenase (CODH); none of the most closely related type strains possessed coxL or oxidized CO. Genome sequences for Paraburkholderia type strains facilitated an analysis of 16S rRNA gene sequence similarities and average nucleotide identities (ANI). ANI did not exceed 95% (the recommended cutoff for species differentiation) for any of the pairwise comparisons among 27 reference strains related to the new isolates. However, since the highest 16S rRNA gene sequence similarity among this set of reference strains was 98.93%, DNA-DNA hybridizations (DDH) were performed for two isolates whose 16S rRNA gene sequence similarities with their nearest phylogenetic neighbors were 98.96 and 99.11%. In both cases DDH values were <16%. Based on multiple variables, four of the isolates represent novel species within the Paraburkholderia : Paraburkholderia hiiakae sp. nov. (type strain I2 T = DSM 28029 T = LMG 27952 T ); Paraburkholderia paradisi sp. nov. (type strain WA T = DSM 28027 T = LMG 27949 T ); Paraburkholderia peleae sp. nov. (type strain PP52-1 T = DSM 28028 T = LMG 27950 T ); and Paraburkholderia metrosideri sp. nov. (type strain DNBP6-1 T = DSM 28030 T = LMG 28140 T ). The remaining isolate represents the first CO-oxidizing member of the Burkholderia cepacia complex: Burkholderia alpina sp. nov. (type strain PO-04-17-38 T = DSM 28031 T = LMG 28138 T ).
Burkart, Anna D; Mukherjee, Abir; Mayo, Kelly E
2006-03-01
The rodent ovary is regulated throughout the reproductive cycle to maintain normal cyclicity. Ovarian follicular development is controlled by changes in gene expression in response to the gonadotropins FSH and LH. The inhibin alpha-subunit gene belongs to a group of genes that is positively regulated by FSH and negatively regulated by LH. Previous studies established an important role for inducible cAMP early repressor (ICER) in repression of alpha-inhibin. These current studies investigate the mechanisms of repression by ICER. It is not clear whether all four ICER isoforms expressed in the ovary can act as repressors of the inhibin alpha-subunit gene. EMSAs demonstrate binding of all isoforms to the inhibin alpha-subunit CRE (cAMP response element), and transfection studies demonstrate that all isoforms can repress the inhibin alpha-subunit gene. Repression by ICER is dependent on its binding to DNA as demonstrated by mutations to ICER's DNA-binding domain. These mutational studies also demonstrate that repression by ICER is not dependent on heterodimerization with CREB (CRE-binding protein). Competitive EMSAs show that ICER effectively competes with CREB for binding to the inhibin alpha CRE in vitro. Chromatin immunoprecipitation assays demonstrate a replacement of CREB dimers bound to the inhibin alpha CRE by ICER dimers in ovarian granulosa cells in response to LH signaling. Thus, there is a temporal association of transcription factors bound to the inhibin alpha-CRE controlling inhibin alpha-subunit gene expression.
Itakura, Tomohiro; Kuroki, Aya; Ishibashi, Yasuhiro; Tsuji, Daisuke; Kawashita, Eri; Higashine, Yukari; Sakuraba, Hitoshi; Yamanaka, Shoji; Itoh, Kohji
2006-08-01
Sandhoff disease (SD) is an autosomal recessive GM2 gangliosidosis caused by the defect of lysosomal beta-hexosaminidase (Hex) beta-subunit gene associated with neurosomatic manifestations. Therapeutic effects of Hex subunit gene transduction have been examined on Sandhoff disease model mice (SD mice) produced by the allelic disruption of Hexb gene encoding the murine beta-subunit. We demonstrate here that elimination of GM2 ganglioside (GM2) accumulated in the fibroblastic cell line derived from SD mice (FSD) did not occur when the HEXB gene only was transfected. In contrast, a significant increase in the HexB (betabeta homodimer) activity toward neutral substrates, including GA2 (asialo-GM2) and oligosaccharides carrying the terminal N-acetylglucosamine residues at their non-reducing ends (GlcNAc-oligosaccharides) was observed. Immunoblotting with anti-human HexA (alphabeta heterodimer) serum after native polyacrylamide gel electrophoresis (Native-PAGE) revealed that the human HEXB gene product could hardly form the chimeric HexA through associating with the murine alpha-subunit. However, co-introduction of the HEXA encoding the human alpha-subunit and HEXB genes caused significant corrective effect on the GM2 degradation by producing the human HexA. These results indicate that the recombinant human HexA could interspeciesly associate with the murine GM2 activator protein to degrade GM2 accumulated in the FSD cells. Thus, therapeutic effects of the recombinant human HexA isozyme but not human HEXB gene product could be evaluated by using the SD mice.
Purification of subunits of Escherichia coli DNA gyrase and reconstitution of enzymatic activity.
Higgins, N P; Peebles, C L; Sugino, A; Cozzarelli, N R
1978-04-01
Extensively purified DNA gyrase from Escherichia coli is inhibited by nalidixic acid and by novobiocin. The enzyme is composed of two subunits, A and B, which were purified as separate components. Subunit A is the product of the gene controlling sensitivity to nalidixic acid (nalA) because: (i) the electrophoretic mobility of subunit A in the presence of sodium dodecyl sulfate is identical to that of the 105,000-dalton nalA gene product; (ii) mutants that are resistant to nalidixic acid (nalA(r)) produce a drug-resistant subunit A; and (iii) wild-type subunit A confers drug sensitivity to in vitro synthesis of varphiX174 DNA directed by nalA(r) mutants. Subunit B contains a 95,000-dalton polypeptide and is controlled by the gene specifying sensitivity to novobiocin (cou) because cou(r) mutants produce a novobiocin-resistant subunit B and novobiocin-resitant gyrase is made drug sensitive by wild-type subunit B. Subunits A and B associate, so that gyrase was also purified as a complex containing 105,000- and 95,000-dalton polypeptides. This enzyme and gyrase reconstructed from subunits have the same drug sensitivity, K(m) for ATP, and catalytic properties. The same ratio of subunits gives efficient reconstitution of the reactions intrinsic to DNA gyrase, including catalysis of supercoiling of closed duplex DNA, relaxation of supercoiled DNA in the absence of ATP, and site-specific cleavage of DNA induced by sodium dodecyl sulfate.
2011-01-01
Background COX-2 is an enzyme isoform that catalyses the formation of prostanoids from arachidonic acid. An increased COX-2 gene expression is believed to participate in carcinogenesis. Recent studies have shown that COX-2 up-regulation is associated with the development of numerous neoplasms, including skin, colorectal, breast, lung, stomach, pancreas and liver cancers. COX-2 products stimulate endothelial cell proliferation and their overexpression has been demonstrated to be involved in the mechanism of decreased resistance to apoptosis. Suppressed angiogenesis was found in experimental animal studies as a consequence of null mutation of COX-2 gene in mice. Despite the role of COX-2 expression remains a subject of numerous studies, its participation in carcinogenesis or the thyroid cancer progression remains unclear. Methods Twenty three (23) patients with cytological diagnosis of PTC were evaluated. After FNAB examination, the needle was washed out with a lysis buffer and the obtained material was used for COX-2 expression estimation. Total RNA was isolated (RNeasy Micro Kit), and RT reactions were performed. β-actin was used as endogenous control. Relative COX-2 expression was assessed in real-time PCR reactions by an ABI PRISM 7500 Sequence Detection System, using the ΔΔCT method. Results COX-2 gene expression was higher in patients with PTC, when compared to specimens from patients with non-toxic nodular goitre (NTG). Conclusions The preliminary results may indicate COX-2 role in thyroid cancer pathogenesis, however the observed variability in results among particular subjects requires additional clinical data and tumor progression analysis. PMID:21214962
Krawczyk-Rusiecka, Kinga; Wojciechowska-Durczyńska, Katarzyna; Cyniak-Magierska, Anna; Adamczewski, Zbigniew; Gałecka, Elżbieta; Lewiński, Andrzej
2011-01-10
COX-2 is an enzyme isoform that catalyses the formation of prostanoids from arachidonic acid. An increased COX-2 gene expression is believed to participate in carcinogenesis. Recent studies have shown that COX-2 up-regulation is associated with the development of numerous neoplasms, including skin, colorectal, breast, lung, stomach, pancreas and liver cancers. COX-2 products stimulate endothelial cell proliferation and their overexpression has been demonstrated to be involved in the mechanism of decreased resistance to apoptosis. Suppressed angiogenesis was found in experimental animal studies as a consequence of null mutation of COX-2 gene in mice. Despite the role of COX-2 expression remains a subject of numerous studies, its participation in carcinogenesis or the thyroid cancer progression remains unclear. Twenty three (23) patients with cytological diagnosis of PTC were evaluated. After FNAB examination, the needle was washed out with a lysis buffer and the obtained material was used for COX-2 expression estimation. Total RNA was isolated (RNeasy Micro Kit), and RT reactions were performed. β-actin was used as endogenous control. Relative COX-2 expression was assessed in real-time PCR reactions by an ABI PRISM 7500 Sequence Detection System, using the ΔΔCT method. COX-2 gene expression was higher in patients with PTC, when compared to specimens from patients with non-toxic nodular goitre (NTG). The preliminary results may indicate COX-2 role in thyroid cancer pathogenesis, however the observed variability in results among particular subjects requires additional clinical data and tumor progression analysis.
Vanlalruati, Catherine; Mandal, Surajit De; Gurusubramanian, Guruswami; Senthil Kumar, Nachimuthu
2016-07-01
The complete mitochondrial genome of Junonia iphita was determined to be 15,433 bp in length, including 37 typical mitochondrial genes and an AT-rich region. All the protein coding genes (PCGs) are initiated by typical ATN codons, except cox1 gene that is by CGA codon. Eight genes use complete termination codon (TAA), whereas the cox1, cox2 and nad5 genes end with single T; nad4 and nad1 ends with stop codon TA. All the tRNA show secondary cloverleaf structures except trnS1 (AGN). The A + T rich region is 546 bp in length containing ATAGA motif followed by a 18 bp poly-T stretch, two microsatellite-like (TA)9 elements and 8 bp poly-A stretch immediately upstream of trnM gene.
Lagman, David; Franzén, Ilkin E; Eggert, Joel; Larhammar, Dan; Abalo, Xesús M
2016-06-13
Phosphodiesterase 6 (PDE6) is a protein complex that hydrolyses cGMP and acts as the effector of the vertebrate phototransduction cascade. The PDE6 holoenzyme consists of catalytic and inhibitory subunits belonging to two unrelated gene families. Rods and cones express distinct genes from both families: PDE6A and PDE6B code for the catalytic and PDE6G the inhibitory subunits in rods while PDE6C codes for the catalytic and PDE6H the inhibitory subunits in cones. We performed phylogenetic and comparative synteny analyses for both gene families in genomes from a broad range of animals. Furthermore, gene expression was investigated in zebrafish. We found that both gene families expanded from one to three members in the two rounds of genome doubling (2R) that occurred at the base of vertebrate evolution. The PDE6 inhibitory subunit gene family appears to be unique to vertebrates and expanded further after the teleost-specific genome doubling (3R). We also describe a new family member that originated in 2R and has been lost in amniotes, which we have named pde6i. Zebrafish has retained two additional copies of the PDE6 inhibitory subunit genes after 3R that are highly conserved, have high amino acid sequence identity, are coexpressed in the same photoreceptor type as their amniote orthologs and, interestingly, show strikingly different daily oscillation in gene expression levels. Together, these data suggest specialisation related to the adaptation to different light intensities during the day-night cycle, most likely maintaining the regulatory function of the PDE inhibitory subunits in the phototransduction cascade.
Wu, Yan; Guo, Sun-Wei
2007-11-01
Over-production of cyclooxygenase-2 (COX-2) plays an important role in the positive feedback loop that leads to proliferation and inflammation in endometriosis. Following our observation that histone deacetylase inhibitors (HDACIs) trichostatin A (TSA) and valproic acid (VPA) can suppress proliferation of endometrial stromal cells, we sought to determine whether TSA suppresses IL-1beta-induced COX-2 expression in endometrial stromal cells. In vitro study using a recently established immortalized endometrial stromal cell line. The stromal cells were pretreated with TSA before stimulation with IL-1beta, and COX-2 gene and protein expression was measured by real-time quantitative RT-PCR and Western blot analysis, respectively. IL-1beta stimulated COX-2 expression in a concentration-dependent manner in endometrial stromal cells. The induced COX-2 gene and protein expression were suppressed by TSA pretreatment. TSA suppresses IL-1beta-induced COX-2 gene and protein expression in endometrial stromal cells. This finding, coupled with the findings that TSA and another HDACI, valproic acid, suppress proliferation and induce cell cycle arrest, suggests that HDACIs are a promising class of compound that has therapeutic potential for endometriosis.
Wergedal, Jon E.; Stiffel, Virginia; Lau, Kin-Hing William
2014-01-01
This study sought to determine if direct application of the lentiviral (LV)-cyclooxygenase 2 (COX2) vector to the tendon-bone interface would promote osteointegration of the tendon graft in a rat model of biceps tenodesis. The LV-COX2 gene transfer strategy was chosen for investigation because a similar COX2 gene transfer strategy promoted bony bridging of the fracture gap during bone repair, which involves similar histologic transitions that occur in osteointegration. Briefly, a 1.14-mm diameter tunnel was drilled in the mid-groove of the humerus of adult Fischer 344 rats. The LV-COX2 or βgal control vector was applied directly into the bone tunnel and onto the end of the tendon graft, which was then pulled into the bone tunnel. A poly-L-lactide pin was press-fitted into the tunnel as interference fixation. Animals were sacrificed at 3, 5, or 8 weeks for histology analysis of osteointegration. The LV-COX2 gene transfer strategy enhanced neo-chondrogenesis at the tendon-bone interface but with only marginal effect on de novo bone formation. The tendon-bone interface of the LV-COX2-treated tenodesis showed the well-defined tendon-to-fibrocartilage-to-bone histologic transitions that are indicative of osteointegration of the tendon graft. The LV-COX2 in vivo gene transfer strategy also significantly enhanced angiogenesis at the tendon-bone interface. To determine if the increased osteointegration was translated into an improved pull-out mechanical strength property, the pull-out tensile strength of the LV-COX2-treated tendon grafts was determined with a pull-out mechanical testing assay. The LV-COX2 strategy yielded a significant improvement in the return of the pull-out strength of the tendon graft after 8 weeks. In conclusion, the COX2-based in vivo gene transfer strategy enhanced angiogenesis, osteointegration and improved return of the pull-out strength of the tendon graft. Thus, this strategy has great potential to be developed into an effective therapy to promote tendon-to-bone healing after tenodesis or related surgeries. PMID:24848992
Habe, Hiroshi; Kobuna, Akinori; Hosoda, Akifumi; Kosaka, Tomoyuki; Endoh, Takayuki; Tamura, Hiroto; Yamane, Hisakazu; Nojiri, Hideaki; Omori, Toshio; Watanabe, Kazuya
2009-07-01
Desulfotignum balticum utilizes benzoate coupled to sulfate reduction. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) analysis was conducted to detect proteins that increased more after growth on benzoate than on butyrate. A comparison of proteins on 2D gels showed that at least six proteins were expressed. The N-terminal sequences of three proteins exhibited significant identities with the alpha and beta subunits of electron transfer flavoprotein (ETF) from anaerobic aromatic-degraders. By sequence analysis of the fosmid clone insert (37,590 bp) containing the genes encoding the ETF subunits, we identified three genes, whose deduced amino acid sequences showed 58%, 74%, and 62% identity with those of Gmet_2267 (Fe-S oxidoreductase), Gmet_2266 (ETF beta subunit), and Gmet_2265 (ETF alpha subunit) respectively, which exist within the 300-kb genomic island of aromatic-degradation genes from Geobacter metallireducens GS-15. The genes encoding ETF subunits found in this study were upregulated in benzoate utilization.
Santo-Domingo, Jaime; Chareyron, Isabelle; Broenimann, Charlotte; Lassueur, Steve; Wiederkehr, Andreas
2017-08-15
Chloramphenicol and several other antibiotics targeting bacterial ribosomes inhibit mitochondrial protein translation. Inhibition of mitochondrial protein synthesis leads to mitonuclear protein imbalance and reduced respiratory rates as confirmed here in HeLa and PC12 cells. Unexpectedly, respiration in INS-1E insulinoma cells and primary human islets was unaltered in the presence of chloramphenicol. Resting respiratory rates and glucose stimulated acceleration of respiration were also not lowered when a range of antibiotics including, thiamphenicol, streptomycin, gentamycin and doxycycline known to interfere with bacterial protein synthesis were tested. However, chloramphenicol efficiently reduced mitochondrial protein synthesis in INS-1E cells, lowering expression of the mtDNA encoded COX1 subunit of the respiratory chain but not the nuclear encoded ATP-synthase subunit ATP5A. Despite a marked reduction of the essential respiratory chain subunit COX1, normal respiratory rates were maintained in INS-1E cells. ATP-synthase dependent respiration was even elevated in chloramphenicol treated INS-1E cells. Consistent with these findings, glucose-dependent calcium signaling reflecting metabolism-secretion coupling in beta-cells, was augmented. We conclude that antibiotics targeting mitochondria are able to cause mitonuclear protein imbalance in insulin secreting cells. We hypothesize that in contrast to other cell types, compensatory mechanisms are sufficiently strong to maintain normal respiratory rates and surprisingly even result in augmented ATP-synthase dependent respiration and calcium signaling following glucose stimulation. The result suggests that in insulin secreting cells only lowering COX1 below a threshold level may result in a measurable impairment of respiration. When focusing on mitochondrial function, care should be taken when including antibiotics targeting translation for long-term cell culture as depending on the sensitivity of the cell type analyzed, respiration, mitonuclear protein imbalance or down-stream signaling may be altered. Copyright © 2017 Elsevier Inc. All rights reserved.
Dai, Li-Shang; Li, Sheng; Yu, Hui-Min; Wei, Guo-Qing; Wang, Lei; Qian, Cen; Zhang, Cong-Fen; Li, Jun; Sun, Yu; Zhao, Yue; Zhu, Bao-Jian; Liu, Chao-Liang
2017-02-01
In the present study, we sequenced the complete mitochondrial genome (mitogenome) of Agrius convolvuli (Lepidoptera: Sphingidae) and compared it with previously sequenced mitogenomes of lepidopteran species. The mitogenome was a circular molecule, 15 349 base pairs (bp) long, containing 37 genes. The order and orientation of genes in the A. convolvuli mitogenome were similar to those in sequenced mitogenomes of other lepidopterans. All 13 protein-coding genes (PCGs) were initiated by ATN codons, except for the cytochrome c oxidase subunit 1 (cox1) gene, which seemed to be initiated by the codon CGA, as observed in other lepidopterans. Three of the 13 PCGs had the incomplete termination codon T, while the remainder terminated with TAA. Additionally, the codon distributions of the 13 PCGs revealed that Asn, Ile, Leu2, Lys, Phe, and Tyr were the most frequently used codon families. All transfer RNAs were folded into the expected cloverleaf structure except for tRNA Ser (AGN), which lacked a stable dihydrouridine arm. The length of the adenine (A) + thymine (T)-rich region was 331 bp. This region included the motif ATAGA followed by a 19-bp poly-T stretch and a microsatellite-like (TA) 8 element next to the motif ATTTA. Phylogenetic analyses (maximum likelihood and Bayesian methods) showed that A. convolvuli belongs to the family Sphingidae.
Corduneanu, Alexandra; Hrazdilová, Kristýna; Sándor, Attila D; Matei, Ioana Adriana; Ionică, Angela Monica; Barti, Levente; Ciocănău, Marius-Alexandru; Măntoiu, Dragoş Ștefan; Coroiu, Ioan; Hornok, Sándor; Fuehrer, Hans-Peter; Leitner, Natascha; Bagó, Zoltán; Stefke, Katharina; Modrý, David; Mihalca, Andrei Daniel
2017-12-06
Babesia spp. are hemoparasites which infect the red blood cells of a large variety of mammals. In bats, the only known species of the genus is Babesia vesperuginis. However, except a few old reports, the host range and geographical distribution of this bat parasite have been poorly studied. This study aimed to investigate the presence of piroplasms in tissues of bats collected in four different countries from eastern and central Europe: Austria, Czech Republic, Hungary and Romania. A total of 461 bat carcasses (24 species) were collected between 2001 and 2016 from caves, mines and buildings. PCR was performed using specific primers targeting a portion of the 18S rDNA nuclear gene and cytochrome c oxidase subunit 1 mitochondrial gene, followed by sequencing. The results of this study show for the first time the presence of B. vesperuginis in bats in central and eastern Europe. The phylogenetic analysis of the 18S rDNA nuclear gene revealed no variability between the sequences and the phylogenetic analysis of the cox1 mitochondrial gene proved that B. vesperuginis could be divided into two subclades. Our study showed a broad geographical distribution of B. vesperuginis in European bats, reporting its presence in five new host species (M. cf. alcathoe, M. bechsteinii, M. myotis, Pi. nathusii and V. murinus) and three new countries.
Kayal, Ehsan; Lavrov, Dennis V
2008-02-29
The 16,314-nuceotide sequence of the linear mitochondrial DNA (mtDNA) molecule of Hydra oligactis (Cnidaria, Hydrozoa)--the first from the class Hydrozoa--has been determined. This sequence contains genes for 13 energy pathway proteins, small and large subunit rRNAs, and methionine and tryptophan tRNAs, as is typical for cnidarians. All genes have the same transcriptional orientation and their arrangement in the genome is similar to that of the jellyfish Aurelia aurita. In addition, a partial copy of cox1 is present at one end of the molecule in a transcriptional orientation opposite to the rest of the genes, forming a part of inverted terminal repeat characteristic of linear mtDNA and linear mitochondrial plasmids. The sequence close to at least one end of the molecule contains several homonucleotide runs as well as small inverted repeats that are able to form strong secondary structures and may be involved in mtDNA maintenance and expression. Phylogenetic analysis of mitochondrial genes of H. oligactis and other cnidarians supports the Medusozoa hypothesis but also suggests that Anthozoa may be paraphyletic, with octocorallians more closely related to the Medusozoa than to the Hexacorallia. The latter inference implies that Anthozoa is paraphyletic and that the polyp (rather than a medusa) is the ancestral body type in Cnidaria.
Mallery, Susan R.; Zwick, Jared C.; Pei, Ping; Tong, Meng; Larsen, Peter E.; Shumway, Brian S.; Lu, Bo; Fields, Henry W.; Mumper, Russell J.; Stoner, Gary D.
2010-01-01
Reduced expression of proapoptotic and terminal differentiation genes in conjunction with increased levels of the proinflammatory and angiogenesis-inducing enzymes, cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS), correlate with malignant transformation of oral intraepithelial neoplasia (IEN). Accordingly, this study investigated the effects of a 10% (w/w) freeze-dried black raspberry gel on oral IEN histopathology, gene expression profiles, intraepithelial COX-2 and iNOS proteins, and microvascular densities. Our laboratories have shown that freeze-dried black raspberries possess antioxidant properties and also induce keratinocyte apoptosis and terminal differentiation. Oral IEN tissues were hemisected to provide samples for pretreatment diagnoses and establish baseline biochemical and molecular variables. Treatment of the remaining lesional tissue (0.5 g gel applied four times daily for 6 weeks) began 1 week after the initial biopsy. RNA was isolated from snap-frozen IEN lesions for microarray analyses, followed by quantitative reverse transcription-PCR validation. Additional epithelial gene-specific quantitative reverse transcription-PCR analyses facilitated the assessment of target tissue treatment effects. Surface epithelial COX-2 and iNOS protein levels and microvascular densities were determined by image analysis quantified immunohistochemistry. Topical berry gel application uniformly suppressed genes associated with RNA processing, growth factor recycling, and inhibition of apoptosis. Although the majority of participants showed posttreatment decreases in epithelial iNOS and COX-2 proteins, only COX-2 reductions were statistically significant. These data show that berry gel application modulated oral IEN gene expression profiles, ultimately reducing epithelial COX-2 protein. In a patient subset, berry gel application also reduced vascular densities in the superficial connective tissues and induced genes associated with keratinocyte terminal differentiation. PMID:18559542
1999-06-01
subunits are expressed ubiquitously and appear to be encoded by small and quite homogeneous gene families. In plants , however, A and C subunit gene...1996). In both plants and animals, different B subunit isoforms are encoded by two or more unrelated gene families, some of which are expressed in a...PP2A functions in whole plants and in mammalian tissue culture cells. This genetic system may also prove useful for analyzing interactions between
Specific roles for the Ccr4-Not complex subunits in expression of the genome
Azzouz, Nowel; Panasenko, Olesya O.; Deluen, Cécile; Hsieh, Julien; Theiler, Grégory; Collart, Martine A.
2009-01-01
In this work we used micro-array experiments to determine the role of each nonessential subunit of the conserved Ccr4-Not complex in the control of gene expression in the yeast Saccharomyces cerevisiae. The study was performed with cells growing exponentially in high glucose and with cells grown to glucose depletion. Specific patterns of gene deregulation were observed upon deletion of any given subunit, revealing the specificity of each subunit's function. Consistently, the purification of the Ccr4-Not complex through Caf40p by tandem affinity purification from wild-type cells or cells lacking individual subunits of the Ccr4-Not complex revealed that each subunit had a particular impact on complex integrity. Furthermore, the micro-arrays revealed that the role of each subunit was specific to the growth conditions. From the study of only two different growth conditions, revealing an impact of the Ccr4-Not complex on more than 85% of all studied genes, we can infer that the Ccr4-Not complex is important for expression of most of the yeast genome. PMID:19155328
Choi, In-Wook; Kim, Hwang-Yong; Quan, Juan-Hua; Ryu, Jae-Gee; Sun, Rubing; Lee, Young-Ha
2015-10-01
Fascioliasis, a food-borne trematode zoonosis, is a disease primarily in cattle and sheep and occasionally in humans. Water dropwort (Oenanthe javanica), an aquatic perennial herb, is a common second intermediate host of Fasciola, and the fresh stems and leaves are widely used as a seasoning in the Korean diet. However, no information regarding Fasciola species contamination in water dropwort is available. Here, we collected 500 samples of water dropwort in 3 areas in Korea during February and March 2015, and the water dropwort contamination of Fasciola species was monitored by DNA sequencing analysis of the Fasciola hepatica and Fasciola gigantica specific mitochondrial cytochrome c oxidase subunit 1 (cox1) and nuclear ribosomal internal transcribed spacer 2 (ITS-2). Among the 500 samples assessed, the presence of F. hepatica cox1 and 1TS-2 markers were detected in 2 samples, and F. hepatica contamination was confirmed by sequencing analysis. The nucleotide sequences of cox1 PCR products from the 2 F. hepatica-contaminated samples were 96.5% identical to the F. hepatica cox1 sequences in GenBank, whereas F. gigantica cox1 sequences were 46.8% similar with the sequence detected from the cox1 positive samples. However, F. gigantica cox1 and ITS-2 markers were not detected by PCR in the 500 samples of water dropwort. Collectively, in this survey of the water dropwort contamination with Fasciola species, very low prevalence of F. hepatica contamination was detected in the samples.
Thyssen, Gregory N; Song, Xianliang; Naoumkina, Marina; Kim, Hee-Jin; Fang, David D
2014-07-01
The mitochondrial genomes of flowering plants exist both as a "master circle" chromosome and as numerous subgenomic sublimons that are generated by intramolecular recombination. Differential stability or replication of these sublimons allows individual mitochondrial gene copy numbers to vary independently between different cell types and developmental stages. Our objective was to determine the relationship between mitochondrial gene copy number and transcript abundance in the elongating fiber cells of Upland cotton (Gossypium hirsutum L.). We compared RNA and DNA from cotton fiber cells at five developmental time points from early elongation through secondary cell wall thickening from the Ligon-lintless 2 (Li2) short fiber mutant and its wild type near isogenic line (NIL) DP5690. Mitochondrial gene copy number decreased from 3 to 8-DPA in the developing cotton fiber cells while transcript levels remained low. As secondary cell wall biosynthesis began in developing fibers, the expression levels and copy numbers of mitochondrial genes involved in energy production and respiration were up-regulated in wild type cotton DP5690. However, the short fiber mutant Li2, failed to increase expression of these genes, which include three subunits of ATP synthase, atp1, atp8 and atp9 and two cytochrome genes cox1 and cob. At the same time, Li2 failed to increase the copy numbers of these highly expressed genes. Surprisingly, we found that when mitochondrial genes were highly transcribed, they also had very high copy numbers. This observation suggests that in developing cotton fibers, increased mitochondrial sublimon replication may support increases in gene transcription. Published by Elsevier B.V.
Jackson, Christopher J; Norman, John E; Schnare, Murray N; Gray, Michael W; Keeling, Patrick J; Waller, Ross F
2007-01-01
Background Dinoflagellates comprise an ecologically significant and diverse eukaryotic phylum that is sister to the phylum containing apicomplexan endoparasites. The mitochondrial genome of apicomplexans is uniquely reduced in gene content and size, encoding only three proteins and two ribosomal RNAs (rRNAs) within a highly compacted 6 kb DNA. Dinoflagellate mitochondrial genomes have been comparatively poorly studied: limited available data suggest some similarities with apicomplexan mitochondrial genomes but an even more radical type of genomic organization. Here, we investigate structure, content and expression of dinoflagellate mitochondrial genomes. Results From two dinoflagellates, Crypthecodinium cohnii and Karlodinium micrum, we generated over 42 kb of mitochondrial genomic data that indicate a reduced gene content paralleling that of mitochondrial genomes in apicomplexans, i.e., only three protein-encoding genes and at least eight conserved components of the highly fragmented large and small subunit rRNAs. Unlike in apicomplexans, dinoflagellate mitochondrial genes occur in multiple copies, often as gene fragments, and in numerous genomic contexts. Analysis of cDNAs suggests several novel aspects of dinoflagellate mitochondrial gene expression. Polycistronic transcripts were found, standard start codons are absent, and oligoadenylation occurs upstream of stop codons, resulting in the absence of termination codons. Transcripts of at least one gene, cox3, are apparently trans-spliced to generate full-length mRNAs. RNA substitutional editing, a process previously identified for mRNAs in dinoflagellate mitochondria, is also implicated in rRNA expression. Conclusion The dinoflagellate mitochondrial genome shares the same gene complement and fragmentation of rRNA genes with its apicomplexan counterpart. However, it also exhibits several unique characteristics. Most notable are the expansion of gene copy numbers and their arrangements within the genome, RNA editing, loss of stop codons, and use of trans-splicing. PMID:17897476
COX-2/PGE2: molecular ambassadors of Kaposi's sarcoma-associated herpes virus oncoprotein-v-FLIP
Sharma-Walia, N; Patel, K; Chandran, K; Marginean, A; Bottero, V; Kerur, N; Paul, A G
2012-01-01
Kaposi's sarcoma herpesvirus (KSHV) latent oncoprotein viral FLICE (FADD-like interferon converting enzyme)-like inhibitory protein (v-FLIP) or K13, a potent activator of NF-κB, has well-established roles in KSHV latency and oncogenesis. KSHV-induced COX-2 represents a novel strategy employed by KSHV to promote latency and inflammation/angiogenesis/invasion. Here, we demonstrate that v-FLIP/K13 promotes tumorigenic effects via the induction of host protein COX-2 and its inflammatory metabolite PGE2 in an NF-κB-dependent manner. In addition to our previous studies demonstrating COX-2/PGE2's role in transcriptional regulation of KSHV latency promoter and latent gene expression, the current study adds to the complexity that though LANA-1 (latency associated nuclear antigen) is utilizing COX-2/PGE2 as critical factors for its transcriptional regulation, it is the v-FLIP/K13 gene in the KSHV latency cluster that maintains continuous COX-2/PGE2 levels in the infected cells. We demonstrate that COX-2 inhibition, via its chemical inhibitors (NS-398 or celecoxib), reduced v-FLIP/K13-mediated NF-κB induction, and extracellular matrix (ECM) interaction-mediated signaling, mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD) levels, and subsequently downregulated detachment-induced apoptosis (anoikis) resistance. vFLIP expression mediated the secretion of cytokines, and spindle cell differentiation activated the phosphorylation of p38, RSK, FAK, Src, Akt and Rac1-GTPase. The COX-2 inhibition in v-FLIP/K13-HMVECs reduced inflammation and invasion/metastasis-related genes, along with reduced anchorage-independent colony formation via modulating ‘extrinsic' as well as ‘intrinsic' cell death pathways. COX-2 blockade in v-FLIP/K13-HMVEC cells drastically augmented cell death induced by removal of essential growth/survival factors secreted in the microenvironment. Transformed cells obtained from anchorage-independent colonies of COX-2 inhibitor-treated v-FLIP/K13-HMVEC cells expressed lower levels of endothelial–mesenchymal transition genes such as slug, snail and twist, and higher expression of the tumor-suppressor gene, E-cadherin. Taken together, our study provides strong evidences that FDA-approved COX-2 inhibitors have great potential in blocking tumorigenic events linked to KSHV's oncogenic protein v-FLIP/K13. PMID:23552603
Selfridge, J. Eva; Wilkins, Heather M.; Lezi, E; Carl, Steven M.; Koppel, Scott; Funk, Eric; Fields, Timothy; Lu, Jianghua; Tang, Ee Phie; Slawson, Chad; Wang, WenFang; Zhu, Hao; Swerdlow, Russell H.
2014-01-01
Diet composition may affect energy metabolism in a tissue-specific manner. Using C57Bl/6J mice, we tested the effect of ketosis-inducing and non-inducing high fat diets on genes relevant to brain bioenergetic infrastructures, and on proteins that constitute and regulate that infrastructure. At the end of a one-month study period the two high fat diets appeared to differentially affect peripheral insulin signaling, but brain insulin signaling was not obviously altered. Some bioenergetic infrastructure parameters were similarly impacted by both high fat diets, while other parameters were only impacted by the ketogenic diet. For both diets, mRNA levels for CREB, PGC1α, and NRF2 increased while NRF1, TFAM, and COX4I1 mRNA levels decreased. PGC1β mRNA increased and TNFα mRNA decreased only with the ketogenic diet. Brain mtDNA levels fell in both the ketogenic and non-ketogenic high fat diet groups, although TOMM20 and COX4I1 protein levels were maintained, and mRNA and protein levels of the mtDNA-encoded COX2 subunit were also preserved. Overall, the pattern of changes observed in mice fed ketogenic and non-ketogenic high fat diets over a one month time period suggests these interventions enhance some aspects of the brain’s aerobic infrastructure, and may enhance mtDNA transcription efficiency. Further studies to determine which diet effects are due to changes in brain ketone body levels, fatty acid levels, glucose levels, altered brain insulin signaling, or other factors such as adipose tissue-associated hormones are indicated. PMID:25104046
García-Varela, M; Sereno-Uribe, A L; Pinacho-Pinacho, C D; Hernández-Cruz, E; Pérez-Ponce de León, G
2016-11-01
Tylodelphys aztecae n. sp. (Digenea: Diplostomidae) is described from adult specimens obtained from the intestine of the pied-billed grebe (Podilymbus podiceps) and the metacercariae found in the body cavity of freshwater fishes of the families Goodeidae and Cyprinidae in eight localities across central and northern Mexico. The new species is mainly distinguished from the other four described species of Tylodelphys from the Americas (T. adulta, T. americana, T. elongata and T. brevis) by having a forebody slightly concave, a larger ventral sucker, two larger pseudosuckers and by having between 2 and 7 eggs in the uterus. Partial DNA sequences of the mitochondrial gene cytochrome c oxidase subunit I (cox1), and the internal transcribed spacers (ITS1+5.8S+ ITS2) of the ribosomal DNA, were generated for both developmental stages and compared with available sequences in GenBank of other congeners. The genetic divergence estimated among Tylodelphys aztecae n. sp. and other congeneric species varied from 12 to 15% for cox1, and from 3 to 11% for ITS. In contrast, the genetic divergence among metacercariae and adults of the new species was very low, ranging between 0 and 1% for cox1 and between 0 and 0.3% for ITS. Phylogenetic analyses inferred with both molecular markers using maximum likelihood and Bayesian inference placed the adults and their metacercariae in a single clade, confirming that both stages are conspecific. The morphological evidence and the genetic divergence, in combination with the reciprocal monophyly in both phylogenetic trees, support the hypothesis that the diplostomids found in the intestines of the pied-billed grebe bird and the body cavity from goodeid and cyprinid fishes in central and northern Mexico represent a new species.
DNA barcoding Australia's fish species
Ward, Robert D; Zemlak, Tyler S; Innes, Bronwyn H; Last, Peter R; Hebert, Paul D.N
2005-01-01
Two hundred and seven species of fish, mostly Australian marine fish, were sequenced (barcoded) for a 655 bp region of the mitochondrial cytochrome oxidase subunit I gene (cox1). Most species were represented by multiple specimens, and 754 sequences were generated. The GC content of the 143 species of teleosts was higher than the 61 species of sharks and rays (47.1% versus 42.2%), largely due to a higher GC content of codon position 3 in the former (41.1% versus 29.9%). Rays had higher GC than sharks (44.7% versus 41.0%), again largely due to higher GC in the 3rd codon position in the former (36.3% versus 26.8%). Average within-species, genus, family, order and class Kimura two parameter (K2P) distances were 0.39%, 9.93%, 15.46%, 22.18% and 23.27%, respectively. All species could be differentiated by their cox1 sequence, although single individuals of each of two species had haplotypes characteristic of a congener. Although DNA barcoding aims to develop species identification systems, some phylogenetic signal was apparent in the data. In the neighbour-joining tree for all 754 sequences, four major clusters were apparent: chimaerids, rays, sharks and teleosts. Species within genera invariably clustered, and generally so did genera within families. Three taxonomic groups—dogfishes of the genus Squalus, flatheads of the family Platycephalidae, and tunas of the genus Thunnus—were examined more closely. The clades revealed after bootstrapping generally corresponded well with expectations. Individuals from operational taxonomic units designated as Squalus species B through F formed individual clades, supporting morphological evidence for each of these being separate species. We conclude that cox1 sequencing, or ‘barcoding’, can be used to identify fish species. PMID:16214743
Burton, Rachel A.; Johnson, Philip E.; Beckles, Diane M.; Fincher, Geoffrey B.; Jenner, Helen L.; Naldrett, Mike J.; Denyer, Kay
2002-01-01
In most species, the synthesis of ADP-glucose (Glc) by the enzyme ADP-Glc pyrophosphorylase (AGPase) occurs entirely within the plastids in all tissues so far examined. However, in the endosperm of many, if not all grasses, a second form of AGPase synthesizes ADP-Glc outside the plastid, presumably in the cytosol. In this paper, we show that in the endosperm of wheat (Triticum aestivum), the cytosolic form accounts for most of the AGPase activity. Using a combination of molecular and biochemical approaches to identify the cytosolic and plastidial protein components of wheat endosperm AGPase we show that the large and small subunits of the cytosolic enzyme are encoded by genes previously thought to encode plastidial subunits, and that a gene, Ta.AGP.S.1, which encodes the small subunit of the cytosolic form of AGPase, also gives rise to a second transcript by the use of an alternate first exon. This second transcript encodes an AGPase small subunit with a transit peptide. However, we could not find a plastidial small subunit protein corresponding to this transcript. The protein sequence of the purified plastidial small subunit does not match precisely to that encoded by Ta.AGP.S.1 or to the predicted sequences of any other known gene from wheat or barley (Hordeum vulgare). Instead, the protein sequence is most similar to those of the plastidial small subunits from chickpea (Cicer arietinum) and maize (Zea mays) and rice (Oryza sativa) seeds. These data suggest that the gene encoding the major plastidial small subunit of AGPase in wheat endosperm has yet to be identified. PMID:12428011
Mioduchowska, Monika; Czyż, Michał Jan; Gołdyn, Bartłomiej; Kur, Jarosław; Sell, Jerzy
2018-01-01
The cytochrome c oxidase subunit I (cox1) gene is the main mitochondrial molecular marker playing a pivotal role in phylogenetic research and is a crucial barcode sequence. Folmer's "universal" primers designed to amplify this gene in metazoan invertebrates allowed quick and easy barcode and phylogenetic analysis. On the other hand, the increase in the number of studies on barcoding leads to more frequent publishing of incorrect sequences, due to amplification of non-target taxa, and insufficient analysis of the obtained sequences. Consequently, some sequences deposited in genetic databases are incorrectly described as obtained from invertebrates, while being in fact bacterial sequences. In our study, in which we used Folmer's primers to amplify COI sequences of the crustacean fairy shrimp Branchipus schaefferi (Fischer 1834), we also obtained COI sequences of microbial contaminants from Aeromonas sp. However, when we searched the GenBank database for sequences closely matching these contaminations we found entries described as representatives of Gastrotricha and Mollusca. When these entries were compared with other sequences bearing the same names in the database, the genetic distance between the incorrect and correct sequences amplified from the same species was c.a. 65%. Although the responsibility for the correct molecular identification of species rests on researchers, the errors found in already published sequences data have not been re-evaluated so far. On the basis of the standard sampling technique we have estimated with 95% probability that the chances of finding incorrectly described metazoan sequences in the GenBank depend on the systematic group, and variety from less than 1% (Mollusca and Arthropoda) up to 6.9% (Gastrotricha). Consequently, the increasing popularity of DNA barcoding and metabarcoding analysis may lead to overestimation of species diversity. Finally, the study also discusses the sources of the problems with amplification of non-target sequences.
Genetic diversity of the Chinese liver fluke Clonorchis sinensis from Russia and Vietnam.
Chelomina, Galina N; Tatonova, Yulia V; Hung, Nguyen Manh; Ngo, Ha Duy
2014-10-01
Clonorchiasis is a parasitic disease of high public health importance in many countries in southeastern Asia and is caused by the Chinese liver fluke Clonorchis sinensis. However, the genetic structure and demographic history of its populations has not been sufficiently studied throughout the geographic range of the species and available data are based mainly on partial gene sequencing. In this study, we explored the genetic diversity of the complete 1560 bp cytochrome c oxidase subunit 1 (cox1) gene sequence for geographically isolated C. sinensis populations in Russia and Vietnam, to our knowledge for the first time. The results demonstrated low nucleotide and high haplotype differentiation within and between the two compared regions and a clear geographical vector for the distribution of genetic diversity patterns among the studied populations. These results suggest a deep local adaptation of the parasite to its environment including intermediate hosts and the existence of gene flow across the species' range. Additionally, we have predicted an amino acid substitution in the functional site of the COX1 protein among the Vietnamese populations, which were reported to be difficult to treat with praziquantel. The haplotype networks consisted of several region-specific phylogenetic lineages, the formation of which could have occurred during the most extensive penultimate glaciations in the Pleistocene Epoch. The patterns of genetic diversity and demographics are consistent with population growth of the liver fluke in the late Pleistocene following the Last Glacial Maximum, indicating the lack of a population bottleneck during the recent past in the species' history. The data obtained have important implications for understanding the phylogeography of C. sinensis, its host-parasite interactions, the ability of this parasite to evolve drug resistance, and the epidemiology of clonorchiasis under global climate change. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguado, Andrea; Galán, María; Zhenyukh, Olha
2013-04-15
Mercury exposure is known to increase cardiovascular risk but the underlying cellular mechanisms remain undetermined. We analyzed whether chronic exposure to HgCl{sub 2} affects vascular structure and the functional properties of vascular smooth muscle cells (VSMC) through oxidative stress/cyclooxygenase-2 dependent pathways. Mesenteric resistance arteries and aortas from Wistar rats treated with HgCl{sub 2} (first dose 4.6 mg kg{sup −1}, subsequent doses 0.07 mg kg{sup −1} day{sup −1}, 30 days) and cultured aortic VSMC stimulated with HgCl{sub 2} (0.05–5 μg/ml) were used. Treatment of rats with HgCl{sub 2} decreased wall thickness of the resistance and conductance vasculature, increased the number ofmore » SMC within the media and decreased SMC nucleus size. In VSMCs, exposure to HgCl{sub 2}: 1) induced a proliferative response and a reduction in cell size; 2) increased superoxide anion production, NADPH oxidase activity, gene and/or protein levels of the NADPH oxidase subunit NOX-1, the EC- and Mn-superoxide dismutases and cyclooxygenase-2 (COX-2); 3) induced activation of ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized the proliferative response and the altered cell size induced by HgCl{sub 2}. Blockade of ERK1/2 and p38 signaling pathways abolished the HgCl{sub 2}-induced Nox1 and COX-2 expression and normalized the alterations induced by mercury in cell proliferation and size. In conclusion, long exposure of VSMC to low doses of mercury activates MAPK signaling pathways that result in activation of inflammatory proteins such as NADPH oxidase and COX-2 that in turn induce proliferation of VSMC and changes in cell size. These findings offer further evidence that mercury might be considered an environmental risk factor for cardiovascular disease. - Highlights: ► Chronic HgCl{sub 2} exposure induces vascular remodeling. ► HgCl{sub 2} induces proliferation and decreased cell size in vascular smooth muscle cells. ► HgCl{sub 2} induces MAPK activation, oxidative stress and COX-2 expression. ► Inhibition of MAPK reduces HgCl{sub 2}-induced oxidative stress and COX-2 expression. ► Inhibition of MAPK, oxidative stress and COX-2 restores the altered cell proliferation and size.« less
Yoneshiro, Takeshi; Kaede, Ryuji; Nagaya, Kazuki; Aoyama, Julia; Saito, Mana; Okamatsu-Ogura, Yuko; Kimura, Kazuhiro; Terao, Akira
Identification of thermogenic food ingredients is potentially a useful strategy for the prevention of obesity and related metabolic disorders. It has been reported that royal jelly (RJ) supplementation improves insulin sensitivity; however, its impacts on energy expenditure and adiposity remain elusive. We investigated anti-obesity effects of RJ supplementation and their relation to physical activity levels and thermogenic capacities of brown (BAT) and white adipose tissue (WAT). C57BL/6J mice were fed under four different experimental conditions for 17 weeks: normal diet (ND), high fat diet (HFD), HFD with 5% RJ, and HFD with 5% honey bee larva powder (BL). Spontaneous locomotor activity, hepatic triglyceride (TG) content, and blood parameters were examined. Gene and protein expressions of thermogenic uncoupling protein 1 (UCP1) and mitochondrial cytochrome c oxidase subunit IV (COX-IV) in BAT and WAT were investigated by qPCR and Western blotting analysis, respectively. Dietary RJ, but not BL, suppressed HFD-induced accumulations of WAT and hepatic TG without modifying food intake. Consistently, RJ improved hyperglycemia and the homeostasis model assessment-insulin resistance (HOMA-IR). Although dietary RJ and BL unchanged locomotor activity, gene and protein expressions of UCP1 and COX-IV in BAT were increased in the RJ group compared to the other experimental groups. Neither the RJ nor BL treatment induced browning of WAT. Our results indicate that dietary RJ ameliorates diet-induced obesity, hyperglycemia, and hepatic steatosis by promoting metabolic thermogenesis in BAT in mice. RJ may be a novel promising food ingredient to combat obesity and metabolic disorders. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.
Mitochondrial Group II Introns, Cytochrome c Oxidase, and Senescence in Podospora anserina†
Begel, Odile; Boulay, Jocelyne; Albert, Beatrice; Dufour, Eric; Sainsard-Chanet, Annie
1999-01-01
Podospora anserina is a filamentous fungus with a limited life span. It expresses a degenerative syndrome called senescence, which is always associated with the accumulation of circular molecules (senDNAs) containing specific regions of the mitochondrial chromosome. A mobile group II intron (α) has been thought to play a prominent role in this syndrome. Intron α is the first intron of the cytochrome c oxidase subunit I gene (COX1). Mitochondrial mutants that escape the senescence process are missing this intron, as well as the first exon of the COX1 gene. We describe here the first mutant of P. anserina that has the α sequence precisely deleted and whose cytochrome c oxidase activity is identical to that of wild-type cells. The integration site of the intron is slightly modified, and this change prevents efficient homing of intron α. We show here that this mutant displays a senescence syndrome similar to that of the wild type and that its life span is increased about twofold. The introduction of a related group II intron into the mitochondrial genome of the mutant does not restore the wild-type life span. These data clearly demonstrate that intron α is not the specific senescence factor but rather an accelerator or amplifier of the senescence process. They emphasize the role that intron α plays in the instability of the mitochondrial chromosome and the link between this instability and longevity. Our results strongly support the idea that in Podospora, “immortality” can be acquired not by the absence of intron α but rather by the lack of active cytochrome c oxidase. PMID:10330149
Lynn, Tin Mar; Ge, Tida; Yuan, Hongzhao; Wei, Xiaomeng; Wu, Xiaohong; Xiao, Keqing; Kumaresan, Deepak; Yu, San San; Wu, Jinshui; Whiteley, Andrew S
2017-04-01
CO 2 assimilation by autotrophic microbes is an important process in soil carbon cycling, and our understanding of the community composition of autotrophs in natural soils and their role in carbon sequestration of these soils is still limited. Here, we investigated the autotrophic C incorporation in soils from three natural ecosystems, i.e., wetland (WL), grassland (GR), and forest (FO) based on the incorporation of labeled C into the microbial biomass. Microbial assimilation of 14 C ( 14 C-MBC) differed among the soils from three ecosystems, accounting for 14.2-20.2% of 14 C-labeled soil organic carbon ( 14 C-SOC). We observed a positive correlation between the cbbL (ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) large-subunit gene) abundance, 14 C-SOC level, and 14 C-MBC concentration confirming the role of autotrophic bacteria in soil carbon sequestration. Distinct cbbL-bearing bacterial communities were present in each soil type; form IA and form IC RubisCO-bearing bacteria were most abundant in WL, followed by GR soils, with sequences from FO soils exclusively derived from the form IC clade. Phylogenetically, the diversity of CO 2 -fixing autotrophs and CO oxidizers differed significantly with soil type, whereas cbbL-bearing bacterial communities were similar when assessed using coxL. We demonstrate that local edaphic factors such as pH and salinity affect the C-fixation rate as well as cbbL and coxL gene abundance and diversity. Such insights into the effect of soil type on the autotrophic bacterial capacity and subsequent carbon cycling of natural ecosystems will provide information to enhance the sustainable management of these important natural ecosystems.
