Science.gov

Sample records for cr fe-silicon layers

  1. Process for depositing Cr-bearing layer

    DOEpatents

    Ellis, Timothy W.; Lograsso, Thomas A.; Eshelman, Mark A.

    1995-05-09

    A method of applying a Cr-bearing layer to a substrate, comprises introducing an organometallic compound, in vapor or solid powder form entrained in a carrier gas to a plasma of an inductively coupled plasma torch or device to thermally decompose the organometallic compound and contacting the plasma and the substrate to be coated so as to deposit the Cr-bearing layer on the substrate. A metallic Cr, Cr alloy or Cr compound such as chromium oxide, nitride and carbide can be provided on the substrate. Typically, the organometallic compound is introduced to an inductively coupled plasma torch that is disposed in ambient air so to thermally decompose the organometallic compound in the plasma. The plasma is directed at the substrate to deposit the Cr-bearing layer or coating on the substrate.

  2. Process for depositing Cr-bearing layer

    DOEpatents

    Ellis, T.W.; Lograsso, T.A.; Eshelman, M.A.

    1995-05-09

    A method of applying a Cr-bearing layer to a substrate, comprises introducing an organometallic compound, in vapor or solid powder form entrained in a carrier gas to a plasma of an inductively coupled plasma torch or device to thermally decompose the organometallic compound and contacting the plasma and the substrate to be coated so as to deposit the Cr-bearing layer on the substrate. A metallic Cr, Cr alloy or Cr compound such as chromium oxide, nitride and carbide can be provided on the substrate. Typically, the organometallic compound is introduced to an inductively coupled plasma torch that is disposed in ambient air so to thermally decompose the organometallic compound in the plasma. The plasma is directed at the substrate to deposit the Cr-bearing layer or coating on the substrate. 7 figs.

  3. The impact of Cr adhesion layer on CNFET electrical characteristics

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Chikkadi, Kiran; Muoth, Matthias; Hierold, Christofer; Haluska, Miroslav

    2016-01-01

    The effect of a Cr adhesion layer on the transfer characteristics of Cr/Au-contacted carbon nanotube field-effect transistors (CNFETs) based on individual single-walled carbon nanotubes (SWNTs) is presented in this paper. We show that a very thin Cr layer (≈0.4 nm) already has an impact on the carrier transport in Schottky-barrier-modulated CNFETs. The ratio of the p- and n-branch current is reduced by eight times when the Cr adhesion layer thickness is increased from 0 to 8 nm. We suggest a change in Schottky barrier height at the contact as the determining mechanism for this result. Additionally, superior lifetime of devices is observed even for non-passivated CNFETs with preserved clean SWNT/Cr/Au-contacts using Cr layer thinner than 2 nm. Our experiments show that the role of the adhesion layer in metal/nanotube contacts should be explicitly considered when designing CNTFET-based circuits, developing CNFET fabrication processes, and analyzing the corresponding properties of the electrical contacts.

  4. The impact of Cr adhesion layer on CNFET electrical characteristics.

    PubMed

    Liu, Wei; Chikkadi, Kiran; Muoth, Matthias; Hierold, Christofer; Haluska, Miroslav

    2016-01-08

    The effect of a Cr adhesion layer on the transfer characteristics of Cr/Au-contacted carbon nanotube field-effect transistors (CNFETs) based on individual single-walled carbon nanotubes (SWNTs) is presented in this paper. We show that a very thin Cr layer (≈0.4 nm) already has an impact on the carrier transport in Schottky-barrier-modulated CNFETs. The ratio of the p- and n-branch current is reduced by eight times when the Cr adhesion layer thickness is increased from 0 to 8 nm. We suggest a change in Schottky barrier height at the contact as the determining mechanism for this result. Additionally, superior lifetime of devices is observed even for non-passivated CNFETs with preserved clean SWNT/Cr/Au-contacts using Cr layer thinner than 2 nm. Our experiments show that the role of the adhesion layer in metal/nanotube contacts should be explicitly considered when designing CNTFET-based circuits, developing CNFET fabrication processes, and analyzing the corresponding properties of the electrical contacts.

  5. Synthesis and characterization of Cd-Cr and Zn-Cd-Cr layered double hydroxides intercalated with dodecyl sulfate

    SciTech Connect

    Guo Ying; Zhang He; Zhao Lan; Li Guodong; Chen Jiesheng . E-mail: chemcj@mail.jlu.edu.cn; Xu Lin

    2005-06-15

    Cd-Cr and Zn-Cd-Cr layered double hydroxides (CdCr-LDH and ZnCdCr-LDH) containing alkyl sulfate as the interlamellar anion have been prepared through a coprecipitation technique. The resulting compounds were characterized using X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. Magnetic property measurements indicate that antiferromagnetic interactions occur between the chromium ions in the two compounds at low temperatures. The introduction of zinc influences the ligand field of Cr{sup III} and the Cr{sup III}-Cr{sup III} interactions in the LDH compound. It is found that both CdCr-LDH and ZnCdCr-LDH can be delaminated by dispersion in formamide, leading to translucent and stable colloidal solutions.

  6. Surface morphological evolution of epitaxial CrN(001) layers

    SciTech Connect

    Frederick, J.R.; Gall, D.

    2005-09-01

    CrN layers, 57 and 230 nm thick, were grown on MgO(001) at T{sub s}=600-800 deg. C by ultrahigh-vacuum magnetron sputter deposition in pure N{sub 2} discharges from an oblique deposition angle {alpha}=80 deg. . Layers grown at 600 deg. C nucleate as single crystals with a cube-on-cube epitaxial relationship with the substrate. However, rough surfaces with cauliflower-type morphologies cause the nucleation of misoriented CrN grains that develop into cone-shaped grains that protrude out of the epitaxial matrix to form triangular faceted surface mounds. The surface morphology of epitaxial CrN(001) grown at 700 deg. C is characterized by dendritic ridge patterns extending along the orthogonal <110> directions superposed by square-shaped super mounds with <100> edges. The ridge patterns are attributed to a Bales-Zangwill instability while the supermounds form due to atomic shadowing which leads to the formation of epitaxial inverted pyramids that are separated from the surrounding layer by tilted nanovoids. Growth at 800 deg. C yields complete single crystals with smooth surfaces. The root-mean-square surface roughness for 230-nm-thick layers decreases from 18.8 to 9.3 to 1.1 nm as T{sub s} is raised from 600 to 700 to 800 deg. C. This steep decrease is due to a transition in the roughening mechanism from atomic shadowing to kinetic roughening. Atomic shadowing is dominant at 600 and 700 deg. C, where misoriented grains and supermounds, respectively, capture a larger fraction of the oblique deposition flux in comparison to the surrounding epitaxial matrix, resulting in a high roughening rate that is described by a power law with an exponent {beta}>0.5. In contrast, kinetic roughening controls the surface morphology for T{sub s}=800 deg. C, as well as the epitaxial fraction of the layers grown at 600 and 700 deg. C, yielding relatively smooth surfaces and {beta}{<=}0.27.

  7. Growth of thicker zinc-blende CrSb layers by using (In,Ga)As buffer layers

    NASA Astrophysics Data System (ADS)

    Deng, J. J.; Zhao, J. H.; Bi, J. F.; Niu, Z. C.; Yang, F. H.; Wu, X. G.; Zheng, H. Z.

    2006-05-01

    Zinc-blende CrSb (zb-CrSb) layers with room-temperature ferromagnetism have been grown on (In,Ga)As buffer layers epitaxially prepared on (001) GaAs substrates by molecular-beam epitaxy. Compared with the typical thickness [2-3 ML (ML denotes monolayers)] of zb-CrSb grown directly on GaAs, the thickness of zb-CrSb grown on (In,Ga)As has been increased largely; the maximum can be up to ~9 ML. High-resolution cross sectional transmission electron microscopy images show that the zb-CrSb layer is combined with (In,Ga)As buffer layer without any dislocations at the interface.

  8. Growth of thicker zinc-blende CrSb layers by using (In,Ga)As buffer layers

    SciTech Connect

    Deng, J.J.; Zhao, J.H.; Bi, J.F.; Niu, Z.C.; Yang, F.H.; Wu, X.G.; Zheng, H.Z.

    2006-05-01

    Zinc-blende CrSb (zb-CrSb) layers with room-temperature ferromagnetism have been grown on (In,Ga)As buffer layers epitaxially prepared on (001) GaAs substrates by molecular-beam epitaxy. Compared with the typical thickness [2-3 ML (ML denotes monolayers)] of zb-CrSb grown directly on GaAs, the thickness of zb-CrSb grown on (In,Ga)As has been increased largely; the maximum can be up to {approx}9 ML. High-resolution cross sectional transmission electron microscopy images show that the zb-CrSb layer is combined with (In,Ga)As buffer layer without any dislocations at the interface.

  9. Computational prediction and characterization of single-layer CrS{sub 2}

    SciTech Connect

    Zhuang, Houlong L.; Blonsky, Michael N.; Hennig, Richard G.; Johannes, Michelle D.

    2014-01-13

    Using first-principles calculations, we predict a previously unreported bulk CrS{sub 2} phase that is stable against competing phases and a low energy dynamically stable single-layer CrS{sub 2} phase. We characterize the electronic, optical, and piezoelectric properties of this single-layer material. Like single-layer MoS{sub 2}, CrS{sub 2} has a direct bandgap and valley polarization. The optical bandgap of CrS{sub 2} is 1.3 eV, close to the ideal bandgap of 1.4 eV for photovoltaic applications. Applying compressive strain increases the bandgap and optical absorbance, transforming it into a promising photocatalyst for solar water splitting. Finally, we show that single-layer CrS{sub 2} possesses superior piezoelectric properties to single-layer MoS{sub 2}.

  10. Computational prediction and characterization of single-layer CrS2

    NASA Astrophysics Data System (ADS)

    Zhuang, Houlong L.; Johannes, Michelle D.; Blonsky, Michael N.; Hennig, Richard G.

    2014-01-01

    Using first-principles calculations, we predict a previously unreported bulk CrS2 phase that is stable against competing phases and a low energy dynamically stable single-layer CrS2 phase. We characterize the electronic, optical, and piezoelectric properties of this single-layer material. Like single-layer MoS2, CrS2 has a direct bandgap and valley polarization. The optical bandgap of CrS2 is 1.3 eV, close to the ideal bandgap of 1.4 eV for photovoltaic applications. Applying compressive strain increases the bandgap and optical absorbance, transforming it into a promising photocatalyst for solar water splitting. Finally, we show that single-layer CrS2 possesses superior piezoelectric properties to single-layer MoS2.

  11. Tribological Properties of the Fe-Al-Cr Alloyed Layer by Double Glow Plasma Surface Metallurgy

    NASA Astrophysics Data System (ADS)

    Luo, Xixi; Yao, Zhengjun; Zhang, Pingze; Zhou, Keyin; Wang, Zhangzhong

    2016-09-01

    A Fe-Al-Cr alloyed layer was deposited onto the surface of Q235 low-carbon steel via double glow plasma surface metallurgy (DGPSM) to improve the steel's wear resistance. After the DGPSM treatment, the Fe-Al-Cr alloyed layer grown on the Q235 low-carbon steel was homogeneous and compact and had a thickness of 25 µm. The layer was found to be metallurgically adhered to the substrate. The frictional coefficient and specific wear rate of the sample with a Fe-Al-Cr alloyed layer (treated sample) were both lower than those of the bare substrate (untreated sample) at the measured temperatures (25, 250 and 450 °C). The results indicated that the substrate and the alloyed layer suffered oxidative wear and abrasive wear, respectively, and that the treated samples exhibited much better tribological properties than did the substrate. The formation of Fe2AlCr, Fe3Al(Cr), FeAl(Cr), Fe(Cr) sosoloid and Cr23C6 phases in the alloyed layer dramatically enhanced the wear resistance of the treated sample. In addition, the alloyed layer's oxidation film exhibited a self-healing capacity with lubrication action that also contributed to the improvement of the wear resistance at high temperature. In particular, at 450 °C, the specific wear rate of treated sample was 2.524 × 10-4 mm3/N m, which was only 45.2% of the untreated sample.

  12. Crack Free Tungsten Carbide Reinforced Ni(Cr) Layers obtained by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Amado, J. M.; Tobar, M. J.; Yáñez, A.; Amigó, V.; Candel, J. J.

    The development of hardfacing coatings has become technologically significant in many industries A common approach is the production of metal matrix composites (MMC) layers. In this work NiCr-WC MMC hardfacing layers are deposited on C25 steel by means of laser cladding. Spheroidal fused tungsten carbides is used as reinforcement phase. Three different NiCr alloys with different Cr content were tested. Optimum conditions to obtain dense, uniform carbide distribution and hardness close to nominal values were defined. The effect of Cr content respect to the microstructure, susceptibility for cracking and the wear rate of the resulting coating will also be discussed.

  13. Electroless deposition of NiCrB diffusion barrier layer film for ULSI-Cu metallization

    NASA Astrophysics Data System (ADS)

    Wang, Yuechun; Chen, Xiuhua; Ma, Wenhui; Shang, Yudong; Lei, Zhengtao; Xiang, Fuwei

    2017-02-01

    NiCrB films were deposited on Si substrates using electroless deposition as a diffusion barrier layer for Cu interconnections. Samples of the prepared NiCrB/SiO2/Si and NiCrB/Cu/NiCrB/SiO2/Si were annealed at temperatures ranging from 500 °C to 900 °C. The reaction mechanism of the electroless deposition of the NiCrB film, the failure temperature and the failure mechanism of the NiCrB diffusion barrier layer were investigated. The prepared samples were subjected to XRD, XPS, FPP and AFM to determine the phases, composition, sheet resistance and surface morphology of samples before and after annealing. The results of these analyses indicated that the failure temperature of the NiCrB barrier film was 900 °C and the failure mechanism led to crystallization and grain growth of the NiCrB barrier layer after high temperature annealing. It was found that this process caused Cu grains to reach Si substrate through the grain boundaries, and then the reaction between Cu and Si resulted in the formation of highly resistive Cu3Si.

  14. Developments of the Physical and Electrical Properties of NiCr and NiCrSi Single-Layer and Bi-Layer Nano-Scale Thin-Film Resistors

    PubMed Central

    Cheng, Huan-Yi; Chen, Ying-Chung; Li, Chi-Lun; Li, Pei-Jou; Houng, Mau-Phon; Yang, Cheng-Fu

    2016-01-01

    In this study, commercial-grade NiCr (80 wt % Ni, 20 wt % Cr) and NiCrSi (55 wt % Ni, 40 wt % Cr, 5 wt % Si) were used as targets and the sputtering method was used to deposit NiCr and NiCrSi thin films on Al2O3 and Si substrates at room temperature under different deposition time. X-ray diffraction patterns showed that the NiCr and NiCrSi thin films were amorphous phase, and the field-effect scanning electronic microscope observations showed that only nano-crystalline grains were revealed on the surfaces of the NiCr and NiCrSi thin films. The log (resistivity) values of the NiCr and NiCrSi thin-film resistors decreased approximately linearly as their thicknesses increased. We found that the value of temperature coefficient of resistance (TCR value) of the NiCr thin-film resistors was positive and that of the NiCrSi thin-film resistors was negative. To investigate these thin-film resistors with a low TCR value, we designed a novel bi-layer structure to fabricate the thin-film resistors via two different stacking methods. The bi-layer structures were created by depositing NiCr for 10 min as the upper (or lower) layer and depositing NiCrSi for 10, 30, or 60 min as the lower (or upper) layer. We aim to show that the stacking method had no apparent effect on the resistivity of the NiCr-NiCrSi bi-layer thin-film resistors but had large effect on the TCR value. PMID:28344296

  15. Developments of the Physical and Electrical Properties of NiCr and NiCrSi Single-Layer and Bi-Layer Nano-Scale Thin-Film Resistors.

    PubMed

    Cheng, Huan-Yi; Chen, Ying-Chung; Li, Chi-Lun; Li, Pei-Jou; Houng, Mau-Phon; Yang, Cheng-Fu

    2016-02-25

    In this study, commercial-grade NiCr (80 wt % Ni, 20 wt % Cr) and NiCrSi (55 wt % Ni, 40 wt % Cr, 5 wt % Si) were used as targets and the sputtering method was used to deposit NiCr and NiCrSi thin films on Al₂O₃ and Si substrates at room temperature under different deposition time. X-ray diffraction patterns showed that the NiCr and NiCrSi thin films were amorphous phase, and the field-effect scanning electronic microscope observations showed that only nano-crystalline grains were revealed on the surfaces of the NiCr and NiCrSi thin films. The log (resistivity) values of the NiCr and NiCrSi thin-film resistors decreased approximately linearly as their thicknesses increased. We found that the value of temperature coefficient of resistance (TCR value) of the NiCr thin-film resistors was positive and that of the NiCrSi thin-film resistors was negative. To investigate these thin-film resistors with a low TCR value, we designed a novel bi-layer structure to fabricate the thin-film resistors via two different stacking methods. The bi-layer structures were created by depositing NiCr for 10 min as the upper (or lower) layer and depositing NiCrSi for 10, 30, or 60 min as the lower (or upper) layer. We aim to show that the stacking method had no apparent effect on the resistivity of the NiCr-NiCrSi bi-layer thin-film resistors but had large effect on the TCR value.

  16. Computational discovery of ferromagnetic semiconducting single-layer CrSnTe3

    DOE PAGES

    Zhuang, Houlong L.; Xie, Yu; Kent, P. R. C.; ...

    2015-07-06

    Despite many single-layer materials being reported in the past decade, few of them exhibit magnetism. Here we perform first-principles calculations using accurate hybrid density functional methods (HSE06) to predict that single-layer CrSnTe3 (CST) is a ferromagnetic semiconductor, with band gaps of 0.9 and 1.2 eV for the majority and minority spin channels, respectively. We determine the Curie temperature as 170 K, significantly higher than that of single-layer CrSiTe3 (90K) and CrGeTe3 (130 K). This is due to the enhanced ionicity of the Sn-Te bond, which in turn increases the superexchange coupling between the magnetic Cr atoms. We further explore themore » mechanical and dynamical stability and strain response of this single-layer material for possible epitaxial growth. Lastly, our study provides an intuitive approach to understand and design novel single-layer magnetic semiconductors for a wide range of spintronics and energy applications.« less

  17. Computational discovery of ferromagnetic semiconducting single-layer CrSnTe3

    NASA Astrophysics Data System (ADS)

    Zhuang, Houlong L.; Xie, Yu; Kent, P. R. C.; Ganesh, P.

    2015-07-01

    Despite many single-layer materials being reported in the past decade, few of them exhibit magnetism. Here we perform first-principles calculations using accurate hybrid density functional methods (HSE06) to predict that single-layer CrSnTe3 (CST) is a ferromagnetic semiconductor, with band gaps of 0.9 and 1.2 eV for the majority and minority spin channels, respectively. We determine the Curie temperature as 170 K, significantly higher than that of single-layer CrSiTe3 (90 K) and CrGeTe3 (130 K). This is due to the enhanced ionicity of the Sn-Te bond, which in turn increases the superexchange coupling between the magnetic Cr atoms. We further explore the mechanical and dynamical stability and strain response of this single-layer material for possible epitaxial growth. Our study provides an intuitive approach to understand and design single-layer magnetic semiconductors for a wide range of spintronics and energy applications.

  18. Characteristics of Ni-Cr-Fe laser clad layers on EA4T steel

    NASA Astrophysics Data System (ADS)

    Chen, Wenjing; Chen, Hui; Wang, Yongjing; Li, Congchen; Wang, Xiaoli

    2017-07-01

    The Ni-Cr-Fe metal powder was deposited on EA4T steel by laser cladding technology. The microstructure and chemical composition of the cladding layer were analyzed by optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The bonding ability between the cladding layer and the matrix was measured. The results showed that the bonding between the cladding layer and the EA4T steel was metallurgical bonding. The microstructure of cladding layer was composed of planar crystals, columnar crystals and dendrite, which consisted of Cr2Ni3, γ phase, M23C6 and Ni3B phases. When the powder feeding speed reached 4 g/min, the upper bainite occurred in the heat affected zone (HAZ). Moreover, the tensile strength of the joint increased, while the yield strength and the ductility decreased.

  19. Effects of Oxide Layer on the Bonding Strength of Ni-Cr Alloys with Porcelain Ceramics.

    PubMed

    Park, W U; Jung, S H; Zhao, Jingming; Hwang, Kyu H; Lee, J K; Mitchell, John C

    2015-08-01

    The metal-ceramic crown restoration was the most actively used at esthetic restoration for its convenience of forming. Due to constant rise of gold price, non-precious metal such as Ni-Cr alloy have been widely used as metal-ceramic restorations. For easy casting and lower melting point Be was added as minor component to Ni-Cr for a long time, but the use of Be was regulated to deteriorate to human lung. In this study, Ni-Cr specimens containing Be (T-3, Ticonium, USA) and non-Be (Bellabond Plus, BEGO, Germany) were fabricated and by heat treatments at 800-1050 0C oxide layer was formed for subsequent bonding to porcelain ceramics. By heat treatment of the non-Be specimens at high temperature more thick oxide layer was formed and showed lower bonding strength due to the debonding at oxide layers. But in the Be-containing specimens debonding was occurred at porcelain layer so that they showed higher bonding strength. So by heat treatment of non-Be specimens at vacuum condition rather thinner oxide film could be formed so that showed higher coupling strength due to the debonding at porcelain layers than oxide layers.

  20. Sealing of hard CrN and DLC coatings with atomic layer deposition.

    PubMed

    Härkönen, Emma; Kolev, Ivan; Díaz, Belén; Swiatowska, Jolanta; Maurice, Vincent; Seyeux, Antoine; Marcus, Philippe; Fenker, Martin; Toth, Lajos; Radnoczi, György; Vehkamäki, Marko; Ritala, Mikko

    2014-02-12

    Atomic layer deposition (ALD) is a thin film deposition technique that is based on alternating and saturating surface reactions of two or more gaseous precursors. The excellent conformality of ALD thin films can be exploited for sealing defects in coatings made by other techniques. Here the corrosion protection properties of hard CrN and diamond-like carbon (DLC) coatings on low alloy steel were improved by ALD sealing with 50 nm thick layers consisting of Al2O3 and Ta2O5 nanolaminates or mixtures. In cross sectional images the ALD layers were found to follow the surface morphology of the CrN coatings uniformly. Furthermore, ALD growth into the pinholes of the CrN coating was verified. In electrochemical measurements the ALD sealing was found to decrease the current density of the CrN coated steel by over 2 orders of magnitude. The neutral salt spray (NSS) durability was also improved: on the best samples the appearance of corrosion spots was delayed from 2 to 168 h. On DLC coatings the adhesion of the ALD sealing layers was weaker, but still clear improvement in NSS durability was achieved indicating sealing of the pinholes.

  1. Thermal stability and separation characteristics of anti-sticking layers of Pt/Cr films for the hot slumping technique

    NASA Astrophysics Data System (ADS)

    Ma, Shuang; Wen, Ming-Wu; Wang, Zhan-Shan

    2016-07-01

    The thermal stability and separation characteristics of anti-sticking layers of Pt/Cr films are studied in this paper. Several types of adhesion layers were investigated: 10.0 nm Pt, 1.5 nm Cr + 50.0 nm Pt, 2.5 nm Cr + 50.0 nm Pt and 3.5 nm Cr + 50.0 nm Pt fabricated using direct current magnetron sputtering. The variation of layer thickness, roughness, crystallization and surface topography of Pt/Cr films were analyzed by grazing incidence X-ray reflectometry, large angle X-ray diffraction and optical profiler before and after heating. 2.5 nm Cr + 50.0 nm Pt film exhibits the best thermal stability and separation characteristics according to the heating and hot slumping experiments. The film was also applied as an anti-sticking layer to optimize the maximum temperature of the hot slumping technique. Supported by CAS XTP project XDA04060605

  2. Enhanced Corrosion Resistance of PVD-CrN Coatings by ALD Sealing Layers.

    PubMed

    Wan; Zhang, Teng Fei; Ding, Ji Cheng; Kim, Chang-Min; Park, So-Won; Yang, Yang; Kim, Kwang-Ho; Kwon, Se-Hun

    2017-12-01

    Multilayered hard coatings with a CrN matrix and an Al2O3, TiO2, or nanolaminate-Al2O3/TiO2 sealing layer were designed by a hybrid deposition process combined with physical vapor deposition (PVD) and atomic layer deposition (ALD). The strategy was to utilize ALD thin films as pinhole-free barriers to seal the intrinsic defects to protect the CrN matrix. The influences of the different sealing layers added in the coatings on the microstructure, surface roughness, and corrosion behaviors were investigated. The results indicated that the sealing layer added by ALD significantly decreased the average grain size and improved the corrosion resistance of the CrN coatings. The insertion of the nanolaminate-Al2O3/TiO2 sealing layers resulted in a further increase in corrosion resistance, which was attributed to the synergistic effect of Al2O3 and TiO2, both acting as excellent passivation barriers to the diffusion of corrosive substances.

  3. Frication Property of Mo-Cr-Infiltrated Steel Layer by Plasma Surface Metallurgy

    NASA Astrophysics Data System (ADS)

    Xu, Jinyong; Kang, Zhicheng; Liu, Yanping; Wang, Jianzhong; Gao, Yuan; Xu, Zhong

    2006-07-01

    Introduced in this article is the technique to acquire a high performance strengthened layer on carbon steel samples, namely, plasma alloying on the surface of Q235 steel and heat treatment technology. With this technique the alloying elements of Mo, Cr, and C can be obtained on the surface of Q235 steel samples. The content of the constituent elements is approximately up to high speed steels (HSS). The surface property required for the HSS after hardening and low tempering is attained. In the test, the alloying elements Mo and Cr were penetrated into the Q235 steel samples by glow discharge sputtering so that the content of the alloyed layer on the surface of the Q235 steel samples was about 20% Mo and 10% Cr. Two kinds of experiments were conducted. One was to carry out ultra-saturated carburization. The alloyed layer's composition was similar to molybdenum HSS with surface carburizing of more than 2.0%. The carbides of the alloyed layer were compact, uniform and disperse without a coarse eutectic ledeburite structure. The another was ion nitriding after the alloying elements of Mo and Cr were penetrated. The first process included hardening with low tempering and hardening with cryogenic treatment for 2 hr and low tempering. The second one was ion nitriding only. It was found that the surface hardness after cryogenic treatment is up to 1600 HV, much higher than that without cryogenic treatment. The abrasion test results indicate that, without the penetrated alloy elements Mo and Cr and without cryogenic treatment and ion nitriding, the friction coefficient is lower by one order of magnitude. The change in relative resistance is similar to the change in the friction coefficient, but without a proportional relationship.

