Science.gov

Sample records for cr cu mn

  1. New type of Schottky diode-based Cu-Al-Mn-Cr shape memory material films

    NASA Astrophysics Data System (ADS)

    Aksu Canbay, C.; Dere, A.; Mensah-Darkwa, Kwadwo; Al-Ghamdi, Ahmed; Karagoz Genç, Z.; Gupta, R. K.; Yakuphanoglu, F.

    2016-07-01

    Cr-doped CuAlMn shape memory alloys were produced by arc melting method. The effects of Cr content on microstructure and transformation parameters of were investigated. The alloys were characterized by X-ray analysis, optical microscope observations and differential scanning calorimetry measurements. The grain size of the alloys was decreased by the addition of Cr into CuAlMn alloy system. The martensite transformation temperature was shifted both the lower temperature and higher temperature with the addition of chromium. This change was explained on the basis of the change in the thermodynamics such as enthalpy, entropy and activation energy values. The obtained results indicate that the phase transformation temperatures of the CuAlMn alloy system can be controlled by addition of Cr. We fabricated a Schottky barrier diode and observed that ideality factor and barrier height increase with increasing temperature. The diodes exhibited a thermal sensor behavior. This indicates that Schottky diode-based Cu-Al-Mn-Cr shape memory material films can be used as a sensor in high-temperature measurement applications.

  2. [Study on the chemical form and extraction rate of Cr, Cu, Fe, Mn, Ni and Zn in tea].

    PubMed

    Gao, G; Tao, R

    2000-07-01

    The content of Cr, Cu, Fe, Mn, Ni and Zn in the tea commonly available in China market were measured by inductivity coupled plasma-optical emission spectrometry (ICP-OES). The extraction rates of the six elements in tea leachate were measured. The solubilitied were 39.8% for Cr, 42.5% for Cu, 8.6% for Fe, 45.5% for Mn, 87.1% for Ni and 71.0% for Zn. The process of making tea leachate affects the elements extraction rates. The content of the microelements in tea leave extracts decreases gradually with the processing. About 80% of Cr, Cu, Mn, Ni and Zn and 60% of Fe were in the first infusion of tea. Moreover, the chemical forms of six elements were determined. The ratios of organic to inorganic forms were 0.33 for Cr, 0.022 for Cu, 0.18 for Fe, 0.002 for Mn, 0.01 for Ni and 0.18 for Zn. It is concluded that the six elements from the tea infusion extracted from 5 g tea are too little to meet the recommend dietary allowance (RDA). Therefore, tea is not a rich food source of Cr, Cu, Fe, Mn, Ni and Zn.

  3. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films

    NASA Astrophysics Data System (ADS)

    Soare, V.; Burada, M.; Constantin, I.; Mitrică, D.; Bădiliţă, V.; Caragea, A.; Târcolea, M.

    2015-12-01

    Al-Cr-Fe-Mn-Ni and Al-Cr-Cu-Fe-Mn-Ni high entropy alloy thin films were prepared by potentiostatic electrodeposition and the microstructure of the deposits was investigated. The thin films were co-deposited in an electrolyte based on a DMF (N,N-dimethylformamide)-CH3CN (acetonitrile) organic compound. The energy dispersive spectrometry investigation (EDS) indicated that all the five respectively six elements were successfully co-deposited. The scanning electron microscopy (SEM) analysis revealed that the film consists of compact and uniform particles with particle sizes of 500 nm to 4 μm. The X-ray diffractometry (XRD) patterns indicated that the as-deposited thin films were amorphous. Body-centered-cubic (BCC) structures were identified by XRD after the films were annealed at various temperatures under inert Ar atmosphere. The alloys adhesion on the substrate was determined by the scratch-testing method, with higher values obtained for the Al-Cr-Cu-Fe-Mn-Ni alloy.

  4. The accumulation of metal (Co, Cr, Cu, Mn and Zn) in freshwater Ulva (Chlorophyta) and its habitat.

    PubMed

    Rybak, Andrzej; Messyasz, Beata; Łęska, Bogusława

    2013-04-01

    The possibility of using freshwater Ulva (Chlorophyta) as a bioaccumulator of metals (Co, Cr, Cu, Mn and Zn) in lake and river water was examined weekly in the summer of 2010 in three types of samples: the water, the sediment and the thalli of Ulva. Samples of freshwater Ulva were collected from two aqueous ecosystems lie 250 km away from the basin of the Baltic Sea and 53 km from each other. A flow lake located in the centre of the big city was the first water reservoir (ten sites) and second, the suburban river (six sites). The mean metal concentrations in the Ulva tissue from the river and the lake decreased in the following order: Mn > Zn > Cr > Cu > Co and Mn > Cr > Zn > Cu > Co, respectively. Moreover, a negative and statistically significant correlation between Mn concentrations in the Ulva thalli and the river water was observed. Additionally, numerous correlations were noted between the different concentrations of metals within the Ulva thalli, in the water and in the sediment. The great concentrations of Mn and Zn and the smallest of Co were found in thalli of Ulva, irrespective of the type of the ecosystem from which samples of algal thalli originated. Freshwater Ulva populations examined in this study were clearly characterized a dozen or so times by the higher Mn and Cr accumulation than taxa from that genera coming from sea ecosystems. The calculated bioconcentration factor confirm the high potential for freshwater Ulva to be a bioaccumulator of trace metals in freshwater ecosystems.

  5. Sediment fractionation of Cu, Ni, Zn, Cr, Mn, and Fe in one experimental and three natural marshes

    SciTech Connect

    Lindau, C.W.; Hossner, L.R.

    1982-07-01

    Dredged sediments from the Gulf Intracoastal Waterway near Galveston, Tex., were used as a substrate material in the construction of an experimental intertidal salt marsh. Selected substrate properties were compared with those of established marshes. Clay mineralogical properties of the experimental marsh were compared with those of three nearby natural marshes. A sequential chemical extraction procedure was used to obtain data on the partitioning of micronutrients and heavy metals among selected marsh substrate fractions. Clay minerals found in the sediments of the experimental marsh were equivalent to those identified in the natural marshes. Total elemental substrate concentrations of Cu, Ni, Cr, Zn, Mn, and Fe averaged 7.9, 8.6, 25.5, 25.2, 123, and 12,200 ..mu..g/g, respectively, over the four marsh sites. Copper, nickel, zinc, and chromium displayed only minor variations in substrate partitioning between the experimental and natural marsh samples. Micronutrients and heavy metal concentrations in the exchangeable and water-soluble fraction were low compared with other fractions. Approximately 30% of the total substrate Cu, Ni, and Zn was associated with the organic matter fraction. Metals fixed within the lattice structures of clay and silicate minerals ranged from 20% Mn for experimental marsh samples to 90% Cr for one of the natural marshes. Major differences in Mn and Fe substrate partitioning were observed when the experimental marsh samples were compared with those of the natural marshes.

  6. Determination of ratios of Auger electrons emission probabilities and K-L shell vacancy transfer probability of Cr, Mn, Fe, Co, Ni, Cu and Zn compounds

    NASA Astrophysics Data System (ADS)

    Küçükönder, Adnan; Kavşut, Onur

    2017-02-01

    Ratios of emission probabilities of Auger electrons [u = p(KLX)/p(KLL), ν = p(KXY)/p(KLL)] and the vacancy transfer probabilities from K to L shell, ηKL for Cr, Mn, Fe, Co,Ni, Cu and Zn compounds were obtained using the experimental Kx-ray emission ratios and K-shell fluorescence yields. We were used the experimental Kβ/Kα intensity ratios and K shell fluorescence yields WK. Ratios of emission probabilities of Auger electrons and the vacancy transfer probabilities are changed by chemical effect for different for Cr, Mn, Fe, Co,Ni, Cu and Zn compounds.

  7. Synthesis, Crystal Structures, and Magnetic Properties of Two Novel Cyanido-Bridged Heterotrimetallic {Cu(II)Mn(II)Cr(III)} Complexes.

    PubMed

    Alexandru, Maria-Gabriela; Visinescu, Diana; Shova, Sergiu; Andruh, Marius; Lloret, Francesc; Julve, Miguel

    2017-02-20

    The self-assembly process between the heteroleptic [Cr(III)(phen)(CN)4](-) and [Cr(III)(ampy)(CN)4](-) metalloligands and the heterobimetallic {Cu(II)(valpn)Mn(II)}(2+) tecton afforded two heterotrimetallic complexes of formula [{Cu(II)(valpn)Mn(II)(μ-NC)2Cr(III)(phen)(CN)2}2{(μ-NC)Cr(III)(phen)(CN)3}2]·2CH3CN (1) and {[Cu(II)(valpn)Mn(II)(μ-NC)2Cr(III)(ampy)(CN)2]2·2CH3CN}n (2) [phen = 1,10-phenanthroline, ampy = 2-aminomethylpyridine, and H2valpn = 1,3-propanedyilbis(2-iminomethylene-6-methoxyphenol)]. The crystal structure of 1 consists of neutral Cu(II)2Mn(II)2Cr(III)4 octanuclear units, where two [Cr(phen)(CN)4](-) anions act as bis-monodentate ligands through cyanide groups toward two manganese(II) ions from two [Cu(II)(valpn)Mn(II)](2+) units to form a [{Cu(valpn)Mn}2Cr2(CN)4](6+) square motif. Two [Cr(phen)(CN)4](-) pendant anions in 1 are bound to the copper(II) ions with cis-trans geometry with respect to the bridging [Cr(phen)(CN)4](-) anion. Compound 2 is a sheet-like coordination polymer, where chains constituted by {Cr(III)(ampy)(CN)4} spacers act as bis-monodentate ligands toward the manganese(II) ions belonging to the {Cu(II)(valpn)Mn(II)} nodes, which are interlinked by another {Cr(III)(ampy)(CN)4} unit that acts as a bridge between the copper(II) and manganese(II) ions of adjacent chains. Magnetic susceptibility measurements in the temperature range of 1.9-300 K were performed for 1 and 2. An overall antiferromagnetic behavior is observed for 1, the ground spin state being described by a spin triplet from the square motif plus two magnetically isolated spin triplets from the two peripheral chromium(III) ions. Ferrimagnetic chains with interacting spins 1/2 (resulting spin of the trimetallic {Cu(II)(valpn)Mn(II)(μ-NC)Cr(III)} fragment) and 3/2 (spin from the bis-monodentate [Cr(III)(ampy)(CN)4](-) with weak interchain ferromagnetic interactions across the cyanide bridge between the chromium(III) and the copper(II) ion from adjacent chains [

  8. Magnetism and superconductivity in MxFe1+yTe1-zSez (M = Cr, Mn, Co, Ni, Cu, and Zn) single crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Z. T.; Yang, Z. R.; Li, L.; Zhang, C. J.; Pi, L.; Tan, S.; Zhang, Y. H.

    2011-04-01

    High-quality single crystals with nominal composition M0.05Fe0.95Te0.8Se0.2 (M = Cr, Mn, Co, Ni, Cu, and Zn) have been grown, through which the doping effect on magnetism and superconductivity is studied. Elementary analysis reveals that Cu, Co, and Ni, with smaller ionic radii for valence state 2+, can substitute effectively for Fe with doping levels near 5%. In contrast, the solid solution of Cr, Mn, and Zn in the host system is low. Magnetic and electronic investigations show that the substitution of Co, Ni, or Cu for Fe leads to the formation of spin-glass state and suppression of superconductivity. The superconductivity is partly suppressed by Co doping, while completely destroyed by Ni and Cu doping. Compared with Cu- and Ni-doped samples, the Co-doped sample has the smallest lattice constant, indicating that the superconductivity might be also modulated by the changes of microstructure.

  9. Exact ab initio transport coefficients in bcc Fe-X (X=Cr, Cu, Mn, Ni, P, Si) dilute alloys

    NASA Astrophysics Data System (ADS)

    Messina, Luca; Nastar, Maylise; Garnier, Thomas; Domain, Christophe; Olsson, Pär

    2014-09-01

    Defect-driven diffusion of impurities is the major phenomenon leading to formation of embrittling nanoscopic precipitates in irradiated reactor pressure vessel (RPV) steels. Diffusion depends strongly on the kinetic correlations that may lead to flux coupling between solute atoms and point defects. In this work, flux coupling phenomena such as solute drag by vacancies and radiation-induced segregation at defect sinks are systematically investigated for six bcc iron-based dilute binary alloys, containing Cr, Cu, Mn, Ni, P, and Si impurities, respectively. First, solute-vacancy interactions and migration energies are obtained by means of ab initio calculations; subsequently, self-consistent mean field theory is employed in order to determine the exact Onsager matrix of the alloys. This innovative multiscale approach provides a more complete treatment of the solute-defect interaction than previous multifrequency models. Solute drag is found to be a widespread phenomenon that occurs systematically in ferritic alloys and is enhanced at low temperatures (as for instance RPV operational temperature), as long as an attractive solute-vacancy interaction is present, and that the kinetic modeling of bcc alloys requires the extension of the interaction shell to the second-nearest neighbors. Drag occurs in all alloys except Fe(Cr); the transition from dragging to nondragging regime takes place for the other alloys around (Cu, Mn, Ni) or above (P, Si) the Curie temperature. As far as only the vacancy-mediated solute migration is concerned, Cr depletion at sinks is foreseen by the model, as opposed to the other impurities which are expected to enrich up to no less than 1000 K. The results of this study confirm the current interpretation of the hardening processes in ferritic-martensitic steels under irradiation.

  10. Immobilization of heavy metals (Pb, Cu, Cr, Zn, Cd, Mn) in the mineral additions containing concrete composites.

    PubMed

    Giergiczny, Zbigniew; Król, Anna

    2008-12-30

    The presented work determines the level of heavy metals (Pb+2, Cu+2, Zn+2, Cr+6, Cd+2, Mn+2) immobilization in the composites produced using Ordinary Portland Cement (OPC) as well as of binders containing large amount of mineral additives in its composition-siliceous fly ash (FA), fluidized bed combustion ash (FFA) and ground granulated blast furnace slag (GGBFS). Heavy metals were introduced to cementitious materials in the form of soluble salts as well as components of hazardous wastes (medical ash, metallurgical dust). It has been stated, that the level of heavy metals immobilization is combined with composites composition. Majority of analyzed heavy metals, added to binders' composition in the form of heavy metal salts achieves high level of immobilization, in mortar based on binder with 85% GGBFS and 15% OPC. The lowest immobilization level was reached for chromium Cr+6 added to hardening mortars as Na2Cr2O72H2O. The level ranges from 85.97% in mortars made on blended binder (20% OPC, 30% FFA and 50% GGBFS) to 93.33% in mortar produced on OPC. The increase of the so-called immobilization degree with time of hardened material maturing was found. This should be attributed to the pozzolanic or pozzolanic/hydraulic properties of components used; their effect on microstructure of hardened material is also important. Mineral additions enter the hydration reactions in the mixtures and favor the formation of specific microstructure promoting the immobilization of hazardous elements.

  11. High-pressure preparation and characterization of new metastable oxides: the case of NdCu3Mn3MO12 (M = Fe, Cr)

    NASA Astrophysics Data System (ADS)

    Sánchez-Benítez, J.; Kayser, P.; Martínez-Lope, M. J.; de la Calle, C.; Retuerto, M.; Fernandez-Díaz, M. T.; Alonso, J. A.

    2011-10-01

    High-pressure synthesis is a powerful technique to stabilize metastable oxides, either containing transition metals in unusual oxidation states, or favouring the formation of dense perovskite-related phases. Happily, many solids synthesized at high pressure-high temperature conditions (where they are fhermodynamically stable) can be "quenched" to ambient conditions, where they are termodynamically metaestable, yet they remain indefinitely kinetically stable. In this paper we illustrate the example of a new family of oxides derived from the CaCu3Mn4O12 perovskite. We have studied the series of nominal composition NdCu3(Mn3M)O12 (M = Fe, Cr) where Mn is replaced by Fe(Cr) cations in the ferrimagnetic perovskite NdCu3Mn4O12. These materials have been synthesized in poly crystalline form under moderate pressure conditions of 2 GPa, in the presence of KClO4 as oxidizing agent. All the samples have been studied by neutron powder diffraction (NPD) below and above the ferromagnetic Curie temperatures. These oxides crystallize in the cubic space group Imbar 3 (No. 204). Mn4+/Mn3+ and Fe3+(Cr3+) occupy at random the octahedral B positions of the perovskite structure. The materials have also been characterized by magnetic and magnetotransport measurements. All the samples are ferrimagnetic and show a decrease of TC upon Fe(Cr) introduction since these ions disturb the ferromagnetic interactions within this magnetic sublattice. The introduction of Fe changes the resistivity response from metallic to a semiconductor behavior. However, the magnetoresistance is still considerable at 300 K upon Fe doping, and it is enhanced at 100 K probably due to the decrease in the number of charge carriers from the pure oxide to the Fe-doped compound.

  12. Effect of deep cryogenic treatment on the microstructure and wear performance of Cr-Mn-Cu white cast iron grinding media

    NASA Astrophysics Data System (ADS)

    Vidyarthi, M. K.; Ghose, A. K.; Chakrabarty, I.

    2013-12-01

    The phase transformation and grinding wear behavior of Cr-Mn-Cu white cast irons subjected to destabilization treatment followed by air cooling or deep cryogenic treatment were studied as a part of the development program of substitute alloys for existing costly wear resistant alloys. The microstructural evolution during heat treatment and the consequent improvement in grinding wear performance were evaluated with optical and scanning electron microscopy, X-ray diffraction analysis, bulk hardness, impact toughness and corrosion rate measurements, laboratory ball mill grinding wear test etc. The deep cryogenic treatment has a significant effect in minimizing the retained austenite content and converts it to martensite embedded with fine M7C3 alloy carbides. The cumulative wear losses in cryotreated alloys are lesser than those with conventionally destabilized alloys followed by air cooling both in wet and dry grinding conditions. The cryotreated Cr-Mn-Cu irons exhibit comparable wear performance to high chromium irons.

  13. Elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys studied by the combinatorial thin film approach and ab initio calculations.

    PubMed

    Reeh, S; Kasprzak, M; Klusmann, C D; Stalf, F; Music, D; Ekholm, M; Abrikosov, I A; Schneider, J M

    2013-06-19

    The elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys with additions of up to 8 at.% X were studied by combinatorial thin film growth and characterization and by ab initio calculations using the disordered local moments (DLM) approach. The lattice parameter and Young's modulus values change only marginally with X. The calculations and experiments are in good agreement. We demonstrate that the elastic properties of transition metal alloyed Fe-Mn can be predicted by the DLM model.

  14. The life-table demographic response of freshwater rotifer Brachionus calyciflorus to multi-metal (Cu, Zn, Cd, Cr, and Mn) mixture interaction.

    PubMed

    Xu, Xiao-Ping; Xi, Yi-Long; Huang, Lin; Xiang, Xian-Ling

    2014-08-01

    The effects of multi-metal mixtures on the life-table demography of rotifers are not well known. In this study, the freshwater rotifer Brachionus calyciflorus was exposed to mixture of Cu, Zn, Cd, Cr, and Mn, and the life-table demographic parameters including net reproductive rate, generation time, life expectancy at hatching, and intrinsic rate of population increase were calculated. The results showed that interactions between a given element concentration, except Mn, and the other four elements mixture concentration affected the intrinsic rate of population increase (p < 0.01). Interactions between Zn concentration, as well as Mn, and the other four elements mixture concentration affected the net reproductive rate and the life expectancy at hatching, respectively (p < 0.05). The variation of parameters with the rise of the other four elements mixture concentrations from 0 to high was mainly attributed to the difference of interaction among the five metals mixture with different ratio of concentrations.

  15. Effect of plasma-catalyst system on NO removal using M-Cu (M = Mn, Ce, Cr, Co, and Fe) catalysts

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Liu, Han-Zi; Yang, Bin; Sun, Bao-Min; Xiao, Hai-Ping; Zhang, Yong-Sheng

    2016-11-01

    A series of M-Cu (M = Mn, Ce, Cr, Co, and Fe) bimetal oxide catalysts combined with plasma were prepared for NO x removal at various temperatures. All catalysts combined with plasma exhibited excellent deNO x activity. The Mn-Cu catalyst showed the highest selective catalytic reduction (SCR) activity; the NO removal efficiency of the Mn-Cu catalyst could reach 90% at a gas temperature of 25 °C. E/N increased as gas temperature increased; the mean electron energy and the proportion of high-energy electrons also increased considerably, producing more active radicals. Without any catalyst, the increase in temperature inhibited NO removal owing to O3 consumption. As the temperature increased, NO removal efficiency decreased below 100 °C however, it increased in the range of 100-300 °C, and then decreased above 300 °C in the plasma-catalyst system. NO2 concentration decreased markedly at 150 °C via the fast SCR reaction.

  16. Concentrations of Mn, Fe, Cu, Zn, Cr, Cd, Pb, Ni in selected Nigerian tubers, legumes and cereals and estimates of the adult daily intakes.

    PubMed

    Akinyele, I O; Shokunbi, O S

    2015-04-15

    This study was designed to determine the levels of microminerals (manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), chromium (Cr)) and heavy metals (cadmium (Cd), lead (Pb) and nickel (Ni)) in some tubers, legumes and cereals obtained from the markets in Abeokuta city, South-West Nigeria. The food samples were digested by dry ashing procedure and their minerals were determined by atomic absorption spectrophotometer. The results show mean values of 1.67-32.00, 7.25-61.58, 1.59-10.56, 6.65-46.99, 0.02-0.58, <0.01-0.09, <0.08, and 0.06-0.14 mg/kg for Mn, Fe, Cu, Zn, Cr, Cd, Pb and Ni respectively. The levels of these metals in all the samples analysed were within the ranges reported for similar tubers, legumes and cereals from various parts of the world. The daily intakes of the metals through tubers, legumes and cereals were found to be lower than the provisional tolerable daily intakes proposed by Joint FAO/WHO Expert Committee on Food Additives.

  17. Assessment of heavy metal (Cu, Ni, Fe, Co, Mn, Cr, Zn) pollution in effluent dominated rivulet water and their effect on glycogen metabolism and histology of Mastacembelus armatus.

    PubMed

    Javed, Mehjbeen; Usmani, Nazura

    2013-01-01

    The present study was conducted to examine the contamination of rivulet situated at Kasimpur, Aligarh (27.218° N; 79.378° E). It receives the wastewater of Harduaganj Thermal Power Plant (HTPS) containing fly ash and heavy metals. Among the heavy metals estimated in the rivulet water, Fe (8.71 mgL(-1)) was present in the highest concentration followed by Cu (0.86 mgL(-1)), Zn (0.30 mgL(-1)) Mn (0.21 mgL(-1)), Ni (0.12 mgL(-1)), Co (0.11 mgL(-1)) and Cr (0.10 mgL(-1)). The values for the heavy metals such as Fe, Ni and Mn were beyond the limits set by UNEPGEMS. Bioaccumulation of these heavy metals was detected in tissues such as gills, liver, kidney, muscle and integument of the fish Mastacembelus armatus. Accumulation of Fe (213.29 - 2601.49 mgkg(-1).dw) was highest in all the organs. Liver was the most influenced organ and integument had the least metal load. The accumulation of Fe, Zn, Cu and Mn, observed in the tissues were above the values recommended by FAO/WHO. Biochemical estimation related to blood glucose, liver and muscle glycogen conducted showed significant (p < 0.01) elevation in blood glucose content over control (17.73%), whereas liver glycogen dropped significantly (p < 0.01) over control (-89.83%), and similarly muscle glycogen also decreased significantly (p < 0.05) over control (-71.95%), suggesting enhanced glycolytic capacity to fuel hepatic metabolism. Histopathological alterations were also observed in selected organs (gills, liver and kidney) of Mastacembelus armatus.

  18. The Deformation Behavior and Microstructure Evolution of a Mn- and Cr-Containing Al-Mg-Si-Cu Alloy During Hot Compression and Subsequent Heat Treatment

    NASA Astrophysics Data System (ADS)

    Xu, Yi; Nagaumi, Hiromi; Han, Yi; Zhang, Gongwang; Zhai, Tongguang

    2017-01-01

    Hot compression tests on a newly developed Mn- and Cr-containing Al-Mg-Si-Cu alloy were carried out at temperatures ranging from 623 K (350 °C) to 823 K (550 °C) and strain rates between 0.001 and 1 s-1 after casting and subsequent homogenization heat treatment. The true stress-true strain curves of the alloy exhibited a peak stress at a small plastic strain followed by dynamic flow softening. Using the constitutive equation containing the strain rate, peak stress, and temperature, the activation energy for hot deformation in the alloy was determined to be 249.67 kJ/mol, much higher than that (143.4 kJ/mol) for self-diffusion in pure Al. Scanning transmission electron microscopy experiments revealed that Mn- and Cr-containing α-dispersoids formed during homogenization showed a strong pinning effect on dislocations and grain boundaries, which was responsible for the increase in activation energy for hot deformation in the alloy. A threshold stress was consequently introduced and determined in the constitutive equation to count for the dispersoid hardening effect on hot deformation in the alloy. Electron back-scatter diffraction measurements revealed that the softening occurred in the alloy was mainly due to dynamic recovery taking place at relatively large Z values, and that it was dominated by continuous dynamic recrystallization at relatively low Z. In subsequent annealing after hot deformation at large Z, abnormal grain growth could occur, as a result of the critical strain-annealing effect. After upsetting at higher temperatures, the alloy showed superior tensile properties due to a high non-recrystallized area fraction.

  19. The Deformation Behavior and Microstructure Evolution of a Mn- and Cr-Containing Al-Mg-Si-Cu Alloy During Hot Compression and Subsequent Heat Treatment

    NASA Astrophysics Data System (ADS)

    Xu, Yi; Nagaumi, Hiromi; Han, Yi; Zhang, Gongwang; Zhai, Tongguang

    2017-03-01

    Hot compression tests on a newly developed Mn- and Cr-containing Al-Mg-Si-Cu alloy were carried out at temperatures ranging from 623 K (350 °C) to 823 K (550 °C) and strain rates between 0.001 and 1 s-1 after casting and subsequent homogenization heat treatment. The true stress-true strain curves of the alloy exhibited a peak stress at a small plastic strain followed by dynamic flow softening. Using the constitutive equation containing the strain rate, peak stress, and temperature, the activation energy for hot deformation in the alloy was determined to be 249.67 kJ/mol, much higher than that (143.4 kJ/mol) for self-diffusion in pure Al. Scanning transmission electron microscopy experiments revealed that Mn- and Cr-containing α-dispersoids formed during homogenization showed a strong pinning effect on dislocations and grain boundaries, which was responsible for the increase in activation energy for hot deformation in the alloy. A threshold stress was consequently introduced and determined in the constitutive equation to count for the dispersoid hardening effect on hot deformation in the alloy. Electron back-scatter diffraction measurements revealed that the softening occurred in the alloy was mainly due to dynamic recovery taking place at relatively large Z values, and that it was dominated by continuous dynamic recrystallization at relatively low Z. In subsequent annealing after hot deformation at large Z, abnormal grain growth could occur, as a result of the critical strain-annealing effect. After upsetting at higher temperatures, the alloy showed superior tensile properties due to a high non-recrystallized area fraction.

  20. Cu-Cr Literature Review

    SciTech Connect

    Need, Ryan F.

    2012-08-09

    Cu-Cr alloys are part of a class of face-centered cubic (FCC)-body-centered cubic (BCC) composites that includes similar alloys, such as Cu-Nb and Cu-Ta. When heavily deformed, these FCC-BCC materials create 'in situ' composites with a characteristic structure-nanoscale BCC filaments in a ductile FCC matrix. The strength of these composites is vastly greater than predicted by the rule of mixtures, and has been shown to be inversely proportional to the filament spacing. Lower raw materials costs suggest that Cu-Cr alloys may offer more economical solution to high-strength, high-conductivity wire than either their Nb or Ta counterparts. However, Cr is also more brittle and soluble in Cu than Nb or Ta. These qualities necessitate thermal treatments to remove solute atoms from the Cu matrix, improve conductivity, and maintain the ductility of the Cr filaments. Through the use of different thermomechanical processing routes or the addition of select dopants, alloys with strength in excess of 1 GPa at 70% IACS have been achieved. To date, previous research on Cu-Cr alloys has focused on a relatively small number of alloy compositions and processing methods while the effects of dopants and ageing treatments have only been studied independently. Consequently, there remains considerable opportunity for the development and optimization of these alloys as a leading high-strength, high-conductivity material.

  1. Solid-state reactions during mechanical alloying of ternary Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems: A review

    NASA Astrophysics Data System (ADS)

    Hadef, Fatma

    2016-12-01

    The last decade has witnessed an intensive research in the field of nanocrystalline materials due to their enhanced properties. A lot of processing techniques were developed in order to synthesis these novel materials, among them mechanical alloying or high-energy ball milling. In fact, mechanical alloying is one of the most common operations in the processing of solids. It can be used to quickly and easily synthesize a variety of technologically useful materials which are very difficult to manufacture by other techniques. One advantage of MA over many other techniques is that is a solid state technique and consequently problems associated with melting and solidification are bypassed. Special attention is being paid to the synthesis of alloys through reactions mainly occurring in solid state in many metallic ternary Fe-Al-X systems, in order to improve mainly Fe-Al structural and mechanical properties. The results show that nanocrystallization is the common result occurring in all systems during MA process. The aim of this work is to illustrate the uniqueness of MA process to induce phase transformation in metallic Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems.

  2. Assessment of heavy metals/metalloid (As, Pb, Cd, Ni, Zn, Cr, Cu, Mn) concentrations in edible fish species tissue in the Pearl River Delta (PRD), China.

    PubMed

    Leung, H M; Leung, A O W; Wang, H S; Ma, K K; Liang, Y; Ho, K C; Cheung, K C; Tohidi, F; Yung, K K L

    2014-01-15

    The major aim of this study was to investigate heavy metal content of edible fish in the PRD. Eleven species of fish (consisting of 711 individuals) [catfish (Clarias fuscus), tilapia (Oreochromis mossambicus), grass carp (Ctenopharyngodon idellus), bighead carp (Aristichthys nobilis), mandarin fish (Siniperca kneri), snakehead (Channa asiatiea), black bass (Micropterus salmoides), mangrove snapper (Lutjanus griseus), star snapper (Lutjanu stellatus), snubnose pompano (Trachinotus blochii) and orange-spotted grouper (Epinephelus coioides)] were collected for the analyses of heavy metals. Overall concentrations (mg/kg, ww) in the fish muscles were: As (0.03-1.53), Pb (0.03-8.62), Cd (0.02-0.06), Ni (0.44-9.75), Zn (15.7-29.5), Cr (0.22-0.65), Cu (0.79-2.26), Mn (0.82-6.91). Significant level of Pb were found in tilapia at all locations. It is recommended that heavy metal concentrations in different fish species must be determined on a regular basis in the future so as to reduce human health risks from acute and chronic food intoxication.

  3. Modeling of the corrosion behavior and its interrelation with the deformation behavior and microstructure in a newly developed 7.5Mn-5Cr-1.5Cu alloy white iron

    NASA Astrophysics Data System (ADS)

    Patwardhan, A. K.; Jain, N. C.

    1991-10-01

    Corrosion rate, (CR), compressive strength (CS), and percent strain were determined for different microstructures generated by heat-treating a newly designed 7.5Mn-5Cr-1.5Cu alloy white iron intended to be used for making castings to resist aqueous corrosion under marine conditions. The microstructures were characterized on the basis of size, shape, and distribution of the second phase, which in the present study comprised dispersed (DCs) and massive carbides (MCs). A new term, “distribution factor” (DF), has been evolved to characterize DCs. This factor proved useful in establishing a relationship between microstructure and CR, which can be represented by the expression CR = [C1 + C2(VMC) + C3(VMC)2] * (DF)4

  4. Effects of the Oral Administration of K2Cr2O7 and Na2SeO3 on Ca, Mg, Mn, Fe, Cu, and Zn Contents in the Heart, Liver, Spleen, and Kidney of Chickens.

    PubMed

    Chen, Peng; Zhu, Yiran; Wan, Huiyu; Wang, Yang; Hao, Pan; Cheng, Ziqiang; Liu, Yongxia; Liu, Jianzhu

    2017-03-28

    This study aimed to investigate the effects of selenium on the ion profiles in the heart, liver, spleen, and kidney through the oral administration of hexavalent chromium. Approximately 22.14 mg/kg b.w. K2Cr2O7 was added to water to establish a chronic poisoning model. Different selenium levels (0.00, 0.31, 0.63, 1.25, 2.50, and 5.00 mg Na2SeO3/kg b.w.) around the safe dose were administered to the experimental group model. Ca, Mg, Mn, Fe, Cu, and Zn were detected in the organs through flame atomic absorption spectrometry after these organs were exposed to K2Cr2O7 and Na2SeO3 for 14, 28, and 42 days. Results showed that these elements exhibited various changes. Ca contents declined in the heart, liver, and spleen. Ca contents also decreased on the 28th day and increased on the 42nd day in the kidney. Mn contents declined in the heart and spleen but increased in the kidney. Mn contents also decreased on the 28th day and increased on the 42nd day in the liver. Cu contents declined in the heart and spleen. Cu contents increased on the 28th day and decreased on the 42nd day in the liver and kidney. Zn contents declined in the heart and spleen. Zn contents increased on the 28th day and decreased on the 42nd day in the liver and kidney. Fe contents decreased in the heart and liver. Fe contents increased on the 28th day and decreased on the 42nd day in the spleen and kidney. Mg contents did not significantly change in these organs. Appropriate selenium contents enhanced Mn and Zn contents, which were declined by chromium. Conversely, appropriate selenium contents reduced Ca, Fe, and Cu contents, which were increased by chromium. In conclusion, the exposure of chickens to K2Cr2O7 induced changes in different trace elements, and Na2SeO3 supplementation could alleviate this condition.

  5. Effect of microstructure on the corrosion and deformation behavior of a newly developed 6Mn-5Cr-1.5Cu corrosion-resistant white iron

    NASA Astrophysics Data System (ADS)

    Rao, P. N. V. R. S. S. V. Prasada; Patwardhan, A. K.; Jain, N. C.

    1993-02-01

    An experimental study has been made of the effect of heat treatment on the transformation behavior of a 4.8 pct Cr white iron, alloyed with 6 pct Mn and 1.5 pct Cu, by employing optical metallography, X-ray diffractometry, and differential thermal analysis (DTA) techniques, with a view to assess the suitability of the different microstructures in resisting aqueous corrosion. The matrix microstructure in the as-cast condition, comprising pearlite + bainite/martensite, transformed to austenite on heat-treating at all the temperatures between 900 °C and 1050 °C. Increasing the soaking period at each of the heat-treating temperatures led to an increase in the volume fraction and stability of austenite. M3C was the dominant carbide present in the as-cast condition. On heat-treating, different carbides formed: M23C6 carbide was present on heat-treating at 900 °C and 950 °C; on heat-treating at 1000 °C, M7C3 formed and persisted even on heattreating at 1050 °C. The possible formation of M5C2 carbide in the as-cast and heat-treated conditions (900 °C and 950 °C) is also indicated. Dispersed carbides (DC), present in austenite up to 950 °C, mostly comprised M3C and M5C2. On stress relieving of the heat-treated samples, M7C3-type DC also formed. The hardness changes were found to be consistent with the micro-structural changes occurring on heat-treating. The as-cast state was characterized by a reasonable resistance to corrosion in 5 pct NaCl solution. On heat-treating, the corrosion resistance improved over that in the as-cast state. After 4 hours soaking, increasing the temperature from 900 °C to 1050 °C led to an improvement in corrosion resistance. However, after 10 hours soaking, corrosion resistance decreased on increasing the temperature from 900 °C to 950 °C and improved thereafter on increasing the heat-treating temperature. Deformation behavior responded to the microstructure on similar lines as the corrosion behavior. Although in an early stage of

  6. Co-electrolysis of steam and CO2 in a solid oxide electrolysis cell with La0.75Sr0.25Cr0.5Mn0.5O3-δ -Cu ceramic composite electrode

    NASA Astrophysics Data System (ADS)

    Xing, Ruimin; Wang, Yarong; Zhu, Yongqiang; Liu, Shanhu; Jin, Chao

    2015-01-01

    Cu impregnation has been performed to improve electronic conductivity of La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM) material in reducing atmosphere, and solid oxide electrolysis cells (SOECs) with the configuration of LSCF|LSGM|LSCM-Cu are prepared and evaluated for high temperature steam and carbon dioxide co-electrolysis. Electrochemical impedance spectra (EIS) and voltage-current curves are carried out to characterize the cell performances. Compared with LSCF|LSGM|LSCM cell without Cu impregnation for steam electrolysis under the same conditions, EIS results show that LSCF|LSGM|LSCM-Cu cell not only displays lower ohmic resistance and better electrochemical performances, but also their resistance increases with the percentage of the fed CO2 under open circuit voltage, in which the polarization resistance dominates. With the applied electrolysis voltage of 1.65 V and the operating temperature of 750 °C, the maximum consumed current density increases from 1.31 A cm-2 without CO2 to 1.82 A cm-2 with 37.5% CO2. Although there is an increase of 2.0% in the applied electrolysis voltage, the cell has exhibited an excellent durability test for more than 50 h with the electrolysis current density of 0.33 A cm-2 and the gas mixture of 50% AH-25% H2-25% CO2 at 750 °C.

  7. Spectroscopic and thermal degradation behavior of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes with thiopental sodium anesthesia drug

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.

    2013-04-01

    A new series of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized with thiopental sodium anesthesia drug. The elemental analyses of the complexes are confined to stoichiometry of the formulas [M(TPL)3]ṡnH2O (M = Cr(III) or Fe(III); n = 6 or 5), [M(TPL)2(H2O)2]ṡnH2O (M = Mn(II), Co(II) or Ni(II); n = 0 or 4), and [M(TPL)2] (M = Cu(II) or Zn(II); n = 2 or 0) respectively, where TPL is thiopental chelating agent. Structures have been discussed and suggested upon elemental analyses, infrared, Raman, electronic, electron spin resonance, 1H NMR spectral data and magnetic studies. The X-ray powder diffraction (XRD) was performed of metal complexes. The XRD patterns indicate crystalline nature for the complexes. The measured low molar conductance values in dimethylsulfoxide indicate that the complexes are non-electrolyte nature. Spectroscopic discussion refer that coordination take place through three types: Cdbnd N (pyrimidine moiety) nitrogen and C2sbnd S (2-thiolate group) for Cr(III), Mn(II) and Fe(III), C6dbnd O (amido group) oxygen and C2sbnd S (2-thiolate group) for Co(II) and Ni(II), and Cu(II) and Zn(II) ions coordinated via Cdbnd N (pyrimidine moiety) nitrogen, C2dbnd S (2-thiolate group) and C6dbnd O (amido group) oxygen, respectively. The thermal behavior (TG/DTG/DTA) of the complexes was studied and kinetic parameters were determined by Horowitz-Metzger and Coats-Redfern methods. The thiopental and its complexes have been screened for their antimicrobial (G+ and G-) bacteria (Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa) and fungi (Aspergillus flavus and Candida albicans) activities by minimum inhibitory concentration (MIC) method.

  8. Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) new complexes of 5-aminosalicylic acid: Spectroscopic, thermal characterization and biological activity studies

    NASA Astrophysics Data System (ADS)

    Soliman, Madiha H.; Mohamed, Gehad G.

    2013-04-01

    The complexing behavior of mesalazine (5-aminosalicylic acid; 5-ASA) towards the transition metal ions namely, Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) have been examined by elemental analyses, magnetic measurements, electronic, IR and 1H NMR. Thermal properties and decomposition kinetics of all complexes are investigated. The interpretation, mathematical analyses and evaluation of kinetic parameters of all thermal decomposition stages have been evaluated using Coats-Redfern equation. The free ligand and its metal complexes have been tested in vitro against Aspergillus fumigatus and Candida albicans fungi and Pseudomonas aeruginosa, Escherichia coli, Bacillis subtilies and Staphylococcus aureus bacteria in order to assess their antimicrobial potential. The results indicate that the metal complexes are also found to have more antimicrobial activity than the parent 5-ASA drug.

  9. Magnetic anisotropy of Fe{sub 1−y}X{sub y}Pt-L1{sub 0} [X = Cr, Mn, Co, Ni, Cu] bulk alloys

    SciTech Connect

    Cuadrado, R.; Chantrell, R. W.; Klemmer, Timothy J.

    2014-10-13

    We demonstrate by means of fully relativistic first principles calculations that, by substitution of Fe by Cr, Mn, Co, Ni, or Cu in FePt-L1{sub 0} bulk alloys, with fixed Pt content, it is possible to tune the magnetocrystalline anisotropy energy by adjusting the content of the non-magnetic species in the material. The changes in the geometry due to the inclusion of each element induces different values of the tetragonality and hence changes in the magnetic anisotropy and in the net magnetic moment. The site resolved magnetic moments of Fe increase with the X content while those of Pt and X are simultaneously reduced. The calculations are in good quantitative agreement with experimental data and demonstrate that models with fixed band structure but varying numbers of electrons per unit cell are insufficient to describe the experimental data for doped FePt-L1{sub 0} alloys.

  10. An anti CuO2-type metal hydride square net structure in Ln2M2As2H(x) (Ln=La or Sm, M=Ti, V, Cr, or Mn).

    PubMed

    Mizoguchi, Hiroshi; Park, SangWon; Hiraka, Haruhiro; Ikeda, Kazutaka; Otomo, Toshiya; Hosono, Hideo

    2015-03-02

    Using a high pressure technique and the strong donating nature of H(-), a new series of tetragonal La2Fe2Se2O3-type layered mixed-anion arsenides, Ln2M2As2H(x), was synthesized (Ln=La or Sm, M=Ti, V, Cr, or Mn; x≈3). In these compounds, an unusual M2H square net, which has anti CuO2 square net structures accompanying two As(3-) ions, is sandwiched by (LaH)2 fluorite layers. Notably, strong metal-metal bonding with a distance of 2.80 Å was confirmed in La2Ti2As2H2.3, which has metallic properties. In fact, these compounds are situated near the boundary between salt-like ionic hydrides and transition-metal hydrides with metallic characters.

  11. Effect of CaO on retention of S, Cl, Br, As, Mn, V, Cr, Ni, Cu, Zn, W and Pb in bottom ashes from fluidized-bed coal combustion power station.

    PubMed

    Bartoňová, Lucie; Klika, Zdeněk

    2014-07-01

    This work was conducted to evaluate whether Ca-bearing additives used during coal combustion can also help with the retention of some other elements. This work was focused on the evaluation of bottom ashes collected during four full-scale combustion tests at an operating thermal fluidized-bed power station. Bottom ashes were preferred to fly ashes for the study to avoid interference from condensation processes usually occurring in the post-combustion zone. This work focused on the behaviors of S, Cl, Br, As, Mn, V, Cr, Ni, Cu, Zn, W, and Pb. Strong positive correlations with CaO content in bottom ashes were observed (for all four combustion tests) for S, As, Cl and Br (R=0.917-0.999). Strong inverse proportionality was calculated between the contents of Pb, Zn, Ni, Cr and Mn and CaO, so these elements showed association to materials other than Ca-bearing compounds (e.g., to aluminosilicates, organic matter, etc.). Somewhat unclear behaviors were observed for W, Cu, and V. Their correlation coefficients were evaluated as statistically "not significant", i.e., these elements were not thought to be significantly associated with CaO. It was also discovered that major enrichment of CaO in the finest bottom ash fractions could be advantageously used for simple separation of elements strongly associated with these fractions, mainly S and As, but also Cl or Br. Removal of 5% of the finest ash particles brings about a decrease in As concentration down to 77%-80% of its original bulk ash content, which can be conveniently used e.g., when high As content complicates further ash utilization.

  12. Influence of the type of tree habitat on the character of co-occurrence of Fe, Mn, Zn, Cu, Pb, Ni, Cr and Co in the soil of the Tatra Mountain National Park.

    PubMed

    Kwapuliński, Jerzy; Paprotny, Łukasz; Paukszto, Andrzej; Kowol, Jolanta; Rochel, Robert; Nogaj, Ewa; Musielińska, Renata; Celiński, Rafał

    2013-01-01

    The objective of the research was to determine the effect of habitat type of selected species of trees on the nature of co-occurrence of Fe, Mn, Zn, Cu, Pb, Cd, Ni, Cr and Co. The presence of speciation forms of these metals was investigated, with reference to the species composition of tree stands in selected areas of the Tatra Mountain National Park (Chochołowska Valley, Strążyska Valley, Kościeliska Valley, as well as Mała Łąka Valley).Contents of selected metals in samples were determined by the flame ASA method, with an accuracy of 0.1 µg/g. In habitats dominated by maples, the Pb content in the Chochołowska Valley, unlike Kościeliska Valley covered with beeches, the Pb content in the form directly bioavailable, was twice as high. This was clearly proved in the case of Strążyska Valley where the soil in beech tree habitats contained larger quantities of exchangeable forms of Pb, than that in the Chochołowska Valley. The soil of the valleys, including the Mała Łąka Valley, showed peculiar characteristic averaging of the contents of selected speciation forms of metals in the soil. Content corresponding to 10 percentile and geometrical average may be regarded as benchmarks in future studies of the Tatra Mountain National Park, or other protected areas.

  13. Enhancement of ferromagnetism by Cr doping in Ni-Mn-Cr-Sb Heusler alloys

    NASA Astrophysics Data System (ADS)

    Khan, Mahmud; Dubenko, Igor; Stadler, Shane; Jung, J.; Stoyko, S. S.; Mar, Arthur; Quetz, Abdiel; Samanta, Tapas; Ali, Naushad; Chow, K. H.

    2013-03-01

    A series of Mn rich Ni50Mn37-xCrxSb13 Heusler alloys have been investigated by dc magnetization and electrical resistivity measurements. Due to the weakening of the Ni-Mn hybridization, the martensitic transition shifts to lower temperatures with increasing Cr concentration, while the saturation magnetization at 5 K increases. The magnetoresistance and exchange bias properties are dramatically suppressed with increasing Cr concentration. The observed behaviors suggest that substitution of Cr for Mn in Ni50Mn37-xCrxSb13 Heusler alloys not only destabilizes the martensitic phase but also enhances ferromagnetism in the system. The possible mechanisms responsible for the observed behavior are discussed.

  14. Thermodynamic Modeling of the Al-Cr-Mn Ternary System

    NASA Astrophysics Data System (ADS)

    Cui, Senlin; Jung, In-Ho

    2017-03-01

    The phase diagram information available in the literature on the Al-Cr-Mn system was comprehensively evaluated and optimized for the first time to obtain a set of Gibbs energies of all the solid and liquid phases in the Al-Cr-Mn system. The Modified Quasi-chemical Model (MQM) was utilized to describe the Gibbs energy of the liquid phase of the Al-Cr-Mn system. The Compound Energy Formalism (CEF) was used to model the solid solution phases. A revision of the Al-Mn system was simultaneously conducted to consider the γ_H (Al8Mn5) phase. The liquid Cr-Mn phase was also remodeled using the Modified Quasi-chemical Model (MQM) to obtain a consistent description of the ternary Al-Cr-Mn liquid phase. Accurate description of the phase diagram of the entire Al-Cr-Mn system was obtained from the thermodynamic models with optimized parameters in the present study, and the model parameters can be used to predict the thermodynamic properties of the ternary system.

  15. Chemical speciation of Fe, Mn, Pb, Zn, Cd, Cu, Co, Ni and Cr in the suspended particulate matter off the Mejerda River Delta (Gulf of Tunis, Tunisia)

    NASA Astrophysics Data System (ADS)

    Helali, Mohamed Amine; Oueslati, Walid; Zaaboub, Noureddine; Added, Ayed; Aleya, Lotfi

    2016-06-01

    Fluxes of suspended particulate matter (SPM) and their associated metals were performed off the Mejerda River Delta during both the wet (March) and the dry (July) seasons in 2012, using sediment traps at study stations at depths of 10, 20 and 40 m. Fluxes nearest to the Mejerda outlet were more significant, especially during winter (36 g m-2 day-1), but dissipated further offshore, 24.5-6 g m-2 day-1 at the 20 m and 21.8-4.8 g m-2 day-1 at the 40 m stations. Many variations observed in seasonal and spatial metal fluxes are similar to those of SPM, in particular Pb and Zn, probably because they are associated with the mining activity characteristic of the Mejerda catchment. Chemical speciation reveals that most of the metals (20-100%) are bound to the residual fraction. The most toxic metals (Pb, Zn) are bound in part to the exchangeable fraction (20-50% for Pb and 5-15% for Zn) making them relatively bioavailable and therefore potentially toxic. While Cu and Cd fluxes are not always clearly established according to season, both metals are apparently sequestered deep in the sediment, bound especially to clays (40-80% for Cd and up to 100% for Cu).

  16. Magnetic susceptibilities of liquid Cr-Au, Mn-Au and Fe-Au alloys

    SciTech Connect

    Ohno, S.; Shimakura, H.; Tahara, S.; Okada, T.

    2015-08-17

    The magnetic susceptibility of liquid Cr-Au, Mn-Au, Fe-Au and Cu-Au alloys was investigated as a function of temperature and composition. Liquid Cr{sub 1-c}Au{sub c} with 0.5 ≤ c and Mn{sub 1-c}Au{sub c} with 0.3≤c obeyed the Curie-Weiss law with regard to their dependence of χ on temperature. The magnetic susceptibilities of liquid Fe-Au alloys also exhibited Curie-Weiss behavior with a reasonable value for the effective number of Bohr magneton. On the Au-rich side, the composition dependence of χ for liquid TM-Au (TM=Cr, Mn, Fe) alloys increased rapidly with increasing TM content, respectively. Additionally, the composition dependences of χ for liquid Cr-Au, Mn-Au, and Fe-Au alloys had maxima at compositions of 50 at% Cr, 70 at% Mn, and 85 at% Fe, respectively. We compared the composition dependences of χ{sub 3d} due to 3d electrons for liquid binary TM-M (M=Au, Al, Si, Sb), and investigated the relationship between χ{sub 3d} and E{sub F} in liquid binary TM-M alloys at a composition of 50 at% TM.

  17. Strengthening in rapidly solidified age hardened Cu-Cr and Cu-Cr-Zr alloys

    SciTech Connect

    Correia, J.B.; Davies, H.A.; Sellars, C.M.

    1997-01-01

    Cu-Cr and Cu-Cr-Zr alloy powders were produced by water atomization and consolidated by warm extrusion. Coherent Cr precipitation is associated with the peak hardness condition in these alloys. The mechanical properties obtained after aging treatments, namely the peak hardness, and the corresponding proof stress are related to the concentration of the alloying element initially in solid solution in the powders. The strengthening observed is interpreted in terms of theories of precipitation and dispersion strengthening and compared with similar analyses reported previously in the literature for these alloy systems.

  18. Effect of heat treatment on the hardness-microstructure inter-relation in a 7.5Mn-5Cr-1.5Cu alloy white iron: A modeling approach

    NASA Astrophysics Data System (ADS)

    Jain, N. C.; Patwardhan, A. K.

    1992-03-01

    An experimental study has been made on the effect of heat-treating temperature (800 °C 850 °C 900 °C, 950 °C, 1000 °C, and 1050 °C) and time (2, 4, 6, 8, and 10 hours) on the transformation behavior of a 7.5Mn-5Cr-1.5Cu white cast iron developed to resist aqueous corrosion in different environments. Structural changes on heat treating were monitored using hardness measurements. It was observed that on heat treating from 800 °C, hardness increased marginally with soaking period. Hardness was independent of soaking period on heat treating at 850 °C and 900 °C. On heat treating from 950 °C and higher, hardness decreased with time, the effect being pronounced at 1000 °C and 1050 °C. These changes are consistent with the resultant microstructural changes. The hardness (H) vs time (t) plots at any temperature are linear and can be represented by H = C1 + C 2t (T °C) The hardness vs temperature plots as influenced by time, which, in effect, represented how effectively the alloy sustained hardness, are most appropriately represented by a third-order polynomial: H = C1 + C2T + C3T2 + C4T3 (t s) leading to a horizontal “S” shape. Based on fundamental considerations, the final model interrelating hardness with temperature and time is H = 61.8 e2442.5/T + (0.0188 -1.6 × 10-5· T)t where T = temperature in K; t = time in seconds; and H = Vickers hardness number, 30 kgf (VHN30). The overall validity and usefulness of the model have been discussed.

  19. Magnetic properties of Cr and Mn powders (abstract)

    NASA Astrophysics Data System (ADS)

    Zhukov, A. P.; Ivanov, S. A.; Nudelman, M. A.; Ponomarev, B. K.; Kaloshkin, S. D.; Shatov, A. A.

    1993-05-01

    Mn and Cr powders were produced from electrolytic Mn and Cr by ball milling in a stainless steel container with carbon steel balls. The milling time, t, varied from 5 min to 8 h. Structures were investigated by x-ray and electron microscopy. Chemical compositions of samples were checked by flame atomic absorption spectrometry. The magnetization was measured by induction method in a pulsed magnetic field up to 10 T. The main part of Mn and Cr powder volume was occupied by α-Mn and b.c.c. Cr, respectively. Diffraction peaks became vaster and more asymmetric with increasing t due to the onset of defects of the structure. The presence of MnO was observed in the Mn sample after 8 h of milling. The size of Mn and Cr particles over same critical t (for chromium t=100 min) was no more than 1 mm. A noticeable Fe content, which increases at higher t, was observed. The Mössbauer spectra of Cr and Mn samples showed the lines of α-Fe and γ-Fe. High values of saturation magnetization, σ, up to 5.4 emu/g, and susceptibility and existence of the hysteresis in low fields at temperatures up to 360 K, indicate ferromagnetic ordering of the samples. Within the range of 78-360 K σ only slightly depends on temperature, but noticeably grows with increasing t at fixed temperature in Cr powders, remaining practically constant in Mn powders. No correlation could be observed between Fe content and σ : the latter remained the same in Mn with Fe concentration increasing, but in Cr, as Fe concentration increased sevenfold, it grew by four times. Spontaneous magnetization per mass unit of Fe, σ, was sufficiently lower than that of pure α-Fe (220 emu/g). The obtained values of σ correspond neither to Fe solid solution nor to pure Cr or Mn. Elucidation of the obtained results can be done both by the presence of α-Fe particles and by variation of exchange interactions caused by sample defects. A noticeable difference of σ values from those properties of bulk α-Fe can be explained by

  20. Tough cryogenic alloys from the Fe-Mn and Fe-Mn-Cr systems

    NASA Technical Reports Server (NTRS)

    Schanfein, M. J.; Zackay, V. F.; Morris, J. W., Jr.

    1974-01-01

    By adjusting composition, metastable gamma (austenite) and epsilon (hexagonal) martensite may be retained in Fe-Mn and Fe-Mn-Cr alloys and used to impact toughness through the TRIP mechanism. The resulting alloys have excellent toughness at cryogenic temperatures. The best alloys obtained to date are: Fe-20Mn, with sigma (sub y) = 79ksi and K sub IC = 275ksi square root of (in) at 77 K, and Fc-16Mn-8Cr, with sigma sub y = 85ksi and K sub IC = 72ksi square root of (in) at 77 K.

  1. Observations of a Cast Cu-Cr-Zr Alloy

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2006-01-01

    Prior work has demonstrated that Cu-Cr-Nb alloys have considerable advantages over the copper alloys currently used in regeneratively cooled rocket engine liners. Observations indicated that Zr and Nb have similar chemical properties and form very similar compounds. Glazov and Zakharov et al. reported the presence of Cr2Zr in Cu-Cr-Zr alloys with up to 3.5 wt% Cr and Zr though Zeng et al. calculated that Cr2Zr could not exist in a ternary Cu-Cr-Zr alloy. A cast Cu-6.15 wt% Cr-5.25 wt% Zr alloy was examined to determine if the microstructure developed would be similar to GRCop-84 (Cu-6.65 wt% Cr-5.85 wt% Nb). It was observed that the Cu-Cr-Zr system did not form any Cr2Zr even after a thermal exposure at 875 C for 176.5 h. Instead the alloy consisted of three phases: Cu, Cu5Zr, and Cr.

  2. Diffusion kinetics of Cr in spinel: Experimental studies and implications for 53Mn-53Cr cosmochronology

    NASA Astrophysics Data System (ADS)

    Posner, Esther S.; Ganguly, Jibamitra; Hervig, Richard

    2016-02-01

    The 53Mn-53Cr decay system, in which 53Mn decays to 53Cr (t1/2 = 3.7 Ma) has been widely used to construct 53Cr/52Cr vs. 55Mn/52Cr isochrons and thus determine relative ages of early solar system objects or events, assuming that the initial Cr isotopic ratio, (53Cr/52Cr)o, equals (53Mn/52Cr)o. With the primary objective of interpretation of these ages within a diffusion kinetic framework, we have determined the tracer diffusion coefficient of Cr in natural spinels, which are very close to the MgAl2O4 end-member composition, as a function of temperature and oxygen fugacity (f(O2)). It is found that the diffusion coefficient of Cr, D(Cr), in two stocks of spinels (referred to as cut-gems and gem-gravels) with very similar major element chemistry is consistently different, but the data in each stock yield well defined Arrhenius relations that show a difference of log D of 0.6-1.0, depending on temperature, with the D(Cr) in gem-gravel being higher than that in the cut-gem stock. The D(Cr) was found to have a positive dependence on f(O2) in the range of f(O2) of around ±2 log units relative to that of the wüstite-magnetite buffer. The difference in the D(Cr) between the two stocks and the observed D(Cr) vs. f(O2) relation has been explained in terms of a change of point defect concentration resulting from heterovalent substitution of trace elements and equilibration with the imposed f(O2) conditions, respectively. Assuming a homogeneous semi-infinite matrix, the closure temperature (Tc) of Cr diffusion in spinel has been calculated as a function of grain size, cooling rate, peak temperature (To) and f(O2). Also the dependence of D(Cr) and Tc(Cr) on the Cr# (i.e. Cr/(Cr + Al) ratio) has been accounted for using available D(Cr) vs. Cr# data in Suzuki et al. (2008). We argue, on the basis of crystal chemical considerations and available diffusion kinetic data for minerals, that the Tc for Mn should be much lower than that for Cr in spinel, olivine and orthopyroxene, and

  3. Rational serendipity: "undirected" synthesis of a large {MnCu} complex from pre-formed Mn(II) building blocks.

    PubMed

    Frost, Jamie M; Kettles, Fraser J; Wilson, Claire; Murrie, Mark

    2016-11-15

    Use of an aminopolyalcohol-based Mn(II) complex in solvothermal Cu(II) chemistry leads to a rare example of a high nuclearity heterometallic {MnCu} system, in which four Cu(II)(H1Edte) units trap an inner {MnCu(II)} oxide core.

  4. Magnetic resonance in a Cu-Cr-S structure

    SciTech Connect

    Vorotynov, A. M. Abramova, G. M.; Pankrats, A. I.; Petrakovskii, G. A.; Zharkov, S. M.; Zeer, G. M.; Tugarinov, V. I.; Rautskii, M. V.; Sokolov, V. V.

    2013-11-15

    A layered Cu-Cr-S structure composed of single-crystal CuCrS{sub 2} layers and thin CuCr{sub 2}S{sub 4} plates embedded in them has been investigated by the magnetic resonance and scanning electron microscopy methods. The Curie temperature and saturation magnetization of the spinel phase of the investigated samples have been determined. The thickness of the CuCr{sub 2}S{sub 4} layers has been estimated. The dependence of the growncrystal topology on synthesis conditions has been established. An interpretation of the anomalous behavior of the magnetostatic oscillation intensity is offered.

  5. Bioaccumulation of Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn in trophosome and vestimentum of the tube worm Riftia pachyptila from Guaymas basin, Gulf of California

    NASA Astrophysics Data System (ADS)

    Ruelas-Inzunza, J.; Páez-Osuna, F.; Soto, Luis A.

    2005-07-01

    Twenty two specimens of vestimentiferan tube worms Riftia pachyptila were collected from Guaymas Basin. The distribution of ten trace metals in trophosome and vestimentum was investigated. Highest mean concentrations of Co, Cu and Fe were detected in the trophosome; while higher mean levels of Cd, Hg, Mn, Ni, Pb and Zn were measured in the vestimentum. However, the t-student test resulted in significant differences (p<0.05) only in the case of Co. Cd and Fe concentrations in vestimentum increased accordingly with the size of specimens. With respect to vent fluids, extreme uptake seems to be a characteristic of R. pachyptila in the case of Cu and Zn but not for the rest of the analyzed metals. Studies concerning accumulation mechanisms of trace metals in R. pachyptila are needed, particularly on the capacity of this organism to tolerate elevated levels of elements considered as non-essential.

  6. Photoemission of Mn6Cr single-molecule magnets

    NASA Astrophysics Data System (ADS)

    Heinzmann, U.; Merschjohann, F.; Helmstedt, A.; Gryzia, A.; Winter, A.; Steppeler, S.; Müller, N.; Brechling, A.; Sacher, M.; Richthofen, C.-G. Freiherr v.; Glaser, T.; Voss, S.; Fonin, M.; Rüdiger, U.

    2009-11-01

    We present the status of new experimental studies of X-ray absorption spectroscopy, magnetic circular dichroism in photoemission and spin-resolved photoelectron spectroscopy of Mn6Cr single-molecule magnet systems by use of circularly-polarized synchrotron radiation of the electron storage rings in Maxlab Lund, Sweden und BESSY, Berlin, Germany.

  7. Oxalate-based soluble 2D magnets: the series [K(18-crown-6)]3[M(II)3(H2O)4{M(III)(ox)3}3] (M(III) = Cr, Fe; M(II) = Mn, Fe, Ni, Co, Cu; ox = C2O4(2-); 18-crown-6 = C12H24O6).

    PubMed

    Coronado, Eugenio; Galán-Mascarós, José R; Martí-Gastaldo, Carlos; Waerenborgh, João C; Gaczyński, Piotr

    2008-08-04

    The synthesis and magnetic properties of the oxalate-based molecular soluble magnets with general formula [K(18-crown-6)] 3[M (II) 3(H 2O) 4{M (III)(ox) 3} 3] (M (III) = Cr, Fe; M (II) = Mn, Fe, Ni, Co, Cu; ox = C 2O 4 (2-)) are here described. All the reported compounds are isostructural and built up by 2D bimetallic networks formed by alternating M (III) and M (II) ions connected through oxalate anions. Whereas the Cr (III)M (II) derivatives behave as ferromagnets with critical temperatures up to 8 K, the Fe (III)M (II) present ferri- or weak ferromagnetic ordering up to 26 K.

  8. Reversion phenomena of Cu-Cr alloys

    NASA Technical Reports Server (NTRS)

    Nishikawa, S.; Nagata, K.; Kobayashi, S.

    1985-01-01

    Cu-Cr alloys which were given various aging and reversion treatments were investigated in terms of electrical resistivity and hardness. Transmission electron microscopy was one technique employed. Some results obtained are as follows: the increment of electrical resistivity after the reversion at a constant temperature decreases as the aging temperature rises. In a constant aging condition, the increment of electrical resistivity after the reversion increases, and the time required for a maximum reversion becomes shorter as the reversion temperature rises. The reversion phenomena can be repeated, but its amount decreases rapidly by repetition. At first, the amount of reversion increases with aging time and reaches its maximum, and then tends to decrease again. Hardness changes by the reversion are very small, but the hardness tends to soften slightly. Any changes in transmission electron micrographs by the reversion treatment cannot be detected.

  9. Corrosion behavior of Au and Ag modified Cu-Ni-Mn alloys.

    PubMed

    Wright, S R; Cocks, F H; Gettleman, L

    1980-04-01

    The linear electrochemical polarization method was used to provide quantitative in vitro measurements of corrosion rates as a function of exposure time for Cu-Ni-Mn, Cu-Ni-Mn-Au, Cu-Ni-Mn-Ag, and Cu-Ni-Mn-Au-Ag alloys in artificial saliva. Both Au and Ag additives to dental-cast Cu-Ni-Mn alloys lowered the corrosion rate significantly.

  10. Kinetic parameters and structural variations in Cu-Al-Mn and Cu-Al-Mn-Mg shape memory alloys

    NASA Astrophysics Data System (ADS)

    Canbay, Canan Aksu

    2017-02-01

    In this work polycrystalline Cu-Al-Mn and Cu-Al-Mn-Mg SMAs were fabricated by arc melting. The thermal analysis was made to determine the characteristic transformation temperatures of the samples and kinetic parameters. Also the effect of Mg on transformation temperatures and kinetic parameters detected. The structural analysis was made to designate the diffraction planes of martensite phase at room temperature and this was supported by optical measurement observations.

  11. Magnetically induced ferroelectricity in Cu2MnSnS4 and Cu2MnSnSe4

    NASA Astrophysics Data System (ADS)

    Fukushima, Tetsuya; Yamauchi, Kunihiko; Picozzi, Silvia

    2010-07-01

    We investigate magnetically induced ferroelectricity in Cu2MnSnS4 by means of Landau theory of phase transitions and of ab initio density-functional theory. As expected from the Landau approach, ab initio calculations show that a nonzero ferroelectric polarization P along the y direction (on the order of a tenth of μC/cm2 ) is induced by the peculiar antiferromagnetic (AFM) configuration of Mn spins occurring in Cu2MnSnS4 . The comparison between P , calculated either via density-functional theory or according to Landau approach, clearly shows that ferroelectricity is mainly driven by Heisenberg-exchange terms and only to a minor extent by relativistic terms. At variance with previous examples of collinear antiferromagnets with magnetically induced ferroelectricity (such as AFM-E HoMnO3 ), the ionic displacements occurring upon magnetic ordering are very small, so that the exchange-striction mechanism (i.e., displacement of ions so as to minimize the magnetic-coupling energy) is not effective here. Rather, the microscopic mechanism at the basis of polarization has mostly an electronic origin. In this framework, we propose the small magnetic moment at Cu sites induced by neighboring Mn magnetic moments to play a relevant role in inducing P . Finally, we investigate the effect of the anion by comparing Cu2MnSnSe4 and Cu2MnSnS4 : Se4p states, more delocalized compared to S3p states, are able to better mediate the Mn-Mn interaction, in turn leading to a higher ferroelectric polarization in the Se-based compound.

  12. Mesoporous delafossite CuCrO2 and spinel CuCr2O4: synthesis and catalysis

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Shi, Yifeng; Chi, Miaofang; Park, Jung-Nam; Stucky, Galen D.; McFarland, Eric W.; Gao, Lian

    2013-08-01

    Delafossite CuCrO2 and spinel CuCr2O4 with mesoporous structures have been successfully synthesized using nanocasting methods based on a KIT-6 template. The functional activity of the mesoporous materials was evaluated in applications as heterogeneous catalysts. The activity for photocatalytic hydrogen production of the delafossite structures with different morphologies was characterized and the oxidation state changes associated with photocorrosion of Cu+ investigated using electron energy loss spectroscopy (EELS). Mg2+ doping was found to facilitate the casting of ordered structures for CuCrO2 and improves the photocorrosion resistance of delafossite structures. The mesoporous spinel CuCr2O4 nanostructures were found to be active for low temperature CO oxidation.

  13. Magnetoelasticity in ACr2O4 spinel oxides (A= Mn, Fe, Co, Ni, and Cu)

    NASA Astrophysics Data System (ADS)

    Kocsis, V.; Bordács, S.; Varjas, D.; Penc, K.; Abouelsayed, A.; Kuntscher, C. A.; Ohgushi, K.; Tokura, Y.; Kézsmárki, I.

    2013-02-01

    Dynamical properties of the lattice structure were studied by optical spectroscopy in ACr2O4 chromium spinel oxide magnetic semiconductors over a broad temperature region of T=10-335 K. The systematic change of the A-site ions (A= Mn, Fe, Co, Ni and Cu) showed that the occupancy of 3d orbitals on the A site has strong impact on the lattice dynamics. For compounds with orbital degeneracy (FeCr2O4, NiCr2O4, and CuCr2O4), clear splitting of infrared-active phonon modes and/or activation of silent vibrational modes have been observed upon the Jahn-Teller transition and at the onset of the subsequent long-range magnetic order. Although MnCr2O4 and CoCr2O4 show multiferroic and magnetoelectric character, no considerable magnetoelasticity was found in spinel compounds without orbital degeneracy as they closely preserve the high-temperature cubic spinel structure even in their magnetic ground state. Aside from lattice vibrations, intra-atomic 3d-3d transitions of the A2+ ions were also investigated to determine the crystal field and Racah parameters and the strength of the spin-orbit coupling.

  14. Structure and Electrical Properties of Mn-Cu-O Spinels

    NASA Astrophysics Data System (ADS)

    Bobruk, M.; Durczak, K.; Dąbek, J.; Brylewski, T.

    2017-03-01

    The study presents the results of structural and electrical conductivity investigations of a Cu1.3Mn1.7O4 spinel obtained using EDTA gel processes. An amorphous gel was synthesized and calcinated for 5 h in air at temperatures of 673, 773, 873, and 973 K. When calcinating the gel at temperatures below 973 K, the obtained powders consisted of two phases—the regular Cu1.5Mn1.5O4 spinel and manganese(III) oxide. At 973 K, Mn2O3 was no longer observed, but a new Mn3O4 phase appeared in addition to the Cu1.5Mn1.5O4 spinel. Green bodies prepared from these powders were sintered for 2 h in air at 1393 K. The obtained sinters had a porosity of around 12% and were composed predominantly of the spinel phase, with minor amounts of Mn3O4 and, in the case of three of four sinters—CuO. Electrical conductivity measurements were taken over the temperature range of 300-1073 K. A change in the character of conductivity of the studied sinters was observed in the range of 400-430 K, and it was associated with an increase in activation energy from 0.20 to 0.56 eV. The electrical conductivity of the studied sinters ranged from 74.8 to 88.4 S cm-1, which makes the Cu1.3Mn1.7O4 material suitable for application as a protective-conducting coating in IT-SOFC ferritic stainless steel interconnects.

  15. Defect-induced magnetic structure of CuMnSb

    NASA Astrophysics Data System (ADS)

    Máca, F.; Kudrnovský, J.; Drchal, V.; Turek, I.; Stelmakhovych, O.; Beran, P.; Llobet, A.; Marti, X.

    2016-09-01

    The observed ground state for the CuMnSb alloy is the antiferromagnetic (111) phase as confirmed by neutron diffraction experiments. Ab initio total energy calculations for ideal, defect-free CuMnSb contradict this result and indicate that other magnetic structures can have their total energies lower. It is known that Heusler alloys usually contain various defects depending on the sample preparation. We have therefore investigated magnetic phases of CuMnSb assuming the most common defects which exist in real experimental conditions. The full-potential supercell approach and a Heisenberg model approach using the coherent potential approximation are adopted. The results of the total energy supercell calculations indicate that defects that bring Mn atoms close together promote the antiferromagnetic (111) structure already for a low critical defect concentrations (≈3 %). A detailed study of exchange interactions between Mn moments further supports the above stabilization mechanism. Finally, the stability of the antiferromagnetic (111) order is enhanced by inclusion of electron correlations in narrow Mn bands. The present refinement structure analysis of the neutron scattering experiment supports theoretical conclusions.

  16. Antiferromagnetic structure in tetragonal CuMnAs thin films.

    PubMed

    Wadley, P; Hills, V; Shahedkhah, M R; Edmonds, K W; Campion, R P; Novák, V; Ouladdiaf, B; Khalyavin, D; Langridge, S; Saidl, V; Nemec, P; Rushforth, A W; Gallagher, B L; Dhesi, S S; Maccherozzi, F; Železný, J; Jungwirth, T

    2015-11-25

    Tetragonal CuMnAs is an antiferromagnetic material with favourable properties for applications in spintronics. Using a combination of neutron diffraction and x-ray magnetic linear dichroism, we determine the spin axis and magnetic structure in tetragonal CuMnAs, and reveal the presence of an interfacial uniaxial magnetic anisotropy. From the temperature-dependence of the neutron diffraction intensities, the Néel temperature is shown to be (480 ± 5) K. Ab initio calculations indicate a weak anisotropy in the (ab) plane for bulk crystals, with a large anisotropy energy barrier between in-plane and perpendicular-to-plane directions.

  17. Antiferromagnetic structure in tetragonal CuMnAs thin films

    PubMed Central

    Wadley, P.; Hills, V.; Shahedkhah, M. R.; Edmonds, K. W.; Campion, R. P.; Novák, V.; Ouladdiaf, B.; Khalyavin, D.; Langridge, S.; Saidl, V.; Nemec, P.; Rushforth, A. W.; Gallagher, B. L.; Dhesi, S. S.; Maccherozzi, F.; Železný, J.; Jungwirth, T.

    2015-01-01

    Tetragonal CuMnAs is an antiferromagnetic material with favourable properties for applications in spintronics. Using a combination of neutron diffraction and x-ray magnetic linear dichroism, we determine the spin axis and magnetic structure in tetragonal CuMnAs, and reveal the presence of an interfacial uniaxial magnetic anisotropy. From the temperature-dependence of the neutron diffraction intensities, the Néel temperature is shown to be (480 ± 5) K. Ab initio calculations indicate a weak anisotropy in the (ab) plane for bulk crystals, with a large anisotropy energy barrier between in-plane and perpendicular-to-plane directions. PMID:26602978

  18. First-principles spin-transfer torque in CuMnAs |GaP |CuMnAs junctions

    NASA Astrophysics Data System (ADS)

    Stamenova, Maria; Mohebbi, Razie; Seyed-Yazdi, Jamileh; Rungger, Ivan; Sanvito, Stefano

    2017-02-01

    We demonstrate that an all-antiferromagnetic tunnel junction with current perpendicular to the plane geometry can be used as an efficient spintronic device with potential high-frequency operation. By using state-of-the-art density functional theory combined with quantum transport, we show that the Néel vector of the electrodes can be manipulated by spin-transfer torque. This is staggered over the two different magnetic sublattices and can generate dynamics and switching. At the same time the different magnetization states of the junction can be read by standard tunneling magnetoresistance. Calculations are performed for CuMnAs |GaP |CuMnAs junctions with different surface terminations between the antiferromagnetic CuMnAs electrodes and the insulating GaP spacer. We find that the torque remains staggered regardless of the termination, while the magnetoresistance depends on the microscopic details of the interface.

  19. Cr(OH)₃(s) Oxidation Induced by Surface Catalyzed Mn(II) Oxidation

    SciTech Connect

    Namgung, Seonyi; Kwon, M.; Qafoku, Nikolla; Lee, Gie Hyeon

    2014-09-16

    This study examined the feasibility of Cr(OH)₃(s) oxidation mediated by surface catalyzed Mn(II) oxidation under common groundwater pH conditions as a potential pathway of natural Cr(VI) contaminations. Dissolved Mn(II) (50 μM) was reacted with or without synthesized Cr(OH)₃(s) (1.0 g/L) at pH 7 – 9 under oxic or anoxic conditions. In the absence of Cr(OH)₃(s), homogeneous Mn(II) oxidation by dissolved O₂ was not observed at pH ≤ 8.0 for 50 d. At pH 9.0, by contrast, dissolved Mn(II) was completely removed within 8 d and precipitated as hausmannite. When Cr(OH)₃(s) was present, this solid was oxidized and released substantial amounts of Cr(VI) as dissolved Mn(II) was added into the suspension at pH ≥ 8.0 under oxic conditions. Our results suggest that Cr(OH)₃(s) was readily oxidized by a newly formed Mn oxide as a result of Mn(II) oxidation catalyzed on Cr(OH)₃(s) surface. XANES analysis of the residual solids after the reaction between 1.0 g/L Cr(OH)₃(s) and 204 μM Mn(II) at pH 9.0 for 22 d revealed that the product of surface catalyzed Mn(II) oxidation resembled birnessite. The rate and extent of Cr(OH)₃(s) oxidation was likely controlled by those of surface catalyzed Mn(II) oxidation as the production of Cr(VI) increased with increasing pH and initial Mn(II) concentrations. This study evokes the potential environmental hazard of sparingly soluble Cr(OH)₃(s) that can be a source of Cr(VI) in the presence of dissolved Mn(II).

  20. Preparation and characterization of Mn and (Mn, Cu) co-doped ZnO nanostructures.

    PubMed

    Wang, H B; Wang, H; Zhang, C; Yang, F J; Duan, J X; Yang, C P; Gu, H S; Zhou, M J; Li, Q; Jiang, Y

    2009-05-01

    We report on the ferromagnetic characteristics of Zn(1-x)Mn(x)O nanorods synthesized by a seed-mediated solution method. The as-doped ZnO nanorods had a length about 200 nm and a diameter ranging from 20 to 30 nm. Magnetic property measurements revealed that the Zn(1-x)Mn(x)O nanorods exhibited weak ferromagnetism at 305 K. Similar solution method were also employed to fabricate the (Mn, Cu) co-doped nanostructures. The presence of Cu2+ was found to change the nanorod morphology (in the case of pure ZnO) to nanoparticle. On the other hand, not only the hysteresis curve saturated at lower magnetic field, but also the saturation magnetization was increased with the Cu doping. Transmission electron microscopy, X-ray photoelectron spectroscopy and Photoluminescence analysis suggested that the room temperature (RT) ferromagnetism could be originated from the Mn2+ doped into the ZnO lattice, and additional carriers due to the Cu co-doping may enhance the room temperature ferromagnetism in the Mn:ZnO system.

  1. Glassy dynamics in CuMn thin-film multilayers

    NASA Astrophysics Data System (ADS)

    Zhai, Qiang; Harrison, David C.; Tennant, Daniel; Dalhberg, E. Dan; Kenning, Gregory G.; Orbach, Raymond L.

    2017-02-01

    Thin-film multilayered spin-glass CuMn/Cu structures display glassy dynamics. The freezing temperature Tf was measured for 40 layers of CuMn films of thickness L =4.5 ,9.0 , and 20.0 nm, sandwiched between nonmagnetic Cu layers of thickness ≈60 nm. The Kenning effect, Tf∝lnL , is shown to follow from power-law dynamics where the correlation length grows from nucleation as ξ (t ,T ) =c1a0(t/τ0) c2(T /Tg) , leading to [(Tf/Tg) c2ln(tco/τ0) ] +lnc1=ln(L /a0) . Here, Tg is the bulk spin-glass temperature, c1 and c2 are constants determined from the spin-glass dynamics, tco is the time for the correlation length to grow to the film thickness, τ0 is a characteristic exchange time ≈ℏ /kBTg , and a0 is the average Mn-Mn separation. For t ≥tco , the magnetization dynamics are simple activated, with a single activation energy Δmax(L ) /kBTg=(1 /c2) [ln(L /a0) -lnc1] that does not change with time. Values for all these parameters are found for the three values of L explored in these measurements. We find experimentally Δmax(L ) /kB =907 , 1246, and 1650 K, respectively, for the three CuMn thin-film multilayer thicknesses, consistent with power-law dynamics. We perform a similar analysis based on the activated dynamics of the droplet model and find a much larger spread for Δmax(L ) than found experimentally.

