Science.gov

Sample records for cpes power electronics

  1. Center for Plasma Edge Simulation (CPES) -- Rutgers University Final Report

    SciTech Connect

    Parashar, Manish

    2014-03-06

    The CPES scientific simulations run at scale on leadership class machines, collaborate at runtime and produce and exchange large data sizes, which present multiple I/O and data management challenges. During the CPES project, the Rutgers team worked with the rest of the CPES team to address these challenges at different levels, and specifically (1) at the data transport and communication level through the DART (Decoupled and Asynchronous Remote Data Transfers) framework, and (2) at the data management and services level through the DataSpaces and ActiveSpaces frameworks. These frameworks and their impact are briefly described.

  2. Advanced Power Electronics Components

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2004-01-01

    This paper will give a description and status of the Advanced Power Electronics Materials and Components Technology program being conducted by the NASA Glenn Research Center for future aerospace power applications. The focus of this research program is on the following: 1) New and/or significantly improved dielectric materials for the development of power capacitors with increased volumetric efficiency, energy density, and operating temperature. Materials being investigated include nanocrystalline and composite ceramic dielectrics and diamond-like carbon films; 2) New and/or significantly improved high frequency, high temperature, low loss soft magnetic materials for the development of transformers/inductors with increased power/energy density, electrical efficiency, and operating temperature. Materials being investigated include nanocrystalline and nanocomposite soft magnetic materials; 3) Packaged high temperature, high power density, high voltage, and low loss SiC diodes and switches. Development of high quality 4H- and 6H- SiC atomically smooth substrates to significantly improve device performance is a major emphasis of the SiC materials program; 4) Demonstration of high temperature (> 200 C) circuits using the components developed above.

  3. Power electronics reliability analysis.

    SciTech Connect

    Smith, Mark A.; Atcitty, Stanley

    2009-12-01

    This report provides the DOE and industry with a general process for analyzing power electronics reliability. The analysis can help with understanding the main causes of failures, downtime, and cost and how to reduce them. One approach is to collect field maintenance data and use it directly to calculate reliability metrics related to each cause. Another approach is to model the functional structure of the equipment using a fault tree to derive system reliability from component reliability. Analysis of a fictitious device demonstrates the latter process. Optimization can use the resulting baseline model to decide how to improve reliability and/or lower costs. It is recommended that both electric utilities and equipment manufacturers make provisions to collect and share data in order to lay the groundwork for improving reliability into the future. Reliability analysis helps guide reliability improvements in hardware and software technology including condition monitoring and prognostics and health management.

  4. Power electronics cooling apparatus

    SciTech Connect

    Sanger, Philip Albert; Lindberg, Frank A.; Garcen, Walter

    2000-01-01

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  5. Power electronics for low power arcjets

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Hill, Gerald M.

    1991-01-01

    In anticipation of the needs of future light-weight, low-power spacecraft, arcjet power electronics in the 100 to 400 W operating range were developed. Limited spacecraft power and thermal control capacity of these small spacecraft emphasized the need for high efficiency. Power topologies similar to those in the higher 2 kW and 5 to 30 kW power range were implemented, including a four transistor bridge switching circuit, current mode pulse-width modulated control, and an output current averaging inductor with an integral pulse generation winding. Reduction of switching transients was accomplished using a low inductance power distribution network, and no passive snubber circuits were necessary for power switch protection. Phase shift control of the power bridge was accomplished using an improved pulse width modulation to phase shift converter circuit. These features, along with conservative magnetics designs allowed power conversion efficiencies of greater than 92.5 percent to be achieved into resistive loads over the entire operating range of the converter. Electromagnetic compatibility requirements were not considered in this work, and control power for the converter was derived from AC mains. Addition of input filters and control power converters would result in an efficiency of on the order of 90 percent for a flight unit. Due to the developmental nature of arcjet systems at this power level, the exact nature of the thruster/power processor interface was not quantified. Output regulation and current ripple requirements of 1 and 20 percent respectively, as well as starting techniques, were derived from the characteristics of the 2 kW system but an open circuit voltage in excess of 175 V was specified. Arcjet integration tests were performed, resulting in successful starts and stable arcjet operation at power levels as low as 240 W with simulated hydrazine propellants.

  6. Power Electronics Thermal Control (Presentation)

    SciTech Connect

    Narumanchi, S.

    2010-05-05

    Thermal management plays an important part in the cost of electric drives in terms of power electronics packaging. Very promising results have been obtained by using microporous coatings and skived surfaces in conjunction with single-phase and two-phase flows. Sintered materials and thermoplastics with embedded fibers show significant promise as thermal interface materials, or TIMs. Appropriate cooling technologies depend on the power electronics package application and reliability.

  7. Low inductance power electronics assembly

    DOEpatents

    Herron, Nicholas Hayden; Mann, Brooks S.; Korich, Mark D.; Chou, Cindy; Tang, David; Carlson, Douglas S.; Barry, Alan L.

    2012-10-02

    A power electronics assembly is provided. A first support member includes a first plurality of conductors. A first plurality of power switching devices are coupled to the first support member. A first capacitor is coupled to the first support member. A second support member includes a second plurality of conductors. A second plurality of power switching devices are coupled to the second support member. A second capacitor is coupled to the second support member. The first and second pluralities of conductors, the first and second pluralities of power switching devices, and the first and second capacitors are electrically connected such that the first plurality of power switching devices is connected in parallel with the first capacitor and the second capacitor and the second plurality of power switching devices is connected in parallel with the second capacitor and the first capacitor.

  8. Direct cooled power electronics substrate

    DOEpatents

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  9. Bidirectional power converter control electronics

    NASA Technical Reports Server (NTRS)

    Mildice, J. W.

    1987-01-01

    The object of this program was to design, build, test, and deliver a set of control electronics suitable for control of bidirectional resonant power processing equipment of the direct output type. The program is described, including the technical background, and results discussed. Even though the initial program tested only the logic outputs, the hardware was subsequently tested with high-power breadboard equipment, and in the testbed of NASA contract NAS3-24399. The completed equipment is now operating as part of the Space Station Power System Test Facility at NASA Lewis Research Center.

  10. Modeling of power electronic systems with EMTP

    NASA Technical Reports Server (NTRS)

    Tam, Kwa-Sur; Dravid, Narayan V.

    1989-01-01

    In view of the potential impact of power electronics on power systems, there is need for a computer modeling/analysis tool to perform simulation studies on power systems with power electronic components as well as to educate engineering students about such systems. The modeling of the major power electronic components of the NASA Space Station Freedom Electric Power System is described along with ElectroMagnetic Transients Program (EMTP) and it is demonstrated that EMTP can serve as a very useful tool for teaching, design, analysis, and research in the area of power systems with power electronic components. EMTP modeling of power electronic circuits is described and simulation results are presented.

  11. High Power Free Electron Lasers

    SciTech Connect

    George Neil

    2004-04-12

    FEL Oscillators have been around since 1977 providing not only a test bed for the physics of Free Electron Lasers and electron/photon interactions but as a workhorse of scientific research. The characteristics that have driven the development of these sources are the desire for high peak and average power, high pulse energies, wavelength tunability, timing flexibility, and wavelengths that are unavailable from more conventional laser sources. User programs have been performed using such sources encompassing medicine, biology, solid state research, atomic and molecular physics, effects of non-linear fields, surface science, polymer science, pulsed laser vapor deposition, to name just a few. Recently the incorporation of energy recovery systems has permitted extension of the average power capabilities to the kW level and beyond. Development of substantially higher power systems with applications in defense and security is believed feasible with modest R&D efforts applied to a few technology areas. This paper will discuss at a summary level the physics of such devices, survey existing and planned facilities, and touch on the applications that have driven the development of these popular light sources.

  12. Recent Power Quality Technology Employing Power Electronics Devices

    NASA Astrophysics Data System (ADS)

    Takasaki, Masahiro

    Power quality has become a common concern of customers and utilities in improving respective profits in the context of an open electricity market. Power electronics is the essential technology to control power quality in accordance with customer requirements and utility standards. This paper first summarizes power quality definitions and indices used in IEEE and IEC standards. It clarifies the problem to be solved and the role of power electronics devices. Then the overview of power quality control methods and equipments employing power electronics devices is explained. The control methodology discussed in this paper includes various schemes of future distribution and power supply system now under development.

  13. X2000 power system electronics development

    NASA Technical Reports Server (NTRS)

    Carr, Greg; Deligiannis, Frank; Franco, Lauro; Jones, Loren; Lam, Barbara; Nelson, Ron; Pantaleon, Jose; Ruiz, Ian; Treichler, John; Wester, Gene; Sauers, Jim; Giampoli, Paul; Haskell, Russ; Mulvey, Jim; Repp, John

    2005-01-01

    The X2000 Power System Electronics (PSE) is a Jet Propulsion Laboratory (JPL) task to develop a new generation of power system building blocks for potential use on future deep space missions. The effort includes the development of electronic components and modules that can be used as building blocks in the design of generic spacecraft power systems.

  14. Electron and Positron Stopping Powers of Materials

    National Institute of Standards and Technology Data Gateway

    SRD 7 NIST Electron and Positron Stopping Powers of Materials (PC database for purchase)   The EPSTAR database provides rapid calculations of stopping powers (collisional, radiative, and total), CSDA ranges, radiation yields and density effect corrections for incident electrons or positrons with kinetic energies from 1 keV to 10 GeV, and for any chemically defined target material.

  15. Power electronics substrate for direct substrate cooling

    DOEpatents

    Le, Khiet; Ward, Terence G.; Mann, Brooks S.; Yankoski, Edward P.; Smith, Gregory S.

    2012-05-01

    Systems and apparatus are provided for power electronics substrates adapted for direct substrate cooling. A power electronics substrate comprises a first surface configured to have electrical circuitry disposed thereon, a second surface, and a plurality of physical features on the second surface. The physical features are configured to promote a turbulent boundary layer in a coolant impinged upon the second surface.

  16. Advanced Power Electronics and Electric Motors Annual Report -- 2013

    SciTech Connect

    Narumanchi, S.; Bennion, K.; DeVoto, D.; Moreno, G.; Rugh, J.; Waye, S.

    2015-01-01

    This report describes the research into advanced liquid cooling, integrated power module cooling, high temperature air cooled power electronics, two-phase cooling for power electronics, and electric motor thermal management by NREL's Power Electronics group in FY13.

  17. Thermoelectric Devices Cool, Power Electronics

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Nextreme Thermal Solutions Inc., based in Research Triangle Park, North Carolina, licensed thermoelectric technology from NASA s Jet Propulsion Laboratory. This has allowed the company to develop cutting edge, thin-film thermoelectric coolers that effective remove heat generated by increasingly powerful and tightly packed microchip components. These solid-state coolers are ideal solutions for applications like microprocessors, laser diodes, LEDs, and even potentially for cooling the human body. Nextreme s NASA technology has also enabled the invention of thermoelectric generators capable of powering technologies like medical implants and wireless sensor networks.

  18. Electronic and photonic power applications

    SciTech Connect

    Walko, R.J.; Ashley, C.S.; Brinker, C.J.; Reed, S.T.; Renschler, C.L. ); Shepodd, T.J. ); Ellefson, R.E.; Gill, J.T. ); Leonard, L.E. )

    1990-01-01

    Efficient conversion of radioactive decay to electrical power has been the goal of a number of past research efforts. One of these was the Elgin-Kidde nuclear battery. In this concept promethium-147 was used as a beta source which was then mixed with a phosphor to produce a radioluminescent (RL) source of light. The light source was coupled to silicon photovoltaic converters to create electricity. This photoelectric approach is being revisited using tritium based solid state compounds and advanced gas concepts to produce RL light sources being disclosed at this conference. Efficient conversion of the RL light energy to electrical energy imposes certain requirements on the semiconductor converter. These requirements will be discussed. Projections of power source electrical and physical characteristics will be presented based on reasonable design parameter assumptions. The words Power Supply'' usually evoke a vision of a rotating machine or chemical battery. However, today's technology is making increasing use of photonics, where information and even power can be moved through optical fibers. Brighter volumetric RL light sources open a whole new range of photonics-based applications, while solid state tritiated compounds provide the foundation for improved mechanical adaptability and safety. 4 refs., 6 figs., 1 tab.

  19. Polymer Electronics: Power from Polymers

    SciTech Connect

    Venkataraman, D.; Russell, Thomas P.

    2012-06-19

    We review polymer-based electronics and photovoltaics to provide the reader with a sense of how the field has developed, where we stand at present, and what possibilities are looming in the future. Expertise in areas ranging from synthesis to morphology to device design was sought to achieve this end. While these reviews cannot be exhaustive, they do provide a snapshot of the field at present and give some sense of where the key impediments are.

  20. Integrated Power Adapter: Isolated Converter with Integrated Passives and Low Material Stress

    SciTech Connect

    2010-09-01

    ADEPT Project: CPES at Virginia Tech is developing an extremely efficient power converter that could be used in power adapters for small, lightweight laptops and other types of mobile electronic devices. Power adapters convert electrical energy into useable power for an electronic device, and they currently waste a lot of energy when they are plugged into an outlet to power up. CPES at Virginia Tech is integrating high-density capacitors, new magnetic materials, high-frequency integrated circuits, and a constant-flux transformer to create its efficient power converter. The high-density capacitors enable the power adapter to store more energy. The new magnetic materials also increase energy storage, and they can be precisely dispensed using a low-cost ink-jet printer which keeps costs down. The high-frequency integrated circuits can handle more power, and they can handle it more efficiently. And, the constant-flux transformer processes a consistent flow of electrical current, which makes the converter more efficient.

  1. Direct-Cooled Power Electronics Substrate

    SciTech Connect

    Wiles, R.; Ayers, C.; Wereszczak, A.

    2008-12-23

    The goal of the Direct-Cooled Power Electronics Substrate project is to reduce the size and weight of the heat sink for power electronics used in hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs). The concept proposed in this project was to develop an innovative power electronics mounting structure, model it, and perform both thermal and mechanical finite-element analysis (FEA). This concept involved integrating cooling channels within the direct-bonded copper (DBC) substrate and strategically locating these channels underneath the power electronic devices. This arrangement would then be directly cooled by water-ethylene glycol (WEG), essentially eliminating the conventional heat sink and associated heat flow path. The concept was evaluated to determine its manufacturability, its compatibility with WEG, and the potential to reduce size and weight while directly cooling the DBC and associated electronics with a coolant temperature of 105 C. This concept does not provide direct cooling to the electronics, only direct cooling inside the DBC substrate itself. These designs will take into account issues such as containment of the fluid (separation from the electronics) and synergy with the whole power inverter design architecture. In FY 2008, mechanical modeling of substrate and inverter core designs as well as thermal and mechanical stress FEA modeling of the substrate designs was performed, along with research into manufacturing capabilities and methods that will support the substrate designs. In FY 2009, a preferred design(s) will be fabricated and laboratory validation testing will be completed. In FY 2010, based on the previous years laboratory testing, the mechanical design will be modified and the next generation will be built and tested in an operating inverter prototype.

  2. Electronic Position Sensor for Power Operated Accessory

    DOEpatents

    Haag, Ronald H.; Chia, Michael I.

    2005-05-31

    An electronic position sensor for use with a power operated vehicle accessory, such as a power liftgate. The position sensor includes an elongated resistive circuit that is mounted such that it is stationary and extends along the path of a track portion of the power operated accessory. The position sensor further includes a contact nub mounted to a link member that moves within the track portion such that the contact nub is slidingly biased against the elongated circuit. As the link member moves under the force of a motor-driven output gear, the contact nub slides along the surface of the resistive circuit, thereby affecting the overall resistance of the circuit. The position sensor uses the overall resistance to provide an electronic position signal to an ECU, wherein the signal is indicative of the absolute position of the power operated accessory. Accordingly, the electronic position sensor is capable of providing an electronic signal that enables the ECU to track the absolute position of the power operated accessory.

  3. High temperature power electronics for space

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad N.; Baumann, Eric D.; Myers, Ira T.; Overton, Eric

    1991-01-01

    A high temperature electronics program at NASA Lewis Research Center focuses on dielectric and insulating materials research, development and testing of high temperature power components, and integration of the developed components and devices into a demonstrable 200 C power system, such as inverter. An overview of the program and a description of the in-house high temperature facilities along with experimental data obtained on high temperature materials are presented.

  4. Achieving Maximum Power in Thermoelectric Generation with Simple Power Electronics

    NASA Astrophysics Data System (ADS)

    Youn, Nari; Lee, Hohyun; Wee, Daehyun; Gomez, Miguel; Reid, Rachel; Ohara, Brandon

    2014-06-01

    A thermoelectric generator typically delivers a relatively low power output, and hence it is of great practical importance to determine a design and operating condition close to those which can provide the maximum attainable power. To maintain a favorable condition for the maximum power output, power electronics circuits are usually applied. One of the simplest methods is to control the operating voltage at half the open-circuit voltage, assuming that the typical impedance-matching condition, in which the load and internal resistances are matched, yields the maximum power output. However, recent investigations have shown that, when external thermal resistances exist between the thermoelectric modules and thermal reservoirs, the impedance-matching condition is not identical to the condition for the maximum power output. In this article, it is argued that, although the impedance-matching condition is not the condition for maximum power output, the maximum power is still achievable when the operating voltage is kept at half the open-circuit voltage. More precisely, it is shown that the typical V- I curve for thermoelectric generators must show approximately linear behavior, which justifies the use of a simple strategy in thermoelectric power generation applications. The conditions for the validity of the approximation are mathematically discussed, supported by a few examples. Experimental evidence at room temperature is also provided.

  5. Power control electronics for cryogenic instrumentation

    NASA Technical Reports Server (NTRS)

    Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.

    1995-01-01

    In order to achieve a high-efficiency high-density cryogenic instrumentation system, the power processing electronics should be placed in the cold environment along with the sensors and signal-processing electronics. The typical instrumentation system requires low voltage dc usually obtained from processing line frequency ac power. Switch-mode power conversion topologies such as forward, flyback, push-pull, and half-bridge are used for high-efficiency power processing using pulse-width modulation (PWM) or resonant control. This paper presents several PWM and multiresonant power control circuits, implemented using commercially available CMOS and BiCMOS integrated circuits, and their performance at liquid-nitrogen temperature (77 K) as compared to their room temperature (300 K) performance. The operation of integrated circuits at cryogenic temperatures results in an improved performance in terms of increased speed, reduced latch-up susceptibility, reduced leakage current, and reduced thermal noise. However, the switching noise increased at 77 K compared to 300 K. The power control circuits tested in the laboratory did successfully restart at 77 K.

  6. Ultralow-power electronics for biomedical applications.

    PubMed

    Chandrakasan, Anantha P; Verma, Naveen; Daly, Denis C

    2008-01-01

    The electronics of a general biomedical device consist of energy delivery, analog-to-digital conversion, signal processing, and communication subsystems. Each of these blocks must be designed for minimum energy consumption. Specific design techniques, such as aggressive voltage scaling, dynamic power-performance management, and energy-efficient signaling, must be employed to adhere to the stringent energy constraint. The constraint itself is set by the energy source, so energy harvesting holds tremendous promise toward enabling sophisticated systems without straining user lifestyle. Further, once harvested, efficient delivery of the low-energy levels, as well as robust operation in the aggressive low-power modes, requires careful understanding and treatment of the specific design limitations that dominate this realm. We outline the performance and power constraints of biomedical devices, and present circuit techniques to achieve complete systems operating down to power levels of microwatts. In all cases, approaches that leverage advanced technology trends are emphasized.

  7. Low-Temperature Power Electronics Program

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Dickman, John E.; Hammoud, Ahmad; Gerber, Scott

    1997-01-01

    Many space and some terrestrial applications would benefit from the availability of low-temperature electronics. Exploration missions to the outer planets, Earth-orbiting and deep-space probes, and communications satellites are examples of space applications which operate in low-temperature environments. Space probes deployed near Pluto must operate in temperatures as low as -229 C. Figure 1 depicts the average temperature of a space probe warmed by the sun for various locations throughout the solar system. Terrestrial applications where components and systems must operate in low-temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation system, and arctic exploration. The development of electrical power systems capable of extremely low-temperature operation represents a key element of some advanced space power systems. The Low-Temperature Power Electronics Program at NASA Lewis Research Center focuses on the design, fabrication, and characterization of low-temperature power systems and the development of supporting technologies for low-temperature operations such as dielectric and insulating materials, power components, optoelectronic components, and packaging and integration of devices, components, and systems.

  8. Program Calculates Power Demands Of Electronic Designs

    NASA Technical Reports Server (NTRS)

    Cox, Brian

    1995-01-01

    CURRENT computer program calculates power requirements of electronic designs. For given design, CURRENT reads in applicable parts-list file and file containing current required for each part. Program also calculates power required for circuit at supply potentials of 5.5, 5.0, and 4.5 volts. Written by use of AWK utility for Sun4-series computers running SunOS 4.x and IBM PC-series and compatible computers running MS-DOS. Sun version of program (NPO-19590). PC version of program (NPO-19111).

  9. Teaching Behavioral Modeling and Simulation Techniques for Power Electronics Courses

    ERIC Educational Resources Information Center

    Abramovitz, A.

    2011-01-01

    This paper suggests a pedagogical approach to teaching the subject of behavioral modeling of switch-mode power electronics systems through simulation by general-purpose electronic circuit simulators. The methodology is oriented toward electrical engineering (EE) students at the undergraduate level, enrolled in courses such as "Power Electronics,"…

  10. Electrochemistry in Organisms: Electron Flow and Power Output

    ERIC Educational Resources Information Center

    Chirpich, Thomas P.

    1975-01-01

    Presents a series of calculations, appropriate for the freshman level, to determine the flow of electrons to oxygen along the electron transport chain. States that living organisms resemble fuel cells and develops calculations for determining power output. (GS)

  11. Potential Refrigerants for Power Electronics Cooling

    SciTech Connect

    Starke, M.R.

    2005-10-24

    In the past, automotive refrigerants have conventionally been used solely for the purpose of air conditioning. However, with the development of hybrid-electric vehicles and the incorporation of power electronics (PEs) into the automobile, automotive refrigerants are taking on a new role. Unfortunately, PEs have lifetimes and functionalities that are highly dependent on temperature and as a result thermal control plays an important role in the performance of PEs. Typically, PEs are placed in the engine compartment where the internal combustion engine (ICE) already produces substantial heat. Along with the ICE heat, the additional thermal energy produced by PEs themselves forces designers to use different cooling methods to prevent overheating. Generally, heat sinks and separate cooling loops are used to maintain the temperature. Disturbingly, the thermal control system can consume one third of the total volume and may weigh more than the PEs [1]. Hence, other avenues have been sought to cool PEs, including submerging PEs in automobile refrigerants to take advantage of two-phase cooling. The objective of this report is to explore the different automotive refrigerants presently available that could be used for PE cooling. Evaluation of the refrigerants will be done by comparing environmental effects and some thermo-physical properties important to two-phase cooling, specifically measuring the dielectric strengths of potential candidates. Results of this report will be used to assess the different candidates with good potential for future use in PE cooling.

  12. Cryogenic Cermic Multilayer Capacitors for Power Electronics

    SciTech Connect

    Alberta, E. F.; Hackenberger, W. S.

    2006-03-31

    Recent advances in the areas of high temperature superconductors and low temperature MOSFET devices have opened the door to the possibility of developing highly efficient low-temperature power electronics. The most commonly used high-efficiency capacitors are based on high dielectric constant (K {approx} 1000-4000) barium titanate doped to yield and X7R temperature dependence ({+-}15% change in capacitance from -55 deg. C to 125 deg. C); however, below their minimum use temperature the capacitance drops-off quickly leading to a low volumetric efficiency and high temperature coefficient of capacitance (TCC) at cryogenic temperatures.A series of low temperature materials with moderate to high dielectric constants have been specifically developed for low temperature operation (below 80K). The capacitors fall into three main categories: low TCC, high volumetric efficiency, and energy storage. In the low TCC category, co-fired multilayer ceramic capacitors (MLCCs) were fabricated with capacitance values up to 62nF at 30K, TCCs from 0.9 to 2% below 80K, and losses on the order of 0.0001. In the high volumetric efficiency category, dielectrics with permittivities ranging from 1,000 to 30,000 were demonstrated.

  13. Applied Industrial Electronics: Power Control and Electronic Troubleshooting.

    ERIC Educational Resources Information Center

    Morrow, Rick; Humler, John

    This curriculum guide is designed to build upon the skills and knowledge of industrial electronics gained by the student through the learning activities of the introductory volumes of the electronics program. Specifically, the student, whether in secondary, postsecondary, or adult education, will have the opportunity to expand those skills in…

  14. Opportunities and Challenges for Power Electronics in PV Modules (Presentation)

    SciTech Connect

    Kurtz, S.; Deline, C.; Wohlgemuth, J.; Marion, B.; Granata, J.

    2011-02-01

    The presentation describes the value of adding DC converters and other power electronics to modules to improve their output even when shading or bad cells would otherwise decrease the module output. The presentation was part of a workshop sponsored by ARPA-E exploring the opportunities for power electronics to support PV applications.

  15. A Survey of Power Electronics Applications in Aerospace Technologies

    NASA Technical Reports Server (NTRS)

    Kankam, M. David; Elbuluk, Malik E.

    2001-01-01

    The insertion of power electronics in aerospace technologies is becoming widespread. The application of semiconductor devices and electronic converters, as summarized in this paper, includes the International Space Station, satellite power system, and motor drives in 'more electric' technology applied to aircraft, starter/generators and reusable launch vehicles. Flywheels, servo systems embodying electromechanical actuation, and spacecraft on-board electric propulsion are discussed. Continued inroad by power electronics depends on resolving incompatibility of using variable frequency for 400 Hz-operated aircraft equipment. Dual-use electronic modules should reduce system development cost.

  16. High power, electron-beam induced switching in diamond

    SciTech Connect

    Scarpetti, R.D.; Hofer, W.W.; Kania, D.R.; Schoenbach, K.H.; Joshi, R.P.; Molina, C.; Brinkmann, R.P.

    1993-07-01

    We are developing a high voltage, high average power, electron-beam controlled diamond switch that could significantly impact high power solid-state electronics in industrial and defense applications. An electron-beam controlled thin-film diamond could switch well over 100 kW average power at MHz frequencies, greater than 5 kV, and with high efficiency. This performance is due to the excellent thermal and electronic properties of diamond, the high efficiency achieved with electron beam control, and the demonstrated effectiveness of microchannel cooling. Our electron beam penetration depth measurements agree with our Monte-Carlo calculations. We have not observed electron beam damage in diamond for beam energies up to 150 keV. In this paper we describe our experimental and calculational results and research objectives.

  17. A Thermoelectric Generation System and Its Power Electronics Stage

    NASA Astrophysics Data System (ADS)

    Gao, Junling; Sun, Kai; Ni, Longxian; Chen, Min; Kang, Zhengdong; Zhang, Li; Xing, Yan; Zhang, Jianzhong

    2012-06-01

    The electricity produced by a thermoelectric generator (TEG) must satisfy the requirements of specific loads given the signal level, stability, and power performance. In the design of such systems, one major challenge involves the interactions between the thermoelectric power source and the power stage and signal-conditioning circuits of the load, including DC-DC conversion, the maximum power point tracking (MPPT) controller, and other power management controllers. In this paper, a survey of existing power electronics designs for TEG systems is presented first. Second, a flat, wall-like TEG system consisting of 32 modules is experimentally optimized, and the improved power parameters are tested. Power-conditioning circuitry based on an interleaved boost DC-DC converter is then developed for the TEG system in terms of the tested power specification. The power electronics design features a combined control scheme with an MPPT and a constant output voltage as well as the low-voltage and high-current output characteristics of the TEG system. The experimental results of the TEG system with the power electronics stage and with purely resistive loads are compared. The comparisons verify the feasibility and effectiveness of the proposed design. Finally, the thermal-electric coupling effects caused by current-related heat source terms, such as the Peltier effect etc., are reported and discussed, and the potential influence on the power electronics design due to such coupling is analyzed.

  18. Miniature, low-power X-ray tube using a microchannel electron generator electron source

    NASA Technical Reports Server (NTRS)

    Elam, Wm. Timothy (Inventor); Kelliher, Warren C. (Inventor); Hershyn, William (Inventor); DeLong, David P. (Inventor)

    2011-01-01

    Embodiments of the invention provide a novel, low-power X-ray tube and X-ray generating system. Embodiments of the invention use a multichannel electron generator as the electron source, thereby increasing reliability and decreasing power consumption of the X-ray tube. Unlike tubes using a conventional filament that must be heated by a current power source, embodiments of the invention require only a voltage power source, use very little current, and have no cooling requirements. The microchannel electron generator comprises one or more microchannel plates (MCPs), Each MCP comprises a honeycomb assembly of a plurality of annular components, which may be stacked to increase electron intensity. The multichannel electron generator used enables directional control of electron flow. In addition, the multichannel electron generator used is more robust than conventional filaments, making the resulting X-ray tube very shock and vibration resistant.

  19. Integrated low power digital gyro control electronics

    NASA Technical Reports Server (NTRS)

    M'Closkey, Robert (Inventor); Challoner, A. Dorian (Inventor); Grayver, Eugene (Inventor); Hayworth, Ken J. (Inventor)

    2005-01-01

    Embodiments of the invention generally encompass a digital, application specific integrated circuit (ASIC) has been designed to perform excitation of a selected mode within a vibratory rate gyroscope, damping, or force-rebalance, of other modes within the sensor, and signal demodulation of the in-phase and quadrature components of the signal containing the angular rate information. The ASIC filters dedicated to each channel may be individually programmed to accommodate different rate sensor designs/technology or variations within the same class of sensors. The ASIC architecture employs a low-power design, making the ASIC, particularly suitable for use in power-sensitive applications.

  20. Power Converters Secure Electronics in Harsh Environments

    NASA Technical Reports Server (NTRS)

    2013-01-01

    In order to harden power converters for the rigors of space, NASA awarded multiple SBIR contracts to Blacksburg, Virginia-based VPT Inc. The resulting hybrid DC-DC converters have proven valuable in aerospace applications, and as a result the company has generated millions in revenue from the product line and created four high-tech jobs to handle production.

  1. Titanium-Alloy Power Capacitor: High-Power Titanate Capacitor for Power Electronics

    SciTech Connect

    2010-09-01

    ADEPT Project: There is a constant demand for better performing, more compact, lighter weight, and lower cost electronic devices. Unfortunately, the materials traditionally used to make components for electronic devices have reached their limits. Case Western is developing capacitors made of new materials that could be used to produce the next generation of compact and efficient high-powered consumer electronics and electronic vehicles. A capacitor is an important component of an electronic device. It stores an electric charge and then discharges it into an electrical circuit in the device. Case Western is creating its capacitors from titanium, an abundant material extracted from ore which can be found in the U.S. Case Western's capacitors store electric charges on the surfaces of films, which are grown on a titanium alloy electrode that is formed as a spinal column with attached branches. The new material and spine design make the capacitor smaller and lighter than traditional capacitors, and they enable the component to store 300% more energy than capacitors of the same weight made of tantalum, the current industry standard. Case Western's titanium-alloy capacitors also spontaneously self-repair, which prolongs their life.

  2. High-frequency-link based power electronics in power systems

    NASA Astrophysics Data System (ADS)

    Sree, Hari

    Power quality has become a serious concern to many utility customers in recent times. Among the many power quality problems, voltage sags are one of the most common and most mischievous, affecting industrial and commercial customers. They are primarily caused by power system faults at the transmission and distribution level, and thus, are mostly unavoidable. Their effect depends on the equipment sensitivities to the magnitude and duration of these sags and each can cost an industry up to few million dollars. To counter these limitations, many solutions at the customer end have been proposed which include Constant Voltage Transformers (CVT's), UPS and line frequency transformer based Dynamic Voltage Restorer (DVR). These approaches have their respective limitations with regard to capabilities, size and cost. This research proposes a new approach to mitigating these voltage sags involving the use of high frequency transformer link. Suitable switching logic and control strategies have been implemented. The proposed approach in a one-phase application is verified with computer simulations and by a hardware proof-of-concept prototype. Application to three-phase system is verified through simulations. Application of high frequency transformers in other utility applications such as active filters and static compensators is also looked at.

  3. Electron accleration using high power laser

    NASA Astrophysics Data System (ADS)

    Najmudin, Zulfikar

    1998-04-01

    The 30 TW Nd:Glass Vulcan laser has been used to extensively study the Forward Raman Scatter instability in plasmas. This instability is of interest since it produces large amplitude relativistic plasma waves, which can trap and accelerate plasma electrons to high energies. Recently we have accelerated particles up to 100 MeV with this process. This is beyond the expected classical dephasing energy, for the plasma waves in our experiment which have a Lorentz factor γ ≈ 7. The greater acceleration has been attributed to the dynamics of the beam loading process of the plasma waves due to wavebreaking. By imaging the small angle Thomson scattered light from an orthogonally injected probe beam, we observe the dimensions of the accelerating plasma wave. It is seen that electron energies are almost independent of the length of the plasma wave. This is because the dephasing length is of the order of the Rayleigh length (≈ 100 μm). However the plasma wave is seen to extend to lengths as great as 3.5 mm. This is indicative of a high intensity being present throughout the length of the gas jet used, and indicates the presence of channelling of the laser beam. However the unstable nature of FRS, means that it is unsuitable for next generation high energy particle acclerators. For this we require much more controllable acceleration over greater distances. This can be achieved with the laser wakefield accelerator. For this purpose we have also been performing experiments at the LULI short pulse facility at Ecole Polytechnique. In these experiments we have been able to accelerate large numbers of injected electrons at 3 MeV to 4 MeV and above, after carefully taking into consideration sources of noise.

  4. Distributed Power Electronics for PV Systems (Presentation)

    SciTech Connect

    Deline, C.

    2011-12-01

    An overview of the benefits and applications of microinverters and DC power optimizers in residential systems. Some conclusions from this report are: (1) The impact of shade is greater than just the area of shade; (2) Additional mismatch losses include panel orientation, panel distribution, inverter voltage window, soiling; (3) Per-module devices can help increase performance, 4-12% or more depending on the system; (4) Value-added benefits (safety, monitoring, reduced design constraints) are helping their adoption; and (5) The residential market is growing rapidly. Efficiency increases, cost reductions are improving market acceptance. Panel integration will further reduce price and installation cost. Reliability remains an unknown.

  5. NSTAR Ion Propulsion System Power Electronics

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) program, managed by the Jet Propulsion Laboratory (JPL), is currently developing a high performance, simplified ion propulsion system. This propulsion system, which is throttleable from 0.5- to 2.3-kW output power to the thruster, targets primary propulsion applications for planetary and Earth-space missions and has been baselined as the primary propulsion system for the first New Millennium spacecraft. The NASA Lewis Research Center is responsible for the design and delivery of a breadboard power processing unit (PPU) and an engineering model thruster (EMT) for this system and will manage the contract for the delivery of the flight hardware to JPL. The PPU requirements, which dictate a mass of less than 12 kg with an efficiency of 0.9 or greater at a 2.3-kW output, forced a departure from the state-of-the-art ion thruster PPU design. Several innovations--including dual-use topologies, simplified thruster control, and the use of ferrite magnetic materials--were necessary to meet these requirements.

  6. High-Power Microwave Switch Employing Electron Beam Triggering

    SciTech Connect

    Hirshfield, Jay L

    2012-09-19

    A high-power active microwave pulse compressor is described that modulates the quality factor Q of the energy storage cavity by a new means involving mode conversion controlled by a triggered electron-beam discharge through a switch cavity. The electron beam is emitted from a diamond-coated molybdenum cathode. This report describes the principle of operation, the design of the switch, the configuration used for the test, and the experimental results. The pulse compressor produced output pulses with 140 - 165 MW peak power, power gain of 16 - 20, and pulse duration of 16 - 20 ns at a frequency of 11.43 GHz.

  7. Screen printed passive components for flexible power electronics.

    PubMed

    Ostfeld, Aminy E; Deckman, Igal; Gaikwad, Abhinav M; Lochner, Claire M; Arias, Ana C

    2015-01-01

    Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components-inductors, capacitors, and resistors-perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application.

  8. Screen printed passive components for flexible power electronics

    NASA Astrophysics Data System (ADS)

    Ostfeld, Aminy E.; Deckman, Igal; Gaikwad, Abhinav M.; Lochner, Claire M.; Arias, Ana C.

    2015-10-01

    Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components—inductors, capacitors, and resistors—perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application.

  9. Screen printed passive components for flexible power electronics

    PubMed Central

    Ostfeld, Aminy E.; Deckman, Igal; Gaikwad, Abhinav M.; Lochner, Claire M.; Arias, Ana C.

    2015-01-01

    Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components—inductors, capacitors, and resistors—perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application. PMID:26514331

  10. Advanced power electronics and electric machinery program

    SciTech Connect

    None, None

    2007-12-01

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as "FreedomCAR" (derived from "Freedom" and "Cooperative Automotive Research"), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieving the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001.

  11. Compact, low power radio frequency cavity for femtosecond electron microscopy

    SciTech Connect

    Lassise, A.; Mutsaers, P. H. A.; Luiten, O. J.

    2012-04-15

    Reported here is the design, construction, and characterization of a small, power efficient, tunable dielectric filled cavity for the creation of femtosecond electron bunches in an existing electron microscope without the mandatory use of femtosecond lasers. A 3 GHz pillbox cavity operating in the TM{sub 110} mode was specially designed for chopping the beam of a 30 keV scanning electron microscope. The dielectric material used is ZrTiO{sub 4}, chosen for the high relative permittivity ({epsilon}{sub r}= 37 at 10 GHz) and low loss tangent (tan {delta}= 2 x 10{sup -4}). This allows the cavity radius to be reduced by a factor of six, while the power consumption is reduced by an order of magnitude compared to a vacuum pillbox cavity. These features make this cavity ideal as a module for existing electron microscopes, and an alternative to femtosecond laser systems integrated with electron microscopes.

  12. The 10 kW power electronics for hydrogen arcjets

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Pinero, Luis R.; Hill, Gerald M.

    1992-01-01

    A combination of emerging mission considerations such as 'launch on schedule', resource limitations, and the development of higher power spacecraft busses has resulted in renewed interest in high power hydrogen arcjet systems with specific impulses greater than 1000 s for Earth-space orbit transfer and maneuver applications. Solar electric propulsion systems with about 10 kW of power appear to offer payload benefits at acceptable trip times. This work outlines the design and development of 10 kW hydrogen arcjet power electronics and results of arcjet integration testing. The power electronics incorporated a full bridge switching topology similar to that employed in state of the art 5 kW power electronics, and the output filter included an output current averaging inductor with an integral pulse generation winding for arcjet ignition. Phase shifted, pulse width modulation with current mode control was used to regulate the current delivered to arcjet, and a low inductance power stage minimized switching transients. Hybrid power Metal Oxide Semiconductor Field Effect Transistors were used to minimize conduction losses. Switching losses were minimized using a fast response, optically isolated, totem-pole gate drive circuit. The input bus voltage for the unit was 150 V, with a maximum output voltage of 225 V. The switching frequency of 20 kHz was a compromise between mass savings and higher efficiency. Power conversion efficiencies in excess of 0.94 were demonstrated, along with steady state load current regulation of 1 percent. The power electronics were successfully integrated with a 10 kW laboratory hydrogen arcjet, and reliable, nondestructive starts and transitions to steady state operation were demonstrated. The estimated specific mass for a flight packaged unit was 2 kg/kW.

  13. Prognostics of Power Electronics, Methods and Validation Experiments

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan S.; Celaya, Jose R.; Biswas, Gautam; Goebel, Kai

    2012-01-01

    Abstract Failure of electronic devices is a concern for future electric aircrafts that will see an increase of electronics to drive and control safety-critical equipment throughout the aircraft. As a result, investigation of precursors to failure in electronics and prediction of remaining life of electronic components is of key importance. DC-DC power converters are power electronics systems employed typically as sourcing elements for avionics equipment. Current research efforts in prognostics for these power systems focuses on the identification of failure mechanisms and the development of accelerated aging methodologies and systems to accelerate the aging process of test devices, while continuously measuring key electrical and thermal parameters. Preliminary model-based prognostics algorithms have been developed making use of empirical degradation models and physics-inspired degradation model with focus on key components like electrolytic capacitors and power MOSFETs (metal-oxide-semiconductor-field-effect-transistor). This paper presents current results on the development of validation methods for prognostics algorithms of power electrolytic capacitors. Particularly, in the use of accelerated aging systems for algorithm validation. Validation of prognostics algorithms present difficulties in practice due to the lack of run-to-failure experiments in deployed systems. By using accelerated experiments, we circumvent this problem in order to define initial validation activities.

  14. Modern Microwave and Millimeter-Wave Power Electronics

    NASA Astrophysics Data System (ADS)

    Barker, Robert J.; Luhmann, Neville C.; Booske, John H.; Nusinovich, Gregory S.

    2005-04-01

    A comprehensive study of microwave vacuum electronic devices and their current and future applications While both vacuum and solid-state electronics continue to evolve and provide unique solutions, emerging commercial and military applications that call for higher power and higher frequencies to accommodate massive volumes of transmitted data are the natural domain of vacuum electronics technology. Modern Microwave and Millimeter-Wave Power Electronics provides systems designers, engineers, and researchers-especially those with primarily solid-state training-with a thoroughly up-to-date survey of the rich field of microwave vacuum electronic device (MVED) technology. This book familiarizes the R&D and academic communities with the capabilities and limitations of MVED and highlights the exciting scientific breakthroughs of the past decade that are dramatically increasing the compactness, efficiency, cost-effectiveness, and reliability of this entire class of devices. This comprehensive text explores a wide range of topics: * Traveling-wave tubes, which form the backbone of satellite and airborne communications, as well as of military electronic countermeasures systems * Microfabricated MVEDs and advanced electron beam sources * Klystrons, gyro-amplifiers, and crossed-field devices * "Virtual prototyping" of MVEDs via advanced 3-D computational models * High-Power Microwave (HPM) sources * Next-generation microwave structures and circuits * How to achieve linear amplification * Advanced materials technologies for MVEDs * A Web site appendix providing a step-by-step walk-through of a typical MVED design process Concluding with an in-depth examination of emerging applications and future possibilities for MVEDs, Modern Microwave and Millimeter-Wave Power Electronics ensures that systems designers and engineers understand and utilize the significant potential of this mature, yet continually developing technology. SPECIAL NOTE: All of the editors' royalties realized from

  15. Power Electronics Thermal Management R&D (Presentation)

    SciTech Connect

    Waye, S.

    2014-11-01

    This project will investigate and develop thermal-management strategies for wide bandgap (WBG)-based power electronics systems. Research will be carried out to deal with thermal aspects at the module- and system-level. Module-level research will focus on die- and substrate-integrated cooling strategies and heat-transfer enhancement technologies. System-level research will focus on thermal-management strategies for the entire power electronics system to enable smart packaging solutions. One challenge with WBG device-based power electronics is that although losses in the form of heat may be lower, the footprint of the components is also likely to be reduced to reduce cost, weight, and volume. Combined with higher operational temperatures, this creates higher heat fluxes which much be removed from a smaller footprint, requiring advanced cooling strategies.

  16. Sustainably powering wearable electronics solely by biomechanical energy

    PubMed Central

    Wang, Jie; Li, Shengming; Yi, Fang; Zi, Yunlong; Lin, Jun; Wang, Xiaofeng; Xu, Youlong; Wang, Zhong Lin

    2016-01-01

    Harvesting biomechanical energy is an important route for providing electricity to sustainably drive wearable electronics, which currently still use batteries and therefore need to be charged or replaced/disposed frequently. Here we report an approach that can continuously power wearable electronics only by human motion, realized through a triboelectric nanogenerator (TENG) with optimized materials and structural design. Fabricated by elastomeric materials and a helix inner electrode sticking on a tube with the dielectric layer and outer electrode, the TENG has desirable features including flexibility, stretchability, isotropy, weavability, water-resistance and a high surface charge density of 250 μC m−2. With only the energy extracted from walking or jogging by the TENG that is built in outsoles, wearable electronics such as an electronic watch and fitness tracker can be immediately and continuously powered. PMID:27677971

  17. Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices

    PubMed Central

    Zebda, A.; Cosnier, S.; Alcaraz, J.-P.; Holzinger, M.; Le Goff, A.; Gondran, C.; Boucher, F.; Giroud, F.; Gorgy, K.; Lamraoui, H.; Cinquin, P.

    2013-01-01

    We describe the first implanted glucose biofuel cell (GBFC) that is capable of generating sufficient power from a mammal's body fluids to act as the sole power source for electronic devices. This GBFC is based on carbon nanotube/enzyme electrodes, which utilize glucose oxidase for glucose oxidation and laccase for dioxygen reduction. The GBFC, implanted in the abdominal cavity of a rat, produces an average open-circuit voltage of 0.57 V. This implanted GBFC delivered a power output of 38.7 μW, which corresponded to a power density of 193.5 μW cm−2 and a volumetric power of 161 μW mL−1. We demonstrate that one single implanted enzymatic GBFC can power a light-emitting diode (LED), or a digital thermometer. In addition, no signs of rejection or inflammation were observed after 110 days implantation in the rat. PMID:23519113

  18. Energy-filtered Electron Transport Structures for Low-power Low-noise 2-D Electronics

    PubMed Central

    Pan, Xuan; Qiu, Wanzhi; Skafidas, Efstratios

    2016-01-01

    In addition to cryogenic techniques, energy filtering has the potential to achieve high-performance low-noise 2-D electronic systems. Assemblies based on graphene quantum dots (GQDs) have been demonstrated to exhibit interesting transport properties, including resonant tunnelling. In this paper, we investigate GQDs based structures with the goal of producing energy filters for next generation lower-power lower-noise 2-D electronic systems. We evaluate the electron transport properties of the proposed GQD device structures to demonstrate electron energy filtering and the ability to control the position and magnitude of the energy passband by appropriate device dimensioning. We also show that the signal-to-thermal noise ratio performance of the proposed nanoscale device can be modified according to device geometry. The tunability of two-dimensional GQD structures indicates a promising route for the design of electron energy filters to produce low-power and low-noise electronics. PMID:27796343

  19. Power electronic building block (PEDD) workshop. Trip report

    SciTech Connect

    Johnson, G.W.

    1995-10-09

    I attended the Power Electronic Building Block (PEBB) workshop at DOE HQ on June 21,1995. Accompanying me was Doug Hopkins, who is contracting with the Lab through Mark Newton on power electronics. The PEBB concept, and the workshop in particular, are sponsored by the Office of Naval Research (ONR) and DOE. The general concept behind PEBB is a ``second electronics revolution`` facilitated by a single-package, smart, multi-function power control block. The PEBB will potentially replace all conventional power electronic elements at scales from watts to megawatts, thus shifting power engineering from circuit design to system design. ONR is interested because power distribution aboard ships is expensive, complex, and bulky, and getting worse. The same applies to aircraft and many other military systems. DOE`s interest is in electric vehicles, utility power systems, and various end-use applications such as adjustable speed drives. There was obvious enthusiasm from industry, academia, and Government at this workshop. The PEBB concept is in its infancy. Exactly what a PEBB will encompass is still up for discussion. What is certain is that everything is up to industry: standards, innovations, marketing strategies, etc. ONR and DOE are only acting as facilitators and coordinators, and perhaps offering a little seed money. The program will be long-term but fast-paced, relying on concurrent engineering in a serious way. Great strides are required in semiconductors, packaging, controls, and system design. ONR want to put a big knee in the historic power density and dollar-per-watt curves, starting right now.

  20. Low power electronic interface for electrostatic energy harvesters

    NASA Astrophysics Data System (ADS)

    Nguyen Phan, Tra; Azadmehr, Mehdi; Phu Le, Cuong; Halvorsen, Einar

    2015-12-01

    This paper presents design and simulation of a power electronic interface circuit for MEMS electrostatic energy harvesters. The designed circuit is applicable to highly miniaturized electrostatic harvesters with small transducer capacitances below 10 pF. It is based on comb- drive harvesters with two anti-phase capacitors that are connected as charge pumps and uses a flyback-path scheme. Controlled activation and deactivation of sub-circuits, some by help of clocking, were exploited to reduce power consumption down to 1.03 μW. Net power generation can be achieved with as low initial voltage as 3.0 V.

  1. Simplification of power electronics for ion thruster neutralizers

    NASA Technical Reports Server (NTRS)

    Gruber, R. P.

    1982-01-01

    A need exists for less complex and lower cost ion thruster systems. Design approaches and the demonstration of neutralizer power electronics for relaxed neutralizer keeper, tip heater, and vaporizer requirements are discussed. The neutralizer circuitry is operated from a 200 to 400 V bus and demonstrates an order of magnitude reduction in parts count. Furthermore, a new technique is described for regulating tip heater power and automatically switching over to provide keeper power with only four additional components. A new design to control the flow rate of the neutralizer with one integrated circuit is also presented.

  2. High performance protection circuit for power electronics applications

    SciTech Connect

    Tudoran, Cristian D. Dădârlat, Dorin N.; Toşa, Nicoleta; Mişan, Ioan

    2015-12-23

    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a “sensor” or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.

  3. High performance protection circuit for power electronics applications

    NASA Astrophysics Data System (ADS)

    Tudoran, Cristian D.; Dǎdârlat, Dorin N.; Toşa, Nicoleta; Mişan, Ioan

    2015-12-01

    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a "sensor" or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.

  4. Electronic stopping power in gold: the role of d electrons and the H/He anomaly.

    PubMed

    Zeb, M Ahsan; Kohanoff, J; Sánchez-Portal, D; Arnau, A; Juaristi, J I; Artacho, Emilio

    2012-06-01

    The electronic stopping power of H and He moving through gold is obtained to high accuracy using time-evolving density-functional theory, thereby bringing usual first principles accuracies into this kind of strongly coupled, continuum nonadiabatic processes in condensed matter. The two key unexplained features of what observed experimentally have been reproduced and understood: (i) The nonlinear behavior of stopping power versus velocity is a gradual crossover as excitations tail into the d-electron spectrum; and (ii) the low-velocity H/He anomaly (the relative stopping powers are contrary to established theory) is explained by the substantial involvement of the d electrons in the screening of the projectile even at the lowest velocities where the energy loss is generated by s-like electron-hole pair formation only.

  5. Power Block Geometry Applied to the Building of Power Electronics Converters

    ERIC Educational Resources Information Center

    dos Santos, E. C., Jr.; da Silva, E. R. C.

    2013-01-01

    This paper proposes a new methodology, Power Block Geometry (PBG), for the presentation of power electronics topologies that process ac voltage. PBG's strategy uses formal methods based on a geometrical representation with particular rules and defines a universe with axioms and conjectures to establish a formation law. It allows power…

  6. FY2009 Annual Progress Report for Advanced Power Electronics

    SciTech Connect

    Rogers, Susan A.

    2010-01-01

    The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency.

  7. BORON NITRIDE CAPACITORS FOR ADVANCED POWER ELECTRONIC DEVICES

    SciTech Connect

    N. Badi; D. Starikov; C. Boney; A. Bensaoula; D. Johnstone

    2010-11-01

    This project fabricates long-life boron nitride/boron oxynitride thin film -based capacitors for advanced SiC power electronics with a broad operating temperature range using a physical vapor deposition (PVD) technique. The use of vapor deposition provides for precise control and quality material formation.

  8. Simulation Tools for Power Electronics Courses Based on Java Technologies

    ERIC Educational Resources Information Center

    Canesin, Carlos A.; Goncalves, Flavio A. S.; Sampaio, Leonardo P.

    2010-01-01

    This paper presents interactive power electronics educational tools. These interactive tools make use of the benefits of Java language to provide a dynamic and interactive approach to simulating steady-state ideal rectifiers (uncontrolled and controlled; single-phase and three-phase). Additionally, this paper discusses the development and use of…

  9. Narrow high power microwave pulses from a free electron laser

    SciTech Connect

    Marshall, T.C.; Zhang, T.B.

    1995-11-01

    The authors have explored high power microwave ({lambda} = 1.5mm) pulse amplification along a tapered undulator FEL using the 1D Compton FEL equations with slippage. For an appropriate taper, sideband instabilities are suppressed and a short ({approximately}50psec) Gaussian pulse will propagate in a nearly self-similar way as it grows in power, slipping through a much longer electron pulse (beam energy, 750kV; current, 100A; radius = 2mm; length = 200 radiation periods). This is in contrast to the example of pulse propagation in a constant parameter undulator, where the Gaussian pulse breaks up into irregularities identified with sidebanding. Variation of initial pulse width shows convergence to a 50psec wide output pulse. Because of the slippage of the radiation pulse through the electron pulse, the peak microwave pulse intensity, {approximately}3GW/cm2, is about three times the kinetic energy density of the electron beam.

  10. Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics.

    PubMed

    Fan, Feng Ru; Tang, Wei; Wang, Zhong Lin

    2016-06-01

    Flexible nanogenerators that efficiently convert mechanical energy into electrical energy have been extensively studied because of their great potential for driving low-power personal electronics and self-powered sensors. Integration of flexibility and stretchability to nanogenerator has important research significance that enables applications in flexible/stretchable electronics, organic optoelectronics, and wearable electronics. Progress in nanogenerators for mechanical energy harvesting is reviewed, mainly including two key technologies: flexible piezoelectric nanogenerators (PENGs) and flexible triboelectric nanogenerators (TENGs). By means of material classification, various approaches of PENGs based on ZnO nanowires, lead zirconate titanate (PZT), poly(vinylidene fluoride) (PVDF), 2D materials, and composite materials are introduced. For flexible TENG, its structural designs and factors determining its output performance are discussed, as well as its integration, fabrication and applications. The latest representative achievements regarding the hybrid nanogenerator are also summarized. Finally, some perspectives and challenges in this field are discussed.

  11. Electron beam machining using rotating and shaped beam power distribution

    DOEpatents

    Elmer, John W.; O'Brien, Dennis W.

    1996-01-01

    An apparatus and method for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: 1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and 2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1000 .mu.m (1 mm or larger), compared to the 250 .mu.m diameter of laser drilling.

  12. Electron beam machining using rotating and shaped beam power distribution

    DOEpatents

    Elmer, J.W.; O`Brien, D.W.

    1996-07-09

    An apparatus and method are disclosed for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: (1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and (2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1,000 {micro}m (1 mm or larger), compared to the 250 {micro}m diameter of laser drilling. 5 figs.

  13. Triboelectric generators and sensors for self-powered wearable electronics.

    PubMed

    Ha, Minjeong; Park, Jonghwa; Lee, Youngoh; Ko, Hyunhyub

    2015-04-28

    In recent years, the field of wearable electronics has evolved at a rapid pace, requiring continued innovation in technologies in the fields of electronics, energy devices, and sensors. In particular, wearable devices have multiple applications in healthcare monitoring, identification, and wireless communications, and they are required to perform well while being lightweight and having small size, flexibility, low power consumption, and reliable sensing performances. In this Perspective, we introduce two recent reports on the triboelectric generators with high-power generation achieved using flexible and lightweight textiles or miniaturized and hybridized device configurations. In addition, we present a brief overview of recent developments and future prospects of triboelectric energy harvesters and sensors, which may enable fully self-powered wearable devices with significantly improved sensing capabilities.

  14. Power electronics for a 1-kilowatt arc jet thruster

    NASA Technical Reports Server (NTRS)

    Gruber, R. P.

    1986-01-01

    After more than two decades, new space mission requirements have revived interest in arcjet systems. The preliminary development and demonstration of new, high efficiency, power electronic concepts for start up and steady state control of dc arcjets is reported. The design comprises a pulse width modulated power converter which is closed loop configured to give fast current control. An inductor, in series with the arcjet, serves the dual role of providing instantaneous current control, as well as a high voltage arc ignition pulse. Benchmark efficiency, transient response, regulation, and ripple data are presented. Tests with arcjets demonstrate that the power electronics breadboard can start thrusters consistently with no apparent damage and transfer reliably to the nondestructive high voltage arc mode in less than a second.

  15. Power electronics for a 1-kilowatt arcjet thruster

    NASA Technical Reports Server (NTRS)

    Gruber, R. P.

    1986-01-01

    After more than two decades, new space mission requirements have revived interest in arcjet systems. The preliminary development and demonstration of new, high efficiency, power electronic concepts for start up and steady state control of dc arcjets is reported. The design comprises a pulse width modulated power converter which is closed loop configured to give fast current control. An inductor, in series with the arcjet, serves the dual role of providing instantaneous current control, as well as a high voltage arc ignition pulse. Benchmark efficiency, transient response, regulation, and ripple data are presented. Tests with arcjets demonstrate that the power electronics breadboard can start thrusters consistently with no apparent damage and transfer reliably to the nondestructive high voltage arc mode in less than a second.

  16. Development of High Power Electron Beam Measuring and Analyzing System for Microwave Vacuum Electron Devices

    NASA Astrophysics Data System (ADS)

    Ruan, C. J.; Wu, X. L.; Li, Q. S.; Li, C. S.

    The measurement and analysis of high power electron beam during its formation and transmission are the basic scientific problems and key techniques for the development of high performance microwave vacuum electron devices, which are widely used in the fields of military weapon, microwave system and scientific instruments. In this paper, the dynamic parameters measurement and analysis system being built in Institute of Electronics, Chinese Academy of Sciences (IECAS) recently are introduced. The instrument are designed to determine the cross-section, the current density, and the energy resolution of the high power electron beam during its formation and transmission process, which are available both for the electron gun and the electron optics system respectively. Then the three dimension trajectory images of the electron beam can be rebuilt and display with computer controlled data acquisition and processing system easily. Thus, much more complicated structures are considered and solved completely to achieve its detection and analysis, such as big chamber with 10-6 Pa high vacuum system, the controlled detector movement system in axis direction with distance of 600 mm inside the vacuum chamber, the electron beam energy analysis system with high resolution of 0.5%, and the electron beam cross-section and density detector using the YAG: Ce crystal and CCD imaging system et al. At present, the key parts of the instrument have been finished, the cross-section experiment of the electron beam have been performed successfully. Hereafter, the instrument will be used to measure and analyze the electron beam with the electron gun and electron optics system for the single beam and multiple beam klystron, gyrotron, sheet beam device, and traveling wave tube etc. thoroughly.

  17. Air Cooling for High Temperature Power Electronics (Presentation)

    SciTech Connect

    Waye, S.; Musselman, M.; King, C.