  4. Boundary Magnetization and Exchange Bias of Boron Doped Cr2O3 Pinning Layers

    NASA Astrophysics Data System (ADS)

    Street, Michael; Echtenkamp, Will; Dowben, Peter; Binek, Christian

    2014-03-01

    This research is part of an effort to utilize voltage-controlled boundary magnetization (BM) in the magnetoelectric (ME) Cr2O3 for spintronic applications. We exploit the electric switchable boundary magnetic moment (MM) of Cr2O3. The net MM at the interface can be useful to manipulate the magnetic states of an adjacent ferromagnetic (FM) material. Using a FM Pd/Co multilayer deposited on Cr2O3, reversible, room-temperature isothermal switching of the exchange bias field has been achieved by reversing the electric field. The voltage-controlled magnetization of the FM layer can be utilized as a state variable. However, to use voltage-controlled BM as a key spintronic material for devices operating at room temperature, the Néel temperature TN of the ME antiferromagnet must be increased above the bulk value of TN = 307 K of pure Cr2O3. First principles calculations show that boron doping of Cr2O3 can increase TN. We diagram structural and magnetic characterizations of pure and B-Cr2O3 grown on Al2O3. An increase in TN of 120 K is achieved making Cr2O3 suitable for room temperature spintronic applications. Further, we attempt to create an exchange bias (EB) system using a FM Pd/Co multilayer on B-doped Cr2O3. From this, we attempt to switch the EB field via the electric field. This project is supported by NSF through MRSEC DMR 0213808, by the NRC/NRI supplement to MRSEC, and by STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.

  5. Layered double hydroxide stability. 2. Formation of Cr(III)-containing layered double hydroxides directly from solution

    NASA Technical Reports Server (NTRS)

    Boclair, J. W.; Braterman, P. S.; Jiang, J.; Lou, S.; Yarberry, F.

    1999-01-01

    Solutions containing divalent metal [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+] chlorides and CrCl3 6H2O were titrated with NaOH to yield, for M(II) = Zn, Co, and Ni, hydrotalcite-like layered double hydroxides (LDHs), [[M(II)]1-z[Cr(III)]z(OH)2][Cl]z yH2O, in a single step, without intermediate formation of chromium hydroxide. Analysis of the resultant titration curves yields solubility constants for these compounds. These are in the order Zn < Ni approximately Co, with a clear preference for formation of the phase with z = 1/3. With Mg2+ as chloride, titration gives a mixture of Cr(OH)3 and Mg(OH)2, but the metal sulfates give Mg2Cr(OH)6 1/2(SO4) by a two-step process. Titrimetric and spectroscopic evidence suggests short-range cation order in the one-step LDH systems.

  6. Layered double hydroxide stability. 2. Formation of Cr(III)-containing layered double hydroxides directly from solution

    NASA Technical Reports Server (NTRS)

    Boclair, J. W.; Braterman, P. S.; Jiang, J.; Lou, S.; Yarberry, F.

    1999-01-01

    Solutions containing divalent metal [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+] chlorides and CrCl3 6H2O were titrated with NaOH to yield, for M(II) = Zn, Co, and Ni, hydrotalcite-like layered double hydroxides (LDHs), [[M(II)]1-z[Cr(III)]z(OH)2][Cl]z yH2O, in a single step, without intermediate formation of chromium hydroxide. Analysis of the resultant titration curves yields solubility constants for these compounds. These are in the order Zn < Ni approximately Co, with a clear preference for formation of the phase with z = 1/3. With Mg2+ as chloride, titration gives a mixture of Cr(OH)3 and Mg(OH)2, but the metal sulfates give Mg2Cr(OH)6 1/2(SO4) by a two-step process. Titrimetric and spectroscopic evidence suggests short-range cation order in the one-step LDH systems.

  7. Transparent ferrimagnetic semiconducting CuCr2O4 thin films by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Tripathi, T. S.; Yadav, C. S.; Karppinen, M.

    2016-04-01

    We report the magnetic and optical properties of CuCr2O4 thin films fabricated by atomic layer deposition (ALD) from Cu(thd)2, Cr(acac)3, and ozone; we deposit 200 nm thick films and anneal them at 700 °C in oxygen atmosphere to crystallize the spinel phase. A ferrimagnetic transition at 140 K and a direct bandgap of 1.36 eV are determined for the films from magnetic and UV-vis spectrophotometric measurements. Electrical transport measurements confirm the p-type semiconducting behavior of the films. As the ALD technique allows the deposition of conformal pin-hole-free coatings on complex 3D surfaces, our CuCr2O4 films are interesting material candidates for various frontier applications.

  8. Microstructure of the Native Oxide Layer on Ni and Cr-doped Ni Nanoparticles

    SciTech Connect

    Wang, Chong M.; Baer, Donald R.; Bruemmer, Stephen M.; Engelhard, Mark H.; Bowden, Mark E.; Sundararajan, J. A.; Qiang, You

    2011-10-01

    Metallic or alloy nanoparticles exposed to air at room temperature will be instantaneously oxidized and covered by an oxide layer. However, for most cases, the true structural nature of the oxide layer formed at this stage is hard to determine. In this paper, we report the structure, morphology, and electronic structure (the density of state of both valence and conduction bands measured by a combination of XPS and EELS) of pure Ni and Cr-doped Ni nanoparticles synthesized using a cluster deposition process. Structural characterization carried out at the atomic level using aberration corrected high resolution transmission electron microscopy (HRTEM) in combination with electron and x-ray diffractions reveals that both pure Ni and Cr-doped Ni particles exposed to air at room temperature similarly possesses a core-shell structure of metal core covered by an oxide layer of typically 1.6 nm in thickness. There exists a critical size of ~ 6 nm, below which the particle is fully oxidized. The oxide particle corresponds to the rock-salt structured NiO and is faceted on the (001) planes. XPS of O-1s shows a strong peak that is attributed to (OH)-, which in combination with the atomic level HRTEM imaging indicates that the very top layer of the oxide is hydrolyzed as Ni(OH)2. Chemical composition analysis using EDS, EELS, and XPS indicates that the Cr dopant at the level of ~ 5at% forms solid solution with the Ni lattice. The Cr shows no segregation on the surface or preferential oxidation during the initial oxidation.

  9. Microstructure of the native oxide layer on Ni and Cr-doped Ni nanoparticles.

    PubMed

    Wang, Chong-Min; Baer, Donald R; Bruemmer, Stephen M; Engelhard, Mark H; Bowden, Mark E; Sundararajan, Jennifer A; Qiang, You

    2011-10-01

    Most metallic nanoparticles exposed to air at room temperature will be instantaneously oxidized and covered by an oxide layer. In most cases the true structural nature of the oxide layer formed at this stage is hard to determine. As shown previously for Fe and other nanoparticles, the nature of the oxides form on the particles can vary with particle size and nature of the oxidation process. In this paper, we report the morphology and structural features of the native oxide layer on pure Ni and Cr-doped Ni nanoparticles synthesized using a cluster deposition process. Structural characterization carried out at the atomic level using aberration corrected high resolution transmission electron microscopy (HRTEM) in combination with electron and X-ray diffractions reveals that both pure Ni and Cr-doped Ni particles exposed to air at room temperature similarly possesses a core-shell structure of metal core covered by an oxide layer of typically 1.6 nm in thickness. There exists a critical size of approximately 6 nm, below which the particle is fully oxidized. The oxide particle corresponds to the rock-salt structured NiO and is faceted on the (001) planes. XPS of O-1s shows a strong peak that is attributed to (OH)-, which in combination with the atomic level HRTEM imaging indicates that the very top layer of the oxide is hydrolyzed.

  10. Analysis of the microstructure of Cr-Ni surface layers deposited on Fe{sub 3}Al by TIG

    SciTech Connect

    Ma Haijun . E-mail: hjma123@mail.sdu.edu.cn; Li Yajiang; Wang Juan

    2006-12-15

    A series of Cr-Ni alloys were overlaid on a Fe{sub 3}Al surface by tungsten inert gas arc welding (TIG) technology. The microstructure of the Cr-Ni surface layers were analysed by means of optical metallography, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results indicated that when the appropriate TIG parameters were used and Cr25-Ni13 and Cr25-Ni20 alloys were used for the overlaid materials, the Cr-Ni surface layers were crack-free. The matrix of the surface layer was austenite (A), pro-eutectoid ferrite (PF), acicular ferrite (AF), carbide-free bainite (CFB) and lath martensite (LM), distributed on the austenitic grain boundaries as well as inside the grains. The phase constituents of the Cr25-Ni13 surface layer were {gamma}-Fe, Fe{sub 3}Al, FeAl, NiAl, an Fe-C compound and an Fe-C-Cr compound. The microhardness of the fusion zone was lower than that of the Fe{sub 3}Al base metal and Cr25-Ni13 surface layer.

  11. Cr-doped TiSe2 - A layered dichalcogenide spin glass

    SciTech Connect

    Luo, Huixia; Tao, Jing; Krizan, Jason W.; Seibel, Elizabeth M.; Xie, Weiwei; Sahasrabudhe, Girija S.; Bergman, Susanna L.; Phelan, Brendan F.; Wang, Zhen; Zhang, Jiandi; Cava, R. J.

    2015-09-17

    We report the magnetic characterization of the Cr-doped layered dichalcogenide TiSe2. The temperature dependent magnetic susceptibilities are typical of those seen in geometrically frustrated insulating antiferromagnets. The Cr moment is close to the spin-only value, and the Curie–Weiss temperatures (θcw) are between –90 and –230 K. Freezing of the spin system, which is glassy, characterized by peaks in the ac and dc susceptibility and specific heat, does not occur until below T/θcw = 0.05. The CDW transition seen in the resistivity for pure TiSe2 is still present for 3% Cr substitution but is absent by 10% substitution, above which the materials are metallic and p-type. Structural refinements, magnetic characterization, and chemical considerations indicate that the materials are of the type Ti1–xCrxSe2-x/2 for 0 ≤ x ≤ 0.6.

  12. Antiferromagnetism in the van der Waals layered spin-lozenge semiconductor CrTe3

    DOE PAGES

    McGuire, Michael A.; Garlea, V. Ovidiu; KC, Santosh; ...

    2017-04-14

    We have investigated the crystallographic, magnetic, and transport properties of the van der Waals bonded, layered compound CrTe 3 on single-crystal and polycrystalline materials. Furthermore, the crystal structure contains layers made up of lozenge-shaped Cr 4 tetramers. Electrical resistivity measurements show the crystals to be semiconducting, with a temperature dependence consistent with a band gap of 0.3 eV. The magnetic susceptibility exhibits a broad maximum near 300 K characteristic of low dimensional magnetic systems. Weak anomalies are observed in the susceptibility and heat capacity near 55 K, and single-crystal neutron diffraction reveals the onset of long-range antiferromagnetic order at thismore » temperature. Strongly dispersive spin waves are observed in the ordered state. Significant magnetoelastic coupling is indicated by the anomalous temperature dependence of the lattice parameters and is evident in structural optimization in van der Waals density functional theory calculations for different magnetic configurations. The cleavability of the compound is apparent from its handling and is confirmed by first-principles calculations, which predict a cleavage energy 0.5 J / m 2 , similar to graphite. Based on our results, CrTe 3 is identified as a promising compound for studies of low dimensional magnetism in bulk crystals as well as magnetic order in monolayer materials and van der Waals heterostructures.« less

  13. Magnetic states of multilayer Fe /Cr structures with ultrathin iron layers

    NASA Astrophysics Data System (ADS)

    Drovosekov, A. B.; Kreines, N. M.; Kholin, D. I.

    2010-08-01

    The evolution of the magnetic properties of Fe /Cr superlattices is studied as the nominal thickness of the iron layers is reduced to atomic values, when these layers are no longer continuous. The studies were done on multilayer samples with Fe thicknesses of 2-6Å and chromium spacer thicknesses of 10 and 20Å. The samples were prepared by molecular beam epitaxy. The static magnetization and complex magnetic susceptibility were measured and FMR spectra taken. It was found that, depending on the thickness of the Fe layers and temperature, different magnetic phases are realized in the system: supermagnetism, magnetic ordering, and a nonergodic state characterized by a dependence of the magnetization of a sample on its magnetic prehistory. The observed nonergodic phase is found to exhibit spin glass properties. A qualitative phase diagram of the magnetic states of this system is constructed.

  14. Zoned Cr, Fe-spinel from the La Perouse layered gabbro, Fairweather Range, Alaska

    USGS Publications Warehouse

    Czamanske, G.K.; Himmelberg, G.R.; Goff, F.E.

    1976-01-01

    Zoned spinel of unusual composition and morphology has been found in massive pyrrhotite-chalcopyrite-pent-landite ore from the La Perouse layered gabbro intrusion in the Fairweather Range, southeastern Alaska. The spinel grains show continuous zoning from cores with up to 53 wt.% Cr2O3 to rims with less than 11 wt.% Cr2O3. Their composition is exceptional because they contain less than 0.32 wt.% MgO and less than 0.10 wt.% Al2O3 and TiO2. Also notable are the concentrations of MnO and V2O3, which reach 4.73 and 4.50 wt.%, respectively, in the cores. The spinel is thought to have crystallized at low oxygen fugacity and at temperatures above 900??C, directly from a sulfide melt that separated by immiscibility from the gabbroic parental magma. ?? 1976.

  15. Identification of delamination failure of boride layer on common Cr-based steels

    NASA Astrophysics Data System (ADS)

    Taktak, Sukru; Tasgetiren, Suleyman

    2006-10-01

    Adhesion is an important aspect in the reliability of coated components. With low-adhesion of interfaces, different crack paths may develop depending on the local stress field at the interface and the fracture toughness of the coating, substrate, and interface. In the current study, an attempt has been made to identify the delamination failure of coated Cr-based steels by boronizing. For this reason, two commonly used steels (AISI H13, AISI 304) are considered. The steels contain 5.3 and 18.3 wt.% Cr, respectively. Boriding treatment is carried out in a slurry salt bath consisting of borax, boric acid, and ferrosilicon at a temperature range of 800 950 °C for 3, 5, and 7 h. The general properties of the boron coating are obtained by mechanical and metallographic characterization tests. For identification of coating layer failure, some fracture toughness tests and the Daimler-Benz Rockwell-C adhesion test are used.

  16. Metal oxide semiconductor gas sensors utilizing a Cr-zeolite catalytic layer for improved selectivity

    NASA Astrophysics Data System (ADS)

    Mann, D. P.; Paraskeva, T.; Pratt, K. F. E.; Parkin, I. P.; Williams, D. E.

    2005-05-01

    A novel method of improving the selectivity of metal oxide sensors has been developed. The addition of zeolites, catalytically modified with chromium, results in controlled selectivity to alkanes based on shape and size effects. The cracking patterns of n-alkanes over Cr-zeolite Y and Cr-zeolite β between 200 °C and 400 °C have been ascertained using a novel system involving a heated zeolite bed, thermal desorber and GC/MS. The findings correlate with discrimination shown when the respective zeolites are incorporated as a catalytic layer on chromium titanium oxide (CTO) gas sensors used in a proprietary sensor array system to ascertain their suitability for inclusion into an electronic nose.

  17. High-resolution electron microscopy study of Ni 81Fe 19 film with Co 33Cr 67 buffer layer

    NASA Astrophysics Data System (ADS)

    Xu, Q. Y.; Wang, Z. M.; Shen, F.; Du, Y. W.; Zhang, Z.

    2003-04-01

    The anisotropic magnetoresistance (AMR) in permalloy Ni 81Fe 19 film deposited on a 1.2 nm Co 33Cr 67 buffer layer was significantly enhanced. The high-resolution electron microscopy was used to study the microstructure of Ni 81Fe 19 film with and without Co 33Cr 67 buffer layer. It was found that Co 33Cr 67 buffer layer can induce good (1 1 1) texture, while without Co 33Cr 67 buffer layer, Ni 81Fe 19 film show randomly oriented grain structure. The Δ ρ/ ρ enhancement is attributed to the decrease in the resistivity ρ of the Ni 81Fe 19 film due to the formation of the large (1 1 1) textured grains in Ni 81Fe 19 film with Co 33Cr 67 buffer layer. However, the surface roughness of substrate may limit the (1 1 1) textured grain size and induce additional grain boundaries in Ni 81Fe 19 film with Co 33Cr 67 buffer layer, limit the enhancement of the AMR effect.

  18. Kerr rotation and perpendicular magnetic anisotropy of CoCr films with Al ultrathin interlayers and single-layer CoCr films

    NASA Astrophysics Data System (ADS)

    Hirata, Toyoaki; Takahashi, Takakazu; Hoshi, Youichi; Naoe, Masahiko

    1991-11-01

    The Co81Cr19/Al multilayered films were prepared by using the plasma-free sputtering apparatus. The specimen films with the thicknesses of Co81Cr19 and Al layers lCo-Cr and lAl of 50-170 and 7-14 Å, respectively, were investigated for the Kerr rotation angle θK and the reflectance R of the multilayered films with total thickness of 1500 Å. Films with lCo-Cr and lAl of 138 and 7 Å, respectively, had a θK of 0.21° and R of 0.7 which is larger than Co81Cr19 single-layer films prepared by conventional sputtering where θK and R are 0.036° and 0.4-0.5, respectively. These results indicate that the films were entirely homogeneous, that is, the surface and interior of the films may be almost the same for composition, microstructure and magnetic properties. Consequently, the Co81Cr19 thin films with Al ultrathin interlayers may be useful for microcrystalline magneto-optical media with a high C/N ratio.

  19. Non-Gaussian resistance noise in misfit layer compounds: Bi-Se-Cr

    NASA Astrophysics Data System (ADS)

    Peng, Lintao; Freedman, Alex; Clarke, Samantha; Freedman, Danna; Grayson, M.

    Misfit layer ternary compounds Bi-Se-Cr have been synthesized and structurally and magnetically characterized. However, the nature of the magnetic ordering below the transition temperature remains debatable between ferromagnetic and spin-glass. These misfit layer compounds consist of two alternating chalcogenide layers of CrSe2 and BiSe along the c-axis. Whereas the a-axis is lattice matched, the lattice mismatch along the b-axis introduces non-periodic modulation of atomic position leading to quasi-crystalline order along the b-axis alone. We explore unconventional electrical transport properties in the noise spectrum of these compounds. After thinning down the compounds to nanoscale, Van der Pauw devices are fabricated with standard electron beam lithography process. Large resistance noise was observed at temperature below the Cure temperature. The magnitude of resistance noise is much greater than trivial intrinsic noises like thermal Johnson noise and increases as temperature decreases. The probability density function of the relative noise shows 2-4 peaks among different observations which indicate strong non-Gaussian statistic property suggesting glassy behaviors in this material.

  20. Layered-to-Rock-Salt Transformation in Desodiated NaxCrO2 (x 0.4)

    DOE PAGES

    Bo, Shou-Hang; Li, Xin; Toumar, Alexandra J.; ...

    2016-02-01

    O3 layered sodium transition metal oxides (i.e., NaMO2, M = Ti, V, Cr, Mn, Fe, Co, Ni) are a promising class of cathode materials for Na-ion battery applications. These materials, however, all suffer from severe capacity decay when the extraction of Na exceeds certain capacity limits. Understanding the causes of this capacity decay is critical to unlocking the potential of these materials for battery applications. In this work, we investigate the structural origins of capacity decay for one of the compounds in this class, NaCrO2. The (de)sodiation processes of NaCrO2 were studied both in situ and ex situ through X-raymore » and electron diffraction measurements. We demonstrate that NaxCrO2 (0 < x < 1) remains in the layered structural framework without Cr migration up to a composition of Na0.4CrO2. Further removal of Na beyond this composition triggers a layered-to-rock-salt transformation, which converts P'3-Na0.4CrO2 into the rock-salt CrO2 phase. This structural transformation proceeds via the formation of an intermediate O3 NaδCrO2 phase that contains Cr in both Na and Cr slabs and shares very similar lattice dimensions with those of rock-salt CrO2. It is intriguing to note that intercalation of alkaline ions (i.e., Na+ and Li+ ) into the rock-salt CrO2 and O3 NaδCrO 2 structures is actually possible, albeit in a limited amount (~0.2 per formula unit). When these results were analyzed under the context of electrochemistry data, it was apparent that preventing the layered-to-rock-salt transformation is crucial to improve the cyclability of NaCrO2. Possible strategies for mitigating this detrimental phase transition are proposed.« less

  1. Coupling of Crystal Structure and Magnetism in the Layered, Ferromagnetic Insulator CrI 3

    DOE PAGES

    McGuire, Michael A.; Dixit, Hemant; Cooper, Valentino R.; ...

    2014-12-23

    Here, we examine the crystallographic and magnetic properties of single crystals of CrI3, an easily cleavable, layered and insulating ferromagnet with a Curie temperature of 61 K. Our X-ray diffraction studies reveal a first-order crystallographic phase transition occurring near 210–220 K upon warming, with significant thermal hysteresis. The low-temperature structure is rhombohedral (Rmore » $$\\bar{3}$$, BiI3-type) and the high-temperature structure is monoclinic (C2/m, AlCl3-type). Evidence for coupling between the crystallographic and magnetic degrees of freedom in CrI3 was found; we observed an anomaly in the interlayer spacing at the Curie temperature and an anomaly in the magnetic susceptibility at the structural transition. First-principles calculations reveal the importance of proper treatment of the long-ranged interlayer forces, and van der Waals density functional theory does an excellent job of predicting the crystal structures and their relative stability. Our calculations suggest that the ferromagnetic order found in the bulk material may persist into monolayer form, suggesting that CrI3 and other chromium trihalides may be promising materials for spintronic and magnetoelectronic research.« less

  2. Cr-doped TiSe2 - A layered dichalcogenide spin glass

    DOE PAGES

    Luo, Huixia; Tao, Jing; Krizan, Jason W.; ...

    2015-09-17

    We report the magnetic characterization of the Cr-doped layered dichalcogenide TiSe2. The temperature dependent magnetic susceptibilities are typical of those seen in geometrically frustrated insulating antiferromagnets. The Cr moment is close to the spin-only value, and the Curie–Weiss temperatures (θcw) are between –90 and –230 K. Freezing of the spin system, which is glassy, characterized by peaks in the ac and dc susceptibility and specific heat, does not occur until below T/θcw = 0.05. The CDW transition seen in the resistivity for pure TiSe2 is still present for 3% Cr substitution but is absent by 10% substitution, above which themore » materials are metallic and p-type. Structural refinements, magnetic characterization, and chemical considerations indicate that the materials are of the type Ti1–xCrxSe2-x/2 for 0 ≤ x ≤ 0.6.« less

  3. Formation and diffusion behavior of intermixed and segregated amorphous layers in sputtered NiCr films on Si

    NASA Astrophysics Data System (ADS)

    Lee, Ju-Hyeon; Rozgonyi, G. A.; Patnaik, B. K.; Knoesen, D.; Adams, D.; Balducci, P.; Salih, A. S. M.

    1993-04-01

    Sputter-deposited Ni80Cr20 films on sputter-cleaned Si substrates contain an amorphous layer at the substrate/film interface whose composition is a mixture of all the elements present at the interface. Subsequent thermal processing at 300 °C for 30 min produces a new segregated Cr-rich amorphous layer as Ni atoms preferentially diffuse through and react with the initial amorphous layer and the silicon substrate. Further annealing results in the growth of uniform nanoscale NiSi layers, as long as the segregated a layer is sustained. The amorphous layers eventually crystallize at ˜500 °C and Kirkendall voids are observed at 550 °C. Whereas the formation of intermixed amorphous layers from metal-metal or metal-silicon systems has been reported by several authors, the segregated amorphous layer arising out of the interdiffusion and reaction between a metal alloy and Si is of both fundamental and technological interest due to its thermal stability and ability to control the silicide growth. In this work, we describe the evolution of both kinds of amorphous layers, i.e., intermixed and segregated, so as to elucidate their origins. The evolution of the two a layers is also observed when monolayers of Pt are introduced prior to NiCr deposition. In this case, the growth of the segregated amorphous layer is retarded and it dissolves earlier during thermal annealing.

  4. Perpendicular Magnetic Anisotropy in FePt Patterned Media Employing a CrV Seed Layer.

    PubMed

    Kim, Hyunsu; Noh, Jin-Seo; Roh, Jong Wook; Chun, Dong Won; Kim, Sungman; Jung, Sang Hyun; Kang, Ho Kwan; Jeong, Won Yong; Lee, Wooyoung

    2011-12-01

    A thin FePt film was deposited onto a CrV seed layer at 400°C and showed a high coercivity (~3,400 Oe) and high magnetization (900-1,000 emu/cm(3)) characteristic of L 10 phase. However, the magnetic properties of patterned media fabricated from the film stack were degraded due to the Ar-ion bombardment. We employed a deposition-last process, in which FePt film deposited at room temperature underwent lift-off and post-annealing processes, to avoid the exposure of FePt to Ar plasma. A patterned medium with 100-nm nano-columns showed an out-of-plane coercivity fivefold larger than its in-plane counterpart and a remanent magnetization comparable to saturation magnetization in the out-of-plane direction, indicating a high perpendicular anisotropy. These results demonstrate the high perpendicular anisotropy in FePt patterned media using a Cr-based compound seed layer for the first time and suggest that ultra-high-density magnetic recording media can be achieved using this optimized top-down approach.

  5. Surface-charging behavior of Zn-Cr layered double hydroxide.

    PubMed

    Rojas Delgado, R; Arandigoyen Vidaurre, M; De Pauli, C P; Ulibarri, M A; Avena, M J

    2004-12-15

    A Zn-Cr layered double hydroxide (LDH) having the formula Zn(2)Cr(OH)(6)Cl(0.7)(CO(3))(0.15)2.1H(2)O was synthesized and characterized by powder X-ray diffraction, infrared spectroscopy, acid-base potentiometric titration, mass titration, electrophoretic mobility, and modeling of the electrical double layer. Adsorption of alizarin was also performed in order to show some particular features of the HDL. Net hydroxyl adsorption, which increases with increasing pH and decreasing supporting electrolyte concentration, takes place above pH 5. The electrophoretic mobility of the particles was always positive and it decreased when the pH was higher than 9. An isoelectric point of 12 could be estimated by extrapolating the data. The modified MUSIC model was used to estimate deprotonation constants of surface groups and different adsorption models were compared. Good fit of hydroxyl adsorption and electrophoresis could be achieved by considering both OH(-)/Cl(-) exchange at structural sites and proton desorption from surface hydroxyl groups. The modeling, in agreement with alizarin adsorption, indicates that most of the structural positive charge of the LDH is screened at the surface by exchanged anions and negatively charged surface groups. It also suggests that only structural charge sites initially neutralized by chloride ions are active for anion exchange. The remaining sites are blocked by carbonate and do not participate in the exchange.

  6. Effect of Anodic Polarization on Layer-Growth of Fe-Ni-Cr Anodes in Cryolite-Alumina Melts

    NASA Astrophysics Data System (ADS)

    Ndong, GermainKouma; Xue, Jilai; Feng, Luxing; Zhu, Jun

    High-temperature corrosion behaviors of Fe-Ni-Cr alloy as inert anodes for aluminum electrolysis have been studied. The effect of anodic overpotential on layer growth of anodic surface is specially considered. The corrosion layers on the anodes tested were analyzed using XRD and SEM-EDS to provide a fundamental understanding of the layers growth at metallic anode surface. The dissolution of the scale layers on the metal anode occurred with low overpotential, while AlxM3-xO4 spinel phase within the scale layers was found with an increased overpotential. A mixture of multiple MyO layers existed on the anode substrate. The results may be useful for understanding and controlling the corrosion behaviors of Fe-Ni-Cr anode for potential application in aluminum electrolysis.

  7. Effects of varying CoCrV seed layer deposition pressure on Ru crystallinity in perpendicular magnetic recording media

    SciTech Connect

    Joost, W.; Das, A.; Alford, T. L.