  2. Calorimetric Investigation of Thermal Stability of 304H Cu (Fe-17.7Cr-9.3Ni-2.95Cu-0.91Mn-0.58Nb-0.24Si-0.1C-0.12N-Wt Pct) Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Tripathy, Haraprasanna; Subramanian, Raju; Hajra, Raj Narayan; Rai, Arun Kumar; Rengachari, Mythili; Saibaba, Saroja; Jayakumar, Tammana

    2016-12-01

    The sequence of phase instabilities that take place in a Fe-17.7Cr-9.3Ni-0.58Nb-2.95Cu-0.12N (wt pct) austenitic stainless steel (304H Cu grade) as a function of temperature has been investigated using dynamic calorimetry. The results obtained from this investigation are supplemented by Thermocalc-based equilibrium and Scheil-Gulliver nonequilibrium solidification simulation. The following phase transformation sequence is found upon slow cooling from liquid: L → L + γ → L + γ + MX → γ + MX + δ → γ +MX + M23C6 → γ + MX + M23C6 + Cu. Under slow cooling, the solidification follows austenite + ferrite (AF) mode, which is in accordance with Thermocalc prediction and Scheil-Gulliver simulation. However, higher cooling rates result in skeletal δ-ferrite formation, due to increased segregation tendency of Nb and Cr to segregate to interdendritic liquid. The solidification mode is found to depend on combined Nb + Cu content. Experimental estimates of enthalpy change associated with melting and secondary phase precipitation are also obtained. In addition a semi-quantitative study on the dissolution kinetics of M23C6 type carbides has also been investigated. The standard solution treatment at 1413 K (1140 °C) is found to be adequate to dissolve both Cu and M23C6 into γ-austenite; but the complete dissolution of MX type carbonitrides occurs near the melting region.

  3. Structural Investigations of Nanocrystalline Cu-Cr-Mo Alloy Prepared by High-Energy Ball Milling

    NASA Astrophysics Data System (ADS)

    Kumar, Avanish; Pradhan, Sunil Kumar; Jayasankar, Kalidoss; Debata, Mayadhar; Sharma, Rajendra Kumar; Mandal, Animesh

    2017-02-01

    Cu-Cr-Mo alloy could be a suitable candidate material for collector electrodes in high-power microwave tube devices. An attempt has been made to synthesize ternary Cu-Cr-Mo alloys by mechanical alloying of elemental Cu, Cr, and Mo powders, to extend the solid solubility of Cr and Mo in Cu, using a commercial planetary ball mill. For the first ternary alloy, a mixture of 80 wt.% Cu, 10 wt.% Cr, and 10 wt.% Mo was mechanically milled for 50 h. For the second ternary alloy, a mixture of 50 wt.% Cr and 50 wt.% Mo was mechanically milled for 50 h to obtain nanocrystalline Cr(Mo) alloy, which was later added to Cu powder and milled for 40 h to obtain Cu-20 wt.%Cr(Mo) alloy. Both nanocrystalline Cu-Cr-Mo ternary alloys exhibited crystallite size below 20 nm. It was concluded that, with addition of nanocrystalline Cr(Mo) to Cu, it was possible to extend the solid solubility of Cr and Mo in Cu, which otherwise was not possible by mechanical alloying of elemental powders. The resulting microstructure of the Cu-20 wt.%Cr(Mo) alloy comprised a homogeneous distribution of fine and hard (Cr, Mo) particles in a copper matrix. Furthermore, Cu-20 wt.%Cr(Mo) alloy showed better densification compared with Cu-10 wt.%Cr-10 wt.%Mo alloy.

  4. Electrochemical Behavior of Ion-Plated TiN and Cu-Cr Coatings

    DTIC Science & Technology

    1993-09-01

    results show that Cu-Cr alloys containing up to about 25 atomic percent CR consist of single phase FCC structure . The alloys containing more than 60...19), curve 4 for CuCr(40), and curve 5 for Cu-Cr(85)]. Note that Curves 1, 2, and 3 are from FCC structure , curve 4 from dual-phase structure, and

  5. Microstructures and mechanical properties of sputtered Cu/Cr multilayers

    SciTech Connect

    Misra, A.; Kung, H.; Mitchell, T.E.; Jervis, T.R.; Nastasi, M.

    1998-03-01

    The microstructures and mechanical properties of Cu/Cr multilayers prepared by sputtering onto {l_brace}100{r_brace} Si substrates at room temperature are presented. The films exhibit columnar grain microstructures with nanoscale grain sizes. The interfaces are planar and abrupt with no intermixing, as expected from the phase diagram. The multilayers tend to adopt a Kurdjumov-Sachs (KS) orientation relationship: {l_brace}110{r_brace}Cr // {l_brace}111{r_brace}Cu, <111>Cr // <110>Cu. The hardness of the multilayered structures, as measured by nanoindentation, increase with decreasing layer thickness for layer thicknesses ranging from 200 nm to 50 nm, whereas for lower thicknesses the hardness of the multilayers is independent of the layer thickness. Dislocation-based models are used to interpret the variation of hardness with layer periodicity. The possible effects of factors such as grain size within the layers, density and composition of films and residual stress in the multilayers are highlighted. Comparisons are made to the mechanical properties of sputtered polycrystalline Cu/Nb multilayers which, like Cu/Cr, exhibit sharp fcc/bcc interfaces with no intermixing and a KS orientation relationship, but have a small shear modulus mismatch.

  6. Role of Cu-Ion Doping in Cu-α-MnO2 Nanowire Electrocatalysts for the Oxygen Reduction Reaction

    DOE PAGES

    Davis, Danae J.; Lambert, Timothy N.; Vigil, Julian A.; ...

    2014-07-09

    The role of Cu-ion doping in α-MnO2 electrocatalysts for the oxygen reduction reaction in alkaline electrolyte was investigated. Copper doped α-MnO2 nanowires (Cu-α-MnO2) were prepared with varying amounts of Cu2+ using a solvothermal method. The electrocatalytic dataindicates that Cu-α-MnO2 nanowires have higher terminal current densities, enhanced kinetic rate constants, and improved charge transfer resistances that trend with Cu-content, exceeding values attained by α-MnO2 alone. The observed improvement in catalytic behavior correlates with an increase in Mn3+ content for the Cu-α-MnO2 nanowires. The Mn3+/Mn4+ couple is themediator for the rate-limiting redox driven O2-/OH- exchange. It is proposed that O2 adsorbs viaanmore » axial site (the eg orbital on the Mn3+ d4 ion) at the surface, or at edge defects, of the nanowireand that the increase in covalent nature of the nanowire with Cu-ion doping leads to stabilization of O2 adsorbates and faster rates of reduction. This work is applicable to other manganese oxide electrocatalysts and shows for the first time there is a correlation for manganese oxides between electrocatalytic activity for the ORR in alkaline electrolyte and an increase in Mn3+ character of the oxide.« less

  7. Mn-Cr intersite independent magnetic behavior and electronic structures of LaMn3Cr4O12: Study from first-principles

    NASA Astrophysics Data System (ADS)

    Lv, Shuhui; Li, Hongping; Liu, Xiaojuan; Meng, Jian

    2011-07-01

    The magnetic and electronic structures of LaMn3Cr4O12 are investigated using the full-potential linearized augmented plane wave method within both the generalized gradient approximation (GGA) and GGA + U (electronic correlation) methods. The calculated results indicate that LaMn3Cr4O12 is an antiferromagnetic insulator. The magnetic ordering is demonstrated to be G-type within both Mn-site and Cr-site spins. However, there is no obvious magnetic coupling between Mn-site and Cr-site sublattices, which is verified by the separate distribution of their corresponding partial density of states. Moreover, the magnetic coupling constants of JCr-Cr and JMn-Mn are predicted to be - 5.0 (- 2.8) and - 0.83 (- 0.63) meV within GGA (GGA + U), respectively, consistent with the experimentally observed two independent Néel temperatures (TN1 and TN2). The calculated densities of states reveal the experimentally reported charge formula of LaMn3+3Cr3+4O12.

  8. Manufacturing and High Heat Flux Testing of Brazed Flat-Type W/CuCrZr Plasma Facing Components

    NASA Astrophysics Data System (ADS)

    Lian, Youyun; Liu, Xiang; Feng, Fan; Chen, Lei; Cheng, Zhengkui; Wang, Jin; Chen, Jiming

    2016-02-01

    Water-cooled flat-type W/CuCrZr plasma facing components with an interlayer of oxygen-free copper (OFC) have been developed by using vacuum brazing route. The OFC layer for the accommodation of thermal stresses was cast onto the surface of W at a temperature range of 1150 °C-1200 °C in a vacuum furnace. The W/OFC cast tiles were vacuum brazed to a CuCrZr heat sink at 940 °C using the silver-free filler material CuMnSiCr. The microstructure, bonding strength, and high heat flux properties of the brazed W/CuCrZr joint samples were investigated. The W/Cu joint exhibits an average tensile strength of 134 MPa, which is about the same strength as pure annealed copper. High heat flux tests were performed in the electron beam facility EMS-60. Experimental results indicated that the brazed W/CuCrZr mock-up experienced screening tests of up to 15 MW/m2 and cyclic tests of 9 MW/m2 for 1000 cycles without visible damage. supported by National Natural Science Foundation of China (No. 11205049) and the National Magnetic Confinement Fusion Science Program of China (No. 2011GB110004)

  9. Novel CuCr2O4 embedded CuO nanocomposites for efficient photodegradation of organic dyes

    NASA Astrophysics Data System (ADS)

    Mageshwari, K.; Sathyamoorthy, R.; Lee, Jeong Yong; Park, Jinsub

    2015-10-01

    Novel photocatalyst based on CuO-CuCr2O4 nanocomposites was synthesized for different Cr3+ concentration by reflux condensation method, and their photocatalytic activity was evaluated by monitoring the photodegradation of methyl orange (MO) and methylene blue dyes (MB) under UV light irradiation. Phase evolution by X-ray diffraction showed monoclinic CuO and tetragonal CuCr2O4 as the components of the prepared nanocomposites. Morphological analysis by scanning electron microscope and transmission electron microscope revealed that the incorporation of Cr3+ in CuO lattice alters the morphology of CuO from microsphere to cluster shape. Photoluminescence spectra of CuO-CuCr2O4 nanocomposites exhibited reduced PL emissions compared to pure CuO, indicating the low recombination rate of photogenerated electrons and holes. As expected, the CuCr2O4 loaded CuO showed enhanced photocatalytic activity for MO and MB dyes, and the kinetic studies suggest that the degradation follows pseudo-first-order kinetics. The enhanced photocatalytic activity of CuO-CuCr2O4 nanocomposites can be attributed to the presence of CuCr2O4 as an electron acceptor, which improves the effective charge separation in CuO.

  10. Mn-Cr systematics in primitive meteorites: Insights from mineral separation and partial dissolution

    NASA Astrophysics Data System (ADS)

    Göpel, Christa; Birck, Jean-Louis; Galy, Albert; Barrat, Jean-Alix; Zanda, Brigitte

    2015-05-01

    Cr isotopic compositions have been measured on carbonaceous chondrites (CC): Tafassasset, Paris, Niger I, NWA 5958, NWA 8157 and Jbilet Winselwan. In bulk samples, the 54Cr/52Cr ratios (expressed as ε54Cr) range from 0.93 to 1.58 ε units. These values are in agreement with values characteristic for distinct petrologic types. Despite this 54Cr heterogeneity, the variability in the 53Cr/52Cr ratios (expressed as ε53Cr) of 0.2 ε units and the Mn/Cr ratios is consistent with the previous finding of an isochron in the Mn-Cr evolution diagram. The Mn/Cr ratio in CC corresponds to variable abundances of high-T condensate formed and separated at the beginning of the solar system, thus the canonical 53Mn/55Mn ratio can be defined. Based on a consistent chronology for U-Pb and Mn-Cr between the earliest objects formed in the solar nebula and the D'Orbigny angrite we define a canonical 53Mn/55Mn ratio and ε53Cri of 6.8 × 10-6 and -0.177, respectively. The internal Mn/Cr systematics in Tafassasset and Paris were studied by two approaches: leaching technique and mineral separation. Despite variable ε54Cr values (up to >30 ε) linear co-variations were found between ε53Cr and Mn/Cr ratio. The mineral separates as well as the leachates of Tafassasset fall on a common isochron indicating that (1) cooling of the Tafassasset's parent body occurred at 4563.5 ± 0.25 Ma, and that (2) 54Cr is decoupled from the other isotopes even though temperatures >900 °C have been reached during metamorphism. In the case of Paris, the leachates form an alignment with a 53Mn/55Mn ratio higher than the canonical value. This alignment is not an isochron but rather a mixing line. Based on leachates from various CM and CI, we propose the occurrence of three distinct Cr reservoirs in meteoritic material: PURE54, HIGH53 and LOW53 characterized by a ε53Cr and ε54Cr of 0 and 25,000, -2.17 and 8, and 0.5 and -151, respectively. PURE54 has already been described and is carried by highly refractory

  11. Magnetic resonance in a gallium-doped Cu-Cr-S structure

    NASA Astrophysics Data System (ADS)

    Vorotynov, A. M.; Pankrats, A. I.; Abramova, G. M.; Velikanov, D. A.; Bovina, A. F.; Sokolov, V. V.; Filatova, I. Yu.

    2016-04-01

    A layered Cu-Cr-S structure doped with Ga ions and consisting of single-crystal CuCrS2 layers, embedded with thin plates of spinel phases CuCr2S4 and CuGa x Cr2- x S4, has been studied using the magnetic resonance and magnetic susceptibility methods. The Curie temperature and the saturation magnetization of the spinel phases of the samples have been determined. The spinel phase layer thickness has been estimated.

  12. How Deep and Hot was Earth's Magma Ocean? Combined Experimental Datasets for the Metal-silicate Partitioning of 11 Siderophile Elements - Ni, Co, Mo, W, P, Mn, V, Cr, Ga, Cu and Pd

    NASA Technical Reports Server (NTRS)

    Righter, Kevin

    2008-01-01

    variable oxygen fugacity. Preliminary results confirm that D(Ni) and D(Co) converge at pressures near 25-30 GPa and approximately 2200 K, and show that D(Pd) and D(Cu) become too low at the PT conditions of the deepest models. Furthermore, models which force fit V and Cr mantle concentrations by metal-silicate equilibrium overlook the fact that at early Earth mantle fO2, these elements will be more compatible in Mg-perovskite and (Fe,Mg)O than in metal. Thus an intermediate depth magma ocean, at 25-30 GPa, 2200 K, and at IW-2, can explain more mantle siderophile element concentrations than other models.

  13. Mechanical and Thermal Properties of Two Cu-Cr-Nb Alloys and NARloy-Z

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Michal, Gary M.

    1996-01-01

    A series of creep tests were conducted on Cu-8 Cr-4 Nb (Cu-8 at.% Cr-4 at.% Nb), Cu-4 Cr-2 Nb (Cu-4 at.% Cr-2 at% Nb), and NARloy-Z (Cu-3 wt.% Ag-0.5 wt.% Zr) samples to determine their creep properties. In addition, a limited number of low cycle fatigue and thermal conductivity tests were conducted. The Cu-Cr-Nb alloys showed a clear advantage in creep life and sustainable load over the currently used NARloy-Z. Increases in life at a given stress were between 100% and 250% greater for the Cu-Cr-Nb alloys depending on the stress and temperature. For a given life, the Cu-Cr-Nb alloys could support a stress between 60% and 160% greater than NARloy-Z. Low cycle fatigue lives of the Cu-8 Cr-4 Nb alloy were equivalent to NARloy-Z at room temperature. At elevated temperatures (538 C and 650 C), the fatigue lives were 50% to 200% longer than NARloy-Z samples tested at 538 C. The thermal conductivities of the Cu-Cr-Nb alloys remained high, but were lower than NARloy-Z and pure Cu. The Cu-Cr-Nb thermal conductivities were between 72% and 96% that of pure Cu with the Cu-4 Cr-2 Nb alloy having a significant advantage in thermal conductivity over Cu-8 Cr4 Nb. In comparison, stainless steels with equivalent strengths would have thermal conductivities less than 25% the thermal conductivity of pure Cu. The combined results indicate that the Cu-Cr-Nb alloys offer an attractive alternative to current high temperature Cu-based alloys such as NARloy-Z.

  14. Eutectic equilibria in the quaternary system Fe-Cr-Mn-C

    NASA Technical Reports Server (NTRS)

    Nowotny, H.; Wayne, S.; Schuster, J. C.

    1982-01-01

    The constitution of the quaternary system, Fe-Cr-Mn-C and to a lesser extent of the quinary system, Fe-Cr-Mn-Al-C were examined for in situ composite alloy candidates. Multivariant eutectic compositions were determined from phase equilibria studies wherein M7C3 carbides (approximately 30% by volume) formed from the melt within gamma iron. An extended field of the hexagonal carbide, (Cr, Fe, Mn)7 C3, was found without undergoing transformation to the orthorhombic structure. Increasing stability for this carbide was found for higher ratios of Cr/Fe(+) Cr + Mn. Aluminum additions promoted a ferritic matrix while manganese favored the desired gamma austenitic matrix. In coexistence with the matrix phase, chromium enters preferentially the carbide phase while manganese distributes equally between the gamma matrix and the M7C3 carbide. The composition and lattice parameters of the carbide and matrix phases were determined to establish their respective stabilities.

  15. Geochemistry and crystallochemistry of oceanic hydrothermal manganese oxyhydroxides showing Mn-Cu association

    SciTech Connect

    Stouff, P.; Boulegue, J. )

    1989-04-01

    Hydrothermal iron and manganese oxides have been found in association with sulfides dredged on the E.P.R. near 7{degree}N. The Mn phase, mainly a 10-7 {angstrom} phyllomanganate, presents a very important enrichment in Cu (up to 30% as weight of oxide). The Fe phase, mainly hydro-goethite, has a very low content of metals of economic interest. Also Mn-Cu oxide particles have been collected in sediment traps near the hydrothermal vents at 13{degree}N. Using the Mn oxide samples of 7{degree}N, Cu shows two simultaneous oxidation states: +I and +II (ESCA and XAS edge measurements). Cu is adsorbed on the Mn(O,OH){sub 2} layers and partially belongs to the water layers (EXAFS results). This seems to be the first report of naturally occurring Cu-buserite in this environment. Lead isotope abundances, the presence of Cu(I), thermodynamic considerations on the stability of the Mn-Cu oxyhydroxides and unsuccessful attempts made with synthetic 10-7 {angstrom} phyllomanganates (buserite and birnessite types) at low temperature in order to stabilize Cu(I) and incorporate it in the interlamellar space of the manganate, lead the authors to accept a high temperature origin for the formation of the Mn-Cu oxyhydroxides. They present a transport model for Cu and Mn precipitation from oceanic hydrothermal fluid, to explain the formation of Mn-Cu oxyhydroxides.

  16. High temperature coarsening of Cr2Nb precipitates in Cu-8 Cr-4 Nb alloy

    NASA Technical Reports Server (NTRS)

    Anderson, Kenneth Reed

    1996-01-01

    A new high-temperature-strength, high-conductivity Cu-Cr-Nb alloy with a CrNb ratio of 2:1 was developed to achieve improved performance and durability. The Cu-8 Cr4 Nb alloy studied has demonstrated remarkable thermal and microstructural stability after long exposures at temperatures up to 0.98 T(sub m). This stability was mainly attributed to the slow coarsening kinetics of the Cr2Nb precipitates present in the alloy. At all temperatures, the microstructure consists of a bimodal and sometimes trimodal distribution of strengthening Cr2Nb precipitates, depending on precipitation condition, i.e. from liquid or solid solution, and cooling rates. These precipitates remain in the same size range, i.e. large precipitates of approximately I pm, and small precipitates less dm 300 nm, and effectively pin the grain boundaries thus retaining a fine grain size of 2.7 micro-m after 100 h at 1323 K. (A relatively small number of Cr-rich and Nb-rich particles were also present.) This grain boundary pinning and sluggish coarsening of Cr2Nb particles explain the retention of good mechanical properties after prolonged holding at very high temperatures, e.g., 75% of the original hardness after aging for 100 h at 1273 K. Application of LSW-based coarsening models indicated that the coarsening kinetics of the large precipitates are most likely governed by grain boundary diffsion and, to a lesser extent, volume diffusion mechanisms.

  17. Scrutinizing Al-like 10+51V, 11+53Cr, 12+55Mn, 13+57Fe, 14+59Co, 15+61Ni, and 16+63Cu 1ions for atomic clocks with uncertainties below the 10-19 level

    NASA Astrophysics Data System (ADS)

    Yu, Yan-mei; Sahoo, B. K.

    2016-12-01

    We investigate the transition between the fine structure levels of the ground state, 3 p 2P1 /2→3 p 2P3 /2 , of the highly charged Al-like 10+51V, 11+53Cr, 12+55Mn, 13+57Fe, 14+59Co, 15+61Ni, and 16+63Cu ions for frequency standards. To comprehend them as prospective atomic clocks, we determine their transition wavelengths, quality factors, and various plausible systematics during the measurements. Since most of these ions have nuclear spin I =3 /2 , uncertainties due to dominant quadrupole shifts can be evaded in the F =0 hyperfine level of the 3 p 2P3 /2 state. Other dominant systematics such as quadratic Stark and black-body radiation shifts have been evaluated precisely demonstrating the feasibility of achieving high accuracy, below 10-19 fractional uncertainty, atomic clocks using the above transitions. Moreover, relativistic sensitivity coefficients are determined to find out the aptness of these proposed clocks to investigate possible temporal variation of the fine structure constant. To carry out these analysis, a relativistic coupled-cluster method considering Dirac-Coulomb-Breit Hamiltonian along with lower-order quantum electrodynamics interactions is employed and many spectroscopic properties are evaluated. These properties are also of immense interest for astrophysical studies.

  18. Creep and Oxidation Behavior of Modified CF8C-Plus with W, Cu, Ni, and Cr

    NASA Astrophysics Data System (ADS)

    Unocic, Kinga A.; Dryepondt, Sebastien; Yamamoto, Yukinori; Maziasz, Philip J.

    2016-04-01

    The microstructures of modified CF8C-Plus (Fe-19Cr-12Ni-0.4W-3.8Mn-0.2Mo-0.6Nb-0.5Si-0.9C) with W and Cu (CF8CPWCu) and CF8CPWCu enhanced with 21Cr + 15Ni or 22Cr + 17.5Ni were characterized in the as-cast condition and after creep testing. When imaged at lower magnifications, the as-cast microstructure was similar among all three alloys as they all contained a Nb-rich interdendritic phase and Mn-based inclusions. Transmission electron microscopy (TEM) analysis showed the presence of nanoscale Cu-rich nanoprecipitates distributed uniformly throughout the matrix of CF8CPWCu, whereas in CF8CPWCu22/17, Cu precipitates were found primarily at the grain boundaries. The presence of these nanoscale Cu-rich particles, in addition to W-rich Cr23C6, nanoscale Nb carbides, and Z-phase (Nb2Cr2N2), improved the creep strength of the CF8CPWCu steel. Modification of CF8CPWCu with Cr and Ni contents slightly decreased the creep strength but significantly improved the oxidation behavior at 1073 K (800 °C). In particular, the addition of 22Cr and 17.5Ni strongly enhanced the oxidation resistance of the stainless steel resulting in a 100 degrees or greater temperature improvement, and this composition provided the best balance between improving both mechanical properties and oxidation resistance.

  19. Creep and oxidation behavior of modified CF8C-plus with W, Cu, Ni, and Cr

    SciTech Connect

    Unocic, Kinga A.; Dryepondt, Sebastien N.; Yamamoto, Yukinori; Maziasz, Philip J.

    2016-02-01

    Here, the microstructures of modified CF8C-Plus (Fe-19Cr-12Ni-0.4W-3.8Mn-0.2Mo-0.6Nb-0.5Si-0.9C) with W and Cu (CF8CPWCu) and CF8CPWCu enhanced with 21Cr + 15Ni or 22Cr + 17.5Ni were characterized in the as-cast condition and after creep testing. When imaged at lower magnifications, the as-cast microstructure was similar among all three alloys as they all contained a Nb-rich interdendritic phase and Mn-based inclusions. Transmission electron microscopy (TEM) analysis showed the presence of nanoscale Cu-rich nanoprecipitates distributed uniformly throughout the matrix of CF8CPWCu, whereas in CF8CPWCu22/17, Cu precipitates were found primarily at the grain boundaries. The presence of these nanoscale Cu-rich particles, in addition to W-rich Cr23C6, nanoscale Nb carbides, and Z-phase (Nb2Cr2N2), improved the creep strength of the CF8CPWCu steel. Modification of CF8CPWCu with Cr and Ni contents slightly decreased the creep strength but significantly improved the oxidation behavior at 1073 K (800 °C). In particular, the addition of 22Cr and 17.5Ni strongly enhanced the oxidation resistance of the stainless steel resulting in a 100 degrees or greater temperature improvement, and this composition provided the best balance between improving both mechanical properties and oxidation resistance.

  20. Creep and oxidation behavior of modified CF8C-plus with W, Cu, Ni, and Cr

    DOE PAGES

    Unocic, Kinga A.; Dryepondt, Sebastien N.; Yamamoto, Yukinori; ...

    2016-02-01

    Here, the microstructures of modified CF8C-Plus (Fe-19Cr-12Ni-0.4W-3.8Mn-0.2Mo-0.6Nb-0.5Si-0.9C) with W and Cu (CF8CPWCu) and CF8CPWCu enhanced with 21Cr + 15Ni or 22Cr + 17.5Ni were characterized in the as-cast condition and after creep testing. When imaged at lower magnifications, the as-cast microstructure was similar among all three alloys as they all contained a Nb-rich interdendritic phase and Mn-based inclusions. Transmission electron microscopy (TEM) analysis showed the presence of nanoscale Cu-rich nanoprecipitates distributed uniformly throughout the matrix of CF8CPWCu, whereas in CF8CPWCu22/17, Cu precipitates were found primarily at the grain boundaries. The presence of these nanoscale Cu-rich particles, in addition to W-richmore » Cr23C6, nanoscale Nb carbides, and Z-phase (Nb2Cr2N2), improved the creep strength of the CF8CPWCu steel. Modification of CF8CPWCu with Cr and Ni contents slightly decreased the creep strength but significantly improved the oxidation behavior at 1073 K (800 °C). In particular, the addition of 22Cr and 17.5Ni strongly enhanced the oxidation resistance of the stainless steel resulting in a 100 degrees or greater temperature improvement, and this composition provided the best balance between improving both mechanical properties and oxidation resistance.« less

  1. 53Mn-53Cr radiometric dating of secondary carbonates in CR chondrites: Timescales for parent body aqueous alteration

    NASA Astrophysics Data System (ADS)

    Jilly-Rehak, Christine E.; Huss, Gary R.; Nagashima, Kazuhide

    2017-03-01

    We present 53Mn-53Cr ages of secondary carbonates in Renazzo-like (CR) chondrites, determined by secondary ion mass spectrometry. The timing of aqueous alteration in CR chondrites has been unconstrained in the literature. We measured 53Mn-53Cr isotope systematics in carbonates from three different CR-chondrite lithologies. Calcite in the interchondrule matrix of Renazzo, calcite in the matrix of GRO 95577, and dolomite in a dark inclusion of Renazzo all show excesses in 53Cr, interpreted as the daughter product from the decay of 53Mn. The Renazzo calcite yields an initial ratio of (53Mn/55Mn)0 = (3.6 ± 2.7) × 10-6, and the Renazzo dark inclusion dolomite ranges from (53Mn/55Mn)0 = (3.1 ± 1.4) × 10-6 (corrected to the RSF of a calcite standard) to (3.7 ± 1.7) × 10-6 (corrected to an inferred dolomite RSF). When anchored to the D'Orbigny angrite, the Renazzo carbonates yield ages between 4563.6 and 4562.6 Ma, or ∼4.3-5.3 Myr after the formation of CV CAIs. Calcite measured in the heavily altered specimen GRO 95577 yields a shallower slope of (53Mn/55Mn)0 = (7.9 ± 2.8) × 10-7, corresponding to a much younger age of 4555.4 Ma, or ∼12.6 Myr after CAI formation. The two Renazzo ages are contemporaneous with Mn-Cr ages of carbonates in Tagish Lake, CI, and CM chondrites, but the GRO 95577 age is uniquely young. These findings suggest that early aqueous alteration on chondritic parent bodies was a common occurrence, likely driven by internal heating from 26Al decay after accretion. The young carbonate ages of GRO 95577 suggest that either the CR parent body was sufficiently large to sustain heating from 26Al for ∼8 Myr, or that late-stage impact events supplied heat to the region where GRO 95577 originated.

  2. Oxidation of CoCrFeMnNi High Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Holcomb, Gordon R.; Tylczak, Joseph; Carney, Casey

    2015-06-01

    Eight model high entropy alloys (HEAs) in the CoCrFeMnNi family (including one alloy each in the CoCrFeNi and CoFeMnNi subfamilies) were made, prepared, and exposed to laboratory air for 1100 h at 650°C and 750°C. Two commercial alloys, nickel-base superalloy 230 (N06230) and austenitic stainless steel 304H (S30409), were simultaneously exposed for comparison. Mass change oxidation kinetics were measured and cross-sections of exposed samples were observed. Seven of these HEAs contained much more Mn (12-24 wt.%) than is found in commercial heat-resistant stainless steels and superalloys. The oxidation resistance of CoCrFeNi was excellent and comparable to 304H at 650°C and only slightly worse at 750°C. The thin oxide scale on CoCrFeNi was primarily Cr oxide (presumably Cr2O3) with some Mn oxide at the outer part of the scale. The CoCrFeMnNi HEAs all experienced more rapid oxidation than CoCrFeNi and, especially at 750°C, experienced oxide scale spallation. The addition of Y in the alloy to lower S improved the oxidation resistance of these HEAs. Alloy CoFeMnNi, without Cr, experienced much higher oxidation rates and scale spallation than the Cr-containing alloys. A linear regression analysis of the log of the parabolic rate constant, log(kp), as functions of wt.% Cr and Mn found a good correlation for the compositional dependence of the oxidation rate constant, especially at 650°C. Mn was found to be more detrimental increasing log(k p) than Cr was helpful reducing log(k p). If CoCrFeMnNi HEAs are to be used in high temperature oxidizing environments, then examining lower levels of Mn, while maintaining Cr levels, should be pursued.

  3. Elastocaloric effect in CuAlZn and CuAlMn shape memory alloys under compression.

    PubMed

    Qian, Suxin; Geng, Yunlong; Wang, Yi; Pillsbury, Thomas E; Hada, Yoshiharu; Yamaguchi, Yuki; Fujimoto, Kenjiro; Hwang, Yunho; Radermacher, Reinhard; Cui, Jun; Yuki, Yoji; Toyotake, Koutaro; Takeuchi, Ichiro

    2016-08-13

    This paper reports the elastocaloric effect of two Cu-based shape memory alloys: Cu68Al16Zn16 (CuAlZn) and Cu73Al15Mn12 (CuAlMn), under compression at ambient temperature. The compression tests were conducted at two different rates to approach isothermal and adiabatic conditions. Upon unloading at a strain rate of 0.1 s(-1) (adiabatic condition) from 4% strain, the highest adiabatic temperature changes (ΔTad) of 4.0 K for CuAlZn and 3.9 K for CuAlMn were obtained. The maximum stress and hysteresis at each strain were compared. The stress at the maximum recoverable strain of 4.0% for CuAlMn was 120 MPa, which is 70% smaller than that of CuAlZn. A smaller hysteresis for the CuAlMn alloy was also obtained, about 70% less compared with the CuAlZn alloy. The latent heat, determined by differential scanning calorimetry, was 4.3 J g(-1) for the CuAlZn alloy and 5.0 J g(-1) for the CuAlMn alloy. Potential coefficients of performance (COPmat) for these two alloys were calculated based on their physical properties of measured latent heat and hysteresis, and a COPmat of approximately 13.3 for CuAlMn was obtained.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'.

  4. Cu-Mn-Ce ternary mixed-oxide catalysts for catalytic combustion of toluene.

    PubMed

    Lu, Hanfeng; Kong, Xianxian; Huang, Haifeng; Zhou, Ying; Chen, Yinfei

    2015-06-01

    Cu-Mn, Cu-Mn-Ce, and Cu-Ce mixed-oxide catalysts were prepared by a citric acid sol-gel method and then characterized by XRD, BET, H2-TPR and XPS analyses. Their catalytic properties were investigated in the toluene combustion reaction. Results showed that the Cu-Mn-Ce ternary mixed-oxide catalyst with 1:2:4 mole ratios had the highest catalytic activity, and 99% toluene conversion was achieved at temperatures below 220°C. In the Cu-Mn-Ce catalyst, a portion of Cu and Mn species entered into the CeO2 fluorite lattice, which led to the formation of a ceria-based solid solution. Excess Cu and Mn oxides existed on the surface of the ceria-based solid solution. The coexistence of Cu-Mn mixed oxides and the ceria-based solid solution resulted in a better synergetic interaction than the Cu-Mn and Cu-Ce catalysts, which promoted catalyst reducibility, increased oxygen mobility, and enhanced the formation of abundant active oxygen species.

  5. In-beam mechanical testing of CuCrZr

    NASA Astrophysics Data System (ADS)

    Marmy, P.

    2004-08-01

    In the ITER design, CuCrZr has been selected as the heat sink material for components of the first wall and the divertor. The objective of this work is to check the material fatigue performance when the CuCrZr alloy is cyclically deformed concurrently with irradiation, using an in situ testing machine placed in a 590 MeV proton accelerator. Three fatigue experiments have been conducted at 100 °C, under strain control, at a total strain range of 0.8%. The in-beam specimen reached the longest life. The post-irradiation tested specimen had the shortest life. The total plastic strain measured in the in-beam specimen was larger than the plastic strain measured in the statically irradiated specimen or in the unirradiated specimen.

  6. Mn-Fe base and Mn-Cr-Fe base austenitic alloys

    DOEpatents

    Brager, Howard R.; Garner, Francis A.

    1987-01-01

    Manganese-iron base and manganese-chromium-iron base austenitic alloys designed to have resistance to neutron irradiation induced swelling and low activation have the following compositions (in weight percent): 20 to 40 Mn; up to about 15 Cr; about 0.4 to about 3.0 Si; an austenite stabilizing element selected from C and N, alone or in combination with each other, and in an amount effective to substantially stabilize the austenite phase, but less than about 0.7 C, and less than about 0.3 N; up to about 2.5 V; up to about 0.1 P; up to about 0.01 B; up to about 3.0 Al; up to about 0.5 Ni; up to about 2.0 W; up to about 1.0 Ti; up to about 1.0 Ta; and with the remainder of the alloy being essentially iron.

  7. Mn-Fe base and Mn-Cr-Fe base austenitic alloys

    DOEpatents

    Brager, Howard R.; Garner, Francis A.

    1987-09-01

    Manganese-iron base and manganese-chromium-iron base austenitic alloys designed to have resistance to neutron irradiation induced swelling and low activation have the following compositions (in weight percent): 20 to 40 Mn; up to about 15 Cr; about 0.4 to about 3.0 Si; an austenite stabilizing element selected from C and N, alone or in combination with each other, and in an amount effective to substantially stabilize the austenite phase, but less than about 0.7 C, and less than about 0.3 N; up to about 2.5 V; up to about 0.1 P; up to about 0.01 B; up to about 3.0 Al; up to about 0.5 Ni; up to about 2.0 W; up to about 1.0 Ti; up to about 1.0 Ta; and with the remainder of the alloy being essentially iron.

  8. Cr Isotope Variation in the Components of Unequilibrated Chondrite QUE 97008 (L3.05) and Implications for 53Mn-53Cr Dating of Unequilibrated Chondrites

    NASA Astrophysics Data System (ADS)

    Kadlag, Y.; Becker, H.

    2016-08-01

    In this study, we report Cr isotope variation in physically separated components of unequilibrated chondrite QUE 97008. Decoupling of 54Cr and 53Cr and Mn/Cr indicate the presence of at least two types of 54CR depleted and enriched carriers.

  9. Exchange bias effect in NiMnSb/CrN heterostructures deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Sharma Akkera, Harish; Barman, Rahul; Kaur, Navjot; Choudhary, Nitin; Kaur, Davinder

    2013-05-01

    Exchange bias has been studied in various Ni50Mn36.8Sb13.2/CrN heterostructures with different CrN thicknesses (15 nm-80 nm), grown on Si (100) substrate using magnetron sputtering. The shift in hysteresis loop up to 51 Oe from the origin was observed at 10 K for Ni-Mn-Sb film without CrN layer. On the other hand, a significant shifting of hysteresis loop was observed with antiferromagnetic (AFM) CrN layer in Ni50Mn36.8Sb13.2/CrN heterostructure. The exchange coupled 140 nm Ni50Mn36.8Sb13.2/35 nm CrN heterostructure exhibited a relatively large exchange coupling field of 148 Oe at 10 K compared to other films, which may be related to uncompensated and pinned AFM spins at FM-AFM interface and different AFM domain structures for different thicknesses of CrN layer. Further nanoindentation measurements revealed the higher values of hardness and elastic modulus of about 12.7 ± 0.38 GPa and 179.83 ± 1.24 GPa in Ni50Mn36.8Sb13.2/CrN heterostructures making them promising candidate for various multifunctional MEMS devices.

  10. Large enhancement of ferromagnetism by Cr doping in Mn3O4 nanowires

    NASA Astrophysics Data System (ADS)

    Li, GaoMin; Tang, XiaoBing; Lou, ShiYun; Zhou, ShaoMin

    2014-04-01

    The Mn3O4 nanostructures having low temperature Curie point (45 K) disqualify them for most practical applications. In this work, single-crystalline Cr-doped Mn3O4 nanowires with ferromagnetic Curie point at room temperature (305 K) have been investigated. Our experimental results show an increase in effective magnetic moment per gram as Cr3+ replaces Mn3+ and oxygen vacancies, which result in a transition from paramagnetic (Mn3O4) to ferromagnetic. The doped Cr3+ and oxygen vacancies reveal the remarkable ferromagnetic in Mn3-xCrxO4 nanowires may be ascribed to bound magnetic polarons model. Our experimental results suggest these obtained nanowires are promising nanoscale building blocks in spintronic devices.

  11. Ferromagnetism-dependent polytypism: CrAs versus MnAs

    NASA Astrophysics Data System (ADS)

    Benaissa, H.; Zaoui, A.; Ferhat, M.

    2016-12-01

    Density spin-polarized functional theory using pseudopotential plane wave method is used here to explore the structural and magnetic properties of 3C, 4H, 6H and 2H polytypes of transition metal arsenides: CrAs and MnAs. The results reveal that CrAs manifest weak dependence of the lattice parameter a and the c/a ratio versus hexagonality, but for MnAs, the lattice parameters display strong dependence on crystal polytype. Most importantly, our results show that the different crystal 3C, 4H, 6H and 2H polytypes exhibit significant distinct magnetism in CrAs and MnAs. While the total spin moments induced in CrAs is strongly independent of the crystal structure adopted, the ferromagnetism in MnAs is found sensitive to polytypism.

  12. First-principles study on the band structure, magnetic and elastic properties of half-metallic Cr2MnAl

    NASA Astrophysics Data System (ADS)

    Qi, Santao; Zhang, Chuan-Hui; Chen, Bao; Shen, Jiang

    2015-08-01

    In this study, we have investigated the structural, electronic, magnetic and elastic properties of the full-Heusler Cr2MnAl alloy in the framework of density functional theory with generalized gradient approximation (GGA). The calculated results showed that Cr2MnAl was stable in ferrimagnetic configuration and crystallized in the Hg2CuTi-type structure. From the band structure and density of states calculation results, we concluded that Cr2MnAl belongs to a kind of half-metallic compound with an indirect band gap of 0.37 eV. Immediately thereafter, we have analyzed the origin of half-metallic band gap. The total magnetic moment of Cr2MnAl at the stable state is - 2μB per formula unit, obeying the Slater-Pauling rule Mt = Zt - 24. In addition, various mechanical properties have been obtained and discussed based on the three principle elastic tensor elements C11,C12 and C44 for the first time in the present work. We expect that our calculated results may trigger the application of Cr2MnAl in future spintronics field.

  13. Preparation and Performance of Cu-Cr Contact Materials for Vacuum Switches with Low Contact Pressure

    NASA Astrophysics Data System (ADS)

    Chang, Yanli; Zheng, Wei; Zhou, Zhiming; Zhai, Yuxiang; Wang, Yaping

    2016-11-01

    Insufficient anti-welding properties limit the application of Cu-Cr contact material in vacuum switches with low contact pressure. The CuCr-W-C alloys that are prepared are for decreasing welding tendencies and keeping the voltage withstand by addition of W and C elements. It is found that the average welding force of CuCr-W-C alloys is reduced more than 50% compared with that of the Cu50 Cr50 alloy. Especially for CuCrW3.0C0.3 and CuCrW1.0C0.5, the welding forces reduce to only 10% of Cu50Cr50. Arc erosion areas of CuCr-W-C alloys are enlarged by five times more than that of the Cu50Cr50 alloy in the same arcing conditions. The results of type tests were qualified. The results suggested that the CuCrW2.0C1.0 alloy could be used in vacuum switches with low contact pressure to replace the W-Cu type contacts.

  14. Structure-activity relationship of CuO/MnO2 catalysts in CO oxidation

    NASA Astrophysics Data System (ADS)

    Qian, Kun; Qian, Zhaoxia; Hua, Qing; Jiang, Zhiquan; Huang, Weixin

    2013-05-01

    A series of CuO/MnO2 catalysts with different CuO loadings were synthesized by the incipient wetness impregnation method. The catalysts were characterized by N2 adsorption-desorption isotherms, powder X-ray diffraction, X-ray photoelectron spectroscopy, H2-temperature programmed reduction, CO-temperature programmed reduction and scanning electron microscope. The CuO/MnO2 catalysts with CuO loading of 1-40% exhibit almost the same catalytic performance toward CO oxidation while those with higher CuO loadings exhibit a much poorer catalytic activity. The structural characterization results demonstrate that the CuO-MnO2 interface is the active site for CO oxidation in CuO/MnO2 catalysts and CO oxidation over CuO/MnO2 probably follows the interfacial reaction mechanism in which CO chemisorbed on CuO reacts with oxygen species on MnO2 at the CuO-MnO2 interface.

  15. 53Mn-53Cr chronology of Ca-Fe silicates in CV3 chondrites

    NASA Astrophysics Data System (ADS)

    MacPherson, Glenn J.; Nagashima, Kazuhide; Krot, Alexander N.; Doyle, Patricia M.; Ivanova, Marina A.

    2017-03-01

    High precision secondary ion mass-spectrometry (SIMS) analyses of kirschsteinite (CaFeSiO4) in the reduced CV3 chondrites Vigarano and Efremovka yield well resolved 53Cr excesses that correlate with 55Mn/52Cr, demonstrating in situ decay of the extinct short-lived radionuclide 53Mn. To ensure proper correction for relative sensitivities between 55Mn+ and 52Cr+ ions, we synthesized kirschsteinite doped with Mn and Cr to measure the relative sensitivity factor. The inferred initial ratio (53Mn/55Mn)0 in chondritic kirschsteinite is (3.71 ± 0.50) × 10-6. When anchored to 53Mn-53Cr relative and U-corrected 207Pb-206Pb absolute ages of the D'Orbigny angrite, this ratio corresponds to kirschsteinite formation 3.2-0.7+08 Ma after CV Ca-, Al-rich inclusions. The kirschsteinite data are consistent within error with the data for aqueously-formed fayalite from the Asuka 881317 CV3 chondrite as reported by Doyle et al. (2015), supporting the idea that Ca-Fe silicates in CV3 chondrites are cogenetic with fayalite (and magnetite) and formed during metasomatic alteration on the CV3 parent body. Concentrically-zoned crystals of kirschsteinite and hedenbergite indicate that they initially formed as near end-member compositions that became more Mg-rich with time, possibly as a result of an increase in temperature.

  16. Preparation, structural and magnetic characterization of DyCrMnO{sub 5}

    SciTech Connect

    Martinez-Lope, M.J.; Retuerto, M. Garcia-Hernandez, M.; Alonso, J.A.

    2009-03-15

    The title compound has been first synthesized by a citrate technique followed by thermal treatments under moderate oxygen pressure conditions, and characterized by X-ray and neutron powder diffraction (NPD) and magnetization measurements. The crystal structure of DyCrMnO{sub 5} has been refined from NPD data in the space group Pbam; a=7.2617(6) A, b=8.5161(6) A, and c=5.7126(5) A at 295 K. This oxide is isostructural with RMn{sub 2}O{sub 5} oxides (R=rare earths) and it contains infinite chains of (Cr, Mn){sup 4+}O{sub 6} octahedra-sharing edges, linked together by (Mn, Cr){sup 3+}O{sub 5} pyramids and DyO{sub 8} units. The high degree of antisite disordering exhibited by DyCrMnO{sub 5} is noteworthy. The octahedral positions are occupied by roughly 50% of Mn and Cr cations, and the pyramidal groups contain two thirds of Mn and one third of Cr cations. We assume that Mn and Cr cations at the octahedral positions exhibit a tetravalent oxidation state, whereas the metals at the pyramidal positions are trivalent, in order to preserve the electroneutrality of this oxide. The susceptibility vs temperature curve of DyCrMnO{sub 5} does not suggest the establishment of a long-range magnetic structure even at low temperatures; the NPD technique does not provide any signal of magnetic ordering, since the reflections do not show any magnetic contribution. - Graphical abstract: DyCrMnO{sub 5} is isostructural with DyMn{sub 2}O{sub 5}, belonging to the Pbam space group. The crystal structure contains infinite chains of edge-sharing Mn{sup 4+}O{sub 6} octahedra, interconnected by dimer units of Cr{sup 3+}O{sub 5} square pyramids. The low-temperature neutron powder diffraction (NPD) patterns do not show any magnetic contribution, indicating that a full long-range magnetic ordering is not established down to low temperature, although the Dy{sup 3+} magnetic moments are susceptible to be polarized by an external magnetic field at the lowest temperature of 5 K.

  17. First-principles study on stability and magnetism of NdFe11M and NdFe11M N for M = Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn

    NASA Astrophysics Data System (ADS)

    Harashima, Yosuke; Terakura, Kiyoyuki; Kino, Hiori; Ishibashi, Shoji; Miyake, Takashi

    2016-11-01

    Recently synthesized NdFe12N has excellent magnetic properties, while it is thermodynamically unstable. Using the first-principles method, we study the effect of substitutional 3d transition metal elements to the mother compound NdFe12. We find that Co has a positive effect on the stability of the ThMn12 structure. In contrast to Ti substitution, Co substitution does not reduce the magnetization significantly. The crystal field parameter A20 is nearly unchanged by Co substitution, and nitrogenation to NdFe11Co greatly enhances A20 . This suggests that Co is a good candidate as a substitutional element for NdFe12N.

  18. The influence of cooling rate and Fe/Cr content on the evolution of Fe-rich compounds in a secondary Al-Si-Cu diecasting alloy

    NASA Astrophysics Data System (ADS)

    Fabrizi, A.; Timelli, G.

    2016-03-01

    This study investigates the morphological evolution of primary α-Al(Fe,Mn,Cr)Si phase in a secondary Al-Si-Cu alloy with respect to the initial Fe and Cr contents as well as to the cooling rate. The solidification experiments have been designed in order to cover a wide range of cooling rates, and the Fe and Cr contents have been varied over two levels. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes occurring at different experimental conditions. The morphological evolution of the α-Fe phase has been also analysed by observing deep etched samples. By changing the cooling rate, α-Al15(Fe,Mn,Cr)3Si2 dodecahedron crystals, as well as Chinese- script, branched structures and dendrites form, while primary coarse β-Al5(Fe,Mn)Si needles appear in the alloy with the highest Fe content at low cooling rates.

  19. Oxide Transformation in Cr-Mn-Prealloyed Sintered Steels: Thermodynamic and Kinetic Aspects

    NASA Astrophysics Data System (ADS)

    Hryha, Eduard; Nyborg, Lars

    2014-04-01

    The main obstacle for utilization of Cr and Mn as alloying elements in powder metallurgy is their high oxygen affinity leading to oxidation risk during powder manufacturing, handling, and especially during further consolidation. Despite the high purity of the commercially available Cr- and Mn-prealloyed iron powder grades, the risk of stable oxide formation during the sintering process remains. Thermodynamic and kinetic simulation of the oxide formation/transformation on the former powder surface during heating and sintering stages using thermodynamic modeling tools (Thermo-Calc and HSC Chemistry) was performed. Simulation is based on the results from the analysis of amount, morphology, and composition of the oxide phases inside the inter-particle necks in the specimens from interrupted sintering trials utilizing advanced analysis tools (HRSEM + EDX and XPS). The effect of the processing parameters, such as sintering atmosphere composition, temperature profile as well as graphite addition on the possible scenarios of oxide reduction/formation/transformation for Fe-Cr-Mn-C powder systems, was evaluated. Results indicate that oxide transformation occurs in accordance with the thermodynamic stability of oxides as follows: Fe2O3 → FeO → Fe2MnO4 → Cr2FeO4 → Cr2O3 → MnCr2O4 → MnO/MnSiO x → SiO2. Spinel MnCr2O4 was identified as the most stable oxide phase at applied sintering conditions up to 1393 K (1120 °C). Controlled conditions during the heating stage minimize the formation of stable oxide products and produce oxide-free sintered parts.

  20. The Mn-53-Cr-53 System in CAIs: An Update

    NASA Technical Reports Server (NTRS)

    Papanastassiou, D. A.; Wasserburg, G. J.; Bogdanovski, O.

    2005-01-01

    High precision techniques have been developed for the measurement of Cr isotopes on the Triton mass spectrometer, at JPL. It is clear that multiple Faraday cup, simultaneous ion collection may reduce the uncertainty of isotope ratios relative to single Faraday cup ion collection, by the elimination of uncertainties from ion beam instabilities (since ion beam intensities for single cup collection are interpolated in time to calculate isotope ratios), and due to a greatly increased data collection duty cycle, for simultaneous ion collection. Efforts to measure Cr by simultaneous ion collection have not been successful in the past. Determinations on Cr-50-54Cr, by simultaneous ion collection on the Finnigan/ MAT 262 instrument at Caltech, resulted in large variations in extrinsic precision, for normal Cr, of up to 1% in Cr-53/Cr-52 (data corrected for mass fractionation, using Cr-50/Cr-52).

  1. Contribution of Ca^{2+} ions influx in Cu (II) or Cr (VI) induced hepatocyte cytotoxicity

    NASA Astrophysics Data System (ADS)

    Pourahmad, J.; O'Brien, P. J.

    2003-05-01

    Previously we showed that hepatocyte lysis induced by Cu (II) or Cr (VI) could be partly attributed to membrane lipid peroxidation induced by Cu (II) or Cr (VI) [1, 2]. Changes in Na^+ and Ca^{+2} homeostasis induced when Cu^{+2} or Cr VI were incubated with hepatocytes. Na^+ omission from the media or addition of the Na^+/H^+ exchange inhibitor 5-(N, N-dimethyl)-amiloride markedly increased Cu (II) or Cr (VI) cytotoxicity even though Cu (II) or Cr (VI) did not increase hepatocyte Na^+ when the media contained Na^+. The omission of CI^- from the media or addition of glycine, a CI^- channel blocker also enhanced Cu (II) or Cr (VI) induced cytotoxicity. Intracellular Ca^{+2} levels however were markedly increased when the hepatocytes were incubated with Cu^{+2} or Cr VI in a Na^+ free media and removing media Ca^{+2} with EGTA also prevented Cu (II) or Cr (VI) induced hepatocyte cytotoxicity. This suggests that intracellular Ca^{+2} accumulation contributes to Cu (II) or Cr (VI) induced cytotoxicity and a Na^+_- dependent Ca^{+2} transporter is involved in controlling excessive Ca^{+2} accumulation caused by Cu (II) or Cr (VI).

  2. Antibacterial Cr-Cu-O films prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Musil, J.; Blažek, J.; Fajfrlík, K.; Čerstvý, R.; Prokšová, Š.

    2013-07-01

    The paper reports on the effect of Cu content in the Cr-Cu-O film and its structure on its antibacterial activity and mechanical properties. The Cr-Cu-O films were prepared by reactive magnetron sputtering from composed Cr/Cu targets using a dual magnetron. The antibacterial activity of Cr-Cu-O films was tested on the killing of Escheria coli bacteria. Correlations between the structure of the Cr-Cu-O film, the content of Cu in the film and its (i) antibacterial efficiency and (ii) mechanical properties were investigated in detail. It was found that the 100% efficiency of the killing of E. coli bacteria on the surface of the Cr-Cu-O film is achieved if (1) the Cu content in the film is ≥15 at.% and (2) the film is either X-ray amorphous or crystalline with the CuCrO2 delafossite structure. These Cr-Cu-O films need no excitation and very effectively kill E. coli bacteria in the daylight as well as in the dark. The X-ray amorphous Cr-Cu-O films with ~20 at.% Cu exhibit a higher (i) hardness H ≈ 4 GPa, (ii) effective Young's modulus E* ≈ 72 GPa and (iii) elastic recovery We ≈ 37% compared with the crystalline Cr-Cu-O film with the CuCrO2 delafossite structure exhibiting H ≈ 1.2 GPa, E* ≈ 21 GPa and We ≈ 21%. Both films very effectively kill the E. coli bacteria, however, exhibit a low ratio H/E* < 0.1.

  3. First-principles investigation of the stability of MN and CrMN precipitates under coherency strains in α-Fe (M = V, Nb, Ta)

    NASA Astrophysics Data System (ADS)

    Fors, Dan H. R.; Wahnström, Göran

    2011-06-01

    We perform a systematic ab initio study of the interface energetics of thin coherent rocksalt (nacl) structured MN and tetragonal CrMN films in bcc Fe (M = V, Nb, Ta), motivated by the vital role of MN and CrMN precipitates for the long-term creep resistance in 9%-12%Cr steels. The similarities and differences in the work of separations and the elastic costs for the coherency strains are identified, and the possibility for formation of coherent films are discussed. Our findings provide valuable information of the interface energetics, which in continuation can be combined with thermodynamical modeling to obtain a better understanding of the initial nucleation stage of the MN and CrMN precipitates, and their influence on the long-term microstructural evolution in 9%-12%Cr steels.

  4. Precipitation in 9Ni-12Cr-2Cu maraging steels

    SciTech Connect

    Stiller, K.; Haettestrand, M.; Danoix, F.

    1998-11-02

    Two maraging steels with the compositions 9Ni-12Cr-2Cu-4Mo (wt%) and 9Ni-12Cr-2Cu and with small additions of Al and Ti were investigated using atom probe field ion microscopy. Tomographic atom probe investigations were performed to clarify the spatial distribution of elements in and close to the precipitates. Materials heat treated at 475 C for 5, 25 min, 1, 2, 4 and 400 h were analyzed. Precipitates in the Mo-rich material were observed already after 5 min of aging, while in the material without MO, precipitation started later. In both materials precipitation begins with the formation of Cu-rich particles which work as nucleation sites for a Ni-rich phase of type Ni{sub 3}(Ti,Al). A Mo-rich phase was detected in the Mo-rich steel after 2 h of aging. The distribution of alloying elements in the precipitates, their role in the precipitation process, and the mechanism of hardening in the two materials are discussed.

  5. Magnetic phase transitions in PrMn 2- xCr xGe 2

    NASA Astrophysics Data System (ADS)

    Dincer, I.; Elerman, Y.; Elmali, A.; Ehrenberg, H.; Fuess, H.; Duman, E.; Acet, M.

    2002-07-01

    The structural and magnetic properties of PrMn 2- xCr xGe 2 (0⩽ x⩽1.0) were studied by X-ray diffraction and magnetization measurements. The powder samples crystallize in the ThCr 2Si 2-type structure, and the lattice constants at room temperature show almost no variation as Cr substitutes Mn. The observed phase transitions are summarized in a proposed magnetic x- T phase diagram and compared with previous Moessbauer spectroscopy and neutron diffraction results for x=0.

  6. Ligational behaviour of lomefloxacin drug towards Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO(2)(VI) ions: synthesis, structural characterization and biological activity studies.

    PubMed

    Abd el-Halim, Hanan F; Mohamed, Gehad G; el-Dessouky, Maher M I; Mahmoud, Walaa H

    2011-11-01

    Nine new mononuclear Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO(2)(VI) complexes of lomefloxacin drug were synthesized. The structures of these complexes were elucidated by elemental analyses, IR, XRD, UV-vis, (1)H NMR as well as conductivity and magnetic susceptibility measurements and thermal analyses. The dissociation constants of lomefloxacin and stability constants of its binary complexes have been determined spectrophotometrically in aqueous solution at 25±1°C and at 0.1 M KNO(3) ionic strength. The discussion of the outcome data of the prepared complexes indicate that the lomefloxacin ligand behaves as a neutral bidentate ligand through OO coordination sites and coordinated to the metal ions via the carbonyl oxygen and protonated carboxylic oxygen with 1:1 (metal:ligand) stoichiometry for all complexes. The molar conductance measurements proved that the complexes are electrolytes. The powder XRD study reflects the crystalline nature for the investigated ligand and its complexes except Mn(II), Zn(II) and UO(2)(II). The geometrical structures of these complexes are found to be octahedral. The thermal behaviour of these chelates is studied where the hydrated complexes lose water molecules of hydration in the first steps followed by decomposition of the anions, coordinated water and ligand molecules in the subsequent steps. The activation thermodynamic parameters are calculated using Coats-Redfern and Horowitz-Metzger methods. A comparative study of the inhibition zones of the ligand and its metal complexes indicates that metal complexes exhibit higher antibacterial effect against one or more bacterial species than the free LFX ligand. The antifungal and anticancer activities were also tested. The antifungal effect of almost metal complexes is higher than the free ligand. LFX, [Co(LFX)(H(2)O)(4)]·Cl(2) and [Zn(LFX)(H(2)O)(4)]·Cl(2) were found to be very active with IC50 values 14, 11.2 and 43.1, respectively. While, other

  7. Ligational behaviour of lomefloxacin drug towards Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO 2(VI) ions: Synthesis, structural characterization and biological activity studies

    NASA Astrophysics Data System (ADS)

    El-Halim, Hanan F. Abd; Mohamed, Gehad G.; El-Dessouky, Maher M. I.; Mahmoud, Walaa H.

    2011-11-01

    Nine new mononuclear Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO 2(VI) complexes of lomefloxacin drug were synthesized. The structures of these complexes were elucidated by elemental analyses, IR, XRD, UV-vis, 1H NMR as well as conductivity and magnetic susceptibility measurements and thermal analyses. The dissociation constants of lomefloxacin and stability constants of its binary complexes have been determined spectrophotometrically in aqueous solution at 25 ± 1 °C and at 0.1 M KNO 3 ionic strength. The discussion of the outcome data of the prepared complexes indicate that the lomefloxacin ligand behaves as a neutral bidentate ligand through OO coordination sites and coordinated to the metal ions via the carbonyl oxygen and protonated carboxylic oxygen with 1:1 (metal:ligand) stoichiometry for all complexes. The molar conductance measurements proved that the complexes are electrolytes. The powder XRD study reflects the crystalline nature for the investigated ligand and its complexes except Mn(II), Zn(II) and UO 2(II). The geometrical structures of these complexes are found to be octahedral. The thermal behaviour of these chelates is studied where the hydrated complexes lose water molecules of hydration in the first steps followed by decomposition of the anions, coordinated water and ligand molecules in the subsequent steps. The activation thermodynamic parameters are calculated using Coats-Redfern and Horowitz-Metzger methods. A comparative study of the inhibition zones of the ligand and its metal complexes indicates that metal complexes exhibit higher antibacterial effect against one or more bacterial species than the free LFX ligand. The antifungal and anticancer activities were also tested. The antifungal effect of almost metal complexes is higher than the free ligand. LFX, [Co(LFX)(H 2O) 4]·Cl 2 and [Zn(LFX)(H 2O) 4]·Cl 2 were found to be very active with IC50 values 14, 11.2 and 43.1, respectively. While, other complexes had

  8. Synthesis, Structure and Properties of Tetragonal Sr2M3As2O2 (M3 = Mn3, Mn2Cu and MnZn2) Compounds Containing Alternating CuO2-Type and FeAs-Type Layers

    SciTech Connect

    Nath, R; Garlea, Vasile O; Goldman, Alan; Johnston, david C

    2010-01-01

    Polycrystalline samples of Sr2Mn2CuAs2O2, Sr2Mn3As2O2, and Sr2Zn2MnAs2O2 were synthesized. Their temperature- and applied magnetic field-dependent structural, transport, thermal, and magnetic properties were characterized by means of x-ray and neutron diffraction, electrical resistivity , heat capacity, magnetization and magnetic susceptibility measurements. These compounds have a body-centered-tetragonal crystal structure (space group I 4/mmm) that consists of MO2 (M = Zn and/or Mn) oxide layers similar to the CuO2 layers in high superconducting transition temperature Tc cuprate superconductors, and intermetallic MAs (M = Cu and/or Mn) layers similar to the FeAs layers in high-Tc pnictides. These two types of layers alternate along the crystallographic c-axis and are separated by Sr atoms. The site occupancies of Mn, Cu and Zn were studied using Rietveld refinements of x-ray and neutron powder diffraction data. The temperature dependences of suggest metallic character for Sr2Mn2CuAs2O2 and semiconducting character for Sr2Mn3As2O2 and Sr2Zn2MnAs2O2. Sr2Mn2CuAs2O2 is inferred to be a ferrimagnet with a Curie temperature TC = 95(1) K. Remarkably, we find that the magnetic ground state structure changes from a G-type antiferromagnetic structure in Sr2Mn3As2O2 to an A-type ferrimagnetic structure in Sr2Mn2CuAs2O2 in which the Mn ions in each layer are ferromagnetically aligned, but are antiferromagnetically aligned between layers.

  9. CuCrZr alloy microstructure and mechanical properties after hot isostatic pressing bonding cycles

    NASA Astrophysics Data System (ADS)

    Frayssines, P.-E.; Gentzbittel, J.-M.; Guilloud, A.; Bucci, P.; Soreau, T.; Francois, N.; Primaux, F.; Heikkinen, S.; Zacchia, F.; Eaton, R.; Barabash, V.; Mitteau, R.

    2014-04-01

    ITER first wall (FW) panels are a layered structure made of the three following materials: 316L(N) austenitic stainless steel, CuCrZr alloy and beryllium. Two hot isostatic pressing (HIP) cycles are included in the reference fabrication route to bond these materials together for the normal heat flux design supplied by the European Union (EU). This reference fabrication route ensures sufficiently good mechanical properties for the materials and joints, which fulfil the ITER mechanical specifications, but often results in a coarse grain size for the CuCrZr alloy, which is not favourable, especially, for the thermal creep properties of the FW panels. To limit the abnormal grain growth of CuCrZr and make the ITER FW fabrication route more reliable, a study began in 2010 in the EU in the frame of an ITER task agreement. Two material fabrication approaches have been investigated. The first one was dedicated to the fabrication of solid CuCrZr alloy in close collaboration with an industrial copper alloys manufacturer. The second approach investigated was the manufacturing of CuCrZr alloy using the powder metallurgy (PM) route and HIP consolidation. This paper presents the main mechanical and microstructural results associated with the two CuCrZr approaches mentioned above. The mechanical properties of solid CuCrZr, PM CuCrZr and joints (solid CuCrZr/solid CuCrZr and solid CuCrZr/316L(N) and PM CuCrZr/316L(N)) are also presented.

  10. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu-17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9+/-9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu-17%Cr-5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR-5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  11. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17%Cr and Cu-17%Cr-5%Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu- 17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 +/- 9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu-17%Cr- 5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR- 5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  12. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17%Cr and Cu-17%Cr-5%Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu- 17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 9.5 kJ mol-1. In contrast, the oxidation kinetics for the Cu-17%Cr- 5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR- 5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  13. Magnetic properties of CuCr2Se4 and CuCr1.5Ti0.5Se4

    NASA Astrophysics Data System (ADS)

    Behera, P. Suchismita; Bhobe, P. A.; Nigam, A. K.

    2016-05-01

    CuCr2Se4 is a potentially attractive versatile material, from the point of view of spintronics application. It shows characteristics of a ferromagnetic conductor at room temperature and with suitable doping it is proposed to show half-metallicity. With an aim to understand the effect of doping at Cr-site by a non-magnetic ion, we carried out investigation of magnetic and crystal structure properties of polycrystalline CuCr2Se4 and CuCr1.5Ti0.5Se4 spinel. These materials were prepared by solid state synthesis and characterized using room temperature powder XRD and measurement of magnetic properties. The XRD patterns were analyzed using Rietveld technique and lattice constants were estimated. Formation of a small amount of Cr3Se4 phase was identified from the XRD profiles. However, the magnetic properties do not seem to be affected much by it. Compared to parent compound, CuCr2Se4, the ferromagnetic Curie temperature TC in CuCr1.5Ti0.5Se4 was found to decrease to 208 K. But its magnetic moment (μB/f.u.) determined from the saturation magnetization value measured at 5 K, differed only slightly from that of CuCr2Se4. Our preliminary results are presented here.

  14. The General Isothermal Oxidation Behavior of Cu-8Cr-4Nb

    NASA Technical Reports Server (NTRS)

    Thomas-Ogbuji, L. U.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Oxidation kinetics of Cu-8Cr-4Nb was investigated by TGA (thermogravimetric) exposures between 500 and 900-C (at 25-50 C intervals) and the oxide scale morphologies examined by microscopy and micro-analysis. Because Cu-8Cr-4Nb is comprised of fine Cr2Nb precipitates in a Cu matrix, the results were interpreted by comparison with the behavior of copper (OFHC) and 'NARloy-Z' (a rival candidate material for thrust cell liner applications in advanced rocket engines) under the same conditions. While NARloy-Z and Cu exhibited identical oxidation behavior, Cu-8Cr-4Nb differed markedly in several respects: below approx. 700 C its oxidation rates were significantly lower than those of Cu; At higher temperatures its oxidation rates fell into two categories: an initial rate exceeding that of Cu, and a terminal rate comparable to that of Cu. Differences in oxide morphologies paralleled the kinetic differences at higher temperature: While NARloy-Z and Cu produced a uniform oxide scale of Cu2O inner layer and CuO outer layer, the inner (Cu2O) layer on Cu-8Cr-4Nb was stratified, with a highly porous/spongy inner stratum (responsible for the fast initial kinetics) and a dense/blocky outer stratum (corresponding to the slow terminal kinetics). Single and spinel oxides of Nb and Cr were found at the interface between the oxide scale and Cu-8Cr-4Nb substrate and it appears that these oxides were responsible for its suppressed oxidation rates at the intermediate temperatures. No difference was found between Cu-8Cr-4Nb oxidation in air and in oxygen at 1.0 atm.

  15. Aging Characteristics of Sn-Ag Eutectic Solder Alloy with the Addition of Cu, In, and Mn

    NASA Astrophysics Data System (ADS)

    Ghosh, M.; Kar, Abhijit; Das, S. K.; Ray, A. K.

    2009-10-01

    In the present investigation, three types of solder alloy, i.e., Sn-Ag-Cu, Sn-Ag-In, and Sn-Ag-Cu-Mn, have been prepared and joined with Cu substrate. In the reflowed condition, the joint interface is decorated with Cu6Sn5 intermetallic in all cases. During aging at 100 °C for 50 to 200 hours, Cu3Sn formation took place in the diffusion zone of the Sn-Ag-Cu and Sn-Ag-In vs Cu assembly, which was not observed for the Sn-Ag-Cu-Mn vs Cu joint. Aging also leads to enhancement in the width of reaction layers; however, the growth is sluggish (~134 KJ/mol) for the Sn-Ag-Cu-Mn vs Cu transition joint. In the reflowed condition, the highest shear strength is obtained for the Sn-Ag-Cu-Mn vs Cu joint. Increment in aging time results in decrement in shear strength of the assemblies; yet small reduction is observed for the Sn-Ag-Cu-Mn vs Cu joint. The presence of Mn in the solder alloy is responsible for the difference in microstructure of the Sn-Ag-Cu-Mn solder alloy vs Cu assembly in the reflowed condition, which in turn influences the microstructure of the same after aging with respect to others.

  16. Experimental Study on Dynamic Mechanical Properties of 30CrMnSiNi2A Steel.

    NASA Astrophysics Data System (ADS)

    Huang, Fenglei; Yao, Wei; Wu, Haijun; Zhang, Liansheng

    2009-06-01

    Under dynamic conditions, the strain-rate dependence of material response and high levels of hydrostatic pressure cause the material behavior to be significantly different from what is observed under quasi-static condition. The curves of stress and strain of 30CrMnSiNi2A steel in different strain rates are obtained with SHPB experiments. Metallographic analyses show that 30CrMnSiNi2A steel is sensitive to strain rate, and dynamic compression leads to shear failure with the angle 45^o as the small carbide which precipitates around grain boundary changes the properties of 30CrMnSiNi2A steel. From the SHPB experiments and quasi-static results, the incomplete Johnson-Cook model has been obtained: σ=[1587+382.5(ɛ^p)^0.245][1+0.017ɛ^*], which can offer parameters for theory application and numerical simulation.

  17. Cu- and Mn-bearing tourmalines from Brazil and Mozambique: crystal structures, chemistry and correlations

    NASA Astrophysics Data System (ADS)

    Ertl, Andreas; Giester, Gerald; Schüssler, Ulrich; Brätz, Helene; Okrusch, Martin; Tillmanns, Ekkehart; Bank, Hermann

    2013-04-01

    Cu- and Mn-bearing tourmalines from Brazil and Mozambique were characterised chemically (EMPA and LA-ICP-MS) and by X-ray single-crystal structure refinement. All these samples are rich in Al, Li and F (fluor-elbaite) and contain significant amounts of CuO (up to ~1.8 wt%) and MnO (up to ~3.5 wt%). Structurally investigated samples show a pronounced positive correlation between the < Y-O> distances and the (Li + Mn2+ + Cu + Fe2+) content (apfu) at this site with R 2 = 0.90. An excellent negative correlation exists between the < Y-O> distances and the Al2O3 content ( R 2 = 0.94). The samples at each locality generally show a strong negative correlation between the X-site vacancies and the (MnO + FeO) content. The Mn content in these tourmalines depends on the availability of Mn, on the formation temperature, as well as on stereochemical constraints. Because of a very weak correlation between MnO and CuO we believe that the Cu content in tourmaline is essentially dependent on the availability of Cu and on stereochemical constraints.

  18. Cu- and Mn-bearing tourmalines from Brazil and Mozambique: crystal structures, chemistry and correlations.

    PubMed

    Ertl, Andreas; Giester, Gerald; Schüssler, Ulrich; Brätz, Helene; Okrusch, Martin; Tillmanns, Ekkehart; Bank, Hermann

    Cu- and Mn-bearing tourmalines from Brazil and Mozambique were characterised chemically (EMPA and LA-ICP-MS) and by X-ray single-crystal structure refinement. All these samples are rich in Al, Li and F (fluor-elbaite) and contain significant amounts of CuO (up to ~1.8 wt%) and MnO (up to ~3.5 wt%). Structurally investigated samples show a pronounced positive correlation between the distances and the (Li + Mn(2+) + Cu + Fe(2+)) content (apfu) at this site with R(2) = 0.90. An excellent negative correlation exists between the distances and the Al2O3 content (R(2) = 0.94). The samples at each locality generally show a strong negative correlation between the X-site vacancies and the (MnO + FeO) content. The Mn content in these tourmalines depends on the availability of Mn, on the formation temperature, as well as on stereochemical constraints. Because of a very weak correlation between MnO and CuO we believe that the Cu content in tourmaline is essentially dependent on the availability of Cu and on stereochemical constraints.

  19. Cu and Cu(Mn) films deposited layer-by-layer via surface-limited redox replacement and underpotential deposition

    NASA Astrophysics Data System (ADS)

    Fang, J. S.; Sun, S. L.; Cheng, Y. L.; Chen, G. S.; Chin, T. S.

    2016-02-01

    The present paper reports Cu and Cu(Mn) films prepared layer-by-layer using an electrochemical atomic layer deposition (ECALD) method. The structure and properties of the films were investigated to elucidate their suitability as Cu interconnects for microelectronics. Previous studies have used primarily a vacuum-based atomic layer deposition to form a Cu metallized film. Herein, an entirely wet chemical process was used to fabricate a Cu film using the ECALD process by combining underpotential deposition (UPD) and surface-limited redox replacement (SLRR). The experimental results indicated that an inadequate UPD of Pb affected the subsequent SLRR of Cu and lead to the formation of PbSO4. A mechanism is proposed to explain the results. Layer-by-layer deposition of Cu(Mn) films was successfully performed by alternating the deposition cycle-ratios of SLRR-Cu and UPD-Mn. The proposed self-limiting growth method offers a layer-by-layer wet chemistry-based deposition capability for fabricating Cu interconnects.

  20. Oxidation behavior of cubic phases formed by alloying Al3Ti with Cr and Mn

    NASA Technical Reports Server (NTRS)

    Parfitt, L. J.; Nic, J. P.; Mikkola, D. E.; Smialek, J. L.

    1991-01-01

    Gravimetric, SEM, and XRD data are presented which document the significant improvement obtainable in the oxidation resistance of Al3Ti-containing alloys through additions of Cr. The L1(2) Al(67)Cr(8)Ti25 alloy exhibited excellent cyclic oxidation resistance at 1473 K, with the primary oxide formed being the ideally protective alpha-Al2O3. The Al(67)Mn(8)Ti(25) alloy also tested for comparison exhibited poor cyclic oxidation resistance, with substantial occurrence of TiO2 in the protective scales. Catastrophic oxidation was also encountered in the quaternary alloy Al(67)Mn(8)Ti(22)V(3).

  1. Multiferroicity in B-site ordered double perovskite Y2MnCrO6

    NASA Astrophysics Data System (ADS)

    Fang, Yong; Yan, Shi-Ming; Qiao, Wen; Wang, Wei; Wang, Dun-Hui; Du, You-Wei

    2014-11-01

    Double perovskite manganite Y2MnCrO6 ceramic is synthesized and its multiferroic properties are investigated. Novel multiferroic properties are displayed with respect to other multiferroics, such as high ferroelectric phase transition temperature, and the coexistence of ferrimagnetism and ferroelectricity. Moreover, the ferroelectric polarization of Y2MnCrO6 below the magnetic phase temperature can be effectively tuned by an external magnetic field, showing a remarkable magnetoelectric effect. These results open an effective avenue to explore magnetic multiferroics with spontaneous magnetization and ferroelectricity, as well as a high ferroelectric transition temperature.

  2. Microdomain Structure of Cr-Doped Manganites: Nd 1/2Ca 1/2(Mn,Cr)O 3

    NASA Astrophysics Data System (ADS)

    Machida, Akihiko; Moritomo, Yutaka; Nishibori, Eiji; Takata, Masaki; Sakata, Makoto; Ohoyama, Kenji; Mori, Shigeo; Yamamoto, Naoki; Nakamura, Arao

    2000-11-01

    Crystal and magnetic structures of Cr-doped manganites, Nd1/2Ca1/2Mn1-yCryO3 (y=0.00 and 0.03), have been investigated by synchrotron radiation (SR) x-ray powder diffraction as well as neutron powder diffraction measurements.A detailed analysis of the high-resolution x-ray profile has revealed that the Cr-doped compound exhibits broad extra reflections, suggesting the formation of microdomains below the charge-ordering temperature T CO.The origin of the microdomain structure is discussed in terms of the charge separation.

  3. Density functional investigation of the magnetic superstructure of Cu2MnSnS4

    NASA Astrophysics Data System (ADS)

    Koo, Hyun-Joo

    2012-09-01

    The cause for the ordered magnetic structure of Cu2MnSnS4 below TN=8.8 K was examined by evaluating the spin exchange interactions on the basis of density functional electronic structure calculations. The Mn-S…S-Mn super-superexchange interactions of Cu2MnSnS4 are all calculated to be antiferromagnetic. In the (2a, b, 2c) magnetic superstructure observed from the neutron diffraction, only one spin exchange contributes to the energy lowering. This makes the (2a, b, c) antiferromagnetic superstructure identical in energy with the (2a, b, 2c) antiferromagnetic superstructure, implying that the magnetic Bragg peaks of Cu2MnSnS4 below TN have contributions from both (2a, b, c) and (2a, b, 2c) superstructures.

  4. Cr, Cu, Mn, Mo, Ni, and Steel Price Drivers

    USGS Publications Warehouse

    Papp, John F.; Corathers, Lisa A.; Edelstein, Daniel L.; Fenton, Michael D.; Kuck, Peter H.; Magyar, Michael J.

    2007-01-01

    Summary This report contains the 55 slide images from a presentation made by the author at the meeting of the Metal Powder Industries Federation held in Denver, CO, on May 15, 2007. The Metal Powder Industries Federation (MPIF) invited the U.S. Geological Survey (USGS) to speak at their annual meeting about the price drivers for chromium, copper, manganese, molybdenum, nickel, and steel. These metals are of interest to MPIF because the prices of these raw materials used by their industry were at historically high levels. Because the USGS closely monitors, yet neither buys nor sells, metal commodities, it is an unbiased source of metal price information and analysis. The authors used information about these and other metals collected and published by the USGS (U.S. production, trade, stocks, and prices) and about consumption and stocks internationally by country from industry organizations that publish such information, because metal markets are influenced by activities and events over the entire globe. By seeking a common cause for common behavior among the various metal commodities, the authors found that major price drivers on metal commodities were inflation, major international events such as wars and recessions, and major national events such as the dissolution of the Soviet Union in 1991 and economic growth in China, which started with the open door policy in the 1970s but did not have significant market impact until starting in the 1990s. Metal commodity prices also responded to commodity-specific events.

  5. Magnetic and crystallographic properties of ZrM2-δZn20+δ (M=Cr-Cu)

    NASA Astrophysics Data System (ADS)

    Svanidze, E.; , M. Kindy, II; Georgen, C.; Fulfer, B. W.; Lapidus, S. H.; Chan, J. Y.; Morosan, E.

    2016-10-01

    Single crystals of the cubic Laves ternaries ZrM2-δZn20+δ (M=Mn, Fe, Co, Ni and Cu, 0 ≤ δ ≤ 1) have been synthesized using a self-flux method. The magnetic properties of these compounds were compared with structurally similar cubic binaries ZrM2 (M=Mn, Fe, Co, Ni and Cu). A transition from local to itinerant moment magnetism was observed for M=Fe and M=Mn, while all other ternaries exhibit weakly para- or diamagnetic behavior. The local-to-itinerant crossover can be explained by a nearly two-fold increase of the M- M bond length dM-M in ZrM2-δZn20+δ compounds, as compared with the ZrM2 binaries. Additionally, we report two new compounds in this series ZrCrZn21 and ZrCu2Zn20. Analysis of crystallographic and magnetic trends in these materials will aid in understanding of magnetism in general and 3 d intermetallics in particular.