    2014-09-01

    Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

  18. Record High Power Terahertz Radiation from Relativistic Electrons

    SciTech Connect

    G.L. Carr; Michael C. Martin; Wayne R. McKinney; Kevin Jordan; George R. Neil; Gwyn P. Williams

    2002-03-01

    Calculations and measurements confirm the production of coherent broadband THz radiation from relativistic electrons with an average power of nearly 20 watts. The radiation has qualities closely analogous to the THz radiation produced by ultrafast laser techniques (spatially coherent, short duration pulses with transform-limited spectral content). But in contrast to conventional THz radiation, the intensity is many orders of magnitude greater due to a relativistic enhancement. The absorption and dispersive properties of materials in this spectral range provide contrast for a unique type of imaging [1,2]. The striking improvement in power reported here could revolutionize this application by allowing full-field, real-time image capture. High peak and average power THz sources are also critical in driving new non-linear phenomena with excellent signal to noise, and for pump-probe studies of dynamical properties of novel materials, both of which are central to future high-speed electronic devices [3,4]. It should also be useful for studies of molecular vibrations and rotations, low frequency protein motions, phonons, superconductor bandgaps, electronic scattering and collective electronic excitations (e.g., charge density waves).

  19. The 5-kW arcjet power electronics

    NASA Technical Reports Server (NTRS)

    Gruber, R. P.; Gott, R. W.; Haag, T. W.

    1989-01-01

    The initial design and evaluation of a 5 kW arcjet power electronics breadboard which as been integrated with a modified 1 kW design laboratory arcjet is presented. A single stage, 5 kW full bridge, pulse width modulated (PWM), power converter was developed which was phase shift regulated. The converter used metal oxide semiconductor field effect transistor (MOSFET) power switches and incorporated current mode control and an integral arcjet pulse ignition circuit. The unoptimized power efficiency was 93.5 and 93.9 percent at 5 kW and 50A output at input voltages of 130 and 150V, respectively. Line and load current regulation at 50A output was within one percent. The converter provided up to 6.6 kW to the arcjet with simulated ammonia used as a propellant.

  20. Benefits of Power Electronic Interfaces for Distributed Energy Systems

    SciTech Connect

    Kroposki, B.; Pink, C.; DeBlasio, R.; Thomas, H.; Simoes, M.; Sen, P. K.

    2006-01-01

    Optimization of overall electrical system performance is important for the long-term economic viability of distributed energy (DE) systems. With the increasing use of DE systems in industry and its technological advancement, it is becoming more important to understand the integration of these systems with the electric power systems. New markets and benefits for distributed energy applications include the ability to provide ancillary services, improve energy efficiency, enhance power system reliability, and allow customer choice. Advanced power electronic (PE) interfaces will allow DE systems to provide increased functionality through improved power quality and voltage/VAR support, increase electrical system compatibility by reducing the fault contributions, and flexibility in operations with various other DE sources, while reducing overall interconnection costs. This paper examines the system integration and optimization issues associated with DE systems and show the benefits of using PE interfaces for such applications.

  1. Power Electronics Development for the SPT-100 Thruster

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Hill, Gerald M.; Sankovic, John M.

    1994-01-01

    Russian electric propulsion technologies have recently become available on the world market. Of significant interest is the Stationary Plasma Thruster (SPT) which has a significant flight heritage in the former Soviet space program. The SPT has performance levels of up to 1600 seconds of specific impulse at a thrust efficiency of 0.50. Studies have shown that this level of performance is well suited for stationkeeping applications, and the SPT-100, with a 1.35 kW input power level, is presently being evaluated for use on Western commercial satellites. Under a program sponsored by the Innovative Science and Technology Division of the Ballistic Missile Defense Organization, a team of U.S. electric propulsion specialists observed the operation of the SPT-100 in Russia. Under this same program, power electronics were developed to operate the SPT-100 to characterize thruster performance and operation in the U.S. The power electronics consisted of a discharge, cathode heater, and pulse igniter power supplies to operate the thruster with manual flow control. A Russian designed matching network was incorporated in the discharge supply to ensure proper operation with the thruster. The cathode heater power supply and igniter were derived from ongoing development projects. No attempts were made to augment thruster electromagnet current in this effort. The power electronics successfully started and operated the SPT-100 thruster in performance tests at NASA Lewis, with minimal oscillations in the discharge current. The efficiency of the main discharge supply was measured at 0.92, and straightforward modifications were identified which could increase the efficiency to 0.94.

  2. Precision Absolute Beam Current Measurement of Low Power Electron Beam

    SciTech Connect

    Ali, M. M.; Bevins, M. E.; Degtiarenko, P.; Freyberger, A.; Krafft, G. A.

    2012-11-01

    Precise measurements of low power CW electron beam current for the Jefferson Lab Nuclear Physics program have been performed using a Tungsten calorimeter. This paper describes the rationale for the choice of the calorimeter technique, as well as the design and calibration of the device. The calorimeter is in use presently to provide a 1% absolute current measurement of CW electron beam with 50 to 500 nA of average beam current and 1-3 GeV beam energy. Results from these recent measurements will also be presented.

  3. Electron beam collector for a microwave power tube

    DOEpatents

    Dandl, Raphael A.

    1980-01-01

    This invention relates to a cylindrical, electron beam collector that efficiently couples the microwave energy out of a high power microwave source while stopping the attendant electron beam. The interior end walls of the collector are a pair of facing parabolic mirrors and the microwave energy from an input horn is radiated between the two mirrors and reassembled at the entrance to the output waveguide where the transmitted mode is reconstructed. The mode transmission through the collector of the present invention has an efficiency of at least 94%.

  4. Electrostatic-accelerator free-electron lasers for power beaming

    SciTech Connect

    Pinhasi, Y.; Yakover, I.M.; Gover, A.

    1995-12-31

    Novel concepts of electrostatic-accelerator free-electron lasers (EA-FELs) for energy transfer through the atmosphere are presented. The high average power attained from an EA-FEL makes it an efficient source of mm-wave for power beaming from a ground stations. General aspects of operating the FEL as a high power oscillator (like acceleration voltage, e-beam. current, gain and efficiency) are studied and design considerations are described. The study takes into account requirements of power beaming application such as characteristic dips in the atmospheric absorption spectrum, sizes of transmitting and receiving antennas and meteorological conditions. We present a conceptual design of a moderate voltage (.5-3 MeV) high current (1-10 Amp) EA-FEL operating at mm-wavelength bands, where the atmospheric attenuation allows efficient power beaming to space. The FEL parameters were calculated, employing analytical and numerical models. The performance parameters of the FEL (power, energy conversion efficiency average power) will be discussed in connection to the proposed application.

  5. The cardiac implantable electronic device power source: evolution and revolution.

    PubMed

    Mond, Harry G; Freitag, Gary

    2014-12-01

    Although the first power source for an implantable pacemaker was a rechargeable nickel-cadmium battery, it was rapidly replaced by an unreliable short-life zinc-mercury cell. This sustained the small pacemaker industry until the early 1970s, when the lithium-iodine cell became the dominant power source for low voltage, microampere current, single- and dual-chamber pacemakers. By the early 2000s, a number of significant advances were occurring with pacemaker technology which necessitated that the power source should now provide milliampere current for data logging, telemetric communication, and programming, as well as powering more complicated pacing devices such as biventricular pacemakers, treatment or prevention of atrial tachyarrhythmias, and the integration of innovative physiologic sensors. Because the current delivery of the lithium-iodine battery was inadequate for these functions, other lithium anode chemistries that can provide medium power were introduced. These include lithium-carbon monofluoride, lithium-manganese dioxide, and lithium-silver vanadium oxide/carbon mono-fluoride hybrids. In the early 1980s, the first implantable defibrillators for high voltage therapy used a lithium-vanadium pentoxide battery. With the introduction of the implantable cardioverter defibrillator, the reliable lithium-silver vanadium oxide became the power source. More recently, because of the demands of biventricular pacing, data logging, and telemetry, lithium-manganese dioxide and the hybrid lithium-silver vanadium oxide/carbon mono-fluoride laminate have also been used. Today all cardiac implantable electronic devices are powered by lithium anode batteries.

  6. Electronic Stopping Power in LiF from First Principles

    SciTech Connect

    Pruneda, J. M.; Sanchez-Portal, D.; Artacho, Emilio

    2007-12-07

    Using time-dependent density-functional theory we calculate from first principles the rate of energy transfer from a moving proton or antiproton to the electrons of an insulating material, LiF. The behavior of the electronic stopping power versus projectile velocity displays an effective threshold velocity of {approx}0.2 a.u. for the proton, consistent with recent experimental observations, and also for the antiproton. The calculated proton/antiproton stopping-power ratio is {approx}2.4 at velocities slightly above the threshold (v{approx}0.4 a.u.), as compared to the experimental value of 2.1. The projectile energy loss mechanism is observed to be extremely local.

  7. Tomographic determination of the power distribution in electron beams

    DOEpatents

    Teruya, A.T.; Elmer, J.W.

    1996-12-10

    A tomographic technique for determining the power distribution of an electron beam using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams is disclosed. A refractory metal disk with a number of radially extending slits is placed above a Faraday cup. The beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. Also, a single computer is used to generate the signals actuating the sweep, to acquire that data, and to do the reconstruction, thus reducing the time and equipment necessary to complete the process. 4 figs.

  8. Power Electronic Transformer based Three-Phase PWM AC Drives

    NASA Astrophysics Data System (ADS)

    Basu, Kaushik

    A Transformer is used to provide galvanic isolation and to connect systems at different voltage levels. It is one of the largest and most expensive component in most of the high voltage and high power systems. Its size is inversely proportional to the operating frequency. The central idea behind a power electronic transformer (PET) also known as solid state transformer is to reduce the size of the transformer by increasing the frequency. Power electronic converters are used to change the frequency of operation. Steady reduction in the cost of the semiconductor switches and the advent of advanced magnetic materials with very low loss density and high saturation flux density implies economic viability and feasibility of a design with high power density. Application of PET is in generation of power from renewable energy sources, especially wind and solar. Other important application include grid tied inverters, UPS e.t.c. In this thesis non-resonant, single stage, bi-directional PET is considered. The main objective of this converter is to generate adjustable speed and magnitude pulse width modulated (PWM) ac waveforms from an ac or dc grid with a high frequency ac link. The windings of a high frequency transformer contains leakage inductance. Any switching transition of the power electronic converter connecting the inductive load and the transformer requires commutation of leakage energy. Commutation by passive means results in power loss, decrease in the frequency of operation, distortion in the output voltage waveform, reduction in reliability and power density. In this work a source based partially loss-less commutation of leakage energy has been proposed. This technique also results in partial soft-switching. A series of converters with novel PWM strategies have been proposed to minimize the frequency of leakage inductance commutation. These PETs achieve most of the important features of modern PWM ac drives including 1) Input power factor correction, 2) Common

  9. Advanced Power Electronics for LED Drivers: Advanced Technologies for integrated Power Electronics

    SciTech Connect

    2010-09-01

    ADEPT Project: MIT is teaming with Georgia Institute of Technology, Dartmouth College, and the University of Pennsylvania (UPenn) to create more efficient power circuits for energy-efficient light-emitting diodes (LEDs) through advances in 3 related areas. First, the team is using semiconductors made of high-performing gallium nitride grown on a low-cost silicon base (GaN-on-Si). These GaN-on-Si semiconductors conduct electricity more efficiently than traditional silicon semiconductors. Second, the team is developing new magnetic materials and structures to reduce the size and increase the efficiency of an important LED power component, the inductor. This advancement is important because magnetics are the largest and most expensive part of a circuit. Finally, the team is creating an entirely new circuit design to optimize the performance of the new semiconductors and magnetic devices it is using.

  10. Advanced manufacturing of SIMOX for low power electronics

    NASA Astrophysics Data System (ADS)

    Alles, Michael; Krull, Wade

    1996-04-01

    Silicon-on-insulator (SOI) has emerged as a key technology for low power electronics. The merits of SOI technology have been demonstrated, and are gaining acceptance in the semiconductor industry. In order for the SOI approach to be viable, several factors must converge, including the availability of SOI substrates in sufficient quantity, of acceptable quality, and at a competitive price. This work describes developments in SIMOX manufacturing technology and summarizes progress in each of these areas.

  11. High-Performance, Wide-Bandgap Power Electronics

    NASA Astrophysics Data System (ADS)

    McNutt, Ty; Passmore, Brandon; Fraley, John; McPherson, Brice; Shaw, Robert; Olejniczak, Kraig; Lostetter, Alex

    2014-12-01

    APEI has developed high-performance electronics to exploit the unique capabilities of wide-bandgap devices. Crucial enabling features include high current density, fast switching speed, high-voltage (>10 kV) blocking, high-temperature operation (>200°C), and inherent radiation tolerance, features which have the potential to completely revolutionize existing electronics, from milliwatt to megawatt levels, and enable operation in new environments. Full realization of these extraordinary capabilities led to significant challenges in package and system design, including high electric fields, high power density, high d i/d t's and d v/d t's, and high temperatures. Because of the limitations of traditional design methods and traditional electronics, designers unknowingly lack understanding of packaging material thermal properties at temperature extremes, of package-fabrication techniques, and of the inability to operate continuously at elevated temperatures, and use a set of qualification standards designed for lower-temperature, previous generation technology.

  12. Vector analyzing power in elastic electron-proton scattering

    SciTech Connect

    Diaconescu, L.; Ramsey-Musolf, M.J.

    2004-11-01

    We compute the vector analyzing power (VAP) for the elastic scattering of transversely polarized electrons from protons at low energies using an effective theory of electrons, protons, and photons. We study all contributions through second order in E/M, where E and M are the electron energy and nucleon mass, respectively. The leading-order VAP arises from the imaginary part of the interference of one- and two-photon exchange amplitudes. Subleading contributions are generated by the nucleon magnetic moment and charge radius as well as recoil corrections to the leading-order amplitude. Working to O(E/M){sup 2}, we obtain a prediction for A{sub n} that is free of unknown parameters and that agrees with the recent measurement of the VAP in backward angle ep scattering.

  13. Vector analyzing power in elastic electron-proton scattering

    NASA Astrophysics Data System (ADS)

    Diaconescu, L.; Ramsey-Musolf, M. J.

    2004-11-01

    We compute the vector analyzing power (VAP) for the elastic scattering of transversely polarized electrons from protons at low energies using an effective theory of electrons, protons, and photons. We study all contributions through second order in E/M , where E and M are the electron energy and nucleon mass, respectively. The leading-order VAP arises from the imaginary part of the interference of one- and two-photon exchange amplitudes. Subleading contributions are generated by the nucleon magnetic moment and charge radius as well as recoil corrections to the leading-order amplitude. Working to O (E/M)2 , we obtain a prediction for An that is free of unknown parameters and that agrees with the recent measurement of the VAP in backward angle ep scattering.

  14. Electronic Power Conditioner for Ku-band Travelling Wave Tube

    NASA Astrophysics Data System (ADS)

    Kowstubha, Palle; Krishnaveni, K.; Ramesh Reddy, K.

    2016-07-01

    A highly sophisticated regulated power supply is known as electronic power conditioner (EPC) is required to energise travelling wave tubes (TWTs), which are used as RF signal amplifiers in satellite payloads. The assembly consisting of TWT and EPC together is known as travelling wave tube amplifier (TWTA). EPC is used to provide isolated and conditioned voltage rails with tight regulation to various electrodes of TWT and makes its RF performance independent of solar bus variations which are caused due to varying conditions of eclipse and sunlit. The payload mass and their power consumption is mainly due to the existence of TWTAs that represent about 35 % of total mass and about 70-90 % (based on the type of satellite application) of overall dc power consumption. This situation ensures a continuous improvement in the design of TWTAs and their associated EPCs to realize more efficient and light products. Critical technologies involved in EPCs are design and configuration, closed loop regulation, component and material selection, energy limiting of high voltage (HV) outputs and potting of HV card etc. This work addresses some of these critical technologies evolved in realizing and testing the state of art of EPC and it focuses on the design of HV supply with a HV and high power capability, up to 6 kV and 170 WRF, respectively required for a space TWTA. Finally, an experimental prototype of EPC with a dc power of 320 W provides different voltages required by Ku-band TWT in open loop configuration.

  15. Design of power electronics for TVC EMA systems

    NASA Astrophysics Data System (ADS)

    Nelms, R. Mark

    1993-08-01

    The Composite Development Division of the Propulsion Laboratory at Marshall Space Flight Center (MSFC) is currently developing a class of electromechanical actuators (EMA's) for use in space transportation applications such as thrust vector control (TVC) and propellant control valves (PCV). These high power servomechanisms will require rugged, reliable, and compact power electronic modules capable of modulating several hundred amperes of current at up to 270 volts. MSFC has selected the brushless dc motor for implementation in EMA's. This report presents the results of an investigation into the applicability of two new technologies, MOS-controlled thyristors (MCT's) and pulse density modulation (PDM), to the control of brushless dc motors in EMA systems. MCT's are new power semiconductor devices, which combine the high voltage and current capabilities of conventional thyristors and the low gate drive requirements of metal oxide semiconductor field effect transistors (MOSFET's). The commanded signals in a PDM system are synthesized using a series of sinusoidal pulses instead of a series of square pulses as in a pulse width modulation (PWM) system. A resonant dc link inverter is employed to generate the sinusoidal pulses in the PDM system. This inverter permits zero-voltage switching of all semiconductors which reduces switching losses and switching stresses. The objectives of this project are to develop and validate an analytical model of the MCT device when used in high power motor control applications and to design, fabricate, and test a prototype electronic circuit employing both MCT and PDM technology for controlling a brushless dc motor.

  16. Design of power electronics for TVC EMA systems

    NASA Technical Reports Server (NTRS)

    Nelms, R. Mark

    1993-01-01

    The Composite Development Division of the Propulsion Laboratory at Marshall Space Flight Center (MSFC) is currently developing a class of electromechanical actuators (EMA's) for use in space transportation applications such as thrust vector control (TVC) and propellant control valves (PCV). These high power servomechanisms will require rugged, reliable, and compact power electronic modules capable of modulating several hundred amperes of current at up to 270 volts. MSFC has selected the brushless dc motor for implementation in EMA's. This report presents the results of an investigation into the applicability of two new technologies, MOS-controlled thyristors (MCT's) and pulse density modulation (PDM), to the control of brushless dc motors in EMA systems. MCT's are new power semiconductor devices, which combine the high voltage and current capabilities of conventional thyristors and the low gate drive requirements of metal oxide semiconductor field effect transistors (MOSFET's). The commanded signals in a PDM system are synthesized using a series of sinusoidal pulses instead of a series of square pulses as in a pulse width modulation (PWM) system. A resonant dc link inverter is employed to generate the sinusoidal pulses in the PDM system. This inverter permits zero-voltage switching of all semiconductors which reduces switching losses and switching stresses. The objectives of this project are to develop and validate an analytical model of the MCT device when used in high power motor control applications and to design, fabricate, and test a prototype electronic circuit employing both MCT and PDM technology for controlling a brushless dc motor.

  17. Single-stage electronic ballast with high-power factor

    NASA Astrophysics Data System (ADS)

    Park, Chun-Yoon; Kwon, Jung-Min; Kwon, Bong-Hwan

    2014-03-01

    This article proposes a single-stage electronic ballast circuit with high-power factor. The proposed circuit was derived by sharing the switches of the power factor correction (PFC) and the half-bridge LCC resonant inverter. This integration of switches forms the proposed single-stage electronic ballast, which provides an almost unity power factor and a ripple-free input current by using a coupled inductor without increasing the voltage stress. In addition, it realises zero-voltage-switching (ZVS) by employing the self-oscillation technique. The saturable transformer constituting the self-oscillating drive limits the lamp current and dominates the switching frequency of the ballast. Therefore, the proposed single-stage ballast has the advantage of high-power factor, high efficiency, low cost and high reliability. Steady-state analysis of the PFC and the half-bridge LCC resonant inverter are described. The results of experiments performed using a 30 W fluorescent lamp are also presented to confirm the performance of the proposed ballast.

  18. Dimmable electronic ballasts by variable power density modulation technique

    NASA Astrophysics Data System (ADS)

    Borekci, Selim; Kesler, Selami

    2014-11-01

    Dimming can be accomplished commonly by switching frequency and pulse density modulation techniques and a variable inductor. In this study, a variable power density modulation (VPDM) control technique is proposed for dimming applications. A fluorescent lamp is operated in several states to meet the desired lamp power in a modulation period. The proposed technique has the same advantages of magnetic dimming topologies have. In addition, a unique and flexible control technique can be achieved. A prototype dimmable electronic ballast is built and experiments related to it have been conducted. As a result, a 36WT8 fluorescent lamp can be driven for a desired lamp power from several alternatives without modulating the switching frequency.

  19. Electron density power spectrum in the local interstellar medium

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.; Rickett, B. J.; Spangler, S. R.

    1995-01-01

    Interstellar scintillation (ISS), fluctuations in the amplitude and phase of radio waves caused by scattering in the interstellar medium, is important as a diagnostic of interstellar plasma turbulence. ISS is also of interest because it is noise for other radio astronomical observations. The unifying concern is the power spectrum of the interstellar electron density. Here we use ISS observations through the nearby (less than or approximately =1 kpc) (ISM) to estimate the spectrum. From measurements of angular broadening of pulsars and extragalactic sources, decorrelation bandwidth of pulsars, refractive steering of features in pulsar dynamic spectra, dispersion measured fluctuations of pulsars, and refractive scintillation index measurements, we construct a composite structure function that is approximately power law over 2 x 10(exp 6) m less than scale less than 10(exp 13) m. The data are consistent with the structure function having a logarithmic slope versus baseline less than 2; thus there is a meaningful connection between scales in the radiowave fluctuation field and the scales in the electron density field causing the scattering. The data give an upper limit to the inner scale, l(sub o) less than or approximately 10(exp 8) m and are consistent with much smaller values. We construct a composite electron density spectrum that is approximately power law over at least the approximately = 5 decade wavenumber range 10(exp -13)/m less than wavenumber less than 10(exp -8)/m and that may extend to higher wavenumbers. The average spectral index of electron density over this wavenumber range is approximately = 3.7, very close to the value expected for a Kolmogorov process. The outer scale size, L(sub o), must be greater than or approximately = 10(exp 13) m (determined from dispersion measure fluctuations). When the ISS data are combined with measurements of differential Faraday rotation angle, and gradients in the average electron density, constraints can be put on the

  20. Pulsed electron paramagnetic resonance spectroscopy powered by a free-electron laser.

    PubMed

    Takahashi, S; Brunel, L-C; Edwards, D T; van Tol, J; Ramian, G; Han, S; Sherwin, M S

    2012-09-20

    Electron paramagnetic resonance (EPR) spectroscopy interrogates unpaired electron spins in solids and liquids to reveal local structure and dynamics; for example, EPR has elucidated parts of the structure of protein complexes that other techniques in structural biology have not been able to reveal. EPR can also probe the interplay of light and electricity in organic solar cells and light-emitting diodes, and the origin of decoherence in condensed matter, which is of fundamental importance to the development of quantum information processors. Like nuclear magnetic resonance, EPR spectroscopy becomes more powerful at high magnetic fields and frequencies, and with excitation by coherent pulses rather than continuous waves. However, the difficulty of generating sequences of powerful pulses at frequencies above 100 gigahertz has, until now, confined high-power pulsed EPR to magnetic fields of 3.5 teslas and below. Here we demonstrate that one-kilowatt pulses from a free-electron laser can power a pulsed EPR spectrometer at 240 gigahertz (8.5 teslas), providing transformative enhancements over the alternative, a state-of-the-art ∼30-milliwatt solid-state source. Our spectrometer can rotate spin-1/2 electrons through π/2 in only 6 nanoseconds (compared to 300 nanoseconds with the solid-state source). Fourier-transform EPR on nitrogen impurities in diamond demonstrates excitation and detection of EPR lines separated by about 200 megahertz. We measured decoherence times as short as 63 nanoseconds, in a frozen solution of nitroxide free-radicals at temperatures as high as 190 kelvin. Both free-electron lasers and the quasi-optical technology developed for the spectrometer are scalable to frequencies well in excess of one terahertz, opening the way to high-power pulsed EPR spectroscopy up to the highest static magnetic fields currently available. PMID:22996555

  1. Pulsed electron paramagnetic resonance spectroscopy powered by a free-electron laser.

    PubMed

    Takahashi, S; Brunel, L-C; Edwards, D T; van Tol, J; Ramian, G; Han, S; Sherwin, M S

    2012-09-20

    Electron paramagnetic resonance (EPR) spectroscopy interrogates unpaired electron spins in solids and liquids to reveal local structure and dynamics; for example, EPR has elucidated parts of the structure of protein complexes that other techniques in structural biology have not been able to reveal. EPR can also probe the interplay of light and electricity in organic solar cells and light-emitting diodes, and the origin of decoherence in condensed matter, which is of fundamental importance to the development of quantum information processors. Like nuclear magnetic resonance, EPR spectroscopy becomes more powerful at high magnetic fields and frequencies, and with excitation by coherent pulses rather than continuous waves. However, the difficulty of generating sequences of powerful pulses at frequencies above 100 gigahertz has, until now, confined high-power pulsed EPR to magnetic fields of 3.5 teslas and below. Here we demonstrate that one-kilowatt pulses from a free-electron laser can power a pulsed EPR spectrometer at 240 gigahertz (8.5 teslas), providing transformative enhancements over the alternative, a state-of-the-art ∼30-milliwatt solid-state source. Our spectrometer can rotate spin-1/2 electrons through π/2 in only 6 nanoseconds (compared to 300 nanoseconds with the solid-state source). Fourier-transform EPR on nitrogen impurities in diamond demonstrates excitation and detection of EPR lines separated by about 200 megahertz. We measured decoherence times as short as 63 nanoseconds, in a frozen solution of nitroxide free-radicals at temperatures as high as 190 kelvin. Both free-electron lasers and the quasi-optical technology developed for the spectrometer are scalable to frequencies well in excess of one terahertz, opening the way to high-power pulsed EPR spectroscopy up to the highest static magnetic fields currently available.

  2. Pulsed Power for a Dynamic Transmission Electron Microscope

    SciTech Connect

    dehope, w j; browning, n; campbell, g; cook, e; king, w; lagrange, t; reed, b; stuart, b; Shuttlesworth, R; Pyke, B

    2009-06-25

    Lawrence Livermore National Laboratory (LLNL) has converted a commercial 200kV transmission electron microscope (TEM) into an ultrafast, nanoscale diagnostic tool for material science studies. The resulting Dynamic Transmission Electron Microscope (DTEM) has provided a unique tool for the study of material phase transitions, reaction front analyses, and other studies in the fields of chemistry, materials science, and biology. The TEM's thermionic electron emission source was replaced with a fast photocathode and a laser beam path was provided for ultraviolet surface illumination. The resulting photoelectron beam gives downstream images of 2 and 20 ns exposure times at 100 and 10 nm spatial resolution. A separate laser, used as a pump pulse, is used to heat, ignite, or shock samples while the photocathode electron pulses, carefully time-synchronized with the pump, function as probe in fast transient studies. The device functions in both imaging and diffraction modes. A laser upgrade is underway to make arbitrary cathode pulse trains of variable pulse width of 10-1000 ns. Along with a fast e-beam deflection scheme, a 'movie mode' capability will be added to this unique diagnostic tool. This talk will review conventional electron microscopy and its limitations, discuss the development and capabilities of DTEM, in particularly addressing the prime and pulsed power considerations in the design and fabrication of the DTEM, and conclude with the presentation of a deflector and solid-state pulser design for Movie-Mode DTEM.

  3. Electronic properties of solids excited with intermediate laser power densities

    NASA Astrophysics Data System (ADS)

    Sirotti, Fausto; Tempo Beamline Team

    Intermediate laser power density up to about 100 GW/cm2 is below the surface damage threshold is currently used to induce modification in the physical properties on short time scales. The absorption of a short laser pulse induces non-equilibrium electronic distributions followed by lattice-mediated equilibrium taking place only in the picosecond range. The role of the hot electrons is particularly important in several domains as for example fast magnetization and demagnetization processes, laser induced phase transitions, charge density waves. Angular resolved photoelectron spectroscopy measuring directly energy and momentum of electrons is the most adapted tool to study the electronic excitations at short time scales during and after fast laser excitations. The main technical problem is the space charge created by the pumping laser pulse. I will present angular resolved multiphoton photoemission results obtained with 800 nm laser pulses showing how space charge electrons emitted during fast demagnetization processes can be measured. Unable enter Affiliation: CNRS-SOLEIL Synchrotron L'Orme des Merisiers , Saint Aubin 91192 Gif sur Yvette France.

  4. The cardiac implantable electronic device power source: evolution and revolution.

    PubMed

    Mond, Harry G; Freitag, Gary

    2014-12-01

    Although the first power source for an implantable pacemaker was a rechargeable nickel-cadmium battery, it was rapidly replaced by an unreliable short-life zinc-mercury cell. This sustained the small pacemaker industry until the early 1970s, when the lithium-iodine cell became the dominant power source for low voltage, microampere current, single- and dual-chamber pacemakers. By the early 2000s, a number of significant advances were occurring with pacemaker technology which necessitated that the power source should now provide milliampere current for data logging, telemetric communication, and programming, as well as powering more complicated pacing devices such as biventricular pacemakers, treatment or prevention of atrial tachyarrhythmias, and the integration of innovative physiologic sensors. Because the current delivery of the lithium-iodine battery was inadequate for these functions, other lithium anode chemistries that can provide medium power were introduced. These include lithium-carbon monofluoride, lithium-manganese dioxide, and lithium-silver vanadium oxide/carbon mono-fluoride hybrids. In the early 1980s, the first implantable defibrillators for high voltage therapy used a lithium-vanadium pentoxide battery. With the introduction of the implantable cardioverter defibrillator, the reliable lithium-silver vanadium oxide became the power source. More recently, because of the demands of biventricular pacing, data logging, and telemetry, lithium-manganese dioxide and the hybrid lithium-silver vanadium oxide/carbon mono-fluoride laminate have also been used. Today all cardiac implantable electronic devices are powered by lithium anode batteries. PMID:25387600

  5. Multi-port power electronic interface for renewable energy sources

    NASA Astrophysics Data System (ADS)

    Jiang, Wei

    Energy intensive products and services are penetrating people's daily life as well as different sectors of industry during recent decades. Further effort to improve efficiency, reduce green house gas and hazardous particle emission lead to the emergence of the "more electric" concept in several industries including transportation. This trend, however, burdens the aging power system and existing local power networks. To offer a remedy to the problem and a smooth transition to a more reliable, more diverse, and more efficient power grid of the future, the concept of Multi-port Power Electronic Interface (MPEI) for localized power processing is introduced in this dissertation, which interfaces and manages various sources, loads and storages. Different means of integrating multiple sources and storages into the existing power system are studied and evaluated; the six phase-leg structure is chosen to interface five sources/loads: fuel cell, wind turbine, solar cell, battery and utility grid. Partitioning of source-interface and load-interface on a system level as well as analysis and modeling on small signal level are performed. A novel control structure for source-interface is proposed in the design, which forms Controlled Quasi Current Source (CQCS) during the load sharing operation and offers several salient advantages: • Inherent average current-mode control. • Easy share of steady state current/power. • Share of load dynamics for better source protection. Local control loops for various input ports are designed based on linearized system model; controller performance is tuned to accommodate the characteristics of different sources. To maintain a sustainable operation, different modes of operation are defined for MPEI; detailed state-transition with associated events are also defined in each operation mode. Prototype of MPEI is built and control system is implemented digitally in a digital signal processor; steady state and transient performance of MPEI is

  6. Emerging Two-Phase Cooling Technologies for Power Electronic Inverters

    SciTech Connect

    Hsu, J.S.

    2005-08-17

    In order to meet the Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FVCT) goals for volume, weight, efficiency, reliability, and cost, the cooling of the power electronic devices, traction motors, and generators is critical. Currently the power electronic devices, traction motors, and generators in a hybrid electric vehicle (HEV) are primarily cooled by water-ethylene glycol (WEG) mixture. The cooling fluid operates as a single-phase coolant as the liquid phase of the WEG does not change to its vapor phase during the cooling process. In these single-phase systems, two cooling loops of WEG produce a low temperature (around 70 C) cooling loop for the power electronics and motor/generator, and higher temperature loop (around 105 C) for the internal combustion engine. There is another coolant option currently available in automobiles. It is possible to use the transmission oil as a coolant. The oil temperature exists at approximately 85 C which can be utilized to cool the power electronic and electrical devices. Because heat flux is proportional to the temperature difference between the device's hot surface and the coolant, a device that can tolerate higher temperatures enables the device to be smaller while dissipating the same amount of heat. Presently, new silicon carbide (SiC) devices and high temperature direct current (dc)-link capacitors, such as Teflon capacitors, are available but at significantly higher costs. Higher junction temperature (175 C) silicon (Si) dies are gradually emerging in the market, which will eventually help to lower hardware costs for cooling. The development of high-temperature devices is not the only way to reduce device size. Two-phase cooling that utilizes the vaporization of the liquid to dissipate heat is expected to be a very effective cooling method. Among two-phase cooling methods, different technologies such as spray, jet impingement, pool boiling and submersion, etc. are being developed. The Oak Ridge

  7. Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)

    SciTech Connect

    Narumanchi, S.

    2014-09-01

    This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

  8. Advanced Power Electronic Interfaces for Distributed Energy Systems Part 1: Systems and Topologies

    SciTech Connect

    Kramer, W.; Chakraborty, S.; Kroposki, B.; Thomas, H.

    2008-03-01

    This report summarizes power electronic interfaces for DE applications and the topologies needed for advanced power electronic interfaces. It focuses on photovoltaic, wind, microturbine, fuel cell, internal combustion engine, battery storage, and flywheel storage systems.

  9. Applications and research on nano power electronics: an adventure beyond quantum electronics

    NASA Astrophysics Data System (ADS)

    Chakraborty, Arindam; Emadi, Ali

    2005-06-01

    This paper is a roadmap to the exhaustive role of the newly emerging field of nanotechnology in various application and research areas. Some of the today's important topics are plasma, dielectric layer semiconductor, and carbon nanoparticle based technologies. Carbon nanotubes are very useful for the purpose of fabricating nano opto power devices. The basic concept behind tunneling of electrons has been utilized to define another scope of this technology, and thus came many quantum scale tunneling devices and elements. Fabrication of crystal semiconductors of high quality along with oxides of nano aspect would give rise to superior device performance and find applications such as LEDs, LASER, VLSI technology and also in highly efficient solar cells. Many nano-research based organizations are fully devoted to develop nano power cells, which would give birth to new battery cells, tunneling devises, with high power quality, longer lives, and higher activation rates. Different electronics industries as well as the military organizations would be largely benefited due to this major component and system design ideas of 'Smart Power' technologies. The contribution of nano scale power electronics would be realized in various fields like switching devices, electromechanical systems and quantum science. Such a sophisticated technology will have great impact on the modernization of robotics; space systems, automotive systems and many other fields. The highly emerging field of nanomedicine according to specialists would bring a dramatic revolution in the present century. However nanomedicine is nothing but an integration of biology, medicine and technology. Thermoelectric materials as been referred earlier also are used in case of implantable medical equipments for generation of electric power sufficient for those equipments.

  10. Power Electronics Being Developed for Deep Space Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2003-01-01

    Electronic circuits and systems designed for deep space missions need to operate reliably and efficiently in harsh environments that include very low temperatures. Spacecraft that operate in such cold environments carry a large number of heaters so that the ambient temperature for the onboard electronics remains near 20 C. Electronics that can operate at cryogenic temperatures will simplify system design and reduce system size and weight by eliminating the heaters and their associated structures. As a result, system development and launch cost will be reduced. At the NASA Glenn Research Center, an ongoing program is focusing on the development of power electronics geared for deep space low-temperature environments. The research and development efforts include electrical components design, circuit design and construction, and system integration and demonstration at cryogenic temperatures. Investigations are being carried out on circuits and systems that are targeted for use in NASA missions where low temperatures will be encountered: devices such as ceramic and tantalum capacitors, metal film resistors, semiconductor switches, magnetics, and integrated circuits including dc/dc converters, operational amplifiers, voltage references, and motor controllers. Test activities cover a wide range of device and circuit performance under simple as well as complex test conditions, such as multistress and thermal cycling. The effect of low-temperature conditions on the switching characteristics of an advanced silicon-on-insulator field effect transistor is shown. For gate voltages (VGS) below 2.6 V, drain currents at -190 C are lower than drain currents at room temperature (20 C).

  11. Phase synchronized quasiperiodicity in power electronic inverter systems

    NASA Astrophysics Data System (ADS)

    Zhusubaliyev, Zhanybai T.; Mosekilde, Erik; Andriyanov, Alexey I.; Shein, Vladimir V.

    2014-02-01

    The development of switch-mode operated power electronic converter systems has provided a broad range of new effective approaches to the conversion of electric power. In this paper we describe the transitions from regular periodic operation to quasiperiodicity and high-periodic resonance behavior that can be observed in a pulse-width modulated DC/AC converter operating with high feedback gain. We demonstrate the occurrence of two different types of torus birth bifurcations and present a series of phase portraits illustrating the appearance of phase-synchronized quasiperiodicity. Our numerical findings are verified through comparison with an experimental inverter system. The results shed light on the transitions to quasiperiodicity and to various forms of three-frequency dynamics in non-smooth systems.

  12. Electron beam diagnostic for profiling high power beams

    DOEpatents

    Elmer, John W.; Palmer, Todd A.; Teruya, Alan T.

    2008-03-25

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  13. Dymalloy: A composite substrate for high power density electronic components

    SciTech Connect

    Kerns, J.A.; Colella, N.J.; Makowiecki, D.; Davidson, H.L.

    1995-06-29

    High power density electronic components such as fast microprocessors and power semiconductors must operate below the maximum rated device junction temperature to ensure reliability. function temperatures are determined by the amount of heat generated and the thermal resistance from junction to the ambient thermal environment. Two of the Largest contributions to this thermal resistance are the die attach interface and the package base. A decrease in these resistances can allow increased component packing density in MCMs, reduction of heat sink volume in tightly packed systems, enable the use of higher performance circuit components, and improve reliability. The substrate for high power density devices is the primary thermal link between the junctions and the heat sink. Present high power multichip modules and single chip packages use substrate materials such as silicon nitride or copper tungsten that have thermal conductivity in the range of 200 W/mK. We have developed Dymalloy, a copper-diamond composite, that has a thermal conductivity of 420 W/mK and an adjustable coefficient of thermal expansion, nominally 5.5 ppm/C at 25 C, compatible with silicon and gallium arsenide. Because of the matched coefficient of thermal expansion it is possible to use low thermal resistance hard die attach methods. Dymalloy is a composite material made using micron size Type I diamond powder that has a published thermal conductivity of 600 to 1000 W/mK in a metal matrix that has a thermal conductivity of 350 W/mK. The region of chemical bonding between the matrix material and diamond is limited to approximately 1000 A to maintain a high effective thermal conductivity for the composite. The material may be fabricated in near net shapes. Besides having exceptional thermal properties, the mechanical properties of this material also make it an attractive candidate as an electronic component substrate material.

  14. An Educational Laboratory for Digital Control and Rapid Prototyping of Power Electronic Circuits

    ERIC Educational Resources Information Center

    Choi, Sanghun; Saeedifard, M.

    2012-01-01

    This paper describes a new educational power electronics laboratory that was developed primarily to reinforce experimentally the fundamental concepts presented in a power electronics course. The developed laboratory combines theoretical design, simulation studies, digital control, fabrication, and verification of power-electronic circuits based on…

  15. The Influence of Power on Trading Partner Trust in Electronic Commerce.

    ERIC Educational Resources Information Center

    Ratnasingam, Pauline

    2000-01-01

    Discussion of power in electronic commerce focuses on the impact of power in the adoption of electronic data interchange. Presents a case study of Ford Motor Company in Australia that shows negative (coercive) power resulted in uncertainty, whereas positive (persuasive) power resulted in open communications, thus building trading partner trust.…

  16. Electron beam current in high power cylindrical diode

    SciTech Connect

    Roy, Amitava; Menon, R.; Mitra, S.; Sharma, Vishnu; Singh, S. K.; Nagesh, K. V.; Chakravarthy, D. P.

    2010-01-15

    Intense electron beam generation studies were carried out in high power cylindrical diode to investigate the effect of the accelerating gap and diode voltage on the electron beam current. The diode voltage has been varied from 130 to 356 kV, whereas the current density has been varied from 87 to 391 A/cm{sup 2} with 100 ns pulse duration. The experimentally obtained electron beam current in the cylindrical diode has been compared with the Langmuir-Blodgett law. It was found that the diode current can be explained by a model of anode and cathode plasma expanding toward each other. However, the diode voltage and current do not follow the bipolar space-charge limited flow model. It was also found that initially only a part of the cathode take part in the emission process. The plasma expands at 4.2 cm/mus for 1.7 cm anode-cathode gap and the plasma velocity decreases for smaller gaps. The electrode plasma expansion velocity of the cylindrical diode is much smaller as compared with the planar diode for the same accelerating gap and diode voltage. Therefore, much higher voltage can be obtained for the cylindrical diodes as compared with the planar diodes for the same accelerating gap.

  17. GaN Technology for Power Electronic Applications: A Review

    NASA Astrophysics Data System (ADS)

    Flack, Tyler J.; Pushpakaran, Bejoy N.; Bayne, Stephen B.

    2016-06-01

    Power semiconductor devices based on silicon (Si) are quickly approaching their limits, set by fundamental material properties. In order to address these limitations, new materials for use in devices must be investigated. Wide bandgap materials, such as silicon carbide (SiC) and gallium nitride (GaN) have suitable properties for power electronic applications; however, fabrication of practical devices from these materials may be challenging. SiC technology has matured to point of commercialized devices, whereas GaN requires further research to realize full material potential. This review covers fundamental material properties of GaN as they relate to Si and SiC. This is followed by a discussion of the contemporary issues involved with bulk GaN substrates and their fabrication and a brief overview of how devices are fabricated, both on native GaN substrate material and non-native substrate material. An overview of current device structures, which are being analyzed for use in power switching applications, is then provided; both vertical and lateral device structures are considered. Finally, a brief discussion of prototypes currently employing GaN devices is given.

  18. Passive Two-Phase Cooling of Automotive Power Electronics: Preprint

    SciTech Connect

    Moreno, G.; Jeffers, J. R.; Narumanchi, S.; Bennion, K.

    2014-08-01

    Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated, and tests were conducted using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator design that incorporates features to improve performance and reduce size was conceived. Simulation results indicate its thermal resistance can be 37% to 48% lower than automotive dual side cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers--plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.

  19. Passive Two-Phase Cooling for Automotive Power Electronics

    SciTech Connect

    Moreno, G.; Jeffers, J. R.; Narumanchi, S.; Bennion, K.

    2014-01-01

    Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated and tested using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245 fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator concept that incorporates features to improve performance and reduce its size was designed. Simulation results indicate the concept's thermal resistance can be 58% to 65% lower than automotive dual-side-cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers-plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.

  20. Photovoltaic Shading Testbed for Module-Level Power Electronics

    SciTech Connect

    Deline, C.; Meydbray, J.; Donovan, M.; Forrest, J.

    2012-05-01

    This document describes a repeatable test procedure that attempts to simulate shading situations, as would be experienced by typical residential rooftop photovoltaic (PV) systems. This type of shading test is particularly useful to evaluate the impact of different power conversion setups, including microinverters, DC power optimizers and string inverters, on overall system performance. The performance results are weighted based on annual estimates of shade to predict annual performance improvement. A trial run of the test procedure was conducted with a side by side comparison of a string inverter with a microinverter, both operating on identical 8kW solar arrays. Considering three different shade weighting conditions, the microinverter was found to increase production by 3.7% under light shading, 7.8% under moderate shading, and 12.3% under heavy shading, relative to the reference string inverter case. Detail is provided in this document to allow duplication of the test method at different test installations and for different power electronics devices.

  1. Industrial Arts 7-9. Power/Energy: Electricity/Electronics, Power Mechanics, Power/Energy.

    ERIC Educational Resources Information Center

    Manitoba Dept. of Education, Winnipeg.

    This guide for industrial arts grades 7-9 provides teachers with a curriculum for the subject cluster of power/energy. An "Overview" section presents the rationale, discusses how the content of the program is related to the developmental stages of the adolescent, describes the structure of the industrial arts program, and lists program goals and…

  2. Advanced Power Electronics Interfaces for Distributed Energy Workshop Summary: August 24, 2006, Sacramento, California

    SciTech Connect

    Treanton, B.; Palomo, J.; Kroposki, B.; Thomas, H.

    2006-10-01

    The Advanced Power Electronics Interfaces for Distributed Energy Workshop, sponsored by the California Energy Commission Public Interest Energy Research program and organized by the National Renewable Energy Laboratory, was held Aug. 24, 2006, in Sacramento, Calif. The workshop provided a forum for industry stakeholders to share their knowledge and experience about technologies, manufacturing approaches, markets, and issues in power electronics for a range of distributed energy resources. It focused on the development of advanced power electronic interfaces for distributed energy applications and included discussions of modular power electronics, component manufacturing, and power electronic applications.

  3. The power of glove: Soft microbial fuel cell for low-power electronics

    NASA Astrophysics Data System (ADS)

    Winfield, Jonathan; Chambers, Lily D.; Stinchcombe, Andrew; Rossiter, Jonathan; Ieropoulos, Ioannis

    2014-03-01

    A novel, soft microbial fuel cell (MFC) has been constructed using the finger-piece of a standard laboratory natural rubber latex glove. The natural rubber serves as structural and proton exchange material whilst untreated carbon veil is used for the anode. A soft, conductive, synthetic latex cathode is developed that coats the outside of the glove. This inexpensive, lightweight reactor can without any external power supply, start up and energise a power management system (PMS), which steps-up the MFC output (0.06-0.17 V) to practical levels for operating electronic devices (>3 V). The MFC is able to operate for up to 4 days on just 2 mL of feedstock (synthetic tryptone yeast extract) without any cathode hydration. The MFC responds immediately to changes in fuel-type when the introduction of urine accelerates the cycling times (35 vs. 50 min for charge/discharge) of the MFC and PMS. Following starvation periods of up to 60 h at 0 mV the MFC is able to cold start the PMS simply with the addition of 2 mL fresh feedstock. These findings demonstrate that cheap MFCs can be developed as sole power sources and in conjunction with advancements in ultra-low power electronics, can practically operate small electrical devices.

  4. Compact, high power electron beam based terahertz sources.

    SciTech Connect

    Biedron, S. G.; Lewellen, J. W.; Milton, S. V.; Gopalsami, N.; Schneider, J. F.; Skubal, L.; Li, Y. L.; Virgo, M.; Gallerano, G. P.; Doria, A.; Giovenale, E.; Messina, G.; Spasovsky, I. P.; Office of The Director-Applied Science and Technology; Univ. of Maryland; ENEA

    2007-08-01

    Although terahertz (THz) radiation was first observed about 100 years ago, this portion of the electromagnetic spectrum at the boundary between the microwaves and the infrared has been, for a long time, rather poorly explored. This situation changed with the rapid development of coherent THz sources such as solid-state oscillators, quantum cascade lasers, optically pumped solid-state devices, and novel coherent radiator devices. These in turn have stimulated a wide variety of applications from material science to telecommunications, from biology to biomedicine. Recently, there have been two related compact coherent radiation devices invented able to produce up to megawatts of peak THz power by inducing a ballistic bunching effect on the electron beam, forcing the beam to radiate coherently. An introduction to the two systems and the corresponding output photon beam characteristics will be provided.

  5. A High Power Density Power System Electronics for NASA's Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Hernandez-Pellerano, A.; Stone, R.; Travis, J.; Kercheval, B.; Alkire, G.; Ter-Minassian, V.

    2009-01-01

    A high power density, modular and state-of-the-art Power System Electronics (PSE) has been developed for the Lunar Reconnaissance Orbiter (LRO) mission. This paper addresses the hardware architecture and performance, the power handling capabilities, and the fabrication technology. The PSE was developed by NASA s Goddard Space Flight Center (GSFC) and is the central location for power handling and distribution of the LRO spacecraft. The PSE packaging design manages and distributes 2200W of solar array input power in a volume less than a cubic foot. The PSE architecture incorporates reliable standard internal and external communication buses, solid state circuit breakers and LiIon battery charge management. Although a single string design, the PSE achieves high reliability by elegantly implementing functional redundancy and internal fault detection and correction. The PSE has been environmentally tested and delivered to the LRO spacecraft for the flight Integration and Test. This modular design is scheduled to flight in early 2009 on board the LRO and Lunar Crater Observation and Sensing Satellite (LCROSS) spacecrafts and is the baseline architecture for future NASA missions such as Global Precipitation Measurement (GPM) and Magnetospheric MultiScale (MMS).

  6. Low Power Silicon Germanium Electronics for Microwave Radiometers

    NASA Technical Reports Server (NTRS)

    Doiron, Terence A.; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    Space-based radiometric observations of key hydrological parameters (e.g., soil moisture) at the spatial and temporal scales required in the post-2002 era face significant technological challenges. These measurements are based on relatively low frequency thermal microwave emission (at 1.4 GHz for soil moisture and salinity, 10 GHz and up for precipitation, and 19 and 37 GHz for snow). The long wavelengths at these frequencies coupled with the high spatial and radiometric resolutions required by the various global hydrology communities necessitate the use of very large apertures (e.g., greater than 20 m at 1.4 GHz) and highly integrated stable RF electronics on orbit. Radio-interferometric techniques such as Synthetic Thinned Array Radiometry (STAR), using silicon germanium (SiGe) low power radio frequency integrated circuits (RFIC), is one of the most promising technologies to enable very large non-rotating apertures in space. STAR instruments are composed of arrays of small antenna/receiving elements that are arranged so that the collecting area is smaller than an equivalent real aperture system, allowing very high packing densities for launch. A 20 meter aperture at L-band, for example, will require greater than 1000 of these receiving elements. SiGe RFIC's reduce power consumption enough to make an array like this possible in the power-limited environment of space flight. An overview of the state-of-the-art will be given, and current work in the area of SiGe radiometer development for soil moisture remote sensing will be discussed.

  7. Present developments and status of electron sources for high power gyrotron tubes and free electron masers

    NASA Astrophysics Data System (ADS)

    Thumm, M.

    1997-02-01

    Gyrotron oscillators are mainly used as high power mm-wave sources for start-up, electron cyclotron heating (ECH) and diagnostics of magnetically confined plasmas for controlled thermonuclear fusion research. 140 GHz (110 GHz) gyrotrons with output power Pout = 0.55 MW (0.93 MW), pulse length τ = 3.0 s (2.0 s) and efficiency η = 40% (38%) are commercially available. Total efficiencies around 50% have been achieved using single-stage depressed collectors. Diagnostic gyrotrons deliver Pout = 40 kW with τ = 40 μs at frequencies up to 650 GHz ( η≥4%). Recently, gyrotron oscillators have also been successfully used in materials processing, for example sintering of high performance, structural and functional ceramics. Such technological applications require gyrotrons with f≥24 GHz, Pout = 10-100 kW, CW, η≥30%. This paper reports on recent achievements in the development of very high power mm-wave gyrotron oscillators for long pulse or CW operation. In addition a short overview of the present development status of gyrotrons for technological applications, gyroklystron amplifiers, gyro-TWT amplifiers, cyclotron autoresonance masers (CARMs) and free electron masers (FEMs) is given. The most impressive FEM output parameters are: Pout = 2GW, τ = 20 ns, η = 13% at 140 GHz (LLNL) and Pout = 15 kW, τ = 20 μs, η = 5% in the range from 120 to 900 GHz (UCSB). In gyro-devices, magnetron injection guns (MIGs) operating in the temperature limited current regime have thus far been used most successfully. Diode guns as well as triode guns with a modulating anode are employed. Tests of a MIG operated under space-charge limited conditions have been not very successful. Electrostatic CW FEMs are driven by thermionic Pierce guns whereas pulsed high power devices employ many types of accelerators as drivers for example pulse-line accelerators, microtrons and induction or rf linacs, using field and photo emission cathodes.

  8. Transformational electronics: a powerful way to revolutionize our information world

    NASA Astrophysics Data System (ADS)

    Rojas, Jhonathan P.; Torres Sevilla, Galo A.; Ghoneim, Mohamed T.; Hussain, Aftab M.; Ahmed, Sally M.; Nassar, Joanna M.; Bahabry, Rabab R.; Nour, Maha; Kutbee, Arwa T.; Byas, Ernesto; Al-Saif, Bidoor; Alamri, Amal M.; Hussain, Muhammad M.

    2014-06-01

    With the emergence of cloud computation, we are facing the rising waves of big data. It is our time to leverage such opportunity by increasing data usage both by man and machine. We need ultra-mobile computation with high data processing speed, ultra-large memory, energy efficiency and multi-functionality. Additionally, we have to deploy energy-efficient multi-functional 3D ICs for robust cyber-physical system establishment. To achieve such lofty goals we have to mimic human brain, which is inarguably the world's most powerful and energy efficient computer. Brain's cortex has folded architecture to increase surface area in an ultra-compact space to contain its neuron and synapses. Therefore, it is imperative to overcome two integration challenges: (i) finding out a low-cost 3D IC fabrication process and (ii) foldable substrates creation with ultra-large-scale-integration of high performance energy efficient electronics. Hence, we show a low-cost generic batch process based on trench-protect-peel-recycle to fabricate rigid and flexible 3D ICs as well as high performance flexible electronics. As of today we have made every single component to make a fully flexible computer including non-planar state-of-the-art FinFETs. Additionally we have demonstrated various solid-state memory, movable MEMS devices, energy harvesting and storage components. To show the versatility of our process, we have extended our process towards other inorganic semiconductor substrates such as silicon germanium and III-V materials. Finally, we report first ever fully flexible programmable silicon based microprocessor towards foldable brain computation and wirelessly programmable stretchable and flexible thermal patch for pain management for smart bionics.

  9. Design of power electronics for TVC and EMA systems

    NASA Technical Reports Server (NTRS)

    Nelms, R. Mark; Bell, J. Brett; Shepherd, Michael T.

    1994-01-01

    The Component Development Division of the Propulsion Laboratory at Marshall Space Flight Center (MSFC) is currently developing a class of electromechanical actuators (EMA's) for use in space transportation applications such as thrust vector control (TVC) and propellant control valves (PCV). These high power servomechanisms will require rugged, reliable, and compact power electronic modules capable of modulating several hundred amperes of current at up to 270 volts. MSFC has selected the brushless dc motor for implementation in EMA's. A previous project performed by Auburn University examined the use of the resonant dc link (RDCL) inverter, pulse density modulation (PDM), and mos-controlled thyristors (MCT's) for speed control of a brushless dc motor. The speed of the brushless dc motor is proportional to the applied stator voltage. In a PDM system, the control system determines the number of resonant voltage pulses which must be applied to the stator to achieve a desired speed. The addition of a waveshaping circuit to the front end of a standard three-phase inverter yields a RDCL inverter; the resonant voltage pulses are produced through the action of this wave shaping circuit and the inverter. This project has focused on the implementation of a system which permits zero-voltage switching with the bus voltage clamped at the input voltage level. In the same manner as the RDCL inverter, the inverter selected for this implementation is a combination of waveshaping circuit and a standard three-phase inverter. In addition, this inverter allows a pulse-width modulated (PWM)-like control scheme instead of a PDM scheme. The operation of waveshaping circuit will be described through analysis and waveforms. Design relationships will also be presented.

  10. Design of power electronics for TVC and EMA systems

    NASA Astrophysics Data System (ADS)

    Nelms, R. Mark; Bell, J. Brett; Shepherd, Michael T.

    1994-11-01

    The Component Development Division of the Propulsion Laboratory at Marshall Space Flight Center (MSFC) is currently developing a class of electromechanical actuators (EMA's) for use in space transportation applications such as thrust vector control (TVC) and propellant control valves (PCV). These high power servomechanisms will require rugged, reliable, and compact power electronic modules capable of modulating several hundred amperes of current at up to 270 volts. MSFC has selected the brushless dc motor for implementation in EMA's. A previous project performed by Auburn University examined the use of the resonant dc link (RDCL) inverter, pulse density modulation (PDM), and mos-controlled thyristors (MCT's) for speed control of a brushless dc motor. The speed of the brushless dc motor is proportional to the applied stator voltage. In a PDM system, the control system determines the number of resonant voltage pulses which must be applied to the stator to achieve a desired speed. The addition of a waveshaping circuit to the front end of a standard three-phase inverter yields a RDCL inverter; the resonant voltage pulses are produced through the action of this wave shaping circuit and the inverter. This project has focused on the implementation of a system which permits zero-voltage switching with the bus voltage clamped at the input voltage level. In the same manner as the RDCL inverter, the inverter selected for this implementation is a combination of waveshaping circuit and a standard three-phase inverter. In addition, this inverter allows a pulse-width modulated (PWM)-like control scheme instead of a PDM scheme. The operation of waveshaping circuit will be described through analysis and waveforms. Design relationships will also be presented.

  11. Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions

    National Institute of Standards and Technology Data Gateway

    SRD 124 Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions (Web, free access)   The databases ESTAR, PSTAR, and ASTAR calculate stopping-power and range tables for electrons, protons, or helium ions. Stopping-power and range tables can be calculated for electrons in any user-specified material and for protons and helium ions in 74 materials.

  12. Integration issues of a plasma contactor power electronics unit

    SciTech Connect

    Pinero, L.R.; York, K.W.; Bowers, G.E.

    1995-12-31

    A hollow cathode-based plasma contactor is baselined on International Space Station Alpha (ISSA) for spacecraft charge control. The plasma contactor system consists of a hollow cathode assembly (HCA), a power electronics unit (PEU), and an expellant management unit (EMU). The plasma contactor has recently been required to operate in a cyclic mode to conserve xenon expellant and extend system life. Originally, a DC cathode heater converter was baselined for a continuous operation mode because only a few ignitions of the hollow cathode were expected. However, for cyclic operation, a DC heater supply can potentially result in hollow cathode heater component failure due to the DC electrostatic field. This can prevent the heater from attaining the proper cathode tip temperature for reliable ignition of the hollow cathode. To mitigate this problem, an AC cathode heater supply was therefore designed, fabricated, and installed into a modified PEU. The PEU was tested using resistive loads and then integrated with an engineering model hollow cathode to demonstrate stable steady-state operation. Integration issues such as the effect of line and load impedance on the output of the AC cathode heater supply and the characterization of the temperature profile of the heater under AC excitation were investigated.

  13. Spray cooling characteristics of nanofluids for electronic power devices

    NASA Astrophysics Data System (ADS)

    Hsieh, Shou-Shing; Leu, Hsin-Yuan; Liu, Hao-Hsiang

    2015-03-01

    The performance of a single spray for electronic power devices using deionized (DI) water and pure silver (Ag) particles as well as multi-walled carbon nanotube (MCNT) particles, respectively, is studied herein. The tests are performed with a flat horizontal heated surface using a nozzle diameter of 0.5 mm with a definite nozzle-to-target surface distance of 25 mm. The effects of nanoparticle volume fraction and mass flow rate of the liquid on the surface heat flux, including critical heat flux (CHF), are explored. Both steady state and transient data are collected for the two-phase heat transfer coefficient, boiling curve/ cooling history, and the corresponding CHF. The heat transfer removal rate can reach up to 274 W/cm2 with the corresponding CHF enhancement ratio of 2.4 for the Ag/water nanofluids present at a volume fraction of 0.0075% with a low mass flux of 11.9 × 10-4 kg/cm2s.