    2009-10-01

    The effects of varying deposition parameters of a CoCrV seed layer under Ru on the structural and interfacial properties of both layers were studied. While sputtering power showed little effect on film structure, sputtering pressure during deposition of the seed layer had a significant effect on the structural properties of the seed layer. In particular, the grain morphology and crystallinity of the seed layer varied considerably with deposition pressure. Deposition of Ru using a constant recipe for all samples demonstrated the effect of varying seed layer deposition pressure on the Ru layer. The strain energy of the Ru film, a measurement of contraction due to the registry with the seed layer, was greatest at moderate seed layer sputtering pressures, while the Ru(0002) peak area was greatest at low sputtering pressures. The competing contributions of interfacial energy and strain energy describe this effect, with interfacial energy dominating at low sputtering pressures.

  8. Nanostaircases: An atomic shadowing instability during epitaxial CrN(001) layer growth

    SciTech Connect

    Frederick, J.R.; Gall, D.

    2005-08-01

    Epitaxial CrN(001) layers, 57 and 230 nm thick, were grown on MgO(001) at 700 deg. C by ultrahigh-vacuum magnetron sputter deposition in pure N{sub 2} discharges. An oblique deposition angle {alpha}=80 deg. was utilized to purposely increase the effect of atomic shadowing on surface morphological and microstructural evolution. The layers are single crystals with a surface morphology that is characterized by dendritic ridge patterns extending along orthogonal <110> directions superposed by square-shaped supermounds with <100> edges. The ridge patterns are due to a two-dimensional growth instability related to a gradient in the adatom density while the supermounds form due to atomic shadowing. The supermounds protrude out of the surface and capture a larger deposition flux than the surrounding layer. This leads to both vertical and lateral growth and the formation of inverted pyramids that are epitaxially embedded in a single crystalline matrix. The inverted pyramids are terminated by 1-3-nm-wide tilted voids that form nanostaircases due to kinetic faceting along orthogonal {l_brace}100{r_brace} planes.

  9. Effect of Alloy 625 Buffer Layer on Hardfacing of Modified 9Cr-1Mo Steel Using Nickel Base Hardfacing Alloy

    NASA Astrophysics Data System (ADS)

    Chakraborty, Gopa; Das, C. R.; Albert, S. K.; Bhaduri, A. K.; Murugesan, S.; Dasgupta, Arup

    2016-04-01

    Dashpot piston, made up of modified 9Cr-1Mo steel, is a part of diverse safety rod used for safe shutdown of a nuclear reactor. This component was hardfaced using nickel base AWS ER NiCr-B alloy and extensive cracking was experienced during direct deposition of this alloy on dashpot piston. Cracking reduced considerably and the component was successfully hardfaced by application of Inconel 625 as buffer layer prior to hardface deposition. Hence, a separate study was undertaken to investigate the role of buffer layer in reducing the cracking and on the microstructure of the hardfaced deposit. Results indicate that in the direct deposition of hardfacing alloy on modified 9Cr-1Mo steel, both heat-affected zone (HAZ) formed and the deposit layer are hard making the thickness of the hard layer formed equal to combined thickness of both HAZ and deposit. This hard layer is unable to absorb thermal stresses resulting in the cracking of the deposit. By providing a buffer layer of Alloy 625 followed by a post-weld heat treatment, HAZ formed in the modified 9Cr-1Mo steel is effectively tempered, and HAZ formed during the subsequent deposition of the hardfacing alloy over the Alloy 625 buffer layer is almost completely confined to Alloy 625, which does not harden. This reduces the cracking susceptibility of the deposit. Further, unlike in the case of direct deposition on modified 9Cr-1Mo steel, dilution of the deposit by Ni-base buffer layer does not alter the hardness of the deposit and desired hardness on the deposit surface could be achieved even with lower thickness of the deposit. This gives an option for reducing the recommended thickness of the deposit, which can also reduce the risk of cracking.

  10. Localised Ag(+) vibrations at the origin of ultralow thermal conductivity in layered thermoelectric AgCrSe2.

    PubMed

    Damay, F; Petit, S; Rols, S; Braendlein, M; Daou, R; Elkaïm, E; Fauth, F; Gascoin, F; Martin, C; Maignan, A

    2016-03-22

    In materials science, the substructure approach consists in imagining complex materials in which a particular property is associated with a distinct structural feature, so as to combine different chosen physical characteristics, which otherwise have little chance to coexist. Applied to thermoelectric materials, it has been used to achieve simultaneously phonon-glass and electron-crystal properties. Mostly studied for its superionic conductivity, AgCrSe2 is a naturally layered compound, which achieves very low thermal conductivity, ~0.4 W.K(-1).m(-1) at RT (room temperature), and is considered a promising thermoelectric. The Cr atoms of the [CrSe2]∞ layer bear a spin S = 3/2, which orders below TN = 55 K. Here we report low temperature inelastic neutron scattering experiments on AgCrSe2, alongside the magnetic field evolution of its thermal and electrical transport. We observe a very low frequency mode at 3 meV, ascribed to large anharmonic displacements of the Ag(+) ions in the [Ag]∞ layer, and 2D magnetic fluctuations up to 3 TN in the chromium layer. The low thermal conductivity of AgCrSe2 is attributed to acoustic phonon scattering by a regular lattice of Ag(+) oscillating in quasi-2D potential wells. These findings highlight a new way to achieve localised phonon modes in a perfectly crystalline solid.

  11. Localised Ag+ vibrations at the origin of ultralow thermal conductivity in layered thermoelectric AgCrSe2

    PubMed Central

    Damay, F.; Petit, S.; Rols, S.; Braendlein, M.; Daou, R.; Elkaïm, E.; Fauth, F.; Gascoin, F.; Martin, C.; Maignan, A.

    2016-01-01

    In materials science, the substructure approach consists in imagining complex materials in which a particular property is associated with a distinct structural feature, so as to combine different chosen physical characteristics, which otherwise have little chance to coexist. Applied to thermoelectric materials, it has been used to achieve simultaneously phonon-glass and electron-crystal properties. Mostly studied for its superionic conductivity, AgCrSe2 is a naturally layered compound, which achieves very low thermal conductivity, ~0.4 W.K−1.m−1 at RT (room temperature), and is considered a promising thermoelectric. The Cr atoms of the [CrSe2]∞ layer bear a spin S = 3/2, which orders below TN = 55 K. Here we report low temperature inelastic neutron scattering experiments on AgCrSe2, alongside the magnetic field evolution of its thermal and electrical transport. We observe a very low frequency mode at 3 meV, ascribed to large anharmonic displacements of the Ag+ ions in the [Ag]∞ layer, and 2D magnetic fluctuations up to 3 TN in the chromium layer. The low thermal conductivity of AgCrSe2 is attributed to acoustic phonon scattering by a regular lattice of Ag+ oscillating in quasi-2D potential wells. These findings highlight a new way to achieve localised phonon modes in a perfectly crystalline solid. PMID:27000414

  12. Highly (002) textured large grain bcc Cr{sub 80}Mn{sub 20} seed layer on Cr{sub 50}Ti{sub 50} amorphous layer for FePt-C granular film

    SciTech Connect

    Jeon, Seong-Jae Saito, Shin; Hinata, Shintaro; Takahashi, Migaku

    2015-05-07

    Effect of bcc Cr{sub 80}Mn{sub 20} seed layer and Cr{sub 50}Ti{sub 50} amorphous texture inducing layer on the heteroepitaxy system in FePt-C granular film was studied by introducing a new concept of the layered structure. The concept suggested that the large grain seed layer in which the crystallographic texture was initially formed on an amorphous layer in the layered structure can reduce the angular distribution of (002) c-axis crystal orientation in the FePt-C granular film owing to heteroepitaxial growth. Structure analysis by X-ray diffraction revealed that (1) when the substrate heating temperature was elevated from 300 °C to 500 °C, grain size in the seed layer increased from 9.8 nm to 11.6 nm, and then decreased with further increasing the substrate temperature. The reduction of the grain size over 500 °C corresponds to the crystallization of the amorphous texture inducing layer, (2) when the grain size increased from 9.8 nm to 11.6 nm, the angular distribution of the (002) orientation in the seed layer dramatically decreased from 13.7° to 4.1°. It was shown that the large grain seed layer increased the perpendicular hysteresis in FePt-C granular film.

  13. Heat treatment of nitrided layer formed on X37CrMoV5-1 hot working tool steel

    NASA Astrophysics Data System (ADS)

    Ciski, A.; Wach, P.; Tacikowski, J.; Babul, T.; Šuchmann, P.

    2017-02-01

    The paper presents the technology consisting of combination of the nitriding process with subsequent austenitizing at temperature above eutectoid temperature of the Fe-C system and further rapid cooling. Such treatment will cause formation of the martensite in the area of the primarily nitrided layer and the additional precipitation hardening by tempering of heat treated steel. The article shows that the heat treatment process of nitrided layer formed on X37CrMoV5-1 steel leads to strengthening of surface layer, the substrate and the core of nitrided part. Heat treatment of nitrided steel with the tempering in inert (nitrogen) or active (ammonia) atmosphere can increase the thickness of the layer formed by short-term nitriding process. After the nitriding process of X37CrMoV5-1 steel the nitrided layer had a thickness of about 160 μm, while a subsurface layer of iron nitrides had a thickness of 7 μm. After subsequent quenching and tempering processes, the nitrided layer undergoes additional diffusion and its thickness is increased to about 220 μm (inert atmosphere) or 280 μm (active atmosphere). If the tempering process is carried out in an inert atmosphere, the primarily formed layer of iron nitrides disappears. Tempering in an active atmosphere leads to forming of white layer with a thickness of 7 μm. Basic properties of nitrided layers formed in such way, like the hardness and the wear resistance, are presented.

  14. Exchange anisotropy in NiFe layers coupled with multilayered MnFe/MnFeCr (abstract)

    NASA Astrophysics Data System (ADS)

    Kung, Kenneth T.-Y.; Campbell, Richard T.

    1991-11-01

    The exchange anisotropy in a ferromagnetic NiFe layer coupled with an antiferromagnetic MnFe layer can be used to stabilize the single domain state of a magnetoresistive sensor,1 but this technology may be limited by the high corrosion sensitivity of MnFe. It is possible to improve the corrosion resistance of MnFe through impurity doping, e.g., MnFeCr with Cr concentrations of 3-12 at. %,2 but this technique will at the same time degrade the exchange anisotropy. In this work, we have investigated the exchange anisotropy in NiFe layers coupled with multilayered MnFe/MnFeCr. The samples had a configuration of glass substrates, followed by a NiFe (300 Å) layer, followed by a MnFe(x Å)/MnFeCr(y Å) multilayer, where the antiferromagnetic multilayer had either MnFe or MnFeCr interfacing with the NiFe and had a fixed total thickness of 240 Å. They were prepared by rf diode sputtering and, after a Ta (200 Å) protective layer deposition, were thermally cycled to a maximum temperature of 250 °C. The results can be summarized as follows: (1) The anisotropy energy, EUA, near the room temperature ranged from 0.03 to 0.10 erg/cm2; it was determined mostly by the antiferromagnetic layer (MnFe or MnFeCr) at the NiFe interface and was essentially independent of the rest of antiferromagnetic structure. (2) The critical temperature, TC, range from 90 to 160 °C; it was determined mostly by the relative amounts of MnFe and MnFeCr in the entire antiferromagnetic structure and not just at the NiFe interface. These results implied that, while one could improve the anisotropy energy at lower temperatures simply by improving the antiferromagnetic layer near the NiFe interface, to improve the anisotropy energy at higher temperatures one must improve the entire antiferromagnetic layer.

  15. Enhancing the blocking temperature of perpendicular-exchange biased Cr2O3 thin films using buffer layers

    NASA Astrophysics Data System (ADS)

    Shimomura, Naoki; Pati, Satya Prakash; Nozaki, Tomohiro; Shibata, Tatsuo; Sahashi, Masashi

    2017-02-01

    In this study, we investigated the effect of buffer layers on the blocking temperature (TB) of perpendicular exchange bias of thin Cr2O3/Co exchange coupled films with a Ru spacer and revealed a high TB of 260 K for 20-nm-thick Cr2O3 thin films. By comparing the TB values of the 20-nm-thick Cr2O3 films on Pt and α-Fe2O3 buffers, we investigated the lattice strain effect on the TB. We show that higher TB values can be obtained using an α-Fe2O3 buffer, which is likely because of the lattice strain-induced increase in Cr2O3 magnetocrystalline anisotropy.

  16. Calculations of the electronic levels, spin-Hamiltonian parameters and vibrational spectra for the CrCl3 layered crystals

    NASA Astrophysics Data System (ADS)

    Avram, C. N.; Gruia, A. S.; Brik, M. G.; Barb, A. M.

    2015-12-01

    Calculations of the Cr3+ energy levels, spin-Hamiltonian parameters and vibrational spectra for the layered CrCl3 crystals are reported for the first time. The crystal field parameters and the energy level scheme were calculated in the framework of the Exchange Charge Model of crystal field. The spin-Hamiltonian parameters (zero-field splitting parameter D and g-factors) for Cr3+ ion in CrCl3 crystals were obtained using two independent techniques: i) semi-empirical crystal field theory and ii) density functional theory (DFT)-based model. In the first approach, the spin-Hamiltonian parameters were calculated from the perturbation theory method and the complete diagonalization (of energy matrix) method. The infrared (IR) and Raman frequencies were calculated for both experimental and fully optimized geometry of the crystal structure, using CRYSTAL09 software. The obtained results are discussed and compared with the experimental available data.

  17. Efficacy of Er,Cr:YSGG Laser in Removing Smear Layer and Debris with Two Different Output Powers

    PubMed Central

    Bolhari, Behnam; Ehsani, Sara; Etemadi, Ardavan; Shafaq, Mohammad

    2014-01-01

    Abstract Objective: The purpose of this study was to evaluate the effectiveness of the erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser in removing debris and the smear layer using two different output powers on the apical, middle, and coronal segments of root canal walls. Background data: Previous literature has failed to evaluate the exclusive effect of Er,Cr:YSGG laser on the quality of smear layer and debris removal in all three segments of the root canal space. Methods: Sixty extracted teeth were included in the study. After instrumentation, samples were divided into three experimental groups and one positive control group with no further treatment. In group 1, a final irrigation was performed using ethylenediaminetetraacetic acid (EDTA) and sodium hypochlorite (NaOCl), sequentially. In group 2, the samples were treated with a 2.78 μm Er,Cr:YSGG laser with an output power of 1.5 W. The same laser was used in group 3, but with an output power of 2.5 W. Scanning electron microscope (SEM) images from the coronal, middle, and apical thirds of the roots were prepared and evaluated for both smear layer and debris removal by three blinded observers. Results: The results showed no differences between groups 1 and 2 regarding the quality of smear layer removal in all areas. However, the 2.5 W laser failed to remove the smear layer effectively. Regarding debris removal, the EDTA and NaOCl irrigation showed significantly better outcomes (adjusted p<0.05) in all areas. Conclusions: This study raises questions about the overall cleaning abilities of Er,Cr:YSGG lasers. PMID:25198390

  18. Efficacy of Er,Cr:YSGG laser in removing smear layer and debris with two different output powers.

    PubMed

    Bolhari, Behnam; Ehsani, Sara; Etemadi, Ardavan; Shafaq, Mohammad; Nosrat, Ali

    2014-10-01

    The purpose of this study was to evaluate the effectiveness of the erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser in removing debris and the smear layer using two different output powers on the apical, middle, and coronal segments of root canal walls. Previous literature has failed to evaluate the exclusive effect of Er,Cr:YSGG laser on the quality of smear layer and debris removal in all three segments of the root canal space. Sixty extracted teeth were included in the study. After instrumentation, samples were divided into three experimental groups and one positive control group with no further treatment. In group 1, a final irrigation was performed using ethylenediaminetetraacetic acid (EDTA) and sodium hypochlorite (NaOCl), sequentially. In group 2, the samples were treated with a 2.78 μm Er,Cr:YSGG laser with an output power of 1.5 W. The same laser was used in group 3, but with an output power of 2.5 W. Scanning electron microscope (SEM) images from the coronal, middle, and apical thirds of the roots were prepared and evaluated for both smear layer and debris removal by three blinded observers. The results showed no differences between groups 1 and 2 regarding the quality of smear layer removal in all areas. However, the 2.5 W laser failed to remove the smear layer effectively. Regarding debris removal, the EDTA and NaOCl irrigation showed significantly better outcomes (adjusted p<0.05) in all areas. This study raises questions about the overall cleaning abilities of Er,Cr:YSGG lasers.

  19. Surface oxidation of cube-textured Ni-Cr for the formation of a NiO buffer layer for superconducting coated conductors

    NASA Astrophysics Data System (ADS)

    Lockman, Z.; Qi, X.; Berenov, A.; Goldacker, W.; Nast, R.; deBoer, B.; Holzapfel, B.; MacManus-Driscoll, J. L.

    2002-12-01

    The surface oxidation epitaxy behaviour of the rolling assisted biaxially textured substrates of cube-textured Ni-10%Cr and Ni-13%Cr foils were investigated, in air, at 1050 °C. For both alloys, the optimum out-of-plane texture of cube oriented NiO was obtained for the shortest oxidation times, t, of a few minutes, although a strong texture still remained for longer times. For t<40 min, the NiO layer showed both 0° and 45° in-plane orientations with respect to the underlying Ni-Cr, whereas for t⩾40 min, a single, 45° in-plane orientation was observed. The surface roughness of the NiO layer was the lowest after ∼10-40 min oxidation. For oxidation times longer than 40 min, the macroscopic NiO roughness (mm 2 scale) increased dramatically due to a festooning effect. A fully connected Cr 2O 3 layer formed at the interface between the Ni and NiO for even the shortest oxidation times (few minutes). The Cr 2O 3 layer acted as a diffusion barrier to Ni, and limited the thickness of the surface NiO to a few microns, almost independent of oxidation time. The surface NiO layer showed better adherence to the Ni-10%Cr than to the Ni-13%Cr. For superconducting coated conductor applications, the optimum NiO buffer layer is formed on Ni-10%Cr foil after oxidation at 1050 °C for ∼40 min. The important columnar surface layer is ∼ 7 μm thick, is highly textured with an r.m.s. surface roughness of ∼200 nm on a mm 2 scale, and ∼100 nm on the scale of the grain size. The layer shows good adherence to the underlying Cr 2O 3/Ni-Cr.

  20. Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl3 crystals

    NASA Astrophysics Data System (ADS)

    McGuire, Michael A.; Clark, Genevieve; KC, Santosh; Chance, W. Michael; Jellison, Gerald E.; Cooper, Valentino R.; Xu, Xiaodong; Sales, Brian C.

    2017-06-01

    CrCl3 is a layered insulator that undergoes a crystallographic phase transition below room temperature and orders antiferromagnetically at low temperature. Weak van der Waals bonding between the layers and ferromagnetic in-plane magnetic order make it a promising material for obtaining atomically thin magnets and creating van der Waals heterostructures. In this work we have grown crystals of CrCl3, revisited the structural and thermodynamic properties of the bulk material, and explored mechanical exfoliation of the crystals. We find two distinct anomalies in the heat capacity at 14 and 17 K confirming that the magnetic order develops in two stages on cooling, with ferromagnetic correlations forming before long-range antiferromagnetic order develops between them. This scenario is supported by magnetization data. A magnetic phase diagram is constructed from the heat capacity and magnetization results. We also find an anomaly in the magnetic susceptibility at the crystallographic phase transition, indicating some coupling between the magnetism and the lattice. First-principles calculations accounting for van der Waals interactions also indicate spin-lattice coupling, and find multiple nearly degenerate crystallographic and magnetic structures consistent with the experimental observations. Finally, we demonstrate that monolayer and few-layer CrCl3 specimens can be produced from the bulk crystals by exfoliation, providing a path for the study of heterostructures and magnetism in ultrathin crystals down to the monolayer limit.

  1. Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl3 crystals

    DOE PAGES

    McGuire, Michael A.; Clark, Genevieve; KC, Santosh; ...

    2017-06-19

    CrCl3 is a layered insulator that undergoes a crystallographic phase transition below room temperature and orders antiferromagnetically at low temperature. Weak van der Waals bonding between the layers and ferromagnetic in-plane magnetic order make it a promising material for obtaining atomically thin magnets and creating van der Waals heterostructures. In this work we have grown crystals of CrCl3, revisited the structural and thermodynamic properties of the bulk material, and explored mechanical exfoliation of the crystals. We find two distinct anomalies in the heat capacity at 14 and 17 K confirming that the magnetic order develops in two stages on cooling,more » with ferromagnetic correlations forming before long-range antiferromagnetic order develops between them. This scenario is supported by magnetization data. A magnetic phase diagram is constructed from the heat capacity and magnetization results. We also find an anomaly in the magnetic susceptibility at the crystallographic phase transition, indicating some coupling between the magnetism and the lattice. First-principles calculations accounting for van der Waals interactions also indicate spin-lattice coupling, and find multiple nearly degenerate crystallographic and magnetic structures consistent with the experimental observations. Lastly, we demonstrate that monolayer and few-layer CrCl3 specimens can be produced from the bulk crystals by exfoliation, providing a path for the study of heterostructures and magnetism in ultrathin crystals down to the monolayer limit.« less

  2. Impact toughness of a gradient hardened layer of Cr5Mo1V steel treated by laser shock peening

    NASA Astrophysics Data System (ADS)

    Xia, Weiguang; Li, Lei; Wei, Yanpeng; Zhao, Aimin; Guo, Yacong; Huang, Chenguang; Yin, Hongxiang; Zhang, Lingchen

    2016-04-01

    Laser shock peening (LSP) is a widely used surface treatment technique that can effectively improve the fatigue life and impact toughness of metal parts. Cr5Mo1V steel exhibits a gradient hardened layer after a LSP process. A new method is proposed to estimate the impact toughness that considers the changing mechanical properties in the gradient hardened layer. Assuming a linearly gradient distribution of impact toughness, the parameters controlling the impact toughness of the gradient hardened layer were given. The influences of laser power densities and the number of laser shots on the impact toughness were investigated. The impact toughness of the laser peened layer improves compared with an untreated specimen, and the impact toughness increases with the laser power densities and decreases with the number of laser shots. Through the fracture morphology analysis by a scanning electron microscope, we established that the Cr5Mo1V steel was fractured by the cleavage fracture mechanism combined with a few dimples. The increase in the impact toughness of the material after LSP is observed because of the decreased dimension and increased fraction of the cleavage fracture in the gradient hardened layer.

  3. Thermomechanical Processing and Roll Bonding of Tri-Layered Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn Composite

    NASA Astrophysics Data System (ADS)

    Kim, Hobyung; Kang, Gyeong Tae; Hong, Sun Ig

    2016-05-01

    Tri-layered Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn composite was processed by roll bonding and the effect of thermomechanical processing on the mechanical performance and electrical conductivity was studied. Roll-bonded composite exhibited the brief work hardening and subsequent rapid work softening because of the high stored deformation energy, leading to failure at the plastic strain of 8 to 10 pct. The mechanical instability of as-roll-bonded composites was abated by heat treatment (HT) at 723 K (450 °C) and the extended work hardening with enhanced ductility compared to that of the as-roll-bonded composites was observed after HT. The strength and electrical conductivity of clad composite is dependent on the precipitation strengthening of Cu-Cr and recovery softening of Cu-Ni-Zn during post-roll-bonding HT. The increase of roll-bonding temperature enhances the precipitation kinetics and it takes shorter time to reach maximum hardness in Cu-Cr layer during post-roll-bonding HT. The toughness of as-roll-bonded Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn clad composite at 773 K (500 °C) [42 MJ/mm3] is greater than those at 723 K (450 °C) [24 MJ/mm3] and 823 K (550 °C) [38 MJ/mm3]. The maximum toughness [100 MJ/mm3] with the electrical conductivity of 68 pct IACS was obtained in the Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn clad composite roll-bonded at 773 K (500 °C) and subsequently heat-treated at 723 K (450 °C).

  4. Effect of oxide layer modification of CoCr stent alloys on blood activation and endothelial behavior.

    PubMed

    Milleret, Vincent; Ziogas, Algirdas; Buzzi, Stefano; Heuberger, Roman; Zucker, Arik; Ehrbar, Martin

    2015-04-01

    CoCr alloys, in particular MP35N and L605, are extensively used in biomedical implants, for example for coronary stents. In practice, these alloys present a moderately hydrophobic surface which leads to significant platelet adhesion and consequently to risk of early thrombosis or in-stent restenosis. Surface modification of biomedical implants is known to alter their biological performances. In this study we focused on the alteration of in vitro biological responses of human cells contacting CoCr surfaces with engineered oxide layers. XPS analysis was performed to determine the composition of the oxide layer of differently treated CoCr while the bulk properties were not modified. An extensive characterization of the surfaces was performed looking at surface roughness, wettability and charge. After static exposure to blood, strongly reduced platelet and increased polymorphonuclear neutrophil adhesion were observed on treated versus untreated surfaces. Comparisons of treated and untreated samples provide evidence for wettability being an important player for platelet adhesion, although multiple factors including surface oxide chemistry and charge might control polymorphonuclear neutrophil adhesion. The differently treated surfaces were shown to be equally suitable for endothelial cell proliferation. We herein present a novel approach to steer biological properties of CoCr alloys. By adjusting their oxide layer composition, substrates were generated which are suitable for endothelial cell growth and at the same time show an altered (reduced) blood contact activation. Such treatments are expected to lead to stents of highly reproducible quality with minimal thrombogenicity and in-stent restenosis, while maintaining rapid re-endothelialization after coronary angioplasty.

  5. Synthesis and study of electronic state of Sr2CrO2Co2As2 with CoAs conduction layers

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsushi; Ohta, Hiroto; Aruga Katori, Hiroko

    2017-06-01

    We successfully synthesized a new member of compounds with the CoAs layer, Sr2CrO2Co2As2, and its partially substituted systems Sr2CrO2(Tmx Co1- x )2As2 (Tm = Fe, Ni), and measured magnetization and electric resistivity of these polycrystalline compounds. As a result of magnetic measurement for Sr2CrO2Co2As2, magnetic moments of Co do not construct an itinerant electronic ferromagnetism unlike other compounds with the CoPn (Pn=P and As) layers. Both Sr2CrO2(Tmx Co1- x )2As2 with Tm = Fe and Ni also do not show an itinerant electronic ferromagnetism down to 2 K. For each solid solution of Sr2CrO2(Fe x Co1- x )2As2 with x > 0.0, ρ weakly increases with the decrease of T at low temperature region, indicating that the mixed occupancy of Cr and Fe within the conducting layers occurs in Sr2CrO2(Fe x Co1- x )2As2. We conclude that the absence of ferromagnetism in Sr2CrO2Co2As2 is due to the self-electron-doping from Cr to the conduction bands and the attempt to recover the ferromagnetism by the hole-doping effect is prevented by the mixed occupancy of Cr and Fe in Sr2CrO2 (Fe x Co1- x )2As2 with x > 0.0. The result of our structural analysis supports that the disappearance of itinerant electronic ferromagnetism in Sr2CrO2Co2As2 is due to the self-electron-doping from Cr.