  6. Cathodoluminescence and Thermoluminescence of Undoped LTB and LTB:A (A = Cu, Ag, Mn)

    DTIC Science & Technology

    2013-03-01

    CATHODOLUMINESCENCE AND THERMOLUMINESCENCE OF UNDOPED LTB AND LTB:A (A = Cu, Ag, Mn) THESIS Zachary L. Hadfield, USA AFIT-ENP-13-M-13...CATHODOLUMINESCENCE AND THERMOLUMINESCENCE OF UNDOPED LTB AND LTB:A (A = Cu, Ag, Mn) THESIS Presented to the Faculty Department of Engineering...crystals and one each doped with silver, copper, and manganese. Thermoluminescence measurements were conducted using a Harshaw Model 3500 Manual TLD

  7. Characterization of transparent conductive delafossite-CuCr1-xO2 films

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Ying; Chang, Kuei-Ping; Yang, Chun-Chao

    2013-05-01

    In this study, the CuCr1-xO2 films with x = 0.00-0.25 were prepared on a quartz substrate by sol-gel processing. The films were first deposited onto a quartz substrate by spin-coating. The specimens were annealed at 500 °C in air for 1 h and post-annealed in N2 at 700 °C for 2 h. As the films were post-annealed in N2, a pure delafossite-CuCrO2 phase appeared in the CuCr1-xO2 films below x = 0.20. However, an additional CuO phase appeared at x = 0.25. The pure delafossite-CuCrO2 phase can exist within x ≤ 0.20 in CuCr1-xO2 films. The binding energies of Cu-2p3/2 and Cr-2p3/2 in the CuCr1-xO2 films with the pure delafossite-CuCrO2 phase were 932.1 ± 0.2 eV and 576.0 ± 0.2 eV, respectively. The surface exhibited elongated grain features when the pure delafossite-CuCrO2 phase was present in the CuCr1-xO2 films. The maximum transmittance of the CuCr1-xO2 films with the pure delafossite-CuCrO2 phase was approximately 80%, which moved toward the visible region with the increasing x-value. The film absorption edges were observed at 400 nm, which were sharper with the increasing x-value. The optical bandgaps of CuCr1-xO2 films with the pure delafossite-CuCrO2 phase were approximately 3.0 eV. The electrical conductivity of CuCr1-xO2 films with the pure delafossite-CuCrO2 phase was 1.1 × 10-3 S cm-1 (x = 0.00), and increased to 0.16 S cm-1 (x = 0.20). The corresponding carrier concentration of CuCr1-xO2 films with the pure delafossite-CuCrO2 phase was 2.8 × 1014 cm-3 (x = 0.00), and markedly increased to 1.8 × 1016 cm-3 (x = 0.20). The Cr-deficient condition in delafossite-CuCrO2 films enhances film electrical conductivity and carrier concentration, but retains the film's high-visible transparency.

  8. {sup 53}Mn-{sup 53}Cr CHRONOMETRY OF CB CHONDRITE: EVIDENCE FOR UNIFORM DISTRIBUTION OF {sup 53}Mn IN THE EARLY SOLAR SYSTEM

    SciTech Connect

    Yamashita, Katsuyuki; Yamakawa, Akane; Nakamura, Eizo; Maruyama, Seiji

    2010-11-01

    High-precision Cr isotope ratios for chondrules and metal grain separated from CB chondrite Gujba were determined. The {epsilon}{sup 54}Cr values ({epsilon}{sup i}Cr = [({sup i}Cr/{sup 52}Cr){sub sample}/({sup i}Cr/{sup 52}Cr){sub standard} - 1] x 10{sup 4}) for all samples were identical within the analytical uncertainty, with a mean value of +1.29 {+-} 0.02. Uniform {epsilon}{sup 54}Cr signatures of both chondrules and metal grains imply that the Cr isotope systematics of the meteorite was once completely equilibrated. The {epsilon}{sup 53}Cr values of the chondrules and metal grain, on the other hand, display a strong correlation with the {sup 55}Mn/{sup 52}Cr ratio. The {sup 53}Mn/{sup 55}Mn calculated from the slope of the isochron is (3.18 {+-} 0.52) x 10{sup -6}. This corresponds to absolute ages of 4563.7 {+-} 1.2 Ma and 4563.5 {+-} 1.1 Ma using angrites D'Orbigny and LEW 86010, respectively, as time anchors. These ages are consistent with the ages obtained using other short- and long-lived radio nuclides, supporting the uniform distribution of {sup 53}Mn in the early solar nebula.

  9. Protection of Advanced Copper Alloys With Lean Cu-Cr Coatings

    NASA Technical Reports Server (NTRS)

    Greenbauer-Seng, L. (Technical Monitor); Thomas-Ogbuji, L.

    2003-01-01

    Advanced copper alloys are used as liners of rocket thrusters and nozzle ramps to ensure dissipation of the high thermal load generated during launch, and Cr-lean coatings are preferred for the protection of these liners from the aggressive ambient environment. It is shown that adequate protection can be achieved with thin Cu-Cr coatings containing as little as 17 percent Cr.

  10. Optical spectroscopy of the Triangular Lattice Antiferromagnets CuCrO2 and α-CaCr2O4

    NASA Astrophysics Data System (ADS)

    Schmidt, Michael; Wang, Zhe; Mayr, F.; Toth, S.; Lake, B.; Islam, A. T. M. N.; Tsurkan, V.; Loidl, A.; Deisenhofer, J.

    2012-02-01

    We will compare and discuss our results obtained by optical spectroscopy on CuCrO2 and α-CaCr2O4. While CuCrO2 is famous for its multiferroicity [1], in α-CaCr2O4 a polarization can only be observed under the application of electric or magnetic field, despite having a closely related structure [2]. At near infrared and visible light frequencies we observe Cr^3+ crystal field absorptions and below TN excitons and exciton-magnon-transitions appear. The width of these exciton-magnon transitions is analyzed with respect to the existence of Z2 vortices as proposed by Kojima et al. [3]. [4pt] [1] S. Seki et al., Phys. Rev. Lett. 101, 067240 (2008)[0pt] [2] K. Singh et al., Phys. Rev. B 84, 064129 (2011)[0pt] [3] N. Kojima et al., J. Phys. Soc. Jpn. 62, 4137 (1993)

  11. Electrical properties of perovskite-type La(Cr 1- xMn x)O 3+ δ

    NASA Astrophysics Data System (ADS)

    Taguchi, Hideki; Matsu-ura, Shin-ichiro; Nagao, Mahiko; Kido, Hiroyasu

    1999-10-01

    Perovskite-type La(Cr 1- xMn x)O 3+ δ (0.0⩽ x⩽1.0) was synthesized using a sol-gel process. The crystal structure of La(Cr 1- xMn x)O 3+ δ changes from orthorhombic to rhombohedral at x=0.6. The Mn 4+ ion content increases monotonically in the range 0.2⩽ x⩽1.0. The magnetic measurement of La(Cr 1- xMn x)O 3+ δ indicates that a Mn 3+ ion is a high-spin state with (d ε) 3(d γ) 1. The variation of the average (Cr, Mn)-O distance is explained by ionic radii of the Cr 3+, the Mn 3+, the Mn 4+ ions. Since the log σT-1/ T curve is linear and the Seebeck coefficient ( α) is independent of temperature, it is considered that La(Cr 1- xMn x)O 3+ δ is a p-type semiconductor and exhibits the hopping conductivity.

  12. Naturally Occurring Cr and Ni in the Sacramento Valley: II. Mn Oxides and the Mobility of Cr(VI) and Ni

    NASA Astrophysics Data System (ADS)

    Mills, C. T.; Morrison, J. M.; Goldhaber, M. B.; Foster, A. L.; Wolf, R. E.; Wanty, R. B.

    2007-12-01

    Soil manganese oxides can strongly affect the mobility and redox state of several toxic trace metals. We are studying the biogeochemical origin of Mn oxides and their association with Cr and Ni in soils of the Sacramento Valley, California. Both Cr and Ni are likely derived from ultramafic rocks that underlie Coast Range drainages to the west of the study area. The impact of weathering and erosion of these rocks is evident in the high levels of total Cr (80 to 1420 μg g-1) and nickel (65 to 224 μg g-1) that occur broadly in western Sacramento Valley soils. Although much of the Cr is bound in refractory spinels as Cr(III), some mobilization of Cr is apparent in the coincidence of enriched soils with high contents of Cr(VI) in ground water. Data from the National Water Information System (NWIS) shows 7 of 12 sampled wells within a 600 km2 area in the Sacramento Valley having Cr(VI) concentrations between 60 and 100% of the CA maximum contaminant level for drinking water (50 μg l-1). A 3-meter depth soil profile collected within the lower Putah Creek watershed was examined to investigate processes contributing to the oxidation and mobilization of natural Cr(III). Hydroxylamine hydrochloride-reducible Mn was determined for 8 depth intervals as a measure of manganese oxide occurrence. Concentrations of reducible Mn varied between 360 and 690 μg g-1 with depth and peaked at 2.7 m below the surface. Concentrations of anion exchangeable Cr(VI) were as high as 6 ng g-1 and were positively correlated (r2=0.59; p=0.07) with reducible Mn. Scanning electron microscopy of soil minerals from the 2.9 to 3.0 m interval showed Cr-bearing spinel grains enclosed within Mn oxide micro concretions suggesting a potential mechanism for the oxidation of natural Cr(III) to mobile Cr(VI). Consistent with the known tendency of Ni to sorb on Mn oxides, substantial Ni (13 to 45 μg g-1) was released in the reducible Mn fraction and it strongly correlates (r2=0.76; p=0.005) with reducible Mn

  13. Room temperature magnetocaloric effect in Ni-Mn-In-Cr ferromagnetic shape memory alloy thin films

    NASA Astrophysics Data System (ADS)

    Akkera, Harish Sharma; Singh, Inderdeep; Kaur, Davinder

    2017-02-01

    The influence of Cr substitution for In on the martensitic phase transformation and magnetocaloric effect (MCE) has been investigated in Ni-Mn-Cr-In ferromagnetic shape memory alloy (FSMA) thin films fabricated by magnetron sputtering. Temperature dependent magnetization (M-T) measurements demonstrated that the martensitic transformation temperatures (TM) monotonously increase with the increase of Cr content due to change in valence electron concentration (e/a) and cell volume. From the study of isothermal magnetization curves (M-H), magnetocaloric effect around the martensitic transformation has been investigated in these FSMA thin films. The magnetic entropy change ∆SM of 7.0 mJ/cm3-K was observed in Ni51.1Mn34.9In9.5Cr4.5 film at 302 K in an applied field of 2 T. Further, the refrigerant capacity (RC) was also calculated for all the films in an applied field of 2 T. These findings indicate that the Cr doped Ni-Mn-In FSMA thin films are potential candidates for room temperature micro-length-scale magnetic refrigeration applications.

  14. Structure, magnetism, and electron-transport properties of Mn2CrGa-based nanomaterials

    NASA Astrophysics Data System (ADS)

    Zhang, Wenyong; Kharel, Parashu; Skomski, Ralph; Valloppilly, Shah; Li, Xingzhong; Sellmyer, David J.

    2016-05-01

    Mn2CrGa in the disordered cubic structure has been synthesized using rapid quenching and subsequent annealing. The cubic phase transforms to a stable tetragonal phase when a fraction of Cr or Ga is replaced by Pt or Al, respectively. All samples are ferrimagnetic with high Curie temperatures (Tc); Mn2CrGa exhibits the highest Tc of about 813 K. The tetragonal samples have appreciable values of magnetocrystalline anisotropy energy, which leads to an increase in coercivity (Hc) that approaches about 10 kOe in the Pt-doped sample. The Hc linearly increases with a decrease of temperature, concomitant with the anisotropy change with temperature. All samples are metallic and show negative magnetoresistance with room-temperature resistivities on the order of 1 mΩcm. The magnetic properties including high Tc and low magnetic moment suggest that these tetragonal materials have potential for spin-transfer-torque-based devices.

  15. Ferromagnetic behavior of nanocrystalline Cu-Mn alloy prepared by ball milling

    NASA Astrophysics Data System (ADS)

    Mondal, B. N.; Sardar, G.; Nath, D. N.; Chattopadhyay, P. P.

    2014-12-01

    50Cu-50Mn (wt%) alloy was produced by ball milling. The milling was continued up to 30 h followed by isothermal annealing over a four interval of temperature from 350 to 650 °C held for 1 h. Crystallite size, lattice strain, lattice parameter were determined by Rietveld refinement structure analysis of X-ray diffraction data. The amount of dissolved/precipitated Mn (wt%) after ball milling/milling followed by annealing was calculated by quantative phase analysis (QPA). The increase of coercivity could be attributed to the introduction of lattice strain and reduction of crystallite size as a function of milling time. Electron paramagnetic resonance and superconducting quantum interface device analysis indicate that soft ferromagnetic behavior has been achieved by ball milled and annealed Cu-Mn alloy. The maximum coercivity value of Cu-Mn alloy obtained after annealing at 350 °C for 1 h is 277 Oe.

  16. First-principles investigation of structural and magnetic disorder in CuNiMnAl and CuNiMnSn Heusler alloys

    NASA Astrophysics Data System (ADS)

    Aron-Dine, S.; Pomrehn, G. S.; Pribram-Jones, A.; Laws, K. J.; Bassman, L.

    2017-01-01

    Two quaternary Heusler alloys, equiatomic CuNiMnAl and CuNiMnSn, are studied using density functional theory to understand their tendency for atomic disorder on the lattice and the magnetic effects of disorder. Disordered structures with antisite defects of atoms of the same and different sublattices are considered, with the level of atomic disorder ranging from 3% to 25%. Formation energies and magnetic moments are calculated relative to the ordered ground state and combined with a simple thermodynamical model to estimate temperature effects. We predict the relative levels of disordering in the two equiatomic alloys with good correlation to experimental x-ray diffraction results. The effect of swaps involving Mn is also discussed.

  17. A new Cu-8 Cr-4 Nb alloy for high temperature applications

    SciTech Connect

    Ellis, D.L.; Michal, G.M.; Dreshfield, R.L.

    1995-06-01

    Various applications exist where a high conductivity alloy with good strength and creep resistance are required. NASA LeRC has developed a Cu-8 at. percent Cr-4 at. percent Nb (Cu-8 Cr-4 Nb) alloy for these applications. The alloy is designed for use up to 700 C and shows exceptional strength, low cycle fatigue (LCF) resistance, and creep resistance. Cu-8 Cr-4 Nb also has a thermal conductivity of at least 72 percent that of pure Cu. Furthermore, the microstructure and mechanical properties of the alloy are very stable. In addition to the original application in combustion chambers, Cu-8 Cr-4 Nb shows promise for welding electrodes, brazing fixtures, and other applications requiring high conductivity and strength at elevated temperatures.

  18. A new Cu-8 Cr-4 Nb alloy for high temperature applications

    NASA Technical Reports Server (NTRS)

    Ellis, D. L.; Michal, G. M.; Dreshfield, R. L.

    1995-01-01

    Various applications exist where a high conductivity alloy with good strength and creep resistance are required. NASA LeRC has developed a Cu-8 at. percent Cr-4 at. percent Nb (Cu-8 Cr-4 Nb) alloy for these applications. The alloy is designed for use up to 700 C and shows exceptional strength, low cycle fatigue (LCF) resistance, and creep resistance. Cu-8 Cr-4 Nb also has a thermal conductivity of at least 72 percent that of pure Cu. Furthermore, the microstructure and mechanical properties of the alloy are very stable. In addition to the original application in combustion chambers, Cu-8 Cr-4 Nb shows promise for welding electrodes, brazing fixtures, and other applications requiring high conductivity and strength at elevated temperatures.

  19. Influence of ternary addition of transition elements (Cr, Si and Mn) on the microstructure and magnetic properties of nano-structured CuCo alloy

    NASA Astrophysics Data System (ADS)

    Mondal, B. N.; Chabri, S.; Basumallick, A.; Chattopadhyay, P. P.

    2012-09-01

    The current state of studies presents the effect of ternary addition of transition elements such as Mn, Cr and Si (10 wt%) on the mechanically driven non-equilibrium solubility of 40 wt% Co containing Cu-Co alloy. X-ray powder diffraction analysis indicates that addition of Mn has been found to be the most effective in enhancing the solubility and formation of a complete solid solution between Co and Cu in a short duration (30 h) of ball milling. The microstructure of the ball milled CuCoMn alloy was found to be stable after the isothermal annealing up to a temperature of 450 °C for 1 h. The magnetic properties such as magnetic saturation, coercivity and remanence of ball milled CuCo alloy in the presence of Mn significantly altered after annealing in the temperature range 350-650 °C for 1 h. The best combination of magnetic properties of CuCoMn alloy has been found after annealing at 550 °C for 1 h.

  20. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al Part II: Scale Microstructures

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. Details of the oxidation kinetics of these alloys were discussed in Part I. This paper analyzes the microstructures of the scale and its composition in an attempt to elucidate the oxidation mechanisms in these alloys. The scales formed on Cu-17%Cr specimens oxidized between 773 and 973 K consisted of external CuO and subsurface Cu2O layers. The total thickness of these scales varied from about 10 m at 773 K to about 450 m at 973 K. In contrast, thin scales formed on Cu-17%Cr-5%Al alloys oxidized between 773 and 1173 K. The exact nature of these scales could not be determined by x-ray diffraction but energy dispersive spectroscopy analyses were used to construct a scale composition map. Phenomenological oxidation mechanisms are proposed for the two alloys.

  1. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al. Part 2; Scale Microstructures

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. Details of the oxidation kinetics of these alloys were discussed in Part I. This paper analyzes the microstructures of the scale and its composition in an attempt to elucidate the oxidation mechanisms in these alloys. The scales formed on Cu-17%Cr specimens oxidized between 773 and 973 K consisted of external CuO and subsurface Cu2O layers. The total thickness of these scales varied from about 10 m at 773 K to about 450 m at 973 K. In contrast, thin scales formed on Cu-17%Cr-5%Al alloys oxidized between 773 and 1173 K. The exact nature of these scales could not be determined by x-ray diffraction but energy dispersive spectroscopy analyses were used to construct a scale composition map. Phenomenological oxidation mechanisms are proposed for the two alloys.

  2. Redox Dynamics of Mixed Metal (Mn, Cr, and Fe) Ultrafine Particles

    SciTech Connect

    Nico, Peter S.; Kumfer, Benjamin M.; Kennedy, Ian M.; Anastasio, Cort

    2008-08-01

    The impact of particle composition on metal oxidation state, and on changes in oxidation state with simulated atmospheric aging, are investigated experimentally in flame-generated nanoparticles containing Mn, Cr, and Fe. The results demonstrate that the initial fraction of Cr(VI) within the particles decreases with increasing total metal concentration in the flame. In contrast, the initial Mn oxidation state was only partly controlled by metal loading, suggesting the importance of other factors. Two reaction pathways, one reductive and one oxidative, were found to be operating simultaneously during simulated atmospheric aging. The oxidative pathway depended upon the presence of simulated sunlight and O{sub 3}, whereas the reductive pathway occurred in the presence of simulated sunlight alone. The reductive pathway appears to be rapid but transient, allowing the oxidative pathway to dominate with longer aging times, i.e. greater than {approx}8 hours. The presence of Mn within the particles enhanced the importance of the oxidative pathway, leading to more net Cr oxidation during aging implying that Mn can mediate oxidation by removal of electrons from other particulate metals.

  3. Redox Dynamics of Mixed Metal (Mn, Cr, and Fe) Ultrafine Particles

    PubMed Central

    Nico, Peter S.; Kumfer, Benjamin M.; Kennedy, Ian M.; Anastasio, Cort

    2008-01-01

    The impact of particle composition on metal oxidation state, and on changes in oxidation state with simulated atmospheric aging, are investigated experimentally in flame-generated nanoparticles containing Mn, Cr, and Fe. The results demonstrate that the initial fraction of Cr(VI) within the particles decreases with increasing total metal concentration in the flame. In contrast, the initial Mn oxidation state was only partly controlled by metal loading, suggesting the importance of other factors. Two reaction pathways, one reductive and one oxidative, were found to be operating simultaneously during simulated atmospheric aging. The oxidative pathway depended upon the presence of simulated sunlight and O3, whereas the reductive pathway occurred in the presence of simulated sunlight alone. The reductive pathway appears to be rapid but transient, allowing the oxidative pathway to dominate with longer aging times, i.e. greater than ∼8 hours. The presence of Mn within the particles enhanced the importance of the oxidative pathway, leading to more net Cr oxidation during aging implying that Mn can mediate oxidation by removal of electrons from other particulate metals. PMID:20046215

  4. Spin dependent transport properties of Mn-Ga/MgO/Mn-Ga magnetic tunnel junctions with metal(Mg, Co, Cr) insertion layer

    SciTech Connect

    Liang, S. H.; Tao, L. L.; Liu, D. P. Han, X. F.; Lu, Y.

    2014-04-07

    We report a first principles theoretical investigation of spin polarized quantum transport in Mn{sub 2}Ga/MgO/Mn{sub 2}Ga and Mn{sub 3}Ga/MgO/Mn{sub 3}Ga magnetic tunneling junctions (MTJs) with the consideration of metal(Mg, Co, Cr) insertion layer effect. By changing the concentration of Mn, our calculation shows a considerable disparity in transport properties: A tunneling magnetoresistance (TMR) ratio of 852% was obtained for Mn{sub 2}Ga-based MTJs, however, only a 5% TMR ratio for Mn{sub 3}Ga-based MTJs. In addition, the influence of insertion layer has been considered in our calculation. We found the Co insertion layer can increase the TMR of Mn{sub 2}Ga-based MTJ to 904%; however, the Cr insertion layer can decrease the TMR by 668%; A negative TMR ratio can be obtained with Mg insertion layer. Our work gives a comprehensive understanding of the influence of different insertion layer in Mn-Ga based MTJs. It is proved that, due to the transmission can be modulated by the interfacial electronic structure of insertion, the magnetoresistance ratio of Mn{sub 2}Ga/MgO/Mn{sub 2}Ga MTJ can be improved by inserting Co layer.

  5. Microstructures and Thermal Properties of Cold-Sprayed Cu-Cr Composite Coatings

    NASA Astrophysics Data System (ADS)

    Kikuchi, S.; Yoshino, S.; Yamada, M.; Fukumoto, M.; Okamoto, K.

    2013-08-01

    Copper-based composites for thermal conductive components were prepared via the cold spray process, and the deposition efficiency and adhesion morphology of feedstock powders on Cu substrate were evaluated. Cu-based composites were fabricated using Cu-Cr mixed powders with their mixture ratio of 20, 35, 50, and 65 mass% Cr onto oxygen-free copper substrate with N2 carrier gas. Cu-Cr composite coatings were investigated for their Cr content ratio, microstructures, and thermal conductivity. The Cr content ratio in the coating was approximately 50-60% of feedstock mixture ratio due to the low formability of the hard particles. Transmission electron microscopy characterizations revealed that an oxygen-rich layer exists at the Cr particle/Cu substrate interface, which contributes to the deposition of the Cr particles. After the heat treatment at 1093 K, the coatings showed denser cross-sectional structures than those before the heat treatment, and the thermal conductivity was improved as a result of the recrystallization of Cu matrix.

  6. Coupled antiferromagnetic spin- <mn>1mn>>2mn> chains in green dioptase Cu>6mn>[Si>6mn>O>18mn>]·>6mn>H>2mn>O

    SciTech Connect

    Podlesnyak, Andrey A; Larry M. Anovitz; Kolesnikov, Alexander I; Matsuda, Masaaki; Prisk, Timothy R; Toth, Sandor; Ehlers, Georg

    2016-02-01

    In this paper, we report inelastic neutron scattering measurements of the magnetic excitations of green dioptase Cu6[Si6O18]∙6H2O. The observed spectrum contains two magnetic modes and a prominent spin gap that is consistent with the ordered ground state of Cu moments coupled antiferromagnetically in spiral chains along the c axis and ferromagnetically in ab planes on the hexagonal cell. The data are in excellent agreement with a spin- <mn>1mn>>2mn>Hamiltonian that includes antiferromagnetic nearest-neighbor intrachain coupling Jc=10.6(1) meV, ferromagnetic interchain coupling Jab=₋1.2 (1) meV, and exchange anisotropy ΔJc=0.14(1) meV. We calculated the sublattice magnetization to be strongly reduced, ~0.39μB. This appears compatible with a reduced Néel temperature, TN=14.5K<c, and can be explained by a presence of quantum spin fluctuations

  7. Electroless deposition of NiCrB diffusion barrier layer film for ULSI-Cu metallization

    NASA Astrophysics Data System (ADS)

    Wang, Yuechun; Chen, Xiuhua; Ma, Wenhui; Shang, Yudong; Lei, Zhengtao; Xiang, Fuwei

    2017-02-01

    NiCrB films were deposited on Si substrates using electroless deposition as a diffusion barrier layer for Cu interconnections. Samples of the prepared NiCrB/SiO2/Si and NiCrB/Cu/NiCrB/SiO2/Si were annealed at temperatures ranging from 500 °C to 900 °C. The reaction mechanism of the electroless deposition of the NiCrB film, the failure temperature and the failure mechanism of the NiCrB diffusion barrier layer were investigated. The prepared samples were subjected to XRD, XPS, FPP and AFM to determine the phases, composition, sheet resistance and surface morphology of samples before and after annealing. The results of these analyses indicated that the failure temperature of the NiCrB barrier film was 900 °C and the failure mechanism led to crystallization and grain growth of the NiCrB barrier layer after high temperature annealing. It was found that this process caused Cu grains to reach Si substrate through the grain boundaries, and then the reaction between Cu and Si resulted in the formation of highly resistive Cu3Si.

  8. Chemical separation and mass spectrometry of Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial materials using thermal ionization mass spectrometry.

    PubMed

    Yamakawa, Akane; Yamashita, Katsuyuki; Makishima, Akio; Nakamura, Eizo

    2009-12-01

    A sequential chemical separation technique for Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial silicate rocks was developed for precise and accurate determination of elemental concentration by the isotope dilution method (ID). The technique uses a combination of cation-anion exchange chromatography and Eichrom nickel specific resin. The method was tested using a variety of matrixes including bulk meteorite (Allende), terrestrial peridotite (JP-1), and basalt (JB-1b). Concentrations of each element was determined by thermal ionization mass spectrometry (TIMS) using W filaments and a Si-B-Al type activator for Cr, Fe, Ni, and Zn and a Re filament and silicic acid-H3PO4 activator for Cu. The method can be used to precisely determine the concentrations of these elements in very small silicate samples, including meteorites, geochemical reference samples, and mineral standards for microprobe analysis. Furthermore, the Cr mass spectrometry procedure developed in this study can be extended to determine the isotopic ratios of 53Cr/52Cr and 54Cr/52Cr with precision of approximately 0.05epsilon and approximately 0.10epsilon (1epsilon = 0.01%), respectively, enabling cosmochemical applications such as high precision Mn-Cr chronology and investigation of nucleosynthetic isotopic anomalies in meteorites.

  9. Electrical conductivity and mechanical properties of Cu-0.7wt% Cr and Cu-1.0wt% Cr alloys processed by severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Kommel, L.; Pokatilov, A.

    2014-08-01

    As-cast Cu-0.7wt% Cr and Cu-1.0wt% Cr alloys were subjected to equal-channel angular pressing (ECAP), hard cyclic viscoplastic (HCV) deformation and post deformation heat treatment for receiving an ultrafine grained material with a combination of high strength, good wear resistance and high electric conductivity. Samples from Cu-0.7wt% Cr alloy were processed up to six passes and Cu-1wt% Cr alloy samples were processed up to four passes of ECAP via Bc route. HCV deformation of samples was conducted by frequency of 0.5 Hz for 20 cycles at tension-compression strain amplitudes of +/-0.05%, +/-0.1%, +/-0.5%, +/-1% and +/-1.5%, respectively. During HCV deformation, as-cast Cu-0./wt% Cr alloy show fully viscoelastic behavior at strain/stress amplitude of +/-0.05% while ECAP processed material show the same behavior at strain amplitude of +/-0.1%. The Young modulus was increased from ~120 GPa up to ~150 GPa. The results illustrated that specific volume wear decrease with increasing of hardness but the measured coefficient of friction (COF ~ 0.6) was approximately the same for all samples at the end of wear testing. The hardness after ECAP for 6 passes by Bc route was 192HV0.1 and electric conduction 74.16% IACS, respectively. By this the as-cast Cu-0./wt% Cr alloy (heat treated at 1000 °C for 2h) has microhardness ~70HV0.1 and electrical conductivity of ~40% IACS. During aging at the temperatures in the interval of 250-550 °C for 1h the hardness and electrical conductivity were stabilized to mean values of 120+/-5HV0.1 and to 93.4+/-0.3% IACS, respectively. The hardness and electric conductivity took decrease by temperature increase over ~550 °C, respectively. The results of present experimental investigation show that UFG Cu- 0.7wt% Cr alloy with compare to Cu-1.0% Cr alloy is a highly electrical conductive and high temperature wear resistant material for using in electrical industry.

  10. Cyclic Oxidation Behavior of CuCrAl Cold-Sprayed Coatings for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, Sai; Karthikeyan, J.

    2009-01-01

    The next generation of reusable launch vehicles is likely to use GRCop-84 [Cu-8(at.%)Cr-4%Nb] copper alloy combustion liners. The application of protective coatings on GRCop-84 liners can minimize or eliminate many of the environmental problems experienced by uncoated liners and significantly extend their operational lives and lower operational cost. A newly developed Cu- 23 (wt.%) Cr-5% Al (CuCrAl) coating, shown to resist hydrogen attack and oxidation in an as-cast form, is currently being considered as a protective coating for GRCop-84. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique, where the CuCrAl was procured as gas-atomized powders. Cyclic oxidation tests were conducted between 773 and 1,073 K to characterize the coated substrates.

  11. Laser weldability of 21Cr-6Ni-9Mn stainless steel: Part II - Weldability diagrams

    SciTech Connect

    Tate, Stephen B.; Javernick, Daniel Anthony; Lienert, Thomas J.; Liu, Stephen

    2016-11-02

    In this second part of the study, weldability diagrams developed to relate solidification crack susceptibility and chemical composition for laser welded type 21Cr-6Ni-9Mn (21-6-9) stainless steel are presented. Sigmajig testing on 14 commercial 21-6-9 alloys, 20 experimental 21-6-9 alloys, and 7 other high-N, high-Mn austenitic stainless steels was used to develop weldability diagrams for solidification crack susceptibility for laser welding of type 21-6-9. Three travel speeds were used to show the changes in minimum Creq/Nieq for primary ferrite solidification as solidification rate increase d with travel speed . Primary austenite solidification was observed below 1.55 Creq/Nieq (Espy equivalents) at 21 mm/s travel speed. At 42 mm/s travel speed , a mix of solidification modes were displayed for alloys from 1.55-1.75 Creq/Nieq. Primary ferrite solidification was observed above 1.75 Creq/Nieq at both 42 and 85 mm/s travel speeds. No solidification cracking was observed for alloys with primary ferrite solidification. Lastly, variable cracking behavior was found in alloys with primary austenite solidification, but in general cracking was observed in alloys with greater than 0.02 wt-% combined impurity content according to (P+0.2S).

  12. Bandgap- and Radial-Position-Dependent Mn-Doped Zn-Cu-In-S/ZnS Core/Shell Nanocrystals.

    PubMed

    Peng, Lucheng; Huang, Keke; Zhang, Zhuolei; Zhang, Ying; Shi, Zhan; Xie, Renguo; Yang, Wensheng

    2016-03-03

    This paper presents a mechanistic study on the doping of Zn-Cu-In-S/ZnS core/shell quantum dots (QDs) with Mn by changing the Zn-Cu-In-S QD bandgap and dopant position inside the samples (Zn-Cu-In-S core and ZnS shell). Results show that for the Mn:Zn-Cu-In-S/ZnS system, a Mn-doped emission can be obtained when the bandgap value of the QDs is larger than the energy of Mn-doped emission. Conversely, a bandgap emission is only observed for the doped system when the bandgap value of QDs is smaller than the energy gap of the Mn-doped emission. In the Zn-Cu-In-S/Mn:ZnS systems, doped QDs show dual emissions, consisting of bandgap and Mn dopant emissions, instead of one emission band when the value of the host bandgap is larger than the energy of the Mn-doped emission. These findings indicate that the emission from Mn-doped Zn-Cu-In-S/ZnS core/shell QDs depends on the bandgap of the QDs and the dopant position inside the core/shell material. The critical bandgap of the host materials is estimated to have the same value as the energy of the Mn d-d transition. Subsequently, the mechanism of photoluminescence properties of the Mn:Zn-Cu-In-S/ZnS and Zn-Cu-In-S/Mn:ZnS core/shell QD systems is proposed. Control experiments are then carried out by preparing Mn-doped Zn(Cu)-In-S QDs with various bandgaps, and the results confirm the reliability of the suggested mechanism. Therefore, the proposed mechanism can aid the design and synthesis of novel host materials in fabricating doped QDs.

  13. Galvanomagnetic properties of Heusler alloy Co2 YAl ( Y = Ti, V, Cr, Mn, Fe, and Ni)

    NASA Astrophysics Data System (ADS)

    Kourov, N. I.; Marchenkov, V. V.; Perevozchikova, Yu. A.; Weber, H. W.

    2017-01-01

    The Hall effect and the magnetoresistance of ferromagnetic Heusler alloys Co2 YAl, where Y = Ti, V, Cr, Mn, Fe, and Ni have been studied at T = 4.2 K in magnetic fields H ≤ 100 kOe. Normal R 0 and anomalous R S Hall coefficients are shown to be maximal in magnitudes in the middle of the 3 d period of the periodic table of elements. Coefficient R 0 changes the negative sign to positive sign in going from weak ( Y = Ti, V) to strong ( Y = Cr, Mn, Fe, and Ni) ferromagnetic alloys. Constant R S is positive and proportional to ρ2.9 in all the alloys. The magnetoresistance of the alloys is not higher than several percent and its magnitude is changed fairly significantly in the dependence on the number of valence electrons z; the magnetoresistance signs vary arbitrarily.

  14. Carbides in iron-rich Fe-Mn-Cr-Mo-Al-Si-C systems

    NASA Technical Reports Server (NTRS)

    Lemkey, F. D.; Gupta, H.; Nowotny, H.; Wayne, S. F.

    1984-01-01

    The optimization of high carbon iron-base superalloy properties with duplex microstructure gamma + M7C3 carbide requires analysis in the context of a seven-component system. Data are first provided here for the Fe-Mn-Cr-Mo-C quinary system, at 30 at. pct carbon. A characterization of competing carbides, according to a pseudoternary phase diagram at 35 wt pct iron, is made from isothermal sections. It is noted that while M7C3 and M3C carbides' occurrences are respectively favored at the Cr and Mn corners, the M2C carbide and molybdenum cementite are predominant with increasing amounts of Mo. Lattice parameters are reported for the various carbides.

  15. Giant Magnetoresistance and Coercivity of electrodeposited multilayered FeCoNi/Cu and CrFeCoNi/Cu

    NASA Astrophysics Data System (ADS)

    Shakya, P.; Cox, B.; Davis, D.

    2012-02-01

    The effect of Cr addition on electrodeposited multilayered nanowires CrFeCoNi/Cu was investigated from a magnetic property perspective: current perpendicular to the plane-Giant Magnetoresistance (CPP-GMR) and Coercivity (BH loops). The magnetic behavior of multilayered nanowires of CrFeNiCo/Cu was also affected by the alloy deposition potential, alloy pulsing time (layer thickness) and number of bilayers. Furthermore, the addition of Cr influenced both the nanowires GMR and Coercivity. Cr addition to the ferromagnetic FeCoNi layer induced a reduction in the room temperature GMR from 10.64% to 5.62%; however, the magnetic saturation field decreased from 0.45 to 0.27 T. The increase in the number of bilayers, from 1000 to 2500, resulted in a higher GMR value, 14.56% with 0.35 T magnetic saturation field. Addition of Cr to the ferromagnetic layer decreased the coercivity from 0.015 to 0.0054 T. Low saturation field CPP-GMR nanowires showing low coercivity at room temperature opens a new door for magnetic sensing devices. To the best of our knowledge, this is the first study on electrodeposited CrFeCoNi/Cu multilayered nanowires.

  16. Giant magnetic coercivity in CaCu5-type SmNi3TSi (T=Mn-Cu) solid solutions

    NASA Astrophysics Data System (ADS)

    Yao, Jinlei; Yan, Xu; Morozkin, A. V.

    2015-12-01

    The effects of transition metal substitution for Ni on the magnetic properties of the CaCu5-type SmNi3TSi (T=Mn, Fe, Co, Cu) solid solutions have been investigated. SmNi3MnSi, SmNi3FeSi, SmNi3CoSi and SmNi3CuSi show ferromagnetic ordering at 125 K, 190 K, 46 K and 12 K and field induced transitions at 65 K, 110 K, 30 K and 6 K, respectively. The magnetocaloric effects of SmNi3TSi (T=Mn, Fe, Co, Cu) were calculated in terms of isothermal magnetic entropy change (ΔSm). The magnetic entropy ΔSm reaches value of -1.1 J/kg K at 130 K for SmNi3MnSi, -0.4 J/kg K at 180 K for SmNi3FeSi, -0.37 J/kg K at 45 K for SmNi3CoSi and -0.5 J/kg K at 12 K for SmNi3CuSi in field change of 0-50 kOe around the ferromagnetic ordering temperature. They show positive ΔSm of +2.4 J/kg K at 30 K for SmNi3MnSi, -2.6 J/kg K at 65 K for SmNi3FeSi, +0.73 J/kg K at 15 K for SmNi3CoSi and -0.5 J/kg K at 6 K for SmNi3CuSi in field change of 0-50 kOe around the metamagnetic-like transition temperature. Below the field induced transition temperature, SmNi3TSi (T=Mn, Fe, Co, Cu) exhibits giant magnetic coercivity of 80 kOe at 20 K for SmNi3MnSi, 87 kOe at 40 K for SmNi3FeSi, 27 kOe at 20 K for SmNi3CoSi and 54 kOe at 5 K for SmNi3CuSi. Below the field induced transition temperature, SmNi3TSi (T=Mn, Fe, Co, Cu) exhibits giant magnetic coercivity of 80 kOe at 20 K for SmNi3MnSi, 87 kOe at 40 K for SmNi3FeSi, 27 kOe at 20 K for SmNi3CoSi and 54 kOe at 5 K for SmNi3CuSi.

  17. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating

    NASA Astrophysics Data System (ADS)

    Ye, Qingfeng; Feng, Kai; Li, Zhuguo; Lu, Fenggui; Li, Ruifeng; Huang, Jian; Wu, Yixiong

    2017-02-01

    Equimolar CrMnFeCoNi high entropy alloy (HEA) is one of the most notable single phase multi-component alloys up-to-date with promising mechanical properties at cryogenic temperatures. However, the study on the corrosion behavior of CrMnFeCoNi HEA coating has still been lacking. In this paper, HEA coating with a nominal composition of CrMnFeCoNi is fabricated by laser surface alloying and studied in detail. Microstructure and chemical composition are determined by X-ray diffraction (XRD), optical microscope (OM), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) are used to investigate the corrosion behavior. The coating forms a simple FCC phase with an identical dendritic structure composed of Fe/Co/Ni-rich dendrites and Mn/Ni-rich interdendrites. Both in 3.5 wt.% NaCl solution and 0.5 M sulfuric acid the coating exhibits nobler corrosion resistance than A36 steel substrate and even lower icorr than 304 stainless steel (304SS). EIS plots coupled with fitted parameters reveal that a spontaneous protective film is formed and developed during immersion in 0.5 M sulfuric acid. The fitted Rt value reaches its maximum at 24 h during a 48 h' immersion test, indicating the passive film starts to break down after that. EDS analysis conducted on a corroded surface immersed in 0.5 M H2SO4 reveals that corrosion starts from Cr-depleted interdendrites.

  18. Numerical analysis of rheological and tribological behavior influence on 16MnCr5 forging fibering

    NASA Astrophysics Data System (ADS)

    Gavrus, A.; Pintilie, D.; Nedelcu, R.

    2016-10-01

    The present research work is focus on the influence of the rheological constitutive equation and friction law formulation on 16MnCr5 forging fibering. Numerical analysis using FE Forge® and Abaqus code show the importance of the rheological softening terms on the metals fibers morphology and position coordinate. Calibration of friction law and sensitivity of softening parameters corresponding to a Hansel-Spittel rheological equation have been studied.

  19. Investigation of vacuum properties of CuCrZr alloy for high-heat-load absorber

    NASA Astrophysics Data System (ADS)

    Shueh, C.; Chan, C. K.; Chang, C. C.; Sheng, I. C.

    2017-01-01

    The Taiwan Photon Source (TPS) uses high-heat-load (HHL) absorbers to protect downstream ultrahigh-vacuum chambers from overheating. In this work, we propose to use the CuCrZr alloy (ASTM C18150) for the HHL absorber body and the ConFlat flanges. We use the throughput method to measure the thermal outgassing rate and a helium leak detector to verify the vacuum seal between the CuCrZr alloy and stainless-steel flanges. The measured outgassing rate of the CuCrZr alloy was 5.8×10-10 Pa m/s after 72 h of pumping and decreased to 2.0 × 10-10 Pa m/s after 100 h of pumping. The leak rate through the vacuum seal between a CuCrZr flange and a stainless-steel flange was less than 1 × 10-10 Pa m3/s even after mounting and unmounting the flanges ten times and baking them at 250 °C. These results indicate that CuCrZr alloy is suitable for integrating HHL components with ConFlat CuCrZr flanges for the absorption of the synchrotron radiation generated by the TPS.

  20. Tensile and Fracture Toughness Properties of Neutron-Irradiated CuCrZr

    SciTech Connect

    Sokolov, Mikhail A; Zinkle, Steven J; Li, Meimei

    2009-01-01

    Tensile and fracture toughness properties of a precipitation-hardened CuCrZr alloy were investigated in two heat treatment conditions: solutionized, water quenched and aged (CuCrZr SAA), and hot isostatic pressed, solutionized, slow-cooled and aged (CuCrZr SCA). The second heat treatment simulated the manufacturing cycle for large components, and is directly relevant for the ITER divertor components. Specimens were neutron irradiated at {approx}80 C to two fluences, 2 x 10{sup 24} and 2 x 10{sup 25} n/m{sup 2} (E > 0.1 MeV), corresponding to displacement doses of 0.15 and 1.5 displacements per atom (dpa). Tensile and fracture toughness tests were carried out at room temperature. Significant irradiation hardening and plastic instability at yield occurred in both heat treatment conditions with a saturation dose of {approx}0.1 dpa. Neutron irradiation slightly reduced fracture toughness in CuCrZr SAA and CuCrZr SCA. The fracture toughness of CuCrZr remained high up to 1.5 dpa (J{sub Q} > 200 kJ/m{sup 2}) for both heat treatment conditions.

  1. Characterization of transparent superconductivity Fe-doped CuCrO2 delafossite oxide

    NASA Astrophysics Data System (ADS)

    Taddee, Chutirat; Kamwanna, Teerasak; Amornkitbamrung, Vittaya

    2016-09-01

    Delafossite CuCr1-xFexO2 (0.0 ≤ x ≤ 0.15) semiconductors were synthesized using a self-combustion urea nitrate process. The effects of Fe concentration on its microstructural, optical, magnetic, and electrical properties were investigated. X-ray diffraction (XRD) analysis results revealed the delafossite structure in all the samples. The lattice spacing of CuCr1-xFexO2 slightly increased with increasing substitution of Fe at the Cr sites. The optical properties measured at room temperature using UV-visible spectroscopy showed a weak absorbability in the visible light and near IR regions. The corresponding direct optical band gap was about 3.61 eV, exhibiting transparency in the visible region. The magnetic hysteresis loop measurements showed that the Fe-doped CuCrO2 samples exhibited ferromagnetic behavior at room temperature. This indicated that the substitution of Fe3+ for Cr3+ produced a mixed effect on the magnetic properties of CuCrO2 delafossite oxide. The temperature dependent resistivity measurements clearly revealed the presence of superconductivity in the CuCr1-xFexO2 with a superconducting transition up to 118 K.

  2. Compressive deformation behavior of CrMnFeCoNi high-entropy alloy

    NASA Astrophysics Data System (ADS)

    Jang, Min Ji; Joo, Soo-Hyun; Tsai, Che-Wei; Yeh, Jien-Wei; Kim, Hyoung Seop

    2016-11-01

    The compressive deformation behavior of a single phase CrMnFeCoNi high-entropy alloy (HEA) is investigated using experimental and theoretical approaches. The equiaxed microstructures are observed using optical microscope, electron backscattered diffraction, and synchrotron X-ray diffraction (XRD) techniques. Compressive results reveal that the CrMnFeCoNi HEA has a high strain-hardening exponent in spite of its large grain size due to increased dislocation density and severe lattice distortion. The compressive texture of the HEA resembles those of typical FCC metals. The phenomenological dislocation-based constitutive model well describes the compressive deformation behavior. The predicted dislocation density is in good quantitative agreement with the experimental value measured using whole-profile fitting of synchrotron XRD peaks. It can be confirmed from the experimental and theoretical findings that the deformation mechanism of the CrMnFeCoNi HEA is the conventional dislocation glide and mechanical twinning is negligible contrary to general belief.

  3. Mechanical Properties and Microstructure of the CoCrFeMnNi High Entropy Alloy Under High Strain Rate Compression

    NASA Astrophysics Data System (ADS)

    Wang, Bingfeng; Fu, Ao; Huang, Xiaoxia; Liu, Bin; Liu, Yong; Li, Zezhou; Zan, Xiang

    2016-07-01

    The equiatomic CoCrFeMnNi high entropy alloy, which crystallizes in the face-centered cubic (FCC) crystal structure, was prepared by the spark plasma sintering technique. Dynamic compressive tests of the CoCrFeMnNi high entropy alloy were deformed at varying strain rates ranging from 1 × 103 to 3 × 103 s-1 using a split-Hopkinson pressure bar (SHPB) system. The dynamic yield strength of the CoCrFeMnNi high entropy alloy increases with increasing strain rate. The Zerilli-Armstrong (Z-A) plastic model was applied to model the dynamic flow behavior of the CoCrFeMnNi high entropy alloy, and the constitutive relationship was obtained. Serration behavior during plastic deformation was observed in the stress-strain curves. The mechanism for serration behavior of the alloy deformed at high strain rate is proposed.

  4. Compositional Zoning and Mn-Cr Systematics in Carbonates from the Y791198 CM2 Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Brearley, Adrian J.; Hutcheon, Ian D.; Browning, Lauren

    2001-01-01

    Cathodoluminescence and microprobe analyses show that carbonates in Y791198 exhibit complex zoning. Cr-Mn dating suggests formation of carbonates 10 Ma after CAI formation Additional information is contained in the original extended abstract..

  5. Creep Testing of High-Temperature Cu-8 Cr-4 Nb Alloy Completed

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A Cu-8 at.% Cr-4 at.% Nb (Cu-8 Cr-4 Nb) alloy is under development for high-temperature, high heatflux applications, such as actively cooled, hypersonic vehicle heat exchangers and rocket engine combustion chambers. Cu-8 Cr-4 Nb offers a superior combination of strength and conductivity. It has also shown exceptional low-cycle fatigue properties. Following preliminary testing to determine the best processing route, a more detailed testing program was initiated to determine the creep lives and creep rates of Cu-8 Cr-4 Nb alloy specimens produced by extrusion. Testing was conducted at the NASA Lewis Research Center with constant-load vacuum creep units. Considering expected operating temperatures and mission lives, we developed a test matrix to accurately determine the creep properties of Cu-8 Cr-4 Nb between 500 and 800 C. Six bars of Cu-8 Cr-4 Nb were extruded. From these bars, 54 creep samples were machined and tested. The figure on the left shows the steady-state, or second-stage, creep rates for the samples. Comparison data for NARloy-Z (Cu-3 wt % Ag-0.5 wt % Zr), the alloy currently used in combustion chamber liners, were not unavailable. Therefore the steady-state creep rates for Cu at similar temperatures are presented. As expected, in comparison to pure Cu, the creep rates for Cu-8 Cr-4 Nb are much lower. The lives of the samples are presented in the figure on the right. As shown, Cu-8 Cr-4 Nb at 800 C is comparable to NARloy-Z at 648 C. At equivalent temperatures, Cu-8 Cr-4 Nb enjoys a 20 to 50 percent advantage in stress for a given life and 1 to 3 orders of magnitude greater life at a given stress. The improved properties allow for design tradeoffs and improvements in new and existing heat exchangers such as the next generation of combustion chamber liners. Average creep rates for Cu-8 Cr-4 Nb and pure Cu are shown. Average creep lives for Cu-8 Cr- 4 Nb and NARloy-Z are also shown. Currently, two companies are interested in the commercial usage of the Cu

  6. 53Mn-53Cr dating of aqueously formed carbonates in the CM2 lithology of the Sutter's Mill carbonaceous chondrite

    NASA Astrophysics Data System (ADS)

    Jilly, Christine E.; Huss, Gary R.; Krot, Alexander N.; Nagashima, Kazuhide; Yin, Qing-Zhu; Sugiura, Naoji

    2014-11-01

    Radiometric dating of secondary minerals can be used to constrain the timing of aqueous alteration on meteoritic parent bodies. Dolomite is a well-documented secondary mineral in CM chondrites, and is thought to have formed by precipitation from an aqueous fluid on the CM parent body within several million years of accretion. The petrographic context of crosscutting dolomite veins indicates that aqueous alteration occurred in situ, rather than in the nebular setting. Here, we present 53Mn-53Cr systematics for dolomite grains in Sutter's Mill section SM51-1. The Mn-Cr isotope data show well-resolved excesses of 53Cr correlated with 55Mn/52Cr ratio, which we interpret as evidence for the in situ decay of radioactive 53Mn. After correcting for the relative sensitivities of Mn and Cr using a synthetic Mn- and Cr-bearing calcite standard, the data yield an isochron with slope corresponding to an initial 53Mn/55Mn ratio of 3.42 ± 0.86 × 10-6. The reported error includes systematic uncertainty from the relative sensitivity factor. When calculated relative to the U-corrected Pb-Pb absolute age of the D'Orbigny angrite, Sutter's Mill dolomites give a formation age between 4564.8 and 4562.2 Ma (2.4-5.0 Myr after the birth of the solar system). This age is contemporaneous with previously reported ages for secondary carbonates in CM and CI chondrites. Consistent carbonate precipitation ages between the carbonaceous chondrite groups suggest that aqueous alteration was a common process during the early stages of parent body formation, probably occurring via heating from internal 26Al decay. The high-precision isochron for Sutter's Mill dolomite indicates that late-stage processing did not reach temperatures that were high enough to further disturb the Mn-Cr isochron.

  7. Thermally stimulated luminescence studies of undoped, Cu- and Mn-doped CaSO4 compounds

    NASA Astrophysics Data System (ADS)

    Manam, J.; Das, S.

    Thermally stimulated luminescence (TSL) of undoped and doped CaSO4 with activators such as Cu and Mn has been investigated. The polycrystalline samples of undoped and doped CaSO4 are prepared by the melting method. The formation of CaSO4 compound is confirmed by X-ray diffraction and Fourier transform infrared studies. Scanning electron microscopic studies of CaSO4 are also carried out. The TSL glow curves of undoped CaSO4, Cu- and Mn-doped CaSO4 are studied. Comparison of the thermoluminescence (TL) intensity of the most intensive glow peak of Cu-doped CaSO4 compound with that of undoped CaSO4 shows that addition of Cu impurity in CaSO4 compound enhances the TL intensity by about four times. However, the addition of Mn impurity to undoped CaSO4 increases the TL intensity by about three times when compared with that of undoped CaSO4. The TL-dose dependence of all three samples was studied and was observed to be almost linear in the studied range of irradiation time. Among the samples studied, namely undoped CaSO4 and Cu- and Mn-doped CaSO4, Cu-doped CaSO4 is found to be the most sensitive. The trap parameters, namely order of kinetics (b), activation energy (E) and frequency factor (s) associated with the most intensive glow peaks of CaSO4:Mn, CaSO4:Cu and CaSO4 phosphors were determined using the glow curve shape (Chen's) method.

  8. Pulse Electrodeposition of Cu-ZnO and Mn-Cu-ZnO Nanowires

    SciTech Connect

    Gupta, Mayank; Pinisetty, D.; Flake, John C.; Spivey, James J.

    2010-07-09

    Cu–ZnO and Mn–Cu–ZnO nanowires are attractive catalysts for alcohol synthesis from CO hydrogenation reactions. Nanowire alloys are pulse electrodeposited into track etched polycarbonate membranes using aqueous electrolytes including Mn(NO3)2, Cu(NO3)2, Zn(NO3)2, and NH4 NO3. Pulse waveforms with a cathodic current density of 50.7mAcm -2 for 50 ms (on-time), with varying off-times (400, 500, and 600 ms), are used to fabricate nanowire arrays (400 nm diameter, 25μm long, and pore density of 1.5×108pores cm-2 ). Pulse waveforms allow significantly higher copper concentrations and better control of zinc and manganese concentrations within nanowires. X-ray diffraction results show preferential growth in the (111) direction and crystallite size increases with an increase in off-time. Waveforms with longer off-times (500 and 600 ms) resulted in nanowires with relatively higher copper concentrations due to improved copper transport in nanopores. The nanowire surface has no manganese; however, the core shows manganese, which increases with the decrease in off-time. The effect of deposition conditions and electrolyte composition on nanowire properties are explained and discussed.

  9. Spectro-photometric determinations of Mn, Fe and Cu in aluminum master alloys

    NASA Astrophysics Data System (ADS)

    Rehan; Naveed, A.; Shan, A.; Afzal, M.; Saleem, J.; Noshad, M. A.

    2016-08-01

    Highly reliable, fast and cost effective Spectro-photometric methods have been developed for the determination of Mn, Fe & Cu in aluminum master alloys, based on the development of calibration curves being prepared via laboratory standards. The calibration curves are designed so as to induce maximum sensitivity and minimum instrumental error (Mn 1mg/100ml-2mg/100ml, Fe 0.01mg/100ml-0.2mg/100ml and Cu 2mg/100ml-10mg/ 100ml). The developed Spectro-photometric methods produce accurate results while analyzing Mn, Fe and Cu in certified reference materials. Particularly, these methods are suitable for all types of Al-Mn, Al-Fe and Al-Cu master alloys (5%, 10%, 50% etc. master alloys).Moreover, the sampling practices suggested herein include a reasonable amount of analytical sample, which truly represent the whole lot of a particular master alloy. Successive dilution technique was utilized to meet the calibration curve range. Furthermore, the workout methods were also found suitable for the analysis of said elements in ordinary aluminum alloys. However, it was observed that Cush owed a considerable interference with Fe, the later one may not be accurately measured in the presence of Cu greater than 0.01 %.

  10. Solid-state synthesis and thermoelectric properties of Cr-doped MnSi1.73

    NASA Astrophysics Data System (ADS)

    Shin, Dong-Kil; You, Sin-Wook; Kim, Il-Ho

    2014-11-01

    Cr-doped HMSs (higher manganese silicides), MnSi1.73 : Cr x ( x = 0, 0.005, 0.01, 0.02, 0.03), were prepared by using a solid-state reaction and hot pressing. X-ray diffraction analysis and Rietveld refinement confirmed the synthesis of MnSi1.73. The Cr atoms were confirmed to be soluble in the HMS structure because the lattice constant increased with increasing Cr content ( x), and the solid solubility limit of Cr was estimated as x = 0.01. All specimens showed p-type conduction and exhibited degenerate semiconductor characteristics at all temperatures examined (323-823 K). The Seebeck coefficient was decreased and the electrical conductivity was increased by Cr doping. The dimensionless thermoelectric figure of merit ZT was obtained as 0.36 at 823 K for MnSi1.73 : Cr0.005 and MnSi1.73 : Cr0.01 because the power factor was increased and the thermal conductivity was decreased by Cr doping.

  11. Ni spin switching induced by magnetic frustration in FeMn/Ni/Cu(001)

    SciTech Connect

    Wu, J.; Choi, J.; Scholl, A.; Doran, A.; Arenholz, E.; Hwang, Chanyong; Qiu, Z. Q.

    2009-03-08

    Epitaxially grown FeMn/Ni/Cu(001) films are investigated by Photoemission Electron Microscopy and Magneto-Optic Kerr Effect. We find that as the FeMn overlayer changes from paramagnetic to antiferromagnetic state, it could switch the ferromagnetic Ni spin direction from out-of-plane to in-plane direction of the film. This phenomenon reveals a new mechanism of creating magnetic anisotropy and is attributed to the out-of-plane spin frustration at the FeMn-Ni interface.

  12. Luminescence (M=Mn2+, Cu2+) and Esr (M=Gd3+, Mn2+, Cu2+) of Na2ZnP2O7: M

    NASA Astrophysics Data System (ADS)

    Kumar, B. Vijaya; Vithal, M.

    2012-06-01

    We report the synthesis of sodium zinc diphosphate (Na2ZnP2O7) using a domestic microwave oven (2.45 GHz) and metal ion doped sodium zinc diphosphate (Na1.88Gd0.04ZnP2O7/Na1.92M0.04ZnP2O7 (M=Mn and Cu)) by a solid state metathesis reaction. All the materials were characterized by powder X-ray diffraction (XRD) and infrared spectroscopy (IR). These metal doped diphosphates were crystallized in a tetragonal lattice with space group P42/mnm. The IR spectra of all the samples were characterized by bands due to the P2O74- group. The powder electron spin resonance (ESR) spectrum of Na1.88Gd0.04ZnP2O7 gave a characteristic “U” type spectrum. The powder ESR spectrum of Na1.92Mn0.04ZnP2O7 consists of six lines while Na1.92Cu0.04ZnP2O7 gave a broad profile. All the doped metal ions occupy the Na+ site in the diphosphate lattice. The broad emission band at 614 nm (red band) observed for Na1.92Mn0.04ZnP2O7 is assigned to an electronic transition T14(G4)→A16(S6) of Mn2+ in distorted octahedral coordination.

  13. Novel Cu-Cr alloy matrix CNT composites with enhanced thermal conductivity

    NASA Astrophysics Data System (ADS)

    Kong, Jian; Zhang, Chao-ying; Cheng, Xiang

    2013-09-01

    Carbon nanotubes (CNTs) are incorporated into the Cu-Cr matrix to fabricate bulk CNT/Cu-Cr composites by means of a powder metallurgy method, and their thermal conductivity behavior is investigated. It is found that the formation of Cr3C2 interfacial layer improves the interfacial bonding between CNTs and Cu-Cr matrix, producing a reduction of interfacial thermal resistance, and subsequently enhancing the thermal conductivity of the composites. The thermal conductivity of the composites increases by 12 % and 17 % with addition of 5 vol.% and 10 vol.% CNTs, respectively. The experimental results are also theoretically analyzed using an effective medium approximation (EMA) model, and it is found that the EMA model combined with a Debye model can provide a satisfactory agreement to the experimental data.

  14. One-pot synthesis of Mn-doped TiO2 grown on graphene and the mechanism for removal of Cr(VI) and Cr(III).

    PubMed

    Chen, Zengping; Li, Yaru; Guo, Meng; Xu, Fengyun; Wang, Peng; Du, Yu; Na, Ping

    2016-06-05

    Mn-doped TiO2 grown on reduced graphene oxide(rGO) was synthesized by one-pot hydrothermal method and the photocatalytic removal of Cr by the material was investigated under sunlight. The materials were characterized by a combination of scanning electron microscopy, transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, Brunauer-Emmett-Teller method, UV-vis diffuse reflectance spectra, photoluminescence spectra, electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy. Cr(total) removal efficiency of the material is 97.32% in 30min and 99.02% in 60min under sunlight irradiation, as the initial concentration of Cr(VI) is 20mg/L. The high photocatalytic activity under visible light is considered mainly due to the Mn-doping, and rGO plays an important role in the synergetic effect of adsorption and photocatalysis to sustain the high efficient removal of Cr(VI) and Cr(III). Cr(VI) adsorbed on the surface of rGO is reduced to Cr(III) by photo electrons which are transported through rGO, and the reaction product Cr(III) continues to be adsorbed. The process contributes to the release of abundant photocatalytic sites of Mn-TiO2 and improves photocatalytic efficiency. The excellent adsorption and photocatalytic effect with the explanation of the synergetic mechanism are very useful not only for fundamental research but also for the potential practical applications.

  15. Microstructure and Mechanical Properties of Vacuum Plasma Sprayed Cu-8Cr-4Nb

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Ellis, David; McKechnie, Timothy; Hickman, Robert

    1997-01-01

    This paper compares the tensile properties of Cu-8Cr-4Nb material produced by VPS to material previously produced by extrusion. The microstructure of the VPS material is also presented. The combustion chamber liner of rocket motors represents an extreme materials application. The liner hot wall is exposed to a 2760 C (5000 F) flame while the cold side is exposed to cryogenic hydrogen liquid. Materials for use in the combustion chamber liner require a combination of high temperature strength, creep resistance, and low cycle fatigue resistance along with high thermal conductivity. The hot side is also subject to localized cycles between reducing and oxidizing environments that degrade the liner by a process called blanching. A new Cu-8 at.% Cr-4 at% Nb (Cu-8Cr-4Nb) alloy has been developed at NASA Lewis Research Center as a replacement for the currently used alloy, NARloy-z (Cu-3 wt.% Ag-0.5 wt.% Zr). The alloy is strengthened by a fine dispersion of Cr2Nb particles. The alloy has better mechanical properties than NARloy-Z while retaining most of the thermal conductivity of pure copper. The alloy has been successfully consolidated by extrusion and hot isostatic pressing (HIPing). However, vacuum plasma spraying (VPS) offers several advantages over prior consolidation methods. VPS can produce a near net shape piece with the profile of the liner. In addition, oxidation resistant and thermal barrier coatings can be incorporated as an integral part of the liner hot wall during the VPS deposition. The low oxygen VPS Cu-8Cr-4Nb exhibits a higher strength than Cu-8Cr-4Nb produced by extrusion at elevated temperatures and a comparable strength at room temperature. Moduli and ductility were not significantly different. However, the ability to produce parts to near-net shape and maintain the good elevated temperature tensile properties of the extruded Cu-8Cr-4Nb makes VPS an attractive processing method for fabricating rocket engine combustion liners.

  16. Large exchange bias enhancement in (Pt(or Pd)/Co)/IrMn/Co trilayers with ultrathin IrMn thanks to interfacial Cu dusting

    SciTech Connect

    Vinai, G.; Moritz, J.; Bandiera, S.; Prejbeanu, I. L.; Dieny, B.

    2014-04-21

    The magnitude of exchange bias (H{sub ex}) at room temperature can be significantly enhanced in IrMn/Co and (Pt(or Pd)/Co)/IrMn/Co structures thanks to the insertion of an ultrathin Cu dusting layer at the IrMn/Co interface. The combination of trilayer structure and interfacial Cu dusting leads to a three-fold increase in H{sub ex} as compared to the conventional IrMn/Co bilayer structure, with an increased blocking temperature (T{sub B}) and a concave curvature of the temperature dependence H{sub ex}(T), ideal for improved Thermally Assisted-Magnetic Random Access Memory storage layer. This exchange bias enhancement is ascribed to a reduction of the spin frustration at the IrMn/Co interface thanks to interfacial Cu addition.

  17. A series of M(II)Cu(II)3 stars (M = Mn, Ni, Cu, Zn) exhibiting unusual magnetic properties.

    PubMed

    Mondal, Suraj; Mandal, Shuvankar; Carrella, Luca; Jana, Arpita; Fleck, Michel; Köhn, Andreas; Rentschler, Eva; Mohanta, Sasankasekhar

    2015-01-05

    The work in this report describes the syntheses, electrospray ionization mass spectromtery, structures, and experimental and density functional theoretical (DFT) magnetic properties of four tetrametallic stars of composition [M(II)(Cu(II)L)3](ClO4)2 (1, M = Mn; 2, M = Ni; 3, M = Cu; 4, M = Zn) derived from a single-compartment Schiff base ligand, N,N'-bis(salicylidene)-1,4-butanediamine (H2L), which is the [2 + 1] condensation product of salicylaldehyde and 1,4-diaminobutane. The central metal ion (Mn(II), Ni(II), Cu(II), or Zn(II)) is linked with two μ2-phenoxo bridges of each of the three [Cu(II)L] moieties, and thus the central metal ion is encapsulated in between three [Cu(II)L] units. The title compounds are rare or sole examples of stars having these metal-ion combinations. In the cases of 1, 3, and 4, the four metal ions form a centered isosceles triangle, while the four metal ions in 2 form a centered equilateral triangle. Both the variable-temperature magnetic susceptibility and variable-field magnetization (at 2-10 K) of 1-3 have been measured and simulated contemporaneously. While the Mn(II)Cu(II)3 compound 1 exhibits ferromagnetic interaction with J = 1.02 cm(-1), the Ni(II)Cu(II)3 compound 2 and Cu(II)Cu(II)3 compound 3 exhibit antiferromagnetic interaction with J = -3.53 and -35.5 cm(-1), respectively. Variable-temperature magnetic susceptibility data of the Zn(II)Cu(II)3 compound 4 indicate very weak antiferromagnetic interaction of -1.4 cm(-1), as expected. On the basis of known correlations, the magnetic properties of 1-3 are unusual; it seems that ferromagnetic interaction in 1 and weak/moderate antiferromagnetic interaction in 2 and 3 are possibly related to the distorted coordination environment of the peripheral copper(II) centers (intermediate between square-planar and tetrahedral). DFT calculations have been done to elucidate the magnetic properties. The DFT-computed J values are quantitatively (for 1) or qualitatively (for 2 and 3) matched

  18. Role of Cu-Ion Doping in Cu-α-MnO2 Nanowire Electrocatalysts for the Oxygen Reduction Reaction

    SciTech Connect

    Davis, Danae J.; Lambert, Timothy N.; Vigil, Julian A.; Rodriguez, Mark A.; Brumbach, Michael T.; Coker, Eric N.; Limmer, Steven J.

    2014-07-09

    The role of Cu-ion doping in α-MnO2 electrocatalysts for the oxygen reduction reaction in alkaline electrolyte was investigated. Copper doped α-MnO2 nanowires (Cu-α-MnO2) were prepared with varying amounts of Cu2+ using a solvothermal method. The electrocatalytic dataindicates that Cu-α-MnO2 nanowires have higher terminal current densities, enhanced kinetic rate constants, and improved charge transfer resistances that trend with Cu-content, exceeding values attained by α-MnO2 alone. The observed improvement in catalytic behavior correlates with an increase in Mn3+ content for the Cu-α-MnO2 nanowires. The Mn3+/Mn4+ couple is themediator for the rate-limiting redox driven O2-/OH- exchange. It is proposed that O2 adsorbs viaan axial site (the eg orbital on the Mn3+ d4 ion) at the surface, or at edge defects, of the nanowireand that the increase in covalent nature of the nanowire with Cu-ion doping leads to stabilization of O2 adsorbates and faster rates of reduction. This work is applicable to other manganese oxide electrocatalysts and shows for the first time there is a correlation for manganese oxides between electrocatalytic activity for the ORR in alkaline electrolyte and an increase in Mn3+ character of the oxide.

  19. Magnetic properties of Cu substituted NdMn2Si2 intermetallics

    NASA Astrophysics Data System (ADS)

    Elmali, A.; Dincer, I.; Elerman, Y.; Ehrenberg, H.; Fuess, H.

    2005-05-01

    The structure and magnetic properties of NdMn2-xCuxSi2 (0.2 x 1) were studied by X-ray powder diffraction and magnetization measurements. In this study, we investigate the variations in the magnetic properties of NdMn2-xCuxSi2 as a function of Cu concentration by examing the evolution of the features in the temperature dependence of the magnetization. Earlier neutron diffraction experiments showed that the ferromagnetic Mn planes are ordered antiparallel along the c-axis below 380 K and the Nd sublattice orders at 33 K in NdMn2Si2. The ordering of the Nd sublattice reconfigures the ordering in Mn sublattice and leads to ferromagnetic ordering. With increasing amount of Cu, the Curie temperature has a maximum value of 120 K at x = 0.7 and decreases for the samples with x 0.8.

  20. Effect of Mn on the Microstructure and Magnetic Properties in Cu-Fe-Co Alloys

    NASA Astrophysics Data System (ADS)

    Mondal, B. N.; Basu Mallick, A.; Nath, D. N.; Chattopadhyay, P. P.

    2011-02-01

    An attempt was made to study the effect of Mn addition on the formation of supersaturated solid solution of Co and Fe in Cu during ball milling and precipitation of the solute-rich phases during subsequent annealing of the ball-milled product. It is demonstrated that the addition of Mn in the ternary CuFeCo powder blend enhances the metastable solubility of Fe and Co in Cu and facilitates the formation of the nanocrystalline supersaturated single-phase solid solution. Field emission-scanning electron microscopy (FE-SEM) also revealed notable influence of Mn on the morphological evolution of the ball-milled and annealed alloy powders. X-ray diffraction (XRD) analysis revealed that the FeCo phase having the bcc Bravais lattice forms after annealing at and above 620 K (350 °C) in both alloys. Estimation of magnetic properties showed that Mn addition in the CuFeCo alloy improved the coercivity, remanence, and magnetic saturation.

  1. Zn, Cu, and Mn levels in the liver of the dogfish exposed to Zn

    SciTech Connect

    Sanpera, C.; Vallribera, M.; Crespo, S.

    1983-10-01

    To investigate the effects of Zn contamination on the hepatic distribution of these trace elements, Zn, Cu, and Mn levels were determined by atomic absorption spectrophotometry in the liver of the dogfish Scyliorhinus canicula exposed to 80 and 10 ppm of zinc.

  2. Investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al alloy with Ag and Mn additions

    SciTech Connect

    Silva, R.A.G.; Paganotti, A.; Gama, S.; Adorno, A.T.; Carvalho, T.M.; Santos, C.M.A.

    2013-01-15

    The investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al, Cu-11%Al-3%Ag, Cu-11%Al-10%Mn and Cu-11%Al-10%Mn-3%Ag alloys was made using microhardness measurements, differential scanning calorimetry, X-ray diffractometry, scanning electron microscopy, energy dispersion X-ray spectroscopy and magnetic moment change with applied field measurement. The results indicated that the Mn addition changes the phase stability range, the microhardness values and makes undetectable the eutectoid reaction in annealed Cu-11%Al and Cu-11%Al-3%Ag alloys while the presence of Ag does not modify the phase transformation sequence neither microhardness values of the annealed Cu-11%Al and Cu-11%Al-10%Mn alloys, but it increases the magnetic moment of this latter at about 2.7 times and decreases the rates of eutectoid and peritectoid reactions of the former. - Highlights: Black-Right-Pointing-Pointer The microstructure of Cu-Al alloy is modified in the Ag presence. Black-Right-Pointing-Pointer ({alpha} + {gamma}) phase is stabilized down to room temperature when Ag is added to Cu-Al alloy. Black-Right-Pointing-Pointer Ag-rich phase modifies the magnetic characteristics of Cu-Al-Mn alloy.

  3. Alloyed Mn-Cu-In-S nanocrystals: a new type of diluted magnetic semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Liu, Qinghui; Deng, Ruiping; Ji, Xiangling; Pan, Daocheng

    2012-06-01

    A new type of Mn-Cu-In-S diluted magnetic semiconductor quantum dots was synthesized and reported for the first time. The quantum dots, with no highly toxic elements, not only show the same classic diluted magnetic behavior as Mn-doped CdSe, but also exhibit tunable luminescent properties in a relatively large window from 542 to 648 nm. An absolute photoluminescence quantum yield up to 20% was obtained after the shell growth of ZnS. This kind of magnetic/luminescent bi-functional Mn-Cu-In-S/ZnS core/shell quantum dot might serve as promising nanoprobes for use in dual-mode optical and magnetic resonance imaging techniques.

  4. Molecular controls on Cu and Zn isotopic fractionation in Fe-Mn crusts

    NASA Astrophysics Data System (ADS)

    Little, S. H.; Sherman, D. M.; Vance, D.; Hein, J. R.

    2014-06-01

    The isotopic systems of the transition metals are increasingly being developed as oceanic tracers, due to their tendency to be fractionated by biological and/or redox-related processes. However, for many of these promising isotope systems the molecular level controls on their isotopic fractionations are only just beginning to be explored. Here we investigate the relative roles of abiotic and biotic fractionation processes in controlling modern seawater Cu and Zn isotopic compositions. Scavenging to Fe-Mn oxides represents the principal output for Cu and Zn to sediments deposited under normal marine (oxic) conditions. Using Fe-Mn crusts as an analogue for these dispersed phases, we investigate the phase association and crystal chemistry of Cu and Zn in such sediments. We present the results of an EXAFS study that demonstrate unequivocally that Cu and Zn are predominantly associated with the birnessite (δ-MnO2) phase in Fe-Mn crusts, as previously predicted from sequential leaching experiments (e.g., Koschinsky and Hein, 2003). The crystal chemistry of Cu and Zn in the crusts implies a reduction in coordination number in the sorbed phase relative to the free metal ion in seawater. Thus, theory would predict equilibrium fractionations that enrich the heavy isotope in the sorbed phase (e.g., Schauble, 2004). In natural samples, Fe-Mn crusts and nodules are indeed isotopically heavy in Zn isotopes (at ∼1‰) compared to deep seawater (at ∼0.5‰), consistent with the predicted direction of equilibrium isotopic fractionation based on our observations of the coordination environment of sorbed Zn. Further, ∼50% of inorganic Zn‧ is chloro-complexed (the other ∼50% is present as the free Zn2+ ion), and complexation by Cl- is also predicted to favour equilibrium partitioning of light Zn isotopes into the dissolved phase. The heavy Zn isotopic composition of Fe-Mn crusts and nodules relative to seawater can therefore be explained by an inorganic fractionation during

  5. Magnetization reversal and giant coercivity in Co(Cr0.7Mn0.3)2O4

    NASA Astrophysics Data System (ADS)

    Padam, R.; Kumar, R.; Grover, A. K.; Pal, D.

    2014-04-01

    We demonstrate the evaluation of temperature and magnetic field dependent magnetization of single phase sample of cubic spinel Co(Cr0.7Mn0.3(2O4. It has been noticed that 30% Mn substitution for Cr in CoCr2O4 leads to the huge reversal of temperature dependent magnetization below compensation temperature, Tcomp ˜ 82.9 K. In addition to this, sample is found to exhibit giant coercivity, reaching about 1.54 T at 3K, similar to hard magnetic materials. These intriguing phenomena are ascribed to the presence of magneto-crystalline anisotropy in the sample.

  6. Quaternary PtMnCuX/C (X = Fe, Co, Ni, and Sn) and PtMnMoX/C (X = Fe, Co, Ni, Cu and Sn) alloys catalysts: Synthesis, characterization and activity towards ethanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Ammam, Malika; Easton, E. Bradley

    2012-10-01

    In this account, two series of quaternary PtMnCuX/C (X = Fe, Co, Ni, and Sn) and PtMnMoX/C (X = Fe, Co, Ni, Cu and Sn) alloys catalysts have been synthesized and characterized by ICP, XRD, XPS, TEM and cyclic voltammetry. XRD spectra of each series illustrated that PtMnCuX/C (X = Fe, Co and Ni) and PtMnMoX/C (X = Fe, Co, Ni and Cu) alloys have been formed without significant free Mn, Cu, Mo or X co-catalysts. For PtMnCuSn/C and PtMnMoSn/C, in addition to alloy formation, significant free Sn-oxides are present in each catalyst. Cyclic voltammetry and chronoamperometry revealed that all quaternary showed superior electrocatalytic activity towards ethanol oxidation compared to the ternary precursor. Also, shift of the onset potential of ethanol oxidation towards less positive values were also recorded with the quaternary alloys, demonstrating a facilitated oxidation with the quaternary alloys compared to ternary alloy precursor. The magnitude of the gain in potential depend on the alloy composition and PtMnMoSn/C was found to be the best of all synthetized quaternary alloys with an onset potential of ethanol oxidation of only 0.059 V vs. Ag/AgCl.

  7. Searching for 0+ states in 50Cr: Implications for the superallowed β decay of 50Mn

    NASA Astrophysics Data System (ADS)

    Leach, K. G.; Garrett, P. E.; Ball, G. C.; Bender, P. C.; Bildstein, V.; Brown, B. A.; Burbadge, C.; Faestermann, T.; Hadinia, B.; Holt, J. D.; Laffoley, A. T.; Jamieson, D. S.; Jigmeddorj, B.; Radich, A. J.; Rand, E. T.; Stroberg, S. R.; Svensson, C. E.; Towner, I. S.; Wirth, H.-F.

    2016-07-01

    A 52Cr(p ,t )50Cr two-neutron pickup reaction was performed using the Q3D magnetic spectrograph at the Maier-Leibnitz-Laboratorium in Garching, Germany. Excited states in 50Cr were observed up to an excitation energy of 5.3 MeV. Despite significantly increased sensitivity and resolution over previous work, no evidence of the previously assigned first excited 0+ state was found. As a result, the 02+ state is reassigned at an excitation energy of Ex=3895.0 (5 ) keV in 50Cr. This reassignment directly impacts direct searches for a nonanalog Fermi β+ decay branch in 50Mn. These results also show better systematic agreement with the theoretical predictions for the 0+ state spectrum in 50Cr using the same formalism as the isospin-symmetry-breaking correction calculations for superallowed nuclei. The experimental data are also compared to ab-initio shell-model predictions using the IM-SRG formalism based on N N and 3 N forces from chiral-EFT in the p f -shell for the first time.

  8. Synthesis, dielectric behavior and impedance measurement studies of Cr-substituted Zn-Mn ferrites

    SciTech Connect

    Hankare, P.P.; Patil, R.P.; Garadkar, K.M.; Sasikala, R.; Chougule, B.K.

    2011-03-15

    Graphical abstract: Variation of dielectric constant with frequency. Research highlights: {yields} Sol-gel route synthesized spherical crystalline nanoparticles of ZnMn{sub 1-x}Cr{sub x}FeO{sub 4}. {yields} XRD, DTA, FTIR, SEM, dielectric and impedance study. {yields} The ferrites show concentration dependence of ac electrical conductivity. {yields} Impedance response is dominated by grain boundary behavior. -- Abstract: Nanocrystalline ZnMn{sub 1-x}Cr{sub x}FeO{sub 4} (1.0 {>=} x {>=} 0) ferrites were synthesized by sol-gel technique. X-ray diffraction (XRD) confirmed the formation of single phasic cubic spinel lattice for all the compositions studied. Lattice parameter shows a decreasing trend with an increase in Cr content in the compositions. Formation of spherical nanoparticles was revealed by scanning electron microscopy (SEM) analysis. Infrared spectroscopic studies revealed two main absorption bands in the range 400-800 cm{sup -1} arising due to tetrahedral (A) and octahedral (B) site vibrations. Dielectric constant, dielectric loss tangent, ac conductivity and complex impedance were measured as a function of frequency in the range 20 Hz to 1 MHz. Frequency dependence of dielectric constant shows dielectric dispersion due to the Maxwell-Wagner type of interfacial polarization. The role of chromium in modifying structural and dielectric properties of these ferrites has been explained.

  9. Cu, Cr and As distribution in soils adjacent to pressure-treated decks, fences and poles.

    PubMed

    Chirenje, Tait; Ma, L Q; Clark, C; Reeves, M

    2003-01-01

    Chromated copper arsenate (CCA)-treated wood has been widely used in the Southeastern United States to protect wood products from microbial and fungal decay. The aims of this study were to (1). determine the distribution of arsenic (As), chromium (Cr), and copper (Cu), in soils surrounding CCA-treated wood structures such as decks, fences and poles; and (2). evaluate the impacts of these structures on As, Cr and Cu loading of the soils. Profile and lateral soil samples were collected under CCA-treated decks and adjacent to poles and fences. The results showed elevation of As, Cr and Cu concentrations close to and under the structures, with mean As concentrations as high as 23 mg x kg(-1) close to utility poles compared with less than 3 mg x kg (-1) at distances of about 1.5 m away. Concentrations of As, Cr, and Cu decreased with depth in areas close to CCA-treated poles. However, these results were only apparent in relatively new structures. A combination of weathering and leaching with time may have reduced the impact in older poles. Increased concentrations of As, Cu and Cr were also observed close to CCA-treated decks and fences, with age showing a similar impact. These results are helpful for CCA-treated wood product users to determine the safe use of these structures.