Whiteley, Mary H.; Bell, Jerold S.; Rothman, Debby A.
2011-01-01
Renal dysplasia (RD) in dogs is a complex disease with a highly variable phenotype and mode of inheritance that does not follow a simple Mendelian pattern. Cox-2 (Cyclooxgenase-2) deficient mice have renal abnormalities and a pathology that has striking similarities to RD in dogs suggesting to us that mutations in the Cox-2 gene could be the cause of RD in dogs. Our data supports this hypothesis. Sequencing of the canine Cox-2 gene was done from clinically affected and normal dogs. Although no changes were detected in the Cox-2 coding region, small insertions and deletions of GC boxes just upstream of the ATG translation start site were found. These sequences are putative SP1 transcription factor binding sites that may represent important cis-acting DNA regulatory elements that govern the expression of Cox-2. A pedigree study of a family of Lhasa apsos revealed an important statistical correlation of these mutant alleles with the disease. We examined an additional 22 clinical cases from various breeds. Regardless of the breed or severity of disease, all of these had one or two copies of the Cox-2 allelic variants. We suggest that the unusual inheritance pattern of RD is due to these alleles, either by changing the pattern of expression of Cox-2 or making Cox-2 levels susceptible to influences of other genes or environmental factors that play an unknown but important role in the development of RD in dogs. PMID:21346820
USDA-ARS?s Scientific Manuscript database
The present molecular-systematic and phylogeographic analysis is based on sequences of cytochrome c oxidase subunit 1 (cox1) (mtDNA) and 28S ribosomal DNA, and includes 59 isolates of cestodes of the genus Anoplocephaloides Baer, 1923 s. s. (Cyclophyllidea, Anoplocephalidae) from arvicoline rodents ...
Momordica charantia Inhibits Inflammatory Responses in Murine Macrophages via Suppression of TAK1.
Yang, Woo Seok; Yang, Eunju; Kim, Min-Jeong; Jeong, Deok; Yoon, Deok Hyo; Sung, Gi-Ho; Lee, Seungihm; Yoo, Byong Chul; Yeo, Seung-Gu; Cho, Jae Youl
2018-01-01
Momordica charantia known as bitter melon is a representative medicinal plant reported to exhibit numerous pharmacological activities such as antibacterial, antidiabetic, anti-inflammatory, anti-oxidant, antitumor, and hypoglycemic actions. Although this plant has high ethnopharmacological value for treating inflammatory diseases, the molecular mechanisms by which it inhibits the inflammatory response are not fully understood. In this study, we aim to identify the anti-inflammatory mechanism of this plant. To this end, we studied the effects of its methanol extract (Mc-ME) on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Specifically, we evaluated nitric oxide (NO) production, mRNA expression of inflammatory genes, luciferase reporter gene activity, and putative molecular targets. Mc-ME blocked NO production in a dose-dependent manner in RAW264.7 cells; importantly, no cytotoxicity was observed. Moreover, the mRNA expression levels of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 were decreased by Mc-ME treatment in a dose-dependent manner. Luciferase assays and nuclear lysate immunoblotting analyses strongly indicated that Mc-ME decreases the levels of p65 [a nuclear factor (NF)-[Formula: see text]B subunit] and c-Fos [an activator protein (AP)-1 subunit]. Whole lysate immunoblotting assays, luciferase assays, and overexpression experiments suggested that transforming growth factor [Formula: see text]-activated kinase 1 (TAK1) is targeted by Mc-ME, thereby suppressing NF-[Formula: see text]B and AP-1 activity via downregulation of extracellular signal-regulated kinases (ERKs) and AKT. These results strongly suggest that Mc-ME exerts its anti-inflammatory activity by reducing the action of TAK1, which also affects the activation of NF-[Formula: see text]B and AP-1.
Boufana, Belgees; Lett, Wai San; Lahmar, Samia; Buishi, Imad; Bodell, Anthony J; Varcasia, Antonio; Casulli, Adriano; Beeching, Nicholas J; Campbell, Fiona; Terlizzo, Monica; McManus, Donald P; Craig, Philip S
2015-02-01
Cystic echinococcosis is endemic in Europe including the United Kingdom. However, information on the molecular epidemiology of Echinococcus spp. from the United Kingdom is limited. Echinococcus isolates from intermediate and definitive animal hosts as well as from human cystic echinococcosis cases were analysed to determine species and genotypes within these hosts. Echinococcus equinus was identified from horse hydatid isolates, cysts retrieved from captive UK mammals and copro-DNA of foxhounds and farm dogs. Echinococcus granulosus sensu stricto (s.s.) was identified from hydatid cysts of sheep and cattle as well as in DNA extracted from farm dog and foxhound faecal samples, and from four human cystic echinococcosis isolates, including the first known molecular confirmation of E. granulosus s.s. infection in a Welsh sheep farmer. Low genetic variability for E. equinus from various hosts and from different geographical locations was detected using the mitochondrial cytochrome c oxidase subunit 1 gene (cox1), indicating the presence of a dominant haplotype (EQUK01). In contrast, greater haplotypic variation was observed for E. granulosus s.s. cox1 sequences. The haplotype network showed a star-shaped network with a centrally placed main haplotype (EgUK01) that had been reported from other world regions. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Low-Concentration Tributyltin Decreases GluR2 Expression via Nuclear Respiratory Factor-1 Inhibition
Ishida, Keishi; Aoki, Kaori; Takishita, Tomoko; Miyara, Masatsugu; Sakamoto, Shuichiro; Sanoh, Seigo; Kimura, Tomoki; Kanda, Yasunari; Ohta, Shigeru; Kotake, Yaichiro
2017-01-01
Tributyltin (TBT), which has been widely used as an antifouling agent in paints, is a common environmental pollutant. Although the toxicity of high-dose TBT has been extensively reported, the effects of low concentrations of TBT are relatively less well studied. We have previously reported that low-concentration TBT decreases α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptor subunit 2 (GluR2) expression in cortical neurons and enhances neuronal vulnerability to glutamate. However, the mechanism of this TBT-induced GluR2 decrease remains unknown. Therefore, we examined the effects of TBT on the activity of transcription factors that control GluR2 expression. Exposure of primary cortical neurons to 20 nM TBT for 3 h to 9 days resulted in a decrease in GluR2 mRNA expression. Moreover, TBT inhibited the DNA binding activity of nuclear respiratory factor-1 (NRF-1), a transcription factor that positively regulates the GluR2. This result indicates that TBT inhibits the activity of NRF-1 and subsequently decreases GluR2 expression. In addition, 20 nM TBT decreased the expression of genes such as cytochrome c, cytochrome c oxidase (COX) 4, and COX 6c, which are downstream of NRF-1. Our results suggest that NRF-1 inhibition is an important molecular action of the neurotoxicity induced by low-concentration TBT. PMID:28800112
Ishida, Keishi; Aoki, Kaori; Takishita, Tomoko; Miyara, Masatsugu; Sakamoto, Shuichiro; Sanoh, Seigo; Kimura, Tomoki; Kanda, Yasunari; Ohta, Shigeru; Kotake, Yaichiro
2017-08-11
Tributyltin (TBT), which has been widely used as an antifouling agent in paints, is a common environmental pollutant. Although the toxicity of high-dose TBT has been extensively reported, the effects of low concentrations of TBT are relatively less well studied. We have previously reported that low-concentration TBT decreases α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptor subunit 2 ( GluR2 ) expression in cortical neurons and enhances neuronal vulnerability to glutamate. However, the mechanism of this TBT-induced GluR2 decrease remains unknown. Therefore, we examined the effects of TBT on the activity of transcription factors that control GluR2 expression. Exposure of primary cortical neurons to 20 nM TBT for 3 h to 9 days resulted in a decrease in GluR2 mRNA expression. Moreover, TBT inhibited the DNA binding activity of nuclear respiratory factor-1 (NRF-1), a transcription factor that positively regulates the GluR2 . This result indicates that TBT inhibits the activity of NRF-1 and subsequently decreases GluR2 expression. In addition, 20 nM TBT decreased the expression of genes such as cytochrome c, cytochrome c oxidase (COX) 4, and COX 6c, which are downstream of NRF-1. Our results suggest that NRF-1 inhibition is an important molecular action of the neurotoxicity induced by low-concentration TBT.
Role of HCV Core gene of genotype 1a and 3a and host gene Cox-2 in HCV-induced pathogenesis
2011-01-01
Background Hepatitis C virus (HCV) Core protein is thought to trigger activation of multiple signaling pathways and play a significant role in the alteration of cellular gene expression responsible for HCV pathogenesis leading to hepatocellular carcinoma (HCC). However, the exact molecular mechanism of HCV genome specific pathogenesis remains unclear. We examined the in vitro effects of HCV Core protein of HCV genotype 3a and 1a on the cellular genes involved in oxidative stress and angiogenesis. We also studied the ability of HCV Core and Cox-2 siRNA either alone or in combination to inhibit viral replication and cell proliferation in HCV serum infected Huh-7 cells. Results Over expression of Core gene of HCV 3a genotype showed stronger effect in regulating RNA and protein levels of Cox-2, iNOS, VEGF, p-Akt as compared to HCV-1a Core in hepatocellular carcinoma cell line Huh-7 accompanied by enhanced PGE2 release and cell proliferation. We also observed higher expression levels of above genes in HCV 3a patient's blood and biopsy samples. Interestingly, the Core and Cox-2-specific siRNAs down regulated the Core 3a-enhanced expression of Cox-2, iNOS, VEGF, p-Akt. Furthermore, the combined siRNA treatment also showed a dramatic reduction in viral titer and expression of these genes in HCV serum-infected Huh-7 cells. Taken together, these results demonstrated a differential response by HCV 3a genotype in HCV-induced pathogenesis, which may be due to Core and host factor Cox-2 individually or in combination. Conclusions Collectively, these studies not only suggest a genotype-specific interaction between key players of HCV pathogenesis but also may represent combined viral and host gene silencing as a potential therapeutic strategy. PMID:21457561
Ryu, Shi Hyun; Lee, Ji Min; Jang, Kuem-Hee; Choi, Eun Hwa; Park, Shin Ju; Chang, Cheon Young; Kim, Won; Hwang, Ui Wook
2007-12-31
Regions (about 3.7-3.8 kb) of the mitochondrial genomes (rrnL-cox1) of two tardigrades, a heterotardigrade, Batillipes pennaki, and a eutardigrade, Pseudobiotus spinifer, were sequenced and characterized. The gene order in Batillipes was rrnL-V-rrnS-Q-I-M-nad2-W-C-Y-cox1, and in Pseudobiotus it was rrnL-V-rrnS-Q-M-nad2-W-C-Y-cox1. With the exception of the trnI gene, the two tardigrade regions have the same gene content and order. Their gene orders are strikingly similar to that of the chelicerate Limulus polyphemus (rrnL-V-rrnS-CR-I-Q-M-nad2-W-C-Y-cox1), which is considered to be ancestral for arthropods. Although the tardigrades do not have a distinct control region (CR) within this segment, the trnI gene in Pseudobiotus is located between rrnL-trnL1 and trnL2-nad1, and the trnI gene in Batillipes is located between trnQ and trnM. In addition, the 106-bp region between trnQ and trnM in Batillipes not only contains two plausible trnI genes with opposite orientations, but also exhibits some CR-like characteristics. The mitochondrial gene arrangements of 183 other protostomes were compared. 60 (52.2%) of the 115 arthropods examined have the M-nad2-W-C-Y-cox1 arrangement, and 88 (76.5%) the M-nad2-W arrangement, as found in the tardigrades. In contrast, no such arrangement was seen in the 70 non-arthropod protostomes studied. These are the first non-sequence molecular data that support the close relationship of tardigrades and arthropods.
Molecular basis and function of voltage-gated K+ channels in pulmonary arterial smooth muscle cells.
Yuan, X J; Wang, J; Juhaszova, M; Golovina, V A; Rubin, L J
1998-04-01
K(+)-channel activity-mediated alteration of the membrane potential and cytoplasmic free Ca2+ concentration ([Ca2+]cyt) is a pivotal mechanism in controlling pulmonary vasomotor tone. By using combined approaches of patch clamp, imaging fluorescent microscopy, and molecular biology, we examined the electrophysiological properties of K+ channels and the role of different K+ currents in regulating [Ca2+]cyt and explored the molecular identification of voltage-gated K+ (KV)- and Ca(2+)-activated K+ (KCa)-channel genes expressed in pulmonary arterial smooth muscle cells (PASMC). Two kinetically distinct KV currents [IK(V)], a rapidly inactivating (A-type) and a noninactivating delayed rectifier, as well as a slowly activated KCa current [IK(Ca)] were identified. IK(V) was reversibly inhibited by 4-aminopyridine (5 mM), whereas IK(Ca) was significantly inhibited by charybdotoxin (10-20 nM). K+ channels are composed of pore-forming alpha-subunits and auxiliary beta-subunits. Five KV-channel alpha-subunit genes from the Shaker subfamily (KV1.1, KV1.2, KV1.4, KV1.5, and KV1.6), a KV-channel alpha-subunit gene from the Shab subfamily (KV2.1), a KV-channel modulatory alpha-subunit (KV9.3), and a KCa-channel alpha-subunit gene (rSlo), as well as three KV-channel beta-subunit genes (KV beta 1.1, KV beta 2, and KV beta 3) are expressed in PASMC. The data suggest that 1) native K+ channels in PASMC are encoded by multiple genes; 2) the delayed rectifier IK(V) may be generated by the KV1.1, KV1.2, KV1.5, KV1.6, KV2.1, and/or KV2.1/KV9.3 channels; 3) the A-type IK(V) may be generated by the KV1.4 channel and/or the delayed rectifier KV channels (KV1 subfamily) associated with beta-subunits; and 4) the IK(Ca) may be generated by the rSlo gene product. The function of the KV channels plays an important role in the regulation of membrane potential and [Ca2+]cyt in PASMC.
Houtz, Robert L.
1998-01-01
The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS) .epsilon.N-methyltransferase (protein methylase III or Rubisco LSMT) is disclosed. This enzyme catalyzes methylation of the .epsilon.-amine of lysine-14 in the large subunit of Rubisco. In addition, a full-length cDNA clone for Rubisco LSMT is disclosed. Transgenic plants and methods of producing same which (1) have the Rubisco LSMT gene inserted into the DNA, and (2) have the Rubisco LSMT gene product or the action of the gene product deleted from the DNA are also provided. Further, methods of using the gene to selectively deliver desired agents to a plant are also disclosed.
Houtz, Robert L.
1999-01-01
The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS) .sup..epsilon. N-methyltransferase (protein methylase III or Rubisco LSMT) is disclosed. This enzyme catalyzes methylation of the .epsilon.-amine of lysine-14 in the large subunit of Rubisco. In addition, a full-length cDNA clone for Rubisco LSMT is disclosed. Transgenic plants and methods of producing same which (1) have the Rubisco LSMT gene inserted into the DNA, and (2) have the Rubisco LSMT gene product or the action of the gene product deleted from the DNA are also provided. Further, methods of using the gene to selectively deliver desired agents to a plant are also disclosed.
Houtz, R.L.
1998-03-03
The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS) {epsilon}N-methyltransferase (protein methylase III or Rubisco LSMT) is disclosed. This enzyme catalyzes methylation of the {epsilon}-amine of lysine-14 in the large subunit of Rubisco. In addition, a full-length cDNA clone for Rubisco LSMT is disclosed. Transgenic plants and methods of producing same which (1) have the Rubisco LSMT gene inserted into the DNA, and (2) have the Rubisco LSMT gene product or the action of the gene product deleted from the DNA are also provided. Further, methods of using the gene to selectively deliver desired agents to a plant are also disclosed. 5 figs.
Houtz, R.L.
1999-02-02
The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS){sup {epsilon}}N-methyltransferase (protein methylase III or Rubisco LSMT) is disclosed. This enzyme catalyzes methylation of the {epsilon}-amine of lysine-14 in the large subunit of Rubisco. In addition, a full-length cDNA clone for Rubisco LSMT is disclosed. Transgenic plants and methods of producing same which (1) have the Rubisco LSMT gene inserted into the DNA, and (2) have the Rubisco LSMT gene product or the action of the gene product deleted from the DNA are also provided. Further, methods of using the gene to selectively deliver desired agents to a plant are also disclosed. 8 figs.
INTRINSIC REGULATION OF HEMOGLOBIN EXPRESSION BY VARIABLE SUBUNIT INTERFACE STRENGTHS
Manning, James M.; Popowicz, Anthony M.; Padovan, Julio C.; Chait, Brian T.; Manning, Lois R.
2012-01-01
SUMMARY The expression of the six types of human hemoglobin subunits over time is currently considered to be regulated mainly by transcription factors that bind to upstream control regions of the gene (the “extrinsic” component of regulation). Here we describe how subunit pairing and further assembly to tetramers in the liganded state is influenced by the affinity of subunits for one another (the “intrinsic” component of regulation). The adult hemoglobin dimers have the strongest subunit interfaces and the embryonic hemoglobins are the weakest with fetal hemoglobins of intermediate strength, corresponding to the temporal order of their expression. These variable subunit binding strengths and the attenuating effects of acetylation contribute to the differences with which these hemoglobin types form functional O2-binding tetramers consistent with gene switching. PMID:22129306
Hornok, Sándor; Wang, Yuanzhi; Otranto, Domenico; Keskin, Adem; Lia, Riccardo Paolo; Kontschán, Jenő; Takács, Nóra; Farkas, Róbert; Sándor, Attila D
2016-12-15
Haemaphysalis erinacei is one of the few ixodid tick species for which valid names of subspecies exist. Despite their disputed taxonomic status in the literature, these subspecies have not yet been compared with molecular methods. The aim of the present study was to investigate the phylogenetic relationships of H. erinacei subspecies, in the context of the first finding of this tick species in Romania. After morphological identification, DNA was extracted from five adults of H. e. taurica (from Romania and Turkey), four adults of H. e. erinacei (from Italy) and 17 adults of H. e. turanica (from China). From these samples fragments of the cytochrome c oxidase subunit 1 (cox1) and 16S rRNA genes were amplified via PCR and sequenced. Results showed that cox1 and 16S rRNA gene sequence divergences between H. e. taurica from Romania and H. e. erinacei from Italy were below 2%. However, the sequence divergences between H. e. taurica from Romania and H. e. turanica from China were high (up to 7.3% difference for the 16S rRNA gene), exceeding the reported level of sequence divergence between closely related tick species. At the same time, two adults of H. e. taurica from Turkey had higher 16S rRNA gene similarity to H. e. turanica from China (up to 97.5%) than to H. e. taurica from Romania (96.3%), but phylogenetically clustered more closely to H. e. taurica than to H. e. turanica. This is the first finding of H. erinacei in Romania, and the first (although preliminary) phylogenetic comparison of H. erinacei subspecies. Phylogenetic analyses did not support that the three H. erinacei subspecies evaluated here are of equal taxonomic rank, because the genetic divergence between H. e. turanica from China and H. e. taurica from Romania exceeded the usual level of sequence divergence between closely related tick species, suggesting that they might represent different species. Therefore, the taxonomic status of the subspecies of H. erinacei needs to be revised based on a larger number of specimens collected throughout its geographical range.
Kimura, Y; Miyake, R; Tokumasu, Y; Sato, M
2000-10-01
We have cloned a DNA fragment from a genomic library of Myxococcus xanthus using an oligonucleotide probe representing conserved regions of biotin carboxylase subunits of acetyl coenzyme A (acetyl-CoA) carboxylases. The fragment contained two open reading frames (ORF1 and ORF2), designated the accB and accA genes, capable of encoding a 538-amino-acid protein of 58.1 kDa and a 573-amino-acid protein of 61.5 kDa, respectively. The protein (AccA) encoded by the accA gene was strikingly similar to biotin carboxylase subunits of acetyl-CoA and propionyl-CoA carboxylases and of pyruvate carboxylase. The putative motifs for ATP binding, CO(2) fixation, and biotin binding were found in AccA. The accB gene was located upstream of the accA gene, and they formed a two-gene operon. The protein (AccB) encoded by the accB gene showed high degrees of sequence similarity with carboxyltransferase subunits of acetyl-CoA and propionyl-CoA carboxylases and of methylmalonyl-CoA decarboxylase. Carboxybiotin-binding and acyl-CoA-binding domains, which are conserved in several carboxyltransferase subunits of acyl-CoA carboxylases, were found in AccB. An accA disruption mutant showed a reduced growth rate and reduced acetyl-CoA carboxylase activity compared with the wild-type strain. Western blot analysis indicated that the product of the accA gene was a biotinylated protein that was expressed during the exponential growth phase. Based on these results, we propose that this M. xanthus acetyl-CoA carboxylase consists of two subunits, which are encoded by the accB and accA genes, and occupies a position between prokaryotic and eukaryotic acetyl-CoA carboxylases in terms of evolution.
Cloning and sequencing of the allophycocyanin genes from Spirulina maxima (Cyanophyta)
NASA Astrophysics Data System (ADS)
Qin, Song; Hiroyuki, Kojima; Yoshikazu, Kawata; Shin-Ichi, Yano; Zeng, Cheng-Kui
1998-03-01
The genes coding for the α-and β-subunit of allophycocyanin ( apcA and apcB) from the cyanophyte Spirulina maxima were cloned and sequenced. The results revealed 44.4% of nucleotide sequence similarity and 30.4% of similarity of deduced amino acid sequence between them. The amino acid sequence identities between S. maxima and S. platensis are 99.4% for α subunit and 100% for β subunit.
Structural analysis of the α subunit of Na(+)/K(+) ATPase genes in invertebrates.
Thabet, Rahma; Rouault, J-D; Ayadi, Habib; Leignel, Vincent
2016-01-01
The Na(+)/K(+) ATPase is a ubiquitous pump coordinating the transport of Na(+) and K(+) across the membrane of cells and its role is fundamental to cellular functions. It is heteromer in eukaryotes including two or three subunits (α, β and γ which is specific to the vertebrates). The catalytic functions of the enzyme have been attributed to the α subunit. Several complete α protein sequences are available, but only few gene structures were characterized. We identified the genomic sequences coding the α-subunit of the Na(+)/K(+) ATPase, from the whole-genome shotgun contigs (WGS), NCBI Genomes (chromosome), Genomic Survey Sequences (GSS) and High Throughput Genomic Sequences (HTGS) databases across distinct phyla. One copy of the α subunit gene was found in Annelida, Arthropoda, Cnidaria, Echinodermata, Hemichordata, Mollusca, Placozoa, Porifera, Platyhelminthes, Urochordata, but the nematodes seem to possess 2 to 4 copies. The number of introns varied from 0 (Platyhelminthes) to 26 (Porifera); and their localization and length are also highly variable. Molecular phylogenies (Maximum Likelihood and Maximum Parsimony methods) showed some clusters constituted by (Chordata/(Echinodermata/Hemichordata)) or (Plathelminthes/(Annelida/Mollusca)) and a basal position for Porifera. These structural analyses increase our knowledge about the evolutionary events of the α subunit genes in the invertebrates. Copyright © 2016 Elsevier Inc. All rights reserved.
COX inhibitors directly alter gene expression: role in cancer prevention?
Wang, Xingya; Baek, Seung Joon; Eling, Thomas
2016-01-01
Inflammation is an important contributor to the development and progression of human cancers. Inflammatory lipid metabolites, prostaglandins, formed from arachidonic acid by prostaglandin H synthases commonly called cyclooxygenases (COXs) bind to specific receptors that activate signaling pathways driving the development and progression of tumors. Inhibitors of prostaglandin formation, COX inhibitors, or nonsteroidal anti-inflammatory drugs (NSAIDs) are well documented as agents that inhibit tumor growth and with long-term use prevent tumor development. NSAIDs also alter gene expression independent of COX inhibition and these changes in gene expression also appear to contribute to the anti-tumorigenic activity of these drugs. Many NSAIDs, as illustrated by sulindac sulfide, alter gene expressions by altering the expression or phosphorylation status of the transcription factors specificity protein 1 and early growth response-1 with the balance between these two events resulting in increases or decreases in specific target genes. In this review, we have summarized and discussed the various genes altered by this mechanism after NSAID treatment and how these changes in expression relate to the anti-tumorigenic activity. A major focus of the review is on NSAID-activated gene (NAG-1) or growth differentiation factor 15. This unique member of the TGF-β superfamily is highly induced by NSAIDs and numerous drugs and chemicals with anti-tumorigenic activities. Investigations with a transgenic mouse expressing the human NAG-1 suggest it acts to suppress tumor development in several mouse models of cancer. The biochemistry and biology of NAG-1 were discussed as potential contributor to cancer prevention by COX inhibitors. PMID:22020924
Zhu, Ye; Saraike, Tatsunori; Yamamoto, Yuko; Hagita, Hiroko; Takumi, Shigeo; Murai, Koji
2008-11-01
Homeotic transformation of stamens into pistil-like structures (pistillody) can occur in cytoplasmic substitution (alloplasmic) lines of bread wheat (Triticum aestivum) that have the cytoplasm of the related species, Aegilops crassa. Previously we showed that pistillody results from altered patterns of expression of class B MADS-box genes mediated by mitochondrial gene(s) in the Ae. crassa cytoplasm. The wheat cultivar Chinese Spring does not show pistillody when Ae. crassa cytoplasm is introduced. The absence of an effect is due to a single dominant gene (designated Rfd1) located on the long arm of chromosome 7B. To identify the mitochondrial gene involved in pistillody induction, we performed a subtraction analysis using cDNAs derived from young spikes of a pistillody line and a normal line. We found that mitochondrial cDNA clone R04 was abundant in the young spikes of the pistillody line but was down-regulated in the normal line that carried nuclear Rfd1. Sequencing of the full-length cDNA corresponding to clone R04 showed that two genes were present, cox I (cytochrome c oxidase subunit I) and orf260(cra). orf260(cra) shows high sequence similarity to orf256, the T. timopheevii mitochondrial gene responsible for cytoplasmic male sterility (CMS). orf260(cra) was also present in the cytoplasms of Ae. juvenalis and Ae. vavilovii, which induce pistillody, but not in the cytoplasms of other species not associated with pistillody. Furthermore, Western blot analysis revealed that the ORF260cra protein was more abundant in the pistillody line than in the normal line. We suggest therefore that orf260(cra) is associated with pistillody induction.
Saha, Anusree; Das, Shubhajit; Moin, Mazahar; Dutta, Mouboni; Bakshi, Achala; Madhav, M. S.; Kirti, P. B.
2017-01-01
Ribosomal proteins (RPs) are indispensable in ribosome biogenesis and protein synthesis, and play a crucial role in diverse developmental processes. Our previous studies on Ribosomal Protein Large subunit (RPL) genes provided insights into their stress responsive roles in rice. In the present study, we have explored the developmental and stress regulated expression patterns of Ribosomal Protein Small (RPS) subunit genes for their differential expression in a spatiotemporal and stress dependent manner. We have also performed an in silico analysis of gene structure, cis-elements in upstream regulatory regions, protein properties and phylogeny. Expression studies of the 34 RPS genes in 13 different tissues of rice covering major growth and developmental stages revealed that their expression was substantially elevated, mostly in shoots and leaves indicating their possible involvement in the development of vegetative organs. The majority of the RPS genes have manifested significant expression under all abiotic stress treatments with ABA, PEG, NaCl, and H2O2. Infection with important rice pathogens, Xanthomonas oryzae pv. oryzae (Xoo) and Rhizoctonia solani also induced the up-regulation of several of the RPS genes. RPS4, 13a, 18a, and 4a have shown higher transcript levels under all the abiotic stresses, whereas, RPS4 is up-regulated in both the biotic stress treatments. The information obtained from the present investigation would be useful in appreciating the possible stress-regulatory attributes of the genes coding for rice ribosomal small subunit proteins apart from their functions as house-keeping proteins. A detailed functional analysis of independent genes is required to study their roles in stress tolerance and generating stress- tolerant crops. PMID:28966624
Déquard-Chablat, Michelle; Sellem, Carole H; Golik, Pawel; Bidard, Frédérique; Martos, Alexandre; Bietenhader, Maïlis; di Rago, Jean-Paul; Sainsard-Chanet, Annie; Hermann-Le Denmat, Sylvie; Contamine, Véronique
2011-07-01
An F(1)F(O) ATP synthase in the inner mitochondrial membrane catalyzes the late steps of ATP production via the process of oxidative phosphorylation. A small protein subunit (subunit c or ATP9) of this enzyme shows a substantial genetic diversity, and its gene can be found in both the mitochondrion and/or nucleus. In a representative set of 26 species of fungi for which the genomes have been entirely sequenced, we found five Atp9 gene repartitions. The phylogenetic distribution of nuclear and mitochondrial Atp9 genes suggests that their evolution has included two independent transfers to the nucleus followed by several independent episodes of the loss of the mitochondrial and/or nuclear gene. Interestingly, we found that in Podospora anserina, subunit c is exclusively produced from two nuclear genes (PaAtp9-5 and PaAtp9-7), which display different expression profiles through the life cycle of the fungus. The PaAtp9-5 gene is specifically and strongly expressed in germinating ascospores, whereas PaAtp9-7 is mostly transcribed during sexual reproduction. Consistent with these observations, deletion of PaAtp9-5 is lethal, whereas PaAtp9-7 deletion strongly impairs ascospore production. The P. anserina PaAtp9-5 and PaAtp9-7 genes are therefore nonredundant. By swapping the 5' and 3' flanking regions between genes we demonstrated, however, that the PaAtp9 coding sequences are functionally interchangeable. These findings show that after transfer to the nucleus, the subunit c gene in Podospora became a key target for the modulation of cellular energy metabolism according to the requirements of the life cycle.
Wang, Pin-Yao; Chen, Hsiu-Ping; Chen, Angela; Tsay, Feng-Woei; Kao, Sung-Shuo; Peng, Nan-Jing; Tseng, Hui-Hwa; Hsu, Ping-I
2014-01-01
Aims. To investigate the impact of blood type, functional polymorphism (T-1676C) of the COX-1 gene promoter, and clinical factors on the development of peptic ulcer during cardiovascular prophylaxis with low-dose aspirin. Methods. In a case-control study including 111 low-dose aspirin users with peptic ulcers and 109 controls (asymptomatic aspirin users), the polymorphism (T-1676C) of the COX-1 gene promoter was genotyped, and blood type, H pylori status, and clinical factors were assessed. Results. Univariate analysis showed no significant differences in genotype frequencies of the COX-1 gene at position -1676 between the peptic ulcer group and control group. Multivariate analysis revealed that blood type O, advanced age, history of peptic ulcer, and concomitant use of NSAID were the independent risk factors for the development of peptic ulcer with the odds ratios of the 2.1, 3.1, 27.6, and 2.9, respectively. Conclusion. The C-1676T polymorphism in the COX-1 gene promoter is not a risk factor for ulcer formation during treatment with low-dose aspirin. Blood type O, advanced age, history of peptic ulcer, and concomitant use of NSAID are of independent significance in predicting peptic ulcer development during treatment with low-dose aspirin. PMID:25243161
Yoshino, M; Tsutsumi, K; Kanazawa, A
2015-01-01
β-Conglycinin, a major component of seed storage protein in soybean, comprises three subunits: α, α' and β. The expression of genes for these subunits is strictly controlled during embryogenesis. The proximal promoter region up to 245 bp upstream of the transcription start site of the α subunit gene sufficiently confers spatial and temporal control of transcription in embryos. Here, the binding profile of nuclear proteins in the proximal promoter region of the α subunit gene was analysed. DNase I footprinting analysis indicated binding of proteins to the RY element and DNA regions including box I, a region conserved in cognate gene promoters. An electrophoretic mobility shift assay (EMSA) using different portions of box I as a probe revealed that multiple portions of box I bind to nuclear proteins. In addition, an EMSA using nuclear proteins extracted from embryos at different developmental stages indicated that the levels of major DNA-protein complexes on box I increased during embryo maturation. These results are consistent with the notion that box I is important for the transcriptional control of seed storage protein genes. Furthermore, the present data suggest that nuclear proteins bind to novel motifs in box I including 5'-TCAATT-3' rather than to predicted cis-regulatory elements. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Cytochrome oxidase subunit II gene in mitochondria of Oenothera has no intron
Hiesel, Rudolf; Brennicke, Axel
1983-01-01
The cytochrome oxidase subunit II gene has been localized in the mitochondrial genome of Oenothera berteriana and the nucleotide sequence has been determined. The coding sequence contains 777 bp and, unlike the corresponding gene in Zea mays, is not interrupted by an intron. No TGA codon is found within the open reading frame. The codon CGG, as in the maize gene, is used in place of tryptophan codons of corresponding genes in other organisms. At position 742 in the Oenothera sequence the TGG of maize is changed into a CGG codon, where Trp is conserved as the amino acid in other organisms. Homologous sequences occur more than once in the mitochondrial genome as several mitochondrial DNA species hybridize with DNA probes of the cytochrome oxidase subunit II gene. ImagesFig. 5. PMID:16453484
Somers, Jason; Luong, Hang Ngoc Bao; Batterham, Philip; Perry, Trent
2018-01-02
Nicotinic acetylcholine receptors (nAChRs) have vital functions in processes of neurotransmission that underpin key behaviors. These pentameric ligand-gated ion channels have been used as targets for insecticides that constitutively activate them, causing the death of insect pests. In examining a knockout of the Dα1 nAChR subunit gene, our study linked this one subunit with multiple traits. We were able to confirm previous work that had identified Dα1 as a target of the neonicotinoid class of insecticides. Further, we uncovered roles for the gene in influencing mating behavior and patterns of sleep. The knockout mutant was also observed to have a significant reduction in longevity. This study highlighted the severe fitness costs that appear to be associated with the loss of function of this gene in natural populations in the absence of insecticides targeting the Dα1 subunit. Such a fitness cost could explain why target site resistances to neonicotinoids in pest insect populations have been associated specific amino acid replacement mutations in nAChR subunits, rather than loss of function. That mutant phenotypes were observed for the two behaviors examined indicates that the functions of Dα1, and other nAChR subunits, need to be explored more broadly. It also remains to be established whether these phenotypes were due to loss of the Dα1 receptor and/or to compensatory changes in the expression levels of other nAChR subunits.
Falcón-Pérez, Juan M; Romero-Calderón, Rafael; Brooks, Elizabeth S; Krantz, David E; Dell'Angelica, Esteban C
2007-02-01
Lysosome-related organelles comprise a group of specialized intracellular compartments that include melanosomes and platelet dense granules (in mammals) and eye pigment granules (in insects). In humans, the biogenesis of these organelles is defective in genetic disorders collectively known as Hermansky-Pudlak syndrome (HPS). Patients with HPS-2, and two murine HPS models, carry mutations in genes encoding subunits of adaptor protein (AP)-3. Other genes mutated in rodent models include those encoding VPS33A and Rab38. Orthologs of all of these genes in Drosophila melanogaster belong to the 'granule group' of eye pigmentation genes. Other genes associated with HPS encode subunits of three complexes of unknown function, named biogenesis of lysosome-related organelles complex (BLOC)-1, -2 and -3, for which the Drosophila counterparts had not been characterized. Here, we report that the gene encoding the Drosophila ortholog of the HPS5 subunit of BLOC-2 is identical to the granule group gene pink (p), which was first studied in 1910 but had not been identified at the molecular level. The phenotype of pink mutants was exacerbated by mutations in AP-3 subunits or in the orthologs of VPS33A and Rab38. These results validate D. melanogaster as a genetic model to study the function of the BLOCs.
Takaesu, Azusa; Watanabe, Kiyotaka; Takai, Shinji; Sasaki, Yukako; Orino, Koichi
2008-01-01
Background Iron-storage protein, ferritin plays a central role in iron metabolism. Ferritin has dual function to store iron and segregate iron for protection of iron-catalyzed reactive oxygen species. Tissue ferritin is composed of two kinds of subunits (H: heavy chain or heart-type subunit; L: light chain or liver-type subunit). Ferritin gene expression is controlled at translational level in iron-dependent manner or at transcriptional level in iron-independent manner. However, sequencing analysis of marine mammalian ferritin subunits has not yet been performed fully. The purpose of this study is to reveal cDNA-derived amino acid sequences of cetacean ferritin H and L subunits, and demonstrate the possibility of expression of these subunits, especially H subunit, by iron. Methods Sequence analyses of cetacean ferritin H and L subunits were performed by direct sequencing of polymerase chain reaction (PCR) fragments from cDNAs generated via reverse transcription-PCR of leukocyte total RNA prepared from blood samples of six different dolphin species (Pseudorca crassidens, Lagenorhynchus obliquidens, Grampus griseus, Globicephala macrorhynchus, Tursiops truncatus, and Delphinapterus leucas). The putative iron-responsive element sequence in the 5'-untranslated region of the six different dolphin species was revealed by direct sequencing of PCR fragments obtained using leukocyte genomic DNA. Results Dolphin H and L subunits consist of 182 and 174 amino acids, respectively, and amino acid sequence identities of ferritin subunits among these dolphins are highly conserved (H: 99–100%, (99→98) ; L: 98–100%). The conserved 28 bp IRE sequence was located -144 bp upstream from the initiation codon in the six different dolphin species. Conclusion These results indicate that six different dolphin species have conserved ferritin sequences, and suggest that these genes are iron-dependently expressed. PMID:18954429
Leigh syndrome associated with a novel mutation in the COX15 gene.
Miryounesi, Mohammad; Fardaei, Majid; Tabei, Seyed Mohammadbagher; Ghafouri-Fard, Soudeh
2016-06-01
Leigh syndrome (LS) is a subacute necrotizing encephalomyelopathy with a diverse range of symptoms, such as psychomotor delay or regression, weakness, hypotonia, truncal ataxia, intention tremor as well as lactic acidosis in the blood, cerebrospinal fluid or urine. Both nuclear gene defects and mutations of the mitochondrial genome have been detected in these patients. Here we report a 7-year-old girl with hypotonia, tremor, developmental delay and psychomotor regression. However, serum lactate level as well as brain magnetic resonance imaging were normal. Mutational analysis has revealed a novel mutation in exon 4 of COX15 gene (c.415C>G) which results in p.Leu139Val. Previous studies have demonstrated that COX15 mutations are associated with typical LS as well as fatal infantile hypertrophic cardiomyopathy. Consequently, clinical manifestations of COX15 mutations may be significantly different in patients. Such information is of practical importance in genetic counseling.
Cell-type-specific roles for COX-2 in UVB-induced skin cancer
Herschman, Harvey
2014-01-01
In human tumors, and in mouse models, cyclooxygenase-2 (COX-2) levels are frequently correlated with tumor development/burden. In addition to intrinsic tumor cell expression, COX-2 is often present in fibroblasts, myofibroblasts and endothelial cells of the tumor microenvironment, and in infiltrating immune cells. Intrinsic cancer cell COX-2 expression is postulated as only one of many sources for prostanoids required for tumor promotion/progression. Although both COX-2 inhibition and global Cox-2 gene deletion ameliorate ultraviolet B (UVB)-induced SKH-1 mouse skin tumorigenesis, neither manipulation can elucidate the cell type(s) in which COX-2 expression is required for tumorigenesis; both eliminate COX-2 activity in all cells. To address this question, we created Cox-2 flox/flox mice, in which the Cox-2 gene can be eliminated in a cell-type-specific fashion by targeted Cre recombinase expression. Cox-2 deletion in skin epithelial cells of SKH-1 Cox-2 flox/flox;K14Cre + mice resulted, following UVB irradiation, in reduced skin hyperplasia and increased apoptosis. Targeted epithelial cell Cox-2 deletion also resulted in reduced tumor incidence, frequency, size and proliferation rate, altered tumor cell differentiation and reduced tumor vascularization. Moreover, Cox-2 flox/flox;K14Cre + papillomas did not progress to squamous cell carcinomas. In contrast, Cox-2 deletion in SKH-1 Cox-2 flox/flox; LysMCre + myeloid cells had no effect on UVB tumor induction. We conclude that (i) intrinsic epithelial COX-2 activity plays a major role in UVB-induced skin cancer, (ii) macrophage/myeloid COX-2 plays no role in UVB-induced skin cancer and (iii) either there may be another COX-2-dependent prostanoid source(s) that drives UVB skin tumor induction or there may exist a COX-2-independent pathway(s) to UVB-induced skin cancer. PMID:24469308
Cell-type-specific roles for COX-2 in UVB-induced skin cancer.
Jiao, Jing; Mikulec, Carol; Ishikawa, Tomo-o; Magyar, Clara; Dumlao, Darren S; Dennis, Edward A; Fischer, Susan M; Herschman, Harvey
2014-06-01
In human tumors, and in mouse models, cyclooxygenase-2 (COX-2) levels are frequently correlated with tumor development/burden. In addition to intrinsic tumor cell expression, COX-2 is often present in fibroblasts, myofibroblasts and endothelial cells of the tumor microenvironment, and in infiltrating immune cells. Intrinsic cancer cell COX-2 expression is postulated as only one of many sources for prostanoids required for tumor promotion/progression. Although both COX-2 inhibition and global Cox-2 gene deletion ameliorate ultraviolet B (UVB)-induced SKH-1 mouse skin tumorigenesis, neither manipulation can elucidate the cell type(s) in which COX-2 expression is required for tumorigenesis; both eliminate COX-2 activity in all cells. To address this question, we created Cox-2(flox/flox) mice, in which the Cox-2 gene can be eliminated in a cell-type-specific fashion by targeted Cre recombinase expression. Cox-2 deletion in skin epithelial cells of SKH-1 Cox-2(flox/flox);K14Cre(+) mice resulted, following UVB irradiation, in reduced skin hyperplasia and increased apoptosis. Targeted epithelial cell Cox-2 deletion also resulted in reduced tumor incidence, frequency, size and proliferation rate, altered tumor cell differentiation and reduced tumor vascularization. Moreover, Cox-2(flox/flox);K14Cre(+) papillomas did not progress to squamous cell carcinomas. In contrast, Cox-2 deletion in SKH-1 Cox-2(flox/flox); LysMCre(+) myeloid cells had no effect on UVB tumor induction. We conclude that (i) intrinsic epithelial COX-2 activity plays a major role in UVB-induced skin cancer, (ii) macrophage/myeloid COX-2 plays no role in UVB-induced skin cancer and (iii) either there may be another COX-2-dependent prostanoid source(s) that drives UVB skin tumor induction or there may exist a COX-2-independent pathway(s) to UVB-induced skin cancer. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Xu, Haoming; Moni, Mohammad Ali; Liò, Pietro
2015-12-01
In cancer genomics, gene expression levels provide important molecular signatures for all types of cancer, and this could be very useful for predicting the survival of cancer patients. However, the main challenge of gene expression data analysis is high dimensionality, and microarray is characterised by few number of samples with large number of genes. To overcome this problem, a variety of penalised Cox proportional hazard models have been proposed. We introduce a novel network regularised Cox proportional hazard model and a novel multiplex network model to measure the disease comorbidities and to predict survival of the cancer patient. Our methods are applied to analyse seven microarray cancer gene expression datasets: breast cancer, ovarian cancer, lung cancer, liver cancer, renal cancer and osteosarcoma. Firstly, we applied a principal component analysis to reduce the dimensionality of original gene expression data. Secondly, we applied a network regularised Cox regression model on the reduced gene expression datasets. By using normalised mutual information method and multiplex network model, we predict the comorbidities for the liver cancer based on the integration of diverse set of omics and clinical data, and we find the diseasome associations (disease-gene association) among different cancers based on the identified common significant genes. Finally, we evaluated the precision of the approach with respect to the accuracy of survival prediction using ROC curves. We report that colon cancer, liver cancer and renal cancer share the CXCL5 gene, and breast cancer, ovarian cancer and renal cancer share the CCND2 gene. Our methods are useful to predict survival of the patient and disease comorbidities more accurately and helpful for improvement of the care of patients with comorbidity. Software in Matlab and R is available on our GitHub page: https://github.com/ssnhcom/NetworkRegularisedCox.git. Copyright © 2015. Published by Elsevier Ltd.
Piperaki, Evangelia-Theophano; Spanakos, Gregory; Patsantara, Giannoula; Vassalou, Evdokia; Vakalis, Nikolaos; Tsakris, Athanassios
2011-01-01
Human infection with the parasitic nematode Enterobius vermicularis occurs worldwide, particularly in children. Although its prevalence may exceed 35% in some parts of the world, molecular studies of E. vermicularis in humans are limited. The aim of the present study was to investigate the genetic variation within E. vermicularis in a human population. For this purpose, 77 adhesive tape samples taken from Greek children infested with E. vermicularis were tested. New primers were designed to amplify a segment of the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of E. vermicularis from adhesive tape samples. Thirty-six amplicons were sequenced and eleven different haplotypes were identified. All sequences clustered within the type previously characterized (type B), only reported to date from captive chimpanzees. To the best of our knowledge, this is the first study of E. vermicularis genotypes from a human population. Copyright © 2011 Elsevier Ltd. All rights reserved.
Rapid Molecular Identification of Human Taeniid Cestodes by Pyrosequencing Approach
Thanchomnang, Tongjit; Tantrawatpan, Chairat; Intapan, Pewpan M.; Sanpool, Oranuch; Janwan, Penchom; Lulitanond, Viraphong; Tourtip, Somjintana; Yamasaki, Hiroshi; Maleewong, Wanchai
2014-01-01
Taenia saginata, T. solium, and T. asiatica are causative agents of taeniasis in humans. The difficulty of morphological identification of human taeniids can lead to misdiagnosis or confusion. To overcome this problem, several molecular methods have been developed, but use of these tends to be time-consuming. Here, a rapid and high-throughput pyrosequencing approach was developed for the identification of three human taeniids originating from various countries. Primers targeting the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of the three Taenia species were designed. Variations in a 26-nucleotide target region were used for identification. The reproducibility and accuracy of the pyrosequencing technology was confirmed by Sanger sequencing. This technique will be a valuable tool to distinguish between sympatric human taeniids that occur in Thailand, Asia and Pacific countries. This method could potentially be used for the molecular identification of the taeniid species that might be associated with suspicious cysts and lesions, or cyst residues in humans or livestock at the slaughterhouse. PMID:24945530
Hu, D; Song, X; Wang, N; Zhong, X; Wang, J; Liu, T; Jiang, Z; Dawa, T; Gu, X; Peng, X; Yang, G
2015-10-30
Cystic echinococcosis (CE) is an important worldwide zoonotic disease that causes large economic losses and human suffering. Echinococcus granulosus, the causative agent of CE, exhibits different genotypes in different locations. In order to identify its genotypes and analyze its genetic structure on the Tibetan Plateau, we collected 72 hydatid cysts from different intermediate hosts and amplified and sequenced their mitochondrial cytochrome c oxidase subunit 2 (cox2) genes. Seventy isolates were identified as the E. granulosus G1 genotype, while two isolates belonged to the G6 genotype. There were 18 haplotypes among the 70 E. granulosus isolates, which exhibited a star-like network pattern and shared a common haplotype (H1). There was little difference between geographical sub-populations. Our results suggest that a recent E. granulosus population expansion occurred on the Tibetan Plateau, suggesting that E. granulosus was introduced into China. This study increases the basic molecular data needed for the molecular diagnosis, epidemiology, prevention, and control of Echinococcus diseases.
Monteiro, D U; Botton, S A; Tonin, A A; Azevedo, M I; Graichen, D A S; Noal, C B; de la Rue, M L
2014-05-28
The cystic echinococcosis (CE) is an important zoonotic disease caused by the parasite Echinococcus spp. In Brazil, this parasite is present in Rio Grande do Sul (RS) state, border with Argentina and Uruguay, causing several damages to human and animal health. This study aimed to identify Echinococcus spp. in hydatid cysts of swine and evaluate the similarity of the genotypes through the phylogenetic analysis. A total of 3,101,992 swine were slaughtered in the central/northern region of RS/Brazil, during 2008-2012. Five isolates were characterized as hydatid cyst by molecular analysis, based on the mitochondrial gene cytochrome c oxidase subunit I (cox-I). The genotypes E. granulosus sensu stricto (G1) (n=2) and E. canadensis (G7) (n=3) were identified in the hydatid cysts. The swine represents a potential intermediate host for different genotypes of Echinococcus spp., besides it can contribute to the perpetuation of the parasite's life cycle in rural areas. Copyright © 2014 Elsevier B.V. All rights reserved.
Noal, Charlise Bolson; Monteiro, Danieli Urach; Brum, Thiele Faccim de; Emmanouilidis, Jessica; Zanette, Regis Adriel; Morel, Ademir Farias; Stefanon, Eliza Beti de Cassia; Frosi, Marina; la Rue, Mario Luiz de
2017-01-01
Scolicidal agents are important in the treatment of cystic echinococcosis. This study evaluated the scolicidal activity of the plant Blepharocalyx salicifolius (H.B.K.) Berg against Echinococcus ortleppi protoscoleces. The parasite species was identified by amplifying a fragment of the gene cytochrome c oxidase subunit 1 (COX 1). B. salicifolius crude extract at concentrations of 100, 200, 300 and 400 mg/mL was analyzed at different times (5, 10, 15, 30, 45 and 60 min). N-butanol and ethyl acetate fractions (100 and 200 mg/ mL) were also analyzed at 5, 10, 15 and 30 min. Both fractions showed 100% scolicidal activity at the concentration of 200 mg/mL at 5 min. Gallic acid, identified as the major compound of the ethyl acetate fraction- was responsible for the observed scolicidal activity. The results showed that crude extract and fractions of B. salicifolius have scolicidal effect against E. ortleppi protoscoleces.
Cyclooxygenase-2 is an obligatory factor in methamphetamine-induced neurotoxicity.