  6. High reflectance Cr/V multilayer with B(4)C barrier layer for water window wavelength region.

    PubMed

    Huang, Qiushi; Fei, Jiani; Liu, Yang; Li, Pin; Wen, Mingwu; Xie, Chun; Jonnard, Philippe; Giglia, Angelo; Zhang, Zhong; Wang, Kun; Wang, Zhanshan

    2016-02-15

    To develop the high reflectance mirror for the short wavelength range of the water window region (λ=2.42-2.73  nm), Cr/V multilayers with B4C barrier layers are studied. The grazing incidence x-ray reflectometry results show that the multilayer interface widths are significantly reduced down to 0.21-0.31 nm, after the introduction of 0.1 nm B4C barrier layers at both interfaces. The [B4C/Cr/B4C/V] multilayer with a large number of bilayers of N=300 maintains the same small interface widths while the surface roughness is only 0.2 nm. According to the transmission electron microscope measurements, the layer structure improvement with barrier layers can be attributed to the suppression of the crystallization of vanadium inside the structure. Using the interface engineered multilayer, a maximum soft x-ray reflectance of 24.3% is achieved at λ=2.441  nm, under the grazing incidence of 42°.

  7. Enhanced sequestration of Cr(VI) by nanoscale zero-valent iron supported on layered double hydroxide by batch and XAFS study.

    PubMed

    Sheng, Guodong; Hu, Jun; Li, Hui; Li, Jiaxing; Huang, Yuying

    2016-04-01

    Herein, the reduction of nanoscale zero-valent iron (NZVI) and adsorption of layered double hydroxides (LDH) to sequester Cr(VI) were well combined by the immobilization of NZVI onto LDH surface (NZVI/LDH). The characterization results revealed that LDH decreased NZVI aggregation and thus increased Cr(VI) sequestration. The batch results indicated that Cr(VI) sequestration by NZVI/LDH was higher than that of NZVI, and superior to the sum of reduction and adsorption. The LDH with good anion exchange property allowed the adsorption of Cr(VI), facilitating interfacial reaction by increasing the local concentration of Cr(VI) in the NZVI vicinity. X-ray absorption near edge structure (XANES) results indicated that Cr(VI) was almost completely reduced to Cr(III) by NZVI/LDH, but Cr(VI) was partly reduced to Cr(III) by NZVI with a trace of Cr(VI) adsorbed on corrosion products. The coordination environment of Cr from extended X-ray absorption fine structure (EXAFS) analysis revealed that LDH could be a good scavenger for the insoluble products produced during reaction. So, the insoluble products on NZVI could be reduced, and its reactivity could be maintained. These results demonstrated that NZVI/LDH exhibits multiple functionalities relevant to the remediation of Cr(VI)-contaminated sites.

  8. Photocatalytic O{sub 2} evolution from water over Zn–Cr layered double hydroxides intercalated with inorganic anions

    SciTech Connect

    Hirata, Naoya; Tadanaga, Kiyoharu; Tatsumisago, Masahiro

    2015-02-15

    Graphical abstract: The photocatalytic activity of Zn–Cr LDHs intercalated with various inorganic anions was studied by O{sub 2} evolution from aqueous solution of AgNO{sub 3} as a sacrificial agent. All the prepared LDHs showed photocatalytic activity under either UV and/or visible light irradiation. The interlayer anions affected the photocatalytic activity of the LDHs. - Highlights: • Zn–Cr layered double hydroxides intercalated with inorganic anions were synthesized. • Photocatalytic activity of the LDHs was studied by O{sub 2} evolution. • All the prepared LDHs showed photocatalytic activity under either UV and/or visible light irradiation. • The interlayer anions affected the photocatalytic activity of the LDHs. - Abstract: Zn–Cr layered double hydroxides (LDHs) intercalated with inorganic anions (CO{sub 3}{sup 2−}, Cl{sup −}, SO{sub 4}{sup 2−} and NO{sub 3}{sup −}) were synthesized by the co-precipitation method and the anion exchange process. The photocatalytic activity of the LDHs was studied by O{sub 2} evolution from aqueous solution of AgNO{sub 3} as a sacrificial agent. All the prepared LDHs showed photocatalytic activity under either UV and/or visible light irradiation. Besides, the interlayer anions affected the photocatalytic activity of the LDHs. After irradiation, Ag particles were formed on the LDHs by accepting the electrons generated during the photocatalytic reaction.

  9. AC Electrical Conduction of Cr-Doped SrTiO3 Thin Films with an Oxygen-Deficient Interface Layer

    NASA Astrophysics Data System (ADS)

    Phan, Bach Thang; Eom, Ki Tae; Lee, Jaichan

    2017-01-01

    The ac electrical conduction of Cr-doped SrTiO3 thin films with an oxygen-deficient interface layer was investigated as a function of temperature and frequency. The Cr-doped SrTiO3 (Cr-STO) thin films with an ultra-thin (˜2 nm) oxygen-deficient layer inserted between the top electrode and the Cr-STO layer exhibited two ac conduction mechanisms, i.e., variable-range hopping and small-polaron hopping conduction, accompanied by a relaxation process. Since high oxygen deficiency induces large lattice distortion in the depletion layer, the first relaxation process occurs at low frequencies in the thin oxygen depletion layer Cr-SrTiO3-δ , and the corresponding conduction behavior follows the small-polaron tunneling model. In the high frequency range, an additional relaxation process is involved and is associated with the variable-range hopping between the localized states in the band gap of the thick Cr-SrTiO3 layer.

  10. Structural and physical properties of the high pressure perovskite layered Sr4Cr3O10 chromate

    NASA Astrophysics Data System (ADS)

    Jeanneau, Justin; Lepoittevin, Christophe; Sulpice, André; Kodjikian, Stéphanie; Toulemonde, Pierre; Núñez-Regueiro, Manuel

    2017-07-01

    We report on the structure and physical properties of a bidimensional chromate, Sr4Cr3O10, the n=3 member of the Ruddlesden-Popper Srn+1CrnO3 n+1 series. For the first time, using complementary x-ray powder diffraction and electron diffraction data, we have solved its layered crystallographic structure. Our study shows also that this high pressure phase is insulating and antiferromagnetic below TN=280 K, a similar behavior already observed for n=1, 2 and n=+∞ members.

  11. The study of the chemical and phase composition of the diffusion interaction zone in layered composite Cr20Ni80-AD1

    NASA Astrophysics Data System (ADS)

    Shmorgun, V. G.; Iskhakova, L. D.; Bogdanov, A. I.; Taube, A. O.; Ermakov, R. P.

    2017-02-01

    The paper presents the research of chemical and phase composition of the zone of diffusion interaction in the layered composite Cr20Ni80-AD1. It is shown that interlayer border of bimetal Cr20Ni80-AD1 is a complex mixture of phases with the main phases in its composition in solid-phase interaction: Al3Ni2 and Al14.687Cr3.443Ni0.87, and in the liquid phase - Al3Ni2, Al0.987Cr0.017, Al14.687Cr3.44Ni0.87 and Al45Cr7. It is shown, that conditions of holding time of the heat treatment do not affect the phase and chemical composition of the diffusion zone.

  12. Coupling of Crystal Structure and Magnetism in the Layered, Ferromagnetic Insulator CrI 3

    SciTech Connect

    McGuire, Michael A.; Dixit, Hemant; Cooper, Valentino R.; Sales, Brian C.

    2014-12-23

    Here, we examine the crystallographic and magnetic properties of single crystals of CrI3, an easily cleavable, layered and insulating ferromagnet with a Curie temperature of 61 K. Our X-ray diffraction studies reveal a first-order crystallographic phase transition occurring near 210–220 K upon warming, with significant thermal hysteresis. The low-temperature structure is rhombohedral (R$\\bar{3}$, BiI3-type) and the high-temperature structure is monoclinic (C2/m, AlCl3-type). Evidence for coupling between the crystallographic and magnetic degrees of freedom in CrI3 was found; we observed an anomaly in the interlayer spacing at the Curie temperature and an anomaly in the magnetic susceptibility at the structural transition. First-principles calculations reveal the importance of proper treatment of the long-ranged interlayer forces, and van der Waals density functional theory does an excellent job of predicting the crystal structures and their relative stability. Our calculations suggest that the ferromagnetic order found in the bulk material may persist into monolayer form, suggesting that CrI3 and other chromium trihalides may be promising materials for spintronic and magnetoelectronic research.

  13. Influence of nature of precursors on the formation and structure of Cu Ni Cr mixed oxides from layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Zhang, Lihong; Zhu, Jia; Jiang, Xiaorui; Evans, David G.; Li, Feng

    2006-08-01

    Analogous layered double hydroxides (LDHs) with the Cu2+/Ni2+/Cr3+ molar ratio of 1/2/1 on the brucite-like layers and interlayer anions (viz sulfate, nitrate and carbonate, respectively) were synthesized by a coprecipitation method. For the first time, the effects of interlayer anions on the structural properties of as-synthesized LDHs and resulting calcined products at 773 K were investigated by means of powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), simultaneous thermogravimetric and differential thermal analysis (TG-DTA), X-ray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR). The results indicate that the nature of interlayer anions involved within the hydrotalcite (HT)-like structure has a larger influence on the thermal stability of LDHs precursors. Calcination of well-crystallized LDHs leads to the formation of mixed metal oxides including CuO, NiO and Cu2+-, Ni2+- and Cr3+-containing spinel phases, the composition distributions of which obtained from LDHs precursors depend on the nature of interlayer anions, thus resulting in the difference of the reducibility of reducible metal species in the calcined LDHs. Moreover, the surface basicity of the calcined material, which is related to the different behaviour of LDHs precursors during the thermal decomposition depending on the interlayer anions, increases progressively following the order of calcined LDHs from sulfate to nitrate and carbonate.

  14. Alloying the X40CrMoV5-1 steel surface layer with tungsten carbide by the use of a high power diode laser

    NASA Astrophysics Data System (ADS)

    Dobrzański, L. A.; Bonek, M.; Hajduczek, E.; Klimpel, A.

    2005-07-01

    The paper presents the effect of alloying with tungsten carbide on properties of the X40CrMoV5-1 steel surface layer, using the high power diode laser (HPDL). Selection of laser operating conditions is discussed, as well as thickness of the alloying layer, and their influence on structure and chemical composition of the steel. Analysis of the influence of the process conditions on the thicknesses of the alloyed layer and heat-affected zone is presented.

  15. Néel temperature of Cr{sub 2}O{sub 3} in Cr{sub 2}O{sub 3}/Co exchange-coupled system: Effect of buffer layer

    SciTech Connect

    Pati, Satya Prakash E-mail: phy-satya@yahoo.co.in; Shimomura, Naoki; Nozaki, Tomohiro; Sahashi, Masashi; Shibata, Tatsuo

    2015-05-07

    The lattice parameter dependence of the Néel temperature T{sub N} of thin Cr{sub 2}O{sub 3} in a Cr{sub 2}O{sub 3}/Co exchange-coupled system is investigated. Lattice-mismatch-induced strain is generated in Cr{sub 2}O{sub 3} by using different buffer layers. The lattice parameters are determined from out-of-plane and in-plane X-ray diffraction measurements. The Néel temperature is detected by direct temperature-dependent magnetization measurement as well as the temperature-dependent interface exchange coupling energy. It is observed that in-plane lattice contraction can enhance T{sub N} in Cr{sub 2}O{sub 3}, which is consistent with theoretical calculations.

  16. Combining CrIS double CO2 bands for detecting clouds located in different layers of the atmosphere

    NASA Astrophysics Data System (ADS)

    Lin, Lin; Zou, Xiaolei; Weng, Fuzhong

    2017-02-01

    Detection of clouds within certain vertical layers of the atmosphere from satellite infrared instruments is challenging, especially of those optically thin clouds due to their small thermal contrasts to the background. This study develops a new method for cloud detection by using the Cross-track Infrared Sounder (CrIS) hyperspectral radiances at shortwave ( 4.3 µm) and longwave ( 15 µm) CO2 bands. Specifically, CrIS longwave channels are first paired with shortwave channels based on weighting function altitudes and sensitivity to clouds. A linear relationship of brightness temperatures between each paired channel is then derived for predicting the shortwave channel from the longwave channel in clear-sky conditions. A cloud emission and scattering index (CESI) can finally be defined as the difference of the paired shortwave channel between the clear-sky, regression model predicted and the observed brightness temperatures. Spatial distributions of such derived CESI for several paired channels in the troposphere are examined for a winter storm that occurred in the eastern part of the United States during 22-24 January 2016. It is shown that the CESI values over the storm regions with optically thin cirrus, fog, and supercooled water clouds are positively larger than those over optically thick opaque ice and overshooting clouds or in clear-sky conditions. Of particular interest is that an area of fog and water clouds over Gulf of Mexico, which are indicated by the Visible Infrared Imaging Radiometer Suite day and night band observations, is identified by the CESI. The global distribution of CESIs derived from CrIS double CO2 bands with weighting functions peak around 321 hPa agrees well with the distribution of ice cloud optical thickness from the Atmospheric Infrared Sounder version 6 cloud product data set in both daytime and nighttime.

  17. The effect of chloride ions on the corroded surface layer of 00Cr22Ni5Mo3N duplex stainless steel under cavitation.

    PubMed

    Wan, Tong; Xiao, Ning; Shen, Hanjie; Yong, Xingyue

    2016-11-01

    The effects of Cl(-) on the corroded surface layer of 00Cr22Ni5Mo3N duplex stainless steel under cavitation in chloride solutions were investigated using nanoindentation in conjunction with XRD and XPS. The results demonstrate that Cl(-) had a strong effect on the nano-mechanical properties of the corroded surface layer under cavitation, and there was a threshold Cl(-) concentration. Furthermore, a close relationship between the nano-mechanical properties and the cavitation corrosion resistance of 00Cr22Ni5Mo3N duplex stainless steel was observed. The degradation of the nano-mechanical properties of the corroded surface layer was accelerated by the synergistic effect between cavitation erosion and corrosion. A key factor was the adsorption of Cl(-), which caused a preferential dissolution of the ferrous oxides in the passive film layer on the corroded surface layer. Cavitation further promoted the preferential dissolution of the ferrous oxides in the passive film layer. Simultaneously, cavitation accelerated the erosion of the ferrite in the corroded surface layer, resulting in the degradation of the nano-mechanical properties of the corroded surface layer on 00Cr22Ni5Mo3N duplex stainless steel under cavitation.

  18. Development of CVD-W coatings on CuCrZr and graphite substrates with a PVD intermediate layer

    NASA Astrophysics Data System (ADS)

    Song, Jiupeng; Lian, Youyun; Lv, Yanwei; Liu, Junyong; Yu, Yang; Liu, Xiang; Yan, Binyou; Chen, Zhigang; Zhuang, Zhigang; Zhao, Ximeng; Qi, Yang

    2014-12-01

    In order to apply tungsten (W) coatings by chemical vapor deposition (CVD) for repairing or updating the plasma facing components (PFCs) of the first wall and divertor in existing or future tokomaks, where CuCrZr or graphite is the substrate material, an intermediate layer by physical vapor deposition (PVD) has been used to accommodate the interface stress due to the mismatch of thermal expansion or act as a diffusion barrier between the CVD-W coating and the substrate. The prepared CuCrZr/PVD-Cu/CVD-W sample with active cooling has passed thermal fatigue tests by electron beam with an absorbed power of 2.2 MW/m2, 50 s on/50 s off, for 100 cycles. Another graphite/PVD-Si/CVD-W sample without active cooling underwent thermal fatigue testing with an absorbed power density of 4.62 MW/m2, 5 s on/25 s off, for 200 cycles, and no catastrophic failure was found.

  19. Antisite Defects in Layered Multiferroic CuCr0.9In0.1P2S6

    DOE PAGES

    He, Qian; Belianinov, Alex; Dziaugys, Andrius; ...

    2015-10-06

    The CuCr1-xInxP2S6 system represents a large family of metal chalcogenophosphates that are unique and promising candidates for 2D materials with functionalities such as ferroelectricity. We carried out detailed microstructural and chemical characterization of these compounds using aberration-corrected STEM, in order to understand the origin of these different ordering phenomena. Quantitative STEM-HAADF imaging and analysis identified the stacking order of an 8-layer thin flake, which leads to the identification of anti-site In3+(Cu+) doping. We believe that these findings will pave the way towards understanding the ferroic coupling phenomena in van der Waals lamellar compounds, as well as the potential applications inmore » 2-D electronics.« less

  20. Interactions of Cu with CoSi2, CrSi2 and TiSi2 with and without TiNx barrier layers

    NASA Astrophysics Data System (ADS)

    Olowolafe, J. O.; Li, Jian; Mayer, J. W.

    1990-12-01

    Interactions of Cu with CoSi2, CrSi2, and TiSi2 with and without interposed TiNx layers have been studied using Rutherford backscattering spectrometry, Auger electron spectrometry, x-ray diffraction, and in situ sheet resistivity measurements. Cu diffuses through a preformed CoSi2 layer to form the structure CoSi2/Cu3Si/Si(100). No dissociation of CoSi2 has been observed. For the Cu/CrSi2/Si system, the outdiffusion of Si leads to the formation of Cu3Si/CrSi2/Si at temperatures above 300 °C. At about the same temperature, Cu diffuses into a TiSi2 layer and to the TiSi2/Si interface to react with both Ti and Si forming Cu3Ti, Cu3Si, and Cu4Si phases. A 50-nm TiNx layer prepared by reactive sputtering was observed to be an effective diffusion barrier between Cu and CoSi2 or CrSi2. A 30-nm layer of TiNx simultaneously grown with TiSi2 by rapid thermal annealing proved effective between Cu and TiSi2 up to 500 °C.

  1. Computational discovery of ferromagnetic semiconducting single-layer CrSnTe3

    SciTech Connect

    Zhuang, Houlong L.; Xie, Yu; Kent, P. R. C.; Ganesh, P.

    2015-07-06

    Despite many single-layer materials being reported in the past decade, few of them exhibit magnetism. Here we perform first-principles calculations using accurate hybrid density functional methods (HSE06) to predict that single-layer CrSnTe3 (CST) is a ferromagnetic semiconductor, with band gaps of 0.9 and 1.2 eV for the majority and minority spin channels, respectively. We determine the Curie temperature as 170 K, significantly higher than that of single-layer CrSiTe3 (90K) and CrGeTe3 (130 K). This is due to the enhanced ionicity of the Sn-Te bond, which in turn increases the superexchange coupling between the magnetic Cr atoms. We further explore the mechanical and dynamical stability and strain response of this single-layer material for possible epitaxial growth. Lastly, our study provides an intuitive approach to understand and design novel single-layer magnetic semiconductors for a wide range of spintronics and energy applications.

  2. Peel strength of sputtered FCCL(Flexible Copper Clad Laminate) using Ar:O2 mixed gas preprocessing and a Ni-Cr seed layer

    NASA Astrophysics Data System (ADS)

    Ahn, Woo-Young; Jang, Joong Soon

    2014-07-01

    The PI surface was modified with ion beams in a vacuum chamber to increase the surface area. A two-way Design of Experiments ("DOE") was performed by varying the DC power and changing the proportion of O2 gas with respect to the Ar reactive gas and measuring the peel strength between the PI layer and the plated Cu layer. The results showed that increasing the voltage level and applying mixed Ar-O2 gas makes the PI surface substantially rough, which increases the Van der Waals force as well as the chemical bonding strength. Using the oxygen gas makes the amorphous structure in the Cu layer sputtered. However, Cu plating with a high electrical current may remedy this, resulting in a good crystalline direction. It was also found that reducing the proportion of Cr in the Ni-Cr seed layer incurs a great decrease in the peel strength after the reflow process, although it requires just one etching.

  3. The Role of Carbides in Formation of Surface Layer on Steel X153CrMoV12 Due to Low-Pressure Nitriding (Vacuum Nitriding)

    NASA Astrophysics Data System (ADS)

    Januszewicz, B.; Wołowiec, E.; Kula, P.

    2015-05-01

    The mechanism of formation of surface layer on steel X153CrMoV12 in the process of vacuum nitriding (low-pressure nitriding) in a universal vacuum furnace in an atmosphere of dissociated ammonia at a pressure of 30 × 102 Pa (30 mbar) is studied by the methods of light microscopy and measurement of microhardness. The chemical composition of the nitrided layers is determined.

  4. Experimental petrology constraints on the recycling of mafic cumulate: a focus on Cr-spinel from the Rum Eastern Layered Intrusion, Scotland

    NASA Astrophysics Data System (ADS)

    Leuthold, Julien; Blundy, Jonathan D.; Brooker, Richard A.

    2015-08-01

    Reactive liquid flow is a common process in layered intrusions and more generally in episodically refilled magma chambers. Interaction between newly injected melt and cumulates, or crystal mushes, perturbs the liquid line of descent of the melt and modifies mineral chemistry and texture. We present insights into the effects of assimilation of mafic cumulate rocks (gabbro, troctolite) by cogenetic Mg-rich basalt liquid using one-atmosphere, controlled fO2 phase equilibrium experiments on picritic parental liquid to the Rum layered intrusion, Scotland. For picrite-only experiments at fO2 = QFM, Cr-spinel (Cr# = Cr/[Cr + Al + Fe3+] = 0.43; Fe# = Fe2+/[Mg + Fe2+] = 0.32) saturates at 1320 °C, olivine (Fo88) at ~1290 °C, plagioclase (An77) at 1200 °C, and clinopyroxene (Mg#: 0.81) at 1180 °C. In melting experiments on picrite + gabbro mixtures, plagioclase (1230 °C, An80) and clinopyroxene (1200 °C, Mg#: 0.85) saturation temperature and mode are increased significantly. Cr-spinel in these experiments has a distinctive, low Fe#. In melting experiments on picrite + troctolite mixtures, plagioclase (An86) saturates at 1240 °C and clinopyroxene (Mg#: 0.81) at 1170 °C. Al-rich spinel crystallizes at high temperature (>1220 °C) and becomes more Cr-rich upon cooling, reaching the highest Cr# = 0.47 at 1180 °C (0.54 at QFM-1.2). The experimental results confirm that plagioclase and clinopyroxene stability plays a major role in determining the composition of coexisting spinel. Comparing our experimental results to the Rum Eastern Layered Intrusion, we propose a model for the precipitation of spinel from picrite-troctolite hybrid melt that is compatible with the observed olivine, plagioclase, and clinopyroxene chemistry.

  5. Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr

    NASA Astrophysics Data System (ADS)

    Lee, Changmin; Park, Hyungkwon; Yoo, Jaehong; Lee, Changhee; Woo, WanChuck; Park, Sunhong

    2015-08-01

    Although laser cladding process has been widely used to improve the wear and corrosion resistance, there are unwanted cracking issues during and/or after laser cladding. This study investigates the tendency of Co-based WC + NiCr composite layers to cracking during the laser cladding process. Residual stress distributions of the specimen are measured using neutron diffraction and elucidate the correlation between the residual stress and the cracking in three types of cylindrical specimens; (i) no cladding substrate only, (ii) cladding with 100% stellite#6, and (iii) cladding with 55% stellite#6 and 45% technolase40s. The microstructure of the clad layer was composed of Co-based dendrite and brittle eutectic phases at the dendritic boundaries. And WC particles were distributed on the matrix forming intermediate composition region by partial melting of the surface of particles. The overlaid specimen exhibited tensile residual stress, which was accumulated through the beads due to contraction of the coating layer generated by rapid solidification, while the non-clad specimen showed compressive. Also, the specimen overlaid with 55 wt% stellite#6 and 45 wt% technolase40s showed a tensile stress higher than the specimen overlaid with 100% stellite#6 possibly, due to the difference between thermal expansion coefficients of the matrix and WC particles. Such tensile stresses can be potential driving force to provide an easy crack path ways for large brittle fractures combined with the crack initiation sites such as the fractured WC particles, pores and solidification cracks. WC particles directly caused clad cracks by particle fracture under the tensile stress. The pores and solidification cracks also affected as initiation sites and provided an easy crack path ways for large brittle fractures.

  6. Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr(VI) ions.

    PubMed

    Lei, Chunsheng; Zhu, Xiaofeng; Zhu, Bicheng; Jiang, Chuanjia; Le, Yao; Yu, Jiaguo

    2017-01-05

    The preparation of hierarchical porous materials as catalysts and sorbents has attracted much attention in the field of environmental pollution control. Herein, Ni/Mg/Al layered double hydroxides (NMA-LDHs) hierarchical flower-like hollow microspheres were synthesized by a hydrothermal method. After the NMA-LDHs was calcined at 600°C, NMA-LDHs transformed into Ni/Mg/Al layered double oxides (NMA-LDOs), which maintained the hierarchical flower-like hollow structure. The crystal phase, morphology, and microstructure of the as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy elemental mapping, Fourier transform infrared spectroscopy, and nitrogen adsorption-desorption methods. Both the calcined and non-calcined NMA-LDHs were examined for their performance to remove Congo red (CR) and hexavalent chromium (Cr(VI)) ions in aqueous solution. The maximum monolayer adsorption capacities of CR and Cr(VI) ions over the NMA-LDOs sample were 1250 and 103.4mg/g at 30°C, respectively. Thermodynamic studies indicated that the adsorption process was endothermic in nature. In addition, the addition of coexisting anions negatively influenced the adsorption capacity of Cr(VI) ions, in the following order: CO3(2-)>SO4(2-)>H2PO4(-)>Cl(-). This work will provide new insight into the design and fabrication of advanced adsorption materials for water pollutant removal.

  7. Effect of aqueous solution and load on the formation of DLC transfer layer against Co-Cr-Mo for joint prosthesis.

    PubMed

    Guo, Feifei; Zhou, Zhifeng; Hua, Meng; Dong, Guangneng

    2015-09-01

    Diamond-like carbon (DLC) coating exhibits excellent mechanical properties such as high hardness, low friction and wear, which offer a promising solution for the metal-on-metal hip joint implants. In the study, the hydrogen-free DLC coating with the element Cr as the interlay addition was deposited on the surface of the Co-Cr-Mo alloy by a unbalanced magnetron sputtering method. The coating thickness was controlled as 2 µm. Nano-indentation test indicated the hardness was about 13 GPa. DLC coated Co-Cr-Mo alloy disc against un-coated Co-Cr-Mo alloy pin (spherical end SR9.5) comprised the friction pairs in the pin-on-disc tribotest under bovine serum albumin solution (BSA) and physiological saline(PS).The tribological behavior under different BSA concetrations(2-20 mg/ml), and applied load (2-15N) was investigated.DLC transfer layer did not form under BSA solution, even though different BSA concetration and applied load changed. The coefficient of friction(COF) under 6 mg/ml BSA at 10 N was the lowest as 0.10. A higher COF of 0.13 was obtained under 20 mg/ml BSA. The boundary absorption layer of protein is the main factor for the counterparts. However, the continous DLC transfer layer was observed under PS solution, which make a lower COF of 0.08. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Spin dependent transport properties of Mn-Ga/MgO/Mn-Ga magnetic tunnel junctions with metal(Mg, Co, Cr) insertion layer

    SciTech Connect

    Liang, S. H.; Tao, L. L.; Liu, D. P. Han, X. F.; Lu, Y.