  10. Electron scattering mechanisms in Cu-Mn films for interconnect applications

    NASA Astrophysics Data System (ADS)

    Misják, F.; Nagy, K. H.; Lobotka, P.; Radnóczi, G.

    2014-08-01

    Electrical properties and corresponding structural features of Cu-Mn alloy films with potential application as barrier and interconnect layers were studied. Cu-Mn films were deposited by DC magnetron sputtering at room temperature on SiO2 substrates. Electrical resistivity measurements were made as a function of film composition and temperature. The specific resistivity varies linearly with the Mn content showing a maximum of 205 μΩcm at 80 at. % Mn. The temperature coefficient of resistance (TCR) of all alloy films is low, showing non-metallic conductivity for most compositions. Also a minimum TCR has been observed in the 40-80 at. % Mn range which was attributed to a magnetic transformation around 200-300 K. Electrical resistivity measurements are correlated with the film structure revealed by transmission electron microscopy to clarify the phase regions throughout the composition range. In the 20-40 at. % and 70-80 at. % Mn ranges, two-phase structures were identified, where Cu- or Mn-rich solid solution grains were surrounded by a thin amorphous covering layer. Based on the revealed phase regions and morphologies electron scattering mechanisms in the system were evaluated by combining the Matthiessen's rule and the Mayadas-Schatzkes theory. Grain boundary reflectivity coefficients (r = 0.6-0.8) were calculated from fitting the model to the measurements. The proposed model indicates that, in a binary system, the special arrangement of the two phases results in new scattering mechanisms. The results are of value in optimizing the various parameters needed to produce a suitable barrier layer.

  11. Electron scattering mechanisms in Cu-Mn films for interconnect applications

    SciTech Connect

    Misják, F.; Nagy, K. H.; Radnóczi, G.; Lobotka, P.

    2014-08-28

    Electrical properties and corresponding structural features of Cu-Mn alloy films with potential application as barrier and interconnect layers were studied. Cu-Mn films were deposited by DC magnetron sputtering at room temperature on SiO{sub 2} substrates. Electrical resistivity measurements were made as a function of film composition and temperature. The specific resistivity varies linearly with the Mn content showing a maximum of 205 μΩcm at 80 at. % Mn. The temperature coefficient of resistance (TCR) of all alloy films is low, showing non-metallic conductivity for most compositions. Also a minimum TCR has been observed in the 40–80 at. % Mn range which was attributed to a magnetic transformation around 200–300 K. Electrical resistivity measurements are correlated with the film structure revealed by transmission electron microscopy to clarify the phase regions throughout the composition range. In the 20–40 at. % and 70–80 at. % Mn ranges, two-phase structures were identified, where Cu- or Mn-rich solid solution grains were surrounded by a thin amorphous covering layer. Based on the revealed phase regions and morphologies electron scattering mechanisms in the system were evaluated by combining the Matthiessen's rule and the Mayadas-Schatzkes theory. Grain boundary reflectivity coefficients (r = 0.6–0.8) were calculated from fitting the model to the measurements. The proposed model indicates that, in a binary system, the special arrangement of the two phases results in new scattering mechanisms. The results are of value in optimizing the various parameters needed to produce a suitable barrier layer.

  12. CrCuAgN PVD nanocomposite coatings: Effects of annealing on coating morphology and nanostructure

    NASA Astrophysics Data System (ADS)

    Liu, Xingguang; Iamvasant, Chanon; Liu, Chang; Matthews, Allan; Leyland, Adrian

    2017-01-01

    CrCuAgN PVD nanocomposite coatings were produced using pulsed DC unbalanced magnetron sputtering. This investigation focuses on the effects of post-coat annealing on the surface morphology, phase composition and nanostructure of such coatings. In coatings with nitrogen contents up to 16 at.%, chromium exists as metallic Cr with N in supersaturated solid solution, even after 300 °C and 500 °C post-coat annealing. Annealing at 300 °C did not obviously change the phase composition of both nitrogen-free and nitrogen-containing coatings; however, 500 °C annealing resulted in significant transformation of the nitrogen-containing coatings. The formation of Ag aggregates relates to the (Cu + Ag)/Cr atomic ratio (threshold around 0.2), whereas the formation of Cu aggregates relates to the (Cu + Ag + N)/Cr atomic ratio (threshold around 0.5). The primary annealing-induced changes were reduced solubility of Cu, Ag and N in Cr, and the composition altering from a mixed ultra-fine nanocrystalline and partly amorphous phase constitution to a coarser, but still largely nanocrystalline structure. It was also found that, with sufficient Cu content (>12 at.%), annealing at a moderately high temperature (e.g. 500 °C) leads to transportation of both Cu and Ag (even at relatively low concentrations of Ag, ≤3 at.%) from inside the coating to the coating surface, which resulted in significant reductions in friction coefficient, by over 50% compared to that of the substrate (from 0.31 to 0.14 with a hemispherical diamond indenter, and from 0.83 to 0.40 with an alumina ball counterface, respectively). Results indicate that the addition of both Cu and Ag (in appropriate concentrations) to nitrogen-containing chromium is a viable strategy for the development of 'self-replenishing' silver-containing thin film architectures for temperature-dependent solid lubrication requirements or antimicrobial coating applications.

  13. Abundances of O, Mg, S, Cr, Mn, Ti, Ni and Zn from absorption lines of neutral gas in the Large Magellanic Cloud in front of R136

    NASA Technical Reports Server (NTRS)

    De Boer, K. S.; Fitzpatrick, E. L.; Savage, B. D.

    1985-01-01

    Weak absorption lines of C I, O I, Mg I, Mg II, Si I, Si II, P I, Cl I, Cr II, Mn II, Fe I, Ni II, Zn II, CO and C2 are detected in neutral gas in front of the 30 Doradus H II region by IUE spectra of R 136. The Large Magellanic Cloud abundances from the absorption lines are a factor of 2 or 3 below those of the Milky Way, in agreement with emission line study results. Neutral gas density and temperature are estimated from the observed excitation and ionization to be about 300/cu cm and 100 K, respectively; this implies a gas pressure of 30,000/cu cm K.

  14. Recrystallization Behavior of CoCrCuFeNi High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Park, Nokeun; Watanabe, Ikuto; Terada, Daisuke; Yokoyama, Yoshihiko; Liaw, Peter K.; Tsuji, Nobuhiro

    2015-04-01

    We investigated the recrystallization behavior of a cold-rolled CoCrCuFeNi high-entropy alloy (HEA). Two different face-centered cubic phases having different chemical compositions and lattice constants in the as-cast specimen have different chemical compositions: One phase was the Cu-lean matrix and the other was the Cu-rich second phase. The second phase remained even after a heat treatment at 1373 K (1100 °C) and Cu enriched more in the Cu-rich second phase. The calculated mixing enthalpies of both Cu-lean and Cu-rich phases in the as-cast and heat-treated specimens explained that Cu partitioning during the heat treatment decreased the mixing enthalpy in both phases. In the specimens 90 pct cold rolled and annealed at 923 K, 973 K, and 1073 K (650 °C, 700 °C, and 800 °C), recrystallization proceeded with increasing the annealing temperature, and ultrafine recrystallized grains with grain sizes around 1 μm could be obtained. The microhardness tended to decrease with increasing the fraction recrystallized, but it was found that the microhardness values of partially recrystallized specimens were much higher than those expected by a simple rule of mixture between the initial and cold-rolled specimens. The reason for the higher hardness was discussed based on the ultrafine grain size, sluggish diffusion expected in HEAs, and two-phase structure in the CoCrCuFeNi alloy.

  15. Ti3CrCu4: A possible 2-D ferromagnetic spin fluctuating system

    NASA Astrophysics Data System (ADS)

    Dhar, S. K.; Provino, A.; Manfrinetti, P.; Kulkarni, R.; Goyal, Neeraj; Paudyal, D.

    2016-05-01

    Ti3CrCu4 is a new ternary compound which crystallizes in the tetragonal Ti3Pd5 structure type. The Cr atoms form square nets in the a-b plane (a = 3.124 Å) which are separated by an unusually large distance c = 11.228 Å along the tetragonal axis, thus forming a -2-D Cr-sublattice. The paramagnetic susceptibility is characterized by a low effective moment, μeff = 1.1 μB, a low paramagnetic Curie temperature θP (below 7 K) and a temperature independent χ0 = 6.7 x 10-4 emu/mol. The magnetization at 1.8 K increases rapidly with field nearly saturating to 0.2 μB/f.u. The zero field heat capacity C/T shows an upturn below 7 K (˜190 mJ/mol K2 at ˜0.1K) which is suppressed in applied magnetic fields and interpreted as suggesting the presence of spin fluctuations. The resistivity at low temperatures shows non-Fermi liquid behavior. Overall, the experimental data thus reveal an unusual magnetic state in Ti3CrCu4, which likely has its origin in the layered nature of the Cr sub-lattice and ferromagnetic spin fluctuations. Density functional theoretical calculations reveal a sharp Cr density of states peak just above the Fermi level, indicating the propensity of Ti3CrCu4 to become magnetic.

  16. Effects of chelated Zn/Cu/Mn on redox status, immune responses and hoof health in lactating Holstein cows

    PubMed Central

    Zhao, Xue-Jun; Li, Zhong-Peng; Wang, Jun-Hong; Xing, Xiang-Ming; Wang, Zhen-Yong

    2015-01-01

    To evaluate the effects of chelated Zn/Cu/Mn on redox status, immune responses and hoof health in lactating Holstein cows, 48 head in early lactation were divided into healthy or lame groups according to their gait score. Cows were fed the same amount of Zn/Cu/Mn as sulfate salts or in chelated forms for 180 days, and foot-and-mouth disease (FMD) vaccine was injected at day 90. The results showed that lame cows had lower antioxidant function, serum Zn/Mn levels, hair Cu levels, and hoof hardness. Moreover, increased antioxidant status, FMD antibody titers, serum and hair levels of Zn/Cu/Mn, and hoof hardness and decreased milk fat percent and arthritis biomarkers were observed in cows fed chelated Zn/Cu/Mn. In summary, supplementation with chelated Zn/Cu/Mn improved antioxidant status and immune responses, reduced arthritis biomarkers, and increased accumulation of Zn/Cu/Mn in the body and hoof hardness in dairy cows. PMID:26040614

  17. A Study of Free Recovery in a Fe - Mn - Si - Cr Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Spiridon, I.-P.; Lohan, N.-M.; Suru, M.-G.; Mihalache, E.; Bujoreanu, L.-G.; Pricop, B.

    2016-01-01

    Video recording of the free recovery of "hot shape" (typical for the austenitic domain) in shape-memory alloy Fe - 28% Mn - 6% Si - 5% Cr during heating of specimens with a "cold shape" typical for the martensitic domain is performed. Prior to each measurement the specimens are deformed by caliber bending at room temperature in martensitic condition. The thermomechanical training consists in 10 cycles of bending - heating - cooling. Displacements of the free ends of the specimens are plotted as a function of the temperature and the plots are used to determine the critical temperatures of the reverse martensitic transformation.

  18. Weldability of a high entropy CrMnFeCoNi alloy

    SciTech Connect

    Wu, Zhenggang; David, Stan A.; Feng, Zhili; Bei, Hongbin

    2016-07-19

    We present the high-entropy alloys are unique alloys in which five or more elements are all in high concentrations. In order to determine its potential as a structural alloy, a model face-centered-cubic CrMnFeCoNi alloy was selected to investigate its weldability. Welds produced by electron beam welding show no cracking. The grain structures within the fusion zone (FZ) are controlled by the solidification behavior of the weld pool. The weldment possesses mechanical properties comparable to those of the base metal (BM) at both room and cryogenic temperatures. Finally, compared with the BM, deformation twinning was more pronounced in the FZ of the tested alloy.

  19. Half-metallic antiferromagnetism in double perovskite BiPbCrCuO{sub 6}

    SciTech Connect

    Weng, Ke-Chuan; Wang, Y. K.

    2015-05-07

    The electronic structure and magnetic properties of BiPbCrCuO{sub 6} double perovskite are investigated based on first-principles density functional calculations with generalized gradient approximation (GGA) and GGA incorporated with Coulomb correlation interaction U (GGA + U). The results suggest the half-metallic (HM) and antiferromagnetic (AFM) properties of BiPbCrCuO{sub 6} double perovskite. The HM-AFM property of the double perovskite is caused by the double-exchange mechanism between neighboring Cr{sup 5+}(t{sub 2g}{sup 1}↓) and Cu{sup 2+}(t{sub 2g}{sup 3}↑t{sub 2g}{sup 3}↓e{sub g}{sup 2}↑e{sub g}↓) via the intermediate O{sup 2−}(2s{sup 2}2p{sup 6}) ion.

  20. Transparent ferrimagnetic semiconducting CuCr2O4 thin films by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Tripathi, T. S.; Yadav, C. S.; Karppinen, M.

    2016-04-01

    We report the magnetic and optical properties of CuCr2O4 thin films fabricated by atomic layer deposition (ALD) from Cu(thd)2, Cr(acac)3, and ozone; we deposit 200 nm thick films and anneal them at 700 °C in oxygen atmosphere to crystallize the spinel phase. A ferrimagnetic transition at 140 K and a direct bandgap of 1.36 eV are determined for the films from magnetic and UV-vis spectrophotometric measurements. Electrical transport measurements confirm the p-type semiconducting behavior of the films. As the ALD technique allows the deposition of conformal pin-hole-free coatings on complex 3D surfaces, our CuCr2O4 films are interesting material candidates for various frontier applications.

  1. Synthesis of Waste Form in the Gd-Fe-Al-Ni-Mn-Cr-O System

    SciTech Connect

    Chae, S.C.; Jang, Y.N.; Bae, I.K.; Ryu, K.W.

    2006-07-01

    Poly-phase waste form which was the mixture of Gd{sub 3}Fe{sub 2}Al{sub 3}O{sub 12} and (Ni{sub x}Mn{sub 1-x})(Fe{sub y}Cr{sub 1-y}){sub 2}O{sub 4} was synthesized. Also, we are intended to examine phase relation and physicochemical properties of coexisted phases in the compositions and to confirm accommodation relation of elements and phases. Two types of phase series were observed: Garnet-perovskite-spinel and Garnet-spinel. The compositions of garnets and spinels were nonstoichiometric, and especially, this poly-phase ceramics may be in a good waste form. The excessive Gd in garnets indicated the immobilization of higher content of actinides. The nonstoichiometric compositions of garnet and spinel were attributed to the formation of perovskite in that perovskite contained Gd, Fe and Al from garnet and Cr from spinel. (authors)

  2. Chemical zoning and diffusion of Ca, Al, Mn, and Cr in olivine of springwater pallasite

    NASA Technical Reports Server (NTRS)

    Zhou, Y.; Steele, Ian M.

    1993-01-01

    The pallasites, consisting mainly of Fe-Ni metal and olivine, are thought to represent the interior of a planetary body which slowly cooled from high temperature. Although the olivines are nearly homogeneous, ion microprobe studies revealed variations of Ca, Ti, Co, Cr, and Ni near grain edges. These variations were thought to represent diffusion in response to falling temperature of the parent body. Pallasite cooling rates have been estimated based on kamacite taenite textures but results differ by x100. In principle elemental profiles in olivine can allow estimates of cooling rate if diffusion coefficients are known; in addition, given a cooling rate, diffusion coefficients could be derived. Data are presented which show that apparent diffusion profiles can be measured for Al, Ca, Cr, and Mn which qualitatively agree with expected diffusion rates and have the potential of providing independent estimates of pallasite cooling rates.

  3. Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi

    NASA Astrophysics Data System (ADS)

    Ang, Andrew Siao Ming; Berndt, Christopher C.; Sesso, Mitchell L.; Anupam, Ameey; S, Praveen; Kottada, Ravi Sankar; Murty, B. S.

    2015-02-01

    High entropy alloys (HEAs) represent a new class of materials that present novel phase structures and properties. Apart from bulk material consolidation methods such as casting and sintering, HEAs can also be deposited as a surface coating. In this work, thermal sprayed HEA coatings are investigated that may be used as an alternative bond coat material for a thermal barrier coating system. Nanostructured HEAs that were based on AlCoCrFeNi and MnCoCrFeNi were prepared by ball milling and then plasma sprayed. Splat studies were assessed to optimise the appropriate thermal spray parameters and spray deposits were prepared. After mechanical alloying, aluminum-based and manganese-based HEA powders revealed contrary prominences of BCC and FCC phases in their X-ray diffraction patterns. However, FCC phase was observed as the major phase present in both of the plasma-sprayed AlCoCrFeNi and MnCoCrFeNi coatings. There were also minor oxide peaks detected, which can be attributed to the high temperature processing. The measured porosity levels for AlCoCrFeNi and MnCoCrFeNi coatings were 9.5 ± 2.3 and 7.4 ± 1.3 pct, respectively. Three distinct phase contrasts, dark gray, light gray and white, were observed in the SEM images, with the white regions corresponding to retained multicomponent HEAs. The Vickers hardness (HV0.3kgf) was 4.13 ± 0.43 and 4.42 ± 0.60 GPa for AlCoCrFeNi and MnCoCrFeNi, respectively. Both type of HEAs coatings exhibited anisotropic mechanical behavior due to their lamellar, composite-type microstructure.

  4. Anti-wetting Cu/Cr coating with micro-posts array structure fabricated by electrochemical approaches

    NASA Astrophysics Data System (ADS)

    Zhou, Yufeng; Hang, Tao; Li, Feng; Li, Ming

    2013-04-01

    Microposts structured Cu/Cr multilayer coating was prepared by a simple two-step approach combining electroless and electro deposition. Surface morphologies of the as-prepared Cu/Cr multilayer coating characterized by field emission scanning electron microscopy show that this multilayer coating exhibits micro-posts arrayed structure with a layer of Cr uniformly covering the circular conical surface of Cu micro-cones array. The wettability test shows that the contact angle of Cu/Cr multilayer surface with water drop can be greater than 140° by optimizing the electrodeposition time of Cr. The mechanism of hydrophobicity of both the micro-cones arrayed and micro-posts arrayed structures was briefly discussed by comparing two different wetting modes. Due to its good anti-wetting property and unique structure, the micro-posts arrayed Cu/Cr multilayer coating is expected for extensive practical applications.

  5. Cu(II) Catalytic Reduction of Cr(VI) by Tartaric Acid Under the Irradiation of Simulated Solar Light

    PubMed Central

    Li, Ying; Qin, Chao; Zhang, Jing; Lan, Yeqing; Zhou, Lixiang

    2014-01-01

    Abstract Cu(II) catalytic reduction of Cr(VI) by tartaric acid under the irradiation of simulated solar light was investigated through batch experiments at pHs from 3 to 6 and at temperatures from 15°C to 35°C. Results demonstrated that introduction of Cu(II) could markedly improve reduction of Cr(VI) in comparison with tartaric acid alone. Optimal removal of Cr(VI) was achieved at pH 4. Reduction of Cr(VI) increased with increasing temperatures and initial concentrations of Cu(II) and tartaric acid. The catalytic role of Cu(II) in the reduction of Cr(VI) was ascribed to the formation of Cu(II)-tartaric acid complex, which generated active reductive intermediates, including Cu(I) and tartaric acid radicals through a pathway of metal–ligand–electron transfer with light. Cu(II) photocatalytic reduction of Cr(VI) by tartaric acid followed pseudo zero-order kinetics with regard to Cr(VI), and the activation energy was calculated to be 21.48 kJ/mol. To date, such a role of Cu(II) has not been reported. The results from the present study are helpful in fully understanding the photochemical reductive behavior of Cr(VI) in the presence of both tartaric acid and Cu(II) in soil and aquatic environments. PMID:25125941

  6. Cu(II) Catalytic Reduction of Cr(VI) by Tartaric Acid Under the Irradiation of Simulated Solar Light.

    PubMed

    Li, Ying; Qin, Chao; Zhang, Jing; Lan, Yeqing; Zhou, Lixiang

    2014-08-01

    Cu(II) catalytic reduction of Cr(VI) by tartaric acid under the irradiation of simulated solar light was investigated through batch experiments at pHs from 3 to 6 and at temperatures from 15°C to 35°C. Results demonstrated that introduction of Cu(II) could markedly improve reduction of Cr(VI) in comparison with tartaric acid alone. Optimal removal of Cr(VI) was achieved at pH 4. Reduction of Cr(VI) increased with increasing temperatures and initial concentrations of Cu(II) and tartaric acid. The catalytic role of Cu(II) in the reduction of Cr(VI) was ascribed to the formation of Cu(II)-tartaric acid complex, which generated active reductive intermediates, including Cu(I) and tartaric acid radicals through a pathway of metal-ligand-electron transfer with light. Cu(II) photocatalytic reduction of Cr(VI) by tartaric acid followed pseudo zero-order kinetics with regard to Cr(VI), and the activation energy was calculated to be 21.48 kJ/mol. To date, such a role of Cu(II) has not been reported. The results from the present study are helpful in fully understanding the photochemical reductive behavior of Cr(VI) in the presence of both tartaric acid and Cu(II) in soil and aquatic environments.

  7. Cu-Mn-Fe alloys and Mn-rich amphiboles in ancient copper slags from the Jabal Samran area, Saudi Arabia: With synopsis on chemistry of Fe-Mn(III) oxyhydroxides in alteration zones

    NASA Astrophysics Data System (ADS)

    Surour, Adel A.

    2015-01-01

    In the Jabal Samran area (western Saudi Arabia), secondary copper mineralization in a NE-trending shear zone in which the arc metavolcanic host rocks (dacite-rhyodacite) show conjugate fractures and extensive hydrothermal alteration and bleaching. The zones contain frequent Fe-Mn(III) oxyhydroxides (FeOH-MnOH) that resulted from oxidation of pyrite and Mn-bearing silicates. In the bleached part, the groundmass is represented by Fe-bearing interstratified illite-smectite with up to 4.02 wt% FeOt. FeOH-MnOH are pre-weathering phases formed by hydrothermal alteration in a submarine environment prior to uplifting. Five varieties of FeOH are distinguished, four of them are exclusively hydrothermal with ∼20 wt% H2O whereas the fifth contains ∼31-33 wt% H2O and might represent reworking of earlier hydrothermal FeOH phases by weathering. FeOH fills thin fractures in the form of veinlets and crenulated laminae or as a pseudomorph for pyrite, goethite and finally ferrihydrite, and this oxyhydroxide is characterized by positive correlation of Fe2O3 with SiO2 and Al2O3. On the other hand, MOH shows positive correlation between MnO2 and Al2O3 whereas it is negative between Fe2O3 and SiO2. Paratacamite is the most common secondary copper mineral that fills fractures and post-dates FeOH and MnOH. It is believed that Cl- in the structure of paratacamite represents inherited marine storage rather than from surfacial evaporates or meteoric water. The mineralogy of slags suggests a complicated mineral assemblage that includes native Cu prills, synthetic spinifixed Mn-rich amphiboles with 16.73 wt% MnO, brown glass and Ca-Mn-Fe phase close to the olivine structure. EMPA indicate that the some Cu prills have either grey discontinuous boarder zone of S-rich Mn-Cu alloy (with up to 21.95 wt% S and 19.45 wt% Mn) or grey Cu-Mn-Fe alloy (with up to 15.9 wt% Cu, 39. 12 wt% Mn and 61.64 wt% Fe). Mn in the Cu prills is expelled inward as Cu-Mn-Fe alloy inclusions whereas S is expelled

  8. Equation of State of an AlCoCrCuFeNi High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Li, Gong; Xiao, Daihong; Yu, Pengfei; Zhang, Lijun; Liaw, Peter K.; Li, Yanchun; Liu, Riping

    2015-08-01

    The pressure-volume (P-V) relationship of the AlCoCrCuFeNi high-entropy alloy (HEA) at room temperature has been studied using in situ high-pressure energy-dispersive x-ray diffraction with synchrotron radiation at high pressures. The equation of state of the AlCoCrCuFeNi HEA is determined by the calculation of the radial distribution function. The experimental results indicate that the HEA keeps a stable face-centered-cubic + body-centered-cubic structure in the experimental pressure range from 0 GPa to 24 GPa.

  9. Effects of Thermal and Mechanical Processing on Microstructures and Desired Properties of Particle-Strengthened Cu-Cr-Nb Alloys

    NASA Technical Reports Server (NTRS)

    Anderson, Kenneth Reed

    2000-01-01

    Ternary Cu-Cr-Nb alloys, particularly Cu-8 Cr-4 Nb (in at.%), have demonstrated good thermal stability as well as high strength and conductivity at elevated temperatures. The initial powder material has a bimodal size distribution of Cr2Nb precipitates. Primary Cr2Nb precipitates are approx. 1 micron, and secondary Cr2Nb particles are 30-200 nm. The particle coarsening was analyzed and found to follow LSW-type behavior, This study provides a detailed examination of the stability and strengthening effects of Cr2Nb particles. This investigation also revealed that the primary particles provide direct grain boundary pinning and indirect grain boundary strengthening but virtually no Orowan strengthening. The secondary particles found within grains do provide Orowan strengthening. For extruded material, grain bound-ary strengthening (Hall-Petch effect) accounts for two-thirds of the strength with Orowan effects contributing the remainder. The proven advantages of Cu-Cr-Nb were the motivation to improve these attributes via microstructural refinement. Mechanical milling (MM) of Cu- 4 Cr-2 Nb and Cu-8 Cr-2 Nb produced an increase in hot pressed Vickers hardness of 122% and 96%, respectively. The increase in hardness was more due to Cu grain-size refinement than to Cr,,Nb refinement. This study also demonstrated enhanced stability of MM Cu-4 Cr-2 Nb. Hot pressed 4 h milled Cu-4 Cr-2 Nb experienced only a 22% drop in hardness when annealed at 1273 K for 50 h versus a 30% drop for extruded Cu-8 Cr-4 Nb. The goal of improving the strength and stability of Cu-4 Cr-2 Nb to better than such properties for as- extruded Cu-8 Cr-4 Nb has been met. In addition, a figure-of-merit (FOM) coupling hardness and thermal conductivity was maximized for the case of 4 h milled Cu-4 Cr-2 Nb material. Overall, Cu-Cr-Nb alloys not only possess high strength, conductivity and thermal stability but also can be further developed to improve strength and stability.

  10. Factors affecting chelating extraction of Cr, Cu, and As from CCA-treated wood.

    PubMed

    Chang, Fang-Chih; Wang, Ya-Nang; Chen, Pin-Jui; Ko, Chun-Han

    2013-06-15

    The disposal of chromated copper arsenate (CCA)-treated waste wood is becoming a serious problem in many countries due to potential leaching of hazardous elements from in-service use in the environment or disposal of solutions after remediation; therefore, it is necessary to develop proper remediation techniques. The effects of concentration, extraction period, temperature, and sequential extraction on the extraction of Cr, Cu, and As from CCA-treated wood using [S,S]-ethylenediaminedisuccinic acid (EDDS), ethylenediaminetetraacetic acid (EDTA), and nitrilotriacetic acid (NTA) were studied. Mobility of metal in the samples was evaluated by using a sequential extraction scheme that could give the information needed to explain different extraction efficiencies for different metals. Results of long-term leaching tests of CCA-treated wood before and after EDDS extraction were used to evaluate Cr, Cu, and As leachability. Kinetic experiments showed that 6 h was the optimum extraction time for all metals and CCA-treated wood. Experimental results showed that EDDS is a very effective chelating agent for the extraction of Cr, Cu, and As from CCA-treated wood. Increased temperature significantly enhanced the extraction efficiency of CCA metals, especially Cr and As. The much better extractability of Cu compared to Cr and As by chelating agents can be attributed to the presence of larger weakly bound fractions. The CCA-treated woods after EDDS extraction have met the EPA's TCLP regulatory limit and could be classified as a non-hazardous waste according to identification standard of hazardous wastes.

  11. Investigation of electronic structure, magnetic and transport properties of half-metallic Mn2CuSi and Mn2ZnSi Heusler alloys

    NASA Astrophysics Data System (ADS)

    Bhat, Idris Hamid; Yousuf, Saleem; Mohiuddin Bhat, Tahir; Gupta, Dinesh C.

    2015-12-01

    The electronic and magnetic properties of Mn2CuSi and Mn2ZnSi Heusler alloys have been investigated using full-potential linearized augmented plane wave method. The optimized equilibrium lattice parameters in stable F-43m configuration are found to be 5.75 Å for Mn2CuSi and 5.80 Å for Mn2ZnSi. Spin-resolved calculations show that the Mn atoms at inequivalent Wyckoff positions have different contributions to the total magnetic moment in the unit cell. The anti-parallel magnetic moments of inequivalent Mn atoms sum to an integer with total magnetic moment per unit cell. The 100% spin-polarization at Fermi energy together with the total magnetic moment of 1.0 μB for Mn2CuSi and 2.0 μB for Mn2ZnSi per unit cell, predict that the materials follow MT=ZT - 28 Slater-Pauling rule. Both the materials under study exhibit half-metallicity with an energy gap in the spin-down channels. In the study, we predict a rather fine value of Seebeck coefficient. Further, the decreasing electrical conductivity with temperature shows a metallic character in spin-up configurations, while the electrical conductivity of spin-down states follows a semiconductor-like trend.

  12. Synthesis and Electrochemical Characterization of M2Mn3O8 (M=Ca,Cu) Compounds and Derivatives

    SciTech Connect

    Park, Yong Joon; Doeff, Marca M.

    2005-08-25

    M{sub 2}Mn{sub 3}O{sub 8} (M=Ca{sup 2+}, Cu{sup 2+}) compounds were synthesized and characterized in lithium cells. The M{sup 2+} cations, which reside in the van der Waal's gaps between adjacent sheets of Mn{sub 3}O{sub 8}{sup 4-}, may be replaced chemically (by ion-exchange) or electrochemically with Li. More than 7 Li{sup +}/Cu{sub 2}Mn{sub 3}O{sub 8} may be inserted electrochemically, with concomitant reduction of Cu{sup 2+} to Cu metal, but less Li can be inserted into Ca{sub 2}Mn{sub 3}O{sub 8}. In the case of Cu{sup 2+}, this process is partially reversible when the cell is charged above 3.5 V vs. Li, but intercalation of Cu{sup +} rather than Cu{sup 2+} and Li{sup +}/Cu{sup +} exchange occurs during the subsequent discharge. If the cell potential is kept below 3.4 V, the Li in excess of 4Li{sup +}/Cu{sub 2}Mn{sub 3}O{sub 8} can be cycled reversibly. The unusual mobility of +2 cations in a layered structure has important implications both for the design of cathodes for Li batteries and for new systems that could be based on M{sup 2+} intercalation compounds.

  13. Corrosion Behavior of Thermally Sprayed NiCrBSi Coating on 16MnR Low-Alloy Steel in KOH Solution

    NASA Astrophysics Data System (ADS)

    Zeng, Q.; Sun, J.; Emori, W.; Jiang, S. L.

    2016-05-01

    NiCrBSi coatings were selected as protective material and air plasma-sprayed on 16MnR low-alloy steel substrates. Corrosion behavior of 16MnR substrates and NiCrBSi coatings in KOH solution were evaluated by polarization resistance ( R p), potentiodynamic polarization curves, electrochemical impedance spectroscopy, and immersion corrosion tests. Electrolytes were solutions with different KOH concentrations. NiCrBSi coating showed superior corrosion resistance in KOH solution compared with the 16MnR. Corrosion current density of 16MnR substrate was 1.7-13.0 times that of NiCrBSi coating in the given concentration of KOH solution. By contrast, R p of NiCrBSi coating was 1.2-8.0 times that of the substrate, indicating that the corrosion rate of NiCrBSi coating was much lower than that of 16MnR substrate. Capacitance and total impedance value of NiCrBSi coating were much higher than those of 16MnR substrate in the same condition. This result indicates that corrosion resistance of NiCrBSi coating was better than that of 16MnR substrate, in accordance with polarization results. NiCrBSi coatings provided good protection for 16MnR substrate in KOH solution. Corrosion products were mainly Ni/Fe/Cr oxides.

  14. Mn1.4Co1.4Cu0.2O4 spinel protective coating on ferritic stainless steels for solid oxide fuel cell interconnect applications

    NASA Astrophysics Data System (ADS)

    Chen, Guoyi; Xin, Xianshuang; Luo, Ting; Liu, Leimin; Zhou, Yuchun; Yuan, Chun; Lin, Chucheng; Zhan, Zhongliang; Wang, Shaorong

    2015-03-01

    In an attempt to reduce the oxidation and Cr evaporation rates of solid oxide fuel cells (SOFCs), Mn1.4Co1.4Cu0.2O4 spinel coating is developed on the Crofer22 APU ferritic stainless steel substrate by a powder reduction technique. Doping of Cu into Mn-Co spinels improves electrical conductivity as well as thermal expansion match with the Crofer22 APU interconnect. Good adhesion between the coating and the alloy substrate is achieved by the reactive sintering process using the reduced powders. Long-term isothermal oxidation experiment and area specific resistance (ASR) measurement are investigated. The ASR is less than 4 mΩ cm2 even though the coated alloy undergoes oxidation at 800 °C for 530 h and four thermal cycles from 800 °C to room temperature. The Mn1.4Co1.4Cu0.2O4 spinel coatings demonstrate excellent anti-oxidation performance and long-term stability. It exhibits a promising prospect for the practical application of SOFC alloy interconnect.

  15. Structural, optical, dielectric and antibacterial studies of Mn doped Zn0.96Cu0.04O nanoparticles.

    PubMed

    Sangeetha, R; Muthukumaran, S; Ashokkumar, M

    2015-06-05

    Zn(0.96-x)Cu0.04Mn(x)O (0⩽x⩽0.04) nanoparticles were synthesized by sol-gel method. The X-ray diffraction pattern indicated that doping of Mn and Cu did not change the ZnO hexagonal wurtzite structure. The Mn doped nanoparticles had smaller average crystallite size than un-doped Zn0.96Cu0.04O nanoparticles due to the distortion in the host ZnO lattice. This distortion prevented the subsequent growth and hence the size reduced by Mn doping. The changes in lattice parameters, average crystallite size, peak position and peak intensity confirmed the Mn substitution in Zn-Cu-O lattice. The Mn and Cu co-doping increased the charge carrier density in ZnO nanoparticles which led to increase the dielectric constant. The dielectric constant also varied by depend the size of the nanoparticles. The change in morphology by Mn-doping was studied by transmission electron microscope. The optical absorption and band gap were changed with respect to both compositional and size effects. The band gap was initially increased from 3.65 to 3.73 eV at 1% of Mn doping, while decreasing trend in band gap was noticed for further increase of Mn. The band gap was decreased from 3.73 to 3.48 eV when Mn concentration was increased from 2% to 4%. Presence of chemical bonding and purity of the nanoparticles were confirmed by FTIR spectra. The antibacterial study revealed that that the antibacterial activity of Zn0.96Cu0.04O is enhanced by Mn doping.

  16. Rapid Solidification Behavior of Fe-Cr-Mn-Mo-Si-C Alloys

    NASA Astrophysics Data System (ADS)

    Ranganathan, Sathees; Makaya, Advenit; Fredriksson, Hasse; Savage, Steven

    2007-12-01

    The rapid solidification behavior of alloys in the Fe-Cr-Mn-Mo-Si-C system was investigated for different compositions and cooling rates. The C content was varied and alloying additions of Mo and B were studied with respect to their effect on the microstructure. The alloys were cast as either melt-spun ribbons or as 1-mm-thick plates after levitation or as rods 2 to 4 mm in diameter by injection into copper molds. A homogeneous single-phase structure was obtained for the alloy of composition 72.8Fe-8Cr-6Mn-5Si-5Mo-3.2C (wt pct), for a sample diameter of 2.85 mm, at a cooling rate of ≈1100 K/s. The single-phase structure was identified as a metastable solid solution, exhibiting the characteristics of the ɛ phase. Upon reheating, decomposition of the single-phase structure into fine bainite plates and secondary carbides was observed between 600 °C and 700 °C. The annealed structure obtained showed high hardness values (>850 HV).

  17. Enhanced Photovoltage Response of Hematite-X-Ferrite Interfaces (X = Cr, Mn, Co, or Ni)

    NASA Astrophysics Data System (ADS)

    Bian, Liang; Li, Hai-long; Li, Yu-jin; Nie, Jia-nan; Dong, Fa-qin; Dong, Hai-liang; Song, Mian-xin; Wang, Li-sheng; Zhou, Tian-liang; Zhang, Xiao-yan; Li, Xin-xi; Xie, Lei

    2017-02-01

    High-fluorescent p-X-ferrites (XFe2O4; XFO; X = Fe, Cr, Mn, Co, or Ni) embedded in n-hematite (Fe2O3) surfaces were successfully fabricated via a facile bio-approach using Shewanella oneidensis MR-1. The results revealed that the X ions with high/low work functions modify the unpaired spin Fe2+-O2- orbitals in the XFe2O4 lattices to become localized paired spin orbitals at the bottom of conduction band, separating the photovoltage response signals (73.36 455.16/-72.63 -32.43 meV). These (Fe2O3)-O-O-(XFe2O4) interfacial coupling behaviors at two fluorescence emission peaks (785/795 nm) are explained via calculating electron-hole effective masses (Fe2O3-FeFe2O4 17.23 × 10-31 kg; Fe2O3-CoFe2O4 3.93 × 10-31 kg; Fe2O3-NiFe2O4 11.59 × 10-31 kg; Fe2O3-CrFe2O4 -4.2 × 10-31 kg; Fe2O3-MnFe2O4 -11.73 × 10-31 kg). Such a system could open up a new idea in the design of photovoltage response biosensors.

  18. Plasma Nitriding Behavior of Fe-C-M (M = Al, Cr, Mn, Si) Ternary Martensitic Steels

    NASA Astrophysics Data System (ADS)

    Tomio, Yusaku; Kitsuya, Shigeki; Oh-ishi, Keilchiro; Hono, Kazuhiro; Miyamoto, Goro; Furuhara, Tadashi

    2014-01-01

    Change in surface hardness and nitrides precipitated in Fe-0.6C binary and Fe-0.6 mass pct C-1 mass pct M (M = Al, Cr, Mn, Si) ternary martensitic alloys during plasma nitriding were investigated. Surface hardness was hardly increased in the Fe-0.6C binary alloy and slightly increased in Fe-0.6C-1Mn and Fe-0.6C-1Si alloys. On the other hand, it was largely increased in Fe-0.6C-1Al and Fe-0.6C-1Cr alloys. In all the Fe-0.6C-1M alloys except for the Si-added alloy, fine platelet alloy nitrides precipitated inside martensite laths. In the Fe-0.6C-1Si alloy, Si-enriched film was observed mainly at a grain boundary and an interface between cementite and matrix. Crystal structure of nitrides observed in the martensitic alloys was similar to those in Fe-M binary ferritic alloys reported previously. However, there was a difference in hardening behavior between ferrite and martensite due to a high density of dislocations acting as a nucleation site of the nitrides and partitioning of an alloying element between martensite and cementite changing the driving force of precipitation of the nitrides.

  19. Synthesis, structures and magnetic properties of the dimorphic Mn2CrSbO6 oxide.

    PubMed

    Dos santos-García, Antonio J; Solana-Madruga, Elena; Ritter, Clemens; Ávila-Brande, David; Fabelo, Oscar; Sáez-Puche, Regino

    2015-06-21

    The perovskite polymorph of Mn(2)CrSbO(6) compound has been synthesized at 8 GPa and 1473 K. It crystallizes in the monoclinic P21/n space group with cell parameters a = 5.2180 (2) Å, b = 5.3710(2) Å, c = 7.5874(1) Å and β = 90.36(1)°. Magnetic susceptibility and magnetization measurements show the simultaneous antiferromagnetic ordering of Mn(2+) and Cr(3+) sublattices below TN = 55 K with a small canting. Low temperature powder neutron diffraction reveals a commensurate magnetic structure with spins confined to the ac-plane and a propagation vector κ = [1/2 0 1/2]. The thermal treatment of this compound induces an irreversible phase transition to the ilmenite polymorph, which has been isolated at 973 K and crystallizes in R3[combining macron] space group with cell parameters a = 5.2084 (4) Å and c = 14.4000 (11) Å. Magnetic susceptibility, magnetization and powder neutron diffraction data confirm the antiferromagnetic helical ordering of spins in an incommensurate magnetic structure with κ = [00 0.46] below 60 K, and the temperature dependence of the propagation vector up to κ = [00 0.54] at about 10 K.

  20. Sugar beet factory lime affects the mobilization of Cd, Co, Cr, Cu, Mo, Ni, Pb, and Zn under dynamic redox conditions in a contaminated floodplain soil.

    PubMed

    Shaheen, Sabry M; Rinklebe, Jörg

    2017-01-15

    The impact of sugar beet factory lime (SBFL) on the release dynamics and mobilization of toxic metals (TMs) under dynamic redox conditions in floodplain soils has not been studied up to date. Therefore, the aim of this study was to verify the scientific hypothesis that SBFL is able to immobilize Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, and Zn under different redox potentials (EH) in a contaminated floodplain soil. For this purpose, the non-treated contaminated soil (CS) and the same soil treated with SBFL (CS+SBFL) were flooded in the laboratory using a highly sophisticated automated biogeochemical microcosm apparatus. The experiment was conducted stepwise from reducing (-13 mV) to oxidizing (+519 mV) soil conditions. Soil pH decreased under oxic conditions in CS (from 6.9 to 4.0) and in CS+SBFL (from 7.5 to 4.4). The mobilization of Cu, Cr, Pb, and Fe were lower in CS+SBFL than in CS under both reducing/neutral and oxic/acidic conditions. Those results demonstrate that SBFL is able to decrease concentrations of these elements under a wide range of redox and pH conditions. The mobilization of Cd, Co, Mn, Mo, Ni, and Zn were higher in CS+SBFL than in CS under reducing/neutral conditions; however, these concentrations showed an opposite behavior under oxic/acidic conditions and were lower in CS+SBFL than in CS. We conclude that SBFL immobilized Cu, Cr, Pb, and Fe under dynamic redox conditions and immobilized Cd, Co, Mn, Mo, Ni, and Zn under oxic acidic conditions; however, the latter elements were mobilized under reducing neutral conditions in the studied soil. Therefore, the addition of SBFL to acid floodplain soils contaminated with TMs might be an important alternative for ameliorating these soils with view to a sustainable management of these soils.

  1. Investigation of the mechanical properties of FeNiCrMnSi high entropy alloy wear resistant

    NASA Astrophysics Data System (ADS)

    Buluc, G.; Florea, I.; Chelariu, R.; Popescu, G.; Carcea, I.

    2016-06-01

    In this paper we investigated microstructure, hardness and wear resistance for FeNiCrMnAl, high entropy alloy. The FeNiCrMnSi, high entropy alloy was elaborated in a medium induction furnace, by choosing the silicon, as an alliance element within the equi- atomic high entropy alloy, we managed to obtain a dendritic structure, the formation of intermetallic compounds or separated silicon. The medium hardness value of the investigated alloy was 948.33 HV and the medium value of the friction coefficient was 0.6655 in the first 20 seconds and 0.5425 for 1667 seconds. The volume loss of the high entropy alloy FeNiCrMnSi was 0.0557 mm3.

  2. Synthesis and characterization of La(Cr,Fe,Mn)O3 nanoparticles obtained by co-precipitation method

    NASA Astrophysics Data System (ADS)

    Fabian, F. A.; Pedra, P. P.; Filho, J. L. S.; Duque, J. G. S.; Meneses, C. T.

    2015-04-01

    Magnetic and structural properties have been investigated in La(Cr,Fe,Mn)O3 nanoparticles obtained by co-precipitation method. The X-ray diffraction measurements allied to Rietveld method confirm the formation of LaCrO3, LaFeO3 and LaMnO3 nanoparticles with crystal structure orthorhombic (Pbnm), orthorhombic (Pnma) and rhombohedral (R-3c), respectively. We also verified an decreasing in the average crystallite size from 73 to 26 nm, depending of the transition metal. The magnetic measurements reveal an antiferromagnetic behavior for the LaCrO3 sample with TN~289 K, and a weak ferromagnetic ordering for the LaMnO3 sample with Tc~200 K.

  3. Synthesis and characterization of (smif)2M(n) (n = 0, M = V, Cr, Mn, Fe, Co, Ni, Ru; n = +1, M = Cr, Mn, Co, Rh, Ir; smif =1,3-di-(2-pyridyl)-2-azaallyl).

    PubMed

    Frazier, Brenda A; Bartholomew, Erika R; Wolczanski, Peter T; DeBeer, Serena; Santiago-Berrios, Mitk'El; Abruña, Hector D; Lobkovsky, Emil B; Bart, Suzanne C; Mossin, Susanne; Meyer, Karsten; Cundari, Thomas R

    2011-12-19

    A series of Werner complexes featuring the tridentate ligand smif, that is, 1,3-di-(2-pyridyl)-2-azaallyl, have been prepared. Syntheses of (smif)(2)M (1-M; M = Cr, Fe) were accomplished via treatment of M(NSiMe(3))(2)(THF)(n) (M = Cr, n = 2; Fe, n = 1) with 2 equiv of (smif)H (1,3-di-(2-pyridyl)-2-azapropene); ortho-methylated ((o)Mesmif)(2)Fe (2-Fe) and ((o)Me(2)smif)(2)Fe (3-Fe) were similarly prepared. Metatheses of MX(2) variants with 2 equiv of Li(smif) or Na(smif) generated 1-M (M = Cr, Mn, Fe, Co, Ni, Zn, Ru). Metathesis of VCl(3)(THF)(3) with 2 Li(smif) with a reducing equiv of Na/Hg present afforded 1-V, while 2 Na(smif) and IrCl(3)(THF)(3) in the presence of NaBPh(4) gave [(smif)(2)Ir]BPh(4) (1(+)-Ir). Electrochemical experiments led to the oxidation of 1-M (M = Cr, Mn, Co) by AgOTf to produce [(smif)(2)M]OTf (1(+)-M), and treatment of Rh(2)(O(2)CCF(3))(4) with 4 equiv Na(smif) and 2 AgOTf gave 1(+)-Rh. Characterizations by NMR, EPR, and UV-vis spectroscopies, SQUID magnetometry, X-ray crystallography, and DFT calculations are presented. Intraligand (IL) transitions derived from promotion of electrons from the unique CNC(nb) (nonbonding) orbitals of the smif backbone to ligand π*-type orbitals are intense (ε ≈ 10,000-60,000 M(-1)cm(-1)), dominate the UV-visible spectra, and give crystals a metallic-looking appearance. High energy K-edge spectroscopy was used to show that the smif in 1-Cr is redox noninnocent, and its electron configuration is best described as (smif(-))(smif(2-))Cr(III); an unusual S = 1 EPR spectrum (X-band) was obtained for 1-Cr.

  4. Vacuum Plasma Spray of CuCrNb Alloy for Advanced Liquid - Fuel Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank

    2000-01-01

    The copper-8 atomic percent chromium-4 atomic percent niobium (CuCrNb) alloy was developed by Glenn Research Center (formally Lewis Research Center) as an improved alloy for combustion chamber liners. In comparison to NARloy-Z, the baseline (as in Space Shuttle Main Engine) alloy for such liners, CuCrNb demonstrates mechanical and thermophysical properties equivalent to NARloy-Z, but at temperatures 100 C to 150 C (180 F to 270 F) higher. Anticipated materials related benefits include decreasing the thrust cell liner weight 5% to 20%, increasing the service life at least two fold over current combustion chamber design, and increasing the safety margins available to designers. By adding an oxidation and thermal barrier coating to the liner, the combustion chamber can operate at even higher temperatures. For all these benefits, however, this alloy cannot be formed using conventional casting and forging methods because of the levels of chromium and niobium, which exceed their solubility limit in copper. Until recently, the only forming process that maintains the required microstructure of CrNb intermetallics is powder metallurgy formation of a billet from powder stock, followed by extrusion. This severely limits its usefulness in structural applications, particularly the complex shapes required for combustion chamber liners. Vacuum plasma spray (VPS) has been demonstrated as a method to form structural articles including small combustion chambers from the CuCrNb alloy. In addition, an oxidation and thermal barrier layer can be formed integrally on the hot wall of the liner that improve performance and extend service life. This paper discusses the metallurgy and thermomechanical properties of VPS formed CuCrNb versus the baseline powder metallurgy process, and the manufacturing of small combustion chamber liners at Marshall Space Flight Center using the VPS process. The benefits to advanced propulsion initiatives of using VPS to fabricate combustion chamber liners

  5. Shape evolution of Cu-doped Mn{sub 3}O{sub 4} spinel microcrystals: influence of copper content

    SciTech Connect

    Wang, Fan; Wu, Haiqiu; Lin, Ziting; Han, Shuaiyuan; Wang, Dan; Xue, Ying; Sun, Yunlong; Sun, Jian; Li, Bin

    2010-11-15

    Spinel-type Cu-doped Mn{sub 3}O{sub 4} microcrystals with various shapes were synthesized by hydrothermal method. The interrelation between the preparative conditions and the composition, structure, and morphology of the products were investigated using various analytical techniques, such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and thermal gravimetric analysis. Results revealed that the introduction of Cu{sup 2+} ions into the reaction system promoted the formation of single phase Cu-doped Mn{sub 3}O{sub 4}. A gradual shape evolution from polyhedron to octahedron occurred upon increasing the additive copper content. Complete decolorization of organic dye (methylene blue) aqueous solution was achieved by treating the dye with Cu-doped Mn{sub 3}O{sub 4} in acidic media, which shows the possible application of doped Mn{sub 3}O{sub 4} as effective reagents for the degradation of organic contaminants in water.

  6. Magnetic properties of Mn1.9Cu0.1Sb under high pressure

    NASA Astrophysics Data System (ADS)

    Matsumoto, Yoshihiro; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya; Hiroi, Masahiko; Mitsui, Yoshifuru; Koyama, Keiichi

    2016-08-01

    Magnetization measurements were carried out for polycrystalline Mn1.9Cu0.1Sb in magnetic fields up to 5 T in the 10-300 K temperature range under high pressures up to 1 GPa in order to investigate the magnetic properties and the thermal transformation arrest (TTA) phenomenon under high pressures. The spin-reorientation temperature increased from 202 K for 0.1 MPa to 244 K for 1 GPa, whereas the transition temperature from the ferrimagnetic (FRI) to antiferromagnetic (AFM) state did not drastically change at ˜116 K. The magnetic relaxation behavior from the FRI to AFM state was observed in 10 < T ≤ 70 K, which was analyzed using the Kohlrausch-Williams-Watts model. Obtained results indicated that the TTA phenomenon of Mn1.9Cu0.1Sb was suppressed by the application of high pressures.

  7. Structural, elastic, electronic, magnetic and vibrational properties of CuCoMnGa under pressure

    SciTech Connect

    İyigör, Ahmet; Uğur, Şule

    2014-10-06

    First principles calculations for the structural, electronic, elastic and phonon properties of the cubic quaternary heusler alloy CuCoMnGa on pressure have been reported by density functional theory (DFT) within generalized gradient approximation (GGA). The calculated values of the elastic constants were used for estimations of the Debye temperatures, the bulk modulus, the shear modulus, the young modulus E, the poisson's ratio σ and the B/G ratio. The elastic constants satisfy all of the mechanical stability criteria. The electronic structures of the ferromagnetic configuration for CuCoMnGa have a metallic character. The estimated magnetic moment per formula unit is 3.76 μ{sub B}. The phonon dispersion is studied using the supercell approach, and the stable nature at 0.2 GPa pressure is observed.

  8. Thermoelectric Properties of CuAgSe doped with Co, Cr

    NASA Astrophysics Data System (ADS)

    Czajka, Peter; Yao, Mengliang; Opeil, Cyril

    Thermoelectric materials represent one way that reliable cooling below the boiling point of nitrogen can be realized. Current materials do not exhibit sufficiently high efficiencies at cryogenic temperatures, but significant progress is being made. One material that has generated significant interest recently is CuAgSe. It has been demonstrated (Ishiwata et al., Nature Mater. 2013) that doping CuAgSe with 10% Ni at the Cu sites increases the material's thermoelectric figure of merit (ZT) at 100 K from 0.02 to 0.10. This is intriguing not just because of the dramatic effect that the Ni doping produces, but also because CuAgSe is a semimetal and semimetals are not usually able to exhibit the kind of asymmetric carrier activation necessary for strong thermoelectric performance. In order to further investigate the unusual nature of thermoelectricity in CuAgSe and its strong dependence on chemical composition, we have synthesized and measured the thermoelectric properties of a series of CuAgSe samples doped with Co and Cr. Temperature-dependent magnetic and thermoelectric transport properties of CuAgSe as a function of Co and Cr doping will be discussed. This work is supported by the Department of Defense, AFOSR, MURI Program Contract # FA9550-10-1-0533 and the Trustees of Boston College.

  9. Cu-Zn powders as potential Cr(VI) adsorbents for drinking water.

    PubMed

    Kaprara, E; Seridou, P; Tsiamili, V; Mitrakas, M; Vourlias, G; Tsiaoussis, I; Kaimakamis, G; Pavlidou, E; Andritsos, N; Simeonidis, K

    2013-11-15

    This work examines the possibility of applying CuZn alloys as a reducing medium for the efficient removal of hexavalent chromium from drinking water. In an effort to develop a route for producing powders of CuZn alloys under mild conditions and investigate the optimum composition for such application, a series of alloys in the form of powders were prepared, by a sequence of Cu and Zn ball-milling and low temperature annealing. Batch Cr(VI) removal tests, performed to evaluate and compare the efficiency of the products under typical natural water parameters (pH 7 and natural-like water), indicated that the best performing material have a composition around 50 wt% Cu. The dominant reduction mechanisms are both the corrosion of the alloy surface and the electron transfer to the solution. The behavior of granulated CuZn media was tested in rapid-scale column tests using the commercial KDF which verified the high potential of CuZn alloys in Cr(VI) removal. Nevertheless, Cu and Zn leaching problems should be also considered.

  10. Exploring the Cr2+ doping effect on structural, vibrational and dielectric properties of Mn-Zn ferrites

    NASA Astrophysics Data System (ADS)

    Choudhary, Pankaj; Tyagi, Tarun; Dar, M. A.; Varshney, Dinesh

    2016-05-01

    A series of Cr doped Mn-Zn ferrites with compositional formula Mn0.5Zn0.5-xCrxFe2O4 (x = 0, 0.3, 0.5) were prepared by solid-state reaction route. X-ray diffraction (XRD) analysis reveals that the samples prepared are polycrystalline cubic spinel in structure (Fd3m) with some secondary phase of α-Fe2O3. Slight variation in the lattice parameter of Cr doped Mn0.5Zn0.5Fe2O4 has been observed due to difference in ionic radii of cations. Small shift in Raman modes towards higher wave number has been observed. Further the line width decreases with the doping ions. A giant dielectric constant ~104 is observed for parent Mn0.5Zn0.5Fe2O4 which is found to decrease with increase in Cr2+ doping. Low dielectric loss is observed for Mn0.5Zn0.5Fe2O4 and improves with Cr2+ doping at Zn2+ site.

  11. Wetting and interface phenomena in the molten Sn/CuFeNiCoCr high-entropy alloy system

    NASA Astrophysics Data System (ADS)

    Ma, G. F.; Li, Z. K.; Ye, H.; He, C. L.; Zhang, H. F.; Hu, Z. Q.

    2015-11-01

    The wetting behavior and the interfacial characteristics of the molten Sn on a CuFeNiCoCr high-entropy alloy (HEA) substrate were investigated by the sessile drop method. Oxidation of the CuCoNiFeCr HEA surface inhibited the interaction between the molten Sn and the CuCoNiFeCr HEA substrate, leading to a very poor wetting at 573 K, 623 K and 673 K. However, the equilibrium contact angle decreased monotonously with the temperature increasing in the temperature range of 673-923 K. Moreover, the interfacial microstructure depended on temperature. An intermetallic compound existed at the interface between the molten Sn and the CuFeNiCoCr HEA substrate, and the interface thickness varied with the wetting temperature. The wetting process of the molten Sn on the CuFeNiCoCr HEA substrate consisted of three stages according to the wetting temperature.

  12. Structural, optical, dielectric and antibacterial studies of Mn doped Zn0.96Cu0.04O nanoparticles

    NASA Astrophysics Data System (ADS)

    Sangeetha, R.; Muthukumaran, S.; Ashokkumar, M.

    2015-06-01

    Zn0.96-xCu0.04MnxO (0 ⩽ x ⩽ 0.04) nanoparticles were synthesized by sol-gel method. The X-ray diffraction pattern indicated that doping of Mn and Cu did not change the ZnO hexagonal wurtzite structure. The Mn doped nanoparticles had smaller average crystallite size than un-doped Zn0.96Cu0.04O nanoparticles due to the distortion in the host ZnO lattice. This distortion prevented the subsequent growth and hence the size reduced by Mn doping. The changes in lattice parameters, average crystallite size, peak position and peak intensity confirmed the Mn substitution in Zn-Cu-O lattice. The Mn and Cu co-doping increased the charge carrier density in ZnO nanoparticles which led to increase the dielectric constant. The dielectric constant also varied by depend the size of the nanoparticles. The change in morphology by Mn-doping was studied by transmission electron microscope. The optical absorption and band gap were changed with respect to both compositional and size effects. The band gap was initially increased from 3.65 to 3.73 eV at 1% of Mn doping, while decreasing trend in band gap was noticed for further increase of Mn. The band gap was decreased from 3.73 to 3.48 eV when Mn concentration was increased from 2% to 4%. Presence of chemical bonding and purity of the nanoparticles were confirmed by FTIR spectra. The antibacterial study revealed that that the antibacterial activity of Zn0.96Cu0.04O is enhanced by Mn doping.

  13. First-principles and Monte Carlo studies of the Ni2(Mn,Cr)Ga Heusler alloys electronic and magnetic properties

    NASA Astrophysics Data System (ADS)

    Zagrebin, M. A.; Sokolovskiy, V. V.; Smolyakova, E. E.; Buchelnikov, V. D.

    2017-02-01

    Structural, magnetic and electronic properties of a series of Ni2Mn1‑x Cr x Ga Heusler alloys have been studied by means of ab initio calculations and Monte Carlo simulations. The optimized lattice parameters of all investigated compositions are close to 5.81 Å and weakly depend on Cr excess. The martensitic transformation in Ni-Mn-Cr-Ga alloys occurs in all compositional range. Tetragonal distortions weakly depend on Cr concentration. Besides, an increase in energy difference between austenite and martensite with increasing Cr content was observed. For electronic and magnetic properties, it was observed that Ni2Mn1‑x Cr x Ga demonstrate the metallic behavior. Using the SPR-KKR calculations of magnetic exchange constants, we have shown that the largest contribution to the total exchange energy is associated between nearest neighbor Ni-Mn pair. These inter-sublattice interactions in austenitic phase are higher then intra-sublattice interactions (Ni-Ni and Mn(Cr)-Mn(Cr)). Estimated Curie temperatures for Ni2Mn1‑x Cr x Ga are found to decrease with increasing Cr content. All obtained results are in good agreement with experimental data.

  14. NiFe/CoFe/Cu/CoFe/MnIr spin valves studied by ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Timopheev, A. A.; Sobolev, N. A.; Pogorelov, Y. G.; Bunyaev, S. A.; Teixeira, J. M.; Cardoso, S.; Freitas, P. P.; Kakazei, G. N.

    2013-05-01

    Ion-beam deposited (Glass/Ta/NiFe/CoFe/Cu/CoFe/MnIr/Ta) spin valves (SVs) with a Cu-spacer thickness (tCu) varying from 14 to 28 Å have been studied by ferromagnetic resonance (FMR) and magnetoresistance (MR) measurements. With respect to the interlayer coupling strength between the free and fixed ferromagnetic layers, the samples have been divided in those with a weak coupling (for tCu > 16 Å) and a strong coupling regimes (for tCu ≤ 16 Å). The FMR behavior in these two regimes is quite different. For the weakly coupled series, there are two well-defined FMR peaks stemming from the free and fixed layers. Their in-plane angular dependences exhibit 180° and 360° symmetries, respectively. For the strongly coupled SVs, the resonance modes are hybridized and possess features of both layers simultaneously. The main coupling mechanism between the two layers, as concluded from the FMR and MR measurements, is the Néel "orange-peel" magnetostatic interaction, accompanied by a direct exchange due to pinholes in the Cu spacer for tCu < 17 Å.

  15. Temperature dependences of the structural and the mechanical properties of a CdMnCrTe quaternary alloy

    NASA Astrophysics Data System (ADS)

    Hwang, Younghun; Um, Youngho

    2012-11-01

    We investigated the structural and the mechanical properties of single crystals of the diluted magnetic semiconductor (DMS) Cd1- x- y Mn x Cr y Te ( x = 0.37, 0 ≤ y ≤ 0.03) grown by using the vertical Bridgman method. High-temperature X-ray diffraction (XRD) and microhardness measurements were carried out during heating processes at temperatures from room temperature to 750 K. The lattice constants increased with increasing temperature whereas the lattice constants decreased with increasing Cr composition y. The hardness of the Cd1- x- y Mn x Cr y Te crystal increased exponentially with decreasing temperature for T ≤ 600 K, and it remained constant for T ≥ 700 K. The Vickers hardness, H V , decreased with increasing temperature and increased with increasing Cr composition y. The activation energy for the dislocation motion was determined from the relation between temperature and hardness.

  16. Solubility and magnetic properties enhancement in bi-phase nanostructure Cu-Fe-Mn alloy

    NASA Astrophysics Data System (ADS)

    Mondal, B. N.; Basumallick, A.; Nath, D. N.; Chattopadhyay, P. P.

    2013-09-01

    In order to improve solubility and magnetic properties, the ball milling technology was used for the production of 50Cu-40Fe-10Mn (wt%) alloy. The effect of Mn content on the microstructure and magnetic properties of Cu-Fe alloy was also investigated in detail. Microstructure and magnetic properties of the alloy were analyzed by X-ray diffraction, differential scanning calorimetry, high resolution transmission electron microscopy and superconducting quantum interface device magnetometry. The results showed that a complete solid solution of the alloy was produced after 30 h of milling. Quantitative phase analysis of X-ray diffraction data revealed that the milled alloy obtained after isothermal annealing at 550 °C for 1 h consisted of Cu (54.52 wt%), α-Fe (36.49 wt%) and MnO (8.99 wt%). The milled alloy obtained after annealing at 450 °C for 1 h leads to the maximum values of magnetic properties such as coercivity=438 Oe, remanent magnetization=14.3 emu/g, and saturation magnetization=51 emu/g.

  17. Dynamic mechanical analyze of superelastic CuMnAl shape memory alloy

    NASA Astrophysics Data System (ADS)

    (Dragoș Ursanu, A. I.; Stanciu, S.; Pricop, B.; Săndulache, F.; Cimpoeșu, N.

    2016-08-01

    A new shape memory alloy was obtain from high purity Cu, Mn and Al elements using a induce furnace. The intelligent material present negative transformation temperatures and an austenite like state at room temperature. The austenite state of CuMnAl shape memory alloy present superelasticity property. Five kilograms ingot was obtain of Cu10Mn10Al alloy. From the base material (melted state) were cut samples with 6 mm thickness using a mechanical saw. After an homogenization heat treatment the samples were hot rolled through four passes with a reduction coefficient of 20%. Experimental lamellas were obtained with 1.5 mm thickness and 90x10 mm length and width. After the hot rolled treatment the materials were heat treated at 800°C for 20 minutes and chilled in water. Four samples, one just laminated and three heat treated by aging, were analyzed with a Netzsch DMA equipment to establish the elastic modulus and the internal friction values of the materials. Metallic materials microstructure was analyzed using a scanning electron microscope Vega Tescan LMH II type. After the aging heat treatment a decrease of internal friction is observed on the entire analyze range which is assigned to formation of Al-based precipitates that block the internal movement of the alloy characteristic phases.

  18. Multicolor luminescence from transition metal ion (Mn2+ and Cu2+) doped ZnS nanoparticles.

    PubMed

    Datta, Anuja; Biswas, Subhajit; Kar, Soumitra; Chaudhuri, Subhadra

    2007-10-01

    Mn and Cu doped ZnS nanoparticles in powder form were prepared by a simple solvothermal route. Particle size and crystal structure of the products were investigated through X-ray diffraction study revealing the formation of cubic ZnS nanoparticles of average diameter 2.5 nm. Particle size was also verified by the high resolution transmission electron microscopic images. Blue emission at approximately 445 nm was observed from the undoped sample, which was attributed to the presence of large surface defects. With increasing doping concentration the defect related emission gradually quenches and subsequently the impurity related emissions appeared. Mn doped samples exhibited orange emission at approximately 580 nm which may be attributed to the transition between (4)T1 and (6)A1 energy levels of the Mn2+ 3d states. Whereas, the Cu doped ZnS nanoparticles exhibited a red shifted strong blue emission at approximately 466 nm which is attributed to the transition of the electrons from the surface states to the 't2' levels of Cu impurities.

  19. Pressure- and Temperature-Dependent Study of Heusler Alloys Cu2MGa (M = Cr and V)

    NASA Astrophysics Data System (ADS)

    Gupta, Dinesh C.; Ghosh, Sukriti

    2017-04-01

    Full-potential computation of the electronic, magnetic, elastic and thermodynamic properties of Cu2MGa (M = Cr and V) alloys has been performed in the most stable Fm-3 m phase. The equilibrium lattice parameter is 5.9660 Å for Cu2CrGa and 5.9629 Å for Cu2VGa in the stable state. The application of mBJ potential has also found no energy gap in these alloys in either of the spin channels, hence they are metallic. The total and partial density of states, second-order elastic constants and their combinations are computed to show the electronic, magnetic, stability and brittle or ductile nature of these alloys, which are reported for the first time. Cauchy's pressure and Pugh's index predict Cu2CrGa to be brittle and Cu2VGa to be ductile. Both the materials are stiff enough to break. We have found that both the compounds are anisotropic, ferromagnetic and metallic in nature. We have used quasi-harmonic approximations to study the pressure and temperature variation of the thermodynamic properties of these alloys.

  20. Cu2Mn1-xCoxSnS4: Novel kësterite type solid solutions

    NASA Astrophysics Data System (ADS)

    López-Vergara, F.; Galdámez, A.; Manríquez, V.; Barahona, P.; Peña, O.

    2013-02-01

    A new family of Cu2Mn1-xCoxSnS4 chalcogenides has been synthesized by conventional solid-state reactions at 850 °C. The reactions products were characterized by powder X-ray diffraction (XRD), energy-dispersive X-ray analysis (SEM-EDS), Raman spectroscopy and magnetic susceptibility. The crystal structures of two members of the solid solution series Cu2Mn0.4Co0.6SnS4 and Cu2Mn0.2Co0.8SnS4 have been determined by single-crystal X-ray diffraction. Both phases crystallize in the tetragonal kësterite-type structure (space group I4¯). The distortions of the tetrahedral volume of Cu2Mn0.4Co0.6SnS4 and Cu2Mn0.2Co0.8SnS4 were calculated and compared with the corresponding differences in the Cu2MnSnS4 (stannite-type) end-member. The compounds show nearly the same Raman spectral features. Temperature-dependent magnetization measurements (ZFC/FC) and high-temperature susceptibility indicate that these solid solutions are antiferromagnetic.

  1. Speciation of organic carbon, Cu and Mn in the River Marne (France): the role of colloids

    NASA Astrophysics Data System (ADS)

    Jaïry, A.; Garban, B.; Blanchard, M.; Chesterikoff, A.

    1999-02-01

    The distribution of organic carbon (OC) and of some metals (Cu, Mn) amongst the particulate (>0·2 m), colloidal (10 kDa-0·2 m) and the truly dissolved (<10 kDa) fractions of the River Marne was investigated during the phytoplankton spring bloom. A tangential ultrafiltration (UF) device was utilized to separate the colloidal fraction. On average, 22% of the OC, 31% of the Cu and 53% of the Mn, usually assigned to the so-called dissolved fraction, were found in the colloidal fraction. The colloidal fraction exhibited a behaviour different from that of the particulate and truly dissolved fractions. Autochthonous production led to enrichment in the colloidal and particulate OC pools: up to 47% of the total dissolved OC was in the colloidal fraction. An increase in the colloidal metal fraction, concomitant with a fall in the truly dissolved fraction, coincided with peaks in phytoplankton during the bloom. These phenomena might be related either to an increase in pH associated with photosynthetic activity, resulting in the precipitation of truly dissolved forms into the colloidal fraction, or to scavenging of the truly dissolved metals by the algal species of colloidal size.The interaction between the colloidal and the truly dissolved phases was very important. The partition coefficients of the Cu and Mn between the colloidal and truly dissolved fractions were higher than between the particulate and the truly dissolved fractions. This pattern is consistent with a greater specific surface area of colloids than macroparticles. Consequently, the adsorption and complexation capacities are enhanced in the colloidal fraction of the particulate matter.The extraction of hydrophobic complexes with Cu using C18 Sep-Pak columns, showed that the Cu occurring in colloidal, total dissolved or truly dissolved forms was significantly complexed by the organic matter. The truly dissolved fraction might be complexed up to 100% during a phytoplankton bloom.

  2. The effect of substitution of Mn by Fe and Cr on the martensitic transition in the Ni50Mn34In16 alloy.

    PubMed

    Sharma, V K; Chattopadhyay, M K; Nath, S K; Sokhey, K J S; Kumar, R; Tiwari, P; Roy, S B

    2010-12-08

    The potential shape memory alloy Ni(50)Mn(34)In(16) is studied with partial substitution of Mn with Fe and Cr to investigate the effect of such substitution on the martensitic transition in the Ni-Mn-In alloy system. The results of ac susceptibility, magnetization and electrical resistivity measurements show that while the substitution with Cr increases the martensitic transition temperature, the substitution with Fe decreases it. Possible reasons for this shift in martensitic transition are discussed. Evidence of kinetic arrest of the austenite to martensite phase transition in the Fe substituted alloys is also presented. Unlike the kinetic arrest of the austenite to martensite phase transition in the parent Ni(50)Mn(34)In(16) alloy which takes place in the presence of high external magnetic field, the kinetic arrest of the austenite to martensite phase transition in the Fe doped alloy occurs even in zero magnetic field. The Cr substituted alloys, on the other hand, show no signature of kinetic arrest of this phase transition.

  3. Visible Light-Induced Electron Transfer from Di-mu-oxo Bridged Dinuclear Mn Complexes to Cr Centers in Silica Nanopores

    SciTech Connect

    Frei, Heinz; Weare, Walter W.; Pushkar, Yulia; Yachandra, Vittal K.; Frei, Heinz

    2008-06-03

    The compound (bpy)2MnIII(mu-O)2MnIV(bpy)2, a structural model relevant for the photosynthetic water oxidation complex, was coupled to single CrVI charge-transfer chromophores in the channels of the nanoporous oxide AlMCM-41. Mn K-edge EXAFS spectroscopy confirmed that the di-mu-oxo dinuclear Mn core of the complex is unaffected when loaded into the nanoscale pores. Observation of the 16-line EPR signal characteristic of MnIII(mu-O)2MnIV demonstrates that the majority of the loaded complexes retained their nascent oxidation state in the presence or absence of CrVI centers. The FT-Raman spectrum upon visible light excitation of the CrVI-OII --> CrV-OI ligand-to-metal charge-transfer reveals electron transfer from MnIII(mu-O)2MnIV (Mn-O stretch at 700 cm-1) to CrVI, resulting in the formation of CrV and MnIV(mu-O)2MnIV (Mn-O stretch at 645 cm-1). All initial and final states are directly observed by FT-Raman or EPR spectroscopy, and the assignments corroborated by X-ray absorption spectroscopy measurements. The endoergic charge separation products (DELTA Eo = -0.6 V) remain after several minutes, which points to spatial separation of CrV and MnIV(mu-O)2MnIV as a consequence of hole (OI) hopping as a major contributing mechanism. This is the first observation of visible light-induced oxidation of a potential water oxidation complex by a metal charge-transfer pump in a nanoporous environment. These findings will allow for the assembly and photochemical characterization of well defined transition metal molecular units, with the ultimate goal of performing endothermic, multi-electron transformations that are coupled to visible light electron pumps in nanostructured scaffolds.

  4. Magnetism of hexagonal Mn{sub 1.5}X{sub 0.5}Sn (X = Cr, Mn, Fe, Co) nanomaterials

    SciTech Connect

    Fuglsby, R.; Kharel, P.; Zhang, W.; Sellmyer, D. J.; Valloppilly, S.; Huh, Y.

    2015-05-07

    Mn{sub 1.5}X{sub 0.5}Sn (X = Cr, Mn, Fe, Co) nanomaterials in the hexagonal Ni{sub 2}In-type crystal structure have been prepared using arc-melting and melt spinning. All the rapidly quenched Mn{sub 1.5}X{sub 0.5}Sn alloys show moderate saturation magnetizations with the highest value of 458 emu/cm{sup 3} for Mn{sub 1.5}Fe{sub 0.5}Sn, but their Curie temperatures are less than 300 K. All samples except the Cr containing one show spin-glass-like behavior at low temperature. The magnetic anisotropy constants calculated from the high-field magnetization curves at 100 K are on the order of 1 Merg/cm{sup 3}. The vacuum annealing of the ribbons at 550 °C significantly improved their magnetic properties with the Curie temperature increasing from 206 K to 273 K for Mn{sub 1.5}Fe{sub 0.5}Sn.

  5. Rational synthesis and magnetic properties of a family of low-dimensional heterometallic Cr-Mn complexes based on the versatile building block [Cr(2,2'-bipyridine)(CN)4]-.

    PubMed

    Zhang, Yuan-Zhu; Gao, Song; Wang, Zhe-Ming; Su, Gang; Sun, Hao-Ling; Pan, Feng

    2005-06-27

    Six heterometallic compounds based on the building block [Cr(bpy)(CN)4]- (bpy = 2,2'-bipyridine) with secondary and/or tertiary coligands as modulators, {Mn(H2O)2[Cr(bpy)(CN)4]2}n (1), {Mn(bpy)(H2O)[Cr(bpy)(CN)4]2 x H2O}n (2), [Mn(bpy)2][Cr(bpy)(CN)4]2 x 5H2O (3), {[Mn(dca)(bpy)(H2O)][Cr(bpy)(CN)4] x H2O}n (4) (dca = N(CN)2(-)), {Mn(N3)(CH3OH)[Cr(bpy)(CN)4] x 2H2O}n (5), and {Mn(bpy)(N3)(H2O)[Cr(bpy)(CN)4] x H2O}2 (6), have been prepared and characterized structurally and magnetically. X-ray crystallography reveals that the compounds 1, 2, 4, and 5 consist of one-dimensional (1D) chains with different structures: a 4,2-ribbon-like chain, a branched zigzag chain, a 2,2-CC zigzag chain, and a 3,3-ladder-like chain, respectively. It also reveals that compound 3 has a trinuclear [MnCr2] structure, and compound 6 has a tetranuclear [Mn2Cr2] square structure. Magnetic studies show antiferromagnetic interaction between Cr(III) and Mn(II) ions in all compounds. All of the chain compounds exhibit metamagnetic behaviors with different critical temperatures (Tc) and critical fields (Hc; at 1.8 K): 3.2 K and 3.0 kOe for 1; 2.3 K and 4.0 kOe for 2; 2.1 K and 1.0 kOe for 4; and 4.7 K and 5.0 kOe for 5, respectively. The noncentrosymmetric compound 2 is also a weak ferromagnet at low temperature because of spin canting. The magnetic analyses reveal Cr-Mn intermetallic magnetic exchange constants, J, of -4.7 to -9.4 cm(-1) (H = -JS(Cr) x S(Mn)). It is observed that the antiferromagnetic interaction through the Mn-N-C-Cr bridge increases as the Mn-N-C angle (theta) decreases to the range of 155-180 degrees, obeying an empirical relationship: J = -40 + 0.2theta. This result suggests that the best overlap between t(2g) (high-spin Mn(II)) and t(2g) (low-spin Cr(III)) occurs at an angle of approximately 155 degrees.

  6. Excitation dependent multicolor emission and photoconductivity of Mn, Cu doped In2S3 monodisperse quantum dots.

    PubMed

    Ghosh, Sirshendu; Saha, Manas; Ashok, Vishal Dev; Chatterjee, Arijit; De, S K

    2016-04-15

    Indium sulphide (In2S3) quantum dots (QDs) of average size 6 ± 2 nm and hexagonal nanoplatelets of average size 37 ± 4 nm have been synthesized from indium myristate and indium diethyl dithiocarbamate precursors respectively. The absorbance and emission band was tuned with variation of nanocrytal size from very small in the strong confinement regime to very large in the weak confinement regime. The blue emission and its shifting with size has been explained with the donor-acceptor recombination process. The 3d element doping (Mn(2+) and Cu(2+)) is found to be effective for formation of new emission bands at higher wavelengths. The characteristic peaks of Mn(2+) and Cu(2+) and the modification of In(3+) peaks in the x-ray photoelectric spectrum (XPS) confirm the incorporation of Mn(2+) and Cu(2+) into the In2S3 matrix. The simulation of the electron paramagnetic resonance signal indicates the coexistence of isotropic and axial symmetry for In and S vacancies. Moreover, the majority of Mn(2+) ions and sulphur vacancies (VS ) reside on the surface of nanocrystals. The quantum confinement effect leads to an enhancement of band gap up to 3.65 eV in QDs. The formation of Mn 3d levels between conduction band edge and shallow donor states is evidenced from a systematic variation of emission spectra with the excitation wavelength. In2S3 QDs have been established as efficient sensitizers to Mn and Cu emission centers. Fast and slow components of photoluminescence (PL) decay dynamics in Mn and Cu doped QDs are interpreted in terms of surface and bulk recombination processes. Fast and stable photodetctors with high photocurrent gain are fabricated with Mn and Cu doped QDs and are found to be faster than pure In2S3. The fastest response time in Cu doped QDs is an indication of the most suitable system for photodetector devices.

  7. Excitation dependent multicolor emission and photoconductivity of Mn, Cu doped In2S3 monodisperse quantum dots

    NASA Astrophysics Data System (ADS)

    Ghosh, Sirshendu; Saha, Manas; Ashok, Vishal Dev; Chatterjee, Arijit; De, S. K.

    2016-04-01

    Indium sulphide (In2S3) quantum dots (QDs) of average size 6 ± 2 nm and hexagonal nanoplatelets of average size 37 ± 4 nm have been synthesized from indium myristate and indium diethyl dithiocarbamate precursors respectively. The absorbance and emission band was tuned with variation of nanocrytal size from very small in the strong confinement regime to very large in the weak confinement regime. The blue emission and its shifting with size has been explained with the donor-acceptor recombination process. The 3d element doping (Mn2+ and Cu2+) is found to be effective for formation of new emission bands at higher wavelengths. The characteristic peaks of Mn2+ and Cu2+ and the modification of In3+ peaks in the x-ray photoelectric spectrum (XPS) confirm the incorporation of Mn2+ and Cu2+ into the In2S3 matrix. The simulation of the electron paramagnetic resonance signal indicates the coexistence of isotropic and axial symmetry for In and S vacancies. Moreover, the majority of Mn2+ ions and sulphur vacancies (VS ) reside on the surface of nanocrystals. The quantum confinement effect leads to an enhancement of band gap up to 3.65 eV in QDs. The formation of Mn 3d levels between conduction band edge and shallow donor states is evidenced from a systematic variation of emission spectra with the excitation wavelength. In2S3 QDs have been established as efficient sensitizers to Mn and Cu emission centers. Fast and slow components of photoluminescence (PL) decay dynamics in Mn and Cu doped QDs are interpreted in terms of surface and bulk recombination processes. Fast and stable photodetctors with high photocurrent gain are fabricated with Mn and Cu doped QDs and are found to be faster than pure In2S3. The fastest response time in Cu doped QDs is an indication of the most suitable system for photodetector devices.