Thomas, David M; Kuhn, Donald M
2005-05-01
Methamphetamine causes persistent damage to dopamine nerve endings of the striatum. The mechanisms underlying its neurotoxicity are not fully understood, but considerable evidence points to oxidative stress as a probable mechanism. A recent microarray analysis of gene expression changes caused by methamphetamine revealed that cyclooxygenase-2 (COX-2) was induced along with its transcription factor CCAAT/enhancer-binding protein (Thomas DM, Francescutti-Verbeem DM, Liu X, and Kuhn DM, 2004). We report presently that methamphetamine increases striatal expression of COX-2 protein. Cyclooxygenase-1 (COX-1) expression was not changed. Mice bearing a null mutation of the gene for COX-2 were resistant to methamphetamine-induced neurotoxicity. COX-1 knockouts, like wild-type mice, showed extensive dopamine nerve terminal damage. Selective inhibitors of COX-1 [5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-trifluoromethyl pyrazole (SC-560)], COX-2 [N-[2-(cyclohexyloxy)-4-nitrophenyl] methanesulfonamide (NS-398), rofecoxib], or COX-3 (antipyrine) or a nonselective inhibitor of the COX-1/2 isoforms (ketoprofen) did not protect mice from neurotoxicity. Finally, methamphetamine did not change striatal prostaglandin E(2) content. Taken together, these data suggest that COX-2 is an obligatory factor in methamphetamine-induced neurotoxicity. The functional aspect of COX-2 that contributes to drug-induced neurotoxicity does not appear to be its prostaglandin synthetic capacity. Instead, the peroxidase activity associated with COX-2, which can lead to the formation of reactive oxygen species and dopamine quinones, can account for its role.
Kim, Seokwoon; Choi, Youngsok; Spencer, Thomas E; Bazer, Fuller W
2003-01-01
In sheep, the uterus produces luteolytic pulses of prostaglandin F2α (PGF) on Days 15 to 16 of estrous cycle to regress the corpus luteum (CL). These PGF pulses are produced by the endometrial lumenal epithelium (LE) and superficial ductal glandular epithelium (sGE) in response to binding of pituitary and/or luteal oxytocin to oxytocin receptors (OTR) and liberation of arachidonic acid, the precursor of PGF. Cyclooxygenase-one (COX-1) and COX-2 are rate-limiting enzymes in PGF synthesis, and COX-2 is the major form expressed in ovine endometrium. During pregnancy recognition, interferon tau (IFNτ), produced by the conceptus trophectoderm, acts in a paracrine manner to suppress development of the endometrial epithelial luteolytic mechanism by inhibiting transcription of estrogen receptor α (ERα) (directly) and OTR (indirectly) genes. Conflicting studies indicate that IFNτ increases, decreases or has no effect on COX-2 expression in bovine and ovine endometrial cells. In Study One, COX-2 mRNA and protein were detected solely in endometrial LE and sGE of both cyclic and pregnant ewes. During the estrous cycle, COX-2 expression increased from Days 10 to 12 and then decreased to Day 16. During early pregnancy, COX-2 expression increased from Days 10 to 12 and remained higher than in cyclic ewes. In Study Two, intrauterine infusion of recombinant ovine IFNτ in cyclic ewes from Days 11 to 16 post-estrus did not affect COX-2 expression in the endometrial epithelium. These results clearly indicate that IFNτ has no effect on expression of the COX-2 gene in the ovine endometrium. Therefore, antiluteolytic effects of IFNτ are to inhibit ERα and OTR gene transcription, thereby preventing endometrial production of luteolytic pulses of PGF. Indeed, expression of COX-2 in the endometrial epithelia as well as conceptus is likely to have a beneficial regulatory role in implantation and development of the conceptus. PMID:12956885
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferre, Silvia; Veenstra, Gert Jan C.; Bouwmeester, Rianne
2011-01-07
Research highlights: {yields} Defects in HNF-1B transcription factor affect Mg{sup 2+} handling in the distal kidney. {yields} {gamma}a- and {gamma}b- subunits of the Na{sup +}/K{sup +}-ATPase colocalize in the distal convoluted tubule of the nephron. {yields} HNF-1B specifically activates {gamma}a expression. {yields} HNF-1B mutants have a dominant negative effect on wild type HNF-1B activity. {yields} Defective transcription of {gamma}a may promote renal Mg{sup 2+} wasting. -- Abstract: Hepatocyte nuclear factor-1B (HNF-1B) is a transcription factor involved in embryonic development and tissue-specific gene expression in several organs, including the kidney. Recently heterozygous mutations in the HNF1B gene have been identified inmore » patients with hypomagnesemia due to renal Mg{sup 2+} wasting. Interestingly, ChIP-chip data revealed HNF-1B binding sites in the FXYD2 gene, encoding the {gamma}-subunit of the Na{sup +}/K{sup +}-ATPase. The {gamma}-subunit has been described as one of the molecular players in the renal Mg{sup 2+} reabsorption in the distal convoluted tubule (DCT). Of note, the FXYD2 gene can be alternatively transcribed into two main variants, namely {gamma}a and {gamma}b. In the present study, we demonstrated via two different reporter gene assays that HNF-1B specifically acts as an activator of the {gamma}a-subunit, whereas the {gamma}b-subunit expression was not affected. Moreover, the HNF-1B mutations H69fsdelAC, H324S325fsdelCA, Y352finsA and K156E, previously identified in patients with hypomagnesemia, prevented transcription activation of {gamma}a-subunit via a dominant negative effect on wild type HNF1-B. By immunohistochemistry, it was shown that the {gamma}a- and {gamma}b-subunits colocalize at the basolateral membrane of the DCT segment of mouse kidney. On the basis of these data, we suggest that abnormalities involving the HNF-1B gene may impair the relative abundance of {gamma}a and {gamma}b, thus affecting the transcellular Mg{sup 2+} reabsorption in the DCT.« less
Bryant, D A; de Lorimier, R; Lambert, D H; Dubbs, J M; Stirewalt, V L; Stevens, S E; Porter, R D; Tam, J; Jay, E
1985-01-01
The genes for the alpha- and beta-subunit apoproteins of allophycocyanin (AP) were isolated from the cyanelle genome of Cyanophora paradoxa and subjected to nucleotide sequence analysis. The AP beta-subunit apoprotein gene was localized to a 7.8-kilobase-pair Pst I restriction fragment from cyanelle DNA by hybridization with a tetradecameric oligonucleotide probe. Sequence analysis using that oligonucleotide and its complement as primers for the dideoxy chain-termination sequencing method confirmed the presence of both AP alpha- and beta-subunit genes on this restriction fragment. Additional oligonucleotide primers were synthesized as sequencing progressed and were used to determine rapidly the nucleotide sequence of a 1336-base-pair region of this cloned fragment. This strategy allowed the sequencing to be completed without a detailed restriction map and without extensive and time-consuming subcloning. The sequenced region contains two open reading frames whose deduced amino acid sequences are 81-85% homologous to cyanobacterial and red algal AP subunits whose amino acid sequences have been determined. The two open reading frames are in the same orientation and are separated by 39 base pairs. AP alpha is 5' to AP beta and both coding sequences are preceded by a polypurine, Shine-Dalgarno-type sequence. Sequences upstream from AP alpha closely resemble the Escherichia coli consensus promoter sequences and also show considerable homology to promoter sequences for several chloroplast-encoded psbA genes. A 56-base-pair palindromic sequence downstream from the AP beta gene could play a role in the termination of transcription or translation. The allophycocyanin apoprotein subunit genes are located on the large single-copy region of the cyanelle genome. PMID:2987916
Coexpression of the KCNA3B gene product with Kv1.5 leads to a novel A-type potassium channel.
Leicher, T; Bähring, R; Isbrandt, D; Pongs, O
1998-12-25
Shaker-related voltage-gated potassium (Kv) channels may be heterooligomers consisting of membrane-integral alpha-subunits associated with auxiliary cytoplasmic beta-subunits. In this study we have cloned the human Kvbeta3.1 subunit and the corresponding KCNA3B gene. Identification of sequence-tagged sites in the gene mapped KCNA3B to band p13.1 of human chromosome 17. Comparison of the KCNA1B, KCNA2B, and KCNA3B gene structures showed that the three Kvbeta genes have very disparate lengths varying from >/=350 kb (KCNA1B) to approximately 7 kb (KCNA3B). Yet, the exon patterns of the three genes, which code for the seven known mammalian Kvbeta subunits, are very similar. The Kvbeta1 and Kvbeta2 splice variants are generated by alternative use of 5'-exons. Mouse Kvbeta4, a potential splice variant of Kvbeta3, is a read-through product where the open reading frame starts within the sequence intervening between Kvbeta3 exons 7 and 8. The human KCNA3B sequence does not contain a mouse Kvbeta4-like open reading frame. Human Kvbeta3 mRNA is specifically expressed in the brain, where it is predominantly detected in the cerebellum. The heterologous coexpression of human Kv1.5 and Kvbeta3.1 subunits in Chinese hamster ovary cells yielded a novel Kv channel mediating very fast inactivating (A-type) outward currents upon depolarization. Thus, the expression of Kvbeta3.1 subunits potentially extends the possibilities to express diverse A-type Kv channels in the human brain.
Therapeutic potential of Mediator complex subunits in metabolic diseases.
Ranjan, Amol; Ansari, Suraiya A
2018-01-01
The multisubunit Mediator is an evolutionary conserved transcriptional coregulatory complex in eukaryotes. It is needed for the transcriptional regulation of gene expression in general as well as in a gene specific manner. Mediator complex subunits interact with different transcription factors as well as components of RNA Pol II transcription initiation complex and in doing so act as a bridge between gene specific transcription factors and general Pol II transcription machinery. Specific interaction of various Mediator subunits with nuclear receptors (NRs) and other transcription factors involved in metabolism has been reported in different studies. Evidences indicate that ligand-activated NRs recruit Mediator complex for RNA Pol II-dependent gene transcription. These NRs have been explored as therapeutic targets in different metabolic diseases; however, they show side-effects as targets due to their overlapping involvement in different signaling pathways. Here we discuss the interaction of various Mediator subunits with transcription factors involved in metabolism and whether specific interaction of these transcription factors with Mediator subunits could be potentially utilized as therapeutic strategy in a variety of metabolic diseases. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
NASA Technical Reports Server (NTRS)
Kopczynski, E. D.; Bateson, M. M.; Ward, D. M.
1994-01-01
When PCR was used to recover small-subunit (SSU) rRNA genes from a hot spring cyanobacterial mat community, chimeric SSU rRNA sequences which exhibited little or no secondary structural abnormality were recovered. They were revealed as chimeras of SSU rRNA genes of uncultivated species through separate phylogenetic analysis of short sequence domains.
Sheen, Jenq-Yunn; Bogorad, Lawrence
1986-01-01
Transcripts of three distinct ribulose-1,5-bisphosphate carboxylase (RuBPC) small subunit (SS) genes account for ∼90% of the mRNA for this protein in maize leaves. Transcripts of two of them constitute >80% of the SS mRNA in 24-h greening maize leaves. The third gene contribute ∼10%. Transcripts of all three nuclear-encoded SS genes are detectable in bundle sheath (BSC) and mesophyll cells (MC) of etiolated maize leaves. The level of mRNA for each gene is different in etioplasts of MC but all drop during photoregulated development of chloroplasts in MC and follow a pattern of transitory rise and fall in BSC. The amounts of LS and SS proteins continue to increase steadily well after the mRNA levels reach their peaks in BSC. The molar ratio of mRNA for chloroplast-encoded RuBPC large subunit (LS) to the nuclear genome encoded SS is about 10:1 although LS and SS proteins are present in about equimolar amounts. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4.Fig. 5.Fig. 6. PMID:16453739
Hashad, Doaa; Elgohry, Iman; Dwedar, Fatma
2016-11-01
Chronic kidney disease (CKD) is characterized by progressive irreversible deterioration of renal functions. Advanced stages of CKD are associated with oxidative stress due to the imbalance between oxidant production and antioxidant defense mechanisms. Survival of patients with end stage renal diseases is maintained on variable forms of renal replacement therapies (RRT) which include peritoneal dialysis, hemodialysis, and sometimes renal transplantation. In humans, Nuclear Respiratory Factor 1 (NRF-1) gene encodes for a transcription factor that, together with the transcriptional co-activator encoded by Peroxisome Proliferator activated Receptor Gamma coactivator 1 Alpha (PGC1-a) gene, stimulates the expression of a broad set of nuclear genes (as COX6C) which are involved in mitochondrial biogenesis and functions. As mitochondria are considered a major source of reactive oxidant species, the objective of the present study was to assess mitochondrial oxidative dysregulation occurring in chronic kidney disease patients undergoing hemodialysis employing NRF-1 and COX6C genes' expression as an indicator of mitochondrial oxidative metabolism. Forty-nine chronic kidney disease patients undergoing intermittent hemodialysis were included in the present study. A group of thirty-three age- and gender- matched healthy volunteers served as a control group. Assessment of expression of NRF-1 and COX6C genes was performed using quantitative real-time PCR technique. NRF-1 and COX6C expression showed a statistically significant difference between both studied groups being down-regulated in CKD patients. In addition, malondialdehyde (MDA) levels were higher in patients on hemodialysis indicating lipid peroxidation. A negative correlation was detected between MDA level and expression of both NRF-1 and COX6C genes. Chronic kidney disease patients undergoing hemodialysis might be subjected to potential mitochondrial oxidative dysregulation with subsequent possible vascular and tissue injury.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehmeyer, B.; Cashmore, A.R.; Schaefer, E.
Phytochrome and the blue ultraviolet-A photoreceptor control light-induced expression of genes encoding the chlorophyll a/b binding protein of photosystem II and photosystem I and the genes for the small subunit of the ribulose-1,5-bisphosphate carboxylase in etiolated seedlings of Lycopersicon esculentum (tomato) and Nicotiana tabacum (tobacco). A high irradiance response also controls the induction of these genes. Genes encoding photosystem II- and I-associated chlorophyll a/b binding proteins both exhibit a transient rapid increase in expression in response to light pulse or to continuous irradiation. In contrast, genes encoding the small subunit exhibit a continuous increase in expression in response to light.more » These distinct expression characteristics are shown to reflect differences at the level of transcription.« less
Fontaine, Jean-Xavier; Saladino, Francesca; Agrimonti, Caterina; Bedu, Magali; Tercé-Laforgue, Thérèse; Tétu, Thierry; Hirel, Bertrand; Restivo, Francesco M; Dubois, Frédéric
2006-03-01
Although the physiological role of the enzyme glutamate dehydrogenase which catalyses in vitro the reversible amination of 2-oxoglutarate to glutamate remains to be elucidated, it is now well established that in higher plants the enzyme preferentially occurs in the mitochondria of phloem companion cells. The Nicotiana plumbaginifolia and Arabidopis thaliana enzyme is encoded by two distinct genes encoding either an alpha- or a beta-subunit. Using antisense plants and mutants impaired in the expression of either of the two genes, we showed that in leaves and stems both the alpha- and beta-subunits are targeted to the mitochondria of the companion cells. In addition, we found in both species that there is a compensatory mechanism up-regulating the expression of the alpha-subunit in the stems when the expression of the beta-subunit is impaired in the leaves, and of the beta-subunit in the leaves when the expression of the alpha-subunit is impaired in the stems. When one of the two genes encoding glutamate dehydrogenase is ectopically expressed, the corresponding protein is targeted to the mitochondria of both leaf and stem parenchyma cells and its production is increased in the companion cells. These results are discussed in relation to the possible signalling and/or physiological function of the enzyme which appears to be coordinated in leaves and stems.
Chowdappa, P; Kumar, B J Nirmal; Kumar, S P Mohan; Madhura, S; Bhargavi, B Reddi; Lakshmi, M Jyothi
2016-12-01
Severe outbreaks of Phytophthora fruit rot on brinjal, ridge gourd, and tomato have been observed since 2011 in Andhra Pradesh, Karnataka, Telangana, and Tamil Nadu states of India. Therefore, 76 Phytophthora nicotianae isolates, recovered from brinjal (17), ridge gourd (40), and tomato (19) from different localities in these states during the June to December cropping season of 2012 and 2013, were characterized based on phenotypic and genotypic analyses and aggressiveness on brinjal, tomato, and ridge gourd. All brinjal and ridge gourd isolates were A2, while tomato isolates were both A1 (13) and A2 (6). All isolates were metalaxyl sensitive. In addition, isolates were genotyped for three mitochondrial (ribosomal protein L5-small subunit ribosomal RNA [rpl5-rns], small subunit ribosomal RNA-cytochrome c oxidase subunit 2 [rns-cox2], and cox2+spacer) and three nuclear loci (hypothetical protein [hyp], scp-like extracellular protein [scp], and beta-tubulin [β-tub]). All regions were polymorphic but nuclear regions were more variable than mitochondrial regions. The network analysis of genotypes using the combined dataset of three nuclear regions revealed a host-specific association. However, the network generated using mitochondrial regions limited such host-specific groupings only to brinjal isolates. P. nicotianae isolates were highly aggressive and produced significantly (P ≤ 0.01) larger lesions on their respective host of origin than on other hosts. The results indicate significant genetic variation in the population of P. nicotianae, leading to identification of host-specific lineages responsible for severe outbreaks on brinjal, ridge gourd, and tomato.
Functional conservation of RNA polymerase II in fission and budding yeasts.
Shpakovski, G V; Gadal, O; Labarre-Mariotte, S; Lebedenko, E N; Miklos, I; Sakurai, H; Proshkin, S A; Van Mullem, V; Ishihama, A; Thuriaux, P
2000-02-04
The complementary DNAs of the 12 subunits of fission yeast (Schizosaccharomyces pombe) RNA polymerase II were expressed from strong promoters in Saccharomyces cerevisiae and tested for heterospecific complementation by monitoring their ability to replace in vivo the null mutants of the corresponding host genes. Rpb1 and Rpb2, the two largest subunits and Rpb8, a small subunit shared by all three polymerases, failed to support growth in S. cerevisiae. The remaining nine subunits were all proficient for heterospecific complementation and led in most cases to a wild-type level of growth. The two alpha-like subunits (Rpb3 and Rpb11), however, did not support growth at high (37 degrees C) or low (25 degrees C) temperatures. In the case of Rpb3, growth was restored by increasing the gene dosage of the host Rpb11 or Rpb10 subunits, confirming previous evidence of a close genetic interaction between these three subunits. Copyright 2000 Academic Press.
Gene-Based Association Analysis for Censored Traits Via Fixed Effect Functional Regressions.
Fan, Ruzong; Wang, Yifan; Yan, Qi; Ding, Ying; Weeks, Daniel E; Lu, Zhaohui; Ren, Haobo; Cook, Richard J; Xiong, Momiao; Swaroop, Anand; Chew, Emily Y; Chen, Wei
2016-02-01
Genetic studies of survival outcomes have been proposed and conducted recently, but statistical methods for identifying genetic variants that affect disease progression are rarely developed. Motivated by our ongoing real studies, here we develop Cox proportional hazard models using functional regression (FR) to perform gene-based association analysis of survival traits while adjusting for covariates. The proposed Cox models are fixed effect models where the genetic effects of multiple genetic variants are assumed to be fixed. We introduce likelihood ratio test (LRT) statistics to test for associations between the survival traits and multiple genetic variants in a genetic region. Extensive simulation studies demonstrate that the proposed Cox RF LRT statistics have well-controlled type I error rates. To evaluate power, we compare the Cox FR LRT with the previously developed burden test (BT) in a Cox model and sequence kernel association test (SKAT), which is based on mixed effect Cox models. The Cox FR LRT statistics have higher power than or similar power as Cox SKAT LRT except when 50%/50% causal variants had negative/positive effects and all causal variants are rare. In addition, the Cox FR LRT statistics have higher power than Cox BT LRT. The models and related test statistics can be useful in the whole genome and whole exome association studies. An age-related macular degeneration dataset was analyzed as an example. © 2016 WILEY PERIODICALS, INC.
Gene-based Association Analysis for Censored Traits Via Fixed Effect Functional Regressions
Fan, Ruzong; Wang, Yifan; Yan, Qi; Ding, Ying; Weeks, Daniel E.; Lu, Zhaohui; Ren, Haobo; Cook, Richard J; Xiong, Momiao; Swaroop, Anand; Chew, Emily Y.; Chen, Wei
2015-01-01
Summary Genetic studies of survival outcomes have been proposed and conducted recently, but statistical methods for identifying genetic variants that affect disease progression are rarely developed. Motivated by our ongoing real studies, we develop here Cox proportional hazard models using functional regression (FR) to perform gene-based association analysis of survival traits while adjusting for covariates. The proposed Cox models are fixed effect models where the genetic effects of multiple genetic variants are assumed to be fixed. We introduce likelihood ratio test (LRT) statistics to test for associations between the survival traits and multiple genetic variants in a genetic region. Extensive simulation studies demonstrate that the proposed Cox RF LRT statistics have well-controlled type I error rates. To evaluate power, we compare the Cox FR LRT with the previously developed burden test (BT) in a Cox model and sequence kernel association test (SKAT) which is based on mixed effect Cox models. The Cox FR LRT statistics have higher power than or similar power as Cox SKAT LRT except when 50%/50% causal variants had negative/positive effects and all causal variants are rare. In addition, the Cox FR LRT statistics have higher power than Cox BT LRT. The models and related test statistics can be useful in the whole genome and whole exome association studies. An age-related macular degeneration dataset was analyzed as an example. PMID:26782979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spreitzer, Robert J.
CO{sub 2} and O{sub 2} are mutually competitive at the active site of ribulose-1,5-biphosphate (RuBP) carboxylase/oxygenase (Rubisco). Rubisco contains two subunits, each present in eight copies. The 15-kD small subunit is coded by a family of nuclear RbcS genes. Until now, the role of the small subunit in Rubisco structure or catalytic efficiency is not known. Because of other work in eliminating the two RbcS genes in the green algo Chlamydomonas reinhardtii, it is now possible to address questions about the structure-function relationships of the eukaryotic small subunit. There are three specific aims in this project: (1) Alanine scanning mutagenesismore » is being used to dissect the importance of the {beta}A/{beta}B loop, a feature unique to the eukaryotic small subunit. (2) Random mutagenesis is being used to identify additional residues or regions of the small subunit that are important for holoenzyme assembly and function. (3) Attempts are being made to express foreign small subunits in Chlamydomonas to examine the contribution of small subunits to holoenzyme assembly, catalytic efficiency, and CO{sub 2}/O{sub 2} specificity.« less
Gornik, S. G.; Waller, R. F.
2012-01-01
The sister phyla dinoflagellates and apicomplexans inherited a drastically reduced mitochondrial genome (mitochondrial DNA, mtDNA) containing only three protein-coding (cob, cox1, and cox3) genes and two ribosomal RNA (rRNA) genes. In apicomplexans, single copies of these genes are encoded on the smallest known mtDNA chromosome (6 kb). In dinoflagellates, however, the genome has undergone further substantial modifications, including massive genome amplification and recombination resulting in multiple copies of each gene and gene fragments linked in numerous combinations. Furthermore, protein-encoding genes have lost standard stop codons, trans-splicing of messenger RNAs (mRNAs) is required to generate complete cox3 transcripts, and extensive RNA editing recodes most genes. From taxa investigated to date, it is unclear when many of these unusual dinoflagellate mtDNA characters evolved. To address this question, we investigated the mitochondrial genome and transcriptome character states of the deep branching dinoflagellate Hematodinium sp. Genomic data show that like later-branching dinoflagellates Hematodinium sp. also contains an inflated, heavily recombined genome of multicopy genes and gene fragments. Although stop codons are also lacking for cox1 and cob, cox3 still encodes a conventional stop codon. Extensive editing of mRNAs also occurs in Hematodinium sp. The mtDNA of basal dinoflagellate Hematodinium sp. indicates that much of the mtDNA modification in dinoflagellates occurred early in this lineage, including genome amplification and recombination, and decreased use of standard stop codons. Trans-splicing, on the other hand, occurred after Hematodinium sp. diverged. Only RNA editing presents a nonlinear pattern of evolution in dinoflagellates as this process occurs in Hematodinium sp. but is absent in some later-branching taxa indicating that this process was either lost in some lineages or developed more than once during the evolution of the highly unusual dinoflagellate mtDNA. PMID:22113794
Jackson, C J; Gornik, S G; Waller, R F
2012-01-01
The sister phyla dinoflagellates and apicomplexans inherited a drastically reduced mitochondrial genome (mitochondrial DNA, mtDNA) containing only three protein-coding (cob, cox1, and cox3) genes and two ribosomal RNA (rRNA) genes. In apicomplexans, single copies of these genes are encoded on the smallest known mtDNA chromosome (6 kb). In dinoflagellates, however, the genome has undergone further substantial modifications, including massive genome amplification and recombination resulting in multiple copies of each gene and gene fragments linked in numerous combinations. Furthermore, protein-encoding genes have lost standard stop codons, trans-splicing of messenger RNAs (mRNAs) is required to generate complete cox3 transcripts, and extensive RNA editing recodes most genes. From taxa investigated to date, it is unclear when many of these unusual dinoflagellate mtDNA characters evolved. To address this question, we investigated the mitochondrial genome and transcriptome character states of the deep branching dinoflagellate Hematodinium sp. Genomic data show that like later-branching dinoflagellates Hematodinium sp. also contains an inflated, heavily recombined genome of multicopy genes and gene fragments. Although stop codons are also lacking for cox1 and cob, cox3 still encodes a conventional stop codon. Extensive editing of mRNAs also occurs in Hematodinium sp. The mtDNA of basal dinoflagellate Hematodinium sp. indicates that much of the mtDNA modification in dinoflagellates occurred early in this lineage, including genome amplification and recombination, and decreased use of standard stop codons. Trans-splicing, on the other hand, occurred after Hematodinium sp. diverged. Only RNA editing presents a nonlinear pattern of evolution in dinoflagellates as this process occurs in Hematodinium sp. but is absent in some later-branching taxa indicating that this process was either lost in some lineages or developed more than once during the evolution of the highly unusual dinoflagellate mtDNA.
Brehm, Anja; Liu, Yin; Sheikh, Afzal; Marrero, Bernadette; Omoyinmi, Ebun; Zhou, Qing; Montealegre, Gina; Biancotto, Angelique; Reinhardt, Adam; Almeida de Jesus, Adriana; Pelletier, Martin; Tsai, Wanxia L.; Remmers, Elaine F.; Kardava, Lela; Hill, Suvimol; Kim, Hanna; Lachmann, Helen J.; Megarbane, Andre; Chae, Jae Jin; Brady, Jilian; Castillo, Rhina D.; Brown, Diane; Casano, Angel Vera; Gao, Ling; Chapelle, Dawn; Huang, Yan; Stone, Deborah; Chen, Yongqing; Sotzny, Franziska; Lee, Chyi-Chia Richard; Kastner, Daniel L.; Torrelo, Antonio; Zlotogorski, Abraham; Moir, Susan; Gadina, Massimo; McCoy, Phil; Wesley, Robert; Rother, Kristina; Hildebrand, Peter W.; Brogan, Paul; Krüger, Elke; Aksentijevich, Ivona; Goldbach-Mansky, Raphaela
2015-01-01
Autosomal recessive mutations in proteasome subunit β 8 (PSMB8), which encodes the inducible proteasome subunit β5i, cause the immune-dysregulatory disease chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE), which is classified as a proteasome-associated autoinflammatory syndrome (PRAAS). Here, we identified 8 mutations in 4 proteasome genes, PSMA3 (encodes α7), PSMB4 (encodes β7), PSMB9 (encodes β1i), and proteasome maturation protein (POMP), that have not been previously associated with disease and 1 mutation in PSMB8 that has not been previously reported. One patient was compound heterozygous for PSMB4 mutations, 6 patients from 4 families were heterozygous for a missense mutation in 1 inducible proteasome subunit and a mutation in a constitutive proteasome subunit, and 1 patient was heterozygous for a POMP mutation, thus establishing a digenic and autosomal dominant inheritance pattern of PRAAS. Function evaluation revealed that these mutations variably affect transcription, protein expression, protein folding, proteasome assembly, and, ultimately, proteasome activity. Moreover, defects in proteasome formation and function were recapitulated by siRNA-mediated knockdown of the respective subunits in primary fibroblasts from healthy individuals. Patient-isolated hematopoietic and nonhematopoietic cells exhibited a strong IFN gene-expression signature, irrespective of genotype. Additionally, chemical proteasome inhibition or progressive depletion of proteasome subunit gene transcription with siRNA induced transcription of type I IFN genes in healthy control cells. Our results provide further insight into CANDLE genetics and link global proteasome dysfunction to increased type I IFN production. PMID:26524591
Watanabe, Satoko; Kakudo, Akemi; Ohta, Masato; Mita, Kazuei; Fujiyama, Kazuhito; Inumaru, Shigeki
2013-04-01
The α-glucosidase II (GII) is a heterodimer of α- and β-subunits and important for N-glycosylation processing and quality control of nascent glycoproteins. Although high concentration of α-glucosidase inhibitors from mulberry leaves accumulate in silkworms (Bombyx mori) by feeding, silkworm does not show any toxic symptom against these inhibitors and N-glycosylation of recombinant proteins is not affected. We, therefore, hypothesized that silkworm GII is not sensitive to the α-glucosidase inhibitors from mulberry leaves. However, the genes for B. mori GII subunits have not yet been identified, and the protein has not been characterized. Therefore, we isolated the B. mori GII α- and β-subunit genes and the GII α-subunit gene of Spodoptera frugiperda, which does not feed on mulberry leaves. We used a baculovirus expression system to produce the recombinant GII subunits and identified their enzyme characteristics. The recombinant GII α-subunits of B. mori and S. frugiperda hydrolyzed p-nitrophenyl α-d-glucopyranoside (pNP-αGlc) but were inactive toward N-glycan. Although the B. mori GII β-subunit was not required for the hydrolysis of pNP-αGlc, a B. mori GII complex of the α- and β-subunits was required for N-glycan cleavage. As hypothesized, the B. mori GII α-subunit protein was less sensitive to α-glucosidase inhibitors than was the S. frugiperda GII α-subunit protein. Our observations suggest that the low sensitivity of GII contributes to the ability of B. mori to evade the toxic effect of α-glucosidase inhibitors from mulberry leaves. Copyright © 2013 Elsevier Ltd. All rights reserved.
Systemic and Cerebral Iron Homeostasis in Ferritin Knock-Out Mice
Li, Wei; Garringer, Holly J.; Goodwin, Charles B.; Richine, Briana; Acton, Anthony; VanDuyn, Natalia; Muhoberac, Barry B.; Irimia-Dominguez, Jose; Chan, Rebecca J.; Peacock, Munro; Nass, Richard; Ghetti, Bernardino; Vidal, Ruben
2015-01-01
Ferritin, a 24-mer heteropolymer of heavy (H) and light (L) subunits, is the main cellular iron storage protein and plays a pivotal role in iron homeostasis by modulating free iron levels thus reducing radical-mediated damage. The H subunit has ferroxidase activity (converting Fe(II) to Fe(III)), while the L subunit promotes iron nucleation and increases ferritin stability. Previous studies on the H gene (Fth) in mice have shown that complete inactivation of Fth is lethal during embryonic development, without ability to compensate by the L subunit. In humans, homozygous loss of the L gene (FTL) is associated with generalized seizure and atypical restless leg syndrome, while mutations in FTL cause a form of neurodegeneration with brain iron accumulation. Here we generated mice with genetic ablation of the Fth and Ftl genes. As previously reported, homozygous loss of the Fth allele on a wild-type Ftl background was embryonic lethal, whereas knock-out of the Ftl allele (Ftl-/-) led to a significant decrease in the percentage of Ftl-/- newborn mice. Analysis of Ftl-/- mice revealed systemic and brain iron dyshomeostasis, without any noticeable signs of neurodegeneration. Our findings indicate that expression of the H subunit can rescue the loss of the L subunit and that H ferritin homopolymers have the capacity to sequester iron in vivo. We also observed that a single allele expressing the H subunit is not sufficient for survival when both alleles encoding the L subunit are absent, suggesting the need of some degree of complementation between the subunits as well as a dosage effect. PMID:25629408
Genetic analysis of the cytoplasmic dynein subunit families.
Pfister, K Kevin; Shah, Paresh R; Hummerich, Holger; Russ, Andreas; Cotton, James; Annuar, Azlina Ahmad; King, Stephen M; Fisher, Elizabeth M C
2006-01-01
Cytoplasmic dyneins, the principal microtubule minus-end-directed motor proteins of the cell, are involved in many essential cellular processes. The major form of this enzyme is a complex of at least six protein subunits, and in mammals all but one of the subunits are encoded by at least two genes. Here we review current knowledge concerning the subunits, their interactions, and their functional roles as derived from biochemical and genetic analyses. We also carried out extensive database searches to look for new genes and to clarify anomalies in the databases. Our analysis documents evolutionary relationships among the dynein subunits of mammals and other model organisms, and sheds new light on the role of this diverse group of proteins, highlighting the existence of two cytoplasmic dynein complexes with distinct cellular roles.
Genetic Analysis of the Cytoplasmic Dynein Subunit Families
Pfister, K. Kevin; Shah, Paresh R; Hummerich, Holger; Russ, Andreas; Cotton, James; Annuar, Azlina Ahmad; King, Stephen M; Fisher, Elizabeth M. C
2006-01-01
Cytoplasmic dyneins, the principal microtubule minus-end-directed motor proteins of the cell, are involved in many essential cellular processes. The major form of this enzyme is a complex of at least six protein subunits, and in mammals all but one of the subunits are encoded by at least two genes. Here we review current knowledge concerning the subunits, their interactions, and their functional roles as derived from biochemical and genetic analyses. We also carried out extensive database searches to look for new genes and to clarify anomalies in the databases. Our analysis documents evolutionary relationships among the dynein subunits of mammals and other model organisms, and sheds new light on the role of this diverse group of proteins, highlighting the existence of two cytoplasmic dynein complexes with distinct cellular roles. PMID:16440056
Upadhyay, Rohit; Jain, Meenu; Kumar, Shaleen; Ghoshal, Uday Chand; Mittal, Balraj
2009-04-26
Cyclooxygenase-2 (COX-2) influences carcinogenesis through regulation of angiogenesis, apoptosis and cytokine expression. We aimed to evaluate association of COX-2 polymorphisms with predisposition to esophageal squamous cell carcinoma (ESCC), its phenotype variability and modulation of environmental risk in northern Indian population. We genotyped 174 patients with ESCC and 216 controls for COX-2 gene polymorphisms (-765G>C; -1195G>A; -1290A>G; 3'UTR 8473T>C) using PCR-RFLP. Data were statistically analyzed using chi-square test and logistic regression model. COX-2 -765C allele carriers were at increased risk for ESCC (OR=1.66; 95% CI=1.08-2.54; P=0.004). However, -1195G>A; -1290A>G; 3'UTR 8473T>C polymorphisms of COX-2 gene were not significantly associated with ESCC. We observed significantly enhanced risk for ESCC due to interaction between COX-2 -1195GAx-765GC+CC genotypes (OR=4.60; 95% CI=1.63-13.01; P=0.004). High risk to ESCC was also observed with respect to COX-2 haplotypes, A(-1290)G(-1195)C(-765)T(8473) and A(-1290)A(-1195)C(-765)T(8473) [OR=3.35; 95% CI=0.83-13.44; P=0.089; OR=4.28; 95% CI=0.43-42.40; P=0.246] however, it was not statistically significant. Stratification of subjects based on gender showed that females were at higher risk for ESCC due to COX-2 -765C carrier genotypes (OR=2.97; 95% CI=1.23-7.18; P=0.016). In association of genotypes with clinical characteristics, -765C carrier genotype conferred risk of ESCC in middle third of esophagus (OR=1.78; 95% CI=1.08-2.93; P=0.023). In case-only analysis, interaction of environmental risk factors and COX-2 genotypes did not further modulate the risk for ESCC. In summary, COX-2 -765G>C polymorphism confers ESCC susceptibility particularly in females and patients with middle third anatomical location of the tumor. Interaction of COX-2 -1195GA and -765C carrier genotypes also modulates ESCC risk.
Yang, F; Curran, S C; Li, L S; Avarbock, D; Graf, J D; Chua, M M; Lu, G; Salem, J; Rubin, H
1997-01-01
Two nrdF genes, nrdF1 and nrdF2, encoding the small subunit (R2) of ribonucleotide reductase (RR) from Mycobacterium tuberculosis have 71% identity at the amino acid level and are both highly homologous with Salmonella typhimurium R2F. The calculated molecular masses of R2-1 and R2-2 are 36,588 (322 amino acids [aa]) and 36,957 (324 aa) Da, respectively. Western blot analysis of crude M. tuberculosis extracts indicates that both R2s are expressed in vivo. Recombinant R2-2 is enzymatically active when assayed with pure recombinant M. tuberculosis R1 subunit. Both ATP and dATP are activators for CDP reduction up to 2 and 1 mM, respectively. The gene encoding M. tuberculosis R2-1, nrdF1, is not linked to nrdF2, nor is either gene linked to the gene encoding the large subunit, M. tuberculosis nrdE. The gene encoding MTP64 was found downstream from nrdF1, and the gene encoding alcohol dehydrogenase was found downstream from nrdF2. A nrdA(Ts) strain of E. coli (E101) could be complemented by simultaneous transformation with M. tuberculosis nrdE and nrdF2. An M. tuberculosis nrdF2 variant in which the codon for the catalytically necessary tyrosine was replaced by the phenylalanine codon did not complement E101 when cotransformed with M. tuberculosis nrdE. Similarly, M. tuberculosis nrdF1 and nrdE did not complement E101. Activity of recombinant M. tuberculosis RR was inhibited by incubating the enzyme with a peptide corresponding to the 7 C-terminal amino acid residues of the R2-2 subunit. M. tuberculosis is a species in which a nrdEF system appears to encode the biologically active species of RR and also the only bacterial species identified so far in which class I RR subunits are not arranged on an operon. PMID:9335290
Daing, Anika; Singh, Sarvendra Vikram; Saimbi, Charanjeet Singh; Khan, Mohammad Akhlaq
2012-01-01
Purpose Cyclooxygenase (COX) enzyme catalyzes the production of prostaglandins, which are important mediators of tissue destruction in periodontitis. Single nucleotide polymorphisms of COX2 enzyme have been associated with increasing susceptibility to inflammatory diseases. The present study evaluates the association of two single nucleotide polymorphisms in COX2 gene (-1195G>A and 8473C>T) with chronic periodontitis in North Indians. Methods Both SNPs and their haplotypes were used to explore the associations between COX2 polymorphisms and chronic periodontitis in 56 patients and 60 controls. Genotyping was done by polymerase chain reaction followed by restriction fragment length polymorphism. Chi-square test and logistic regression analysis were performed for association analysis. Results By the individual genotype analysis, mutant genotypes (GA and AA) of COX2 -1195 showed more than a two fold risk (odds ratio [OR]>2) and COX2 8473 (TC and CC) showed a reduced risk for the disease, but the findings were not statistically significant. Haplotype analysis showed that the frequency of the haplotype AT was higher in the case group and a significant association was found for haplotype AT (OR, 1.79; 95% confidence interval, 1.03 to 3.11; P=0.0370) indicating an association between the AT haplotype of COX2 gene SNPs and chronic periodontitis. Conclusions Individual genotypes of both the SNPs were not associated while haplotype AT was found to be associated with chronic periodontitis in North Indians. PMID:23185695
DNA barcoding for molecular identification of Demodex based on mitochondrial genes.
Hu, Li; Yang, YuanJun; Zhao, YaE; Niu, DongLing; Yang, Rui; Wang, RuiLing; Lu, Zhaohui; Li, XiaoQi
2017-12-01
There has been no widely accepted DNA barcode for species identification of Demodex. In this study, we attempted to solve this issue. First, mitochondrial cox1-5' and 12S gene fragments of Demodex folloculorum, D. brevis, D. canis, and D. caprae were amplified, cloned, and sequenced for the first time; intra/interspecific divergences were computed and phylogenetic trees were reconstructed. Then, divergence frequency distribution plots of those two gene fragments were drawn together with mtDNA cox1-middle region and 16S obtained in previous studies. Finally, their identification efficiency was evaluated by comparing barcoding gap. Results indicated that 12S had the higher identification efficiency. Specifically, for cox1-5' region of the four Demodex species, intraspecific divergences were less than 2.0%, and interspecific divergences were 21.1-31.0%; for 12S, intraspecific divergences were less than 1.4%, and interspecific divergences were 20.8-26.9%. The phylogenetic trees demonstrated that the four Demodex species clustered separately, and divergence frequency distribution plot showed that the largest intraspecific divergence of 12S (1.4%) was less than cox1-5' region (2.0%), cox1-middle region (3.1%), and 16S (2.8%). The barcoding gap of 12S was 19.4%, larger than cox1-5' region (19.1%), cox1-middle region (11.3%), and 16S (13.0%); the interspecific divergence span of 12S was 6.2%, smaller than cox1-5' region (10.0%), cox1-middle region (14.1%), and 16S (11.4%). Moreover, 12S has a moderate length (517 bp) for sequencing at once. Therefore, we proposed mtDNA 12S was more suitable than cox1 and 16S to be a DNA barcode for classification and identification of Demodex at lower category level.
Wang, Pu; Guan, Pei-Pei; Wang, Tao; Yu, Xin; Guo, Jian-Jun; Wang, Zhan-You
2014-08-01
Alzheimer's disease (AD) is the most common form of dementia and displays the characteristics of chronic neurodegenerative disorders; amyloid plaques (AP) that contain amyloid β-protein (Aβ) accumulate in AD, which is also characterized by tau phosphorylation. Epidemiological evidence has demonstrated that long-term treatment with nonsteroidal anti-inflammatory drugs (NSAIDs) markedly reduces the risk of AD by inhibiting the expression of cyclooxygenase 2 (COX-2). Although the levels of COX-2 and its metabolic product prostaglandin (PG)E2 are elevated in the brain of AD patients, the mechanisms for the development of AD remain unknown. Using human- or mouse-derived glioblastoma and neuroblastoma cell lines as model systems, we delineated the signaling pathways by which COX-2 mediates the reciprocal regulation of interleukin-1β (IL-1β) and Aβ between glial and neuron cells. In glioblastoma cells, COX-2 regulates the synthesis of IL-1β in a PGE2 -dependent manner. Moreover, COX-2-derived PGE2 signals the activation of the PI3-K/AKT and PKA/CREB pathways via cyclic AMP; these pathways transactivate the NF-κB p65 subunit via phosphorylation at Ser 536 and Ser 276, leading to IL-1β synthesis. The secretion of IL-1β from glioblastoma cells in turn stimulates the expression of COX-2 in human or mouse neuroblastoma cells. Similar regulatory mechanisms were found for the COX-2 regulation of BACE-1 expression in neuroblastoma cells. More importantly, Aβ deposition mediated the inflammatory response of glial cells via inducing the expression of COX-2 in glioblastoma cells. These findings not only provide new insights into the mechanisms of COX-2-induced AD but also initially define the therapeutic targets of AD. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
USDA-ARS?s Scientific Manuscript database
Protein phosphatase 2A (PP2A) is an enzyme consisting of three subunits: a scaffolding A subunit, a regulatory B subunit and a catalytic C subunit. PP2As were shown to play diverse roles in eukaryotes. In this study, the function of the Arabidopsis PP2A-C5 gene that encodes the catalytic subunit 5 o...
Adzic, Miroslav; Lukic, Iva; Mitic, Milos; Djordjevic, Jelena; Elaković, Ivana; Djordjevic, Ana; Krstic-Demonacos, Marija; Matić, Gordana; Radojcic, Marija
2013-12-01
Antidepressants affect glucocorticoid receptor (GR) functioning partly through modulation of its phosphorylation but their effects on mitochondrial GR have remained undefined. We investigated the ability of chronic fluoxetine treatment to affect chronic stress-induced changes of mitochondrial GR and its phosphoisoforms (pGRs) in the prefrontal cortex and hippocampus of female and male rats. Since mitochondrial GR regulates oxidative phosphorylation, expression of mitochondrial-encoded subunits of cytochrome (cyt) c oxidase and its activity were also investigated. Chronic stress caused accumulation of the GR in mitochondria of female prefrontal cortex, while the changes in the hippocampus were sex-specific at the levels of pGRs. Expression of mitochondrial COXs genes corresponded to chronic stress-modulated mitochondrial GR in both tissues of both genders and to cyt c oxidase activity in females. Moreover, the metabolic parameters in stressed animals were affected by fluoxetine therapy only in the hippocampus. Namely, fluoxetine effects on mitochondrial COXs and cyt c oxidase activity in the hippocampus seem to be conveyed through pGR232 in females, while in males this likely occurs through other mechanisms. In summary, sex-specific regulation of cyt c oxidase by the stress and antidepressant treatment and its differential convergence with mitochondrial GR signaling in the prefrontal cortex and hippocampus could contribute to clarification of sex-dependent vulnerability to stress-related disorders and sex-specific clinical impact of antidepressants. Copyright © 2013 Elsevier Ltd. All rights reserved.
Singh, Ajeet Pratap; Archer, Trevor K.
2014-01-01
The regulatory networks of differentiation programs and the molecular mechanisms of lineage-specific gene regulation in mammalian embryos remain only partially defined. We document differential expression and temporal switching of BRG1-associated factor (BAF) subunits, core pluripotency factors and cardiac-specific genes during post-implantation development and subsequent early organogenesis. Using affinity purification of BRG1 ATPase coupled to mass spectrometry, we characterized the cardiac-enriched remodeling complexes present in E8.5 mouse embryos. The relative abundance and combinatorial assembly of the BAF subunits provides functional specificity to Switch/Sucrose NonFermentable (SWI/SNF) complexes resulting in a unique gene expression profile in the developing heart. Remarkably, the specific depletion of the BAF250a subunit demonstrated differential effects on cardiac-specific gene expression and resulted in arrhythmic contracting cardiomyocytes in vitro. Indeed, the BAF250a physically interacts and functionally cooperates with Nucleosome Remodeling and Histone Deacetylase (NURD) complex subunits to repressively regulate chromatin structure of the cardiac genes by switching open and poised chromatin marks associated with active and repressed gene expression. Finally, BAF250a expression modulates BRG1 occupancy at the loci of cardiac genes regulatory regions in P19 cell differentiation. These findings reveal specialized and novel cardiac-enriched SWI/SNF chromatin-remodeling complexes, which are required for heart formation and critical for cardiac gene expression regulation at the early stages of heart development. PMID:24335282
Humphreys-Pereira, Danny A; Elling, Axel A
2014-01-01
Root-knot nematodes (Meloidogyne spp.) are among the most important plant pathogens. In this study, the mitochondrial (mt) genomes of the root-knot nematodes, M. chitwoodi and M. incognita were sequenced. PCR analyses suggest that both mt genomes are circular, with an estimated size of 19.7 and 18.6-19.1kb, respectively. The mt genomes each contain a large non-coding region with tandem repeats and the control region. The mt gene arrangement of M. chitwoodi and M. incognita is unlike that of other nematodes. Sequence alignments of the two Meloidogyne mt genomes showed three translocations; two in transfer RNAs and one in cox2. Compared with other nematode mt genomes, the gene arrangement of M. chitwoodi and M. incognita was most similar to Pratylenchus vulnus. Phylogenetic analyses (Maximum Likelihood and Bayesian inference) were conducted using 78 complete mt genomes of diverse nematode species. Analyses based on nucleotides and amino acids of the 12 protein-coding mt genes showed strong support for the monophyly of class Chromadorea, but only amino acid-based analyses supported the monophyly of class Enoplea. The suborder Spirurina was not monophyletic in any of the phylogenetic analyses, contradicting the Clade III model, which groups Ascaridomorpha, Spiruromorpha and Oxyuridomorpha based on the small subunit ribosomal RNA gene. Importantly, comparisons of mt gene arrangement and tree-based methods placed Meloidogyne as sister taxa of Pratylenchus, a migratory plant endoparasitic nematode, and not with the sedentary endoparasitic Heterodera. Thus, comparative analyses of mt genomes suggest that sedentary endoparasitism in Meloidogyne and Heterodera is based on convergent evolution. Copyright © 2014 Elsevier B.V. All rights reserved.
Griffin, Matt J; Khoo, Lester H; Quiniou, Sylvie M; O'Hear, Mary M; Pote, Linda M; Greenway, Terrence E; Wise, David J
2012-10-01
An unidentified xiphidio-type cercaria, previously thought inconsequential to catfish health, was found to be released from marsh rams-horn snails (Planorbella trivolvis) inhabiting ponds on a commercial catfish operation in the Mississippi Delta. A preliminary challenge of cohabiting channel catfish ( Ictalurus punctatus ) with snails actively shedding the unidentified cercariae resulted in death of some fish. A second cohabitation trial yielded similar results, as did a third challenge of 250 cercariae/fish. Histopathology revealed developing metacercariae concentrated in the cranial region, especially within the branchial chamber, with several metacercariae at the base of the branchial arches within, or adjacent to, blood vessels, possibly the proximate cause of death. Genetic sequence analysis of the 18S small subunit ribosomal DNA (ssDNA), 28S large subunit rDNA (lsDNA), and cytochrome oxidase (Cox1) genes all matched the cercariae to Drepanocephalus spathans (Digenea: Echinostomatidae), a parasite of the double-crested cormorant (Phalacrocorax auritus), a piscivorous bird endemic on most catfish farms. This is the first commentary regarding pathology of D. spathans in juvenile channel catfish as well as the first report of the marsh rams-horn snail as an intermediate host in the D. spathans life cycle. The data presented here suggest this parasite could have limiting effects on catfish production, further supporting the need for adequate snail control programs to reduce trematode prevalence on commercial catfish operations.
Conceptualizing adverse outcome pathways for ...