    2014-04-07

    We report a first principles theoretical investigation of spin polarized quantum transport in Mn{sub 2}Ga/MgO/Mn{sub 2}Ga and Mn{sub 3}Ga/MgO/Mn{sub 3}Ga magnetic tunneling junctions (MTJs) with the consideration of metal(Mg, Co, Cr) insertion layer effect. By changing the concentration of Mn, our calculation shows a considerable disparity in transport properties: A tunneling magnetoresistance (TMR) ratio of 852% was obtained for Mn{sub 2}Ga-based MTJs, however, only a 5% TMR ratio for Mn{sub 3}Ga-based MTJs. In addition, the influence of insertion layer has been considered in our calculation. We found the Co insertion layer can increase the TMR of Mn{sub 2}Ga-based MTJ to 904%; however, the Cr insertion layer can decrease the TMR by 668%; A negative TMR ratio can be obtained with Mg insertion layer. Our work gives a comprehensive understanding of the influence of different insertion layer in Mn-Ga based MTJs. It is proved that, due to the transmission can be modulated by the interfacial electronic structure of insertion, the magnetoresistance ratio of Mn{sub 2}Ga/MgO/Mn{sub 2}Ga MTJ can be improved by inserting Co layer.

  9. Influence of deformation and annealing conditions on the recrystallization cube texture in the three-layer NiW/NiCr/NiW substrate tapes

    NASA Astrophysics Data System (ADS)

    Rodionov, D. P.; Khlebnikova, Yu. V.; Gervas'eva, I. V.; Egorova, L. Yu.; Kazantsev, V. A.

    2015-10-01

    The formation of a sharp cube texture in a three-layer composite tape with the outer (working) layers made of an Ni-4.8 at % W alloy and the inner layer made of an Ni-11 at % Cr alloy is studied after cold deformation by rolling at a reduction of 98.4-99.5% and subsequent recrystallization annealing at a temperature of 1000-1150°C. An analysis of the sharpness of the cube texture and the magnetic properties of the three-layer composite material shows that such tapes can be used as substrates to create second-generation HTSC. At a temperature of 80 K, the specific magnetization of the composite three-layer tape is lower than that of a widely used tape made of an Ni-5 at % W alloy.

  10. Selective oxidation of cube textured Ni and Ni-Cr substrate for the formation of cube textured NiO as a component buffer layer for REBa 2Cu 3O 7+ x (REBCO) coated conductors

    NASA Astrophysics Data System (ADS)

    Lockman, Z.; Goldacker, W.; Nast, R.; deBoer, B.; MacManus-Driscoll, J. L.

    2002-08-01

    Thermal oxidation of cube textured, pure Ni and Ni-Cr tapes was undertaken under different oxidation conditions to form cube textured NiO for the use as a first component of buffer layer for the coated conductor. Cube textured NiO was formed on pure Ni after oxidising for more than 130 min in O 2 at 1250 °C. The oxide thickness was >30 μm. Much shorter oxidation times (20-40 min, NiO thickness of ∼5 μm) and lower temperature (1050 °C) were required to form a similar texture on Ni-Cr foils. In addition, NiO formed on Ni-13%Cr was more highly textured than Ni-10%Cr. A Cr 2O 3 inner layer and NiO outer layer was formed on the Ni-Cr alloys.

  11. Enhanced heteroepitaxial growth of CoCrPt-SiO{sub 2} perpendicular magnetic recording media on optimized Ru intermediate layers

    SciTech Connect

    Srinivasan, Kumar; Piramanayagam, S. N.

    2008-01-15

    The crystallographic growth, interfacial roughness, and magnetic properties of CoCrPt-SiO{sub 2} perpendicular magnetic recording media prepared on various types of Ru intermediate growth layers were systematically investigated based on high angle and omega offset x-ray diffraction scans, rocking curve scans, synchrotron radiation based grazing incidence reflectivity scans, and magneto-optical Kerr hysteresis loops. For samples that make use of one Ru growth layer, voltage bias applied on the Ru layer was seen to have two observable effects: (1) the dispersion in the Ru(00{center_dot}2) perpendicular texture increased, but that of the Co(00{center_dot}2) remained unchanged, leading to identical layered growth and (2) the in-plane a-lattice parameter of the Ru decreased leading to enhanced heteroepitaxy with the Co. There was no significant change in the Ru-Co interfacial roughness with changing the bias on the Ru layer. The bias effect can be used to optimize the design of the Ru intermediate layers. A scheme that makes use of two Ru growth layers consisting of a bottom Ru layer prepared under zero bias, which is inserted below a second Ru layer prepared under biased conditions, is shown to lead to significant benefits such as improved texture without affecting the magnetic properties. This is due to the different functional roles ascribed to each of the Ru growth layers.

  12. Lubricity and stability of poly(2-methacryloyloxyethyl phosphorylcholine) polymer layer on Co-Cr-Mo surface for hemi-arthroplasty to prevent degeneration of articular cartilage.

    PubMed

    Kyomoto, Masayuki; Moro, Toru; Saiga, Ken-ichi; Miyaji, Fumiaki; Kawaguchi, Hiroshi; Takatori, Yoshio; Nakamura, Kozo; Ishihara, Kazuhiko

    2010-02-01

    Migration of the artificial femoral head to the inside of the pelvis due to the degeneration of acetabular cartilage has emerged as a serious issue in resurfacing or bipolar hemi-arthroplasty. Surface modification of cobalt-chromium-molybdenum alloy (Co-Cr-Mo) is one of the promising means of improving lubrication for preventing the migration of the artificial femoral head. In this study, we systematically investigated the surface properties, such as lubricity, biocompatibility, and stability of the various modification layers formed on the Co-Cr-Mo with the biocompatible 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer by dip coating or grafting. The cartilage/poly(MPC) (PMPC)-grafted Co-Cr-Mo interface, which mimicked a natural joint, showed an extremely low friction coefficient of <0.01, as low as that of a natural cartilage interface. Moreover, the long-term stability in water was confirmed for the PMPC-grafted layer; no hydrolysis of the siloxane bond was observed throughout soaking in phosphate-buffered saline for 12 weeks. The PMPC-grafted Co-Cr-Mo femoral head for hemi-arthroplasty is a promising option for preserving acetabular cartilage and extending the duration before total hip arthroplasty.

  13. A novel way to estimate the nanoindentation hardness of only-irradiated layer and its application to ion irradiated Fe-12Cr alloy

    NASA Astrophysics Data System (ADS)

    Kim, Hoon-Seop; Lee, Dong-Hyun; Seok, Moo-Young; Zhao, Yakai; Kim, Woo-Jin; Kwon, Dongil; Jin, Hyung-Ha; Kwon, Junhyun; Jang, Jae-il

    2017-04-01

    While nanoindentation is a very useful tool to examine the mechanical properties of ion irradiated materials, there are some issues that should be considered in evaluating the properties of irradiated layer. In this study, in order to properly extract the hardness of only-irradiated layer from nanoindentation data, a new procedure is suggested in consideration of the geometry of indentation-induced plastic zone. By applying the procedure to an ion irradiated Fe-12Cr alloy, the reasonable results were obtained, validating its usefulness in the investigation of practical effect of irradiation on the mechanical behavior of future nuclear materials.

  14. Preparation and characterization of Ag2CrO4/few layer boron nitride hybrids for visible-light-driven photocatalysis

    NASA Astrophysics Data System (ADS)

    Wu, Xiang-feng; Zhao, Ze-hua; Sun, Yang; Li, Hui; Zhang, Chen-xu; Wang, Yi-jin; Liu, Yu; Wang, Yu-duan; Yang, Xin-yue; Gong, Xiao-dong

    2017-06-01

    Nanosized Ag2CrO4/few layer boron nitride composites were prepared via in situ precipitation method. The crystal structure, morphology, optical properties, and charge carrier behavior were investigated by X-ray diffraction, transmission electrical microscopy, UV-vis diffuse reflectance spectroscopy, and electrochemical impedance spectroscopy, respectively. The photocatalytic activities of the as-prepared hybrids were discussed by degradation of rhodamine B under visible-light irradiation. Experimental results showed that the average size of pure Ag2CrO4 particles was about 20 nm. Moreover, the degradation efficiency of the as-prepared hybrids was first increased and then decreased with increasing the usage amount of few layer boron nitride nanosheets. When it was 10 wt%, in 120 min, the degradation efficiency of the as-prepared hybrids had reached the maximum of 96.7%. It was much higher than 75% of pure Ag2CrO4 nanoparticles. After 3 cycles of the degradation, the efficiency of the as-prepared composites was decreased from 96.7 to 91.8%. Trapping experiment results revealed that holes played a major role during the photocatalysis process. In addition, electrochemical impedance spectroscopy results indicated that few layer boron nitride nanosheets could enhance the separation and transfer of photogenerated electrons and holes.

  15. Nucleation of graphene layers on magnetic oxides: Co3O4(111) and Cr2O3(0001) from theory and experiment

    DOE PAGES

    Beatty, John; Cheng, Tao; Cao, Yuan; ...

    2016-12-14

    We report directly grown strongly adherent graphene on Co3O4(111) by carbon molecular beam epitaxy (C MBE) at 850 K and density functional theory (DFT) findings that the first graphene layer is reconstructed to fit the Co3O4 surface, while subsequent layers retain normal graphene structure. This adherence to the Co3O4 structure results from partial bonding of half the carbons to top oxygens of the substrate. This structure is validated by X-ray photoelectron spectroscopy and low-energy electron diffraction studies, showing layer-by-layer graphene growth with ~0.08 electrons/carbon atom transferred to the oxide from the first graphene layer, in agreement with DFT. In contrast,more » for Cr2O3 DFT finds no strong bonding to the surface and C MBE on Cr2O3(0001) yields only graphite formation at 700 K, with C desorption above 800 K. As a result, strong graphene-to-oxide charge transfer aids nucleation of graphene on incommensurate oxide substrates and may have implications for spintronics.« less

  16. Fabrication of wear-resistant layers with lamellar eutectic structure by laser surface alloying using the in situ reaction between Cr and B4C

    NASA Astrophysics Data System (ADS)

    Sun, You-zheng; Li, Jin-bao; Wellburn, Daniel; Liu, Chang-sheng

    2016-11-01

    To improve the wear resistance of Cr5 steel, wear-resistant layers with lamellar eutectic microstructure were fabricated by laser surface alloying (LSA), which is dependent on the in situ reaction between Cr and B4C. Our results indicated that the hypoeutectic structures of the LSA layers were divided into interdendritic eutectic structures and dendrites. The area fraction of the eutectic structures increased with increasing laser scanning speed, which improved the hardness and wear resistance of the LSA layers. The average hardness of the LSA layer prepared at a scanning speed of 8 mm/s was HV0.2 883.9, which was 1.8 times greater than that of the traditional quenched layer (approximately HV 480). After sliding for 659.4 m, the specimen prepared at a scanning speed of 8 mm/s exhibited a volume loss of 0.0323 mm3, which was only 29.5% of the volume loss of the traditional quenched specimen.

  17. The effect of the MgO buffer layer thickness on magnetic anisotropy in MgO/Fe/Cr/MgO buffer/MgO(001)

    SciTech Connect

    Kozioł-Rachwał, Anna; Nozaki, Takayuki; Zayets, Vadym; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji; Suzuki, Yoshishige

    2016-08-28

    The relationship between the magnetic properties and MgO buffer layer thickness d was studied in epitaxial MgO/Fe(t)/Cr/MgO(d) layers grown on MgO(001) substrate in which the Fe thickness t ranged from 0.4 nm to 1.1 nm. For 0.4 nm ≤ t ≤ 0.7 nm, a non-monotonic coercivity dependence on the MgO buffer thickness was shown by perpendicular magneto-optic Kerr effect magnetometry. For thicker Fe films, an increase in the buffer layer thickness resulted in a spin reorientation transition from perpendicular to the in-plane magnetization direction. Possible origins of these unusual behaviors were discussed in terms of the suppression of carbon contamination at the Fe surface and changes in the magnetoelastic anisotropy in the system. These results illustrate a method to control magnetic anisotropy in MgO/Fe/Cr/MgO(d) via an appropriate choice of MgO buffer layer thickness d.

  18. Improved Corrosion Resistance and Mechanical Properties of CrN Hard Coatings with an Atomic Layer Deposited Al2O3 Interlayer.

    PubMed

    Wan, Zhixin; Zhang, Teng Fei; Lee, Han-Bo-Ram; Yang, Ji Hoon; Choi, Woo Chang; Han, Byungchan; Kim, Kwang Ho; Kwon, Se-Hun

    2015-12-09

    A new approach was adopted to improve the corrosion resistance of CrN hard coatings by inserting a Al2O3 layer through atomic layer deposition. The influence of the addition of a Al2O3 interlayer, its thickness, and the position of its insertion on the microstructure, surface roughness, corrosion behavior, and mechanical properties of the coatings was investigated. The results indicated that addition of a dense atomic layer deposited Al2O3 interlayer led to a significant decrease in the average grain size and surface roughness and to greatly improved corrosion resistance and corrosion durability of CrN coatings while maintaining their mechanical properties. Increasing the thickness of the Al2O3 interlayer and altering its insertion position so that it was near the surface of the coating also resulted in superior performance of the coating. The mechanism of this effect can be explained by the dense Al2O3 interlayer acting as a good sealing layer that inhibits charge transfer, diffusion of corrosive substances, and dislocation motion.

  19. Structure and microstructure of the high pressure synthesised misfit layer compound [Sr{sub 2}O{sub 2}][CrO{sub 2}]{sub 1.85}

    SciTech Connect

    Castillo-Martinez, E.; Schoenleber, A.; Smaalen, S. van; Arevalo-Lopez, A.M.; Alario-Franco, M.A.

    2008-08-15

    The strontium chromium oxide [Sr{sub 2}O{sub 2}][CrO{sub 2}]{sub 1.85} misfit layer compound has been synthesised at high-pressure and high-temperature conditions. Electron diffraction patterns and high-resolution transmission electron microscopy images along [001] show the misfit character of the different layers composing the structure with a supercell along the incommensurate parameter b{approx}7b{sub 1}{approx}13b{sub 2}. The modulated crystal structure has been refined within the superspace formalism against single-crystal X-ray diffraction data, employing the (3+1)-dimensional superspace group C'nmb(0{sigma}{sub 2}0)0 0 s. The compound has a composite structure with lattice parameters a{sub 1}=5.182(1) A, b{sub 1}=5.411(1) A, c{sub 1}=18.194(3) A for the first, SrO, subsystem and the same a and c, but with b{sub 2}=2.925(1) A for the second, CrO{sub 2}, subsystem. The layer stacking is similar to that of orthorhombic PbS(TiS{sub 2}){sub 1.18}, but with a much stronger intersubsytem bonding in the case of the oxide. The intersubsystem lattice mismatch is mainly handled by displacement modulations of the Sr atoms, correlated with modulations of the valence, the coordination and the anisotropic displacement parameters. - Graphical abstract: A strontium chromium oxide, [Sr{sub 2}O{sub 2}][CrO{sub 2}]{sub 1.85}, with an orthorhombic misfit layer structure has been synthesised under high pressure. Mainly modulations on the Sr position, ADPs and coordination save the subsystems lattice mismatch.

  20. Photocatalytic decomposition of Congo red under visible light irradiation using MgZnCr-TiO2 layered double hydroxide.

    PubMed

    Ma, Chi; Wang, Fenghua; Zhang, Chang; Yu, Zhigang; Wei, Jingjing; Yang, Zhongzhu; Li, Yongqiu; Li, Zihao; Zhu, Mengying; Shen, Liuqing; Zeng, Guangming

    2017-02-01

    The new nanophotocatalyst MgZnCr-TiO2 was prepared by co-precipitation under different molar ratio of metals (Zn:Cr) and the loaded amount of TiO2. And it was characterized by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy et al. Langmuir model fitted well the adsorption isotherm with the value of R(2) 0.9765, the maximum adsorption capacity was 526.32 mg g(-1), the adsorption followed pseudo second order kinetic by MgZnCr-TiO2 (1:1:2-0.05). The photocatalytic oxidation of Congo red was used to determine the photocatalytic performance of MgZnCr-TiO2 (1:1:2-0.05) under visible light irradiation, and the removal rate reached 98% after reaction for 40 min. The degradation mechanism of Congo red also was proposed, and the MgZnCr-TiO2 (1:1:2-0.05) was stable after five cycles. Compared to the adsorption, Congo red was removed fundamentally by photocatalysis and it is expected to be an effective way to eliminate Congo red. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Control of p-type conduction in Mg doped monophase CuCrO2 thin layers

    NASA Astrophysics Data System (ADS)

    Chikoidze, E.; Boshta, M.; Gomaa, M.; Tchelidze, T.; Daraselia, D.; Japaridze, D.; Shengelaya, A.; Dumont, Y.; Neumann-Spallart, M.

    2016-05-01

    This work aims to clarify the origin of hole conduction in undoped and Mg-doped CuCrO2 oxide in order to have the possibility of controlling it by corresponding growth parameters. A chemical spray pyrolysis procedure for the deposition of p-type semiconductor thin films is described. The as-deposited films were amorphous. The formation of highly crystalline CuCrO2 and Mg-doped CuCrO2 films with a single phase delafossite structure was realized by annealing between 600 °C and 960 °C in a nitrogen atmosphere. The carrier concentration and the point defects of the samples are calculated by using the developed Kroger method of quasi-chemical reactions. p-type conductivity was predicted and observed in the undoped and Mg doped CuCrO2 sample, and with n ~ 1018 cm-3 carrier concentrations for 4%Mg doping. The electrical resistivity for a 4% Mg doped sample was 1.4 Ω·cm with a Seebeck coefficient of  +130 μV K-1 at 40 °C. By electroparamagnetic resonance spectroscopy Cr3+ and Cu2+ related defects were studied.

  2. Three-dimensional hierarchical flower-like Mg-Al-layered double hydroxides: highly efficient adsorbents for As(v) and Cr(vi) removal

    NASA Astrophysics Data System (ADS)

    Yu, Xin-Yao; Luo, Tao; Jia, Yong; Xu, Ren-Xia; Gao, Chao; Zhang, Yong-Xing; Liu, Jin-Huai; Huang, Xing-Jiu

    2012-05-01

    3D hierarchical flower-like Mg-Al-layered double hydroxides (Mg-Al-LDHs) were synthesized by a simple solvothermal method in a mixed solution of ethylene glycol (EG) and water. The formation mechanism of the flower-like Mg-Al-LDHs was proposed. After calcination, the flower-like morphology could be completely preserved. With relatively high specific surface areas, Mg-Al-LDHs and calcined Mg-Al-LDHs with 3D hierarchical nanostructures were tested for their application in water purification. When tested as adsorbents in As(v) and Cr(vi) removal, the as-prepared calcined Mg-Al-LDHs showed excellent performance, and the adsorption capacities of calcined Mg-Al-LDHs for As(v) and Cr(vi) were better than those of Mg-Al-LDHs. The adsorption isotherms, kinetics and mechanisms for As(v) and Cr(vi) onto calcined Mg-Al-LDHs were also investigated. The high uptake capability of the as-prepared novel 3D hierarchical calcined Mg-Al-LDHs make it a potentially attractive adsorbent in water purification. Also, this facile strategy may be extended to synthesize other LDHs with 3D hierarchical nanostructures, which may find many other applications due to their novel structural features.3D hierarchical flower-like Mg-Al-layered double hydroxides (Mg-Al-LDHs) were synthesized by a simple solvothermal method in a mixed solution of ethylene glycol (EG) and water. The formation mechanism of the flower-like Mg-Al-LDHs was proposed. After calcination, the flower-like morphology could be completely preserved. With relatively high specific surface areas, Mg-Al-LDHs and calcined Mg-Al-LDHs with 3D hierarchical nanostructures were tested for their application in water purification. When tested as adsorbents in As(v) and Cr(vi) removal, the as-prepared calcined Mg-Al-LDHs showed excellent performance, and the adsorption capacities of calcined Mg-Al-LDHs for As(v) and Cr(vi) were better than those of Mg-Al-LDHs. The adsorption isotherms, kinetics and mechanisms for As(v) and Cr(vi) onto calcined

  3. Magnetic entropy change plateau in a geometrically frustrated layered system: FeCrAs-like iron-pnictide structure as a magnetocaloric prototype

    NASA Astrophysics Data System (ADS)

    Florez, J. M.; Vargas, P.; Garcia, C.; Ross, C. A.

    2013-06-01

    Monte Carlo modeling suggests that the magnetothermal features of the Fe2P-structured FeCrAs-like compound offer a promising route for the design of magnetocaloric materials. The prototype structure is modeled as antiferromagnetically coupled layered Heisenberg systems mimicking the distorted Kagome/triangular stacked architecture of FeCrAs iron-pnictide. The magnetic entropy change ΔSm(T) presents a plateau-like behavior which can be tailored by tuning either the JCr-Fe/JCr-Cr exchange energy ratio or the magnetic field. The plateau is defined by cooperative spin ordering within a ferrimagnetic region which exists between two critical temperatures separating at the lower bound ({T}_{{c}}^{a}) a canted antiferromagnetic phase and at the upper bound ({T}_{{c}}^{d}) the thermally disordered phase. The refrigerant capacity and adiabatic change of temperature are A(H)({T}_{{c}}^{d}-{T}_{{c}}^{a}) and A(H)Tp/Cm respectively, with {T}_{{c}}^{a}\\lt {T}_{{p}}\\lt {T}_{{c}}^{d}, A(H) an increasing positive function of the field defining the height of the plateau and Cm the magnetic specific heat, whose critical behavior is related to the {T}_{{c}}^{a,d} values.

  4. Multi-layered black phosphorus as saturable absorber for pulsed Cr:ZnSe laser at 2.4 μm.

    PubMed

    Wang, Zhaowei; Zhao, Ruwei; He, Jingliang; Zhang, Baitao; Ning, Jian; Wang, Yiran; Su, Xiancui; Hou, Jia; Lou, Fei; Yang, Kejian; Fan, Yisong; Bian, Jintian; Nie, Jinsong

    2016-01-25

    A high-quality black phosphorus (BP) saturable-absorber mirror (SAM) was successfully fabricated with the multi-layered BP, prepared by liquid-phase exfoliation (LPE) method. The modulation depth and saturation power intensity of BP absorber were measured to be 10.7% and 0.96 MW/cm(2), respectively. Using the BP-SAM, we experimentally demonstrated the mid-infrared (mid-IR) pulse generation from a BP Q-switched Cr:ZnSe laser for the first time to our best knowledge. Stable Q-switched pulse as short as 189 ns with an average output power of 36 mW was realized at 2.4 μm, corresponding to a repetition rate of 176 kHz and a single pulse energy of 205 nJ. Our work sufficiently validated that multi-layer BP could be used as an optical modulator for mid-IR pulse laser sources.

  5. Effect of process temperature on structure and magnetic properties of perpendicularly magnetized D022-Mn3Ge thin films on a Cr buffer layer

    NASA Astrophysics Data System (ADS)

    Sugihara, Atsushi; Suzuki, Kazuya; Miyazaki, Terunobu; Mizukami, Shigemi

    2015-08-01

    We investigated the effect of post-annealing on the perpendicular magnetic anisotropy constant (Ku) and surface roughness (Ra) of Mn3Ge thin films grown at comparatively low temperatures (room temperature, 150, 200, and 250 °C) on Cr buffer layers. The films grown at ≥200 °C exhibit a D022-ordered crystal structure in an as-deposited state. The post-annealing process demonstrates differences in trends between the 200-°C-grown film and the 250-°C-grown film. The 200-°C-grown film displays significant degradation of Ku and an increase in Ra upon annealing at >300 °C because of its poor thermal durability, while the 250-°C-grown film is still intact even at 500 °C. The 250-°C-grown film post-annealed at 300 °C displays relatively high Ku while Ra remains low. It may be possible to grow D022-Mn3Ge with higher Ku and low Ra using a buffer-layer material with a lattice-matched crystal structure with D022-Mn3Ge and higher thermal durability than Cr.

  6. Tunneling magnetoresistance of perpendicular magnetic tunnel junction using L10 FePt electrodes on MgO/CrRu/TiN under-layers

    NASA Astrophysics Data System (ADS)

    Soo Kim, Chang; Jung, Jin-Won; Choi, Dooho; Sahashi, Masashi; Kryder, Mark H.

    2014-05-01

    A perpendicular magnetic tunnel junction (pMTJ) device was fabricated using L10 ordered FePt electrodes, which were deposited on MgO(8 nm)/CrRu(10 nm)/TiN(4 nm) under-layers. It was found that the MgO/CrRu/TiN under-layer helps lower the required FePt deposition temperature to below 400 °C, and provides a well-ordered bottom L10 FePt electrode with root-mean-square (RMS) surface roughness close to 0.4 nm. Magnetoresistance (MR) ratio and resistance-area (RA) were measured at room temperature by the current-in-plane tunneling (CIPT) method from a lithographically unpatterned PMTJ sample and 138% and 6.4 kΩ μm2 were obtained, respectively. A PMTJ test pattern, with a junction size of 80 × 40 μm2, was also fabricated and showed a MR ratio and RA product of 108% and 4 ˜ 6 kΩ μm2, respectively, in good agreement with the CIPT measurements.

  7. Efficient removal of dyes by a novel magnetic Fe3O4/ZnCr-layered double hydroxide adsorbent from heavy metal wastewater.

    PubMed

    Chen, Dan; Li, Yang; Zhang, Jia; Li, Wenhui; Zhou, Jizhi; Shao, Li; Qian, Guangren

    2012-12-01

    A novel magnetic Fe(3)O(4)/ZnCr-layered double hydroxide adsorbent was produced from electroplating wastewater and pickling waste liquor via a two-step microwave hydrothermal method. Adsorption of methyl orange (MO) from water was studied using this material. The effects of three variables have been investigated by a single-factor method. The response surface methodology (RSM) based on Box-Behnken design was successfully applied to the optimization of the preparation conditions. The maximum adsorption capacity of MO was found to be 240.16 mg/g, indicating that this material may be an effective adsorbent. It was shown that 99% of heavy metal ions (Fe(2+), Fe(3+), Cr(3+), and Zn(2+)) can be effectively removed into precipitates and released far less in the adsorption process. In addition, this material with adsorbed dye can be easily separated by a magnetic field and recycled after catalytic regeneration with advanced oxidation technology. Meanwhile, kinetic models, FTIR spectra and X-ray diffraction pattern were applied to the experimental data to examine uptake mechanism. The boundary layer and intra-particle diffusion played important roles in the adsorption mechanisms. Copyright © 2012. Published by Elsevier B.V.

  8. Capability Study of Ti, Cr, W, Ta and Pt as Seed Layers for Electrodeposited Platinum Films on γ-Al₂O₃ for High Temperature and Harsh Environment Applications.

    PubMed

    Seifert, Marietta; Brachmann, Erik; Rane, Gayatri K; Menzel, Siegfried B; Gemming, Thomas

    2017-01-11

    High temperature surface acoustic wave sensors based on radio frequency identification technology require adequate antennas of high efficiency and thermal stability for the signal transmission. Platinum is well known and frequently used as a material of choice for high temperature and harsh environment applications because of the high melting point and its chemical stability. Therefore, one way to realize high temperature stable antennas is the combination of a Pt metallization on an Al 2 O 3 substrate. As a cost-effective technique, the Pt film is deposited via electrochemical deposition. For this growth procedure, a pre-deposited metallization on the Al 2 O 3 layer is required. This paper analyzes the influence of various seed layers (Ta, Ti, W, Cr, Pt) on the morphology, stability and electrical properties of the electrochemically-grown Pt thick film after heat treatments up to 1000 ∘ C in air. We find an oxidation of all adhesion layers except for Pt, for which the best electrical properties were measured. Although significant areas of the films delaminate from the substrate, individual anchor structures retain a stable connection between the Pt layer and the rough Al 2 O 3 substrate.