  8. Effect of Cu and Zn Substitutions on MnSb Properties

    SciTech Connect

    Mitsiuk, V. I.; Ryzhkovskii, V. M.; Tkachenka, T. M.

    2008-10-28

    The NiAs-type solid solutions based on manganese antimonide Mn{sub 1.1}Sb with Zn or Cu (up to 10 at % of substituting component) have been studied by {sup 57}Fe Moessbauer spectroscopy. It has been shown that the replacement of the manganese antimonide by Cu or Zn does not appreciably affect the main Moessbauer parameters in comparison to those of the parent compound. Two different values of hyperfine magnetic field at Fe are present in all the samples and can be attributed to the metal atoms located in MeI and MeII positions. The substitution of Cu or Zn for manganese antimonide leads to the redistribution of the metal atoms between two cation sublattices.

  9. Electronic structure, magnetism, and antisite disorder in CoFeCrGe and CoMnCrAl quaternary Heusler alloys

    NASA Astrophysics Data System (ADS)

    Enamullah; Venkateswara, Y.; Gupta, Sachin; Varma, Manoj Raama; Singh, Prashant; Suresh, K. G.; Alam, Aftab

    2015-12-01

    We present a combined theoretical and experimental study of two quaternary Heusler alloys CoFeCrGe (CFCG) and CoMnCrAl (CMCA), promising candidates for spintronics applications. Magnetization measurement shows the saturation magnetization and transition temperature to be 3 μB , 866 K and 0.9 μB , 358 K for CFCG and CMCA respectively. The magnetization values agree fairly well with our theoretical results and also obey the Slater-Pauling rule, a prerequisite for half metallicity. A striking difference between the two systems is their structure; CFCG crystallizes in fully ordered Y -type structure while CMCA has L 21 disordered structure. The antisite disorder adds a somewhat unique property to the second compound, which arises due to the probabilistic mutual exchange of Al positions with Cr/Mn and such an effect is possibly expected due to comparable electronegativities of Al and Cr/Mn. Ab initio simulation predicted a unique transition from half metallic ferromagnet to metallic antiferromagnet beyond a critical excess concentration of Al in the alloy.

  10. Electronic structure, magnetism, and antisite disorder in CoFeCrGe and CoMnCrAl quaternary Heusler alloys

    SciTech Connect

    Enamullah, .; Venkateswara, Y.; Gupta, Sachin; Varma, Manoj Raama; Singh, Prashant; Suresh, K. G.; Alam, Aftab

    2015-12-10

    In this study, we present a combined theoretical and experimental study of two quaternary Heusler alloys CoFeCrGe (CFCG) and CoMnCrAl (CMCA), promising candidates for spintronics applications. Magnetization measurement shows the saturation magnetization and transition temperature to be 3 μB, 866 K and 0.9 μB, 358 K for CFCG and CMCA respectively. The magnetization values agree fairly well with our theoretical results and also obey the Slater-Pauling rule, a prerequisite for half metallicity. A striking difference between the two systems is their structure; CFCG crystallizes in fully ordered Y-type structure while CMCA has L21 disordered structure. The antisite disorder adds a somewhat unique property to the second compound, which arises due to the probabilistic mutual exchange of Al positions with Cr/Mn and such an effect is possibly expected due to comparable electronegativities of Al and Cr/Mn. Ab initio simulation predicted a unique transition from half metallic ferromagnet to metallic antiferromagnet beyond a critical excess concentration of Al in the alloy.

  11. Electronic structure, magnetism, and antisite disorder in CoFeCrGe and CoMnCrAl quaternary Heusler alloys

    DOE PAGES

    Enamullah, .; Venkateswara, Y.; Gupta, Sachin; ...

    2015-12-10

    In this study, we present a combined theoretical and experimental study of two quaternary Heusler alloys CoFeCrGe (CFCG) and CoMnCrAl (CMCA), promising candidates for spintronics applications. Magnetization measurement shows the saturation magnetization and transition temperature to be 3 μB, 866 K and 0.9 μB, 358 K for CFCG and CMCA respectively. The magnetization values agree fairly well with our theoretical results and also obey the Slater-Pauling rule, a prerequisite for half metallicity. A striking difference between the two systems is their structure; CFCG crystallizes in fully ordered Y-type structure while CMCA has L21 disordered structure. The antisite disorder adds amore » somewhat unique property to the second compound, which arises due to the probabilistic mutual exchange of Al positions with Cr/Mn and such an effect is possibly expected due to comparable electronegativities of Al and Cr/Mn. Ab initio simulation predicted a unique transition from half metallic ferromagnet to metallic antiferromagnet beyond a critical excess concentration of Al in the alloy.« less

  12. Nanomechanical Behavior of CoCrFeMnNi High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Mridha, Sanghita; Das, Santanu; Aouadi, Samir; Mukherjee, Sundeep; Mishra, Rajiv S.

    2015-08-01

    The nanomechanical behavior of the Co20Cr20Fe20Mn20Ni20 high-entropy alloy was investigated in as-cast, rolled, annealed, and thin-film forms. Dislocation nucleation was studied by repeated indents at a low load for each of the different processing conditions. Distinct displacement bursts (pop in) were observed in the loading curve marked by incipient plasticity for all the samples. The as-cast and annealed samples showed pop ins for 100% of the indents, whereas the rolled and thin-film samples showed a much lower fraction of displacement bursts. This was explained by the high density of dislocations for the cold-worked and thin-film conditions. The strong depth dependence of hardness was explained by geometrically necessary dislocations. The nanomechanical behavior and twinned microstructure indicate low stacking-fault energy for this high-entropy alloy.

  13. Texture evolution of cold rolled and reversion annealed metastable austenitic CrMnNi steels

    NASA Astrophysics Data System (ADS)

    Weidner, A.; Fischer, K.; Segel, C.; Schreiber, G.; Biermann, H.

    2015-04-01

    A thermo-mechanical process consisting of cold rolling and subsequent reversion annealing was applied to high-alloy metastable austenitic CrMnNi steels with different nickel contents. As a result of the reversion annealing ultrafine grained material with a grain size in the range between 500 nm up to 4 μm were obtained improving the strength behavior of the material. The evolution of the texture of both the cold rolled states and the reversion-annealed states was studied either by X-ray diffraction or by EBSD measurements. The nickel content has a significant influence on the austenite stability and consequently also on the amount of the martensitic phase transformation. However, the developed textures in both steel variants with different austenite stability revealed the same behavior. In both investigated steels the texture of the reverted austenite is a pronounced Bs-type texture as developed also for the deformed austenite

  14. Weldability of a high entropy CrMnFeCoNi alloy

    DOE PAGES

    Wu, Zhenggang; David, Stan A.; Feng, Zhili; ...

    2016-07-19

    We present the high-entropy alloys are unique alloys in which five or more elements are all in high concentrations. In order to determine its potential as a structural alloy, a model face-centered-cubic CrMnFeCoNi alloy was selected to investigate its weldability. Welds produced by electron beam welding show no cracking. The grain structures within the fusion zone (FZ) are controlled by the solidification behavior of the weld pool. The weldment possesses mechanical properties comparable to those of the base metal (BM) at both room and cryogenic temperatures. Finally, compared with the BM, deformation twinning was more pronounced in the FZ ofmore » the tested alloy.« less

  15. Magnetic ordering of the Pr sublattice with the substitution of Cu for Mn in PrMn2Si2 intermetallics

    NASA Astrophysics Data System (ADS)

    Elmali, A.; Dincer, I.; Elerman, Y.; Ehrenberg, H.; Fuess, H.

    2004-12-01

    The magnetic properties of PrMn2-xCuxSi2 (0 \\le x \\le 1 ) were studied by field-cooled and zero-field-cooled magnetization measurements in the temperature range 5 K \\le T \\le 350 K in low external fields (5 mT) and by magnetic-field-dependent magnetization measurements in fields up to 5.5 T. Substitution of Cu for Mn leads to a linear decrease in the lattice constant c and the unit cell volume V and a linear increase in the lattice constant a. Earlier neutron diffraction experiments showed that Pr does not order down to 1.6 K in PrMn2Si2 while the ferromagnetic Mn planes are ordered antiparallel along the c axis. With the increasing Cu content, the magnetization increases rapidly at low temperatures for the samples with 0.4 \\le x \\le 1 . Cu substitution strongly changes the magnetic properties and leads to the magnetic ordering of the Pr sublattice. This is mainly deduced from the discussion of the values of the magnetic moments at low temperatures. Below the Curie temperatures TC, the spins in the Mn sublattice are arranged parallel to the Pr sublattice. With increasing Cu, TC(x) has a maximum value of 155 K at x = 0.6 and decreases for samples with x \\ge 0.7 .

  16. Positron Annihilation Spectroscopy and Small Angle Neutron Scattering Characterization of Nanostructural Features in Irradiated Fe-Cu-Mn Alloys

    SciTech Connect

    Wirth, B D; Asoka-Kumar, P; Howell, R H; Odette, G R; Sterne, P A

    2001-01-01

    Radiation embrittlement of nuclear reactor pressure vessel steels results from a high number density of nanometer sized Cu-Mn-Ni rich precipitates (CRPs) and sub-nanometer matrix features, thought to be vacancy-solute cluster complexes (VSC). However, questions exist regarding both the composition of the precipitates and the defect character and composition of the matrix features. We present results of positron annihilation spectroscopy (PAS) and small angle neutron scattering (SANS) characterization of irradiated and thermally aged Fe-Cu and Fe-Cu-Mn alloys. These complementary techniques provide insight into the composition and character of both types of nanoscale features. The SANS measurements indicate populations of CRPs and VSCs in both alloys. The CRPs are coarser in the Fe-Cu alloy and the number densities of CRP and VSC increase with the addition of Mn. The PAS involved measuring both the positron lifetimes and the Doppler broadened annihilation spectra in the high momentum region to provide elemental sensitivity at the annihilation site. The spectra in Fe-Cu-Mn specimens thermally aged to peak hardness at 450 C and irradiated at 288 C are nearly identical to elemental Cu. Positron lifetime and spectrum measurements in Fe-Cu specimens irradiated at 288 C clearly show the existence of long lifetime ({approx}500 ps) open volume defects, which also contain Cu. Thus the SANS and PAS provide a self-consistent picture of nanostructures composed of CRPs and VSCs and tend to discount high Fe concentrations in the CRPs.

  17. Effect of Cr addition on the structural, magnetic and mechanical properties of magnetron sputtered Ni-Mn-In ferromagnetic shape memory alloy thin films

    NASA Astrophysics Data System (ADS)

    Akkera, Harish Sharma; Kaur, Davinder

    2016-12-01

    The effect of Cr substitution for In on the structural, martensitic phase transformation and mechanical properties of Ni-Mn-In ferromagnetic shape memory alloy (FSMA) thin films was systematically investigated. X-ray diffraction results revealed that the Ni-Mn-In-Cr thin films possessed purely austenitic cubic L21 structure at lower content of Cr, whereas higher Cr content, the Ni-Mn-In-Cr thin films exhibited martensitic structure at room temperature. The temperature-dependent magnetization ( M- T) and resistance ( R- T) results confirmed that the monotonous increase in martensitic transformation temperatures ( T M) with the addition of Cr content. Further, the room temperature nanoindentation studies revealed the mechanical properties such as hardness ( H), elastic modulus ( E), plasticity index ( H/ E) and resistance to plastic deformation ( H 3/ E 2) of all the samples. The addition of Cr content significantly enhanced the hardness (28.2 ± 2.4 GPa) and resistance to plastic deformation H 3/ E 2 (0.261) of Ni50.4Mn34.96In13.56Cr1.08 film as compared with pure Ni-Mn-In film. As a result, the appropriate addition of Cr significantly improved the mechanical properties with a decrease in grain size, which could be further attributed to the grain boundary strengthening mechanism. These findings indicate that the Cr-doped Ni-Mn-In FSMA thin films are potential candidates for microelectromechanical systems applications.

  18. Enhanced Photovoltage Response of Hematite-X-Ferrite Interfaces (X = Cr, Mn, Co, or Ni).

    PubMed

    Bian, Liang; Li, Hai-Long; Li, Yu-Jin; Nie, Jia-Nan; Dong, Fa-Qin; Dong, Hai-Liang; Song, Mian-Xin; Wang, Li-Sheng; Zhou, Tian-Liang; Zhang, Xiao-Yan; Li, Xin-Xi; Xie, Lei

    2017-12-01

    High-fluorescent p-X-ferrites (XFe2O4; XFO; X = Fe, Cr, Mn, Co, or Ni) embedded in n-hematite (Fe2O3) surfaces were successfully fabricated via a facile bio-approach using Shewanella oneidensis MR-1. The results revealed that the X ions with high/low work functions modify the unpaired spin Fe(2+)-O(2-) orbitals in the XFe2O4 lattices to become localized paired spin orbitals at the bottom of conduction band, separating the photovoltage response signals (73.36~455.16/-72.63~-32.43 meV). These (Fe2O3)-O-O-(XFe2O4) interfacial coupling behaviors at two fluorescence emission peaks (785/795 nm) are explained via calculating electron-hole effective masses (Fe2O3-FeFe2O4 17.23 × 10(-31) kg; Fe2O3-CoFe2O4 3.93 × 10(-31) kg; Fe2O3-NiFe2O4 11.59 × 10(-31) kg; Fe2O3-CrFe2O4 -4.2 × 10(-31) kg; Fe2O3-MnFe2O4 -11.73 × 10(-31) kg). Such a system could open up a new idea in the design of photovoltage response biosensors.

  19. The Effect of Core-Mantle Differentiation on V, Cr, and Mn: Experimental Metal/Silicate Partitioning Results

    NASA Technical Reports Server (NTRS)

    Chabot, N. L.; Agee, C. B.

    2001-01-01

    The abundances of V, Cr, and Mn are similarly depleted in the Earth and Moon. We present metal/silicate partitioning results which examine if the depletions can be explained by a core formation event. Additional information is contained in the original extended abstract.

  20. High-field magnetization of band ferromagnets Co2 YAl ( Y = Ti, V, Cr, Mn, Fe, Ni)

    NASA Astrophysics Data System (ADS)

    Kourov, N. I.; Marchenkov, V. V.; Perevozchikova, Yu. A.; Korolev, A. V.; Weber, H. W.

    2016-12-01

    The temperature dependences of the magnetization of ferromagnetic Heusler alloys Co2 YAl, where Y = Ti, V, Cr, Mn, Fe, and Ni have been studied at H = 50 kOe in the range 2 K < T < 1100 K. It is shown that the high-field ( H ≥ 20 kOe) magnetization is described within the Stoner model.

  1. Laser weldability of 21Cr-6Ni-9Mn stainless steel: Part II - Weldability diagrams

    DOE PAGES

    Tate, Stephen B.; Javernick, Daniel Anthony; Lienert, Thomas J.; ...

    2016-11-02

    In this second part of the study, weldability diagrams developed to relate solidification crack susceptibility and chemical composition for laser welded type 21Cr-6Ni-9Mn (21-6-9) stainless steel are presented. Sigmajig testing on 14 commercial 21-6-9 alloys, 20 experimental 21-6-9 alloys, and 7 other high-N, high-Mn austenitic stainless steels was used to develop weldability diagrams for solidification crack susceptibility for laser welding of type 21-6-9. Three travel speeds were used to show the changes in minimum Creq/Nieq for primary ferrite solidification as solidification rate increase d with travel speed . Primary austenite solidification was observed below 1.55 Creq/Nieq (Espy equivalents) at 21more » mm/s travel speed. At 42 mm/s travel speed , a mix of solidification modes were displayed for alloys from 1.55-1.75 Creq/Nieq. Primary ferrite solidification was observed above 1.75 Creq/Nieq at both 42 and 85 mm/s travel speeds. No solidification cracking was observed for alloys with primary ferrite solidification. Lastly, variable cracking behavior was found in alloys with primary austenite solidification, but in general cracking was observed in alloys with greater than 0.02 wt-% combined impurity content according to (P+0.2S).« less

  2. CuMnOS Nanoflowers with Different Cu+/Cu2+ Ratios for the CO2-to-CH3OH and the CH3OH-to-H2 Redox Reactions

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoyun; Abdullah, Hairus; Kuo, Dong-Hau

    2017-01-01

    A conservative CO2-Methanol (CH3OH) regeneration cycle, to capture and reutilize the greenhouse gas of CO2 by aqueous hydrogenation for industry-useful CH3OH and to convert aqueous CH3OH solution by dehydrogenation for the clean energy of hydrogen (H2), is demonstrated at normal temperature and pressure (NTP) with two kinds of CuMnOS nanoflower catalysts. The [Cu+]-high CuMnOS led to a CH3OH yield of 21.1 mmol·g‑1catal.·h‑1 in the CuMnOS-CO2-H2O system and the other [Cu+]-low one had a H2 yield of 7.65 mmol·g‑1catal.·h‑1 in the CuMnOS-CH3OH-H2O system. The successful redox reactions at NTP rely on active lattice oxygen of CuMnOS catalysts and its charge (hole or electron) transfer ability between Cu+ and Cu2+. The CO2-hydrogenated CH3OH in aqueous solution is not only a fuel but also an ideal liquid hydrogen storage system for transportation application.

  3. CuMnOS Nanoflowers with Different Cu+/Cu2+ Ratios for the CO2-to-CH3OH and the CH3OH-to-H2 Redox Reactions

    PubMed Central

    Chen, Xiaoyun; Abdullah, Hairus; Kuo, Dong-Hau

    2017-01-01

    A conservative CO2-Methanol (CH3OH) regeneration cycle, to capture and reutilize the greenhouse gas of CO2 by aqueous hydrogenation for industry-useful CH3OH and to convert aqueous CH3OH solution by dehydrogenation for the clean energy of hydrogen (H2), is demonstrated at normal temperature and pressure (NTP) with two kinds of CuMnOS nanoflower catalysts. The [Cu+]-high CuMnOS led to a CH3OH yield of 21.1 mmol·g−1catal.·h−1 in the CuMnOS-CO2-H2O system and the other [Cu+]-low one had a H2 yield of 7.65 mmol·g−1catal.·h−1 in the CuMnOS-CH3OH-H2O system. The successful redox reactions at NTP rely on active lattice oxygen of CuMnOS catalysts and its charge (hole or electron) transfer ability between Cu+ and Cu2+. The CO2-hydrogenated CH3OH in aqueous solution is not only a fuel but also an ideal liquid hydrogen storage system for transportation application. PMID:28117456

  4. CuMnOS Nanoflowers with Different Cu(+)/Cu(2+) Ratios for the CO2-to-CH3OH and the CH3OH-to-H2 Redox Reactions.

    PubMed

    Chen, Xiaoyun; Abdullah, Hairus; Kuo, Dong-Hau

    2017-01-24

    A conservative CO2-Methanol (CH3OH) regeneration cycle, to capture and reutilize the greenhouse gas of CO2 by aqueous hydrogenation for industry-useful CH3OH and to convert aqueous CH3OH solution by dehydrogenation for the clean energy of hydrogen (H2), is demonstrated at normal temperature and pressure (NTP) with two kinds of CuMnOS nanoflower catalysts. The [Cu(+)]-high CuMnOS led to a CH3OH yield of 21.1 mmol·g(-1)catal.·h(-1) in the CuMnOS-CO2-H2O system and the other [Cu(+)]-low one had a H2 yield of 7.65 mmol·g(-1)catal.·h(-1) in the CuMnOS-CH3OH-H2O system. The successful redox reactions at NTP rely on active lattice oxygen of CuMnOS catalysts and its charge (hole or electron) transfer ability between Cu(+) and Cu(2+). The CO2-hydrogenated CH3OH in aqueous solution is not only a fuel but also an ideal liquid hydrogen storage system for transportation application.

  5. Site preference and compensation behavior in Co(Cr, Mn){sub 2}O{sub 4} system

    SciTech Connect

    Zhang, H. G.; Wang, Z.; Yue, M.; Liu, E. K.; Wang, W. H.; Wu, G. H.

    2015-05-07

    Site preference of doped Mn ions in CoCr{sub 2−x}Mn{sub x}O{sub 4} (x = 0–2) series has been derived separately from structure and magnetic measurement. It shows that parts of the doped Mn ions occupy the A (Co) sites when x < 0.5. And then, it takes the two B (Cr) sites in turn before and after x = 1.3. This site preference behavior results in a role conversion of the magnetic contributors and, thus, leads to the composition dependent magnetic compensation. Temperature induced compensation and negative magnetization have also been found in several samples, which is attributed to the large energy barrier between the ferromagnetic and antiferromagnetic spin arrangement. A structure transition from cubic to tetragonal symmetry has been detected.

  6. Investigation of the nanostructure and wear properties of physical vapor deposited CrCuN nanocomposite coatings

    SciTech Connect

    Baker, M.A.; Kench, P.J.; Tsotsos, C.; Gibson, P.N.; Leyland, A.; Matthews, A.

    2005-05-01

    This article presents results on CrCuN nanocomposite coatings grown by physical vapor deposition. The immiscibility of Cr (containing a supersaturation of nitrogen) and Cu offers the potential of depositing a predominantly metallic (and therefore tough) nanocomposite, composed of small Cr(N) metallic and/or {beta}-Cr{sub 2}N ceramic grains interdispersed in a (minority) Cu matrix. A range of CrCuN compositions have been deposited using a hot-filament enhanced unbalanced magnetron sputtering system. The stoichiometry and nanostructure have been studied by x-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy, and x-ray diffraction. Hardness, wear resistance, and impact resistance have been determined by nanoindentation, reciprocating-sliding, and ball-on-plate high-cycle impact. Evolution of the nanostructure as a function of composition and correlations of the nanostructure and mechanical properties of the CrCuN coatings are discussed. A nanostructure comprised of 1-3 nm {alpha}-Cr(N) and {beta}-Cr{sub 2}N grains separated by intergranular regions of Cu gives rise to a coating with significantly enhanced resistance to impact wear.

  7. Catalytic conversion of syngas to mixed alcohols over Zn-Mn promoted Cu-Fe based catalyst

    SciTech Connect

    Lu, Yongwu; Yu, Fei; Hu, Jin; Liu, Jian

    2012-04-12

    Zn-Mn promoted Cu-Fe based catalyst was synthesized by the co-precipitation method. Mixed alcohols synthesis from syngas was studied in a half-inch tubular reactor system after the catalyst was reduced. Zn-Mn promoted Cu-Fe based catalyst was characterized by SEM-EDS, TEM, XRD, and XPS. The liquid phase products (alcohol phase and hydrocarbon phase) were analyzed by GC-MS and the gas phase products were analyzed by GC. The results showed that Zn-Mn promoted Cu-Fe based catalyst had high catalytic activity and high alcohol selectivity. The maximal CO conversion rate was 72%, and the yield of alcohol and hydrocarbons were also very high. Cu (111) was the active site for mixed alcohols synthesis, Fe2C (101) was the active site for olefin and paraffin synthesis. The reaction mechanism of mixed alcohols synthesis from syngas over Zn-Mn promoted Cu-Fe based catalyst was proposed. Here, Zn-Mn promoted Cu-Fe based catalyst can be regarded as a potential candidate for catalytic conversion of biomass-derived syngas to mixed alcohols.

  8. Preparation and thermoelectric properties of ternary superionic conductor CuCrS{sub 2}

    SciTech Connect

    Chen Yuexing; Zhang Boping; Ge Zhenhua; Shang Pengpeng

    2012-02-15

    Transition metal chalcogenide CuCrS{sub 2} powder was synthesized by mechanical alloying (MA) and then consolidated by spark plasma sintering (SPS) technique at 673-1073 K. The phase structure, microstructure and thermoelectric properties of samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and Seebeck coefficient/electrical conductivity measuring system, respectively. All the bulks indicated a single phase CuCrS{sub 2}, while the high relative density over 90% were attained for the samples sintered at 873-1073 K. The electrical conductivity of bulk samples displayed a typical characteristic of semiconductor. With increasing measuring temperature, the conductive behaviour of bulk samples sintered over 973 K showed a semiconductor transformation from n-type to p-type due to the changes of main carrier type. The sample obtained by applying SPS at 873 K got the highest power factor 83.2 {mu}W m{sup -1} K{sup -2}, and the largest ZT value 0.11 at 673 K. - Graphical abstract: The samples sintered above 873 K, both of the Seebeck coefficient and electrical conductivity exhibit an increase tendency with increasing temperature, which is due to the mechanism of mix-conduction for CuCrS{sub 2}. Highlights: Black-Right-Pointing-Pointer Single phase CuCrS{sub 2} powder was synthesized by ball-milling at 425 rpm for 40 h. Black-Right-Pointing-Pointer Dense CuCrS{sub 2} bulks were fabricated using SPS techniques at sintering temperature 873-1073 K. Black-Right-Pointing-Pointer Seebeck coefficient of CuCrS{sub 2} samples sintered over 973 K change the signs. Black-Right-Pointing-Pointer Highest power factor reached 83.2 {mu}W m{sup -1} K{sup -2} at 673 K for the sample sintered at 873 K. Black-Right-Pointing-Pointer ZT value was 0.11 at 673 K for the sample sintered at 873 K.

  9. Microstructures and mechanical properties of compositionally complex Co-free FeNiMnCr18 FCC solid solution alloy

    DOE PAGES

    Wu, Z.; Bei, H.

    2015-07-01

    Recently, a structurally-simple but compositionally-complex FeNiCoMnCr high entropy alloy was found to have excellent mechanical properties (e.g., high strength and ductility). To understand the potential of using high entropy alloys as structural materials for advanced nuclear reactor and power plants, it is necessary to have a thorough understanding of their structural stability and mechanical properties degradation under neutron irradiation. Furthermore, this requires us to develop a similar model alloy without Co because material with Co will make post-neutron-irradiation testing difficult due to the production of the 60Co radioisotope. In order to achieve this goal, a FCC-structured single-phase alloy with amore » composition of FeNiMnCr18 was successfully developed. This near-equiatomic FeNiMnCr18 alloy has good malleability and its microstructure can be controlled by thermomechanical processing. By rolling and annealing, the as-cast elongated-grained-microstructure is replaced by homogeneous equiaxed grains. The mechanical properties (e.g., strength and ductility) of the FeNiMnCr18 alloy are comparable to those of the equiatomic FeNiCoMnCr high entropy alloy. Both strength and ductility increase with decreasing deformation temperature, with the largest difference occurring between 293 and 77 K. Extensive twin-bands which are bundles of numerous individual twins are observed when it is tensile-fractured at 77 K. No twin bands are detected by EBSD for materials deformed at 293 K and higher. Ultimately the unusual temperature-dependencies of UTS and uniform elongation could be caused by the development of the dense twin substructure, twin-dislocation interactions and the interactions between primary and secondary twinning systems which result in a microstructure refinement and hence cause enhanced strain hardening and postponed necking.« less

  10. Study of Fe-12Cr-20Mn-W-C austenitic steels irradiated in the SM-2 reactor

    NASA Astrophysics Data System (ADS)

    Shamardin, V. K.; Bulanova, T. M.; Neustroyev, V. S.; Ostrovsky, Z. E.; Kosenkov, V. M.; Ivanov, L. I.; Djomina, E. V.

    1992-09-01

    A comparison has been made between the mechanical properties and swelling of austenitic stainless steels EP-838 (Fe-Cr-Mn) and 316SS (Fe-Cr-Ni) irradiated in the mixed-neutron spectrum of the SM-2 reactor in the temperature range 400-800°C (every 100°C) to 16 dpa dose with 1000 and 3000 appm helium generation correspondingly, determined by nickel content. EP-838 exhibited less susceptibility to void swelling and radiation hardening. Fe-12Cr-20Mn-W-0.1C steel without nickel irradiated at 100°C to 21 dpa exhibited significant radiation hardening accompanied by α-phase formation in the steel structure.

  11. Enhanced magnetism of Cu{sub n} clusters capped with N and endohedrally doped with Cr

    SciTech Connect

    Datta, Soumendu; Banerjee, Radhashyam; Mookerjee, Abhijit

    2015-01-14

    The focus of our work is on the production of highly magnetic materials out of Cu clusters. We have studied the relative effects of N-capping as well as N mono-doping on the structural stability and electronic properties of the small Cu clusters using first principles density functional theory based electronic structure calculations. We find that the N-capped clusters are more promising in producing giant magnetic moments, such as 14 μ{sub B} for the Cu{sub 6}N{sub 6} cluster and 29 μ{sub B} for the icosahedral Cu{sub 13}N{sub 12} cluster. This is accompanied by a substantial enhancement in their stability. We suggest that these giant magnetic moments of the capped Cu{sub n} clusters have relevance to the observed room temperature ferromagnetism of Cu doped GaN. For cage-like hollow Cu-clusters, an endohedral Cr-doping together with the N-capping appears as the most promising means to produce stable giant magnetic moments in the copper clusters.

  12. Crystal structure and magnetic properties of the Cr-doped spiral antiferromagnet BiMnFe{sub 2}O{sub 6}

    SciTech Connect

    Batuk, Dmitry; De Dobbelaere, Christopher; Tsirlin, Alexander A.; Abakumov, Artem M.; Hardy, An; Van Bael, Marlies K.; Greenblatt, Martha; Hadermann, Joke

    2013-09-01

    Graphical abstract: - Highlights: • The substitution of Cr for Mn in BiMnFe{sub 2}O{sub 6} is possible by the solution–gel method. • The BiCr{sub x}Mn{sub 1−x}Fe{sub 2}O{sub 6} solid solution is obtained for the x values up to 0.3. • Increasing Cr content lowers the temperature of the antiferromagnetic ordering. - Abstract: We report the Cr{sup 3+} for Mn{sup 3+} substitution in the BiMnFe{sub 2}O{sub 6} structure. The BiCr{sub x}Mn{sub 1−x}Fe{sub 2}O{sub 6} solid solution is obtained by the solution–gel synthesis technique for the x values up to 0.3. The crystal structure investigation using a combination of X-ray powder diffraction and transmission electron microscopy demonstrates that the compounds retain the parent BiMnFe{sub 2}O{sub 6} structure (for x = 0.3, a = 5.02010(6)Å, b = 7.06594(7)Å, c = 12.6174(1)Å, S.G. Pbcm, R{sub I} = 0.036, R{sub P} = 0.011) with only a slight decrease in the cell parameters associated with the Cr{sup 3+} for Mn{sup 3+} substitution. Magnetic susceptibility measurements suggest strong similarities in the magnetic behavior of BiCr{sub x}Mn{sub 1−x}Fe{sub 2}O{sub 6} (x = 0.2; 0.3) and parent BiMnFe{sub 2}O{sub 6}. Only T{sub N} slightly decreases upon Cr doping that indicates a very subtle influence of Cr{sup 3+} cations on the magnetic properties at the available substitution rates.

  13. Surface precipitation of chromium in rapidly solidified Cu-Cr alloys

    NASA Astrophysics Data System (ADS)

    Bizjak, Milan; Karpe, Blaž; Jakša, Gregor; Kovač, Janez

    2013-07-01

    Rapidly solidified ribbons of Cu-Cr alloys with 2.27 and 4.20 at.% of chromium were produced using the melt-spinning method. Alloys were analyzed by electron microscopy for complete solubility of Cr in copper matrix. To avoid disturbing effects of Cr phase particles, the kinetics and the sequence of microstructural transformations during heating were analyzed only the sample with 2.27 at.% of chromium with complete Cr solubility in the copper matrix. We then investigated the precipitation process for this alloy that was subsequently heated at a constant rate. The increased solid solubility obtained allowed the extensive precipitation of a Cr-rich phase. The kinetics and the sequence of microstructural changes that occurred during the heating were analyzed using an in situ measurement of the electrical resistance. The quenched microstructure was analyzed at transition points using scanning and transmission electron microscopy. X-ray photoelectron spectroscopy, as a very surface-sensitive method, was applied to study the changes in the chemical composition of the surface for the Cu-Cr alloy ribbons in the temperature range 400-700 °C during an in situ heat treatment in an ultra-high vacuum. The results show a relatively rapid precipitation of chromium to the surface, which starts at 400 °C and is correlated with a change in the microstructure and the electrical resistance. The Cr-precipitation is faster at higher temperatures and follows the parabolic law. The resistivity results for the supersaturated binary alloy were analyzed using the Ozawa method to give an activation energy for the precipitation of 196 ± 10 kJ mol-1.

  14. Magnetic properties of delafossite oxide: CuCr1-xTixO2

    NASA Astrophysics Data System (ADS)

    Majee, M. K.; Bhobe, P. A.; Nigam, A. K.

    2016-05-01

    In order to increase the possibility for technological applications of CuCrO2, there have been attempts to introduce ferromagnetic (FM) order by doping at B-site. With this aim, we present here study of polycrystalline CuCr1-xTixO2 with x=0.0, 0.05, 0.1. The samples have been prepared using solid state synthesis method and characterized for its crystal structure and magnetic properties. All the samples crystallize in the 2H delafossite structure with R-3m space group. Ti substitution causes the expansion of unit cell with increase in both the lattice constants. Antiferromagnetic ordering temperature is seen to decrease with increasing Ti. Ferromagnetic-like signature is obtained in one of the compositions at low applied magnetic field of 100 Oe.

  15. Creep of Uncoated and Cu-Cr Coated NARloy-Z

    NASA Technical Reports Server (NTRS)

    Walter, R. J.; Chiang, K. T.

    1998-01-01

    Stress rupture creep tests were performed on uncoated and Cu-30vol%Cr coated NARloy-Z copper alloy specimens exposed to air at 482 C to 704 C. The results showed that creep failure in air of unprotected NARloy-Z was precipitated by brittle intergranular surface cracking produced by strain assisted grain boundary oxidation (SAGBO) which in turn caused early onset of tertiary creep. For the protected specimens, the Cu-Cr coating remained adherent throughout the tests and was effective in slowing down the rate of oxygen absorption, particularly at the higher temperatures, by formation of a continuous chromium oxide scale. As the result of reducing oxygen ingress, the coating prevented SAGBO initiated early creep failure, extended creep deformation and increased the creep rupture life of NARloy-Z over the entire 482 C to 704 C test temperature range.

  16. Enhanced Magnetization of CuCr2O4 Thin Films by Substrate-Induced Strain

    SciTech Connect

    Iwata, Jodi M.; Chopdekar, Rajesh V.; Wong, Franklin; Nelson-Cheeseman, Brittany B.; Arenholz, Elke; Suzuki, Yuri

    2008-09-17

    We report the synthesis of epitaxial spinel CuCr{sub 2}O{sub 4} thin films that display enhanced magnetization in excess of 200% of the bulk values when grown on single-crystal (110) MgAl{sub 2}O{sub 4} substrates. Bulk CuCr{sub 2}O{sub 4} is a ferrimagnetic insulator with a net magnetic moment of 0.5 {micro}{sub B} due to its distorted tetragonal unit cell (c/a= 1.29) and frustrated triangular moment configuration. We show that through epitaxial growth and substrate-induced strain, it is possible to tune the magnetic functionality of our films by reducing the tetragonal distortion of the unit cell which effectively decreases the frustration of the magnetic moments allowing for an overall greater net moment.

  17. Positron Annihilation Spectroscopy and Small Angle Neutron Scattering Characterization of the Effect of Mn on the Nanostructural Features formed in Irradiated Fe-Cu-Mn Alloys

    SciTech Connect

    Glade, S C; Wirth, B D; Asoka-Kumar, P; Odette, G R; Sterne, P A; Howell, R H

    2003-02-27

    The size, number density and composition of the nanometer defects responsible for the hardening and embrittlement in irradiated Fe-0.9wt.% Cu and Fe-0.9wt.% Cu-1.0wt% Mn model reactor pressure vessel alloys were measured using small angle neutron scattering and positron annihilation spectroscopy. These alloys were irradiated at 290 C to relatively low neutron fluences (E > 1 MeV, 6.0 x 10{sup 20} to 4.0 x 10{sup 21} n/m{sup 2}) in order to study the effect of manganese on the nucleation and growth of copper rich precipitates and secondary defect features. Copper rich precipitates were present in both alloys following irradiation. The Fe-Cu-Mn alloy had smaller precipitates and a larger number density of precipitates, suggesting Mn segregation at the iron matrix-precipitate interface which reduces the interfacial energy and in turn the driving force for coarsening. Mn also retards the precipitation kinetics and inhibits large vacancy cluster formation, suggesting a strong Mn-vacancy interaction which reduces radiation enhanced diffusion.

  18. Mn-Cr dating of Fe- and Ca-rich olivine from 'quenched' and 'plutonic' angrite meteorites using Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    McKibbin, Seann J.; Ireland, Trevor R.; Amelin, Yuri; Holden, Peter

    2015-05-01

    Angrite meteorites are suitable for Mn-Cr relative dating (53Mn decays to 53Cr with a half life of 3.7 Myr) using Secondary Ion Mass Spectrometry (SIMS) because they contain olivine and kirschsteinite with very high 55Mn/52Cr ratios arising from very low Cr concentrations. Discrepant Mn-Cr and U-Pb time intervals between the extrusive or 'quenched' angrite D'Orbigny and some slowly cooled or 'plutonic' angrites suggests that some have been affected by secondary disturbances, but this seems to have occurred in quenched rather than in slow-cooled plutonic angrites, where such disturbance or delay of isotopic closure might be expected. Using SIMS, we investigate the Mn-Cr systematics of quenched angrites to higher precision than previously achieved by this method and extend our investigation to non-quenched (plutonic or sub-volcanic) angrites. High values of 3.54 (±0.18) × 10-6 and 3.40 (±0.19) × 10-6 (2-sigma) are found for the initial 53Mn/55Mn of the quenched angrites D'Orbigny and Sahara 99555, which are preserved by Cr-poor olivine and kirschsteinite. The previously reported initial 53Mn/55Mn value of D'Orbigny obtained from bulk-rock and mineral separates is slightly lower and was probably controlled by Cr-rich olivine. Results can be interpreted in terms of the diffusivity of Cr in this mineral. Very low Cr concentrations in Ca-rich olivine and kirschsteinite are probably charge balanced by Al; this substitutes for Si and likely diffuses at a very slow rate because Si is the slowest-diffusing cation in olivine. Diffusion in Cr-rich Mg-Fe olivine is probably controlled by cation vacancies because of deficiency in charge-balancing Al and is therefore more prone to disturbance. The higher initial 53Mn/55Mn found by SIMS for extrusive angrites is more likely to reflect closure of Cr in kirschsteinite at the time of crystallisation, simultaneous with closure of U-Pb and Hf-W isotope systematics for these meteorites obtained from pyroxenes. For the younger

  19. Two-dimensional assembly of [Mn(III)₂Mn(II)₂] single-molecule magnets and [Cu(pic)₂] linking units (Hpic = picolinic acid).

    PubMed

    Jeon, Ie-Rang; Ababei, Rodica; Lecren, Lollita; Li, Yang-Guang; Wernsdorfer, Wolfgang; Roubeau, Olivier; Mathonière, Corine; Clérac, Rodolphe

    2010-05-28

    In an attempt to develop novel coordination networks of SMMs, a Cu(II) picolinate complex has been used to coordinate S(T) = 9 tetranuclear Mn-based SMMs resulting in an intriguing 2D framework exhibiting a magnet-like behavior at low temperature.

  20. Suppressed 3D conductivity in Mn doped Cu0.5Tl0.5Ba2Ca2-yMnyCu3O10-δ superconductors

    NASA Astrophysics Data System (ADS)

    Qurat-ul-Ain, Khan, Nawazish A.

    2013-04-01

    We have synthesised Mn-doped Cu0.5Tl0.5Ba2(Ca2-yMny)Cu3O10-δ superconducting samples and studied their Fluctuation Induced Conductivity (FIC) analysis. The Tc(R = 0) and magnitude of diamagnetism are suppressed with increased Mn-doping in the final compound. FIC analyses have shown a suppression of 3D Lawrence and Doniach (LD) regime and a significant enhancement of 2D LD regime of Mn-doping of y = 0.35. In the sample with Mn-doping of y = 0.5, the 3D LD regime vanishes altogether and only 2D LD regime is observed, showing the confinement of superconductivity in the two dimensional planes. The coherence length along the c-axis and the Fermi velocity of the carriers are suppressed with increased Mn doping. Using the Ginzburg-Landau (GL) number [NG] and GL equations, the thermodynamic critical magnetic field Bc(0), the lower critical field Bc1(0), the upper critical field Bc2(0), the critical current density Jc(0), and penetration depth λp.d are determined. The values of critical fields Bc(0) and Bc1(0) increases, despite suppression in the Tc(R = 0) with increased Mn-doping. The values of Jc(0), the penetration depth Λp.d, and inter-layer coupling are suppressed with enhanced Mn-doping. These observations suggested that Mn ions act as sub-nano-scale pinning centers between the CuO2 planes and their presence at the Ca-sites promote the de-coupling of CuO2 planes.

  1. Neutron scattering study of spin ordering and stripe pinning in superconducting La<mn>1.93mn>Sr>0.07mn>CuO>4mn>

    SciTech Connect

    Jacobsen, H.; Zaliznyak, I. A.; Savici, A. T.; Winn, B. L.; Chang, S.; Hücker, M.; Gu, G. D.; Tranquada, J. M.

    2015-11-20

    The relationships among charge order, spin fluctuations, and superconductivity in underdoped cuprates remain controversial. We use neutron scattering techniques to study these phenomena in La<mn>1.93mn>Sr>0.07mn>CuO>4mn> a superconductor with a transition temperature of Tc = 20 K. At T<< Tc, we find incommensurate spin fluctuations with a quasielastic energy spectrum and no sign of a gap within the energy range from 0.2 to 15 meV. A weak elastic magnetic component grows below ~ 10 K, consistent with results from local probes. Regarding the atomic lattice, we have discovered unexpectedly strong fluctuations of the CuO6 octahedra about Cu-O bonds, which are associated with inequivalent O sites within the CuO2 planes. Moreover, we observed a weak elastic (3 30) superlattice peak that implies a reduced lattice symmetry. The presence of inequivalent O sites rationalizes various pieces of evidence for charge stripe order in underdoped La2-xSrxCuO4. The coexistence of superconductivity with quasi-static spin-stripe order suggests the presence of intertwined orders; however, the rotation of the stripe orientation away from the Cu-O bonds might be connected with evidence for a finite gap at the nodal points of the superconducting gap function.

  2. Fluctuations of chemical composition of austenite and their consequence on shape memory effect in Fe-Mn-(Si, Cr, Ni, C, N) alloys

    SciTech Connect

    Bliznuk, V.V.; Gavriljuk, V.G. . E-mail: gavr@imp.kiev.ua; Kopitsa, G.P.; Grigoriev, S.V.; Runov, V.V.

    2004-09-20

    Polycrystalline samples of shape memory iron-based alloys containing 17, and 30 mass% Mn and alloyed with Si, Cr, Ni, C, N were studied by means of small angle scattering of polarized neutrons (SAPNS). A direct correlation between chemical homogeneity of the Fe-Mn, Fe-Mn-Si, Fe-Mn-Si-Cr, Fe-Mn-Si-Cr-Ni solid solutions and the values of reversible strain caused by the {gamma} {yields} {epsilon} {yields} {gamma} martensitic transformation was found. The addition of silicon to the Fe-Mn alloys significantly improves chemical homogeneity of the fcc solid solution on the scale of larger than several nm, which correlates with the essential increase of reversible strain. A similar to silicon but weaker effect was observed in the case of nitrogen addition to the Fe-Mn-Si-Cr, Fe-Mn-Si-Cr-Ni alloys. Based on the obtained experimental data and in consistency with the previously expressed idea by Sade et al., the positive effect of silicon and nitrogen on chemical homogeneity and SME in Fe-Mn alloys is attributed to the short-range atomic ordering induced by these elements.

  3. Influence of MnC2O4 microadditives on combustion characteristics of CuO/Al nanoenergetics

    NASA Astrophysics Data System (ADS)

    Painuly, Madhusudan; Patel, Vinay Kumar; Bhattacharya, Shantanu

    2016-05-01

    In this work, we have investigated the catalytic effect of MnC2O4 microrods on combustion characteristics of CuO/nAl nanoenergetic composites. CuO nanorods were prepared by solid state synthesis method using the nonionic surfactant of poly(ethylene)glycol of molecular weight 400 (PEG400). The crystal information and microstructure of CuO/nAl nanoenergetics were studied by X-ray diffractometry and Transmission Electron microscopy. Microrods shaped manganese oxalate (MnC2O4) were fabricated by using mild thermal precipitation and aging process and confirmed by energy dispersive X-ray spectroscopy (EDS). The microstructures of MnC2O4 microrods and the nanoenergetic composites of CuO/nAl/MnC2O4 were characterized by Field emission scanning electron microscopy (FE-SEM) imaging. The addition of MnC2O4 microrods has demonstrated a significant enhancement in dynamic pressure-time characteristics of CuO/nAl nanoenergetics.

  4. Synthesis and high temperature transport properties of new quaternary layered selenide NaCuMnSe{sub 2}

    SciTech Connect

    Pavan Kumar, V.; Varadaraju, U.V.

    2014-04-01

    Synthesis and high temperature transport properties of NaCu{sub 1+x}Mn{sub 1−x}Se{sub 2}, (x=0−0.75) a new quaternary layered selenide, are reported. NaCuMnSe{sub 2} crystallizes in a trigonal unit cell with space group of P-3m1 (a=4.1276 Å, c=7.1253 Å). The isovalent substitution of Mn{sup 2+} by Cu{sup 2+} is carried out. All the compositions show semiconducting nature, whereas the Seebeck coefficient increases gradually over the entire measured temperature range. Compositions with x=0 and 0.025 follow thermally activated behavior. With increase in copper concentration the conduction mechanism transforms to 2D variable range hopping (VRH) for x=0.05 and 0.075. - Graphical abstract: Crystal structure of NaCuMnSe{sub 2}. - Highlights: • A new quaternary layered selenide NaCuMnSe{sub 2} is synthesized. • All the compositions show semiconducting nature, whereas the Seebeck coefficient increases gradually over the entire measured temperature range. • Conduction mechanism transforms from thermally activated behavior to 2D variable range hopping with increase in copper concentration.

  5. Catalytic conversion of syngas to mixed alcohols over Zn-Mn promoted Cu-Fe based catalyst

    DOE PAGES

    Lu, Yongwu; Yu, Fei; Hu, Jin; ...

    2012-04-12

    Zn-Mn promoted Cu-Fe based catalyst was synthesized by the co-precipitation method. Mixed alcohols synthesis from syngas was studied in a half-inch tubular reactor system after the catalyst was reduced. Zn-Mn promoted Cu-Fe based catalyst was characterized by SEM-EDS, TEM, XRD, and XPS. The liquid phase products (alcohol phase and hydrocarbon phase) were analyzed by GC-MS and the gas phase products were analyzed by GC. The results showed that Zn-Mn promoted Cu-Fe based catalyst had high catalytic activity and high alcohol selectivity. The maximal CO conversion rate was 72%, and the yield of alcohol and hydrocarbons were also very high. Cumore » (111) was the active site for mixed alcohols synthesis, Fe2C (101) was the active site for olefin and paraffin synthesis. The reaction mechanism of mixed alcohols synthesis from syngas over Zn-Mn promoted Cu-Fe based catalyst was proposed. Here, Zn-Mn promoted Cu-Fe based catalyst can be regarded as a potential candidate for catalytic conversion of biomass-derived syngas to mixed alcohols.« less

  6. Synthesis and luminescence properties of ZnS and metal (Mn, Cu)-doped-ZnS ceramic powder

    NASA Astrophysics Data System (ADS)

    Ummartyotin, S.; Bunnak, N.; Juntaro, J.; Sain, M.; Manuspiya, H.

    2012-03-01

    ZnS and metal (Mn, Cu)-doped-ZnS were successfully prepared by wet chemical synthetic route. The understanding of substituted metal ions (Mn, Cu) into ZnS leads to transfer the luminescent centre by small amount of metal dopant (Mn, Cu). Fourier transform infrared and X-ray diffraction were used to determine chemical bonding and crystal structure, respectively. It showed that small amount of metal (Mn, Cu) can be completely substituted into ZnS lattice. X-ray fluorescence was used to confirm the existence of metal-doped ZnS. Scanning electron microscope revealed that their particles exhibits blocky particle with irregular sharp. Laser confocal microscope and photoluminescence spectroscopy showed that ZnS and metal-doped-ZnS exhibited intense, stable, and tunable emission covering the blue to red end of the visible spectrum. ZnS, Mn-doped-ZnS and Cu-doped-ZnS generated blue, yellow and green color, respectively.

  7. Effects of interfacial roughness on the planar Hall effect in NiFe/Cu/IrMn multilayers

    NASA Astrophysics Data System (ADS)

    Li, Xu-Jing; Feng, Chun; Chen, Xi; Liu, Yang; Liu, Yi-Wei; Li, Ming-Hua; Yu, Guang-Hua

    2015-02-01

    This paper reports that the planar Hall effect in NiFe/Cu/IrMn multilayers was strongly influenced by the Cu spacer thickness ( t Cu), which was due to the variation of interfacial roughness. With t Cu increasing, a peculiar change of planar Hall voltage was observed. The reason for the voltage behaviors was that the interfacial roughness influenced the spin-asymmetry of spin-polarized electrons in ferromagnetic metals. The diffuse scattering to the electrons turned to specular scattering when the interface became flat, leading to the variation of resistivity change (Δ ρ). As the increase in t Cu, the extremum field was reduced because of the weaken exchange coupling between NiFe and IrMn layers.

  8. The effects of Ni, Mo, Ti and Si on the mechanical properties of Cr free Mn steel (Fe-25Mn-5Al-2C)

    NASA Technical Reports Server (NTRS)

    Schuon, S. R.

    1982-01-01

    The FeMnAlC alloys may hold potential as Cr-free replacements for high strategic material iron base superalloys, but little is known about their intermediate temperature (650 C to 870 C) mechanical properties. The effects of alloying elements on the mechanical properties of model FeMnAlC alloys were studied. Results showed that modified FeMnAlC alloys had promising short term, intermediate temperature properties but had relatively poor stress rupture lives at 172 MPa and 788 C. Room temperature and 788 C tensile strength of FeMnAlC alloys were better than common cast stainless steels. Changes in room temperature tensile and 788 C tensile strength and ductility, and 788 C stress rupture life were correlated with changes in Ni, Mo, Ti, and Si levels due to alloying effects on interstitial carbon levels and carbide morphology. Fe-25Mn-5Al-2C had a very poor stress rupture life at 172 MPa and 788 C. Addition of carbide-forming elements improved the stress rupture life.

  9. Magnetic properties of CaCu5-type RNi3TSi (R=Gd and Tb, T=Mn, Fe, Co and Cu) compounds

    NASA Astrophysics Data System (ADS)

    Morozkin, A. V.; Knotko, A. V.; Yapaskurt, V. O.; Yao, Jinlei; Yuan, Fang; Mozharivskyj, Y.; Nirmala, R.; Quezado, S.; Malik, S. K.

    2015-12-01

    Magnetic properties and magnetocaloric effect of CaCu5-type RNi3TSi (R=Gd and Tb, T=Mn, Fe, Co and Cu) compounds have been investigated. Magnetic measurements of RNi3TSi display the increasing of Curie temperature and the decreasing of magnetocaloric effect and saturated magnetic moment in the row of 'RNi3CuSi-RNi3NiSi-RNi3CoSi-RNi3MnSi-RNi3FeSi'. In contrast to GdNi3{Mn, Fe, Co}Si, TbNi3{Mn, Fe, Co}Si exhibit significant magnetic hysteresis. The coercive field increases from TbNi4Si ( 0.5 kOe) to TbNi3CoSi (4 kOe), TbNi3MnSi (13 kOe) and TbNi3FeSi (16 kOe) in field of 50 kOe at 5 K, whereas TbNi3CuSi exhibits a negligible coercive field.

  10. Magnetic properties of CaCu{sub 5}-type RNi{sub 3}TSi (R=Gd and Tb, T=Mn, Fe, Co and Cu) compounds

    SciTech Connect

    Morozkin, A.V.; Knotko, A.V.; Yapaskurt, V.O.; Yao, Jinlei; Yuan, Fang; Mozharivskyj, Y.; Nirmala, R.; Quezado, S.; Malik, S.K.

    2015-12-15

    Magnetic properties and magnetocaloric effect of CaCu{sub 5}-type RNi{sub 3}TSi (R=Gd and Tb, T=Mn, Fe, Co and Cu) compounds have been investigated. Magnetic measurements of RNi{sub 3}TSi display the increasing of Curie temperature and the decreasing of magnetocaloric effect and saturated magnetic moment in the row of ‘RNi{sub 3}CuSi–RNi{sub 3}NiSi–RNi{sub 3}CoSi–RNi{sub 3}MnSi–RNi{sub 3}FeSi’. In contrast to GdNi{sub 3}{Mn, Fe, Co}Si, TbNi{sub 3}{Mn, Fe, Co}Si exhibit significant magnetic hysteresis. The coercive field increases from TbNi{sub 4}Si (~0.5 kOe) to TbNi{sub 3}CoSi (4 kOe), TbNi{sub 3}MnSi (13 kOe) and TbNi{sub 3}FeSi (16 kOe) in field of 50 kOe at 5 K, whereas TbNi{sub 3}CuSi exhibits a negligible coercive field. - Graphical abstract: Magnetic measurements of RNi{sub 3}TSi show the increasing of Curie temperature and the decreasing of magnetocaloric effect and saturated magnetic moment in the row of 'RNi{sub 3}CuSi–RNi{sub 3}NiSi–RNi{sub 3}CoSi–RNi{sub 3}MnSi–RNi{sub 3}FeSi'. In contrast to GdNi{sub 3}{Mn, Fe, Co}Si, TbNi{sub 3}{Mn, Fe, Co}Si exhibit significant magnetic hysteresis. The coercive field increases from TbNi{sub 4}Si (~0.5 kOe) to TbNi{sub 3}CoSi (4 kOe), TbNi{sub 3}MnSi (13 kOe) and TbNi{sub 3}FeSi (16 kOe) in field of 50 kOe at 5 K, whereas TbNi{sub 3}CuSi exhibits a negligible coercive field. - Highlights: • CaCu{sub 5}-type RNi{sub 3}TSi show ferromagnetic ordering (R=Gd, Tb, T=Mn–Co, Cu). • Curie point increases in ‘RNi{sub 3}CuSi–RNi{sub 3}NiSi–RNi{sub 3}CoSi–RNi{sub 3}MnSi–RNi{sub 3}FeSi’ row. • MCE decreases in ‘RNi{sub 3}CuSi–RNi{sub 3}NiSi–RNi{sub 3}CoSi–RNi{sub 3}MnSi–RNi{sub 3}FeSi’ row. • TbNi{sub 3}{Mn, Fe, Co}Si exhibit significant magnetic hysteresis. • The coercive field of TbNi{sub 3}MnSi and TbNi{sub 3}FeSi reach 13 kOe and 16 kOe at 5 K.

  11. Paramagnetic to antiferromagnetic transition in epitaxial tetragonal CuMnAs (invited)

    SciTech Connect

    Hills, V.; Wadley, P. Campion, R. P.; Beardsley, R.; Edmonds, K. W.; Gallagher, B. L.; Novak, V.; Ouladdiaf, B.; Jungwirth, T.

    2015-05-07

    In this paper, we use neutron scattering and electrical transport to investigate the paramagnetic to antiferromagnetic phase transition in tetragonal CuMnAs films on GaP(001). X-ray diffraction and cross-sectional transmission electron microscopy measurements show that the films are chemically ordered with high structural quality. The temperature dependence of the structurally forbidden (100) neutron scattering peak is used to determine the Néel temperature, T{sub N}. We then demonstrate the presence of a clear peak in the temperature derivative of the resistivity around T{sub N}. The effect of disorder-induced broadening on the shape of the peak is discussed.

  12. Imaging Current-Induced Switching of Antiferromagnetic Domains in CuMnAs.

    PubMed

    Grzybowski, M J; Wadley, P; Edmonds, K W; Beardsley, R; Hills, V; Campion, R P; Gallagher, B L; Chauhan, J S; Novak, V; Jungwirth, T; Maccherozzi, F; Dhesi, S S

    2017-02-03

    The magnetic order in antiferromagnetic materials is hard to control with external magnetic fields. Using x-ray magnetic linear dichroism microscopy, we show that staggered effective fields generated by electrical current can induce modification of the antiferromagnetic domain structure in microdevices fabricated from a tetragonal CuMnAs thin film. A clear correlation between the average domain orientation and the anisotropy of the electrical resistance is demonstrated, with both showing reproducible switching in response to orthogonally applied current pulses. However, the behavior is inhomogeneous at the submicron level, highlighting the complex nature of the switching process in multidomain antiferromagnetic films.

  13. Multiscale twin hierarchy in NiMnGa shape memory alloys with Fe and Cu

    DOE PAGES

    Barabash, Rozaliya I.; Barabash, Oleg M.; Popov, Dmitry; ...

    2015-01-31

    X-ray microdiffraction and scanning electron microscopy studies reveal 10 M martensitic structure with a highly correlated multiscale twin hierarchy organization in NiMnGaFeCu shape memory alloys. In this paper, high compatibility is found at the twin interfaces resulting in a highly correlated twinned lattice orientation across several laminate levels. The lattice unit cell is described as monoclinic I-centered with a = 4.28 Å, b = 4.27 Å, c = 5.40 Å, γ = 78.5°. The modulation is found parallel to the b axis. Finally, thin tapered needle-like lamellae and branching are observed near the twin boundaries.

  14. Imaging Current-Induced Switching of Antiferromagnetic Domains in CuMnAs

    NASA Astrophysics Data System (ADS)

    Grzybowski, M. J.; Wadley, P.; Edmonds, K. W.; Beardsley, R.; Hills, V.; Campion, R. P.; Gallagher, B. L.; Chauhan, J. S.; Novak, V.; Jungwirth, T.; Maccherozzi, F.; Dhesi, S. S.

    2017-02-01

    The magnetic order in antiferromagnetic materials is hard to control with external magnetic fields. Using x-ray magnetic linear dichroism microscopy, we show that staggered effective fields generated by electrical current can induce modification of the antiferromagnetic domain structure in microdevices fabricated from a tetragonal CuMnAs thin film. A clear correlation between the average domain orientation and the anisotropy of the electrical resistance is demonstrated, with both showing reproducible switching in response to orthogonally applied current pulses. However, the behavior is inhomogeneous at the submicron level, highlighting the complex nature of the switching process in multidomain antiferromagnetic films.

  15. Monolithic Cu-Cr-Nb Alloys for High Temperature, High Heat Flux Applications

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Locci, Ivan E.; Michal, Gary M.; Humphrey, Derek M.

    1999-01-01

    Work during the prior four years of this grant has resulted in significant advances in the development of Cu-8 Cr4 Nb and related Cu-Cr-Nb alloys. The alloys are nearing commercial use in the Reusable Launch Vehicle (RLV) where they are candidate materials for the thrust cell liners of the aerospike engines being developed by Rocketdyne. During the fifth and final year of the grant, it is proposed to complete development of the design level database of mechanical and thermophysical properties and transfer it to NASA Glenn Research Center and Rocketdyne. The database development work will be divided into three main areas: Thermophysical Database Augmentation, Mechanical Testing and Metallography and Fractography. In addition to the database development, work will continue that is focussed on the production of alternatives to the powder metallurgy alloys currently used. Exploration of alternative alloys will be aimed at both the development of lower cost materials and higher performance materials. A key element of this effort will be the use of Thermo-Calc software to survey the solubility behavior of a wide range of alloying elements in a copper matrix. The ultimate goals would be to define suitable alloy compositions and processing routes to produce thin sheets of the material at either a lower cost, or, with improved mechanical and thermal properties compared to the current Cu-Cr-Nb powder metallurgy alloys.

  16. Effects of Ce Addition on High Temperature Deformation Behavior of Cu-Cr-Zr Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Volinsky, Alex A.; Tran, Hai T.; Chai, Zhe; Liu, Ping; Tian, Baohong

    2015-10-01

    Hot deformation behavior of the Cu-Cr-Zr and Cu-Cr-Zr-Ce alloys was investigated by compressive tests using the Glee-ble-1500D thermomechanical simulator at 650-850 °C and 0.001-10 s-1 strain rate. The flow stress decreased with the deformation temperature at a given stain rate. However, the flow stress increased with the strain rate at the same deformation temperature. The constitutive equations for two kinds of alloys were obtained by correlating the flow stress, the strain rate and temperature using stepwise regression analysis. The addition of Ce can refine the grain and effectively accelerate dynamic recrystallization. The processing maps were established, based on the dynamic material model. Instability zones in the flow behavior can be easily recognized. Hot deformation optimal processing parameters were obtained in the range of this experiment. The hot deformation characteristics and microstructure were also analyzed by the processing maps. The addition of Ce can optimize hot workability of the Cu-Cr-Zr alloy.

  17. Dynamic Embrittlement in Cu-Cr-Zr-Ti Alloy: Evidence of Intergranular Segregation of Sulphur

    NASA Astrophysics Data System (ADS)

    Chenna Krishna, S.; Radhika, K. V.; Tharian, K. Thomas; Swathi Kiranmayee, M.; Sudarshan Rao, G.; Jha, Abhay K.; Pant, Bhanu

    2013-08-01

    In the present investigation, Cu-0.6Cr-0.005Zr-0.0045Ti alloy was subjected to different heat treatment and thermomechanical treatment (TMT) to simulate the conditions experienced during brazing and forming, respectively. Grain coarsening was observed in the samples subjected to heat treatment, and grain refinement was observed in the samples subjected to TMT. Tensile tests conducted with these samples at room temperature and 600 °C have shown that Cu-Cr-Zr-Ti alloy was susceptible to dynamic embrittlement (DE). However, the observation was limited to coarse-grained samples (280-350 μm) at 600 °C. On the other hand, the fine-grained samples (20-40 μm) showed good ductility. Electron microscopy studies conducted on the tensile-tested specimens prone to DE indicated the presence of sulfur on the fractured surface and intergranular segregation of sulfur. Therefore, it can be inferred from the results that DE due to sulfur can occur in Cu-Cr-Zr-Ti alloy at elevated temperature for coarse-grained samples.

  18. Effects of Mn, Si, and purity on the design of 3.5NiCrMoV, 1CrMoV, and 2.25Cr-1Mo bainitic alloy steels

    NASA Astrophysics Data System (ADS)

    Bodnar, R. L.; Ohhashi, T.; Jaffee, R. I.

    1989-08-01

    Three high-temperature bainitic alloy steels were evaluated in the laboratory to determine the effects of Mn, Si, and impurities ( i.e., S, P, Sn, As, and Sb) on microstructure and mechanical properties. The alloy steels were 3.5NiCrMoV and CrMoV, which are used for turbine rotors, and 2.25Cr-1Mo, which is used in pressure vessel applications. The important effects of Mn, Si, and impurities, which should control the design of these high-temperature bainitic steels, are presented. Key results are used to illustrate the influence of these variables on cleanliness, overheating, austenitizing, hardenability, tempering, ductility, toughness, temper embrittlement, creep rupture, and low-cycle fatigue. Low levels of Mn, Si, and impurities not only result in improved temper embrittlement resistance in these steels but also lead to an improvement in creep rupture properties ( i.e., improved strength and ductility). These results have produced some general guidelines for the design of high-temperature bainitic steels. Examples illustrating the implementation of the results and the effectiveness of the design guidelines are provided. Largely based on the benefits shown by this work, a high-purity 3.5NiCrMoV steel, which is essentially free of Mn, Si, and impurities, has been developed and is already being used commercially.

  19. Dependency of simultaneous Cr(VI), Cu(II) and Cd(II) reduction on the cathodes of microbial electrolysis cells self-driven by microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Yu, Lihua; Wu, Dan; Huang, Liping; Zhou, Peng; Quan, Xie; Chen, Guohua

    2015-01-01

    Microbial fuel cells (MFCs) using either Cr(VI) (MFCsCr) or Cu(II) (MFCsCu) as a final electron acceptor, are stacked to self-drive microbial electrolysis cells (MECs) using Cd(II) (MECsCd) as an electron acceptor for simultaneous reduction of Cr(VI) in MFCsCr, Cu(II) in MFCsCu and Cd(II) in MECsCd with no external energy consumption. Titanium sheet (TS) and carbon rod (CR) as the cathodes of MECsCd are assessed for efficient system performance. MFCsCr and MFCsCu in series is superior to the parallel configuration, and higher Cd(II) reduction along with simultaneous Cr(VI) and Cu(II) reduction supports TS function as a good cathode material. Conversely, CR can not entirely proceed Cd(II) reduction in MECsCd despite of more Cr(VI) and Cu(II) reduction in the same serial configuration than either system alone. While a decrease in cathode volume in both MFCsCr and MFCsCu with serial connection benefits to reduction of Cr(VI) in MFCsCr and Cu(II) in MFCsCu, Cd(II) reduction in MECsCd is substantially enhanced under a decrease in cathode volume in individual MFCsCr and serially connected with volume-unchanged MFCsCu. This study demonstrates simultaneous Cr(VI), Cu(II) and Cd(II) recovery from MFCsCr-MFCsCu-MECsCd self-driven system is feasible, and TS as the cathodes of MECsCd is critical for efficient system performance.

  20. Electronic structure of metastable bcc Cu-Cr alloy thin films: Comparison of electron energy-loss spectroscopy and first-principles calculations.

    PubMed

    Liebscher, C H; Freysoldt, C; Dennenwaldt, T; Harzer, T P; Dehm, G

    2016-07-12

    Metastable Cu-Cr alloy thin films with nominal thickness of 300nm and composition of Cu67Cr33 (at%) are obtained by co-evaporation using molecular beam epitaxy. The microstructure, chemical phase separation and electronic structure are investigated by transmission electron microscopy (TEM). The thin film adopts the body-centered cubic crystal structure and consists of columnar grains with ~50nm diameter. Aberration-corrected scanning TEM in combination with energy dispersive X-ray spectroscopy confirms compositional fluctuations within the grains. Cu- and Cr-rich domains with composition of Cu85Cr15 (at%) and Cu42Cr58 (at%) and domain size of 1-5nm are observed. The alignment of the interface between the Cu- and Cr-rich domains shows a preference for {110}-type habit plane. The electronic structure of the Cu-Cr thin films is investigated by electron energy loss spectroscopy (EELS) and is contrasted to an fcc-Cu reference sample. The experimental EEL spectra are compared to spectra computed by density functional theory. The main differences between bcc-and fcc-Cu are related to differences in van Hove singularities in the electron density of states. In Cu-Cr solid solutions with bcc crystal structure a single peak after the L3-edge, corresponding to a van Hove singularity at the N-point of the first Brillouin zone is observed. Spectra computed for pure bcc-Cu and random Cu-Cr solid solutions with 10at% Cr confirm the experimental observations. The calculated spectrum for a perfect Cu50Cr50 (at%) random structure shows a shift in the van Hove singularity towards higher energy by developing a Cu-Cr d-band that lies between the delocalized d-bands of Cu and Cr.

  1. X-ray absorption study of the ferromagnetic Cu moment at the YBa2Cu3O7/La2 /3Ca1 /3MnO3 interface and variation of its exchange interaction with the Mn moment

    NASA Astrophysics Data System (ADS)

    Sen, K.; Perret, E.; Alberca, A.; Uribe-Laverde, M. A.; Marozau, I.; Yazdi-Rizi, M.; Mallett, B. P. P.; Marsik, P.; Piamonteze, C.; Khaydukov, Y.; Döbeli, M.; Keller, T.; Biškup, N.; Varela, M.; Vašátko, J.; Munzar, D.; Bernhard, C.

    2016-05-01

    With x-ray absorption spectroscopy and polarized neutron reflectometry we studied how the magnetic proximity effect at the interface between the cuprate high-TC superconductor YBa2Cu3O7 (YBCO) and the ferromagnet La2 /3Ca1 /3MnO3 (LCMO) is related to the electronic and magnetic properties of the LCMO layers. In particular, we explored how the magnitude of the ferromagnetic Cu moment on the YBCO side depends on the strength of the antiferromagnetic (AF) exchange coupling with the Mn moment on the LCMO side. We found that the Cu moment remains sizable if the AF coupling with the Mn moments is strongly reduced or even entirely suppressed. The ferromagnetic order of the Cu moments thus seems to be intrinsic to the interfacial CuO2 planes and related to a weakly ferromagnetic intraplanar exchange interaction. The latter is discussed in terms of the partial occupation of the Cu 3 d3 z2-r2 orbitals, which occurs in the context of the so-called orbital reconstruction of the interfacial Cu ions.

  2. Influence of annealing conditions on microstructure and phase occurrence in high-alloy CrMnN steels

    SciTech Connect

    Bakajova, Jana; Domankova, Maria; Cicka, Roman; Eglsaeer, Sabine; Janovec, Jozef

    2010-10-15

    The influence of annealing at 750, 800, 850, 900 and 950 deg. C for 4 h on the microstructure and the phase occurrence in two high-alloy CrMnN austenitic stainless steels was investigated using light microscopy, transmission electron microscopy, and thermodynamic calculations. Austenite, {sigma}, and Cr{sub 2}N were identified in both steels experimentally. The experimental results were found to be in good agreement with the thermodynamic predictions. In one of the steels, M{sub 23}C{sub 6} as a non-equilibrium probably residual phase was found. Cr{sub 2}N appeared in the steels either in the form of discrete particles or as a part of cells consisting of alternate lamellae of Cr{sub 2}N and austenite.

  3. Enhanced room temperature ferromagnetism and photoluminescence behavior of Cu-doped ZnO co-doped with Mn

    NASA Astrophysics Data System (ADS)

    Ashokkumar, M.; Muthukumaran, S.

    2015-05-01

    Cu, Mn co-doped ZnO nanoparticles were successfully synthesized by the sol-gel technique. XRD pattern described that Mn-doping did not affect the hexagonal wurtzite structure of the samples and no secondary phases were found. The reduced crystallite size at Mn=2% is due to the suppression of grain surface growth by foreign impurity. The enhancement of crystal size after Mn=2% is due to the expansion of lattice volume produced by the distortion around the dopant ion. The better dielectric constant and conductivity noticed at Mn=2% are explained by charge carrier density and crystallite size. The suppression of broad UV band by Mn-doping is discussed based on the generation of non-radiative recombination centers. Hysteresis loop showed the clear room temperature ferromagnetism in all the samples and the magnetization increased with Mn-doping. Better electrical and magnetic behavior of Zn0.94Cu0.04Mn0.02O sample is suggested for effective opto-magnetic devices.

  4. Electronic structure and magnetism of Ge(Sn)TMXTe1-X (TM = V, Cr, Mn): A first principles study

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Bose, S. K.; Kudrnovský, J.

    2016-12-01

    This work presents the results of first principles calculations of the electronic and magnetic properties of the compound SnTe and GeTe in zinc blende (ZB) and rock salt (RS) structures, doped with 3d transition metal V, Cr, and Mn. The present study, initiated from the viewpoint of potential application in spintronics, is motivated by our earlier work involving these two compounds, where the doping was limited to the Sn and Ge sublattices. In view of some discrepancies between our calculated results and the available experimental data, in this work we have examined the effect of the Te-sublattice doping. The case of Mn-doping, where the previous results of calculations seemed to differ most from the experimentally available data, is examined further by looking at the effect of Mn atoms partially occupying interstitial sites as well. From the standpoint of potential application in spintronics, we look for half-metallic (HM) states and tabulate their properties in both rock salt and zinc blende structures. ZB structure is found to be more conducive to HM state in general. Among the binary compounds we identify several HM candidates: VGe, VSn, MnGe, MnSn and MnTe at their equilibrium volumes and all in ZB structure. Estimates of the Curie temperature for the ferromagnetic compounds including the half-metals are presented. It is shown that despite the ferromagnetic (FM) nature of the Mn-Mn interaction for the Te-doped case, a simultaneous doping of both Ge(Sn)- and Te-sublattice with Mn atoms would leave the material predominantly antiferromagnetic (AFM).

  5. Comparative study of supported CuOx and MnOx catalysts for the catalytic wet air oxidation of β-naphthol

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Yu, Chaoying; Zhao, Peiqing; Chen, Gexin

    2012-09-01

    MnOx/nano-TiO2, MnOx/Al2O3-TiO2 (Al-Ti), CuOx/nano-TiO2 and CuOx/Al-Ti were prepared and their application in catalytic wet air oxidation (CWAO) of β-naphthol were investigated. The catalysts had been characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR) measurements. Phases of CuO, Cu2O, CuAl2O4, MnO2 and Mn2O3 could be found on the surface of the aforementioned catalysts. Significant differences in activities were observed among the prepared catalysts. Compared to CuOx/nano-TiO2, the combined action of highly dispersed CuO as well as CuAl2O4 of CuOx/Al-Ti helped to achieve higher activity for the CWAO of β-naphthol, while the Cu2O component lead to lower efficiency of CuOx/nano-TiO2. On the surface of MnOx/nano-TiO2, both the larger amount of highly dispersed MnO2 and the stronger electron transfer between MnO2 and Mn2O3 were helpful to promote the activity for the degradation of β-naphthol. However, the higher amount of bulk MnO2 and the weaker electron transfer for MnOx/Al-Ti were unfavorable to increase its efficiency. Among the four catalysts as-prepared, MnOx/nano-TiO2 was identified the highest activity with 93.7% COD removal.

  6. Preliminary assessment of metal-porcelain bonding strength of CoCrW alloy after 3wt.% Cu addition.

    PubMed

    Lu, Yanjin; Zhao, Chaoqian; Ren, Ling; Guo, Sai; Gan, Yiliang; Yang, Chunguang; Wu, Songquan; Lin, Junjie; Huang, Tingting; Yang, Ke; Lin, Jinxin

    2016-06-01

    In this work, a novel Cu-bearing CoCrW alloy fabricated by selective laser melting for dental application has been studied. For its successful application, the bonding strength of metal-porcelain is essential to be systematically investigated. Therefore, the aim of this study was to evaluate the metal-porcelain bonding strength of CoCrWCu alloy by three-point bending test, meanwhile the Ni-free CoCrW alloy was used as control. The oxygen content was investigated by an elemental analyzer; X-ray photoelectron spectroscopy (XPS) was used to analyze the surface chemical composition of CoCrW based alloy after preoxidation treatment; the fracture mode was investigated by X-ray energy spectrum analysis (EDS) and scanning electron microscope (SEM). Result from the oxygen content analysis showed that the content of oxygen dramatically increased after the Cu addition. And the XPS suggested that Co-oxidation, Cr2O3, CrO2, WO3, Cu2O and CuO existed on the preoxidated surface of the CoCrWCu alloy; the three-point bending test showed that the bonding strength of the CoCrWCu alloy was 43.32 MPa, which was lower than that of the CoCrW group of 47.65 MPa. However, the average metal-porcelain bonding strength is significantly higher than the minimum value in the ISO 9693 standard. Results from the SEM images and EDS indicated that the fracture mode of CoCrWCu-porcelain was mixed between cohesive and adhesive. Based on the results obtained in this study, it can be indicated that the Cu-bearing CoCrW alloy fabricated by the selective laser melting is a promising candidate for use in dental application.

  7. Iron-rich low-cost superalloys. [Cr(15)-Mn(15)-Mo(2)-C(1. 5)-Si(1. 0)-Nb(1. 0)-Fe(bal. ) and Cr(20)-Mn(10)-C(3. 4)-Fe(bal. )

    SciTech Connect

    Wayne, S.F.

    1985-01-01

    An iron-rich low-cost superalloy has been developed in conjunction with United Technologies Research Center under the NASA program, Conservation of Strategic Aerospace Materials. The alloy, when processed by conventional chill casting, has physical and mechanical properties that compare favorably with existing nickel - and cobalt-based superalloys while containing significantly lower amounts of strategic elements. The composition of the alloy is Cr(15)-Mn(15)-Mo(2)-C(1.5)-Si(1.0)-Nb(1.0)-Fe(bal.), and it can be produced with chromite ore deposits located within the United States. Studies were also made on the properties of Cr(20)-Mn(10)-C(3.4)-Fe(bal.), a eutectic alloy processed by chill casting and directional solidification (D.S.) which produced an aligned microstructure consisting of M/sub 7/C/sub 3/ fibers in an ..gamma..-Fe matrix. This good alignment vanishes when molybdenum or aluminum is added in higher concentrations. Thermal expansion of the M/sub 7/C/sub 3/ (M = Fe, Cr, Mn) carbide lattice was measured up to 800/sup 0/C and found to be highly anisotropic, with the a-axis being the predominant mode of expansion. Repetitive impact-sliding wear experiments performed with the Fe-rich eutectic alloy showed that the directionally solidified microstructure greatly improved the alloy's wear resistance as compared to the chill-cast microstructure and conventional nickel-base superalloys.

  8. Effects of different manganese precursors as promoters on catalytic performance of CuO-MnOx/TiO2 catalysts for NO removal by CO.

    PubMed

    Sun, Chuanzhi; Tang, Yingjie; Gao, Fei; Sun, Jingfang; Ma, Kaili; Tang, Changjin; Dong, Lin

    2015-06-28

    Two different precursors, manganese nitrate (MN) and manganese acetate (MA), were employed to prepare two series of catalysts, i.e., xCuyMn(N)/TiO2 and xCuyMn(A)/TiO2, by a co-impregnation method. The catalysts were characterized by XRD, LRS, CO-TPR, XPS and EPR spectroscopy. The results suggest that: (1) both xCuyMn(N)/TiO2 and xCuyMn(A)/TiO2 catalysts exhibit much higher catalytic activities than an unmodified Cu/TiO2 catalyst in the NO + CO reaction. Furthermore, the activities of catalysts modified with the same amount of manganese are closely dependent on manganese precursors. (2) The enhancement of activities for Mn-modified catalysts should be attributed to the formation of the surface synergetic oxygen vacancy (SSOV) Cu(+)-□-Mn(y+) in the reaction process. Moreover, since the formation of the SSOV (Cu(+)-□-Mn(3+)) in the xCuyMn(N)/TiO2 catalyst is easier than that (Cu(+)-□-Mn(2+)) in the xCuyMn(A)/TiO2 catalyst, the activity of the xCuyMn(N)/TiO2 catalyst is higher than that of the xCuyMn(A)/TiO2 catalyst. This conclusion is well supported by the XPS and EPR results.

  9. Mechanical characteristics and swelling of austenitic Fe-Cr-Mn steels irradiated in the SM-2 and BOR-60 reactors

    NASA Astrophysics Data System (ADS)

    Shamardin, V. K.; Bulanova, T. M.; Neustroev, V. S.; Ivanov, L. I.; Djomina, E. V.; Platov, Yu. M.