  14. Spray cooling characteristics of nanofluids for electronic power devices.

    PubMed

    Hsieh, Shou-Shing; Leu, Hsin-Yuan; Liu, Hao-Hsiang

    2015-01-01

    The performance of a single spray for electronic power devices using deionized (DI) water and pure silver (Ag) particles as well as multi-walled carbon nanotube (MCNT) particles, respectively, is studied herein. The tests are performed with a flat horizontal heated surface using a nozzle diameter of 0.5 mm with a definite nozzle-to-target surface distance of 25 mm. The effects of nanoparticle volume fraction and mass flow rate of the liquid on the surface heat flux, including critical heat flux (CHF), are explored. Both steady state and transient data are collected for the two-phase heat transfer coefficient, boiling curve/ cooling history, and the corresponding CHF. The heat transfer removal rate can reach up to 274 W/cm(2) with the corresponding CHF enhancement ratio of 2.4 for the Ag/water nanofluids present at a volume fraction of 0.0075% with a low mass flux of 11.9 × 10(-4) kg/cm(2)s. PMID:25852429

  15. Integration issues of a plasma contactor Power Electronics Unit

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; York, Kenneth W.; Bowers, Glen E.

    1995-01-01

    A hollow cathode-based plasma contactor is baselined on International Space Station Alpha (ISSA) for spacecraft charge control. The plasma contactor system consists of a hollow cathode assembly (HCA), a power electronics unit (PEU), and an expellant management unit (EMU). The plasma contactor has recently been required to operate in a cyclic mode to conserve xenon expellant and extend system life. Originally, a DC cathode heater converter was baselined for a continuous operation mode because only a few ignitions of the hollow cathode were expected. However, for cyclic operation, a DC heater supply can potentially result in hollow cathode heater component failure due to the DC electrostatic field. This can prevent the heater from attaining the proper cathode tip temperature for reliable ignition of the hollow cathode. To mitigate this problem, an AC cathode heater supply was therefore designed, fabricated, and installed into a modified PEU. The PEU was tested using resistive loads and then integrated with an engineering model hollow cathode to demonstrate stable steady-state operation. Integration issues such as the effect of line and load impedance on the output of the AC cathode heater supply and the characterization of the temperature profile of the heater under AC excitation were investigated.

  16. Electronic Power Switch for Fault-Tolerant Networks

    NASA Technical Reports Server (NTRS)

    Volp, J.

    1987-01-01

    Power field-effect transistors reduce energy waste and simplify interconnections. Current switch containing power field-effect transistor (PFET) placed in series with each load in fault-tolerant power-distribution system. If system includes several loads and supplies, switches placed in series with adjacent loads and supplies. System of switches protects against overloads and losses of individual power sources.

  17. Power and Charge Deposition and Electron Transport in Disordered SiO2 Layers Under Electron Bombardment

    NASA Astrophysics Data System (ADS)

    Wilson, Gregory; Dennison, J. R.; Jensen, Amberly; Dekany, Justin

    2013-03-01

    Power and charge deposition in multilayer dielectrics from electron bombardment is dependent on the flux and energy-dependent electron penetration depth of the electron beam. Using the Continuous Slow Down Approximation (CSDA), a composite analytical formula has been developed to approximate the electron range which can be related to the dose rate, deposited power and Radiation Induced Conductivity (RIC). Based on the constituent layer geometry and material, the deposited charge can also be inferred. Three separate pulsed electron beam experiments were conducted to measure charge deposition, power dependent cathodoluminescence and RIC. The power and charge deposition experiments measured the net surface potential, electrode currents and electron induced luminescence of disordered SiO2 multilayer dielectrics with a grounded or floating conductive middle layer, using beam energies from 200 eV to 25 keV at <40 K to room temperature. These results showed that the power and charge deposition's dependence on electron beam flux and incident energy compare favorably with the model predictions. The RIC experiments measured electrode currents using disordered SiO2 layers from <40 K to >320 K with dose rates from 10-5 Gy/s to 10-1 Gy/s. The onset of RIC in the energy-dependant depth of the RIC region provides an explanation for observed retrograde charging. This work supported by the NASA Goddard Space Flight Center and an NRC Senior Research Fellowship at AFRL.

  18. An electromagnetic energy harvester for powering consumer electronics

    NASA Astrophysics Data System (ADS)

    Liu, Xiyuan

    This thesis introduces an electromagnetic vibratory energy harvester to power consumer electronics by generating electricity from the strides taken during walking or jogging. The harvester consists of a magnetic pendulum oscillating between two fixed magnets. The pendulum behaves similar to a rotor in a DC generator, while the fixed magnets, which are poled opposite to the pendulum, provide magnetic restoring forces similar to mechanical springs. When attached to a person's arm, the swinging motion subjects the magnetic pendulum to base excitations. Consequently, the pendulum oscillates near a stator which has three poles of wound copper coils. The motion of the pendulum induces a time-varying magnetic field in the flux path which generates electricity in the coils as per Faraday's law. To better understand the response behavior of the device, the thesis presents a nonlinear electromechanical model that describes the interaction between the mechanical and electrical subsystems. Experimental system identification is then implemented to characterize several unknown design parameters, including the nonlinear magnetic restoring torque, the mechanical damping coefficient, and the electromechanical coupling. The derived nonlinear mathematical model, which mimics the behavior of a damped Duffing oscillator, is then solved analytically using the method of multiple scales and the results are compared to experimental data showing good agreement for the design parameters considered. The performance of the device in charging a small battery while jogging is investigated. The motion of a typical swinging arm in terms of frequency and acceleration is reproduced on an electrodynamic shaker and used to charge a 100 μAh battery yielding an estimated charging time of 12 minutes.

  19. Power Electronics Design Laboratory Exercise for Final-Year M.Sc. Students

    ERIC Educational Resources Information Center

    Max, L.; Thiringer, T.; Undeland, T.; Karlsson, R.

    2009-01-01

    This paper presents experiences and results from a project task in power electronics for students at Chalmers University of Technology, Goteborg, Sweden, based on a flyback test board. The board is used in the course Power Electronic Devices and Applications. In the project task, the students design snubber circuits, improve the control of the…

  20. Power Electronics Thermal Management R&D; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Waye, Scot

    2015-06-10

    Presentation containing an update for the Power Electronics Thermal Management project in the Electric Drive Train task funded by the Vehicle Technology Office of DOE. This presentation outlines the purpose, plan, and results of research thus far for cooling and material selection strategies to manage heat in power electronic assemblies such as inverters, converters, and chargers.

  1. Novel SiGe Semiconductor Devices for Cryogenic Power Electronics

    NASA Astrophysics Data System (ADS)

    Ward, R. R.; Dawson, W. J.; Zhu, L.; Kirschman, R. K.; Niu, G.; Nelms, R. M.; Mueller, O.; Hennessy, M. J.; Mueller, E. K.

    2006-03-01

    It is predicted that systems for electrical power generation, conversion and distribution on ships and aerospace vehicles could be made smaller, lighter, more efficient, more versatile, and lower maintenance by operating these systems—partly or entirely—at cryogenic temperatures. In view of this, we have taken initial steps in the investigation and development of SiGe semiconductor devices for cryogenic power applications. We have (1) simulated, designed, fabricated and characterized SiGe power diodes, and (2) evaluated these SiGe diodes in cryogenic power converters. Our target low-end temperature is 55 K, although we characterize devices and circuits down to approximately 30 K. We have demonstrated, experimentally, favorable characteristics for SiGe power diodes and have shown higher conversion efficiency compared to equivalent Si power diodes in a 100-W boost switching DC-DC power converter, over an ambient temperature range of 300 K down to approximately 30 K.

  2. Energy regeneration model of self-consistent field of electron beams into electric power*

    NASA Astrophysics Data System (ADS)

    Kazmin, B. N.; Ryzhov, D. R.; Trifanov, I. V.; Snezhko, A. A.; Savelyeva, M. V.

    2016-04-01

    We consider physic-mathematical models of electric processes in electron beams, conversion of beam parameters into electric power values and their transformation into users’ electric power grid (onboard spacecraft network). We perform computer simulation validating high energy efficiency of the studied processes to be applied in the electric power technology to produce the power as well as electric power plants and propulsion installation in the spacecraft.

  3. Power electronics and electric machinery challenges and opportunities in electric and hybrid vehicles

    SciTech Connect

    Adams, D.J.; Hsu, J.S.; Young, R.W.; Peng, F.Z.

    1997-06-01

    The development of power electronics and electric machinery presents significant challenges to the advancement of electric and hybrid vehicles. Electronic components and systems development for vehicle applications have progressed from the replacement of mechanical systems to the availability of features that can only be realized through interacting electronic controls and devices. Near-term applications of power electronics in vehicles will enable integrated powertrain controls, integrated chassis system controls, and navigation and communications systems. Future applications of optimized electric machinery will enable highly efficient and lightweight systems. This paper will explore the areas where research and development is required to ensure the continued development of power electronics and electric machines to meet the rigorous demands of automotive applications. Additionally, recent advances in automotive related power electronics and electric machinery at Oak Ridge National Laboratory will be explained. 3 refs., 5 figs.

  4. Voltage Regulator Chip: Power Supplies on a Chip

    SciTech Connect

    2010-09-01

    ADEPT Project: CPES at Virginia Tech is finding ways to save real estate on a computer's motherboard that could be used for other critical functions. Every computer processor today contains a voltage regulator that automatically maintains a constant level of electricity entering the device. These regulators contain bulky components and take up about 30% of a computer's motherboard. CPES at Virginia Tech is developing a voltage regulator that uses semiconductors made of gallium nitride on silicon (GaN-on-Si) and high-frequency soft magnetic material. These materials are integrated on a small, 3D chip that can handle the same amount of power as traditional voltage regulators at 1/10 the size and with improved efficiency. The small size also frees up to 90% of the motherboard space occupied by current voltage regulators.

  5. Comparison of Wide-Bandgap Semiconductors for Power Electronics Applications

    SciTech Connect

    Ozpineci, B.

    2004-01-02

    Recent developmental advances have allowed silicon (Si) semiconductor technology to approach the theoretical limits of the Si material; however, power device requirements for many applications are at a point that the present Si-based power devices cannot handle. The requirements include higher blocking voltages, switching frequencies, efficiency, and reliability. To overcome these limitations, new semiconductor materials for power device applications are needed. For high power requirements, wide-bandgap semiconductors like silicon carbide (SiC), gallium nitride (GaN), and diamond, with their superior electrical properties, are likely candidates to replace Si in the near future. This report compares wide-bandgap semiconductors with respect to their promise and applicability for power applications and predicts the future of power device semiconductor materials.

  6. Bi-directional magnetic resonance based wireless power transfer for electronic devices

    SciTech Connect

    Kar, Durga P.; Nayak, Praveen P.; Bhuyan, Satyanarayan; Mishra, Debasish

    2015-09-28

    In order to power or charge electronic devices wirelessly, a bi-directional wireless power transfer method has been proposed and experimentally investigated. In the proposed design, two receiving coils are used on both sides of a transmitting coil along its central axis to receive the power wirelessly from the generated magnetic fields through strongly coupled magnetic resonance. It has been observed experimentally that the maximum power transfer occurs at the operating resonant frequency for optimum electric load connected across the receiving coils on both side. The optimum wireless power transfer efficiency is 88% for the bi-directional power transfer technique compared 84% in the one side receiver system. By adopting the developed bi-directional power transfer method, two electronic devices can be powered up or charged simultaneously instead of a single device through usual one side receiver system without affecting the optimum power transfer efficiency.

  7. Bi-directional magnetic resonance based wireless power transfer for electronic devices

    NASA Astrophysics Data System (ADS)

    Kar, Durga P.; Nayak, Praveen P.; Bhuyan, Satyanarayan; Mishra, Debasish

    2015-09-01

    In order to power or charge electronic devices wirelessly, a bi-directional wireless power transfer method has been proposed and experimentally investigated. In the proposed design, two receiving coils are used on both sides of a transmitting coil along its central axis to receive the power wirelessly from the generated magnetic fields through strongly coupled magnetic resonance. It has been observed experimentally that the maximum power transfer occurs at the operating resonant frequency for optimum electric load connected across the receiving coils on both side. The optimum wireless power transfer efficiency is 88% for the bi-directional power transfer technique compared 84% in the one side receiver system. By adopting the developed bi-directional power transfer method, two electronic devices can be powered up or charged simultaneously instead of a single device through usual one side receiver system without affecting the optimum power transfer efficiency.

  8. Low-power cholesteric LCDs and electronic books

    NASA Astrophysics Data System (ADS)

    Khan, Asad A.; Huang, Xiao-Yang; Doane, Joseph W.

    2004-09-01

    We discuss the state of the art of the bistable reflective cholesteric liquid crystal display technology. Numerous applications from low resolutions signs, to medium resolution instrumentation type displays, and high resolution electronic books are discussed. Different modes of the technology are discussed as being viable for the respective display applications. Special emphasis is paid to electronic book applications.

  9. Control Electronics for Solar/Flywheel Power Supply

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1986-01-01

    Control circuit automatically directs flow of electrical energy to and from motor with flywheel that constitutes storage element of solar-power system. When insolation is sufficient for charging, power is supplied by solar-cell array to load and motor. During periods of darkness, motor made to act as generator, drawing kinetic energy from flywheel and supplying it to load.

  10. Electron energy distributions and electron impact source functions in Ar/N{sub 2} inductively coupled plasmas using pulsed power

    SciTech Connect

    Logue, Michael D. Kushner, Mark J.

    2015-01-28

    In plasma materials processing, such as plasma etching, control of the time-averaged electron energy distributions (EEDs) in the plasma allows for control of the time-averaged electron impact source functions of reactive species in the plasma and their fluxes to surfaces. One potential method for refining the control of EEDs is through the use of pulsed power. Inductively coupled plasmas (ICPs) are attractive for using pulsed power in this manner because the EEDs are dominantly controlled by the ICP power as opposed to the bias power applied to the substrate. In this paper, we discuss results from a computational investigation of EEDs and electron impact source functions in low pressure (5–50 mTorr) ICPs sustained in Ar/N{sub 2} for various duty cycles. We find there is an ability to control EEDs, and thus source functions, by pulsing the ICP power, with the greatest variability of the EEDs located within the skin depth of the electromagnetic field. The transit time of hot electrons produced in the skin depth at the onset of pulse power produces a delay in the response of the EEDs as a function of distance from the coils. The choice of ICP pressure has a large impact on the dynamics of the EEDs, whereas duty cycle has a small influence on time-averaged EEDs and source functions.

  11. Stretchable and Waterproof Self-Charging Power System for Harvesting Energy from Diverse Deformation and Powering Wearable Electronics.

    PubMed

    Yi, Fang; Wang, Jie; Wang, Xiaofeng; Niu, Simiao; Li, Shengming; Liao, Qingliang; Xu, Youlong; You, Zheng; Zhang, Yue; Wang, Zhong Lin

    2016-07-26

    A soft, stretchable, and fully enclosed self-charging power system is developed by seamlessly combining a stretchable triboelectric nanogenerator with stretchable supercapacitors, which can be subject to and harvest energy from almost all kinds of large-degree deformation due to its fully soft structure. The power system is washable and waterproof owing to its fully enclosed structure and hydrophobic property of its exterior surface. The power system can be worn on the human body to effectively scavenge energy from various kinds of human motion, and it is demonstrated that the wearable power source is able to drive an electronic watch. This work provides a feasible approach to design stretchable, wearable power sources and electronics. PMID:27351212

  12. Thermal control of power supplies with electronic packaging techniques

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The analysis, design, and development work to reduce the weight and size of a standard modular power supply with a 350 watt output was summarized. By integrating low cost commercial heat pipes in the redesign of this power supply, weight was reduced by 30% from that of the previous design. The temperature was also appreciably reduced, increasing the environmental capability of the unit. A demonstration unit with a 100 watt output and a 15 volt regulator module, plus simulated output modules, was built and tested to evaluate the thermal performance of the redesigned power supply.

  13. Ultra high energy electrons powered by pulsar rotation.

    PubMed

    Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino

    2013-01-01

    A new mechanism of particle acceleration, driven by the rotational slow down of the Crab pulsar, is explored. The rotation, through the time dependent centrifugal force, can efficiently excite unstable Langmuir waves in the electron-positron (hereafter e(±)) plasma of the star magnetosphere. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV (~ 100 TeV) and even PeV energy domain. It is expected that the proposed mechanism may, unravel the puzzle of the origin of ultra high energy cosmic ray electrons.

  14. Ultra high energy electrons powered by pulsar rotation.

    PubMed

    Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino

    2013-01-01

    A new mechanism of particle acceleration, driven by the rotational slow down of the Crab pulsar, is explored. The rotation, through the time dependent centrifugal force, can efficiently excite unstable Langmuir waves in the electron-positron (hereafter e(±)) plasma of the star magnetosphere. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV (~ 100 TeV) and even PeV energy domain. It is expected that the proposed mechanism may, unravel the puzzle of the origin of ultra high energy cosmic ray electrons. PMID:23405276

  15. Ultra High Energy Electrons Powered by Pulsar Rotation

    NASA Astrophysics Data System (ADS)

    Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino

    2013-02-01

    A new mechanism of particle acceleration, driven by the rotational slow down of the Crab pulsar, is explored. The rotation, through the time dependent centrifugal force, can efficiently excite unstable Langmuir waves in the electron-positron (hereafter e+/-) plasma of the star magnetosphere. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV (~ 100 TeV) and even PeV energy domain. It is expected that the proposed mechanism may, unravel the puzzle of the origin of ultra high energy cosmic ray electrons.

  16. Evaluation of induction motor performance using an electronic power factor controller

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The concept of reducing the losses in an induction motor by electronically controlling the time interval between the zero crossing of the applied voltage and the zero crossing of the armature current was evaluated. The effect on power losses and power factor of reducing the applied sinusoidal voltages below the rated value was investigated experimentally. The reduction in power losses was measured using an electronic controller designed and built at MSFC. Modifications to the MSFC controller are described as well as a manually controlled electronic device which does not require that the motor be wye connected and the neutral available. Possible energy savings are examined.

  17. An efficient high power microwave source at 35 GHz using an induction linac free electron accelerator

    SciTech Connect

    Clark, J.C.; Orzechowski, T.J.; Yarema, S.M.

    1986-11-01

    The Electron Laser Facility (ELF) is a free-electron laser (FEL) amplifier operating in the millimeter-wave regime. ELF uses the electron beam produced by the Experimental Test Accelerator (ETA), which is a linear-induction accelerator. We discuss here (1) the experimental results reflecting the high-peak-power output and high-extraction efficiency obtained from an FEL amplifier operated with a tapered wiggler magnetic field and (2) the results of studies of the exponential gain and saturated power obtained from an FEL amplifier with a flat wiggler while we parametrically varied the input power to the amplifier and the beam current into the wiggler.

  18. Organic electron donors as powerful single-electron reducing agents in organic synthesis.

    PubMed

    Broggi, Julie; Terme, Thierry; Vanelle, Patrice

    2014-01-01

    One-electron reduction is commonly used in organic chemistry for the formation of radicals by the stepwise transfer of one or two electrons from a donor to an organic substrate. Besides metallic reagents, single-electron reducers based on neutral organic molecules have emerged as an attractive novel source of reducing electrons. The past 20 years have seen the blossoming of a particular class of organic reducing agents, the electron-rich olefins, and their application in organic synthesis. This Review gives an overview of the different types of organic donors and their specific characteristics in organic transformations.

  19. Evaluation of the Benefits of High Temperature Electronics for Lunar Power Systems

    NASA Technical Reports Server (NTRS)

    Fay, Edgar H.

    1992-01-01

    A comparative evaluation is conducted of several approaches to the cooling of a lunar power system's power electronics, in view of the 400 K temperature of the 354-hour lunar day and lunar dust accumulation, which can contaminate power components and radiator surfaces. It is noted that, by raising the power electronics' baseplate temperature to 480 K, no thermal control system is required; the surface of the baseplate acts as its own, waste-heat-rejecting radiator, but the baseplate must be kept clean of lunar dust contamination.

  20. Electron Cross-field Transport in a Low Power Cylindrical Hall Thruster

    SciTech Connect

    A. Smirnov; Y. Raitses; N.J. Fisch

    2004-06-24

    Conventional annular Hall thrusters become inefficient when scaled to low power. Cylindrical Hall thrusters, which have lower surface-to-volume ratio, are therefore more promising for scaling down. They presently exhibit performance comparable with conventional annular Hall thrusters. Electron cross-field transport in a 2.6 cm miniaturized cylindrical Hall thruster (100 W power level) has been studied through the analysis of experimental data and Monte Carlo simulations of electron dynamics in the thruster channel. The numerical model takes into account elastic and inelastic electron collisions with atoms, electron-wall collisions, including secondary electron emission, and Bohm diffusion. We show that in order to explain the observed discharge current, the electron anomalous collision frequency {nu}{sub B} has to be on the order of the Bohm value, {nu}{sub B} {approx} {omega}{sub c}/16. The contribution of electron-wall collisions to cross-field transport is found to be insignificant.

  1. Toward integrated PV panels and power electronics using printing technologies

    SciTech Connect

    Ababei, Cristinel; Yuvarajan, Subbaraya; Schulz, Douglas L.

    2010-07-15

    In this paper, we review the latest developments in the area of printing technologies with an emphasis on the fabrication of control-embedded photovoltaics (PV) with on-board active and passive devices. We also review the use of power converters and maximum power point tracking (MPPT) circuits with PV panels. Our focus is on the investigation of the simplest implementations of such circuits in view of their integration with solar cells using printing technologies. We see this concept as potentially enabling toward further cost reduction. Besides a discussion as to feasibility, we shall also present some projections and guidelines toward possible integration. (author)

  2. HIGH AVERAGE POWER UV FREE ELECTRON LASER EXPERIMENTS AT JLAB

    SciTech Connect

    Douglas, David; Evtushenko, Pavel; Gubeli, Joseph; Hernandez-Garcia, Carlos; Legg, Robert; Neil, George; Powers, Thomas; Shinn, Michelle D; Tennant, Christopher; Williams, Gwyn

    2012-07-01

    Having produced 14 kW of average power at {approx}2 microns, JLAB has shifted its focus to the ultraviolet portion of the spectrum. This presentation will describe the JLab UV Demo FEL, present specifics of its driver ERL, and discuss the latest experimental results from FEL experiments and machine operations.

  3. Design Challenges in High Power Free-electron Laser Oscillators

    SciTech Connect

    S.V. Benson

    2005-08-21

    Several FELs have now demonstrated high power lasing and several projects are under construction to deliver higher power or shorter wavelengths. This presentation will summarize progress in upgrading FEL oscillators towards higher power and will discuss some of the challenges these projects face. The challenges fall into three categories: 1. energy recovery with large exhaust energy spread, 2. output coupling and maintaining mirror figure in the presence of high intracavity power loading, and 3. high current operation in an energy recovery linac (ERL). Progress in all three of these areas has been made in the last year. Energy recovery of over 12% of exhaust energy spread has been demonstrated and designs capable of accepting even larger energy spreads have been proposed. Cryogenic transmissive output couplers for narrow band operation and both hole and scraper output coupling have been developed. Investigation of short Rayleigh range operation has started as well. Energy recovery of over 20 mA CW has been demonstrated and several methods of mitigating transverse beam breakup instabilities were demonstrated. This talk will summarize these achievements and give a roadmap of where the field is headed.

  4. Breakthrough in Power Electronics from SiC: May 25, 2004 - May 31, 2005

    SciTech Connect

    Marckx, D. A.

    2006-03-01

    This report explores the premise that silicon carbide (SiC) devices would reduce substantially the cost of energy of large wind turbines that need power electronics for variable speed generation systems.

  5. NREL Helps Cool the Power Electronics in Electric Vehicles (Fact Sheet)

    SciTech Connect

    Not Available

    2011-07-01

    Researchers at the National Renewable Energy Laboratory (NREL) are developing and demonstrating innovative heat-transfer technologies for cooling power electronics devices in hybrid and electric vehicles. In collaboration with 3M and Wolverine Tube, Inc., NREL is using surface enhancements to dissipate heat more effectively, permitting a reduction in the size of power electronic systems and potentially reducing the overall costs of electric vehicles.

  6. Enhanced thermoelectric power and electronic correlations in RuSe₂

    DOE PAGES

    Wang, Kefeng; Wang, Aifeng; Tomic, A.; Wang, Limin; Abeykoon, A. M. Milinda; Dooryhee, E.; Billinge, S. J.L.; Petrovic, C.

    2015-03-03

    We report the electronic structure, electric and thermal transport properties of Ru₁₋xIrxSe₂ (x ≤ 0.2). RuSe₂ is a semiconductor that crystallizes in a cubic pyrite unit cell. The Seebeck coefficient of RuSe₂ exceeds -200 µV/K around 730 K. Ir substitution results in the suppression of the resistivity and the Seebeck coefficient, suggesting the removal of the peaks in density of states near the Fermi level. Ru₀.₈Ir₀.₂Se₂ shows a semiconductor-metal crossover at about 30 K. The magnetic field restores the semiconducting behavior. Our results indicate the importance of the electronic correlations in enhanced thermoelectricity of RuSb₂.

  7. Enhanced thermoelectric power and electronic correlations in RuSe₂

    SciTech Connect

    Wang, Kefeng; Wang, Aifeng; Tomic, A.; Wang, Limin; Abeykoon, A. M. Milinda; Dooryhee, E.; Billinge, S. J.L.; Petrovic, C.

    2015-03-03

    We report the electronic structure, electric and thermal transport properties of Ru₁₋xIrxSe₂ (x ≤ 0.2). RuSe₂ is a semiconductor that crystallizes in a cubic pyrite unit cell. The Seebeck coefficient of RuSe₂ exceeds -200 µV/K around 730 K. Ir substitution results in the suppression of the resistivity and the Seebeck coefficient, suggesting the removal of the peaks in density of states near the Fermi level. Ru₀.₈Ir₀.₂Se₂ shows a semiconductor-metal crossover at about 30 K. The magnetic field restores the semiconducting behavior. Our results indicate the importance of the electronic correlations in enhanced thermoelectricity of RuSb₂.

  8. Cyclotron Maser Emission from Power-law Electrons with Strong Pitch-angle Anisotropy

    NASA Astrophysics Data System (ADS)

    Zhao, G. Q.; Feng, H. Q.; Wu, D. J.; Chen, L.; Tang, J. F.; Liu, Q.

    2016-05-01

    Energetic electrons with power-law spectra are commonly observed in astrophysics. This paper investigates electron cyclotron maser emission (ECME) from the power-law electrons, in which strong pitch-angle anisotropy is emphasized. The electron distribution function proposed in this paper can describe various types of pitch-angle anisotropy. Results show that the emission properties of ECME, including radiation growth, propagation, and frequency properties, depend considerably on the types of electron pitch-angle anisotropy, and different wave modes show different dependences on the pitch angle of electrons. In particular, the maximum growth rate of the X2 mode rapidly decreases with respect to the electron pitch-angle cosine μ 0 at which the electron distribution peaks, while the growth rates for other modes (X1, O1, O2) initially increase before decreasing as μ 0 increases. Moreover, the O mode, as well as the X mode, can be the fastest growth mode, in terms of not only the plasma parameter but also the type of electron pitch-angle distribution. This result presents a significant extension of the recent researches on ECME driven by the lower energy cutoff of power-law electrons, in which the X mode is generally the fastest growth mode.

  9. Transmission of High-Power Electron Beams Through Small Apertures

    SciTech Connect

    Tschalaer, Christoph; Alarcon, Ricardo O.; Balascuta, S.; Benson, Stephen V.; Bertozzi, William; Boyce, James R.; Cowan, Ray Franklin; Douglas, David R.; Evtushenko, Pavel; Fisher, Peter H.; Ihloff, Ernest E.; Kalantarians, Narbe; Kelleher, Aidan Michael; Legg, Robert A.; Milner, Richard; Neil, George R.; Ou, Longwu; Schmookler, Barak Abraham; Tennant, Christopher D.; Williams, Gwyn P.; Zhang, Shukui

    2013-11-01

    Tests were performed to pass a 100 MeV, 430 kWatt c.w. electron beam from the energy-recovery linac at the Jefferson Laboratory's FEL facility through a set of small apertures in a 127 mm long aluminum block. Beam transmission losses of 3 p.p.m. through a 2 mm diameter aperture were maintained during a 7 hour continuous run.

  10. New electronic device powers hospital employee background checks.

    PubMed

    2001-09-01

    Ohio has a new electronic system for performing criminal background checks on potential employees. The Internet-based computer program, called WebCheck, was developed through the cooperation of Ohio's Bureau of Criminal Identification and Investigation and Cogent Systems, Inc., South Pasadena, CA. BCI&I initiated the development of WebCheck in response to Ohio law, which requires background checks on anyone applying for a job involving children and the elderly.

  11. Large space systems technology electronics: Data and power distribution

    NASA Technical Reports Server (NTRS)

    Dunbar, W. G.

    1980-01-01

    The development of hardware technology and manufacturing techniques required to meet space platform and antenna system needs in the 1980s is discussed. Preliminary designs for manned and automatically assembled space power system cables, connectors, and grounding and bonding materials and techniques are reviewed. Connector concepts, grounding design requirements, and bonding requirements are discussed. The problem of particulate debris contamination for large structure spacecraft is addressed.

  12. Evidence of local power deposition and electron heating by a standing electromagnetic wave in electron-cyclotron-resonance plasma.

    PubMed

    Durocher-Jean, A; Stafford, L; Dap, S; Makasheva, K; Clergereaux, R

    2014-09-01

    Microwave plasmas excited at electron-cyclotron resonance were studied in the 0.5-15 mTorr pressure range. In contrast with low-limit pressure conditions where the plasma emission highlights a fairly homogeneous spatial structure, a periodic spatial modulation (period ∼6.2 cm) appeared as pressure increased. This feature is ascribed to a local power deposition (related to the electron density) due to the presence of a standing electromagnetic wave created by the feed electromagnetic field (2.45 GHz) in the cavity formed by the reactor walls. Analysis of the electron energy probability function by Langmuir probe and optical emission spectroscopy further revealed the presence of a high-energy tail that showed strong periodic spatial modulation at higher pressure. The spatial evolution of the electron density and of the characteristic temperature of these high-energy electrons coincides with the nodes (maximum) and antinodes (minimum) of the standing wave. These spatially-modulated power deposition and electron heating mechanisms are then discussed.

  13. Evidence of local power deposition and electron heating by a standing electromagnetic wave in electron-cyclotron-resonance plasma.

    PubMed

    Durocher-Jean, A; Stafford, L; Dap, S; Makasheva, K; Clergereaux, R

    2014-09-01

    Microwave plasmas excited at electron-cyclotron resonance were studied in the 0.5-15 mTorr pressure range. In contrast with low-limit pressure conditions where the plasma emission highlights a fairly homogeneous spatial structure, a periodic spatial modulation (period ∼6.2 cm) appeared as pressure increased. This feature is ascribed to a local power deposition (related to the electron density) due to the presence of a standing electromagnetic wave created by the feed electromagnetic field (2.45 GHz) in the cavity formed by the reactor walls. Analysis of the electron energy probability function by Langmuir probe and optical emission spectroscopy further revealed the presence of a high-energy tail that showed strong periodic spatial modulation at higher pressure. The spatial evolution of the electron density and of the characteristic temperature of these high-energy electrons coincides with the nodes (maximum) and antinodes (minimum) of the standing wave. These spatially-modulated power deposition and electron heating mechanisms are then discussed. PMID:25314546

  14. Coherent undulator radiation of electron beam, microbunched for the FEL power outcoupling

    SciTech Connect

    Kulipanov, G.N.; Sokolov, A.S.; Vinokurov, N.A.

    1995-12-31

    The spectral intensity of the coherent undulator radiation of electron beam, preliminarily microbunched by the FEL oscillator for the FEL power outcoupling, is approximately calculated by simple analytic considerations, taking into account the transverse emittances and the energy spread of the microbunched electron beams.

  15. Building America Case Study: Photovoltaic Systems with Module-Level Power Electronics

    SciTech Connect

    2015-09-01

    Direct current (DC) power optimizers and microinverters (together known as module-level power electronics, or MLPE) are one of the fastest growing market segments in the solar industry. According to GTM Research in The Global PV Inverter Landscape 2015, over 55% of all residential photovoltaic (PV) installations in the United States used some form of MLPE in 2014.

  16. Performance and Reliability of Interface Materials for Automotive Power Electronics (Presentation)

    SciTech Connect

    Narumanchi, S.; DeVoto, D.; Mihalic, M.; Paret, P.

    2013-07-01

    Thermal management and reliability are important because excessive temperature can degrade the performance, life, and reliability of power electronics and electric motors. Advanced thermal management technologies enable keeping temperature within limits; higher power densities; and lower cost materials, configurations and systems. Thermal interface materials, bonded interface materials and the reliability of bonded interfaces are discussed in this presentation.

  17. Radiation and temperature effects on electronic components investigated under the CSTI high capacity power project

    NASA Astrophysics Data System (ADS)

    Schwarze, Gene E.; Niedra, Janis M.; Frasca, Albert J.; Wieserman, William R.

    1993-01-01

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the CSTI high capacity power project will be presented in this paper: (1) Neutron, gamma ray, and temperature effects on power semiconductor switches, (2) Temperature and frequency effects on soft magnetic materials; and (3) Temperature effects on rare-earth permanent magnets.

  18. Radiation and temperature effects on electronic components investigated under the CSTI high capacity power project

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.; Niedra, Janis M.; Frasca, Albert J.; Wieserman, William R.

    1993-01-01

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the Civilian Space Technology Initiative (CSTI) high capacity power project are presented: (1) neutron, gamma ray, and temperature effects on power semiconductor switches, (2) temperature and frequency effects on soft magnetic materials; and (3) temperature effects on rare earth permanent magnets.

  19. Evidence for a continuous, power law, electron density irregularity spectrum

    NASA Technical Reports Server (NTRS)

    Cronyn, W. M.

    1972-01-01

    The spectral form of the irregularities in electron density that cause interplanetary scintillation (IPS) of small angular diameter radio sources is discussed. The intensity scintillation technique always yields an irregularity scale size, which is of the order of the first Fresnel zone for the wavelength at which the observations are taken. This includes not only the radio wavelength measurements of the structure of the interplanetary medium, but also radio wavelength measurements of the irregularity structure of the ionosphere and interstellar medium, and optical wavelength measurements of the irregularity structure of the atmosphere.

  20. High-power VCSEL arrays for consumer electronics

    NASA Astrophysics Data System (ADS)

    Graham, Luke A.; Chen, Hao; Cruel, Jonathan; Guenter, James; Hawkins, Bobby; Hawthorne, Bobby; Kelly, David Q.; Melgar, Alirio; Martinez, Mario; Shaw, Edward; Tatum, Jim A.

    2015-03-01

    Finisar has developed a line of high power, high efficiency VCSEL arrays. They are fabricated at 860nm as traditional P side up top emitting devices, leveraging Finisar's existing VCSEL fab and test processes for low cost, high volume capability. A thermal camera is used to accurately measure temperature profiles across the arrays at a variety of operating conditions and further allowing development of a full reliability model. The arrays are shown to demonstrate wear out reliability suitable for a wide range of applications. Typical 1/e^2 beam divergence is near 16 degrees under CW operating conditions at peak wall plug efficiency, narrowing further under pulsed drive conditions.

  1. Design of space-type electronic power transformers

    NASA Technical Reports Server (NTRS)

    Ahearn, J. F.; Lagadinos, J. C.

    1977-01-01

    Both open and encapsulated varieties of high reliability, low weight, and high efficiency moderate and high voltage transformers were investigated to determine the advantages and limitations of their construction in the ranges of power and voltage required for operation in the hard vacuum environment of space. Topics covered include: (1) selection of the core material; (2) preliminary calculation of core dimensions; (3) selection of insulating materials including magnet wire insulation, coil forms, and layer and interwinding insulation; (4) coil design; (5) calculation of copper losses, core losses and efficiency; (6) calculation of temperature rise; and (7) optimization of design with changes in core selection or coil design as required to meet specifications.

  2. Pulsed power and electron beams in the 21st century.

    SciTech Connect

    Ekdahl, C. A.

    2002-01-01

    Pulsed power and accelerator technology for high energy density physics, radiography, and simulation has matured to the point that new facilities promise users reliability of quality data return unheard of just a short time ago. By this metric alone these machines and accelerators have graduated from being experiments in their own right, to the solid foundation of a new era of experimental science. The projected performance of a few of these new capabilities will be highlighted, along with some modest speculation concerning their future.

  3. Statistical Modeling of Soi Devices for Low-Power Electronics.

    NASA Astrophysics Data System (ADS)

    Phelps, Mark Joseph

    1995-01-01

    This dissertation addresses the needs of low-power, large-scale integrated circuit device design, advanced materials technology, and computer simulation for statistical modeling. The main body of work comprises the creation and implementation of a software shell (STADIUM-SOI) that automates the application of statistics to commercial technology computer-aided design tools. The objective is to demonstrate that statistical design of experiments methodology can be employed for the advanced material technology of Silicon -On-Insulator (SOI) devices. The culmination of this effort was the successful modeling of the effect of manufacturing process variation on SOI device characteristics and the automation of this procedure.

  4. Wearable Triboelectric Generator for Powering the Portable Electronic Devices.

    PubMed

    Cui, Nuanyang; Liu, Jinmei; Gu, Long; Bai, Suo; Chen, Xiaobo; Qin, Yong

    2015-08-26

    A cloth-base wearable triboelectric nanogenerator made of nylon and Dacron fabric was fabricated for harvesting body motion energy. Through the friction between forearm and human body, the generator can turn the mechanical energy of an arm swing into electric energy and power an electroluminescent tubelike lamp easily. The maximum output current and voltage of the generator reach up to 0.2 mA and 2 kV. Furthermore, this generator can be easily folded, kneaded, and cleaned like a common garment.

  5. A high voltage power supply for the AE-C and D low energy electron experiment

    NASA Technical Reports Server (NTRS)

    Gillis, J. A.

    1974-01-01

    A description is given of the electrical and mechanical design and operation of high voltage power supplies for space flight use. The supply was used to generate the spiraltron high voltage for low energy electron experiment on AE-C and D. Two versions of the supply were designed and built; one design is referred to as the low power version (AE-C) and the other as the high power version (AE-D). Performance is discussed under all operating conditions.

  6. Limitations on millimeter-wave power generation with spiraling electron beams.

    NASA Technical Reports Server (NTRS)

    Kulke, B.

    1972-01-01

    A study is made of the suitability of the interaction between a thin, solid, spiraling electron beam of 5-15-kV energy and a microwave cavity, for the purpose of generating watts of CW millimeter-wave power. The effect of finite energy spread in the electron beam is considered both theoretically and experimentally. Measured results are given for a prototype device operating at 9.4 GHz. Power outputs of 5 W and electronic efficiencies near 2% have been obtained. The data agree well with the theory, subject to some ambiguity in the energy-distribution parameters. The performance is strongly limited by the energy spread in the beam.

  7. Novel Power Electronics Three-Dimensional Heat Exchanger: Preprint

    SciTech Connect

    Bennion, K.; Cousineau, J.; Lustbader, J.; Narumanchi, S.

    2014-08-01

    Electric drive systems for vehicle propulsion enable technologies critical to meeting challenges for energy, environmental, and economic security. Enabling cost-effective electric drive systems requires reductions in inverter power semiconductor area. As critical components of the electric drive system are made smaller, heat removal becomes an increasing challenge. In this paper, we demonstrate an integrated approach to the design of thermal management systems for power semiconductors that matches the passive thermal resistance of the packaging with the active convective cooling performance of the heat exchanger. The heat exchanger concept builds on existing semiconductor thermal management improvements described in literature and patents, which include improved bonded interface materials, direct cooling of the semiconductor packages, and double-sided cooling. The key difference in the described concept is the achievement of high heat transfer performance with less aggressive cooling techniques by optimizing the passive and active heat transfer paths. An extruded aluminum design was selected because of its lower tooling cost, higher performance, and scalability in comparison to cast aluminum. Results demonstrated a heat flux improvement of a factor of two, and a package heat density improvement over 30%, which achieved the thermal performance targets.

  8. Overview of space power electronic's technology under the CSTI High Capacity Power Program

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    1994-01-01

    The Civilian Space Technology Initiative (CSTI) is a NASA Program targeted at the development of specific technologies in the areas of transportation, operations and science. Each of these three areas consists of major elements and one of the operation's elements is the High Capacity Power element. The goal of this element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA initiatives. The High Capacity Power element is broken down into several subelements that includes energy conversion in the areas of the free piston Stirling power converter and thermoelectrics, thermal management, power management, system diagnostics, and environmental compatibility and system's lifetime. A recent overview of the CSTI High capacity Power element and a description of each of the program's subelements is given by Winter (1989). The goals of the Power Management subelement are twofold. The first is to develop, test, and demonstrate high temperature, radiation-resistant power and control components and circuits that will be needed in the Power Conditioning, Control and Transmission (PCCT) subsystem of a space nuclear power system. The results obtained under this goal will also be applicable to the instrumentation and control subsystem of a space nuclear reactor. These components and circuits must perform reliably for lifetimes of 7-10 years. The second goal is to develop analytical models for use in computer simulations of candidate PCCT subsystems. Circuits which will be required for a specific PCCT subsystem will be designed and built to demonstrate their performance and, also, to validate the analytical models and simulations. The tasks under the Power Management subelement will now be described in terms of objectives, approach and present status of work.

  9. High energy density capacitors for power electronic applications using nano-structure multilayer technology

    SciTech Connect

    Barbee, T.W. Jr.; Johnson, G.W.

    1995-09-01

    Power electronics applications are currently limited by capacitor size and performance. Only incremental improvements are anticipated in existing capacitor technologies, while significant performance advances are required in energy density and overall performance to meet the technical needs of the applications which are important for U.S. economic competitiveness. One application, the Power Electronic Building Block (PEBB), promises a second electronics revolution in power electronic design. High energy density capacitors with excellent electrical thermal and mechanical performance represent an enabling technology in the PEBB concept. We propose a continuing program to research and develop LLNL`s nano-structure multilayer technologies for making high voltage, high energy density capacitors. Our controlled deposition techniques are capable of synthesizing extraordinarily smooth sub-micron thick layers of dielectric and conductor materials. We have demonstrated that, with this technology, high voltage capacitors with an order of magnitude improvement in energy density are achievable.

  10. Electronic system for high power load control. [solar arrays

    NASA Technical Reports Server (NTRS)

    Miller, E. L. (Inventor)

    1980-01-01

    Parallel current paths are divided into two groups, with control devices in the current paths of one group each having a current limiting resistor, and the control devices in the other group each having no limiting resistor, so that when the control devices of the second group are turned fully on, a short circuit is achieved by the arrangement of parallel current paths. Separate but coordinated control signals are provided to turn on the control devices of the first group and increase their conduction toward saturation as a function of control input, and when fully on, or shortly before, to turn on the control devices of the second group and increase their conduction toward saturation as a function of the control input as that input continues to increase. Electronic means may be used to generate signals. The system may be used for 1-V characteristic measurements of solar arrays as well as for other load control purposes.

  11. Silicon carbide, a semiconductor for space power electronics

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony; Matus, Lawrence G.

    1991-01-01

    After many years of promise as a high temperature semiconductor, silicon carbide (SiC) is finally emerging as a useful electronic material. Recent significant progress that has led to this emergence has been in the areas of crystal growth and device fabrication technology. High quality single-crystal SiC wafers, up to 25 mm in diameter, can now be produced routinely from boules grown by a high temperature (2700 K) sublimation process. Device fabrication processes, including chemical vapor deposition (CVD), in situ doping during CVD, reactive ion etching, oxidation, metallization, etc. have been used to fabricate p-n junction diodes and MOSFETs. The diode was operated to 870 K and the MOSFET to 770 K.

  12. Silicon carbide, a semiconductor for space power electronics

    NASA Technical Reports Server (NTRS)

    Powell, J. A.; Matus, Lawrence G.

    1991-01-01

    After many years of promise as a high temperature semiconductor, silicon carbide (SiC) is finally emerging as a useful electronic material. Recent significant progress that has led to this emergence has been in the area of crystal growth and device fabrication technology. High quality of single-crystal SiC wafers, up to 25 mm in diameter, can now be produced routinely from boules grown by a high temperature (2700 K) sublimation process. Device fabrication processes, including chemical vapor deposition (CVD), in situ doping during CVD, reactive ion etching, oxidation, metallization, etc. have been used to fabricate p-n junction diodes and MOSFETs. The diode was operated to 870 K and the MOSFET to 770 K.

  13. Topology, Design, Analysis, and Thermal Management of Power Electronics for Hybrid Electric Vehicle Applications

    SciTech Connect

    Mi, C.; Peng, F. Z.; Kelly, K. J.; O'Keefe, M.; Hassani, V.

    2008-01-01

    Power electronics circuits play an important role in the success of electric, hybrid and fuel cell vehicles. Typical power electronics circuits in hybrid vehicles include electric motor drive circuits and DC/DC converter circuits. Conventional circuit topologies, such as buck converters, voltage source inverters and bidirectional boost converters are challenged by system cost, efficiency, controllability, thermal management, voltage and current capability, and packaging issues. Novel topologies, such as isolated bidirectional DC/DC converters, multilevel converters, and Z-source inverters, offer potential improvement to hybrid vehicle system performance, extended controllability and power capabilities. This paper gives an overview of the topologies, design, and thermal management, and control of power electronics circuits in hybrid vehicle applications.

  14. Learning Platform for Study of Power Electronic Application in Power Systems

    ERIC Educational Resources Information Center

    Bauer, P.; Rompelman, O.

    2005-01-01

    Present engineering has to deal with increasingly complex systems. In particular, this is the case in electrical engineering. Though this is obvious in microelectronics, also in the field of power systems engineers have to design, operate and maintain highly complex systems such as power grids, energy converters and electrical drives. This is…

  15. An Advanced Time Averaging Modelling Technique for Power Electronic Circuits

    NASA Astrophysics Data System (ADS)

    Jankuloski, Goce

    For stable and efficient performance of power converters, a good mathematical model is needed. This thesis presents a new modelling technique for DC/DC and DC/AC Pulse Width Modulated (PWM) converters. The new model is more accurate than the existing modelling techniques such as State Space Averaging (SSA) and Discrete Time Modelling. Unlike the SSA model, the new modelling technique, the Advanced Time Averaging Model (ATAM) includes the averaging dynamics of the converter's output. In addition to offering enhanced model accuracy, application of linearization techniques to the ATAM enables the use of conventional linear control design tools. A controller design application demonstrates that a controller designed based on the ATAM outperforms one designed using the ubiquitous SSA model. Unlike the SSA model, ATAM for DC/AC augments the system's dynamics with the dynamics needed for subcycle fundamental contribution (SFC) calculation. This allows for controller design that is based on an exact model.

  16. Accurate measurements of the collision stopping powers for 5 to 30 MeV electrons

    NASA Astrophysics Data System (ADS)

    MacPherson, Miller Shawn

    Accurate knowledge of electron stopping powers is crucial for accurate radiation dosimetry and radiation transport calculations. Current values for stopping powers are based on a theoretical model, with estimated uncertainties of 0.5-1% (1σ) for electron energies greater than 100 keV. This work presents the first measurements of electron collision stopping powers capable of testing the theoretical values within these stated uncertainties. A large NaI spectrometer was used to measure the change in electron energy when an absorbing disk of known thickness was placed in an electron beam. Monte Carlo simulations of the experiment were performed to account for the effects of surrounding materials. Energy differences between the calculated and measured spectra were used to determine corrections to the soft collision component of the theoretical stopping powers employed by the Monte Carlo simulations. Four different elemental materials were studied: Be, Al, Cu, and Ta. This provided a wide range of atomic numbers and densities over which to test the theory. In addition, stopping powers were measured for graphite (both standard and pyrolytic), A-150 tissue equivalent plastic, C-552 air equivalent plastic, and water. The incident electron energies ranged from 5 to 30 MeV. Generally, the measured stopping powers agree with the theoretical values within the experimental uncertainties, which range from 0.4% to 0.7% (1σ). Aluminum, however, exhibits a 0.7% discrepancy at higher electron energies. Furthermore, these measurements have established that the grain density stopping power is appropriate for graphite, contrary to the recommendations of ICRU Report 37. This removes a 0.2% uncertainty in air kerma calibrations, and impacts on dosimetric quantities determined via graphite calorimetry, such as ɛG for Fricke dosimetry and (W/ e)air for ion chamber measurements.

  17. Power Electronics Design of a Solar Powered In-car Wireless Tag for Asset Tracking and Parking Applications

    NASA Astrophysics Data System (ADS)

    Zhu, D.; Henaut, J.; Beeby, S. P.

    2014-11-01

    This paper reports the design and testing of a power conditioning circuit for a solar powered in-car wireless tag for asset tracking and parking application. Existing long range asset tracking is based on the GSM/GPRS network, which requires expensive subscriptions. The EU FP7 project CEWITT aims at developing a credit card sized autonomous wireless tag with GNSS geo-positioning capabilities to ensure the integrity and cost effectiveness for parking applications. It was found in previous research that solar cells are the most suitable energy sources for this application. This study focused on the power electronics design for the wireless tag. A suitable solar cell was chosen for its high power density. Charging circuit, hysteresis control circuit and LDO were designed and integrated to meet the system requirement. Test results showed that charging efficiency of 80 % had been achieved.

  18. Electronic Power System Application of Diamond-Like Carbon Films

    NASA Technical Reports Server (NTRS)

    Wu, Richard L. C.; Kosai, H.; Fries-Carr, S.; Weimer, J.; Freeman, M.; Schwarze, G. E.

    2003-01-01

    A prototype manufacturing technology for producing high volume efficiency and high energy density diamond-like carbon (DLC) capacitors has been developed. Unique dual ion-beam deposition and web-handling systems have been designed and constructed to deposit high quality DLC films simultaneously on both sides of capacitor grade aluminum foil and aluminum-coated polymer films. An optimized process, using inductively coupled RF ion sources, has been used to synthesize electrically robust DLC films. DLC films are amorphous and highly flexible, making them suitable for the production of wound capacitors. DLC capacitors are reliable and stable over a wide range of AC frequencies from 20 Hz to 1 MHz, and over a temperature range from .500 C to 3000 C. The compact DLC capacitors offer at least a 50% decrease in weight and volume and a greater than 50% increase in temperature handling capability over equal value capacitors built with existing technologies. The DLC capacitors will be suitable for high temperature, high voltage, pulsed power and filter applications.

  19. Evaluation of Power Electronic Components and Systems at Cryogenic Temperatures For Space Missions

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Gerber, Scott; Hammoud, Ahmad; Patterson, Richard L.

    2005-01-01

    Power electronic circuits and systems designed for deep space applications and outer planetary exploration are required to operate reliably and efficiently under extreme temperature conditions. This requirement is dictated by the fact that the operational environments associated with some of the space missions would encompass temperatures as low as -183 C. The development and utilization of electronics capable of low temperature operation would not only fulfill the advanced technology requirements, but also would contribute to improving circuit performance, increasing system efficiency, and reducing development and launch costs. These benefits are generally achieved by the improved intrinsic properties of some of the electronic materials at low temperature, reduced device losses, and the elimination of heating elements used in conventional systems at low temperatures. Power electronic circuits are widely used in space power systems in the areas of power management, conditioning, and control. In this work, the performance of certain power electronic components and systems was investigated under low temperature. These include inductors, capacitors, pulse-width-modulation (PWM) controllers, and advanced commercial DC/DC converter modules. Different properties were determined as a function of temperature in the range of 20 C to -140 C, at various current and voltages levels. The experimental procedures along with the experimental data obtained are presented and discussed in this paper.

  20. The Use of a Solid State Analog Television Transmitter as a Superconducting Electron Gun Power Amplifier

    SciTech Connect

    J.G. Kulpin, K.J. Kleman, R.A. Legg

    2012-07-01

    A solid state analog television transmitter designed for 200 MHz operation is being commissioned as a radio frequency power amplifier on the Wisconsin superconducting electron gun cavity. The amplifier consists of three separate radio frequency power combiner cabinets and one monitor and control cabinet. The transmitter employs rugged field effect transistors built into one kilowatt drawers that are individually hot swappable at maximum continuous power output. The total combined power of the transmitter system is 33 kW at 200 MHz, output through a standard coaxial transmission line. A low level radio frequency system is employed to digitally synthesize the 200 MHz signal and precisely control amplitude and phase.

  1. Batteryless wireless transmission system for electronic drum uses piezoelectric generator for play signal and power source

    NASA Astrophysics Data System (ADS)

    Nishikawa, H.; Yoshimi, A.; Takemura, K.; Tanaka, A.; Douseki, T.

    2015-12-01

    A batteryless self-powered wireless transmission system has been developed that sends a signal from a drum pad to a synthesizer. The power generated by a piezoelectric generator functions both as the “Play” signal for the synthesizer and as the power source for the transmitter. An FM transmitter, which theoretically operates with zero latency, and a receiver with quick-response squelch of the received signal were developed for wireless transmission with a minimum system delay. Experimental results for an electronic drum without any connecting wires fully demonstrated the feasibility of self-powered wireless transmission with a latency of 900 μs.

  2. Design of power electronics for TVC and EMA systems

    NASA Technical Reports Server (NTRS)

    Nelms, R. Mark; Bell, J. Brett; Shepherd, Michael T.

    1994-01-01

    The EMA systems proposed for future space transportation applications are high power systems operating at voltages up to 270 Vdc and at current levels on the order of hundreds of amperes. The position of the actuator is controlled by modulating the flow of energy from the source to an electric motor with an inverter. Hard-switching of the semiconductor devices in the inverter results in considerable device switching stresses and losses and in the generation of substantial amounts of EMI. Both of these can be reduced by employing zero-voltage-switching (ZVS) techniques in the inverter. This project has focused on the development of a ZVS inverter for the Marshall Space Center EMA prototypes, which utilize brushless dc motors to convert electrical energy to mechanical energy. An inverter which permitted zero-voltage switching and a quasi-PWM operation was selected for study and implementation. A waveshaping circuit is added to the front of a standard three-phase inverter to achieve the desired switching properties. This circuit causes the input voltage of the three-phase inverter to ring to zero where it is clamped for a short period of time. During this zero-voltage period, any of the semiconductor switches in the three-phase inverter are switched on or off at zero voltage resulting in a reduction in switching losses and EMI. The operation of this waveshaping circuit and its interaction with the three-phase inverter are described. The different circuit modes were analyzed using equivalent circuits. Based on this analysis, design relationships were developed for calculating component values for the circuit elements in the waveshaping circuit. Waveforms of various voltages and currents in the waveshaping circuit were plotted and used to determine the ratings of the semiconductors in the waveshaping circuit. The implementation of this inverter are described. Block diagrams for the overall control system and the waveshaping circuit control are presented and discussed

  3. Impact of Radiation Hardness and Operating Temperatures of Silicon Carbide Electronics on Space Power System Mass

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Tew, Roy C.; Schwarze, Gene E.

    1998-01-01

    The effect of silicon carbide (SiC) electronics operating temperatures on Power Management and Distribution (PMAD), or Power Conditioning (PC), subsystem radiator size and mass requirements was evaluated for three power output levels (100 kW(e) , 1 MW(e), and 10 MW(e)) for near term technology ( i.e. 1500 K turbine inlet temperature) Closed Cycle Gas Turbine (CCGT) power systems with a High Temperature Gas Reactor (HTGR) heat source. The study was conducted for assumed PC radiator temperatures ranging from 370 to 845 K and for three scenarios of electrical energy to heat conversion levels which needed to be rejected to space by means of the PC radiator. In addition, during part of the study the radiation hardness of the PC electronics was varied at a fixed separation distance to estimate its effect on the mass of the instrument rated reactor shadow shield. With both the PC radiator and the conical shadow shield representing major components of the overall power system the influence of the above on total power system mass was also determined. As expected, results show that the greatest actual mass savings achieved by the use of SiC electronics occur with high capacity power systems. Moreover, raising the PC radiator temperature above 600 K yields only small additional system mass savings. The effect of increased radiation hardness on total system mass is to reduce system mass by virtue of lowering the shield mass.

  4. High-Voltage, High-Power Gaseous Electronics Switch For Electric Grid Power Conversion

    NASA Astrophysics Data System (ADS)

    Sommerer, Timothy J.

    2014-05-01

    We are developing a high-voltage, high-power gas switch for use in low-cost power conversion terminals on the electric power grid. Direct-current (dc) power transmission has many advantages over alternating current (ac) transmission, but at present the high cost of ac-dc power interconversion limits the use of dc. The gas switch we are developing conducts current through a magnetized cold cathode plasma in hydrogen or helium to reach practical current densities > 1 A/cm2. Thermal and sputter damage of the cathode by the incident ion flux is a major technical risk, and is being addressed through use of a ``self-healing'' liquid metal cathode (eg, gallium). Plasma conditions and cathode sputtering loss are estimated by analyzing plasma spectral emission. A particle-in-cell plasma model is used to understand various aspects of switch operation, including the conduction phase (where plasma densities can exceed 1013 cm-3), the switch-open phase (where the high-voltage must be held against gas breakdown on the left side of Paschen's curve), and the switching transitions (especially the opening process, which is initiated by forming an ion-matrix sheath adjacent to a control grid). The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.

  5. High-power, high-frequency, annular-beam free-electron maser

    SciTech Connect

    Fazio, M.V.; Carlsten, B.E.; Earley, L.M.; Fortgang, C.M.; Haynes, W.B.; Haddock, P.C.

    1998-11-01

    The authors have developed a 15--17 GHz free electron maser (FEM) capable of producing high power pulses with a phase stability appropriate for linear collider applications. The electron beam source is a 1 {micro}s, 800 kV, 5 kA, 6-cm-dia annular electron beam machine called BANSHEE. The beam interacts with the TM{sub 02} mode Raman FEM amplifier in a corrugated cylindrical waveguide where the beam runs close to the interaction device walls to reduce the power density in the fields. They studied the phase stability by analyzing the dispersion relation for an axial FEL, in which the rf field was transversely wiggled and the electron trajectories were purely longitudinal. Detailed particle-in-cell simulations demonstrated the transverse wiggling of the rf mode and the axial FEL interaction and explicit calculations of the growing root of the dispersion relation are included to verify the phase stability.

  6. Compound Semiconductor Devices for Low-Power High-Efficiency Radio Frequency Electronics

    SciTech Connect

    Baca, A.G.; Chang, P.C.; Hietala, V.M.; Sloan, L.R.