  9. Porous alumina-metallic Pt/Pd, Cr or Al layered nanocoatings with fully controlled variable interference colors.

    PubMed

    Pashchanka, Mikhail; Yadav, Sandeep; Cottre, Thorsten; Schneider, Jörg J

    2014-11-07

    Metallic Cr, Al, and Pt/Pd alloy have been deposited by magnetron sputtering or thermal evaporation (resistance heating or electron beam heating) onto nanoporous anodic alumina and have allowed to facilitate a cost-effective technique for manufacturing of pigment-free colored coatings on aluminum. Bright and saturated colors were achieved using the interference effect, and tuned by variation of the uniform oxide film thickness. Morphology and properties of these coatings were investigated by scanning electron microscopy (SEM) and reflectance measurements (UV/Vis/NIR spectrometry). Some optical properties of anodic alumina membranes are rather variable and strongly depend on oxidation parameters, non-stoichiometric composition, and porosity. However, the established correspondence between the film thickness, metallic coating type, and observed interference colors, allows facile, scalable, and inexpensive deposition of colored decorative and wear-resistant coatings onto aluminum and alloys surfaces.

  10. Dielectric anomaly and relaxation natures in a Zn-Cr pillar-layered metal-organic framework with cages and channels

    NASA Astrophysics Data System (ADS)

    Xue, Chen; Yao, Zhi-Yuan; Liu, Shao-Xian; Luo, Hong-Bin; Zou, Yang; Li, Li; Ren, Xiao-Ming

    2017-06-01

    A bimetallic metal-organic framework (MOF) with the formula [Zn3btc2{Cr3O(isonic)6(H2O)2(OH)}]·(DMF)15.5(H2O)8 (H3btc=1,3,5-benzenetricarboxylic acid; isonic=isonicotinicate) shows a pillar-layered structure. The monolayer consists of hexagon-like rings formed by the [Zn(isonic)2(btc)2] tetrahedral and the consecutive monolayers are pillared by trigonal-prismatic clusters of [Cr3O(isonic)6(H2O)2(OH)]through the remaining binding sites of the Zn2+ ions. DMF and water molecules are confined in the cages and channels. TGA indicates that the lattice DMF and water molecules begin to be released at temperatures above 363 K. Dielectric measurements were carried out in the range of 173-363 K and 1-107 Hz for three successive thermal cycles. The dielectric spectroscopy obtained in the first thermal cycle was different from that observed in the next two thermal cycles, while the dielectric spectra in the last two thermal cycles were almost identical. The dielectric nature of this MOF is discussed in detail for each thermal cycle. Since MOFs are unique host-guest systems in which the structure of the host framework is designable and the guests are exchangeable, it is no doubt those MOFs are materials with a variety of dielectric natures. This study gives a fresh impetus to achieve MOFs-based dielectric materials.

  11. An all-perovskite p-n junction based on transparent conducting p-La1-xSrxCrO3 epitaxial layers

    NASA Astrophysics Data System (ADS)

    Du, Yingge; Li, Chen; Zhang, Kelvin H. L.; McBriarty, Martin E.; Spurgeon, Steven R.; Mehta, Hardeep S.; Wu, Di; Chambers, Scott A.

    2017-08-01

    Transparent, conducting p-La1-xSrxCrO3 epitaxial layers were deposited on Nb-doped SrTiO3(001) by oxygen-assisted molecular beam epitaxy to form structurally coherent p-n junctions. X-ray photoelectron spectroscopy reveals a type II or "staggered" band alignment, with valence and conduction band offsets of 2.0 eV and 0.9 eV, respectively. Diodes fabricated from these heterojunctions exhibit rectifying behavior, and the I-V characteristics are different from those for traditional semiconductor p-n junctions. A rather large ideality factor is ascribed to the complex nature of the interface.

  12. The connection analysis between the dilution of the deposited Fe-Cr-V-Mo-C layer by the basic metal and the parameters of its microstructure

    NASA Astrophysics Data System (ADS)

    Degterev, A. S.; Gnusov, S. F.

    2017-02-01

    In this work, the structure of the Fe-Cr-V-Mo-C coatings received by plasma transferred arc cladding was investigated. Coatings were deposited on plates with a thickness of 10 mm and made from constructional steel (steel 20). The correlation analysis of relationships between dilution of the deposited layers by the basic metal and the parameters of their microstructure was carried out. The parameters were as follows: volume fraction, a size, a shape factor, the distance between particles, the number of particles of vanadium carbide, volume fraction of the eutectic on the basis of carbide M7C3 and the distances between its colonies, as well as the volume fraction of the α-phase in the alloy matrix.

  13. The effect of plating on magnetron sputtering: Residual stress and scratch behavior of Au/NiCr/Ta multi-layers

    NASA Astrophysics Data System (ADS)

    Tang, Wu; Weng, Xiaolong; Deng, Longjiang; Xu, Kewei

    2006-12-01

    Au/NiCr/Ta multi-layers were deposited on Al2O3 substrate by magnetron sputtering and plating. The effect of plating technique on magnetron sputtering film in residual stress, crystal orientation and scratch resistance behavior was investigated. The all magnetron sputtering and plating films were highly textured with dominant Au-(1 1 1) orientation or a mixture of Au-(1 1 1) and Au-(2 0 0) orientation and the (1 1 1)/(2 0 0) intensity ratio were increased after plating. The residual stress in magnetron sputtering films at different substrate temperature was tensile stress with 155-400 MPa and it decreased approximately to 50 MPa after plating. The scratch resistance could be affected by the film thickness, and it increased approximately linearly with the increase of the thickness of metallic films after plating.

  14. Layering

    NASA Image and Video Library

    2011-04-01

    At the bottom of this image from NASA Mars Odyssey is the cliff-face that is the sidewall of Ophir Chasma. Layering is easily visible in the upper cliff wall, with the thickness of the surface clearly visible.

  15. A study of the influence of the metallurgical state on shear band and white layer generation in 100Cr6 steel: application to machining

    NASA Astrophysics Data System (ADS)

    Habak, Malek; Lebrun, Jean-Lou; Morel, Anne

    2007-04-01

    The aim of this paper is to better understand the material behaviour involved in machining operations. During machining, the workpiece experiences large strains, high strain rate, high temperatures, complex loading histories, and recovery. To reproduce these loadings and to understand the behaviour of 100Cr6 bearing steel, quasi-static and dynamics mechanical shearing tests were carried out. These tests made it possible to reproduce the primary shear zone observed on the chips after cutting using specimens with special geometries "hat-shaped specimens". The geometry of these specimens results in a localised shearing zone when loaded in compression. Two metallurgical states of the material were investigated (with and without carbides). For each state, three material hardnesses are used (46, 51 and 55HRc). The tests parameters investigated were the strain rate and temperature. For all tests, the microstructures of the shear zones were examined. Results show that the presence of carbides has the tendency to increase the material resistance. The micrographic observations of the sheared zones highlighted the effect of the microstructure and the link between the thermo-mechanical effects and the characteristics of the white zones. It is possible to produce a white layer, similar to those obtained in machining, by quasi-static and dynamic shearing tests. The presence of carbides has a strong effect on the generation of the shear bands and the white layers. Increasing the test temperature and strain rate tends to increase the width of shear band and white layers. A comparison between the white layers obtained by the dynamic tests and those observed on the chip in hard turning are carried out. The results show good agreement.

  16. Spin-density-wave antiferromagnetism of Cr in Fe/Cr(001) superlattices

    SciTech Connect

    Fullerton, E.E.; Bader, S.D.; Robertson, J.L.

    1996-10-01

    The antiferromagnetic spin-density-wave (SDW) order of Cr layers in Fe/Cr(001) superlattices was investigated by neutron scattering. For Cr thickness 51-190 {Angstrom}, a transverse SDW is formed for all temperatures below Neel temperature with a single wavevector Q normal to the layers. A coherent magnetic structure forms with the nodes of the SDW near the Fe-Cr interfaces. For thinner Cr layers, the magnetic scattering can be described by commensurate antiferromagnetic order.

  17. Plasma enhanced chemical vapor deposition of metalboride interfacial layers as diffusion barriers for nanostructured diamond growth on cobalt containing alloys CoCrMo and WC-Co

    NASA Astrophysics Data System (ADS)

    Johnston, Jamin M.

    This work is a compilation of theory, finite element modeling and experimental research related to the use of microwave plasma enhanced chemical vapor deposition (MPECVD) of diborane to create metal-boride surface coatings on CoCrMo and WC-Co, including the subsequent growth of nanostructured diamond (NSD). Motivation for this research stems from the need for wear resistant coatings on industrial materials, which require improved wear resistance and product lifetime to remain competitive and satisfy growing demand. Nanostructured diamond coatings are a promising solution to material wear but cannot be directly applied to cobalt containing substrates due to graphite nucleation. Unfortunately, conventional pre-treatment methods, such as acid etching, render the substrate too brittle. Thus, the use of boron in a MPECVD process is explored to create robust interlayers which inhibit carbon-cobalt interaction. Furthermore, modeling of the MPECVD process, through the COMSOL MultiphysicsRTM platform, is performed to provide insight into plasma-surface interactions using the simulation of a real-world apparatus. Experimental investigation of MPECVD boriding and NSD deposition was conducted at surface temperatures from 700 to 1100 °C. Several well-adhered metal-boride surface layers were formed: consisting of CoB, CrB, WCoB, CoB and/or W2CoB2. Many of the interlayers were shown to be effective diffusion barriers against elemental cobalt for improving nucleation and adhesion of NSD coatings; diamond on W2CoB2 was well adhered. However, predominantly WCoB and CoB phase interlayers suffered from diamond film delamination. Metal-boride and NSD surfaces were evaluated using glancing-angle x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), cross-sectional scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), micro-Raman spectroscopy, nanoindentation, scratch testing and epoxy pull testing. COMSOL MultiphysicsRTM was used to construct a

  18. ZnCr layered double hydroxide (LDH) nanosheets assisted formation of hierarchical flower-like CdZnS@LDH microstructures with improved visible-light-driven H2 production.

    PubMed

    Yao, Lihua; Wei, Ding; Yan, Dongpeng; Hu, Changwen

    2015-03-01

    The development of new semiconductor photocatalysts toward splitting water has supplied a promising way to obtain sustainable and clean hydrogen energy. Herein, CdZnS@layered double hydroxide (LDH) composites with a hierarchical flower-like microstructure have been fabricated with the aid of ZnCr-LDH nanosheets as templates. XRD, SEM and HRTEM show that the ZnCr-LDH nanosheets are uniformly dispersed within the composites. The surface of the hierarchical structures is rough and composed of numerous nanocrystals of CdZnS. The HRTEM images indicate that the surface of CdZnS nanocrystals is mainly composed of the (111) plane. Moreover, the visible-light-driven H2 production performance of the CdZnS in the presence and absence of ZnCr-LDH nanosheets has been measured. The results show that ZnCr-LDH nanosheets play an important role in the hierarchical morphology and photocatalytic activity of the as-prepared samples. In the water-splitting process, the visible-light-driven H2 -production rate of hierarchical flower-like CdZnS@LDH is 4.03 times and nearly 10 times higher than that of pristine CdZnS microsphere and pure commercial CdS, respectively. Therefore, this work not only achieves enhanced catalytic performance of the CdZnS by the introduction of ZnCr-LDH nanosheets, but also supplies an insight into the relationship between the hierarchical morphology and the semiconductor photocatalytic activity.

  19. Deformation and fracture of a composite material based on a high-strength maraging steel covered with a melt-quenched Co69Fe4Cr4Si12B11 alloy layer

    NASA Astrophysics Data System (ADS)

    Sevost'yanov, M. A.; Kolmakov, A. G.; Molokanov, V. V.; Zabolotnyi, V. T.; Umnov, P. P.; Umnova, N. V.

    2011-04-01

    Multifractal analysis is used to study the deformation and fracture of a promising composite material consisting of a wire base made of K17N9M14 maraging steel covered with a surface layer made from a Co69Fe4Cr4Si12B11 amorphous alloy. As compared to its components, this material has a substantially better set of the mechanical properties.

  20. Structural and magnetic properties of Cr/Sb multilayers

    NASA Astrophysics Data System (ADS)

    Dohnomae, H.; Shintaku, K.; Nakayama, N.; Shinjo, T.

    Cr/Sb multilayered films take two types of structures - epitaxial superlattice and non-epitaxial multilayer - depending on the thickness of Cr layer ( dCr) and substrate temperature during deposition ( Ts). The epitaxial superlattices were formed when dCr ≤ 2Å and Ts = 90°C; Cr and Sb reacted into a NiAs-type compound CrSb, and furthermore deposited Sb grew epitaxially on the CrSb layer. With other deposition parameters, non-epitaxial Cr/Sb multilayers were formed, in which Cr layers are polycrystalline or amorphous-like but Sb layers are crystalline and [00.1] oriented. The reactivities of Cr/Sb interfaces greatly affect the film quality. Magnetic properties are also dependent on the degree of compound formation. The epitaxial CrSb/Sb superlattices show a ferromagnetic feature at 5 K, whereas the non-epitaxial Cr/Sb multilayers show a paramagnetic feature.

  1. Nucleation of graphene layers on magnetic oxides: Co3O4(111) and Cr2O3(0001) from theory and experiment

    SciTech Connect

    Beatty, John; Cheng, Tao; Cao, Yuan; Driver, M. Sky; Goddard, III, William A.; Kelber, Jeffry A.

    2016-12-14

    We report directly grown strongly adherent graphene on Co3O4(111) by carbon molecular beam epitaxy (C MBE) at 850 K and density functional theory (DFT) findings that the first graphene layer is reconstructed to fit the Co3O4 surface, while subsequent layers retain normal graphene structure. This adherence to the Co3O4 structure results from partial bonding of half the carbons to top oxygens of the substrate. This structure is validated by X-ray photoelectron spectroscopy and low-energy electron diffraction studies, showing layer-by-layer graphene growth with ~0.08 electrons/carbon atom transferred to the oxide from the first graphene layer, in agreement with DFT. In contrast, for Cr2O3 DFT finds no strong bonding to the surface and C MBE on Cr2O3(0001) yields only graphite formation at 700 K, with C desorption above 800 K. As a result, strong graphene-to-oxide charge transfer aids nucleation of graphene on incommensurate oxide substrates and may have implications for spintronics.

  2. Fabrication of a novel NiFe2O4/Zn-Al layered double hydroxide intercalated with EDTA composite and its adsorption behavior for Cr(VI) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Deng, Lin; Shi, Zhou; Wang, Li; Zhou, Shiqing

    2017-05-01

    A novel magnetic NiFe2O4/Zn-Al layered double hydroxide intercalated with EDTA composite (NiFe2O4/ZnAl-EDTA LDH) was prepared through modified coprecipitation method and employed for adsorptive removal of Cr(VI) from aqueous solution. The adsorbents were characterized using Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM), and X-ray photoelectron spectroscopy (XPS). Factors affecting the Cr(VI) adsorption, such as initial solution pH, adsorbent dosage, contact time, initial Cr(VI) concentration, temperature and coexisting ions, were studied systematically. Experiments results show that the magnetic NiFe2O4/ZnAl-EDTA LDH exhibits high adsorption efficiency within a wide pH range of 3.0-7.0 (R>80% at Cr(VI) concentration 50 mg L-1, contact time 360 min, and adsorbent dosage 2 g/L) and quick separation property. The adsorption process is fitted well with the Langmuir isotherm and pseudo-second-order kinetic model. The maximum theoretical adsorption capacity is found to be 77.22 mg g-1 at pH 6.0 and 318 K. The positive ΔH value (2.907 kJ mol-1) and negative ΔG value (-4.722 kJ mol-1) at 298-318 K reveals that the adsorption process is feasible, spontaneous and endothermic. Coexisting anions (PO43-, SO42-, CO32-, HCO3-, Cl-, and NO3-) have no significant effect on Cr(VI) removal. The mechanism study indicates that the adsorption of Cr(VI) onto NiFe2O4/ZnAl-EDTA LDH mainly involves electrostatic attraction and ion exchange interaction. It is interesting to note that a proportion of Cr(VI) adsorbed on the adsorbent surface are reduced to Cr(III) during the adsorption process. Results from this study demonstrate the potential utility of the magnetic NiFe2O4/ZnAl-EDTA LDH that could be developed into a viable technology for efficient removal of Cr(VI) from aqueous solution.

  3. Effect of Si, Sc, Cr doping on the structural, optical and discharge characteristics of MgO thin films as protective layer for plasma display panels

    NASA Astrophysics Data System (ADS)

    Singh, Chandra Bhal; Barik, U. K.; Sarkar, Surajit; Singh, Vandana; Ram, Sanjay K.; Dwivedi, Harish K.; Kumar, Satyendra

    2012-10-01

    We report the effect of Si, Cr, Sc doping in the crystalline structure, optical and discharge characteristics of MgO thin films. Silicon and multiple (Si, Cr, Sc) doped MgO thin films demonstrate higher secondary electron emission (SEE). Si doping with Cr and Sc doping in MgO films shows much higher SEE as compared to pure and only Si doped MgO films. The importance of optimum amount of Sc doping is seen in our study where SEE reduced with further increase in Sc doping. The structural attributes of MgO films are correlated to the observed changes in discharge characteristics in the context of varying amount of Si, Sc, and Cr doping.

  4. Investigation of Coronal Leakage of Root Fillings after Smear Layer Removal with EDTA or Er,Cr:YSGG Laser through Capillary Flow Porometry

    PubMed Central

    Vergauwen, Tom Edgard Maria; Michiels, Rafaël; Torbeyns, Dries; Meire, Maarten; De Moor, Roeland Jozef Gentil

    2014-01-01

    No studies have been performed evaluating the marginal seal of root fillings after direct exposure of root canal (RC) walls to Er,Cr:YSGG laser irradiation. Therefore, 75 root filled teeth (5 × 15–cold lateral condensation) were analyzed for through-and-through leakage (TTL) using capillary flow porometry (CFP). The cleaning protocol determined the experimental groups: (1) irrigation with NaOCl 2.5% and EDTA 17% or standard protocol (SP), (2) SP + Er,Cr:YSGG lasing (dried RC), (3) NaOCl 2.5% + Er,Cr:YSGG lasing (dried RC), (4) SP + Er,Cr:YSGG lasing (wet RC), and (5) NaOCl 2.5% + Er,Cr:YSGG lasing (wet RC). Groups 6 to 10 consisted of the same filled teeth with resected apices. Resection was performed after the first CFP measurement. CFP was used to assess minimum, mean flow, and maximum pore diameters after 48 h. Statistics were performed using nonparametric tests (P > 0.05). Additional three roots per group were submitted to SEM of the RC walls. TTL was observed in all groups without statistically significant differences between the different groups for minimum, mean, and maximum pore diameter (P > 0.05). In this study, the use of EDTA and/or Er,Cr:YSGG laser did not reduce through-and-through leakage in nonresected and resected roots. PMID:24696685

  5. Surface morphological, electrical and transport properties of rapidly annealed double layers Ru/Cr Schottky structure on n-type InP

    NASA Astrophysics Data System (ADS)

    Shanthi Latha, K.; Rajagopal Reddy, V.

    2017-02-01

    The electrical and transport properties of a fabricated bilayer Ru/Cr/n-InP Schottky diode (SD) have been investigated at different annealing temperatures. Atomic force microscopy results have showed that the overall surface morphology of the Ru/Cr/n-InP SD is fairly smooth at elevated temperatures. High barrier height is achieved for the diode annealed at 300 °C compared to the as-deposited, annealed at 200 and 400 °C diodes. The series resistance and shunt resistance of the Ru/Cr/n-InP SD are estimated by current-voltage method at different annealing temperatures. The barrier heights and series resistance are also determined by Cheung's and modified Norde functions. The interface state density of the Ru/Cr/n-InP SD is found to be decreased after annealing at 300 °C and then slightly increased upon annealing at 400 °C. The difference between barrier heights obtained from current-voltage and capacitance-voltage is also discussed. Experimental results have showed that the Poole-Frenkel emission is found to be dominant in the lower bias region whereas Schottky emission is dominant in the higher bias region for the Ru/Cr/n-InP SDs irrespective of annealing temperatures.

  6. Surface morphological, electrical and transport properties of rapidly annealed double layers Ru/Cr Schottky structure on n-type InP

    NASA Astrophysics Data System (ADS)

    Shanthi Latha, K.; Rajagopal Reddy, V.

    2017-07-01

    The electrical and transport properties of a fabricated bilayer Ru/Cr/ n-InP Schottky diode (SD) have been investigated at different annealing temperatures. Atomic force microscopy results have showed that the overall surface morphology of the Ru/Cr/ n-InP SD is fairly smooth at elevated temperatures. High barrier height is achieved for the diode annealed at 300 °C compared to the as-deposited, annealed at 200 and 400 °C diodes. The series resistance and shunt resistance of the Ru/Cr/ n-InP SD are estimated by current-voltage method at different annealing temperatures. The barrier heights and series resistance are also determined by Cheung's and modified Norde functions. The interface state density of the Ru/Cr/ n-InP SD is found to be decreased after annealing at 300 °C and then slightly increased upon annealing at 400 °C. The difference between barrier heights obtained from current-voltage and capacitance-voltage is also discussed. Experimental results have showed that the Poole-Frenkel emission is found to be dominant in the lower bias region whereas Schottky emission is dominant in the higher bias region for the Ru/Cr/ n-InP SDs irrespective of annealing temperatures.

  7. Elaboration, characterization of CrN- based coatings

    SciTech Connect

    Tlili, B.; Nouveau, C.; Guillemot, G.

    2011-01-17

    Cr, CrN and CrAlN monolayers were synthesized by RF dual magnetron sputtering on AISI4140 steel and silicon substrates at 200 deg. C. Multilayers coatings based on the three mono-layers such as CrN/CrAlN and Cr/CrN/CrAlN were also synthesized only on Si. The physico-chemical and mechanical properties of the layers were determined by AFM, SEM+WDS, stress, roughness and nanoindentation measurements. The influence of the thickness on the mechanical properties of the monolayers stresses has been studied and as a consequence we compared the mono and multilayers stress state.

  8. Spin resolved photoelectron spectroscopy of [Mn6(III)Cr(III)]3+ single-molecule magnets and of manganese compounds as reference layers.

    PubMed

    Helmstedt, Andreas; Müller, Norbert; Gryzia, Aaron; Dohmeier, Niklas; Brechling, Armin; Sacher, Marc D; Heinzmann, Ulrich; Hoeke, Veronika; Krickemeyer, Erich; Glaser, Thorsten; Bouvron, Samuel; Fonin, Mikhail; Neumann, Manfred

    2011-07-06

    Properties of the manganese-based single-molecule magnet [Mn(6)(III)Cr(III)](3+) are studied. It contains six Mn(III) ions arranged in two bowl-shaped trinuclear triplesalen building blocks linked by a hexacyanochromate and exhibits a large spin ground state of S(t) = 21/2. The dominant structures in the electron emission spectra of [Mn(6)(III)Cr(III)](3+) resonantly excited at the L(3)-edge are the L(3)M(2, 3)M(2, 3), L(3)M(2, 3)V and L(3)VV Auger emission groups following the decay of the primary p(3/2) core hole state. Significant differences of the Auger spectra from intact and degraded [Mn(6)(III)Cr(III)](3+) show up. First measurements of the electron spin polarization in the L(3)M(2, 3)V and L(3)VV Auger emission peaks from the manganese constituents in [Mn(6)(III)Cr(III)](3+) resonantly excited at the L(3)-edge near 640 eV by circularly polarized synchrotron radiation are reported. In addition spin resolved Auger electron spectra of the reference substances MnO, Mn(2)O(3) and Mn(II)(acetate)(2)·4H(2)O are given. The applicability of spin resolved electron spectroscopy for characterizing magnetic states of constituent atoms compared to magnetic circular dichroism (MCD) is verified: the spin polarization obtained from Mn(II)(acetate)(2)·4H(2)O at room temperature in the paramagnetic state compares to the MCD asymmetry revealed for a star-shaped molecule with a Mn(4)(II)O(6) core at 5 K in an external magnetic field of 5 T.

  9. Study on feasibility of producing an amorphous surface layer of Fe49Cr18Mo7B16C4Nb3 by pulsed Nd:YAG laser surface melting

    NASA Astrophysics Data System (ADS)

    Mojaver, Reza; Mojtahedi, Faezeh; Shahverdi, Hamid Reza; Torkamany, Mohammad Javad

    2013-01-01

    This work aims to investigate whether an amorphous surface layer can be obtained when as-cast Fe49Cr18Mo7B16C4Nb3 alloy is submitted to pulsed Nd:YAG laser surface melting. The experiments were conducted in the various laser scanning speeds. The microstructures of laser treated zones were investigated by X-ray diffraction XRD and Field Emission Scanning Electron Microscope (FESEM) and their microhardness were measured, too. The chemical composition of different points of each sample was analyzed by energy-dispersive X-ray spectroscopy EDS. Although the estimated cooling rates in surface layers were higher than the required cooling rate to achieve full amorphization, but the present experiments were unable to retain complete glassy microstructure on surface and a mixture of amorphous (low volume fraction) and ultrafine grained phases were produced in surface of samples. Based on the findings, it was understood that the overlapping of successive pulses and element redistributions occurred in pulsed laser melting could severely restrict amorphization. The influence of laser scan speed and laser power on heat input, melting ratio, compositional changes and cracking in laser treated zone were discussed separately. It is suggested that the limited range of laser variables in pulsed Nd:YAG laser melting may help to produce a sound amorphous phase of as-cast Fe49Cr18Mo7B16C4Nb3 alloy.