    1991-03-01

    Three types of austenitic Fe-Cr-Mn stainless steels were irradiated simultaneously with Fe-Cr-Ni austenitic steel at temperatures from 400 to 800°C in the mixed spectrum of the high flux SM-2 reactor to 10 dpa and 700 appm of He and in the BOR-60 reactor to 60 dpa without He generation. The paper presents the swelling and mechanical properties of steels irradiated in the BOR-60 and SM-2 as a function of the concentration of transmuted He and the value of atomic displacement.

  10. EPR Study of Cr5+ and Cu2+ in Some Zeolites Introduced by Solid- and Liquid-State Reactions

    NASA Astrophysics Data System (ADS)

    Köksal, Fevzi; Ucun, Fatih; Kartal, İbrahim

    1996-04-01

    This study reports on the EPR of Cr5+ and Cu2+ ions, introduced by solid- and liquid-state reactions with the synthetic zeolites 3A, 4A and 5A, and the natural zeolite clinoptilolite. Cr3+ was oxidized to Cr5+ in the samples, the coordination around Cr5+ being square pyramidal. Super-hyperfine (shf) interaction of Cr5+ with 27Al nucleus was observed in both solid-and liquid-state-introduced 5A zeolite, whereas this shf could not be observed for the solid-state introduced 4A zeolite. The liquid-state Cr-introduced 4A zeolite needed a heat treatment at 473 K for ½ h for the appearance of shfs. Furthermore, it has been found that the coordination structure around the Cu2+ is square pyramidal in solid-state introduced samples, whereas it is octahedral in the liquid-state introduced ones.

  11. Effect of aluminum substitution on structural and electromagnetic properties of nanocrystalline MgCuMn ferrites

    SciTech Connect

    Ramesh, T. E-mail: ramanasarabu@gmail.com; Kumar, S. Senthil; Shinde, R. S.; Murthy, S. R.

    2015-06-24

    The effect of substitution of nonmagnetic Al{sup 3+} ions on the structural and electromagnetic properties were studied in nanocrystalline ferrite series of Mg{sub 0.8}Cu{sub 0.2}Al{sub x}Fe{sub 1.95-x}Mn{sub 0.05}O{sub 4} where x varies 0-0.4 in steps of 0.1. This series was synthesized by using microwave hydrothermal method. The nanocrystalline ferrite phase was observed at temperature 150°C/40 min. Synthesized powders were characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The synthesized powders were densified using microwave sintering method at 950°C/40 min. The sintered samples were characterized using XRD. Surface morphology was observed by using field effective scanning electron microscopy (FESEM). The electrical and magnetic properties were measured at room temperature. These results led us to interfere that the values of d.c resistivity increases and dielectric constant, initial permeability, saturation magnetization and Curie temperature were observed to be decreased with the substitution of Al{sup 3+} ions with those of Fe{sup 3+}. The low dielectric and magnetic losses and low magnetization exhibited by aluminum substituted MgCuMn ferrites makes them find applications in microwave devices.

  12. XRD and XANES study of some Cu-doped MnBi materials

    NASA Astrophysics Data System (ADS)

    Mishra, Ashutosh; Patil, Harsha

    2016-10-01

    High purity MnBi low temperature phase has been prepared and analyzed using X- ray diffraction (XRD) and X-ray absorption near edge structure (XANES) measurements. The X-ray diffraction measurements were carried out using Bruker D8 Advance X-ray diffractometer. The X-rays were produced using a sealed tube and the wavelength of X-ray was 154 nm (Cu K-alpha). and X-rays were detected using a fast counting detector based on Silicon strip technology (Bruker LynxEye detector)[1]. and the X-ray absorption spectra has emerged as a powerful technique for local structure determination, which can be applied to any type of material. The X-ray absorption measurements of two Cu-doped MnBi alloys have been performed at the recently developed BL-8 Dispersive EXAFS beam line at 2.5 GeV Indus-2 synchrotron at RRCAT, Indore, India[2]. The X-ray absorption near edge structure (XANES) data obtained has been processed using data analysis program Athena. The energies of the K absorption edge, chemical shifts, edge-widths, shifts of the principal absorption maximum in the alloys have been determined.

  13. Application of Cu-Al-Mn superelastic alloy bars as reinforcement elements in concrete beams

    NASA Astrophysics Data System (ADS)

    Shrestha, Kshitij C.; Araki, Yoshikazu; Nagae, Takuya; Yano, Hayato; Koetaka, Yuji; Omori, Toshihiro; Sutou, Yuji; Kainuma, Ryosuke; Ishida, Kiyohito

    2012-04-01

    Experimental works are done to assess the seismic behavior of concrete beams reinforced with superelastic alloy (SEA) bars. Applicability of newly developed Cu-Al-Mn SEA bars, characterized by large recovery strain, low material cost, and high machinability, have been proposed as partial replacements for conventional steel bars in order to reduce residual deformations in structures during and after intense earthquakes. Four-point reverse-cyclic bending tests were done on 1/3 scale concrete beams comprising three different types of specimens - conventional steel reinforced concrete (ST-RC), SEA reinforced concrete (SEA-RC), and SEA reinforced concrete with pre-tensioning (SEA-PC). The results showed that SEA reinforced concrete beams demonstrated significant enhancement in crack recovery capacity in comparison to steel reinforced beam. Average recovery of cracks for each of the specimens was 21% for ST-RC, 84% for SEA-RC, and 86% for SEA-PC. In addition, SEA-RC and SEA-PC beams demonstrated strong capability of recentering with comparable normalized strength and ductility relative to conventional ST-RC beam specimen. ST-RC beam, on the other hand, showed large residual cracks due to progressive reduction in its re-centering capability with each cycle. Both the SEA-RC and SEA-PC specimens demonstrated superiority of Cu-Al-Mn SEA bars to conventional steel reinforcing bars as reinforcement elements.

  14. Factors Affecting the Hydrogen Embrittlement Resistance of Ni-Cr-Mn-Nb Welds

    SciTech Connect

    G.A. Young; C.K. Battige; N. Liwis; M.A. Penik; J. Kikel; A.J. Silvia; C.K. McDonald

    2001-03-18

    Nickel based alloys are often welded with argon/hydrogen shielding gas mixtures to minimize oxidation and improve weld quality. However, shielding gas mixtures with {ge} 1% hydrogen additions can result in hydrogen concentrations greater than 5 wt. ppm in the weld metal and reduce ductility via hydrogen embrittlement. For the conditions investigated, the degree of hydrogen embrittlement is highly variable between 5 and 14 wt. ppm. investigation of hydrogen embrittlement of EN82H GTAW welds via tensile testing, light microscopy, transmission electron microscopy, orientation imaging microscopy, and thermal desorption spectroscopy shows that this variability is due to the inhomogeneous microstructure of the welds, the presence of recrystallized grains, and complex residual plastic strains. Specifically, research indicates that high residual strains and hydrogen trapping lower the ductility of Ni-Cr-Mn-Nb weld metal when dissolved hydrogen concentrations are greater than 5 wt. ppm. The inhomogeneous microstructure contains columnar dendritic, cellular dendritic, and recrystallized grains. The decreased tensile ductility observed in embrittled samples is recovered by post weld heat treatments that decrease the bulk hydrogen concentration below 5 wt. ppm.

  15. Microstructure and Mechanical Properties After Shock Wave Loading of Cast CrMnNi TRIP Steel

    NASA Astrophysics Data System (ADS)

    Eckner, Ralf; Krüger, L.; Ullrich, C.; Rafaja, D.; Schlothauer, T.; Heide, G.

    2016-10-01

    The mechanical response of shock wave-prestrained high-alloy Cr16-Mn7-Ni6 TRIP steel was investigated under compressive and tensile loading at room temperature. Previous shock wave loading was carried out using a flyer-plate assembly with different amounts of explosives in order to achieve shock pressures of 0.3, 0.6, 0.9, and 1.2 Mbar. A significant increase in hardness and strength was observed as compared with the initial as-cast condition. In contrast, a slight decrease in strain hardening rates was measured together with a decrease in fracture elongation in the tensile test. Microstructural analyses of the shock-loaded samples were performed by light optical and scanning electron microscopy. The microstructure revealed a high density of deformation bands consisting of separated stacking faults, ɛ-martensite, or twins. Significant amounts of deformation-induced α'-martensite were only present at the highest shock pressure of 1.2 Mbar. The thickness of the deformation bands and the number of martensite nuclei at their intersections increased with increasing shock pressure. In all shock-loaded specimens, pronounced phase transformation occurred during subsequent mechanical testing. Consequently, the amount of the deformation-induced α'-martensite in the shock-loaded specimens was higher than in the unshocked as-cast samples.

  16. [The recycling rate and budget of trace element Mn and Cu in agroecosystem using ICP-AES].

    PubMed

    Zhou, Hua; Xu, Yong-Gang; Jiang, Chun-Ming

    2011-10-01

    The recycling rate and budget of Mn and Cu under different fertilization regimes by using long-term field experiment and ICP-AES analysis were investigated in the present paper. The results showed that the recycling rates of Mn and Cu were greater than 80% because of sediment recycling type, and the values increased with the amount of feed stuffs increasing. Both the two elements under different fertilization regimes showed budget deficit, with the deficit order of M< (or < or =)NPK + M < CK < NPK, showing that chemical fertilizer application might induce severe deficit, while application of recycling organic matter might minimize the unbalance.

  17. Swelling of solute-modified Fe-Cr-Mn alloys in FFTF (Fast Flux Test Facility)-MOTA

    SciTech Connect

    Garner, F.A.

    1986-10-01

    Density change data continue to be accumulated on solute-modified and commercial Fe-Cr-Mn alloys irradiated at 520/sup 0/C and 50 dpa. The tendency toward saturation of density change observed in the simple ternary alloys in the annealed condition is accentuated by cold-working and solute addition. Irradiation at 420/sup 0/C appears to further accelerate the tendency toward saturation.

  18. Towards consistent chronology in the early Solar System: high resolution 53Mn-53Cr chronometry for chondrules.

    SciTech Connect

    Yin, Q; Jacobsen, B; Moynier, F; Hutcheon, I D

    2007-05-02

    New high-precision {sup 53}Mn-{sup 53}Cr data obtained for chondrules extracted from a primitive ordinary chondrite, Chainpur (LL3.4), define an initial {sup 53}Mn/{sup 55}Mn ratio of (5.1 {+-} 1.6) x 10{sup -6}. As a result of this downward revision from an earlier higher value of (9.4 {+-} 1.7) x 10{sup -6} for the same meteorite (Nyquist et al. 2001), together with an assessment of recent literature, we show that a consistent chronology with other chronometers such as the {sup 26}Al-{sup 26}Mg and {sup 207}Pb-{sup 206}Pb systems emerges in the early Solar System.

  19. Structure and electrical properties of Cu-doped Mn-Co-O spinel prepared via soft chemistry and its application in intermediate-temperature solid oxide fuel cell interconnects

    NASA Astrophysics Data System (ADS)

    Brylewski, T.; Kruk, A.; Bobruk, M.; Adamczyk, A.; Partyka, J.; Rutkowski, P.

    2016-11-01

    The study describes CuxMn1.25-0.5xCo1.75-0.5xO4 (x = 0, 0.1, 0.3 and 0.5) spinels synthesized using EDTA gel processes in order to optimize the performance of high-quality spinel protective-conducting films deposited on steel interconnects. The powders obtained after 12 h of calcination in air at 1073 K are solely cubic spinels. Sintering these spinels for 12 h in air at 1423 K also leads to the formation of small amounts of CoO, Mn2O3 or CuO; the type of phase depends on the quantity of copper introduced into the manganese-cobalt lattice. The highest electrical conductivity at 1073 K is observed for Cu0.3Mn1.1Co1.6O4 (162 S·cm-1), which is closely correlated with the lowest activation energy of conduction over the entire temperature range (373≤T≤1073 K); the lowest conductivity is measured for Mn1.25Co1.75O4 (84 Sṡcm-1). The study confirms the suitability of the Cu0.3Mn1.1Co1.6O4 spinel as a potential material for the preparation of protective-conducting coatings on the surface of the DIN 50049 ferritic steel applied in IT-SOFC interconnects. The area-specific resistance of coated steel is 0.08 Ω·cm2, which is lower than that of bare steel after 300 h of oxidation at 1073 K. Cr vaporization tests show that the Cu0.3Mn1.1Co1.6O4 coating is efficient at blocking the outward diffusion of chromium.

  20. Tracing Cr, Pb, Fe and Mn occurrence in the Bahía Blanca estuary through commercial fish species.

    PubMed

    La Colla, Noelia S; Botté, Sandra E; Oliva, Ana L; Marcovecchio, Jorge E

    2017-05-01

    Over the last decades the anthropogenic contamination impact has substantially increased in the Bahía Blanca estuarine area, and scarce information exists regarding metals in the biotic compartment of this estuary. Thus, fish tissues were used to evaluate metal accumulation within this aquatic environment. The study focused on the determination of Cr, Pb, Fe and Mn in the gills, liver and muscle tissues of six commercial fish species (Brevoortia aurea, Odontesthes argentinensis, Micropogonias furnieri, Cynoscion guatucupa, Mustelus schmitti and Paralichthys orbignyanus). From the results it can be summarized that C. guatucupa tends to accumulate higher metal levels in the liver tissues, mostly Cr and Fe, than the other studied species. O. argentinensis and P. orbignyanus, both permanent inhabitants of the BBE, achieved the highest metal values in the gill tissues, mostly in comparison to M. schmitti. The gill tissues were found to be the main organ of Mn and Ni accumulation for most species, whereas in general, minimum concentrations were found for all the analyzed metals in the muscle tissues. Nevertheless, and according to the guidelines, all fish species showed at least one sample with concentrations of Mn and/or Cr above the permissible levels for human consumption. Finally, it was highlighted the usefulness of selecting these fish species as bioindicators of metal pollution, since they are either permanent inhabitants of the estuary or, according to the sizes under analyses, spend much of their time in this coastal waters.

  1. Electrokinetic recovery of Cd, Cr, As, Ni, Zn and Mn from waste printed circuit boards: effect of assisting agents.

    PubMed

    Xiu, Fu-Rong; Zhang, Fu-Shen

    2009-10-15

    The printed circuit boards (PCBs) contains large number of heavy metal such as Cd, Cr, As, Ni, Zn and Mn. In this study, the use of electrokinetic (EK) treatment with different assisting agents has been investigated to recover the heavy metals from waste PCBs, and the effectiveness of different assisting agents (HNO(3), HCl, citric acid) was evaluated. The PCBs were first pre-treated by supercritical water oxidation (SCWO) process, then subjected to EK process. The heavy metal speciation, migration and recovery efficiency in the presence of different assisting agents during EK process were discussed. The mass loss of Cd, Cr, As and Zn during the SCWO process was negligible, but approximately 52% of Ni and 56% of Mn were lost in such a process. Experimental results showed that different assisting agents have significant effect on the behavior and recovery efficiency of different heavy metals. HCl was highly efficient for the recovery of Cd in waste PCBs due to the low pH and the stable complexation of Cl(-). Citric acid was highly efficient for the recovery of Cr, Zn and Mn. HNO(3) was low efficient for recovery of most heavy metals except for Ni.

  2. Ultra-robust high-field magnetization plateau and supersolidity in bond-frustrated MnCr2S4.

    PubMed

    Tsurkan, Vladimir; Zherlitsyn, Sergei; Prodan, Lilian; Felea, Viorel; Cong, Pham Thanh; Skourski, Yurii; Wang, Zhe; Deisenhofer, Joachim; von Nidda, Hans-Albrecht Krug; Wosnitza, Joahim; Loidl, Alois

    2017-03-01

    Frustrated magnets provide a promising avenue for realizing exotic quantum states of matter, such as spin liquids and spin ice or complex spin molecules. Under an external magnetic field, frustrated magnets can exhibit fractional magnetization plateaus related to definite spin patterns stabilized by field-induced lattice distortions. Magnetization and ultrasound experiments in MnCr2S4 up to 60 T reveal two fascinating features: (i) an extremely robust magnetization plateau with an unusual spin structure and (ii) two intermediate phases, indicating possible realizations of supersolid phases. The magnetization plateau characterizes fully polarized chromium moments, without any contributions from manganese spins. At 40 T, the middle of the plateau, a regime evolves, where sound waves propagate almost without dissipation. The external magnetic field exactly compensates the Cr-Mn exchange field and decouples Mn and Cr sublattices. In analogy to predictions of quantum lattice-gas models, the changes of the spin order of the manganese ions at the phase boundaries of the magnetization plateau are interpreted as transitions to supersolid phases.

  3. Corrosion Behavior of High Nitrogen Nickel-Free Fe-16Cr-Mn-Mo-N Stainless Steels

    NASA Astrophysics Data System (ADS)

    Chao, K. L.; Liao, H. Y.; Shyue, J. J.; Lian, S. S.

    2014-04-01

    The purpose of the current study is to develop austenitic nickel-free stainless steels with lower chromium content and higher manganese and nitrogen contents. In order to prevent nickel-induced skin allergy, cobalt, manganese, and nitrogen were used to substitute nickel in the designed steel. Our results demonstrated that manganese content greater than 14 wt pct results in a structure that is in full austenite phase. The manganese content appears to increase the solubility of nitrogen; however, a lower corrosion potential was found in steel with high manganese content. Molybdenum appears to be able to increase the pitting potential. The effects of Cr, Mn, Mo, and N on corrosion behavior of Fe-16Cr-2Co-Mn-Mo-N high nitrogen stainless steels were evaluated with potentiodynamic tests and XPS surface analysis. The results reveal that anodic current and pits formation of the Fe-16Cr-2Co-Mn-Mo-N high nitrogen stainless steels were smaller than those of lower manganese and nitrogen content stainless steel.

  4. Geochemical studies of Fe, Mn, Co, As, Cr, Sb, Zn, Sc and V in surface sediments from Jiaozhou Bay

    NASA Astrophysics Data System (ADS)

    Wu, Run; Li, Pei-Quan; Miao, Lu-Tian; Zhang, Shu-Xin; Tian, Wei-Zhi

    1994-12-01

    The contents of nearly forty-elements in surface sediments in Jiaozhou Bay were determined using a Neutron Activation Analysis Technique (Grancini, et al., 1976; Li Peiquan et al., 1985, 1986; Li Xiuxia et al., 1986). This paper's detailed discussion on only nine elements (Fe, Mn, Co, Cr, Sc, As, Sb, Zn and V) includes their distributions, concentrations, correlationships, material sources, background, etc. Based on Zavaristski's classification method, Fe, Mn, Co, Cr and V belong to the second group; As and Sb to the eighth groups: Sc and Zn to the third and sixth groups. It was found that their notably good correlationship is mainly due to the similarity of their ionic structures and that their variation is controlled by the Fe content (except Mn). The source of sediments is mainly terristrial material, and the composition of sediment is similar to that of shale and shale+clay. The contents for a large number of elements are within the scope of the background level, but there still is pollution of Zn and Cr, at least in a few stations.

  5. The use of diffusion multiples to explore the Co-Cr-Fe-Mn-Ni high entropy system

    NASA Astrophysics Data System (ADS)

    Wilson, Paul Nathaniel

    High entropy alloys (HEAs) or Multi-principal element alloys (MEAs) are a relatively new class of alloys. These alloys are defined as having at least five major alloying elements in atomic percent from 5% to 35%. There are hundreds of thousands of equiatomic compositions possible and only a fraction have been explored. This project examines diffusion multiples as a method to accelerate alloy development in these systems. The system chosen for this experiment is the Co-Cr-Fe-Mn-Ni system. The methodology developed for creating these diffusion multiples involved a two-step process. In the first step two binary alloys (50at-% Fe-Mn and 50 at%- Ni-Co ) were diffusion bonded together. In the second step, under uniaxial compression, was used to bond Cr to diffusion couple prepared in Step I. Successful diffusion multiples were created by this method. An auxiliary method named differential melting liquid impingement (DMLI) was developed that created diffusion multiples using liquid processing methods that will be described. After creation of these multiples, the ternary and quinary interface regions were examined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and nanoindentation. The Cr/NiCo region experienced interdiffusion but no intermediate phase formation retaining the FCC / BCC interface at the hot-pressing temperature (1200 °C). However, upon cooling from 1200 °C, the BCC region adjacent to the interface decomposed into BCC + sigma. In contrast, the Cr/FeMn interface region developed a layered structure of FCC/sigma/BCC suggesting that sigma is stable at 1200 °C in contradiction to the published 1200 °C ternary phase diagram. Upon cooling, the sigma present at 1200 °C decomposed into FCC + sigma, except in samples that were contaminated with C; in those cases, FCC + M23C6 was observed as the decomposition product. The quinary regions were evaluated using the various HEA parameters, namely

  6. Microstructural refinement and strengthening of Cu-4 Cr-2 Nb alloy by mechanical milling

    SciTech Connect

    Anderson, K.R.; Groza, J.R.; Ulmer, D.G.

    1997-07-15

    Lately, a variety of dispersion strengthened (DS) copper alloys that provide a good combination of thermal/electrical conductivity and mechanical strength have been developed. Strengthening is usually achieved by the introduction of a ceramic, refractory metal or intermetallic secondary phase. Cu-Cr-Nb is one such DS alloy in which strengthening is provided by Cr{sub 2}Nb intermetallic particles. Mechanical milling of as-atomized Cu-4 Cr-2 Nb alloy powders substantially increases the mechanical strength (hardness) of the starting material. This is achieved through a drastic grain size, as well as large precipitate size refinement. A more uniform precipitate distribution is also attained. Whether milling is performed with steel or WC vial and balls the hardness saturates at approximately 100 HRB after about 4 hr milling. However, this benefit of MM was offset by an equally severe decrease in electrical conductivity. This decrease is attributed to impurities/contamination from the milling media introduced into the milled powder, primarily, Fe and C, or, WC and Co.

  7. Sorption of Cu, Pb and Cr on Na-montmorillonite: competition and effect of major elements.

    PubMed

    Zhu, Jun; Cozzolino, Vincenza; Pigna, Massimo; Huang, Qiaoyun; Caporale, Antonio Giandonato; Violante, Antonio

    2011-07-01

    The competitive sorption among Cu, Pb and Cr in ternary system on Na-montmorillonite at pH 3.5, 4.5 and 5.5 and at different heavy metal concentrations, and the effect of varying concentrations of Al, Fe, Ca and Mg on the sorption of heavy metals were studied. Competitive sorption of Cu, Pb and Cr in ternary system on montmorillonite followed the sequence of Cr≫Cu>Pb. Moreover, the competition was weakened by the increase of pH while was intensified by the increase of heavy metal concentration. The sorption of heavy metal on montmorillonite was inhibited by the presence of Ca and Mg, while Al and Fe showed different patterns in affecting heavy metal sorption. Aluminum and Fe generally inhibited the sorption of heavy metal when the pH and/or concentration of major elements were relatively low. However, promoting effects on heavy metal sorption by Al and Fe were found at relatively high pH and/or great concentration of major elements. The inhibition of major elements on heavy metal sorption generally followed the order of Al>Fe>Ca⩾Mg, while Fe was more efficient than Al in promoting the sorption of heavy metals. These findings are of fundamental significance for evaluating the mobility of heavy metals in polluted environments.

  8. Trigonal-bipyramidal and square-pyramidal chromium-manganese chalcogenide clusters, [E2CrMn2(CO)n](2-) (E=S, Se, Te; n=9, 10): synthesis, electrochemistry, UV/Vis absorption, and computational studies.

    PubMed

    Shieh, Minghuey; Yu, Chun-Hsien; Chu, Yen-Yi; Guo, Yu-Wen; Huang, Chung-Yi; Hsing, Kai-Jieah; Chen, Pei-Chi; Lee, Chung-Feng

    2013-05-01

    The reactions of E powder (E=S, Se) with a mixture of Cr(CO)6 and Mn2(CO)10 in concentrated solutions of KOH/MeOH produced two new mixed Cr-Mn-carbonyl clusters, [E2CrMn2(CO)9](2-) (E=S, 1; Se, 2). Clusters 1 and 2 were isostructural with one another and each displayed a trigonal-bipyramidal structure, with the CrMn2 triangle axially capped by two μ3-E atoms. The analogous telluride cluster, [Te2CrMn2(CO)9](2-) (3), was obtained from the ring-closure of Te2Mn2 ring complex [Te2Mn2Cr2(CO)18](2-) (4). Upon bubbling with CO, clusters 2 and 3 were readily converted into square-pyramidal clusters, [E2CrMn2(CO)10](2-) (E=Se, 5; Te, 6), accompanied with the cleavage of one Cr-Mn bond. According to SQUID analysis, cluster 6 was paramagnetic, with S=1 at room temperature; however, the Se analogue (5) was spectroscopically proposed to be diamagnetic, as verified by TD-DFT calculations. Cluster 6 could be further carbonylated, with cleavage of the Mn-Mn bond to produce a new arachno-cluster, [Te2CrMn2(CO)11](2-) (7). The formation and structural isomers, as well as electrochemistry and UV/Vis absorption, of these clusters were also elucidated by DFT calculations.

  9. Structural, magnetic, and superconducting properties of pulsed-laser-deposition-grown La<mn>1.85mn> Sr<mn>0.15mn> CuO>4mn> / La<mn>2mn>/>3mn> Ca<mn>1mn>/>3mn> MnO>3mn> superlattices on (001)-oriented LaSrAlO<mn>4mn> substrates

    SciTech Connect

    Das, S.; Sen, K.; Marozau, I.; Uribe-Laverde, M. A.; Biskup, N.; Varela, M.; Khaydukov, Y.; Soltwedel, O.; Keller, T.; Döbeli, M.; Schneider, C. W.; Bernhard, C.

    2014-03-12

    Epitaxial La<mn>1.85mn> Sr<mn>0.15mn> CuO>4mn> / La<mn>2mn>/>3mn> Ca<mn>1mn>/>3mn> MnO>3mn> (LSCO/LCMO) superlattices (SL) on (001)- oriented LaSrAlO4 substrates have been grown with pulsed laser deposition (PLD) technique. Their structural, magnetic and superconducting properties have been determined with in-situ reflection high energy electron diffraction (RHEED), x-ray diffraction, specular neutron reflectometry, scanning transmission electron microscopy (STEM), electric transport, and magnetization measurements. We find that despite the large mismatch between the in-plane lattice parameters of LSCO (a = 0.3779 nm) and LCMO (a = 0.387 nm) these superlattices can be grown epitaxially and with a high crystalline quality. While the first LSCO layer remains clamped to the LSAO substrate, a sizeable strain relaxation occurs already in the first LCMO layer. The following LSCO and LCMO layers adopt a nearly balanced state in which the tensile and compressive strain effects yield alternating in-plane lattice parameters with an almost constant average value. No major defects are observed in the LSCO layers, while a significant number of vertical antiphase boundaries are found in the LCMO layers. The LSCO layers remain superconducting with a relatively high superconducting onset temperature of Tconset ≈ 36 K. The macroscopic superconducting response is also evident in the magnetization data due to a weak diamagnetic signal below 10 K for H ∥ ab and a sizeable paramagnetic shift for H ∥ c that can be explained in terms of a vortex-pinning-induced flux compression. The LCMO layers maintain a

  10. Effect of the ITER FW Manufacturing Process on the Microstructure and Properties of a CuCrZr Alloy

    NASA Astrophysics Data System (ADS)

    Liu, Danhua; Wang, Pinghuai; Song, Yi; Li, Qian; Chen, Jiming

    2015-10-01

    The first wall (FW) is one of the core components in ITER. As the heat sink material, the CuCrZr alloy shall be properly jointed with beryllium and stainless steel. At present, the grains of CuCrZr are prone to coarsen seriously in the thermal cycle process of FW manufacturing, which has become a critical issue for ITER parties. To investigate the mirostructure and mechanical properties of the optimized CuCrZr alloy in the first wall fabricating thermal cycle, simulative experiments have been done in this study. The alloy ingot was forged and hot rolled into plates, and then solid solution annealed, cold rolled and aged for strengthening. Several heat treatments were done to the CuCrZr samples, and the changes of microstructure, micro-hardness and tensile strength were investigated. The results indicated that the original elongated grains had changed into equiaxed ones, and the vickers hardness had declined to about 60 after experiencing the process of CuCrZr/316L(N) bi-metallic plate manufacturing, either by hot isostatic pressing at a higher temperature or by explosion welding followed by solution annealing. Joining Be/CuCrZr by hot isostatic pressing acts as an aging process for CuCrZr, so after the simulated heat treatment, the hardness of the alloy increased to about 110 HV and the tensile yield strength at 250°C rose to about 170 MPa. Meanwhile, the average grain size was controlled below 200 μm. supported by the International Nuclear Thermonuclear Experimental Reactor (ITER) Specific Program of China (No. 2014GB126000)

  11. Ab-initio study of structural, elastic, thermal, electronic and magnetic properties of quaternary Heusler alloys CoMnCrZ (Z = Al, As, Si, Ge)

    NASA Astrophysics Data System (ADS)

    Mohamedi, Mohamed Walid; Chahed, Abbes; Amar, Amina; Rozale, Habib; Lakdja, Abdelaziz; Benhelal, Omar; Sayede, Adlane

    2016-12-01

    First-principles approach is used to study the structural, electronic and magnetic properties of CoMnCrZ (Z = Al, Si, Ge and As) quaternary Heusler compounds, using full-potential linearized augmented plane wave (FP-LAPW) scheme within the generalized gradient approximation (GGA). The computed equilibrium lattice parameters agree well with the available theoretical data. The obtained negative formation energy shows that CoMnCrZ (Z = Al, Si, Ge, As) compounds have strong structural stability. The elastic constants Cij are calculated using the total energy variation with strain technique. The polycrystalline elastic moduli (namely: the shear modulus, Young's modulus, Poisson's ratio, sound velocities, Debye temperature and melting temperature were derived from the obtained single-crystal elastic constants. The ductility mechanism for the studied compounds is discussed via the elastic constants Cij. Our calculations with the GGA approximation predict that CoMnCrGe, CoMnCrAl, CoMnCrSi and CoMnCrAs are half-metallic ferrimagnets (HMFs) with a half-metallic gap EHM of 0.03 eV, 0.19 eV, 0.34 eV and 0.50 eV for, respectively. We also find that the half-metallicity is maintained on a wide range of lattice constants.

  12. Visible Light-Induced Electron Transfer From Di-Mu-Oxo-Bridged Dinuclear Mn Complexes to Cr Centers in Silica Nanopores

    SciTech Connect

    Weare, W.W.; Pushkar, Y.; Yachandra, V.K.; Frei, H.

    2009-05-26

    The compound (bpy){sub 2}Mn{sup III}({mu}-O){sub 2}Mn{sup IV}(bpy){sub 2}, a structural model relevant for the photosynthetic water oxidation complex, was coupled to single Cr{sup VI} charge-transfer chromophores in the channels of the nanoporous oxide AlMCM-41. Mn K-edge EXAFS spectroscopy confirmed that the di-{mu}-oxo dinuclear Mn core of the complex is unaffected when loaded into the nanoscale pores. Observation of the 16-line EPR signal characteristic of Mn{sup III}({mu}-O){sub 2}Mn{sup IV} demonstrates that the majority of the loaded complexes retained their nascent oxidation state in the presence or absence of Cr{sup VI} centers. The FT-Raman spectrum upon visible light excitation of the Cr{sup VI}-O{sup II} {yields} Cr{sup V}-O{sup I} ligand-to-metal charge transfer reveals electron transfer from Mn{sup III}({mu}-O){sub 2}Mn{sup IV} (Mn-O stretch at 700 cm{sup -1}) to Cr{sup VI}, resulting in the formation of Cr{sup V} and Mn{sup IV}({mu}-O){sub 2}Mn{sup IV} (Mn-O stretch at 645 cm{sup -1}). All initial and final states are directly observed by FT-Raman or EPR spectroscopy, and the assignments are corroborated by X-ray absorption spectroscopy measurements. The endoergic charge separation products ({Delta}E{sub o} = -0.6 V) remain after several minutes, which points to spatial separation of Cr{sup V} and Mn{sup IV}({mu}-O){sub 2}Mn{sup IV} as a consequence of hole (O{sup I}) hopping as a major contributing mechanism. This is the first observation of visible light-induced oxidation of a potential water oxidation complex by a metal charge-transfer pump in a nanoporous environment. These findings will allow for the assembly and photochemical characterization of well-defined transition metal molecular units, with the ultimate goal of performing endothermic, multielectron transformations that are coupled to visible light electron pumps in nanostructured scaffolds.

  13. Overview spectra and axial distribution of spectral line intensities in a high-current vacuum arc with CuCr electrodes

    SciTech Connect

    Lisnyak, M.; Pipa, A. V.; Gorchakov, S. E-mail: weltmann@inp-greifswald.de; Iseni, S.; Franke, St.; Khapour, A.; Methling, R.; Weltmann, K.-D. E-mail: weltmann@inp-greifswald.de

    2015-09-28

    Spectroscopic investigations of free-burning vacuum arcs in diffuse mode with CuCr electrodes are presented. The experimental conditions of the investigated arc correspond to the typical system for vacuum circuit breakers. Spectra of six species Cu I, Cu II, Cu III, Cr I, Cr II, and Cr III have been analyzed in the wavelength range 350–810 nm. The axial intensity distributions were found to be strongly dependent on the ionization stage of radiating species. Emission distributions of Cr II and Cu II can be distinguished as well as the distributions of Cr III and Cu III. Information on the axial distribution was used to identify the spectra and for identification of overlapping spectral lines. The overview spectra and some spectral windows recorded with high resolution are presented. Analysis of axial distributions of emitted light, which originates from different ionization states, is presented and discussed.

  14. Relaxor-like dielectric response of spin liquid CuCrO{sub 2}

    SciTech Connect

    Mazumder, N. Roy, R.; Ghorai, U. K.; Saha, S.; Chattopadhyay, K. K.

    2014-04-24

    Broadband dielectric analysis (10{sup −2}-10{sup 7} Hz) of layered triangular lattice CuCrO{sub 2} is performed (123 K - 473 K) and analyzed in connection with recently observed spin frustration in this multiferroic [M. Poienar et al. Phys. Rev. B 81, 104411, (2010); M. Frontzek et al. Phys. Rev. B 84, 094448, (2011)]. Most unexpectedly, this well known delafossite has found to have nontrivial charge degrees of freedom, being characterized by a relaxor-like dielectric relaxation around 375 K with FWHM of ∼100K. The result strongly suggests the existence of intermolecular Coulomb interaction between charge disproportionation induced electric dipoles.

  15. Nanostructured Cu-Cr alloy with high strength and electrical conductivity

    SciTech Connect

    Islamgaliev, R. K. Nesterov, K. M.; Bourgon, J.; Champion, Y.; Valiev, R. Z.

    2014-05-21

    The influence of nanostructuring by high pressure torsion (HPT) on strength and electrical conductivity in the Cu-Cr alloy has been investigated. Microstructure of HPT samples was studied by transmission electron microscopy with special attention on precipitation of small chromium particles after various treatments. Effect of dynamic precipitation leading to enhancement of strength and electrical conductivity was observed. It is shown that nanostructuring leads to combination of high ultimate tensile strength of 790–840 MPa, enhanced electrical conductivity of 81%–85% IACS and thermal stability up to 500 °C. The contributions of grain refinement and precipitation to enhanced properties of nanostructured alloy are discussed.

  16. Raman spectroscopy of the superconductor CuCrO2 delafossite oxide

    NASA Astrophysics Data System (ADS)

    Monteiro, J. F. H. L.; Jurelo, A. R.; Siqueira, E. C.

    2017-02-01

    Polycrystalline CuCrO2 samples were successfully prepared by traditional solid-state reaction method and using self-combustion urea nitrate process. The crystal structure and the effect of the sample preparation on the Raman vibrational modes were systematically investigated. Raman spectra at room temperature were obtained with light focused on several points inside a single grain. Phonon modes allowed by symmetry were identified, besides of some additional lines. Significant differences in phonon modes between samples prepared by solid state reaction method and self-combustion urea nitrate process were observed.

  17. Observed And Modeled Seasonal Trends In Dissolved And Particulate Cu, Fe, Mn, And Zn In A Mining-Impacted Stream

    EPA Science Inventory

    North Fork Clear Creek (NFCC) in Colorado, an acid-mine drainage (AMD) impacted stream, was chosen to examine the distribution of dissolved and particulate Cu, Fe, Mn, and Zn in the water column, with respect to seasonal hydrologic controls. NFCC is a high-gradient stream with d...

  18. Distributions of dissolved trace metals (Cd, Cu, Mn, Pb, Ag) in the southeastern Atlantic and the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Boye, M.; Wake, B. D.; Lopez Garcia, P.; Bown, J.; Baker, A. R.; Achterberg, E. P.

    2012-08-01

    Comprehensive synoptic datasets (surface water down to 4000 m) of dissolved cadmium (Cd), copper (Cu), manganese (Mn), lead (Pb) and silver (Ag) are presented along a section between 34° S and 57° S in the southeastern Atlantic Ocean and the Southern Ocean to the south off South Africa. The vertical distributions of Cu and Ag display nutrient-like profiles similar to silicic acid, and of Cd similar to phosphate. The distribution of Mn shows a subsurface maximum in the oxygen minimum zone, whereas Pb concentrations are rather invariable with depth. Dry deposition of aerosols is thought to be an important source of Pb to surface waters close to South Africa, and dry deposition and snowfall may have been significant sources of Cu and Mn at the higher latitudes. Furthermore, the advection of water masses enriched in trace metals following contact with continental margins appeared to be an important source of trace elements to the surface, intermediate and deep waters in the southeastern Atlantic Ocean and the Antarctic Circumpolar Current. Hydrothermal inputs may have formed a source of trace metals to the deep waters over the Bouvet Triple Junction ridge crest, as suggested by relatively enhanced dissolved Mn concentrations. The biological utilization of Cu and Ag was proportional to that of silicic acid across the section, suggesting that diatoms formed an important control over the removal of Cu and Ag from surface waters. However, uptake by dino- and nano-flagellates may have influenced the distribution of Cu and Ag in the surface waters of the subtropical Atlantic domain. Cadmium correlated strongly with phosphate (P), yielding lower Cd / P ratios in the subtropical surface waters where phosphate concentrations were below 0.95 μM. The greater depletion of Cd relative to P observed in the Weddell Gyre compared to the Antarctic Circumpolar Current could be due to increase Cd uptake induced by iron-limiting conditions in these high-nutrient-low-chlorophyll waters

  19. Mechanisms controlling Cu, Fe, Mn, and Co profiles in peat of the Filson Creek Fen, northeastern Minnesota

    USGS Publications Warehouse

    Walton-Day, K.; Filipek, L.H.; Papp, C.S.E.

    1990-01-01

    Filson Creek Fen, located in northeastern Minnesota, overlies a Cu-Ni sulfide deposit. A site in the fen was studied to evaluate the hydrogeochemical mechanisms governing the development of Fe, Mn, Co, and Cu profiles in the peat. At the study site, surface peat approximately 1 m thick is separated from the underlying mineralized bedrock by a 6-12 m thickness of lake and glaciofluvial sediments and till. Concentrations of Fe, Mn, Co, and Cu in peat and major elements in pore water delineate a shallow, relatively oxidized, Cu-rich zone overlying a deeper, reduced, Fe-, Mn-, and Co-rich zone within the peat. Sequential metal extractions from peat samples reveal that 40-55% of the Cu in the shallow zone is associated with organic material, whereas the remaining Cu is distributed between iron-oxide, sulfide, and residual fractions. Sixty to seventy percent of the Fe, Mn, and Co concentrated in the deeper zone occur in the residual phase. The metal profiles and associations probably result from non-steady-state input of metals and detritus into the fen during formation of the peat column. The enrichment of organic-associated Cu in the upper, oxidized zone represents a combination of Cu transported into the fen with detrital plant fragments and soluble Cu, derived from weathering of outcrop and subcrop of the mineral deposit, transported into the fen, and fixed onto organic matter in the peat. The variable stratigraphy of the peat indicates that weathering processes and surface vegetation have changed through time in the fen. The Fe, Mn, and Co maxima at the base of the peat are associated with a maximum in detrital matter content of the peat resulting from a transition between the underlying inorganic sedimentary environment to an organic sedimentary environment. The chemistry of sediments and ground water collected beneath the peat indicate that mobilization of metals from sulfide minerals in the buried mineral deposit or glacial deposits is minimal. Therefore, the

  20. Ti(3+)-, V(2+/3+)-, Cr(2+/3+)-, Mn(2+)-, and Fe(2+)-substituted MOF-5 and redox reactivity in Cr- and Fe-MOF-5.

    PubMed

    Brozek, Carl K; Dincă, Mircea

    2013-08-28

    The metal nodes in metal-organic frameworks (MOFs) are known to act as Lewis acid catalysts, but few reports have explored their ability to mediate reactions that require electron transfer. The unique chemical environments at the nodes should facilitate unusual redox chemistry, but the difficulty in synthesizing MOFs with metal ions in reduced oxidation states has precluded such studies. Herein, we demonstrate that MZn3O(O2C-)6 clusters from Zn4O(1,4-benzenedicarboxylate)3 (MOF-5) serve as hosts for V(2+) and Ti(3+) ions and enable the synthesis of the first MOFs containing these reduced early metal ions, which can be accessed from MOF-5 by postsynthetic ion metathesis (PSIM). Additional MOF-5 analogues featuring Cr(2+), Cr(3+), Mn(2+), and Fe(2+) at the metal nodes can be obtained by similar postsynthetic methods and are reported here for the first time. The inserted metal ions are coordinated within an unusual all-oxygen trigonal ligand field and are accessible to both inner- and outer-sphere oxidants: Cr(2+)- converts into Cr(3+)-substituted MOF-5, while Fe(2+)-MOF-5 activates NO to produce an unusual Fe-nitrosyl complex.

  1. Stable Mn(2+), Cu(2+) and Ln(3+) complexes with cyclen-based ligands functionalized with picolinate pendant arms.

    PubMed

    Rodríguez-Rodríguez, Aurora; Garda, Zoltán; Ruscsák, Erika; Esteban-Gómez, David; de Blas, Andrés; Rodríguez-Blas, Teresa; Lima, Luís M P; Beyler, Maryline; Tripier, Raphaël; Tircsó, Gyula; Platas-Iglesias, Carlos

    2015-03-21

    In this study we present the results of the equilibrium, dissociation kinetics, DFT and X-ray crystallographic studies performed on the complexes of metal ions of biomedical importance (Mn(2+), Cu(2+) and Gd(3+)) formed with octadentate ligands based on a cyclen platform incorporating two picolinate pendant arms (dodpa(2-) and Medodpa(2-)). The stability constants of the complexes were accessed by multiple methods (pH-potentiometry, direct and competition UV-vis spectrophotometry and (1)H-relaxometry). The stability constants of the complexes formed with dodpa(2-) and Medodpa(2-) do not differ significantly (e.g. log K[Mn(dodpa)] = 17.40 vs. log K[Mn(Medodpa)] = 17.46, log K[Cu(dodpa)] = 24.34-25.17 vs. log K[Cu(Medodpa)] = 24.74 and log K[Gd(dodpa)](+) = 17.27 vs. log K[Gd(Medodpa)](+) = 17.59), which indicates that the steric hindrance brought by the methyl groups has no significant effect on the stability of the complexes. The stability constants of the Mn(2+) complexes formed with the cyclen dipicolinates were found to be ca. 3 log K units higher than those determined for the complex of the cyclen monopicolinate (dompa(-)), which indicates that the second picolinate moiety attached to the backbone of the macrocycle is very likely coordinated to the Mn(2+) ion. However, the stability of the [Cu(dodpa)] and [Cu(Medodpa)] complexes agrees well with the stability constant of [Cu(dompa)](+), in line with the hexadentate coordination around the metal ion observed in the X-ray structure of [Cu(Medodpa)]. The [Gd(dodpa)](+) and [Gd(Medodpa)](+) complexes display a fairly high kinetic inertness, as the rate constants of acid catalysed dissociation (k1 = 2.5(4) × 10(-3) and 8.3(4) × 10(-4) M(-1) s(-1) for [Gd(dodpa)](+) and [Gd(Medodpa)](+), respectively) are smaller than the value reported for [Gd(do3a)] (k1 = 2.5 × 10(-2) M(-1) s(-1)). The [Mn(dodpa)] complex was found to be more inert than [Mn(Medodpa)]. The results of the diffusion-ordered NMR

  2. An experimental investigation of innovative bridge columns with engineered cementitious composites and Cu-Al-Mn super-elastic alloys

    NASA Astrophysics Data System (ADS)

    Hosseini, F.; Gencturk, B.; Lahpour, S.; Ibague Gil, D.

    2015-08-01

    Recent strong earthquakes have shown that reinforced concrete (RC) bridge columns constructed using conventional materials and techniques suffer from major damage and permanent deformations. The yielding of the longitudinal reinforcement as the main source of energy absorption, and cracking and spalling of concrete results in a dysfunctional bridge structure that does not support the post-disaster recovery efforts. This paper investigates the use of engineered cementitious composites (ECCs) and Cu-Al-Mn super-elastic alloys (SEAs) to improve the performance of bridge columns under seismic loads. A new column design is proposed, which is composed of a pre-fabricated ECC tube that encompasses the longitudinal and transverse steel reinforcement (rebar). The rebar in the plastic hinge region of the cantilever columns was totally or partially replaced with Cu-Al-Mn SEA bars. The tube was filled with conventional concrete after it was placed inside the rebar cage of the foundation. ECC exhibits superior tensile ductility, bonding with steel, energy absorption and shear resistance, in addition to lower permeability and reduced crack widths compared to conventional concrete. Cu-Al-Mn SEA bars are capable of recovering large inelastic deformations exceeding 12% strain. The proposed approach capitalizes on the deformability of ECC with reduced damage, and the energy absorption capacity of Cu-Al-Mn SEA bars without permanent deformation. A total of six column specimens were constructed and tested under simulated seismic loading. The number of rebars replaced with Cu-Al-Mn SEA bars, ECC mixture design, and the ratio of the concrete core area to total column cross-sectional area were the variables investigated in the test program. A comparison of the results indicated that the proposed concept with no Cu-Al-Mn SEA bars provides higher lateral strength, similar energy absorption and reduced damage compared to conventional RC columns; however, similar to a conventional column, it

  3. Cu-Cr-Nb-Zr Alloy for Rocket Engines and Other High-Heat- Flux Applications

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2013-01-01

    Rocket-engine main combustion chamber liners are used to contain the burning of fuel and oxidizer and provide a stream of high-velocity gas for propulsion. The liners in engines such as the Space Shuttle Main Engine are regeneratively cooled by flowing fuel, e.g., cryogenic hydrogen, through cooling channels in the back side of the liner. The heat gained by the liner from the flame and compression of the gas in the throat section is transferred to the fuel by the liner. As a result, the liner must either have a very high thermal conductivity or a very high operating temperature. In addition to the large heat flux (>10 MW/sq m), the liners experience a very large thermal gradient, typically more than 500 C over 1 mm. The gradient produces thermally induced stresses and strains that cause low cycle fatigue (LCF). Typically, a liner will experience a strain differential in excess of 1% between the cooling channel and the hot wall. Each time the engine is fired, the liner undergoes an LCF cycle. The number of cycles can be as few as one for an expendable booster engine, to as many as several thousand for a reusable launch vehicle or reaction control system. Finally, the liners undergo creep and a form of mechanical degradation called thermal ratcheting that results in the bowing out of the cooling channel into the combustion chamber, and eventual failure of the liner. GRCop-84, a Cu-Cr-Nb alloy, is generally recognized as the best liner material available at the time of this reporting. The alloy consists of 14% Cr2Nb precipitates in a pure copper matrix. Through experimental work, it has been established that the Zr will not participate in the formation of Laves phase precipitates with Cr and Nb, but will instead react with Cu to form the desired Cu-Zr compounds. It is believed that significant improvements in the mechanical properties of GRCop-84 will be realized by adding Zr. The innovation is a Cu-Cr-Nb-Zr alloy covering the composition range of 0.8 to 8.1 weight

  4. The content of Ca, Cu, Fe, Mg and Mn and antioxidant activity of green coffee brews.

    PubMed

    Stelmach, Ewelina; Pohl, Pawel; Szymczycha-Madeja, Anna

    2015-09-01

    A simple and fast method of the analysis of green coffee infusions was developed to measure total concentrations of Ca, Cu, Fe, Mg and Mn by high resolution-continuum source flame atomic absorption spectrometry. The precision of the method was within 1-8%, while the accuracy was within -1% to 2%. The method was used to the analysis of infusions of twelve green coffees of different geographical origin. It was found that Ca and Mg were leached the easiest, i.e., on average 75% and 70%, respectively. As compared to the mug coffee preparation, the rate of the extraction of elements was increased when infusions were prepared using dripper or Turkish coffee preparation methods. Additionally, it was established that the antioxidant activity of green coffee infusions prepared using the mug coffee preparation was high, 75% on average, and positively correlated with the total content of phenolic compounds and the concentration of Ca in the brew.

  5. Elastocaloric and magnetocaloric effects in Ni-Mn-Sn(Cu) shape-memory alloy

    NASA Astrophysics Data System (ADS)

    Castillo-Villa, Pedro O.; Mañosa, Lluís; Planes, Antoni; Soto-Parra, Daniel E.; Sánchez-Llamazares, J. L.; Flores-Zúñiga, H.; Frontera, Carlos

    2013-02-01

    We have studied magnetocaloric and elastocaloric properties of a Ni-Mn-Sn(Cu) metamagnetic shape-memory alloy undergoing a magneto-structural transition (martensitic type) close to room temperature. Changes of entropy have been induced by isothermally applying both mechanical (uniaxial stress) and magnetic fields. These entropy changes have been, respectively, estimated from dilatometric measurements giving the length of the sample as a function of temperature at selected applied forces and magnetic fields and from magnetization measurements as a function of temperature at selected applied magnetic fields. Our results indicate that the elastocaloric effect is conventional and occurs in two steps which reflect the interplay between the martensitic and the incipient magnetic transitions. By contrast, the magnetocaloric effect is inverse and occurs in a single step that encompasses the effect arising from both transitions.

  6. Development of mechanical stress in CuNi(Mn) films during temperature ramping: Related mechanisms

    SciTech Connect

    Brueckner, W.; Baunack, S.; Pitschke, W.; Thomas, J.

    1998-12-31

    This paper focuses on the development of biaxial stress in Cu{sub 0.57}Ni{sub 0.42}Mn{sub 0.01} thin films during annealing in Ar and, for comparison, in vacuum. Besides stress-temperature measurements also resistance-temperature investigations as well as chemical and microstructural characterization by Auger electron spectroscopy, scanning and transmission electron microscopy, and X-ray diffraction were carried out. To explain the stress evolution, atomic rearrangement (excess-vacancy annihilation, grain-boundary relaxation, and shrinkage of grain-boundary voids) and oxidation were considered. Up to 250--300 C grain-boundary relaxation was found to be the dominating process. A sharp transition from compressive to tensile stress between 300 C and 380 C is explained by the formation of a NiO surface layer.

  7. Photocatalytic removal of M(2+) (Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+) and Ag(+)) over new catalyst CuCrO(2).

    PubMed

    Ketir, W; Bouguelia, A; Trari, M

    2008-10-30

    The metal ions M(2+) (Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+) and Ag(+)) are potentially toxic. Their electro deposition has been carried out in aqueous air-equilibrated CuCrO(2) suspension upon visible illumination. The delafossite CuCrO(2) is p-type semiconductor characterized by a low band gap (1.28 eV) and a long-term chemical stability. The corrosion rate is found to be 10(-2) micromol m(-2)month(-1) in aqua regia. The oxide has been elaborated through nitrate route where the specific surface area is increased via the surface/bulk ratio. A correlation exists between the dark M(2+) adsorption, the redox potential of M(2+/0) couple and the conduction band of CuCrO(2) positioned at -1.06 V(SCE). Ag(+) cannot be photoreduced because of its positive potential located far above the valence band. By contrast, Zn(2+) is efficiently deposited due to the large driving force at the interface. The improved photoactivity of copper with a deposition percentage (90%) is attributed to the strong dark adsorption onto the surface catalyst. The results indicate a competitive effect with the water reduction; it has been observed that the M(2+) deposition goes parallel with the hydrogen evolution. Such behavior is attributed to the low H(2) over voltage when ultra fine aggregate of M islands are photodeposited onto CuCrO(2) substrate.

  8. Electric, magnetic, and thermo-electric properties of Cr doped La0.8Ca0.2Mn1-xCrxMnO3 manganites

    NASA Astrophysics Data System (ADS)

    Manjunatha, S. O.; Rao, Ashok; Babu, P. D.; Chand, Tara; Okram, G. S.

    2016-07-01

    A detailed study of the structural, magnetic, magneto-transport and thermoelectric properties of polycrystalline La0.8Ca0.2Mn1-xCrxMnO3 (0Cr-content, both TMI and TC are observed to decrease. The electrical resistivity data is analyzed using different theoretical models at various regions viz., metallic, insulating and percolation region. Analysis in the metallic region (TTMI) is well described using SPH model. However, the resistivity data in the whole temperature range is analyzed using a phenomenological model based on phase segregation of ferromagnetic metallic and paramagnetic insulating regions. Thermoelectric power, S measurements were performed to understand the conduction mechanism and to ascertain the types of charge carrier responsible for conduction. It is observed that pristine as well as Cr-doped compounds show positive value of S which demonstrates that the charge carriers are holes.

  9. Sequential electrokinetic treatment and oxalic acid extraction for the removal of Cu, Cr and As from wood.

    PubMed

    Isosaari, Pirjo; Marjavaara, Pieti; Lehmus, Eila

    2010-10-15

    Removal of Cu, Cr and As from utility poles treated with chromated copper arsenate (CCA) was investigated using different one- to three-step combinations of oxalic acid extraction and electrokinetic treatment. The experiments were carried out at room temperature, using 0.8% oxalic acid and 30 V (200 V/m) of direct current (DC) or alternating current in combination (DC/AC). Six-hour extraction removed only 15%, 11% and 28% and 7-day electrokinetic treatment 57%, 0% and 17% of Cu, Cr and As from wood chips, respectively. The best combination for all the metals was a three-step process consisting of pre-extraction, electrokinetics and post-extraction steps, yielding removals of 67% for Cu, 64% for Cr and 81% for As. Oxalic acid extraction prior to electrokinetic treatment was deleterious to further removal of Cu, but it was necessary for Cr and As removal. Chemical equilibrium modelling was used to explain the differences in the behaviour of Cu, Cr and As. Due to the dissimilar nature of these metals, it appeared that even more process sequences and/or stricter control of the process conditions would be needed to obtain the >99% removals required for safe recycling of the purified wood material.

  10. Surface topography and roughness of high-speed milled AlMn1Cu

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhua; Yuan, Juntang; Yin, Zengbin; Hu, Xiaoqiu

    2016-10-01

    The aluminum alloy AlMn1Cu has been broadly applied for functional parts production because of its good properties. But few researches about the machining mechanism and the surface roughness were reported. The high-speed milling experiments are carried out in order to improve the machining quality and reveal the machining mechanism. The typical topography features of machined surface are observed by scan electron microscope(SEM). The results show that the milled surface topography is mainly characterized by the plastic shearing deformation surface and material piling zone. The material flows plastically along the end cutting edge of the flat-end milling tool and meanwhile is extruded by the end cutting edge, resulting in that materials partly adhere to the machined surface and form the material piling zone. As the depth of cut and the feed per tooth increase, the plastic flow of materials is strengthened and the machined surface becomes rougher. However, as the cutting speed increases, the plastic flow of materials is weakened and the milled surface becomes smoother. The cutting parameters (e.g. cutting speed, feed per tooth and depth of cut) influencing the surface roughness are analyzed. It can be concluded that the roughness of the machined surface formed by the end cutting edge is less than that by the cylindrical cutting edge when a cylindrical flat-end mill tool is used for milling. The proposed research provides the typical topography features of machined surface of the anti-rust aluminum alloy AlMn1Cu in high speed milling.

  11. Selective nonenzymatic bilirubin detection in blood samples using a Nafion/Mn-Cu sensor.

    PubMed

    Noh, Hui-Bog; Won, Mi-Sook; Shim, Yoon-Bo

    2014-11-15

    The specific detection of biological organics without the use of an enzyme is challenging, and it is crucial for analytical and clinical chemistry. We report specific nonenzymatic bilirubin detection through the catalytic oxidation of bilirubin molecule on the Nafion/Mn-Cu surface. The catalytic ability, true surface area, morphology, crystallinity, composition, and oxidation state of the sensor surface were assessed using voltammetry, coulometry, XPS, XRD, Brunauer-Emmett-Teller (BET), SEM, EDXS, and TOF-SIMS experiments. The results showed that the surface was composed of microporous Mn-Cu bimetallic crystal in flake shape with a large BET surface area (3.635 m(2)g(-1)), where the surface area and crystallinity mainly affected the sensor performance. Product analysis of the catalytic reaction on the sensor probe revealed a specific two-electron oxidation of dipyrromethane moiety to dipyrromethene in the bilirubin molecule. Experimental variables affecting the analysis of bilirubin were optimized in terms of probe composition, temperature, pH, and potential. At the optimized condition, the dynamic range was between 1.2 μM and 0.42 mM, which yielded the equation of ΔI (μA)=(1.03 ± 0.72)+(457.0 ± 4.03) [C] (mM) with 0.999 of correlation coefficient, and the detection limit was 25.0 ± 1.8 nM (n=5, k=3). The stability test, interference effects, and analysis of real clinical samples, human whole blood and certified serum samples were demonstrated to confirm the reliability of the proposed bilirubin sensor.

  12. Adsorption of Cu2+ ions using chitosan-modified magnetic Mn ferrite nanoparticles synthesized by microwave-assisted hydrothermal method

    NASA Astrophysics Data System (ADS)

    Meng, Yuying; Chen, Deyang; Sun, Yitao; Jiao, Dongling; Zeng, Dechang; Liu, Zhongwu

    2015-01-01

    Chitosan-modified Mn ferrite nanoparticles were synthesized by a one-step microwave-assisted hydrothermal method. These Mn ferrite magnetic composite nanoparticles were employed to absorb Cu2+ ions in water. XRD verified the spinel structure of the MnFe2O4 nanoparticles. Chitosan modification does not result in any phase change of MnFe2O4. FTIR and zeta potentials curves for all samples suggest that chitosan can be successfully coated on the Mn ferrites. TEM characterization showed that the modified MnFe2O4 nanoparticles have a cubic shape with a mean diameter of ∼100 nm. For adsorption behavior, the effects of experiment parameters such as solution pH value, contact time and initial Cu2+ ions concentration on the adsorption efficiency were systematically investigated. The results showed that increasing solution pH value and extending contact time are favorable for improving adsorption efficiency. Especially, adsorption efficiency can reach up to 100% and 96.7% after 500 min adsorption at pH 6.5 for the solutions with initial Cu2+ ions concentration of 50 mg/L and 100 mg/L. Adsorption data fits well with the Langmuir isotherm models with a maximum adsorption capacity (qm) and a Langmuir adsorption equilibrium constant (K) of 65.1 mg/g and 0.090 L/mg, respectively. The adsorption kinetic agrees well with pseudo second order model with the pseudo second rate constants (K2) of 0.0468 and 0.00189 g/mg/min for solutions with initial Cu2+ ions of 50 and 100 mg/L, respectively.

  13. Facile preparation of magnetic mesoporous MnFe2O4@SiO2-CTAB composites for Cr(VI) adsorption and reduction.

    PubMed

    Li, Na; Fu, Fenglian; Lu, Jianwei; Ding, Zecong; Tang, Bing; Pang, Jiabin

    2017-01-01

    Chromium-contaminated water is regarded as one of the biggest threats to human health. In this study, a novel magnetic mesoporous MnFe2O4@SiO2-CTAB composite was prepared by a facile one-step modification method and applied to remove Cr(VI). X-ray diffraction, scanning electron microscopy, transmission electron microscopy, specific surface area, and vibrating sample magnetometer were used to characterize MnFe2O4@SiO2-CTAB composites. The morphology analysis showed that the composites displayed a core-shell structure. The outer shell was mesoporous silica with CTAB and the core was MnFe2O4 nanoparticles, which ensured the easy separation by an external magnetic field. The performance of MnFe2O4@SiO2-CTAB composites in Cr(VI) removal was far better than that of bare MnFe2O4 nanoparticles. There were two reasons for the effective removal of Cr(VI) by MnFe2O4@SiO2-CTAB composites: (1) mesoporous silica shell with abundant CTA(+) significantly enhanced the Cr(VI) adsorption capacity of the composites; (2) a portion of Cr(VI) was reduced to less toxic Cr(III) by MnFe2O4, followed by Cr(III) immobilized on MnFe2O4@SiO2-CTAB composites, which had been demonstrated by X-ray photoelectron spectroscopy results. The adsorption of Cr(VI) onto MnFe2O4@SiO2-CTAB followed the Freundlich isotherm model and pseudo-second-order model. Tests on the regeneration and reuse of the composites were performed. The removal efficiency of Cr(VI) still retained 92.4% in the sixth cycle. MnFe2O4@SiO2-CTAB composites exhibited a great potential for the removal of Cr(VI) from water.

  14. Effect of Cu doping on room temperature ferromagnetic behavior of Mn doped LiNbO3 films

    NASA Astrophysics Data System (ADS)

    Bu, Dechong; Fu, Yuting; Sun, Ning; Li, Chunjing; Li, Yanghua; An, Yukai; Liu, Jiwen

    2016-11-01

    Cu and Mn co-doped LiNbO3 films were deposited on Si (111) substrates by rf-magnetron sputtering. XRD shows a randomly oriented polycrystalline R3C structure of LiNbO3 was formed in the films annealed at 1000 °C for 1 h in air. XPS and XAFS determine that Mn2+ substitutes on the Li site with a Li vacancy and Cu2+ substitutes on the Nb site with an oxygen vacancy in the LiNbO3 lattice. SQUID measurements indicate that all the films exhibit room temperature ferromagnetism, attributed to a strong d-d electron interaction between Mn and Nb and the bound magnetic polarons resulting from the oxygen vacancies. The saturated magnetization increases but the atom magnetic moment decreases with increasing Cu content in the films. The drop of the atom magnetic moment may arise from the antiferromagnetic coupling among adjacent Cu ions and an antiparallel configuration between Cu2+ ions and their trapped electrons.

  15. Influence of the thermodynamic parameters on the temper embrittlement of SA508 Gr.4N Ni-Cr-Mo low alloy steel with variation of Ni, Cr and Mn contents

    NASA Astrophysics Data System (ADS)

    Park, Sang-Gyu; Lee, Ki-Hyoung; Min, Ki-Deuk; Kim, Min-Chul; Lee, Bong-Sang

    2012-07-01

    It is well known that SA508 Gr.4N low alloy steel offers improved fracture toughness and strength compared to commercial low alloy steels such as SA508 Gr.3 Mn-Mo-Ni low alloy steel. In this study, the effects of Cr, Mn, and Ni on temper embrittlement in SA508 Gr.4N low alloy steel were evaluated from the viewpoint of thermodynamic parameters such as P diffusivity and C activity. The changes of the ductile-brittle transition temperatures before and after aging were correlated with varying alloying element content, and the diffusivity of P and the activity of C were calculated and correlated with the transition behaviors. The addition of Ni, Cr, and Mn reduce the resistance to temper embrittlement, showing increased Transition-Temperature Shift (TTS) and an increased fraction of intergranular fracture. Although the diffusivity of P is changed by the addition of alloying elements, it does not considerably affect the temper embrittlement. The Mn and Cr content in the matrix significantly reduce the C activity, with showing an inversely proportional relationship to TTS. The change of susceptibility to temper embrittlement caused by Cr and Mn addition could be explained by the variation of C activity. Unlike Cr and Mn, Ni has little effect on the temper embrittlement and C activity.

  16. Investigating half-metallicity in PtXSb alloys (X=V, Mn, Cr, Co) at ambient and high pressure

    NASA Astrophysics Data System (ADS)

    Habbak, Enas L.; Shabara, Reham M.; Aly, Samy H.; Yehia, Sherif

    2016-08-01

    The structural, electronic, magnetic and elastic properties of half-Heusler alloys PtMnSb, PtVSb, PtCrSb and PtCoSb are investigated using first-principles calculation based on Density Functional Theory DFT. The Full Potential local Orbital (FPLO) method, within the General Gradient Approximation (GGA) and Local Spin Density Approximation (LSDA), have been used. The calculated structural, electronic and magnetic properties are in good agreement with available experimental and theoretical data. Using GGA approximation, only PtVSb shows a half-metallic behavior with a spin-down band gap and total magnetic moment of 0.802 eV and 2 μB respectively. Both of PtVSb and PtMnSb alloys are half-metallic with spin-down band gaps of 0.925 eV and 0.832 eV and magnetic moments of 2 μB and 4 μB respectively using LSDA approximation. The bulk modulus and its first pressure-derivative of these alloys are calculated using the modified Birch-Murnaghan equation of state (EOS). The effect of pressure on the lattice constant, energy gap and bulk modulus is investigated. Under pressure, PtMnSb and PtCrSb turn into half-metallic alloys at nearly 6 GPa and 27 GPa respectively using GGA approximation.

  17. Ultra-robust high-field magnetization plateau and supersolidity in bond-frustrated MnCr2S4

    PubMed Central

    Tsurkan, Vladimir; Zherlitsyn, Sergei; Prodan, Lilian; Felea, Viorel; Cong, Pham Thanh; Skourski, Yurii; Wang, Zhe; Deisenhofer, Joachim; von Nidda, Hans-Albrecht Krug; Wosnitza, Joahim; Loidl, Alois

    2017-01-01

    Frustrated magnets provide a promising avenue for realizing exotic quantum states of matter, such as spin liquids and spin ice or complex spin molecules. Under an external magnetic field, frustrated magnets can exhibit fractional magnetization plateaus related to definite spin patterns stabilized by field-induced lattice distortions. Magnetization and ultrasound experiments in MnCr2S4 up to 60 T reveal two fascinating features: (i) an extremely robust magnetization plateau with an unusual spin structure and (ii) two intermediate phases, indicating possible realizations of supersolid phases. The magnetization plateau characterizes fully polarized chromium moments, without any contributions from manganese spins. At 40 T, the middle of the plateau, a regime evolves, where sound waves propagate almost without dissipation. The external magnetic field exactly compensates the Cr–Mn exchange field and decouples Mn and Cr sublattices. In analogy to predictions of quantum lattice-gas models, the changes of the spin order of the manganese ions at the phase boundaries of the magnetization plateau are interpreted as transitions to supersolid phases. PMID:28345038

  18. Atomic displacement in the CrMnFeCoNi high-entropy alloy - A scaling factor to predict solid solution strengthening

    NASA Astrophysics Data System (ADS)

    Okamoto, Norihiko L.; Yuge, Koretaka; Tanaka, Katsushi; Inui, Haruyuki; George, Easo P.

    2016-12-01

    Although metals strengthened by alloying have been used for millennia, models to quantify solid solution strengthening (SSS) were first proposed scarcely seventy years ago. Early models could predict the strengths of only simple alloys such as dilute binaries and not those of compositionally complex alloys because of the difficulty of calculating dislocation-solute interaction energies. Recently, models and theories of SSS have been proposed to tackle complex high-entropy alloys (HEAs). Here we show that the strength at 0 K of a prototypical HEA, CrMnFeCoNi, can be scaled and predicted using the root-mean-square atomic displacement, which can be deduced from X-ray diffraction and first-principles calculations as the isotropic atomic displacement parameter, that is, the average displacements of the constituent atoms from regular lattice positions. We show that our approach can be applied successfully to rationalize SSS in FeCoNi, MnFeCoNi, MnCoNi, MnFeNi, CrCoNi, CrFeCoNi, and CrMnCoNi, which are all medium-entropy subsets of the CrMnFeCoNi HEA.

  19. Monazite-type SrCrO<mn>4mn> under compression

    SciTech Connect

    Gleissner, J.; Errandonea, Daniel; Segura, A.; Pellicer-Porres, J.; Hakeem, M. A.; Proctor, J. E.; Raju, S. V.; Kumar, R. S.; Rodríguez-Hernández, P.; Munoz, A.; Lopez-Moreno, S.; Bettinelli, M.

    2016-10-20

    We report a high-pressure study of monoclinic monazite-type SrCrO4 up to 26 GPa. Therein we combined x-ray diffraction, Raman, and optical-absorption measurements with ab initio calculations, to find a pressure-induced structural phase transition of SrCrO4 near 8-9 GPa. Evidence of a second phase transition was observed at 10-13 GPa. The crystal structures of the high-pressure phases were assigned to the tetragonal scheelite-type and monoclinic AgMnO4-type structures. Both transitions produce drastic changes in the electronic band gap and phonon spectrum of SrCrO4. We determined the pressure evolution of the band gap for the low- and high-pressure phases as well as the frequencies and pressure dependencies of the Raman-active modes. In all three phases most Raman modes harden under compression, however the presence of low-frequency modes which gradually soften is also detected. In monazite-type SrCrO4, the band gap blueshifts under compression, but the transition to the scheelite phase causes an abrupt decrease of the band gap in SrCrO4. Calculations showed good agreement with experiments and were used to better understand the experimental results. From x-ray-diffraction studies and calculations we determined the pressure dependence of the unit-cell parameters of the different phases and their ambient-temperature equations of state. The results are compared with the high-pressure behavior of other monazites, in particular PbCrO4. A comparison of the high-pressure behavior of the electronic properties of SrCrO4 (SrWO4) and PbCrO4 (PbWO4) will also be made. Lastly, the possible occurrence of a third structural phase transition is discussed.

  20. Role of W and Mn for reliable 1X nanometer-node ultra-large-scale integration Cu interconnects proved by atom probe tomography

    SciTech Connect

    Shima, K.; Shimizu, H.; Momose, T.; Shimogaki, Y.; Tu, Y.; Takamizawa, H.; Shimizu, Y.; Inoue, K.; Nagai, Y.

    2014-09-29

    We used atom probe tomography (APT) to study the use of a Cu(Mn) as a seed layer of Cu, and a Co(W) single-layer as reliable Cu diffusion barriers for future interconnects in ultra-large-scale integration. The use of Co(W) layer enhances adhesion of Cu to prevent electromigration and stress-induced voiding failures. The use of Cu(Mn) as seed layer may enhance the diffusion barrier performance of Co(W) by stuffing the Cu diffusion pass with Mn. APT was used to visualize the distribution of W and Mn in three dimensions with sub-nanometer resolution. W was found to segregate at the grain boundaries of Co, which prevents diffusion of Cu via the grain boundaries. Mn was found to diffuse from the Cu(Mn) layer to Co(W) layer and selectively segregate at the Co(W) grain boundaries with W, reinforcing the barrier properties of Co(W) layer. Hence, a Co(W) barrier coupled with a Cu(Mn) seed layer can form a sufficient diffusion barrier with film that is less than 2.0-nm-thick. The diffusion barrier behavior was preserved following a 1-h annealing at 400 °C. The underlayer of the Cu interconnects requires a large adhesion strength with the Cu, as well as low electrical resistivity. The use of Co(W) has previously been shown to satisfy these requirements, and addition of Mn is not expected to deteriorate these properties.

  1. Hot Deformation Characteristics and Processing Maps of the Cu-Cr-Zr-Ag Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Chai, Zhe; Volinsky, Alex A.; Sun, Huili; Tian, Baohong; Liu, Ping; Liu, Yong

    2016-03-01

    The hot deformation behavior of the Cu-Cr-Zr-Ag alloy has been investigated by hot compressive tests in the 650-950 °C temperature and 0.001-10 s-1 strain rate ranges using Gleeble-1500D thermo-mechanical simulator. The microstructure evolution of the alloy during deformation was characterized using optical and transmission electron microscopy. The flow stress decreases with the deformation temperature and increases with the strain rate. The apparent activation energy for hot deformation of the alloy was 343.23 kJ/mol. The constitutive equation of the alloy based on the hyperbolic-sine equation was established to characterize the flow stress as a function of the strain rate and the deformation temperature. The processing maps were established based on the dynamic material model. The optimal processing parameters for hot deformation of the Cu-Cr-Zr-Ag alloy are 900-950 °C and 0.001-0.1 s-1 strain rate. The evolution of DRX microstructure strongly depends on the deformation temperature and the strain rate.

  2. Dynamic recrystallization behavior and processing map of the Cu-Cr-Zr-Nd alloy.

    PubMed

    Zhang, Yi; Sun, Huili; Volinsky, Alex A; Tian, Baohong; Song, Kexing; Chai, Zhe; Liu, Ping; Liu, Yong

    2016-01-01

    Hot deformation behavior of the Cu-Cr-Zr-Nd alloy was studied by hot compressive tests in the temperature range of 650-950 °C and the strain rate range of 0.001-10 s(-1) using Gleeble-1500D thermo-mechanical simulator. The results showed that the flow stress is strongly dependent on the deformation temperature and the strain rate. With the increase of temperature or the decrease of strain rate, the flow stress significantly decreases. Hot activation energy of the alloy is about 404.84 kJ/mol and the constitutive equation of the alloy based on the hyperbolic-sine equation was established. Based on the dynamic material model, the processing map was established to optimize the deformation parameters. The optimal processing parameters for the Cu-Cr-Zr-Nd alloy hot working are in the temperature range of 900-950 °C and strain rate range of 0.1-1 s(-1). A full dynamic recrystallization structure with fine and homogeneous grain size can be obtained at optimal processing conditions. The microstructure of specimens deformed at different conditions was analyzed and connected with the processing map. The surface fracture was observed to identify instability conditions.

  3. Effect of decomposition of the Cr-Fe-Co rich phase of AlCoCrCuFeNi high entropy alloy on magnetic properties.

    PubMed

    Singh, S; Wanderka, N; Kiefer, K; Siemensmeyer, K; Banhart, J

    2011-05-01

    Splat-quenched, as-cast and aged (2h at 600 °C after casting) AlCoCrCuFeNi high entropy alloys were investigated by means of transmission electron microscopy and three-dimensional atom probe (3D-AP). 3D-AP revealed anti-correlated fluctuations of the Cr and Fe-Co compositions in Cr-Fe-Co-rich regions of the as-cast alloy. The ferromagnetic behavior of AlCoCrCuFeNi high entropy alloy was correlated with the decomposition of the Cr-Fe-Co-rich regions into ferromagnetic Fe-Co-rich and antiferromagnetic Cr-rich domains, the size of which was determined by statistical analysis of 3D-AP data. The splat-quenched alloy showed a softer magnetic behavior as compared to the as-cast and aged alloys. The aged alloy possessed a higher saturation magnetization and coercivity as compared to the as-cast alloy.

  4. FeMn/Fe/Co/Cu(1,1,10) films studied using the magneto-optic Kerr effect and photoemission electron microscopy

    SciTech Connect

    Meng, Y.; Li, J.; Tan, A.; Park, J.; Jin, E.; Son, H.; Doran, A.; Scholl, A.; Arenholz, E.; Zhao, H. W.; Hwang, Chanyong; Qiu, Z. Q.

    2011-07-31

    FeMn/Fe/Co/Cu(1,1,10) films were grown epitaxially and investigated using the magneto-optic Kerr effect and photoemission electron microscopy. We found that FeMn/Fe/Co/Cu(1,1,10) exhibits the same properties as FeMn/Co/Cu(1,1,10) for the ferromagnetic phase of the face centered cubic (fcc) Fe film but a different property for the non-ferromagnetic phase of the fcc Fe film. This result indicates that the characteristic property reported in the literature for FeMn/Co/Cu(001) comes from the FeMn spin structure and is independent of the ferromagnetic layer.

  5. Investigations of the electronic and magnetic structures of Co{sub 2}YGa (Y=Cr, Mn) Heusler alloys and their (100) surfaces

    SciTech Connect

    Hamad, Bothina

    2014-03-21

    Density functional theory calculations are performed to investigate the structural, electronic, and magnetic properties of bulk structures of Co{sub 2}YGa (Y = Cr, Mn) Heusler alloys and the surfaces along the (100) orientation. The bulk structures of both alloys show a ferromagnetic behavior with total magnetic moments of 3.03μ{sub B} and 4.09μ{sub B} and high spin polarizations of 99% and 67% for Co{sub 2}CrGa and Co{sub 2}MnGa, respectively. The surfaces are found to exhibit corrugations due to different relaxations of the surface atoms. For the case of Co{sub 2}CrGa, two surfaces preserve the half metallicity, namely those with Cr-Ga and Ga– terminations with high spin polarizations above 90%, whereas it dropped to about 50% for the other surfaces. However, the spin polarizations of Co-Co and Mn-Ga terminated surfaces remain close to that of bulk Co{sub 2}MnGa alloy, whereas it is suppressed down to 17% for Co– termination. The highest local magnetic moments are found to be 3.26 μ{sub B} and 4.11 μ{sub B} for Cr and Mn surface atoms in Cr-Ga and Mn– terminated surfaces, respectively.

  6. Direct catalytic oxyamination of benzene to aniline over Cu(II) nanoclusters supported on CuCr2O4 spinel nanoparticles via simultaneous activation of C-H and N-H bonds.

    PubMed

    Acharyya, Shankha S; Ghosh, Shilpi; Bal, Rajaram

    2014-11-11

    We report the facile synthesis of a highly efficient, reusable catalyst comprising Cu(II) nanoclusters supported on CuCr2O4 spinel nanoparticles for the oxyamination of benzene to aniline (H2O2 + NH3) under mild aqueous reaction conditions. The synergy between the Cu(II) nanoclusters and CuCr2O4 spinel nanoparticles plays the most vital role towards its high catalytic activity.

  7. Dephasing of conduction electrons by magnetic impurities in Cu/Ni and Cu/Cr samples: Influence of spin-glass transition on the superconducting proximity effect

    NASA Astrophysics Data System (ADS)

    Sosnin, I.; Nugent, P.; Zou, J.; Petrashov, V. T.; Volkov, A. F.

    2006-07-01

    The dependence of the superconducting proximity effect on the amount of magnetic impurities in the normal part of Andreev interferometers has been studied experimentally. The dephasing rates obtained from fitting experimental data to quasiclassical theory of the proximity effect are consistent with the spin flip scattering from Cr impurities forming a local moment in the Cu host. In contrast, Ni impurities do not form a local moment in Cu and as a result there is no extra dephasing from Ni as long as Cu/Ni alloy remain paramagnetic.

  8. Residual Stresses in Thermal Barrier Coatings for a Cu-8Cr-4Nb Substrate System

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Raj, Sai V.

    2002-01-01

    Analytical calculations were conducted to determine the thermal stresses developed in a coated copper-based alloy, Cu-8%(at.%)Cr-4%Nb (designated as GRCop-84), after plasma spraying and during heat-up in a simulated rocket engine environment. Finite element analyses were conducted for two coating systems consisting of a metallic top coat, a pure copper bond coat and the GRCop-84. The through thickness temperature variations were determined as a function of coating thickness for two metallic coatings, a Ni-17%(wt%)Cr-6%Al-0.5%Y alloy and a Ni-50%(at.%)Al alloy. The residual stresses after low-pressure plasma spraying of the NiCrAlY and NiAl coatings on GRCop-84 substrate were also evaluated. These analyses took into consideration a 50.8 mm copper bond coat and the effects of an interface coating roughness. The through the thickness thermal stresses developed in coated liners were also calculated after 15 minutes of exposure in a rocket environment with and without an interfacial roughness.

  9. Spin resolved photoelectron spectroscopy of [Mn6(III)Cr(III)]3+ single-molecule magnets and of manganese compounds as reference layers.