    1999-02-18

    The power consumption of Radio Frequency (RF) electronics is a significant issue for Wireless systems. Since most wireless systems are portable and thus battery operated, reductions in DC power consumption can significantly reduce the weight and/or increase the battery lifetime of the system. As transmission consumes significantly more power than reception for most Wireless applications, previous efforts have been focused on increasing the efficiency of RF power amplification. These efforts have resulted in large increases in transmit efficiencies with research-grade amplifier efficiencies approaching 100%. In this paper, they describe their efforts on reducing power consumption of reception and other small signal RF functions. Additionally, recent power efficiency measurements on InP HEMT devices for transmission are presented. This work focuses on the needs of today's typical portable Wireless systems, which operate at frequencies up to several GHz.

  7. Modeling Single-Phase and Boiling Liquid Jet Impingement Cooling in Power Electronics

    SciTech Connect

    Narumanchi, S. V. J.; Hassani, V.; Bharathan, D.

    2005-12-01

    Jet impingement has been an attractive cooling option in a number of industries over the past few decades. Over the past 15 years, jet impingement has been explored as a cooling option in microelectronics. Recently, interest has been expressed by the automotive industry in exploring jet impingement for cooling power electronics components. This technical report explores, from a modeling perspective, both single-phase and boiling jet impingement cooling in power electronics, primarily from a heat transfer viewpoint. The discussion is from the viewpoint of the cooling of IGBTs (insulated-gate bipolar transistors), which are found in hybrid automobile inverters.

  8. FY2011 Advanced Power Electronics and Electric Motors Annual Progress Report

    SciTech Connect

    Rogers, Susan A.

    2012-01-31

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  9. Integrated smart two-phase spreader to enhance reliability of power electronic modules in aeronautical applications

    NASA Astrophysics Data System (ADS)

    Mohaupt, Mikael; Barremaecker, Laurent; Wilson, Ian

    2014-07-01

    Reliability of power electronic modules is a key characteristic of existing and innovative modules. An increasing quantity of these modules is used in a large range of applications and addresses from annex up to vital functions, especially with the more electronic aircraft and recent developments in transport applications. To propose a solution to this lifetime issue, Microsemi and EHP have designed, manufactured and tested an improved flat heat pipe to fulfil aeronautic requirements. The frame of this development is based on the existing SP3 power module of Microsemi and significant decrease of thermal resistance is demonstrated by thermal tests.

  10. On the electron energy in the high power impulse magnetron sputtering discharge

    SciTech Connect

    Gudmundsson, J. T.; Sigurjonsson, P.; Larsson, P.; Lundin, D.; Helmersson, U.

    2009-06-15

    The temporal variation of the electron energy distribution function (EEDF) was measured with a Langmuir probe in a high power impulse magnetron sputtering (HiPIMS) discharge at 3 and 20 mTorr pressures. In the HiPIMS discharge a high power pulse is applied to a planar magnetron giving a high electron density and highly ionized sputtered vapor. The measured EEDF is Maxwellian-like during the pulse; it is broader for lower discharge pressure and it becomes narrower as the pulse progresses. This indicates that the plasma cools as the pulse progresses, probably due to high metal content of the discharge.

  11. FY2010 Annual Progress Report for Advanced Power Electronics and Electric Motors

    SciTech Connect

    Rogers, Susan A.

    2011-01-01

    The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  12. FY2012 Advanced Power Electronics and Electric Motors Annual Progress Report

    SciTech Connect

    Rogers, Susan A.

    2013-03-01

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency.

  13. Unique electron polarimeter analyzing power comparison and precision spin-based energy measurement

    SciTech Connect

    Joseph Grames; Charles Sinclair; Joseph Mitchell; Eugene Chudakov; Howard Fenker; Arne Freyberger; Douglas Higinbotham; B. Poelker; Michael Steigerwald; Michael Tiefenback; Christian Cavata; Stephanie Escoffier; Frederic Marie; Thierry Pussieux; Pascal Vernin; Samuel Danagoulian; Kahanawita Dharmawardane; Renee Fatemi; Kyungseon Joo; Markus Zeier; Viktor Gorbenko; Rakhsha Nasseripour; Brian Raue; Riad Suleiman; Benedikt Zihlmann

    2004-03-01

    Precision measurements of the relative analyzing powers of five electron beam polarimeters, based on Compton, Moller, and Mott scattering, have been performed using the CEBAF accelerator at the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory). A Wien filter in the 100 keV beamline of the injector was used to vary the electron spin orientation exiting the injector. High statistical precision measurements of the scattering asymmetry as a function of the spin orientation were made with each polarimeter. Since each polarimeter receives beam with the same magnitude of polarization, these asymmetry measurements permit a high statistical precision comparison of the relative analyzing powers of the five polarimeters. This is the first time a precise comparison of the analyzing powers of Compton, Moller, and Mott scattering polarimeters has been made. Statistically significant disagreements among the values of the beam polarization calculated from the asymmetry measurements made with each polarimeter reveal either errors in the values of the analyzing power, or failure to correctly include all systematic effects. The measurements reported here represent a first step toward understanding the systematic effects of these electron polarimeters. Such studies are necessary to realize high absolute accuracy (ca. 1%) electron polarization measurements, as required for some parity violation measurements planned at Jefferson Laboratory. Finally, a comparison of the value of the spin orientation exiting the injector that provides maximum longitudinal polarization in each experimental hall leads to an independent and very precise (better than 10-4) absolute measurement of the final electron beam energy.

  14. A Switching-Mode Power Supply Design Tool to Improve Learning in a Power Electronics Course

    ERIC Educational Resources Information Center

    Miaja, P. F.; Lamar, D. G.; de Azpeitia, M.; Rodriguez, A.; Rodriguez, M.; Hernando, M. M.

    2011-01-01

    The static design of ac/dc and dc/dc switching-mode power supplies (SMPS) relies on a simple but repetitive process. Although specific spreadsheets, available in various computer-aided design (CAD) programs, are widely used, they are difficult to use in educational applications. In this paper, a graphic tool programmed in MATLAB is presented,…

  15. First lasing at the high-power free electron laser at Siberian center for photochemistry research

    NASA Astrophysics Data System (ADS)

    Antokhin, E. A.; Akberdin, R. R.; Arbuzov, V. S.; Bokov, M. A.; Bolotin, V. P.; Burenkov, D. B.; Bushuev, A. A.; Veremeenko, V. F.; Vinokurov, N. A.; Vobly, P. D.; Gavrilov, N. G.; Gorniker, E. I.; Gorchakov, K. M.; Grigoryev, V. N.; Gudkov, B. A.; Davydov, A. V.; Deichuli, O. I.; Dementyev, E. N.; Dovzhenko, B. A.; Dubrovin, A. N.; Evtushenko, Yu. A.; Zagorodnikov, E. I.; Zaigraeva, N. S.; Zakutov, E. M.; Erokhin, A. I.; Kayran, D. A.; Kiselev, O. B.; Knyazev, B. A.; Kozak, V. R.; Kolmogorov, V. V.; Kolobanov, E. I.; Kondakov, A. A.; Kondakova, N. L.; Krutikhin, S. A.; Kryuchkov, A. M.; Kubarev, V. V.; Kulipanov, G. N.; Kuper, E. A.; Kuptsov, I. V.; Kurkin, G. Ya.; Labutskaya, E. A.; Leontyevskaya, L. G.; Loskutov, V. Yu.; Matveenko, A. N.; Medvedev, L. E.; Medvedko, A. S.; Miginsky, S. V.; Mironenko, L. A.; Motygin, S. V.; Oreshkov, A. D.; Ovchar, V. K.; Osipov, V. N.; Persov, B. Z.; Petrov, S. P.; Petrov, V. M.; Pilan, A. M.; Poletaev, I. V.; Polyanskiy, A. V.; Popik, V. M.; Popov, A. M.; Rotov, E. A.; Salikova, T. V.; Sedliarov, I. K.; Selivanov, P. A.; Serednyakov, S. S.; Skrinsky, A. N.; Tararyshkin, S. V.; Timoshina, L. A.; Tribendis, A. G.; Kholopov, M. A.; Cherepanov, V. P.; Shevchenko, O. A.; Shteinke, A. R.; Shubin, E. I.; Scheglov, M. A.

    2004-08-01

    The first lasing near wavelength 140 μm was achieved in April 2003 on a high-power free electron laser (FEL) constructed at the Siberian Center for Photochemical Research. In this paper, we briefly describe the design of FEL driven by an accelerator-recuperator. Characteristics of the electron beam and terahertz laser radiation, obtained at the first experiments, are also presented in the paper.

  16. Electronic stopping powers for heavy ions in SiC and SiO{sub 2}

    SciTech Connect

    Jin, K.; Xue, H.; Zhang, Y. Weber, W. J.; Zhu, Z.; Grove, D. A.; Xue, J.

    2014-01-28

    Accurate information on electronic stopping power is fundamental for broad advances in materials science, electronic industry, space exploration, and sustainable energy technologies. In the case of slow heavy ions in light targets, current codes and models provide significantly inconsistent predictions, among which the Stopping and Range of Ions in Matter (SRIM) code is the most commonly used one. Experimental evidence, however, has demonstrated considerable errors in the predicted ion and damage profiles based on SRIM stopping powers. In this work, electronic stopping powers for Cl, Br, I, and Au ions are experimentally determined in two important functional materials, SiC and SiO{sub 2}, based on a single ion technique, and new electronic stopping power values are derived over the energy regime from 0 to 15 MeV, where large deviations from the SRIM predictions are observed. As an experimental validation, Rutherford backscattering spectrometry (RBS) and secondary ion mass spectrometry (SIMS) are utilized to measure the depth profiles of implanted Au ions in SiC for energies from 700 keV to 15 MeV. The measured ion distributions by both RBS and SIMS are considerably deeper than the SRIM predictions, but agree well with predictions based on our derived stopping powers.

  17. Power Electronics for Distributed Energy Systems and Transmission and Distribution Applications: Assessing the Technical Needs for Utility Applications

    SciTech Connect

    Tolbert, L.M.

    2005-12-21

    Power electronics can provide utilities the ability to more effectively deliver power to their customers while providing increased reliability to the bulk power system. In general, power electronics is the process of using semiconductor switching devices to control and convert electrical power flow from one form to another to meet a specific need. These conversion techniques have revolutionized modern life by streamlining manufacturing processes, increasing product efficiencies, and increasing the quality of life by enhancing many modern conveniences such as computers, and they can help to improve the delivery of reliable power from utilities. This report summarizes the technical challenges associated with utilizing power electronics devices across the entire spectrum from applications to manufacturing and materials development, and it provides recommendations for research and development (R&D) needs for power electronics systems in which the U.S. Department of Energy (DOE) could make a substantial impact toward improving the reliability of the bulk power system.

  18. Biotactile Sensors: Self-Powered Electronic Skin with Biotactile Selectivity (Adv. Mater. 18/2016).

    PubMed

    Hu, Kesong; Xiong, Rui; Guo, Hengyu; Ma, Ruilong; Zhang, Shuaidi; Wang, Zhong Lin; Tsukruk, Vladimir V

    2016-05-01

    On page 3549, V. V. Tsukruk and co-workers develop self-powered ultrathin flexible films for bio-tactile detection. Graphene oxide materials are engineered for robust self-powered tactile sensing applications harnessing their electrochemical reactivity. The simple quadruple electronic skin sensor can recognize nine spatial bio-tactile positions with high sensitivity and selectivity-an approach that can be expanded towards large-area flexible skin arrays. PMID:27151625

  19. Specifying and calibrating instrumentations for wideband electronic power measurements. [in switching circuits

    NASA Technical Reports Server (NTRS)

    Lesco, D. J.; Weikle, D. H.

    1980-01-01

    The wideband electric power measurement related topics of electronic wattmeter calibration and specification are discussed. Tested calibration techniques are described in detail. Analytical methods used to determine the bandwidth requirements of instrumentation for switching circuit waveforms are presented and illustrated with examples from electric vehicle type applications. Analog multiplier wattmeters, digital wattmeters and calculating digital oscilloscopes are compared. The instrumentation characteristics which are critical to accurate wideband power measurement are described.

  20. Diffusion-controlled electron transfer processes and power-law statistics of fluorescence intermittency of nanoparticles.

    PubMed

    Tang, Jau; Marcus, R A

    2005-09-01

    A mechanism involving diffusion-controlled electron transfer processes in Debye and non-Debye dielectric media is proposed to elucidate the power-law distribution for the lifetime of a blinking quantum dot. This model leads to two complementary regimes of power law with a sum of the exponents equal to 2, and to a specific value for the exponent in terms of a distribution of the diffusion correlation times. It also links the exponential bending tail with energetic and kinetic parameters.

  1. High Efficiency Inverted Organic Solar Cells with a Neutral Fulleropyrrolidine Electron-Collecting Interlayer.

    PubMed

    Xu, Weidong; Yan, Congfei; Kan, Zhipeng; Wang, Yang; Lai, Wen-Yong; Huang, Wei

    2016-06-01

    A novel fulleropyrrolidine derivative, named FPNOH, was designed, synthesized, and utilized as an efficient electron-collecting (EC) layer for inverted organic solar cells (i-OSCs). The grafted diethanolamino-polar moieties can not only trigger its function as an EC interlayer, but also induce orthogonal solubility that guarantees subsequent multilayer processing without interfacial mixing. A higher power conversion efficiency (PCE) value of 8.34% was achieved for i-OSC devices with ITO/FPNOH EC electrode, compared to that of the sol-gel ZnO based reference devices with an optimized PCE value of 7.92%. High efficiency exceeding 7.7% was still achieved even for the devices with a relatively thick FPNOH film (16.9 nm). It is worthwhile to mention that this kind of material exhibits less thickness dependent performance, in contrast to widely utilized p-type conjugated polyelectrolytes (CPEs) as well as the nonconjugated polyelectrolytes (NCPEs). Further investigation on illuminating intensity dependent parameters revealed the role of FPNOH in reducing interfacial trap-induced recombination at the ITO/active layer interface. PMID:27197741

  2. High Efficiency Inverted Organic Solar Cells with a Neutral Fulleropyrrolidine Electron-Collecting Interlayer.

    PubMed

    Xu, Weidong; Yan, Congfei; Kan, Zhipeng; Wang, Yang; Lai, Wen-Yong; Huang, Wei

    2016-06-01

    A novel fulleropyrrolidine derivative, named FPNOH, was designed, synthesized, and utilized as an efficient electron-collecting (EC) layer for inverted organic solar cells (i-OSCs). The grafted diethanolamino-polar moieties can not only trigger its function as an EC interlayer, but also induce orthogonal solubility that guarantees subsequent multilayer processing without interfacial mixing. A higher power conversion efficiency (PCE) value of 8.34% was achieved for i-OSC devices with ITO/FPNOH EC electrode, compared to that of the sol-gel ZnO based reference devices with an optimized PCE value of 7.92%. High efficiency exceeding 7.7% was still achieved even for the devices with a relatively thick FPNOH film (16.9 nm). It is worthwhile to mention that this kind of material exhibits less thickness dependent performance, in contrast to widely utilized p-type conjugated polyelectrolytes (CPEs) as well as the nonconjugated polyelectrolytes (NCPEs). Further investigation on illuminating intensity dependent parameters revealed the role of FPNOH in reducing interfacial trap-induced recombination at the ITO/active layer interface.

  3. Photovoltaic Shading Testbed for Module-Level Power Electronics: 2014 Update

    SciTech Connect

    Deline, C.; Meydbray, J.; Donovan, M.

    2014-08-01

    The 2012 NREL report 'Photovoltaic Shading Testbed for Module-Level Power Electronics' provides a standard methodology for estimating the performance benefit of distributed power electronics under partial shading conditions. Since the release of the report, experiments have been conducted for a number of products and for different system configurations. Drawing from these experiences, updates to the test and analysis methods are recommended. Proposed changes in data processing have the benefit of reducing the sensitivity to measurement errors and weather variability, as well as bringing the updated performance score in line with measured and simulated values of the shade recovery benefit of distributed PV power electronics. Also, due to the emergence of new technologies including sub-module embedded power electronics, the shading method has been extended to include power electronics that operate at a finer granularity than the module level. An update to the method is proposed to account for these emerging technologies that respond to shading differently than module-level devices. The partial shading test remains a repeatable test procedure that attempts to simulate shading situations as would be experienced by typical residential or commercial rooftop photovoltaic (PV) systems. Performance data for multiple products tested using this method are discussed, based on equipment from Enphase, Solar Edge, Maxim Integrated and SMA. In general, the annual recovery of shading losses from the module-level electronics evaluated is 25-35%, with the major difference between different trials being related to the number of parallel strings in the test installation rather than differences between the equipment tested.

  4. Electron Transport and Ion Acceleration in a Low-power Cylindrical Hall Thruster

    SciTech Connect

    A. Smirnov; Y. Raitses; N.J. Fisch

    2004-06-24

    Conventional annular Hall thrusters become inefficient when scaled to low power. Cylindrical Hall thrusters, which have lower surface-to-volume ratio, are therefore more promising for scaling down. They presently exhibit performance comparable with conventional annular Hall thrusters. Electron cross-field transport in a 2.6 cm miniaturized cylindrical Hall thruster (100 W power level) has been studied through the analysis of experimental data and Monte Carlo simulations of electron dynamics in the thruster channel. The numerical model takes into account elastic and inelastic electron collisions with atoms, electron-wall collisions, including secondary electron emission, and Bohm diffusion. We show that in order to explain the observed discharge current, the electron anomalous collision frequency {nu}{sub B} has to be on the order of the Bohm value, {nu}{sub B} {approx} {omega}{sub c}/16. The contribution of electron-wall collisions to cross-field transport is found to be insignificant. The plasma density peak observed at the axis of the 2.6 cm cylindrical Hall thruster is likely to be due to the convergent flux of ions, which are born in the annular part of the channel and accelerated towards the thruster axis.

  5. Enhanced modified faraday cup for determination of power density distribution of electron beams

    DOEpatents

    Elmer, John W.; Teruya, Alan T.

    2001-01-01

    An improved tomographic technique for determining the power distribution of an electron or ion beam using electron beam profile data acquired by an enhanced modified Faraday cup to create an image of the current density in high and low power ion or electron beams. A refractory metal disk with a number of radially extending slits, one slit being about twice the width of the other slits, is placed above a Faraday cup. The electron or ion beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. The enlarged slit enables orientation of the beam profile with respect to the coordinates of the welding chamber. A second disk having slits therein is positioned below the first slit disk and inside of the Faraday cup and provides a shield to eliminate the majority of secondary electrons and ions from leaving the Faraday cup. Also, a ring is located below the second slit disk to help minimize the amount of secondary electrons and ions from being produced. In addition, a beam trap is located in the Faraday cup to provide even more containment of the electron or ion beam when full beam current is being examined through the center hole of the modified Faraday cup.

  6. Modeling Photovoltaic Module-Level Power Electronics in the System Advisor Model; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-07-01

    Module-level power electronics, such as DC power optimizers, microinverters, and those found in AC modules, are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software. This paper extends the work completed at NREL that provided recommendations to model the performance of distributed power electronics in NREL’s popular PVWatts calculator [1], to provide similar guidelines for modeling these technologies in NREL's more complex System Advisor Model (SAM). Module-level power electronics - such as DC power optimizers, microinverters, and those found in AC modules-- are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software.

  7. A novel technique for electronic phasing of high power fiber amplifier arrays

    NASA Astrophysics Data System (ADS)

    Shay, T. M.; Baker, J. T.; Sanchez, Anthony D.; Robin, C. A.; Vergien, C. L.; Zeringue, C.; Gallant, D.; Lu, Chunte A.; Pulford, Benjamin; Bronder, T. J.; Lucero, Arthur

    2009-06-01

    We report high power phase locked fiber amplifier array using the Self-Synchronous Locking of Optical Coherence by Single-detector Electronic-frequency Tagging technique. We report the first experimental results for a five element amplifier array with a total locked power of more than 725-W. We will report on experimental measurements of the phase fluctuations versus time when the control loop is closed. The rms phase error was measured to be λ/60. Recent results will be reported. To the best of the authors' knowledge this is the highest fiber laser power to be coherently combined.

  8. Modified Bethe formula for low-energy electron stopping power without fitting parameters.

    PubMed

    Nguyen-Truong, Hieu T

    2015-02-01

    We propose a modified Bethe formula for low-energy electron stopping power without fitting parameters for a wide range of elements and compounds. This formula maintains the generality of the Bethe formula and gives reasonable agreement in comparing the predicted stopping powers for 15 elements and 6 compounds with the experimental data and those calculated within dielectric theory including the exchange effect. Use of the stopping power obtained from this formula for hydrogen silsesquioxane in Monte Carlo simulation gives the energy deposition distribution in consistent with the experimental data.

  9. Robust, Rework-able Thermal Electronic Packaging: Applications in High Power TR Modules for Space

    NASA Technical Reports Server (NTRS)

    Hoffman, James Patrick; Del Castillo, Linda; Hunter, Don; Miller, Jennifer

    2012-01-01

    The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires improvements in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and are now being implemented side-by-side with more standard technology typically used in flight hardware.

  10. Design and power management of an offshore medium voltage DC microgrid realized through high voltage power electronics technologies and control

    NASA Astrophysics Data System (ADS)

    Grainger, Brandon Michael

    The growth in the electric power industry's portfolio of Direct Current (DC) based generation and loads have captured the attention of many leading research institutions. Opportunities for using DC based systems have been explored in electric ship design and have been a proven, reliable solution for transmitting bulk power onshore and offshore. To integrate many of the renewable resources into our existing AC grid, a number of power conversions through power electronics are required to condition the equipment for direct connection. Within the power conversion stages, there is always a requirement to convert to or from DC. The AC microgrid is a conceptual solution proposed for integrating various types of renewable generation resources. The fundamental microgrid requirements include the capability of operating in islanding mode and/or grid connected modes. The technical challenges associated with microgrids include (1) operation modes and transitions that comply with IEEE1547 without extensive custom engineering and (2) control architecture and communication. The Medium Voltage DC (MVDC) architecture, explored by the University of Pittsburgh, can be visualized as a special type of DC microgrid. This dissertation is multi-faceted, focused on many design aspects of an offshore DC microgrid. The focal points of the discussion are focused on optimized high power, high frequency magnetic material performance in electric machines, transformers, and DC/DC power converters---all components found within offshore, power system architectures. A new controller design based upon model reference control is proposed and shown to stabilize the electric motor drives (modeled as constant power loads), which serve as the largest power consuming entities in the microgrid. The design and simulation of a state-of-the-art multilevel converter for High Voltage DC (HVDC) is discussed and a component sensitivity analysis on fault current peaks is explored. A power management routine is

  11. High-power microwave amplifier based on overcritical relativistic electron beam without external magnetic field

    SciTech Connect

    Kurkin, S. A. Koronovskii, A. A.; Frolov, N. S.; Hramov, A. E.; Rak, A. O.; Kuraev, A. A.

    2015-04-13

    The high-power scheme for the amplification of powerful microwave signals based on the overcritical electron beam with a virtual cathode (virtual cathode amplifier) has been proposed and investigated numerically. General output characteristics of the virtual cathode amplifier including the dependencies of the power gain on the input signal frequency and amplitude have been obtained and analyzed. The possibility of the geometrical working frequency tuning over the range about 8%–10% has been shown. The obtained results demonstrate that the proposed virtual cathode amplifier scheme may be considered as the perspective high-power microwave amplifier with gain up to 18 dB, and with the following important advantages: the absence of external magnetic field, the simplicity of construction, the possibility of geometrical frequency tuning, and the amplification of relatively powerful microwave signals.

  12. Air-Cooled Heat Exchanger for High-Temperature Power Electronics: Preprint

    SciTech Connect

    Waye, S. K.; Lustbader, J.; Musselman, M.; King, C.

    2015-05-06

    This work demonstrates a direct air-cooled heat exchanger strategy for high-temperature power electronic devices with an application specific to automotive traction drive inverters. We present experimental heat dissipation and system pressure curves versus flow rate for baseline and optimized sub-module assemblies containing two ceramic resistance heaters that provide device heat fluxes. The maximum allowable junction temperature was set to 175 deg.C. Results were extrapolated to the inverter scale and combined with balance-of-inverter components to estimate inverter power density and specific power. The results exceeded the goal of 12 kW/L and 12 kW/kg for power density and specific power, respectively.

  13. Powerful electrostatic FEL: Regime of operation, recovery of the spent electron beam and high voltage generator

    SciTech Connect

    Boscolo, I.; Gong, J.

    1995-02-01

    FEL, driven by a Cockcroft-Walton electrostatic accelerator with the recovery of the spent electron beam, is proposed as powerful radiation source for plasma heating. The low gain and high gain regimes are compared in view of the recovery problem and the high gain regime is shown to be much more favourable. A new design of the onion Cockcroft-Walton is presented.

  14. Hybridized Electromagnetic-Triboelectric Nanogenerator for a Self-Powered Electronic Watch.

    PubMed

    Quan, Ting; Wang, Xue; Wang, Zhong Lin; Yang, Ya

    2015-12-22

    We report a hybridized nanogenerator including a triboelectric nanogenerator (TENG) and six electromagnetic generators (EMGs) that can effectively scavenge biomechanical energy for sustainably powering an electronic watch. Triggered by the natural motions of the wearer's wrist, a magnetic ball at the center in an acrylic box with coils on each side will collide with the walls, resulting in outputs from both the EMGs and the TENG. By using the hybridized nanogenerator to harvest the biomechanical energy, the electronic watch can be continuously powered under different motion types of the wearer's wrist, where the best approach is to charge a 100 μF capacitor in 39 s to maintain the continuous operation of the watch for 456 s. To increase the working time of the watch further, a homemade Li-ion battery has been utilized as the energy storage unit for realizing the continuous working of the watch for about 218 min by using the hybridized nanogenerator to charge the battery within 32 min. This work will provide the opportunities for developing a nanogenerator-based built-in power source for self-powered wearable electronics such as an electronic watch.

  15. Status of the high power free electron laser using the race-track microtron-recuperator

    NASA Astrophysics Data System (ADS)

    Vinokurov, N. A.; Gavrilov, N. G.; Gorniker, E. I.; Kulipanov, G. N.; Kuptsov, I. V.; Kurkin, G. Ya.; Erg, G. I.; Levashov, Yu. I.; Oreshkov, A. D.; Petrov, S. P.; Petrov, V. M.; Pinayev, I. V.; Popik, V. M.; Sedlyarov, I. K.; Shaftan, T. V.; Skrinsky, A. N.; Sokolov, A. S.; Veshcherevich, V. G.; Vobly, P. D.

    1996-02-01

    The high power infrared free electron laser is under construction at the Novosibirsk Scientific Centre. The goal of this project is to provide a user facility for Siberian Centre of Photochemical Researches. The features of the installation and its status are described.

  16. High Average Power Operation of a Scraper-Outcoupled Free-Electron Laser

    SciTech Connect

    Michelle D. Shinn; Chris Behre; Stephen Vincent Benson; Michael Bevins; Don Bullard; James Coleman; L. Dillon-Townes; Tom Elliott; Joe Gubeli; David Hardy; Kevin Jordan; Ronald Lassiter; George Neil; Shukui Zhang

    2004-08-01

    We describe the design, construction, and operation of a high average power free-electron laser using scraper outcoupling. Using the FEL in this all-reflective configuration, we achieved approximately 2 kW of stable output at 10 um. Measurements of gain, loss, and output mode will be compared with our models.

  17. High-power Čerenkov microwave oscillators utilizing High-Current nanosecond Electron beams

    NASA Astrophysics Data System (ADS)

    Korovin, S. D.; Polevin, S. D.; Rostov, V. V.

    1996-12-01

    A short review is given of results obtained at the Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences on generating high-power microwave radiation. Most of the research was devoted to a study of stimulated Čerenkov radiation from relativistic electron beams. It is shown that the efficiency of a relativistic 3-cm backward wave tube with a nonuniform coupling resistance can reach 35%. High-frequency radiation was discovered in the emission spectrum of the Čerenkov oscillators and it was shown that the nature of the radiation was associated with the stimulated scattering of low-frequency radiation by the relativistic electrons. Radiation with a power of 500 MW was obtained in the 8-mm wavelength range using a two-beam Čerenkov oscillator. High-current pulse-periodic nanosecond accelerators with a charging device utilizing a Tesla transformer were used in the experiments. The possibility was demonstrated of generating high-power microwave radiation with a pulse-repetition frequency of up to 100 Hz. An average power of ˜500 W was achieved from the relativistic oscillators. A relativistic backward wave tube with a high-current electron beam was used to make a prototype nanosecond radar device. Some of the results presented were obtained jointly with the Russian Academy of Sciences Institute of Applied Physics. Questions concerning multiwave Čerenkov interaction are not considered in this paper.

  18. Unique Power Electronics and Drives Experimental Bench (PEDEB) to Facilitate Learning and Research

    ERIC Educational Resources Information Center

    Anand, S.; Farswan, R. S.; Fernandes, B. G.

    2012-01-01

    Experimentation is important for learning and research in the field of power electronics and drives. However, a great deal of equipment is required to study the various topologies, controllers, and functionalities. Thus, the cost of establishing good laboratories and research centers is high. To address this problem, the authors have developed a…

  19. Sensitivity of self-powered detector probes to electron and gamma-ray fields

    NASA Astrophysics Data System (ADS)

    Lone, M. A.; Wong, P. Y.; Ajmani, K.

    1994-10-01

    A self-powered detector (SPD) is a simple, passive device that consists of a coaxial probe with a metallic outer sleeve, a mineral oxide insulating layer, and a metallic inner core. SPDs are used in nuclear reactors to monitor neutron and gamma fields. Responses of SPDs to electrons and γ-rays of various energies were investigated with Monte Carlo simulations. Transmission filters were studied for the design of threshold SPD probes used for on-line monitoring of the energy spectrum of high-power industrial electron accelerator beams. Filters were also investigated for the enhancement of γ-ray sensitivity of an SPD placed in a mixed electron and γ-ray field.

  20. ECOFUSION: AN ELECTRON-COOLED, CELLULAR APPROACH TO HARNESSING FUSION POWER

    SciTech Connect

    Larson, D. J.

    2009-07-26

    A cellular electron-cooled storage ring system for achieving particle-beam fusion-based-energy is described. The system uses multiple electron-cooled, overlapping storage rings to enable colliding-beam fusion. Particles are continuously fed into the storage rings, and the electron cooling systems continuously correct the ion beam trajectories, compensating for various scattering events that occur in the system. This allows for large currents to be built up in the ion storage rings. The rate of fusion reactions that occur in the overlap regions between the storage rings can be increased by focusing to enable power outputs of interest for fusion-based power reactors. The system can be built with technology readily available today.

  1. High power THz source based on coherent radiation of picosecond relativistic electron bunch train

    NASA Astrophysics Data System (ADS)

    You, Yan; Yan, LiXin; Du, YingChao; Hua, JianFei; Huang, WenHui; Tang, ChuanXiang

    2011-12-01

    Tunable and compact high power terahertz (THz) radiation based on coherent radiation (CR) of the picosecond relativistic electron bunch train is under development at the Tsinghua accelerator lab. Coherent synchronization radiation (CSR) and coherent transition radiation (CTR) are researched based on an S-band compact electron linac, a bending magnet or a thin foil. The bunch train's form factors, which are the key factor of THz radiation, are analyzed by the PARMELA simulation. The effects of electron bunch trains under different conditions, such as the bunch number, bunch charges, micro-pulses inter-distance, and accelerating gradient of the gun are investigated separately in this paper. The optimal radiated THz power and spectra should take these factors as a whole into account.

  2. Electronic stopping power in liquid water for protons and α particles from first principles

    NASA Astrophysics Data System (ADS)

    Reeves, Kyle G.; Yao, Yi; Kanai, Yosuke

    2016-07-01

    Atomistic calculations of the electronic stopping power in liquid water for protons and α particles from first principles are demonstrated without relying on linear response theory. The computational approach is based on nonequilibrium simulation of the electronic response using real-time time-dependent density functional theory. By quantifying the velocity dependence of the steady-state charge of the projectile proton and α particle from nonequilibrium electron densities, we examine the extent to which linear response theory is applicable. We further assess the influence of the exchange-correlation approximation in real-time time-dependent density functional theory on the stopping power with range-separated and regular hybrid functionals with exact exchange.

  3. An automated system for studying the power distribution of electron beams

    SciTech Connect

    Filarowski, C.A.

    1994-12-01

    Precise welds with an electron beam welder are difficult to reproduce because the factors effecting the electron beam current density distribution are not easily controlled. One method for measuring the power density distribution in EB welds uses computer tomography to reconstruct an image of the current density distribution. This technique uses many separate pieces of hardware and software packages to obtain the data and then reconstruct it consequently, transferring this technology between different machines and operators is difficult. Consolidating all of the hardware and software into one machine to execute the same tasks will allow for real-time measurement of the EB power density distribution and will provide a facilitated means for transferring various welding procedure between different machines and operators, thereby enhancing reproducibility of electron beam welds.

  4. A high-power free electron laser using a short rayleigh length

    SciTech Connect

    William Colson; Alan Todd; George Neil

    2004-09-01

    Free electron lasers have always had the potential for high average power, since the laser medium cannot be damaged and is transparent to all wavelengths while the exhaust heat is removed at the speed of light. At MW power levels, the resonator mirrors of the oscillator are vulnerable to damage because of the small beam size in the undulator. We present a description of an FEL that uses a resonator with a short Rayleigh length in order to increase the mode area at the mirrors and reduce the intensity. The corresponding undulator must also be short. The whole FEL system is designed to be compact and efficient, producing about 1 MW of power at 1 mu-m infrared wavelength using an electron beam of about 140 MeV with about 0.6A of recirculating average current.

  5. 3D Modeling Activity for Novel High Power Electron Guns at SLAC

    SciTech Connect

    Krasnykh, Anatoly

    2003-07-29

    The next generation of powerful electronic devices requires new approaches to overcome the known limitations of existing tube technology. Multi-beam and sheet beam approaches are novel concepts for the high power microwave devices. Direct and indirect modeling methods are being developed at SLAC to meet the new requirements in the 3D modeling. The direct method of solving of Poisson's equations for the multi-beam and sheet beam guns is employed in the TOPAZ 3D tool. The combination of TOPAZ 2D and EGUN (in the beginning) with MAFIA 3D and MAGIC 3D (at the end) is used in an indirect method to model the high power electron guns. Both methods complement each other to get reliable representation of the beam trajectories. Several gun ideas are under consideration at the present time. The collected results of these simulations are discussed.

  6. Double power-law spectra of energetic electrons in the Earth magnetotail

    NASA Astrophysics Data System (ADS)

    Artemyev, A. V.; Hoshino, M.; Lutsenko, V. N.; Petrukovich, A. A.; Imada, S.; Zelenyi, L. M.

    2013-01-01

    In this paper, we consider electron acceleration in the vicinity of X-line and corresponding formation of energy spectra. We develop an analytical model including the effect of the electron trapping by electrostatic fields and surfing acceleration. Speiser, Fermi and betatron mechanisms of acceleration are also taken into account. Analytical estimates are verified by the numerical integration of electron trajectories. The surfing mechanism and adiabatic heating are responsible for the formation of the double power-law spectrum in agreement with the previous studies. The energy of the spectrum knee is about ~150 keV for typical conditions of the Earth magnetotail. We compare theoretical results with the spacecraft observations of electron double power-law spectra in the magnetotail and demonstrate that the theory is able to describe typical energy of the spectra knee. We also estimate the role of relativistic effects and magnetic field fluctuations on the electron acceleration: the acceleration is more stable for relativistic electrons, while fluctuations of the magnetic field cannot significantly decrease the gained energy for typical magnetospheric conditions.

  7. Power consumption and byproducts in electron beam and electrical discharge processing of volatile organic compounds

    SciTech Connect

    Penetrante, B.M.; Hsiao, M.C.; Bardsley, J.N.

    1996-02-20

    Among the new methods being investigated for the post-process reduction of volatile organic compounds (VOCs) in atmospheric-pressure air streams are based on non-thermal plasmas. Electron beam, pulsed corona and dielectric-barrier discharge methods are among the more extensively investigated techniques for producing non-thermal plasmas. In order to apply non-thermal plasmas in an industrial scale, it is important to establish the electrical power requirements and byproducts of the process. In this paper the authors present experimental results using a compact electron beam reactor, a pulsed corona and a dielectric-barrier discharge reactor. They have used these reactors to study the removal of a wide variety of VOCs. The effects of background gas composition and gas temperature on the decomposition chemistry have been studied. They present a description of the reactions that control the efficiency of the plasma process. They have found that pulsed corona and other types of electrical discharge reactors are most suitable only for processes requiring O radicals. For VOCs requiring copious amounts of electrons, ions, N atoms or OH radicals, the use of electron beam reactors is generally the best way of minimizing the electrical power consumption. Electron beam processing is remarkably more effective for all of the VOCs tested. For control of VOC emissions from dilute, large volume sources such as paint spray booths, cost analysis shows that the electron beam method is cost-competitive to thermal and catalytic methods that employ heat recovery or hybrid techniques.

  8. Impurity segregation behavior in polycrystalline silicon ingot grown with variation of electron-beam power

    NASA Astrophysics Data System (ADS)

    Lee, Jun-Kyu; Lee, Jin-Seok; Jang, Bo-Yun; Kim, Joon-Soo; Ahn, Young-Soo; Cho, Churl-Hee

    2014-08-01

    Electron beam melting (EBM) systems have been used to improve the purity of metallurgical grade silicon feedstock for photovoltaic application. Our advanced EBM system is able to effectively remove volatile impurities using a heat source with high energy from an electron gun and to continuously allow impurities to segregate at the top of an ingot solidified in a directional solidification (DS) zone in a vacuum chamber. Heat in the silicon melt should move toward the ingot bottom for the desired DS. However, heat flux though the ingot is changed as the ingot becomes longer due to low thermal conductivity of silicon. This causes a non-uniform microstructure of the ingot, finally leading to impurity segregation at its middle. In this research, EB power irradiated on the silicon melt was controlled during the ingot growth in order to suppress the change of heat flux. EB power was reduced from 12 to 6.6 kW during the growth period of 45 min with a drop rate of 0.125 kW/min. Also, the silicon ingot was grown under a constant EB power of 12 kW to estimate the effect of the drop rate of EB power. When the EB power was reduced, the grains with columnar shape were much larger at the middle of the ingot compared to the case of constant EB power. Also, the present research reports a possible reason for the improvement of ingot purity by considering heat flux behaviors.

  9. Modulated electron cyclotron drift instability in a high-power pulsed magnetron discharge.

    PubMed

    Tsikata, Sedina; Minea, Tiberiu

    2015-05-01

    The electron cyclotron drift instability, implicated in electron heating and anomalous transport, is detected in the plasma of a planar magnetron. Electron density fluctuations associated with the mode are identified via an adapted coherent Thomson scattering diagnostic, under direct current and high-power pulsed magnetron operation. Time-resolved analysis of the mode amplitude reveals that the instability, found at MHz frequencies and millimeter scales, also exhibits a kHz-scale modulation consistent with the observation of larger-scale plasma density nonuniformities, such as the rotating spoke. Sharply collimated axial fluctuations observed at the magnetron axis are consistent with the presence of escaping electrons in a region where the magnetic and electric fields are antiparallel. These results distinguish aspects of magnetron physics from other plasma sources of similar geometry, such as the Hall thruster, and broaden the scope of instabilities which may be considered to dictate magnetron plasma features. PMID:26001007

  10. Modulated Electron Cyclotron Drift Instability in a High-Power Pulsed Magnetron Discharge

    NASA Astrophysics Data System (ADS)

    Tsikata, Sedina; Minea, Tiberiu

    2015-05-01

    The electron cyclotron drift instability, implicated in electron heating and anomalous transport, is detected in the plasma of a planar magnetron. Electron density fluctuations associated with the mode are identified via an adapted coherent Thomson scattering diagnostic, under direct current and high-power pulsed magnetron operation. Time-resolved analysis of the mode amplitude reveals that the instability, found at MHz frequencies and millimeter scales, also exhibits a kHz-scale modulation consistent with the observation of larger-scale plasma density nonuniformities, such as the rotating spoke. Sharply collimated axial fluctuations observed at the magnetron axis are consistent with the presence of escaping electrons in a region where the magnetic and electric fields are antiparallel. These results distinguish aspects of magnetron physics from other plasma sources of similar geometry, such as the Hall thruster, and broaden the scope of instabilities which may be considered to dictate magnetron plasma features.

  11. Design of spherical electron gun for ultra high frequency, CW power inductive output tube

    NASA Astrophysics Data System (ADS)

    Kaushik, Meenu; Joshi, L. M.

    2016-03-01

    Inductive Output Tube (IOT) is an amplifier that usually operates in UHF range. It is an electron tube whose basic structure is similar to conventional vacuum devices. This device is widely used in broadcast applications but is now being explored for scientific applications also specifically, particle accelerators and fusion plasma heating purposes. The paper describes the design approach of a spherical gridded electron gun of a 500 MHz, 100 kW CW power IOT. The electron gun structure has been simulated and optimized for operating voltage and current of 40kV and 3.5 A respectively. The electromagnetic analysis of this spherical electron gun has been carried out in CST and TRAK codes.

  12. Aging of electronics with application to nuclear power plant instrumentation. [PWR; BWR

    SciTech Connect

    Johnson, Jr, R T; Thome, F V; Craft, C M

    1983-01-01

    A survey to identify areas of needed research to understand aging mechanisms for electronics in nuclear power plant instrumentation has been completed. The emphasis was on electronic components such as semiconductors, capacitors, and resistors used in safety-related instrumentation in the reactor containment area. The environmental and operational stress factors which may produce degradation during long-term operation were identified. Some attention was also given to humidity effects as related to seals and encapsulants, and failures in printed circuit boards and bonds and solder joints. Results suggest that neutron as well as gamma irradiations should be considered in simulating the aging environment for electronic components. Radiation dose-rate effects in semiconductor devices and organic capacitors need to be further investigated, as well as radiation-voltage bias synergistic effects in semiconductor devices and leakage and permeation of moisture through seals in electronics packages.

  13. Phase transition cooled window studies for high average power electron guns

    NASA Astrophysics Data System (ADS)

    Loda, G.; Forcier, D.

    1980-12-01

    The window used to transmit electron beams for use in high average power UV/visible lasers has been a critical technology issue. The window structure must satisfy a number of conflicting requirements including: vacuum integrity, strength to overcome both the static and dynamic pressure loads of the laser gas and a low mass density to minimize energy loss by the electron beam. In addition, it must not perturb the laser gas flow and must be able to dissipate the power deposited by the electron beam. Two experiments were undertaken to demonstrate the applicability of phase transition cooling for high power laser systems. In the first of these a full width 50 cm module was tested with a constant input heat source. The second experiment used a pulsed e-beam source to demonstrate cooling for a low duty cycle high peak power pulsed system. The applicability of phase transition cooling for a dual foil geometry was clearly demonstrated. Cooling rates in excess of 100 W/(sq cm)/foil surface with mass flow rates consistent with low areal mass density were achieved. This represents a factor of ten improvement over pre-existing state of the art.

  14. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics.

    PubMed

    Wang, Sihong; Lin, Long; Wang, Zhong Lin

    2012-12-12

    Harvesting energy from our living environment is an effective approach for sustainable, maintenance-free, and green power source for wireless, portable, or implanted electronics. Mechanical energy scavenging based on triboelectric effect has been proven to be simple, cost-effective, and robust. However, its output is still insufficient for sustainably driving electronic devices/systems. Here, we demonstrated a rationally designed arch-shaped triboelectric nanogenerator (TENG) by utilizing the contact electrification between a polymer thin film and a metal thin foil. The working mechanism of the TENG was studied by finite element simulation. The output voltage, current density, and energy volume density reached 230 V, 15.5 μA/cm(2), and 128 mW/cm(3), respectively, and an energy conversion efficiency as high as 10-39% has been demonstrated. The TENG was systematically studied and demonstrated as a sustainable power source that can not only drive instantaneous operation of light-emitting diodes (LEDs) but also charge a lithium ion battery as a regulated power module for powering a wireless sensor system and a commercial cell phone, which is the first demonstration of the nanogenerator for driving personal mobile electronics, opening the chapter of impacting general people's life by nanogenerators.

  15. Development of a Power Electronics Controller for the Advanced Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Leland, Douglas K.; Priest, Joel F.; Keiter, Douglas E.; Schreiber, Jeffrey G.

    2008-01-01

    Under a U.S. Department of Energy program for radioisotope power systems, Lockheed Martin is developing an Engineering Unit of the Advanced Stirling Radioisotope Generator (ASRG). This is an advanced version of the previously reported SRG110 generator. The ASRG uses Advanced Stirling Convertors (ASCs) developed by Sunpower Incorporated under a NASA Research Announcement contract. The ASRG makes use of a Stirling controller based on power electronics that eliminates the tuning capacitors. The power electronics controller synchronizes dual-opposed convertors and maintains a fixed frequency operating point. The controller is single-fault tolerant and uses high-frequency pulse width modulation to create the sinusoidal currents that are nearly in phase with the piston velocity, eliminating the need for large series tuning capacitors. Sunpower supports this effort through an extension of their controller development intended for other applications. Glenn Research Center (GRC) supports this effort through system dynamic modeling, analysis and test support. The ASRG design arrived at a new baseline based on a system-level trade study and extensive feedback from mission planners on the necessity of single-fault tolerance. This paper presents the baseline design with an emphasis on the power electronics controller detailed design concept that will meet space mission requirements including single fault tolerance.

  16. Development of Standardized Power Electronic Components, Subsystems, and Systems for Increased Modularity and Scalability

    SciTech Connect

    Chakraborty, S.; Pink, C.; Price, J.; Kroposki, B.; Kern, G.

    2007-11-01

    Power electronics devices hold substantial promise for making distributed energy applications more efficient and cost effective. This project is motivated towards developing and testing inverters that will allow distributed energy systems to provide ancillary services such as voltage and VAR regulation, and increased grid reliability by seamlessly transitioning between grid-tied and stand-alone operation modes. The objectives of this project are to identify system integration and optimization issues and technologies and to provide solutions through research, analysis, and testing of power electronic interfaces for distributed energy applications that are cost-competitive and have substantially faster response times than conventional technologies. In addition, the testing of power electronics interfaces will develop a technical basis for performance assessment for distributed energy systems, subsystems, and components that will finally create a foundation for standardized measurements and test procedures. The ultimate goal for this research is to advance the potential benefits of distributed energy to provide ancillary services, enhance power system reliability, and allow customer choice.

  17. Estimation and harvesting of human heat power for wearable electronic devices

    NASA Astrophysics Data System (ADS)

    Dziurdzia, P.; Brzozowski, I.; Bratek, P.; Gelmuda, W.; Kos, A.

    2016-01-01

    The paper deals with the issue of self-powered wearable electronic devices that are capable of harvesting free available energy dissipated by the user in the form of human heat. The free energy source is intended to be used as a secondary power source supporting primary battery in a sensor bracelet. The main scope of the article is a presentation of the concept for a measuring setup used to quantitative estimation of heat power sources in different locations over the human body area. The crucial role in the measurements of the human heat plays a thermoelectric module working in the open circuit mode. The results obtained during practical tests are confronted with the requirements of the dedicated thermoelectric generator. A prototype design of a human warmth energy harvester with an ultra-low power DC-DC converter based on the LTC3108 circuit is analysed.

  18. Tunable power law in the desynchronization events of coupled chaotic electronic circuits

    SciTech Connect

    Oliveira, Gilson F. de Lorenzo, Orlando di; Chevrollier, Martine; Passerat de Silans, Thierry; Oriá, Marcos; Souza Cavalcante, Hugo L. D. de

    2014-03-15

    We study the statistics of the amplitude of the synchronization error in chaotic electronic circuits coupled through linear feedback. Depending on the coupling strength, our system exhibits three qualitatively different regimes of synchronization: weak coupling yields independent oscillations; moderate to strong coupling produces a regime of intermittent synchronization known as attractor bubbling; and stronger coupling produces complete synchronization. In the regime of moderate coupling, the probability distribution for the sizes of desynchronization events follows a power law, with an exponent that can be adjusted by changing the coupling strength. Such power-law distributions are interesting, as they appear in many complex systems. However, most of the systems with such a behavior have a fixed value for the exponent of the power law, while here we present an example of a system where the exponent of the power law is easily tuned in real time.

  19. Design of the fundamental power coupler and photocathode inserts for the 112MHz superconducting electron gun

    SciTech Connect

    Xin, T.; Ben-Zvi, I.; Belomestnykh, S.; Chang, X.; Rao, T.; Skaritka, J.; Wu, Q.; Wang, E.; Liang, X.

    2011-07-25

    A 112 MHz superconducting quarter-wave resonator electron gun will be used as the injector of the Coherent Electron Cooling (CEC) proof-of-principle experiment at BNL. Furthermore, this electron gun can be the testing cavity for various photocathodes. In this paper, we present the design of the cathode stalks and a Fundamental Power Coupler (FPC) designated to the future experiments. Two types of cathode stalks are discussed. Special shape of the stalk is applied in order to minimize the RF power loss. The location of cathode plane is also optimized to enable the extraction of low emittance beam. The coaxial waveguide structure FPC has the properties of tunable coupling factor and small interference to the electron beam output. The optimization of the coupling factor and the location of the FPC are discussed in detail. Based on the transmission line theory, we designed a half wavelength cathode stalk which significantly brings down the voltage drop between the cavity and the stalk from more than 5.6 kV to 0.1 kV. The transverse field distribution on cathode has been optimized by carefully choosing the position of cathode stalk inside the cavity. Moreover, in order to decrease the RF power loss, a variable diameter design of cathode stalk has been applied. Compared to the uniform shape of stalk, this design gives us much smaller power losses in important locations. Besides that, we also proposed a fundamental power coupler based on the designed beam parameters for the future proof-of-principle CEC experiment. This FPC should give a strong enough coupling which has the Q external range from 1.5e7 to 2.6e8.

  20. Powering embedded electronics for wind turbine monitoring using multi-source energy harvesting techniques

    NASA Astrophysics Data System (ADS)

    Anton, S. R.; Taylor, S. G.; Raby, E. Y.; Farinholt, K. M.

    2013-03-01

    With a global interest in the development of clean, renewable energy, wind energy has seen steady growth over the past several years. Advances in wind turbine technology bring larger, more complex turbines and wind farms. An important issue in the development of these complex systems is the ability to monitor the state of each turbine in an effort to improve the efficiency and power generation. Wireless sensor nodes can be used to interrogate the current state and health of wind turbine structures; however, a drawback of most current wireless sensor technology is their reliance on batteries for power. Energy harvesting solutions present the ability to create autonomous power sources for small, low-power electronics through the scavenging of ambient energy; however, most conventional energy harvesting systems employ a single mode of energy conversion, and thus are highly susceptible to variations in the ambient energy. In this work, a multi-source energy harvesting system is developed to power embedded electronics for wind turbine applications in which energy can be scavenged simultaneously from several ambient energy sources. Field testing is performed on a full-size, residential scale wind turbine where both vibration and solar energy harvesting systems are utilized to power wireless sensing systems. Two wireless sensors are investigated, including the wireless impedance device (WID) sensor node, developed at Los Alamos National Laboratory (LANL), and an ultra-low power RF system-on-chip board that is the basis for an embedded wireless accelerometer node currently under development at LANL. Results indicate the ability of the multi-source harvester to successfully power both sensors.

  1. Trapped electron plasma formation and equilibrium with a low-power radio-frequency drive

    SciTech Connect

    Romé, M.; Maero, G.; Paroli, B.; Pozzoli, R.; Chen, S.

    2015-06-29

    Penning-Malmberg traps confining electron plasmas usually rely on external sources like thermo- and photocathodes. It has been already demonstrated that electron plasmas of comparable densities can be produced by applying a radio-frequency (RF) power to any inner electrode of the trap. Such excitation may result in significant electron heating and ionization of the residual gas with the formation of a plasma column when the RF frequency is of the order or larger than the typical axial bounce frequencies of few-eV electrons, even at RF amplitude of few volts. While discharges are common in plasma generation at higher pressures and RF power, this mechanism is not yet well explored in our working conditions, namely ultra-high vacuum and very low RF power. This plasma production mechanism is very sensitive to the experimental conditions. Interesting phenomena can be observed: transition from a diffuse to a narrow-section, denser plasma column; presence of low-order diocotron modes in transient and steady-state plasmas; modulation of the m=1 diocotron mode and suppression of its instability despite the presence of positive ions and resistive loads. These observations are reported here, and possible explanations are discussed. In addition, a possible electron heating mechanism is investigated with a single-particle, one-dimensional model described by an area-preserving map where an electron bounces within a square potential well and the RF excitation is modelled by a time-oscillating square barrier. The low-energy part of the Poincaré plot includes both quasi-periodic and chaotic regions, where heating up to ionization energies is achievable. Results of a systematic analysis of the map extracting its chaotic properties and scaling laws as a function of the control parameters are reported.

  2. Ultra-low-power electronics and devices for a multisensing RFID tag

    NASA Astrophysics Data System (ADS)

    Zampolli, Stefano; Elmi, Ivan; Cardinali, Gian Carlo; Scorzoni, Andrea; Cicioni, Michele; Marco, Santiago; Palacio, Francisco; Gómez-Cama, Jose M.; Sayhan, Ilker; Becker, Thomas

    2007-05-01

    A multisensing flexible Tag microlab (FTM) with RFID communication capabilities and integrated physical and chemical sensors for logistic datalogging applications is being developed. For this very specific scenario, several constraints must be considered: power consumption must be limited for long-term operation, reliable ISO compliant RFID communication must be implemented, and special encapsulation issues must be faced for reliable sensor integration. In this work, the developments on application specific electronic interfaces and on ultra-low-power MOX gas sensors in the framework of the GoodFood FP6 Integrated Project will be reported. The electronics for sensor control and readout as well as for RFID communication are based on an ultra-low-power MSP430 microcontroller from Texas Instruments together with a custom RFID front-end based on analog circuitry and a CPLD digital device, and are designed to guarantee a passive ISO15693 compliant RFID communication in a range up to 6 cm. A thin film battery for sensor operation is included, allowing data acquisition and storage when no reader field is present. This design allows the user to access both the traceability and sensor information even when the on-board battery is exhausted. The physical sensors for light, temperature and humidity are commercially available devices, while for chemical gas sensing innovative MOX sensors are developed, based on ultra-low-power micromachined hotplate arrays specifically designed for flexible Tag integration purposes. A single MOX sensor requires only 8.9 mW for continuous operation, while temperature modulation and discontinuous sensor operation modes are implemented to further reduce the overall power consumption. The development of the custom control and RFID electronics, together with innovative ultra-low-power MOX sensor arrays with flexible circuit encapsulation techniques will be reported in this work.

  3. Hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy for sustainably powering wearable electronics.

    PubMed

    Zhang, Kewei; Wang, Xue; Yang, Ya; Wang, Zhong Lin

    2015-01-01

    We report a hybridized electromagnetic-triboelectric nanogenerator for highly efficient scavenging of biomechanical energy to sustainably power wearable electronics by human walking. Based on the effective conjunction of triboelectrification and electromagnetic induction, the hybridized nanogenerator, with dimensions of 5 cm × 5 cm × 2.5 cm and a light weight of 60 g, integrates a triboelectric nanogenerator (TENG) that can deliver a peak output power of 4.9 mW under a loading resistance of 6 MΩ and an electromagnetic generator (EMG) that can deliver a peak output power of 3.5 mW under a loading resistance of 2 kΩ. The hybridized nanogenerator exhibits a good stability for the output performance and a much better charging performance than that of an individual energy-harvesting unit (TENG or EMG). Furthermore, the hybridized nanogenerator integrated in a commercial shoe has been utilized to harvest biomechanical energy induced by human walking to directly light up tens of light-emitting diodes in the shoe and sustainably power a smart pedometer for reading the data of a walking step, distance, and energy consumption. A wireless pedometer driven by the hybrid nanogenerator can work well to send the walking data to an iPhone under the distance of 25 m. This work pushes forward a significant step toward energy harvesting from human walking and its potential applications in sustainably powering wearable electronics.

  4. Tensor Analyzing Powers for Quasi-Elastic Electron Scattering from Deuterium

    SciTech Connect

    Z.-L. Zhou; M. Bouwhuis; M. Ferro-Luzzi; E. Passchier; R. Alarcon; M. Anghinolfi; H. Arenhoevel; R. van Bommel; T. Botto; J.F.J. van den Brand; H.J. Bulten; S. Choi; J. Comfort; S.M. Dolfini; R. Ent; C. Gaulard; D.W. Higinbotham; C.W. de Ja ger; E. Konstantinov; J. Lang; W. Leidemann; D.J. de Lange; M.A. Miller; D. Niko lenko; N. Papadakis; I. Passchier; H.R. Poolman; S.G. Popov; I. Rachek; M. Ripan i; E. Six; J.J.M. Steijger; M. Taiuti; O. Unal; N. Vodinas; H. de Vries

    1999-01-01

    We report on a first measurement of tensor analyzing powers in quasi-elastic electron-deuteron scattering at an average three-momentum transfer of 1.7 fm{sup -1}. Data sensitive to the spin-dependent nucleon density in the deuteron were obtained for missing momenta up to 150 MeV/c with a tensor polarized {sup 2}H target internal to an electron storage ring. The data are well described by a calculation that includes the effects of final-state interaction, meson-exchange and isobar currents, and leading-order relativistic contributions.

  5. A blended polymer electret-based micro-electronic power generator

    NASA Astrophysics Data System (ADS)

    Ko, Wen-Ching; Lee, Bor-Shiun; Chen, Jia-Lun; Lin, Shun-Chi; Wu, Wen-Jong; Lee, Chih-Kung

    2008-03-01

    Recently, power harvesting technologies for low-power electronic devices have attracted much interest. In this paper, the design and fabrication methods of a micro-electrostatic power generator is presented. This power generator comprises a stator developed using an electret film for charge storage and a rotor covered by an interdigital electrode for electric power generation. The newly developed electret material is made from mixing two solutions. The first solution was made by blending polystyrene (PS) and cycloolefin copolymer (COC). The second solution was obtained by an additive process as polar molecule was added into COC. This unique two solution electret method can easily be integrated and adopted to the micro fabrication process. The charge storage capability of this new electret material was investigated and results showed that low concentration of polystyrene in the blended material will not only have more stable but also higher electrostatic charge than that of pure COC. In addition, the polar molecular additives also improve the electret properties of COC due to micro-cavities formation and the interactions between molecules and polymer. Our newly developed blended electret material has excellent mechanical properties and is easy to use when compared to using Teflon Fluorinated Ethylene Propylene (FEP) and polypropylene (PP). A feasibility study of a micro electrostatic power generator based on our blended electret material was performed. Experimental results demonstrate the feasibility and effectiveness of this new type of micro electrostatic power generator.