  10. Capability Study of Ti, Cr, W, Ta and Pt as Seed Layers for Electrodeposited Platinum Films on γ-Al2O3 for High Temperature and Harsh Environment Applications

    PubMed Central

    Seifert, Marietta; Brachmann, Erik; Rane, Gayatri K.; Menzel, Siegfried B.; Gemming, Thomas

    2017-01-01

    High temperature surface acoustic wave sensors based on radio frequency identification technology require adequate antennas of high efficiency and thermal stability for the signal transmission. Platinum is well known and frequently used as a material of choice for high temperature and harsh environment applications because of the high melting point and its chemical stability. Therefore, one way to realize high temperature stable antennas is the combination of a Pt metallization on an Al2O3 substrate. As a cost-effective technique, the Pt film is deposited via electrochemical deposition. For this growth procedure, a pre-deposited metallization on the Al2O3 layer is required. This paper analyzes the influence of various seed layers (Ta, Ti, W, Cr, Pt) on the morphology, stability and electrical properties of the electrochemically-grown Pt thick film after heat treatments up to 1000 ∘C in air. We find an oxidation of all adhesion layers except for Pt, for which the best electrical properties were measured. Although significant areas of the films delaminate from the substrate, individual anchor structures retain a stable connection between the Pt layer and the rough Al2O3 substrate. PMID:28772415

  11. Effect of Cr content on the corrosion performance of low-Cr alloy steel in a CO2 environment

    NASA Astrophysics Data System (ADS)

    Xu, Lining; Wang, Bei; Zhu, Jinyang; Li, Wei; Zheng, Ziyi

    2016-08-01

    Low-Cr alloy steel demonstrates lower corrosion rate than does C steel in a high-temperature and high-pressure CO2-containing environment. This study aimed to clarify the role of the Cr content in mitigating corrosion and reports the performance of 1%Cr, 2%Cr, 3%Cr, 4%Cr, 5%Cr, and 6.5%Cr steels. The results show that low-Cr alloy steel in CO2 at 80 °C and 0.8 MPa possesses spontaneous prepassivation characteristics when the Cr content is 3% or higher. Furthermore, the formation and peel-off of a prepassivation film on 3%Cr-6.5%Cr steels surfaces during polarization demonstrate that adequate amount of Cr in the steel substrate can cause protective layer. The main component of prepassivation film on 3%Cr steel is Cr(OH)3. Thus, the role of Cr is revealed. An adequate amount of Cr in the steel substrate causes the formation of protective Cr(OH)3 layer, which helps low-Cr steel to possess prepassivation characteristics. Prepassivation is the reason why low-Cr steel has a lower corrosion rate than C steel.

  12. Switching of perpendicular exchange bias in Pt/Co/Pt/α-Cr{sub 2}O{sub 3}/Pt layered structure using magneto-electric effect

    SciTech Connect

    Toyoki, Kentaro; Shiratsuchi, Yu Kobane, Atsushi; Harimoto, Shotaro; Onoue, Satoshi; Nomura, Hikaru; Nakatani, Ryoichi

    2015-05-07

    Switching of the perpendicular exchange bias polarity using a magneto-electric (ME) effect of α-Cr{sub 2}O{sub 3} was investigated. From the change in the exchange bias field with the electric field during the ME field cooling, i.e., the simultaneous application of both magnetic and electric fields during the cooling, we determined the threshold electric field to switch the perpendicular exchange bias polarity. It was found that the threshold electric field was inversely proportional to the magnetic field indicating that the EH product was constant. The high EH product was required to switch the exchange bias for the film possessing the high exchange anisotropy energy density, which suggests that the energy gain by the ME effect has to overcome the interfacial exchange coupling energy to reverse the interfacial antiferromagnetic spin.

  13. Magnetic phase transitions and entropy change in layered NdMn{sub 1.7}Cr{sub 0.3}Si{sub 2}

    SciTech Connect

    Md Din, M. F. Dou, S. X.; Wang, J. L.; Campbell, S. J.; Studer, A. J.; Avdeev, M.; Kennedy, S. J.; Gu, Q. F.; Zeng, R.

    2014-01-27

    A giant magnetocaloric effect has been observed around the Curie temperature, T{sub C} ∼ 42 K, in NdMn{sub 1.7}Cr{sub 0.3}Si{sub 2} with no discernible thermal and magnetic hysteresis losses. Below 400 K, three magnetic phase transitions take place around 380 K, 320 K and 42 K. Detailed high resolution synchrotron and neutron powder diffraction (10–400 K) confirmed the magnetic transitions and phases as follows: T{sub N}{sup intra} ∼ 380 K denotes the transition from paramagnetism to intralayer antiferromagnetism (AFl), T{sub N}{sup inter} ∼ 320 K represents the transition from the AFl structure to the canted antiferromagnetic spin structure (AFmc), while T{sub C} ∼ 42 K denotes the first order magnetic transition from AFmc to canted ferromagnetism (Fmc + F(Nd)) due to ordering of the Mn and Nd sub-lattices. The maximum values of the magnetic entropy change and the adiabatic temperature change, around T{sub C} for a field change of 5 T are evaluated to be −ΔS{sub M}{sup max} ∼ 15.9 J kg{sup −1} K{sup −1} and ΔT{sub ad}{sup max} ∼ 5 K, respectively. The first order magnetic transition associated with the low levels of hysteresis losses (thermal <∼0.8 K; magnetic field <∼0.1 T) in NdMn{sub 1.7}Cr{sub 0.3}Si{sub 2} offers potential as a candidate for magnetic refrigerator applications in the temperature region below 45 K.

  14. Cube texture of recrystallization in three-layer ribbon substrates composed of nickel alloys Ni-4.8 at % W/Ni-11 at % Cr/Ni-4.8 at % W

    NASA Astrophysics Data System (ADS)

    Rodionov, D. P.; Gervas'eva, I. V.; Khlebnikova, Yu. V.; Kazantsev, V. A.; Egorova, L. Yu.

    2013-09-01

    The processes of the formation of recrystallization texture in the three-layer composite Ni-4.8 at % W/Ni-11 at % Cr/Ni-4.8 at % W ribbon, which was subjected to cold rolling with degrees of deformation of 98.4-99.3% and subsequent high-temperature annealing, are studied. The composite ribbon was found to be suitable for use as a substrate in manufacturing second-generation high-temperature ribbon superconductors. The estimation of magnetic properties showed that the specific magnetization of annealed composite ribbon at operating temperatures of high-temperature superconductors is lower than that of the Ni-5 at % W ribbon, which is currently widely used in practice.

  15. Antisite Defects in Layered Multiferroic CuCr0.9In0.1P2S6

    SciTech Connect

    He, Qian; Belianinov, Alex; Dziaugys, Andrius; Maksymovych, Petro; Vysochanskii, Yulian; Kalinin, Sergei V.; Borisevich, Albina Y.

    2015-10-06

    The CuCr1-xInxP2S6 system represents a large family of metal chalcogenophosphates that are unique and promising candidates for 2D materials with functionalities such as ferroelectricity. We carried out detailed microstructural and chemical characterization of these compounds using aberration-corrected STEM, in order to understand the origin of these different ordering phenomena. Quantitative STEM-HAADF imaging and analysis identified the stacking order of an 8-layer thin flake, which leads to the identification of anti-site In3+(Cu+) doping. We believe that these findings will pave the way towards understanding the ferroic coupling phenomena in van der Waals lamellar compounds, as well as the potential applications in 2-D electronics.

  16. Preliminary Microstructural and Microscratch Results of Ni-Cr-Fe and Cr3C2-NiCr Coatings on Magnesium Substrate

    NASA Astrophysics Data System (ADS)

    Istrate, B.; Munteanu, C.; Lupescu, S.; Benchea, M.; Vizureanu, P.

    2017-06-01

    Thermal coatings have a large scale application in aerospace and automotive field, as barriers improving wear mechanical characteristics and corrosion resistance. In present research, there have been used two types of coatings, Ni-Cr-Fe, respectively Cr3C2-NiCr which were deposited on magnesium based alloys (pure magnesium and Mg-30Y master alloy). There have been investigated the microstructural aspects through scanning electronic microscopy and XRD analysis and also a series of mechanical characteristics through microscratch and indentation determinations. The results revealed the formation of some adherent layers resistant to the penetration of the metallic indenter, the coatings did not suffer major damages. Microstructural analysis highlighted the formation of Cr3C2, Cr7C3, Cr3Ni2, Cr7Ni3, FeNi3, Cr-Ni phases. Also, the apparent coefficient of friction for Ni-Cr-Fe coatings presents superior values than Cr3C2-NiCr coatings.

  17. Magnetic structure of CrSb/Sb superlattices

    NASA Astrophysics Data System (ADS)

    Dohnomae, H.; Shintaku, K.; Nakayama, N.; Shinjo, T.

    1993-09-01

    The ferromagnetic moment of CrSb/Sb superlattices originates in uncanceled magnetic moments of ultrathin antiferromagnetic CrSb layers. The existence of atomic steps should be taken into account to understand the magnetic properties.

  18. Influence of doping and doping level on magnetoelectric coupling in layered composites Tb1-xDyxFe2-y/Ba-Ti1-zMzO3+δ (M = Fe, Cr, Mn, Co)

    NASA Astrophysics Data System (ADS)

    Zhang, N.; Fan, J. F.; Cao, H. X.; Wei, J. J.

    2010-06-01

    Perovskites BaTi1-zMzO3+δ (M = Fe, Cr, Mn, Co) has been sol-gel synthesized. Their transformation point of ferroelectric to paraelectric and the latent heat of the transformation were found a little lower than those for pure BaTiO3 (BTO), respectively. Layered composites Tb1-xDyxFe2-y-BaTi1-zMzO3+δ have been fabricated. Their magnetoelectric (ME) effect has been investigated. All the bilayers containing the doped BTO displayed a stronger ME effects than that containing pure BTO does. The bilayer Tb1-xDyxFe2-y-BaTi0.99Cr0.01O3+δ was observed to show a larger ME coupling in the composites containing other doped BTO. While Tb1-xDyxFe2-y-BaTi0.985Fe0.015O3+δ showed the largest ME effects in the bilayers Tb1-xDyxFe2-y-BaTi1-zFezO3+δ (0 ≤ z ≤ 0.02). Additionally, the ME voltage coefficient for the trilayers Tb1-xDyxFe2-y-BaTi0.99M0.01O3+δ-Tb1-xDyxFe2-y was observed to be two or three times larger than that observed in the bilayers composed by the same substances. Theoretical analyses have been given for these observations. All the results suggest that the doped BTO can be a new choice of piezoelectrics in fabricating layered ME composites.

  19. Photochromic lens mirror-coated with Cr

    NASA Astrophysics Data System (ADS)

    Shin, Sungho; Lee, Myeongkyu

    2007-11-01

    We have designed and fabricated mirror-coated photochromic lenses for use in sunglasses. These lenses consisted of a Cr thin film sandwiched between two SiO2 layers on the front surface and an anti-reflection (AR) coating on the backside. The SiO2 films above and below the Cr layer were introduced as the protection and buffer layers, respectively. The AR coating was to suppress back-reflection from the lens surface. Deposition of all coating layers were carried out by an e-beam evaporator under Ar atmosphere at P = 10-5 Torr and T = 70 °C. As expected, the overall transmittance decreased with increasing Cr thickness. For a Cr layer of 5 nm thickness, it changed from about 45% in the bleached state down to 25% after exposure to sunlight. This is consistent with the transmission range typically required for sunglasses.

  20. Field-enhanced direct tunneling in ultrathin atomic-layer-deposition-grown Au-Al 2O3 -Cr metal-insulator-metal structures

    NASA Astrophysics Data System (ADS)

    Fry-Bouriaux, L.; Rosamond, M. C.; Williams, D. A.; Davies, A. G.; Wälti, C.

    2017-09-01

    Metal-insulator-metal structures based on ultrathin high-k dielectric films are underpinning a rapidly increasing number of devices and applications. Here, we report detailed electrical characterizations of asymmetric metal-insulator-metal devices featuring atomic layer deposited 2-nm-thick Al2O3 films. We find a high consistency in the current density as a function of applied electric field between devices with very different surface areas and significant asymmetries in the IV characteristics. We show by TEM that the thickness of the dielectric film and the quality of the metal-insulator interfaces are highly uniform and of high quality, respectively. In addition, we develop a model which accounts for the field enhancement due to the small sharp features on the electrode surface and show that this can very accurately describe the observed asymmetry in the current-voltage characteristic, which cannot be explained by the difference in work function alone.

  1. On the growth of carbon nanofibers on glass with a Cr layer by inductively coupled plasma chemical vapor deposition: The effect of Ni film thickness

    NASA Astrophysics Data System (ADS)

    Wei, H. W.; Tung, C. H.; Sung, M. S.; Leou, K. C.; Tsai, C. H.

    2007-12-01

    We have studied the effect of the thickness of catalytic Ni film for the growth of vertically aligned carbon nanofibers (VA-CNFs) on glass substrates coated with a conductive underlayer of Cr. Both the pretreatment process through which the catalytic Ni nanoparticles were formed and the growth of well-aligned CNFs were carried out in an inductively coupled plasma chemical vapor deposition (ICP-CVD) system. The VA-CNFs were characterized by scanning electron microscopy, Raman spectroscopy, as well as field emission measurements. The results of VA-CNF growth shows that as the Ni film thicknesses decrease, not only the length but also the density of the CNFs drop, although the density of catalytic Ni nanoparticles increases. The variation of CNF density with Ni film thicknesses is believed to be a result of the detachment of the CNFs from the substrate, caused by the electrostatic force produced by the plasma sheath electric field, as well as an ion-enhanced chemical etching effect due to atomic/ionic hydrogen, during the ICP-CVD growth. A field emission measurement apparatus based on a metallic probe of spherical anode structure was also constructed in this study. An electrostatic image model was employed to determine the electric field distribution on the cathode surface. Along with the standard F -N field emission model, the dependence of field emission current density on the cathode surface electric field, as well as an effective field enhancement factor, were extracted from the current-voltage measurement results. The threshold electric field (Ethreshold, for a current density of 1 mA/cm2) increases from 9.2 V/μm to 13.1 V/μm, and then drops to 11.5 V/μm for the CNFs with Ni film thicknesses of 20 nm, 30 nm, and 40 nm, respectively. The electrostatic model results also indicate that the 20 nm case has the greatest space-charge effect on the emission current, consistent with the growth results that the 20 nm case has the lowest CNF density. On the other hand

  2. Adjustment of temperature coefficient of resistance in NiCr/CuNi(Mn)/NiCr films

    NASA Astrophysics Data System (ADS)

    Brückner, W.; Baunack, St.; Elefant, D.; Reiss, G.

    1996-06-01

    The thin-film system Ni0.37Cr0.63/Cu0.57Ni0.42Mn0.01/Ni0.37Cr0. 63 with a typical thickness of 1 μm is used for low-ohmic precision resistors. The necessary adjustment of the temperature coefficient of resistance (TCR) by annealing has been studied by investigating the irreversible changes of the resistance during various annealing steps of NiCr/CuNi(Mn)/NiCr multilayers in comparison with single layers of CuNi(Mn) and NiCr. Auger depth profiles showed that the interdiffusion of CuNi(Mn) and NiCr results in an impoverishment of Ni in CuNi(Mn), explaining the TCR shift by comparison with data of Cu1-xNix bulk material. The decrease of the resistivity and the reduction of the width of the copper-nickel conductive layer by formation of a Ni0.6Cr0.2Cu0.2 interdiffusion zone phase (in accordance with the Cu-Ni-Cr phase diagram) cause a significant curvature of the resistance-temperature curve. As main result, it is shown that the NiCr base and cover layers and their interdiffusion with CuNi(Mn) play the decisive role in adjusting the TCR. It was checked that oxidation and topography effects have no remarkable influences.

  3. Magnetic resonance in a Cu-Cr-S structure

    SciTech Connect

    Vorotynov, A. M. Abramova, G. M.; Pankrats, A. I.; Petrakovskii, G. A.; Zharkov, S. M.; Zeer, G. M.; Tugarinov, V. I.; Rautskii, M. V.; Sokolov, V. V.

    2013-11-15

    A layered Cu-Cr-S structure composed of single-crystal CuCrS{sub 2} layers and thin CuCr{sub 2}S{sub 4} plates embedded in them has been investigated by the magnetic resonance and scanning electron microscopy methods. The Curie temperature and saturation magnetization of the spinel phase of the investigated samples have been determined. The thickness of the CuCr{sub 2}S{sub 4} layers has been estimated. The dependence of the growncrystal topology on synthesis conditions has been established. An interpretation of the anomalous behavior of the magnetostatic oscillation intensity is offered.

  4. Biocompatible Ferromagnetic Cr-Trihalide Monolayers

    NASA Astrophysics Data System (ADS)

    Sun, Qiang

    Cr with an electronic configuration of 3d54s1 possesses the largest atomic magnetic moment (6µB) of all elements in the 3d transition metal series. Furthermore, the trivalent chromium (Cr3+) is biocompatible and is widely found in food and supplements. Here using first principles calculations combined with Monte Carlo simulations based on Ising model, we systematically study a class of 2D ferromagnetic monolayers CrX3 (X = Cl, Br, I). The feasibility of exfoliation from their layered bulk phase is confirmed by the small cleavage energy and high in-plane stiffness. Spin-polarized calculations, combined with self consistently determined Hubbard U that accounts for strong correlation energy, demonstrate that CrX3 (X =Cl, Br, I) monolayers are ferromagnetic and Cr is trivalent and carries a magnetic moment of 3µB, the resulting Cr3+ ions are biocompatible. The corresponding Curie temperatures for CrCl3 CrBr3 CrI3 are are found to 66, 86, and 107 K, respectively, which can be increased to 323, 314, 293 K by hole doping. The biocompatibility and ferromagnetism render these Cr-containing trichalcogenide monolayers unique for applications.

  5. Magnetic resonance in a gallium-doped Cu-Cr-S structure

    NASA Astrophysics Data System (ADS)

    Vorotynov, A. M.; Pankrats, A. I.; Abramova, G. M.; Velikanov, D. A.; Bovina, A. F.; Sokolov, V. V.; Filatova, I. Yu.

    2016-04-01

    A layered Cu-Cr-S structure doped with Ga ions and consisting of single-crystal CuCrS2 layers, embedded with thin plates of spinel phases CuCr2S4 and CuGa x Cr2- x S4, has been studied using the magnetic resonance and magnetic susceptibility methods. The Curie temperature and the saturation magnetization of the spinel phases of the samples have been determined. The spinel phase layer thickness has been estimated.

  6. Manganese containing layer for magnetic recording media

    DOEpatents

    Lambeth, David N.; Lee, Li-Lien; Laughlin, David E.

    1999-01-01

    The present invention provides for a magnetic recording media incorporating Mn-containing layers between a substrate and a magnetic layer to provide media having increased coercivity and lower noise. The Mn-containing layer can be incorporated in a rotating, translating or stationary recording media to operate in conjunction with magnetic transducing heads for recording and reading of magnetic data, as well as other applications. The magnetic recording medium of the invention preferably includes a Co or Co alloy film magnetic layer, and Mn-containing layer, preferably comprised of VMn, TiMn, MnZn, CrMnMo, CrMnW, CrMnV, and CrMnTi, and most preferably a CrMn alloy, disposed between the substrate and the magnetic layer to promote an epitaxial crystalline structure in the magnetic layer. The medium can further include seed layers, preferably polycrystalline MgO for longitudinal media, underlayers, and intermediate layers. Underlayers and intermediate layers are comprised of materials having either an A2 structure or a B2-ordered crystalline structure disposed between the seed layer and the magnetic layer. Materials having an A2 structure are preferably Cr or Cr alloys, such as CrV, CrMo, CrW and CrTi. Materials having a B2-ordered structure having a lattice constant that is substantially comparable to that of Cr, such as those preferably selected from the group consisting of NiAl, AILCo, FeAl, FeTi, CoFe, CoTi, CoHf, CoZr, NiTi, CuBe, CuZn, A-LMn, AlRe, AgMg, and Al.sub.2 FeMn.sub.2, and is most preferably FeAl or NiAl.

  7. Magnetic and energetic properties of low-index Cr surfaces and Fe/Cr interfaces: A first-principles study

    NASA Astrophysics Data System (ADS)

    Soulairol, R.; Fu, Chu-Chun; Barreteau, C.

    2011-10-01

    Density functional theory calculations are performed to investigate the impact of magnetism on the energetics of low-index Cr surfaces and Fe/Cr interfaces, that is, Cr(100), Cr(110), Fe/Cr(100), and Fe/Cr(110). We have also determined the stability of various Cr magnetic structures, particularly the spin-density waves, in the presence of these surfaces and interfaces. We show that the most stable structure of the spin-density wave is mainly dictated by the subtle balance between bulk and surface/interface influences, and strongly dependent on the surface/interface orientation. Regarding the Cr surfaces, we confirm the role of magnetism to lower the surface energy of Cr(100) with respect to Cr(110). Among all the possible orientations of the wave vector, only the out-of-plane wave is found to be stable near Cr(100) surfaces with the high-moment sites located at the surface layer. At variance, the in-plane wave is shown to be the most stable one, consistent with experimental data for very thin Cr(110) films. Concerning the Fe/Cr interfaces, magnetic frustrations are identified to be responsible for a higher formation energy of Fe/Cr(110) compared to that of Fe/Cr(100). This unusual anisotropy of interface energies is clearly different from the corresponding interfaces between Cr and a nonmagnetic element, Cu. Two ways are suggested to relax partially the magnetic frustrations at the (110) interface and to lower its formation energy. Noncollinear magnetic configurations can be developed where local moments of Fe and Cr atoms are perpendicular to each other. Also, in order to preserve phase coherence, in-plane spin-density waves show a very stable magnetic structure with the nodes at the interface layer. The presence of low-moment sites at Fe/Cr(110) offer another way to relax the magnetic frustrations and lower the interfacial energy.

  8. Atomic scale structure investigations of epitaxial Fe/Cr multilayers

    NASA Astrophysics Data System (ADS)

    Kąc, M.; Morgiel, J.; Polit, A.; Zabila, Y.; Marszałek, M.

    2014-06-01

    Fe/Cr multilayers were deposited by molecular beam epitaxy on the MgO(1 0 0) substrate. Structural properties of the samples were analyzed by low energy electron diffraction, high resolution transmission electron microscopy (HRTEM), as well as by X-ray reflectivity, conversion electron Mössbauer spectroscopy (CEMS) and Auger electron spectroscopy. Investigations revealed multilayered system built of well-ordered Fe and Cr thin films with (1 0 0) orientation. A high geometrical perfection of the system, i.e. planar form of interfaces and reproducible thickness of layers, was also proven. Fe/Cr interface roughness was determined to be 2-3 atomic layers. CEMS studies allowed to analyze at atomic scale the structure of buried Fe/Cr interfaces, as well as to distinguish origin of interface roughness. Roughnesses resulting from interface corrugations and from the Fe-Cr interdiffusion at interfaces were observed. Fe/Cr multilayers showed strong antiferromagnetic coupling of Fe layers.

  9. In-situ transmission electron microscopy study of surface oxidation for Ni–10Cr and Ni–20Cr alloys

    SciTech Connect

    Luo, Langli; Zou, Lianfeng; Schreiber, Daniel K.; Baer, Donald R.; Bruemmer, Stephen M.; Zhou, Guangwen; Wang, Chong-Min

    2016-03-01

    The early-stage oxidation of Ni (001) thin films alloyed with 10 or 20 at% Cr at 700 °C has been directly visualized using environmental transmission electron microscopy. Independent of Cr concentration, the oxidation initiates via the nucleation of surface NiO islands and subsurface Cr2O3. The NiO grows and transitions into a continuous film, followed by the nucleation and growth of NiCr2O4 islands through the outer oxide. The Cr concentration plays a more critical role in the later stages of the oxidation. A continuous and more protective Cr2O3 sublayer is established for Ni-20at% Cr, while the Cr2O3 sublayer for Ni-10at%Cr is discontinuous for Ni-10at%Cr. Oxidation persists on the lower Cr alloy where NiO whiskers are observed to preferentially nucleate and grow from the NiCr2O4 islands. It is suggested that short-circuit diffusion of Ni occurs along the NiCr2O4 interfaces through the discontinuous Cr2O3 layer in Ni-10at%Cr to facilitate the selective nucleation of NiO whiskers on the NiCr2O4 surfaces. Conversely, the protective nature of the continuous Cr2O3 film in Ni-20at%Cr blocks this short-circuit pathway and prevents the formation of additional NiO on the surface in the early stage oxidation.

  10. Spin polarization at Fe/Cr interfaces

    NASA Astrophysics Data System (ADS)

    Pizzagalli, L.; Freyss, M.; Moraitis, G.; Stoeffler, D.; Demangeat, C.; Dreyssé, H.; Vega, A.; Miethaner, S.; Bayreuther, G.

    1997-04-01

    It is shown that contradictory experimental data on magnetic moments and spin order at Fe/Cr interfaces can be explained by structural irregularities at the interfaces. The spin-polarized electronic charge distribution was calculated by using a self-consistent tight-binding model combined with a real-space recursion method. It was used to interpret the total magnetic moment of Cr(001) films and of Cr/Fe(001) sandwiches molecular beam epitaxy grown on Fe(001) from in situ measurements with an alternating gradient magnetometer during film growth. While a strong decrease of the sample moment during Cr deposition was observed on a very smooth surface, no moment change occurred for a strongly faceted surface. The different results of both experiments are consistent with the calculations if we take into account (i) a possible ferrimagnetic c(2×2) spin configuration of a Cr monolayer on Fe(001) which might be favorable in clusters of a certain size and for high step densities; (ii) a possible interchange of one Cr and Fe monolayer at the interface; and (iii) a multidomain configuration with zero net moment of a thin Fe layer on a Cr surface due to a high step density.

  11. Spallanzani Cr. Floor

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03632 Spallanzani Cr. Floor

    This image was taken by one of the Mars Student Imaging Project (MSIP) teams. Their target is the unusual floor deposits in Spallanzani Crater. The wind may have affected the surface of the layered deposit. Small dunes have formed near the southern margin.

    Image information: VIS instrument. Latitude 57.9S, Longitude 86.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. The influence of thickness of CrN coating on the durability of hot forging dies

    NASA Astrophysics Data System (ADS)

    Smolik, Jerzy

    2011-06-01

    This article presents results which enabled the determination of the role of CrN coating and the influence of its thickness on the effectiveness of hybrid layer "nitrided layer / CrN coating" in the process of increasing the durability of forging dies. Dies coated with hybrid layers "nitrided layer / CrN coating" with various CrN coating thickness were — after different maintenance periods — subjected to metallographic testing, 3D shape testing and SEM analysis. Hardness distribution was also determined. The obtained results revealed that for all tested dies, independently from CrN coating thickness, the main mechanisms of their destruction was mechanical and thermal fatigue, and plastic deformation. It has been shown that the main role of CrN coating in the hybrid layer "nitrided layer / PVD coating" is to counteract a high temperature influence the source of which is forging on die material. In order to do so the CrN coating should be characterized by a considerably lower thermal conductivity coefficient to steel and low hardness so that it can efficiently resist fatigue processes in the forging process. Based on testing conducted by means of the sin 2 φ method, it was revealed that internal stresses are vitally important for CrN coating for fatigue resistance of hybrid layer "nitrided layer / CrN coating" during the forging process.

  13. Interlayer coupling in Fe/Cr/Gd multilayer structures

    SciTech Connect

    Drovosekov, A. B. Kreines, N. M.; Savitsky, A. O.; Kravtsov, E. A.; Blagodatkov, D. V.; Ryabukhina, M. V.; Milyaev, M. A.; Ustinov, V. V.; Pashaev, E. M.; Subbotin, I. A.; Prutskov, G. V.

    2015-06-15

    The effect of the chromium layer thickness on the magnetic state of an [Fe/Cr/Gd/Cr]{sub n} multilayer structure is studied. A series of Fe/Cr/Gd structures with Cr spacer thicknesses of 4–30 Å is studied by SQUID magnetometry and ferromagnetic resonance in the temperature range 4.2–300 K. The obtained experimental results are described in terms of an effective field model, which takes into account a biquadratic contribution to the interlayer coupling energy and a nonuniform magnetization distribution inside the gadolinium layer (which was detected earlier). Depending on the magnetic field and temperature, the following types of magnetic ordering are identified at various chromium layer thicknesses: ferromagnetic, antiferromagnetic, and canted ordering. A comparison of the experimental and calculated curves allowed us to determine the dependence of the bilinear (J{sub 1}) and biquadratic (J{sub 2}) exchange constants on chromium layer thickness t{sub Cr}. Weak oscillations at a period of about 18 Å are detected in the J{sub 1}(t{sub Cr}) dependence in the range 8–30 Å. The interlayer coupling oscillations in the system under study are assumed to be related to the RKKY exchange interaction mechanism via the conduction electrons of Cr.