Cyclooxygenase (COX) inhibition is of concern in fish because COX inhibitors (e.g., ibuprofen) are ubiquitous in aquatic systems/fish tissues, and can disrupt synthesis of prostaglandins that modulate a variety of essential biological functions (e.g., reproduction). This study utilized newly generated high content (transcriptomic and metabolomic) empirical data in combination with existing high throughput (ACTOR, epa.gov) toxicity data to facilitate development of adverse outcome pathways (AOPs) for molecular initiating event (MIE) of COX inhibition. We examined effects of a waterborne, 96h exposure to three COX inhibitors (indomethacin (IN; 100 µg/L), ibuprofen (IB; 200 µg/L) and celecoxib (CX; 20 µg/L) on the liver metabolome and ovarian gene expression (using oligonucleotide microarray 4 x15K platform) in sexually mature fathead minnows (n=8). Differentially expressed genes were identified (t-test, p < 0.01), and functional analyses performed to determine enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (p < 0.05). Principal component analysis indicated that liver metabolomics profiles of IN, IB and CX were not significantly different from control or one another. When compared to control, exposure to IB and CX resulted in differential expression of comparable numbers of genes (IB = 433, CX= 545). In contrast, 2558 genes were differentially expressed in IN-treated fish. KEGG pathway analyses show that IN had extensive effects on oocyte meios
USDA-ARS?s Scientific Manuscript database
Marek’s disease virus (MDV) encodes a ribonucleotide reductase (RR) gene consisting of two subunits UL39 (RR1) and UL40 (RR2). Both RR1 and RR2 form an active holoenzyme and are necessary for enzyme activity. This gene was indentified by monoclonal antibody T81 in a gt11 MDV expression library and f...
Kang, Guozhang; Liu, Guoqin; Peng, Xiaoqi; Wei, Liting; Wang, Chenyang; Zhu, YunJi; Ma, Ying; Jiang, Yumei; Guo, Tiancai
2013-12-01
ADP-glucose pyrophosphorylase (AGPase) catalyzes the first committed step of starch synthesis. AGPase is a heterotetramer composed of two large subunits and two small subunits, has cytosolic and plastidial isoforms, and is detected mainly in the cytosol of endosperm in cereal crops. To investigate the effects of AGPase cytosolic large subunit gene (LSU I) on starch biosynthesis in higher plant, in this study, a TaLSU I gene from wheat was overexpressed under the control of an endosperm-specific promoter in a wheat cultivar (Yumai 34). PCR, Southern blot, and real-time RT-PCR analyses indicated that the transgene was integrated into the genome of transgenic plants and was overexpressed in their progeny. The overexpression of the TaLSU I gene remarkably enhanced AGPase activity, endosperm starch weight, grain number per spike, and single grain weight. Therefore, we conclude that overexpression of the TaLSU I gene enhances the starch biosynthesis in endosperm of wheat grains, having potential applications in wheat breeding to develop a high-yield wheat cultivar with high starch weight and kernel weight. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Lipsky, Robert H
2015-01-01
For more than 40 years following its approval by the Food and Drug Administration (FDA) as an anesthetic, ketamine, a non-competitive N-methyl-d-aspartic acid (NMDA) receptor antagonist, has been used as a tool of psychiatric research. As a psychedelic drug, ketamine induces psychotic symptoms, cognitive impairment, and mood elevation, which resemble some symptoms of schizophrenia. Recreational use of ketamine has been increasing in recent years. However, little is known of the underlying molecular mechanisms responsible for ketamine-associated psychosis. Recent animal studies have shown that repeated ketamine administration significantly increases NMDA receptor subunit gene expression, in particular subunit 1 (NR1 or GluN1) levels. This results in neurodegeneration, supporting a potential mechanism where up-regulation of NMDA receptors could produce cognitive deficits in chronic ketamine abuse patients. In other studies, NMDA receptor gene variants are associated with addictive behavior. Here, we focus on the roles of NMDA receptor gene subunits in ketamine abuse and ketamine psychosis and propose that full sequencing of NMDA receptor genes may help explain individual vulnerability to ketamine abuse and ketamine-associated psychosis. PMID:25245072
Recombination and mutation of class II histocompatibility genes in wild mice.
Wakeland, E K; Darby, B R
1983-12-01
We have compared the tryptic peptide fingerprints of the A alpha, A beta, E alpha, and E beta subunits encoded by four wild-derived H-2 complexes expressing A molecules closely related to Ak. The A molecules encoded by these Ak-related mice have A alpha and A beta subunits that differ from A alpha k and A beta k by less than 10% of their tryptic peptides. Comparisons among the four wild-derived A molecules suggested that these contemporary A alpha and A beta alleles arose by sequential mutational events from common ancestor A alpha and A beta alleles. These results suggest that A alpha and A beta may co-evolve as an A beta A alpha gene duplex in wild mice. Tryptic peptide fingerprint comparisons of the E beta gene linked to these Ak-related A beta A alpha gene duplexes indicate that two encode E beta d-like subunits, whereas another encodes an E beta s-like subunit. These results strongly suggest that the A beta A alpha duplex and E beta recombine in wild mouse populations. The significantly different evolutionary patterns exhibited by the class II genes encoding A vs E molecules are discussed.
Shpakovskiĭ, G V; Lebedenko, E N
1997-05-01
The full-length cDNA of the rpc10+ gene encoding mini-subunit Rpc10, which is common for all three nuclear RNA polymerases of the fission yeast Schizosaccharomyces pombe, was cloned and sequenced. The Rpc10 subunit of Sz. pombe and its homologs from S. cerevisiae and H. sapiens are positively charged proteins with a highly conserved C-terminal region and an invariant zinc-binding domain (Zn-finger) of a typical amino acid composition: YxCx2Cx12RCx2CGxR. Functional tests of heterospecific complementation, using tetrad analysis or plasmid shuffling, showed that the Rpc10 subunit of Sz. pombe can successfully replace the homologous ABC10 alpha subunit in nuclear RNA polymerases I-III of S. cerevisiae.
Xu, Pei; Yang, Yuwen; Zhang, Zhengzhi; Chen, Weihua; Zhang, Caiqin; Zhang, Lixia; Zou, Sixiang; Ma, Zhengqiang
2008-01-01
Alterations of mitochondrial-encoded subunits of the F(o)F(1)-ATP synthase are frequently associated with cytoplasmic male sterility (CMS) in plants; however, little is known about the relationship of the nuclear encoded subunits of this enzyme with CMS. In the present study, the full cDNA of the gene TaF(A)d that encodes the putative F(A)d subunit of the F(o)F(1)-ATP synthase was isolated from the wheat (Triticum aestivum) fertility restorer '2114' for timopheevii cytoplasm-based CMS. The deduced 238 amino acid polypeptide is highly similar to its counterparts in dicots and other monocots but has low homology to its mammalian equivalents. TaF(A)d is a single copy gene in wheat and maps to the short arm of the group 6 chromosomes. Transient expression of the TaF(A)d-GFP fusion in onion epidermal cells demonstrated TaF(A)d's mitochondrial location. TaF(A)d was expressed abundantly in stem, leaf, anther, and ovary tissues of 2114. Nevertheless, its expression was repressed in anthers of CMS plants with timopheevii cytoplasm. Genic male sterility did not affect its expression in anthers. The expression of the nuclear gene encoding the 20 kDa subunit of F(o) was down-regulated in a manner similar to TaF(A)d in the T-CMS anthers while that of genes encoding the 6 kDa subunit of F(o) and the gamma subunit of F(1) was unaffected. These observations implied that TaF(A)d is under mitochondrial retrograde regulation in the anthers of CMS plants with timopheevii cytoplasm.
Müller, M; Schnitzler, P; Koonin, E V; Darai, G
1995-05-01
Cytoplasmic DNA viruses encode a DNA-dependent RNA polymerase (DdRP) that is essential for transcription of viral genes. The amino acid sequences of the known largest subunits of DdRPs from different species contain highly conserved regions. Oligonucleotide primers, deduced from two conserved domains (RQP[T/S]LH and NADFDGDE) were used for detecting the corresponding gene of fish lymphocystis disease virus (FLCDV), a member of the family Iridoviridae, which replicates in the cytoplasm of infected cells of flatfish. The gene coding for the largest subunit of the DdRP was identified using a PCR-derived probe. The screening of the complete EcoRI gene library of the viral genome led to the identification of the gene locus of the largest subunit of the DdRP within the EcoRI DNA fragment B (12.4 kbp, 0.034 to 0.165 map units). The nucleotide sequence of a part (8334 bp) of the EcoRI DNA fragment B was determined and a large ORF on the lower strand (ATG = 5787; TAA = 2190) was detected which encodes a protein of 1199 amino acids. Comparison of the amino acid sequences of the largest subunits of the DdRP (RPO1) of FLCDV and Chilo iridescent virus (CIV) revealed a dramatic difference in their domain organization. Unlike the 1051 aa RPO1 of CIV, which lacks the C-terminal domain conserved in eukaryotic, eubacterial and other viral RNA polymerases, the 1199 aa RPO1 of FLCDV is fully collinear with its cellular and viral homologues. Despite this difference, comparative analysis of the amino acid sequences of viral and cellular RNA polymerases suggests a common origin for the largest RNA polymerase subunits of FLCDV and CIV.
Sellem, Carole H; di Rago, Jean-Paul; Lasserre, Jean-Paul; Ackerman, Sharon H; Sainsard-Chanet, Annie
2016-07-01
Most of the ATP in living cells is produced by an F-type ATP synthase. This enzyme uses the energy of a transmembrane electrochemical proton gradient to synthesize ATP from ADP and inorganic phosphate. Proton movements across the membrane domain (FO) of the ATP synthase drive the rotation of a ring of 8-15 c-subunits, which induces conformational changes in the catalytic part (F1) of the enzyme that ultimately promote ATP synthesis. Two paralogous nuclear genes, called Atp9-5 and Atp9-7, encode structurally different c-subunits in the filamentous fungus Podospora anserina. We have in this study identified differences in the expression pattern for the two genes that correlate with the mitotic activity of cells in vegetative mycelia: Atp9-7 is transcriptionally active in non-proliferating (stationary) cells while Atp9-5 is expressed in the cells at the extremity (apex) of filaments that divide and are responsible for mycelium growth. When active, the Atp9-5 gene sustains a much higher rate of c-subunit synthesis than Atp9-7. We further show that the ATP9-7 and ATP9-5 proteins have antagonist effects on the longevity of P. anserina. Finally, we provide evidence that the ATP9-5 protein sustains a higher rate of mitochondrial ATP synthesis and yield in ATP molecules per electron transferred to oxygen than the c-subunit encoded by Atp9-7. These findings reveal that the c-subunit genes play a key role in the modulation of ATP synthase production and activity along the life cycle of P. anserina. Such a degree of sophistication for regulating aerobic energy metabolism has not been described before.
Dai, Li-Shang; Zhu, Bao-Jian; Qian, Cen; Zhang, Cong-Fen; Li, Jun; Wang, Lei; Wei, Guo-Qing; Liu, Chao-Liang
2016-01-01
The complete mitochondrial genome (mitogenome) of Plutella xylostella (Lepidoptera: Plutellidae) was determined (GenBank accession No. KM023645). The length of this mitogenome is 16,014 bp with 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes and an A + T-rich region. It presents the typical gene organization and order for completely sequenced lepidopteran mitogenomes. The nucleotide composition of the genome is highly A + T biased, accounting for 81.48%, with a slightly positive AT skewness (0.005). All PCGs are initiated by typical ATN codons, except for the gene cox1, which uses CGA as its start codon. Some PCGs harbor TA (nad5) or incomplete termination codon T (cox1, cox2, nad2 and nad4), while others use TAA as their termination codons. The A + T-rich region is located between rrnS and trnM with a length of 888 bp.
Zwaenepoel, Karen; Louis, Justin V; Goris, Jozef; Janssens, Veerle
2008-01-01
Background Protein phosphatase 2A (PP2A) is a serine/threonine-specific phosphatase displaying vital functions in growth and development through its role in various signalling pathways. PP2A holoenzymes comprise a core dimer composed of a catalytic C and a structural A subunit, which can associate with a variable B-type subunit. The importance of the B-type subunits for PP2A regulation cannot be overestimated as they determine holoenzyme localisation, activity and substrate specificity. Three B-type subunit families have been identified: PR55/B, PR61/B' and PR72/B", of which the latter is currently the least characterised. Results We deduced the sequences and genomic organisation of the different murine PR72/B" isoforms: three genes encode nine isoforms, five of which are abundantly expressed and give rise to genuine PP2A subunits. Thereby, one novel subunit was identified. Using Northern blotting, we examined the tissue-specific and developmental expression of these subunits. All subunits are highly expressed in heart, suggesting an important cardiac function. Immunohistochemical analysis revealed a striated expression pattern of PR72 and PR130 in heart and skeletal muscle, but not in bladder smooth muscle. The subcellular localisation and cell cycle regulatory ability of several PR72/B" isoforms were determined, demonstrating differences as well as similarities. Conclusion In contrast to PR55/B and PR61/B', the PR72/B" family seems evolutionary more divergent, as only two of the murine genes have a human orthologue. We have integrated these results in a more consistent nomenclature of both human and murine PR72/B" genes and their transcripts/proteins. Our results provide a platform for the future generation of PR72/B" knockout mice. PMID:18715506
He, Xi; Han, Ning; Wang, Yan-Ping
2016-01-01
Lactobacillus kefiranofaciens ZW3 was obtained from kefir grains, which have high lactose hydrolytic activity. In this study, a heterodimeric LacLM-type β-galactosidase gene (lacLM) from ZW3 was isolated, which was composed of two overlapping genes, lacL (1,884 bp) and lacM (960 bp) encoding large and small subunits with calculated molecular masses of 73,620 and 35,682 Da, respectively. LacLM, LacL, and LacM were expressed in Escherichia coli BL21(DE3) and these recombinant proteins were purified and characterized. The results showed that, compared with the recombinant holoenzyme, the recombinant large subunit exhibits obviously lower thermostability and hydrolytic activity. Moreover, the optimal temperature and pH of the holoenzyme and large subunit are 60°C and 7.0, and 50°C and 8.0, respectively. However, the recombinant small subunit alone has no activity. Interestingly, the activity and thermostability of the large subunit were greatly improved after mixing it with the recombinant small subunit. Therefore, the results suggest that the small subunit might play an important role in maintaining the stability of the structure of the catalytic center located in the large subunit.
Mikaeili, F; Kia, E B; Sharbatkhori, M; Sharifdini, M; Jalalizand, N; Heidari, Z; Zarei, Z; Stensvold, C R; Mirhendi, H
2013-06-01
Six simple methods for extraction of ribosomal and mitochondrial DNA from Toxocara canis, Toxocara cati and Toxascaris leonina were compared by evaluating the presence, appearance and intensity of PCR products visualized on agarose gels and amplified from DNA extracted by each of the methods. For each species, two isolates were obtained from the intestines of their respective hosts: T. canis and T. leonina from dogs, and T. cati from cats. For all isolates, total DNA was extracted using six different methods, including grinding, boiling, crushing, beating, freeze-thawing and the use of a commercial kit. To evaluate the efficacy of each method, the internal transcribed spacer (ITS) region and the cytochrome c oxidase subunit 1 (cox1) gene were chosen as representative markers for ribosomal and mitochondrial DNA, respectively. Among the six DNA extraction methods, the beating method was the most cost effective for all three species, followed by the commercial kit. Both methods produced high intensity bands on agarose gels and were characterized by no or minimal smear formation, depending on gene target; however, beating was less expensive. We therefore recommend the beating method for studies where costs need to be kept at low levels. Copyright © 2013 Elsevier Inc. All rights reserved.
Barnidge, David R; Jelinek, Diane F; Muddiman, David C; Kay, Neil E
2005-01-01
Relative protein expression levels were compared in leukemic B cells from two patients with chronic lymphocytic leukemia (CLL) having either mutated (M-CLL) or unmutated (UM-CLL) immunoglobulin variable heavy chain genes (IgV(H)). Cells were separated into cytosol and membrane protein fractions then labeled with acid-cleavable ICAT reagents (cICAT). Labeled proteins were digested with trypsin then subjected to SCX and affinity chromatography followed by LC-ESI-MS/MS analysis on a linear ion trap mass spectrometer. A total of 9 proteins from the cytosol fraction and 4 from the membrane fraction showed a 3-fold or greater difference between M-CLL and UM-CLL and a subset of these were examined by Western blot where results concurred with cICAT abundance ratios. The abundance of one of the proteins in particular, the mitochondrial membrane protein cytochrome c oxidase subunit COX G was examined in 6 M-CLL and 6 UM-CLL patients using western blot and results showed significantly greater levels (P < 0.001) in M-CLL patients vs UM-CLL patients. These results demonstrate that stable isotope labeling and mass spectrometry can complement 2D gel electrophoresis and gene microarray technologies for identifying putative and perhaps unique prognostic markers in CLL.
Independent AMP and NAD signaling regulates C2C12 differentiation and metabolic adaptation.
Hsu, Chia George; Burkholder, Thomas J
2016-12-01
The balance of ATP production and consumption is reflected in adenosine monophosphate (AMP) and nicotinamide adenine dinucleotide (NAD) content and has been associated with phenotypic plasticity in striated muscle. Some studies have suggested that AMPK-dependent plasticity may be an indirect consequence of increased NAD synthesis and SIRT1 activity. The primary goal of this study was to assess the interaction of AMP- and NAD-dependent signaling in adaptation of C2C12 myotubes. Changes in myotube developmental and metabolic gene expression were compared following incubation with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) and nicotinamide mononucleotide (NMN) to activate AMPK- and NAD-related signaling. AICAR showed no effect on NAD pool or nampt expression but significantly reduced histone H3 acetylation and GLUT1, cytochrome C oxidase subunit 2 (COX2), and MYH3 expression. In contrast, NMN supplementation for 24 h increased NAD pool by 45 % but did not reduce histone H3 acetylation nor promote mitochondrial gene expression. The combination of AMP and NAD signaling did not induce further metabolic adaptation, but NMN ameliorated AICAR-induced myotube reduction. We interpret these results as indication that AMP and NAD contribute to C2C12 differentiation and metabolic adaptation independently.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, R.S.
Broad host range plasmid vectors useful for cloning genes from bacteria that grow on methane and methanol were constructed. We have cloned and mapped nineteen genes required for the growth of Methylobacterium organophilum strain XX on methanol. Nineteen genes were found in seven linkage groups on the M. organophilum genome and were separated by 40 kb or more. Eleven genes were required for the synthesis of methanol dehydrogenase (MDH) and were located in three unlinked gene clusters. The MDH structural gene was localized on a 2.5 kb DNA fragment. The gene was sequenced and contains a 175 bp untranslated leadermore » sequence, a signal sequence and the structural gene. MDH messenger RNA (mRNA) has a half life of approximately 20 min. and is present at approximately 2% of the cellular mRNA. The structural gene for the ..gamma.. subunit of methane monoxygenases has been cloned from Methylosporovibrio. Methane monooxygenase subunits have been purified by Prof. J. Lipscomb's laboratory and are being sequenced to construct DNA probes to identify cloned subunit genes. New facultative methylotrophic bacteria were isolated and characterized. Several amino acid auxotrophs have been isolated. 11 refs.« less
Triptolide inhibits COX-2 expression by regulating mRNA stability in TNF-{alpha}-treated A549 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Lixin; Zhang, Shuang; Jiang, Zhenzhou
2011-12-09
Highlights: Black-Right-Pointing-Pointer Triptolide inhibited COX-2 expression and the half-life of COX-2 mRNA is decreased. Black-Right-Pointing-Pointer The HuR protein shuttling from nucleus to cytoplasm is inhibited by triptolide. Black-Right-Pointing-Pointer Triptolide inhibited 3 Prime -UTR fluorescence reporter gene activity. Black-Right-Pointing-Pointer COX-2 mRNA binding to HuR is decreased by triptolide in pull-down experiments. -- Abstract: Cyclooxygenase-2 (COX-2) over-expression is frequently associated with human non-small-cell lung cancer (NSCLC) and involved in tumor proliferation, invasion, angiogenesis and resistance to apoptosis. In the present study, the effects of triptolide on COX-2 expression in A549 cells were investigated and triptolide was found to inhibit TNF-{alpha}-induced COX-2 expression.more » In our further studies, it was found that triptolide decreased the half-life of COX-2 mRNA dramatically and that it inhibited 3 Prime -untranslated region (3 Prime -UTR) fluorescence reporter gene activity. Meanwhile, triptolide inhibited the HuR shuttling from nucleus to cytoplasm. After triptolide treatment, decreased COX-2 mRNA in pull-down experiments with anti-HuR antibodies was observed, indicating that the decreased cytoplasmic HuR is responsible for the decreased COX-2 mRNA. Taken together, our results provided evidence for the first time that triptolide inhibited COX-2 expression by COX-2 mRNA stability modulation and post-transcriptional regulation. These results provide a novel mechanism of action for triptolide which may be important in the treatment of lung cancer.« less
Bouhouche, A; Benomar, A; Bouslam, N; Chkili, T; Yahyaoui, M
2006-05-01
Mutilating sensory neuropathy with spastic paraplegia is a very rare disease with both autosomal dominant and recessive modes of inheritance. We previously mapped the locus of the autosomal recessive form to a 25 cM interval between markers D5S2048 and D5S648 on chromosome 5p. In this candidate interval, the Cct5 gene encoding the epsilon subunit of the cytosolic chaperonin-containing t-complex peptide-1 (CCT) was the most obvious candidate gene since mutation in the Cct4 gene encoding the CCT delta subunit has been reported to be associated with autosomal recessive mutilating sensory neuropathy in mutilated foot (mf) rat mutant. A consanguineous Moroccan family with four patients displaying mutilating sensory neuropathy associated with spastic paraplegia was investigated. To identify the disease causing gene, the 11 coding exons of the Cct5 gene were screened for mutations by direct sequencing in all family members including the four patients, parents, and six at risk relatives. Sequence analysis of the Cct5 gene revealed a missense A492G mutation in exon 4 that results in the substitution of a highly conserved histidine for arginine amino acid 147. Interestingly, R147 was absent in 384 control matched chromosomes tested. This is the first disease causing mutation that has been identified in the human CCT subunit genes; the mf rat mutant could serve as an animal model for studying these chaperonopathies.
Rodriguez, Diego A.; Tapia, Julio C.; Fernandez, Jaime G.; Torres, Vicente A.; Muñoz, Nicolas; Galleguillos, Daniela; Leyton, Lisette
2009-01-01
Augmented expression of cyclooxygenase-2 (COX-2) and enhanced production of prostaglandin E2 (PGE2) are associated with increased tumor cell survival and malignancy. Caveolin-1 is a scaffold protein that has been proposed to function as a tumor suppressor in human cancer cells, although mechanisms underlying this ability remain controversial. Intriguingly, the possibility that caveolin-1 regulates the expression of COX-2 has not been explored. Here we show that augmented caveolin-1 expression in cells with low basal levels of this protein, such as human colon cancer (HT29, DLD-1), breast cancer (ZR75), and embryonic kidney (HEK293T) cells reduced COX-2 mRNA and protein levels and β-catenin-Tcf/Lef and COX-2 gene reporter activity, as well as the production of PGE2 and cell proliferation. Moreover, COX-2 overexpression or PGE2 supplementation increased levels of the inhibitor of apoptosis protein survivin by a transcriptional mechanism, as determined by PCR analysis, survivin gene reporter assays and Western blotting. Furthermore, addition of PGE2 to the medium prevented effects attributed to caveolin-1–mediated inhibition of β-catenin-Tcf/Lef–dependent transcription. Finally, PGE2 reduced the coimmunoprecipitation of caveolin-1 with β-catenin and their colocalization at the plasma membrane. Thus, by reducing COX-2 expression, caveolin-1 interrupts a feedback amplification loop involving PGE2-induced signaling events linked to β-catenin/Tcf/Lef–dependent transcription of tumor survival genes including cox-2 itself and survivin. PMID:19244345
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phookphan, Preeyaphan; Navasumrit, Panida
Early-life exposure to arsenic increases risk of developing a variety of non-malignant and malignant diseases. Arsenic-induced carcinogenesis may be mediated through epigenetic mechanisms and pathways leading to inflammation. Our previous study reported that prenatal arsenic exposure leads to increased mRNA expression of several genes related to inflammation, including COX2, EGR1, and SOCS3. This study aimed to investigate the effects of arsenic exposure on promoter DNA methylation and mRNA expression of these inflammatory genes (COX2, EGR1, and SOCS3), as well as the generation of 8-nitroguanine, which is a mutagenic DNA lesion involved in inflammation-related carcinogenesis. Prenatally arsenic-exposed newborns had promoter hypomethylationmore » of COX2, EGR1, and SOCS3 in cord blood lymphocytes (p < 0.01). A follow-up study in these prenatally arsenic-exposed children showed a significant hypomethylation of these genes in salivary DNA (p < 0.01). In vitro experiments confirmed that arsenite treatment at short-term high doses (10–100 μM) and long-term low doses (0.5–1 μM) in human lymphoblasts (RPMI 1788) caused promoter hypomethylation of these genes, which was in concordance with an increase in their mRNA expression. Additionally, the level of urinary 8-nitroguanine was significantly higher (p < 0.01) in exposed newborns and children, by 1.4- and 1.8-fold, respectively. Arsenic accumulation in toenails was negatively correlated with hypomethylation of these genes and positively correlated with levels of 8-nitroguanine. These results indicated that early-life exposure to arsenic causes hypomethylation of COX2, EGR1, and SOCS3, increases mRNA expression of these genes, and increases 8-nitroguanine formation. These effects may be linked to mechanisms of arsenic-induced inflammation and cancer development later in life. - Highlight: • Early-life arsenic exposure caused promoter hypomethylation of COX2, EGR1 and SOCS3. • Hypomethylation of these genes is associated with increased mRNA expression. • Arsenite treatment in vitro showed hypomethylation and increased mRNA expression. • Arsenic-exposed newborns and children had higher levels of urinary 8-nitroguanine. • Urinary 8-nitroguanine correlated with hypomethylation and mRNA expression.« less
She, Xiaodong; Khamooshi, Kasra; Gao, Yin; Shen, Yongnian; Lv, Yuxia; Calderone, Richard; Fonzi, William; Liu, Weida; Li, Dongmei
2015-09-01
Our published research has focused on the role of Goa1p, an apparent regulator of the Candida albicans mitochondrial complex I (CI). Lack of Goa1p affects optimum cell growth, CI activity and virulence. Eukaryotic CI is composed of a core of 14 alpha-proteobacterial subunit proteins and a variable number of supernumerary subunit proteins. Of the latter group of proteins, one (NUZM) is fungal specific and the other (NUXM) is found in fungi, algae and plants, but is not a mammalian CI subunit protein. We have established that NUXM is orf19.6607 and NUZM is orf19.287 in C. albicans. Herein, we validate both subunit proteins as NADH:ubiquinone oxidoreductases (NUO) and annotate their gene functions. To accomplish these objectives, we compared null mutants of each with wild type (WT) and gene-reconstituted strains. Genetic mutants of genes NUO1 (orf19.6607) and NUO2 (orf19.287), not surprisingly, each had reduced oxygen consumption, decreased mitochondrial redox potential, decreased CI activity, increased reactive oxidant species (ROS) and decreased chronological ageing in vitro. Loss of either gene results in disassembly of CI. Transcriptional profiling of both mutants indicated significant down-regulation of genes of carbon metabolism, as well as up-regulation of mitochondrial-associated gene families that may occur to compensate for the loss of CI activity. Profiling of both mutants also demonstrated a loss of cell wall β-mannosylation but not in a conserved CI subunit (ndh51Δ). The profiling data may indicate specific functions driven by the enzymatic activity of Nuo1p and Nuo2p. Of importance, each mutant is also avirulent in a murine blood-borne, invasive model of candidiasis associated with their reduced colonization of tissues. Based on their fungal specificity and roles in virulence, we suggest both as drug targets for antifungal drug discovery. © 2015 John Wiley & Sons Ltd.
Kamerewerd, Jens; Jansson, Malin; Nowrousian, Minou; Pöggeler, Stefanie; Kück, Ulrich
2008-09-01
Sordaria macrospora, a self-fertile filamentous ascomycete, carries genes encoding three different alpha-subunits of heterotrimeric G proteins (gsa, G protein Sordaria alpha subunit). We generated knockout strains for all three gsa genes (Deltagsa1, Deltagsa2, and Deltagsa3) as well as all combinations of double mutants. Phenotypic analysis of single and double mutants showed that the genes for Galpha-subunits have distinct roles in the sexual life cycle. While single mutants show some reduction of fertility, double mutants Deltagsa1Deltagsa2 and Deltagsa1Deltagsa3 are completely sterile. To test whether the pheromone receptors PRE1 and PRE2 mediate signaling via distinct Galpha-subunits, two recently generated Deltapre strains were crossed with all Deltagsa strains. Analyses of the corresponding double mutants revealed that compared to GSA2, GSA1 is a more predominant regulator of a signal transduction cascade downstream of the pheromone receptors and that GSA3 is involved in another signaling pathway that also contributes to fruiting body development and fertility. We further isolated the gene encoding adenylyl cyclase (AC) (sac1) for construction of a knockout strain. Analyses of the three DeltagsaDeltasac1 double mutants and one Deltagsa2Deltagsa3Deltasac1 triple mutant indicate that SAC1 acts downstream of GSA3, parallel to a GSA1-GSA2-mediated signaling pathway. In addition, the function of STE12 and PRO41, two presumptive signaling components, was investigated in diverse double mutants lacking those developmental genes in combination with the gsa genes. This analysis was further completed by expression studies of the ste12 and pro41 transcripts in wild-type and mutant strains. From the sum of all our data, we propose a model for how different Galpha-subunits interact with pheromone receptors, adenylyl cyclase, and STE12 and thus cooperatively regulate sexual development in S. macrospora.
A remarkably stable TipE gene cluster: evolution of insect Para sodium channel auxiliary subunits
2011-01-01
Background First identified in fruit flies with temperature-sensitive paralysis phenotypes, the Drosophila melanogaster TipE locus encodes four voltage-gated sodium (NaV) channel auxiliary subunits. This cluster of TipE-like genes on chromosome 3L, and a fifth family member on chromosome 3R, are important for the optional expression and functionality of the Para NaV channel but appear quite distinct from auxiliary subunits in vertebrates. Here, we exploited available arthropod genomic resources to trace the origin of TipE-like genes by mapping their evolutionary histories and examining their genomic architectures. Results We identified a remarkably conserved synteny block of TipE-like orthologues with well-maintained local gene arrangements from 21 insect species. Homologues in the water flea, Daphnia pulex, suggest an ancestral pancrustacean repertoire of four TipE-like genes; a subsequent gene duplication may have generated functional redundancy allowing gene losses in the silk moth and mosquitoes. Intronic nesting of the insect TipE gene cluster probably occurred following the divergence from crustaceans, but in the flour beetle and silk moth genomes the clusters apparently escaped from nesting. Across Pancrustacea, TipE gene family members have experienced intronic nesting, escape from nesting, retrotransposition, translocation, and gene loss events while generally maintaining their local gene neighbourhoods. D. melanogaster TipE-like genes exhibit coordinated spatial and temporal regulation of expression distinct from their host gene but well-correlated with their regulatory target, the Para NaV channel, suggesting that functional constraints may preserve the TipE gene cluster. We identified homology between TipE-like NaV channel regulators and vertebrate Slo-beta auxiliary subunits of big-conductance calcium-activated potassium (BKCa) channels, which suggests that ion channel regulatory partners have evolved distinct lineage-specific characteristics. Conclusions TipE-like genes form a remarkably conserved genomic cluster across all examined insect genomes. This study reveals likely structural and functional constraints on the genomic evolution of insect TipE gene family members maintained in synteny over hundreds of millions of years of evolution. The likely common origin of these NaV channel regulators with BKCa auxiliary subunits highlights the evolutionary plasticity of ion channel regulatory mechanisms. PMID:22098672
Qian, Chaoju; Yan, Xia; Guo, Zhichun; Wang, Yuanxiu; Li, Xixi; Yang, Jianke; Kan, Xianzhao
2013-08-01
The complete Grey-backed Shrike mitochondrial genome has been sequenced to be 16,820 bp in length, consisting of 37 encode genes: 13 protein-coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes. In addition, a single control region was also observed. Compared with other reported Passeriformes mtgenome sequences, three bases CAA were detected at the end of Lanius tephronotus cox2 gene with the downstream adjacent base T. The first base of CAA probably occurred C to U transcript editing event resulting in a normal stop codon UAA.
Graentzdoerffer, Andrea; Rauh, David; Pich, Andreas; Andreesen, Jan R
2003-01-01
Two gene clusters encoding similar formate dehydrogenases (FDH) were identified in Eubacterium acidaminophilum. Each cluster is composed of one gene coding for a catalytic subunit ( fdhA-I, fdhA-II) and one for an electron-transferring subunit ( fdhB-I, fdhB-II). Both fdhA genes contain a TGA codon for selenocysteine incorporation and the encoded proteins harbor five putative iron-sulfur clusters in their N-terminal region. Both FdhB subunits resemble the N-terminal region of FdhA on the amino acid level and contain five putative iron-sulfur clusters. Four genes thought to encode the subunits of an iron-only hydrogenase are located upstream of the FDH gene cluster I. By sequence comparison, HymA and HymB are predicted to contain one and four iron-sulfur clusters, respectively, the latter protein also binding sites for FMN and NAD(P). Thus, HymA and HymB seem to represent electron-transferring subunits, and HymC the putative catalytic subunit containing motifs for four iron-sulfur clusters and one H-cluster specific for Fe-only hydrogenases. HymD has six predicted transmembrane helices and might be an integral membrane protein. Viologen-dependent FDH activity was purified from serine-grown cells of E. acidaminophilum and the purified protein complex contained four subunits, FdhA and FdhB, encoded by FDH gene cluster II, and HymA and HymB, identified after determination of their N-terminal sequences. Thus, this complex might represent the most simple type of a formate hydrogen lyase. The purified formate dehydrogenase fraction contained iron, tungsten, a pterin cofactor, and zinc, but no molybdenum. FDH-II had a two-fold higher K(m) for formate (0.37 mM) than FDH-I and also catalyzed CO(2) reduction to formate. Reverse transcription (RT)-PCR pointed to increased expression of FDH-II in serine-grown cells, supporting the isolation of this FDH isoform. The fdhA-I gene was expressed as inactive protein in Escherichia coli. The in-frame UGA codon for selenocysteine incorporation was read in the heterologous system only as stop codon, although its potential SECIS element exhibited a quite high similarity to that of E. coli FDH.
CRE-Mediated Transcription and COX-2 Expression in the Pilocarpine Model of Status Epilepticus
Lee, Boyoung; Dziema, Heather; Lee, Kyu Hyun; Choi, Yun-Sik; Obrietan, Karl
2007-01-01
Status epilepticus (SE) triggers neuronal death, reactive gliosis and remodeling of synaptic circuitry, thus leading to profound pathological alterations in CNS physiology. These processes are, in part, regulated by the rapid upregulation of both cytotoxic and cytoprotective genes. One pathway that may couple SE to transcriptionally-dependent alterations in CNS physiology is the CREB (cAMP response element-binding protein)/CRE (cAMP response element) cascade. Here, we utilized the pilocarpine model of SE on a mouse strain transgenic for a CRE-reporter construct (β-galactosidase) to begin to characterize how seizure activity regulates the activation state of the CREB/CRE pathway in both glia and neurons of the hippocampus. SE triggered a rapid (4–8 hrs post SE) but transient increase in CRE-mediated gene expression in the neuronal sublayers. In contrast to neurons, SE induced a lasting increase (up to 20 days) in CRE-mediated transcription in both reactive astrocytes and microglia. CRE-mediated gene expression correlated with expression of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2). To examine the role of CREB in SE-induced COX-2 expression, we generated a transgenic mouse strain that expresses A-CREB, a potent repressor of CREB-dependent transcription. In these animals, the capacity of SE to stimulate COX-2 expression was markedly attenuated, indicating that CREB is a key intermediate in SE-induced COX-2 expression. Collectively these data show that SE triggers two waves of CREB-mediated gene expression, a transient wave in neurons and a long-lasting wave in reactive glial cells, and that CREB couples SE to COX-2 expression. PMID:17029965
Yamamoto, Kaneyoshi; Yamanaka, Yuki; Shimada, Tomohiro; Sarkar, Paramita; Yoshida, Myu; Bhardwaj, Neerupma; Watanabe, Hiroki; Taira, Yuki; Chatterji, Dipankar; Ishihama, Akira
2018-01-01
The RNA polymerase (RNAP) of Escherichia coli K-12 is a complex enzyme consisting of the core enzyme with the subunit structure α 2 ββ'ω and one of the σ subunits with promoter recognition properties. The smallest subunit, omega (the rpoZ gene product), participates in subunit assembly by supporting the folding of the largest subunit, β', but its functional role remains unsolved except for its involvement in ppGpp binding and stringent response. As an initial approach for elucidation of its functional role, we performed in this study ChIP-chip (chromatin immunoprecipitation with microarray technology) analysis of wild-type and rpoZ -defective mutant strains. The altered distribution of RpoZ-defective RNAP was identified mostly within open reading frames, in particular, of the genes inside prophages. For the genes that exhibited increased or decreased distribution of RpoZ-defective RNAP, the level of transcripts increased or decreased, respectively, as detected by reverse transcription-quantitative PCR (qRT-PCR). In parallel, we analyzed, using genomic SELEX (systemic evolution of ligands by exponential enrichment), the distribution of constitutive promoters that are recognized by RNAP RpoD holoenzyme alone and of general silencer H-NS within prophages. Since all 10 prophages in E. coli K-12 carry only a small number of promoters, the altered occupancy of RpoZ-defective RNAP and of transcripts might represent transcription initiated from as-yet-unidentified host promoters. The genes that exhibited transcription enhanced by RpoZ-defective RNAP are located in the regions of low-level H-NS binding. By using phenotype microarray (PM) assay, alterations of some phenotypes were detected for the rpoZ -deleted mutant, indicating the involvement of RpoZ in regulation of some genes. Possible mechanisms of altered distribution of RNAP inside prophages are discussed. IMPORTANCE The 91-amino-acid-residue small-subunit omega (the rpoZ gene product) of Escherichia coli RNA polymerase plays a structural role in the formation of RNA polymerase (RNAP) as a chaperone in folding the largest subunit (β', of 1,407 residues in length), but except for binding of the stringent signal ppGpp, little is known of its role in the control of RNAP function. After analysis of genomewide distribution of wild-type and RpoZ-defective RNAP by the ChIP-chip method, we found alteration of the RpoZ-defective RNAP inside open reading frames, in particular, of the genes within prophages. For a set of the genes that exhibited altered occupancy of the RpoZ-defective RNAP, transcription was found to be altered as observed by qRT-PCR assay. All the observations here described indicate the involvement of RpoZ in recognition of some of the prophage genes. This study advances understanding of not only the regulatory role of omega subunit in the functions of RNAP but also the regulatory interplay between prophages and the host E. coli for adjustment of cellular physiology to a variety of environments in nature.
Yamamoto, Kaneyoshi; Yamanaka, Yuki; Shimada, Tomohiro; Sarkar, Paramita; Yoshida, Myu; Bhardwaj, Neerupma; Watanabe, Hiroki; Taira, Yuki
2018-01-01
ABSTRACT The RNA polymerase (RNAP) of Escherichia coli K-12 is a complex enzyme consisting of the core enzyme with the subunit structure α2ββ′ω and one of the σ subunits with promoter recognition properties. The smallest subunit, omega (the rpoZ gene product), participates in subunit assembly by supporting the folding of the largest subunit, β′, but its functional role remains unsolved except for its involvement in ppGpp binding and stringent response. As an initial approach for elucidation of its functional role, we performed in this study ChIP-chip (chromatin immunoprecipitation with microarray technology) analysis of wild-type and rpoZ-defective mutant strains. The altered distribution of RpoZ-defective RNAP was identified mostly within open reading frames, in particular, of the genes inside prophages. For the genes that exhibited increased or decreased distribution of RpoZ-defective RNAP, the level of transcripts increased or decreased, respectively, as detected by reverse transcription-quantitative PCR (qRT-PCR). In parallel, we analyzed, using genomic SELEX (systemic evolution of ligands by exponential enrichment), the distribution of constitutive promoters that are recognized by RNAP RpoD holoenzyme alone and of general silencer H-NS within prophages. Since all 10 prophages in E. coli K-12 carry only a small number of promoters, the altered occupancy of RpoZ-defective RNAP and of transcripts might represent transcription initiated from as-yet-unidentified host promoters. The genes that exhibited transcription enhanced by RpoZ-defective RNAP are located in the regions of low-level H-NS binding. By using phenotype microarray (PM) assay, alterations of some phenotypes were detected for the rpoZ-deleted mutant, indicating the involvement of RpoZ in regulation of some genes. Possible mechanisms of altered distribution of RNAP inside prophages are discussed. IMPORTANCE The 91-amino-acid-residue small-subunit omega (the rpoZ gene product) of Escherichia coli RNA polymerase plays a structural role in the formation of RNA polymerase (RNAP) as a chaperone in folding the largest subunit (β′, of 1,407 residues in length), but except for binding of the stringent signal ppGpp, little is known of its role in the control of RNAP function. After analysis of genomewide distribution of wild-type and RpoZ-defective RNAP by the ChIP-chip method, we found alteration of the RpoZ-defective RNAP inside open reading frames, in particular, of the genes within prophages. For a set of the genes that exhibited altered occupancy of the RpoZ-defective RNAP, transcription was found to be altered as observed by qRT-PCR assay. All the observations here described indicate the involvement of RpoZ in recognition of some of the prophage genes. This study advances understanding of not only the regulatory role of omega subunit in the functions of RNAP but also the regulatory interplay between prophages and the host E. coli for adjustment of cellular physiology to a variety of environments in nature. PMID:29468196
Adenovirus-mediated suicide gene therapy under the control of Cox-2 promoter for colorectal cancer.
Wang, Zhao-Xia; Bian, Hai-Bo; Yang, Jing-Song; De, Wei; Ji, Xiao-Hui
2009-08-01
Colorectal cancer is a most frequent type of gastrointestinal tract cancers. The prognosis of patients with colorectal cancer remains poor despite intensive interventions. Tumor specific promoter-directed gene therapy and adenoviral technology can be promising strategies for such advanced disease. This study was conducted to explore the possible therapeutic approach of Cox-2 promoter-directed suicide gene therapy with herpes simplex virus thymidine kinase (HSV-tk) in combination with adenoviral technology for advanced colorectal cancer. Firstly, the activity of Cox-2 promoter was assessed by dual luciferase and enhanced green fluorescent protein reporter gene assays in colorectal cancer cell lines and normal human intestinal epithelial cell line. Then, the expression of coxsackievirus and adenovirus receptor (CAR) was detected in colorectal cancer cell lines. The Cox-2 promoter-directed HSV-tk/ganciclovir (GCV) system mediated by adenovirus (Ad-Cp-TK) was developed (Ad-CMVp-TK, Ad-null and no Ad as controls). In vitro cytoxicity, colony formation and apoptosis assays were performed using Ad-Cp-TK. An animal study was carried out in which BALB/C nude mice bearing tumors were treated with Ad-Cp-TK and GCV treatments. Results showed that Cox-2 promoter possessed high transcriptional activity in a tumor-specific manner. All colorectal cancer cells were detected CAR-positive. In vitro cytotoxic and colony formation assays showed that colorectal cancer cells infected with Ad-Cp-TK became more sensitive to GCV but the sensitivity of normal cells infected with Ad-Cp-TK to GCV were not altered. Moreover, the Ad-Cp-TK system combined with GCV treatment could significantly induce apoptosis of colorectal cancer cells but not normal intestinal epithelial cells. Furthermore, this system also significantly inhibited the growth of subcutaneous tumors and prolonged survival of mice. Thus, adenovirus primary receptor was positive in colorectal cancer cells and adenovirus-mediated suicide gene therapy under the control of Cox-2 promoter could provide a promising treatment modality for advanced colorectal cancer with tumor specificity.
The equine LH/CGβ subunit combines divergent intracellular traits of the human LHβ and CGβ subunits
Cohen, Limor; Bousfield, George R; Ben-Menahem, David
2017-01-01
The pituitary LHβ and placental CGβ subunits are products of different genes in primates. The major structural difference between the two subunits is in the carboxy-terminal region, where the short carboxyl sequence of hLHβ is replaced by a longer O-glycosylated carboxy-terminal peptide (CTP) in hCGβ. In association with this structural deviation, there are marked differences in the secretion kinetics and polarized routing of the two subunits. In equids, however, the CGβ and LHβ subunits are products of the same gene expressed in the placenta and pituitary (eLH/CGβ), and both contain a CTP. This unusual expression pattern intrigued us and led to our study of eLH/CGβ subunit secretion by transfected CHO and MDCK cells. In continuous labeling and pulse chase experiments, the secretion of the eLH/CGβ subunit from the transfected CHO cells was inefficient (medium recovery of 16–25%) and slow (t1/2 >6.5 hrs). This indicated that, the secretion of the eLH/CGβ subunit resembles that of hLHβ rather than hCGβ. In MDCK cells grown on Transwell filters, the eLH/CGβ subunit was preferentially secreted from the apical side, similar to the hCGβ subunit secretory route (~65% of the total protein secreted). Taken together, these data suggested that secretion of the eLH/CGβ subunit integrates features of both hLHβ and hCGβ subunits. We propose that the evolution of this intracellular behavior may fulfill the physiological demands for biosynthesis of the eLH/CGβ subunit in the pituitary as well as in the placenta. PMID:25796287
Macha, Muzafar A; Matta, Ajay; Chauhan, S S; Siu, K W Michael; Ralhan, Ranju
2011-03-01
Understanding the molecular pathways perturbed in smokeless tobacco- (ST) associated head and neck squamous cell carcinoma (HNSCC) is critical for identifying novel complementary agents for effective disease management. Activation of nuclear factor-kappaB (NF-κB) and cyclooxygenase-2 (COX-2) was reported in ST-associated HNSCC by us [Sawhney,M. et al. (2007) Expression of NF-kappaB parallels COX-2 expression in oral precancer and cancer: association with smokeless tobacco. Int. J. Cancer, 120, 2545-2556]. In search of novel agents for treatment of HNSCC, we investigated the potential of guggulsterone (GS), (4,17(20)-pregnadiene-3,16-dione), a biosafe nutraceutical, in inhibiting ST- and nicotine-induced activation of NF-κB and signal transducer and activator of transcription (STAT) 3 pathways in HNSCC cells. GS inhibited the activation of NF-κB and STAT3 proteins in head and neck cancer cells. This inhibition of NF-κB by GS resulted from decreased phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha the inhibitory subunit of NF-κB. Importantly, treatment of HNSCC cells with GS abrogated both ST- and nicotine-induced nuclear activation of NF-κB and pSTAT3 proteins and their downstream targets COX-2 and vascular endothelial growth factor. Furthermore, GS treatment decreased the levels of ST- and nicotine-induced secreted interleukin-6 in culture media of HNSCC cells. In conclusion, our findings demonstrated that GS treatment abrogates the effects of ST and nicotine on activation of NF-κB and STAT3 pathways in HNSCC cells that contribute to inflammatory and angiogenic responses as well as its progression and metastasis. These findings provide a biologic rationale for further clinical investigation of GS as an effective complementary agent for inhibiting ST-induced head and neck cancer.
Prakas, Petras; Butkauskas, Dalius; Rudaitytė, Eglė; Kutkienė, Liuda; Sruoga, Aniolas; Pūraitė, Irma
2016-08-01
The diaphragm muscles of eight sika deer (Cervus nippon) bred in Lithuania were examined for Sarcocystis cysts. Two Sarcocystis species, Sarcocystis taeniata, which were previously reported in Canadian moose (Alces alces) and Argentinean red deer (Cervus elaphus), and Sarcocystis pilosa n. sp. were described using light microscopy (LM), transmission electron microscopy (TEM), 18S ribosomal DNA (rDNA), and subunit I of cytochrome c oxidase (cox1) sequences analysis. By LM, cysts of S. taeniata were 424.8 × 57.9 (200-837 × 30-100) μm in size and had a thin (up to 1 μm) and smooth cyst wall, while short ribbon-like protrusions arising from broadened cone-shaped bases were seen under TEM. Cysts of S. pilosa (by LM) were ribbon-shaped, measured 848.5 × 63.8 (350-1700 × 30-125) μm and had thin 7-8-μm long hair-like protrusions. By TEM, cyst wall was type 7a-like; protrusions arose from 0.3 μm wide dome-shaped base with minute indentations of the parasitophorous vacuolar membrane near it, the surface of protrusions seemed to be smooth, and the ground substance layer was thin (0.18-0.22 μm). The 18S rDNA, in contrast to the cox1, lacked variability to discriminate S. pilosa from closely related Sarcocystis hjorti from the red deer and moose. S. taeniata, but not S. pilosa, showed a considerable intraspecific variation in both genes analyzed. The phylogenetic analyses based on 18S rDNA and cox1 sequences suggest that canids are definitive hosts of both S. taeniata and S. pilosa. This paper represents the first identification of Sarcocystis species in the sika deer by morphological and molecular methods.