    PubMed

    Helmstedt, Andreas; Müller, Norbert; Gryzia, Aaron; Dohmeier, Niklas; Brechling, Armin; Sacher, Marc D; Heinzmann, Ulrich; Hoeke, Veronika; Krickemeyer, Erich; Glaser, Thorsten; Bouvron, Samuel; Fonin, Mikhail; Neumann, Manfred

    2011-07-06

    Properties of the manganese-based single-molecule magnet [Mn(6)(III)Cr(III)](3+) are studied. It contains six Mn(III) ions arranged in two bowl-shaped trinuclear triplesalen building blocks linked by a hexacyanochromate and exhibits a large spin ground state of S(t) = 21/2. The dominant structures in the electron emission spectra of [Mn(6)(III)Cr(III)](3+) resonantly excited at the L(3)-edge are the L(3)M(2, 3)M(2, 3), L(3)M(2, 3)V and L(3)VV Auger emission groups following the decay of the primary p(3/2) core hole state. Significant differences of the Auger spectra from intact and degraded [Mn(6)(III)Cr(III)](3+) show up. First measurements of the electron spin polarization in the L(3)M(2, 3)V and L(3)VV Auger emission peaks from the manganese constituents in [Mn(6)(III)Cr(III)](3+) resonantly excited at the L(3)-edge near 640 eV by circularly polarized synchrotron radiation are reported. In addition spin resolved Auger electron spectra of the reference substances MnO, Mn(2)O(3) and Mn(II)(acetate)(2)·4H(2)O are given. The applicability of spin resolved electron spectroscopy for characterizing magnetic states of constituent atoms compared to magnetic circular dichroism (MCD) is verified: the spin polarization obtained from Mn(II)(acetate)(2)·4H(2)O at room temperature in the paramagnetic state compares to the MCD asymmetry revealed for a star-shaped molecule with a Mn(4)(II)O(6) core at 5 K in an external magnetic field of 5 T.

  10. Lattice dynamics and thermal transport in multiferroic CuCrO2

    NASA Astrophysics Data System (ADS)

    Bansal, Dipanshu; Niedziela, Jennifer L.; May, Andrew F.; Said, Ayman; Ehlers, Georg; Abernathy, Douglas L.; Huq, Ashfia; Kirkham, Melanie; Zhou, Haidong; Delaire, Olivier

    2017-02-01

    Inelastic neutron and x-ray scattering measurements of phonons and spin waves were performed in the delafossite compound CuCrO2 over a wide range of temperature, and complemented with first-principles lattice dynamics simulations. The phonon dispersions and density of states are well reproduced by our density functional calculations, and reveal a strong anisotropy of Cu vibrations, which exhibit low-frequency modes of large amplitude parallel to the basal plane of the layered delafossite structure. The low frequency in-plane modes also show a systematic temperature dependence of neutron and x-ray scattering intensities. In addition, we find that spin fluctuations persist above 300 K, far above the Néel temperature for long-range antiferromagnetic order, TN≃24 K . Our modeling of the thermal conductivity, based on our phonon measurements and simulations, reveals a significant anisotropy and indicates that spin fluctuations above TN constitute an important source of phonon scattering, considerably suppressing the thermal conductivity compared to that of the isostructural but nonmagnetic compound CuAlO2.

  11. Optical properties of undoped and Mg doped CuCrO{sub 2} powders synthesized by sol-gel route

    SciTech Connect

    Srinivasan, Radhakrishnan; Bolloju, Satish

    2014-01-28

    In this work, CuCrO{sub 2} was synthesized by sol-gel method using citric acid as a gelling agent. The different parameters like ratio of citric acid to metal ions, calcination temperature, and duration were studied. A green colored powder with particle size around 300 nm was formed at the calcination temperature of 800 °C for four hours duration. The increase in temperature has a profound impact on crystallite size and in turn effected the optical properties. Band gap of the obtained CuCrO{sub 2} has varied from 2.3 to 1.7 eV by increasing the temperature from 800 °C to 900 °C. Doping studies were performed by introducing Mg{sup 2+} ion to substitute Cr{sup 3+} in CuCrO{sub 2}. X-ray powder diffraction and SEM studies on 2% Mg doped samples indicated a clear formation of side phases. According to the X-ray powder patterns, the reflections from side phases were increasing with the increase in doping concentrations of Mg from 2 to 5%. The side phases were found to be MgCr{sub 2}O{sub 4} spinel and CuO. The band gap has decreased for doped samples in comparison to undoped one. In this paper, sol-gel synthesis and characterization by Xray powder diffraction, SEM studies and UV-Vis-Diffuse Reflectance spectra are presented.

  12. Magnetoresistance of the high-pressure ferromagnetic phases (GaSb)2M (M=Cr,Mn)

    NASA Astrophysics Data System (ADS)

    Pronin, A. A.; Kondrin, M. V.; Gizatullin, V. R.; Sazanova, O. A.; Lyapin, A. G.; Popova, S. V.; Ivanov, V. Y.

    2014-08-01

    For the first time magnetoresistance of the ferromagnetic high-pressure phases (GaSb)2M (M=Cr,Mn) has been measured in a wide range of temperature and magnetic field. It was found that the magnetic field dependencies of resistivity of both systems contain several contributions, including relatively smaller s-d exchange (Yosida-type) components in low fields and a quadratic positive term (PMR) in the low temperature region. The magnitude of the predominated negative term (NMR), which can be attributed to the quantum corrections effects, demonstrates a peak in the vicinity of Curie temperature.

  13. Effects of cold rolling on the microstructure and mechanical properties of Fe-Ni-Mn-Mo-Ti-Cr maraging steels

    NASA Astrophysics Data System (ADS)

    Mahmudi, Abbas; Nedjad, Syamak Hossein; Behnam, Mir Masud Jabbari

    2011-10-01

    Effects of cold rolling on the microstructure and mechanical properties of Fe-Ni-Mn-Mo-Ti-Cr maraging steels were studied. To investigate the microstructure and mechanical properties, optical microscopy, scanning electron microscopy, X-ray diffraction, tensile test, and hardness test were used. The results show that the solution-annealing treatment in the cold-rolled steel redounds to the formation of submicrocrystalline Fe2(Mo, Ti) Laves phase particles, which are stable at high temperatures. These secondary Laves phase particles prevent from recrystallization at high temperatures and correspond to semi-brittle fracture in the subsequent aging treatment.

  14. Identification of Inverse Bainite in Fe-0.84C-1Cr-1Mn Hypereutectoid Low Alloy Steel

    NASA Astrophysics Data System (ADS)

    Kannan, Rangasayee; Wang, Yiyu; Li, Leijun

    2017-03-01

    A unique dilatation trend is observed for isothermal bainite transformation in Fe-0.84 pct C-1 pct Cr-1 pct Mn steel. The dilatation is found to occur in two stages with volumetric contraction dominating the first stage, followed by volumetric expansion dominating the second stage. Through electron microscopic characterization, bainitic microstructure is identified as inverse bainite with cementite (Fe3C) nucleating first from supersaturated austenite followed by the transformation of ferrite and secondary carbides (Fe3C, Fe2C, and Fe5C2) from carbon-depleted austenite.

  15. Recovery of zinc and manganese, and other metals (Fe, Cu, Ni, Co, Cd, Cr, Na, K) from Zn-MnO2 and Zn-C waste batteries: Hydroxyl and carbonate co-precipitation from solution after reducing acidic leaching with use of oxalic acid

    NASA Astrophysics Data System (ADS)

    Sobianowska-Turek, A.; Szczepaniak, W.; Maciejewski, P.; Gawlik-Kobylińska, M.

    2016-09-01

    The article discusses the current situation of the spent batteries and portable accumulators management. It reviews recycling technologies of the spent batteries and portable accumulators which are used in the manufacturing installations in the world. Also, it presents the authors' research results on the reductive acidic leaching of waste material of the zinc-carbon batteries (Zn-C) and zinc-manganese batteries (alkaline Zn-MnO2) delivered by a company dealing with mechanical treatment of this type of waste stream. The research data proved that the reductive acidic leaching (H2SO4 + C2H2O4) of the battery's black mass allows to recover 85.0% of zinc and 100% of manganese. Moreover, it was found that after the reductive acidic leaching it is possible to recover nearly 100% of manganese, iron, cadmium, and chromium, 98.0% of cobalt, 95.5% of zinc, and 85.0% of copper and nickel from the solution with carbonate method. On the basis of the results, it is possible to assume that the carbonate method can be used for the preparation of manganese-zinc ferrite.

  16. Magnetic structure and local lattice distortion in giant negative thermal expansion material Mn3Cu1-xGexN

    NASA Astrophysics Data System (ADS)

    Iikubo, S.; Kodama, K.; Takenaka, K.; Takagi, H.; Shamoto, S.

    2010-11-01

    Magnetic and local structures in an antiperovskite system, Mn3Cu1-xGexN, with a giant negative thermal expansion have been studied by neutron powder diffraction measurement. We discuss (1) an importance of an averaged cubic crystal structure and a ΓG5g antiferromagnetic spin structure for the large magneto-volume effect (MVE) in this itinerant electron system, (2) an unique role of a local lattice distortion well described by the low temperature tetragonal structure of Mn3GeN for the broadening of MVE.

  17. Preparation, characterization and application of CuCrO2/ZnO photocatalysts for the reduction of Cr(VI).

    PubMed

    Ketir, Wahiba; Rekhila, Gharib; Trari, Mohamed; Amrane, Abdelatif

    2012-01-01

    The delafossite CuCrO2 elaborated by sol-gel from 40 nm diameter colloid is optically active in the visible region. It is characterized physically and photoelectrochemically. The microstructure is fairly homogenous with a mean crystallite size of ca. 2 microm. The optical gap (1.30 eV), determined from the diffuse reflectance, is well suited to the sunlight spectrum. The Mott Schottky plot is characteristic of P-type conductivity with a flat band potential of -0.26 V(SCE). As application, the photoreduction of chromate is successfully achieved in air-equilibrated suspension CuCrO2/ZnO (1/1). CuCrO2 is photoactivated by visible light and the electrons in the conduction band (-1.34 V(SCE)) are injected to ZnO. In the presence of salicylic acid, a conversion of Cr(VI) to Cr(III) of 57% is obtained under optimal conditions (pH 3 at 25 degrees C, 5 x 10(-4) mol/L) because of the HCrO4- dark adsorption onto ZnO (4HCrO4- + 3C7H6O3 + 18O2 + 16H+ --> 4Cr3+ + 21CO2 + 19H2O, deltaG0 = -557 kcal/mol). Prolonged illumination is accompanied by a deceleration in the photoactivity owing to the competitive water reduction, an issue of energetic concern. The hetero-system exhibits self sensitization for hydrogen production with an evolution rate of 149 micromol/(hr x g).

  18. The distribution of four trace elements (Fe, Mn, Cu, Zn) in forage and the relation to scrapie in Iceland

    PubMed Central

    2010-01-01

    Background Previous studies indicated that the iron (Fe)/manganese (Mn) ratio in forage of sheep was significantly higher on scrapie-afflicted farms than on farms in other scrapie categories. This study was conducted to examine whether Fe and Mn in forage of sheep varied in general according to the scrapie status of different areas in the country. Copper (Cu) and zinc (Zn) were also included because of a possible relation to scrapie. Methods The country was subdivided into seven Areas (I-VII). Three Areas (I, IV, VII) were designated scrapie-free (never diagnosed or eradicated) and three as scrapie-endemic (II, III, VI); status of Area V was taken as unsettled. Of the harvest 2007 1552 samples were analysed from 344 farms all over the country, mostly grass silage from plastic bales (>90%) and from the first cut (70% or more). Results were expressed as mg kg-1 dry matter. Results Fe varied enormously from less than 100 mg kg-1 to 5000 mg kg-1. Mn varied nearly thirtyfold (17-470 mg kg-1). Fe concentration was significantly lower in Area I than in Areas II, V and VI. Mn concentration was significantly higher in Areas I, IV and VII than in Areas II, III, V and VI. The Fe/Mn ratio was significantly less in Area I than in the other areas (except Area IV). Mean Cu concentration was 6.6-8.3 mg kg-1 and the mean Zn concentration was 24-29 mg kg-1. They differed significantly in some areas. Conclusions 1) Fe tended to be in lower amounts in sheep forage in scrapie-free than in endemic areas; 2) Mn was in higher amounts in forage in scrapie-free than endemic areas; 3) the Fe/Mn ratio was lower in scrapie-free than in endemic areas; 4) the Fe/Mn ratio may possibly be used as an indicator of scrapie status; 5) Cu and Zn in sheep forage were not related to scrapie; 6) further study on the role of Fe and Mn in the occurrence of scrapie in Iceland is needed. PMID:20492671

  19. Immune responses in lactating Holstein cows supplemented with Cu, Mn, and Zn as sulfates or methionine hydroxy analogue chelates.

    PubMed

    Nemec, L M; Richards, J D; Atwell, C A; Diaz, D E; Zanton, G I; Gressley, T F

    2012-08-01

    The aim of this study was to compare effects of inorganic sulfate versus chelated forms of supplemental Cu, Mn, and Zn on milk production, plasma and milk mineral concentrations, neutrophil activity, and antibody titer response to a model vaccination. Holstein cows (n=25) were assigned in 2 cohorts based on calving date to a 12-wk randomized complete block design study. The first cohort consisted of 17 cows that had greater days in milk (DIM; mean of 77 DIM at the start of the trial) than the second cohort of 8 cows (32 DIM at the start of the trial). Diets were formulated to supplement 100% of National Research Council requirements of Cu, Mn, and Zn by either inorganic trace minerals (ITM) in sulfate forms or chelated trace minerals (CTM) supplied as metal methionine hydroxy analog chelates, without accounting for trace mineral contribution from other dietary ingredients. Intake and milk production were recorded daily. Milk composition was measured weekly, and milk Cu, Mn, and Zn were determined at wk 0 and 8. Plasma Cu and Zn concentrations and neutrophil activity were measured at wk 0, 4, 8, and 12. Neutrophil activity was measured by in vitro assays of chemotaxis, phagocytosis, and reactive oxygen species production. A rabies vaccination was administered at wk 8, and vaccine titer response at wk 12 was measured by both rapid fluorescent focus inhibition test and ELISA. Analyzed dietary Cu was 21 and 23mg/kg, Mn was 42 and 46mg/kg, and Zn was 73 and 94mg/kg for the ITM and CTM diets, respectively. No effect of treatment was observed on milk production, milk composition, or plasma minerals. Dry matter intake was reduced for CTM compared with ITM cows, but this was largely explained by differences in body weight between treatments. Milk Cu concentration was greater for CTM than ITM cows, but this effect was limited to the earlier DIM cohort of cows and was most pronounced for multiparous compared with primiparous cows. Measures of neutrophil function were

  20. Surface characterization of ZnO/ZnMn{sub 2}O{sub 4} and Cu/Mn{sub 3}O{sub 4} powders obtained by thermal degradation of heterobimetallic complexes

    SciTech Connect

    Barrault, Joeel; Khavryuchenko, Oleksiy V.; Kokozay, Vladimir N.; Ayrault, Philippe

    2012-03-15

    From the selective transformation of the heterometallic (Zn-Mn or Cu-Mn) carboxylate complexes with 2,2 Prime -bipyridyl by thermal degradation at relatively low (350 Degree-Sign C) temperature, it was possible to get either well defined spinel ZnMn{sub 2}O{sub 4} over zinc oxide or well dispersed copper particles surrounded by a manganese oxide (Mn{sub 3}O{sub 4}) in a core-shell like structure. Morphology of the powder surface was examined by scanning electron microscopy with energy dispersive X-ray microanalysis (SEM/EDX). Surface composition was determined by X-ray photoelectron spectroscopy (XPS). Specific surface of the powders by nitrogen adsorption was found to be 33{+-}0.2 and 9{+-}0.06 m{sup 2} g{sup -1} for Zn-Mn and Cu-Mn samples, respectively, which is comparable to those of commercial products. - Graphical abstract: From the selective transformation of heterometallic (Zn-Mn or Cu-Mn) carboxylate complexes, it was possible to get either well defined spinel ZnMn{sub 2}O{sub 4} over zinc oxide or well dispersed copper particles surrounded by a manganese oxide (Mn{sub 3}O{sub 4}) in a core-shell like structure. Highlights: Black-Right-Pointing-Pointer Thermal degradation of heterometallic complexes results in fine disperse particles. Black-Right-Pointing-Pointer Core-shell Cu/Mn{sub 3}O{sub 4} particles are obtained. Black-Right-Pointing-Pointer ZnMn{sub 2}O{sub 4} spinel layer covers ZnO particles.

  1. Mössbauer study of Cu0.5Fe0.5Cr2S4

    NASA Astrophysics Data System (ADS)

    Ok, Hang Nam; Baek, Kyung Seon; Lee, Heung Soo; Kim, Chul Sung

    1990-01-01

    Cu0.5Fe0.05Cr2S4 has been studied by Mössbauer spectroscopy and x-ray diffraction. The crystal structure is found to be a cubic spinel with the lattice parameter a0=9.922 Å. The temperature dependence of both the magnetic hyperfine field and magnetization is explained by the Néel theory of ferrimagnetism using three exchange integrals: JFe-Cr/kB=-13.7 K, JFe-Fe/kB=-8.3 K, and JCr-Cr/kB=8.7 K.

  2. Environmental influence on the single-molecule magnet behavior of [Mn(III)6Cr(III)]3+: molecular symmetry versus solid-state effects.

    PubMed

    Hoeke, Veronika; Heidemeier, Maik; Krickemeyer, Erich; Stammler, Anja; Bögge, Hartmut; Schnack, Jürgen; Postnikov, Andrei; Glaser, Thorsten

    2012-10-15

    The structural, spectroscopic, and magnetic properties of a series of [Mn(III)(6)Cr(III)](3+) (= [{(talen(t-Bu(2)))Mn(III)(3)}(2){Cr(III)(CN)(6)}](3+)) compounds have been investigated by single-crystal X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and electronic absorption spectroscopy, elemental analysis, electro spray ionization-mass spectrometry (ESI-MS) and matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS), cyclic voltammetry, AC and DC magnetic measurements, as well as theoretical analysis. The crystal structures obtained with [Cr(III)(CN)(6)](3-) as a counterion exhibit (quasi-)one-dimensional (1D) chains formed by hydrogen-bonded (1) or covalently linked (2) trications and trianions. The rod-shaped anion lactate enforces a rod packing of the [Mn(III)(6)Cr(III)](3+) complexes in the highly symmetric space group R3[overline] (3) with a collinear arrangement of the molecular S(6) axes. Incorporation of the spherical anion BPh(4)(-) leads to less-symmetric crystal structures (4-6) with noncollinear orientations of the [Mn(III)(6)Cr(III)](3+) complexes, as evidenced by the angle between the approximate molecular C(3) axes taking no specific values in the range of 2°-69°. AC magnetic measurements on freshly isolated crystals (1a and 3a-6a), air-dried crystals (3b-6b), and vacuum-dried powder samples (3c-6c) indicate single-molecule magnet (SMM) behavior for all samples with U(eff) values up to 28 K. The DC magnetic data are analyzed by a full-matrix diagonalization of the appropriate spin-Hamiltonian including isotropic exchange, zero-field splitting, and Zeeman interaction, taking into account the relative orientation of the D-tensors. Simulations for 3a-6a and 3c-6c indicate a weak antiferromagnetic exchange between the Mn(III) ions in the trinuclear subunits (J(Mn-Mn) = -0.70 to -0.85 cm(-1), Ĥ(ex) = -2∑(iCr-C≡N-Mn pathway

  3. Construction of the Magnetic Phase Diagram of FeMn/Ni/Cu(001) Using Photoemission Electron Microscopy

    SciTech Connect

    Wu, J.; Scholl, A.; Arenholz, E.; Hwang, C.; Qiu, Z. Q.

    2011-01-04

    Single crystalline FeMn/Ni bilayer was epitaxially grown on Cu(001) substrate and investigated by photoemission electron microscopy (PEEM). The FeMn and Ni films were grown into two cross wedges to facilitate an independent control of the FeMn (0-20 ML) and Ni (0-20 ML) film thicknesses. The Ni magnetic phases were determined by Ni domain images as a function of the Ni thickness (d{sub Ni}) and the FeMn thickness (d{sub FeMn}). The result shows that as the Ni thickness increases, the Ni film undergoes a paramagnetic-to-ferromagnetic state transition at a critical thickness of d{sub FM} and an in-plane to out-of-plane spin reorientation transition at a thicker thickness d{sub SRT}. The phase diagram shows that both d{sub FM} and d{sub SRT} increase as the FeMn film establishes its antiferromagnetic order.

  4. Energy levels and radiative rates for Cr-like Cu VI and Zn VII

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Bogdanovich, P.; Keenan, F. P.; Kisielius, R.

    2016-09-01

    Energy levels and radiative rates (A-values) for transitions in Cr-like Cu VI and Zn VII are reported. These data are determined in the quasi-relativistic approach (QR), by employing a very large configuration interaction (CI) expansion which is highly important for these ions. No radiative rates are available in the literature to compare with our results, but our calculated energies are in close agreement with those compiled by NIST and other available theoretical data, for a majority of the levels. The A-values (and resultant lifetimes) are listed for all significantly contributing E1, E2 and M1 radiative transitions among the energetically lowest 322 levels of each ion.

  5. Achieving optimum mechanical performance in metallic nanolayered Cu/X (X = Zr, Cr) micropillars

    NASA Astrophysics Data System (ADS)

    Zhang, J. Y.; Li, J.; Liang, X. Q.; Liu, G.; Sun, J.

    2014-03-01

    The selection and design of modern high-performance structural engineering materials such as nanostructured metallic multilayers (NMMs) is driven by optimizing combinations of mechanical properties and requirements for predictable and noncatastrophic failure in service. Here, the Cu/X (X = Zr, Cr) nanolayered micropillars with equal layer thickness (h) spanning from 5-125 nm are uniaxially compressed and it is found that these NMMs exhibit a maximum strain hardening capability and simultaneously display a transition from bulk-like to small-volume materials behavior associated with the strength at a critical intrinsic size h ~ 20 nm. We develop a deformation mode-map to bridge the gap between the interface characteristics of NMMs and their failure phenomena, which, as shrinking the intrinsic size, transit from localized interface debonding/extrusion to interface shearing. Our findings demonstrate that the optimum robust performance can be achieved in NMMs and provide guidance for their microstructure sensitive design for performance optimization.

  6. Role of Zn substitution on structural, magnetic and dielectric properties of Cu-Cr spinel ferrites

    NASA Astrophysics Data System (ADS)

    Anjum, S.; Nazli, H.; Khurram, R.; Zeeshan, Talat; Riaz, S.; Usman, A.

    2016-08-01

    The Zn substituted copper chromium spinel ferrites with the chemical formula ZnxCu1-xCr0.5Fe1.5O4 (x = 0-0.8) have been fabricated using powder metallurgical route. The synthesized powders have been investigated by thermal analysis, X-ray diffraction, Fourier transform infrared spectroscopy, Field emission scanning electron microscopy, magnetic and electrical measurement. The X-ray diffraction has confirmed the formation of spinel structure. It has been observed that lattice parameter increases but both the bulk and X-ray density decrease with the increase of Zn concentration. FTIR spectra show two prominent bands in the range of 400-800 cm-1 confirming the formation of spinel ferrites. The saturation magnetization increases up to x = 0.4. As the concentration of Zn increases further, the saturation magnetization decreases. The dielectric tangent loss and dielectric constant (ɛ) decreases while the ac conductivity increases with increasing frequency.

  7. Properties and features of structure formation CuCr-contact alloys in electron beam cladding

    SciTech Connect

    Durakov, Vasiliy G.; Dampilon, Bair V. E-mail: gnusov@rambler.ru; Gnyusov, Sergey F. E-mail: gnusov@rambler.ru

    2014-11-14

    The microstructure and properties of the contact CuCr alloy produced by electron-beam cladding have been investigated. The effect of the electron beam cladding parameters and preheating temperature of the base metal on the structure and the properties of the coatings has been determined. The bimodal structure of the cladding coating has been established. The short circuit currents tests have been carried out according to the Weil-Dobke synthetic circuit simulating procedure developed for vacuum circuit breakers (VCB) test in real electric circuits. Test results have shown that the electron beam cladding (EBC) contact material has better breaking capacity than that of commercially fabricated sintered contact material. The application of the technology of electron beam cladding for production of contact material would significantly improve specific characteristics and reliability of vacuum switching equipment.

  8. Theoretical and experimental investigation of doping M in ZnSe (M = Cd, Mn, Ag, Cu) clusters: optical and bonding characteristics.

    PubMed

    Xu, Shuhong; Xu, Xiaojing; Wang, Chunlei; Zhao, Zengxia; Wang, Zhuyuan; Cui, Yiping

    2016-03-01

    The optical and bonding characteristics of doping ZnSe quantum dots (QDs) were investigated. Cd-, Mn-, Ag- and Cu-doped ZnSe were synthesized in aqueous solution. Theoretically, the intensity of the Cd-Se bond was similar to that of the Zn-Se bond, which illustrates that Cd can be doped into ZnSe materials at any ratio. We found that Mn-Se bonding was stronger than Zn-Se bonding. Ag-doped ZnSe nanoclusters show the same bonding and configuration as Cu-doped ZnSe. Moreover, Cd can be doped into ZnSe using both the substitution- and vacancy-doping method. For Mn-doped ZnSe clusters, small amounts of Mn impurity lead to stronger bonding with Se, but larger amounts of Mn impurity led to the formation of a Mn-Mn metal bond. The theoretical results show that it is difficult to form a vacancy-doping cluster for Mn-doped ZnSe materials. In experiments, the absorption and photoluminescence (PL) spectral wavelengths of Mn-doped ZnSe nanocrystals were the same as those of pure ZnSe nanocrystals, showing that the Mn impurity is not doped into ZnSe nanocrystals. Ag- and Cu-doped ZnSe nanocrystals have the same PL characteristics. The doping of an impurity is related to the solubility product, and not the bonding intensity.

  9. Reversible Characteristics and Cycling Effects of the ɛ ↔ γ Martensitic Transformations in Fe-Mn-Cr Twip/Trip Steels

    NASA Astrophysics Data System (ADS)

    Mertinger, V.; Benke, M.; Nagy, E.; Pataki, T.

    2014-07-01

    The variation of thermal characteristics of the ɛ ↔ γ transformation during thermal cycling and the effect of Cr content was studied in two Fe-Mn-Cr steels through cyclic DSC examinations. It was found that the martensite start temperature decreased and the austenite start temperature increased in the first cycles, then both stabilized after several cycles. The latent heat of the transformations increased first and then also stabilized. The Cr content pushed the ɛ ↔ γ transformations to lower temperatures, decreased the thermal hysteresis and the latent heat. It is experimentally shown that 6.53 m/m% Cr content increases the stacking fault energy in this alloy.

  10. Galvanomagnetic properties of Fe{sub 2}YZ (Y = Ti, V, Cr, Mn, Fe, Ni; Z = Al, Si) heusler alloys

    SciTech Connect

    Kourov, N. I. Marchenkov, V. V.; Belozerova, K. A.; Weber, H. W.

    2015-11-15

    The Hall effect and the magnetoresistance of Fe{sub 2}YZ Heusler alloys, where Y = Ti, V, Cr, Mn, Fe, and Ni, are the 3d transition metals and Z = Al and Si are the s, p elements of the third period of the periodic table, are studied at T = 4.2 K in magnetic fields H ≤ 100 kOe. It is shown that, in the high-field limit (H > 10 kOe), the value and the sign of the normal (R{sub 0}) and anomalous (R{sub s}) Hall coefficients change anomalously during transition from paramagnetic (Y = Ti, V) to ferromagnetic (Y = Cr, Mn, Fe, Ni) alloys. These coefficients have different signs for all alloys. Constant R{sub s} in the ferromagnetic alloys is positive, proportional to the residual resistivity ratio (R{sub s} ∝ ρ{sub 0}{sup 3.1}), and inversely proportional to spontaneous magnetization. The magnetoresistance of the alloys is a few percent and has a negative sign. A positive addition to transverse magnetoresistance is only detected in high magnetic fields, H > 10 kOe.

  11. Galvanomagnetic properties of Fe2YZ (Y = Ti, V, Cr, Mn, Fe, Ni; Z = Al, Si) heusler alloys

    NASA Astrophysics Data System (ADS)

    Kourov, N. I.; Marchenkov, V. V.; Belozerova, K. A.; Weber, H. W.

    2015-11-01

    The Hall effect and the magnetoresistance of Fe2YZ Heusler alloys, where Y = Ti, V, Cr, Mn, Fe, and Ni, are the 3 d transition metals and Z = Al and Si are the s, p elements of the third period of the periodic table, are studied at T = 4.2 K in magnetic fields H ≤ 100 kOe. It is shown that, in the high-field limit ( H > 10 kOe), the value and the sign of the normal ( R 0) and anomalous ( R s ) Hall coefficients change anomalously during transition from paramagnetic (Y = Ti, V) to ferromagnetic (Y = Cr, Mn, Fe, Ni) alloys. These coefficients have different signs for all alloys. Constant R s in the ferromagnetic alloys is positive, proportional to the residual resistivity ratio ( R s ∝ ρ 0 3.1 ), and inversely proportional to spontaneous magnetization. The magnetoresistance of the alloys is a few percent and has a negative sign. A positive addition to transverse magnetoresistance is only detected in high magnetic fields, H > 10 kOe.

  12. Nano-twin Mediated Plasticity in Carbon-containing FeNiCoCrMn High Entropy Alloys

    SciTech Connect

    Wu, Zhenggang; Bei, Hongbin; Parish, Chad M

    2015-06-14

    Equiatomic FeNiCoCrMn alloy has been reported to exhibit promising strength and ductility at cryogenic temperature and deformation mediated by nano-twining appeared to be one of the main reasons. We use the FeNiCoCrMn alloy as a base alloy to seek further improvement of its mechanical properties by alloying additional elements, i.e., interstitial carbon. Moreover, the effects of carbon on microstructures, mechanical properties and twinning activities were investigated in two different temperatures (77 and 293 K). With addition of 0.5 at% C, the high entropy alloy still remains entirely single phase face-centered cubic (FCC) crystal structure. We found that these materials can be cold rolled and recrystallized to produce a microstructure with equiaxed grains. Both strain hardening rate and strength are enhanced while high uniform elongations to fracture (~70% at 77 K and ~40% at 293 K) are still maintained. The increased strain hardening and strength could be caused by the promptness of deformation twinning in C-containing high entropy alloys.

  13. Nano-twin Mediated Plasticity in Carbon-containing FeNiCoCrMn High Entropy Alloys

    DOE PAGES

    Wu, Zhenggang; Bei, Hongbin; Parish, Chad M

    2015-06-14

    Equiatomic FeNiCoCrMn alloy has been reported to exhibit promising strength and ductility at cryogenic temperature and deformation mediated by nano-twining appeared to be one of the main reasons. We use the FeNiCoCrMn alloy as a base alloy to seek further improvement of its mechanical properties by alloying additional elements, i.e., interstitial carbon. Moreover, the effects of carbon on microstructures, mechanical properties and twinning activities were investigated in two different temperatures (77 and 293 K). With addition of 0.5 at% C, the high entropy alloy still remains entirely single phase face-centered cubic (FCC) crystal structure. We found that these materials canmore » be cold rolled and recrystallized to produce a microstructure with equiaxed grains. Both strain hardening rate and strength are enhanced while high uniform elongations to fracture (~70% at 77 K and ~40% at 293 K) are still maintained. The increased strain hardening and strength could be caused by the promptness of deformation twinning in C-containing high entropy alloys.« less

  14. Incorporation of Jahn-Teller Cu(2+) Ions into Magnetoelectric Multiferroic MnWO4: Structural, Magnetic, and Dielectric Permittivity Properties of Mn1-xCuxWO4 (x ≤ 0.25).

    PubMed

    Patureau, Pascaline; Josse, Michaël; Dessapt, Rémi; Mevellec, Jean-Yves; Porcher, Florence; Maglione, Mario; Deniard, Philippe; Payen, Christophe

    2015-11-16

    Polycrystalline samples of Mn1-xCuxWO4 (x ≤ 0.5) have been prepared by a solid-state synthesis as well as from a citrate synthesis at moderate temperature (850 °C). The goal is to study changes in the structural, magnetic, and dielectric properties of magnetoelectric type-II multiferroic MnWO4 caused by replacing Jahn-Teller-inactive Mn(2+) (d(5), S = 5/2) ions with Jahn-Teller-active Cu(2+) (d(9), S = 1/2) ions. Combination of techniques including scanning electron microscopy, powder X-ray and neutron diffraction, and Raman spectroscopy demonstrates that the polycrystalline samples with low copper content 0 ≤ x ≤ 0.25 are solid solution that forms in the monoclinic P2/c space group. Rietveld analyses indicate that Cu atoms substitutes for Mn atoms at the Mn crystallographic site of the MnWO4 structure and suggest random distributions of Jahn-Teller-distorted CuO6 octahedra in the solid solution. Magnetic susceptibility reveals that only 5% of Cu substitution suppresses the nonpolar collinear AF1 antiferromagnetic structure observed in pure MnWO4. Type-II multiferroicity survives a weak Cu substitution rate (x < 0.15). Multiferroic transition temperature and Néel temperature increase as the amount of Cu increases. New trends in some of the magnetic properties and in dielectric behaviors are observed for x = 0.20 and 0.25. Careful analysis of the magnetic susceptibility reveals that the incorporation of Cu into MnWO4 strengthens the overall antiferromagnetic interaction and reduces the magnetic frustration.

  15. Characterization of Cold Sprayed CuCrAl-Coated and Uncoated GRCop-84 Substrates for Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Karthikeyan, J.; Lerch, B. A.; Barrett, C.; Garlich, R.

    2007-01-01

    A newly developed Cu-23(wt.%)Cr-5%Al (CuCrAl) alloy is currently being considered as a protective coating for GRCop-84 (Cu-8(at.%)Cr-4%Nb). The coating was deposited on GRCop-84 substrates by the cold spray deposition technique. Cyclic oxidation tests conducted in air on both coated and uncoated substrates between 773 and 1073 K revealed that the coating remained intact and protected the substrate up to 1073 K. No significant weight loss of the coated specimens were observed at 773 and 873 K even after a cumulative cyclic time of 500 h. In contrast, the uncoated substrate lost as much as 80% of its original weight under similar test conditions. Low cycle fatigue tests revealed that the fatigue lives of thinly coated GRCop-84 specimens were similar to the uncoated specimens within the limits of experimental scatter. It is concluded that the cold sprayed CuCrAl coating is suitable for protecting GRCop-84 substrates.

  16. Mn-Cr relative sensitivity factor in ferromagnesian olivines defined for SIMS measurements with a Cameca ims-1280 ion microprobe: Implications for dating secondary fayalite

    NASA Astrophysics Data System (ADS)

    Doyle, Patricia M.; Jogo, Kaori; Nagashima, Kazuhide; Huss, Gary R.; Krot, Alexander N.

    2016-02-01

    The short-lived radionuclide 53Mn, which decays to 53Cr with a half-life of ∼3.7 Myr, is useful for sequencing objects that formed within the first 20 Myr of Solar System evolution. 53Mn-53Cr relative chronology enables aqueously formed secondary minerals such as fayalite and various carbonates in ordinary and carbonaceous chondrites to be dated, thereby providing chronological constraints on aqueous alteration processes. In situ measurements of Mn-Cr isotope systematics in fayalite by secondary ion mass spectrometry (SIMS) require consideration of the relative sensitivities of the 55Mn+ and 52Cr+ ions, for which a relative sensitivity factor [RSF = (55Mn+/52Cr+)SIMS/(55Mn/52Cr)true] is defined using appropriate standards. In the past, San Carlos olivine (Fa∼10) was commonly used for this purpose, but a growing body of evidence suggests that it is an unsuitable standard for meteoritic fayalite (Fa>90). Natural fayalite also cannot be used as a standard because it contains only trace amounts of chromium, which makes determining a true 55Mn/52Cr ratio and its degree of heterogeneity very difficult. To investigate the dependence of the Mn-Cr RSF on ferromagnesian olivine compositions, we synthesized a suite of compositionally homogeneous Mn,Cr-bearing liquidus-phase ferromagnesian olivines (Fa31-99). Manganese-chromium isotopic measurements of San Carlos olivine and synthesized ferromagnesian olivines using the University of Hawai'i Cameca ims-1280 SIMS show that the RSF for Fa10 is ∼0.9; it increases rapidly between Fa10 and Fa31 and reaches a plateau value of ∼1.5 ± 0.1 for Fa>34. The RSF is time-dependent: it increases during the measurements of olivines with fayalite content <30 and decreases during the measurements of olivines with fayalite content >50. The RSF measured on ferroan olivine (Fa>90) is influenced by pit shape, whereas the RSF measured on magnesian olivine (Fa10) is less sensitive to changes in pit shape. For these reasons, 53Mn-53Cr

  17. Partitioning of Cr, V, and Mn between mantles and cores of differentiated planetesimals - Implications for giant impact hypothesis of lunar origin

    SciTech Connect

    Ringwood, A.E.; Kato, T.; Hibberson, W.; Ware, N. )

    1991-01-01

    The partition coefficients of Cr, V, and Mn between metallic Fe and the mineral phases present in the mantle of a giant planetesimal have been determined in the 1500-2000 C range at 3-25 GPa, in order to ascertain whether the formation of an Fe core within a differentiated giant planetesimal could have caused depletions of Cr, V, and Mn in the Mars-sized planetesimal hypothesized as the basis for lunar formation after impact with the earth. The results obtained indicate that the formation of such an Fe core would have led to no such depletion; Cr, V, and Mn are depleted relative to Mg in the earth mantle to a degree comparable to the lunar depletion factor, suggesting that the protolunar material was primarily derived from the earth's mantle. 36 refs.

  18. Direct determination of Cu, Mn, Pb, and Zn in beer by thermospray flame furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Nascentes, Clésia C.; Kamogawa, Marcos Y.; Fernandes, Kelly G.; Arruda, Marco A. Z.; Nogueira, Ana Rita A.; Nóbrega, Joaquim A.

    2005-06-01

    In this work, thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was employed for Cu, Mn, Pb, and Zn determination in beer without any sample digestion. The system was optimized and calibration was based on the analyte addition technique. A sample volume of 300 μl was introduced into the hot Ni tube at a flow-rate of 0.4 ml min -1 using 0.14 mol l -1 nitric acid solution or air as carrier. Different Brazilian beers were directly analyzed after ultrasonic degasification. Results were compared with those obtained by graphite furnace atomic absorption spectrometry (GFAAS). The detection limits obtained for Cu, Mn, Pb, and Zn in aqueous solution were 2.2, 18, 1.6, and 0.9 μg l -1, respectively. The relative standard deviations varied from 2.7% to 7.3% ( n=8) for solutions containing the analytes in the 25-50 μg l -1 range. The concentration ranges obtained for analytes in beer samples were: Cu: 38.0-155 μg l -1; Mn: 110-348 μg l -1, Pb: 13.0-32.9 μg l -1, and Zn: 52.7-226 μg l -1. Results obtained by TS-FF-AAS and GFAAS were in agreement at a 95% confidence level. The proposed method is fast and simple, since sample digestion is not required and sensitivity can be improved without using expensive devices. The TS-FF-AAS presented suitable sensitivity for determination of Cu, Mn, Pb, and Zn in the quality control of a brewery.

  19. Concentrations of Zn, Mn, Cu and Cd in different tissues of perch (Perca fluviatilis) and in perch intestinal parasite (Acanthocephalus lucii) from the stream near Prague (Czech Republic)

    SciTech Connect

    Jankovska, Ivana; Miholova, Daniela; Lukesova, Daniela; Kalous, Lukas; Valek, Petr; Romocusky, Stepan; Vadlejch, Jaroslav; Petrtyl, Miloslav; Langrova, Iva; Cadkova, Zuzana

    2012-01-15

    We monitored concentrations of Cd, Cu, Mn and Zn in acantocephalan parasites (Acanthocephalus lucii) and its final host (Perca fluviatilis). The concentrations in parasites were found to be significantly higher than those found in the muscle, gonads and liver of fish host. The bioaccumulation factor values were 194, 24.4, 2.2 and 4.7 for Cd, Cu, Mn and Zn, respectively. This suggests a benefit for the host due to the high accumulation of toxic cadmium.

  20. Effects of heavy metals (Cd, Cu, Cr, Pb, Zn) on fish glutathione metabolism.

    PubMed

    Eroglu, A; Dogan, Z; Kanak, E G; Atli, G; Canli, M

    2015-03-01

    The glutathione metabolism contains crucial antioxidant molecules to defend the organisms against oxidants. Thus, the aim of this study was to investigate the response of the glutathione metabolism in the liver of freshwater fish Oreochromis niloticus exposed to metals (Cu, Cd, Cr, Pb, Zn) in different periods. Fish were exposed to metals (as 1 μg/mL) individually for 1, 7, and 14 days and subsequently antioxidant enzymes (glutathione peroxidase, GPX; glutathione reductase, GR and glutathione S-transferase, GST) and glutathione levels (total glutathione, tGSH; reduced glutathione, rGSH; oxidized glutathione, GSSG and GSH/GSSG ratios) in the liver were measured. There was no fish mortality during the experiments, except Cu exposure. The antioxidant enzymes responded differently to metal exposures depending on metal types and exposure durations. GPX activity increased only after Cd exposure, while GST activity increased following 7 days of all metal exposures. However, GR activity did not alter in most cases. Total GSH and GSH/GSSG levels generally decreased, especially after 7 days. Data showed that metal exposures significantly altered the response of antioxidant system parameters, particularly at day 7 and some recovery occurred after 14 days. This study suggests that the response of antioxidant system could help to predict metal toxicity in the aquatic environments and be useful as an "early warning tool" in natural monitoring studies.

  1. Oxidation of diesel soot on binary oxide CuCr(Co)-based monoliths.

    PubMed

    Soloviev, Sergiy O; Kapran, Andriy Y; Kurylets, Yaroslava P

    2015-02-01

    Binary oxide systems (CuCr2O4, CuCo2O4), deposited onto cordierite monoliths of honeycomb structure with a second support (finely dispersed Al2O3), were prepared as filters for catalytic combustion of diesel soot using internal combustion engine's gas exhausts (O2, NOx, H2O, CO2) and O3 as oxidizing agents. It is shown that the second support increases soot capacity of aforementioned filters, and causes dispersion of the particles of spinel phases as active components enhancing thereby catalyst activity and selectivity of soot combustion to CO2. Oxidants used can be arranged with reference to decreasing their activity in a following series: O3≫NO2>H2O>NO>O2>CO2. Ozone proved to be the most efficient oxidizing agent: the diesel soot combustion by O3 occurs intensively (in the presence of copper chromite based catalyst) even at closing to ambient temperatures. Results obtained give a basis for the conclusion that using a catalytic coating on soot filters in the form of aforementioned binary oxide systems and ozone as the initiator of the oxidation processes is a promising approach in solving the problem of comprehensive purification of automotive exhaust gases at relatively low temperatures, known as the "cold start" problem.

  2. Characterization of crednerite-Cu1.1Mn0.9O2 films prepared using sol-gel processing

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Ying; Hsu, Da-Je

    2014-01-01

    In this study, pure crednerite-Cu1.1Mn0.9O2 films were deposited onto quartz substrates using a sol-gel processing and a two-step annealing process. The sol-gel-derived films were annealed at 500 °C for 1 h in air and post-annealed at 600-700 °C for 2 h in N2. X-ray diffraction patterns showed that the films were CuO and CuxMn3 - xO4 phases in air annealing. When the films were post-annealed above 600 °C in N2, a pure CuMnO2 phase with the monoclinic crednerite structure (space group: C2/m) was obtained. The lattice parameters of the crednerite-Cu1.1Mn0.9O2 films where a = 0.5579-0.5587 nm, b = 0.2878-0.2881 nm, c = 0.5880-0.5891 nm, and β = 104.16-104.34° and were agreement with the literature reports. The binding energies of Cu-2p of the crednerite-Cu1.1Mn0.9O2 films were 932.3 ± 0.2 eV and 952.3 ± 0.2 eV to represent the monovalent Cu in the films. Additionally, the binding energies of Mn-3p of the crednerite-Cu1.1Mn0.9O2 films were 47.5 ± 0.2 eV, 48.2 ± 0.2 eV, and 50.0 ± 0.2 eV and revealed coexistence of +2, +3, and +4 valences in the films. The cation distributions of the crednerite-Cu1.1Mn0.9O2 films prepared using post-annealing at 650 °C and 700 °C were Cu+1.1[Mn4+0.25Mn3+0.51Mn2+0.24]0.9O2 and Cu+1.1[Mn4+0.24Mn3+0.52Mn2+0.24]0.9O2, respectively. Two optical bandgaps of the crednerite-Cu1.1Mn0.9O2 films at 4.5-4.0 eV and 3.5-3.0 eV were observed. The electrical conductivities of the crednerite-Cu1.1Mn0.9O2 films were 1.20 × 10-5-2.50 × 10-5 S cm-1. Moreover, the activation energies for the carrier conduction were 0.20-0.30 eV. Hence, our results demonstrate that sol-gel processing is a feasible preparation method for crednerite-CuMnO2 films.

  3. Long-lived and Well-resolved Mn2+ Ion Emissions in CuInS-ZnS Quantum Dots

    PubMed Central

    Cao, Sheng; Li, Chengming; Wang, Lin; Shang, Minghui; Wei, Guodong; Zheng, Jinju; Yang, Weiyou

    2014-01-01

    CuInS2 (CIS) quantum dots (QDs) have tunable photoluminescence (PL) behaviors in the visible and near infrared spectral range with markedly lower toxicity than the cadmium-based counterparts, making them very promising applications in light emitting and solar harvesting. However, there still remain material- and fabrication- related obstacles in realizing the high-performance CIS-based QDs with well-resolved Mn2+ d-d emission, long emission lifetimes as well as high efficiencies. Here, we demonstrate the growth of high-quality Mn2+-doped CuInS-ZnS (CIS-ZnS) QDs based on a multi-step hot-injection strategy. The resultant QDs exhibit a well-resolved Mn2+ d-d emission with a high PL quantum yield (QY) up to 66% and an extremely long excited state lifetime up to ~3.78 ms, which is nearly two times longer than the longest one of “green” QDs ever reported. It is promising that the synthesized Mn2+-doped CIS-ZnS QDs might open new doors for their practical applications in bioimaging and opto/electronic devices. PMID:25515207

  4. Spectral, thermal and biological studies of Mn(II) and Cu(II) complexes with two thiosemicarbazide derivatives.

    PubMed

    Refat, Moamen S; El-Metwaly, Nashwa M

    2012-06-15

    Two derivatives of thiosemicarbazide were prepared. Their complexes were prepared using Mn(II) and Cu(II) salts. All the isolated complexes are characterized using the following spectra: IR, UV-Vis, Mass, (1)H NMR and X-ray diffraction. Magnetic measurements and thermal analysis are the other additive tools for complete investigation. Mononuclear and binuclear complexes are proposed based on elemental analysis mainly. The IR spectra offer the mode of coordination of each ligand with each metal ion. The electronic spectra and magnetic measurements are proposing the structural geometry of the investigated complexes. The octahedral geometry proposed for Mn(II) complexes but the square-planar for Cu(II) complexes. The (1)H NMR spectra were done for all organic compounds used in this study and displaying the most suitable tautomer of them. X-ray diffraction of H(2)L(1) and its complexes show their amorphous nature but H(2)L(2) ligand and its complexes show their nanocrystalline nature. The TG analysis was used to prove the presence of solvent molecules attached with the complexes as covalently or physically. Finally, the biological investigation was carried out for H(2)L(2) ligand and its complexes and displaying the inhibition activity of Cu(II) complex than the Mn(II) one.

  5. Spectral, thermal and biological studies of Mn(II) and Cu(II) complexes with two thiosemicarbazide derivatives

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; El-Metwaly, Nashwa M.

    Two derivatives of thiosemicarbazide were prepared. Their complexes were prepared using Mn(II) and Cu(II) salts. All the isolated complexes are characterized using the following spectra: IR, UV-Vis, Mass, 1H NMR and X-ray diffraction. Magnetic measurements and thermal analysis are the other additive tools for complete investigation. Mononuclear and binuclear complexes are proposed based on elemental analysis mainly. The IR spectra offer the mode of coordination of each ligand with each metal ion. The electronic spectra and magnetic measurements are proposing the structural geometry of the investigated complexes. The octahedral geometry proposed for Mn(II) complexes but the square-planar for Cu(II) complexes. The 1H NMR spectra were done for all organic compounds used in this study and displaying the most suitable tautomer of them. X-ray diffraction of H2L1 and its complexes show their amorphous nature but H2L2 ligand and its complexes show their nanocrystalline nature. The TG analysis was used to prove the presence of solvent molecules attached with the complexes as covalently or physically. Finally, the biological investigation was carried out for H2L2 ligand and its complexes and displaying the inhibition activity of Cu(II) complex than the Mn(II) one.

  6. Merging of Kirkendall Growth and Ostwald Ripening: CuO@MnO2 Core-shell Architectures for Asymmetric Supercapacitors

    PubMed Central

    Huang, Ming; Zhang, Yuxin; Li, Fei; Wang, Zhongchang; Alamusi; Hu, Ning; Wen, Zhiyu; Liu, Qing

    2014-01-01

    Fabricating hierarchical core-shell nanostructures is currently the subject of intensive research in the electrochemical field owing to the hopes it raises for making efficient electrodes for high-performance supercapacitors. Here, we develop a simple and cost-effective approach to prepare CuO@MnO2 core-shell nanostructures without any surfactants and report their applications as electrodes for supercapacitors. An asymmetric supercapacitor with CuO@MnO2 core-shell nanostructure as the positive electrode and activated microwave exfoliated graphite oxide (MEGO) as the negative electrode yields an energy density of 22.1 Wh kg−1 and a maximum power density of 85.6 kW kg−1; the device shows a long-term cycling stability which retains 101.5% of its initial capacitance even after 10000 cycles. Such a facile strategy to fabricate the hierarchical CuO@MnO2 core-shell nanostructure with significantly improved functionalities opens up a novel avenue to design electrode materials on demand for high-performance supercapacitor applications. PMID:24682149

  7. Thermophysical Properties of Manganin (Cu86Mn12Ni2) in the Solid and Liquid State

    NASA Astrophysics Data System (ADS)

    Schmon, A.; Aziz, K.; Luckabauer, M.; Pottlacher, G.

    2015-07-01

    Manganin is the trademark name of the alloy Cu86Mn12Ni2. Despite its frequent usage in manufacturing processes, literature data are scarce particularly at higher temperatures. This work presents a set of thermophysical data of this alloy in a temperature range above its classic area of application up to the end of its liquid phase. For investigating the alloy, four examination setups were employed. Using differential thermal analysis, solidus and liquidus temperatures were obtained. In the solid phase, the electrical resistivity as a function of temperature was determined by a four-point probe positioned in a furnace. Thermal expansion was measured with a high-resolution two-beam laser dilatometer based on Michelson-interferometry and thereby density was calculated. The liquid state was investigated using a s-ohmic-pulse-heating setup. Wire-shaped specimens were resistively volume heated as part of an electrical discharge circuit. Measured quantities were the current through the specimen, the voltage drop along the specimen, the surface radiance by a pyrometer, and the thermal expansion with an adapted CCD camera system. On the basis of these measurements, temperature-dependent thermophysical properties of enthalpy, isobaric heat capacity, electrical resistivity, and density are obtained. Additionally the thermal conductivity and thermal diffusivity are estimated in the high-temperature range applying the Wiedemann-Franz law.

  8. β-Cyclodextrin assisted solubilization of Cu and Cr complexes of flavonoids in aqueous medium: A DNA-interaction study

    NASA Astrophysics Data System (ADS)

    Jabeen, Erum; Janjua, Naveed Kausar; Hameed, Shahid

    2014-07-01

    Cu and Cr complexes of three flavonoids (morin, quercetin and 6-hydroxyflavone) were synthesized and included in beta-cyclodextrin (βCD) with the objective of improving their pharmacokinetic profiles. Then binding with ds.DNA was studied to monitor their interactive tendencies at physiological conditions. The binding constants and other thermodynamic data from UV-vis spectroscopy and cyclic voltammetry revealed Cr-flavonoid-βCD to interact with ds.DNA at pH-7.4 through electrostatic mode of binding while Cu-flavonoid-βCD can intercalate into DNA. The strong binding propensity of Cu-flavonoid-βCD with ds.DNA encourages their application as anticancerous agent.

  9. Magnetization reversal behavior and magnetocaloric effect in SmCr0.85Mn0.15O3 chromites

    NASA Astrophysics Data System (ADS)

    Kumar, Surendra; Coondoo, Indrani; Vasundhara, M.; Patra, Ajit K.; Kholkin, Andrei L.; Panwar, Neeraj

    2017-01-01

    We have synthesized SmCr0.85Mn0.15O3 (SCMO) chromites through the ceramic route. The compound crystallized into a distorted orthorhombic structure with the Pnma space group, which was confirmed from the Rietveld refinement of x-ray powder diffraction patterns. Neel temperature, noticed at 168 K from the temperature variation of magnetisation, smaller than that reported for SmCrO3, indicated the influence of Mn3+ substitution on decreasing the antiferromagnetic ordering. A phenomenon of magnetization reversal was observed in the SCMO compound. At low magnetic fields, i.e., 500 Oe, a single compensation temperature (defined as the temperature where magnetization became zero) around 106 K was observed in the field cooled magnetization curve. However, with the application of higher magnetic fields, i.e., under an applied field of 1000 Oe, a second compensation temperature was noticed around 8 K. With a further increase in the magnetic field, the magnetization remained positive in both field cooled and zero field cooled protocols. A normal magnetocaloric effect was observed through an indirect method of field dependence of magnetisation measured in the temperature range of 2-152 K. The magnetic entropy change (-ΔS) of ˜11.36 J kg-1 K-1 along with the relative cooling power (RCP) of ˜175.89 J kg-1 was obtained in the temperature range of 10-20 K for an applied field of 90 kOe, and their values at 50 kOe applied field were, respectively, almost twenty and forty times larger in magnitude in comparison to those for the SmCrO3 compound. The relatively large values of ΔS and RCP make the studied compound a potential candidate for magnetic refrigeration applications at low temperatures.

  10. Diamagnetic nuclear {sup 119}Sn probes in the copper chromites CuCr{sub 2}X{sub 4} (X = O, S, Se) with a spinel structure

    SciTech Connect

    Dmitrieva, T. V.; Lyubutin, I. S. Stepin, A. S.; Dubinskaya, Yu. L.; Smirnovskaya, E. M.; Berry, F. J.; Thomas, M. F.

    2007-04-15

    The CuCr{sub 2}X{sub 4} (X = O, S, Se) spinel system has been studied by the Moessbauer spectroscopy of the nuclear diamagnetic {sup 119}Sn probe at low temperatures in an external magnetic field. The hyperfine magnetic fields H{sup Sn} induced by paramagnetic ions at tin nuclei in the CuCr{sub 2}S{sub 4} and CuCr{sub 2}Se{sub 4} chalcogenides have giant values and are somewhat higher than those detected in the CuCr{sub 2}O{sub 4} oxide. This behavior is caused by the strong covalence of the chalcogenides, which is supported by the experimentally found isomer shifts. The H{sup Sn} field is found to be mainly contributed by superexchange 90{sup o} interactions in the B-sublattice along the Cr[B]-X-Sn[B] bond chain, whose role increases in the series O-S-Se. In the oxygen CuCr{sub 2}O{sub 4} spinel, the partial contributions to the H{sup Sn} field induced by the Cu{sup 2+} and Cr{sup 3+} ions are estimated. The local magnetic structure of the CuCr{sub 2}O{sub 4} spinel is refined, and its total magnetization is shown to be directed along the magnetic moment of copper in the A sublattice.

  11. Diamagnetic nuclear 119Sn probes in the copper chromites CuCr2X4 (X = O, S, Se) with a spinel structure

    NASA Astrophysics Data System (ADS)

    Dmitrieva, T. V.; Lyubutin, I. S.; Stepin, A. S.; Dubinskaya, Yu. L.; Smirnovskaya, E. M.; Berry, F. J.; Thomas, M. F.

    2007-04-01

    The CuCr2X4 (X = O, S, Se) spinel system has been studied by the Mössbauer spectroscopy of the nuclear diamagnetic 119Sn probe at low temperatures in an external magnetic field. The hyperfine magnetic fields H Sn induced by paramagnetic ions at tin nuclei in the CuCr2S4 and CuCr2Se4 chalcogenides have giant values and are somewhat higher than those detected in the CuCr2O4 oxide. This behavior is caused by the strong covalence of the chalcogenides, which is supported by the experimentally found isomer shifts. The H Sn field is found to be mainly contributed by superexchange 90° interactions in the B-sublattice along the Cr[B]-X-Sn[B] bond chain, whose role increases in the series O-S-Se. In the oxygen CuCr2O4 spinel, the partial contributions to the H Sn field induced by the Cu2+ and Cr3+ ions are estimated. The local magnetic structure of the CuCr2O4 spinel is refined, and its total magnetization is shown to be directed along the magnetic moment of copper in the A sublattice.

  12. Magnetic properties of Sm2(Fe0.95M0.05)17Nx (M=Cr and Mn) anisotropic coarse powders with high coercivity

    NASA Astrophysics Data System (ADS)

    Ito, Mikio; Majima, Kazuhiko; Shimuta, Toru; Katsuyama, Shigeru; Nagai, Hiroshi

    2002-09-01

    Sm2(Fe0.95Cr0.05)17Nx and Sm2(Fe0.95Mn0.05)17Nx coarse powders 10-70 mum in size were synthesized by crushing mother alloy ingots into 32-74 mum in particle size and subsequent nitrogenation at 748 K in a flowing mixed gas of 60 vol % H2+40 vol % NH3. The effects of Cr or Mn substitution for Fe on the nitrogenation rate, magnetic properties, and microstructure of the Sm2Fe17Nx hard magnetic material were investigated. Cr and Mn substitution was quite effective for accelerating nitrogenation. When the powders were nitrogenated beyond x=3, amorphous phase formation was observed as the x value increased. The magnetic properties of the nitrogenated powders were significantly improved by Cr and Mn substitution, and these powders also possessed a satisfactory magnetic anisotropy. The maximum coercivity in this study, 0.59 MA/m, was obtained for the Sm2(Fe0.95Mn0.05)17N5.0 powder in spite of its large particle size. The high coercivity of the coarse powders was caused by a cell-like microstructure composed of fine 2-17 crystalline grains 20-30 nm in size surrounded by an amorphous phase.

  13. Phase diagram and magnetocaloric effects in Ni{sub 50}Mn{sub 35}(In{sub 1−x}Cr{sub x}){sub 15} and (Mn{sub 1−x}Cr{sub x})NiGe{sub 1.05} alloys

    SciTech Connect

    Quetz, Abdiel Muchharla, Baleeswaraiah; Dubenko, Igor; Talapatra, Saikat; Ali, Naushad; Samanta, Tapas; Stadler, Shane

    2014-05-07

    The magnetocaloric and thermomagnetic properties of Ni{sub 50}Mn{sub 35}(In{sub 1−x}Cr{sub x}){sub 15} and (Mn{sub 1−x}Cr{sub x}) NiGe{sub 1.05} systems for 0 ≤ x ≤ 0.105 and 0 ≤ x ≤ 0.1, respectively, have been studied by x-ray diffraction, differential scanning calorimetry, and magnetization measurements. Partial substitution of Cr for Mn in (Mn{sub 1−x}Cr{sub x})NiGe{sub 1.05} results in a first order magnetostructural transition from a hexagonal paramagnetic to an orthorhombic paramagnetic phase near T{sub M} ∼ 380 K (for x = 0.07). Partial substitution of Cr for In in Ni{sub 50}Mn{sub 35}(In{sub 1−x}Cr{sub x}){sub 15} shifts the magnetostructural transition to a higher temperature (T = T{sub M} ∼ 450 K) for x = 0.1. Large magnetic entropy changes of ΔS = −12 (J/(kgK)) and ΔS = −11 (J/(kgK)), both for a magnetic field change of 5 T, were observed in the vicinity of T{sub M} for (Mn{sub 1−x}Cr{sub x})NiGe{sub 1.05} and Ni{sub 50}Mn{sub 35}(In{sub 1−x}Cr{sub x}){sub 15}, respectively.

  14. A new series of oxycarbonate superconductors (Cu(0.5)C(0.5))(m)Ba(m+1)Ca(n-1)Cu(n)O2(m+n)+1

    NASA Technical Reports Server (NTRS)

    Takayama-Muromachi, E.; Kawashima, T.; Matsui, Y.

    1995-01-01

    We found a new series of oxycarbonate superconductors in the Ba-CaCu-C-O system under high pressure of 5 GPa. Their ideal formula is (Cu(0.5)C(0.5)(m)Ba(m+1)Ca(n-1)Cu(n)O2)((m+n)+1) ((Cu,C)-m(m+1)(n-1)n). Thus far, n = 3, 4 members of the m = 1 series, (Cu,C)-1223 and (Cu,C)-1234, have been prepared in bulk while n = 4, 5 members, (Cu,C)-2334 and (Cu,C)-2345, have been prepared for the m = 2 series. (Cu,C)-1223 shows superconductivity below 67 K while T(sub c)'s of other compounds are above 110 K. In particular, (Cu,C)-1234 has the highest T(sub c) of 117 K.

  15. Structural phase transition, Néel temperature enhancement, and persistent magneto-dielectric coupling in Cr-substituted Mn3O4

    NASA Astrophysics Data System (ADS)

    Dwivedi, G. D.; Kumar, Abhishek; Yang, K. S.; Chen, B. Y.; Liu, K. W.; Chatterjee, Sandip; Yang, H. D.; Chou, H.

    2016-05-01

    Structural phase transition and Néel temperature (TN) enhancement were observed in Cr-substituted Mn3O4 spinels. Structural, magnetic, and dielectric properties of (Mn1-xCrx)3O4 (where x = 0.00, 0.10, 0.20, 0.25, 0.30, 0.40, and 0.50) were investigated. Cr-substitution induces room temperature structural phase transition from tetragonally distorted I41/amd (x = 0.00) to cubic Fd 3 ¯ m (x = 0.50). TN is found to increase from 43 K (x = 0.00) to 58 K (x = 0.50) with Cr-substitution. The spin ordering-induced dielectric anomaly near TN ensures that magneto-dielectric coupling persists in the cubic x = 0.50 system. X-ray absorption spectra reveal that Cr exists in a trivalent oxidation state and prefers the octahedral (Oh)-site, replacing Mn3+. Due to a reduction in the Jahn-Teller active Mn3+ cation and an increase in the smaller Cr3+ cation, the system begins to release the geometrical frustration by lowering its degeneracy. Consequently, a phase transition, from distorted tetragonal structure to the more symmetric cubic phase, occurs.

  16. Effect of vanadium and chromium on the microstructural features of V-Cr-Mn-Ni spheroidal carbide cast irons

    NASA Astrophysics Data System (ADS)

    Efremenko, V. G.; Shimizu, K.; Cheiliakh, A. P.; Kozarevskaya, T. V.; Kusumoto, K.; Yamamoto, K.

    2014-11-01

    The objective of this investigation is to study the influence of vanadium (5.0wt%-10.0wt%) and chromium (0-9.0wt%) on the microstructure and hardness of Cr-V-Mn-Ni white cast irons with spheroidal vanadium carbides. The alloys' microstructural features are presented and discussed with regard to the distribution of phase elements. The structural constituents of the alloys are spheroidal VC, proeutectoid cementite, ledeburite eutectic, rosette-shaped carbide eutectic (based on M7C3), pearlite, martensite, and austenite. Their combinations and area fraction (AF) ratios are reported to be influenced by the alloys' chemical composition. Spheroidized VC particles are found to be sites for the nucleation of carbide eutectics. Cr and V are shown to substitute each other in the VC and M7C3 carbides, respectively. Chromium alloying leads to the formation of a eutectic (γ-Fe + M7C3), preventing the appearance of proeutectoid cementite in the structure. Vanadium and chromium are revealed to increase the total carbide fraction and the amount of austenite in the matrix. Cr is observed to play a key role in controlling the metallic matrix microstructure.

  17. On the quasi-1D magnetic behavior of Ba 2MnCoAl 2F 14, Ba 2MnCuAl 2F 14 and related compounds

    NASA Astrophysics Data System (ADS)

    le Lirzin, A.; Darriet, J.; Georges, R.; Soubeyroux, J. L.

    1992-02-01

    Two new fluorides Ba 2MnCoAl 2F 14 and Ba 2MnCoAl 2F 14, isostructural with the natural compound usovite Ba 2CaMgAl 2F 14, have been synthesized. The nuclear structures of both compounds, refined from neutron diffraction data, give evidence for strongly disordered bimetallic chains MnCu or MnCo along the b-axis: two new theoretical treatments are suggested in order to account for the magnetic behavior of each compound but, due to their intrinsic limitations, they are in fact applied here to solid solutions between the parent compound and BaMnAlF 7, namely Ba 2Mn 1+ yCu 1- yAl2F14 and Ba 2Mn1+ yCo1- yAl 2F 14, leading to a rather good agreement with the measured values of the susceptibilities.

  18. Mechanical characterization and modeling of brazed tungsten and Cu-Cr-Zr alloy using stress relief interlayers

    NASA Astrophysics Data System (ADS)

    Qu, Dandan; Zhou, Zhangjian; Yum, Youngjin; Aktaa, Jarir

    2014-12-01

    A rapidly solidified foil-type Ti-Zr based amorphous filler with a melting temperature of 850 °C was used to braze tungsten to Cu-Cr-Zr alloy for water cooled divertors and plasma facing components application. Brazed joints of dissimilar materials suffer from a mismatch in coefficients of thermal expansion. In order to release the residual stress caused by the mismatch, brazed joints of tungsten and Cu-Cr-Zr alloy using different interlayers were studied. The shear strength tests of brazed W/Cu joints show that the average strength of the joint with a W70Cu30 composite plate interlayer reached 119.8 MPa, and the average strength of the joint with oxygen free high conductivity copper (OFHC Cu)/Mo multi-interlayers reached 140.8 MPa, while the joint without interlayer was only 16.6 MPa. Finite element method (FEM) has been performed to investigate the stress distribution and effect of stress relief interlayers. FEM results show that the maximum von Mises stress occurs in the tungsten/filler interface and that the filler suffers the peak residual stresses and becomes the weakest zone. And the use of OFHC Cu/Mo multi-interlayers can reduce the residual stress significantly, which agrees with the mechanical experiment data.

  19. Hyperfine magnetic fields at the nuclei of probe 119Sn atoms and exchange interactions in the CaCu3Mn3.96Sn0.04O12 manganite

    NASA Astrophysics Data System (ADS)

    Rusakov, V. S.; Presnyakov, I. A.; Sobolev, A. V.; Demazeau, G.; Gubaidulina, T. V.; Matsnev, M. E.; Gapochka, A. M.; Volkova, O. S.; Vasil'ev, A. N.

    2011-04-01

    We have investigated the hyperfine magnetic interactions between the nuclei of probe 119Sn atoms in the CaCu3Mn3.96Sn0.04O12 double manganite by Mössbauer spectroscopy using magnetic measurements. A consistent description of the results obtained in terms of the Weiss molecular field model by taking into account the peculiarities of the local environment of tin atoms has allowed the indirect Cu2+-O-Mn4+ ( J CuMn ≈ -51 ± 1 K) and Mn4+-O-Mn4+ ( J MnMn ≈ -0.6 ± 0.6 K) exchange interaction integrals to be estimated. Based on the Kanamori-Goodenough-Anderson model, we show that the magnitude and sign of the intrasublattice exchange integral J MnMn correspond to both the electronic configuration of the Mn4+ cations and the geometry of their local crystallographic environment in the compound under study.

  20. Delocalization and hybridization enhance the magnetocaloric effect in Ni2Mn0.75Cu0.25Ga

    SciTech Connect

    Roy, Sujoy; Blackburn, E.; Valvidares, S. M.; Fitzsimmons, M. R.; Vogel, Sven C.; Khan, M.; Dubenko, I.; Stadler, S.; Ali, N.; Sinha, S. K.; Kortright, J. B.

    2008-11-26

    In view of the looming energy crisis facing our planet, attention increasingly focuses on materials potentially useful as a basis for energy saving technologies. The discovery of giant magnetocaloric (GMC) compounds - materials that exhibit especially large changes in temperature as the externally applied magnetic field is varied - is one such compound 1. These materials have potential for use in solid state cooling technology as a viable alternative to existing gas based refrigeration technologies that use choro-fluoro - and hydro-fluoro-carbon chemicals known to have a severe detrimental effect on human health and environment 2,3. Examples of GMC compounds include Gd5(SiGe)4 4, MnFeP1-xAsx 5 and Ni-Mn-Ga shape memory alloy based compounds 6-8. Here we explain how the properties of one of these compounds (Ni2MnGa) can be tuned as a function of temperature by adding dopants. By altering the free energy such that the structural and magnetic transitions coincide, a GMC compound that operates at just the right temperature for human requirements can be obtained 9. We show how Cu, substituted for Mn, pulls the magnetic transition downwards in temperature and also, counterintuitively, increases the delocalization of the Mn magnetism. At the same time, this reinforces the Ni-Ga chemical bond, raising the temperature of the martensite-austenite transition. At 25percent doping, the two transitions coincide at 317 K.

  1. Giant magnetic coercivity in YNi4B-type SmNi3TB (T=Mn-Cu) solid solutions

    NASA Astrophysics Data System (ADS)

    Yao, Jinlei; Yan, Chang; Yapaskurt, V. O.; Morozkin, A. V.

    2016-12-01

    The effects of transition metal substitution for Ni on the magnetic properties of the YNi4B-type SmNi4B via SmNi3TB (T=Mn, Fe, Co, Cu) solid solutions have been investigated. SmNi4B, SmNi3MnB, SmNi3FeB, SmNi3CoB and SmNi3CuB show ferromagnetic ordering at 40 K, 210 K, 322 K, 90 K and 57 K and field sensitive metamagnetic-like transitions at 15 K, 100 K, 185 K, 55 K and 15 K in a magnetic field of 10 kOe, respectively. The magnetocaloric effects of SmNi3TB (T=Mn-Cu) were calculated in terms of isothermal magnetic entropy change (ΔSm). The magnetic entropy ΔSm reaches value of -0.94 J/kg K at 40 K for SmNi4B, -1.5 J/kg K at 205 K for SmNi3MnB, -0.54 J/kg K at 320 K for SmNi3FeB, -0.49 J/kg K at 90 K for SmNi3CoB and -0.54 J/kg K at 60 K for SmNi3CuB in field change of 0-50 kOe around the Curie temperature. They show positive ΔSm of +0.71 J/kg K at ~10 K for SmNi4B, +1.69 J/kg K at 30 K for SmNi3MnB, +0.89 J/kg K at 110 K for SmNi3FeB, +1.08 J/kg K at 25 K for SmNi3CoB and +1.12 J/kg K at 10 K for SmNi3CuB in field change of 0-50 kOe around the low temperature metamagnetic-like transition. Below the field induced transition temperature (change of magnetic structure), SmNi3TB (T=Mn-Cu) exhibits giant magnetic coercivity of 74 kOe at 5 K for SmNi4B, 69 kOe at 20 K (90 kOe at 10 K) for SmNi3MnB, 77 kOe at 60 K for SmNi3FeB, 88 kOe at 20 K for SmNi3CoB and 52 kOe at 5 K for SmNi3CuB.

  2. Dye-Sensitized Cu2 XSnS4 (X=Zn, Ni, Fe, Co, and Mn) Nanofibers for Efficient Photocatalytic Hydrogen Evolution.

    PubMed

    Gonce, Mehmet Kerem; Aslan, Emre; Ozel, Faruk; Hatay Patir, Imren

    2016-03-21

    The photocatalytic hydrogen evolution activities of low-cost and noble-metal-free Cu2 XSnS4 (X=Zn, Ni, Fe, Co, and Mn) nanofiber catalysts have been investigated using triethanolamine as an electron donor and eosin Y as a photosensitizer under visible-light irradiation. The rates of hydrogen evolution by Cu2 XSnS4 (X=Zn, Ni, Fe, Co, and Mn) nanofibers have been compared with each other and with that of the noble metal Pt. The hydrogen evolution rates for the nanofibers change in the order Cu2 NiSnS4 >Cu2 FeSnS4 >Cu2 CoSnS4 >Cu2 ZnSnS4 >Cu2 MnSnS4 (2028, 1870, 1926, 1420, and 389 μmol g(-1) h(-1) , respectively). The differences between the hydrogen evolution rates of the nanofibers could be attributed to their energy levels. Moreover, Cu2 NiSnS4, Cu2 FeSnS4 , and Cu2 CoSnS4 nanofibers show higher and more stable photocatalytic hydrogen production rates than that of the noble metal Pt under long-term irradiation with visible light.

  3. Interactions of Cu with CoSi2, CrSi2 and TiSi2 with and without TiNx barrier layers

    NASA Astrophysics Data System (ADS)

    Olowolafe, J. O.; Li, Jian; Mayer, J. W.

    1990-12-01

    Interactions of Cu with CoSi2, CrSi2, and TiSi2 with and without interposed TiNx layers have been studied using Rutherford backscattering spectrometry, Auger electron spectrometry, x-ray diffraction, and in situ sheet resistivity measurements. Cu diffuses through a preformed CoSi2 layer to form the structure CoSi2/Cu3Si/Si(100). No dissociation of CoSi2 has been observed. For the Cu/CrSi2/Si system, the outdiffusion of Si leads to the formation of Cu3Si/CrSi2/Si at temperatures above 300 °C. At about the same temperature, Cu diffuses into a TiSi2 layer and to the TiSi2/Si interface to react with both Ti and Si forming Cu3Ti, Cu3Si, and Cu4Si phases. A 50-nm TiNx layer prepared by reactive sputtering was observed to be an effective diffusion barrier between Cu and CoSi2 or CrSi2. A 30-nm layer of TiNx simultaneously grown with TiSi2 by rapid thermal annealing proved effective between Cu and TiSi2 up to 500 °C.

  4. Cyclic Oxidation Behavior of Cold Sprayed CuCrAl-Coated and Uncoated GRCop-84 Substrates for Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Barrett, C.; Karthikeyan, J.; Garlick, R.

    2006-01-01

    A newly developed Cu-23 (wt %) Cr-5%Al (CuCrAl) alloy shown to resist hydridation and oxidation in an as-cast form is currently being considered as a protective coating for GRCop-84, which is an advanced copper alloy containing 8 (at.%) Cr and 4 (at.%) Nb. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique. Cyclic oxidation tests conducted in air on both coated and uncoated substrates between 773 and 1073 K revealed that the coating remained intact and protected the substrate up to 1073 K. No significant weight loss of the coated specimens were observed at 773 and 873 K even after a cumulative cyclic time of 500 h. About a 10 percent weight loss observed at 973 and 1073 K was attributed to the excessive oxidation of the uncoated sides. In contrast, the uncoated substrate lost as much as 80 percent of its original weight under similar test conditions. It is concluded that the cold sprayed CuCrAl coating is suitable for protecting GRCop-84 substrates.

  5. Magnetic phases of the quasi-two-dimensional antiferromagnet CuCrO2 on a triangular lattice

    NASA Astrophysics Data System (ADS)

    Sakhratov, Yu. A.; Svistov, L. E.; Kuhns, P. L.; Zhou, H. D.; Reyes, A. P.

    2016-09-01

    We have carried out Cu,6563 NMR spectra measurements in a magnetic field up to about 45 T on a single crystal of a multiferroic triangular antiferromagnet CuCrO2. The measurements were performed for magnetic fields aligned along the crystal c axis. Field and temperature evolution of the spectral shape demonstrates a number of phase transitions. It was found that the 3D magnetic ordering takes place in the low field range (H ≲15 T). At higher fields magnetic structures form within individual triangular planes whereas the spin directions of the magnetic ions from neighboring planes are not correlated. It is established that the 2D-3D transition is hysteretic in field and temperature. Line-shape analysis reveals several possible magnetic structures existing within individual planes for different phases of CuCrO2. Within certain regions on the magnetic H -T phase diagram of CuCrO2 a 3D magnetic ordering with tensor order parameter is expected.

  6. The magnetic Curie temperature and exchange coupling between cations in tetragonal spinel oxide Mn2.5M0.5O4 (M = Co, Ni, Mn, Cr, and Mg) films

    NASA Astrophysics Data System (ADS)

    Kuo, K.; Cheng, C. W.; Chern, G.

    2012-04-01

    Mn3O4 is a Jahn-Taller tetragonal ferrite that has a relatively low Curie temperature (Tc) of ˜43 K due to weak coupling between the canting spins. In this study, we fabricated a series of 100-nm-thick Mn2.5M0.5O4 (M = Co, Ni, Mn, Cr, and Mg) films via oxygen-plasma-assisted molecular beam epitaxy and measured the structural and magnetic properties of these films. These films show single phase quality, and the c-axis lattice parameter of pure Mn3O4 is 0.944 nm, with a c/a ratio ˜1.16, consistent with the bulk values. The replacement of Mn by M (M = Co, Ni, Cr, and Mg) changes the lattice parameters, and the c/a ratio varies between 1.16 and 1.06 depending upon the cation distribution of the films. The magnetic Curie temperatures of these films also vary in the range of 25-66 K in that Ni and Co enhance the Tc whereas Mg reduces the Tc (Cr shows no effect on the Tc). These changes to the Tc are related to both the element electronic state and the cation distributions in these compounds. As a non-collinear spin configuration can induce electrical polarization, the present study provides a systematic way to enhance the magnetic transition temperature in tetragonal spinel ferrites.

  7. Synthesis, characterization and photocatalytic activity of cubic-like CuCr2O4 for dye degradation under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Yuan, Wenhui; Liu, Xiaoxia; Li, Li

    2014-11-01

    CuCr2O4 nanoparticles with cubic-like morphology were prepared via hydrothermal synthesis method without template. The CuCr2O4 samples were characterized by thermogravimetry and differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS) and Zeta potentials, respectively. The results indicated that cubic-like CuCr2O4 could be successfully synthesized by calcining the precursor at 600 °C, and the calcination temperature greatly influenced the morphology and optical performance of CuCr2O4. The pH at the point of zero charge (pHpzc) of the CuCr2O4 calcined at 600 °C was about 4.52. The photocatalytic activity of CuCr2O4 was evaluated for degradation of rhodamine B (RhB), methylene blue (MB), and methyl orange (MO) in the presence of H2O2 under visible light irradiation and the effects of the calcination temperature, dosage of photocatalyst, etc., on photocatalytic activity were studied in detail. The photocatalytic results revealed that the CuCr2O4 photocatalyst was of high activity for degradation of RhB (96.8%) and MB (99.5%), but very low activity for degradation of MO (14%). The CuCr2O4 sample calcined at 600 °C possesses the best photocatalytic activity, and the optimal dosage of the CuCr2O4 photocatalyst is 0.4 g/L.

  8. Magnetism, structures and stabilities of cluster assembled TM@Si nanotubes (TM = Cr, Mn and Fe): a density functional study.