  6. Advances in high-power harmonic generation: Q-switched lasers with electronically adjustable pulse width

    NASA Astrophysics Data System (ADS)

    Eyres, Loren A.; Morehead, James J.; Gregg, Jeffrey; Richard, Derek J.; Grossman, William

    2006-02-01

    We demonstrate a variable pulse width, internally-frequency-converted, near-diffraction-limited Nd:YAG laser with output power up to 40 Watts at 532 nm and pulse widths electronically adjustable over a 40-300 ns range. The variable pulse width is achieved by clipping the pulse decaying edge with the Q-switch in a laser cavity optimized for post-pulse gain insensitivity. This approach makes possible frequency converted lasers with pulse width and output power substantially independent of repetition rate.

  7. A Fully Directional Universal Power Electronic Interface for EV, HEV, and PHEV Applications

    SciTech Connect

    Onar, Omer C

    2012-01-01

    This study focuses on a universal power electronic interface that can be utilized in any type of the electric vehicles, hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs). Basically, the proposed converter interfaces the energy storage device of the vehicle with the motor drive and the external charger, in case of PHEVs. The proposed converter is capable of operating in all directions in buck or boost modes with a noninverted output voltage (positive output voltage with respect to the input) and bidirectional power flow.

  8. Saturation-power enhancement of a free-electron laser amplifier through parameters adjustment

    NASA Astrophysics Data System (ADS)

    Ji, Yu-Pin; Xu, Y.-G.; Wang, S.-J.; Xu, J.-Y.; Liu, X.-X.; Zhang, S.-C.

    2015-06-01

    Saturation-power enhancement of a free-electron laser (FEL) amplifier by using tapered wiggler amplitude is based on the postponement of the saturation length of the uniform wiggler. In this paper, we qualitatively and quantitatively demonstrate that the saturation-power enhancement can be approached by means of the parameters adjustment, which is comparable to that by using a tapered wiggler. Compared to the method by tapering the wiggler amplitude, the method of parameters adjustment substantially shortens the saturation length, which is favorable to cutting down the manufacture and operation costs of the device.

  9. Radio synchrotron emission from secondary electrons in interaction-powered supernovae

    NASA Astrophysics Data System (ADS)

    Petropoulou, M.; Kamble, A.; Sironi, L.

    2016-07-01

    Several supernovae (SNe) with an unusually dense circumstellar medium (CSM) have been recently observed at radio frequencies. Their radio emission is powered by relativistic electrons that can be either accelerated at the SN shock (primaries) or injected as a by-product (secondaries) of inelastic proton-proton collisions. We investigate the radio signatures from secondary electrons, by detailing a semi-analytical model to calculate the temporal evolution of the distributions of protons, primary and secondary electrons. With our formalism, we track the cooling history of all the particles that have been injected into the emission region up to a given time, and calculate the resulting radio spectra and light curves. For an SN shock propagating through the progenitor wind, we find that secondary electrons control the early radio signatures, but their contribution decays faster than that of primary electrons. This results in a flattening of the light curve at a given radio frequency that depends only upon the radial profiles of the CSM density and of the shock velocity, υ0. The relevant transition time at the peak frequency is {˜ } {190} d K_ep,-3^{-1} A_{w, 16}{/β _{0, -1.5}^2}, where Aw is the wind mass-loading parameter, β0 = υ0/c and Kep are the electron-to-proton ratio of accelerated particles. We explicitly show that late peak times at 5 GHz (i.e. tpk ≳ 300-1000 d) suggest a shock wave propagating in a dense wind (Aw ≳ 1016-1017 gr cm-1), where secondary electrons are likely to power the observed peak emission.

  10. FY2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report

    SciTech Connect

    Rogers, Susan A.

    2014-02-01

    The Advanced Power Electronics and Electric Motors (APEEM) technology area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency through research in more efficient TDSs.

  11. A High-Average-Power Free Electron Laser for Microfabrication and Surface Applications

    NASA Technical Reports Server (NTRS)

    Dylla, H. F.; Benson, S.; Bisognano, J.; Bohn, C. L.; Cardman, L.; Engwall, D.; Fugitt, J.; Jordan, K.; Kehne, D.; Li, Z.; Liu, H.; Merminga, L.; Neil, G. R.; Neuffer, D.; Shinn, M.; Sinclair, C.; Wiseman, M.; Brillson, L. J.; Henkel, D. P.; Helvajian, H.; Kelley, M. J.; Nair, Shanti

    1995-01-01

    CEBAF has developed a comprehensive conceptual design of an industrial user facility based on a kilowatt ultraviolet (UV) (160-1000 mm) and infrared (IR) (2-25 micron) free electron laser (FEL) driven by a recirculating, energy recovering 200 MeV superconducting radio frequency (SRF) accelerator. FEL users, CEBAF's partners in the Lase Processing Consortium, including AT&T, DuPont, IBM, Northrop Grumman, 3M, and Xerox, are developing applications such as metal, ceramic, and electronic material micro-fabrication and polymer and metal surface processing, with the overall effort leading to later scale-up to industrial systems at 50-100 kW. Representative applications are described. The proposed high-average-power FEL overcomes limitations of conventional laser sources in available power, cost-effectiveness, tunability, and pulse structure.

  12. The Rhodotron, a new high-energy, high-power, CW electron accelerator

    NASA Astrophysics Data System (ADS)

    Jongen, Y.; Abs, M.; Capdevila, J. M.; Defrise, D.; Genin, F.; NGuyen, A.

    1994-05-01

    Over the last years, a new kind of industrial electron accelerator has been conjointly developed by the French Atomic Energy Agency (CEA) and IBA (Ion Beam Applications) in Belgium. This accelerator, called the Rhodotron, is a recirculating accelerator, operated in CW. It uses low frequencies (metric waves), that make possible the generation of continuous high-energy high-power beams. The construction of the first industrial model of the Rhodotron began in January 1992. It is a 10 MeV, 100 kW beam power unit, with an additional beam exit at 5 MeV. A target is also being developed in order to allow an efficient conversion of the electrons into X-rays. The different subsystems of this machine are now being assembled and tested. The first beam tests are scheduled for the autumn of 1993. A complete report presenting the state of development of this prototype is included in this paper.

  13. Nonlinear relativistic single-electron Thomson scattering power spectrum for incoming laser of arbitrary intensity

    SciTech Connect

    Alvarez-Estrada, R. F.; Pastor, I.; Guasp, J.; Castejon, F.

    2012-06-15

    The classical nonlinear incoherent Thomson scattering power spectrum from a single relativistic electron with incoming laser radiation of any intensity, investigated numerically by the present authors in a previous publication, displayed both an approximate quadratic behavior in frequency and a redshift of the power spectrum for high intensity incoming radiation. The present work is devoted to justify, in a more general setup, those numerical findings. Those justifications are reinforced by extending suitably analytical approaches, as developed by other authors. Moreover, our analytical treatment exhibits differences between the Doppler-like frequencies for linear and circular polarization of the incoming radiation. Those differences depend nonlinearly on the laser intensity and on the electron initial velocity and do not appear to have been displayed by previous authors. Those Doppler-like frequencies and their differences are validated by new Monte Carlo computations beyond our previuos ones and reported here.

  14. Measurements of the Critical Power for Self-Injection of Electrons in a Laser Wakefield Accelerator

    NASA Astrophysics Data System (ADS)

    Froula, D. H.; Clayton, C. E.; Döppner, T.; Marsh, K. A.; Barty, C. P. J.; Divol, L.; Fonseca, R. A.; Glenzer, S. H.; Joshi, C.; Lu, W.; Martins, S. F.; Michel, P.; Mori, W. B.; Palastro, J. P.; Pollock, B. B.; Pak, A.; Ralph, J. E.; Ross, J. S.; Siders, C. W.; Silva, L. O.; Wang, T.

    2009-11-01

    A laser wakefield acceleration study has been performed in the matched, self-guided, blowout regime producing 720±50MeV quasimonoenergetic electrons with a divergence ΔθFWHM of 2.85±0.15mrad using a 10 J, 60 fs 0.8μm laser. While maintaining a nearly constant plasma density (3×1018cm-3), the energy gain increased from 75 to 720 MeV when the plasma length was increased from 3 to 8 mm. Absolute charge measurements indicate that self-injection of electrons occurs when the laser power P exceeds 3 times the critical power Pcr for relativistic self-focusing and saturates around 100 pC for P/Pcr>5. The results are compared with both analytical scalings and full 3D particle-in-cell simulations.

  15. Measurements of the critical power for self-injection of electrons in a laser wakefield accelerator.

    PubMed

    Froula, D H; Clayton, C E; Döppner, T; Marsh, K A; Barty, C P J; Divol, L; Fonseca, R A; Glenzer, S H; Joshi, C; Lu, W; Martins, S F; Michel, P; Mori, W B; Palastro, J P; Pollock, B B; Pak, A; Ralph, J E; Ross, J S; Siders, C W; Silva, L O; Wang, T

    2009-11-20

    A laser wakefield acceleration study has been performed in the matched, self-guided, blowout regime producing 720 +/- 50 MeV quasimonoenergetic electrons with a divergence Deltatheta_{FWHM} of 2.85 +/- 0.15 mrad using a 10 J, 60 fs 0.8 microm laser. While maintaining a nearly constant plasma density (3 x 10{18} cm{-3}), the energy gain increased from 75 to 720 MeV when the plasma length was increased from 3 to 8 mm. Absolute charge measurements indicate that self-injection of electrons occurs when the laser power P exceeds 3 times the critical power P{cr} for relativistic self-focusing and saturates around 100 pC for P/P{cr} > 5. The results are compared with both analytical scalings and full 3D particle-in-cell simulations.

  16. Measurements of the critical power for self-injection of electrons in a laser wakefield accelerator.

    PubMed

    Froula, D H; Clayton, C E; Döppner, T; Marsh, K A; Barty, C P J; Divol, L; Fonseca, R A; Glenzer, S H; Joshi, C; Lu, W; Martins, S F; Michel, P; Mori, W B; Palastro, J P; Pollock, B B; Pak, A; Ralph, J E; Ross, J S; Siders, C W; Silva, L O; Wang, T

    2009-11-20

    A laser wakefield acceleration study has been performed in the matched, self-guided, blowout regime producing 720 +/- 50 MeV quasimonoenergetic electrons with a divergence Deltatheta_{FWHM} of 2.85 +/- 0.15 mrad using a 10 J, 60 fs 0.8 microm laser. While maintaining a nearly constant plasma density (3 x 10{18} cm{-3}), the energy gain increased from 75 to 720 MeV when the plasma length was increased from 3 to 8 mm. Absolute charge measurements indicate that self-injection of electrons occurs when the laser power P exceeds 3 times the critical power P{cr} for relativistic self-focusing and saturates around 100 pC for P/P{cr} > 5. The results are compared with both analytical scalings and full 3D particle-in-cell simulations. PMID:20366048

  17. Collective Thomson scattering of a high power electron cyclotron resonance heating beam in LHD (invited).

    PubMed

    Kubo, S; Nishiura, M; Tanaka, K; Shimozuma, T; Yoshimura, Y; Igami, H; Takahash, H; Mutoh, T; Tamura, N; Tatematsu, Y; Saito, T; Notake, T; Korsholm, S B; Meo, F; Nielsen, S K; Salewski, M; Stejner, M

    2010-10-01

    Collective Thomson scattering (CTS) system has been constructed at LHD making use of the high power electron cyclotron resonance heating (ECRH) system in Large Helical Device (LHD). The necessary features for CTS, high power probing beams and receiving beams, both with well defined Gaussian profile and with the fine controllability, are endowed in the ECRH system. The 32 channel radiometer with sharp notch filter at the front end is attached to the ECRH system transmission line as a CTS receiver. The validation of the CTS signal is performed by scanning the scattering volume. A new method to separate the CTS signal from background electron cyclotron emission is developed and applied to derive the bulk and high energy ion components for several combinations of neutral beam heated plasmas.

  18. An investigation of electron and oxygen ion damage in Si npn RF power transistors

    NASA Astrophysics Data System (ADS)

    Pushpa, N.; Gnana Prakash, A. P.; Praveen, K. C.; Cressler, John D.; Revannasiddaiah, D.

    The effects of 8 MeV electrons and 60 and 95 MeV oxygen ions on the electrical properties of Si npn RF power transistors have been investigated as a function of fluence. The dc current gain (hFE), displacement damage factor, excess base current (Δ IB=IBpost-IBpre), excess collector current (Δ IC=ICpost-ICpre), collector saturation current (ICS) and deep level transient spectroscopy trap signatures of the irradiated transistors were systematically evaluated.

  19. Ambipolar Organic Tri-Gate Transistor for Low-Power Complementary Electronics.

    PubMed

    Torricelli, Fabrizio; Ghittorelli, Matteo; Smits, Edsger C P; Roelofs, Christian W S; Janssen, René A J; Gelinck, Gerwin H; Kovács-Vajna, Zsolt M; Cantatore, Eugenio

    2016-01-13

    Ambipolar transistors typically suffer from large off-current inherently due to ambipolar conduction. Using a tri-gate transistor it is shown that it is possible to electrostatically switch ambipolar polymer transistors from ambipolar to unipolar mode. In unipolar mode, symmetric characteristics with an on/off current ratio of larger than 10(5) are obtained. This enables easy integration into low-power complementary logic and volatile electronic memories. PMID:26573767

  20. Implementation of an electronic personal dosimetry system (EPD) at Oldbury-on-Severn power station.

    PubMed

    Clarke, P W; Weeks, A R

    2001-03-01

    This article presents the implementation of an electronic personal dosemeter (EPD) as a film badge replacement at Oldbury-on-Severn power station, which is the first major site to use an approval issued by the UK Health and Safety Executive (HSE) for dose measurement by an EPD. The practicalities and history behind the introduction of an EPD for personal dosimetry are described. PMID:11281529

  1. Experimental demonstration of a high-power slow wave electron cyclotron maser utilizing corrugated metal structure

    SciTech Connect

    Minami, K.; Ogura, K.; Kurashina, K; Kim, W.; Watanabe, Tsuguhiro; Carmel, Y.; Destler, W.W.; Granatstein, V.L.

    1994-12-31

    High-power microwave (HPM) sources based on electron cyclotron resonance (ECR) such as gyrotrons are fast wave devices and velocity component of electron beam perpendicular to guiding magnetic field is the origin of HPM. HPM sources based on Cherenkove mechanism are slow wave devices and can be driven by a beam without initial perpendicular velocity. The authors present here the experimental result that seems to be the first demonstration of high-power slow wave electron cyclotron maser (ECM) consisting of a large diameter sinusoidally corrugated metal waveguide driven by a beam with predominant parallel velocity. The designed size parameters of slow wave structure (SWS) are as follows: average radius 30 mm, corrugation pitch 3.4 mm, its amplitude h = 1.7 mm and total length 238 mm. They use an annular beam with radius 26.3 mm, energy 55 keV, current 200 A in their experiment. Expected Cherenkov oscillation frequency of TM01 mode is 20 GHz. The observed high-power microwaves can be quantitatively explained by a backward wave oscillation with Cherenkov mechanism enhanced by positive feedback of anomalous Doppler slow cyclotron wave. In conclusion, the slow wave ECM presented here will be a competitive candidate against gyrotrons for generating multi-MW millimeter microwaves available in fusion plasma research.

  2. Overview Of Control System For Jefferson Lab`s High Power Free Electron Laser

    SciTech Connect

    Hofler, A. S.; Grippo, A. C.; Keesee, M. S.; Song, J.

    1997-12-31

    In this paper the current plans for the control system for Thomas Jefferson National Accelerator Facility`s (Jefferson Lab`s) Infrared Free Electron Laser (FEL) are presented. The goals for the FEL control system are fourfold: (1) to use EPICS and EPICS compatible tools, (2) to use VME and Industry Pack (IPs) interfaces for FEL specific devices such as controls and diagnostics for the drive laser, high power optics, photocathode gun and electron-beam diagnostics, (3) to migrate Continuous Electron Beam Accelerator Facility (CEBAF) technologies to VME when possible, and (4) to use CAMAC solutions for systems that duplicate CEBAF technologies such as RF linacs and DC magnets. This paper will describe the software developed for FEL specific devices and provide an overview of the FEL control system.

  3. Design and Implementation of RF Energy Harvesting System for Low-Power Electronic Devices

    NASA Astrophysics Data System (ADS)

    Uzun, Yunus

    2016-08-01

    Radio frequency (RF) energy harvester systems are a good alternative for energizing of low-power electronics devices. In this work, an RF energy harvester is presented to obtain energy from Global System for Mobile Communications (GSM) 900 MHz signals. The energy harvester, consisting of a two-stage Dickson voltage multiplier circuit and L-type impedance matching circuits, was designed, simulated, fabricated and tested experimentally in terms of its performance. Simulation and experimental works were carried out for various input power levels, load resistances and input frequencies. Both simulation and experimental works have been carried out for this frequency band. An efficiency of 45% is obtained from the system at 0 dBm input power level using the impedance matching circuit. This corresponds to the power of 450 μW and this value is sufficient for many low-power devices. The most important parameters affecting the efficiency of the RF energy harvester are the input power level, frequency band, impedance matching and voltage multiplier circuits, load resistance and the selection of diodes. RF energy harvester designs should be optimized in terms of these parameters.

  4. An overview of power electronics applications in fuel cell systems: DC and AC converters.

    PubMed

    Ali, M S; Kamarudin, S K; Masdar, M S; Mohamed, A

    2014-01-01

    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter.

  5. A high-efficiency power and data transmission system for biomedical implanted electronic devices

    NASA Astrophysics Data System (ADS)

    Hamici, Zoubir; Itti, Roland; Champier, Jacques

    1996-02-01

    In biomedical engineering, inductive transcutaneous links can be used for power and data transfer between external systems and implanted electronic devices. The development of a micro-telemeter having a significant implantation depth needs a high-efficiency magnetic transcutaneous link. This paper presents a new system, which uses a multi-frequency load network for transmitter coil based on the class E power amplifier. At the carrier frequency used, the resistive load is influenced by the coupling of the coils and by the variation of the implant equivalent resistance. Modulating this latter between two rails permits one to modulate the amplitude of the external transmitter current and then to transmit internal data without the use of the classical implanted emitter design. Furthermore, the fact that the modulation index depends on the coupling factor, allows one to find the external coil's correct position using a position feedback loop. A complete study of the concept of digital data transmission by impedance modulation associated with a class E power amplifier is presented. Internal data transmission using this system yields a decrease of the internal electronic circuitry bulk and constitutes a high-efficiency energizing device. A theoretical investigation shows that the efficiency of the power transfer varies between 44 and 75% within a wide range of implantation depths (20 - 40 mm).

  6. An Overview of Power Electronics Applications in Fuel Cell Systems: DC and AC Converters

    PubMed Central

    Ali, M. S.; Kamarudin, S. K.; Masdar, M. S.; Mohamed, A.

    2014-01-01

    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter. PMID:25478581

  7. An overview of power electronics applications in fuel cell systems: DC and AC converters.

    PubMed

    Ali, M S; Kamarudin, S K; Masdar, M S; Mohamed, A

    2014-01-01

    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter. PMID:25478581

  8. Electron-Beam Switches For A High Peak Power Sled-II Pulse Compressor

    SciTech Connect

    Hirshfield, Jay, L.

    2015-12-02

    Omega-P demonstrated triggered electron-beam switches on the L=2 m dual-delay-line X-band pulse compressor at Naval Research Laboratory (NRL). In those experiments, with input pulses of up to 9 MW from the Omega-P/NRL X-band magnicon, output pulses having peak powers of 140-165 MW and durations of 16-20 ns were produced, with record peak power gains M of 18-20. Switch designs are described based on the successful results that should be suitable for use with the existing SLAC SLED-II delay line system, to demonstrate C=9, M=7, and n>>78%, yielding 173ns compressed pulses with peak powers up to 350MW with input of a single 50-MW.

  9. High Power THz Generation from Sub-ps Bunches of Relativistic Electrons

    SciTech Connect

    S. Benson; D.R. Douglas; H.F. Dylla; J. Gubeli; K. Jordan; G.R. Neil; Michelle D. Shinn; S. Zhang; G.P. Williams

    2004-11-01

    We describe a > 100 Watt broadband THz source that takes advantage of the relativistic enhancement of the radiation from accelerating electrons according to the formula assigned the name of Sir Joseph Larmor [1,2]. This is in contrast to the typical 1 milliwatt sources available in a laboratory. Specifically, for relativistic electrons the emission is enhanced by the fourth power of the increase in mass. Thus for 100 MeV electrons, for which the mass increases by a factor of {approx} 200, the enhancement is > 109. The experiments use a new generation of light source called an energy recovery linac (ERL) [3], in which bunches of electrons circulate once, but in which their energy is recovered. In such a machine the electron bunches can be very much shorter than those, say, in storage rings or synchrotrons. The Jefferson Lab facility operates in new limits of emission from relativistic particles involving both multiparticle coherence and near-field emission in which the velocity (Coulomb) term in the classical electrodynamical theory becomes as important as the acceleration term (synchrotron radiation). The sub-picosecond pulses of light offer unique capabilities in 2 specific areas, namely time resolved dynamics, and imaging. High resolution THz spectroscopy has recently revealed sharp vibrational modes for many materials including malignant tissue, proteins, DNA, pharmaceuticals and explosive materials. Energetically the THz range embraces superconducting bandgaps, and regions of intense interest in the understanding of systems in which correlated motions of electrons are important, such as colossal magneto-resistive and high-Tc materials. The very high power levels of the new source will allow non-linear effects to be observed as well as the creation of novel states of materials, including electric-field driven localization [4]. We will give examples of existing work in these areas and present opportunities afforded by the new source.

  10. Review of the State-of-the-Art in Power Electronics Suitable for 10-KW Military Power Systems

    SciTech Connect

    Staunton, R.H.

    2003-12-19

    The purpose of this report is to document the technological opportunities of integrating power electronics-based inverters into a TEP system, primarily in the 10-kW size range. The proposed enhancement offers potential advantages in weight reduction, improved efficiency, better performance in a wider range of generator operating conditions, greater versatility and adaptability, and adequate reliability. In order to obtain strong assurance of the availability of inverters that meet required performance and reliability levels, a market survey was performed. The survey obtained positive responses from several manufacturers in the motor drive and distributed generation industries. This study also includes technology reviews and assessments relating to circuit topologies, reliability issues, vulnerability to pulses of electromagnetic energy, potential improvements in semiconductor materials, and potential performance improvement through cryogenics.

  11. Relativistic electron motion in cylindrical waveguide with strong guiding magnetic field and high power microwave

    SciTech Connect

    Wu, Ping; Sun, Jun; Cao, Yibing

    2015-06-15

    In O-type high power microwave (HPM) devices, the annular relativistic electron beam is constrained by a strong guiding magnetic field and propagates through an interaction region to generate HPM. Some papers believe that the E × B drift of electrons may lead to beam breakup. This paper simplifies the interaction region with a smooth cylindrical waveguide to research the radial motion of electrons under conditions of strong guiding magnetic field and TM{sub 01} mode HPM. The single-particle trajectory shows that the radial electron motion presents the characteristic of radial guiding-center drift carrying cyclotron motion. The radial guiding-center drift is spatially periodic and is dominated by the polarization drift, not the E × B drift. Furthermore, the self fields of the beam space charge can provide a radial force which may pull electrons outward to some extent but will not affect the radial polarization drift. Despite the radial drift, the strong guiding magnetic field limits the drift amplitude to a small value and prevents beam breakup from happening due to this cause.

  12. Aircraft skin cooling system for thermal management of onboard high power electronic equipment

    SciTech Connect

    Hashemi, A.; Dyson, E.

    1996-12-31

    Integration of high-power electronic devices into existing aircraft, while minimizing the impact of additional heat load on the environmental control system of the aircraft, requires innovative approaches. One such approach is to reject heat through the aircraft skin by use of internal skin ducts with enhanced surfaces. This approach requires a system level consideration of the effect of cooling ducts, inlets and outlets on the performance of the electronic equipment and effectiveness of the heat rejection system. This paper describes the development of a system-level model to evaluate the performance of electronic equipment in an aircraft cabin and heat rejection through the skin. In this model, the outer surface of the fuselage is treated as a heat exchanger. Hot air from an equipment exhaust plenum is drawn into a series of baffled ducts within the fuselage support structure, where the heat is rejected, and then recirculated into the cabin. The cooler air form the cabin is then drawn into the electronic equipment. The aircraft air conditioning unit is also modeled to provide chilled air directly into the cabin. In addition, this paper describes a series of tests which were performed to verify the model assumptions for heat dissipation from and air flow through the equipment. The tests were performed using the actual electronic equipment in a representative cabin configuration. Results indicate very good agreement between the analytical calculations for the design point and model predictions.

  13. Secondary electron emissions and dust charging currents in the nonequilibrium dusty plasma with power-law distributions

    SciTech Connect

    Gong Jingyu; Du Jiulin

    2012-06-15

    We study the secondary electron emissions induced by the impact of electrons on dust grains and the resulting dust charging processes in the nonequilibrium dusty plasma with power-law distributions. We derive new expressions of the secondary emitted electron flux and the dust charging currents that are generalized by the power-law q-distributions, where the nonlinear core functions are numerically studied for the nonextensive parameter q. Our numerical analyses show that the power-law q-distribution of the primary electrons has a significant effect on both the secondary emitted electron flux and the dust charging currents, and this effect depends strongly on the ratio of the electrostatic potential energy of the primary electrons at the dust grain's surface to the thermodynamic energy, implying that a competition in the dusty plasma between these two energies plays a crucial role in this novel effect.

  14. Evaluation of High Step-Up Power Electronics Stages in Thermoelectric Generator Systems

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Ni, Longxian; Chen, Min; Wu, Hongfei; Xing, Yan; Rosendahl, Lasse

    2013-07-01

    To develop practical thermoelectric generator (TEG) systems, especially radioisotope thermoelectric power supplies for deep-space exploration, a power conditioning stage with high step-up gain is indispensable. This stage is used to step up the low output voltage of thermoelectric generators to the required high level. Furthermore, maximum power point tracking control for TEG modules needs to be implemented into the power electronics stages. In this paper, the temperature-dependent electrical characteristics of a thermoelectric generator are analyzed in depth. Three typical high step-up power converters suitable for TEG applications are discussed: an interleaved boost converter, a boost converter with a coupled inductor, and an interleaved boost converter with an auxiliary transformer. A general comparison of the three high step-up converters is conducted to study the step-up gain, conversion efficiency, and input current ripples. The interleaved boost converter with an auxiliary transformer is found to be the most suitable topology for TEG applications, which is verified by experiments.

  15. Low power proximity electronics for dust analysers based on light scattering

    NASA Astrophysics Data System (ADS)

    Molfese, C.; Esposito, F.; Cortecchia, F.; Cozzolino, F.

    2012-04-01

    The present paper focuses on the development of an optimized version of the Proximity Electronics (PE) for dust analysers based on static light scattering. This kind of instruments, aimed to the systematic measurement of the size of dust grains in Martian atmosphere, was developed by the Cosmic Physics and Planetology Group at the INAF Astronomical Observatory of Capodimonte (OAC) and University Parthenope (LFC group), in Naples, Italy. One of these instruments, the MEDUSA Experiment, was selected for the Humboldt Payload of the ExoMars mission, the first mission to Mars of the ESA Aurora Programme. Thereafter, this mission was revised because of increasing costs and lack of funds and the MEDUSA experiment has been completely re-engineered to meet more demanding constraints of mass and power consumption. The dust analyser under development is named MicroMED, as it is a lighter and more compact version of MEDUSA. MicroMED is provided with an Optical System (OS) based on the same concept of the one present in MEDUSA, but with a low power PE and low power laser source. This paper reports the features and the tests results of three versions of low power PE developed for MicroMED, and also compares two basic approaches, one based on a linear amplifier, derived from the solution implemented in two different MEDUSA breadboards (B/Bs), and the other one based on a logarithmic amplifier, with better performance in terms of compactness and low power consumption.

  16. User's Guide: An Enhanced Modified Faraday Cup for the Profiling of the Power Density Distribution in Electron Beams

    SciTech Connect

    Elmer, J W; Teruya, A T; Palmer, T A

    2002-06-01

    This handbook describes the assembly and operation of an enhanced Modified Faraday Cup (MFC) diagnostic device for measuring the power density distribution of high power electron beams used for welding. The most recent version of this diagnostic device, [1] Version 2.0, contains modifications to the hardware components of previous MFC designs.[2] These modifications allow for more complete capture of the electrons and better electrical grounding, thus improving the quality of the acquired data and enabling a more accurate computed tomographic (CT) reconstruction [3,4] of the power density distribution of the electron beam to be performed. [ 5-9

  17. Non-Invasive Beam Detection in a High-Average Power Electron Accelerator

    SciTech Connect

    Williams, J.; Biedron, S.; Harris, J.; Martinez, J.; Milton, S. V.; Van Keuren, J.; Benson, Steve V.; Evtushenko, Pavel; Neil, George R.; Zhang, Shukui

    2013-12-01

    For a free-electron laser (FEL) to work effectively the electron beam quality must meet exceptional standards. In the case of an FEL operating at infrared wavelengths in an amplifier configuration the critical phase space tends to be in the longitudinal direction. Achieving high enough longitudinal phase space density directly from the electron injector system of such an FEL is difficult due to space charge effects, thus one needs to manipulate the longitudinal phase space once the beam energy reaches a sufficiently high value. However, this is fraught with problems. Longitudinal space charge and coherent synchrotron radiation can both disrupt the overall phase space, furthermore, the phase space disruption is exacerbated by the longitudinal phase space manipulation process required to achieve high peak current. To achieve and maintain good FEL performance one needs to investigate the longitudinal emittance and be able to measure it during operation preferably in a non-invasive manner. Using the electro-optical sampling (EOS) method, we plan to measure the bunch longitudinal profile of a high-energy (~120-MeV), high-power (~10kW or more FEL output power) beam.

  18. Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices

    NASA Astrophysics Data System (ADS)

    Gamzina, Diana

    Diana Gamzina March 2016 Mechanical and Aerospace Engineering Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices Abstract A methodology for performing thermo-mechanical design and analysis of high frequency and high average power vacuum electron devices is presented. This methodology results in a "first-pass" engineering design directly ready for manufacturing. The methodology includes establishment of thermal and mechanical boundary conditions, evaluation of convective film heat transfer coefficients, identification of material options, evaluation of temperature and stress field distributions, assessment of microscale effects on the stress state of the material, and fatigue analysis. The feature size of vacuum electron devices operating in the high frequency regime of 100 GHz to 1 THz is comparable to the microstructure of the materials employed for their fabrication. As a result, the thermo-mechanical performance of a device is affected by the local material microstructure. Such multiscale effects on the stress state are considered in the range of scales from about 10 microns up to a few millimeters. The design and analysis methodology is demonstrated on three separate microwave devices: a 95 GHz 10 kW cw sheet beam klystron, a 263 GHz 50 W long pulse wide-bandwidth sheet beam travelling wave tube, and a 346 GHz 1 W cw backward wave oscillator.

  19. Study of a high power hydrogen beam diagnostic based on secondary electron emission

    NASA Astrophysics Data System (ADS)

    Sartori, E.; Panasenkov, A.; Veltri, P.; Serianni, G.; Pasqualotto, R.

    2016-11-01

    In high power neutral beams for fusion, beam uniformity is an important figure of merit. Knowing the transverse power profile is essential during the initial phases of beam source operation, such as those expected for the ITER heating neutral beam (HNB) test facility. To measure it a diagnostic technique is proposed, based on the collection of secondary electrons generated by beam-surface and beam-gas interactions, by an array of positively biased collectors placed behind the calorimeter tubes. This measurement showed in the IREK test stand good proportionality to the primary beam current. To investigate the diagnostic performances in different conditions, we developed a numerical model of secondary electron emission, induced by beam particle impact on the copper tubes, and reproducing the cascade of secondary emission caused by successive electron impacts. The model is first validated against IREK measurements. It is then applied to the HNB case, to assess the locality of the measurement, the proportionality to the beam current density, and the influence of beam plasma.

  20. Validity of power functionals for a homogeneous electron gas in reduced-density-matrix-functional theory

    NASA Astrophysics Data System (ADS)

    Putaja, A.; Eich, F. G.; Baldsiefen, T.; Räsänen, E.

    2016-03-01

    Physically valid and numerically efficient approximations for the exchange and correlation energy are critical for reduced-density-matrix-functional theory to become a widely used method in electronic structure calculations. Here we examine the physical limits of power functionals of the form f (n ,n') =(nn')α for the scaling function in the exchange-correlation energy. To this end we obtain numerically the minimizing momentum distributions for the three- and two-dimensional homogeneous electron gas, respectively. In particular, we examine the limiting values for the power α to yield physically sound solutions that satisfy the Lieb-Oxford lower bound for the exchange-correlation energy and exclude pinned states with the condition n (k )<1 for all wave vectors k . The results refine the constraints previously obtained from trial momentum distributions. We also compute the values for α that yield the exact correlation energy and its kinetic part for both the three- and two-dimensional electron gas. In both systems, narrow regimes of validity and accuracy are found at α ≳0.6 and at rs≳10 for the density parameter, corresponding to relatively low densities.

  1. Low power analog readout front-end electronics for time and energy measurements

    NASA Astrophysics Data System (ADS)

    Kleczek, R.; Grybos, P.; Szczygiel, R.

    2014-06-01

    We report on the design and measurements of an analog front-end readout electronics dedicated for silicon microstrip detectors with relatively large capacitance of the order of tens pF for time and energy measurements of incoming pulses. The front-end readout electronics is required to process input pulses with an average rate of 150 kHz/channel with low both power consumption and noise at the same time. In the presented solution the single channel is built of two different parallel processing paths: fast and slow. The fast path includes the fast CR-RC shaper with the peaking time tp=40 ns and is optimized to determine the input charge arrival time. The slow path, which consists of the slow CR-(RC)2 shaper with the peaking time tp=80 ns, is dedicated for low noise accurate energy measurement. The analog front-end electronics was implemented in UMC 180 nm CMOS technology as a prototype ASIC AFE. The AFE chip contains 8 channels with the size of 58 μm×1150 μm each. It has low power dissipation Pdiss=3.1 mW per single channel. The article presents the details of the front-end architecture and the measurement results.

  2. Simulative research on the anode plasma dynamics in the high-power electron beam diode

    SciTech Connect

    Cai, Dan; Liu, Lie; Ju, Jin-Chuan; Zhang, Tian-Yang; Zhao, Xue-Long; Zhou, Hong-Yu

    2015-07-15

    Anode plasma generated by electron beams could limit the electrical pulse-length, modify the impedance and stability of diode, and affect the generator to diode power coupling. In this paper, a particle-in-cell code is used to study the dynamics of anode plasma in the high-power electron beam diode. The effect of gas type, dynamic characteristic of ions on the diode operation with bipolar flow model are presented. With anode plasma appearing, the amplitude of diode current is increased due to charge neutralizations of electron flow. The lever of neutralization can be expressed using saturation factor. At same pressure of the anode gas layer, the saturation factor of CO{sub 2} is bigger than the H{sub 2}O vapor, namely, the generation rate of C{sup +} ions is larger than the H{sup +} ions at the same pressure. The transition time of ions in the anode-cathode gap could be used to estimate the time of diode current maximum.

  3. Development of high power THz-TDS system based on S-band compact electron linac

    NASA Astrophysics Data System (ADS)

    Kuroda, R.; Sei, N.; Oka, T.; Yasumoto, M.; Toyokawa, H.; Ogawa, H.; Koike, M.; Yamada, K.; Sakai, F.

    2008-10-01

    The high power terahertz (THz)-time domain spectroscopy (TDS) system has been designed based on S-band compact electron linac at Advanced Industrial Science and Technology (AIST). The THz pulse is expected to have the peak power of about 25 kW with frequency range 0.1-2 THz using the 40 MeV electron beam which has about 1 nC bunch charge with 300 fs bunch length (rms). The aptitude discussion of the EO sampling method with ZnTe crystal was accomplished to apply to our THz-TDS system. The preliminary experiment of the absorption measurements of P-PPV on the Si wafer has been successfully demonstrated using the 0.1 THz coherent synchrotron radiation (CSR) pulse and W-band rf detector. It is confirmed that the intense of the THz pulse is enough to perform the THz-TDS analysis of the sample on the Si wafer. In near future, the investigation of the un-researched materials will be started in the frequency range 0.1-2 THz with our high power THz-TDS system.

  4. Raman and electron microscopy analysis of carbon nanotubes exposed to high power laser irradiance

    SciTech Connect

    Ramadurai, Krishna; Cromer, Christopher L.; Lehman, John H.; Dillon, Anne C.; Mahajan, Roop L.

    2009-05-01

    High power laser radiometry requires efficient and damage-resistant detectors. The current study explores the evolving nature of carbon nanotube coatings for such detectors upon their exposure to incrementally increasing laser power levels. Electron microscopy images along with the D-band to G-band intensity ratios from the Raman spectra from eight irradiance levels are used to evaluate changes before and after the exposure. Electron microscopy images of the exposed multiwalled carbon nanotubes revealed the formation of intermittent pockets of moundlike structures at high power densities exceeding 11 kW/cm{sup 2}. Raman spectroscopy measurements also demonstrated higher values for the ratio of the D-band intensity to that of the G-band, suggesting the possible transformation of nanotubes into structurally different forms of carbon. Exposure to a sample of single-walled nanotubes did not demonstrate the evolution of structural changes, which could be due in part to the higher irradiance levels relative to the damage threshold, employed in the experiment.

  5. Power Dependence of the Electron Mobility Profile in a Hall Thruster

    NASA Technical Reports Server (NTRS)

    Jorns, Benjamin A.; Hofery, Richard H.; Mikellides, Ioannis G.

    2014-01-01

    The electron mobility profile is estimated in a 4.5 kW commercial Hall thruster as a function of discharge power. Internal measurements of plasma potential and electron temperature are made in the thruster channel with a high-speed translating probe. These measurements are presented for a range of throttling conditions from 150 - 400 V and 0.6 - 4.5 kW. The fluid-based solver, Hall2De, is used in conjunction with these internal plasma parameters to estimate the anomalous collision frequency profile at fixed voltage, 300 V, and three power levels. It is found that the anomalous collision frequency profile does not change significantly upstream of the location of the magnetic field peak but that the extent and magnitude of the anomalous collision frequency downstream of the magnetic peak does change with thruster power. These results are discussed in the context of developing phenomenological models for how the collision frequency profile depends on thruster operating conditions.

  6. Developing a stability assessment method for power electronics-based microgrids

    NASA Astrophysics Data System (ADS)

    Austin, Peter M.

    Modern microgrids with microsources and energy storage are dependent on power electronics for control and regulation. Under certain circumstances power electronics can be destabilizing to the system due to an effect called negative incremental impedance. A careful review of the theory and literature on the subject is presented. This includes stability criteria for both AC and DC systems, as well as a discussion on the limitations posed by the analysis. A method to integrate stability assessment with higher-level microgrid architectural design is proposed. Crucial to this is impedance characterization of individual components, which was accomplished through simulation. DC and AC impedance measurement blocks were created in Matlab simulink to automate the process. A detailed switching-level model of a DC microgrid was implemented in simulink, including wind turbine microsource, battery storage, and three phase inverter. Maximum power point tracking (MPPT) was included to maximize the efficiency of the turbine and was implemented through three rectifier alternatives and control schemes. The stability characteristics of each was compared in the final analysis. Impedance data was collected individually from the components and used to assess stability in the system as a whole. The results included the assessment of stability, margin, and unstable operating points to demonstrate the feasibility of the proposed approach.

  7. Research Group Introduction : Power Electronics Laboratory, Dept. of Electrical, Electronics and Information Engineering, Nagaoka University of Technology

    NASA Astrophysics Data System (ADS)

    伊東, 淳一

    Our research focuses on power conversion and its control especially matrix converter, multi-level converter, DC-DC converter. Furthermore AC motor drives, wireless power transfer system, high frequency power circuit and new device technology.

  8. Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect

    Olszewski, M.

    2008-10-15

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors, and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and

  9. FY2009 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery

    SciTech Connect

    Olszewski, Mitchell

    2009-11-01

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion

  10. System for tomographic determination of the power distribution in electron beams

    DOEpatents

    Elmer, J.W.; Teruya, A.T.; O'Brien, D.W.

    1995-01-17

    A tomographic technique is disclosed for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0[degree] to 360[degree] and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment. 12 figures.

  11. Formation of a laminar electron flow for 300 GHz high-power pulsed gyrotron

    SciTech Connect

    Yamaguchi, Yuusuke; Tatematsu, Yoshinori; Saito, Teruo; Ikeda, Ryosuke; Mudiganti, Jagadish C.; Ogawa, Isamu; Idehara, Toshitaka

    2012-11-15

    This paper describes the design of a triode magnetron injection gun for use in a 200 kW, 300 GHz gyrotron. As power and frequency increase, the performance of the gyrotron becomes quite sensitive to the quality of the electron beam. Formation of a laminar electron flow is essential for the realization of a high quality beam with a small velocity spread. In this study, a new method is developed for a quantitative evaluation of the laminarity and is applied to optimize the electrode design. The laminarity depends not only on conventional design parameters such as the cathode slant angle but also on the spatial distribution of the electric field along the beam trajectory. In the optimized design, the velocity pitch factors, {alpha}, larger than 1.2 are obtained at 65 kV, 10 A with spreads, {Delta}{alpha}, less than 5%.

  12. Coulomb effect and threshold effect in electronic stopping power for slow protons

    SciTech Connect

    Semrad, D.

    1986-03-01

    We show how the electronic stopping power for slow protons is influenced by the deceleration and deflection of the projectile in the field of the target nucleus (Coulomb effect) and by the fact that in insulators a finite energy is also required for excitation of the outermost electrons (threshold effect). Estimates are derived from the Fermi-Teller description of the stopping process, from a modified local-density approximation, and from measured inner-shell ionization cross sections. It is found that the introduction of an energy threshold reduces at low energies the stopping cross section by a large factor and hence leads to an appreciable deviation from v/sub 1/ proportionality.

  13. System for tomographic determination of the power distribution in electron beams

    DOEpatents

    Elmer, J.W.; Teruya, A.T.; O`Brien, D.W.

    1995-11-21

    A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0{degree} to 360{degree} and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment. 12 figs.

  14. System for tomographic determination of the power distribution in electron beams

    DOEpatents

    Elmer, John W.; Teruya, Alan T.; O'Brien, Dennis W.

    1995-01-01

    A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0.degree. to 360.degree. and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment.

  15. Vacuum-free self-powered parallel electron lithography with sub-35-nm resolution.

    PubMed

    Lu, Yuerui; Lal, Amit

    2010-06-01

    The critical dimension, throughput, and cost of nanolithography are central to developing commercially viable high-performance nanodevices. Available top-down lithography approaches to fabricate large-area nanostructures at low cost, such as controllable nanowire (NW) array fabrication for solar cells applications, are challenging due to the requirement of both high lithography resolution and high throughput. Here, a minimum 35 nm resolution is experimentally demonstrated by using a new mask fabrication technique in our demonstrated vacuum-free high-throughput self-powered parallel electron lithography (SPEL) system, which uses large-area planar radioactive beta-electron thin film emitters to parallel expose e-beam resist through a stencil mask. SPEL is the first-time demonstrated vacuum-free electron lithography, which overcomes the membrane mask distortion challenge that was shown to be the Achilles heel of previous attempts at electron projection lithography in vacuum. Monte Carlo simulations show that by using beryllium tritide thin film source in SPEL system, the exposure time can be reduced down to 2 min for each large-area (10000 cm(2) or more) parallel exposure, with resolution not larger than 20 nm. Moreover, experimental demonstration of large-area diameter-and-density controllable vertical NW arrays fabricated by SPEL shows its promising utility for an application requiring large-area nanostructure definition. PMID:20481509

  16. Enhanced nonlinear interaction of powerful electromagnetic waves with ionospheric plasma near the second electron gyroharmonic

    SciTech Connect

    Istomin, Ya. N.; Leyser, T. B.

    2013-05-15

    Plasma experiments in which a powerful electromagnetic pump wave is transmitted into the ionosphere from the ground give access to a rich range of phenomena, including gyroharmonic effects when the pump frequency is near an harmonic of the ionospheric electron gyrofrequency. For pump frequencies close to the second gyroharmonic, experiments show a strong enhancement, as observed in radar scatter from pump-induced geomagnetic field-aligned density striations and optical emissions. This is in contrast to the case at the third harmonic and higher at which most of the effects are instead suppressed. We show theoretically that electrostatic oscillations can be localized in density inhomogeneities associated with small scale striations. The localized field is a mixture of the electron Bernstein and upper hybrid modes when the pump frequency is near the second gyroharmonic. The coupling of the modes is enabled by a symmetry feature of the linear electron Bernstein and upper hybrid dispersion properties that occur only near the second gyroharmonic. Electron acceleration inside the density inhomogeneities by localized azimuthal electrostatic oscillations is more efficient near the second gyroharmonic than at higher frequencies, consistent with the observed enhancements.

  17. Spacecraft radio scattering observations of the power spectrum of electron density fluctuations in the solar wind

    NASA Technical Reports Server (NTRS)

    Woo, R.; Armstrong, J. W.

    1979-01-01

    Solar wind electron density power spectra in the solar equatorial region are inferred from observations of phase scintillations and spectral broadening made with the Viking, Helios, and Pioneer spacecraft. The heliocentric distance range covered is 2-215 solar radii and for some observations close to the sun the spectra extend to fluctuation frequencies as high as 100 Hz. For heliocentric distances of about 20 solar radii the equivalent spacecraft-measured one-dimensional density spectrum is well modeled by a single power law in the frequency range 0.0001-0.05 Hz. The flattening of the density spectrum within 20 solar radii is presumably associated with energy deposition in the near-sun region and acceleration of the solar wind.

  18. Japanese power electronics inverter technology and its impact on the American air conditioning industry

    SciTech Connect

    Ushimaru, Kenji.

    1990-08-01

    Since 1983, technological advances and market growth of inverter- driven variable-speed heat pumps in Japan have been dramatic. The high level of market penetration was promoted by a combination of political, economic, and trade policies in Japan. A unique environment was created in which the leading domestic industries-- microprocessor manufacturing, compressors for air conditioning and refrigerators, and power electronic devices--were able to direct the development and market success of inverter-driven heat pumps. As a result, leading US variable-speed heat pump manufacturers should expect a challenge from the Japanese producers of power devices and microprocessors. Because of the vertically-integrated production structure in Japan, in contrast to the out-sourcing culture of the United States, price competition at the component level (such as inverters, sensors, and controls) may impact the structure of the industry more severely than final product sales. 54 refs., 47 figs., 1 tab.

  19. Japanese power electronics inverter technology and its impact on the American air conditioning industry

    NASA Astrophysics Data System (ADS)

    Ushimaru, Kenji

    1990-08-01

    Since 1983, technological advances and market growth of inverter-driven variable-speed heat pumps in Japan have been dramatic. The high level of market penetration was promoted by a combination of political, economic, and trade policies in Japan. A unique environment was created in which the leading domestic industries, microprocessor manufacturing, compressors for air conditioning and refrigerators, and power electronic devices, were able to direct the development and market success of inverter-driven heat pumps. As a result, leading U.S. variable-speed heat pump manufacturers should expect a challenge from the Japanese producers of power devices and microprocessors. Because of the vertically-integrated production structure in Japan, in contrast to the out-sourcing culture of the United States, price competition at the component level (such as inverters, sensors, and controls) may impact the structure of the industry more severely than final product sales.

  20. Onset of chaos in a single-phase power electronic inverter.

    PubMed

    Avrutin, Viktor; Mosekilde, Erik; Zhusubaliyev, Zhanybai T; Gardini, Laura

    2015-04-01

    Supported by experiments on a power electronic DC/AC converter, this paper considers an unusual transition from the domain of stable periodic dynamics (corresponding to the desired mode of operation) to chaotic dynamics. The behavior of the converter is studied by means of a 1D stroboscopic map derived from a non-autonomous ordinary differential equation with discontinuous right-hand side. By construction, this stroboscopic map has a high number of border points. It is shown that the onset of chaos occurs stepwise, via irregular cascades of different border collisions, some of which lead to bifurcations while others do not. PMID:25933662

  1. Onset of chaos in a single-phase power electronic inverter

    NASA Astrophysics Data System (ADS)

    Avrutin, Viktor; Mosekilde, Erik; Zhusubaliyev, Zhanybai T.; Gardini, Laura

    2015-04-01

    Supported by experiments on a power electronic DC/AC converter, this paper considers an unusual transition from the domain of stable periodic dynamics (corresponding to the desired mode of operation) to chaotic dynamics. The behavior of the converter is studied by means of a 1D stroboscopic map derived from a non-autonomous ordinary differential equation with discontinuous right-hand side. By construction, this stroboscopic map has a high number of border points. It is shown that the onset of chaos occurs stepwise, via irregular cascades of different border collisions, some of which lead to bifurcations while others do not.

  2. Onset of chaos in a single-phase power electronic inverter.

    PubMed

    Avrutin, Viktor; Mosekilde, Erik; Zhusubaliyev, Zhanybai T; Gardini, Laura

    2015-04-01

    Supported by experiments on a power electronic DC/AC converter, this paper considers an unusual transition from the domain of stable periodic dynamics (corresponding to the desired mode of operation) to chaotic dynamics. The behavior of the converter is studied by means of a 1D stroboscopic map derived from a non-autonomous ordinary differential equation with discontinuous right-hand side. By construction, this stroboscopic map has a high number of border points. It is shown that the onset of chaos occurs stepwise, via irregular cascades of different border collisions, some of which lead to bifurcations while others do not.

  3. Onset of chaos in a single-phase power electronic inverter

    SciTech Connect

    Avrutin, Viktor; Mosekilde, Erik; Zhusubaliyev, Zhanybai T.; Gardini, Laura

    2015-04-15

    Supported by experiments on a power electronic DC/AC converter, this paper considers an unusual transition from the domain of stable periodic dynamics (corresponding to the desired mode of operation) to chaotic dynamics. The behavior of the converter is studied by means of a 1D stroboscopic map derived from a non-autonomous ordinary differential equation with discontinuous right-hand side. By construction, this stroboscopic map has a high number of border points. It is shown that the onset of chaos occurs stepwise, via irregular cascades of different border collisions, some of which lead to bifurcations while others do not.

  4. The project of the high power free electron laser based on the race-track microtron-recuperator

    NASA Astrophysics Data System (ADS)

    Vinokurov, N. A.; Gavrilov, N. G.; Gorniker, E. I.; Kulipanov, G. N.; Kuptsov, I. V.; Kurkin, G. Ya.; Erg, G. I.; Levashov, Yu. I.; Oreshkov, A. D.; Petrov, S. P.; Petrov, V. M.; Pinayev, I. V.; Popik, V. M.; Sedlyarov, I. K.; Shaftan, T. V.; Skrinsky, A. N.; Sokolov, A. S.; Veshcherevich, V. G.; Vobly, P. D.

    1995-02-01

    To provide a user facility for the Siberian Centre of Photochemical Researches in Novosibirsk a high power free electron laser is under construction. The project status and installation are described.

  5. Critical issues for high-power FEL based on microtron recuperator/electron out-coupling scheme

    NASA Astrophysics Data System (ADS)

    Vinokurov, Nikolai A.; Zholents, Alexander A.; Fawley, William M.; Kim, Kwang J.

    1997-05-01

    The FELs based on the rf accelerator-recuperator and the electron outcoupling is promising for obtaining average output power of hundreds of kilowatts. We present basic considerations for the system stability and performance optimization for this scheme.

  6. DOE FreedomCAR and vehicle technologies program advanced power electronic and electrical machines annual review report

    SciTech Connect

    Olszewski, Mitch

    2006-10-11

    This report is a summary of the Review Panel at the FY06 DOE FreedomCAR and Vehicle Technologies (FCVT) Annual Review of Advanced Power Electronics and Electric Machine (APEEM) research activities held on August 15-17, 2006.

  7. Development of a Power Electronics Unit for the Space Station Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Hill, Gerald M.; Patterson, Michael J.; Saggio, Joseph, Jr.; Terdan, Fred; Mansell, Justin D.

    1994-01-01

    A hollow cathode plasma contactor has been baselined as a charge control device for the Space Station (SS) to prevent deleterious interactions of coated structural components with the ambient plasma. NASA LeRC Work Package 4 initiated the development of a plasma contactor system comprised of a Power Electronics Unit (PEU), an Expellant Management Unit (EMU), a command and data interface, and a Plasma Contactor Unit (PCU). A breadboard PEU was designed and fabricated. The breadboard PEU contains a cathode heater and discharge power supply, which were required to operate the PCU, a control and auxiliary power converter, an EMU interface, a command and telemetry interface, and a controller. The cathode heater and discharge supplies utilized a push-pull topology with a switching frequency of 20 kHz and pulse-width-modulated (PWM) control. A pulse ignition circuit derived from that used in arcjet power processors was incorporated in the discharge supply for discharge ignition. An 8088 based microcontroller was utilized in the breadboard model to provide a flexible platform for controller development with a simple command/data interface incorporating a direct connection to SS Mulitplexer/Demultiplexer (MDM) analog and digital I/O cards. Incorporating this in the flight model would eliminate the hardware and software overhead associated with a 1553 serial interface. The PEU autonomously operated the plasma contactor based on command inputs and was successfully integrated with a prototype plasma contactor unit demonstrating reliable ignition of the discharge and steady-state operation.

  8. Initial high-power testing of the ATF (Advanced Toroidal Facility) ECH (electron cyclotron heating) system

    SciTech Connect

    White, T.L.; Bigelow, T.S.; Kimrey, H.D. Jr.

    1987-01-01

    The Advanced Toroidal Facility (ATF) is a moderate aspect ratio torsatron that will utilize 53.2 GHz 200 kW Electron Cyclotron Heating (ECH) to produce nearly current-free target plasmas suitable for subsequent heating by strong neutral beam injection. The initial configuration of the ECH system from the gyrotron to ATF consists of an optical arc detector, three bellows, a waveguide mode analyzer, two TiO/sub 2/ mode absorbers, two 90/sup 0/ miter bends, two waveguide pumpouts, an insulating break, a gate valve, and miscellaneous straight waveguide sections feeding a launcher radiating in the TE/sub 02/ mode. Later, a focusing Vlasov launcher will be added to beam the ECH power to the saddle point in ATF magnetic geometry for optimum power deposition. The ECH system has several unique features; namely, the entire ECH system is evacuated, the ECH system is broadband, forward power is monitored by a newly developed waveguide mode analyzer, phase correcting miter bends will be employed, and the ECH system will be capable of operating short pulse to cw. Initial high-power tests show that the overall system efficiency is 87%. The waveguide mode analyzer shows that the gyrotron mode output consists of 13% TE/sub 01/, 82.6% TE/sub 02/, 2.5% TE/sub 03/, and 1.9% TE/sub 04/. 4 refs.

  9. Performance analysis of electronic power transformer based on neuro-fuzzy controller.

    PubMed

    Acikgoz, Hakan; Kececioglu, O Fatih; Yildiz, Ceyhun; Gani, Ahmet; Sekkeli, Mustafa

    2016-01-01

    In recent years, electronic power transformer (EPT), which is also called solid state transformer, has attracted great interest and has been used in place of the conventional power transformers. These transformers have many important functions as high unity power factor, low harmonic distortion, constant DC bus voltage, regulated output voltage and compensation capability. In this study, proposed EPT structure contains a three-phase pulse width modulation rectifier that converts 800 Vrms AC to 2000 V DC bus at input stage, a dual active bridge converter that provides 400 V DC bus with 5:1 high frequency transformer at isolation stage and a three-phase two level inverter that is used to obtain AC output at output stage. In order to enhance dynamic performance of EPT structure, neuro fuzzy controllers which have durable and nonlinear nature are used in input and isolation stages instead of PI controllers. The main aim of EPT structure with the proposed controller is to improve the stability of power system and to provide faster response against disturbances. Moreover, a number of simulation results are carried out to verify EPT structure designed in MATLAB/Simulink environment and to analyze compensation ability for voltage harmonics, voltage flicker and voltage sag/swell conditions.

  10. Performance analysis of electronic power transformer based on neuro-fuzzy controller.

    PubMed

    Acikgoz, Hakan; Kececioglu, O Fatih; Yildiz, Ceyhun; Gani, Ahmet; Sekkeli, Mustafa

    2016-01-01

    In recent years, electronic power transformer (EPT), which is also called solid state transformer, has attracted great interest and has been used in place of the conventional power transformers. These transformers have many important functions as high unity power factor, low harmonic distortion, constant DC bus voltage, regulated output voltage and compensation capability. In this study, proposed EPT structure contains a three-phase pulse width modulation rectifier that converts 800 Vrms AC to 2000 V DC bus at input stage, a dual active bridge converter that provides 400 V DC bus with 5:1 high frequency transformer at isolation stage and a three-phase two level inverter that is used to obtain AC output at output stage. In order to enhance dynamic performance of EPT structure, neuro fuzzy controllers which have durable and nonlinear nature are used in input and isolation stages instead of PI controllers. The main aim of EPT structure with the proposed controller is to improve the stability of power system and to provide faster response against disturbances. Moreover, a number of simulation results are carried out to verify EPT structure designed in MATLAB/Simulink environment and to analyze compensation ability for voltage harmonics, voltage flicker and voltage sag/swell conditions. PMID:27588243

  11. Electron

    NASA Astrophysics Data System (ADS)

    Springford, Michael

    1997-03-01

    1. J. J. Thomson and the discovery of the electron A. B. P. Pippard; 2. The isolated electron W. N. Cottingham; 3. The relativistic electron D. I. Olive; 4. The electron glue B. L. Gyorffy; 5. The electron fluid P. Coleman; 6. The magnetic electron G. G. Lonzarich; 7. The paired electron A. J. Leggett; 8. The heavy electron M. Springford; 9. The coherent electron Y. Imry and M. Peskin; 10. The composite electron R. Nicholas; 11. The electron in the cosmos M. S. Longair.

  12. Electron

    NASA Astrophysics Data System (ADS)

    Springford, Michael

    2008-12-01

    1. J. J. Thomson and the discovery of the electron A. B. P. Pippard; 2. The isolated electron W. N. Cottingham; 3. The relativistic electron D. I. Olive; 4. The electron glue B. L. Gyorffy; 5. The electron fluid P. Coleman; 6. The magnetic electron G. G. Lonzarich; 7. The paired electron A. J. Leggett; 8. The heavy electron M. Springford; 9. The coherent electron Y. Imry and M. Peskin; 10. The composite electron R. Nicholas; 11. The electron in the cosmos M. S. Longair.