Kumar, Vinod; Hart, Andrew J.; Keerthiraju, Ethiraju R.; Waldron, Paul R.; Tucker, Gregory A.; Greetham, Darren
2015-01-01
Introduction Saccharomyces cerevisiae is the micro-organism of choice for the conversion of fermentable sugars released by the pre-treatment of lignocellulosic material into bioethanol. Pre-treatment of lignocellulosic material releases acetic acid and previous work identified a cytochrome oxidase chaperone gene (COX20) which was significantly up-regulated in yeast cells in the presence of acetic acid. Results A Δcox20 strain was sensitive to the presence of acetic acid compared with the background strain. Overexpressing COX20 using a tetracycline-regulatable expression vector system in a Δcox20 strain, resulted in tolerance to the presence of acetic acid and tolerance could be ablated with addition of tetracycline. Assays also revealed that overexpression improved tolerance to the presence of hydrogen peroxide-induced oxidative stress. Conclusion This is a study which has utilised tetracycline-regulated protein expression in a fermentation system, which was characterised by improved (or enhanced) tolerance to acetic acid and oxidative stress. PMID:26427054
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yu-Ching; Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan; Ho, Heng-Chien
2012-07-15
The purpose of this study was to identify the genes induced early in murine oral carcinogenesis. Murine tongue tumors induced by the carcinogen, 4-nitroquinoline 1-oxide (4-NQO), and paired non-tumor tissues were subjected to microarray analysis. Hierarchical clustering of upregulated genes in the tumor tissues revealed an association of induced genes with inflammation. Cytokines/cytokine receptors induced early were subsequently identified, clearly indicating their involvement in oral carcinogenesis. Hierarchical clustering also showed that cytokine-mediated inflammation was possibly linked with Mapk6. Cox2 exhibited the greatest extent (9–18 fold) of induction in the microarray data, and its early induction was observed in a 2more » h painting experiment by RT-PCR. MetaCore analysis showed that overexpressed Cox2 may interact with p53 and transcriptionally inhibit expression of several downstream genes. A painting experiment in transgenic mice also demonstrated that NF-κB activates early independently of Cox2 induction. MetaCore analysis revealed the most striking metabolic alterations in tumor tissues, especially in lipid metabolism resulting from the reduction of Pparα and Rxrg. Reduced expression of Mapk12 was noted, and MetaCore analysis established its relationship with decreased efficiency of Pparα phosphorylation. In conclusion, in addition to cytokines/cytokine receptors, the early induction of Cox2 and NF-κB activation is involved in murine oral carcinogenesis.« less
USDA-ARS?s Scientific Manuscript database
Comparative genomics is a useful tool to investigate gene and genome evolution. Biotin carboxylase (BC), an important subunit of heteromeric ACCase that is a rate-limiting enzyme in fatty acid biosynthesis in dicots, catalyzes ATP, biotin-carboxyl-carrier protein and CO2 to form carboxybiotin-carbo...
Plastid–Nuclear Interaction and Accelerated Coevolution in Plastid Ribosomal Genes in Geraniaceae
Weng, Mao-Lun; Ruhlman, Tracey A.; Jansen, Robert K.
2016-01-01
Plastids and mitochondria have many protein complexes that include subunits encoded by organelle and nuclear genomes. In animal cells, compensatory evolution between mitochondrial and nuclear-encoded subunits was identified and the high mitochondrial mutation rates were hypothesized to drive compensatory evolution in nuclear genomes. In plant cells, compensatory evolution between plastid and nucleus has rarely been investigated in a phylogenetic framework. To investigate plastid–nuclear coevolution, we focused on plastid ribosomal protein genes that are encoded by plastid and nuclear genomes from 27 Geraniales species. Substitution rates were compared for five sets of genes representing plastid- and nuclear-encoded ribosomal subunit proteins targeted to the cytosol or the plastid as well as nonribosomal protein controls. We found that nonsynonymous substitution rates (dN) and the ratios of nonsynonymous to synonymous substitution rates (ω) were accelerated in both plastid- (CpRP) and nuclear-encoded subunits (NuCpRP) of the plastid ribosome relative to control sequences. Our analyses revealed strong signals of cytonuclear coevolution between plastid- and nuclear-encoded subunits, in which nonsynonymous substitutions in CpRP and NuCpRP tend to occur along the same branches in the Geraniaceae phylogeny. This coevolution pattern cannot be explained by physical interaction between amino acid residues. The forces driving accelerated coevolution varied with cellular compartment of the sequence. Increased ω in CpRP was mainly due to intensified positive selection whereas increased ω in NuCpRP was caused by relaxed purifying selection. In addition, the many indels identified in plastid rRNA genes in Geraniaceae may have contributed to changes in plastid subunits. PMID:27190001
Putative cross-kingdom horizontal gene transfer in sponge (Porifera) mitochondria.
Rot, Chagai; Goldfarb, Itay; Ilan, Micha; Huchon, Dorothée
2006-09-14
The mitochondrial genome of Metazoa is usually a compact molecule without introns. Exceptions to this rule have been reported only in corals and sea anemones (Cnidaria), in which group I introns have been discovered in the cox1 and nad5 genes. Here we show several lines of evidence demonstrating that introns can also be found in the mitochondria of sponges (Porifera). A 2,349 bp fragment of the mitochondrial cox1 gene was sequenced from the sponge Tetilla sp. (Spirophorida). This fragment suggests the presence of a 1143 bp intron. Similar to all the cnidarian mitochondrial introns, the putative intron has group I intron characteristics. The intron is present in the cox1 gene and encodes a putative homing endonuclease. In order to establish the distribution of this intron in sponges, the cox1 gene was sequenced from several representatives of the demosponge diversity. The intron was found only in the sponge order Spirophorida. A phylogenetic analysis of the COI protein sequence and of the intron open reading frame suggests that the intron may have been transmitted horizontally from a fungus donor. Little is known about sponge-associated fungi, although in the last few years the latter have been frequently isolated from sponges. We suggest that the horizontal gene transfer of a mitochondrial intron was facilitated by a symbiotic relationship between fungus and sponge. Ecological relationships are known to have implications at the genomic level. Here, an ecological relationship between sponge and fungus is suggested based on the genomic analysis.
Makouloutou, Patrice; Suzuki, Kazuo; Yokoyama, Mayumi; Takeuchi, Masahiko; Yanagida, Tetsuya; Sato, Hiroshi
2015-01-01
Similar to wild mammals on the continents, mange caused by the mange mite, Sarcoptes scabiei (Acari: Sarcoptidae) is spreading in wild mammals in most of Japan. We collected crusted or alopetic skin from 120 raccoon dogs (Nyctereutes procyonoides viverrinus), three raccoons (Procyon lotor), six Japanese badgers (Meles anakuma), one Japanese marten (Martes melampus), one stray dog (Canis lupus familiaris), four wild boars (Sus scrofa leucomystax), and one Japanese serow (Capricornis crispus), mainly in an area where mangy wild animals have been increasingly noted in the past 4 yr. The second internal transcribed spacer (ITS2) region of the ribosomal RNA gene and the partial 16S and cytochrome c oxidase subunit I (cox-1) genes of mitochondrial DNA (mtDNA) were characterized in these skin samples. The ITS2 sequencing (404 base pairs [bp]) identified the causative mite for mangy skin lesions of 128 animals as S. scabiei, regardless of host origin. The cat mite (Notoedres cati) was the cause in one raccoon dog and one raccoon. Most mites had almost identical ITS2 nucleotide sequences to those recorded in a variety of mammals worldwide. Partial 16S and cox-1 fragments of mtDNA amplified and sequenced successfully (331 bp and 410 bp, respectively) showed an identical nucleotide sequence except for one site (C vs. T) for the former and four sites (G, C, C, C vs. A, T, T, T, respectively) for the latter fragment. These substitutions were always synchronized, with the two mitochondrial DNA haplotypes (i.e., C/GCCC and T/ATTT) appearing to separately colonize in geographic units. The T/ATTT haplotype fell into a clade where animal-derived mites worldwide dominated, whereas the C/GCCC haplotype formed a geographic branch unique to Japanese isolates. These results suggest that heterologous populations of monospecific S. scabiei are expanding their populations and distributions regardless of host species in an apparently local mange epizootic of wild mammals in Japan.
Setsuda, Aogu; Ribas, Alexis; Chaisiri, Kittipong; Morand, Serge; Chou, Monidarin; Malbas, Fidelino; Yunus, Muchammad; Sato, Hiroshi
2018-03-01
More than a dozen Gongylonema spp. (Spirurida: Spiruroidea: Gongylonematidae) have been described from a variety of rodent hosts worldwide. Gongylonema neoplasticum (Fibiger & Ditlevsen, 1914), which dwells in the gastric mucosa of rats such as Rattus norvegicus (Berkenhout) and Rattus rattus (Linnaeus), is currently regarded as a cosmopolitan nematode in accordance with global dispersion of its definitive hosts beyond Asia. To facilitate the reliable specific differentiation of local rodent Gongylonema spp. from the cosmopolitan congener, the genetic characterisation of G. neoplasticum from Asian Rattus spp. in the original endemic area should be considered since the morphological identification of Gongylonema spp. is often difficult due to variations of critical phenotypical characters, e.g. spicule lengths and numbers of caudal papillae. In the present study, morphologically identified G. neoplasticum from 114 rats of seven species from Southeast Asia were selected from archived survey materials from almost 4,500 rodents: Thailand (58 rats), Cambodia (52 rats), Laos (three rats) and Philippines (one rat). In addition, several specimens from four rats in Indonesia were used in the study. Nucleotide sequences of the ribosomal RNA gene (rDNA) (5,649 bp) and the cytochrome c oxidase subunit 1 gene (cox1) (818 bp) were characterised. The rDNA showed little nucleotide variation, including the internal transcribed spacer (ITS) regions. The cox1 showed 24 haplotypes, with up to 15 (1.83%) nucleotide substitutions regardless of parasite origin. Considering that Rattus spp. have been shown to originate from the southern region of Asia and G. neoplasticum is their endogenous parasite, it is reasonable to propose that the present study covers a wide spectrum of the genetic diversity of G. neoplasticum, useful for both the molecular genetic speculation of the species and the molecular genetic differentiation of other local rodent Gongylonema spp. from the cosmopolitan congener.
Houttuynia cordata, a novel and selective COX-2 inhibitor with anti-inflammatory activity.
Li, Weifeng; Zhou, Ping; Zhang, Yanmin; He, Langchong
2011-01-27
Houttuynia cordata Thunb. (Saururaceae; HC) has been long used in traditional oriental medicine for the treatment of inflammation diseases. Modern research has implicated inducible cyclooxygenase-2 (COX-2) as a key regulator of the inflammatory process. In the present study, we aimed to investigate the effect of HC on COX-2. We examined the effects of HC on lipopolysaccharide (LPS)-induced prostaglandin (PG) E(2) production, an indirect indicator of COX-2 activity, and COX-2 gene and protein expression in mouse peritoneal macrophages. LPS-induced mouse peritoneal macrophages were employed as an in vitro model system. LPS-induced PGE(2) production was assessed by enzyme-linked immunosorbant assay and COX-2 protein expression was assessed by Western blot assay. The results showed that HC was able to inhibit the release of LPS-induced PGE(2) from mouse peritoneal macrophages (IC50 value: 44.8 μg/mL). Moreover, the inhibitory activity of HC essential oil elicited a dose-dependent inhibition of COX-2 enzyme activity (IC50 value: 30.9 μg/mL). HC was also found to cause reduction in LPS-induced COX-2 mRNA and protein expression, but did not affect COX-1 expression. The non-steroidal anti-inflammatory drug (NSAID) and specific COX-2 inhibitor NS398 functioned similarly in LPS-induced mouse peritoneal macrophages. Taken together, our data suggest HC mediates inhibition of COX-2 enzyme activity and can affect related gene and protein expression. HC works by a mechanism of action similar to that of NSAIDs. These results add a novel aspect to the biological profile of HC. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Ackerman, William E.; Zhang, Xiaolan L.; Rovin, Brad H.; Kniss, Douglas A.
2006-01-01
Cyclooxygenase (COX) activity increases in the human amnion in the settings of term and idiopathic preterm labor, contributing to the generation of uterotonic prostaglandins (PGs) known to participate in mammalian parturition. Augmented COX activity is highly correlated with increased COX2 (also known as prostaglandin-endoperoxide synthase 2, PTGS2) gene expression. We and others have demonstrated an essential role for nuclear factor κB (NFκB) in cytokine-driven COX2 expression. Peroxisome proliferator-activated receptor gamma (PPARG), a member of the nuclear hormone receptor superfamily, has been shown to antagonize NFκB activation and inflammatory gene expression, including COX2. We hypothesized that PPARG activation might suppress COX2 expression during pregnancy. Using primary amnion and WISH cells, we evaluated the effects of pharmacological (thiazolidinediones) and putative endogenous (15-deoxy-Δ12,14-prostaglandin J2, 15d-PGJ2) PPARG ligands on cytokine-induced NFκB activation, COX2 expression, and PGE2 production. We observed that COX2 expression and PGE2 production induced by tumor necrosis factor alpha (TNF) were significantly abrogated by 15d-PGJ2. The thiazolidinediones rosiglitazone (ROSI) and troglitazone (TRO) had relatively little effect on cytokine-induced COX2 expression except at high concentrations, at which these agents tended to increase COX2 abundance relative to cells treated with TNF alone. Interestingly, treatment with ROSI, but not TRO, led to augmentation of TNF-stimulated PGE2 production. Mechanistically, we observed that 15d-PGJ2 markedly diminished cytokine-induced activity of the NFκB transcription factor, whereas thiazolidinediones had no discernable effect on this system. Our data suggest that pharmacological and endogenous PPARG ligands use both receptor-dependent and -independent mechanisms to influence COX2 expression. PMID:15843495
Huang, Deqi; Jokela, Maarit; Tuusa, Jussi; Skog, Sven; Poikonen, Kari; Syväoja, Juhani E.
2001-01-01
The B-subunits of replicative DNA polymerases from Archaea to humans belong to the same protein family, suggesting that they share a common fundamental function. We report here the gene structure for the B-subunit of human DNA polymerase ɛ (POLE2), whose expression and transcriptional regulation is typical for replication proteins with some unique features. The 75 bp core promoter region, located within exon 1, contains an Sp1 element that is a critical determinant of promoter activity as shown by the luciferase reporter, electrophoretic mobility shift and DNase I footprinting assays. Two overlapping E2F elements adjacent to the Sp1 element are essential for full promoter activity and serum response. Binding sites for E2F1 and NF-1 reside immediately downstream from the core promoter region. Our results suggest that human POLE2 is regulated by two E2F–pocket protein complexes, one associated with Sp1 and the other with NF-1. So far, only one replicative DNA polymerase B-subunit gene promoter, POLA2 encoding the B-subunit of DNA polymerase α, has been characterized. Mitogenic activation of the POLE2 promoter by an E2F-mediated mechanism resembles that of POLA2, but the regulation of basal promoter activity is different between these two genes. PMID:11433027
Shi, Chang-Xin; Kortüm, K Martin; Zhu, Yuan Xiao; Bruins, Laura A; Jedlowski, Patrick; Votruba, Patrick G; Luo, Moulun; Stewart, Robert A; Ahmann, Jonathan; Braggio, Esteban; Stewart, A Keith
2017-12-01
Bortezomib is highly effective in the treatment of multiple myeloma; however, emergent drug resistance is common. Consequently, we employed CRISPR targeting 19,052 human genes to identify unbiased targets that contribute to bortezomib resistance. Specifically, we engineered an RPMI8226 multiple myeloma cell line to express Cas9 infected by lentiviral vector CRISPR library and cultured derived cells in doses of bortezomib lethal to parental cells. Sequencing was performed on surviving cells to identify inactivated genes responsible for drug resistance. From two independent whole-genome screens, we selected 31 candidate genes and constructed a second CRISPR sgRNA library, specifically targeting each of these 31 genes with four sgRNAs. After secondary screening for bortezomib resistance, the top 20 "resistance" genes were selected for individual validation. Of these 20 targets, the proteasome regulatory subunit PSMC6 was the only gene validated to reproducibly confer bortezomib resistance. We confirmed that inhibition of chymotrypsin-like proteasome activity by bortezomib was significantly reduced in cells lacking PSMC6. We individually investigated other members of the PSMC group (PSMC1 to 5) and found that deficiency in each of those subunits also imparts bortezomib resistance. We found 36 mutations in 19S proteasome subunits out of 895 patients in the IA10 release of the CoMMpass study (https://themmrf.org). Our findings demonstrate that the PSMC6 subunit is the most prominent target required for bortezomib sensitivity in multiple myeloma cells and should be examined in drug-refractory populations. Mol Cancer Ther; 16(12); 2862-70. ©2017 AACR . ©2017 American Association for Cancer Research.
Dai, Yi; Wu, Yuquan; Li, Yansheng
2015-01-01
The aim of this study was to explore the genetic association of cyclooxygenase-2 (COX2) gene promoter region polymorphisms with Parkinson's disease (PD) susceptibility in Chinese Han population. The genotyping of COX2 gene polymorphisms was conducted by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in 122 patients with PD and 120 healthy persons. The association strength of gene polymorphism with disease was measured by odds ratio (OR) and 95% confidence interval (95% CI) calculated using χ(2) test which also evaluated the Hardy-Weinberg equilibrium (HWE) of gene polymorphism in controls. The linkage disequilibrium and haplotype were also analyzed as evidence in the analysis of association. On condition that the genotypes distributions of COX2 -1290A>G, -1195G>A, -765G>C in the control group all conformed to HWE, however, only the homozygous genotype AA of -1195G>A polymorphism showed an association with PD (OR=0.432, 95% CI=0.196-0.950). In addition, in haplotype analysis, G-A-C haplotype frequency in cases was significantly lower than the controls, compared with the common haplotype A-G-G (P=0.031, OR=0.375, 95% CI=0.149-0.940). COX2 -1195G>A polymorphism might play a protective role in the onset of PD and G-A-C haplotype in this three promoter region polymorphisms also showed a negative association.
Ezaki, J; Takeda-Ezaki, M; Kominami, E
2000-09-01
The specific accumulation of a hydrophobic protein, subunit c of ATP synthase, in lysosomes from the cells of patients with the late infantile form of NCL (LINCL) is caused by a defect in the CLN2 gene product, tripeptidyl peptidase I (TPP-I). The data here show that TPP-I is involved in the initial degradation of subunit c in lysosomes and suggest that its absence leads directly to the lysosomal accumulation of subunit c. The inclusion of a specific inhibitor of TPP-I, Ala-Ala-Phe-chloromethylketone (AAF-CMK), in the culture medium of normal fibroblasts induced the lysosomal accumulation of subunit c. In an in vitro incubation experiment the addition of AAF-CMK to mitochondrial-lysosomal fractions from normal cells inhibited the proteolysis of subunit c, but not the b-subunit of ATP synthase. The use of two antibodies that recognize the aminoterminal and the middle portion of subunit c revealed that the subunit underwent aminoterminal proteolysis, when TPP-I, purified from rat spleen, was added to the mitochondrial fractions. The addition of both purified TPP-I and the soluble lysosomal fractions, which contain various proteinases, to the mitochondrial fractions resulted in rapid degradation of the entire molecule of subunit c, whereas the degradation of subunit c was markedly delayed through the specific inhibition of TPP-I in lysosomal extracts by AAF-CMK. The stable subunit c in the mitochondrial-lysosomal fractions from cells of a patient with LINCL was degraded on incubation with purified TPP-I. The presence of TPP-I led to the sequential cleavage of tripeptides from the N-terminus of the peptide corresponding to the amino terminal sequence of subunit c.
Burnett, Bruce P.; Bitto, Alessandra; Altavilla, Domenica; Squadrito, Francesco; Levy, Robert M.; Pillai, Lakshmi
2011-01-01
The multiple mechanisms of action for flavocoxid relating to arachidonic acid (AA) formation and metabolism were studied in vitro. Flavocoxid titrated into rat peritoneal macrophage cultures inhibited cellular phospholipase A2 (PLA2) (IC50 = 60 μg/mL). In in vitro enzyme assays, flavocoxid showed little anti-cyclooxygenase (CO) activity on COX-1/-2 enzymes, but inhibited the COX-1 (IC50 = 12.3) and COX-2 (IC50 = 11.3 μg/mL) peroxidase (PO) moieties as well as 5-lipoxygenase (5-LOX) (IC50 = 110 μg/mL). No detectable 5-LOX inhibition was found for multiple traditional and COX-2 selective NSAIDs. Flavocoxid also exhibited strong and varied antioxidant capacities in vitro and decreased nitrite levels (IC50 = 38 μg/mL) in rat peritoneal macrophages. Finally, in contrast to celecoxib and ibuprofen, which upregulated the cox-2 gene, flavocoxid strongly decreased expression. This work suggests that clinically favourable effects of flavocoxid for management of osteoarthritis (OA) are achieved by simultaneous modification of multiple molecular pathways relating to AA metabolism, oxidative induction of inflammation, and neutralization of reactive oxygen species (ROS). PMID:21765617
Burnett, Bruce P; Bitto, Alessandra; Altavilla, Domenica; Squadrito, Francesco; Levy, Robert M; Pillai, Lakshmi
2011-01-01
The multiple mechanisms of action for flavocoxid relating to arachidonic acid (AA) formation and metabolism were studied in vitro. Flavocoxid titrated into rat peritoneal macrophage cultures inhibited cellular phospholipase A2 (PLA(2)) (IC(50) = 60 μg/mL). In in vitro enzyme assays, flavocoxid showed little anti-cyclooxygenase (CO) activity on COX-1/-2 enzymes, but inhibited the COX-1 (IC(50) = 12.3) and COX-2 (IC(50) = 11.3 μg/mL) peroxidase (PO) moieties as well as 5-lipoxygenase (5-LOX) (IC(50) = 110 μg/mL). No detectable 5-LOX inhibition was found for multiple traditional and COX-2 selective NSAIDs. Flavocoxid also exhibited strong and varied antioxidant capacities in vitro and decreased nitrite levels (IC(50) = 38 μg/mL) in rat peritoneal macrophages. Finally, in contrast to celecoxib and ibuprofen, which upregulated the cox-2 gene, flavocoxid strongly decreased expression. This work suggests that clinically favourable effects of flavocoxid for management of osteoarthritis (OA) are achieved by simultaneous modification of multiple molecular pathways relating to AA metabolism, oxidative induction of inflammation, and neutralization of reactive oxygen species (ROS).
Emodin plays an interventional role in epileptic rats via multidrug resistance gene 1 (MDR1).
Yang, Tao; Kong, Bin; Kuang, Yongqin; Cheng, Lin; Gu, Jianwen; Zhang, Junhai; Shu, Haifeng; Yu, Sixun; Yang, Xiaokun; Cheng, Jingming; Huang, Haidong
2015-01-01
To observe the interventional effects of emodin in epileptic rats and elucidate its possible mechanism of action. Thirty-six female Wistar rats were randomly divided into normal control group, model group (intraperitoneal injection of kainic acid) and emodin group (intraperitoneal injection of kainic acid+emodin intervention). The rat epilepsy model was confirmed by behavioral tests and electroencephalography. The protein levels of P-glycoprotein and N-methyl-D-aspartate (NMDA) receptor in cerebral vascular tissue were analyzed by western blotting, and mRNA levels of multidrug resistance gene 1 (MDR1) and cyclooxygenase-2 (COX-2) were analyzed by real-time PCR. COX-2 and P-glycoprotein levels in the brains were detected by immunohistochemical assay. The seizures were relieved in emodin group. Laser scanning confocal microscopy showed P-glycoprotein fluorescence increased significantly after seizures, indicating that epilepsy can induce overexpression of P-glycoprotein. Compared with control group, protein levels of P-glycoprotein and NMDA receptor in cerebral vascular tissue were significantly higher in model group, and mRNA levels of MDR1 and COX-2 were also significantly increased. Compared with model group, P-glycoprotein and NMDA receptor levels in cerebral vascular tissue were significantly decreased in emodin group (P<0.05), and the levels of MDR1 and COX-2 were down-regulated (P<0.05). In the rat brain, seizures could significantly increase COX-2 and P-glycoprotein levels, while emodin intervention was able to significantly reduce the levels of both. These findings suggest that epileptic seizures are tightly associated with up-regulated MDR1 gene, and emodin shows good antagonistic effects on epileptic rats, possibly through inhibition of MDR1 gene and its associated genes.
Genetic Polymorphisms in RNA Binding Proteins Contribute to Breast Cancer Survival
Upadhyay, Rohit; Sanduja, Sandhya; Kaza, Vimala; Dixon, Dan A.
2012-01-01
The RNA-binding proteins TTP and HuR control expression of numerous genes associated with breast cancer pathogenesis by regulating mRNA stability. However, the role of genetic variation in TTP (ZFP36) and HuR (ELAVL1) genes is unknown in breast cancer prognosis. A total of 251 breast cancer patients (170 Caucasians and 81 African-Americans) were enrolled and followed-up from 2001 to 2011 (or until death). Genotyping was performed for 10 SNPs in ZFP36 and 7 in ELAVL1 genes. On comparing both races with one another, significant differences were found for clinical and genetic variables. The influence of genetic polymorphisms on survival was analyzed by using Cox-regression, Kaplan-Meier analysis, and the log-rank test. Univariate (Kaplan-Meier/Cox-regression) and multivariate (Cox-regression) analysis showed that the TTP gene polymorphism ZFP36*2 A>G was significantly associated with poor prognosis of Caucasian patients (HR = 2.03; 95% CI = 1.09–3.76; P = 0.025; log-rank P = 0.022). None of the haplotypes, but presence of more than six risk genotypes in Caucasian patients, was significantly associated with poor prognosis (HR=2.42; 95% CI=1.17–4.99; P = 0.017; log-rank P = 0.007). The effect of ZFP36*2 A>G on gene expression was evaluated from patients' tissue samples. Both TTP mRNA and protein expression was significantly decreased in ZFP36*2 G allele carriers compared to A allele homozygotes. Conversely, upregulation of the TTP-target gene COX-2 was observed ZFP36*2 G allele carriers. Through its ability to attenuate TTP gene expression, the ZFP36*2 A>G gene polymorphism has appeared as a novel prognostic breast cancer marker in Caucasian patients. PMID:22907529
Natural compound cudraflavone B shows promising anti-inflammatory properties in vitro.
Hošek, Jan; Bartos, Milan; Chudík, Stanislav; Dall'Acqua, Stefano; Innocenti, Gabbriella; Kartal, Murat; Kokoška, Ladislav; Kollár, Peter; Kutil, Zsófia; Landa, Přemysl; Marek, Radek; Závalová, Veronika; Žemlička, Milan; Šmejkal, Karel
2011-04-25
Cudraflavone B (1) is a prenylated flavonoid found in large amounts in the roots of Morus alba, a plant used as a herbal remedy for its reputed anti-inflammatory properties. The present study shows that this compound causes a significant inhibition of inflammatory mediators in selected in vitro models. Thus, 1 was identified as a potent inhibitor of tumor necrosis factor α (TNFα) gene expression and secretion by blocking the translocation of nuclear factor κB (NF-κB) from the cytoplasm to the nucleus in macrophages derived from a THP-1 human monocyte cell line. The NF-κB activity reduction resulted in the inhibition of cyclooxygenase 2 (COX-2) gene expression. Compound 1 acts as a COX-2 and COX-1 inhibitor with higher selectivity toward COX-2 than indomethacin. Pretreatment of cells by 1 shifted the peak in an regulatory gene zinc-finger protein 36 (ZFP36) expression assay. This natural product has noticeable anti-inflammatory properties, suggesting that 1 potentially could be used for development as a nonsteroidal anti-inflammatory drug lead.
Ream, Thomas S.; Haag, Jeremy R.; Pontvianne, Frederic; Nicora, Carrie D.; Norbeck, Angela D.; Paša-Tolić, Ljiljana; Pikaard, Craig S.
2015-01-01
Using affinity purification and mass spectrometry, we identified the subunits of Arabidopsis thaliana multisubunit RNA polymerases I and III (abbreviated as Pol I and Pol III), the first analysis of their physical compositions in plants. In all eukaryotes examined to date, AC40 and AC19 subunits are common to Pol I (a.k.a. Pol A) and Pol III (a.k.a. Pol C) and are encoded by single genes. Surprisingly, A. thaliana and related species express two distinct AC40 paralogs, one of which assembles into Pol I and the other of which assembles into Pol III. Changes at eight amino acid positions correlate with the functional divergence of Pol I- and Pol III-specific AC40 paralogs. Two genes encode homologs of the yeast C53 subunit and either protein can assemble into Pol III. By contrast, only one of two potential C17 variants, and one of two potential C31 variants were detected in Pol III. We introduce a new nomenclature system for plant Pol I and Pol III subunits in which the 12 subunits that are structurally and functionally homologous among Pols I through V are assigned equivalent numbers. PMID:25813043
Serino, G; Tsuge, T; Kwok, S; Matsui, M; Wei, N; Deng, X W
1999-01-01
The pleiotropic constitutive photomorphogenic/deetiolated/fusca (cop/det/fus) mutants of Arabidopsis exhibit features of light-grown seedlings when grown in the dark. Cloning and biochemical analysis of COP9 have revealed that it is a component of a multiprotein complex, the COP9 signalosome (previously known as the COP9 complex). Here, we compare the immunoaffinity and the biochemical purification of the COP9 signalosome from cauliflower and confirm its eight-subunit composition. Molecular cloning of subunit 4 of the complex revealed that it is a proteasome-COP9 complex-eIF3 domain protein encoded by a gene that maps to chromosome 5, near the chromosomal location of the cop8 and fus4 mutations. Genetic complementation tests showed that the cop8 and fus4 mutations define the same locus, now designated as COP8. Molecular analysis of the subunit 4-encoding gene in both cop8 and fus4 mutants identified specific molecular lesions, and overexpression of the subunit 4 cDNA in a cop8 mutant background resulted in complete rescue of the mutant phenotype. Thus, we conclude that COP8 encodes subunit 4 of the COP9 signalosome. Examination of possible molecular interactions by using the yeast two-hybrid assay indicated that COP8 is capable of strong self-association as well as interaction with COP9, FUS6/COP11, FUS5, and Arabidopsis JAB1 homolog 1, the latter four proteins being previously defined subunits of the Arabidopsis COP9 signalosome. A comparative sequence analysis indicated that COP8 is highly conserved among multicellular eukaryotes and is also similar to a subunit of the 19S regulatory particle of the 26S proteasome. PMID:10521526
Andrianov, B V; Goryacheva, I I; Vlasov, S V; Gorelova, T V; Harutyunova, M V; Harutyunova, K V; Mayilyan, K R; Zakharov, I A
2015-03-01
Black flies (Diptera, Simuliidae) are well known for their medical, environmental, and veterinary importance. The simuliid fauna of Armenia includes 53 species. A number of dominant species are of ecological importance. Complex analysis, which involved morphometric, cytogenetic, and molecular genetic approaches, was conducted to characterize the species status of black flies inhabiting the territory of Armenia. It was shown that the predominant simuliid species, Simulium paraequinum and Simulium kiritshenkoi, belong to a group of species with minimal variability of the cox1 gene. The recently discovered species, Simulium noellery and Simulium [B.] erythrocephalum, which are new to Armenia, can be considered as potentially invasive, which is supported by the low level of variability of the cox1 gene.
Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice
Fujisawa, Yukiko; Kato, Teruhisa; Ohki, Shizuka; Ishikawa, Atsushi; Kitano, Hidemi; Sasaki, Takuji; Asahi, Tadashi; Iwasaki, Yukimoto
1999-01-01
Transgenic rice containing an antisense cDNA for the α subunit of rice heterotrimeric G protein produced little or no mRNA for the subunit and exhibited abnormal morphology, including dwarf traits and the setting of small seeds. In normal rice, the mRNA for the α subunit was abundant in the internodes and florets, the tissues closely related to abnormality in the dwarf transformants. The position of the α-subunit gene was mapped on rice chromosome 5 by mapping with the restriction fragment length polymorphism. The position was closely linked to the locus of a rice dwarf mutant, Daikoku dwarf (d-1), which is known to exhibit abnormal phenotypes similar to those of the transformants that suppressed the endogenous mRNA for the α subunit by antisense technology. Analysis of the cDNAs for the α subunits of five alleles of Daikoku dwarf (d-1), ID-1, DK22, DKT-1, DKT-2, and CM1361–1, showed that these dwarf mutants had mutated in the coding region of the α-subunit gene. These results show that the G protein functions in the formation of normal internodes and seeds in rice. PMID:10377457
The mitochondrial genome of Priapulus caudatus Lamarck (Priapulida: Priapulidae).
Webster, Bonnie L; Mackenzie-Dodds, Jacqueline A; Telford, Maximilian J; Littlewood, D Timothy J
2007-03-01
We sequenced and annotated the complete mitochondrial (mt) genome of the priapulid Priapulus caudatus in order to provide a source of phylogenetic characters including an assessment of gene order arrangement. The genome was 14,919 bp in its entirety with few, short non-coding regions. A number of protein-coding and tRNA genes overlapped, making the genome relatively compact. The gene order was: cox1, cox2, trnK, trnD, atp8, atp6, cox3, trnG, nad3, trnA, trnR, trnN, rrnS, trnV, rrnL, trnL(yaa), trnL(nag), nad1, -trnS(nga), -cob, -nad6, trnP, -trnT, nad4L, nad4, trnH, nad5, trnF, -trnE, -trnS(nct), trnI, -trnQ, trnM, nad2, trnW, -trnC, -trnY; where '-' indicates genes transcribed on the opposite strand. The gene order, although unique amongst Metazoa, shared the greatest number of gene boundaries and the longest contiguous fragments with the chelicerate Limulus polyphemus. The mt genomes of these taxa differed only by a single inversion of 18 contiguous genes bounded by rrnS and trnS(nct). Other arthropods and nematodes shared fewer gene boundaries but considerably more than the most similar non-ecdysozoan.
Kuuluvainen, Emilia; Domènech-Moreno, Eva; Niemelä, Elina H; Mäkelä, Tomi P
2018-06-01
In cancer, oncogene activation is partly mediated by acquired superenhancers, which therefore represent potential targets for inhibition. Superenhancers are enriched for BRD4 and Mediator, and both BRD4 and the Mediator MED12 subunit are disproportionally required for expression of superenhancer-associated genes in stem cells. Here we show that depletion of Mediator kinase module subunit MED12 or MED13 together with MED13L can be used to reduce expression of cancer-acquired superenhancer genes, such as the MYC gene, in colon cancer cells, with a concomitant decrease in proliferation. Whereas depletion of MED12 or MED13/MED13L caused a disproportional decrease of superenhancer gene expression, this was not seen with depletion of the kinases cyclin-dependent kinase 9 (CDK8) and CDK19. MED12-MED13/MED13L-dependent superenhancer genes were coregulated by β-catenin, which has previously been shown to associate with MED12. Importantly, β-catenin depletion caused reduced binding of MED12 at the MYC superenhancer. The effect of MED12 or MED13/MED13L depletion on cancer-acquired superenhancer gene expression was more specific than and partially distinct from that of BRD4 depletion, with the most efficient inhibition seen with combined targeting. These results identify a requirement of MED12 and MED13/MED13L for expression of acquired superenhancer genes in colon cancer, implicating these Mediator subunits as potential therapeutic targets for colon cancer, alone or together with BRD4. Copyright © 2018 American Society for Microbiology.
Host Gene Expression Analysis in Sri Lankan Melioidosis Patients
2017-06-19
response genes and epigenetic regulators during melioidosis infection. Methods Patient enrollment Nationwide active surveillance for melioidosis... activator complex subunit 2 TR-17-140 Distribution Statement A: Approved for public release; distribution is unlimited. 13 PSMA5 Proteasome subunit...B-cell activation and T-cell proliferation, thus acting as a key regulator of humoral and adaptive immunity. Its role as an anti-inflammatory
The ferredoxin-thioredoxin reductase variable subunit gene from Anacystis nidulans.
Szekeres, M; Droux, M; Buchanan, B B
1991-03-01
The ferredoxin-thioredoxin reductase variable subunit gene of Anacystis nidulans was cloned, and its nucleotide sequence was determined. A single-copy 219-bp open reading frame encoded a protein of 73 amino acid residues, with a calculated Mr of 8,400. The monocistronic transcripts were represented in a 400-base and a less abundant 300-base mRNA form.
Derivation and evaluation of putative adverse outcome ...
Cyclooxygenase (COX) inhibition is of concern in fish because COX inhibitors (e.g., ibuprofen) are ubiquitous in aquatic systems/fish tissues, and can disrupt synthesis of prostaglandins that modulate a variety of essential biological functions including reproduction. High content (transcriptomic) empirical data and publicly available high throughput toxicity data (actor.epa.gov) were utilized to develop putative adverse outcome pathways (AOPs) for molecular initiating event (MIE) of COX inhibition. Effects of a waterborne, 96h exposure to indomethacin (IN; 100 µg/L), ibuprofen (IB; 200 µg/L) and celecoxib (CX; 20 µg/L) on liver metabolome and ovarian gene expression (using oligonucleotide microarrays) in sexually mature fathead minnows (n=8) were examined. Metabolomic profiles of IN, IB and CX were not significantly different from control or one another. Exposure to IB and CX resulted in differential expression of comparable numbers of genes (IB = 433, CX= 545). In contrast, 2558 genes were differentially expressed in IN-treated fish. Functional analyses (canonical pathway and gene set enrichment) indicated extensive effects of IN on prostaglandin synthesis pathway, oocyte meiosis and several other processes consistent with physiological roles of prostaglandins. Transcriptomic data was congruent with apical endpoint data - IN reduced plasma prostaglandin F2 alpha concentrations, and ovarian COX activity, whereas IB and CX did not. Putative AOPs pathways for
Mutant NDUFS3 subunit of mitochondrial complex I causes Leigh syndrome.
Bénit, P; Slama, A; Cartault, F; Giurgea, I; Chretien, D; Lebon, S; Marsac, C; Munnich, A; Rötig, A; Rustin, P
2004-01-01
Respiratory chain complex I deficiency represents a genetically heterogeneous group of diseases resulting from mutations in mitochondrial or nuclear genes. Mutations have been reported in 13 of the 14 subunits encoding the core of complex I (seven mitochondrial and six nuclear genes) and these result in Leigh or Leigh-like syndromes or cardiomyopathy. In this study, a combination of denaturing high performance liquid chromatography and sequence analysis was used to study the NDUFS3 gene in a series of complex I deficient patients. Mutations found in this gene (NADH dehydrogenase iron-sulphur protein 3), coding for the seventh and last subunit of complex I core, were shown to cause late onset Leigh syndrome, optic atrophy, and complex I deficiency. A biochemical diagnosis of complex I deficiency on cultured amniocytes from a later pregnancy was confirmed through the identification of disease causing NDUFS3 mutations in these cells. While mutations in the NDUFS3 gene thus result in Leigh syndrome, a dissimilar clinical phenotype is observed in mutations in the NDUFV2 and NDUFS2 genes, resulting in encephalomyopathy and cardiomyopathy. The reasons for these differences are uncertain.
Cianciulli, Antonia; Calvello, Rosa; Cavallo, Pasqua; Dragone, Teresa; Carofiglio, Vito; Panaro, Maria Antonietta
2012-10-01
Resveratrol is a natural phytoalexin present in a variety of plant species, such as grapes and red wine, that is well known for its anti-inflammatory effects. In addition, a cancer chemotherapeutic activity of resveratrol has been described. Here we evaluated the effect of resveratrol on COX-2 and prostaglandin E(2) production in human intestinal cells Caco-2 cells treated with lipopolysaccharide (LPS). Resveratrol concentration-dependently inhibited the expression of COX-2 mRNA in the LPS-treated cells, as well as protein expression, resulting in a decreased production of PGE(2). In order to investigate the mechanisms through which resveratrol exhibited these anti-inflammatory effects, we examined the activation of IκB in LPS-stimulated intestinal cells. Results demonstrated that resveratrol inhibited the translocation of NF-κB p65 subunits from the cytosol to the nucleus, which correlated with its inhibitory effects on IκBα phosphorylation and degradation. These results suggest that the down-regulation of COX-2 and PGE(2) by resveratrol may be related to NF-κB inhibition through the negative regulation of IKK phosphorylation in intestinal cells. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, MiRan; Juhnn, Yong-Sung, E-mail: juhnn@snu.ac.kr
Ultraviolet (UV) radiation induces cyclooxygenase-2 expression to produce cellular responses including aging and carcinogenesis in skin. We hypothesised that heterotrimeric G proteins mediate UV-induced COX-2 expression by stimulating secretion of soluble HB-EGF (sHB-EGF). In this study, we aimed to elucidate the role and underlying mechanism of the {alpha} subunit of Gq protein (G{alpha}q) in UVB-induced HB-EGF secretion and COX-2 induction. We found that expression of constitutively active G{alpha}q (G{alpha}qQL) augmented UVB-induced HB-EGF secretion, which was abolished by knockdown of G{alpha}q with shRNA in HaCaT human keratinocytes. G{alpha}q was found to mediate the UVB-induced HB-EGF secretion by sequential activation of phospholipasemore » C (PLC), protein kinase C{delta} (PKC{delta}), and matrix metaloprotease-2 (MMP-2). Moreover, G{alpha}qQL mediated UVB-induced COX-2 expression in an HB-EGF-, EGFR-, and p38-dependent manner. From these results, we concluded that G{alpha}q mediates UV-induced COX-2 expression through activation of EGFR by HB-EGF, of which ectodomain shedding was stimulated through sequential activation of PLC, PKC{delta} and MMP-2 in HaCaT cells.« less
Chae, Joon-seok; Levy, Michael; Hunt, John; Schlater, Jack; Snider, Glen; Waghela, Suryakant D.; Holman, Patricia J.; Wagner, G. Gale
1999-01-01
Theileria sp.-specific small subunit (SSU) rRNA gene amplification confirmed the presence of the organism in cattle and in Amblyomma americanum and Dermacentor variabilis ticks collected from a cattle herd in Missouri. Blood from the index animal had type A and type D Theileria SSU rRNA genes. The type D gene was also found in blood from two cohort cattle and tick tissues. The type A SSU rRNA gene was previously reported from bovine Theileria isolates from Texas and North Carolina; the type D gene was reported from a Texas cow with theileriosis. PMID:10449501
Fractals and self-organized criticality in anti-inflammatory drugs
NASA Astrophysics Data System (ADS)
Phillips, J. C.
2014-12-01
Nonsteroidal anti-inflammatory drugs (NSAIDs) act through inhibiting prostaglandin synthesis, a catalytic activity possessed by two distinct cyclooxygenase (COX-1 and COX-2) isozymes encoded by separate genes. The discovery of COX-2 launched a new era in NSAID pharmacology, resulting in the synthesis, marketing, and widespread use of COX-2 selective inhibitors. Extensive structural studies of the biology of prostaglandin synthesis and inhibition have explained some of the differences between COX-1 and COX-2 functionality, but others are still unexplained. Notably these include molecular differences that cause COX-1 inhibitors to produce a slight decrease, and COX-2 inhibitors to induce a significant increase, in heart attacks and strokes. These differences were unexpected because of the 60% overall COX-1 and COX-2 sequence similarity and the 1-2 conservation of catalytic sites. Hydropathic analysis shows important bicyclic differences between COX-1 and COX-2 on a large scale outside the catalytic pocket. These differences involve much stronger amphiphilic interactions in COX-2 than in COX-1, and may explain the selective antiplatelet effectiveness of COX-2. Success of the non-Euclidean structural analysis is the result of using the new Brazilian hydropathicity scale based on self-organized criticality (SOC) of universal protein modules.
Subunit association of gamma-glutamyltranspeptidase of Escherichia coli K-12.
Hashimoto, W; Suzuki, H; Nohara, S; Tachi, H; Yamamoto, K; Kumagai, H
1995-12-01
gamma-Glutamyltranspeptidase [EC 2.3.2.2] of Escherichia coli K-12 consists of one large subunit and one small subunit, which can be separated from each other by high-performance liquid chromatography. Using ion spray mass spectrometry, the masses of the large and the small subunit were determined to be 39,207 and 20,015, respectively. The large subunit exhibited no gamma-glutamyltranspeptidase activity and the small subunit had little enzymatic activity, but a mixture of the two subunits showed partial recovery of the enzymatic activity. The results of native-polyacrylamide gel electrophoresis suggested that they could partially recombine, and that the recombined dimer exhibited enzymatic activity. The gene of gamma-glutamyltranspeptidase encoded a signal peptide, and the large and small subunits in a single open reading frame in that order. Two kinds of plasmid were constructed encoding the signal peptide and either the large or the small subunit. A gamma-glutamyltranspeptidase-less mutant of E. coli K-12 was transformed with each plasmid or with both of them. The strain harboring the plasmid encoding each subunit produced a small amount of the corresponding subunit protein in the periplasmic space but exhibited no enzymatic activity. The strain transformed with both plasmids together exhibited the enzymatic activity, but its specific activity was approximately 3% of that of a strain harboring a plasmid encoding the intact structural gene. These results indicate that a portion of the separated large and small subunits can be reconstituted in vitro and exhibit the enzymatic activity, and that the expressed large and small subunits independently are able to associate in vivo and be folded into an active structure, though the specific activity of the associated subunits was much lower than that of native enzyme. This suggests that the synthesis of gamma-glutamyltranspeptidase in a single precursor polypeptide and subsequent processing are more effective to construct the intact structure of gamma-glutamyltranspeptidase than the association of the separated large and small subunits.
Yang, T; Forrest, S J; Stine, N; Endo, Y; Pasumarthy, A; Castrop, H; Aller, S; Forrest, J N; Schnermann, J; Briggs, J
2002-09-01
The present studies were carried out with the aims to determine the cDNA sequence for cyclooxygenase (COX) in an elasmobranch species and to study its role in regulation of chloride secretion in the perfused shark rectal gland (SRG). With the use of long primers (43 bp) derived from regions of homology between zebrafish and rainbow trout COX-2 genes, a 600-bp product was amplified from SRG and was found to be almost equally homologous to mammalian COX-1 and COX-2 (65%). The full-length cDNA sequence was obtained by 5'-RACE and by analyzing an EST clone generated by the EST Project of the Mt. Desert Island Biological Laboratory Marine DNA Sequencing Center. The longest open reading frame encodes a 593-amino acid protein that has 68 and 64% homology to mammalian COX-1 and COX-2, respectively. The gene and its protein product is designated as shark COX (sCOX). The key residues in the active site (Try(385), His(388), and Ser(530)) are conserved between the shark and mammalian COX. sCOX contains Val(523) that has been shown to be a key residue determining the sensitivity to COX-2-specific inhibitors including NS-398. The mRNA of sCOX, detected by RT-PCR, was found in all tissues tested, including rectal gland, kidney, spleen, gill, liver, brain, and heart, but not in fin. In the perfused SRG, vasoactive intestinal peptide (VIP) at 5 nM induced rapid and marked Cl(-) secretion (basal: <250 microeq x h(-1) x g(-1); peak response: 3,108 +/- 479 microeq x h(-1) x g(-1)). In the presence of 50 microM NS-398, both the peak response (2,131 +/- 307 microeq x h(-1) x g(-1)) and the sustained response to VIP were significantly reduced. When NS-398 was removed, there was a prompt recovery of chloride secretion to control values. In conclusion, we have cloned the first COX in an elasmobranch species (sCOX) and shown that sCOX inhibition suppresses VIP-stimulated chloride secretion in the perfused SRG.
Epidemiological investigation of a severe rumen fluke outbreak on an Irish dairy farm.
O'Shaughnessy, James; Garcia-Campos, Andres; McAloon, Conor G; Fagan, Seamus; de Waal, Theo; McElroy, Maire; Casey, Micheal; Good, Barbara; Mulcahy, Grace; Fagan, John; Murphy, Denise; Zintl, Annetta
2017-11-16
Although the rumen fluke, Calicophoron daubneyi is now very common and widespread throughout Western Europe, reports of clinical cases are still rare. This study explores the epidemiological background to a severe rumen fluke outbreak in 6-month-old heifers on a dairy farm in Ireland. Sequence analysis of the cytochrome oxidase subunit 1 (Cox1) gene of the rumen fluke metacercariae on pasture failed to identify predominant, possibly pathogenic subtypes. However, estimates of metacercarial load indicated that the animals were exposed to a daily dose of about 5334 C. daubneyi metacercariae for a period of 3 weeks resulting in the build-up of very large numbers of immature worms in the small intestine. It is hypothesized that specific environmental conditions may favour this parasite over its competitor, the liver fluke, Fasciola hepatica, possibly by allowing it to emerge earlier. The possibility that C. daubneyi may be better adapted to the Irish climate than F. hepatica together with the fact that selective treatment against F. hepatica effectively frees the niche for C. daubneyi, may result in the gradual replacement of F. hepatica by C. daubneyi.
Simple and fast multiplex PCR method for detection of species origin in meat products.
Izadpanah, Mehrnaz; Mohebali, Nazanin; Elyasi Gorji, Zahra; Farzaneh, Parvaneh; Vakhshiteh, Faezeh; Shahzadeh Fazeli, Seyed Abolhassan
2018-02-01
Identification of animal species is one of the major concerns in food regulatory control and quality assurance system. Different approaches have been used for species identification in animal origin of feedstuff. This study aimed to develop a multiplex PCR approach to detect the origin of meat and meat products. Specific primers were designed based on the conserved region of mitochondrial Cytochrome C Oxidase subunit I ( COX1 ) gene. This method could successfully distinguish the origin of the pig, camel, sheep, donkey, goat, cow, and chicken in one single reaction. Since PCR products derived from each species represent unique molecular weight, the amplified products could be identified by electrophoresis and analyzed based on their size. Due to the synchronized amplification of segments within a single PCR reaction, multiplex PCR is considered to be a simple, fast, and inexpensive technique that can be applied for identification of meat products in food industries. Nowadays, this technique has been considered as a practical method to identify the species origin, which could further applied for animal feedstuffs identification.
Uni, Shigehiko; Bain, Odile; Suzuki, Kazuo; Agatsuma, Takeshi; Harada, Masashi; Motokawa, Masaharu; Martin, Coralie; Lefoulon, Emilie; Fukuda, Masako; Takaoka, Hiroyuki
2013-02-01
Acanthocheilonema delicata n. sp. (Filarioidea: Onchocercidae: Onchocercinae) is described based on adult filarioids and microfilariae obtained from subcutaneous connective tissues and skin, respectively, of Japanese badgers (Meles anakuma) in Wakayama Prefecture, Japan. No endemic species of the genus had been found in Japan. Recently, some filarioids (e.g., Acanthocheilonema reconditum, Dirofilaria spp., and Onchocerca spp.) have come to light as causative agents of zoonosis worldwide. The new species was readily distinguished from its congeners by morphologic characteristics such as body length, body width, esophagus length, spicule length, and the length of microfilariae. Based on the molecular data of the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene, A. delicata n. sp. was included in the clade of the genus Acanthocheilonema but differed from two other congeneric species available for study, A. viteae and A. reconditum. Acanthocheilonema delicata n. sp. did not harbor Wolbachia. It is likely that the fauna of filarioids from mammals on the Japanese islands is characterized by a high level of endemicity. Copyright © 2012 Elsevier B.V. All rights reserved.