    PubMed

    Dhaka, Kapil; Bandyopadhyay, Debashis

    2016-08-02

    The present study reports transition metal (TM = Cr, Mn and Fe) doped silicon nanotubes with tunable band structures and magnetic properties by careful selection of cluster assemblies as building blocks using the first-principles density functional theory. We found that the transition metal doping and in addition, the hydrogen termination process can stabilize the pure silicon nanoclusters or cluster assemblies and then it could be extended as magnetic nanotubes with finite magnetic moments. Study of the band structures and density of states (DOS) of different empty and TM doped nanotubes (Type 1 to Type 4) show that these nanotubes are useful as metals, semiconductors, semi-metals and half-metals. These designer magnetic materials could be useful in spintronics and magnetic devices of nanoscale order.

  9. Study of phase stability of MnCr using the augmented space recursion based orbital peeling technique

    NASA Astrophysics Data System (ADS)

    Banerjee, Rudra; Mookerjee, Abhijit

    2009-07-01

    In an earlier communication we have developed a recursion based approach to the study of phase stability and transition of binary alloys [K. Tarafder, M. Rahaman, D. Paudyal, B. Sanyal, O. Eriksson, A. Mookerjee, Physica B 403 (2000) 4111]. We had combined the recursion method introduced by Haydock et al. [J. Phys. C Solid State Phys. 5 (1972) 2485] and the our augmented space approach [A. Mookerjee, J. Phys. C Solid State Phys. 6 (1973) 1340] with the orbital peeling technique proposed by Burke [Surf. Sci. 58 (1976) 349] to determine the small energy differences involved in the discussion of phase stability. We extend that methodology for the study of MnCr alloys.

  10. Structural features of the ferromagnetic order formation in the Mn1- x Cr x NiGe system

    NASA Astrophysics Data System (ADS)

    Val'kov, V. I.; Kamenev, V. I.; Mityuk, V. I.; Gribanov, I. F.; Golovchan, A. V.; Delikatnaya, T. Yu.

    2017-02-01

    Within the phenomenological model of the interacting parameters of magnetic and structural orders, magnetic and structural transitions in magnetocaloric alloys of the Mn1- x Cr x NiGe system are analyzed. Based on the calculated isobaric temperature dependences of the parameters of magnetic and structural orders, a magnetic susceptibility jump in the first-order structural transition region is predicted and confirmed experimentally; the change in the magnetic ordering type during the approach of magnetic and structural transitions is justified. The change in the phase transition type during the reverse change in the temperature and magnetic field, which is observed in a number of samples of the system under study, is explained. The efficiency of the use of the transitions induced by the magnetic field in magnetocaloric applications is analyzed.

  11. Experimental and Numerical Analysis on the Distortion of Parts Made of 20MnCr5 by Hot Metal Forming

    SciTech Connect

    Rentsch, Ruediger; Brinksmeier, Ekkard

    2011-05-04

    For high performance applications, shafts and gears made of 20MnCr5 (AISI 5120) are manufactured in large numbers every year. Inhomogeneities in the material properties, process perturbations and asymmetries in shape and operation setups provide a potential for the distortion of parts, often released by heat treatment. In this contribution experimental results on the distortion of shafts and the dishing of disk-like gear wheel blanks are presented. The numerical analysis of the hot-rolling process allowed to trace a peculiar segregation distribution at the cross-section of the bars back to the casting process, and to identify an asymmetric strain distribution which may be the main cause for shaft distortion. For the dishing of the disks a correlation to the resulting distribution of the material flow was found and, a process perturbation parameter identified which is assumed to be responsible for the observed material flow variation.

  12. Synthesis and thermostructural studies of a CuFe(1-x)Cr(x)O(2) delafossite solid solution with 0

    PubMed

    Lalanne, M; Barnabé, A; Mathieu, F; Tailhades, Ph

    2009-07-06

    In this work, different CuFe(1-x)Cr(x)O(2) compositions with 0 CuFe(1-x)Cr(x)O(2) solid solution was studied by thermogravimetric analysis and high-temperature X-ray diffraction experiments under an air atmosphere up to 1000 degrees C. For x = 0, CuFeO(2) is oxidized into the spinel (CuFe(2)O(4)) and copper monoxide (CuO) phases, whereas for x = 1, CuCrO(2) is thermally stable. For all of the intermediate compositions (0 < x < 1), complex oxidation, reduction, and phase transitions between delafossite and spinel have been observed. chromium tends to stabilize the stoichiometric delafossite phase, while iron favors the delafossite-to-spinel phase transition.

  13. The influence of Mn-doped CeO2 on the activity of CuO/CeO2 in CO oxidation and NO + CO model reaction

    NASA Astrophysics Data System (ADS)

    Deng, Changshun; Huang, Qingqing; Zhu, Xiying; Hu, Qun; Su, Wenli; Qian, Junning; Dong, Lihui; Li, Bin; Fan, Minguang; Liang, Caiyuan

    2016-12-01

    This work is mainly focused on the investigation of the influence of Mn-doped CeO2 supported by CuO on the physicochemical and catalytic properties for CO oxidation and NO + CO model reaction. The obtained samples were characterized using N2-physisorption (BET), XRD, LRS, TEM, EDS-Mapping, ICP-AES, XPS, H2-TPR, O2-TPD, in situ DRIFTS, CO oxidation, and NO + CO model reaction. The results imply that appropriate doping MnOx into the lattice of CeO2 will cause an obvious change in the properties of the catalyst and the Cu/CeMn-10: 1 catalyst shows the largest specific surface area, the most uniformity of structure, and the most extent of lattice expansion. A few addition of MnOx is more conducive to the generation of low valence manganese ion in the process of calcination, which may contribute to the synergetic introduction. This further results in more Cu+ due to the shifting of redox equilibrium (Cu2+ + Ce3+ ↔ Cu+ + Ce4+) to right, as well as more oxygen vacancies. Moreover, the capability of Cu/CeMn-10: 1 on desorb/transform/decompose of the adsorbed NO species is more effective than that of Cu/CeO2. The results of catalytic performance show that Cu+/Cu0 species play a key role, and the activity is mainly related to the specific surface area, the content of Cu+ and Ce3+, the reduction, desorption capability of chemisorbed O2- (and/or O-) species as well as adsorption behaviors of these catalysts for CO oxidation and NO + CO reaction. Finally, possible reaction mechanisms are tentatively proposed to understand the reactions.

  14. High field magnetotransport and point contact Andreev reflection measurements on CuCr{sub 2}Se{sub 4} and CuCr{sub 2}Se{sub 3}Br—Degenerate magnetic semiconductor single crystals

    SciTech Connect

    Borisov, K. Coey, J. M. D.; Stamenov, P.; Alaria, J.

    2014-05-07

    Single crystals of the metallically degenerate fully magnetic semiconductors CuCr{sub 2}Se{sub 4} and CuCr{sub 2}Se{sub 3}Br have been prepared by the Chemical Vapour Transport method, using either Se or Br as transport agents. The high-quality, millimetre-sized, octahedrally faceted, needle- and platelet-shaped crystals are characterised by means of high field magnetotransport (μ{sub 0}H≤ 14 T) and Point Contact Andreev Reflection. The relatively high spin polarisation observed |P|>0.56, together with the relatively low minority carrier effective mass of 0.25 m{sub e}, and long scattering time  10{sup −13} s, could poise these materials for integration in low- and close-to-room temperature minority injection bipolar heterojunction transistor demonstrations.

  15. Effect of hydrogen on internal friction and Young`s modulus of Fe-Cr-Mn austenitic stainless steel

    SciTech Connect

    Usui, Makoto; Asano, Shigeru

    1996-06-01

    The internal friction technique has so far been applied to studies on hydrogen behavior in iron and steel. The hydrogen cold-work peak is well known for pure iron and has also been observed in BCC iron alloys such as ferritic stainless steel and maraging steel. It provides important information about the hydrogen- dislocation interaction in the BCC iron lattice. Meanwhile, for FCC iron alloys such as austenitic stainless steel, another characteristic hydrogen internal friction peak has been found by authors` group and confirmed by several other investigators. In the present study, type 205 austenitic stainless steel (Fe-17Cr-15Mn) was chosen as a nickel-free FCC iron alloy, in which manganese is totally substituted for nickel in type 304 steel. This steel has an unstable FCC lattice as is the case of type 304 steel, in which hydrogen-induced phase transformation depends on the austenite stability. However, the present steel was confirmed to form the {var_epsilon}{sub H} phase after cathodic hydrogen charging in a similar manner to the stable FCC lattice of type 310 steel. In addition, the Fe-Cr-Mn alloy shows a marked anomaly in the temperature dependence of Young`s modulus: an abrupt drop near the Neel temperature T{sub N} and successive lowering below T{sub N}, as has been reported in the literature for some antiferromagnetic materials. The effect of hydrogen on Young`s modulus was studied by several investigators, but there was great inconsistency among their experimental results. The purpose of this paper is to confirm the hydrogen peak of internal friction in type 205 steel and to examine the effect of hydrogen on Young`s modulus of this steel.

  16. Structural and magnetic transition in stainless steel Fe-21Cr-6Ni-9Mn up to 250 GPa

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Hou, Qi-Yue; Zhang, Yi; Jing, Qiu-Min; Wang, Zhi-Gang; Bi, Yan; Xu, Ji-An; Li, Xiao-Dong; Li, Yan-Chun; Liu, Jing

    2015-06-01

    Stainless steel Fe-21Cr-6Ni-9Mn (SS 21-6-9), with ˜21% Cr, ˜6% Ni, and ˜9% Mn in weight percentage, has wide applications in extensive fields. In the present study, SS 21-6-9 is compressed up to 250 GPa, and its crystal structures and compressive behaviors are investigated simultaneously using the synchrotron angle-dispersive x-ray diffraction technique. The SS 21-6-9 undergoes a structural phase transition from fcc to hcp structure at ˜12.8 GPa with neglectable volume collapse within the determination error under the quasi-hydrostatic environment. The hcp structure remains stable up to the highest pressure of 250 GPa in the present experiments. The antiferromagnetic-to-nonmagnetic state transition of hcp SS 21-6-9 with the changes of inconspicuous density and structure, is discovered at ˜50 GPa, and revealed by the significant change in c/a ratio. The hcp SS-21-6-9 is compressive anisotropic: it is more compressive in the c-axis direction than in the a-axis direction. Both the equations of states (EOSs) of fcc and hcp SS 21-6-9, which are in accordance with those of fcc and hcp pure irons respectively, are also presented. Furthermore, the c/a ratio of hcp SS 21-6-9 at infinite compression, R∞, is consistent with the values of pure iron and Fe-10Ni alloy. Project supported by the National Natural Science Foundation of China (Grant Nos. U1230201, 11274281, and 11304294), the Industrial Technology Development Program, China (Grant No. 9045140509), and the Funds from the Chinese Academy of Sciences (Grant Nos. KJCX2-SW-N03 and KJCX2-SW-N20).

  17. Effect of Pre-straining on the Shape Recovery of Fe-Mn-Si-Cr-Ni Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Maji, Bikas C.; Krishnan, Madangopal; Verma, Amit; Basu, R.; Samajdar, I.; Ray, Ranjit K.

    2015-02-01

    The effect of pre-straining on the shape recovery behavior of Fe-14Mn-6Si-9Cr-5Ni (wt pct) shape memory alloy (SMA) has been studied. The shape recovery associated with the reverse ɛ martensitic transformation, i.e., ɛ → γ, was characterized by dilatometry using specimens which were pre-strained to different extent (0 to 14 pct). Dilatometric studies revealed that in Fe-Mn-Si-Cr-Ni SMA, the shape recovery takes place in two stages: (i) in the first stage, the unpinned fraction of stress-induced ɛ martensite reverts back to parent phase γ in the temperature regime of 353 K to 653 K (80 °C to 380 °C) and (ii) in the second stage the remaining "pinned" ɛ martensite is unpinned by the decomposition of deformation-induced α' martensite in the temperature range of 743 K to 893 K (470 °C to 620 °C). The amount of recovery in the first stage decreases with pre-strain, whereas it increases in the second stage. The ɛ → γ transformation finish temperature, A f, increases with increase in pre-strain amount, though the reverse transformation start temperature, A S, remains unaffected. Microstructural characterization revealed that the amount of deformation-induced α' martensite depends on the mode of straining and the crystallographic texture of the starting material. The reversion of α' martensite is seen to occur by the precipitation of Fe5Ni3Si2-type intermetallic π-phase within these plates.

  18. Microstructure and mechanical properties of nonmagnetic Fe-25Mn-xCu-C steels by super solidus liquid phase sintering

    NASA Astrophysics Data System (ADS)

    Jia, Shanquan; Xiao, Zhiyu; Wang, Jun; Yang, Shuo; Guan, Hangjian; Zhu, Quanli

    2016-11-01

    In this work, nonmagnetic steels Fe-25Mn-xCu-C were prepared by high manganese pre-alloyed steel powders through powder metallurgy (PM) technique. Four types of steels specimen were created to investigate the microstructure evolving with sintering process, mechanical properties and magnetic properties. The microstructures, fracture surfaces, phase constitutions and mechanical properties of Fe-25Mn-xCu-C were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), and tensile strength test. The results showed that super solidus liquid-phase sintering (SLPS) phenomenon was conclusively verified, for the first time, in the Fe-Mn pre-alloyed powders: Liquids generated by SLPS process from pre-alloyed powders could improve the binding condition between the particles and enhance the densification. X-ray diffraction (XRD) experiment and physical property measurement system (PPMS) measurement verified the nonmagnetic properties of steels with single austenite phase. It is confirmed that mechanical properties are intensively influenced by the characteristic and quantity of liquids between the matrix particles. The fracture mechanism of the steel is dominated by intergranular decohesion mode. The preliminary study found this kind of new non-magnetic steel exhibits relatively high density. With the efficiency in fabricating and the non-magnetic property, this work foresees good prospects for application in the steel components manufacturing industry.

  19. Studies of a Large Odd‐Numbered Odd‐Electron Metal Ring: Inelastic Neutron Scattering and Muon Spin Relaxation Spectroscopy of Cr8Mn

    PubMed Central

    Lancaster, Tom; Chiesa, Alessandro; Amoretti, Giuseppe; Baker, Peter J.; Barker, Claire; Carretta, Stefano; Collison, David; Güdel, Hans U.; Guidi, Tatiana; McInnes, Eric J. L.; Möller, Johannes S.; Mutka, Hannu; Ollivier, Jacques; Pratt, Francis L.; Santini, Paolo; Tuna, Floriana; Tregenna‐Piggott, Philip L. W.; Vitorica‐Yrezabal, Iñigo J.; Timco, Grigore A.

    2016-01-01

    Abstract The spin dynamics of Cr8Mn, a nine‐membered antiferromagnetic (AF) molecular nanomagnet, are investigated. Cr8Mn is a rare example of a large odd‐membered AF ring, and has an odd‐number of 3d‐electrons present. Odd‐membered AF rings are unusual and of interest due to the presence of competing exchange interactions that result in frustrated‐spin ground states. The chemical synthesis and structures of two Cr8Mn variants that differ only in their crystal packing are reported. Evidence of spin frustration is investigated by inelastic neutron scattering (INS) and muon spin relaxation spectroscopy (μSR). From INS studies we accurately determine an appropriate microscopic spin Hamiltonian and we show that μSR is sensitive to the ground‐spin‐state crossing from S=1/2 to S=3/2 in Cr8Mn. The estimated width of the muon asymmetry resonance is consistent with the presence of an avoided crossing. The investigation of the internal spin structure of the ground state, through the analysis of spin‐pair correlations and scalar‐spin chirality, shows a non‐collinear spin structure that fluctuates between non‐planar states of opposite chiralities. PMID:26748964

  20. Revisiting the 53Mn-53Cr Isotopic Systematics in Phosphates Minerals in IIIAB Iron Meteorites: Implications for the Fine Structure Constant Variation

    NASA Astrophysics Data System (ADS)

    Jacobsen, B.; Yin, Q.-Z.; Hutcheon, I. D.; Phinney, D. L.

    2007-03-01

    New Mn-Cr isotope data on phosphate minerals in the Grant IIIAB iron meteorite places new constraint on the uncertainty for the 187Re decay constant and leads to the "fine structure constant" variations at 3.3x10E-16/y over the last 4.567 Ga.

  1. Studies of a Large Odd-Numbered Odd-Electron Metal Ring: Inelastic Neutron Scattering and Muon Spin Relaxation Spectroscopy of Cr8 Mn.

    PubMed

    Baker, Michael L; Lancaster, Tom; Chiesa, Alessandro; Amoretti, Giuseppe; Baker, Peter J; Barker, Claire; Blundell, Stephen J; Carretta, Stefano; Collison, David; Güdel, Hans U; Guidi, Tatiana; McInnes, Eric J L; Möller, Johannes S; Mutka, Hannu; Ollivier, Jacques; Pratt, Francis L; Santini, Paolo; Tuna, Floriana; Tregenna-Piggott, Philip L W; Vitorica-Yrezabal, Iñigo J; Timco, Grigore A; Winpenny, Richard E P

    2016-01-26

    The spin dynamics of Cr8 Mn, a nine-membered antiferromagnetic (AF) molecular nanomagnet, are investigated. Cr8 Mn is a rare example of a large odd-membered AF ring, and has an odd-number of 3d-electrons present. Odd-membered AF rings are unusual and of interest due to the presence of competing exchange interactions that result in frustrated-spin ground states. The chemical synthesis and structures of two Cr8 Mn variants that differ only in their crystal packing are reported. Evidence of spin frustration is investigated by inelastic neutron scattering (INS) and muon spin relaxation spectroscopy (μSR). From INS studies we accurately determine an appropriate microscopic spin Hamiltonian and we show that μSR is sensitive to the ground-spin-state crossing from S=1/2 to S=3/2 in Cr8 Mn. The estimated width of the muon asymmetry resonance is consistent with the presence of an avoided crossing. The investigation of the internal spin structure of the ground state, through the analysis of spin-pair correlations and scalar-spin chirality, shows a non-collinear spin structure that fluctuates between non-planar states of opposite chiralities.

  2. Dielectric relaxation and magnetodielectric response in DyMn{sub 0.5}Cr{sub 0.5}O{sub 3}

    SciTech Connect

    Yuan, B.; Yang, J. Zuo, X. Z.; Zhu, X. B.; Dai, J. M.; Song, W. H.; Kan, X. C.; Zu, L.; Sun, Y. P.

    2015-09-28

    We investigate the structural, magnetic, and magnetodielectric properties of DyMn{sub 0.5}Cr{sub 0.5}O{sub 3}. The sample can be indexed with an orthorhombic phase with B site disordered space group Pbnm. The valence state of both Mn and Cr ions are suggested to be +3 based on the results of x-ray photoelectron spectroscopy. Two thermally excited dielectric relaxation at temperatures T{sub N2} < T< 300 K and large magnetodielectric effect (MDC = 20%–30%) due to the disordered arrangement of Mn{sup 3+}/Cr{sup 3+} ions associated with electron hopping between them are observed. The absence of any noticeable magnetoresistance effect (MR < 0.5%) demonstrates that the observed magnetodielectric effect is an intrinsic behavior. These results suggest that DyMn{sub 0.5}Cr{sub 0.5}O{sub 3} is a magnetodielectric compound, whose dielectric properties are dependence of the applied magnetic field, which exhibits such effects near room temperature and holds great promise for future device applications.

  3. Spatially resolved quantitative magnetic order measurement in spinel CuCr{sub 2}S{sub 4} nanocrystals

    SciTech Connect

    Negi, D. S.; Loukya, B.; Datta, R.; Ramasamy, K.; Gupta, A.

    2015-05-04

    We have utilized spatially resolved high resolution electron energy loss spectroscopy to quantify the relative percentage of ferromagnetic order in the core and the surface regions of CuCr{sub 2}S{sub 4} nanoparticles with nanocube and nanocluster morphology. The organic capping layer is found to play a significant role in restoring magnetic order at the surface. The technique is based on recording the fine features of the Cr L{sub 3} absorption edge and matching them with the theoretical spectra. The nanoscale probing technique we have developed is quite versatile and can be extended to understand magnetic ordering in a number of nanodimensional magnetic materials.

  4. High-precision abundances of Sc, Mn, Cu, and Ba in solar twins. Trends of element ratios with stellar age

    NASA Astrophysics Data System (ADS)

    Nissen, P. E.

    2016-09-01

    Aims: A previous study of correlations between element abundances and ages of solar twin stars in the solar neighborhood is extended to include Sc, Mn, Cu, and Ba to obtain new information on the nucleosynthetic history of these elements. Methods: HARPS spectra with S/N ≳ 600 are used to derive very precise (σ ~ 0.01 dex) differential abundances of Sc, Mn, Cu, and Ba for 21 solar twins and the Sun. The analysis is based on MARCS model atmospheres with parameters determined from the excitation and ionization balance of Fe lines. Stellar ages with internal errors less than 1 Gyr are obtained by interpolation in the log g - Teff diagram between isochrones based on the Aarhus Stellar Evolution Code. Results: For stars younger than 6 Gyr, [Sc/Fe], [Mn/Fe], [Cu/Fe], and [Ba/Fe] are tightly correlated with stellar age, which is also the case for the other elements previously studied; linear relations between [X/Fe] and age have χ^2red ˜ 1, and for most stars the residuals do not depend on elemental condensation temperature. For ages between 6 and 9 Gyr, the [X/Fe] - age correlations break down and the stars split up into two groups having respectively high and low [X/Fe] for the odd-Z elements Na, Al, Sc, and Cu. Conclusions: While stars in the solar neighborhood younger than ~ 6 Gyr were formed from interstellar gas with a smooth chemical evolution, older stars seem to have originated from regions enriched by supernovae with different neutron excesses. Correlations between abundance ratios and stellar age suggest that: (i) Sc is made in Type II supernovae along with the α-capture elements; (ii) the Type II to Ia yield ratio is about the same for Mn and Fe; (iii) Cu is mainly made by the weak s-process in massive stars; (iv) the Ba/Y yield ratio for asymptotic giant branch stars increases with decreasing stellar mass; (v) [Y/Mg] and [Y/Al] can be used as chemical clocks when determining ages of solar metallicity stars. Based on data products from observations made

  5. Structural, magnetic and phonon properties of Cr(III)-doped perovskite metal formate framework [(CH3)2NH2][Mn(HCOO)3

    NASA Astrophysics Data System (ADS)

    Mączka, Mirosław; Gągor, Anna; Hermanowicz, Krzysztof; Sieradzki, Adam; Macalik, Lucyna; Pikul, Adam

    2016-05-01

    We have incorporated Cr(III) into [(CH3)2NH2][Mn(HCOO)3] (DMMn) multiferroic metal organic framework (MOF). The highest concentration of Cr(III) in the synthesized samples reached 15.9 mol%. The obtained samples were characterized by powder and single-crystal X-ray diffraction, DSC, magnetic susceptibility, dielectric, EPR, Raman and IR methods. These methods and the performed chemical analysis revealed that electrical charge neutrality after substitution of Cr(III) for Mn(II) is maintained by partial replacement of dimethylammonium (DMA+) cations by neutral HCOOH molecules. These changes in the chemical composition are responsible for weakening of the hydrogen bonds and decreased flexibility of the framework. This in turn leads to lowering of the ferroelectric phase transition temperature, observed around 185 K for undoped DMMn and around 155 K for the sample containing 3.1 mol% of Cr(III), and lack of macroscopic phase transition for the samples with Cr(III) content of 8.2 and 15.9 mol %. Another interesting effect observed for the studied samples is pronounced strengthening of the weak ferromagnetism of in Cr(III)-doped samples, associated with slight decrease of the ferromagnetic ordering temperature from 8.5 K for DMMn to 7.0 K for the sample with 15.9 mol % Cr(III) content.

  6. Processing of CuAlMn Shape Memory Foams with Open Spherical Pores by Silica-Gel Beads Infiltration Method

    NASA Astrophysics Data System (ADS)

    Li, Hua; Yuan, Bin; Gao, Yan

    2016-10-01

    A molten metal infiltration process with amorphous SiO2 (silica-gel) beads as space holders was used to prepare Cu-based shape memory foams in this article. We found that the silica-gel beads with micropores inside expanded when being heated to elevated temperatures and that proper control of the expansion of silica-gel beads helped form necks between the beads with different bonding extent, which had been taken advantage of to have a good control of the foam morphology and porosity, by carefully designing suitable procedures and choosing proper parameters for the process. In addition, we studied in detail the effect of heating temperature, silica-gel bead density, and infiltration pressure of the present process on the morphology and porosity of CuAlMn shape memory foams. By coordinating these three key parameters, CuAlMn shape memory foams with open spherical pores and adjustable porosity from 66 to 85 pct were reliably produced.

  7. Reduction of nitrate by NaY zeolite supported Fe, Cu/Fe and Mn/Fe nanoparticles.

    PubMed

    Zeng, Yubin; Walker, Harold; Zhu, Qingzhi

    2017-02-15

    Nano particles Fe, Cu/Fe and Mn/Fe supported on NaY zeolite (F@Y, CF@Y, and MF@Y) were prepared by two-step processes consisting of ion exchange and liquid-phase reduction. The characterization by XRD, SEM-EDX and BET-N2 adsorption demonstrated that Fe, Cu/Fe and Mn/Fe nano particles were successfully loaded onto NaY zeolite and exhibited larger BET surface area compared to nano-Fe(0) (nZVI). Laboratory experiments showed that nitrate removal by metals@Y in unbuffered conditions reached nearly 100% at a dosage of 4g/L after 6h of reaction. Moreover, the nitrate removal was not sensitive to the initial solution pH. Even at a high pH of 9.0, metals@Y exhibited nitrate reduction above 94%. CF@Y demonstrated high N2 selectivity, due to the high content of Cu (20wt%) and Fe (41wt%) in CF@Y and the highly active metallic sites on its surface with positive charge. Kinetic data showed a good fit to a first-order kinetic model during early reaction times. A close fit to both a second-order and an nth-order kinetic model was shown for the whole of the reaction period. The data suggest that both liquid phase mass transfer and the intrinsic reaction rate control the process of nitrate reduction by metals@Y.

  8. Ag{sub 2}CuMnO{sub 4}: A new silver copper oxide with delafossite structure

    SciTech Connect

    Munoz-Rojas, David; Subias, Gloria; Fraxedas, Jordi; Martinez, Benjamin; Casas-Cabanas, Montse; Canales-Vazquez, Jesus; Gonzalez-Calbet, Jose; Garcia-Gonzalez, Ester; Walton, Richard I.; Casan-Pastor, Nieves . E-mail: nieves@icmab.es

    2006-12-15

    The use of hydrothermal methods has allowed the synthesis of a new silver copper mixed oxide, Ag{sub 2}CuMnO{sub 4}, the first example of a quaternary oxide containing both elements. It crystallizes with the delafossite 3R structure, thus being the first delafossite to contain both Ag and Cu. Synthesis conditions affect the final particle size (30-500nm). Powder X-ray diffraction Rietveld refinement indicates a trigonal structure (R3-bar m) and cell parameters a=2.99991A and c=18.428A, where Cu and Mn are disordered within the octahedral B positions in the plane and linearly coordinated Ag occupies de A position between layers. X-ray absorption near edge spectroscopy (XANES) for copper and manganese, and XPS for silver evidence +2, +4, and +1 oxidation states. The microstructure consists of layered parts that may form large twins showing 5nm nanodomains. Finally, magnetic measurements reveal the existence of ferromagnetic coupling yielding in-plane moments that align antiferromagnetically at lower temperatures. The singularity of the new phase resides on the fact that is an example of a bidimensional arrangement of silver and copper in an oxide that also shows clear bidimensionality in its physical properties. That is of special relevance to the field of high T{sub c} superconducting oxides, while the ferromagnetic coupling in a bidimensional system deserves itself special attention.

  9. Achieving optimum mechanical performance in metallic nanolayered Cu/X (X = Zr, Cr) micropillars

    PubMed Central

    Zhang, J. Y.; Li, J.; Liang, X. Q.; Liu, G.; Sun, J.

    2014-01-01

    The selection and design of modern high-performance structural engineering materials such as nanostructured metallic multilayers (NMMs) is driven by optimizing combinations of mechanical properties and requirements for predictable and noncatastrophic failure in service. Here, the Cu/X (X = Zr, Cr) nanolayered micropillars with equal layer thickness (h) spanning from 5–125 nm are uniaxially compressed and it is found that these NMMs exhibit a maximum strain hardening capability and simultaneously display a transition from bulk-like to small-volume materials behavior associated with the strength at a critical intrinsic size h ~ 20 nm. We develop a deformation mode-map to bridge the gap between the interface characteristics of NMMs and their failure phenomena, which, as shrinking the intrinsic size, transit from localized interface debonding/extrusion to interface shearing. Our findings demonstrate that the optimum robust performance can be achieved in NMMs and provide guidance for their microstructure sensitive design for performance optimization. PMID:24667702

  10. Lifting of the Au(100) surface reconstruction by Pt, Cr, Fe, and Cu adsorption

    NASA Astrophysics Data System (ADS)

    Tempas, Christopher D.; Skomski, Daniel; Tait, Steven L.

    2016-12-01

    The adsorption and growth of metals on the surfaces of other metals is an important topic for studies of heterogeneous catalysis and bimetallic nanoparticles. The surface structure of these systems impacts nanoparticle growth, catalytic activity, and reaction selectivity. In these experiments, platinum, chromium, iron, or copper were vapor deposited on the reconstructed Au(100) surface. The initial growth of each metal was studied by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Each of the four metals forms anisotropic rectangular islands oriented in the direction of the gold reconstruction rows. The gradual lifting of the surface reconstruction by increased metal coverage is observed, and the reconstruction is fully lifted after 0.5 ML of Pt, Cr, or Fe, or by 3.3 ML of Cu. After the reconstruction is lifted, the island shape changes from rectangular to square, illustrating the effect of surface structure on growth. Second layer islands begin to form before the completion of the first full layer.

  11. Laser weldability of 21Cr-6Ni-9Mn stainless steel: Part I - Impurity effects and solidifcation mode

    SciTech Connect

    Tate, Stephen B.; Javernick, Daniel Anthony; Lienert, Thomas J.; Liu, Stephen

    2016-11-02

    For laser welded type 21Cr-6Ni-9Mn (21-6-9) stainless steels, the relationship between solidification cracking susceptibility and chemical composition was examined, and primary solidification mode (PSM) diagrams were developed to predict solidification mode. Sigmajig testing was used with experimental heats of type 21-6-9 to determine the effect of P and S on solidification cracking w hen primary austenite solidification occurred. Phosphorus showed a larger influence on solidification cracking relative to S, and a relationship of (P+0.2S ) was found for total impurity content. PSM diagrams to predict solidification mode were developed by analyzing welds made at three travel speeds for a wide range of 21-6-9 alloys and some other similar alloys. The minimum Creq/Nieq required for primary ferrite solidification increased as travel speed increased, with more alloys showing primary austenite solidification at higher travel rates. Furthermore, as travel speed increased from 21 to 85 mm/s, the average solidification rate increased from 6 to 25 mm/s.

  12. Kinetic Parameters of Secondary Carbide Precipitation in High-Cr White Iron Alloyed by Mn-Ni-Mo-V Complex

    NASA Astrophysics Data System (ADS)

    Efremenko, V. G.; Chabak, Yu. G.; Brykov, M. N.

    2013-05-01

    This study presents kinetics of precipitation of secondary carbides in 14.55%Cr-Mn-Ni-Mo-V white cast iron during the destabilization heat treatment. The as-cast iron was heat treated at temperatures in the range of 800-1100 °C with soaking up to 6 h. Investigation was carried out by optical and electron microscopy, dilatometric analysis, Ms temperature measurement, and bulk hardness evaluation. TTT-curve of precipitation process of secondary carbides (M7C3, M23C6, M3C2) has been constructed in this study. It was determined that the precipitation occurs at the maximum rate at 950 °C where the process is started after 10 s and completed within 160 min further. The precipitation leads to significant increase of Ms temperature and bulk hardness; large soaking times at destabilization temperatures cause coarsening of secondary carbides and decrease in particles number, followed by decrease in hardness. The results obtained are discussed in terms of solubility of carbon in the austenite and diffusion activation of Cr atoms. The precipitation was found to consist of two stages with activation energies of 196.5 kJ/g-mole at the first stage and 47.1 kJ/g-mole at the second stage.

  13. The Property Research on High-entropy Alloy AlxFeCoNiCuCr Coating by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Ye, Xiaoyang; Ma, Mingxing; Cao, Yangxiaolu; Liu, Wenjin; Ye, Xiaohui; Gu, Yu

    High-entropy alloys have been found to have novel microstructures and unique properties. The main method of manufacturing is vacuum arc remelting. As in situ cladding laser cladding has capability of achieving a controllable dilution ratio, fabricating highentropy alloy by laser cladding is of great significance and potential for extensive use. In this study, a novel AlxFeCoNiCuCr high-entropy alloy system was manufactured as the thin layer of the substrate by laser cladding; also high temperature hardness, abrasion performance, corrosion nature of the AlxFeCoNiCuCr high-entropy alloy were tested under the different ratio of aluminum. This study shows higher aluminum clad exhibit higher hardness, better abrasion resistance and corrosion resistance.

  14. Effects of Electron Beam Welding on Microstructure, Microhardness, and Electrical Conductivity of Cu-Cr-Zr Alloy Plates

    NASA Astrophysics Data System (ADS)

    Kanigalpula, P. K. C.; Chatterjee, Arya; Pratihar, D. K.; Jha, M. N.; Derose, J.

    2015-12-01

    In this study, the effects of electron beam welding on the microstructure, microhardness, and electrical conductivity of precipitation-hardened Cu-0.804%Cr-0.063%Zr (wt.%) alloy plates were investigated. Experiments were carried out following a central composite design of experiments. Five welding schedules yielding the higher hardness were chosen and then were subjected to standard metallographic and various microscopy techniques to reveal the type, morphology, and distribution of the precipitates and to obtain the sub-structural information from the weld zone. X-ray diffraction studies revealed predominant formation of intermetallic phases in the welded zones of some of the samples, which could have resulted in higher hardness and better electrical conductivity compared to those of other ones. Microhardness values in the fusion zone and heat-affected zone were found to be less than that of the parent material. The mechanism of damage in Cu-Cr-Zr plates due to welding was also explained.

  15. Low temperature spin dynamics in Cr7Ni-Cu-Cr7Ni coupled molecular rings

    SciTech Connect

    Bordonali, L; Furukawa, Y; Mariani, M; Sabareesh, K P; Garlatti, E; Carretta, S; Lascialfari, A; Timco, G; Winpenny, R E; Borsa, F

    2014-05-07

    Proton Nuclear Magnetic Resonance (NMR) relaxation measurements have been performed down to very low temperature (50 mK) to determine the effect of coupling two Cr7 Ni molecular rings via a Cu2+ ion. No difference in the spin dynamics was found from nuclear spin lattice relaxation down to 1.5 K. At lower temperature, the 1H-NMR line broadens dramatically indicating spin freezing. From the plot of the line width vs. magnetization, it is found that the freezing temperature is higher (260 mK) in the coupled ring with respect to the single Cr7 Ni ring (140 mK).

  16. Microstructures and mechanical properties of compositionally complex Co-free FeNiMnCr18 FCC solid solution alloy

    SciTech Connect

    Wu, Z.; Bei, H.

    2015-07-01

    Recently, a structurally-simple but compositionally-complex FeNiCoMnCr high entropy alloy was found to have excellent mechanical properties (e.g., high strength and ductility). To understand the potential of using high entropy alloys as structural materials for advanced nuclear reactor and power plants, it is necessary to have a thorough understanding of their structural stability and mechanical properties degradation under neutron irradiation. Furthermore, this requires us to develop a similar model alloy without Co because material with Co will make post-neutron-irradiation testing difficult due to the production of the 60Co radioisotope. In order to achieve this goal, a FCC-structured single-phase alloy with a composition of FeNiMnCr18 was successfully developed. This near-equiatomic FeNiMnCr18 alloy has good malleability and its microstructure can be controlled by thermomechanical processing. By rolling and annealing, the as-cast elongated-grained-microstructure is replaced by homogeneous equiaxed grains. The mechanical properties (e.g., strength and ductility) of the FeNiMnCr18 alloy are comparable to those of the equiatomic FeNiCoMnCr high entropy alloy. Both strength and ductility increase with decreasing deformation temperature, with the largest difference occurring between 293 and 77 K. Extensive twin-bands which are bundles of numerous individual twins are observed when it is tensile-fractured at 77 K. No twin bands are detected by EBSD for materials deformed at 293 K and higher. Ultimately the unusual temperature-dependencies of UTS and uniform elongation could be caused by the development of the dense twin substructure, twin-dislocation interactions and the interactions between primary and secondary twinning systems which result in a microstructure refinement and hence cause enhanced strain hardening and postponed necking.

  17. Designed synthesis of MOx (M = Zn, Fe, Sn, Ni, Mn, Co, Ce, Mg, Ag), Pt, and Au nanoparticles supported on hierarchical CuO hollow structures.

    PubMed

    Zhang, Zailei; Jung, Ji Chul; Yan, Ning

    2016-12-01

    Despite intensive research into support substrates for the dispersal of nanoparticles and their applications, there has been a lack of general methods to produce metal oxide hollow substrates supporting a wide range of metal and metal oxides. Herein, a synthetic protocol for the preparation of CuO hollow structure-supported MOx (M = Zn, Fe, Ni, Sn, Mn, Co, Ce, Mg, and Ag) and noble metals (Pt and Au) with the desired properties and shell structure, such as CuO/Fe2O3, CuO/ZnO, CuO/SnO2, CuO/MgO, CuO/NiO, CuO/Mn2O3, CuO/CoO, CuO/CeO2, CuO/Ag2O, CuO/Pt, CuO/Au hollow cubes, CuO/ZnO double-shell hollow cubes, CuO/SnO2 double-shell hollow octahedra, CuO/SnO2/Fe2O3 and CuO/Mn2O3/NiO double-shell hollow cubes, was developed based on controlled calcination and etching. These hybrid hollow structures were employed not only as support substrates but also as active constituents for catalytic reactions. As an example, we demonstrated that CuO/ZnO hollow cubes are remarkably efficient in converting solid chitin biomass to liquid chemicals in methanol. In addition, CuO/ZnO double-shell hollow cubes were highly effective in the oxidation of benzyl alcohol in the presence of H2O2, whereas CuO/Pt and CuO/Au hollow cubes promoted the oxidation of benzyl alcohol in pure O2. The strategy developed in this work extends the controllable fabrication of high-quality CuO hollow structure-supported nanoparticles using various compositions and shell structures, paving the way to the exploration and systematic comparison of these materials in a wider range of applications.

  18. Synthesis, characterization and low field magnetotransport of Nd0.6Sr0.4MnO3/CrO3 composite

    NASA Astrophysics Data System (ADS)

    Ahmed, A. M.; Mohamed, H. F.; Diab, A. K.; Mohamed, Sara A.

    2017-02-01

    (Nd0.6Sr0.4MnO3)1-x/(CrO3)x with x = 0.0-0.030 step 0.005 weight% composites have been prepared by the solid state reaction process. The X-ray and scanning electron microscopic manifest that all composites are a single orthorhombic phase and there are no CrO3 grains separated from NdSrMnO matrix. The electrical measurements have revealed an increase of resistivity and a decrease of metal semiconductor transition with increasing CrO3. The composite x = 0.025 has largest magnetoresistance nearly one hundred percent at room temperature.

  19. Spin-glass and novel magnetic behavior in the spinel-type CuAgxCrSnS4

    NASA Astrophysics Data System (ADS)

    Ishikawa, Takahiro; Ebisu, Shuji; Nagata, Shoichi

    2010-04-01

    A dual non-magnetic substitution system on A- and B-sites in the spinel structure has been studied. The mother compound is a ferromagnet CuCr2S4 with the Curie temperature Tc≃380 K. A system of CuAgxCrSnS4, which is the same notation as (CuAgx)(Cr0.50Sn0.50)2S4, has been prepared over the entire range of 0.00≤x≤1.00 although the Cr-Sn sublattice is unchanged in the fixed composition of 0.50 on B-sites. All these compounds exhibit the spin-glass phase with the freezing temperature Tg approximately at 16 K in 100 Oe. Since only Cr ions have the magnetic moment on the B-sites, the substitution of Ag for Cu on the A-sites does not influence strongly the spin-glass freezing behavior over the whole composition range. Nevertheless, the magnetization of CuAgxCrSnS4 with x=0.50 and 0.55 cause a broad upturn hump over 30-130 K where the spin-glass phase is broken. Strong magnetic field dependence of this hump anomaly has been observed with an irreversibility between zero-field-cooled (ZFC) and field-cooled (FC) magnetizations even though above Tg. The hump is suppressed in higher fields and collapsed down at approximately 1.0 kOe with a tiny trace quantity of the anomaly where the difference between the ZFC and FC processes disappears. The specimen with x=0.45 shows a small hump anomaly in low field <20 Oe which corresponds to a precursor of the huge anomaly for x=0.50. The hump anomaly could be attributed to a formation of the cluster-glass. The spin-clusters are embedded in the matrix of spin-glass elements in high degree of disorder without long-range order. All the spins eventually are frozen below Tg. The strange magnetic freezing originates from the delicate dual substitutions. The mechanism of the anomaly is far from a complete picture and remains enigmatic.

  20. Local Lattice Distortion in the Giant Negative Thermal Expansion Material Mn3Cu1-xGexN

    NASA Astrophysics Data System (ADS)

    Iikubo, S.; Kodama, K.; Takenaka, K.; Takagi, H.; Takigawa, M.; Shamoto, S.

    2008-11-01

    Giant negative thermal expansion is achieved in antiperovskite manganese nitrides when the sharp volume change associated with magnetic ordering is broadened by substitution. In this Letter, we address the unique role of the ‘‘magic” element, Ge, for such broadening in Mn3Cu1-xGexN. We present evidence for a local lattice distortion well described by the low-temperature tetragonal (T4) structure of Mn3GeN for a range of x, where the overall structure remains cubic. This structural instability shows a strong correlation with the broadness of the growth of the ordered magnetic moment and, hence, is considered to trigger the broadening of the volume change.

  1. Cr, Mn, and Ca distributions for olivine in angritic systems: Constraints on the origins of Cr-rich and Ca-poor core olivine in angrite LEW87051

    NASA Technical Reports Server (NTRS)

    Mikouchi, T.; Mckay, G.; Le, L.

    1994-01-01

    Angrite meteorites are a type of basaltic achondrites that are noted for their very old cyrstallization ages (4.55 b.y.) and unusual chemical and mineralogical properties. In spite of great interest, only four angrites have been found. LEW87051 is the smallest one which weighs 0.6 g. It is a porphyritic rock with coarse subhedral to euhedral olivines set in a fine-grained groundmass which clearly represents a crystallized melt. The largest uncertainty about the petrogenesis of LEW87051 is the relationship between the large olivine crystals and the groundmass. Prinz et al. suggests that olivines are xenocrysts, while McKay et al. proposed a fractional cyrstallization model based on experimental studies. However, the crystals have Cr-rich and Ca-poor cores which do not match experimental olivines. Although Jurewicz and McKay tried to explaine the zoning of the rim by diffusion, some features are not explained. There also exists a definite composition boundary of Fe(2+) and MnO between the core and the rim. To clarify the origin of these olivines, we have performed experiments using LEW87051 analogs to measure the effects of oxygen fugacity on distribution coefficients of various elements in an angritic system.

  2. Simultaneous extraction of Cr(VI) and Cu(II) from humic acid with new synthesized EDTA derivatives.

    PubMed

    Zhang, Tao; Wu, Ying-Xin; Huang, Xiong-Fei; Liu, Jun-Min; Xia, Bing; Zhang, Wei-Hua; Qiu, Rong-Liang

    2012-07-01

    Soil washing is one of the few permanent treatment alternatives for removing metal contaminants. Ethylenediaminetetraacetic acid and its salts (EDTA) is very effective at removing cationic metals and has been utilized globally. However it is ineffective for anionic metal contaminants or metals bound to soil organic matter. The simultaneous removal of cationic and anionic metal contaminants by soil washing is difficult due to differences in their properties. The present study evaluated the potential of a washing process using two synthesized EDTA-derivatives, C(6)HEDTA (2,2'-((2-((carboxymethyl)(2-(hexanoyloxy)ethyl)amino)ethyl)azanediyl)diacetic acid) and C(12)HEDTA (2,2'-((2-((carboxymethyl) (2-(dodecanoyloxy)ethyl)amino)ethyl)azanediyl)diacetic acid), which consist of a hydrophilic polycarboxylic moiety and a hydrophobic moiety with a monoalkyl ester group. A series of equilibrium batch experiments at room temperature were conducted to investigate the efficacy of C(6)HEDTA and C(12)HEDTA as extractants for both oxyanion Cr(VI) and cationic Cu(II). Results showed that either C(6)HEDTA or C(12)HEDTA can extract both Cr(VI) and Cu(II) from humic acid simultaneously. However, C(6)HEDTA was less effective for Cr(VI) probably because it has no surface activities to increase solubility of humic acid, like C(12)HEDTA. Extraction of Cr(VI) was mainly attributed to the decreased surface tension and enhanced solubility of organic matter. Extraction of Cu(II) was attributed to both the Cu(II) chelation and enhanced solubility of humic acid. It was demonstrated that the hydrophilic polycarboxylic moiety of C(12)HEDTA chelates cations while the monoalkyl ester group produces surface active properties that enhance the solubility of humic acid.

  3. Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4}: Novel keesterite type solid solutions

    SciTech Connect

    Lopez-Vergara, F.; Galdamez, A.; Manriquez, V.; Barahona, P.; Pena, O.

    2013-02-15

    A new family of Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4} chalcogenides has been synthesized by conventional solid-state reactions at 850 Degree-Sign C. The reactions products were characterized by powder X-ray diffraction (XRD), energy-dispersive X-ray analysis (SEM-EDS), Raman spectroscopy and magnetic susceptibility. The crystal structures of two members of the solid solution series Cu{sub 2}Mn{sub 0.4}Co{sub 0.6}SnS{sub 4} and Cu{sub 2}Mn{sub 0.2}Co{sub 0.8}SnS{sub 4} have been determined by single-crystal X-ray diffraction. Both phases crystallize in the tetragonal keesterite-type structure (space group I4{sup Macron }). The distortions of the tetrahedral volume of Cu{sub 2}Mn{sub 0.4}Co{sub 0.6}SnS{sub 4} and Cu{sub 2}Mn{sub 0.2}Co{sub 0.8}SnS{sub 4} were calculated and compared with the corresponding differences in the Cu{sub 2}MnSnS{sub 4} (stannite-type) end-member. The compounds show nearly the same Raman spectral features. Temperature-dependent magnetization measurements (ZFC/FC) and high-temperature susceptibility indicate that these solid solutions are antiferromagnetic. - Graphical abstract: View along [100] of the Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4} structure showing tetrahedral units and magnetic measurement ZFC-FC at 500 Oe. The insert shows the 1/{chi}-versus-temperature plot fitted by a Curie-Weiss law. Highlights: Black-Right-Pointing-Pointer Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4} solid solutions belong to the family of compounds adamantine. Black-Right-Pointing-Pointer Resolved single crystals of the solid solutions have space group I4{sup Macron }. Black-Right-Pointing-Pointer The distortion of the tetrahedral volume of Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4} were calculated. Black-Right-Pointing-Pointer These solid solutions are antiferromagnetic.

  4. Charge defects and highly enhanced multiferroic properties in Mn and Cu co-doped BiFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Dong, Guohua; Tan, Guoqiang; Luo, Yangyang; Liu, Wenlong; Xia, Ao; Ren, Huijun

    2014-06-01

    Pure BiFeO3 (BFO) and Mn, Cu co-doped BiFeO3 (BFMCO) thin films were deposited on fluorine doped tin oxide (FTO) substrates by a chemical solution deposition method. Detailed investigations were made on the effects of Mn and Cu co-doping on the crystal structure, the defect chemistry, multiferroic properties of the BFO thin films. With the co-doping of Mn and Cu, a structural transition from the rhombohedral (R3c:H) to the biphasic structure (R3c:H + P1) is confirmed by XRD, Rietveld refinement and Raman analysis. X-ray photoelectron spectroscopy (XPS) analysis shows that the coexistence of Fe2+/Fe3+ and Mn2+/Mn3+ ions in the co-doping films are demonstrated. Meanwhile, the way of the co-doping at B-sits is conducive to suppress Fe valence state of volatility and to decrease oxygen vacancies and leakage current. It's worth noting that the co-doping can induce the superior ferroelectric properties (a huge remanent polarization, 2Pr ∼ 220 μC/cm2 and a relatively low coercive field, 2Ec ∼ 614 kV/cm). The introduction of Mn2+ and Cu2+ ions optimizes the magnetic properties of BFO thin films by the biphasic structure and the destruction of spin cycloid.

  5. Indicator and probability kriging methods for delineating Cu, Fe, and Mn contamination in groundwater of Najafgarh Block, Delhi, India.

    PubMed

    Adhikary, Partha Pratim; Dash, Ch Jyotiprava; Bej, Renukabala; Chandrasekharan, H

    2011-05-01

    Two non-parametric kriging methods such as indicator kriging and probability kriging were compared and used to estimate the probability of concentrations of Cu, Fe, and Mn higher than a threshold value in groundwater. In indicator kriging, experimental semivariogram values were fitted well in spherical model for Fe and Mn. Exponential model was found to be best for all the metals in probability kriging and for Cu in indicator kriging. The probability maps of all the metals exhibited an increasing risk of pollution over the entire study area. Probability kriging estimator incorporates the information about order relations which the indicator kriging does not, has improved the accuracy of estimating the probability of metal concentrations in groundwater being higher than a threshold value. Evaluation of these two spatial interpolation methods through mean error (ME), mean square error (MSE), kriged reduced mean error (KRME), and kriged reduced mean square error (KRMSE) showed 3.52% better performance of probability kriging over indicator kriging. The combined result of these two kriging method indicated that on an average 26.34%, 65.36%, and 99.55% area for Cu, Fe, and Mn, respectively, are coming under the risk zone with probability of exceedance from a cutoff value is 0.6 or more. The groundwater quality map pictorially represents groundwater zones as "desirable" or "undesirable" for drinking. Thus the geostatistical approach is very much helpful for the planners and decision makers to devise policy guidelines for efficient management of the groundwater resources so as to enhance groundwater recharge and minimize the pollution level.

  6. Optoelectronic properties of delafossite structure CuCr0.93Mg0.07O2 sputter deposited coatings

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Arab Pour Yazdi, Mohammad; Sanchette, Frederic; Billard, Alain

    2016-05-01

    CuCr0.93Mg0.07O2 thin films with improved optoelectronic properties were deposited by reactive magnetron sputtering on fused quartz substrates. The influence of annealing temperature under vacuum on optoelectronic properties of the films was investigated. The amorphous films annealed under vacuum at temperatures higher than 923 K are single-phased delafossite structure, while impurity phases like CuCr2O4 that affect the optoelectronic properties of the films are detected below 873 K. c-axis orientation is observed for CuCr0.93Mg0.07O2 layers and the annealing temperature window in which the films are single-phased delafossite is much larger with Mg doping (923 K  →  1073 K) than that for undoped films (~953 K). The optical and electrical behaviours of the films are enhanced by Mg substitution and their direct band gap energy of about 3.12-3.14 eV is measured. The film possesses the optimum properties after annealing under vacuum at about 1023 K its average transmittance in the visible region can reach 54.23% while the film’s conductivity is about 0.27 S cm-1.

  7. Optical Characterization and 2,525 micron Lasing of Cr(2+):Cd(0.85)Mn(0.15)Te

    NASA Technical Reports Server (NTRS)

    Davis, V. R.; Wu, X.; Hoemmerich, U.; Trivedi, S. B.; Grasza, K.; Yu, Z.

    1997-01-01

    static acentric electric crystal field or the coupling of asymmetric phonons can force electric-dipole transitions by the admixture of wave functions with opposite parity. Tetrahedral sites lack inversion symmetry which provides the odd-parity field necessary to relax the parity selection rule. Therefore, high absorption and emission cross sections are observed. An enhanced radiative emission rate is also expected to reduce the detrimental effect of non-radiative decay. Motivated by the initial results on Cr doped ZnS and ZnSe, we have started a comprehensive effort to study Cr(2+) doped II-VI semiconductors for solid-state laser applications. In this paper we present the optical properties and the demonstration of mid-infrared lasing from Cr doped Cd(0.85)Mn(0.15)Te.

  8. Synthesis and Study of Optical properties of MgO based TM oxide (TM=Cu, Mn and Zn) nanocomposites

    NASA Astrophysics Data System (ADS)

    Tamizh Selvi, K.; Alamelumangai, K.; Priya, M.; Rathnakumari, M.; Kumar, P. Suresh; Sagadevan, Suresh

    2016-11-01

    A nanocomposite of MgO based transition metal (TM) oxide (TM=Zn, Mn, and Cu) was synthesized using sol-gel method. The powder x-ray diffraction confirmed the phase purity and particle size. The surface morphology and elemental composition were examined by High resolution scanning electron microscopy and energy-dispersive x-ray spectroscopy. The change in optical band gap of the synthesized nanocomposites, by increasing the Mg content was determined using UV-vis spectra and the luminescent properties were analyzed using photoluminescence spectra.

  9. Investigation of the Enthalpy/Entropy Variation and Structure of Cu-Al-Mn-Fe Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Canbay, C. Aksu; Gudeloglu, S.; Genc, Z. Karagoz

    2015-04-01

    Cu-based Cu-Al-Mn-Fe shape memory alloys were produced in an arc melter under vacuum. The crystal structure of the fabricated alloys were determined by means of X-ray diffraction (XRD). The XRD analysis results indicated that the martensitic phase of the samples have an M18R structure. The characteristic transformation temperatures, thermodynamic parameters, and the activation energy values of the samples according to Kissinger and Ozawa methods were determined by differential scanning calorimetry measurements. The austenite transformation temperatures of the samples were found as , respectively. Also, the calculated activation energy values of the samples according to Kissinger and Ozawa methods are compared with each other. The effect of the presence of Al and Fe in the samples on the thermodynamic parameters is studied in this work.

  10. DNA cleavage by homo- and heterotetranuclear Cu(II) and Mn(II) complexes with tetrathioether-tetrathiol moiety.

    PubMed

    Dülger, S; Saglam, N; Beldüz, A O; Güner, S; Karaböcek, S

    2000-09-01

    Novel homotetranuclear Cu(II) and heteronuclear Cu(II)-Mn(II) complexes with tetrathioether-tetrathiol moiety have been prepared and their DNA relaxation activities with plasmid pCYTEXP (5kb) were electrophoretically established. The cleavage products analyzed by neutral agarose gel electrophoresis indicated that the interaction of the metal complexes with supercoiled plasmid DNA yielded linear, nicked or degraded DNA. The relaxation activities of both homo- and heterotetranuclear (SK4) complexes are time- and concentration-dependent. The findings suggest that SK4 with potent nucleolytic activity is a good nuclease substitute in the presence ofcooxidant. Furthermore, the observation of induction of DNA into smaller fragments by SK4 is also significant.

  11. Precipitation strengthened high strength, high conductivity Cu-Cr-Nb alloys produced by chill block melt spinning. Final Report Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Michal, Gary M.

    1989-01-01

    A series of Cu-based alloys containing 2 to 10 a/o Cr and 1 to 5 a/o Nb were produced by chill block melt spinning (CBMS). The melt spun ribbons were consolidated and hot rolled to sheet to produce a supersaturated Cu-Cr-Nb solid solution from which the high melting point intermetallic compound Cr2Nb could be precipitated to strengthen the Cu matrix. The results show that the materials possess electrical conductivities in excess of 90 percent that of pure Cu at 200 C and above. The strengths of the Cu-Cr-Nb alloys were much greater than Cu, Cu-0.6 Cr, NARloy-A, and NARloy-Z in the as-melt spun condition. The strengths of the consolidated materials were less than Cu-Cr and Cu-Cr-Zr below 500 C and 600 C respectively, but were significantly better above these temperatures. The strengths of the consolidated materials were greater than NARloy-Z, at all temperatures. The GLIDCOP possessed similar strength levels up to 750 C when the strength of the Cu-Cr-Nb alloys begins to degrade. The long term stability of the Cu-Cr-Nb alloys was measured by the microhardness of aged samples and the growth of precipitates. The microhardness measurements indicate that the alloys overage rapidly, but do not suffer much loss in strength between 10 and 100 hours which confirms the results of the electrical resistivity measurements taken during the aging of the alloys at 500 C. The loss in strength from peak strength levels is significant, but the strength remains exceptionally good. Transmission electron microscopy (TEM) of the as-melt spun samples revealed that Cr2Nb precipitates formed in the liquid Cu during the chill block melt spinning, indicating a very strong driving force for the formation of the precipitates. The TEM of the aged and consolidated materials indicates that the precipitates coarsen considerably, but remain in the submicron range.

  12. Determination of soil micronutrients (Fe, Cu, Mn, B) extracted by Mehlich 3 using MP-AES

    NASA Astrophysics Data System (ADS)

    Krebstein, Kadri; Tõnutare, Tõnu; Rodima, Ako; Kõlli, Raimo; Künnapas, Allan; Rebane, Jaanus; Penu, Priit; Vennik, Kersti; Soobik, Liina

    2015-04-01

    The total concentration of micronutrients in soils is not a good predictor of its bioavailability and solubility. Therefore, during the decades several methods for the determination of plant availability and extractable fraction of micro- and macronutrients in soil were developed. Among several methods Mehlich 3 is the most appropriate due to its suitability for extracting soil micro- and macronutrients simultaneously. The AAS (atomic absorption spectroscopic) and ICP (inductively coupled plasma) methods are widely used for the analysis of microelements today. In 2011 the third method was added to this list with the appearance of the microwave plasma atomic emission spectrometer (MP-AES). This multielemental analytical equipment has a high potential in the soil analysis. Up to now there have been made some experiments for the use of MP-AES in soil and geological material analysis. But there is no information about the analysis of soil micronutrients extracted according to Mehlich 3 method and determined with the MP-AES. Due to the differences in atomization conditions the different emission and absorption lines are used in different instrumental methods. Therefore it is very important to choose the most suitable emission lines and the best atomization conditions. From the analytical viewpoint it is important to get coincidental results with other instrumental methods and from the agronomical point of view it is important to know the difference between AAS and ICP methods. For the experiment 51 soil samples were used. The samples were collected from A horizons of agricultural lands. The pH range was from 4.7 to 7.5 and organic matter content from 1.4 to 7.8%. The content of Mehlich 3 extractable micronutrients was determined using ICP and MP instrumental methods. The micronutrient contents ranged as follows: Fe - from 170 to 470 mg kg-1, Mn - from 5 to 190 mg kg-1, Cu - from 0.3 to 4.5 mg kg-1, B - from 0.2 to 2.1 mg kg-1. The optimal instrumental settings for iron

  13. Comparative study of alumina-supported CuO and CuCr/sub 2/O/sub 4/ as catalysts for CO oxidation

    SciTech Connect

    Severino, F.; Brito, J.; Carias, O.; Laine, J.

    1986-11-01

    Alumina-supported CuO and CuCr/sub 2/O/sub 4/ catalysts of various compositions were prepared and their activity for CO oxidation measured. Fresh, pretreated with CO, and reoxidized catalysts were studied. In general, the activity increased with the CO pretreatment. The extent of the activation depended on the catalyst composition. Thus, copper catalysts were more active than copper chromite at low metal concentrations (< 12 wt%), but the opposite was observed at concentrations higher than about 12 wt%. The results on activity behavior, together with TPR and XRD spectra, suggest that the active species are related to copper cations. In the low concentration copper catalysts, the most active surface is generated after CO pretreatment, followed by a fast reoxidation occurring at the first stages of the reaction. In the high concentration copper catalysts, the CO pretreatment produced an induction period as a result of excessive reduction. It is suggested that the role of chromium is to limit the extent of reduction through the formation of the CuCr/sub 2/O/sub 4/ phase. The presence of this phase also resulted in catalysts less prone to deactivation, as compared to copper on alumina catalysts.

  14. Observed and modeled seasonal trends in dissolved and particulate Cu, Fe, Mn, and Zn in a mining-impacted stream.

    PubMed

    Butler, Barbara A; Ranville, James F; Ross, Philippe E

    2008-06-01

    North Fork Clear Creek (NFCC) in Colorado, an acid-mine drainage (AMD) impacted stream, was chosen to examine the distribution of dissolved and particulate Cu, Fe, Mn, and Zn in the water column, with respect to seasonal hydrologic controls. NFCC is a high-gradient stream with discharge directly related to snowmelt and strong seasonal storms. Additionally, conditions in the stream cause rapid precipitation of large amounts of hydrous iron oxides (HFO) that sequester metals. Because AMD-impacted systems are complex, geochemical modeling may assist with predictions and/or confirmations of processes occurring in these environments. This research used Visual-MINTEQ to determine if field data collected over a two and one-half year study would be well represented by modeling with a currently existing model, while limiting the number of processes modeled and without modifications to the existing model's parameters. Observed distributions between dissolved and particulate phases in the water column varied greatly among the metals, with average dissolved fractions being >90% for Mn, approximately 75% for Zn, approximately 30% for Cu, and <10% for Fe. A strong seasonal trend was observed for the metals predominantly in the dissolved phase (Mn and Zn), with increasing concentrations during base-flow conditions and decreasing concentrations during spring-runoff. This trend was less obvious for Cu and Fe. Within hydrologic seasons, storm events significantly influenced in-stream metals concentrations. The most simplified modeling, using solely sorption to HFO, gave predicted percentage particulate Cu results for most samples to within a factor of two of the measured values, but modeling data were biased toward over-prediction. About one-half of the percentage particulate Zn data comparisons fell within a factor of two, with the remaining data being under-predicted. Slightly more complex modeling, which included dissolved organic carbon (DOC) as a solution phase ligand

  15. Evidence for decoupled two-dimensional vortex behavior of YBa2Cu3O7-δ in La0.7Sr0.3MnO3/YBa2Cu3O7-δ/La0.7Sr0.3MnO3 trilayer

    NASA Astrophysics Data System (ADS)

    Samal, D.; Anil Kumar, P. S.

    2010-12-01

    We investigate the vortex behavior of YBa2Cu3O7-δ thin films sandwiched between two ferromagnetic layers (La0.7Sr0.3MnO3/YBa2Cu3O7-δ/La0.7Sr0.3MnO3). The magnetization study on La0.7Sr0.3MnO3/YBa2Cu3O7-δ/La0.7Sr0.3MnO3 trilayers conspicuously shows the presence of both ferromagnetic and diamagnetic phases. The magnetotransport study on the trilayers reveals a significant reduction in the activation energy (U) for the vortex motion in YBa2Cu3O7-δ. Besides, the "U" exhibits a logarithmic dependence on the applied magnetic field which directly indicates the existence of decoupled two-dimensional (2D) pancake vortices present in the CuO2 layers. The evidence of 2D decoupled vortex behavior in La0.7Sr0.3MnO3/YBa2Cu3O7-δ/La0.7Sr0.3MnO3 is believed to arise from (a) the weakening of superconducting coherence length along the c-axis and (b) enhanced intraplane vortex-vortex interaction due to the presence of ferromagnetic layers.

  16. New constraints on the formation history of carbonates in the CI chondrite Ivuna from the Mn-53-Cr-53 chronometer: Preliminary results

    NASA Astrophysics Data System (ADS)

    Endress, M.; Zinner, E.; Weber, D.; Bischoff, A.

    1994-07-01

    Carbonates and sulfates are common in CI chondrites and are believed to have resulted from aqueous alteration processes on the CI parent body. The carbonates occur mostly either as single grains or as polycrystalline chunks and are dominated by dolomites with varying Fe, Mg, and Mn contents. Calcites and breunnerites are less abundant. Since dolomites have MnO contents of up to 15 wt% and generally low Cr2O3 contents, we carried our exploratory SIMS analyses on dolomites in order to determine, whether a Mn-53-Cr-53 chronometer could provide constraints on the formation times of carbonates in CIs. We focused on carbonate fragments in Ivuna, since they can be easily recognized in thin sections, but also measured one carbonate from Orgueil. Our data indicate that aqueous alteration must have occurred soon after formation of the Ivuna parent body, perhaps even before accretion and accumulation was completed. Our results are similar to, but more stringent than, those obtained from Sr isotope data on carbonates in Orgueil, which imply that Ca-Mg carbonate precipitation was completed within 50 m.y. after formation of the Orgueil parent body. Further Mn-Cr studies, now underway, are disigned to determine whether or not carbonate fragments and carbonate grains in distinct lithic units of Ivuna, and different carbonate phases like dolomites and breunnerites precipitated at the same time.

  17. Direct imaging of thermally-activated grain-boundary diffusion in Cu/Co/IrMn/Pt exchange-bias structures using atom-probe tomography

    NASA Astrophysics Data System (ADS)

    Letellier, F.; Lechevallier, L.; Lardé, R.; Le Breton, J.-M.; Akmaldinov, K.; Auffret, S.; Dieny, B.; Baltz, V.

    2014-11-01

    Magnetic devices are often subject to thermal processing steps, such as field cooling to set exchange bias and annealing to crystallize amorphous magnetic electrodes. These processing steps may result in interdiffusion and the subsequent deterioration of magnetic properties. In this study, we investigated thermally-activated diffusion in Cu/Co/IrMn/Pt exchange biased polycrystalline thin-film structures using atom probe tomography. Images taken after annealing at 400 °C for 60 min revealed Mn diffusion into Co grains at the Co/IrMn interface and along Pt grain boundaries for the IrMn/Pt stack, i.e., a Harrison type C regime. Annealing at 500 °C showed further Mn diffusion into Co grains. At the IrMn/Pt interface, annealing at 500 °C led to a type B behavior since Mn diffusion was detected both along Pt grain boundaries and also into Pt grains. The deterioration of the films' exchange bias properties upon annealing was correlated to the observed diffusion. In particular, the topmost Pt capping layer thickness turned out to be crucial since a faster deterioration of the exchange bias properties for thicker caps was observed. This is consistent with the idea that Pt acts as a getter for Mn, drawing Mn out of the IrMn layer.

  18. Direct imaging of thermally-activated grain-boundary diffusion in Cu/Co/IrMn/Pt exchange-bias structures using atom-probe tomography

    SciTech Connect

    Letellier, F.; Lardé, R.; Le Breton, J.-M.; Akmaldinov, K.; Auffret, S.; Dieny, B.; Baltz, V.

    2014-11-28

    Magnetic devices are often subject to thermal processing steps, such as field cooling to set exchange bias and annealing to crystallize amorphous magnetic electrodes. These processing steps may result in interdiffusion and the subsequent deterioration of magnetic properties. In this study, we investigated thermally-activated diffusion in Cu/Co/IrMn/Pt exchange biased polycrystalline thin-film structures using atom probe tomography. Images taken after annealing at 400 °C for 60 min revealed Mn diffusion into Co grains at the Co/IrMn interface and along Pt grain boundaries for the IrMn/Pt stack, i.e., a Harrison type C regime. Annealing at 500 °C showed further Mn diffusion into Co grains. At the IrMn/Pt interface, annealing at 500 °C led to a type B behavior since Mn diffusion was detected both along Pt grain boundaries and also into Pt grains. The deterioration of the films' exchange bias properties upon annealing was correlated to the observed diffusion. In particular, the topmost Pt capping layer thickness turned out to be crucial since a faster deterioration of the exchange bias properties for thicker caps was observed. This is consistent with the idea that Pt acts as a getter for Mn, drawing Mn out of the IrMn layer.

  19. Effect of different extracting solutions on the electrodialytic remediation of CCA-treated wood waste Part I. Behaviour of Cu and Cr.

    PubMed

    Velizarova, Emiliya; Ribeiro, Alexandra B; Mateus, Eduardo; Ottosen, Lisbeth M

    2004-03-19

    Removal of Cu and Cr from chromated copper arsenate (CCA)-treated wood waste under batch electrodialytic conditions was studied. The effect of different types of extracting solutions, such as deionised water or aqueous solutions of NaCl, formic acid, oxalic acid, and EDTA, on the magnitude and direction of the fluxes of Cu- and Cr-containing species in the electrodialytic cell was investigated. Oxalic acid was found to have the best performance if simultaneous removal of the two elements is required (removal efficiencies of 80.5% for Cu and 87.4% for Cr, respectively). A mixture of oxalic acid and formic acid also led to similar removal efficiencies. In these experiments, the target elements were accumulated in both the anode and cathode compartments of the electrodialytic cell due to the formation of negatively charged complexes with the organic acids used besides the free cationic forms. The latter were not present if EDTA was the extracting solution resulting in directing the Cu and Cr fluxes to the anode compartment. Contrary, these fluxes were exclusively to the cathode compartment if deionised water or an aqueous solution of NaCl were used. These extracting solutions proved suitable for solubilising (re-mobilisation) of Cu but were less efficient for Cr removal (less than 20% removal). Overall, the results obtained show the important role of the proper selection of the type and composition of the extracting solution for the success of subsequent electrodialytic removal of Cu and Cr from CCA-treated wood waste.

  20. Novel Preparation of Nano-Composite CuO-Cr2O3 Using Ctab-Template Method and Efficient for Hydrogenation of Biomass-Derived Furfural

    NASA Astrophysics Data System (ADS)

    Yan, Kai; Wu, Xu; An, Xia; Xie, Xianmei

    2013-02-01

    A simple route to fabricate nano-composite oxides CuO-Cr2O3 using hexadecyltrimethylammonium bromide (CTAB)-templated Cu-Cr hydrotalcite as the precursor is presented. This novel method is based on CTAB-templating effect for mesostructure directing and using the cheap metal nitrate, followed by removal of CTAB. It was indicated that the nano-composite CuO-Cr2O3 was formed during the removal of CTAB. X-ray diffraction (XRD) and transitional electronic microscopy (TEM) revealed nice nano-composite oxides CuO-Cr2O3 were formed with high crystallinity. N2 adsorption and desorption indicated that a high surface area of 170.5 m2/g with a pore size of 2.7 nm of the nano-composite CuO-Cr2O3 was facilely resulted. The as-synthesized nano-composite oxides CuO-Cr2O3 display good catalytic activities for hydrogenation of furfural to furfuryl alcohol, whereas 86% selectivity was achieved at 75% conversion of furfural.

  1. Survey of trace elements (Al, As, Cd, Cr, Co, Hg, Mn, Ni, Pb, Se, and Si) in retail samples of flavoured and bottled waters.

    PubMed

    Barroso, M F; Ramos, S; Oliva-Teles, M T; Delerue-Matos, C; Sales, M G F; Oliveira, M B P P

    2009-01-01

    Concentrations of eleven trace elements (Al, As, Cd, Cr, Co, Hg, Mn, Ni, Pb, Se, and Si) were measured in 39 (natural and flavoured) water samples. Determinations were performed using graphite furnace electrothermetry for almost all elements (Al, As, Cd, Cr, Co, Mn, Ni, Pb, and Si). For Se determination hydride generation was used, and cold vapour generation for Hg. These techniques were coupled to atomic absorption spectrophotometry. The trace element content of still or sparkling natural waters changed from brand to brand. Significant differences between natural still and natural sparkling waters (p < 0.001) were only apparent for Mn. The Mann-Whitney U-test was used to search for significant differences between flavoured and natural waters. The concentration of each element was compared with the presence of flavours, preservatives, acidifying agents, fruit juice and/or sweeteners, according to the labelled composition. It was shown that flavoured waters generally increase the trace element content. The addition of preservatives and acidifying regulators had a significant influence on Mn, Co, As and Si contents (p < 0.05). Fruit juice can also be correlated to the increase of Co and As. Sweeteners did not provide any significant difference in Mn, Co, Se and Si content.

  2. Bicolor Mn-doped CuInS{sub 2}/ZnS core/shell nanocrystals for white light-emitting diode with high color rendering index

    SciTech Connect

    Huang, Bo; Dai, Qian; Zhang, Huichao; Liao, Chen; Cui, Yiping; Zhang, Jiayu; Zhuo, Ningze; Jiang, Qingsong; Shi, Fenghua; Wang, Haibo

    2014-09-07

    We synthesized bicolor Mn-doped CuInS{sub 2} (CIS)/ZnS core/shell nanocrystals (NCs), in which Mn{sup 2+} ions and the CIS core were separated with a ZnS layer, and both Mn{sup 2+} ions and CIS cores could emit simultaneously. Transmission electron microscopy and powder X-ray diffraction measurements indicated the epitaxial growth of ZnS shell on the CuInS{sub 2} core, and electron paramagnetic resonance spectrum indicated that Mn{sup 2+} ions were on the lattice points of ZnS shell. By integrating these bicolor NCs with commercial InGaN-based blue-emitting diodes, tricolor white light-emitting diodes with color rendering index of 83 were obtained.

  3. Negative magnetization and the tunable exchange bias field in LaCr0.8Mn0.2O3

    NASA Astrophysics Data System (ADS)

    Bora, Tribedi; Ravi, S.

    2014-05-01

    Manganese substituted Lanthanum chromite LaCr0.8Mn0.2O3 exhibits negative magnetization with decrease in temperature under the field cooled (FC) condition for the applied field H≤2000 Oe. The maximum magnetic compensation temperature, (Tcomp) was 147 K. A reentrant positive magnetization was observed at T≤50 K due to low temperature transition. The negative magnetization is explained by considering the paramagnetic moment of Mn ions under the influence of negative internal field. Measurement of magnetic hysteresis loops under FC condition shows the presence of exchange bias field at T

  4. Pecan nutshell as biosorbent to remove Cu(II), Mn(II) and Pb(II) from aqueous solutions.

    PubMed

    Vaghetti, Julio C P; Lima, Eder C; Royer, Betina; da Cunha, Bruna M; Cardoso, Natali F; Brasil, Jorge L; Dias, Silvio L P

    2009-02-15

    In the present study we reported for the first time the feasibility of pecan nutshell (PNS, Carya illinoensis) as an alternative biosorbent to remove Cu(II), Mn(II) and Pb(II) metallic ions from aqueous solutions. The ability of PNS to remove the metallic ions was investigated by using batch biosorption procedure. The effects such as, pH, biosorbent dosage on the adsorption capacities of PNS were studied. Four kinetic models were tested, being the adsorption kinetics better fitted to fractionary-order kinetic model. Besides that, the kinetic data were also fitted to intra-particle diffusion model, presenting three linear regions, indicating that the kinetics of adsorption should follow multiple sorption rates. The equilibrium data were fitted to Langmuir, Freundlich, Sips and Redlich-Peterson isotherm models. Taking into account a statistical error function, the data were best fitted to Sips isotherm model. The maximum biosorption capacities of PNS were 1.35, 1.78 and 0.946mmolg(-1) for Cu(II), Mn(II) and Pb(II), respectively.

  5. The Cu, Mn and Zn concentration of sheep wool: influence of washing procedures, age and colour of matrix.

    PubMed

    Hawkins, D P; Ragnarsdóttir, K V

    2009-06-15

    No standard or wholly proven method to determine the trace metal status of human or animal 'hair' yet exists. It is well known that hair-metal concentrations are highly influenced by washing procedures applied before analysis. A novel method to determine the efficiency of washing procedures at removing exogenous contaminants was devised. It was shown that suitability of washing procedures was element-specific and increased sonication time during washing progressively removed more Mn and Zn from sheep wool. The efficiency of exogenous contaminant removal by including sonication during washing was also dependent on the efficiency of procedures under study. The Cu, Mn and Zn concentration, and thus exogenous contaminant level, of sheep wool increased in tandem with its age. Additionally, Cu and Zn concentrations of black wool were significantly higher than white wool: a relationship ascribed to melanins. This investigation shows the necessity to standardise procedures used during analysis of 'hair' fibres, and to assess each washing procedure for each element before performing routine analysis.

  6. Rapid and nondestructive measurement of labile Mn, Cu, Zn, Pb and As in DGT by using field portable-XRF.

    PubMed

    Chen, Zheng; Williams, Paul N; Zhang, Hao

    2013-09-01

    The technique of diffusive gradients in thin films (DGT) is often employed to quantify labile metals in situ; however, it is a challenge to perform the measurements in-field. This study evaluated the capability of field-portable X-ray fluorescence (FP-XRF) to swiftly generate elemental speciation information with DGT. Biologically available metal ions in environmental samples passively preconcentrate in the thin films of DGT devices, providing an ideal and uniform matrix for XRF nondestructive detection. Strong correlation coefficients (r > 0.992 for Mn, Cu, Zn, Pb and As) were obtained for all elements during calibration. The limits of quantitation (LOQ) for the investigated elements of FP-XRF on DGT devices are 2.74 for Mn, 4.89 for Cu, 2.89 for Zn, 2.55 for Pb, and 0.48 for As (unit: μg cm(-2)). When Pb and As co-existed in the solution trials, As did not interfere with Pb detection when using Chelex-DGT. However, there was a significant enhancement of the Pb reading attributed to As when ferrihydrite binding gels were tested, consistent with Fe-oxyhydroxide surfaces absorbing large quantities of As. This study demonstrates the value of the FP-XRF technique to rapidly and nondestructively detect the metals accumulated in DGT devices, providing a new and simple diagnostic tool for on-site environmental monitoring of labile metals/metalloids.

  7. Preparation and physical properties of the solid solutions Cu 1+xMn 1-xO 2 ( 0⩽x⩽0.2)

    NASA Astrophysics Data System (ADS)

    Trari, M.; Töpfer, J.; Dordor, P.; Grenier, J. C.; Pouchard, M.; Doumerc, J. P.

    2005-09-01

    Solid solutions of formula Cu 1+xMn 1-xO 2 ( 0⩽x⩽0.2) were synthesized by solid state reaction in silica sealed tubes. They crystallize with the monoclinic crednerite structure (space group C2/ m). The stability domain in air is quite narrow and a phase diagram is proposed and compared with previous results. Magnetic study confirmed the HS state of Mn 3+ ions and revealed that the predominant interactions are antiferromagnetic. Their strength decreases with x, which can be ascribed to a dilution effect, and long-range 3D magnetic ordering observed for CuMnO 2, disappears for x> 0.05. The crednerite solid solutions are p-type semiconductors. Modeling the thermoelectric power behavior suggests that charge carriers are Cu 2+ holes diffusing in Cu layers for small x values and Mn 4+ holes diffusing in Mn layers for x>0.05. For larger x values a saturation effect limits the charge carrier concentration.

  8. Sorption and desorption of Cd, Cr, Cu, Ni, Pb and Zn by a Fibric Histosol and its organo-mineral fraction.

    PubMed

    Covelo, E F; Vega, F A; Andrade, M L

    2008-11-30

    It has often been stated that the contribution of soil organic matter (OM) to the sorption of heavy metals can be evaluated using the surface horizon of a Histosol as typical of soil organic matter. However, components of Histosols other than organic matter, such as clay minerals and Fe or Mn oxides, can also sorb heavy metals. In this work we compared the heavy metal sorption and desorption behaviour of a Fibric Histosol H horizon with that of its organo-mineral fraction (OMF, defined as the fraction of wet particle size <100 microm) in experiments in which Cd, Cr, Cu, Ni, Pb and Zn were sorbed simultaneously from solutions of various concentrations. The OMF sorbed the metals reversibly and apparently mainly at specific sites to each particular metal, in keeping with the good fit of Langmuir isotherms to the sorption data; greatest sorption capacity was for lead and copper. Whole H horizon appeared to include sites at which binding was less reversible and chromium compete