  13. Towards high power output of scaled-up benthic microbial fuel cells (BMFCs) using multiple electron collectors.

    PubMed

    Liu, Bingchuan; Williams, Isaiah; Li, Yan; Wang, Lei; Bagtzoglou, Amvrossios; McCutcheon, Jeffrey; Li, Baikun

    2016-05-15

    This study aimed at achieving high power output of benthic microbial fuel cells (BMFCs) with novel geometric anode setups (inverted tube granular activated charcoal (IT-GAC) and carbon cloth roll (CCR)) and multiple anodes/electron collectors. The lab-scale tests showed the power density of IT-GAC and CCR anodes achieved at 2.92 and 2.55 W m(-2), the highest value ever reported in BMFCs. The power density of BMFCs substantially increased with electron collector number (titanium rods) in anodes. The connection of multiple electron collectors with multiple cathodes had much higher total voltage/current output than that with single cathode. The possibility of maintaining high power density at scaled-up BMFCs was explored by arranging multiple anodes in sediment. The compact configuration of multiple CCR anodes contacting each other did not deteriorate the performance of individual anodes, showing the feasibility of maximizing anode numbers per sediment footprint and achieving high power output. Multiple IT-GAC and CCR anodes with multiple collectors effectively utilized sediment at both horizontal and vertical directions and enhanced electron collection efficiency. This study demonstrated that bacterial adhesion and electron collection should be optimized on small anodes in order to maintain high power density and achieve high power output in the scaled-up BMFCs. PMID:26745789

  14. A direct current rectification scheme for microwave space power conversion using traveling wave electron acceleration

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1993-01-01

    The formation of the Vision-21 conference held three years ago allowed the present author to reflect and speculate on the problem of converting electromagnetic energy to a direct current by essentially reversing the process used in traveling wave tubes that converts energy in the form of a direct current to electromagnetic energy. The idea was to use the electric field of the electromagnetic wave to produce electrons through the field emission process and accelerate these electrons by the same field to produce an electric current across a large potential difference. The acceleration process was that of cyclotron auto-resonance. Since that time, this rather speculative ideas has been developed into a method that shows great promise and for which a patent is pending and a prototype design will be demonstrated in a potential laser power beaming application. From the point of view of the author, a forum such as Vision-21 is becoming an essential component in the rather conservative climate in which our initiatives for space exploration are presently formed. Exchanges such as Vision-21 not only allows us to deviate from the 'by-the-book' approach and rediscover the ability and power in imagination, but provides for the discussion of ideas hitherto considered 'crazy' so that they may be given the change to transcend from the level of eccentricity to applicability.

  15. Recirculating accelerator driver for a high-power free-electron laser: A design overview

    SciTech Connect

    Bohn, C.L.

    1997-06-01

    Jefferson Lab is building a free-electron laser (FEL) to produce continuous-wave (cw), kW-level light at 3-6 {mu}m wavelength. A superconducting linac will drive the laser, generating a 5 mA average current, 42 MeV energy electron beam. A transport lattice will recirculate the beam back to the linac for deceleration and conversion of about 75% of its power into rf power. Bunch charge will range up to 135 pC, and bunch lengths will range down to 1 ps in parts of the transport lattice. Accordingly, space charge in the injector and coherent synchrotron radiation in magnetic bends come into play. The machine will thus enable studying these phenomena as a precursor to designing compact accelerators of high-brightness beams. The FEL is scheduled to be installed in its own facility by 1 October 1997. Given the short schedule, the machine design is conservative, based on modifications of the CEBAF cryomodule and MIT-Bates transport lattice. This paper surveys the machine design.

  16. High-power free-electron lasers-technology and future applications

    NASA Astrophysics Data System (ADS)

    Socol, Yehoshua

    2013-03-01

    Free-electron laser (FEL) is an all-electric, high-power, high beam-quality source of coherent radiation, tunable - unlike other laser sources - at any wavelength within wide spectral region from hard X-rays to far-IR and beyond. After the initial push in the framework of the “Star Wars” program, the FEL technology benefited from decades of R&D and scientific applications. Currently, there are clear signs that the FEL technology reached maturity, enabling real-world applications. E.g., successful and unexpectedly smooth commissioning of the world-first X-ray FEL in 2010 increased in one blow by more than an order of magnitude (40×) wavelength region available by FEL technology and thus demonstrated that the theoretical predictions just keep true in real machines. Experience of ordering turn-key electron beamlines from commercial companies is a further demonstration of the FEL technology maturity. Moreover, successful commissioning of the world-first multi-turn energy-recovery linac demonstrated feasibility of reducing FEL size, cost and power consumption by probably an order of magnitude in respect to previous configurations, opening way to applications, previously considered as non-feasible. This review takes engineer-oriented approach to discuss the FEL technology issues, keeping in mind applications in the fields of military and aerospace, next generation semiconductor lithography, photo-chemistry and isotope separation.

  17. A low-power electronic nose signal-processing chip for a portable artificial olfaction system.

    PubMed

    Kea-Tiong Tang; Shih-Wen Chiu; Meng-Fan Chang; Chih-Cheng Hsieh; Jyuo-Min Shyu

    2011-08-01

    The bulkiness of current electronic nose (E-Nose) systems severely limits their portability. This study designed and fabricated an E-Nose signal-processing chip by using TSMC 0.18-μ m 1P6M complementary metal-oxide semiconductor technology to overcome the need to connect the device to a personal computer, which has traditionally been a major stumbling block in reducing the size of E-Nose systems. The proposed chip is based on a conductive polymer sensor array chip composed of multiwalled carbon nanotubes. The signal-processing chip comprises an interface circuit, an analog-to-digital converter, a memory module, and a microprocessor embedded with a pattern-recognition algorithm. Experimental results have verified the functionality of the proposed system, in which the E-Nose signal-processing chip successfully classified three odors, carbon tetrachloride (CCl4), chloroform (CHCl3), and 2-Butanone (MEK), demonstrating its potential for portable applications. The power consumption of this signal-processing chip was maintained at a very low 2.81 mW using a 1.8-V power supply, making it highly suitable for integration as an electronic nose system-on-chip.

  18. Electrode architectures for efficient electronic and ionic transport pathways in high power lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Faulkner, Ankita Shah

    As the demand for clean energy sources increases, large investments have supported R&D programs aimed at developing high power lithium ion batteries for electric vehicles, military, grid storage and space applications. State of the art lithium ion technology cannot meet power demands for these applications due to high internal resistances in the cell. These resistances are mainly comprised of ionic and electronic resistance in the electrode and electrolyte. Recently, much attention has been focused on the use of nanoscale lithium ion active materials on the premise that these materials shorten the diffusion length of lithium ions and increase the surface area for electrochemical charge transfer. While, nanomaterials have allowed significant improvements in the power density of the cell, they are not a complete solution for commercial batteries. Due to their large surface area, they introduce new challenges such as a poor electrode packing densities, high electrolyte reactivity, and expensive synthesis procedures. Since greater than 70% of the cost of the electric vehicle is due to the cost of the battery, a cost-efficient battery design is most critical. To address the limitations of nanomaterials, efficient transport pathways must be engineered in the bulk electrode. As a part of nanomanufacturing research being conducted the Center for High-rate Nanomanufacturing at Northeastern University, the first aim of the proposed work is to develop electrode architectures that enhance electronic and ionic transport pathways in large and small area lithium ion electrodes. These architectures will utilize the unique electronic and mechanical properties of carbon nanotubes to create robust electrode scaffolding that improves electrochemical charge transfer. Using extensive physical and electrochemical characterization, the second aim is to investigate the effect of electrode parameters on electrochemical performance and evaluate the performance against standard commercial

  19. PESC '84 - Annual Power Electronics Specialists Conference, 15th, Gaithersburg, MD, June 18-21, 1984, Record

    NASA Astrophysics Data System (ADS)

    Various papers on power electronics are presented. The general topics addressed include: converter circuits, converter systems, motor drives, power components, modelling and analysis techniques, and converter control. Some individual papers discuss: snubber configuration for both power transistors and GTO PWM inverters, high-voltage high-frequency class-E converter suitable for miniaturization, parallel running of GTO PWM inverters, series parallel connected composite amplifiers, spacecraft ac power system for auxiliary equipment. Also covered are: multimotor drive with a current source inverter, switching performance of a power MOSFET circuit, computer model of magnetic saturation and hysteresis for use on SPICE2, general approach to sampled data modelling for power electronic circuits, PWM control techniques for rectifier filter minimization, and measurement of loop gain with the digital modulator.

  20. High-Performance electronics at ultra-low power consumption for space applications: From superconductor to nanoscale semiconductor technology

    NASA Technical Reports Server (NTRS)

    Duncan, Robert V.; Simmons, Jerry; Kupferman, Stuart; McWhorter, Paul; Dunlap, David; Kovanis, V.

    1995-01-01

    A detailed review of Sandia's work in ultralow power dissipation electronics for space flight applications, including superconductive electronics, new advances in quantum well structures, and ultra-high purity 3-5 materials, and recent advances in micro-electro-optical-mechanical systems (MEMS) is presented. The superconductive electronics and micromechanical devices are well suited for application in micro-robotics, micro-rocket engines, and advanced sensors.

  1. Using Wireless Power Meters to Measure Energy Use of Miscellaneous and Electronic Devices in Buildings

    SciTech Connect

    UC Berkeley, Berkeley, CA USA; Brown, Richard; Lanzisera, Steven; Cheung, Hoi Ying; Lai, Judy; Jiang, Xiaofan; Dawson-Haggerty, Stephen; Taneja, Jay; Ortiz, Jorge; Culler, David

    2011-05-24

    Miscellaneous and electronic devices consume about one-third of the primary energy used in U.S. buildings, and their energy use is increasing faster than other end-uses. Despite the success of policies, such as Energy Star, that promote more efficient miscellaneous and electronic products, much remains to be done to address the energy use of these devices if we are to achieve our energy and carbon reduction goals. Developing efficiency strategies for these products depends on better data about their actual usage, but very few studies have collected field data on the long-term energy used by a large sample of devices due to the difficulty and expense of collecting device-level energy data. This paper describes the development of an improved method for collecting device-level energy and power data using small, relatively inexpensive wireless power meters. These meters form a mesh network based on Internet standard protocols and can form networks of hundreds of metering points in a single building. Because the meters are relatively inexpensive and do not require manual data downloading, they can be left in the field for months or years to collect long time-series energy use data. In addition to the metering technology, we also describe a field protocol used to collect comprehensive, robust data on the miscellaneous and electronic devices in a building. The paper presents sample results from several case study buildings, in which all the plug-in devices for several homes were metered, and a representative sample of several hundred plug-in devices in a commercial office building were metered for several months.

  2. Update on electron-cloud power deposition for the LHC arcdipoles

    SciTech Connect

    Furman, Miguel A.; Chaplin, Vernon H.

    2006-01-30

    We revisit the estimation of the power deposited by the electron cloud (EC) in the arc dipoles of the LHC by means of simulations. We adopt, as simulation input, a set of electron-related parameters closely resembling those used in recent simulations at CERN [1]. We explore values for the bunch population Nb in the range 0.4 x 10^11 <= Nb <=1.6 x 10^11, peak secondary electron yield (SEY) delta max in the range 1.0 <= delta max <= 2.0, and bunch spacing tb either 25 or 75 ns. For tb=25 ns we find that the EC average power deposition per unit length of beam pipe, dPbar/dz, will exceed the available cooling capacity, which we take to be 1.7 W/m at nominal Nb [2], if delta max exceeds ~1.3, but dPbar/dz will be comfortably within the cooling capacity if delta max <= 1.2. For tb =75 ns dPbar/dz exceeds the cooling capacity only when delta max > 2 and Nb > 1.5 x 10^11 taken in combination. The rediffused component of the secondary electron emission spectrum plays a significant role: if we artificially suppress this component while keeping delta max fixed, dPbar/dz is roughly cut in half for most values of Nb explored here, and in this case we find good agreement with the results in Ref. 1, as expected. We provide a fairly detailed explanation of the mechanism responsible for such a relatively large effect. We assess the sensitivity of our results to numerical simulation parameters, and to physical parameters such as the photoelectric yield, bunch train length, etc. Owing to the lack of detailed knowledge of the electron emission spectrum, the sensitivity of dPbar/dz to the rediffused component appears to be the most significant source of uncertainty in our results. Nevertheless, taking our results as a whole, the condition delta max <= 1.2 seems to be a conservative requirement for the cooling capacity not to be exceeded.

  3. High power millimeter wave experiment of ITER relevant electron cyclotron heating and current drive system

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Kajiwara, K.; Oda, Y.; Kasugai, A.; Kobayashi, N.; Sakamoto, K.; Doane, J.; Olstad, R.; Henderson, M.

    2011-06-01

    High power, long pulse millimeter (mm) wave experiments of the RF test stand (RFTS) of Japan Atomic Energy Agency (JAEA) were performed. The system consists of a 1 MW/170 GHz gyrotron, a long and short distance transmission line (TL), and an equatorial launcher (EL) mock-up. The RFTS has an ITER-relevant configuration, i.e., consisted by a 1 MW-170 GHz gyrotron, a mm wave TL, and an EL mock-up. The TL is composed of a matching optics unit, evacuated circular corrugated waveguides, 6-miter bends, an in-line waveguide switch, and an isolation valve. The EL-mock-up is fabricated according to the current design of the ITER launcher. The Gaussian-like beam radiation with the steering capability of 20°-40° from the EL mock-up was also successfully proved. The high power, long pulse power transmission test was conducted with the metallic load replaced by the EL mock-up, and the transmission of 1 MW/800 s and 0.5 MW/1000 s was successfully demonstrated with no arcing and no damages. The transmission efficiency of the TL was 96%. The results prove the feasibility of the ITER electron cyclotron heating and current drive system.

  4. High power millimeter wave experiment of ITER relevant electron cyclotron heating and current drive system.

    PubMed

    Takahashi, K; Kajiwara, K; Oda, Y; Kasugai, A; Kobayashi, N; Sakamoto, K; Doane, J; Olstad, R; Henderson, M

    2011-06-01

    High power, long pulse millimeter (mm) wave experiments of the RF test stand (RFTS) of Japan Atomic Energy Agency (JAEA) were performed. The system consists of a 1 MW/170 GHz gyrotron, a long and short distance transmission line (TL), and an equatorial launcher (EL) mock-up. The RFTS has an ITER-relevant configuration, i.e., consisted by a 1 MW-170 GHz gyrotron, a mm wave TL, and an EL mock-up. The TL is composed of a matching optics unit, evacuated circular corrugated waveguides, 6-miter bends, an in-line waveguide switch, and an isolation valve. The EL-mock-up is fabricated according to the current design of the ITER launcher. The Gaussian-like beam radiation with the steering capability of 20°-40° from the EL mock-up was also successfully proved. The high power, long pulse power transmission test was conducted with the metallic load replaced by the EL mock-up, and the transmission of 1 MW/800 s and 0.5 MW/1000 s was successfully demonstrated with no arcing and no damages. The transmission efficiency of the TL was 96%. The results prove the feasibility of the ITER electron cyclotron heating and current drive system.

  5. High power millimeter wave experiment of ITER relevant electron cyclotron heating and current drive system

    SciTech Connect

    Takahashi, K.; Kajiwara, K.; Oda, Y.; Kasugai, A.; Kobayashi, N.; Sakamoto, K.; Doane, J.; Olstad, R.; Henderson, M.

    2011-06-15

    High power, long pulse millimeter (mm) wave experiments of the RF test stand (RFTS) of Japan Atomic Energy Agency (JAEA) were performed. The system consists of a 1 MW/170 GHz gyrotron, a long and short distance transmission line (TL), and an equatorial launcher (EL) mock-up. The RFTS has an ITER-relevant configuration, i.e., consisted by a 1 MW-170 GHz gyrotron, a mm wave TL, and an EL mock-up. The TL is composed of a matching optics unit, evacuated circular corrugated waveguides, 6-miter bends, an in-line waveguide switch, and an isolation valve. The EL-mock-up is fabricated according to the current design of the ITER launcher. The Gaussian-like beam radiation with the steering capability of 20 deg. - 40 deg. from the EL mock-up was also successfully proved. The high power, long pulse power transmission test was conducted with the metallic load replaced by the EL mock-up, and the transmission of 1 MW/800 s and 0.5 MW/1000 s was successfully demonstrated with no arcing and no damages. The transmission efficiency of the TL was 96%. The results prove the feasibility of the ITER electron cyclotron heating and current drive system.

  6. Alternative lattice options for energy recovery in high-average-power high-efficiency free-electron lasers

    SciTech Connect

    Piot, P.; /Northern Illinois U. /NICADD, DeKalb /Fermilab

    2009-03-01

    High-average-power free-electron lasers often rely on energy-recovering linacs. In a high-efficiency free electron laser, the main limitation to high average power stems from the fractional energy spread induced by the free-electron laser process. Managing beams with large fractional energy spread while simultaneously avoiding beam losses is extremely challenging and relies on intricate longitudinal phase space manipulations. In this paper we discuss a possible alternative technique that makes use of an emittance exchange between one of the transverse and the longitudinal phase spaces.

  7. The TELEC - A plasma type of direct energy converter. [Thermo-Electronic Laser Energy Converter for electric power generation

    NASA Technical Reports Server (NTRS)

    Britt, E. J.

    1978-01-01

    The Thermo-Electronic Laser Energy Converter (TELEC) is a high-power density plasma device designed to convert a 10.6-micron CO2 laser beam into electric power. Electromagnetic radiation is absorbed in plasma electrons, creating a high-electron temperature. Energetic electrons diffuse from the plasma and strike two electrodes having different areas. The larger electrode collects more electrons and there is a net transport of current. An electromagnetic field is generated in the external circuit. A computer program has been designed to analyze TELEC performance allowing parametric variation for optimization. Values are presented for TELEC performance as a function of cesium pressure and for current density and efficiency as a function of output voltage. Efficiency is shown to increase with pressure, reaching a maximum over 45%.

  8. Current status and scope of gallium nitride-based vertical transistors for high-power electronics application

    NASA Astrophysics Data System (ADS)

    Chowdhury, Srabanti; Swenson, Brian L.; Hoi Wong, Man; Mishra, Umesh K.

    2013-07-01

    Gallium nitride (GaN) is becoming the material of choice for power electronics to enable the roadmap of increasing power density by simultaneously enabling high-power conversion efficiency and reduced form factor. This is because the low switching losses of GaN enable high-frequency operation which reduces bulky passive components with negligible change in efficiency. Commercialization of GaN-on-Si materials for power electronics has led to the entry of GaN devices into the medium-power market since the performance-over-cost of even first-generation products looks very attractive compared to today's mature Si-based solutions. On the other hand, the high-power market still remains unaddressed by lateral GaN devices. The current and voltage demand for high-power conversion application makes the chip area in a lateral topology so large that it becomes difficult to manufacture. Vertical GaN devices would play a big role alongside silicon carbide (SiC) to address the high-power conversion needs. In this paper vertical GaN devices are discussed with emphasis on current aperture vertical electron transistors (CAVETs) which have shown promising performance. The fabrication-related challenges and the future possibilities enabled by the availability of good-quality, cost-competitive bulk GaN material are also evaluated for CAVETs. This work was done at Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA.

  9. Selected fault testing of electronic isolation devices used in nuclear power plant operation

    SciTech Connect

    Villaran, M.; Hillman, K.; Taylor, J.; Lara, J.; Wilhelm, W.

    1994-05-01

    Electronic isolation devices are used in nuclear power plants to provide electrical separation between safety and non-safety circuits and systems. Major fault testing in an earlier program indicated that some energy may pass through an isolation device when a fault at the maximum credible potential is applied in the transverse mode to its output terminals. During subsequent field qualification testing of isolators, concerns were raised that the worst case fault, that is, the maximum credible fault (MCF), may not occur with a fault at the maximum credible potential, but rather at some lower potential. The present test program investigates whether problems can arise when fault levels up to the MCF potential are applied to the output terminals of an isolator. The fault energy passed through an isolated device during a fault was measured to determine whether the levels are great enough to potentially damage or degrade performance of equipment on the input (Class 1E) side of the isolator.

  10. Design of photon converter and photoneutron target for High power electron accelerator based BNCT.

    PubMed

    Rahmani, Faezeh; Seifi, Samaneh; Anbaran, Hossein Tavakoli; Ghasemi, Farshad

    2015-12-01

    An electron accelerator, ILU-14, with current of 10 mA and 100 kW in power has been considered as one of the options for neutron source in Boron Neutron Capture Therapy (BNCT). The final design of neutron target has been obtained using MCNPX to optimize the neutron production. Tungsten in strip shape and D2O in cylindrical form have been proposed as the photon converter and the photoneutron target, respectively. In addition calculation of heat deposition in the photon target design has been considered to ensure mechanical stability of target. The results show that about 8.37×10(12) photoneutron/s with average energy of 615 keV can be produced by this neutron source design. In addition, using an appropriate beam shaping assembly an epithermal neutron flux of the order of 1.24×10(8) cm(-2) s(-1) can be obtained for BNCT applications.

  11. Thermal management of power sources for mobile electronic devices based on micro-SOFC

    NASA Astrophysics Data System (ADS)

    Murayama, S.; Iguchi, F.; Shimizu, M.; Yugami, H.

    2014-11-01

    Small power sources based on micro-SOFC for mobile electronic devices required two conditions, i,e, thermally compatibility and thermally self-sustain, because of high operating temperature over 300 oC. Moreover, high energy efficiency was also required. It meant that this system should be designed considering thermal management. In this study, we developed micro-SOFC packages which have three functions, thermal insulation, thermal recovery, and self-heating. Heat conduction analysis based on finite element method, and thermochemical calculation revealed that vacuum thermal insulation was effective for size reduction and gas-liquid heat exchanger could reduce the temperature of outer surface. We fabricated the package with three functions for proof of concept and evaluated. As a result, it was suggested that developed package could satisfy both two requirements with high efficiency.

  12. Evolution of a finite pulse of radiation in a high-power free-electron laser

    SciTech Connect

    Ting, A.; Hafizi, B.; Sprangle, P.; Tang, C.M. . Plasma Physics Div.)

    1991-12-01

    The development of an optical pulse of finite axial extent is studied by means of an axisymmetric time-dependent particle simulation code for different rates of tapering of the wiggler field. The results provided in this paper illustrate a number of the physical phenomena underlying the free-electron laser mechanism. These include: suppression of the sideband instability; the role of gain focusing versus that of refractive guiding; efficiency enhancement; and pulse slippage. It is found that a significant reduction in the sideband modulation of the optical field can be achieved with a faster tapering of the wiggler parameters. Increasing the tapering rate also reduces refractive guiding, causing the optical wavefronts to become more convex, thus spreading the optical field into a larger cross section. The corresponding enhancement of the peak output power is associated with an increased lateral extent of the optical field rather than an increase in the field amplitude.

  13. Cost effective designs for integrating new electronic turbine control systems into existing steam power plants

    SciTech Connect

    Nguyen, T.V.

    1996-10-01

    Different cost-effective approaches have been developed for integrating new digital turbine control systems into existing power plants. The devices under consideration range from self contained actuators which replace the existing hydraulic and mechanical servomotor components, linear proportional actuators, which mechanically drive the original servomotor pilot relays, to electro-hydraulic converters which provide a control pressure to the existing hydraulic servomotor pilot relays. These devices significantly reduce the implementation cost, while still providing most of the benefits that can be gained through greater utilization of the new electronic control capabilities. These three design approaches are analyzed for control performance, failure modes, long-term maintenance issues, and applicability to specific turbine configurations.

  14. How Power Electronics Engineers Should Write and Present Technical Papers in English

    NASA Astrophysics Data System (ADS)

    Akagi, Hirofumi

    This paper describes techniques that Japanese power electronics engineers can use to improve the quality of their technical papers written in English and the accompanying technical presentations. These techniques are based on the experience that the author has gained by participating in international conferences. Such techniques are important to discuss because the significant differences exist in writing and presentation styles between Japanese and American engineers. The author believes that such style differences are caused by differences between the Japanese and American cultures. The objective of this paper is to help Japanese engineers understand these cultural differences and improve their technical communication skills in English. The paper also includes some practical tips on writing and presentation techniques for improving the quality of their technical communications in English.

  15. Virtual Power Electronics: Novel Software Tools for Design, Modeling and Education

    NASA Astrophysics Data System (ADS)

    Hamar, Janos; Nagy, István; Funato, Hirohito; Ogasawara, Satoshi; Dranga, Octavian; Nishida, Yasuyuki

    The current paper is dedicated to present browser-based multimedia-rich software tools and e-learning curriculum to support the design and modeling process of power electronics circuits and to explain sometimes rather sophisticated phenomena. Two projects will be discussed. The so-called Inetele project is financed by the Leonardo da Vinci program of the European Union (EU). It is a collaborative project between numerous EU universities and institutes to develop state-of-the art curriculum in Electrical Engineering. Another cooperative project with participation of Japanese, European and Australian institutes focuses especially on developing e-learning curriculum, interactive design and modeling tools, furthermore on development of a virtual laboratory. Snapshots from these two projects will be presented.

  16. Electronic stopping power calculation for water under the Lindhard formalism for application in proton computed tomography

    NASA Astrophysics Data System (ADS)

    Guerrero, A. F.; Mesa, J.

    2016-07-01

    Because of the behavior that charged particles have when they interact with biological material, proton therapy is shaping the future of radiation therapy in cancer treatment. The planning of radiation therapy is made up of several stages. The first one is the diagnostic image, in which you have an idea of the density, size and type of tumor being treated; to understand this it is important to know how the particles beam interacts with the tissue. In this work, by using de Lindhard formalism and the Y.R. Waghmare model for the charge distribution of the proton, the electronic stopping power (SP) for a proton beam interacting with a liquid water target in the range of proton energies 101 eV - 1010 eV taking into account all the charge states is calculated.

  17. Modeling the interaction of high power ion or electron beams with solid target materials

    SciTech Connect

    Hassanein, A.M.

    1983-11-01

    Intense energy deposition on first wall materials and other components as a result of plasma disruptions in magnetic fusion devices are expected to cause melting and vaporization of these materials. The exact amount of vaporization losses and melt layer thickness are very important to fusion reactor design and lifetime. Experiments using ion or electron beams to simulate the disruption effects have different environments than the actual disruption conditions in fusion reactors. A model has been developed to accurately simulate the beam-target interactions so that the results from such experiments can be meaningful and useful to reactor design. This model includes a two dimensional solution of the heat conduction equation with moving boundaries. It is found that the vaporization and melting of the sample strongly depends on the characteristics of the beam spatial distribution, beam diameter, and on the power-time variation of the beam.

  18. Characterization of a Power Electronic Grid Simulator for Wind Turbine Generator Compliance Testing

    SciTech Connect

    Glasdam, Jakob Baerholm; Gevorgian, Vahan; Wallen, Robb; Bak, Claus Leth; Kocewiak, Lukasz Hubert; Hjerrild, Jesper

    2014-11-13

    This paper presents the commissioning results and testing capabilities of a multi-megawatt power electronic grid simulator situated in National Renewable Energy Laboratory's (NREL's) new testing facility. The commissioning is done using a commercial type 4 multi-megawatt sized wind turbine generator (WTG) installed in NREL's new 5 MW dynamometer and a kilowatt sized type 1 WTG connected to the existing 2.5 MW dynamometer at NREL. The paper demonstrates the outstanding testing capability of the grid simulator and its application in the grid code compliance evaluation of WTGs including balanced and unbalanced voltage low and high fault ride-through. Furthermore, the paper provides insight into the performance of commercial WTGs during both normal and abnormal operating conditions.

  19. Electronics Come of Age: A Taxonomy for Miscellaneous and LowPower Products

    SciTech Connect

    Nordman, Bruce; Sanchez, Marla C.

    2006-08-01

    Most energy end uses such as space conditioning or waterheating are apparently well-defined in what is included, and haveterminology that derives from the professionals who work in the relevantfield. The topic of miscellaneous consumption lacks such clarity forhistorical and practical reasons. As this end use grows in size andinterest for the energy community, the confusion and ambiguity around thetopic is an increasing barrier to progress. This paper providesdefinitions for key terms and concepts with the intent that that futurework can be more correctly and consistently reported and interpreted. Inaddition, it provides a taxonomy of product types and categories, whichcovers both residential and commercial miscellaneous consumption. A keyelement is identification of "electronics" as a distinct energy end use.Finally, products are identified as to whether they commonly have alow-power mode, and product types that have such modes within thetraditional end uses are also listed.

  20. Design of photon converter and photoneutron target for High power electron accelerator based BNCT.

    PubMed

    Rahmani, Faezeh; Seifi, Samaneh; Anbaran, Hossein Tavakoli; Ghasemi, Farshad

    2015-12-01

    An electron accelerator, ILU-14, with current of 10 mA and 100 kW in power has been considered as one of the options for neutron source in Boron Neutron Capture Therapy (BNCT). The final design of neutron target has been obtained using MCNPX to optimize the neutron production. Tungsten in strip shape and D2O in cylindrical form have been proposed as the photon converter and the photoneutron target, respectively. In addition calculation of heat deposition in the photon target design has been considered to ensure mechanical stability of target. The results show that about 8.37×10(12) photoneutron/s with average energy of 615 keV can be produced by this neutron source design. In addition, using an appropriate beam shaping assembly an epithermal neutron flux of the order of 1.24×10(8) cm(-2) s(-1) can be obtained for BNCT applications. PMID:26278347

  1. REX, a 5-MV pulsed-power source for driving high-brightness electron beam diodes

    SciTech Connect

    Carlson, R.L.; Kauppila, T.J.; Ridlon, R.N.

    1991-01-01

    The Relativistic Electron-beam Experiment, or REX accelerator, is a pulsed-power source capable of driving a 100-ohm load at 5 MV, 50 kA, 45 ns (FWHM) with less than a 10-ns rise and 15-ns fall time. This paper describes the pulsed-power modifications, modelling, and extensive measurements on REX to allow it to drive high impedance (100s of ohms) diode loads with a shaped voltage pulse. A major component of REX is the 1.83-m-diam {times} 25.4-cm-thick Lucite insulator with embedded grading rings that separates the output oil transmission line from the vacuum vessel that contains the re-entrant anode and cathode assemblies. A radially tailored, liquid-based resistor provides a stiff voltage source that is insensitive to small variations of the diode current and, in addition, optimizes the electric field stress across the vacuum side of the insulator. The high-current operation of REX employs both multichannel peaking and point-plane diverter switches. This mode reduces the prepulse to less than 2 kV and the postpulse to less than 5% of the energy delivered to the load. Pulse shaping for the present diode load is done through two L-C transmission line filters and a tapered, glycol-based line adjacent to the water PFL and output switch. This has allowed REX to drive a diode producing a 4-MV, 4.5-kA, 55-ns flat-top electron beam with a normalized Lapostolle emittance of 0.96 mm-rad corresponding to a beam brightness in excess of 4.4 {times} 10{sup 8} A/m{sup 2} {minus}rad{sup 2}. 6 refs., 13 figs.

  2. Power balance in ELMO Bumpy Torus: bulk electrons and ions in a 37 kW discharge

    SciTech Connect

    McNeill, D.H.

    1985-10-01

    The power balance of the bulk electrons and ions in discharges with 37 kW of applied microwave power in the ELMO Bumpy Torus (EBT) is examined in a zero-dimensional model using data on the intensity and linewidth of the molecular and atomic hydrogen emission. At least 60% of the applied power is ultimately dissipated by processes involving the neutral particles, including dissociation of molecules, ionization of and radiation from atoms, and heating of cold electrons produced during atomic ionization. The molecular influx rate and the density of atoms are used independently to determine the bulk electron particle confinement time, and an upper bound estimate is made of the diffusional power loss from the bulk plasma electrons. Parameters derived from the basic spectroscopic data presented in this paper include the neutral atom density 2 - 5x10/sup 10/ cm/sup -3/, incident molecular flux 3 - 5x10/sup 15/ cm/sup -2/s/sup -1/, bulk ion temperature approx. =3 eV, and particle confinement time <1.1 ms. The bulk electron energy confinement time is 0.7 ms or less in the standard operating regime. Published data on the nonthermal electron and ion populations in the plasma are used to evaluate approximately the overall energy flow in the discharge. 54 refs.

  3. Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect

    Olszewski, M.

    2006-10-31

    , subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to

  4. Architectured Materials to Improve the Reliability of Power Electronics Modules: Substrate and Lead-Free Solder

    NASA Astrophysics Data System (ADS)

    Kaabi, Abderrahmen; Bienvenu, Yves; Ryckelynck, David; Pierre, Bertrand

    2013-07-01

    Power electronics modules (>100 A, >500 V) are essential components for the development of electrical and hybrid vehicles. These modules are formed from silicon chips (transistors and diodes) assembled on copper substrates by soldering. Owing to the fact that the assembly is heterogeneous, and because of thermal gradients, shear stresses are generated in the solders and cause premature damage to such electronics modules. This work focuses on architectured materials for the substrate and on lead-free solders to reduce the mechanical effects of differential expansion, improve the reliability of the assembly, and achieve a suitable operating temperature (<175°C). These materials are composites whose thermomechanical properties have been optimized by numerical simulation and validated experimentally. The substrates have good thermal conductivity (>280 W m-1 K-1) and a macroscopic coefficient of thermal expansion intermediate between those of Cu and Si, as well as limited structural evolution in service conditions. An approach combining design, optimization, and manufacturing of new materials has been followed in this study, leading to improved thermal cycling behavior of the component.

  5. MOS-FET as a Current Sensor in Power Electronics Converters.

    PubMed

    Pajer, Rok; Milanoviĉ, Miro; Premzel, Branko; Rodiĉ, Miran

    2015-07-24

    This paper presents a current sensing principle appropriate for use in power electronics' converters. This current measurement principle has been developed for metal oxide semiconductor field effect transistor (MOS-FET) and is based on U(DS) voltage measurement. In practice, shunt resistors and Hall effect sensors are usually used for these purposes, but the presented principle has many advantages. There is no need for additional circuit elements within high current paths, causing parasitic inductances and increased production complexity. The temperature dependence of MOS-FETs conductive resistance R(DS-ON) is considered in order to achieve the appropriate measurement accuracy. The "MOS-FET sensor" is also accompanied by a signal acquisition electronics circuit with an appropriate frequency bandwidth. The obtained analogue signal is therefore interposed to an A-D converter for further data acquisition. In order to achieve sufficient accuracy, a temperature compensation and appropriate approximation is used (R(DS-ON) = R(DS-ON)(θj)). The MOS-FET sensor is calibrated according to a reference sensor based on the Hall-effect principle. The program algorithm is executed on 32-bit ARM M4 MCU, STM32F407.

  6. Analysis and comparison between electric and magnetic power couplers for accelerators in Free Electron Lasers (FEL)

    NASA Astrophysics Data System (ADS)

    Serpico, C.; Grudiev, A.; Vescovo, R.

    2016-10-01

    Free-electron lasers represent a new and exciting class of coherent optical sources possessing broad wavelength tunability and excellent optical-beam quality. The FERMI seeded free-electron laser (FEL), located at the Elettra laboratory in Trieste, is driven by a 200 m long, S-band linac: the high energy part of the linac is equipped with 6 m long backward traveling wave (BTW) structures. The structures have small iris radius and a nose cone geometry which allows for high gradient operation. Development of new high-gradient, S-band accelerating structures for the replacement of the existing BTWs is under consideration. This paper investigates two possible solutions for the RF power couplers suitable for a linac driven FEL which require reduced wakefields effects, high operating gradient and very high reliability. The first part of the manuscript focuses on the reduction of residual field asymmetries, while in the second analyzes RF performances, the peak surface fields and the expected breakdown rate. In the conclusion, two solutions are compared and pros and cons are highlighted.

  7. MOS-FET as a Current Sensor in Power Electronics Converters.

    PubMed

    Pajer, Rok; Milanoviĉ, Miro; Premzel, Branko; Rodiĉ, Miran

    2015-01-01

    This paper presents a current sensing principle appropriate for use in power electronics' converters. This current measurement principle has been developed for metal oxide semiconductor field effect transistor (MOS-FET) and is based on U(DS) voltage measurement. In practice, shunt resistors and Hall effect sensors are usually used for these purposes, but the presented principle has many advantages. There is no need for additional circuit elements within high current paths, causing parasitic inductances and increased production complexity. The temperature dependence of MOS-FETs conductive resistance R(DS-ON) is considered in order to achieve the appropriate measurement accuracy. The "MOS-FET sensor" is also accompanied by a signal acquisition electronics circuit with an appropriate frequency bandwidth. The obtained analogue signal is therefore interposed to an A-D converter for further data acquisition. In order to achieve sufficient accuracy, a temperature compensation and appropriate approximation is used (R(DS-ON) = R(DS-ON)(θj)). The MOS-FET sensor is calibrated according to a reference sensor based on the Hall-effect principle. The program algorithm is executed on 32-bit ARM M4 MCU, STM32F407. PMID:26213938

  8. Partial Shade Evaluation of Distributed Power Electronics for Photovoltaic Systems: Preprint

    SciTech Connect

    Deline, C.; Meydbrav, J.; Donovan, M.

    2012-06-01

    Site survey data for several residential installations are provided, showing the extent and frequency of shade throughout the year. This background information is used to design a representative shading test that is conducted on two side-by-side 8-kW photovoltaic (PV) installations. One system is equipped with a standard string inverter, while the other is equipped with microinverters on each solar panel. Partial shade is applied to both systems in a comprehensive range of shading conditions, simulating one of three shade extents. Under light shading conditions, the microinverter system produced the equivalent of 4% annual performance improvement, relative to the string inverter system. Under moderate shading conditions, the microinverter system outperformed the string inverter system by 8%, and under heavy shading the microinverter increased relative performance by 12%. In all three cases, the percentage of performance loss that is recovered by the use of distributed power electronics is 40%-50%. Additionally, it was found that certain shading conditions can lead to additional losses in string inverters due to peak-power tracking errors and voltage limitations.

  9. Suitability of a thermoelectric power generator for implantable medical electronic devices

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Wei, Xiao-Juan; Liu, Jing

    2007-09-01

    Embedding a thermoelectric generator (TEG) in a biological body is a promising way to supply electronic power in the long term for an implantable medical device (IMD). The unique merit of this method lies in its direct utilization of the temperature difference intrinsically existing throughout the whole biological body. However, little is known about the practicability of such a power generation strategy up to now. This paper attempts to evaluate the energy generation capacity of an implanted TEG subject to various physiological or environmental thermal conditions. Through theoretical analysis, it was found that the highest temperature gradient occurs near the skin surface of the human body, which suggested a candidate site for implanting and positioning the TEG. In addition, numerical simulations were performed on three-dimensional bioheat transfer problems in human bodies embedded with TEGs at different implantation depths and configurations. To further enhance energy generation of an implanted TEG, several external technical approaches by intentionally cooling or heating the skin surface were proposed and evaluated. Conceptual experiments either in vitro or in vivo were implemented to preliminarily test the theoretical predictions. Given the fact that an IMD generally require very little working energy, the TEG could serve well as a potential long-term energy supplier for such medical practices.

  10. Structure of 100 W high-efficiency piezoelectric transformer for applications in power electronics

    NASA Astrophysics Data System (ADS)

    Suzuki, Kohei; Adachi, Kazunari; Shibamata, Yuki; Suzuki, Tsunehisa

    2016-08-01

    We propose a piezoelectric transformer comprising two identical bolt-clamped Langevin-type transducers (BLTs) and a stepped horn for its applications to high-power electronics. The transformer can realize a specified step-up voltage transformation ratio determined by the cross-sectional area ratio of the horn, both ends of which are connected to the BLTs, at a driving frequency in the vicinity of its mechanical resonance frequency. In experiments, we obtained the results predicted by finite-element analysis. The deviations of the measured resonance and driving frequencies from the numerically estimated values were 0.86 and 0.80%, respectively. At the driving frequency, the maximum efficiency was 99.2%, and a maximum output power of 100 W was obtained with an input voltage of 100 Vrms. Nevertheless, we observed unstable actions of the transformer, which can be attributed to the “jumping and dropping” phenomena, in high voltage operation. Numerical analysis suggests that the instability may be caused by the local electric field concentration in the piezoelectric elements, which occurs only when the transformer is driven by a low-output-impedance voltage source at its mechanical resonance frequency.

  11. Expert system for the CAD in power electronics -- Application to UPS

    SciTech Connect

    Fezzani, D.; Piquet, H.; Foch, H.

    1997-05-01

    In this paper, an application using the expert system approach for design purposes in power electronics is presented. The goal is the development of a software tool for the computer-aided design of static converters; the authors present here a first approach, dedicated to the uninterrupted power supplies (UPS). The specifications are described by the performances to be reached at the input and output of the converter. These data are analyzed by use of rules and methods that allow achieving the design of the different parts of the system: the input filter, output filter, inverter, rectifier, etc. The characterization of these subparts, according to different criteria and specifications, has been made by implementation of autonomous expert modules. Each of these modules has been designed and implemented independently from the others by use of the expert system shell SMECI; the design of the whole UPS is realized under the control of a special module that rules the cooperation between the specialized experts. The results of this approach are presented, and the benefits of its application are pointed out.

  12. Observation of ultrahigh-energy electrons by resonance absorption of high-power microwaves in a pulsed plasma.

    PubMed

    Rajyaguru, C; Fuji, T; Ito, H; Yugami, N; Nishida, Y

    2001-07-01

    The interaction of high power microwave with collisionless unmagnetized plasma is studied. Investigation on the generation of superthermal electrons near the critical layer, by the resonance absorption phenomenon, is extended to very high microwave power levels (eta=E(2)(0)/4 pi n(e)kT(e) approximately 0.3). Here E0, n(e), and T(e) are the vacuum electric field, electron density, and electron temperature, respectively. Successive generation of electron bunches having maximum energy of about 2 keV, due to nonlinear wave breaking, is observed. The electron energy epsilon scales as a function of the incident microwave power P, according to epsilon proportional to P0.5 up to 250 kW. The two-dimensional spatial distribution of high energy electrons reveals that they are generated near the critical layer. However, the lower energy component is again produced in the subcritical density region indicating the possibility of other electron heating mechanisms. PMID:11461406

  13. Improving the power of genetic association tests with imperfect phenotype derived from electronic medical records.

    PubMed

    Sinnott, Jennifer A; Dai, Wei; Liao, Katherine P; Shaw, Stanley Y; Ananthakrishnan, Ashwin N; Gainer, Vivian S; Karlson, Elizabeth W; Churchill, Susanne; Szolovits, Peter; Murphy, Shawn; Kohane, Isaac; Plenge, Robert; Cai, Tianxi

    2014-11-01

    To reduce costs and improve clinical relevance of genetic studies, there has been increasing interest in performing such studies in hospital-based cohorts by linking phenotypes extracted from electronic medical records (EMRs) to genotypes assessed in routinely collected medical samples. A fundamental difficulty in implementing such studies is extracting accurate information about disease outcomes and important clinical covariates from large numbers of EMRs. Recently, numerous algorithms have been developed to infer phenotypes by combining information from multiple structured and unstructured variables extracted from EMRs. Although these algorithms are quite accurate, they typically do not provide perfect classification due to the difficulty in inferring meaning from the text. Some algorithms can produce for each patient a probability that the patient is a disease case. This probability can be thresholded to define case-control status, and this estimated case-control status has been used to replicate known genetic associations in EMR-based studies. However, using the estimated disease status in place of true disease status results in outcome misclassification, which can diminish test power and bias odds ratio estimates. We propose to instead directly model the algorithm-derived probability of being a case. We demonstrate how our approach improves test power and effect estimation in simulation studies, and we describe its performance in a study of rheumatoid arthritis. Our work provides an easily implemented solution to a major practical challenge that arises in the use of EMR data, which can facilitate the use of EMR infrastructure for more powerful, cost-effective, and diverse genetic studies. PMID:25062868

  14. Physics, fabrication and characterization of III-V multi-gate FETs for low power electronics

    NASA Astrophysics Data System (ADS)

    Thathachary, Arun V.

    With transistor technology close to its limits for power constrained scaling and the simultaneous emergence of mobile devices as the dominant driver for new scaling, a pathway to significant reduction in transistor operating voltage to 0.5V or lower is urgently sought. This however implies a fundamental paradigm shift away from mature Silicon technology. III-V compound semiconductors hold great promise in this regard due to their vastly superior electron transport properties making them prime candidates to replace Silicon in the n-channel transistor. Among the plethora of binary and ternary compounds available in the III-V space, InxGa1-xAs alloys have attracted significant interest due to their excellent electron mobility, ideally placed bandgap and mature growth technology. Simultaneously, electrostatic control mandates multigate transistor designs such as the FinFET at extremely scaled nodes. This dissertation describes the experimental realization of III-V FinFETs incorporating InXGa1-XAs heterostructure channels for high performance, low power logic applications. The chapters that follow present experimental demonstrations, simulations and analysis on the following aspects (a) motivation and key figures of merit driving material selection and design; (b) dielectric integration schemes for high-k metal-gate stack (HKMG) realization on InXGa 1-XAs, including surface clean and passivation techniques developed for high quality interfaces; (c) novel techniques for transport (mobility) characterization in nanoscale multi-gate FET architectures with experimental demonstration on In0.7Ga0.3As nanowires; (d) Indium composition and quantum confined channel design for InXGa 1-XAs FinFETs and (e) InAs heterostructure designs for high performance FinFETs. Each chapter also contains detailed benchmarking of results against state of the art demonstrations in Silicon and III-V material systems. The dissertation concludes by assessing the feasibility of InXGa 1-XAs Fin

  15. Grid Interconnection and Performance Testing Procedures for Vehicle-To-Grid (V2G) Power Electronics: Preprint

    SciTech Connect

    Kramer, W.; Chakraborty, S.; Kroposki, B.; Hoke, A.; Martin, G.; Markel, T.

    2012-03-01

    Bidirectional power electronics can add vehicle-to-grid (V2G) capability in a plug-in vehicle, which then allows the vehicle to operate as a distributed resource (DR). The uniqueness of the battery-based V2G power electronics requires a test procedure that will not only maintain IEEE interconnection standards, but can also evaluate the electrical performance of the vehicle working as a DR. The objective of this paper is to discuss a recently published NREL technical report that provides interim test procedures for V2G vehicles for their integration into the electrical distribution systems and for their performance in terms of continuous output power, efficiency, and losses. Additionally, some other test procedures are discussed that are applicable to a V2G vehicle that desires to provide power reserve functions. A few sample test results are provided based on testing of prototype V2G vehicles at NREL.

  16. Performance tests of a power-electronics converter for multi-megawatt wind turbines using a grid emulator

    NASA Astrophysics Data System (ADS)

    Rizqy Averous, Nurhan; Berthold, Anica; Schneider, Alexander; Schwimmbeck, Franz; Monti, Antonello; De Doncker, Rik W.

    2016-09-01

    A vast increase of wind turbines (WT) contribution in the modern electrical grids have led to the development of grid connection requirements. In contrast to the conventional test method, testing power-electronics converters for WT using a grid emulator at Center for Wind Power Drives (CWD) RWTH Aachen University offers more flexibility for conducting test scenarios. Further analysis on the performance of the device under test (DUT) is however required when testing with grid emulator since the characteristic of the grid emulator might influence the performance of the DUT. This paper focuses on the performance analysis of the DUT when tested using grid emulator. Beside the issue regarding the current harmonics, the performance during Fault Ride-Through (FRT) is discussed in detail. A power hardware in the loop setup is an attractive solution to conduct a comprehensive study on the interaction between the power-electronics converters and the electrical grids.

  17. Ultracompact/ultralow power electron cyclotron resonance ion source for multipurpose applications

    SciTech Connect

    Sortais, P.; Lamy, T.; Medard, J.; Angot, J.; Latrasse, L.; Thuillier, T.

    2010-02-15

    In order to drastically reduce the power consumption of a microwave ion source, we have studied some specific discharge cavity geometries in order to reduce the operating point below 1 W of microwave power (at 2.45 GHz). We show that it is possible to drive an electron cyclotron resonance ion source with a transmitter technology similar to those used for cellular phones. By the reduction in the size and of the required microwave power, we have developed a new type of ultralow cost ion sources. This microwave discharge system (called COMIC, for COmpact MIcrowave and Coaxial) can be used as a source of light, plasma or ions. We will show geometries of conductive cavities where it is possible, in a 20 mm diameter chamber, to reduce the ignition of the plasma below 100 mW and define typical operating points around 5 W. Inside a simple vacuum chamber it is easy to place the source and its extraction system anywhere and fully under vacuum. In that case, current densities from 0.1 to 10 mA/cm{sup 2} (Ar, extraction 4 mm, 1 mAe, 20 kV) have been observed. Preliminary measurements and calculations show the possibility, with a two electrodes system, to extract beams within a low emittance. The first application for these ion sources is the ion injection for charge breeding, surface analyzing system and surface treatment. For this purpose, a very small extraction hole is used (typically 3/10 mm for a 3 {mu}A extracted current with 2 W of HF power). Mass spectrum and emittance measurements will be presented. In these conditions, values down to 1 {pi} mm mrad at 15 kV (1{sigma}) are observed, thus very close to the ones currently observed for a surface ionization source. A major interest of this approach is the possibility to connect together several COMIC devices. We will introduce some new on-going developments such as sources for high voltage implantation platforms, fully quartz radioactive ion source at ISOLDE or large plasma generators for plasma immersion, broad or ribbon

  18. Plasma and cyclotron frequency effects on output power of the plasma wave-pumped free-electron lasers

    NASA Astrophysics Data System (ADS)

    Zolghadr, S. H.; Jafari, S.; Raghavi, A.

    2016-05-01

    Significant progress has been made employing plasmas in the free-electron lasers (FELs) interaction region. In this regard, we study the output power and saturation length of the plasma whistler wave-pumped FEL in a magnetized plasma channel. The small wavelength of the whistler wave (in sub-μm range) in plasma allows obtaining higher radiation frequency than conventional wiggler FELs. This configuration has a higher tunability by adjusting the plasma density relative to the conventional ones. A set of coupled nonlinear differential equations is employed which governs on the self-consistent evolution of an electromagnetic wave. The electron bunching process of the whistler-pumped FEL has been investigated numerically. The result reveals that for a long wiggler length, the bunching factor can appreciably change as the electron beam propagates through the wiggler. The effects of plasma frequency (or plasma density) and cyclotron frequency on the output power and saturation length have been studied. Simulation results indicate that with increasing the plasma frequency, the power increases and the saturation length decreases. In addition, when density of background plasma is higher than the electron beam density (i.e., for a dense plasma channel), the plasma effects are more pronounced and the FEL-power is significantly high. It is also found that with increasing the strength of the external magnetic field frequency, the power decreases and the saturation length increases, noticeably.

  19. Stacked functionalized silicene: a powerful system to adjust the electronic structure of silicene.

    PubMed

    Denis, Pablo A

    2015-02-21

    Herein, we employed first principle density functional periodic calculations to characterize the silicon counterpart of graphene:silicene. We found that silicene is far more reactive than graphene, very stable and strong Si-X bonds can be formed, where X = H, CH3, OH and F. The Si-F bond is the strongest one, with a binding energy of 114.9 kcal mol(-1). When radicals are agglomerated, the binding energy per functional grows up to 17 kcal mol(-1). The functionalization with OH radicals produces the largest alterations of the structure of silicene, due to the presence of intralayer hydrogen bonds. The covalent addition of H, CH3, OH and F to silicene enables the adjustment of its electronic structure. In effect, functionalized silicene can be a semiconductor or even exhibit metallic properties when the type and concentration of radicals are varied. The most interesting results were obtained when two layers of functionalized silicene were stacked, given that the band gaps experienced a significant reduction with respect to those computed for symmetrically and asymmetrically (Janus) functionalized monolayer silicenes. In the case of fluorine, the largest changes in the electronic structure of bilayer silicene were appreciated when at least one side of silicene was completely fluorinated. In general, the fluorinated side induces metallic properties in a large number of functionalized silicenes. In some cases which presented band gaps as large as 3.2 eV when isolated, the deposition over fluorinated silicene was able to close that gap and induce a metallic character. In addition to this, in four cases small gaps in the range of 0.1-0.6 eV were obtained for bilayer silicenes. Therefore, functionalization of silicene is a powerful method to produce stable two-dimensional silicon based nanomaterials with tunable optical band gaps.

  20. Statistical properties of radiation power levels from a high-gain free-electron laser at and beyond saturation

    SciTech Connect

    Schroeder, Carl B.; Fawley, William M.; Esarey, Eric

    2002-09-24

    We investigate the statistical properties (e.g., shot-to-shot power fluctuations) of the radiation from a high-gain free-electron laser (FEL) operating in the nonlinear regime. We consider the case of an FEL amplifier reaching saturation whose shot-to-shot fluctuations in input radiation power follow a gamma distribution. We analyze the corresponding output power fluctuations at and beyond first saturation, including beam energy spread effects, and find that there are well-characterized values of undulator length for which the fluctuation level reaches a minimum.

  1. Power sources for portable electronics and hybrid cars: lithium batteries and fuel cells.

    PubMed

    Scrosati, Bruno

    2005-01-01

    The activities in progress in our laboratory for the development of batteries and fuel cells for portable electronics and hybrid car applications are reviewed and discussed. In the case of lithium batteries, the research has been mainly focused on the characterization of new electrode and electrolyte materials. Results related to disordered carbon anodes and improved, solvent-free, as well as gel-type, polymer electrolytes are particularly stressed. It is shown that the use of proper gel electrolytes, in combination with suitable electrode couples, allows the development of new types of safe, reliable, and low-cost lithium ion batteries which appear to be very promising power sources for hybrid vehicles. Some of the technologies proven to be successful in the lithium battery area are readapted for use in fuel cells. In particular, this approach has been followed for the preparation of low-cost and stable protonic membranes to be proposed as an alternative to the expensive, perfluorosulfonic membranes presently used in polymer electrolyte membrane fuel cells (PEMFCs).

  2. MOS-FET as a Current Sensor in Power Electronics Converters

    PubMed Central

    Pajer, Rok; Milanovič, Miro; Premzel, Branko; Rodič, Miran

    2015-01-01

    This paper presents a current sensing principle appropriate for use in power electronics’ converters. This current measurement principle has been developed for metal oxide semiconductor field effect transistor (MOS-FET) and is based on UDS voltage measurement. In practice, shunt resistors and Hall effect sensors are usually used for these purposes, but the presented principle has many advantages. There is no need for additional circuit elements within high current paths, causing parasitic inductances and increased production complexity. The temperature dependence of MOS-FETs conductive resistance RDS−ON is considered in order to achieve the appropriate measurement accuracy. The “MOS-FET sensor” is also accompanied by a signal acquisition electronics circuit with an appropriate frequency bandwidth. The obtained analogue signal is therefore interposed to an A-D converter for further data acquisition. In order to achieve sufficient accuracy, a temperature compensation and appropriate approximation is used (RDS−ON=RDS−ON(ϑj)). The MOS-FET sensor is calibrated according to a reference sensor based on the Hall-effect principle. The program algorithm is executed on 32-bit ARM M4 MCU, STM32F407. PMID:26213938

  3. A Carbon Nano Tube electron impact ionisation source for low-power, compact spacecraft mass spectrometers

    NASA Astrophysics Data System (ADS)

    Sheridan, S.; Bardwell, M. W.; Morse, A. D.; Morgan, G. H.

    2012-04-01

    A novel ionisation source which uses commercially available Carbon Nano Tube devices is demonstrated as a replacement for a filament based ionisation source in an ion trap mass spectrometer. The carbon nanotube ion source electron emission was characterised and exhibited typical emission of 30 ± 1.7 μA with an applied voltage differential of 300 V between the carbon nanotube tips and the extraction grid. The ion source was tested for longevity and operated under a condition of continuous emission for a period of 44 h; there was an observed reduction in emission current of 26.5% during operation. Spectra were generated by installing the ion source into a Finnigan Mat ITD700 ion trap mass spectrometer; the spectra recorded showed all of the characteristic m/z peaks from m/z 69 to m/z 219. Perfluorotributylamine spectra were collected and averaged contiguously for a period of 48 h with no significant signal loss or peak mass allocation shift. The low power requirements and low mass of this novel ionisation source are considered be of great value to future space missions where mass spectrometric technology will be employed.

  4. Power sources for portable electronics and hybrid cars: lithium batteries and fuel cells.

    PubMed

    Scrosati, Bruno

    2005-01-01

    The activities in progress in our laboratory for the development of batteries and fuel cells for portable electronics and hybrid car applications are reviewed and discussed. In the case of lithium batteries, the research has been mainly focused on the characterization of new electrode and electrolyte materials. Results related to disordered carbon anodes and improved, solvent-free, as well as gel-type, polymer electrolytes are particularly stressed. It is shown that the use of proper gel electrolytes, in combination with suitable electrode couples, allows the development of new types of safe, reliable, and low-cost lithium ion batteries which appear to be very promising power sources for hybrid vehicles. Some of the technologies proven to be successful in the lithium battery area are readapted for use in fuel cells. In particular, this approach has been followed for the preparation of low-cost and stable protonic membranes to be proposed as an alternative to the expensive, perfluorosulfonic membranes presently used in polymer electrolyte membrane fuel cells (PEMFCs). PMID:16211622

  5. Two-Phase Cooling Method Using R134a Refrigerant to Cool Power Electronic Devices

    SciTech Connect

    Lowe, Kirk T; Tolbert, Leon M; Ayers, Curtis William; Ozpineci, Burak; Campbell, Jeremy B

    2007-01-01

    This paper presents a two-phase cooling method using R134a refrigerant to dissipate the heat energy (loss) generated by power electronics (PE) such as those associated with rectifiers, converters, and inverters for a specific application in hybrid-electric vehicles (HEVs). The cooling method involves submerging PE devices in an R134a bath, which limits the junction temperature of PE devices while conserving weight and volume of the heat sink without sacrificing equipment reliability. First, experimental tests that included an extended soak for more than 300 days were performed on a submerged IGBT and gate-controller card to study dielectric characteristics, deterioration effects, and heat flux capability of R134a. Results from these tests illustrate that R134a has high dielectric characteristics, no deterioration on electrical components, and a heat flux of 114 W/cm 2 for the experimental configuration. Second, experimental tests that included simultaneous operation with a mock automotive air-conditioner (A/C) system were performed on the same IGBT and gate controller card. Data extrapolation from these tests determined that a typical automotive A/C system has more than sufficient cooling capacity to cool a typical 30 kW traction inverter. Last, a discussion and simulation of active cooling of the IGBT junction layer with R134a refrigerant is given. This technique will drastically increase the forward current ratings and reliability of the PE device

  6. Simulation of a high-average power free-electron laser oscillator

    SciTech Connect

    H.P. Freund; M. Shinn; S.V. Benson

    2007-03-01

    In this paper, we compare the 10 kW-Upgrade experiment at the Thomas Jefferson National Accelerator Facility in Newport News, VA, with numerical simulations using the medusa code. medusa is a three-dimensional FEL simulation code that is capable of treating both amplifiers and oscillators in both the steady-state and time-dependent regimes. medusa employs a Gaussian modal expansion, and treats oscillators by decomposing the modal representation at the exit of the wiggler into the vacuum Gaussian modes of the resonator and then analytically determining the propagation of these vacuum resonator modes through the resonator back to the entrance of the wiggler in synchronism with the next electron bunch. The bunch length in the experiment is of the order of 380–420 fsec FWHM. The experiment operates at a wavelength of about 1.6 microns and the wiggler is 30 periods in length; hence, the slippage time is about 160 fsec. Because of this, slippage is important, and must be included in the simulation. The observed single pass gain is 65%–75% and, given the experimental uncertainties, this is in good agreement with the simulation. Multipass simulations including the cavity detuning yield an output power of 12.4 kW, which is also in good agreement with the experiment.