Hall, Joseph E.; Suehiro, Atsushi; Branski, Ryan C.; Garrett, C. Gaelyn; Rousseau, Bernard
2015-01-01
Objective To investigate the hypothesis that prophylactic triamcinolone modulates acute vocal fold inflammatory and profibrotic signaling during acute phonotrauma. Study Design In vivo rabbit phonation model. Setting Academic medical center. Subjects and Methods Forty New Zealand white breeder rabbits were randomly assigned to 1 of 4 groups: control (no intervention), no treatment (30 minutes of raised intensity phonation), sham treatment (bilateral intralaryngeal triamcinolone acetonide injection at 0 μg/25 μL followed by 30 minutes of raised intensity phonation), or steroid treatment (bilateral intralaryngeal triamcinolone acetonide injection at 400 μg/25 μL followed by 30 minutes of raised intensity phonation). Quantitative polymerase chain reaction (qPCR) was used to investigate gene expression levels of cyclooxygenase-2 (COX-2), interleukin (IL)–1β, and transforming growth factor (TGF)–β1. Results Results revealed a significant main effect for COX-2 (P = .002). Post hoc testing revealed that rabbits receiving no treatment (15.10) had higher COX-2 gene expression than control (5.90; P <.001). There were no significant differences in COX-2 expression between treatment groups. Results revealed a significant main effect for IL-1β (P < .001). Post hoc testing revealed that rabbits receiving no treatment (14.70) had higher IL-1β gene expression than control (6.30) (P = .001). There were no significant differences in IL-1β gene expression between treatment groups. There were no significant differences in TGF-β1 gene expression (P = .525) between treatment and control groups. Conclusion Given conflicting evidence, further studies are necessary to investigate vocal fold steroid injections prior to and following the induction of phonotrauma. Prophylactic administration of triamcinolone immediately prior to acute phonotrauma resulted in no significant changes in COX-2, IL-1β, and TGF-β1 gene transcript levels. PMID:22399283
Wang, Juan; Zhang, Li; Zhang, Qi-Lin; Zhou, Min-Qiang; Wang, Xiao-Tong; Yang, Xing-Zhuo; Yuan, Ming-Long
2017-01-01
The family Miridae is one of the most species-rich families of insects. To better understand the diversity and evolution of mirids, we determined the mitogenome of Lygus pratenszs and re-sequenced the mitogenomes of four mirids (i.e., Apolygus lucorum , Adelphocoris suturalis , Ade. fasciaticollis and Ade. lineolatus ). We performed a comparative analysis for 15 mitogenomic sequences representing 11 species of five genera within Miridae and evaluated the potential of these mitochondrial genes as molecular markers. Our results showed that the general mitogenomic features (gene content, gene arrangement, base composition and codon usage) were well conserved among these mirids. Four protein-coding genes (PCGs) ( cox1 , cox3 , nad1 and nad3 ) had no length variability, where nad5 showed the largest size variation; no intraspecific length variation was found in PCGs. Two PCGs ( nad4 and nad5 ) showed relatively high substitution rates at the nucleotide and amino acid levels, where cox1 had the lowest substitution rate. The Ka/Ks values for all PCGs were far lower than 1 (<0.59), but the Ka/Ks values of cox1 -barcode sequences were always larger than 1 (1.34 -15.20), indicating that the 658 bp sequences of cox1 may be not the appropriate marker due to positive selection or selection relaxation. Phylogenetic analyses based on two concatenated mitogenomic datasets consistently supported the relationship of Nesidiocoris + ( Trigonotylus + ( Adelphocoris + ( Apolygus + Lygus ))), as revealed by nad4 , nad5 , rrnL and the combined 22 transfer RNA genes (tRNAs), respectively. Taken sequence length, substitution rate and phylogenetic signal together, the individual genes ( nad4 , nad5 and rrnL ) and the combined 22 tRNAs could been used as potential molecular markers for Miridae at various taxonomic levels. Our results suggest that it is essential to evaluate and select suitable markers for different taxa groups when performing phylogenetic, population genetic and species identification studies.
Tabor, C W; Tabor, H
1987-11-25
We have previously shown that the gene (speD) for S-adenosylmethionine decarboxylase is part of an operon that also contains the gene (speE) for spermidine synthase (Tabor, C. W., Tabor, H., and Xie, Q.-W. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 6040-6044). We have now determined the nucleotide sequence of this operon and have found that speD codes for a polypeptide of Mr = 30,400, which is considerably greater than the subunit size of the purified enzyme. Our studies show that S-adenosylmethionine decarboxylase is first formed as a Mr = 30,400 polypeptide and that this proenzyme is then cleaved at the Lys111-Ser112 peptide bond to form a Mr = 12,400 subunit and a Mr = 18,000 subunit. The latter subunit contains the pyruvoyl moiety that we previously showed is required for enzymatic activity. Both subunits are present in the purified enzyme. These conclusions are based on (i) pulse-chase experiments with a strain containing a speD+ plasmid which showed a precursor-product relationship between the proenzyme and the enzyme subunits, (ii) the amino acid sequence of the proenzyme form of S-adenosylmethionine decarboxylase (derived from the nucleotide sequence of the speD gene), and (iii) comparison of this sequence of the proenzyme with the N-terminal amino acid sequences of the two subunits of the purified enzyme reported by Anton and Kutny (Anton, D. L., and Kutny, R. (1987) J. Biol. Chem. 262, 2817-2822).
Dong, Jing; Dai, Juncheng; Zhang, Mingfeng; Hu, Zhibin; Shen, Hongbing
2010-06-01
Three potentially functional polymorphisms: -765G>C, -1195G>A, and 8473T>C in the cyclooxygenase-2 (COX-2) gene were identified and proposed to be associated with cancer susceptibility. The aim of this meta-analysis was to evaluate the association between these three polymorphisms and the risk of cancer in diverse populations. All case-control studies published up to November 2009 on the association between the three polymorphisms of COX-2 and cancer risk were identified by searching PubMed. The cancer risk associated with the three polymorphisms of the COX-2 gene was estimated for each study by OR together with its 95% confidence interval (CI), respectively. A total of 47 case-control studies were included, and variant genotypes GA/AA of -1195G>A were associated with a significantly increased cancer risk (GA/AA vs GG: odds ratio [OR], 1.29; 95% CI, 1.18-1.41; P(heterogeneity) = 0.113), and this significant association was mainly observed within cancers of the digestive system (e.g. colorectal, gastric, esophageal, oral, biliary tract, gallbladder, and pancreatic) without between-study heterogeneity (GA/AA vs GG: OR, 1.36; 95% CI; 1.23-1.51; P(heterogeneity) = 0.149). Furthermore, a stratification analysis showed that the risk of COX-2-1195G>A associated with cancers in the digestive system was more evident among Asians than Caucasians. However, for COX-2-765G>C and 8473T>C, no convincing association between the two polymorphisms and risk of cancer or cancer type was observed. The effect of three potentially functional polymorphisms (-765G>C, -1195G>A, and 8473T>C) in the COX-2 gene on cancer risk provided evidence that the COX-2-1195G>A polymorphism was significantly associated with increased risk of digestive system cancers, especially among Asian populations.
Crotoxin: Structural Studies, Mechanism of Action and Cloning of its Gene
1988-03-01
thirteen amino acids being acidic . Sequencing of the three peptides present in the acidic subunit, two of which are blocked by pyroglutamate ...the sequence determination of both the basic and acidic subunits of crotoxin- The acidic * subunit peptides were d!Tfficult, .sfi~n~e two of-ftflý...fluorescence spectroscopy. Results indicate a large conformational change occurs upon) ccmplex formation between the acidic and basic subunits of all four
Genotype and Phenotype of Echinococcus granulosus Derived from Wild Sheep (Ovis orientalis) in Iran.
Eslami, Ali; Meshgi, Behnam; Jalousian, Fatemeh; Rahmani, Shima; Salari, Mohammad Ali
2016-02-01
The aim of the present study is to determine the characteristics of genotype and phenotype of Echinococcus granulosus derived from wild sheep and to compare them with the strains of E. granulosus sensu stricto (sheep-dog) and E. granulosus camel strain (camel-dog) in Iran. In Khojir National Park, near Tehran, Iran, a fertile hydatid cyst was recently found in the liver of a dead wild sheep (Ovis orientalis). The number of protoscolices (n=6,000) proved enough for an experimental infection in a dog. The characteristics of large and small hooks of metacestode were statistically determined as the sensu stricto strain but not the camel strain (P=0.5). To determine E. granulosus genotype, 20 adult worms of this type were collected from the infected dog. The second internal transcribed spacer (ITS2) of the nuclear ribosomal DNA (rDNA) and cytochrome c oxidase 1 subunit (COX1) of the mitochondrial DNA were amplified from individual adult worm by PCR. Subsequently, the PCR product was sequenced by Sanger method. The lengths of ITS2 and COX1 sequences were 378 and 857 bp, respectively, for all the sequenced samples. The amplified DNA sequences from both ribosomal and mitochondrial genes were highly similar (99% and 98%, respectively) to that of the ovine strain in the GenBank database. The results of the present study indicate that the morpho-molecular features and characteristics of E. granulosus in the Iranian wild sheep are the same as those of the sheep-dog E. granulosus sensu stricto strain.
Briosio-Aguilar, R; Pinto, H A; Rodríguez-Santiago, M A; López-García, K; García-Varela, M; de León, G Pérez-Ponce
2018-06-01
The phylogenetic position of Clinostomum heluans Braun, 1899 within the genus Clinostomum Leidy, 1856 is reported in this study based on sequences of the barcoding region of the mitochondrial cytochrome c oxidase subunit 1 gene ( COX1). Additionally, molecular data are used to link the adult and the metacercariae of the species. The metacercariae of C. heluans were found encysted infecting the cichlid fish Australoheros sp. in Minas Gerais, Brazil, whereas the adults were obtained from the mouth cavity of the Great White Egret, Ardea alba, in Campeche, Mexico. The COX1 sequences obtained for the Mexican clinostomes and the Brazilian metacercaria were almost identical (0.2% molecular divergence), indicating conspecificity. Similar molecular divergence (0.2-0.4%) was found between sequences of C. heluans reported here and Clinostomum sp. 6 previously obtained from a metacercaria recovered from the cichlid Cichlasoma boliviense in Santa Cruz, Bolivia. Both maximum likelihood and Bayesian inference analyses unequivocally showed the conspecificity between C. heluans and Clinostomum sp. 6, which form a monophyletic clade with high nodal support and very low genetic divergence. Moreover, tree topology reveals that C. heluans occupies a basal position with respect to New World species of Clinostomum, although a denser taxon sampling of species within the genus is further required. The metacercaria of C. heluans seems to be specific to cichlid fish because both samples from South America were recovered from species of this fish family, although not closely related.
Lai, Ching-Shu; Li, Shiming; Chai, Chee-Yin; Lo, Chih-Yu; Dushenkov, Slavik; Ho, Chi-Tang; Pan, Min-Hsiung; Wang, Ying-Jan
2008-12-01
We reported previously that 3',4'-didemethylnobiletin (DDMN) is the major metabolite of nobiletin in mouse urine. In this study, we examined DDMN's molecular mechanism of action and its anti-inflammatory and antitumor properties. We demonstrated that topical application of DDMN effectively inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated transcription of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and ornithine decarboxylase (ODC) messenger RNA and protein expression in mouse skin. Pretreatment with DDMN has resulted in the reduction of TPA-induced nuclear translocation of the nuclear factor-kappa B (NF-kappaB) subunit. DDMN also reduced DNA binding by blocking phosphorylation of inhibitor kappaB (IkappaB) alpha and p65 and caused subsequent degradation of IkappaBalpha. DDMN inhibited TPA-induced phosphorylation and nuclear translocation of the signal transducer and activator of transcription 3. Moreover, DDMN suppressed TPA-induced activation of extracellular signal-regulated kinase 1/2, p38 mitogen-activated protein kinase, phosphatidylinositol 3-kinase/Akt and protein kinase C that are upstream of NF-kappaB and activator protien-1. We also found that DDMN significantly inhibited TPA-induced mouse skin inflammation by decreasing inflammatory parameters. Furthermore, DDMN significantly inhibited 7,12-dimethylbenz[a]anthracene/TPA-induced skin tumor formation measured by the tumor multiplicity of papillomas at 20 weeks. Presented data for the first time reveal that DDMN is an effective antitumor agent that functions by downregulating inflammatory iNOS, COX-2 and ODC gene expression in mouse skin. It is suggested that DDMN is a novel functional agent capable of preventing inflammation-associated tumorigenesis.
Ferguson, Carolyn; Hardy, Steven L; Werner, David F; Hileman, Stanley M; DeLorey, Timothy M; Homanics, Gregg E
2007-01-01
Background The β3 subunit of the γ-aminobutyric acid type A receptor (GABAA-R) has been reported to be important for palate formation, anesthetic action, and normal nervous system function. This subunit has also been implicated in the pathogenesis of Angelman syndrome and autism spectrum disorder. To further investigate involvement of this subunit, we previously produced mice with a global knockout of β3. However, developmental abnormalities, compensation, reduced viability, and numerous behavioral abnormalities limited the usefulness of that murine model. To overcome many of these limitations, a mouse line with a conditionally inactivated β3 gene was engineered. Results Gene targeting and embryonic stem cell technologies were used to create mice in which exon 3 of the β3 subunit was flanked by loxP sites (i.e., floxed). Crossing the floxed β3 mice to a cre general deleter mouse line reproduced the phenotype of the previously described global knockout. Pan-neuronal knockout of β3 was achieved by crossing floxed β3 mice to Synapsin I-cre transgenic mice. Palate development was normal in pan-neuronal β3 knockouts but ~61% died as neonates. Survivors were overtly normal, fertile, and were less sensitive to etomidate. Forebrain selective knockout of β3 was achieved using α CamKII-cre transgenic mice. Palate development was normal in forebrain selective β3 knockout mice. These knockouts survived the neonatal period, but ~30% died between 15–25 days of age. Survivors had reduced reproductive fitness, reduced sensitivity to etomidate, were hyperactive, and some became obese. Conclusion Conditional inactivation of the β3 gene revealed novel insight into the function of this GABAA-R subunit. The floxed β3 knockout mice described here will be very useful for conditional knockout studies to further investigate the role of the β3 subunit in development, ethanol and anesthetic action, normal physiology, and pathophysiologic processes. PMID:17927825
Plastid-Nuclear Interaction and Accelerated Coevolution in Plastid Ribosomal Genes in Geraniaceae.
Weng, Mao-Lun; Ruhlman, Tracey A; Jansen, Robert K
2016-06-27
Plastids and mitochondria have many protein complexes that include subunits encoded by organelle and nuclear genomes. In animal cells, compensatory evolution between mitochondrial and nuclear-encoded subunits was identified and the high mitochondrial mutation rates were hypothesized to drive compensatory evolution in nuclear genomes. In plant cells, compensatory evolution between plastid and nucleus has rarely been investigated in a phylogenetic framework. To investigate plastid-nuclear coevolution, we focused on plastid ribosomal protein genes that are encoded by plastid and nuclear genomes from 27 Geraniales species. Substitution rates were compared for five sets of genes representing plastid- and nuclear-encoded ribosomal subunit proteins targeted to the cytosol or the plastid as well as nonribosomal protein controls. We found that nonsynonymous substitution rates (dN) and the ratios of nonsynonymous to synonymous substitution rates (ω) were accelerated in both plastid- (CpRP) and nuclear-encoded subunits (NuCpRP) of the plastid ribosome relative to control sequences. Our analyses revealed strong signals of cytonuclear coevolution between plastid- and nuclear-encoded subunits, in which nonsynonymous substitutions in CpRP and NuCpRP tend to occur along the same branches in the Geraniaceae phylogeny. This coevolution pattern cannot be explained by physical interaction between amino acid residues. The forces driving accelerated coevolution varied with cellular compartment of the sequence. Increased ω in CpRP was mainly due to intensified positive selection whereas increased ω in NuCpRP was caused by relaxed purifying selection. In addition, the many indels identified in plastid rRNA genes in Geraniaceae may have contributed to changes in plastid subunits. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Up-regulation of cyclooxygenase-2 by product-prostaglandin E2
NASA Technical Reports Server (NTRS)
Tjandrawinata, R. R.; Hughes-Fulford, M.
1997-01-01
The development of prostate cancer has been linked to high level of dietary fat intake. Our laboratory investigates the connection between cancer cell growth and fatty acid products. Studying human prostatic carcinoma PC-3 cells, we found that prostaglandin E2 (PGE2) increased cell growth and up-regulated the gene expression of its own synthesizing enzyme, cyclooxygenase-2 (COX-2). PGE2 increased COX-2 mRNA expression dose-dependently with the highest levels of stimulation seen at the 3-hour period following PGE2 addition. The NSAID flurbiprofen (5 microM), in the presence of exogenous PGE2, inhibited the up-regulation of COX-2 mRNA and cell growth. These data suggest that the levels of local intracellular PGE2 play a major role in the growth of prostate cancer cells through an activation of COX-2 gene expression.
Chandra, Shona; Forsyth, Maureen; Lawrence, Andrea L; Emery, David; Šlapeta, Jan
2017-01-30
The cat flea (Ctenocephalides felis) is the most common flea species parasitising both domestic cats and dogs globally. Fleas are known vectors of zoonotic pathogens such as vector borne Rickettsia and Bartonella. This study compared cat fleas from domestic cats and dogs in New Zealand's North and South Islands to Australian cat fleas, using the mitochondrial DNA (mtDNA) marker, cytochrome c oxidase subunit I and II (cox1, cox2). We assessed the prevalence of Rickettsia and Bartonella using genus specific multiplexed real-time PCR assays. Morphological identification confirmed that the cat flea (C. felis) is the most common flea in New Zealand. The examined fleas (n=43) at cox1 locus revealed six closely related C. felis haplotypes (inter-haplotype distance 1.1%) across New Zealand. The New Zealand C. felis haplotypes were identical or near identical with haplotypes from southern Australia demonstrating common dispersal of haplotype lineage across both the geographical (Tasman Sea) and climate scale. New Zealand cat fleas carried Rickettsia felis (5.3%) and Bartonella clarridgeiae (18.4%). To understand the capability of C. felis to vector zoonotic pathogens, we determined flea cox1 and cox2 haplotype diversity with the tandem multiplexed real-time PCR and sequencing for Bartonella and Rickettsia. This enabled us to demonstrate highly similar cat fleas on cat and dog populations across Australia and New Zealand. Copyright © 2016 Elsevier B.V. All rights reserved.
Putative cross-kingdom horizontal gene transfer in sponge (Porifera) mitochondria
Rot, Chagai; Goldfarb, Itay; Ilan, Micha; Huchon, Dorothée
2006-01-01
Background The mitochondrial genome of Metazoa is usually a compact molecule without introns. Exceptions to this rule have been reported only in corals and sea anemones (Cnidaria), in which group I introns have been discovered in the cox1 and nad5 genes. Here we show several lines of evidence demonstrating that introns can also be found in the mitochondria of sponges (Porifera). Results A 2,349 bp fragment of the mitochondrial cox1 gene was sequenced from the sponge Tetilla sp. (Spirophorida). This fragment suggests the presence of a 1143 bp intron. Similar to all the cnidarian mitochondrial introns, the putative intron has group I intron characteristics. The intron is present in the cox1 gene and encodes a putative homing endonuclease. In order to establish the distribution of this intron in sponges, the cox1 gene was sequenced from several representatives of the demosponge diversity. The intron was found only in the sponge order Spirophorida. A phylogenetic analysis of the COI protein sequence and of the intron open reading frame suggests that the intron may have been transmitted horizontally from a fungus donor. Conclusion Little is known about sponge-associated fungi, although in the last few years the latter have been frequently isolated from sponges. We suggest that the horizontal gene transfer of a mitochondrial intron was facilitated by a symbiotic relationship between fungus and sponge. Ecological relationships are known to have implications at the genomic level. Here, an ecological relationship between sponge and fungus is suggested based on the genomic analysis. PMID:16972986
USDA-ARS?s Scientific Manuscript database
Low-molecular-weight glutenin subunits (LMW-GS) are a class of seed storage proteins that play a major role in the determination of the processing quality of wheat flour. The LMW-GS are encoded by multi-gene families located on the short arms of the homoeologous group 1 chromosomes, at the Glu-A3, G...
The ferredoxin-thioredoxin reductase variable subunit gene from Anacystis nidulans.
Szekeres, M; Droux, M; Buchanan, B B
1991-01-01
The ferredoxin-thioredoxin reductase variable subunit gene of Anacystis nidulans was cloned, and its nucleotide sequence was determined. A single-copy 219-bp open reading frame encoded a protein of 73 amino acid residues, with a calculated Mr of 8,400. The monocistronic transcripts were represented in a 400-base and a less abundant 300-base mRNA form. Images PMID:1705544
USDA-ARS?s Scientific Manuscript database
Low-molecular-weight glutenin subunits (LMW-GS) are a class of seed storage proteins that play a major role in the determination of the viscoelastic properties of wheat dough. Most of the LMW-GSs are encoded by a multi-gene family located on the short arms of the homoeologous group 1 chromosomes, at...
Kreuzer, K N; Cozzarelli, N R
1979-11-01
Temperature-sensitive nalA mutants of Escherichia coli have been used to investigate the structure and functions of deoxyribonucleic acid (DNA) gyrase. Extracts of one such mutant (nalA43) had thermosensitive DNA gyrase subunit A activity but normal gyrase subunit B activity, proving definitively that nalA is the structural gene for subunit A. Extracts of a second nalA (Ts) mutant (nalA45) had a 50-fold deficiency of gyrase subunit A activity. The residual DNA supertwisting was catalyzed by the mutant DNA gyrase rather than by a novel supertwisting enzyme. The nalA45(Ts) extract was also deficient in the nalidixic acid target, which is defined as the protein necessary to confer drug sensitivity to in vitro DNA replication directed by a nalidixic acid-resistant mutant extract. Thus, gyrase subunit A and the nalidixic acid target are one and the same protein, the nalA gene product. Shift of the nalA43(Ts) mutant to a nonpermissive temperature resulted in a precipitous decline in the rate of [(3)H]thymidine incorporation, demonstrating an obligatory role of the nalA gene product in DNA replication. The rates of incorporation of [(3)H]uridine pulses and continuously administered [(3)H]uracil were quickly reduced approximately twofold upon temperature shift of the nalA43(Ts) mutant, and therefore some but not all transcription requires the nalA gene product. The thermosensitive growth of bacteriophages phiX174 and T4 in the nalA43(Ts) host shows that these phages depend on the host nalA gene product. In contrast, the growth of phage T7 was strongly inhibited by nalidixic acid but essentially unaffected by the nalA43(Ts) mutation. The inhibition of T7 growth by nalidixic acid was, however, eliminated by temperature inactivation of the nal43 gene product. Therefore, nalidixic acid may block T7 growth by a corruption rather than a simple elimination of the nalidixic acid target. Possible mechanisms for such a corruption are considered, and their relevance to the puzzling dominance of drug sensitivity is discussed.
Kamerewerd, Jens; Jansson, Malin; Nowrousian, Minou; Pöggeler, Stefanie; Kück, Ulrich
2008-01-01
Sordaria macrospora, a self-fertile filamentous ascomycete, carries genes encoding three different α-subunits of heterotrimeric G proteins (gsa, G protein Sordaria alpha subunit). We generated knockout strains for all three gsa genes (Δgsa1, Δgsa2, and Δgsa3) as well as all combinations of double mutants. Phenotypic analysis of single and double mutants showed that the genes for Gα-subunits have distinct roles in the sexual life cycle. While single mutants show some reduction of fertility, double mutants Δgsa1Δgsa2 and Δgsa1Δgsa3 are completely sterile. To test whether the pheromone receptors PRE1 and PRE2 mediate signaling via distinct Gα-subunits, two recently generated Δpre strains were crossed with all Δgsa strains. Analyses of the corresponding double mutants revealed that compared to GSA2, GSA1 is a more predominant regulator of a signal transduction cascade downstream of the pheromone receptors and that GSA3 is involved in another signaling pathway that also contributes to fruiting body development and fertility. We further isolated the gene encoding adenylyl cyclase (AC) (sac1) for construction of a knockout strain. Analyses of the three ΔgsaΔsac1 double mutants and one Δgsa2Δgsa3Δsac1 triple mutant indicate that SAC1 acts downstream of GSA3, parallel to a GSA1–GSA2-mediated signaling pathway. In addition, the function of STE12 and PRO41, two presumptive signaling components, was investigated in diverse double mutants lacking those developmental genes in combination with the gsa genes. This analysis was further completed by expression studies of the ste12 and pro41 transcripts in wild-type and mutant strains. From the sum of all our data, we propose a model for how different Gα-subunits interact with pheromone receptors, adenylyl cyclase, and STE12 and thus cooperatively regulate sexual development in S. macrospora. PMID:18723884
Wannasan, Anchalee; Khositharattanakool, Pathamet; Chaiwong, Prasong; Piangjai, Somsak; Uparanukraw, Pichart; Morakote, Nimit
2014-11-01
Molecular techniques were used to identify Fasciola species collected from Chiang Mai Thailand. Morphometrically, 65 stained and 45 fresh worms collected from cattle suggested the possible occurrence of both F. gigantica and F. hepatica. Twenty-two worms comprising 15 from cattle and 7 from human patients, were identified subsequently based on three genetic markers: mitochondrial nicotinamide adenine dinucleotide dehydrogenase subunit 1 (nad1), mitochondrial cytochrome c oxidase subunit 1 (cox1) and nuclear ribosomal internal transcribed spacer 2 (ITS2). All of them presented the F. gigantica type in maternally inherited mitochondrial sequences (nad1 and cox1), with six types in each sequence (FgNDI-CM1 to FgNDI-CM6 and FgCOI-CM1 to FgCOI-CM6, respectively). Remarkably, the predominant nad1 type, FgNDI-CM6, was identical to that of aspermic Fasciola sp. formerly reported from Thailand, Japan, Korea, China, Vietnam, and Myanmar. ITS2 sequences were analyzed successfully in 20 worms. Fifteen worms showed the F. gigantica type and five (including one worm from a patient) had mixed ITS2 sequences of both F. gigantica and F. hepatica in the same worms, with additional heterogeneity within both ITS2 types. This study revealed the intermediate form of Fasciola coexisting with F. gigantica for the first time in Thailand.
Platelet Kainate Receptor Signaling Promotes Thrombosis by Stimulating Cyclooxygenase Activation
Sun, Henry; Swaim, AnneMarie; Herrera, Jesus Enrique; Becker, Diane; Becker, Lewis; Srivastava, Kalyan; Thompson, Laura E.; Shero, Michelle R.; Perez-Tamayo, Alita; Suktitpat, Bhoom; Mathias, Rasika; Contractor, Anis; Faraday, Nauder; Morrell, Craig N.
2009-01-01
Rationale Glutamate is a major signaling molecule that binds to glutamate receptors including the ionotropic glutamate receptors; kainate (KA) receptor (KAR), the N-methyl-D-aspartate (NMDA) receptor (NMDAR), and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR). Each is well characterized in the central nervous system (CNS), but glutamate has important signaling roles in peripheral tissues as well, including a role in regulating platelet function. Objective Our previous work has demonstrated that glutamate is released by platelets in high concentrations within a developing thrombus and increases platelet activation and thrombosis. We now show that platelets express a functional KAR that drives increased agonist induced platelet activation. Methods and Results KAR induced increase in platelet activation is in part the result of activation of platelet cyclooxygenase (COX) in a Mitogen Activated Protein Kinase (MAPK) dependent manner. Platelets derived from KA receptor subunit knockout mice (GluR6−/−) are resistant to KA effects and have a prolonged time to thrombosis in vivo. Importantly, we have also identified polymorphisms in KA receptor subunits that are associated with phenotypic changes in platelet function in a large group of Caucasians and African Americans. Conclusion Our data demonstrate that glutamate regulation of platelet activation is in part COX dependent, and suggest that the KA receptor is a novel anti-thrombotic target. PMID:19679838
Compensatory Hypertrophy Induced by Ventricular Cardiomyocyte Specific COX-2 Expression in Mice
Streicher, John M.; Kamei, Kenichiro; Ishikawa, Tomo-o; Herschman, Harvey; Wang, Yibin
2010-01-01
Cyclooxygenase-2 (COX-2) is an important mediator of inflammation in stress and disease states. Recent attention has focused on the role of COX-2 in human heart failure and diseases, due to the finding that highly specific COX-2 inhibitors (i.e. Vioxx) increased the risk of myocardial infarction and stroke in chronic users. However, the specific impact of COX-2 expression in the intact heart remains to be determined. We report here the development of a transgenic mouse model, using a loxP-Cre approach, that displays robust COX-2 overexpression and subsequent prostaglandin synthesis specifically in ventricular myocytes. Histological, functional and molecular analyses showed that ventricular myocyte specific COX-2 overexpression led to cardiac hypertrophy and fetal gene marker activation, but with preserved cardiac function. Therefore, specific induction of COX-2 and prostaglandin in vivo is sufficient to induce compensated hypertrophy and molecular remodeling. PMID:20170663
DONG, XIAOMENG; HU, YAOZHI; JING, LONG; CHEN, JINBO
2015-01-01
Although migraine is a common neurological condition, the pathomechanism is not yet fully understood. Activation of the trigeminovascular system (TVS) has an important function in this disorder and neurogenic inflammation and central sensitization are important mechanisms underlying this condition. Nitroglycerin (NTG) infusion in rats closely mimics a universally accepted human model of migraine. Electrical stimulation of the trigeminal ganglion (ESTG) of rats can also activate TVS during a migraine attack. Numerous studies have revealed that phosphorylated extracellular signal-regulated kinase (p-ERK), calcitonin gene-related peptide (CGRP) and cyclooxygenase-2 (COX-2) are involved in pain and nociceptive pathways. However, few studies have examined whether p-ERK, CGRP and COX-2 are involved in neurogenic inflammation and central sensitization. In the present study, the expression of p-ERK, CGRP and COX-2 was detected in the dura mater, trigeminal ganglion (TG) and spinal trigeminal nucleus caudalis in NTG-induced rats and ESTG models by immunohistochemistry. The three areas considered were crucial components of the TVS. The selective COX-2 inhibitor nimesulide was used in ESTG rats to examine the association between p-ERK, CGRP and COX-2. The results demonstrated that p-ERK, CGRP and COX-2 mediated neurogenic inflammation and central sensitization in migraine. In addition, the expression of p-ERK and CGRP was attenuated by the COX-2 inhibitor. PMID:25892078
Gonzalez, P; Barroso, G; Labarère, J
1998-10-05
The Basidiomycota Agrocybe aegerita (Aa) mitochondrial cox1 gene (6790 nucleotides), encoding a protein of 527aa (58377Da), is split by four large subgroup IB introns possessing site-specific endonucleases assumed to be involved in intron mobility. When compared to other fungal COX1 proteins, the Aa protein is closely related to the COX1 one of the Basidiomycota Schizophyllum commune (Sc). This clade reveals a relationship with the studied Ascomycota ones, with the exception of Schizosaccharomyces pombe (Sp) which ranges in an out-group position compared with both higher fungi divisions. When comparison is extended to other kingdoms, fungal COX1 sequences are found to be more related to algae and plant ones (more than 57.5% aa similarity) than to animal sequences (53.6% aa similarity), contrasting with the previously established close relationship between fungi and animals, based on comparisons of nuclear genes. The four Aa cox1 introns are homologous to Ascomycota or algae cox1 introns sharing the same location within the exonic sequences. The percentages of identity of the intronic nucleotide sequences suggest a possible acquisition by lateral transfers of ancestral copies or of their derived sequences. These identities extend over the whole intronic sequences, arguing in favor of a transfer of the complete intron rather than a transfer limited to the encoded ORF. The intron i4 shares 74% of identity, at the nucleotidic level, with the Podospora anserina (Pa) intron i14, and up to 90.5% of aa similarity between the encoded proteins, i.e. the highest values reported to date between introns of two phylogenetically distant species. This low divergence argues for a recent lateral transfer between the two species. On the contrary, the low sequence identities (below 36%) observed between Aa i1 and the homologous Sp i1 or Prototheca wickeramii (Pw) i1 suggest a long evolution time after the separation of these sequences. The introns i2 and i3 possessed intermediate percentages of identity with their homologous Ascomycota introns. This is the first report of the complete nucleotide sequence and molecular organization of a mitochondrial cox1 gene of any member of the Basidiomycota division.
Crotoxin: Structural Studies, Mechanism of Action and Cloning of Its Gene
1987-03-01
other venoms and examine their toxin neutral- izing ability. The amino acid sequences of both crotoxin subunits were determined Is a prelude to cloning...be examined for their potential as anti-idiotype vaccines The complete amino acid sequence of the basic subunit and two of the three dic subunit chains...of crotoxin from the venom of C.d. terrificus has been de rmined. Sequence comparison data suggest that the non-toxic, acidic subunit was derived
Hirayama, Mio; Kobayashi, Daiki; Mizuguchi, Souhei; Morikawa, Takashi; Nagayama, Megumi; Midorikawa, Uichi; Wilson, Masayo M; Nambu, Akiko N; Yoshizawa, Akiyasu C; Kawano, Shin; Araki, Norie
2013-05-01
Neurofibromatosis type 1 (NF1) tumor suppressor gene product, neurofibromin, functions in part as a Ras-GAP, and though its loss is implicated in the neuronal abnormality of NF1 patients, its precise cellular function remains unclear. To study the molecular mechanism of NF1 pathogenesis, we prepared NF1 gene knockdown (KD) PC12 cells, as a NF1 disease model, and analyzed their molecular (gene and protein) expression profiles with a unique integrated proteomics approach, comprising iTRAQ, 2D-DIGE, and DNA microarrays, using an integrated protein and gene expression analysis chart (iPEACH). In NF1-KD PC12 cells showing abnormal neuronal differentiation after NGF treatment, of 3198 molecules quantitatively identified and listed in iPEACH, 97 molecules continuously up- or down-regulated over time were extracted. Pathway and network analysis further revealed overrepresentation of calcium signaling and transcriptional regulation by glucocorticoid receptor (GR) in the up-regulated protein set, whereas nerve system development was overrepresented in the down-regulated protein set. The novel up-regulated network we discovered, "dynein IC2-GR-COX-1 signaling," was then examined in NF1-KD cells. Validation studies confirmed that NF1 knockdown induces altered splicing and phosphorylation patterns of dynein IC2 isomers, up-regulation and accumulation of nuclear GR, and increased COX-1 expression in NGF-treated cells. Moreover, the neurite retraction phenotype observed in NF1-KD cells was significantly recovered by knockdown of the dynein IC2-C isoform and COX-1. In addition, dynein IC2 siRNA significantly inhibited nuclear translocation and accumulation of GR and up-regulation of COX-1 expression. These results suggest that dynein IC2 up-regulates GR nuclear translocation and accumulation, and subsequently causes increased COX-1 expression, in this NF1 disease model. Our integrated proteomics strategy, which combines multiple approaches, demonstrates that NF1-related neural abnormalities are, in part, caused by up-regulation of dynein IC2-GR-COX-1 signaling, which may be a novel therapeutic target for NF1.
Ream, Thomas S.; Haag, Jeremy R.; Pontvianne, Frederic; ...
2015-05-02
Using affinity purification and mass spectrometry, we identified the subunits of Arabidopsis thaliana multisubunit RNA Polymerases I and III (abbreviated as Pol I and Pol III), providing the first description of their physical compositions in plants. AC40 and AC19 subunits are typically common to Pol I (a.k.a. Pol A) and Pol III (a.k.a. Pol C) and are encoded by single genes whose mutation, in humans, is a cause of the craniofacial disorder, Treacher-Collins Syndrome. Surprisingly, A. thaliana, and related species, express two distinct AC40 paralogs, one of which assembles into Pol I and the other of which assembles into Polmore » III. Changes at eight amino acid positions correlate with this functional divergence of Pol I and Pol III-specific AC40 paralogs. Two genes encode homologs of the yeast C53 subunit, and either variant can assemble into Pol III. By contrast, only one of two potential C17 variants, and one of two potential C31 variants were detected in Pol III. We introduce a new nomenclature system for plant Pol I and Pol III subunits in which the twelve subunits that are structurally and functionally homologous among Pols I through V are assigned equivalent numbers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ream, Thomas S.; Haag, Jeremy R.; Pontvianne, Frederic
Using affinity purification and mass spectrometry, we identified the subunits of Arabidopsis thaliana multisubunit RNA Polymerases I and III (abbreviated as Pol I and Pol III), providing the first description of their physical compositions in plants. AC40 and AC19 subunits are typically common to Pol I (a.k.a. Pol A) and Pol III (a.k.a. Pol C) and are encoded by single genes whose mutation, in humans, is a cause of the craniofacial disorder, Treacher-Collins Syndrome. Surprisingly, A. thaliana, and related species, express two distinct AC40 paralogs, one of which assembles into Pol I and the other of which assembles into Polmore » III. Changes at eight amino acid positions correlate with this functional divergence of Pol I and Pol III-specific AC40 paralogs. Two genes encode homologs of the yeast C53 subunit, and either variant can assemble into Pol III. By contrast, only one of two potential C17 variants, and one of two potential C31 variants were detected in Pol III. We introduce a new nomenclature system for plant Pol I and Pol III subunits in which the twelve subunits that are structurally and functionally homologous among Pols I through V are assigned equivalent numbers.« less
Houtz, Robert L.
1999-01-01
The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS) .sup..epsilon. N-methyltransferase (protein methylase III or Rubisco LSMT) from a plant which has a des(methyl) lysyl residue in the LS is disclosed. In addition, the full-length cDNA clones for Rubisco LSMT are disclosed. Transgenic plants and methods of producing same which have the Rubisco LSMT gene inserted into the DNA are also provided. Further, methods of inactivating the enzymatic activity of Rubisco LSMT are also disclosed.
Tabish, M; Clegg, R A; Rees, H H; Fisher, M J
1999-04-01
The cAMP-dependent protein kinase (protein kinase A, PK-A) is multifunctional in nature, with key roles in the control of diverse aspects of eukaryotic cellular activity. In the case of the free-living nematode, Caenorhabditis elegans, a gene encoding the PK-A catalytic subunit has been identified and two isoforms of this subunit, arising from a C-terminal alternative-splicing event, have been characterized [Gross, Bagchi, Lu and Rubin (1990) J. Biol. Chem. 265, 6896-6907]. Here we report the occurrence of N-terminal alternative-splicing events that, in addition to generating a multiplicity of non-myristoylatable isoforms, also generate the myristoylated variant(s) of the catalytic subunit that we have recently characterized [Aspbury, Fisher, Rees and Clegg (1997) Biochem. Biophys. Res. Commun. 238, 523-527]. The gene spans more than 36 kb and is divided into a total of 13 exons. Each of the mature transcripts contains only 7 exons. In addition to the already characterized exon 1, the 5'-untranslated region and first intron actually contain 5 other exons, any one of which may be alternatively spliced on to exon 2 at the 5' end of the pre-mRNA. This N-terminal alternative splicing occurs in combination with either of the already characterized C-terminal alternative exons. Thus, C. elegans expresses at least 12 different isoforms of the catalytic subunit of PK-A. The significance of this unprecedented structural diversity in the family of PK-A catalytic subunits is discussed.
Santagati, Vito Davide; Sestili, Francesco; Lafiandra, Domenico; D'Ovidio, Renato; Rogniaux, Helene; Masci, Stefania
2016-07-01
Wheat high molecular weight glutenin subunit variation is important because of its great influence on glutenin polymer structure, that is related to dough technological properties. Among the different subunits, the pair Bx20 and By20 is known to have a negative effect on quality, but the reasons are not clear: Bx20 has two cysteines, which theoretically make this subunit a chain extender of the glutenin polymer, just like the other Bx subunits, showing four cysteines, two of which should be involved in intra-molecular disulfide bonds. By20 has never been characterized so far at molecular level. Here we report the nucleotide sequences of Bx20 and By20 genes isolated from the durum wheat cultivar 'Lira 45' and the validation of the corresponding deduced amino acid sequences by using MALDI-TOF and LC-MS/MS. Four nucleotide differences were identified in the Bx20 gene with respect to the deduced sequence present in NCBI, causing two amino acid substitutions. For the By20 subunit, nucleotide and amino acid sequences revealed a great similarity to By15, both at gene and protein levels, showing five nucleotide changes generating two amino acid differences. No evidence of post-translational modifications has been found. Hypotheses are formulated in regard to relationships with technological quality. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Kouvelis, Vassili N; Ghikas, Dimitri V; Typas, Milton A
2004-10-01
The mitochondrial genome (mtDNA) of the entomopathogenic fungus Lecanicillium muscarium (synonym Verticillium lecanii) with a total size of 24,499-bp has been analyzed. So far, it is the smallest known mitochondrial genome among Pezizomycotina, with an extremely compact gene organization and only one group-I intron in its large ribosomal RNA (rnl) gene. It contains the 14 typical genes coding for proteins related to oxidative phosphorylation, the two rRNA genes, one intronic ORF coding for a possible ribosomal protein (rps), and a set of 25 tRNA genes which recognize codons for all amino acids, except alanine and cysteine. All genes are transcribed from the same DNA strand. Gene order comparison with all available complete fungal mtDNAs-representatives of all four Phyla are included-revealed some characteristic common features like uninterrupted gene pairs, overlapping genes, and extremely variable intergenic regions, that can all be exploited for the study of fungal mitochondrial genomes. Moreover, a minimum common mtDNA gene order could be detected, in two units, for all known Sordariomycetes namely nad1-nad4-atp8-atp6 and rns-cox3-rnl, which can be extended in Hypocreales, to nad4L-nad5-cob-cox1-nad1-nad4-atp8-atp6 and rns-cox3-rnl nad2-nad3, respectively. Phylogenetic analysis of all fungal mtDNA essential protein-coding genes as one unit, clearly demonstrated the superiority of small genome (mtDNA) over single gene comparisons.
Gallego, Xavier; Ruiz, Jessica; Valverde, Olga; Molas, Susanna; Robles, Noemí; Sabrià, Josefa; Crabbe, John C.; Dierssen, Mara
2012-01-01
Abuse of alcohol and smoking are extensively co-morbid. Some studies suggest partial commonality of action of alcohol and nicotine mediated through nicotinic acetylcholine receptors (nAChRs). We tested mice with transgenic over expression of the alpha 5, alpha 3, beta 4 receptor subunit genes, which lie in a cluster on human chromosome 15, that were previously shown to have increased nicotine self-administration, for several responses to ethanol. Transgenic and wild-type mice did not differ in sensitivity to several acute behavioral responses to ethanol. However, transgenic mice drank less ethanol than wild-type in a two-bottle (ethanol vs. water) preference test. These results suggest a complex role for this receptor subunit gene cluster in the modulation of ethanol’s as well as nicotine’s effects. PMID:22459873
Weeraratne, Thilini Chathurika; Surendran, Sinnathamby Noble; Parakrama Karunaratne, S H P
2018-04-25
Vectors of mosquito-borne diseases in Sri Lanka, except for malaria, belong to the subfamily Culicinae, which includes nearly 84% of the mosquito fauna of the country. Hence, accurate and precise species identification of culicine mosquitoes is a crucial factor in implementing effective vector control strategies. During the present study, a combined effort using morphology and DNA barcoding was made to characterize mosquitoes of the subfamily Culicinae for the first time from nine districts of Sri Lanka. Cytochrome c oxidase subunit 1 (cox1) gene from the mitochondrial genome and the internal transcribed spacer 2 (ITS2) region from the nuclear ribosomal DNA were used for molecular characterization. According to morphological identification, the field collected adult mosquitoes belonged to 5 genera and 14 species, i.e. Aedes aegypti, Ae. albopictus, Ae. pallidostriatus, Aedes sp. 1, Armigeres sp. 1, Culex bitaeniorhynchus, Cx. fuscocephala, Cx. gelidus, Cx. pseudovishnui, Cx. quinquefasciatus, Cx. tritaeniorhynchus, Cx. whitmorei, Mansonia uniformis and Mimomyia chamberlaini. Molecular analyses of 62 cox1 and 36 ITS2 sequences were exclusively comparable with the morphological identifications of all the species except for Ae. pallidostriatus and Aedes sp. 1. Although the species identification of Armigeres sp. 1 specimens using morphological features was not possible during this study, DNA barcodes of the specimens matched 100% with the publicly available Ar. subalbatus sequences, giving their species status. Analysis of all the cox1 sequences (14 clades supported by strong bootstrap value in the Neighbor-Joining tree and interspecific distances of > 3%) showed the presence of 14 different species. This is the first available DNA sequence in the GenBank records for morphologically identified Ae. pallidostriatus. Aedes sp. 1 could not be identified morphologically or by publicly available sequences. Aedes aegypti, Ae. albopictus and all Culex species reported during the current study are vectors of human diseases. All these vector species showed comparatively high diversity. The current study reflects the significance of integrated systematic approach and use of cox1 and ITS genetic markers in mosquito taxonomy. Results of DNA barcoding were comparable with morphological identifications and, more importantly, DNA barcoding could accurately identify the species in the instances where the traditional morphological identification failed due to indistinguishable characters of damaged specimens and the presence of subspecies.
Localization of a gene for a glutamate binding subunit of a NMDA receptor (GRINA) to 8q24
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, T.B.; DuPont, B.R.; Leach, R.
1996-02-15
This article reports on the localization of a gene for a glutamate binding subunit of an N-methyl-D-aspartate (NMDA) receptor, called GRINA, to human chromosome 8q24 using fluorescence in situ hybridization and radiation hybridization mapping. This gene mapped outside the critical region for benign familial neonatal convulsions (BFNC), a rare form of epilepsy; however, GRINA could be the causative genetic factor inducing idiopathic generalized epilepsy. Further studies need to be conducted. 15 refs., 2 figs.
Naser, Sabri M; Vancanneyt, Marc; Hoste, Bart; Snauwaert, Cindy; Swings, Jean
2006-07-01
The applicability of a multilocus sequence analysis (MLSA)-based identification system for lactobacilli was evaluated. Two housekeeping genes that code for the phenylalanyl-tRNA synthase alpha-subunit (pheS) and RNA polymerase alpha-subunit (rpoA) were sequenced and analysed for members of the Lactobacillus salivarius species group. The type strains of Lactobacillus acidipiscis and Lactobacillus cypricasei were investigated further using a third gene that encodes the alpha-subunit of ATP synthase (atpA). The MLSA data revealed close relatedness between L. acidipiscis and L. cypricasei, with 99.8-100 % pheS, rpoA and atpA gene sequence similarities. Comparison of the 16S rRNA gene sequences of the type strains of the two species confirmed the close relatedness (99.8 % gene sequence similarity) between the two taxa. Similar phenotypes and high DNA-DNA binding values in the range of 84 to 97.5 % confirmed that L. acidipiscis and L. cypricasei are synonymous species. On the basis of the present study, it is proposed that Lactobacillus cypricasei is a later heterotypic synonym of Lactobacillus acidipiscis.
Safavian, Darya; Indriolo, Emily; Chapman, Laura; Ahmed, Abdalla
2015-01-01
Initial pollen-pistil interactions in the Brassicaceae are regulated by rapid communication between pollen grains and stigmatic papillae and are fundamentally important, as they are the first step toward successful fertilization. The goal of this study was to examine the requirement of exocyst subunits, which function in docking secretory vesicles to sites of polarized secretion, in the context of pollen-pistil interactions. One of the exocyst subunit genes, EXO70A1, was previously identified as an essential factor in the stigma for the acceptance of compatible pollen in Arabidopsis (Arabidopsis thaliana) and Brassica napus. We hypothesized that EXO70A1, along with other exocyst subunits, functions in the Brassicaceae dry stigma to deliver cargo-bearing secretory vesicles to the stigmatic papillar plasma membrane, under the pollen attachment site, for pollen hydration and pollen tube entry. Here, we investigated the functions of exocyst complex genes encoding the remaining seven subunits, SECRETORY3 (SEC3), SEC5, SEC6, SEC8, SEC10, SEC15, and EXO84, in Arabidopsis stigmas following compatible pollinations. Stigma-specific RNA-silencing constructs were used to suppress the expression of each exocyst subunit individually. The early postpollination stages of pollen grain adhesion, pollen hydration, pollen tube penetration, seed set, and overall fertility were analyzed in the transgenic lines to evaluate the requirement of each exocyst subunit. Our findings provide comprehensive evidence that all eight exocyst subunits are necessary in the stigma for the acceptance of compatible pollen. Thus, this work implicates a fully functional exocyst complex as a component of the compatible pollen response pathway to promote pollen acceptance. PMID:26443677
Kakinuma, Hiroaki; Ozaki, Mamoru; Sato, Hitoshi; Takahashi, Hiroaki
2008-09-05
Autism has been associated with chromosomal aberrations, including duplications at chromosome 4, and the identification of genetic factors contributing to the etiology of this disease is the focus of much research. Here we report a Japanese girl with mosaic of chromosome 4p duplication, mos 46,XX,dup(4)(p12p16)[54]/46,XX[6], who was diagnosed with autism at 3 years of age. Fluorescence in situ hybridization (FISH) with probes covering the region spanning a cluster of the gamma aminobutyric acid A (GABA-A) receptor subunit genes in the proximal short arm of chromosome 4 demonstrated total three signals for the GABRG1, GABRA4, and GABRA2 genes, but only two signals for GABRB1. This suggests that aberrant copy number of the GABA-A receptor subunit genes may contribute to the etiology of autism in this patient. 2007 Wiley-Liss, Inc.
Hirose, K; Kawasaki, Y; Kotani, K; Abiko, K; Sato, H
2004-05-01
Quinolone-resistant (QR) mutants of Mycoplasma bovirhinis strain PG43 (type strain) were generated by stepwise selection in increasing concentrations of enrofloxacin (ENR). An alteration was found in the quinolone resistance-determining region (QRDR) of the parC gene coding for the ParC subunit of topoisomerase IV from these mutants, but not in the gyrA, gyrB, and parE gene coding for the GyrA and GyrB subunits of DNA gyrase and the ParE subunit of topoisomerase IV. Similarly, such an alteration in QRDR of parC was found in the field isolates of M. bovirhinis, which possessed various levels of QR. The substitution of leucine (Leu) by serine (Ser) at position 80 of QRDR of ParC was observed in both QR-mutants and QR-isolates. This is the first report of QR based on a point mutation of the parC gene in M. bovirhinis.
Functional metabolomics as a tool to analyze Mediator function and structure in plants.
Davoine, Celine; Abreu, Ilka N; Khajeh, Khalil; Blomberg, Jeanette; Kidd, Brendan N; Kazan, Kemal; Schenk, Peer M; Gerber, Lorenz; Nilsson, Ove; Moritz, Thomas; Björklund, Stefan
2017-01-01
Mediator is a multiprotein transcriptional co-regulator complex composed of four modules; Head, Middle, Tail, and Kinase. It conveys signals from promoter-bound transcriptional regulators to RNA polymerase II and thus plays an essential role in eukaryotic gene regulation. We describe subunit localization and activities of Mediator in Arabidopsis through metabolome and transcriptome analyses from a set of Mediator mutants. Functional metabolomic analysis based on the metabolite profiles of Mediator mutants using multivariate statistical analysis and heat-map visualization shows that different subunit mutants display distinct metabolite profiles, which cluster according to the reported localization of the corresponding subunits in yeast. Based on these results, we suggest localization of previously unassigned plant Mediator subunits to specific modules. We also describe novel roles for individual subunits in development, and demonstrate changes in gene expression patterns and specific metabolite levels in med18 and med25, which can explain their phenotypes. We find that med18 displays levels of phytoalexins normally found in wild type plants only after exposure to pathogens. Our results indicate that different Mediator subunits are involved in specific signaling pathways that control developmental processes and tolerance to pathogen infections.
Loveday, Chey; Tatton-Brown, Katrina; Clarke, Matthew; Westwood, Isaac; Renwick, Anthony; Ramsay, Emma; Nemeth, Andrea; Campbell, Jennifer; Joss, Shelagh; Gardner, McKinlay; Zachariou, Anna; Elliott, Anna; Ruark, Elise; van Montfort, Rob; Rahman, Nazneen
2015-09-01
Overgrowth syndromes comprise a group of heterogeneous disorders characterised by excessive growth parameters, often in association with intellectual disability. To identify new causes of human overgrowth, we have been undertaking trio-based exome sequencing studies in overgrowth patients and their unaffected parents. Prioritisation of functionally relevant genes with multiple unique de novo mutations revealed four mutations in protein phosphatase 2A (PP2A) regulatory subunit B family genes protein phosphatase 2, regulatory Subunit B', beta (PPP2R5B); protein phosphatase 2, regulatory Subunit B', gamma (PPP2R5C); and protein phosphatase 2, regulatory Subunit B', delta (PPP2R5D). This observation in 3 related genes in 111 individuals with a similar phenotype is greatly in excess of the expected number, as determined from gene-specific de novo mutation rates (P = 1.43 × 10(-10)). Analysis of exome-sequencing data from a follow-up series of overgrowth probands identified a further pathogenic mutation, bringing the total number of affected individuals to 5. Heterozygotes shared similar phenotypic features including increased height, increased head circumference and intellectual disability. The mutations clustered within a region of nine amino acid residues in the aligned protein sequences (P = 1.6 × 10(-5)). We mapped the mutations onto the crystal structure of the PP2A holoenzyme complex to predict their molecular and functional consequences. These studies suggest that the mutations may affect substrate binding, thus perturbing the ability of PP2A to dephosphorylate particular protein substrates. PP2A is a major negative regulator of v-akt murine thymoma viral oncogene homolog 1 (AKT). Thus, our data further expand the list of genes encoding components of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT signalling cascade that are disrupted in human overgrowth conditions. © The Author 2015. Published by Oxford University Press.
Wang, Xiao-Jing; Wang, Xiao-Xing; Wang, Ya-Jun; Wang, Xi-Zhong; He, Guang-Xin; Chen, Hong-Wei; Fei, Li-Song
2002-09-01
Activin, which is included in the transforming growth factor-beta (TGF beta) superfamily of proteins and receptors, is known to have broad-ranging effects in the creatures. The mature peptide of beta A subunit of this gene, one of the most highly conserved sequence, can elevate the basal secretion of follicle-stimulating hormone (FSH) in the pituitary and FSH is pivotal to organism's reproduction. Reproduction block is one of the main reasons which cause giant panda to extinct. The sequence of Activin beta A subunit gene mature peptides has been successfully amplified from giant panda, red panda and malayan sun bear's genomic DNA by using polymerase chain reaction (PCR) with a pair of degenerate primers. The PCR products were cloned into the vector pBlueScript+ of Esherichia coli. Sequence analysis of Activin beta A subunit gene mature peptides shows that the length of this gene segment is the same (359 bp) and there is no intron in all three species. The sequence encodes a peptide of 119 amino acid residues. The homology comparison demonstrates 93.9% DNA homology and 99% homology in amino acid among these three species. Both GenBank blast search result and restriction enzyme map reveal that the sequences of Activin beta A subunit gene mature peptides of different species are highly conserved during the evolution process. Phylogeny analysis is performed with PHYLIP software package. A consistent phylogeny tree has been drawn with three different methods. The software analysis outcome accords with the academic view that giant panda has a closer relationship to the malayan sun bear than the red panda. Giant panda should be grouped into the bear family (Uersidae) with the malayan sun bear. As to the red panda, it would be better that this animal be grouped into the unique family (red panda family) because of great difference between the red panda and the bears (Uersidae).
A functional portrait of Med7 and the mediator complex in Candida albicans.
Tebbji, Faiza; Chen, Yaolin; Richard Albert, Julien; Gunsalus, Kearney T W; Kumamoto, Carol A; Nantel, André; Sellam, Adnane; Whiteway, Malcolm
2014-11-01
Mediator is a multi-subunit protein complex that regulates gene expression in eukaryotes by integrating physiological and developmental signals and transmitting them to the general RNA polymerase II machinery. We examined, in the fungal pathogen Candida albicans, a set of conditional alleles of genes encoding Mediator subunits of the head, middle, and tail modules that were found to be essential in the related ascomycete Saccharomyces cerevisiae. Intriguingly, while the Med4, 8, 10, 11, 14, 17, 21 and 22 subunits were essential in both fungi, the structurally highly conserved Med7 subunit was apparently non-essential in C. albicans. While loss of CaMed7 did not lead to loss of viability under normal growth conditions, it dramatically influenced the pathogen's ability to grow in different carbon sources, to form hyphae and biofilms, and to colonize the gastrointestinal tracts of mice. We used epitope tagging and location profiling of the Med7 subunit to examine the distribution of the DNA sites bound by Mediator during growth in either the yeast or the hyphal form, two distinct morphologies characterized by different transcription profiles. We observed a core set of 200 genes bound by Med7 under both conditions; this core set is expanded moderately during yeast growth, but is expanded considerably during hyphal growth, supporting the idea that Mediator binding correlates with changes in transcriptional activity and that this binding is condition specific. Med7 bound not only in the promoter regions of active genes but also within coding regions and at the 3' ends of genes. By combining genome-wide location profiling, expression analyses and phenotyping, we have identified different Med7p-influenced regulons including genes related to glycolysis and the Filamentous Growth Regulator family. In the absence of Med7, the ribosomal regulon is de-repressed, suggesting Med7 is involved in central aspects of growth control.
A Functional Portrait of Med7 and the Mediator Complex in Candida albicans
Tebbji, Faiza; Chen, Yaolin; Richard Albert, Julien; Gunsalus, Kearney T. W.; Kumamoto, Carol A.; Nantel, André; Sellam, Adnane; Whiteway, Malcolm
2014-01-01
Mediator is a multi-subunit protein complex that regulates gene expression in eukaryotes by integrating physiological and developmental signals and transmitting them to the general RNA polymerase II machinery. We examined, in the fungal pathogen Candida albicans, a set of conditional alleles of genes encoding Mediator subunits of the head, middle, and tail modules that were found to be essential in the related ascomycete Saccharomyces cerevisiae. Intriguingly, while the Med4, 8, 10, 11, 14, 17, 21 and 22 subunits were essential in both fungi, the structurally highly conserved Med7 subunit was apparently non-essential in C. albicans. While loss of CaMed7 did not lead to loss of viability under normal growth conditions, it dramatically influenced the pathogen's ability to grow in different carbon sources, to form hyphae and biofilms, and to colonize the gastrointestinal tracts of mice. We used epitope tagging and location profiling of the Med7 subunit to examine the distribution of the DNA sites bound by Mediator during growth in either the yeast or the hyphal form, two distinct morphologies characterized by different transcription profiles. We observed a core set of 200 genes bound by Med7 under both conditions; this core set is expanded moderately during yeast growth, but is expanded considerably during hyphal growth, supporting the idea that Mediator binding correlates with changes in transcriptional activity and that this binding is condition specific. Med7 bound not only in the promoter regions of active genes but also within coding regions and at the 3′ ends of genes. By combining genome-wide location profiling, expression analyses and phenotyping, we have identified different Med7p-influenced regulons including genes related to glycolysis and the Filamentous Growth Regulator family. In the absence of Med7, the ribosomal regulon is de-repressed, suggesting Med7 is involved in central aspects of growth control. PMID:25375174
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudas, Jozsef, E-mail: Jozsef.Dudas@i-med.ac.at; Fullar, Alexandra, E-mail: fullarsz@gmail.com; 1st Institute of Pathology and Experimental Cancer Research, Semmelweis University, Ulloei ut 26, H-1085 Budapest
2011-09-10
Recently we described a co-culture model of periodontal ligament (PDL) fibroblasts and SCC-25 lingual squamous carcinoma cells, which resulted in conversion of normal fibroblasts into carcinoma-associated fibroblasts (CAFs), and in epithelial-mesenchymal transition (EMT) of SCC-25 cells. We have found a constitutive high interleukin-1{beta} (IL1-{beta}) expression in SCC-25 cells in normal and in co-cultured conditions. In our hypothesis a constitutive IL1-{beta} expression in SCC-25 regulates gene expression in fibroblasts during co-culture. Co-cultures were performed between PDL fibroblasts and SCC-25 cells with and without dexamethasone (DEX) treatment; IL1-{beta} processing was investigated in SCC-25 cells, tumor cells and PDL fibroblasts were treated withmore » IL1-{beta}. IL1-{beta} signaling was investigated by western blot and immunocytochemistry. IL1-{beta}-regulated genes were analyzed by real-time qPCR. SCC-25 cells produced 16 kD active IL1-{beta}, its receptor was upregulated in PDL fibroblasts during co-culture, which induced phosphorylation of interleukin-1 receptor-associated kinase-1 (IRAK-1), and nuclear translocalization of NF{kappa}B{alpha}. Several genes, including interferon regulatory factor 1 (IRF1) interleukin-6 (IL-6) and prostaglandin-endoperoxide synthase 2 (COX-2) were induced in CAFs during co-culture. The most enhanced induction was found for IL-6 and COX-2. Treatment of PDL fibroblasts with IL1-{beta} reproduced a time- and dose-dependent upregulation of IL1-receptor, IL-6 and COX-2. A further proof was achieved by DEX inhibition for IL1-{beta}-stimulated IL-6 and COX-2 gene expression. Constitutive expression of IL1-{beta} in the tumor cells leads to IL1-{beta}-stimulated gene expression changes in tumor-associated fibroblasts, which are involved in tumor progression. -- Graphical abstract: SCC-25 cells produce active, processed IL1-{beta}. PDL fibroblasts possess receptor for IL1-{beta}, and its expression is increased 4.56-times in the presence of SCC-25 tumor cells. IL1-{beta} receptor expression in fibroblasts, especially in CAFs represents a major option in coordination of fibroblast and tumor behavior. A key event in IL1-{beta} signaling, the phosphorylation of IRAK1, occurred in co-cultured fibroblasts, which has lead to nuclear translocation of NF{kappa}B{alpha}, and finally to induction of several genes, including BDNF, IRF1, IL-6 and COX-2. The most enhanced induction was found for IL-6 and COX-2.« less
Epigenetic Regulation of Inflammatory Gene Expression in Macrophages by Selenium
Narayan, Vivek; Ravindra, Kodihalli C.; Liao, Chang; Kaushal, Naveen; Carlson, Bradley A.; Prabhu, K. Sandeep
2014-01-01
Acetylation of histone and non-histone proteins by histone acetyltransferases plays a pivotal role in the expression of pro-inflammatory genes. Given the importance of dietary selenium in mitigating inflammation, we hypothesized that selenium supplementation may regulate inflammatory gene expression at the epigenetic level. The effect of selenium towards histone acetylation was examined in both in vitro and in vivo models of inflammation by chromatin immunoprecipitation (ChIP) assays and immunoblotting. Our results indicated that selenium supplementation, as selenite, decreased acetylation of histone H4 at K12 and K16 in COX-2 and TNF promoters, and of the p65 subunit of the redox sensitive transcription factor NFκB in primary and immortalized macrophages. On the other hand, selenomethionine had a much weaker effect. Selenite treatment of HIV-1 infected human monocytes also significantly decreased the acetylation of H4 at K12 and K16 on the HIV-1 promoter, supporting the downregulation of proviral expression by selenium. A similar decrease in histone acetylation was also seen in the colonic extracts of mice treated with dextran sodium sulfate that correlated well with the levels of selenium in the diet. Bone marrow-derived macrophages from Trspfl/flCreLysM mice that lack expression of selenoproteins in macrophages confirmed the important role of selenoproteins in the inhibition of histone H4 acetylation. Our studies suggest that the ability of selenoproteins to skew the metabolism of arachidonic acid to contribute, in part, to their ability to inhibit histone acetylation. In summary, our studies suggest a new role for selenoproteins in the epigenetic modulation of pro-inflammatory genes. PMID:25458528
Tabebi, Mouna; Mkaouar-Rebai, Emna; Mnif, Mouna; Kallabi, Fakhri; Ben Mahmoud, Afif; Ben Saad, Wafa; Charfi, Nadia; Keskes-Ammar, Leila; Kamoun, Hassen; Abid, Mohamed; Fakhfakh, Faiza
2015-04-10
Mitochondrial diabetes (MD) is a heterogeneous disorder characterized by a chronic hyperglycemia, maternal transmission and its association with a bilateral hearing impairment. Several studies reported mutations in mitochondrial genes as potentially pathogenic for diabetes, since mitochondrial oxidative phosphorylation plays an important role in glucose-stimulated insulin secretion from beta cells. In the present report, we studied a Tunisian family with mitochondrial diabetes (MD) and deafness associated with nephropathy. The mutational analysis screening revealed the presence of a novel heteroplasmic mutation m.9276G>C in the mitochondrial COIII gene, detected in mtDNA extracted from leukocytes of a mother and her two daughters indicating that this mutation is maternally transmitted and suggest its implication in the observed phenotype. Bioinformatic tools showed that m.9267G>C mutation (p.A21P) is « deleterious » and it can modify the function and the stability of the MT-COIII protein by affecting the assembly of mitochondrial COX subunits and the translocation of protons then reducing the activity of the respective OXPHOS complexes of ATP synthesis. The nonsynonymous mutation (p.A21P) has not been reported before, it is the first mutation described in the COXIII gene which is related to insulin dependent mitochondrial diabetes and deafness and could be specific to the Tunisian population. The m.9267G>C mutation was present with a nonsynonymous inherited mitochondrial homoplasmic variation MT-COI m.5913 G>A (D4N) responsible of high blood pressure, a clinical feature detected in all explored patients. Copyright © 2015. Published by Elsevier Inc.
Mitochondrial Genome Sequence of the Legume Vicia faba
Negruk, Valentine
2013-01-01
The number of plant mitochondrial genomes sequenced exceeds two dozen. However, for a detailed comparative study of different phylogenetic branches more plant mitochondrial genomes should be sequenced. This article presents sequencing data and comparative analysis of mitochondrial DNA (mtDNA) of the legume Vicia faba. The size of the V. faba circular mitochondrial master chromosome of cultivar Broad Windsor was estimated as 588,000 bp with a genome complexity of 387,745 bp and 52 conservative mitochondrial genes; 32 of them encoding proteins, 3 rRNA, and 17 tRNA genes. Six tRNA genes were highly homologous to chloroplast genome sequences. In addition to the 52 conservative genes, 114 unique open reading frames (ORFs) were found, 36 without significant homology to any known proteins and 29 with homology to the Medicago truncatula nuclear genome and to other plant mitochondrial ORFs, 49 ORFs were not homologous to M. truncatula but possessed sequences with significant homology to other plant mitochondrial or nuclear ORFs. In general, the unique ORFs revealed very low homology to known closely related legumes, but several sequence homologies were found between V. faba, Beta vulgaris, Nicotiana tabacum, Vitis vinifera, and even the monocots Oryza sativa and Zea mays. Most likely these ORFs arose independently during angiosperm evolution (Kubo and Mikami, 2007; Kubo and Newton, 2008). Computational analysis revealed in total about 45% of V. faba mtDNA sequence being homologous to the Medicago truncatula nuclear genome (more than to any sequenced plant mitochondrial genome), and 35% of this homology ranging from a few dozen to 12,806 bp are located on chromosome 1. Apparently, mitochondrial rrn5, rrn18, rps10, ATP synthase subunit alpha, cox2, and tRNA sequences are part of transcribed nuclear mosaic ORFs. PMID:23675376
Evolution of the eukaryotic dynactin complex, the activator of cytoplasmic dynein
2012-01-01
Background Dynactin is a large multisubunit protein complex that enhances the processivity of cytoplasmic dynein and acts as an adapter between dynein and the cargo. It is composed of eleven different polypeptides of which eight are unique to this complex, namely dynactin1 (p150Glued), dynactin2 (p50 or dynamitin), dynactin3 (p24), dynactin4 (p62), dynactin5 (p25), dynactin6 (p27), and the actin-related proteins Arp1 and Arp10 (Arp11). Results To reveal the evolution of dynactin across the eukaryotic tree the presence or absence of all dynactin subunits was determined in most of the available eukaryotic genome assemblies. Altogether, 3061 dynactin sequences from 478 organisms have been annotated. Phylogenetic trees of the various subunit sequences were used to reveal sub-family relationships and to reconstruct gene duplication events. Especially in the metazoan lineage, several of the dynactin subunits were duplicated independently in different branches. The largest subunit repertoire is found in vertebrates. Dynactin diversity in vertebrates is further increased by alternative splicing of several subunits. The most prominent example is the dynactin1 gene, which may code for up to 36 different isoforms due to three different transcription start sites and four exons that are spliced as differentially included exons. Conclusions The dynactin complex is a very ancient complex that most likely included all subunits in the last common ancestor of extant eukaryotes. The absence of dynactin in certain species coincides with that of the cytoplasmic dynein heavy chain: Organisms that do not encode cytoplasmic dynein like plants and diplomonads also do not encode the unique dynactin subunits. The conserved core of dynactin consists of dynactin1, dynactin2, dynactin4, dynactin5, Arp1, and the heterodimeric actin capping protein. The evolution of the remaining subunits dynactin3, dynactin6, and Arp10 is characterized by many branch- and species-specific gene loss events. PMID:22726940
Eslami, Seyyed Majid; Ghasemi, Maryam; Bahremand, Taraneh; Momeny, Majid; Gholami, Mahdi; Sharifzadeh, Mohammad; Dehpour, Ahmad Reza
2017-11-15
This study aims to investigate the role of zolpidem in lithium-pilocarpine induced status epilepticus (SE) and probable mechanisms involved in seizure threshold alteration. In the present study, lithium chloride (127mg/kg) was administered 20h prior to pilocarpine (60mg/kg) to induce SE in adult male Wistar rats. Different doses of zolpidem (0.1, 1, 2, 5, 10mg/kg) were injected 30min before pilocarpine administration. Furthermore, to find out whether nitric oxide (NO) plays a role in the observed effect, L-arginine and L-NAME were injected 15min before zolpidem. Afterward, we identified the particular NO isoform mediating the effect of zolpidem by injecting aminoguanidine (AG) and 7-Nitroindazole (7-NI) 15min prior to zolpidem. Moreover, in both 6 and 24h after pilocarpine injection, experimental groups underwent hippocampectomy to evaluate cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) genes expression by quantitative reverse transcription-PCR (qRT-PCR). Pre-treatment with zolpidem significantly prevented the onset of SE in a dose-dependent manner. AG and L-NAME significantly potentiated the anticonvulsant effect of zolpidem while L-arginine inverted this effect. Our qRT-PCR exerted that there was a continuous elevation of iNOS and COX-2 genes expression over 6 and 24h after pilocarpine administration in SE and L-arginine+Zolpidem groups while in AG/L-NAME+Zolpidem and zolpidem groups this upregulation was prevented. Our study indicates that zolpidem prevents the onset of SE through inhibition of iNOS/COX-2 genes upregulation following lithium-pilocarpine administration. Consistent with our results, we suggest that iNOS activation could be probably upstream of COX-2 gene expression. Copyright © 2017 Elsevier B.V. All rights reserved.
Hinson, R M; Williams, J A; Shacter, E
1996-01-01
Injection of mineral oils such as pristane into the peritoneal cavities of BALB/c mice results in a chronic peritonitis associated with high tissue levels of interleukin 6 (IL-6). Here we show that increased prostaglandin E2 (PGE2) synthesis causes induction of IL-6 and that expression of an inducible cyclooxygenase, Cox-2, may mediate this process. Levels of both PGE2 and IL-6 are elevated in inflammatory exudates from pristane-treated mice compared with lavage samples from untreated mice. The Cox-2 gene is induced in the peritoneal macrophage fraction isolated from the mice. A cause and effect relationship between increased macrophage PGE2 and IL-6 production is shown in vitro. When peritoneal macrophages are activated with an inflammatory stimulus (polymerized albumin), the Cox-2 gene is induced and secretion of PGE2 and IL-6 increases, with elevated PGE2 appearing before IL-6. Cotreatment with 1 microM indomethacin inhibits PGE2 production by the cells and reduces the induction of IL-6 mRNA but has no effect on Cox-2 mRNA, consistent with the fact that the drug inhibits catalytic activity of the cyclooxygenase but does not affect expression of the gene. Addition of exogenous PGE2 to macrophages induces IL-6 protein and mRNA synthesis, indicating that the eicosanoid stimulates IL-6 production at the level of gene expression. PGE2-stimulated IL-6 production is unaffected by addition of indomethacin. Taken together with the earlier finding that indomethacin diminishes the elevation of IL-6 in pristane-treated mice, the results show that PGE2 can induce IL-6 production in vivo and implicate expression of the Cox-2 gene in the regulation of this cytokine. Images Fig. 2 Fig. 4 Fig. 5 Fig. 6 Fig. 8 PMID:8643498
Ślipiko, Monika; Buczkowska-Chmielewska, Katarzyna; Bączkiewicz, Alina; Szczecińska, Monika; Sawicki, Jakub
2017-01-01
Liverwort mitogenomes are considered to be evolutionarily stable. A comparative analysis of four Calypogeia species revealed differences compared to previously sequenced liverwort mitogenomes. Such differences involve unexpected structural changes in the two genes, cox1 and atp1, which have lost three and two introns, respectively. The group I introns in the cox1 gene are proposed to have been lost by two-step localized retroprocessing, whereas one-step retroprocessing could be responsible for the disappearance of the group II introns in the atp1 gene. These cases represent the first identified losses of introns in mitogenomes of leafy liverworts (Jungermanniopsida) contrasting the stability of mitochondrial gene order with certain changes in the gene content and intron set in liverworts. PMID:29257096
Bitrián, Marta; Roodbarkelari, Farshad; Horváth, Mihály; Koncz, Csaba
2011-03-01
Recombineering, permitting precise modification of genes within bacterial artificial chromosomes (BACs) through homologous recombination mediated by lambda phage-encoded Red proteins, is a widely used powerful tool in mouse, Caenorhabditis and Drosophila genetics. As Agrobacterium-mediated transfer of large DNA inserts from binary BACs and TACs into plants occurs at low frequency, recombineering is so far seldom exploited in the analysis of plant gene functions. We have constructed binary plant transformation vectors, which are suitable for gap-repair cloning of genes from BACs using recombineering methods previously developed for other organisms. Here we show that recombineering facilitates PCR-based generation of precise translational fusions between coding sequences of fluorescent reporter and plant proteins using galK-based exchange recombination. The modified target genes alone or as part of a larger gene cluster can be transferred by high-frequency gap-repair into plant transformation vectors, stably maintained in Agrobacterium and transformed without alteration into plants. Versatile application of plant BAC-recombineering is illustrated by the analysis of developmental regulation and cellular localization of interacting AKIN10 catalytic and SNF4 activating subunits of Arabidopsis Snf1-related (SnRK1) protein kinase using in vivo imaging. To validate full functionality and in vivo interaction of tagged SnRK1 subunits, it is demonstrated that immunoprecipitated SNF4-YFP is bound to a kinase that phosphorylates SnRK1 candidate substrates, and that the GFP- and YFP-tagged kinase subunits co-immunoprecipitate with endogenous wild type AKIN10 and SNF4. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.
Shite, Masato; Yamamura, Yoshimi; Hayashi, Toshimitsu; Kurosaki, Fumiya
2008-11-01
A homology-based cloning strategy yielded Sdga, a cDNA clone presumably encoding alpha-subunit of heterotrimeric guanosine 5'-triphosphate-binding protein complex, from leaf tissues of Scoparia dulcis. Phylogenetic tree analysis of G-protein alpha-subunits from various biological sources suggested that, unlike in animal cells, classification of Galpha-proteins into specific subfamilies could not be applicable to the proteins from higher plants. Restriction digests of genomic DNA of S. dulcis showed a single hybridized signal in Southern blot analysis, suggesting that Sdga is a sole gene encoding Galpha-subunit in this plant. The expression level of Sdga appeared to be maintained at almost constant level after exposure of the leaves to methyl jasmonate as analyzed by reverse-transcription polymerase chain reaction. These results suggest that Sdga plays roles in methyl jasmonate-induced responses of S. dulcis without a notable change in the transcriptional level.
Allen, Mark D.; Freund, Stefan M.V.; Zinzalla, Giovanna; Bycroft, Mark
2015-01-01
Summary SWI/SNF complexes use the energy of ATP hydrolysis to remodel chromatin. In mammals they play a central role in regulating gene expression during differentiation and proliferation. Mutations in SWI/SNF subunits are among the most frequent gene alterations in cancer. The INI1/hSNF5/SMARCB1 subunit is mutated in both malignant rhabdoid tumor, a highly aggressive childhood cancer, and schwannomatosis, a tumor-predisposing syndrome characterized by mostly benign tumors of the CNS. Here, we show that mutations in INI1 that cause schwannomatosis target a hitherto unidentified N-terminal winged helix DNA binding domain that is also present in the BAF45a/PHF10 subunit of the SWI/SNF complex. The domain is structurally related to the SKI/SNO/DAC domain, which is found in a number of metazoan chromatin-associated proteins. PMID:26073604
Ching, Travers; Zhu, Xun; Garmire, Lana X
2018-04-01
Artificial neural networks (ANN) are computing architectures with many interconnections of simple neural-inspired computing elements, and have been applied to biomedical fields such as imaging analysis and diagnosis. We have developed a new ANN framework called Cox-nnet to predict patient prognosis from high throughput transcriptomics data. In 10 TCGA RNA-Seq data sets, Cox-nnet achieves the same or better predictive accuracy compared to other methods, including Cox-proportional hazards regression (with LASSO, ridge, and mimimax concave penalty), Random Forests Survival and CoxBoost. Cox-nnet also reveals richer biological information, at both the pathway and gene levels. The outputs from the hidden layer node provide an alternative approach for survival-sensitive dimension reduction. In summary, we have developed a new method for accurate and efficient prognosis prediction on high throughput data, with functional biological insights. The source code is freely available at https://github.com/lanagarmire/cox-nnet.
Liang, Yong; Chai, Hua; Liu, Xiao-Ying; Xu, Zong-Ben; Zhang, Hai; Leung, Kwong-Sak
2016-03-01
One of the most important objectives of the clinical cancer research is to diagnose cancer more accurately based on the patients' gene expression profiles. Both Cox proportional hazards model (Cox) and accelerated failure time model (AFT) have been widely adopted to the high risk and low risk classification or survival time prediction for the patients' clinical treatment. Nevertheless, two main dilemmas limit the accuracy of these prediction methods. One is that the small sample size and censored data remain a bottleneck for training robust and accurate Cox classification model. In addition to that, similar phenotype tumours and prognoses are actually completely different diseases at the genotype and molecular level. Thus, the utility of the AFT model for the survival time prediction is limited when such biological differences of the diseases have not been previously identified. To try to overcome these two main dilemmas, we proposed a novel semi-supervised learning method based on the Cox and AFT models to accurately predict the treatment risk and the survival time of the patients. Moreover, we adopted the efficient L1/2 regularization approach in the semi-supervised learning method to select the relevant genes, which are significantly associated with the disease. The results of the simulation experiments show that the semi-supervised learning model can significant improve the predictive performance of Cox and AFT models in survival analysis. The proposed procedures have been successfully applied to four real microarray gene expression and artificial evaluation datasets. The advantages of our proposed semi-supervised learning method include: 1) significantly increase the available training samples from censored data; 2) high capability for identifying the survival risk classes of patient in Cox model; 3) high predictive accuracy for patients' survival time in AFT model; 4) strong capability of the relevant biomarker selection. Consequently, our proposed semi-supervised learning model is one more appropriate tool for survival analysis in clinical cancer research.
Rice Ribosomal Protein Large Subunit Genes and Their Spatio-temporal and Stress Regulation
Moin, Mazahar; Bakshi, Achala; Saha, Anusree; Dutta, Mouboni; Madhav, Sheshu M.; Kirti, P. B.
2016-01-01
Ribosomal proteins (RPs) are well-known for their role in mediating protein synthesis and maintaining the stability of the ribosomal complex, which includes small and large subunits. In the present investigation, in a genome-wide survey, we predicted that the large subunit of rice ribosomes is encoded by at least 123 genes including individual gene copies, distributed throughout the 12 chromosomes. We selected 34 candidate genes, each having 2–3 identical copies, for a detailed characterization of their gene structures, protein properties, cis-regulatory elements and comprehensive expression analysis. RPL proteins appear to be involved in interactions with other RP and non-RP proteins and their encoded RNAs have a higher content of alpha-helices in their predicted secondary structures. The majority of RPs have binding sites for metal and non-metal ligands. Native expression profiling of 34 ribosomal protein large (RPL) subunit genes in tissues covering the major stages of rice growth shows that they are predominantly expressed in vegetative tissues and seedlings followed by meiotically active tissues like flowers. The putative promoter regions of these genes also carry cis-elements that respond specifically to stress and signaling molecules. All the 34 genes responded differentially to the abiotic stress treatments. Phytohormone and cold treatments induced significant up-regulation of several RPL genes, while heat and H2O2 treatments down-regulated a majority of them. Furthermore, infection with a bacterial pathogen, Xanthomonas oryzae, which causes leaf blight also induced the expression of 80% of the RPL genes in leaves. Although the expression of RPL genes was detected in all the tissues studied, they are highly responsive to stress and signaling molecules indicating that their encoded proteins appear to have roles in stress amelioration besides house-keeping. This shows that the RPL gene family is a valuable resource for manipulation of stress tolerance in rice and other crops, which may be achieved by overexpressing and raising independent transgenic plants carrying the genes that became up-regulated significantly and instantaneously. PMID:27605933
Greer, Justin B; Khuri, Sawsan; Fieber, Lynne A
2017-01-11
The neurotransmitter L-Glutamate (L-Glu) acting at ionotropic L-Glu receptors (iGluR) conveys fast excitatory signal transmission in the nervous systems of all animals. iGluR-dependent neurotransmission is a key component of the synaptic plasticity that underlies learning and memory. During learning, two subtypes of iGluR, α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR) and N-methyl-D-aspartate receptors (NMDAR), are dynamically regulated postsynaptically in vertebrates. Invertebrate organisms such as Aplysia californica (Aplysia) are well-studied models for iGluR-mediated function, yet no studies to date have analyzed the evolutionary relationships between iGluR genes in these species and those in vertebrates, to identify genes that may mediate plasticity. We conducted a thorough phylogenetic analysis spanning Bilateria to elucidate these relationships. The expression status of iGluR genes in the Aplysia nervous system was also examined. Our analysis shows that ancestral genes for both NMDAR and AMPAR subtypes were present in the common bilaterian ancestor. NMDAR genes show very high conservation in motifs responsible for forming the conductance pore of the ion channel. The number of NMDAR subunits is greater in vertebrates due to an increased number of splice variants and an increased number of genes, likely due to gene duplication events. AMPAR subunits form an orthologous group, and there is high variability in the number of AMPAR genes in each species due to extensive taxon specific gene gain and loss. qPCR results show that all 12 Aplysia iGluR subunits are expressed in all nervous system ganglia. Orthologous NMDAR subunits in all species studied suggests conserved function across Bilateria, and potentially a conserved mechanism of neuroplasticity and learning. Vertebrates display an increased number of NMDAR genes and splice variants, which may play a role in their greater diversity of physiological responses. Extensive gene gain and loss of AMPAR genes may result in different physiological properties that are taxon specific. Our results suggest a significant role for L-Glu mediated responses throughout the Aplysia nervous system, consistent with L-Glu's role as the primary excitatory neurotransmitter.
Mitochondrial pathology in inclusion body myositis.
Lindgren, Ulrika; Roos, Sara; Hedberg Oldfors, Carola; Moslemi, Ali-Reza; Lindberg, Christopher; Oldfors, Anders
2015-04-01
Inclusion body myositis (IBM) is usually associated with a large number of cytochrome c oxidase (COX)-deficient muscle fibers and acquired mitochondrial DNA (mtDNA) deletions. We studied the number of COX-deficient fibers and the amount of mtDNA deletions, and if variants in nuclear genes involved in mtDNA maintenance may contribute to the occurrence of mtDNA deletions in IBM muscle. Twenty-six IBM patients were included. COX-deficient fibers were assayed by morphometry and mtDNA deletions by qPCR. POLG was analyzed in all patients by Sanger sequencing and C10orf2 (Twinkle), DNA2, MGME1, OPA1, POLG2, RRM2B, SLC25A4 and TYMP in six patients by next generation sequencing. Patients with many COX-deficient muscle fibers had a significantly higher proportion of mtDNA deletions than patients with few COX-deficient fibers. We found previously unreported variants in POLG and C10orf2 and IBM patients had a significantly higher frequency of an RRM2B variant than controls. POLG variants appeared more common in IBM patients with many COX-deficient fibers, but the difference was not statistically significant. We conclude that COX-deficient fibers in inclusion body myositis are associated with multiple mtDNA deletions. In IBM patients we found novel and also previously reported variants in genes of importance for mtDNA maintenance that warrants further studies. Copyright © 2014 Elsevier B.V. All rights reserved.
Reduced COX-2 expression in aged mice is associated with impaired fracture healing.
Naik, Amish A; Xie, Chao; Zuscik, Michael J; Kingsley, Paul; Schwarz, Edward M; Awad, Hani; Guldberg, Robert; Drissi, Hicham; Puzas, J Edward; Boyce, Brendan; Zhang, Xinping; O'Keefe, Regis J
2009-02-01
The cellular and molecular events responsible for reduced fracture healing with aging are unknown. Cyclooxygenase 2 (COX-2), the inducible regulator of prostaglandin E(2) (PGE(2)) synthesis, is critical for normal bone repair. A femoral fracture repair model was used in mice at either 7-9 or 52-56 wk of age, and healing was evaluated by imaging, histology, and gene expression studies. Aging was associated with a decreased rate of chondrogenesis, decreased bone formation, reduced callus vascularization, delayed remodeling, and altered expression of genes involved in repair and remodeling. COX-2 expression in young mice peaked at 5 days, coinciding with the transition of mesenchymal progenitors to cartilage and the onset of expression of early cartilage markers. In situ hybridization and immunohistochemistry showed that COX-2 is expressed primarily in early cartilage precursors that co-express col-2. COX-2 expression was reduced by 75% and 65% in fractures from aged mice compared with young mice on days 5 and 7, respectively. Local administration of an EP4 agonist to the fracture repair site in aged mice enhanced the rate of chondrogenesis and bone formation to levels observed in young mice, suggesting that the expression of COX-2 during the early inflammatory phase of repair regulates critical subsequent events including chondrogenesis, bone formation, and remodeling. The findings suggest that COX-2/EP4 agonists may compensate for deficient molecular signals that result in the reduced fracture healing associated with aging.
Gallego, Xavier; Ruiz-Medina, Jessica; Valverde, Olga; Molas, Susanna; Robles, Noemí; Sabrià, Josefa; Crabbe, John C; Dierssen, Mara
2012-05-01
Abuse of alcohol and smoking are extensively co-morbid. Some studies suggest partial commonality of action of alcohol and nicotine mediated through nicotinic acetylcholine receptors (nAChRs). We tested mice with transgenic over expression of the alpha 5, alpha 3, beta 4 receptor subunit genes, which lie in a cluster on human chromosome 15, that were previously shown to have increased nicotine self-administration, for several responses to ethanol. Transgenic and wild-type mice did not differ in sensitivity to several acute behavioral responses to ethanol. However, transgenic mice drank less ethanol than wild-type in a two-bottle (ethanol vs. water) preference test. These results suggest a complex role for this receptor subunit gene cluster in the modulation of ethanol's as well as nicotine's effects. Copyright © 2012. Published by Elsevier Inc.
The chorionic gonadotropin alpha-subunit gene is on human chromosome 18 in JEG cells.
Hardin, J W; Riser, M E; Trent, J M; Kohler, P O
1983-01-01
The gene for the alpha subunit of human chorionic gonadotropin (hCG) has been tentatively assigned to human chromosome 18. This localization was accomplished through the use of Southern blot analysis. A full-length cDNA probe for the hCG alpha subunit and DNA isolated from a series of somatic hybrids between mouse and human cells were utilized to make this assignment. In addition, in situ hybridization with normal human peripheral blood lymphocytes as a source of human chromosomes and with the same cDNA probe confirmed this result. The presence of human chromosome 18 was required for the detection of DNA fragments characteristic of the alpha-hCG gene. These results are consistent with our previous observation that human chromosomes 10 and 18 are required for the production of hCG in cultured cells. Images PMID:6578509
Roosendaal, E; Jacobs, A A; Rathman, P; Sondermeyer, C; Stegehuis, F; Oudega, B; de Graaf, F K
1987-09-01
Analysis of the nucleotide sequence of the distal part of the fan gene cluster encoding the proteins involved in the biosynthesis of the fibrillar adhesin, K99, revealed the presence of two structural genes, fanG and fanH. The amino acid sequence of the gene products (FanG and FanH) showed significant homology to the amino acid sequence of the fibrillar subunit protein (FanC). Introduction of a site-specific frameshift mutation in fanG or fanH resulted in a simultaneous decrease in fibrillae production and adhesive capacity. Analysis of subcellular fractions showed that, in contrast to the K99 fibrillar subunit (FanC), both the FanH and the FanG protein were loosely associated with the outer membrane, possibly on the periplasmic side, but were not components of the fimbriae themselves.
Purification of an eight subunit RNA polymerase I complex in Trypanosoma brucei.
Nguyen, Tu N; Schimanski, Bernd; Zahn, André; Klumpp, Birgit; Günzl, Arthur
2006-09-01
Trypanosoma brucei harbors a unique multifunctional RNA polymerase (pol) I which transcribes, in addition to ribosomal RNA genes, the gene units encoding the major cell surface antigens variant surface glycoprotein and procyclin. In consequence, this RNA pol I is recruited to three structurally different types of promoters and sequestered to two distinct nuclear locations, namely the nucleolus and the expression site body. This versatility may require parasite-specific protein-protein interactions, subunits or subunit domains. Thus far, data mining of trypanosomatid genomes have revealed 13 potential RNA pol I subunits which include two paralogous sets of RPB5, RPB6, and RPB10. Here, we analyzed a cDNA library prepared from procyclic insect form T. brucei and found that all 13 candidate subunits are co-expressed. Moreover, we PTP-tagged the largest subunit TbRPA1, tandem affinity-purified the enzyme complex to homogeneity, and determined its subunit composition. In addition to the already known subunits RPA1, RPA2, RPC40, 1RPB5, and RPA12, the complex contained RPC19, RPB8, and 1RPB10. Finally, to evaluate the absence of RPB6 in our purifications, we used a combination of epitope-tagging and reciprocal coimmunoprecipitation to demonstrate that 1RPB6 but not 2RPB6 binds to RNA pol I albeit in an unstable manner. Collectively, our data strongly suggest that T. brucei RNA pol I binds a distinct set of the RPB5, RPB6, and RPB10 paralogs.
The p40 Subunit of Interleukin (IL)-12 Promotes Stabilization and Export of the p35 Subunit
Jalah, Rashmi; Rosati, Margherita; Ganneru, Brunda; Pilkington, Guy R.; Valentin, Antonio; Kulkarni, Viraj; Bergamaschi, Cristina; Chowdhury, Bhabadeb; Zhang, Gen-Mu; Beach, Rachel Kelly; Alicea, Candido; Broderick, Kate E.; Sardesai, Niranjan Y.; Pavlakis, George N.; Felber, Barbara K.
2013-01-01
IL-12 is a 70-kDa heterodimeric cytokine composed of the p35 and p40 subunits. To maximize cytokine production from plasmid DNA, molecular steps controlling IL-12p70 biosynthesis at the posttranscriptional and posttranslational levels were investigated. We show that the combination of RNA/codon-optimized gene sequences and fine-tuning of the relative expression levels of the two subunits within a cell resulted in increased production of the IL-12p70 heterodimer. We found that the p40 subunit plays a critical role in enhancing the stability, intracellular trafficking, and export of the p35 subunit. This posttranslational regulation mediated by the p40 subunit is conserved in mammals. Based on these findings, dual gene expression vectors were generated, producing an optimal ratio of the two subunits, resulting in a ∼1 log increase in human, rhesus, and murine IL-12p70 production compared with vectors expressing the wild type sequences. Such optimized DNA plasmids also produced significantly higher levels of systemic bioactive IL-12 upon in vivo DNA delivery in mice compared with plasmids expressing the wild type sequences. A single therapeutic injection of an optimized murine IL-12 DNA plasmid showed significantly more potent control of tumor development in the B16 melanoma cancer model in mice. Therefore, the improved IL-12p70 DNA vectors have promising potential for in vivo use as molecular vaccine adjuvants and in cancer immunotherapy. PMID:23297419
Mitochondrial DNA variation and genetic relationships of Populus species.
Barrett, J W; Rajora, O P; Yeh, F C; Dancik, B P; Strobeck, C
1993-02-01
We examined variation in and around the region coding for the cytochrome c oxidase I (coxI) and ATPase 6 (atp6) genes in the mitochondrial genomes of four Populus species (P. nigra, P. deltoides, P. maximowiczii, and P. tremuloides) and the natural hybrid P. x canadensis (P. deltoides x P. nigra). Total cellular DNAs of these poplars were digested with 16 restriction endonucleases and probed with maize mtDNA-specific probes (CoxI and Atp6). The only variant observed for Atp6 was interspecific, with P. maximowiczii separated from the other species as revealed by EcoRI digestions. No intraspecific mtDNA variation was observed among individuals of P. nigra, P. maximowiczii, P. x canadensis, or P. tremuloides for the CoxI probe. However, two varieties of P. deltoides were distinct because of a single site change in the KpnI digestions, demonstrating that P. deltoides var. deltoides (eastern cottonwood) and var. occidentalis (plains cottonwood) have distinct mitochondrial genomes in the region of the coxI gene. Populus x canadensis shared the same restriction fragment patterns as its suspected maternal parent P. deltoides. Nucleotide substitutions per base in and around the coxI and atp6 genes among the Populus species and the hybrid ranged from 0.0017 to 0.0077. The interspecific estimates of nucleotide substitution per base suggested that P. tremuloides was furthest removed from P. deltoides and P. x canadensis and least diverged from P. nigra. Populus maximowiczii was placed between these two clusters.
Arrhythmogenic KCNE gene variants: current knowledge and future challenges
Crump, Shawn M.; Abbott, Geoffrey W.
2014-01-01
There are twenty-five known inherited cardiac arrhythmia susceptibility genes, all of which encode either ion channel pore-forming subunits or proteins that regulate aspects of ion channel biology such as function, trafficking, and localization. The human KCNE gene family comprises five potassium channel regulatory subunits, sequence variants in each of which are associated with cardiac arrhythmias. KCNE gene products exhibit promiscuous partnering and in some cases ubiquitous expression, hampering efforts to unequivocally correlate each gene to specific native potassium currents. Likewise, deducing the molecular etiology of cardiac arrhythmias in individuals harboring rare KCNE gene variants, or more common KCNE polymorphisms, can be challenging. In this review we provide an update on putative arrhythmia-causing KCNE gene variants, and discuss current thinking and future challenges in the study of molecular mechanisms of KCNE-associated cardiac rhythm disturbances. PMID:24478792
Filarial nematode infection in eclectus parrots (Eclectus roratus) in Taiwan.
Huang, Yen-Li; Tsai, Shinn-Shyong; Thongchan, Duangsuda; Khatri-Chhetri, Rupak; Wu, Hung-Yi
2017-04-01
A total of 166 psittacines belonging to 22 species were received by the Animal Hospital of National Pingtung University of Science & Technology (NPUST) from 2013 to 2015. Only eclectus parrots (Eclectus roratus) were identified as hosts for microfilariae. All eclectus parrots were adult birds and had been kept in Taiwan for more than three years. The relevance of filariae to eclectus parrots is evident as indicated by the 35.7% (5/14) infection rate. At necropsy, adult filarial nematodes 57-75 mm in length and 0.4-0.7 mm in width were found in the hepatic veins. The microfilariae were 170-230 μm in length. Histopathological examination confirmed that eggs and larvae were observed in the ovaries and uteri of female filariae. These nematodes were closely related to an unidentified Filaria sp. (KJ612514.1) as indicated by polymerase chain reaction (PCR) analysis and phylogenetic analysis of nucleotide sequences from 18S ribosomal DNA gene (18S rDNA), mitochondrial cytochrome c oxidase subunit 1 (COX1) gene, and internal transcribed spacers 1-5.8S ribosomal DNA gene (ITS 1-5.8S rDNA). However, structurally the filarial nematodes were similar to that of the Pelecitus sp. Eclectus parrot species are important pet birds and are highly traded, resulting in high uncertainty of the origin of the parasite infection. This study is the first of its kind to report the presence and potential impact of filarial nematode infection on eclectus parrots, suggesting parasite inspection prior to the international trade of these pet birds.
Mediator kinase module and human tumorigenesis.
Clark, Alison D; Oldenbroek, Marieke; Boyer, Thomas G
2015-01-01
Mediator is a conserved multi-subunit signal processor through which regulatory informatiosn conveyed by gene-specific transcription factors is transduced to RNA Polymerase II (Pol II). In humans, MED13, MED12, CDK8 and Cyclin C (CycC) comprise a four-subunit "kinase" module that exists in variable association with a 26-subunit Mediator core. Genetic and biochemical studies have established the Mediator kinase module as a major ingress of developmental and oncogenic signaling through Mediator, and much of its function in signal-dependent gene regulation derives from its resident CDK8 kinase activity. For example, CDK8-targeted substrate phosphorylation impacts transcription factor half-life, Pol II activity and chromatin chemistry and functional status. Recent structural and biochemical studies have revealed a precise network of physical and functional subunit interactions required for proper kinase module activity. Accordingly, pathologic change in this activity through altered expression or mutation of constituent kinase module subunits can have profound consequences for altered signaling and tumor formation. Herein, we review the structural organization, biological function and oncogenic potential of the Mediator kinase module. We focus principally on tumor-associated alterations in kinase module subunits for which mechanistic relationships as opposed to strictly correlative associations are established. These considerations point to an emerging picture of the Mediator kinase module as an oncogenic unit, one in which pathogenic activation/deactivation through component change drives tumor formation through perturbation of signal-dependent gene regulation. It follows that therapeutic strategies to combat CDK8-driven tumors will involve targeted modulation of CDK8 activity or pharmacologic manipulation of dysregulated CDK8-dependent signaling pathways.
Mediator kinase module and human tumorigenesis
Clark, Alison D.; Oldenbroek, Marieke; Boyer, Thomas G.