  7. Recent Progress on Flexible Triboelectric Nanogenerators for SelfPowered Electronics.

    PubMed

    Hinchet, Ronan; Seung, Wanchul; Kim, Sang-Woo

    2015-07-20

    Recently, smart systems have met with large success. At the origin of the internet of things, they are a key driving force for the development of wireless, sustainable, and independent autonomous smart systems. In this context, autonomy is critical, and despite all the progress that has been made in low-power electronics and batteries, energy harvesters are becoming increasingly important. Thus, harvesting mechanical energy is essential, as it is widespread and abundant in our daily life environment. Among harvesters, flexible triboelectric nanogenerators (TENGs) exhibit good performance, and they are easy to integrate, which makes them perfect candidates for many applications and, therefore, crucial to develop. In this review paper, we first introduce the fundamentals of TENGs, including their four basic operation modes. Then, we discuss the different improvement parameters. We review some progress made in terms of performance and integration that have been possible through the understanding of each operation mode and the development of innovative structures. Finally, we present the latest trends, structures, and materials in view of future improvements and applications. PMID:26149974

  8. Free-electron masers vs. gyrotrons: prospects for high-power sources at millimeter and submillimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Thumm, Manfred

    2002-05-01

    The possible applications of high-power millimeter (mm) and sub-mm waves from free-electron masers (FEMs) and gyro-devices span a wide range of technologies. The plasma physics community has already taken advantage of recent advances in applying high-power mm waves generated by long pulse or continuous wave (CW) gyrotron oscillators and short pulse very high-power FEMs in the areas of RF-plasma production, heating, non-inductive current drive, plasma stabilization and active plasma diagnostics for magnetic confinement thermonuclear fusion research, such as electron cyclotron resonance heating (28-170 GHz), electron cyclotron current drive , collective Thomson scattering , microwave transmission and heat-wave propagation experiments. Continuously frequency tunable FEMs could widen these fields of applications. Another important application of CW gyrotrons is industrial materials processing, e.g. sintering of high-performance functional and structural nanostructured ceramics. Sub-mm wave sources are employed in high-frequency broadband electron paramagnetic resonance and other types of spectroscopy. Future applications which await the development of novel high-power FEM amplifiers and gyro-amplifiers include high-resolution radar ranging and imaging in atmospheric and planetary science as well as deep-space and specialized satellite communications and RF drivers for next-generation high-gradient linear accelerators (supercolliders). The present paper reviews the state-of-the-art and future prospects of these recent applications of gyro-devices and FEMs and compares their specific advantages.

  9. Design and installation of a low particulate, ultrahigh vacuum system for a high power free-electron laser

    SciTech Connect

    Fred Dylla; George Biallas; Butch Dillon-Townes; Erich Feldl; Ganapati Rao Myneni; Jim Parkinson; Joe Preble; Tim Siggins; S. Williams; Mark Wiseman

    1999-03-01

    A high-average power (kW) infrared (IR) free-electron laser (FEL) is currently being commissioned for the Jefferson Laboratory FEL User Facility. The IR FEL is driven by a unique superconducting rf linac which is recirculated to recover electron beam power that is not radiated in the FEL. The design and installation of the vacuum system for the FEL involved particular attention to minimizing particulate contamination which could cause problems with the superconducting acceleration cavities and the high power FEL optics. Particulate contamination levels of all vacuum components were monitored during the cleaning process using laser scattering. Cleaning, transport, and installation procedures were developed to minimize the contamination of the complete system. We will summarize a data base we compiled of particulate contamination levels of the various components installed in the FEL vacuum system.

  10. High-Temperature SiC Power Module with Integrated SiC Gate Drivers for Future High-Density Power Electronics Applications

    SciTech Connect

    Whitaker, Mr. Bret; Cole, Mr. Zach; Passmore, Mr. Brandon; Martin, Daniel; Mcnutt, Tyler; Lostetter, Dr. Alex; Ericson, Milton Nance; Frank, Steven Shane; Britton Jr, Charles L; Marlino, Laura D; Mantooth, Alan; Francis, Dr. Matt; Lamichhane, Ranjan; Shepherd, Dr. Paul; Glover, Dr. Michael

    2014-01-01

    This paper presents the testing results of an all-silicon carbide (SiC) intelligent power module (IPM) for use in future high-density power electronics applications. The IPM has high-temperature capability and contains both SiC power devices and SiC gate driver integrated circuits (ICs). The high-temperature capability of the SiC gate driver ICs allows for them to be packaged into the power module and be located physically close to the power devices. This provides a distinct advantage by reducing the gate driver loop inductance, which promotes high frequency operation, while also reducing the overall volume of the system through higher levels of integration. The power module was tested in a bridgeless-boost converter to showcase the performance of the module in a system level application. The converter was initially operated with a switching frequency of 200 kHz with a peak output power of approximately 5 kW. The efficiency of the converter was then evaluated experimentally and optimized by increasing the overdrive voltage on the SiC gate driver ICs. Overall a peak efficiency of 97.7% was measured at 3.0 kW output. The converter s switching frequency was then increased to 500 kHz to prove the high frequency capability of the power module was then pushed to its limits and operated at a switching frequency of 500 kHz. With no further optimization of components, the converter was able to operate under these conditions and showed a peak efficiency of 95.0% at an output power of 2.1 kW.

  11. A comparative study on the mechatronic and electronic self-powered synchronized switch interfaces for piezoelectric energy harvesting systems

    NASA Astrophysics Data System (ADS)

    Liu, Haili; Ge, Cong; Liang, Junrui; Wang, Ya

    2016-04-01

    By scavenging the vibration energy from the ambience, the piezoelectric energy harvesting (PEH) technology provides one of the most promising solutions towards the everlasting power supplies for distributed wireless sensors. Given the capacitive characteristics of the piezoelectric devices, synchronized switch interface circuits, such as the synchronized switch harvesting on inductor (SSHI), have been developed towards the harvested power enhancement. The self-powered sensing and control issue is essential for implementing these circuit innovations in practical applications. This paper provides a comparative study on the recently proposed mechatronic self-powered SSHI (MSP-SSHI) and the existing electronic self-powered SSHI (ESP-SSHI). The MSP-SSHI uses a single-pole double-throw switch to simultaneously perform the sensing and switching functions in the SSHI interface. It can reduce the switching threshold and energy losses caused in the semiconductors of the electronic solution, and no need to care about the high-voltage breakdown problems in the ESP-SSHI. On the other hand, the distance between the pole and throws will introduce certain switching phase difference under the larger range of excitation. A piecewise linear model of the MSP-SSHI is built to analyze the switching phase difference. It was found that the damping ratio and stiffness in the mechanical switch can significantly influence the switching phase difference. Simulations show that well-designed damping ratio and stiffness can help the MSP-SSHI maintain smaller switching phase difference, and therefore improve the output power.

  12. Electronic Teaching Portfolios: Technology Skills + Portfolio Development--Do They = Powerful Preservice Teachers?

    ERIC Educational Resources Information Center

    Capraro, Mary Margaret

    2006-01-01

    Electronic portfolios are a "collection of work captured by electronic means, that serves as an exhibit of individual efforts, progress, and achievements in one or more areas" (Weidmer, 1998, p. 586). Because of the rapid growth and updates in technology, keeping electronic portfolios is becoming increasingly common in a variety of educational…

  13. Stark broadening measurement of the electron density in an atmospheric pressure argon plasma jet with double-power electrodes

    SciTech Connect

    Qian Muyang; Ren Chunsheng; Wang Dezhen; Zhang Jialiang; Wei Guodong

    2010-03-15

    Characteristics of a double-power electrode dielectric barrier discharge of an argon plasma jet generated at the atmospheric pressure are investigated in this paper. Time-averaged optical emission spectroscopy is used to measure the plasma parameters, of which the excitation electron temperature is determined by the Boltzmann's plot method whereas the gas temperature is estimated using a fiber thermometer. Furthermore, the Stark broadening of the hydrogen Balmer H{sub {beta}} line is applied to measure the electron density, and the simultaneous presence of comparable Doppler, van der Waals, and instrumental broadenings is discussed. Besides, properties of the jet discharge are also studied by electrical diagnosis. It has been found that the electron densities in this argon plasma jet are on the order of 10{sup 14} cm{sup -3}, and the excitation temperature, gas temperature, and electron density increase with the applied voltage. On the other hand, these parameters are inversely proportional to the argon gas flow rate.

  14. Interaction of an ultrarelativistic electron bunch train with a W-band accelerating structure: High power and high gradient

    DOE PAGES

    Wang, D.; Antipov, S.; Jing, C.; Power, J. G.; Conde, M.; Wisniewski, E.; Liu, W.; Qiu, J.; Ha, G.; Dolgashev, V.; et al

    2016-02-05

    Electron beam interaction with high frequency structures (beyond microwave regime) has a great impact on future high energy frontier machines. We report on the generation of multimegawatt pulsed rf power at 91 GHz in a planar metallic accelerating structure driven by an ultrarelativistic electron bunch train. This slow-wave wakefield device can also be used for high gradient acceleration of electrons with a stable rf phase and amplitude which are controlled by manipulation of the bunch train. To achieve precise control of the rf pulse properties, a two-beam wakefield interferometry method was developed in which the rf pulse, due to themore » interference of the wakefields from the two bunches, was measured as a function of bunch separation. As a result, measurements of the energy change of a trailing electron bunch as a function of the bunch separation confirmed the interferometry method.« less

  15. Interaction of an Ultrarelativistic Electron Bunch Train with a W-Band Accelerating Structure: High Power and High Gradient.

    PubMed

    Wang, D; Antipov, S; Jing, C; Power, J G; Conde, M; Wisniewski, E; Liu, W; Qiu, J; Ha, G; Dolgashev, V; Tang, C; Gai, W

    2016-02-01

    Electron beam interaction with high frequency structures (beyond microwave regime) has a great impact on future high energy frontier machines. We report on the generation of multimegawatt pulsed rf power at 91 GHz in a planar metallic accelerating structure driven by an ultrarelativistic electron bunch train. This slow-wave wakefield device can also be used for high gradient acceleration of electrons with a stable rf phase and amplitude which are controlled by manipulation of the bunch train. To achieve precise control of the rf pulse properties, a two-beam wakefield interferometry method was developed in which the rf pulse, due to the interference of the wakefields from the two bunches, was measured as a function of bunch separation. Measurements of the energy change of a trailing electron bunch as a function of the bunch separation confirmed the interferometry method. PMID:26894715

  16. Secondary-electron yields from thin foils: A possible probe for the electronic stopping power of heavy ions

    NASA Astrophysics Data System (ADS)

    Rothard, Hermann; Kroneberger, Kurt; Clouvas, Alexander; Veje, Erling; Lorenzen, Peter; Keller, Norman; Kemmler, Jürgen; Meckbach, Wolfgang; Groeneveld, Karl-Ontjes

    1990-03-01

    We have measured heavy-ion-induced (ZP=2,10,18,36,54; 15 keV/u<=EP/MP<=600 keV/u secondary-electron (SE) yields from sputter-cleaned entrance (γB) and exit surfaces (γF) of thin solid foils (C, Al, Ti, Ni, and Cu; d~=1000 Å) in ultrahigh vacuum (p=10-7 Pa). A pronounced increase of the forward to backward SE yield ratio R=γF/γB with increasing ZP is observed. The SE yield to energy-loss ratio Λ*=γ/Se has been found to be smaller for heavy ions (HI) than for light ions (H and He); i.e., Λ*(HI)<Λ*(He)<Λ*(H). Also, at low projectile velocities (v2P<50 keV/u), the value of Λ* increases with decreasing vP. The velocity and projectile dependence of both R and Λ* can be described within simple extensions of Schou's SE emission transport theory and a semiempirical Sternglass-type model introduced by Koschar and co-workers as caused by nonequilibrium projectile energy losses S*e near the surfaces. The near-surface energy losses are reduced compared to tabulated bulk energy loss values Se both for forward and backward emission under the assumption of a proportionality between SE yields and dE/dx. The ZP-dependent reduction factors, i.e., the ratios S*e/Se, as well as material parameters Λ=γ/S*e, are deduced from the SE yield measurements. Nevertheless, a rough overall proportionality γ~dE/dx over four decades of both forward and backward secondary-electron yields γ and electronic energy losses dE/dx in a wide range of projectile velocities (15 keV/u <=EP/MP<=16 MeV/u) and projectile nuclear charges ZP (1<=ZP<=92) is found.

  17. Electron trapping in shear Alfvén waves that power the aurora.

    PubMed

    Watt, Clare E J; Rankin, Robert

    2009-01-30

    Results from 1D Vlasov drift-kinetic plasma simulations reveal how and where auroral electrons are accelerated along Earth's geomagnetic field. In the warm plasma sheet, electrons become trapped in shear Alfvén waves, preventing immediate wave damping. As waves move to regions with larger v(Te)/v(A), their parallel electric field decreases, and the trapped electrons escape their influence. The resulting electron distribution functions compare favorably with in situ observations, demonstrating for the first time a self-consistent link between Alfvén waves and electrons that form aurora.

  18. The e-SCRUB Machine: an 800-kV, 500-kW average power pulsed electron beam generator for flue-gas scrubbing

    NASA Astrophysics Data System (ADS)

    Cooper, James R.; Briggs, Ray; Crewson, Walter F.; Johnson, R. D.; Ratafia-Brown, J. A.; Richardson, W. K.; Rienstra, W. W.; Ballard, Perry G.; Cukr, Jeffrey; Cassel, R. L.; Schlitt, Leland; Genuario, R. D.; Morgan, R. D.; Tripoli, G. A.

    1995-03-01

    This paper gives an overview of electron beam dry scrubbing (EBDS) to remove SOx and NOx from flue gases of coal-fired power plants. It also describes the e-SCRUB program, a program currently underway to commercialize this process with an integrated pulsed electron beam. The electron beam, together with injected water and ammonia, causes chemical reactions which convert the SOx and NOx into commercial grade agricultural fertilizer, a usable byproduct. The e-SCRUB facility is a test bed to demonstrate the feasibility and performance of a repetitive, reliable pulsed electron beam generator operating at average power levels of up to 1 MW. This facility contains the electron beam generator and all the auxiliary and support systems required by the machine, including a computer driven central experiment control system, a 100,000 SCFM flowing dry nitrogen load which simulates the characteristics of a power plant flue, and a 2 MVA dedicated electrical service to power the machine. The e-SCRUB electron beam machine is designed to produce an 800 kV pulsed electron beam with a repetition rate of 667 pps. The energy per pulse deposited into the flue gas is approximately 750 J. The pulsed power system converts the utility power input to a 667 pps, 800 kV pulse train which powers the electron gun. The functional units of the pulsed power system will be discussed in the paper, along with some preliminary experimental results.

  19. Verification of electron doping in single-layer graphene due to H{sub 2} exposure with thermoelectric power

    SciTech Connect

    Hong, Sung Ju; Kang, Hojin; Soler-Delgado, David; Kim, Kyung Ho; Park, Yung Woo E-mail: kbh37@incheon.ac.kr; Park, Min; Lee, Minwoo; Jeong, Dae Hong; Shin, Dong Seok; Kim, Byung Hoon E-mail: kbh37@incheon.ac.kr; Kubatkin, Sergey

    2015-04-06

    We report the electron doping of single-layer graphene (SLG) grown by chemical vapor deposition (CVD) by means of dissociative hydrogen adsorption. The transfer characteristic showed n-type doping behavior similar to that of mechanically exfoliated graphene. Furthermore, we studied the thermoelectric power (TEP) of CVD-grown SLG before and after exposure to high-pressure H{sub 2} molecules. From the TEP results, which indicate the intrinsic electrical properties, we observed that the CVD-grown SLG is n-type doped without degradation of the quality after hydrogen adsorption. Finally, the electron doping was also verified by Raman spectroscopy.

  20. Laser-induced electron emission from a tungsten nanotip: identifying above threshold photoemission using energy-resolved laser power dependencies

    NASA Astrophysics Data System (ADS)

    Bionta, M. R.; Chalopin, B.; Champeaux, J. P.; Faure, S.; Masseboeuf, A.; Moretto-Capelle, P.; Chatel, B.

    2014-06-01

    We present an experiment studying the interaction of a strongly focused 25 fs laser pulse with a tungsten nanotip, investigating the different regimes of laser-induced electron emission. We study the dependence of the electron yield with respect to the static electric field applied to the tip. Photoelectron spectra are recorded using a retarding field spectrometer and peaks separated by the photon energy are observed with a 45% contrast. They are a clear signature of above threshold photoemission (ATP), and are confirmed by extensive spectrally resolved studies of the laser power dependence. Understanding these mechanisms opens the route to control experiment in the strong-field regime on nanoscale objects.

  1. Generating power from cellulose in an alkaline fuel cell enhanced by methyl viologen as an electron-transfer catalyst

    NASA Astrophysics Data System (ADS)

    Hao, Miaoqing; Liu, Xianhua; Feng, Mengnan; Zhang, Pingping; Wang, Guangyi

    2014-04-01

    In this work, we developed a single-compartment direct cellulose alkaline fuel cell by using nickel foam as the anode and methyl viologen as an electron transfer catalyst. The maximum power density of the fuel cell at optimal conditions is 450 mW m-2. High-performance liquid chromatography detected short-chain aliphatic carboxylic acids in the oxidation products. Using common reed and red algae as fuels, the fuel cell achieved maximum power densities of 295 mW m-2 and 154 mW m-2, respectively.

  2. Slit disk for modified faraday cup diagnostic for determining power density of electron and ion beams

    DOEpatents

    Teruya, Alan T.; Elmer; John W.; Palmer, Todd A.

    2011-03-08

    A diagnostic system for characterization of an electron beam or an ion beam includes an electrical conducting disk of refractory material having a circumference, a center, and a Faraday cup assembly positioned to receive the electron beam or ion beam. At least one slit in the disk provides diagnostic characterization of the electron beam or ion beam. The at least one slit is located between the circumference and the center of the disk and includes a radial portion that is in radial alignment with the center and a portion that deviates from radial alignment with the center. The electron beam or ion beam is directed onto the disk and translated to the at least one slit wherein the electron beam or ion beam enters the at least one slit for providing diagnostic characterization of the electron beam or ion beam.

  3. Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems

    DOEpatents

    King, R.D.; DeDoncker, R.W.A.A.

    1998-01-20

    A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power. 8 figs.

  4. Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems

    DOEpatents

    King, Robert Dean; DeDoncker, Rik Wivina Anna Adelson

    1998-01-01

    A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power.

  5. A brief review of models of DC-DC power electronic converters for analysis of their stability

    NASA Astrophysics Data System (ADS)

    Siewniak, Piotr; Grzesik, Bogusław

    2014-10-01

    A brief review of models of DC-DC power electronic converters (PECs) is presented in this paper. It contains the most popular, continuous-time and discrete-time models used for PEC simulation, design, stability analysis and other applications. Both large-signal and small-signal models are considered. Special attention is paid to models that are used in practice for the analysis of the global and local stability of PECs.

  6. A study of secondary electron emission effects for suppressing passive intermodulation interference in high power communication satellites

    NASA Technical Reports Server (NTRS)

    Bosisio, Renato G.; Xu, Yansheng

    1995-01-01

    In this paper a study of secondary electron emission effects for suppressing passive intermodulation interference in high power communications satellites is studied. The test facility is described and the test results are provided. The effects of environmental factors on the secondary emission coefficient are given. It is found that certain refractory compounds are very promising in eliminating some of the passive intermodulation in satellite communications.

  7. Compton Gamma Ray Observatory/BATSE observations of energetic electrons scattered by cyclotron resonance with waves from powerful VLF transmitters

    NASA Technical Reports Server (NTRS)

    Datlowe, Dayton W.; Imhof, William L.

    1994-01-01

    To obtain a better understanding of the wave-particle mechanisms responsible for the loss of electrons from the radiation belts, energetic electron data from the Burst and Transient Source Experiment (BATSE) on the NASA's Compton Gamma Ray Observatory (GRO) was studied. Powerful ground-based VLF transmitters resonantly scatter electrons from the inner radiation belt onto trajectories from which they precipitate into the atmosphere as they drift eastward. 563 instances in which the satellite traversed a cloud of energetic electrons which had been scattered into quasi-trapped trajectories were identified. From the longitude distribution, it was concluded that waves from the VLF transmitter NWC at 114 deg E are the origin of 257 of the events, and waves from UMSat 44 deg E related to 45 more. In another 177 cases the electrons had drifted from the longitude of these transmitters to a location in the western hemisphere. The previously reported seasonal variation in the frequency of occurrence of cyclotron resonance interaction is confirmed with the continuous coverage provided by GRO. The frequency of occurrence of the cyclotron resonance interactions is largest before sunrise, which we attribute to the diurnal variations in the transmission VLF waves through the ionosphere. For the first time, unique very narrow sheets of electrons occurring in the aftermath of a large geomagnetic storm are reported.

  8. Ion acceleration and non-Maxwellian electron distributions in a low collisionality, high power helicon plasma source

    NASA Astrophysics Data System (ADS)

    Li, Yan; Sung, Yung-Ta; Scharer, John

    2015-11-01

    Ion acceleration through plasma double layer and non-Maxwellian two temperature electron distributions have been observed in Madison Helicon Experiment (MadHeX) operated in high RF power (>1000 W) and low Ar pressure (0.17 mtorr) inductive mode. By applying Optical Emission Spectroscopy (OES) cross-checked with an RF-compensated Langmuir probe (at 13.56 MHz and its second and third harmonics), the fast (>80 eV), untrapped electrons downstream of the double layer have a higher temperature of 13 eV than the trapped bulk electrons upstream with a temperature of 4 eV. The reduction of plasma potential and density observed in the double layer region require an upstream temperature ten times the measured 4 eV if occurring via Boltzmann ambipolar expansion. The hot tail electrons of the non-Maxwellian electron distribution affect the formation and the potential drop of the double layer region. The mechanism behind this has been explored via several non-invasive plasma diagnostics tools. The OES measured electron temperatures and densities are also cross-checked with Atomic Data and Analysis Structure (ADAS) and a millimeter wave interferometer respectively. The IEDF is measured by a four-grid RPA and also cross-checked with argon 668 nm Laser Induced Fluorescence (LIF). An emissive probe has been used to measure the plasma potential.

  9. Universal power-law decay of electron-electron interactions due to nonlinear screening in a Josephson junction array

    NASA Astrophysics Data System (ADS)

    Otten, Daniel; Rubbert, Sebastian; Ulrich, Jascha; Hassler, Fabian

    2016-09-01

    Josephson junctions are the most prominent nondissipative and at the same time nonlinear elements in superconducting circuits allowing Cooper pairs to tunnel coherently between two superconductors separated by a tunneling barrier. Due to this, physical systems involving Josephson junctions show highly complex behavior and interesting novel phenomena. Here, we consider an infinite one-dimensional chain of superconducting islands where neighboring islands are coupled by capacitances. We study the effect of Josephson junctions shunting each island to a common ground superconductor. We treat the system in the regime where the Josephson energy exceeds the capacitive coupling between the islands. For the case of two offset charges on two distinct islands, we calculate the interaction energy of these charges mediated by quantum phase slips due to the Josephson nonlinearities. We treat the phase slips in an instanton approximation and map the problem onto a classical partition function of interacting particles. Using the Mayer cluster expansion, we find that the interaction potential of the offset charges decays with a universal inverse-square power-law behavior.

  10. Free electron lasers driven by linear induction accelerators: High power radiation sources

    NASA Technical Reports Server (NTRS)

    Orzechowski, T. J.

    1989-01-01

    The technology of Free Electron Lasers (FELs) and linear induction accelerators (LIAs) is addressed by outlining the following topics: fundamentals of FELs; basic concepts of linear induction accelerators; the Electron Laser Facility (a microwave FEL); PALADIN (an infrared FEL); magnetic switching; IMP; and future directions (relativistic klystrons). This presentation is represented by viewgraphs only.

  11. Powering microbes with electricity: direct electron transfer from electrodes to microbes

    SciTech Connect

    Lovley, DR

    2010-09-16

    P>The discovery of electrotrophs, microorganisms that can directly accept electrons from electrodes for the reduction of terminal electron acceptors, has spurred the investigation of a wide range of potential applications. To date, only a handful of pure cultures have been shown to be capable of electrotrophy, but this process has also been inferred in many studies with undefined consortia. Potential electron acceptors include: carbon dioxide, nitrate, metals, chlorinated compounds, organic acids, protons and oxygen. Direct electron transfer from electrodes to cells has many advantages over indirect electrical stimulation of microbial metabolism via electron shuttles or hydrogen production. Supplying electrons with electrodes for the bioremediation of chlorinated compounds, nitrate or toxic metals may be preferable to adding organic electron donors or hydrogen to the subsurface or bioreactors. The most transformative application of electrotrophy may be microbial electrosynthesis in which carbon dioxide and water are converted to multi-carbon organic compounds that are released extracellularly. Coupling photovoltaic technology with microbial electrosynthesis represents a novel photosynthesis strategy that avoids many of the drawbacks of biomass-based strategies for the production of transportation fuels and other organic chemicals. The mechanisms for direct electron transfer from electrodes to microorganisms warrant further investigation in order to optimize envisioned applications.

  12. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors

    PubMed Central

    Wen, Zhen; Yeh, Min-Hsin; Guo, Hengyu; Wang, Jie; Zi, Yunlong; Xu, Weidong; Deng, Jianan; Zhu, Lei; Wang, Xin; Hu, Chenguo; Zhu, Liping; Sun, Xuhui; Wang, Zhong Lin

    2016-01-01

    Wearable electronics fabricated on lightweight and flexible substrate are believed to have great potential for portable devices, but their applications are limited by the life span of their batteries. We propose a hybridized self-charging power textile system with the aim of simultaneously collecting outdoor sunshine and random body motion energies and then storing them in an energy storage unit. Both of the harvested energies can be easily converted into electricity by using fiber-shaped dye-sensitized solar cells (for solar energy) and fiber-shaped triboelectric nanogenerators (for random body motion energy) and then further stored as chemical energy in fiber-shaped supercapacitors. Because of the all–fiber-shaped structure of the entire system, our proposed hybridized self-charging textile system can be easily woven into electronic textiles to fabricate smart clothes to sustainably operate mobile or wearable electronics.

  13. Improvement of the intrinsic time resolving power of the Cologne iron-free orange type electron spectrometers

    SciTech Connect

    Regis, J.-M.; Materna, Th.; Pascovici, G.; Christen, S.; Dewald, A.; Fransen, C.; Jolie, J.; Petkov, P.; Zell, K. O.

    2010-11-15

    Conversion electron spectroscopy represents an important tool for nuclear structure analysis of medium and heavy nuclei. Two iron-free magnetic electron spectrometers of the orange type have been installed at the Institute for Nuclear Physics of the University of Cologne. The very large transmission of 15% and the very good energy resolution of 1% makes the iron-free orange spectrometer a powerful instrument. By means of fast timing techniques, lifetimes of nuclear excited states can be measured with an accuracy better than 20 ps. For the first time, the energy dependent centroid position of prompt events yielding the time-walk characteristics (the prompt curve) of the orange spectrometer fast timing setup has been measured using prompt secondary {delta}-electrons generated in a pulsed beam experiment. The prompt curve calibrated as a function of energy allows precise lifetime determination down to a few tens of picoseconds by the use of the centroid shift method.

  14. Thermal control of power supplies with electronic packaging techniques. [using low cost heat pipes

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The integration of low-cost commercial heat pipes in the design of a NASA candidate standard modular power supply with a 350 watt output resulted in a 44% weight reduction. Part temperatures were also appreciably reduced, increasing the environmental capability of the unit. A complete 350- watt modular power converter was built and tested to evaluate thermal performance of the redesigned supply.

  15. Integrated three-dimensional module heat exchanger for power electronics cooling

    DOEpatents

    Bennion, Kevin; Lustbader, Jason

    2013-09-24

    Embodiments discussed herein are directed to a power semiconductor packaging that removes heat from a semiconductor package through one or more cooling zones that are located in a laterally oriented position with respect to the semiconductor package. Additional embodiments are directed to circuit elements that are constructed from one or more modular power semiconductor packages.

  16. Technical options for high average power free electron milimeter-wave and laser devices

    NASA Technical Reports Server (NTRS)

    Swingle, James C.

    1989-01-01

    Many of the potential space power beaming applications require the generation of directed energy beams with respectable amounts of average power (MWs). A tutorial summary is provided here on recent advances in the laboratory aimed at producing direct conversion of electrical energy to electromagnetic radiation over a wide spectral regime from microwaves to the ultraviolet.

  17. Wireless powering electronics and spiral coils for implant microsystem toward nanomedicine diagnosis and therapy in free-behavior animal

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Wei; Hou, Kuan-Chou; Shieh, Li-Jung; Hung, Sheng-Hsin; Chiou, Jin-Chern

    2012-11-01

    In this paper, we present a wireless RF-powering electronics system approach for batteryless implantable biomedical microsystem with versatile sensors/actuators on laboratory animals toward diagnosis and therapy applications. Miniaturized spiral coils as a wireless power module with low-dropout (LDO) linear regulator circuit convert RF signal into DC voltage, provide a batteryless implantation for truly free-behavior monitoring without wire dragging. Presented design achieves low quiescent-current and Line/Load Regulation, high antenna/current efficiency with safety considerations including temperature and electromagnetic absorption issues to avoid damage to the implanted target volume of tissue. Related system performance measurements have been successfully completed to demonstrate the wireless powering capabilities in desired implantable microsystems.

  18. Microwave heating power distribution in electron-cyclotron resonance processing plasmas, experiment and theory

    SciTech Connect

    Douglass, S.R.; Eddy, C. Jr.; Lampe, M.; Joyce, G.; Slinker, S.; Weber, B.V.

    1995-12-31

    The authors are currently investigating the mechanisms of microwave power absorption in an ECR plasma. The microwave electric field is detected with an antenna at the end of a shielded co-ax cable, connected to a bolometer for power measurements. Initial measurements have been 1-D along the axis of the plasma chamber. Later, 3-D profiles will be made of the microwave heating power distribution. A comparison of the experimental results with the theoretical microwave absorption are presented. A ray tracing analysis of the propagating right hand wave are given, including both collisional and collisionless absorption. Mode conversion effects are studied to explain why most of the power is absorbed at the entry window, especially the L wave power.

  19. Ultrafast electronic motion in hydrogen molecular ions induced by a high power intense laser

    NASA Astrophysics Data System (ADS)

    Mineo, H.; Teranishi, Y.; Chao, S. D.; Lin, S. H.

    2010-10-01

    In this Letter we report a method for controlling electronic localization in a molecular ion, on an attosecond time scale, using a high-intensity laser, based on two different excitation mechanisms. One takes place during ionization, and the other takes place sequentially, following ionization. The electronic excited states of the hydrogen molecular ion are created during ionization by taking the configuration interaction mixing of neutral molecules into account. We detect the ultrafast oscillatory electronic motion between two atoms in a hydrogen molecular ion occurring due to the creation of excited states during the course of ionization.

  20. Radiation-hard power electronics for the ATLAS New Small Wheel

    NASA Astrophysics Data System (ADS)

    Ameel, J.; Amidei, D.; Baccaro, S.; Citterio, M.; Cova, P.; Delmonte, N.; Sekhon Edgar, K.; Edgar, R.; Fiore, S.; Lanza, A.; Latorre, S.; Lazzaroni, M.; Yang, Y.

    2015-01-01

    The New Small Wheel (NSW) is an upgrade for the ATLAS detector to provide enhanced triggering and reconstruction of muons in the forward region. The large LV power demands of the NSW necessitate a point-of-load architecture with on-detector power conversion. The radiation load and magnetic field of this environment, while significant, are nevertheless still in the range where commercial-off-the-shelf power devices may suffice. We present studies on the radiation-hardness and magnetic-field tolerance of several candidate buck converters and linear regulators. Device survival and performance are characterized when exposed to gamma radiation, neutrons, protons and magnetic fields.

  1. Velocity distribution function of electrons plasma produced by high power laser pulse interacting aluminum target

    NASA Astrophysics Data System (ADS)

    Mahdieh, M. H.; Razi, E. M.

    2010-09-01

    This paper presents the experimental results of studying the distribution function of electrons plasma produced by irradiating aluminum target by nanosecond pulsed laser in vacuum. The laser beam was provided by second harmonic of a Q-switched Nd:YAG pulsed laser with ~10 nsec pulse duration and energy of 70 mJ. A home made Faraday cup was used for detecting the current signal. From analyzing the time of flight (TOF) experimental distribution function was determined. Comparing the experimental distribution function with Maxwell-Boltzamnn and effusion distribution functions, the electron temperature was estimated. From the experimental results, the velocity of maximum electron flux was determined. In this study the influence of the probe position and biasing voltage was investigated. The results show that the velocity of maximum electron flux and associated temperature rises with distance from the target surface. The results also show that effusion distribution function is more appropriate for modeling such plasma.

  2. Trigger probe for determining the orientation of the power distribution of an electron beam

    DOEpatents

    Elmer, John W.; Palmer, Todd A.; Teruya, Alan T.

    2007-07-17

    The present invention relates to a probe for determining the orientation of electron beams being profiled. To accurately time the location of an electron beam, the probe is designed to accept electrons from only a narrowly defined area. The signal produced from the probe is then used as a timing or triggering fiducial for an operably coupled data acquisition system. Such an arrangement eliminates changes in slit geometry, an additional signal feedthrough in the wall of a welding chamber and a second timing or triggering channel on a data acquisition system. As a result, the present invention improves the accuracy of the resulting data by minimizing the adverse effects of current slit triggering methods so as to accurately reconstruct electron or ion beams.

  3. Influence of emitter ring manufacturing tolerances on electron beam quality of high power gyrotrons

    NASA Astrophysics Data System (ADS)

    Pagonakis, Ioannis Gr.; Illy, Stefan; Thumm, Manfred

    2016-08-01

    A sensitivity analysis of manufacturing imperfections and possible misalignments of the emitter ring in the gyrotron cathode structure on the electron beam quality has been performed. It has been shown that a possible radial displacement of the emitter ring of the order of few tens of microns can cause dramatic effects on the beam quality and therefore the gyrotron operation. Two different design approaches are proposed in order to achieve an electron beam which is less sensitive to manufacturing imperfections.

  4. Theory of magnetically insulated electron flows in coaxial pulsed power transmission lines

    NASA Astrophysics Data System (ADS)

    Lawconnell, Robert I.; Neri, Jesse

    1990-03-01

    The Cartesian magnetically insulated transmission line (MITL) theory of Mendel et al. [Appl. Phys. 50, 3830 (1979); Phys. Fluids 26, 3628 (1983)] is extended to cylindrical coordinates. A set of equations that describe arbitrary electron flows in cylindrical coordinates is presented. These equations are used to derive a general theory for laminar magnetically insulated electron flows. The laminar theory allows one to specify the potentials, fields, and densities across a coaxial line undergoing explosive electron emission at the cathode. The theory is different from others available in cylindrical coordinates in that the canonical momentum and total energy for each electron may be nonzero across the electron sheath. A nonzero canonical momentum and total energy for the electrons in the sheath allows the model to produce one-dimensional flows that resemble flows from lines with impedance mismatches and perturbing structures. The laminar theory is used to derive two new self-consistent cylindrical flow solutions: (1) for a constant density profile and (2) for a quadratic density profile of the form ρ=ρc[(r2m-r2)/(r2m-r2c)]. This profile is of interest in that it is similar to profiles observed in a long MITL simulation [Appl. Phys. 50, 4996 (1979)]. The theoretical flows are compared to numerical results obtained with two-dimensional (2-D) electromagnetic particle-in-cell (PIC) codes.

  5. Advances in Lithium-Sulfur Rechargeable Batteries Powering the Electronic Future

    NASA Technical Reports Server (NTRS)

    Skotheim, Terje; Akridge, Jim; Hyland, Bob

    2001-01-01

    This viewgraph presentation discusses the Moltech Corporation's history and structure, power systems development, product attributes, Li-S adapted products, cell construction, specific energy comparisons, and product requirements necessary for use in spacecraft applications.

  6. Development of Power Electronics for a 0.2kW-Class Ion Thruster

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Patterson, Michael J.; Bowers, Glen E.

    1997-01-01

    Applications that might benefit from low power ion propulsion systems include Earth-orbit magnetospheric mapping satellite constellations, low Earth-orbit satellites, geosynchronous Earth-orbit satellite north-south stationkeeping, and asteroid orbiters. These spacecraft are likely to have masses on the order of 50 to 500 kg with up to 0.5 kW of electrical power available. A power processing unit for a 0.2 kW-class ion thruster is currently under development for these applications. The first step in this effort is the development and testing of a 0.24 kW beam power supply. The design incorporates a 20 kHz full bridge topology with multiple secondaries connected in series to obtain outputs of up to 1200 V(sub DC). A current-mode control pulse width modulation circuit built using discrete components was selected for this application. An input voltage of 28 +/- 4 V(sub DC) was assumed, since the small spacecraft for which this system is targeted are anticipated to have unregulated low voltage busses. Efficiencies in excess of 91 percent were obtained at maximum output power. The total mass of the breadboard was less than 1.0 kg and the component mass was 0.53 kg. It is anticipated that a complete flight power processor could weigh about 2.0 kg.

  7. Electronic stopping power data of heavy ions in polymeric foils in the ion energy domain of LSS theory

    NASA Astrophysics Data System (ADS)

    Dib, A.; Ammi, H.; Hedibel, M.; Guesmia, A.; Mammeri, S.; Msimanga, M.; Pineda-Vargas, C. A.

    2015-11-01

    A continuous energy loss measurements of 63Cu, 28Si, 27Al, 24Mg, 19F, 16O and 12C ions over an energy range of (0.06-0.65) MeV/nucleon through thin polymeric foils (Mylar, Polypropylene and Formvar) were carried out by time of flight spectrometry. The deduced experimental stopping data have been used in order to assess our proposed semi empirical formula. The proposed approach based on the Firsov and Lindhard-Scharff stopping power models is provided for well describing-the electronic stopping power of heavy ions (3 ⩽ Z < 100) in various solids targets at low energy range. The ζe factor, which was approximated to be ∼Z11/6 , involved in Lindhard, Scharff and Schiott (LSS) formula has been suitably modified in the light of the available experimental stopping power data. The calculated stopping power values after incorporating, effective charge Z1∗ of moving heavy ions with low velocities (v ⩽v0Z12/3) and modified ζe in LSS formula, have been found to be in close agreement with measured values in various solids targets. A reason of energy loss measurements is to obtain data that help to assess our understanding of the stopping power theories. For this, the obtained results are compared with, LSS calculations, MSTAR and SRIM-2013 predictions code.

  8. Modular Low-Heater-Power Cathode/Electron Gun Assembly for Microwave and Millimeter Wave Traveling Wave Tubes

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.

    2000-01-01

    A low-cost, low-mass, electrically efficient, modular cathode/electron gun assembly has been developed by FDE Inc. of Beaverton, Oregon, under a Small Business Innovation Research (SBIR) contract with the NASA Glenn Research Center at Lewis Field. This new assembly offers significant improvements in the design and manufacture of microwave and millimeter wave traveling-wave tubes (TWT's) used for radar and communications. It incorporates a novel, low-heater-power, reduced size and mass, high-performance barium dispenser type thermionic cathode and provides for easy integration of the cathode into a large variety of conventional TWT circuits. Among the applications are TWT's for Earth-orbiting communication satellites and for deep space communications, where future missions will require smaller spacecraft, higher data transfer rates (higher frequencies and radiofrequency output power), and greater electrical efficiency. A particularly important TWT application is in the microwave power module (a hybrid microwave/millimeter wave amplifier consisting of a low-noise solid-state driver, a small TWT, and an electronic power conditioner integrated into a single compact package), where electrical efficiency and thermal loading are critical factors and lower cost is needed for successful commercialization. The design and fabrication are based on practices used in producing cathode ray tubes (CRT's), which is one of the most competitive and efficient manufacturing operations in the world today. The approach used in the design and manufacture of thermionic cathodes and electron guns for CRT's has been optimized for fully automated production, standardization of parts, and minimization of costs. It is applicable to the production of similar components for microwave tubes, with the additional benefits of low mass and significantly lower cathode heater power (less than half that of dispenser cathodes presently used in TWT s). Modular cathode/electron gun assembly. The modular

  9. A possible energy source to power stable auroral red arcs - Precipitating electrons

    NASA Technical Reports Server (NTRS)

    Slater, D. W.; Kleckner, E. W.; Gurgiolo, C.; Winningham, J. D.; Kozyra, J. U.

    1987-01-01

    Results of coincident measurements by ground-based photometers and the low-altitude plasma instrument on board the Dynamics Explorer 2 satellite are presented that demonstrate the association of precipitating low-energy electrons with stable auroral red (SAR) arcs. A search of available data has yielded 23 instances of DE 2 overflights during the presence of SAR arcs being monitored by the photometers. For each case, downward fluxes of electrons are found to be enhanced along field lines penetrating the arcs in relation to regions both north and south of the features. Modeling of the atmospheric response to these influxes indicates that these electrons can represent a major source of the energy required to establish temperature profiles within the ionospheric electron gas that are sufficient to produce the recorded 6300-A emission rates. The sensitivity of these results to uncertainties of the assumed spacecraft potential and thermospheric composition has been investigated and found to be important, but does not alter the conclusion that precipitating electrons are a fundamental link in the production of SAR arcs.

  10. High-temperature optically activated GaAs power switching for aircraft digital electronic control

    NASA Technical Reports Server (NTRS)

    Berak, J. M.; Grantham, D. H.; Swindal, J. L.; Black, J. F.; Allen, L. B.

    1983-01-01

    Gallium arsenide high-temperature devices were fabricated and assembled into an optically activated pulse-width-modulated power control for a torque motor typical of the kinds used in jet engine actuators. A bipolar heterojunction phototransistor with gallium aluminum arsenide emitter/window, a gallium arsenide junction field-effect power transistor and a gallium arsenide transient protection diode were designed and fabricated. A high-temperature fiber optic/phototransistor coupling scheme was implemented. The devices assembled into the demonstrator were successfully tested at 250 C, proving the feasibility of actuator-located switching of control power using optical signals transmitted by fibers. Assessments of the efficiency and technical merits were made for extension of this high-temperature technology to local conversion of optical power to electrical power and its control at levels useful for driving actuators. Optical power sources included in the comparisons were an infrared light-emitting diode, an injection laser diode, tungsten-halogen lamps and arc lamps. Optical-to-electrical power conversion was limited to photovoltaics located at the actuator. Impedance matching of the photovoltaic array to the load was considered over the full temperature range, -55 C to 260 C. Loss of photovoltaic efficiency at higher temperatures was taken into account. Serious losses in efficiency are: (1) in the optical source and the cooling which they may require in the assumed 125 C ambient, (2) in the decreased conversion efficiency of the gallium arsenide photovoltaic at 260 C, and (3) in impedance matching. Practical systems require improvements in these areas.

  11. PESC '82; Annual Power Electronics Specialists Conference, 13th, Massachusetts Institute of Technology, Cambridge, MA, June 14-17, 1982, Record

    NASA Astrophysics Data System (ADS)

    Aspects of power electronics are addressed. The general topics discussed include: inverters and converters, modelling and analysis, motor drives, power conditioning appliances, power semiconductor devices, and power components and protection. Individual subjects considered include: dual-mode forward/flyback converter; a solar cell power supply system using a boost-type bidirectional DC-DC converter; complete DC analysis of the series resonant converter; variable structure control with sliding mode for DC drive speed regulation; a low-cost single-phase induction generator. Also covered are: small-signal modelling of a push-pull current-fed converter; programmable power processor for high-power space applications; high efficiency 3kW switch mode battery charger; comparison of BIMOS device types; power MOSFET temperature measurements; protection of power transistors in electric vehicle drives; general purpose variable frequency inverter using integrated power modules and LSI. For individual items see A84-18377 to A84-18408

  12. Performance and Economic Analysis of Distributed Power Electronics in Photovoltaic Systems

    SciTech Connect

    Deline, C.; Marion, B.; Granata, J.; Gonzalez, S.

    2011-01-01

    Distributed electronics like micro-inverters and DC-DC converters can help recover mismatch and shading losses in photovoltaic (PV) systems. Under partially shaded conditions, the use of distributed electronics can recover between 15-40% of annual performance loss or more, depending on the system configuration and type of device used. Additional value-added features may also increase the benefit of using per-panel distributed electronics, including increased safety, reduced system design constraints and added monitoring and diagnostics. The economics of these devices will also become more favorable as production volume increases, and integration within the solar panel?s junction box reduces part count and installation time. Some potential liabilities of per-panel devices include increased PV system cost, additional points of failure, and an insertion loss that may or may not offset performance gains under particular mismatch conditions.

  13. Current driven due to localized electron power deposition in DIII-D

    SciTech Connect

    Harvey, R.W.; Lin-Liu, Y.R.; Luce, T.C.; Prater, R.; Sauter, O.; Smirnov, A.P.

    1999-05-01

    Due to spatial localization of electron cyclotron wave injection in DIII-D, electrons heated in an off-axis region must toroidally transit the tokamak 25--50 times before re-entering the heating region. This distance is of the order of the mean free path. The effect of such RF localization is simulated with a time-dependent Fokker-Planck code which is 2D-in-velocity, 1D-in-space-along-B, and periodic in space. An effective parallel electric field arises to maintain continuity of the driven current. Somewhat surprisingly, the localized current drive efficiency remains equal to that for a uniform medium.

  14. Synergy of inelastic and elastic energy loss. Temperature effects and electronic stopping power dependence

    SciTech Connect

    Zarkadoula, Eva; Xue, Haizhou; Zhang, Yanwen; Weber, William J.

    2015-06-16

    A combination of an inelastic thermal spike model suitable for insulators and molecular dynamics simulations is used to study the effects of temperature and electronic energy loss on ion track formation, size and morphology in SrTiO3 systems with pre-existing disorder. We find temperature dependence of the ion track size. In addition, we find a threshold in the electronic energy loss for a given pre-existing defect concentration, which indicates a threshold in the synergy between the inelastic and elastic energy loss.

  15. Synergy of inelastic and elastic energy loss. Temperature effects and electronic stopping power dependence

    DOE PAGES

    Zarkadoula, Eva; Xue, Haizhou; Zhang, Yanwen; Weber, William J.

    2015-06-16

    A combination of an inelastic thermal spike model suitable for insulators and molecular dynamics simulations is used to study the effects of temperature and electronic energy loss on ion track formation, size and morphology in SrTiO3 systems with pre-existing disorder. We find temperature dependence of the ion track size. In addition, we find a threshold in the electronic energy loss for a given pre-existing defect concentration, which indicates a threshold in the synergy between the inelastic and elastic energy loss.

  16. Circuit for Communication over DC Power Line Using High Temperature Electronics

    NASA Technical Reports Server (NTRS)

    Krasowski, Michael J. (Inventor); Prokop, Norman F. (Inventor)

    2014-01-01

    A high temperature communications circuit includes a power conductor for concurrently conducting electrical energy for powering circuit components and transmitting a modulated data signal, and a demodulator for demodulating the data signal and generating a serial bit stream based on the data signal. The demodulator includes an absolute value amplifier for conditionally inverting or conditionally passing a signal applied to the absolute value amplifier. The absolute value amplifier utilizes no diodes to control the conditional inversion or passing of the signal applied to the absolute value amplifier.

  17. FY 2005 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect

    Olszewski, M

    2005-11-22

    component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and

  18. FY2007 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect

    Olszewski, Mitchell

    2007-10-01

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as 'FreedomCAR' (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieving the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether

  19. Calculations of stopping powers of 100 eV-30 keV electrons in 31 elemental solids

    SciTech Connect

    Tanuma, S.; Powell, C. J.; Penn, D. R.

    2008-03-15

    We present calculated electron stopping powers (SPs) for 31 elemental solids (Li, Be, glassy C, graphite, diamond, Na, Mg, K, Sc, Ti, V, Fe, Y, Zr, Nb, Mo, Ru, Rh, In, Sn, Cs, Gd, Tb, Dy, Hf, Ta, W, Re, Os, Ir, and Bi). These SPs were determined with an algorithm previously used for the calculation of electron inelastic mean free paths and from energy-loss functions (ELFs) derived from experimental optical data. The SP calculations were made for electron energies between 100 eV and 30 keV and supplement our earlier SP calculations for ten additional solids (Al, Si, Cr, Ni, Cu, Ge, Pd, Ag, Pt, and Au). Plots of SP versus atomic number for the group of 41 solids show clear trends. Multiple peaks and shoulders are seen that result from the contributions of valence-electron and various inner-shell excitations. Satisfactory agreement was found between the calculated SPs and values from the relativistic Bethe SP equation with recommended values of the mean excitation energy (MEE) for energies above 10 keV. We determined effective MEEs versus maximum excitation energy from the ELFs for each solid. Plots of effective MEE versus atomic number showed the relative contributions of valence-electron and different core-electron excitations to the MEE. For a maximum excitation energy of 30 keV, our effective MEEs agreed well for Be, graphite, Na, Al, and Si with recommended MEEs; a difference for Li was attributed to sample oxidation in the SP measurements for the recommended MEE. Substantially different effective MEEs were found for the three carbon allotropes (graphite, diamond, and glassy C)

  20. Transient stability enhancement of wind farms using power electronics and facts controllers

    NASA Astrophysics Data System (ADS)

    Mohammadpour, Hossein Ali

    Nowadays, it is well-understood that the burning of fossil fuels in electric power station has a significant influence on the global climate due to greenhouse gases. In many countries, the use of cost-effective and reliable low-carbon electricity energy sources is becoming an important energy policy. Among different kinds of clean energy resources- such as solar power, hydro-power, ocean wave power and so on, wind power is the fastest-growing form of renewable energy at the present time. Moreover, adjustable speed generator wind turbines (ASGWT) has key advantages over the fixed-speed generator wind turbines (FSGWT) in terms of less mechanical stress, improved power quality, high system efficiency, and reduced acoustic noise. One important class of ASGWT is the doubly-fed induction generator (DFIG), which has gained a significant attention of the electric power industry due to their advantages over the other class of ASGWT, i.e. fully rated converter-based wind turbines. Because of increased integration of DFIG-based wind farms into electric power grids, it is necessary to transmit the generated power from wind farms to the existing grids via transmission networks without congestion. Series capacitive compensation of DFIG-based wind farm is an economical way to increase the power transfer capability of the transmission line connecting wind farm to the grid. For example, a study performed by ABB reveals that increasing the power transfer capability of an existing transmission line from 1300 MW to 2000 MW using series compensation is 90% less than the cost of building a new transmission line. However, a factor hindering the extensive use of series capacitive compensation is the potential risk of sub- synchronous resonance (SSR). The SSR is a condition where the wind farm exchanges energy with the electric network, to which it is connected, at one or more natural frequencies of the electric or mechanical part of the combined system, comprising the wind farm and the

  1. Enhancement of the thermoelectric power by electronic correlations in bad metals: A study of the Kelvin formula

    NASA Astrophysics Data System (ADS)

    Kokalj, J.; McKenzie, Ross H.

    2015-03-01

    In many strongly correlated electron metals the thermoelectric power has a nonmonotonic temperature dependence and values that are orders of magnitude larger than for elemental metals. Inspired by Kelvin, Peterson and Shastry derived a particularly simple expression for the thermopower in terms of the temperature dependence of the chemical potential, now known as the Kelvin formula. We consider a Hubbard model on an anisotropic triangular lattice at half filling, a minimal effective Hamiltonian for several classes of organic charge transfer salts. The finite temperature Lanczos method is used to calculate the temperature dependence of the thermopower using the Kelvin formula. We find that electronic correlations significantly enhance the magnitude of the thermopower and lead to a nonmonotonic temperature dependence. The latter reflects a crossover with increasing temperature from a Fermi liquid to a bad metal. Although, the Kelvin formula gives a semiquantitative description of some experimental results it cannot describe the directional dependence of the sign of the thermopower in some materials.

  2. In-situ Isotopic Analysis at Nanoscale using Parallel Ion Electron Spectrometry: A Powerful New Paradigm for Correlative Microscopy

    PubMed Central

    Yedra, Lluís; Eswara, Santhana; Dowsett, David; Wirtz, Tom

    2016-01-01

    Isotopic analysis is of paramount importance across the entire gamut of scientific research. To advance the frontiers of knowledge, a technique for nanoscale isotopic analysis is indispensable. Secondary Ion Mass Spectrometry (SIMS) is a well-established technique for analyzing isotopes, but its spatial-resolution is fundamentally limited. Transmission Electron Microscopy (TEM) is a well-known method for high-resolution imaging down to the atomic scale. However, isotopic analysis in TEM is not possible. Here, we introduce a powerful new paradigm for in-situ correlative microscopy called the Parallel Ion Electron Spectrometry by synergizing SIMS with TEM. We demonstrate this technique by distinguishing lithium carbonate nanoparticles according to the isotopic label of lithium, viz. 6Li and 7Li and imaging them at high-resolution by TEM, adding a new dimension to correlative microscopy. PMID:27350565

  3. In-situ Isotopic Analysis at Nanoscale using Parallel Ion Electron Spectrometry: A Powerful New Paradigm for Correlative Microscopy.

    PubMed

    Yedra, Lluís; Eswara, Santhana; Dowsett, David; Wirtz, Tom

    2016-01-01

    Isotopic analysis is of paramount importance across the entire gamut of scientific research. To advance the frontiers of knowledge, a technique for nanoscale isotopic analysis is indispensable. Secondary Ion Mass Spectrometry (SIMS) is a well-established technique for analyzing isotopes, but its spatial-resolution is fundamentally limited. Transmission Electron Microscopy (TEM) is a well-known method for high-resolution imaging down to the atomic scale. However, isotopic analysis in TEM is not possible. Here, we introduce a powerful new paradigm for in-situ correlative microscopy called the Parallel Ion Electron Spectrometry by synergizing SIMS with TEM. We demonstrate this technique by distinguishing lithium carbonate nanoparticles according to the isotopic label of lithium, viz. (6)Li and (7)Li and imaging them at high-resolution by TEM, adding a new dimension to correlative microscopy. PMID:27350565

  4. In-situ Isotopic Analysis at Nanoscale using Parallel Ion Electron Spectrometry: A Powerful New Paradigm for Correlative Microscopy

    NASA Astrophysics Data System (ADS)

    Yedra, Lluís; Eswara, Santhana; Dowsett, David; Wirtz, Tom

    2016-06-01

    Isotopic analysis is of paramount importance across the entire gamut of scientific research. To advance the frontiers of knowledge, a technique for nanoscale isotopic analysis is indispensable. Secondary Ion Mass Spectrometry (SIMS) is a well-established technique for analyzing isotopes, but its spatial-resolution is fundamentally limited. Transmission Electron Microscopy (TEM) is a well-known method for high-resolution imaging down to the atomic scale. However, isotopic analysis in TEM is not possible. Here, we introduce a powerful new paradigm for in-situ correlative microscopy called the Parallel Ion Electron Spectrometry by synergizing SIMS with TEM. We demonstrate this technique by distinguishing lithium carbonate nanoparticles according to the isotopic label of lithium, viz. 6Li and 7Li and imaging them at high-resolution by TEM, adding a new dimension to correlative microscopy.

  5. Radial Profiles of Plasma Electron Characteristics in a Low-Power Arcjet

    NASA Technical Reports Server (NTRS)

    Codron, Douglas; Nawaz, Anuscheh

    2013-01-01

    Since 1960, the Arc Jet Complex at NASA Ames Research Center has been a source of long-duration, high-enthalpy flow for materials testing with application to the thermal protection of aerospace vehicle components. From their inception the facilities have played an integral role supporting many of NASA's space flight programs and numerous DoD projects. In recent years advancements in computational fluid dynamics (CFO) have made the resultant models a valuable tool for assessing and predicting performance, however, the inherent limitation of models to compensate for a dissociated, transitionally high temperature nonequilibrated flowfield have made further measurements necessary. The use of electrostatic probe diagnostics within similarly harsh plasma environments in previous studies have been met with much success. In this study, the use of a single Langmuir probe was implemented to characterize the plasma parameters of interest as they vary radially within a large volume of the plume. Classical Langmuir probe theory was applied to achieve first order estimates of the heavy particle temperature, the ratio T(sub i)/T(sub e), and the ionization fraction. As expected, both the electron temperature and electron density measurements show a dependence on radial distance from the plume centerline, with electron density profiles showing the largest dependence. This paper aims to validate and strengthen modeling work conducted at the NASA Ames Research Center by measuring the critical plasma parameters (electron temperature, electron density, and plasma potential) within the arc plume of a subscale arc jet. These parameters are intended to give physical insight into the flow characteristics while providing the necessary boundary conditions to validate full scale simulations.

  6. GaN High-Electron-Mobility Transistor with WN x /Cu Gate for High-Power Applications

    NASA Astrophysics Data System (ADS)

    Hsieh, Ting-En; Lin, Yueh-Chin; Li, Fang-Ming; Shi, Wang-Cheng; Huang, Yu-Xiang; Lan, Wei-Cheng; Chin, Ping-Chieh; Chang, Edward Yi

    2015-12-01

    A GaN high-electron-mobility transistor (HEMT) with WN x /Cu gate for high-power applications has been investigated. The direct-current (DC) characteristics of the device are comparable to those of conventional Ni/Au-gated GaN HEMTs. The results of high-voltage stress testing indicate that the device is stable after application of 200 V stress for 42 h. The WN x /Cu-gated GaN HEMT exhibited no obvious changes in the DC characteristics or Schottky barrier height before and after annealing at 250°C for 1 h. These results demonstrate that the WN x /Cu gate structure can be used in a GaN HEMT for high-power applications with good thermal stability.

  7. Nano-structure multilayer technology fabrication of high energy density capacitors for the power electronic building book

    SciTech Connect

    Barbee, T.W.; Johnson, G.W.; Wagner, A.V.

    1997-10-21

    Commercially available capacitors do not meet the specifications of the Power Electronic Building Block (PEBB) concept. We have applied our propriety nanostructure multilayer materials technology to the fabrication of high density capacitors designed to remove this impediment to PEBB progress. Our nanostructure multilayer capacitors will also be enabling technology in many industrial and military applications. Examples include transient suppression (snubber capacitors), resonant circuits, and DC filtering in PEBB modules. Additionally, weapon applications require compact energy storage for detonators and pulsed-power systems. Commercial applications run the gamut from computers to lighting to communications. Steady progress over the last five years has brought us to the threshold of commercial manufacturability. We have demonstrated a working dielectric energy density of > 11 J/cm3 in 20 nF devices designed for 1 kV operation.