2016-01-01
Mediator is a conserved multi-subunit signal processor through which regulatory informatiosn conveyed by gene-specific transcription factors is transduced to RNA Polymerase II (Pol II). In humans, MED13, MED12, CDK8 and Cyclin C (CycC) comprise a four-subunit “kinase” module that exists in variable association with a 26-subunit Mediator core. Genetic and biochemical studies have established the Mediator kinase module as a major ingress of developmental and oncogenic signaling through Mediator, and much of its function in signal-dependent gene regulation derives from its resident CDK8 kinase activity. For example, CDK8-targeted substrate phosphorylation impacts transcription factor half-life, Pol II activity and chromatin chemistry and functional status. Recent structural and biochemical studies have revealed a precise network of physical and functional subunit interactions required for proper kinase module activity. Accordingly, pathologic change in this activity through altered expression or mutation of constituent kinase module subunits can have profound consequences for altered signaling and tumor formation. Herein, we review the structural organization, biological function and oncogenic potential of the Mediator kinase module. We focus principally on tumor-associated alterations in kinase module subunits for which mechanistic relationships as opposed to strictly correlative associations are established. These considerations point to an emerging picture of the Mediator kinase module as an oncogenic unit, one in which pathogenic activation/deactivation through component change drives tumor formation through perturbation of signal-dependent gene regulation. It follows that therapeutic strategies to combat CDK8-driven tumors will involve targeted modulation of CDK8 activity or pharmacologic manipulation of dysregulated CDK8-dependent signaling pathways. PMID:26182352
Kaplan, J B; Merkel, W K; Nichols, B P
1985-06-05
The amide group of glutamine is a source of nitrogen in the biosynthesis of a variety of compounds. These reactions are catalyzed by a group of enzymes known as glutamine amidotransferases; two of these, the glutamine amidotransferase subunits of p-aminobenzoate synthase and anthranilate synthase have been studied in detail and have been shown to be structurally and functionally related. In some micro-organisms, p-aminobenzoate synthase and anthranilate synthase share a common glutamine amidotransferase subunit. We report here the primary DNA and deduced amino acid sequences of the p-aminobenzoate synthase glutamine amidotransferase subunits from Salmonella typhimurium, Klebsiella aerogenes and Serratia marcescens. A comparison of these glutamine amidotransferase sequences to the sequences of ten others, including some that function specifically in either the p-aminobenzoate synthase or anthranilate synthase complexes and some that are shared by both synthase complexes, has revealed several interesting features of the structure and organization of these genes, and has allowed us to speculate as to the evolutionary history of this family of enzymes. We propose a model for the evolution of the p-aminobenzoate synthase and anthranilate synthase glutamine amidotransferase subunits in which the duplication and subsequent divergence of the genetic information encoding a shared glutamine amidotransferase subunit led to the evolution of two new pathway-specific enzymes.
NASA Technical Reports Server (NTRS)
Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)
1995-01-01
The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of schizophrenics, the previously reported upregulation of muscimol binding sites and downregulation of benzodiazepine binding sites in the prefrontal and adjacent cingulate cortex of schizophrenics are possibly due to posttranscriptional modifications of mRNAs and their translated polypeptides.
Fan, Yan-Lei; Lou, Zhong-Zi; Li, Li; Yan, Hong-Bin; Liu, Quan-Yuan; Zhan, Fang; Li, Jian-Qiu; Liu, Cong-Nuan; Cai, Jin-Zhong; Lei, Meng-Tong; Shi, Wan-Gui; Yang, Yu-Rong; McManus, Donald P; Jia, Wan-Zhong
2016-11-01
The metacestode of Echinococcus shiquicus has been recorded previously in the lung and liver of its intermediate host, the plateau pika (Ochotona curzoniae), but there is limited information regarding other organ sites. There is also limited evidence of intra-specific genetic variation within E. shiquicus. A PCR-amplified mitochondrial (mt) nad1 gene fragment (approximately 1400bp in size), with unique EcoRI and SspI restriction sites, was used to distinguish cysts or cyst-like lesions of E. shiquicus from E. multilocularis. Then, the complete mt nad1 and cox1 genes for the E. shiquicus isolates were amplified and sequenced. Phylogenetic tree and haplotype network analyses for the isolates were then generated based on a concatenated dataset of the nad1 and cox1 genes using the neighbour-joining (NJ) method and TCS1.21 software. Nineteen of eighty trapped pikas were found to harbor cysts (71 in total) when dissected at the survey site. Seventeen animals had cysts (fertile) present only in the lungs, one animal had fertile cysts in the lungs and spleen, and one individual had an infertile kidney cyst. Restriction endonuclease analysis of a fragment of the nad1 gene indicated all the cysts were due to E. shiquicus. Genetic diversity analysis revealed that the nad1 and cox1 genes varied by 0.1-1.2% and 0.1-1.0%, respectively. Haplotype network analysis of the concatenated nad1 and cox1 sequences of the isolates showed they were classified into at least 6 haplotypes, and different haplotype percentages ranged from 4.2% to 29.6%. Although, high haplotype diversity was evident in the study area, the complete nad1 and cox1 gene sequences obtained indicated that all samples represented isolates of E. shiquicus. The study has also provided a new PCR-restriction endonuclease-based method to rapidly distinguish E. shiquicus from E. multilocularis which provides a useful tool for epidemiological investigations where the two species overlap. Copyright © 2016. Published by Elsevier B.V.
Kassem, Sari; Villanyi, Zoltan
2017-01-01
Abstract Acetylation of histones regulates gene expression in eukaryotes. In the yeast Saccharomyces cerevisiae it depends mainly upon the ADA and SAGA histone acetyltransferase complexes for which Gcn5 is the catalytic subunit. Previous screens have determined that global acetylation is reduced in cells lacking subunits of the Ccr4–Not complex, a global regulator of eukaryotic gene expression. In this study we have characterized the functional connection between the Ccr4–Not complex and SAGA. We show that SAGA mRNAs encoding a core set of SAGA subunits are tethered together for co-translational assembly of the encoded proteins. Ccr4–Not subunits bind SAGA mRNAs and promote the co-translational assembly of these subunits. This is needed for integrity of SAGA. In addition, we determine that a glycolytic enzyme, the glyceraldehyde-3-phosphate dehydrogenase Tdh3, a prototypical moonlighting protein, is tethered at this site of Ccr4–Not-dependent co-translational SAGA assembly and functions as a chaperone. PMID:28180299
Sinici, Incilay; Yonekawa, Sayuri; Tkachyova, Ilona; Gray, Steven J; Samulski, R Jude; Wakarchuk, Warren; Mark, Brian L; Mahuran, Don J
2013-01-01
The hydrolysis in lysosomes of GM2 ganglioside to GM3 ganglioside requires the correct synthesis, intracellular assembly and transport of three separate gene products; i.e., the alpha and beta subunits of heterodimeric beta-hexosaminidase A, E.C. # 3.2.1.52 (encoded by the HEXA and HEXB genes, respectively), and the GM2-activator protein (GM2AP, encoded by the GM2A gene). Mutations in any one of these genes can result in one of three neurodegenerative diseases collectively known as GM2 gangliosidosis (HEXA, Tay-Sachs disease, MIM # 272800; HEXB, Sandhoff disease, MIM # 268800; and GM2A, AB-variant form, MIM # 272750). Elements of both of the hexosaminidase A subunits are needed to productively interact with the GM2 ganglioside-GM2AP complex in the lysosome. Some of these elements have been predicted from the crystal structures of hexosaminidase and the activator. Recently a hybrid of the two subunits has been constructed and reported to be capable of forming homodimers that can perform this reaction in vivo, which could greatly simplify vector-mediated gene transfer approaches for Tay-Sachs or Sandhoff diseases. A cDNA encoding a hybrid hexosaminidase subunit capable of dimerizing and hydrolyzing GM2 ganglioside could be incorporated into a single vector, whereas packaging both subunits of hexosaminidase A into vectors, such as adeno-associated virus, would be impractical due to size constraints. In this report we examine the previously published hybrid construct (H1) and a new more extensive hybrid (H2), with our documented in cellulo (live cell- based) assay utilizing a fluorescent GM2 ganglioside derivative. Unfortunately when Tay-Sachs cells were transfected with either the H1 or H2 hybrid construct and then were fed the GM2 derivative, no significant increase in its turnover was detected. In vitro assays with the isolated H1 or H2 homodimers confirmed that neither was capable of human GM2AP-dependent hydrolysis of GM2 ganglioside.
Sinici, Incilay; Yonekawa, Sayuri; Tkachyova, Ilona; Gray, Steven J.; Samulski, R. Jude; Wakarchuk, Warren; Mark, Brian L.; Mahuran, Don J.
2013-01-01
The hydrolysis in lysosomes of GM2 ganglioside to GM3 ganglioside requires the correct synthesis, intracellular assembly and transport of three separate gene products; i.e., the alpha and beta subunits of heterodimeric beta-hexosaminidase A, E.C. # 3.2.1.52 (encoded by the HEXA and HEXB genes, respectively), and the GM2-activator protein (GM2AP, encoded by the GM2A gene). Mutations in any one of these genes can result in one of three neurodegenerative diseases collectively known as GM2 gangliosidosis (HEXA, Tay-Sachs disease, MIM # 272800; HEXB, Sandhoff disease, MIM # 268800; and GM2A, AB-variant form, MIM # 272750). Elements of both of the hexosaminidase A subunits are needed to productively interact with the GM2 ganglioside-GM2AP complex in the lysosome. Some of these elements have been predicted from the crystal structures of hexosaminidase and the activator. Recently a hybrid of the two subunits has been constructed and reported to be capable of forming homodimers that can perform this reaction in vivo, which could greatly simplify vector-mediated gene transfer approaches for Tay-Sachs or Sandhoff diseases. A cDNA encoding a hybrid hexosaminidase subunit capable of dimerizing and hydrolyzing GM2 ganglioside could be incorporated into a single vector, whereas packaging both subunits of hexosaminidase A into vectors, such as adeno-associated virus, would be impractical due to size constraints. In this report we examine the previously published hybrid construct (H1) and a new more extensive hybrid (H2), with our documented in cellulo (live cell- based) assay utilizing a fluorescent GM2 ganglioside derivative. Unfortunately when Tay-Sachs cells were transfected with either the H1 or H2 hybrid construct and then were fed the GM2 derivative, no significant increase in its turnover was detected. In vitro assays with the isolated H1 or H2 homodimers confirmed that neither was capable of human GM2AP-dependent hydrolysis of GM2 ganglioside. PMID:23483939
Karumuthil-Melethil, Subha; Kalburgi, Sahana Nagabhushan; Thompson, Patrick; Tropak, Michael; Kaytor, Michael D.; Keimel, John G.; Mark, Brian L.; Mahuran, Don; Walia, Jagdeep S.; Gray, Steven J.
2016-01-01
GM2 gangliosidosis is a family of three genetic neurodegenerative disorders caused by the accumulation of GM2 ganglioside (GM2) in neuronal tissue. Two of these are due to the deficiency of the heterodimeric (α–β), “A” isoenzyme of lysosomal β-hexosaminidase (HexA). Mutations in the α-subunit (encoded by HEXA) lead to Tay-Sachs disease (TSD), whereas mutations in the β-subunit (encoded by HEXB) lead to Sandhoff disease (SD). The third form results from a deficiency of the GM2 activator protein (GM2AP), a substrate-specific cofactor for HexA. In their infantile, acute forms, these diseases rapidly progress with mental and psychomotor deterioration resulting in death by approximately 4 years of age. After gene transfer that overexpresses one of the deficient subunits, the amount of HexA heterodimer formed would empirically be limited by the availability of the other endogenous Hex subunit. The present study used a new variant of the human HexA α-subunit, μ, incorporating critical sequences from the β-subunit that produce a stable homodimer (HexM) and promote functional interactions with the GM2AP– GM2 complex. We report the design of a compact adeno-associated viral (AAV) genome using a synthetic promoter–intron combination to allow self-complementary (sc) packaging of the HEXM gene. Also, a previously published capsid mutant, AAV9.47, was used to deliver the gene to brain and spinal cord while having restricted biodistribution to the liver. The novel capsid and cassette design combination was characterized in vivo in TSD mice for its ability to efficiently transduce cells in the central nervous system when delivered intravenously in both adult and neonatal mice. This study demonstrates that the modified HexM is capable of degrading long-standing GM2 storage in mice, and it further demonstrates the potential of this novel scAAV vector design to facilitate widespread distribution of the HEXM gene or potentially other similar-sized genes to the nervous system. PMID:27197548
Fine structure of OXI1, the mitochondrial gene coding for subunit II of yeast cytochrome c oxidase.
Weiss-Brummer, B; Guba, R; Haid, A; Schweyen, R J
1979-12-01
Genetic and biochemical studies have been performed with 110 mutants which are defective in cytochrome a·a3 and map in the regions on mit DNA previously designated OXI1 and OXI2. With 88 mutations allocated to OXI1 fine structure mapping was achieved by the analysis of rho (-) deletions. The order of six groups of mutational sites (A 1, A2, B 1, B2, C 1, C2) thus determined was confirmed by oxi i x oxi j recombination analysis.Analysis of mitochondrially translated polypeptides of oxil mutants by SDS-polyacrylamide electrophoresis reveals three classes of mutant patterns: i) similar to wild-tpye (19 mutants); ii) lacking SU II of cytochrome c oxidase (53 mutants); iii) lacking this subunit and exhibiting a single new polypeptide of lower Mr (16 mutants). Mutations of each of these classes are scattered over the OXI1 region without any detectable clustering; this is consistent with the assumption that all oxil mutations studied are within the same gene.New polypeptides observed in oxil mutants of class iii) vary in Mr in the range from 10,500 to 33,000. Those of Mr 17,000 to 33,000 are shown to be antigenically related to subunit II of cytochrome c oxidase. Colinearity is established between the series of new polypeptides of Mr values increasing from 10,500 to 31,500 and the order of the respective mutational sites on the map, e.g. mutations mapping in A 1 generate the smallest and mutations mapping in C2 the largest mutant fragments.From these data we conclude that i) all mutations allocated to the OXI1 region are in the same gene; ii) this gene codes for subunit II of cytochrome c oxidase; iii) the direction of translation is from CAP to 0X12. Out of 19 mutants allocated to OXI2 three exhibit a new polypeptide; these and all the other oxi2 mutants lack subunit III of cytochrome oxidase. This result provides preliminary evidence that the OXI2 region harbours the structural gene for this subunit III.
Johar, Kaid; Priya, Anusha; Wong-Riley, Margaret T T
2012-11-23
NRF-1 regulates mediators of neuronal activity and energy generation. NRF-1 transcriptionally regulates Na(+)/K(+)-ATPase subunits α1 and β1. NRF-1 functionally regulates mediators of energy consumption in neurons. NRF-1 mediates the tight coupling of neuronal activity, energy generation, and energy consumption at the molecular level. Energy generation and energy consumption are tightly coupled to neuronal activity at the cellular level. Na(+)/K(+)-ATPase, a major energy-consuming enzyme, is well expressed in neurons rich in cytochrome c oxidase, an important enzyme of the energy-generating machinery, and glutamatergic receptors that are mediators of neuronal activity. The present study sought to test our hypothesis that the coupling extends to the molecular level, whereby Na(+)/K(+)-ATPase subunits are regulated by the same transcription factor, nuclear respiratory factor 1 (NRF-1), found recently by our laboratory to regulate all cytochrome c oxidase subunit genes and some NMDA and AMPA receptor subunit genes. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, in vivo chromatin immunoprecipitation, promoter mutational analysis, and real-time quantitative PCR, NRF-1 was found to functionally bind to the promoters of Atp1a1 and Atp1b1 genes but not of the Atp1a3 gene in neurons. The transcripts of Atp1a1 and Atp1b1 subunit genes were up-regulated by KCl and down-regulated by tetrodotoxin. Atp1b1 is positively regulated by NRF-1, and silencing of NRF-1 with small interference RNA blocked the up-regulation of Atp1b1 induced by KCl, whereas overexpression of NRF-1 rescued these transcripts from being suppressed by tetrodotoxin. On the other hand, Atp1a1 is negatively regulated by NRF-1. The binding sites of NRF-1 on Atp1a1 and Atp1b1 are conserved among mice, rats, and humans. Thus, NRF-1 regulates key Na(+)/K(+)-ATPase subunits and plays an important role in mediating the tight coupling between energy consumption, energy generation, and neuronal activity at the molecular level.
Functional Differentiation of SWI/SNF Remodelers in Transcription and Cell Cycle Control▿ †
Moshkin, Yuri M.; Mohrmann, Lisette; van Ijcken, Wilfred F. J.; Verrijzer, C. Peter
2007-01-01
Drosophila BAP and PBAP represent two evolutionarily conserved subclasses of SWI/SNF chromatin remodelers. The two complexes share the same core subunits, including the BRM ATPase, but differ in a few signature subunits: OSA defines BAP, whereas Polybromo (PB) and BAP170 specify PBAP. Here, we present a comprehensive structure-function analysis of BAP and PBAP. An RNA interference knockdown survey revealed that the core subunits BRM and MOR are critical for the structural integrity of both complexes. Whole-genome expression profiling suggested that the SWI/SNF core complex is largely dysfunctional in cells. Regulation of the majority of target genes required the signature subunit OSA, PB, or BAP170, suggesting that SWI/SNF remodelers function mostly as holoenzymes. BAP and PBAP execute similar, independent, or antagonistic functions in transcription control and appear to direct mostly distinct biological processes. BAP, but not PBAP, is required for cell cycle progression through mitosis. Because in yeast the PBAP-homologous complex, RSC, controls cell cycle progression, our finding reveals a functional switch during evolution. BAP mediates G2/M transition through direct regulation of string/cdc25. Its signature subunit, OSA, is required for directing BAP to the string/cdc25 promoter. Our results suggest that the core subunits play architectural and enzymatic roles but that the signature subunits determine most of the functional specificity of SWI/SNF holoenzymes in general gene control. PMID:17101803
Anti-inflammatory Activity of Grains of Paradise (Aframomum melegueta Schum) Extract
2015-01-01
The ethanolic extract of grains of paradise (Aframomum melegueta Schum, Zingiberaceae) has been evaluated for inhibitory activity on cyclooxygenase-2 (COX-2) enzyme, in vivo for the anti-inflammatory activity and expression of several pro-inflammatory genes. Bioactivity-guided fractionation showed that the most active COX-2 inhibitory compound in the extract was [6]-paradol. [6]-Shogaol, another compound from the extract, was the most active inhibitory compound in pro-inflammatory gene expression assays. In a rat paw edema model, the whole extract reduced inflammation by 49% at 1000 mg/kg. Major gingerols from the extract [6]-paradol, [6]-gingerol, and [6]-shogaol reduced inflammation by 20, 25 and 38%. respectively when administered individually at a dose of 150 mg/kg. [6]-Shogaol efficacy was at the level of aspirin, used as a positive control. Grains of paradise extract has demonstrated an anti-inflammatory activity, which is in part due to the inhibition of COX-2 enzyme activity and expression of pro-inflammatory genes. PMID:25293633
Dean, Caroline; Elzen, Peter van den; Tamaki, Stanley; Dunsmuir, Pamela; Bedbrook, John
1985-01-01
Of the eight nuclear genes in the plant multi-gene family which encodes the small subunit (rbcS) of Petunia (Mitchell) ribulose bisphosphate carboxylase, one rbcS gene accounts for 47% of the total rbcS gene expression in petunia leaf tissue. Expression of each of five other rbcS genes is detected at levels between 2 and 23% of the total rbcS expression in leaf tissue, while expression of the remaining two rbcS genes is not detected. There is considerable variation (500-fold) in the levels of total rbcS mRNA in six organs of petunia (leaves, sepals, petals, stems, roots and stigmas/anthers). One gene, SSU301, showed the highest levels of steady-state mRNA in each of the organs examined. We discuss the differences in the steady-state mRNA levels of the individual rbcS genes in relation to their gene structure, nucleotide sequence and genomic linkage. ImagesFig. 2.Fig. 3. PMID:16453647
Nadimi, Maryam; Beaudet, Denis; Forget, Lise; Hijri, Mohamed; Lang, B Franz
2012-09-01
Gigaspora rosea is a member of the arbuscular mycorrhizal fungi (AMF; Glomeromycota) and a distant relative of Glomus species that are beneficial to plant growth. To allow for a better understanding of Glomeromycota, we have sequenced the mitochondrial DNA of G. rosea. A comparison with Glomus mitochondrial genomes reveals that Glomeromycota undergo insertion and loss of mitochondrial plasmid-related sequences and exhibit considerable variation in introns. The gene order between the two species is almost completely reshuffled. Furthermore, Gigaspora has fragmented cox1 and rns genes, and an unorthodox initiator tRNA that is tailored to decoding frequent UUG initiation codons. For the fragmented cox1 gene, we provide evidence that its RNA is joined via group I-mediated trans-splicing, whereas rns RNA remains in pieces. According to our model, the two cox1 precursor RNA pieces are brought together by flanking cox1 exon sequences that form a group I intron structure, potentially in conjunction with the nad5 intron 3 sequence. Finally, we present analyses that address the controversial phylogenetic association of Glomeromycota within fungi. According to our results, Glomeromycota are not a separate group of paraphyletic zygomycetes but branch together with Mortierellales, potentially also Harpellales.
Eom, Keeseon S; Chai, Jong-Yil; Yong, Tai-Soon; Min, Duk-Young; Rim, Han-Jong; Kihamia, Charles; Jeon, Hyeong-Kyu
2011-12-01
Species identification of Taenia tapeworms was performed using morphologic observations and multiplex PCR and DNA sequencing of the mitochondrial cox1 gene. In 2008 and 2009, a total of 1,057 fecal samples were collected from residents of Kongwa district of Dodoma region, Tanzania, and examined microscopically for helminth eggs and proglottids. Of these, 4 Taenia egg positive cases were identified, and the eggs were subjected to DNA analysis. Several proglottids of Taenia solium were recovered from 1 of the 4 cases. This established that the species were T. solium (n = 1) and T. saginata (n = 3). One further T. solium specimen was found among 128 fecal samples collected from Mbulu district in Arusha, and this had an intact strobila with the scolex. Phylegenetic analysis of the mtDNA cox1 gene sequences of these 5 isolates showed that T. saginata was basal to the T. solium clade. The mitochondrial cox1 gene sequences of 3 of these Tanzanian isolates showed 99% similarity to T. saginata, and the other 2 isolates showed 100% similarity to T. solium. The present study has shown that Taenia tapeworms are endemic in Kongwa district of Tanzania, as well as in a previously identified Mbulu district. Both T. solium isolates were found to have an "African/Latin American" genotype (cox1).
Shitan, Nobukazu; Kamimoto, Yoshihisa; Minami, Shota; Kubo, Mizuki; Ito, Kozue; Moriyasu, Masataka; Yazaki, Kazufumi
2011-01-01
Yeast functional screening with a Sophora flavescens cDNA library was performed to identify the genes involved in the tolerant mechanism to the self-producing prenylated flavonoid sophoraflavanone G (SFG). One cDNA, which conferred SFG tolerance, encoded a regulatory particle triple-A ATPase 2 (SfRPT2), a member of the 26S proteasome subunit. The yeast transformant of SfRPT2 showed reduced SFG accumulation in the cells.
Sriramula, Srinivas; Xia, Huijing; Xu, Ping; Lazartigues, Eric
2014-01-01
Overactivity of the renin angiotensin system (RAS), oxidative stress, and cyclooxygenases (COX) in the brain are implicated in the pathogenesis of hypertension. We previously reported that Angiotensin-Converting Enzyme 2 (ACE2) overexpression in the brain attenuates the development of DOCA-salt hypertension, a neurogenic hypertension model with enhanced brain RAS and sympathetic activity. To elucidate the mechanisms involved, we investigated whether oxidative stress, mitogen activated protein kinase signaling and cyclooxygenase (COX) activation in the brain are modulated by ACE2 in neurogenic hypertension. DOCA-salt hypertension significantly increased expression of Nox-2 (+61 ±5 %), Nox-4 (+50 ±13 %) and nitrotyrosine (+89 ±32 %) and reduced activity of the antioxidant enzymes, catalase (−29 ±4 %) and SOD (−31 ±7 %), indicating increased oxidative stress in the brain of non-transgenic mice. This increased oxidative stress was attenuated in transgenic mice overexpressing ACE2 in the brain. DOCA-salt-induced reduction of nNOS expression (−26 ±7 %) and phosphorylated eNOS/total eNOS (−30 ±3 %), and enhanced phosphorylation of Akt and ERK1/2 in the paraventricular nucleus (PVN), were reversed by ACE2 overexpression. In addition, ACE2 overexpression blunted the hypertension-mediated increase in gene and protein expression of COX-1 and COX-2 in the PVN. Furthermore, gene silencing of either COX-1 or COX-2 in the brain, reduced microglial activation and accompanied neuro-inflammation, ultimately attenuating DOCA-salt hypertension. Together, these data provide evidence that brain ACE2 overexpression reduces oxidative stress and COX-mediated neuro-inflammation, improves anti-oxidant and nitric oxide signaling, and thereby attenuates the development of neurogenic hypertension. PMID:25489058
NASA Astrophysics Data System (ADS)
Boulter, Jim; Connolly, John; Deneris, Evan; Goldman, Dan; Heinemann, Steven; Patrick, Jim
1987-11-01
A family of genes coding for proteins homologous to the α subunit of the muscle nicotinic acetylcholine receptor has been identified in the rat genome. These genes are transcribed in the central and peripheral nervous systems in areas known to contain functional nicotinic receptors. In this paper, we demonstrate that three of these genes, which we call alpha3, alpha4, and beta2, encode proteins that form functional nicotinic acetylcholine receptors when expressed in Xenopus oocytes. Oocytes expressing either alpha3 or alpha4 protein in combination with the beta2 protein produced a strong response to acetylcholine. Oocytes expressing only the alpha4 protein gave a weak response to acetylcholine. These receptors are activated by acetylcholine and nicotine and are blocked by Bungarus toxin 3.1. They are not blocked by α -bungarotoxin, which blocks the muscle nicotinic acetylcholine receptor. Thus, the receptors formed by the alpha3, alpha4, and beta2 subunits are pharmacologically similar to the ganglionic-type neuronal nicotinic acetylcholine receptor. These results indicate that the alpha3, alpha4, and beta2 genes encode functional nicotinic acetylcholine receptor subunits that are expressed in the brain and peripheral nervous system.
Dhingra, Rimpy; Margulets, Victoria; Chowdhury, Subir Roy; Thliveris, James; Jassal, Davinder; Fernyhough, Paul; Dorn, Gerald W.; Kirshenbaum, Lorrie A.
2014-01-01
Doxorubicin (DOX) is widely used for treating human cancers, but can induce heart failure through an undefined mechanism. Herein we describe a previously unidentified signaling pathway that couples DOX-induced mitochondrial respiratory chain defects and necrotic cell death to the BH3-only protein Bcl-2-like 19kDa-interacting protein 3 (Bnip3). Cellular defects, including vacuolization and disrupted mitochondria, were observed in DOX-treated mice hearts. This coincided with mitochondrial localization of Bnip3, increased reactive oxygen species production, loss of mitochondrial membrane potential, mitochondrial permeability transition pore opening, and necrosis. Interestingly, a 3.1-fold decrease in maximal mitochondrial respiration was observed in cardiac mitochondria of mice treated with DOX. In vehicle-treated control cells undergoing normal respiration, the respiratory chain complex IV subunit 1 (COX1) was tightly bound to uncoupling protein 3 (UCP3), but this complex was disrupted in cells treated with DOX. Mitochondrial dysfunction induced by DOX was accompanied by contractile failure and necrotic cell death. Conversely, shRNA directed against Bnip3 or a mutant of Bnip3 defective for mitochondrial targeting abrogated DOX-induced loss of COX1-UCP3 complexes and respiratory chain defects. Finally, Bnip3−/− mice treated with DOX displayed relatively normal mitochondrial morphology, respiration, and mortality rates comparable to those of saline-treated WT mice, supporting the idea that Bnip3 underlies the cardiotoxic effects of DOX. These findings reveal a new signaling pathway in which DOX-induced mitochondrial respiratory chain defects and necrotic cell death are mutually dependent on and obligatorily linked to Bnip3 gene activation. Interventions that antagonize Bnip3 may prove beneficial in preventing mitochondrial injury and heart failure in cancer patients undergoing chemotherapy. PMID:25489073
Schäfer, Nicola; Lohmann, Christine; Winnik, Stephan; van Tits, Lambertus J; Miranda, Melroy X; Vergopoulos, Athanasios; Ruschitzka, Frank; Nussberger, Jürg; Berger, Stefan; Lüscher, Thomas F; Verrey, François; Matter, Christian M
2013-12-01
Aldosterone plays a crucial role in cardiovascular disease. 'Systemic' inhibition of its mineralocorticoid receptor (MR) decreases atherosclerosis by reducing inflammation and oxidative stress. Obesity, an important cardiovascular risk factor, is an inflammatory disease associated with increased plasma aldosterone levels. We have investigated the role of the 'endothelial' MR in obesity-induced endothelial dysfunction, the earliest stage in atherogenesis. C57BL/6 mice were exposed to a normal chow diet (ND) or a high-fat diet (HFD) alone or in combination with the MR antagonist eplerenone (200 mg/kg/day) for 14 weeks. Diet-induced obesity impaired endothelium-dependent relaxation in response to acetylcholine, whereas eplerenone treatment of obese mice prevented this. Expression analyses in aortic endothelial cells isolated from these mice revealed that eplerenone attenuated expression of pro-oxidative NADPH oxidase (subunits p22phox, p40phox) and increased expression of antioxidative genes (glutathione peroxidase-1, superoxide dismutase-1 and -3) in obesity. Eplerenone did not affect obesity-induced upregulation of cyclooxygenase (COX)-1 or prostacyclin synthase. Endothelial-specific MR deletion prevented endothelial dysfunction in obese (exhibiting high 'endogenous' aldosterone) and in 'exogenous' aldosterone-infused lean mice. Pre-incubation of aortic rings from aldosterone-treated animals with the COX-inhibitor indomethacin restored endothelial function. Exogenous aldosterone administration induced endothelial expression of p22phox in the presence, but not in the absence of the endothelial MR. Obesity-induced endothelial dysfunction depends on the 'endothelial' MR and is mediated by an imbalance of oxidative stress-modulating mechanisms. Therefore, MR antagonists may represent an attractive therapeutic strategy in the increasing population of obese patients to decrease vascular dysfunction and subsequent atherosclerotic complications.
Does a global DNA barcoding gap exist in Annelida?
Kvist, Sebastian
2016-05-01
Accurate identification of unknown specimens by means of DNA barcoding is contingent on the presence of a DNA barcoding gap, among other factors, as its absence may result in dubious specimen identifications - false negatives or positives. Whereas the utility of DNA barcoding would be greatly reduced in the absence of a distinct and sufficiently sized barcoding gap, the limits of intraspecific and interspecific distances are seldom thoroughly inspected across comprehensive sampling. The present study aims to illuminate this aspect of barcoding in a comprehensive manner for the animal phylum Annelida. All cytochrome c oxidase subunit I sequences (cox1 gene; the chosen region for zoological DNA barcoding) present in GenBank for Annelida, as well as for "Polychaeta", "Oligochaeta", and Hirudinea separately, were downloaded and curated for length, coverage and potential contaminations. The final datasets consisted of 9782 (Annelida), 5545 ("Polychaeta"), 3639 ("Oligochaeta"), and 598 (Hirudinea) cox1 sequences and these were either (i) used as is in an automated global barcoding gap detection analysis or (ii) further analyzed for genetic distances, separated into bins containing intraspecific and interspecific comparisons and plotted in a graph to visualize any potential global barcoding gap. Over 70 million pairwise genetic comparisons were made and results suggest that although there is a tendency towards separation, no distinct or sufficiently sized global barcoding gap exists in either of the datasets rendering future barcoding efforts at risk of erroneous specimen identifications (but local barcoding gaps may still exist allowing for the identification of specimens at lower taxonomic ranks). This seems to be especially true for earthworm taxa, which account for fully 35% of the total number of interspecific comparisons that show 0% divergence.
Are humans the initial source of canine mange?
Andriantsoanirina, Valérie; Fang, Fang; Ariey, Frédéric; Izri, Arezki; Foulet, Françoise; Botterel, Françoise; Bernigaud, Charlotte; Chosidow, Olivier; Huang, Weiyi; Guillot, Jacques; Durand, Rémy
2016-03-25
Scabies, or mange as it is called in animals, is an ectoparasitic contagious infestation caused by the mite Sarcoptes scabiei. Sarcoptic mange is an important veterinary disease leading to significant morbidity and mortality in wild and domestic animals. A widely accepted hypothesis, though never substantiated by factual data, suggests that humans were the initial source of the animal contamination. In this study we performed phylogenetic analyses of populations of S. scabiei from humans and from canids to validate or not the hypothesis of a human origin of the mites infecting domestic dogs. Mites from dogs and foxes were obtained from three French sites and from other countries. A part of cytochrome c oxidase subunit 1 (cox1) gene was amplified and directly sequenced. Other sequences corresponding to mites from humans, raccoon dogs, foxes, jackal and dogs from various geographical areas were retrieved from GenBank. Phylogenetic analyses were performed using the Otodectes cynotis cox1 sequence as outgroup. Maximum Likelihood and Bayesian Inference analysis approaches were used. To visualize the relationship between the haplotypes, a median joining haplotype network was constructed using Network v4.6 according to host. Twenty-one haplotypes were observed among mites collected from five different host species, including humans and canids from nine geographical areas. The phylogenetic trees based on Maximum Likelihood and Bayesian Inference analyses showed similar topologies with few differences in node support values. The results were not consistent with a human origin of S. scabiei mites in dogs and, on the contrary, did not exclude the opposite hypothesis of a host switch from dogs to humans. Phylogenetic relatedness may have an impact in terms of epidemiological control strategy. Our results and other recent studies suggest to re-evaluate the level of transmission between domestic dogs and humans.
Schäfer, Nicola; Lohmann, Christine; Winnik, Stephan; van Tits, Lambertus J.; Miranda, Melroy X.; Vergopoulos, Athanasios; Ruschitzka, Frank; Nussberger, Jürg; Berger, Stefan; Lüscher, Thomas F.; Verrey, François; Matter, Christian M.
2013-01-01
Received 22 July 2012; revised 29 January 2013; accepted 4 March 2013 Aims Aldosterone plays a crucial role in cardiovascular disease. ‘Systemic’ inhibition of its mineralocorticoid receptor (MR) decreases atherosclerosis by reducing inflammation and oxidative stress. Obesity, an important cardiovascular risk factor, is an inflammatory disease associated with increased plasma aldosterone levels. We have investigated the role of the ‘endothelial’ MR in obesity-induced endothelial dysfunction, the earliest stage in atherogenesis. Methods and results C57BL/6 mice were exposed to a normal chow diet (ND) or a high-fat diet (HFD) alone or in combination with the MR antagonist eplerenone (200 mg/kg/day) for 14 weeks. Diet-induced obesity impaired endothelium-dependent relaxation in response to acetylcholine, whereas eplerenone treatment of obese mice prevented this. Expression analyses in aortic endothelial cells isolated from these mice revealed that eplerenone attenuated expression of pro-oxidative NADPH oxidase (subunits p22phox, p40phox) and increased expression of antioxidative genes (glutathione peroxidase-1, superoxide dismutase-1 and -3) in obesity. Eplerenone did not affect obesity-induced upregulation of cyclooxygenase (COX)-1 or prostacyclin synthase. Endothelial-specific MR deletion prevented endothelial dysfunction in obese (exhibiting high ‘endogenous’ aldosterone) and in ‘exogenous’ aldosterone-infused lean mice. Pre-incubation of aortic rings from aldosterone-treated animals with the COX-inhibitor indomethacin restored endothelial function. Exogenous aldosterone administration induced endothelial expression of p22phox in the presence, but not in the absence of the endothelial MR. Conclusion Obesity-induced endothelial dysfunction depends on the ‘endothelial’ MR and is mediated by an imbalance of oxidative stress-modulating mechanisms. Therefore, MR antagonists may represent an attractive therapeutic strategy in the increasing population of obese patients to decrease vascular dysfunction and subsequent atherosclerotic complications. PMID:23594590
A nuclear factor kappa B-derived inhibitor tripeptide inhibits UVB-induced photoaging process.
Oh, Jee Eun; Kim, Min Seo; Jeon, Woo-Kwang; Seo, Young Kwon; Kim, Byung-Chul; Hahn, Jang Hee; Park, Chang Seo
2014-12-01
Ultraviolet (UV) irradiation on the skin induces photoaging which is characterized by keratinocyte hyperproliferation, generation of coarse wrinkles, worse of laxity and roughness. Upon UV irradiation, nuclear factor kappa B (NF-κB) is activated which plays a key role in signaling pathway leading to inflammation cascade and this activation stimulates expression of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin-1alpha (IL-1α) and a stress response gene cyclooxygenase-2 (COX-2). In addition, activation of NF-κB up-regulates the expression of matrix metalloprotease-1 (MMP-1) and consequently collagen in dermis is degraded. In this study, the effects of a NF-κB-derived inhibitor tripeptide on the UVB-induced photoaging and inflammation were investigated in vitro and in vivo. A NF-κB-derived inhibitor tripeptide (NF-κB-DVH) was synthesized based on the sequence of dimerization region of the subunit p65 of NF-κB. Its inhibitory activity was confirmed using chromatin immunoprecipitation assay and in situ proximate ligation assay. The effects of anti-photoaging and anti-inflammation were analyzed by Enzyme-linked immunosorbent assay (ELISA), immunoblotting and immunochemistry. NF-κB-DVH significantly decreased UV-induced expression of TNF-α, IL-1α, MMP-1 and COX-2 while increased production of type I procollagen. Results showed NF-κB-DVH had strong anti-inflammatory activity probably by inhibiting NF-κB activation pathway and suggested to be used as a novel agent for anti-photoaging. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Kolondra, Adam; Labedzka-Dmoch, Karolina; Wenda, Joanna M; Drzewicka, Katarzyna; Golik, Pawel
2015-10-21
Yeasts show remarkable variation in the organization of their mitochondrial genomes, yet there is little experimental data on organellar gene expression outside few model species. Candida albicans is interesting as a human pathogen, and as a representative of a clade that is distant from the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Unlike them, it encodes seven Complex I subunits in its mtDNA. No experimental data regarding organellar expression were available prior to this study. We used high-throughput RNA sequencing and traditional RNA biology techniques to study the mitochondrial transcriptome of C. albicans strains BWP17 and SN148. The 14 protein-coding genes, two ribosomal RNA genes, and 24 tRNA genes are expressed as eight primary polycistronic transcription units. We also found transcriptional activity in the noncoding regions, and antisense transcripts that could be a part of a regulatory mechanism. The promoter sequence is a variant of the nonanucleotide identified in other yeast mtDNAs, but some of the active promoters show significant departures from the consensus. The primary transcripts are processed by a tRNA punctuation mechanism into the monocistronic and bicistronic mature RNAs. The steady state levels of various mature transcripts exhibit large differences that are a result of posttranscriptional regulation. Transcriptome analysis allowed to precisely annotate the positions of introns in the RNL (2), COB (2) and COX1 (4) genes, as well as to refine the annotation of tRNAs and rRNAs. Comparative study of the mitochondrial genome organization in various Candida species indicates that they undergo shuffling in blocks usually containing 2-3 genes, and that their arrangement in primary transcripts is not conserved. tRNA genes with their associated promoters, as well as GC-rich sequence elements play an important role in these evolutionary events. The main evolutionary force shaping the mitochondrial genomes of yeasts is the frequent recombination, constantly breaking apart and joining genes into novel primary transcription units. The mitochondrial transcription units are constantly rearranged in evolution shaping the features of gene expression, such as the presence of secondary promoter sites that are inactive, or act as "booster" promoters, simplified transcriptional regulation and reliance on posttranscriptional mechanisms.
Crotoxin: Structural Studies, Mechanism of Action and Cloning of Its gene
1989-12-01
B-chain. Sequencing of the three peptides present in the acidic subunit, two of which are blocked by pyroglutamate , represents a significant...We have completed the sequence determination of both the basic and acidic subunits of crotoxin. The acidic subunit peptides were difficult, since two...of the three peptides were blocked at the amino-terminus by pyroglutamate . Earlier structural studies on crotoxin and related crotalid dimeric
Grants, Jennifer M.; Goh, Grace Y. S.; Taubert, Stefan
2015-01-01
The Mediator multiprotein complex (‘Mediator’) is an important transcriptional coregulator that is evolutionarily conserved throughout eukaryotes. Although some Mediator subunits are essential for the transcription of all protein-coding genes, others influence the expression of only subsets of genes and participate selectively in cellular signaling pathways. Here, we review the current knowledge of Mediator subunit function in the nematode Caenorhabditis elegans, a metazoan in which established and emerging genetic technologies facilitate the study of developmental and physiological regulation in vivo. In this nematode, unbiased genetic screens have revealed critical roles for Mediator components in core developmental pathways such as epidermal growth factor (EGF) and Wnt/β-catenin signaling. More recently, important roles for C. elegans Mediator subunits have emerged in the regulation of lipid metabolism and of systemic stress responses, engaging conserved transcription factors such as nuclear hormone receptors (NHRs). We emphasize instances where similar functions for individual Mediator subunits exist in mammals, highlighting parallels between Mediator subunit action in nematode development and in human cancer biology. We also discuss a parallel between the association of the Mediator subunit MED12 with several human disorders and the role of its C. elegans ortholog mdt-12 as a regulatory hub that interacts with numerous signaling pathways. PMID:25634893
Bae, Y M; Holmgren, E; Crawford, I P
1989-01-01
We determined the DNA sequence of the Rhizobium meliloti gene encoding anthranilate synthase, the first enzyme of the tryptophan pathway. Sequences similar to those seen for the two subunits of the enzyme as found in all other procaryotic species studied are present in a single open reading frame of 729 codons. This apparent gene fusion joins the C terminus of the large subunit (TrpE) to the N terminus of the small subunit (TrpG) through a short connecting segment. We designate the fused gene trpE(G). The gene is flanked by a typical rho-independent terminator at the 3' end and a complex regulatory region at the 5' end resembling those of operons under transcriptional attenuation control. The location of the promoter was determined by S1 nuclease protection, using Rhizobium mRNA. Although this promoter was inactive in Escherichia coli, mutations eliciting activity were easily obtained. One of these was a C----T change at position -9 in the -10 region. The +1 position of the mRNA is the first base of the initiation codon of the leader peptide, implying that unlike trpE(G), which has a normal Shine-Dalgarno sequence, the leader peptide gene lacks a ribosome-binding site. Images PMID:2656657
The novel product of a five-exon stargazin-related gene abolishes CaV2.2 calcium channel expression
Moss, Fraser J.; Viard, Patricia; Davies, Anthony; Bertaso, Federica; Page, Karen M.; Graham, Alex; Cantí, Carles; Plumpton, Mary; Plumpton, Christopher; Clare, Jeffrey J.; Dolphin, Annette C.
2002-01-01
We have cloned and characterized a new member of the voltage-dependent Ca2+ channel γ subunit family, with a novel gene structure and striking properties. Unlike the genes of other potential γ subunits identified by their homology to the stargazin gene, CACNG7 is a five-, and not four-exon gene whose mRNA encodes a protein we have designated γ7. Expression of human γ7 has been localized specifically to brain. N-type current through CaV2.2 channels was almost abolished when co-expressed transiently with γ7 in either Xenopus oocytes or COS-7 cells. Furthermore, immunocytochemistry and western blots show that γ7 has this effect by causing a large reduction in expression of CaV2.2 rather than by interfering with trafficking or biophysical properties of the channel. No effect of transiently expressed γ7 was observed on pre-existing endogenous N-type calcium channels in sympathetic neurones. Low homology to the stargazin-like γ subunits, different gene structure and the unique functional properties of γ7 imply that it represents a distinct subdivision of the family of proteins identified by their structural and sequence homology to stargazin. PMID:11927536
The Evolution of COP9 Signalosome in Unicellular and Multicellular Organisms.
Barth, Emanuel; Hübler, Ron; Baniahmad, Aria; Marz, Manja
2016-05-02
The COP9 signalosome (CSN) is a highly conserved protein complex, recently being crystallized for human. In mammals and plants the COP9 complex consists of nine subunits, CSN 1-8 and CSNAP. The CSN regulates the activity of culling ring E3 ubiquitin and plays central roles in pleiotropy, cell cycle, and defense of pathogens. Despite the interesting and essential functions, a thorough analysis of the CSN subunits in evolutionary comparative perspective is missing. Here we compared 61 eukaryotic genomes including plants, animals, and yeasts genomes and show that the most conserved subunits of eukaryotes among the nine subunits are CSN2 and CSN5. This may indicate a strong evolutionary selection for these two subunits. Despite the strong conservation of the protein sequence, the genomic structures of the intron/exon boundaries indicate no conservation at genomic level. This suggests that the gene structure is exposed to a much less selection compared with the protein sequence. We also show the conservation of important active domains, such as PCI (proteasome lid-CSN-initiation factor) and MPN (MPR1/PAD1 amino-terminal). We identified novel exons and alternative splicing variants for all CSN subunits. This indicates another level of complexity of the CSN. Notably, most COP9-subunits were identified in all multicellular and unicellular eukaryotic organisms analyzed, but not in prokaryotes or archaeas. Thus, genes encoding CSN subunits present in all analyzed eukaryotes indicate the invention of the signalosome at the root of eukaryotes. The identification of alternative splice variants indicates possible "mini-complexes" or COP9 complexes with independent subunits containing potentially novel and not yet identified functions. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
The Evolution of COP9 Signalosome in Unicellular and Multicellular Organisms
Barth, Emanuel; Hübler, Ron; Baniahmad, Aria; Marz, Manja
2016-01-01
The COP9 signalosome (CSN) is a highly conserved protein complex, recently being crystallized for human. In mammals and plants the COP9 complex consists of nine subunits, CSN 1–8 and CSNAP. The CSN regulates the activity of culling ring E3 ubiquitin and plays central roles in pleiotropy, cell cycle, and defense of pathogens. Despite the interesting and essential functions, a thorough analysis of the CSN subunits in evolutionary comparative perspective is missing. Here we compared 61 eukaryotic genomes including plants, animals, and yeasts genomes and show that the most conserved subunits of eukaryotes among the nine subunits are CSN2 and CSN5. This may indicate a strong evolutionary selection for these two subunits. Despite the strong conservation of the protein sequence, the genomic structures of the intron/exon boundaries indicate no conservation at genomic level. This suggests that the gene structure is exposed to a much less selection compared with the protein sequence. We also show the conservation of important active domains, such as PCI (proteasome lid-CSN-initiation factor) and MPN (MPR1/PAD1 amino-terminal). We identified novel exons and alternative splicing variants for all CSN subunits. This indicates another level of complexity of the CSN. Notably, most COP9-subunits were identified in all multicellular and unicellular eukaryotic organisms analyzed, but not in prokaryotes or archaeas. Thus, genes encoding CSN subunits present in all analyzed eukaryotes indicate the invention of the signalosome at the root of eukaryotes. The identification of alternative splice variants indicates possible “mini-complexes” or COP9 complexes with independent subunits containing potentially novel and not yet identified functions. PMID:27044515
Mutations in the Katnb1 gene cause left-right asymmetry and heart defects.
Furtado, Milena B; Merriner, D Jo; Berger, Silke; Rhodes, Danielle; Jamsai, Duangporn; O'Bryan, Moira K
2017-12-01
The microtubule-severing protein complex katanin is composed two subunits, the ATPase subunit, KATNA1, and the noncatalytic regulatory subunit, KATNB1. Recently, the Katnb1 gene has been linked to infertility, regulation of centriole and cilia formation in fish and mammals, as well as neocortical brain development. KATNB1 protein is expressed in germ cells in humans and mouse, mitotic/meiotic spindles and cilia, although the full expression pattern of the Katnb1 gene has not been described. Using a knockin-knockout mouse model of Katnb1 dysfunction we demonstrate that Katnb1 is ubiquitously expressed during embryonic development, although a stronger expression is seen in the crown cells of the gastrulation organizer, the murine node. Furthermore, null and hypomorphic Katnb1 gene mutations show a novel correlation between Katnb1 dysregulation and the development of impaired left-right signaling, including cardiac malformations. Katanin function is a critical regulator of heart development in mice. These findings are potentially relevant to human cardiac development. Developmental Dynamics 246:1027-1035, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, S.R.; Taylor, J.B.; Cowell, I.G.
The soluble glutathione transferases (GSTs) are a family of dimeric isoenymes catalyzing the conjugation of glutathione to hydrophobic electropiles. Their subunits can be grouped into four families, alpha, mu, pi, and theta, on the basis of their primary structures. In man, the pi class is represented by a single gene, GSTP1-1 (GST[pi]) localized to human chromosome 11, band q13. The oncogenes INT2, HSTF1, and PRAD1 are also localized at 11q13, and together with the GSTP1 locus and other gene loci mapped to 11q13, i.e., BCL1 and EMS1, they form a unit of DNA approximately 2000-2500 kb, known as the 11q13more » amplicon, which is often amplified in a range of solid tumors. Any gene locus at 11q13 is of interest because it may influence tumorigenesis. 14 refs., 1 fig.« less
Cloning and polymorphisms of yak lactate dehydrogenase B gene.
Wang, Guosheng; Zhao, Xingbo; Zhong, Juming; Cao, Meng; He, Qinghua; Liu, Zhengxin; Lin, Yaqiu; Xu, Yaou; Zheng, Yucai
2013-06-05
The main objective of this work was to study the unique polymorphisms of the lactate dehydrogenase-1 (LDH1) gene in yak (Bos grunniens). Native polyacrylamide gel electrophoresis revealed three phenotypes of LDH1 (a tetramer of H subunit) in yak heart and longissimus muscle extracts. The corresponding gene, ldhb, encoding H subunits of three LDH1 phenotypes was obtained by RT-PCR. A total of six nucleotide differences were detected in yak ldhb compared with that of cattle, of which five mutations cause amino acid substitutions. Sequence analysis shows that the G896A and C689A, mutations of ldhb gene, result in alterations of differently charged amino acids, and create the three phenotypes (F, M, and S) of yak LDH1. Molecular modeling of the H subunit of LDH indicates that the substituted amino acids are not located within NAD+ or substrate binding sites. PCR-RFLP examination of G896A mutation demonstrated that most LDH1-F samples are actually heterozygote at this site. These results help to elucidate the molecular basis and genetic characteristic of the three unique LDH1 phenotypes in yak.