  8. Preliminary Performance Data on Westinghouse Electronic Power Regulator Operating on J34-WE-32 Turbojet Engine in Altitude Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Ketchum, James R.; Blivas, Darnold; Pack, George J.

    1950-01-01

    The behavior of the Westinghouse electronic power regulator operating on a J34-WE-32 turbojet engine was investigated in the NACA Lewis altitude wind tunnel at the request of the Bureau of Aeronautics, Department of the Navy. The object of the program was to determine the, steady-state stability and transient characteristics of the engine under control at various altitudes and ram pressure ratios, without afterburning. Recordings of the response of the following parameters to step changes in power lever position throughout the available operating range of the engine were obtained; ram pressure ratio, compressor-discharge pressure, exhaust-nozzle area, engine speed, turbine-outlet temperature, fuel-valve position, jet thrust, air flow, turbine-discharge pressure, fuel flow, throttle position, and boost-pump pressure. Representative preliminary data showing the actual time response of these variables are presented. These data are presented in the form of reproductions of oscillographic traces.

  9. Electron power absorption dynamics in capacitive radio frequency discharges driven by tailored voltage waveforms in CF4

    NASA Astrophysics Data System (ADS)

    Brandt, S.; Berger, B.; Schüngel, E.; Korolov, I.; Derzsi, A.; Bruneau, B.; Johnson, E.; Lafleur, T.; O'Connell, D.; Koepke, M.; Gans, T.; Booth, J.-P.; Donkó, Z.; Schulze, J.

    2016-08-01

    The power absorption dynamics of electrons and the electrical asymmetry effect in capacitive radio-frequency plasmas operated in CF4 and driven by tailored voltage waveforms are investigated experimentally in combination with kinetic simulations. The driving voltage waveforms are generated as a superposition of multiple consecutive harmonics of the fundamental frequency of 13.56 MHz. Peaks/valleys and sawtooth waveforms are used to study the effects of amplitude and slope asymmetries of the driving voltage waveform on the electron dynamics and the generation of a DC self-bias in an electronegative plasma at different pressures. Compared to electropositive discharges, we observe strongly different effects and unique power absorption dynamics. At high pressures and high electronegativities, the discharge is found to operate in the drift-ambipolar (DA) heating mode. A dominant excitation/ionization maximum is observed during sheath collapse at the edge of the sheath which collapses fastest. High negative-ion densities are observed inside this sheath region, while electrons are confined for part of the RF period in a potential well formed by the ambipolar electric field at this sheath edge and the collapsed (floating potential) sheath at the electrode. For specific driving voltage waveforms, the plasma becomes divided spatially into two different halves of strongly different electronegativity. This asymmetry can be reversed electrically by inverting the driving waveform. For sawtooth waveforms, the discharge asymmetry and the sign of the DC self-bias are found to reverse as the pressure is increased, due to a transition of the electron heating mode from the α-mode to the DA-mode. These effects are interpreted with the aid of the simulation results.

  10. Understanding Power Electronics and Electrical Machines in Multidisciplinary Wind Energy Conversion System Courses

    ERIC Educational Resources Information Center

    Duran, M. J.; Barrero, F.; Pozo-Ruz, A.; Guzman, F.; Fernandez, J.; Guzman, H.

    2013-01-01

    Wind energy conversion systems (WECS) nowadays offer an extremely wide range of topologies, including various different types of electrical generators and power converters. Wind energy is also an application of great interest to students and with a huge potential for engineering employment. Making WECS the main center of interest when teaching…

  11. Enhancement of the output power of terahertz folded waveguide oscillator by two parallel electron beams

    SciTech Connect

    Li, Ke Cao, Miaomiao; Liu, Wenxin Wang, Yong; Liao, Suying

    2015-11-15

    A novel two-beam folded waveguide (FW) oscillator is presented for the purpose of gaining higher power with a small-size circuit compared with the normal FW oscillator. The high-frequency characteristics of the two-beam FW, including dispersion and interaction impedance, were investigated by the numerical simulation and compared with the one-beam FW. The radio-frequency loss of the two-beam FW was also analyzed. A 3-D particle-in-cell code CHIPIC was applied to analyze and optimize the performance of a G-band two-beam FW oscillator. The influences of the distance between the two beam tunnels, beam voltage, the number of periods, magnetic field, radius of beam tunnel, and the packing ratio on the circuit performance are investigated in detail. Compared with a one-beam circuit, a larger output power of the two-beam circuit with the same beam power was observed by the simulation. Moreover, the start-oscillation current of two-beam circuit is much lower than the one-beam circuit with better performance. It will favor the miniaturized design of the high-power terahertz oscillator.

  12. Trace heavy metal ions promoted extracellular electron transfer and power generation by Shewanella in microbial fuel cells.

    PubMed

    Xu, Yu-Shang; Zheng, Tao; Yong, Xiao-Yu; Zhai, Dan-Dan; Si, Rong-Wei; Li, Bing; Yu, Yang-Yang; Yong, Yang-Chun

    2016-07-01

    Although microbial fuel cells (MFCs) is considered as one of the most promising technology for renewable energy harvesting, low power output still accounts one of the bottlenecks and limits its further development. In this work, it is found that Cu(2+) (0.1μgL(-1)-0.1mgL(-1)) or Cd(2+) (0.1μgL(-1)-1mgL(-1)) significantly improve the electricity generation in MFCs. The maximum power output achieved with trace level of Cu(2+) (∼6nM) or Cd(2+) (∼5nM) is 1.3 times and 1.6 times higher than that of the control, respectively. Further analysis verifies that addition of Cu(2+) or Cd(2+) effectively improves riboflavin production and bacteria attachment on the electrode, which enhances bacterial extracellular electron transfer (EET) in MFCs. These results unveil the mechanism for power output enhancement by Cu(2+) or Cd(2+) addition, and suggest that metal ion addition should be a promising strategy to enhance EET as well as power generation of MFCs.

  13. Characterisation of Electrical Propulsion Thrusters as a Load for Electronic Power Supplies

    NASA Astrophysics Data System (ADS)

    Gollor, Matthias; Herty, Frank

    2008-09-01

    For European space missions the importance of electrical propulsion is growing strongly. Many different types of electrical thrusters have been developed in the past years. Often the specification of electrical power supplies suffers from lack of dedicated electrical measurements or misinterpretation of the load behaviour especially under dynamic conditions. As a result, the Power Supply and Control Unit might not be optimally matched to the thrusters and in worst case may react with instabilities during operation.Analyzing the different types of electric thrusters a broad variety of different load characteristics have to be taken into account: non-linear I/V curves, constant voltage and constant current equivalent loads, but except for auxiliary magnet circuits, the loads typically do not show significant inductive or capacitive components. However, the majority of the thrusters show significant load oscillations due to plasma effects, typically in a frequency range of a few ten kHz. Most thrusters are affected by spurious flashovers (sparking, beam-outs, and plasma instabilities).In order to achieve a good definition of the interface between power supplies and the EP thrusters as a load, it is recommended to perform measurements of the current-voltage curve under static and dynamic conditions already in early development phases. For thrusters with complex power supplies the possible coupling between the power sources through the plasma might be considered, too. Examples for such measurements and the transfer of the results into simple electrical models are given for an anode supply of a Kaufmann type ion thruster and a Neutralizer/Keeper supply.

  14. A simple method for experimental determination of electron temperature and electron density in a nanosecond pulsed longitudinal discharge used for excitation of high-power atomic and ionic metal and metal halide vapour lasers

    NASA Astrophysics Data System (ADS)

    Temelkov, K. A.; Vuchkov, N. K.

    2016-05-01

    A simple method based on the time-resolved measurement of electrical discharge parameters, such as tube voltage and discharge current, is developed and applied for determination of electron temperature and electron density in the discharge period of a nanosecond pulsed longitudinal discharge, exciting high-power DUV Cu+ Ne-CuBr, He-Hg+ and He-Sr+ lasers.

  15. Effect of electron-cyclotron resonance plasma heating conditions on the low-frequency modulation of the gyrotron power at the L-2M stellarator

    SciTech Connect

    Batanov, G. M.; Borzosekov, V. D.; Kolik, L. V.; Konchekov, E. M. Malakhov, D. V.; Petelin, M. I.; Petrov, A. E.; Sarksyan, K. A.; Skvortsova, N. N.; Stepakhin, V. D.; Kharchev, N. K.

    2015-08-15

    Low-frequency modulation of the gyrotron power at the L-2M stellarator was studied at different modes of plasma confinement. The plasma was heated at the second harmonic of the electron gyrofrequency. The effect of reflection of gyrotron radiation from the region of electron-cyclotron resonance plasma heating, as well as of backscattering of gyrotron radiation from fluctuations of the plasma density, on the modulation of the gyrotron power was investigated.

  16. Enhanced thermoelectric power and electronic correlations in RuSe{sub 2}

    SciTech Connect

    Wang, Kefeng Wang, Aifeng; Tomic, A.; Wang, Limin; Petrovic, C.; Abeykoon, A. M. Milinda; Dooryhee, E.; Billinge, S. J. L.

    2015-04-01

    We report the electronic structure, electric and thermal transport properties of Ru{sub 1−x}Ir{sub x}Se{sub 2} (x ≤ 0.2). RuSe{sub 2} is a semiconductor that crystallizes in a cubic pyrite unit cell. The Seebeck coefficient of RuSe{sub 2} exceeds −200 μV/K around 730 K. Ir substitution results in the suppression of the resistivity and the Seebeck coefficient, suggesting the removal of the peaks in density of states near the Fermi level. Ru{sub 0.8}Ir{sub 0.2}Se{sub 2} shows a semiconductor-metal crossover at about 30 K. The magnetic field restores the semiconducting behavior. Our results indicate the importance of the electronic correlations in enhanced thermoelectricity of RuSb{sub 2}.

  17. Enhanced thermoelectric power and electronic correlations in RuSe2

    NASA Astrophysics Data System (ADS)

    Wang, Kefeng; Wang, Aifeng; Tomic, A.; Wang, Limin; Abeykoon, A. M. Milinda; Dooryhee, E.; Billinge, S. J. L.; Petrovic, C.

    2015-04-01

    We report the electronic structure, electric and thermal transport properties of Ru1-xIrxSe2 (x ≤ 0.2). RuSe2 is a semiconductor that crystallizes in a cubic pyrite unit cell. The Seebeck coefficient of RuSe2 exceeds -200 μV/K around 730 K. Ir substitution results in the suppression of the resistivity and the Seebeck coefficient, suggesting the removal of the peaks in density of states near the Fermi level. Ru0.8Ir0.2Se2 shows a semiconductor-metal crossover at about 30 K. The magnetic field restores the semiconducting behavior. Our results indicate the importance of the electronic correlations in enhanced thermoelectricity of RuSb2.

  18. Measurements of the critical power for self-injection of electrons in a laser wakefield accelerator

    SciTech Connect

    Froula, D H; Clayton, C E; Doppner, T; Fonseca, R A; Marsh, K A; Barty, C J; Divol, L; Glenzer, S H; Joshi, C; Lu, W; Martins, S F; Michel, P; Mori, W; Palastro, J P; Pollock, B B; Pak, A; Ralph, J E; Ross, J S; Siders, C; Silva, L O; Wang, T

    2009-06-02

    A laser wakefield acceleration study has been performed in the matched, self-guided, blow-out regime where a 10 J, 60 fs laser produced 720 {+-} 50 MeV quasi-monoenergetic electrons with a divergence of {Delta}{theta} = 2.85 {+-} 0.15 mRad. While maintaining a nearly constant plasma density (3 x 10{sup 18} cm{sup -3}), a linear electron energy gain was measured from 100 MeV to 700 MeV when the plasma length was scaled from 3 mm to 8 mm. Absolute charge measurements indicate that self-injection occurs when P/P{sub cr} > 4 and saturates around 100 pC for P/P{sub cr} > 12. The results are compared with both analytical scalings and full 3D particle-in-cell simulations.

  19. Phenomenology of intense electron cyclotron emission bursts during high power neutral beam heating on TFTR (abstract)

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Bush, C. E.; Fredrickson, E.; Park, H. K.; Ramsey, A. T.

    1992-10-01

    A 20-channel grating polychromator has been used to study intense bursts of electron cyclotron emission (ECE) from TFTR deuterium plasmas predominantly heated by 90-110-keV neutral beams (Pinj/Poh≳30). The ECE bursts have a duration of 20-150 μs and are usually seen 300-500 ms after the start of neutral beam injection, when the stored energy and neutron production are collapsing or rolling over. In most cases the ECE bursts have Δf/f˜0.2-0.5, if this frequency spread is due entirely to relativistic broadening it implies an electron energy of 10-100 keV (Core electron temperatures in these plasmas are typically 7-12 keV). The ECE bursts are often correlated with ELM activity during limiter H modes and appear to occur at the beginning of the rise in the Dα signal. In some instances the spectral width of the ECE burst is narrow enough (Δf/f˜0.1) to allow identification of the origin of the emission, in these cases the source appears to be within 0.2 m of the plasma edge and the ECE burst exhibits a delay characteristic of an outwardly directed velocity of 2-3×103 m/s. This work is supported by U.S. Department of Energy Contract No. DE-AC02-76-CHO-3073.

  20. Magnetic Energy Storage System: Superconducting Magnet Energy Storage System with Direct Power Electronics Interface

    SciTech Connect

    2010-10-01

    GRIDS Project: ABB is developing an advanced energy storage system using superconducting magnets that could store significantly more energy than today’s best magnetic storage technologies at a fraction of the cost. This system could provide enough storage capacity to encourage more widespread use of renewable power like wind and solar. Superconducting magnetic energy storage systems have been in development for almost 3 decades; however, past devices were designed to supply power only for short durations—generally less than a few minutes. ABB’s system would deliver the stored energy at very low cost, making it ideal for eventual use in the electricity grid as a costeffective competitor to batteries and other energy storage technologies. The device could potentially cost even less, on a per kilowatt basis, than traditional lead-acid batteries.

  1. Stable and high-power few cycle supercontinuum for 2D ultrabroadband electronic spectroscopy.

    PubMed

    Spokoyny, Boris; Koh, Christine J; Harel, Elad

    2015-03-15

    Broadband supercontinuum (SC) pulses in the few cycle regime are a promising source for spectroscopic and imaging applications. However, SC sources are plagued by poor stability, greatly limiting their utility in phase-resolved nonlinear experiments such as 2D photon echo spectroscopy (2D PES). Here, we generated SC by two-stage filamentation in argon and air starting from 100 fs input pulses, which are sufficiently high-power and stable to record time-resolved 2D PE spectra in a single laser shot. We obtain a total power of 400 μJ/pulse in the visible spectral range of 500-850 nm and, after compression, yield pulses with duration of 6 fs according to transient-grating frequency-resolved optical gating (TG-FROG) measurements. We demonstrate the method on the laser dye, Cresyl Violet, and observe coherent oscillations indicative of nuclear wavepacket dynamics.

  2. Development of a muon radiographic imaging electronic board system for a stable solar power operation

    NASA Astrophysics Data System (ADS)

    Uchida, T.; Tanaka, H. K. M.; Tanaka, M.

    2010-02-01

    Cosmic-ray muon radiography is a method that is used to study the internal structure of volcanoes. We have developed a muon radiographic imaging board with a power consumption low enough to be powered by a small solar power system. The imaging board generates an angular distribution of the muons. Used for real-time reading, the method may facilitate the prediction of eruptions. For real-time observations, the Ethernet is employed, and the board works as a web server for a remote operation. The angular distribution can be obtained from a remote PC via a network using a standard web browser. We have collected and analyzed data obtained from a 3-day field study of cosmic-ray muons at a Satsuma-Iwojima volcano. The data provided a clear image of the mountain ridge as a cosmic-ray muon shadow. The measured performance of the system is sufficient for a stand-alone cosmic-ray muon radiography experiment.

  3. High-energy density experiments on planetary materials using high-power lasers and X-ray free electron laser

    NASA Astrophysics Data System (ADS)

    Ozaki, Norimasa

    2015-06-01

    Laser-driven dynamic compression allows us to investigate the behavior of planetary and exoplanetary materials at extreme conditions. Our high-energy density (HED) experiments for applications to planetary sciences began over five years ago. We measured the equation-of-state of cryogenic liquid hydrogen under laser-shock compression up to 55 GPa. Since then, various materials constituting the icy giant planets and the Earth-like planets have been studied using laser-driven dynamic compression techniques. Pressure-volume-temperature EOS data and optical property data of water and molecular mixtures were obtained at the planetary/exoplanetary interior conditions. Silicates and oxides data show interesting behaviors in the warm-dense matter regime due to their phase transformations. Most recently the structural changes of iron were observed for understanding the kinetics under the bcc-hcp transformation phenomena on a new HED science platform coupling power-lasers and the X-ray free electron laser (SACLA). This work was performed under the joint research project at the Institute of Laser Engineering, Osaka University. It was partially supported by a Grant-in-Aid for Scientific Research (Grant Nos. 20654042, 22224012, 23540556, and 24103507) and also by grants from the Core-to-Core Program of JSPS on International Alliance for Material Science in Extreme States with High Power Laser and XFEL, and the X-ray Free Electron Laser Priority Strategy Program of MEXT.

  4. Graphene and thin-film semiconductor heterojunction transistors integrated on wafer scale for low-power electronics.

    PubMed

    Heo, Jinseong; Byun, Kyung-Eun; Lee, Jaeho; Chung, Hyun-Jong; Jeon, Sanghun; Park, Seongjun; Hwang, Sungwoo

    2013-01-01

    Graphene heterostructures in which graphene is combined with semiconductors or other layered 2D materials are of considerable interest, as a new class of electronic devices has been realized. Here we propose a technology platform based on graphene-thin-film-semiconductor-metal (GSM) junctions, which can be applied to large-scale and power-efficient electronics compatible with a variety of substrates. We demonstrate wafer-scale integration of vertical field-effect transistors (VFETs) based on graphene-In-Ga-Zn-O (IGZO)-metal asymmetric junctions on a transparent 150 × 150 mm(2) glass. In this system, a triangular energy barrier between the graphene and metal is designed by selecting a metal with a proper work function. We obtain a maximum current on/off ratio (Ion/Ioff) up to 10(6) with an average of 3010 over 2000 devices under ambient conditions. For low-power logic applications, an inverter that combines complementary n-type (IGZO) and p-type (Ge) devices is demonstrated to operate at a bias of only 0.5 V.

  5. Optical spectroscopy of plasma in high power microwave pulse shortening experiments driven by a microsecond electron beam

    SciTech Connect

    Cohen, W.E.; Gilgenbach, R.M.; Hochman, J.M.; Jaynes, R.L.; Rintamaki, J.I.; Peters, C.W.; Vollers, D.E.; Lau, Y.Y.; Spencer, T.A.

    1998-12-31

    Spectroscopic measurements have been performed to characterize the undesired plasma in a multi-megawatt coaxial gyrotron and a rectangular-cross-section (RCS) gyrotron. These gyrotrons are driven by the Michigan Electron Long Beam Accelerator (MELBA) at parameters: V = {minus}800 kV, I{sub tube} = 0.3 kA, and pulselengths of 0.5--1 {micro}s. Pulse shortening typically limits the highest ({approximately}10 MW) microwave power pulselength to 100--200 ns. Potential explanations of pulse shortening are being investigated, particularly plasma production inside the cavity and at the e-beam collector. The source of this plasma is believed to be due to water vapor absorbed on surfaces which is ejected, dissociated, and ionized by electron beam impact. Plasma H-{alpha} line radiation has been characterized in both time-integrated and temporally-resolved measurements and correlated with microwave power and microwave cutoff. Measurements from a residual gas analyzer (RGA) will be used to support this interpretation. Experiments involving RF plasma cleaning of the coaxial cavity are planned.

  6. Earth's magnetic field as a radiator to detect cosmic ray electrons of energy greater than 10 to the 12th power eV

    NASA Technical Reports Server (NTRS)

    Stephens, S. A.; Balasubrahmanyan, V. K.

    1983-01-01

    The synchrotron emission by electrons of energy greater than a few TeV in Earth's magnetic field was examined. An omnidirectional detector, it is shown, can be satisfactorily used to estimate the energy. The collecting power of the detector, it is also shown, is a sensitive function of the area of the detector, the energy of electron, and the number of photons required to identify an electron. The event rate expected was calculated using an ideal balloon-borne detector.

  7. FY2010 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect

    Olszewski, Mitchell

    2010-10-01

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public-private partnerships to fund high risk, high payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2

  8. Electronic Origins of Large Thermoelectric Power Factor of LaOBiS2-xSex

    NASA Astrophysics Data System (ADS)

    Nishida, Atsuhiro; Nishiate, Hirotaka; Lee, Chul-Ho; Miura, Osuke; Mizuguchi, Yoshikazu

    2016-07-01

    We have examined the electrical transport properties of densified LaOBiS2-xSex, which constitutes a new family of thermoelectric materials. The power factor increases with increasing concentration of Se, i.e., Se substitution leads to an enhanced electrical conductivity, without suppression of the Seebeck coefficient. Hall measurements reveal that the carrier mobility increases with decreasing carrier concentration as Se doping, which is responsible for the low electrical resistivity and large absolute values of the Seebeck coefficient in the system.

  9. Prompt Ion Outflows and Artificial Ducts during High-Power HF Heating at HAARP: Effect of Suprathermal Electrons?

    NASA Astrophysics Data System (ADS)

    Mishin, E. V.; Milikh, G. M.

    2014-12-01

    In situ observations from the DMSP and Demeter satellites established that high-power HF heating of the ionosphere F-region results in significant ion outflows associated with 10-30% density enhancements in the topside ionosphere magnetically-conjugate to the heated region. As follows from the SAMI2 two-fluid model calculations, their formation time should exceed 5-7 minutes. However, specially designed DMSP-HAARP experiments have shown that artificial ducts and ion outflows appear on the topside within 2 minutes. We describe the results of these observations and present a semi-quantitative explanation of the fast timescale due to suprathermal electrons accelerated by HF-induced plasma turbulence. There are two possible effects of suprathermal electrons: (1) the increase of the ambipolar electric field over the usual thermal ambipolar diffusion and (2) excitation of heat flux-driven plasma instability resulting in an anomalous electron-ion momentum exchange. Both effects result in faster upward ion flows.

  10. Interpretation of the effects of electron cyclotron power absorption in pre-disruptive tokamak discharges in ASDEX Upgrade

    SciTech Connect

    Nowak, S.; Lazzaro, E.; Granucci, G.; Esposito, B.; Maraschek, M.; Zohm, H.; Sauter, O.; Brunetti, D.; Collaboration: ASDEX Upgrade Team

    2012-09-15

    Tokamak disruptions are events of fatal collapse of the magnetohydrodynamic (MHD) confinement configuration, which cause a rapid loss of the plasma thermal energy and the impulsive release of magnetic energy and heat on the tokamak first wall components. The physics of the disruptions is very complex and non-linear, strictly associated with the dynamics of magnetic tearing perturbations. The crucial problem of the response to the effects of localized heat deposition and current driven by external (rf) sources to avoid or quench the MHD tearing instabilities has been investigated both experimentally and theoretically on the ASDEX Upgrade tokamak. The analysis of the conditions under which a disruption can be prevented by injection of electron cyclotron (EC) rf power, or, alternatively, may be caused by it, shows that the local EC heating can be more significant than EC current drive in ensuring neoclassical tearing modes (NTMs) stability, due to two main reasons: first, the drop of temperature associated with the island thermal short circuit tends to reduce the neoclassical character of the instability and to limit the EC current drive generation; second, the different effects on the mode evolution of both the location of the power deposition relative to the island separatrix and the island shape deformation lead to less strict requirements of precise power deposition focussing. A contribution to the validation of theoretical models of the events associated with NTM is given and can be used to develop concepts for their control, relevant also for ITER-like scenarios.

  11. Computer control of the high-voltage power supply for the DIII-D Electron Cyclotron Heating system

    SciTech Connect

    Clow, D.D.; Kellman, D.H.

    1991-10-01

    The D3-D Electron Cyclotron Heating (ECH) high voltage power supply is controlled by a computer. Operational control is input via keyboard and mouse, and computer/power supply interface is accomplished with a Computer Assisted Monitoring and Control (CAMAC) system. User-friendly tools allow the design and layout of simulated control panels on the computer screen. Panel controls and indicators can be changed, added or deleted, and simple editing of user-specific processes can quickly modify control and fault logic. Databases can be defined, and control panel functions are easily referred to various data channels. User-specific processes are written and linked using Fortran, to manage control and data acquisition through CAMAC. The resulting control system has significant advantages over the hardware it emulates: changes in logic, layout, and function are quickly and easily incorporated; data storage, retrieval, and processing are flexible and simply accomplished, physical components subject to wear and degradation are minimized. In addition, the system can be expanded to multiplex control of several power supplied, each with its own database, through a single computer and console. 5 refs., 4 figs., 1 tab.

  12. Interpretation of the effects of electron cyclotron power absorption in pre-disruptive tokamak discharges in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Nowak, S.; Lazzaro, E.; Esposito, B.; Granucci, G.; Maraschek, M.; Sauter, O.; Zohm, H.; Brunetti, D.; ASDEX Upgrade Team

    2012-09-01

    Tokamak disruptions are events of fatal collapse of the magnetohydrodynamic (MHD) confinement configuration, which cause a rapid loss of the plasma thermal energy and the impulsive release of magnetic energy and heat on the tokamak first wall components. The physics of the disruptions is very complex and non-linear, strictly associated with the dynamics of magnetic tearing perturbations. The crucial problem of the response to the effects of localized heat deposition and current driven by external (rf) sources to avoid or quench the MHD tearing instabilities has been investigated both experimentally and theoretically on the ASDEX Upgrade tokamak. The analysis of the conditions under which a disruption can be prevented by injection of electron cyclotron (EC) rf power, or, alternatively, may be caused by it, shows that the local EC heating can be more significant than EC current drive in ensuring neoclassical tearing modes (NTMs) stability, due to two main reasons: first, the drop of temperature associated with the island thermal short circuit tends to reduce the neoclassical character of the instability and to limit the EC current drive generation; second, the different effects on the mode evolution of both the location of the power deposition relative to the island separatrix and the island shape deformation lead to less strict requirements of precise power deposition focussing. A contribution to the validation of theoretical models of the events associated with NTM is given and can be used to develop concepts for their control, relevant also for ITER-like scenarios.

  13. A CMOS oscillator for radiation-hardened, low-power space electronics

    NASA Astrophysics Data System (ADS)

    Pouiklis, Georgios; Kottaras, George; Psomoulis, Athanasios; Sarris, Emmanuel

    2013-07-01

    This article presents the design, manufacturing and test results of an on-chip CMOS oscillator, using a ring-oscillator, VCO based architecture. The oscillator generates a configurable square waveform clock signal to be used internally or externally to the IC that integrates it, with very low area (320 transistors, 112 × 148 µm) and power overhead (975 µW). The oscillator is integrated in a mixed signal IC which has been qualified for space applications, at a commercial 250 nm process. It enables the standalone operation of the IC without external oscillator and gives the possibility to clock other components and systems. In addition, it reduces the noise interference at PCB and chip level, optimising the performance of sensitive analogue parts. It was validated by radiation tests according to ESA standards' procedures that the oscillator's functionality and characteristics do not deteriorate with TID levels up to 1Mrad. This approach can be easily adjusted to a wide range of frequencies, while significantly reducing the cost and power budget of space qualified systems with small design effort trade-off.

  14. Performance of electronic switching circuits based on bipolar power transistors at low temperature

    NASA Astrophysics Data System (ADS)

    El-Ghanam, S. M.; Abdel Basit, W.

    2011-03-01

    In this paper, the performance of the bipolar power transistor of the type MJE13007 was evaluated under very low temperature levels. The investigation was carried out to establish a baseline on functionality and to determine suitability of this device for use in space applications under cryogenic temperatures. The static and dynamic electrical characteristics of the proposed transistor were studied at low temperature levels ranging from room level (300 K) down to 100 K. From which, it is clear that, several electrical parameters were affected due to operation on such very low temperature range, e.g. the threshold voltage ( V γ) increasing from 0.62 up to 1.05 V; while the current gain h FE decreases significantly from 26 down to 0.54. Also, the capacitance-voltage relationships ( C- V) of the collector-base and emitter-base junctions were studied at cryogenic temperatures, where a pronounced decrease was observed in the capacitances value due to temperature decrease. For example, at F = 50 kHz; CCB and CBE decreased from 2.33 nF down to 0.07 nF and from 36.2 down to 12 nF, respectively due to decreasing of temperature level from 300 down to 100 K. Finally the study was extended to include the dynamic characteristics and switching properties of the tested high power transistor. The dependency of both the rise and fall times ( t r, t f) on the temperature shows great variations with temperature.

  15. Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS

    PubMed Central

    Stingl, Katarina; Bartz-Schmidt, Karl Ulrich; Besch, Dorothea; Braun, Angelika; Bruckmann, Anna; Gekeler, Florian; Greppmaier, Udo; Hipp, Stephanie; Hörtdörfer, Gernot; Kernstock, Christoph; Koitschev, Assen; Kusnyerik, Akos; Sachs, Helmut; Schatz, Andreas; Stingl, Krunoslav T.; Peters, Tobias; Wilhelm, Barbara; Zrenner, Eberhart

    2013-01-01

    This study aims at substituting the essential functions of photoreceptors in patients who are blind owing to untreatable forms of hereditary retinal degenerations. A microelectronic neuroprosthetic device, powered via transdermal inductive transmission, carrying 1500 independent microphotodiode-amplifier-electrode elements on a 9 mm2 chip, was subretinally implanted in nine blind patients. Light perception (8/9), light localization (7/9), motion detection (5/9, angular speed up to 35 deg s−1), grating acuity measurement (6/9, up to 3.3 cycles per degree) and visual acuity measurement with Landolt C-rings (2/9) up to Snellen visual acuity of 20/546 (corresponding to decimal 0.037 or corresponding to 1.43 logMAR (minimum angle of resolution)) were restored via the subretinal implant. Additionally, the identification, localization and discrimination of objects improved significantly (n = 8; p < 0.05 for each subtest) in repeated tests over a nine-month period. Three subjects were able to read letters spontaneously and one subject was able to read letters after training in an alternative-force choice test. Five subjects reported implant-mediated visual perceptions in daily life within a field of 15° of visual angle. Control tests were performed each time with the implant's power source switched off. These data show that subretinal implants can restore visual functions that are useful for daily life. PMID:23427175

  16. Electron paramagnetic resonance: a powerful tool to support magnetic resonance imaging research.

    PubMed

    Danhier, Pierre; Gallez, Bernard

    2015-01-01

    The purpose of this paper is to describe some of the areas where electron paramagnetic resonance (EPR) has provided unique information to MRI developments. The field of application mainly encompasses the EPR characterization of MRI paramagnetic contrast agents (gadolinium and manganese chelates, nitroxides) and superparamagnetic agents (iron oxide particles). The combined use of MRI and EPR has also been used to qualify or disqualify sources of contrast in MRI. Illustrative examples are presented with attempts to qualify oxygen sensitive contrast (i.e. T1 - and T2 *-based methods), redox status or melanin content in tissues. Other areas are likely to benefit from the combined EPR/MRI approach, namely cell tracking studies. Finally, the combination of EPR and MRI studies on the same models provides invaluable data regarding tissue oxygenation, hemodynamics and energetics. Our description will be illustrative rather than exhaustive to give to the readers a flavour of 'what EPR can do for MRI'.

  17. Negative Staining and Image Classification – Powerful Tools in Modern Electron Microscopy

    PubMed Central

    Ohi, Melanie; Li, Ying; Cheng, Yifan

    2004-01-01

    Vitrification is the state-of-the-art specimen preparation technique for molecular electron microscopy (EM) and therefore negative staining may appear to be an outdated approach. In this paper we illustrate the specific advantages of negative staining, ensuring that this technique will remain an important tool for the study of biological macromolecules. Due to the higher image contrast, much smaller molecules can be visualized by negative staining. Also, while molecules prepared by vitrification usually adopt random orientations in the amorphous ice layer, negative staining tends to induce preferred orientations of the molecules on the carbon support film. Combining negative staining with image classification techniques makes it possible to work with very heterogeneous molecule populations, which are difficult or even impossible to analyze using vitrified specimens. PMID:15103397

  18. FY2011 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect

    Olszewski, Mitchell

    2011-10-01

    The U.S. Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the U.S. Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE's commitment to developing public-private partnerships to fund high risk-high reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research') that ran from 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machines (PEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the PEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The PEEM subprogram supports the efforts of the U.S. DRIVE partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then

  19. Interfacial electron and phonon scattering processes in high-powered nanoscale applications.

    SciTech Connect

    Hopkins, Patrick E.

    2011-10-01

    The overarching goal of this Truman LDRD project was to explore mechanisms of thermal transport at interfaces of nanomaterials, specifically linking the thermal conductivity and thermal boundary conductance to the structures and geometries of interfaces and boundaries. Deposition, fabrication, and post possessing procedures of nanocomposites and devices can give rise to interatomic mixing around interfaces of materials leading to stresses and imperfections that could affect heat transfer. An understanding of the physics of energy carrier scattering processes and their response to interfacial disorder will elucidate the potentials of applying these novel materials to next-generation high powered nanodevices and energy conversion applications. An additional goal of this project was to use the knowledge gained from linking interfacial structure to thermal transport in order to develop avenues to control, or 'tune' the thermal transport in nanosystems.

  20. High average power CW FELs (Free Electron Laser) for application to plasma heating: Designs and experiments

    SciTech Connect

    Booske, J.H.; Granatstein, V.L.; Radack, D.J.; Antonsen, T.M. Jr.; Bidwell, S.; Carmel, Y.; Destler, W.W.; Latham, P.E.; Levush, B.; Mayergoyz, I.D.; Zhang, Z.X. . Lab. for Plasma Research); Freund, H.P. )

    1989-01-01

    A short period wiggler (period {approximately} 1 cm), sheet beam FEL has been proposed as a low-cost source of high average power (1 MW) millimeter-wave radiation for plasma heating and space-based radar applications. Recent calculation and experiments have confirmed the feasibility of this concept in such critical areas as rf wall heating, intercepted beam ( body'') current, and high voltage (0.5 - 1 MV) sheet beam generation and propagation. Results of preliminary low-gain sheet beam FEL oscillator experiments using a field emission diode and pulse line accelerator have verified that lasing occurs at the predicted FEL frequency. Measured start oscillation currents also appear consistent with theoretical estimates. Finally, we consider the possibilities of using a short-period, superconducting planar wiggler for improved beam confinement, as well as access to the high gain, strong pump Compton regime with its potential for highly efficient FEL operation.

  1. Effects of rf power on electron density and temperature, neutral temperature, and T{sub e} fluctuations in an inductively coupled plasma

    SciTech Connect

    Camparo, James; Fathi, Gilda

    2009-05-15

    Atomic clocks that fly on global-navigation satellites such as global positioning system (GPS) and Galileo employ light from low-temperature, inductively coupled plasmas (ICPs) for atomic signal generation and detection (i.e., alkali/noble-gas rf-discharge lamps). In this application, the performance of the atomic clock and the capabilities of the navigation system depend sensitively on the stability of the ICP's optical emission. In order to better understand the mechanisms that might lead to instability in these rf-discharge lamps, and hence the satellite atomic clocks, we studied the optical emission from a Rb/Xe ICP as a function of the rf power driving the plasma. Surprisingly, we found that the electron density in the plasma was essentially independent of increases in rf power above its nominal value (i.e., 'rf-power gain') and that the electron temperature was only a slowly varying function of rf-power gain. The primary effect of rf power was to increase the temperature of the neutrals in the plasma, which was manifested by an increase in Rb vapor density. Interestingly, we also found evidence for electron temperature fluctuations (i.e., fluctuations in the plasma's high-energy electron content). The variance of these fluctuations scaled inversely with the plasma's mean electron temperature and was consistent with a simple model that assumed that the total electron density in the discharge was independent of rf power. Taken as a whole, our results indicate that the electrons in alkali/noble-gas ICPs are little affected by slight changes in rf power and that the primary effect of such changes is to heat the plasma's neutral species.

  2. High-power, high-brightness pseudospark-produced electron beam driven by improved pulse line accelerator

    SciTech Connect

    Junbino Zhu; Mingchang Wang; Zhijiang Wang

    1995-12-31

    A high power (200KV), intense current density, low emittance (71mmmrad), high brightness (8x10{sup 10}A/m rad) electron beam was generated in the 10cm long, high-voltage-resistive multi-gap hollow cathode pseudospark chamber filled with 15pa nitrogen and driven by an improved pulse line accelerator. The beam was ejected with the 1mm diameter, the 2.2KA beam current, and the 400ns pulse length, and could propagated 20cm in the drift tube. At a distance of 5cm from the anode it penetrated consecutively an acid-sensitive discoloring film and a 0.05mm-thick copper foil both stuck closely, left 0.6mm and 0.3mm holes on them, respectively. That 10 shots on an acid-sensitive film produced a hole of 1.6mm at 7cm downstream of anode showed its good repeatability. After 60 shots the pseudospark discharge chamber was disassembled and observed that almost no destructive damage traces left on the surfaces of its various electrodes and insulators. But on almost all the surfaces of changeable central hole parts installed on intermediate electrodes there are traces of electron emission from the sides facing the anode and of bombardment on the sides facing the cathode, in contrast with which on the front- and back-surfaces of hollow cathode no visible traces of electron emission from then was observed. In addition, there were different tints, strip-like regions on the side of anode facing the cathode. Another interesting phenomenon was that there were a set of concentric circular or elliptical ring pattern on the acid-sensitive discoloring film got at 5cm from the anode and observed tinder a metallograph. It seems that the pseudospark electron beam is Laminar beam i.e, being possessed of a multi-layer structure, at least in the case of multi-gap pseudospark discharge chamber. It was found experimentally that the quality of pseudospark electron beam is much better than that of the cold-cathode electron beam.

  3. Power

    SciTech Connect

    1999-10-01

    Subjects covered in this section are: (1) CP and L, Florida Progress to create new company through merger; (2) Violations are color-coded under new NRC enforcement policy; (3) NRC confirms that nuclear plants are Y2K ready; (4) NIRS denied NRC ruling; (5) NRC to allow lower insurance coverage on shutdown TMI-2; (6) NRC look to change noncombustibility regulation; and (7) Electronic NRC reading room scheduled to open.

  4. Simplification of Low-Temperature Sintering Nanosilver for Power Electronics Packaging

    NASA Astrophysics Data System (ADS)

    Mei, Yunhui; Chen, Gang; Cao, Yunjiao; Li, Xin; Han, Dan; Chen, Xu

    2013-06-01

    Conventional solders cannot meet the requirements for high-temperature applications. Recently, a low-temperature sintering technique involving a nanosilver paste has been developed for attaching semiconductor chips to substrates. Sintered nanosilver joints showed high reliability in high-temperature applications. We used the nanosilver paste to attach 10 mm × 10 mm chips by introducing a pressure as low as only 1 MPa during drying at 185°C. Die-shear tests showed that shear strengths of higher than 50 MPa could be generated by applying 5 MPa at 225°C for only 10 s or 1 MPa at 150°C for 600 s, followed by sintering for only 60 s at 275°C. The sintering temperature could be reduced to 250°C in most applications with a slight reduction in shear strength. As a result of good bonding, significant plastic flow and ductile fracture of the sheared silver joint could be observed by scanning electron microscopy (SEM). SEM also showed that the fracture of the sheared silver joint was a cohesive failure.

  5. MCTs and IGBTs - A comparison of performance in power electronic circuits

    NASA Technical Reports Server (NTRS)

    Sul, S. K.; Profumo, F.; Cho, G. H.; Lipo, T. A.

    1989-01-01

    There is a continuous demand for improvements in the quality of switching power devices, such as higher switching frequency, higher withstand voltage capability, larger current-handling capability, and lower conduction losses. However, for single-conduction-mechanism devices (SCRs, GTOs, BJTs, FETs), possessing all these features is probably unrealizable for physical reasons. An attractive solution appears to be double-mechanism devices, in which the features of both a minority carrier device (BJT or SCR) and a majority carrier device (MOSFET) are embedded. Both IGBTs (insulated-gate bipolar transistors) and MCTs (MOS-controlled thyristors) belong to this family of double-mechanism devices and promise to have a major impact on converter circuit signs. The authors deal with the major features of these two devices, pointing out those that are most critical to the design of converter topologies. In particular, the two devices have been tested both in a chopper and in two resonant link converter topologies, and the experimental results are reported.

  6. A high-average power tapered FEL amplifier at submillimeter frequencies using sheet electron beams and short-period wigglers

    SciTech Connect

    Bidwell, S.W.; Radack, D.J.; Antonsen, T.M. Jr.; Booske, J.H.; Carmel, Y.; Destler, W.W.; Granatstein, V.L.; Levush, B.; Latham, P.E.; Zhang, Z.X.

    1990-01-01

    A high-average-power FEL amplifier operating at submillimeter frequencies is under development at the University of Maryland. Program goals are to produce a CW, {approximately}1 MW, FEL amplifier source at frequencies between 280 GHz and 560 GHz. To this end, a high-gain, high-efficiency, tapered FEL amplifier using a sheet electron beam and a short-period (superconducting) wiggler has been chosen. Development of this amplifier is progressing in three stages: (1) beam propagation through a long length ({approximately}1 m) of short period ({lambda}{sub {omega}} = 1 cm) wiggler, (2) demonstration of a proof-of-principle amplifier experiment at 98 GHz, and (3) designs of a superconducting tapered FEL amplifier meeting the ultimate design goal specifications. 17 refs., 1 fig., 1 tab.

  7. Evidence of power law decay of superexchange coupling in a disordered two-dimensional π -electron system

    NASA Astrophysics Data System (ADS)

    Bagani, K.; Ray, M. K.; Sardar, M.; Banerjee, S.

    2015-04-01

    We report the specific heat of graphite, highly oriented pyrolytic graphite (HOPG), graphene oxide (GO), and reduced graphene oxide (RGO) from 300 K to 50 mK. Graphite and HOPG exhibits transition from three dimensions (Cv∝T3) to two dimensions (Cv∝T2) as the temperature increases above 4 K and approaching linearity in temperature for both around room temperature is observed. We observe a Schottky-like peak in specific heat of graphene oxide and reduced graphene oxide near 0.1 K, whose intensity and peak position varies with external magnetic field. We find that the random Heisenberg superexchange interaction between the Anderson (disorder) localized π electrons of GO/RGO is responsible for the specific-heat peak. The exchange interaction strength between the localized spins falls off with distance as a weak power law (∝1/r2.5) , rather than the usual exponential fall in insulating magnets.

  8. Evolution of a finite pulse of radiation in a high-power free-electron laser. Memorandum report

    SciTech Connect

    Ting, A.; Hafizi, B.; Sprangle, P.; Tang, C.M.

    1991-06-20

    The development of an optical pulse of finite axial extent is studied by means of an axisymmetric, time-dependent, particle simulation code for different rates of tapering of the wiggler field. The results illustrate a number of the physical phenomena underlying the free-electron laser mechanism. These include: suppression of the sideband instability; the role of gain focusing versus that of refractive guiding; efficiency enhancement; and pulse slippage. It is found that a significant reduction in the sideband modulation of the optical field can be achieved with a faster tapering of the wiggler parameters. Increasing the tapering rate also reduces refractive guiding, causing the optical wavefronts to become more convex, thus spreading the optical field into a large cross-section. The corresponding enhancement of the peak output power is associated with an increased lateral extent of the optical field rather than an increase in the field amplitude. (Author)

  9. FY2014 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Motors Program

    SciTech Connect

    Ozpineci, Burak

    2014-11-01

    The US Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the US Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE’s commitment to developing public–private partnerships to fund high-risk–high-reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from “Freedom” and “Cooperative Automotive Research”) that ran from 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. Oak Ridge National Laboratory’s (ORNL’s) Advanced Power Electronics and Electric Motors (APEEM) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency through research in more efficient TDSs.

  10. GRBs Radiative Processes: Synchrotron and Synchrotron Self-Absorption From a Power Law Electrons Distribution with Finite Energy Range

    SciTech Connect

    Fouka, M.; Ouichaoui, S.

    2010-10-31

    Synchrotron emission behind relativistic magnetic internal-external shocks in gamma-ray bursts cosmological explosions is assumed to be the basic emission mechanism for prompt and afterglow emissions. Inverse Compton from relativistic electrons can also have appreciable effects by upscattering initial synchrotron or blackbody photons or other photons fields up to GeV-TeV energies. For extreme physical conditions such as high magnetic fields (e.g., B>10{sup 5} Gauss) self-absorption is not negligible and can hardly affect spectra at least for the low energy range. In this paper we present calculations of the synchrotron power, P{sub {nu}}, and their asymptotic forms, generated by a power law relativistic electron distribution of type N{sub e}({gamma}) = C{gamma}{sup -p} with {gamma}{sub 1}<{gamma}<{gamma}{sub 2}, especially for finite values of the higher limit {gamma}{sub 2}. For this aim we defined the dimensionless parametric function Z{sub p}(x,{eta}) with x = {nu}/{nu}{sub 1} and {eta} = {gamma}{sub 2}/{gamma}{sub 1} so that P{sub {nu}{proportional_to}Zp}({nu}/{nu}{sub 1},{eta}), with {nu}{sub 1} = (3/4{pi}){gamma}{sub 1}{sup 2}qBsin{theta}/mc({theta} being the pitch angle). Asymptotic forms of this later are derived for three different frequency ranges, i.e., x<<1, 1<>{eta}{sup 2}. These results are then used to calculate the absorption coefficient, {alpha}{sub {nu}}, and the source function, S{sub {nu}}, together with their asymptotic forms through the dimensionless parametric functions H{sub p}(x,{eta}) and Y{sub p}(x,{eta}), respectively. Further calculation details are also presented and discussed.

  11. Numerical simulation of high-power virtual-cathode reflex triode driven by repetitive short pulse electron gun

    SciTech Connect

    Yovchev, I.G.; Spassovsky, I.P.; Nikolov, N.A.; Dimitrov, D.P.; Messina, G.; Raimondi, P.; Barroso, J.J.; Correa, R.A.

    1996-06-01

    A virtual-cathode reflex triode is investigated by numerical simulations. A trapezoidal in shape voltage pulse with an amplitude of 300 kV is applied to the solid cathode of the device to drive the cathode negative. The electron beam-to-microwave power conversion efficiency {epsilon}, calculated for the pulse flat top with a duration {tau}{sub ft} = 1.2 ns is approximately the same (about 1.5--2%) as well as for a long flat top ({tau}{sub ft} = 4 ns). The simulations show a 10--15% increase of {epsilon} at {tau}{sub ft} shortening to 0.6 ns. However, this occurs when the anode mesh transparency is high (80--90%). Considerable enhancement of the efficiency (about four times) for {tau}{sub ft} = 0.6 ns has been calculated if the cathode side surface is brought near to the anode tube (from {approx}0.5% at cathode radius R{sub c} = 1.6 cm to {approx}2% at R{sub c} = 3.8 cm). The obtained results would find an application for the design of virtual-cathode reflex triode devices driven by a short pulse and high repetition rate electron gun.

  12. Low-dimensional transport and large thermoelectric power factors in bulk semiconductors by band engineering of highly directional electronic states.

    PubMed

    Bilc, Daniel I; Hautier, Geoffroy; Waroquiers, David; Rignanese, Gian-Marco; Ghosez, Philippe

    2015-04-01

    Thermoelectrics are promising for addressing energy issues but their exploitation is still hampered by low efficiencies. So far, much improvement has been achieved by reducing the thermal conductivity but less by maximizing the power factor. The latter imposes apparently conflicting requirements on the band structure: a narrow energy distribution and a low effective mass. Quantum confinement in nanostructures and the introduction of resonant states were suggested as possible solutions to this paradox, but with limited success. Here, we propose an original approach to fulfill both requirements in bulk semiconductors. It exploits the highly directional character of some orbitals to engineer the band structure and produce a type of low-dimensional transport similar to that targeted in nanostructures, while retaining isotropic properties. Using first-principle calculations, the theoretical concept is demonstrated in Fe2YZ Heusler compounds, yielding power factors 4 to 5 times larger than in classical thermoelectrics at room temperature. Our findings are totally generic and rationalize the search of alternative compounds with similar behavior. Beyond thermoelectricity, these might be relevant also in the context of electronic, superconducting, or photovoltaic applications. PMID:25884131

  13. Assembly of coupled redox fuel cells using copper as electron acceptors to generate power and its in-situ retrieval

    PubMed Central

    Zhang, Hui-Min; Xu, Wei; Li, Gang; Liu, Zhan-Meng; Wu, Zu-Cheng; Li, Bo-Geng

    2016-01-01

    Energy extraction from waste has attracted much interest nowadays. Herein, a coupled redox fuel cell (CRFC) device using heavy metals, such as copper, as an electron acceptor is assembled to testify the recoveries of both electricity and the precious metal without energy consumption. In this study, a NaBH4-Cu(II) CRFC was employed as an example to retrieve copper from a dilute solution with self-electricity production. The properties of the CRFC have been characterized, and the open circuit voltage was 1.65 V with a maximum power density of 7.2 W m−2 at an initial Cu2+ concentration of 1,600 mg L−1 in the catholyte. 99.9% of the 400 mg L−1 copper was harvested after operation for 24 h, and the product formed on the cathode was identified as elemental copper. The CRFC demonstrated that useful chemicals were recovered and the electricity contained in the chemicals was produced in a self-powered retrieval process. PMID:26877144

  14. Enhanced thermoelectric power near the quantum phase transition in the itinerant-electron ferromagnet MnSi

    NASA Astrophysics Data System (ADS)

    Cheng, J.-G.; Zhou, F.; Zhou, J.-S.; Goodenough, J. B.; Sui, Y.

    2010-12-01

    The itinerant-electron ferromagnet MnSi is a well-known example that shows a transition from Fermi-liquid Δρ∝T2 to non-Fermi-liquid (NFL) Δρ∝T3/2 behavior when the spiral ferromagnetic transition Tc≈29K at ambient pressure is suppressed to zero by the application of hydrostatic pressures above Pc≈14.6kbar . Several experimental probes have been employed to reveal the intriguing properties near Pc . In this paper, we report the temperature dependence of thermoelectric power S(T) under hydrostatic pressures up to 20 kbar on a single crystal of MnSi. At pressures close to Pc , we observed at low temperatures an unusual enhancement of S(T) , which can be described well with the relationship S/T∝ln(1/T) , a formula that has been proposed to describe a system as a quantum critical point (QCP) is approached. The relationship has previously been observed in systems close to a magnetic QCP, for example, La1.6-xNd0.4SrxCuO4 (x=0.24) . The enhancement of thermoelectric power in MnSi occurs at a temperature above the NFL phase and over a broad pressure range around Pc .

  15. Assembly of coupled redox fuel cells using copper as electron acceptors to generate power and its in-situ retrieval.

    PubMed

    Zhang, Hui-Min; Xu, Wei; Li, Gang; Liu, Zhan-Meng; Wu, Zu-Cheng; Li, Bo-Geng

    2016-01-01

    Energy extraction from waste has attracted much interest nowadays. Herein, a coupled redox fuel cell (CRFC) device using heavy metals, such as copper, as an electron acceptor is assembled to testify the recoveries of both electricity and the precious metal without energy consumption. In this study, a NaBH4-Cu(II) CRFC was employed as an example to retrieve copper from a dilute solution with self-electricity production. The properties of the CRFC have been characterized, and the open circuit voltage was 1.65 V with a maximum power density of 7.2 W m(-2) at an initial Cu(2+) concentration of 1,600 mg L(-1) in the catholyte. 99.9% of the 400 mg L(-1) copper was harvested after operation for 24 h, and the product formed on the cathode was identified as elemental copper. The CRFC demonstrated that useful chemicals were recovered and the electricity contained in the chemicals was produced in a self-powered retrieval process. PMID:26877144

  16. Continuously tunable, high-power, single-mode radiation from a short-pulse free-electron laser.

    PubMed

    Weits, H H; Oepts, D

    1999-07-01

    This paper gives the first demonstration of high-power, continuously tunable, narrowband radiation that is produced by means of a free-electron laser (FEL) in the far-infrared region of the electromagnetic spectrum. A Fox-Smith intracavity étalon was used to induce phase coherence between the 40 optical micropulses that were circulating in the laser cavity. The corresponding phase-locked spectrum consisted of a comb of discrete frequencies separated by 1 GHz. A pair of external Fabry-Pérot étalons was used to filter out a single line from this spectrum. The power in the selected narrow line at 69 microm wavelength was equal to 250 mW during the macropulse of the laser. The spectral width of the selected line is as small as that of a single cavity mode, i.e., a fraction of 25 MHz, in single macropulses of the laser. The average bandwidth of 25 MHz is determined by mode hopping of the phase-locked FEL. The selected frequency hops over 25 MHz between the extrema of this band. The influence of partially coherent spontaneous emission and mode hopping on the final linewidth was studied. The narrow-linewidth radiation was scanned in frequency over 1 GHz. We show that the possibilities to scan over smaller or larger frequency intervals are unlimited. PMID:11969840

  17. Scanning electron microscopy study of cavity preparation in deciduous teeth using the Er:YAG laser with different powers.

    PubMed

    Zhang, Sun; Chen, Tao; Ge, Li-hong

    2012-01-01

    Using scanning electron microscopy (SEM) we evaluated the morphology of cavity surfaces in deciduous teeth prepared in vitro with the Er:YAG laser with different power parameters. Eight extracted cavity-free deciduous teeth with an intact crown were prepared using a traditional handpiece or an Er:YAG laser with different parameters (10 Hz/200 mJ, 10 Hz/300 mJ and 10 Hz/400 mJ). Samples were then processed and cavity surface morphology was evaluated by SEM to detect open dentinal tubules, or melting or cracking of the dentin. SEM showed that laser cavity preparation in deciduous teeth using different parameters left no smear layer and the dentinal tubules were clear. Dentin melting was not seen after cavity preparation at 200 mJ or 300 mJ, while visible dentin melting and cracks were detected at 400 mJ. The use of the laser at 10 Hz/200 mJ and 10 Hz/300 mJ for cavity preparation in deciduous teeth is safe and effective, but higher powers may damage the dentin.

  18. Low-dimensional transport and large thermoelectric power factors in bulk semiconductors by band engineering of highly directional electronic states.

    PubMed

    Bilc, Daniel I; Hautier, Geoffroy; Waroquiers, David; Rignanese, Gian-Marco; Ghosez, Philippe

    2015-04-01

    Thermoelectrics are promising for addressing energy issues but their exploitation is still hampered by low efficiencies. So far, much improvement has been achieved by reducing the thermal conductivity but less by maximizing the power factor. The latter imposes apparently conflicting requirements on the band structure: a narrow energy distribution and a low effective mass. Quantum confinement in nanostructures and the introduction of resonant states were suggested as possible solutions to this paradox, but with limited success. Here, we propose an original approach to fulfill both requirements in bulk semiconductors. It exploits the highly directional character of some orbitals to engineer the band structure and produce a type of low-dimensional transport similar to that targeted in nanostructures, while retaining isotropic properties. Using first-principle calculations, the theoretical concept is demonstrated in Fe2YZ Heusler compounds, yielding power factors 4 to 5 times larger than in classical thermoelectrics at room temperature. Our findings are totally generic and rationalize the search of alternative compounds with similar behavior. Beyond thermoelectricity, these might be relevant also in the context of electronic, superconducting, or photovoltaic applications.

  19. Energy resolution and power consumption of Timepix detector for different detector settings and saturation of front-end electronics

    NASA Astrophysics Data System (ADS)

    Kroupa, M.; Hoang, S.; Stoffle, N.; Soukup, P.; Jakubek, J.; Pinsky, L. S.

    2014-05-01

    An ongoing research project in the area of radiation monitoring employing the Timepix technology from the CERN-based Medipix2 Collaboration profits greatly from optimizing the precision of the position and energy information obtained for the detected quanta. Wider applications of the Timepix technology as a radiation monitor also puts new demands on the precision and speed of the energy calibration. We compare the analog signal in pixel front-end electronics for different sources used during detector evaluation and energy calibration. We use the direct measurement of the analog signal from the pixel preamplifier and comparator to characterize pulse shape differences for different sources, e.g. internal test pulses, external test pulses, ionizing radiation, etc. and study their interchangeability. Accurate per-pixel energy calibration of the Timepix detector enables the direct measurement of the energy deposited by different types of ionizing radiation. The energy calibration process requires the application of a known charge to front-end electronics of each pixel. The small pixel size limits use of the radioactive sources. The 59.54 keV line from 241Am is commonly used as the highest point in calibration curve. The heavy ion dosimetry as encountered in the space radiation environment requires a considerable extrapolation to the energies in the MeV range. We have observed that for energies around and beyond 1 MeV the response of the Timepix's front-end electronics no longer follows the extrapolated calibration function. We have investigated this non-linearity and identified its source. We also propose both hardware and software solutions to suppress this effect. In this paper we show the impact on pixel calibration and the subsequent energy resolution for different detector settings as well as the resulting power consumptions. We discuss the parameter optimization for several different real-world applications.

  20. Local digital control of power electronic converters in a dc microgrid based on a-priori derivation of switching surfaces

    NASA Astrophysics Data System (ADS)

    Banerjee, Bibaswan

    In power electronic basedmicrogrids, the computational requirements needed to implement an optimized online control strategy can be prohibitive. The work presented in this dissertation proposes a generalized method of derivation of geometric manifolds in a dc microgrid that is based on the a-priori computation of the optimal reactions and trajectories for classes of events in a dc microgrid. The proposed states are the stored energies in all the energy storage elements of the dc microgrid and power flowing into them. It is anticipated that calculating a large enough set of dissimilar transient scenarios will also span many scenarios not specifically used to develop the surface. These geometric manifolds will then be used as reference surfaces in any type of controller, such as a sliding mode hysteretic controller. The presence of switched power converters in microgrids involve different control actions for different system events. The control of the switch states of the converters is essential for steady state and transient operations. A digital memory look-up based controller that uses a hysteretic sliding mode control strategy is an effective technique to generate the proper switch states for the converters. An example dcmicrogrid with three dc-dc boost converters and resistive loads is considered for this work. The geometric manifolds are successfully generated for transient events, such as step changes in the loads and the sources. The surfaces corresponding to a specific case of step change in the loads are then used as reference surfaces in an EEPROM for experimentally validating the control strategy. The required switch states corresponding to this specific transient scenario are programmed in the EEPROM as a memory table. This controls the switching of the dc-dc boost converters and drives the system states to the reference manifold. In this work, it is shown that this strategy effectively controls the system for a transient condition such as step changes