  14. Magnetic properties of Al/57Fe/Cr multilayers

    NASA Astrophysics Data System (ADS)

    Jani, Snehal; Lakshmi, N.; Jain, Vishal; Reddy, V. R.; Gupta, Ajay; Venugopalan, K.

    2013-06-01

    Conversion Electron Mössbauer Spectroscopy (CEMS) and DC magnetization are used to compare magnetic properties of as-deposited multilayer (MLS) and Fe2CrAl thin film made from Al/57Fe/Cr MLS deposited by ion beam sputtering and then annealed in UHV. Interdiffusion of elements on annealing sample-1 at 500°C leads to formation of a single, disordered film of Fe2CrAl as evidenced by hyperfine field values obtained by CEMS in the film which compares well with that in bulk Fe2CrAl. CEMS also shows contributions from Fe, Fe/Cr and Fe/Al interfaces in the MLS. Saturation magnetization of as-deposited sample-1 is much less than pure Fe due to reduced Fe thickness because of interface formation and also reduction in Fe-Fe interaction due to intervening Al and Cr layers.

  15. Enhanced Electrochemical Lithium Storage Activity of LiCrO2 by Size Effect

    SciTech Connect

    Feng, G.; Li, L; Liu, J; Liu, N; Li, H; Yang, X; Huang, X; Chen, L; Nam, K; Yoon, W

    2009-01-01

    Cr8O21 was chemically lithiated using a lithium-biphenyl-dimethoxyethane solution. Lithiated Cr8O21 shows a structure in which as-formed LiCrO2 units are sandwiched between Cr2O3 superlattice layers. Chemically lithiated Cr8O21 shows a delithiation capacity of 200 mAh g-1. It means that LiCrO2 units in lithiated Cr8O21 are electrochemically active. This finding is opposite to previous reports that LiCrO2 materials have very poor Li-storage capacities. Our new result implies that LiCrO2 with extremely small domain size could show enhanced reactivity. This proposal is proved unambiguously by the fact that LiCrO2 powder materials with smaller grain size (<20 nm) show much higher capacities than LiCrO2 materials with larger grain size (>50 nm). In addition, it is found that the cation mixing is more significantly in LiCrO2 materials with smaller grain size, which seems a key factor for the storage and transport of lithium in layered Cr-based materials. The cation mixing may also explain the result that the lattice parameters of LiCrO2 do not change significantly upon lithium extraction and insertion, investigated by in situ and ex situ XRD techniques.

  16. Sorption of Pb(II), Cr(III), Cu(II), As(III) to peat, and utilization of the sorption properties in industrial waste landfill hydraulic barrier layers.

    PubMed

    Koivula, Minna P; Kujala, Kauko; Rönkkömäki, Hannu; Mäkelä, Mauri

    2009-05-15

    The low conductivity landfill barrier layers protect the groundwater and soil by limiting the water flow through the bottom layers of the landfill material. Many materials used in hydraulic barrier layers also have sorption properties which could be used to reduce environmental risks. The adsorption of lead, chromium, copper, and arsenic to peat was studied with a batch-type test and a column test for compacted peat, both without pH adjustment in acidic conditions. Peat adsorbed all the metals well, 40000mg/kg of lead, 13000mg/kg of chromium, and 8400mg/kg of copper in the column test. Arsenic was only tested in a batch-type test, and in that peat adsorbed 60mg/kg of arsenic. The column test showed heavy metals to be adsorbed on the surface layers of the compacted peat sample, on the first centimeter of the sample. The adsorption was much greater in the column test than in the batch-type test, partly due to the different pH conditions and the buffer capacity of the peat in the column test. The liquid/solid ratio of the column experiment represented a time period of approximately 40 years in a landfill, under Finnish climate conditions. The hydraulic conductivity of the peat decreased as it was compressed, but it already met the hydraulic conductivity limits set by European Union legislation for the hydraulic barrier layer (1x10(-9)m/s at a pressure of 150kPa for a 5-m layer), with a pressure of 50kPa. The results show that peat would be an excellent material to construct compacted, low hydraulic conductivity layers with adsorption properties in, e.g. industrial waste landfills.

  17. Microstructure Effect of Intermediate Coat Layer on Corrosion Behavior of HVAF-Sprayed Bi-Layer Coatings

    NASA Astrophysics Data System (ADS)

    Sadeghimeresht, Esmaeil; Markocsan, Nicolaie; Nylén, Per

    2017-01-01

    The inherent pores and carbides of Cr3C2-NiCr coatings significantly reduce the corrosion resistance, the former by providing preferential paths for ion diffusion and the latter by forming cathodic sites in galvanic couples (between NiCr and Cr3C2). Adding a dense intermediate layer (intermediate coat layer) between the Cr3C2-NiCr coating (top coat) and substrate increases the corrosion protection of the coating if the layer acts as cathode in connection to the top coat. In the present work, NiCr, NiAl, and NiCoCrAlY layers were deposited by high-velocity air-fuel process as intermediate coat layers for the Cr3C2-NiCr top coat. Effects of coating microstructure on corrosion behavior of single- and bi-layer coatings were studied by open-circuit potential and polarization tests in 3.5 wt.% NaCl at room temperature. A zero resistance ammeter technique was used to study the galvanic corrosion of the coupled top and intermediate coat layers. Methods such as SEM and XRD were employed to characterize the as-sprayed and corroded coatings and to investigate the corrosion mechanisms. The results showed that the NiCoCrAlY coating not only presented a more positive corrosion potential ( Ecorr) than the Cr3C2-NiCr coating, but also provided a better passive layer than the single-phase NiCr and NiAl coatings.

  18. Cr segregation at the FeCr surface and the origin of corrosion resistance in ferritic steels

    SciTech Connect

    De Caro, M S; Morse, B; Egiebor, N; Farmer, J; Caro, A

    2008-11-22

    Structural materials in Gen-IV nuclear reactors will face severe conditions of high operating temperatures, high neutron flux exposure, and corrosive environment. Radiation effects and corrosion and chemical compatibility issues are factors that will limit the materials lifetime. Low-chromium (9-12 Cr wt.%) ferritic martensitic (F/M) steels are being considered as possible candidates because they offer good swelling resistance and good mechanical properties under extreme conditions of radiation dose and irradiation temperature. The surface chemistry of FeCr alloys, responsible for the corrosion properties, is complex. It exists today a controversy between equilibrium thermodynamic calculations, which suggest Cr depletion at the surface driven by the higher surface energy of Cr, and experimental data which suggest the oxidation process occurs in two stages, first forming a Fe-rich oxide, followed by a duplex oxide layer, and ending with a Cr-rich oxide. Moreover, it has been shown experimentally that corrosion resistance of F/M steels depends significantly on Cr content, increasing with increasing Cr content and with a threshold around 10% Cr, below which, the alloy behaves as pure Fe. In an attempt to rationalize these two contradicting observations and to understand the physical mechanism behind corrosion resistance in these materials we perform atomistic simulations using our FeCr empirical potential and analyze Cr equilibrium distributions at different compositions and temperatures in single and polycrystalline samples. We analyze the controversy in terms of thermodynamic and kinetic considerations.

  19. A Novel Single-Step Surface-Treatment Process for Forming Cr-Nitride Coatings on Steels

    NASA Astrophysics Data System (ADS)

    Lu, X. J.; Xiang, Z. D.

    2017-02-01

    A novel single-step surface-treatment process is demonstrated for forming Cr-nitride coatings on steels. The process was carried out at 1327 K (1100 °C) for two steel grades with differing carbon concentrations. For steel grade with 0.42 to 0.5C (wt pct), the coatings formed consisted of an outer Cr2N layer and an inner Cr-carbide layer with a Cr-enriched interdiffusion zone underneath. However, for steel grade with C ≤ 0.17 wt pct, the inner Cr-carbide layer was absent.

  20. Modelling the Cosmic Ray (CR) Effect in the Polar Ionosphere with Account of Anomalous CR-Component

    NASA Astrophysics Data System (ADS)

    Mateev, L. N.

    1997-01-01

    The lower part of the D-region is created by cosmic rays which form there an independent Cosmic Ray (CR)-layer. The CR-layer is important for the propagation of the long and very long radio waves. For that reason the rates investigation of the ionization rates in the middle atmosphere is significant for the understanding of the electric and other physical and chemical processes there. The CR-layer is a boundary layer between the ionosphere and the neutral gas in the stratosphere. Actually a few models for cosmic ray influence on the middle latitude ionosphere exist. But the effects of the high energy cosmic particles are much more essential in the polar ionosphere, because of the comparatively weak geomagnetic cut-offs. For that reason in the present paper a more adequate model of high latitude ionization of cosmic rays is proposed. The model will include the recently discovered anomalous component of cosmic rays.

  1. Kinetics of borided 31CrMoV9 and 34CrAlNi7 steels

    SciTech Connect

    Efe, Goezde Celebi; Ipek, Mediha; Ozbek, Ibrahim; Bindal, Cuma

    2008-01-15

    In this study, kinetics of borides formed on the surface of 31CrMoV9 and 34CrAlNi7 steels borided in solid medium consisting of Ekabor II at 850-900-950 deg. C for 2, 4, 6 and 8 h were investigated. Scanning electron microscopy and optical microscopy examinations showed that borides formed on the surface of borided steels have columnar morphology. The borides formed in the coating layer confirmed by X-ray diffraction analysis are FeB, Fe{sub 2}B, CrB, and Cr{sub 2}B. The hardnesses of boride layers are much higher than that of matrix. It was found that depending on process temperature and time the fracture toughness of boride layers ranged from 3.93 to 4.48 MPa m{sup 1/2} for 31CrMoV9 and from 3.87 to 4.40 MPa m{sup 1/2} for 34CrAlNi7 steel. Activation energy, growth rate and growth acceleration of boride layer calculated according to these kinetic studies revealed that lower activation energy results in the fast growth rate and high growth acceleration.

  2. First insights of Cr speciation in leached Portland cement using X-ray spectromicroscopy.

    PubMed

    Rose, Jérôme; Bénard, Anne; Susini, Jean; Borschneck, Daniel; Hazemann, Jean-Louis; Cheylan, Pascal; Vichot, Angélique; Bottero, Jean-Yves

    2003-11-01

    X-ray spectromicroscopy has been successfully applied to determine the evolution of the Cr oxidation state in Portland cement during leaching experiments. To our knowledge, this is the first study that demonstrates the possibility to study the chromium oxidoreduction phenomena in cement materials at natural Cr concentration (approximately 60 ppm) and at the micron scale. Line scans of Cr for Cr(VI) doped (2000 ppm) and undoped samples indicate that the altered layer (0-1000 microm from the surface) is characterized by a lower amount of Cr as compared to the core part, whereas an accumulation appears in the intermediate region (1000-1300 microm). This Cr-rich interface could correspond to an accumulation of ettringite (3CaO x Al2O3 x 3CaSO4 x 32H2O) as reported by previous works. This mineral exhibits the property to incorporate Cr(III) and Cr(VI) by replacement of aluminum and sulfate, respectively, in the structure. The most surprising result concerns the evolution of the Cr(VI)/Cr(tot) ratio along the line spectra, which is constant from the altered layer to the core (both for doped and undoped samples). This means thatthe same amounts of Cr(VI) and Cr(tot) are released during leaching. Even for the undoped sample, Cr(VI) was detected in the altered layer at 40 microm from the surface. This result is not in perfect agreement with literature, which usually states that Cr(VI) is mainly leached out. Although this result must be confirmed, it clearly indicates that Cr(VI) may be less mobile than predicted by models. An attempt is made to identify potential Cr(VI) fixation phases.

  3. Heterogeneity of Cr in Mytilus edulis: Implications for the Cr isotope system as a paleo-redox proxy

    NASA Astrophysics Data System (ADS)

    Bruggmann, Sylvie; Klaebe, Robert; Frei, Robert

    2017-04-01

    Changes in 53Cr/52Cr (δ53Cr) values recorded by biogenic carbonates are emerging as a proxy for variations in the redox state of the Earth's oceans and atmosphere (e.g. [1], [2]). We investigate the ability of modern carbonate shells (Mytilus edulis) to record the δ53Cr composition of ambient seawater in order to assess their utility as a paleo-redox proxy. Samples of cultivated M. edulis from the Kiel Fjord, Germany, were analyzed for their δ53Cr composition and Cr concentrations [Cr] using TIMS. To disentangle the pathway of Cr into the carbonate shell, a series of step-digestions of their organic outer sheaths (periostraca) and their intra-layer composition were performed. Bulk analyses of specimens with intact periostraca returned 16 to 34 ppb Cr with δ53Cr values ranging from 0.28 to 0.65 ± 0.1 (2SE) and thus fall within the range of surface seawater from the Baltic Sea (0.3 - 0.6 \\permil [3]). Partial removal of periostraca resulted in lower [Cr] (5 to 17 ppb) and δ53Cr values (-0.05 ± 0.15 \\permil). These results show a positive correlation between the amount of organic matter present in a sample and both [Cr] and δ53Cr (n = 9). With nearly complete removal of periostraca, the remaining [Cr] is significantly lower (less than 5 ppb) and can only be accessed by incineration of the carbonate shell. The correlation between [Cr], δ53Cr and the amount of periostracum present in bulk samples indicates that a significant proportion of preserved Cr may be associated with the organic outer sheath. The Cr endmember accessed after incineration is less likely associated with the carbonate crystal lattice. Instead, the δ53Cr values obtained after incineration are similar to those reported from terrestrial rocks, suggesting the influence of detrital particles. Alternatively, Cr may be reduced and subsequently re-oxidized during the mineralization of biogenic carbonates [4]. Seasonal changes in primary productivity in seawater may further influence the shell

  4. Influence of different stoichiometric Cr-oxides created via oxygen ion-beam bombardment on the magnetism of the NiFe/Cr-oxide exchange-biased systems

    NASA Astrophysics Data System (ADS)

    Zheng, Chao; Lo, Wen-Tzu; Hsu, Hsun-Feng; Wroczynskyj, Yaroslav; Lin, Ko-Wei; van Lierop, Johan; Pong, Philip W. T.

    2017-09-01

    In exchange-biased systems, antiferromagnetic Cr2O3 has drawn intensive attention because of its highly anisotropic structure. However, other Cr-oxide phases can be formed during fabrication. The influence of different stoichiometric Cr-oxides on the magnetism of the NiFe/Cr-oxide bilayers was studied. We find that paramagnetic CrO3 grains could promote the formation of domain states in the Cr-oxide layer by magnetically isolating antiferromagnetic domains. These domain states gave rise to an excess of irreversible magnetic moments at the NiFe/Cr-oxide interface, causing a nontrivial increase in the exchange bias. The presence of ferromagnetic CrO2 grains in the Cr-oxide layer introduced abundant magnetic disorders. These magnetic disorders acted as pinning sites and impeded the domain-wall motion, which resulted in an increase of the coercivity. These results indicate that the magnetism of the NiFe/Cr-oxide bilayers can be remarkably affected by different Cr-oxide phases, enabling control of both the coercivity and exchange bias and providing a possible route to improve the performance of exchange-biased devices.

  5. Reduction of Cr(VI) to Cr(III) by green rust - sulphate

    NASA Astrophysics Data System (ADS)

    Skovbjerg, L.; Stipp, S.

    2003-04-01

    Chromium is widely used in industrial processes such as leather tanning, electro-plating and as colour pigments. Unfortunately, hexavalent chromium is both toxic and very soluble so it can be a problem for groundwater resources. Given the right redox conditions, however, Cr(VI) can be reduced to trivalent chromium, which is much less soluble and is an essential trace nutrient. Fe(II), an element common in soil and sediments under anaerobic conditions, can serve as a reducing agent for Cr(VI). Green Rust (GR) is a layered Fe(II),Fe(III)-hydroxide with various anions compensating charge in the interlayers. It is very effective in reducing Cr(VI) to Cr(III). GR exists in nature and is thought to be precursor for the formation of Fe(III)-oxides and oxyhydroxides at the redox boundary. It may be that the formation of GR is a key process in the effectiveness of reactive barriers for groundwater remediation that are based on Fe(0). The purpose of this work is to investigate the mechanisms controlling Cr(VI) reduction by Green Rust, to examine the effect of Cr adsorption and incorporation on GR morphology and composition, and to define the role of parameters such as interlayer anion, initial Cr(VI) concentration and time. We are using freshly synthesised material that has not been dried to avoid structural changes that may accompany dehydration and rehydration. X-Ray Diffraction (XRD) is used to characterise mineral structural changes and Atomic Force Microscopy (AFM), to examine changes in morphology as reactions take place. By adjusting the concentration of Cr(VI), we can control the rate of surface change and we can observe the nanoscale particles directly.

  6. Superemission of Cr nanolayers

    SciTech Connect

    Khmelinskii, Igor; Makarov, Vladimir

    2016-08-15

    Highlights: • Development of novel nanodevices for superemission generation. • Development of nanolasers based on metal nanofilms. • Development of theory of nanolasers based on metal nanofilms. - Abstract: We continue our studies of metal nanolayers started earlier [1]. Presently, we investigate absorption, emission and superemission in Cr nanolayers. We provide experimental estimates of the energy density and power density of superemission of Cr nanolayers, along with estimates of the diffraction-limited light divergence. We report that the divergence of the superemission along the direction normal to the nanolayer corresponds to that of a point source, with the divergence angle of ca. 0.2 rad. Additionally, we report surprising long-range transfer of the excitation energy in Cr metal films, at macroscopic distances of 1 cm.

  7. Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: highly active visible light photocatalysts with improved chemical stability.

    PubMed

    Gunjakar, Jayavant L; Kim, Tae Woo; Kim, Hyo Na; Kim, In Young; Hwang, Seong-Ju

    2011-09-28

    Mesoporous layer-by-layer ordered nanohybrids highly active for visible light-induced O(2) generation are synthesized by self-assembly between oppositely charged 2D nanosheets of Zn-Cr-layered double hydroxide (Zn-Cr-LDH) and layered titanium oxide. The layer-by-layer ordering of two kinds of 2D nanosheets is evidenced by powder X-ray diffraction and cross-sectional high resolution-transmission electron microscopy. Upon the interstratification process, the original in-plane atomic arrangements and electronic structures of the component nanosheets remain intact. The obtained heterolayered nanohybrids show a strong absorption of visible light and a remarkably depressed photoluminescence signal, indicating an effective electronic coupling between the two component nanosheets. The self-assembly between 2D inorganic nanosheets leads to the formation of highly porous stacking structure, whose porosity is controllable by changing the ratio of layered titanate/Zn-Cr-LDH. The resultant heterolayered nanohybrids are fairly active for visible light-induced O(2) generation with a rate of ∼1.18 mmol h(-1) g(-1), which is higher than the O(2) production rate (∼0.67 mmol h(-1) g(-1)) by the pristine Zn-Cr-LDH material, that is, one of the most effective visible light photocatalysts for O(2) production, under the same experimental condition. This result highlights an excellent functionality of the Zn-Cr-LDH-layered titanate nanohybrids as efficient visible light active photocatalysts. Of prime interest is that the chemical stability of the Zn-Cr-LDH is significantly improved upon the hybridization, a result of the protection of the LDH lattice by highly stable titanate layer. The present findings clearly demonstrate that the layer-by-layer-ordered assembly between inorganic 2D nanosheets is quite effective not only in improving the photocatalytic activity of the component semiconductors but also in synthesizing novel porous LDH-based hybrid materials with improved chemical

  8. Crystal structure and magnetic properties of Fe/Cr/Gd superlattices

    NASA Astrophysics Data System (ADS)

    Ryabukhina, M. V.; Kravtsov, E. A.; Naumova, L. I.; Proglyado, V. V.; Khaidukov, Yu. N.; Ustinov, V. V.

    2017-02-01

    Results of investigations of structural and magnetic properties of Fe/Cr/Gd superlattices that differ in the thicknesses of the Cr interlayer have been reported. The insertion of the Cr interlayer between Gd and Fe layers has been found to lead to structural changes in Gd layers and the appearance of an additional fcc phase in them along with the main hcp phase. The new fcc phase is uniformly distributed across the thickness of the layer and is not localized near layer boundaries or in the center of Gd layers. Polarized-neutron reflectometry was used to show that the aforementioned structural changes are accompanied by a substantial (two-fold to threefold) decrease in the average magnetization of gadolinium over a wide temperature range. Near interfaces of the Gd layer, a layer appears that is two-to-three monatomic layers thick and characterized by increased magnetic moment.

  9. Cr incorporated phase transformation in Y2O3 under ion irradiation

    DOE PAGES

    Li, Nan; Yadav, Satyesh Kumar; Xu, Yun; ...

    2017-01-16

    Under irradiation, chemical species can redistribute in ways not expected from equilibrium behavior. In oxide-dispersed ferritic alloys, the phenomenon of irradiation-induced Cr redistribution at the metal/oxide interfaces has drawn recent attention. Here, the thermal and irradiation stability of the FeCr/Y2O3 interface has been systematically studied. Trilayer thin films of 90 nm Fe - 20 at.% Cr (1st layer)/100 nm Y2O3 (2nd layer)/135 nm Fe - 20 at.% Cr (3rd layer) were deposited on MgO substrates at 500 °C. After irradiation, Cr diffuses towards and enriches the FeCr/Y2O3 interface. Further, correlated with Cr redistributed into the oxide, an amorphous layer ismore » generated at the interface. In the Y2O3 layer, the original cubic phase is observed to transform to the monoclinic phase after irradiation. Meanwhile, nanosized voids, with relatively larger size at interfaces, are also observed in the oxide layer. First-principles calculations reveal that Cr substitution of Y interstitials in Y2O3 containing excess Y interstitials is favored and the irradiation-induced monoclinic phase enhances this process. Lastly, our findings provide new insights that may aid in the development of irradiation resistant oxide-dispersed ferritic alloys.« less

  10. Cr incorporated phase transformation in Y2O3 under ion irradiation

    PubMed Central

    Li, N.; Yadav, S. K.; Xu, Y.; Aguiar, J. A.; Baldwin, J. K.; Wang, Y. Q.; Luo, H. M.; Misra, A.; Uberuaga, B. P.

    2017-01-01

    Under irradiation, chemical species can redistribute in ways not expected from equilibrium behavior. In oxide-dispersed ferritic alloys, the phenomenon of irradiation-induced Cr redistribution at the metal/oxide interfaces has drawn recent attention. Here, the thermal and irradiation stability of the FeCr/Y2O3 interface has been systematically studied. Trilayer thin films of 90 nm Fe - 20 at.% Cr (1st layer)/100 nm Y2O3 (2nd layer)/135 nm Fe - 20 at.% Cr (3rd layer) were deposited on MgO substrates at 500 °C. After irradiation, Cr diffuses towards and enriches the FeCr/Y2O3 interface. Further, correlated with Cr redistributed into the oxide, an amorphous layer is generated at the interface. In the Y2O3 layer, the original cubic phase is observed to transform to the monoclinic phase after irradiation. Meanwhile, nanosized voids, with relatively larger size at interfaces, are also observed in the oxide layer. First-principles calculations reveal that Cr substitution of Y interstitials in Y2O3 containing excess Y interstitials is favored and the irradiation-induced monoclinic phase enhances this process. Our findings provide new insights that may aid in the development of irradiation resistant oxide-dispersed ferritic alloys. PMID:28091522

  11. Cr incorporated phase transformation in Y2O3 under ion irradiation

    NASA Astrophysics Data System (ADS)

    Li, N.; Yadav, S. K.; Xu, Y.; Aguiar, J. A.; Baldwin, J. K.; Wang, Y. Q.; Luo, H. M.; Misra, A.; Uberuaga, B. P.

    2017-01-01

    Under irradiation, chemical species can redistribute in ways not expected from equilibrium behavior. In oxide-dispersed ferritic alloys, the phenomenon of irradiation-induced Cr redistribution at the metal/oxide interfaces has drawn recent attention. Here, the thermal and irradiation stability of the FeCr/Y2O3 interface has been systematically studied. Trilayer thin films of 90 nm Fe - 20 at.% Cr (1st layer)/100 nm Y2O3 (2nd layer)/135 nm Fe - 20 at.% Cr (3rd layer) were deposited on MgO substrates at 500 °C. After irradiation, Cr diffuses towards and enriches the FeCr/Y2O3 interface. Further, correlated with Cr redistributed into the oxide, an amorphous layer is generated at the interface. In the Y2O3 layer, the original cubic phase is observed to transform to the monoclinic phase after irradiation. Meanwhile, nanosized voids, with relatively larger size at interfaces, are also observed in the oxide layer. First-principles calculations reveal that Cr substitution of Y interstitials in Y2O3 containing excess Y interstitials is favored and the irradiation-induced monoclinic phase enhances this process. Our findings provide new insights that may aid in the development of irradiation resistant oxide-dispersed ferritic alloys.

  12. Ferromagnetic resonance studies of exchange coupled ultrathin Py/Cr/Py trilayers

    NASA Astrophysics Data System (ADS)

    Topkaya, R.; Erkovan, M.; Öztürk, A.; Öztürk, O.; Aktaş, B.; Özdemir, M.

    2010-07-01

    Magnetic properties of ultrathin Py/Cr/Py trilayers have been investigated as a function of Cr spacer layer thickness by using ferromagnetic resonance (FMR) and vibrating sample magnetometer (VSM) techniques. The Cr spacer layer thickness was increased from 4 to 40 Å with 1 Å steps to determine the dependence of interlayer exchange coupling between ferromagnetic layers on the spacer layer thickness. Two strong and well resolved peaks were observed which correspond to a strong (acoustic) and weak (optic) modes of magnetization precession in the effective dc field due to the exciting external microwave field as the external dc field orientation comes close to the film normal. The separation of the two modes in the field axis depends on the thickness of Cr spacer layer. An interchange in the relative positions of the acoustic and optic modes has been observed for a particular thickness of Cr spacer layer as well. A computer program for magnetically exchange coupled N magnetic layers was written to simulate the experimental FMR spectra and to obtain the magnetic parameters of ultrathin Py/Cr/Py trilayers. FMR data have been analyzed from every aspect by using this program and interlayer exchange coupling constant was calculated for the prepared structures. It was found that the relative position of the peaks depends on the nature (sign) of the interlayer exchange coupling between ferromagnetic layers through Cr spacer layer. In Py/Cr/Py trilayers, strength of the interlayer exchange coupling constant oscillates and changes its sign with Cr spacer layer thickness with a period of about 11 Å.

  13. Reflectivity and structural evolution of Cr/Sc and nitrogen containing Cr/Sc multilayers during thermal annealing

    SciTech Connect

    Eriksson, Fredrik; Ghafoor, Naureen; Hultman, Lars; Birch, Jens

    2008-09-15

    It is shown that the thermal stability in vacuum of Cr/Sc multilayer thin films used as reflective optical components in soft x-ray instrumentation has substantial dependence on incorporation of N. The thermal stability is increased by incorporating 34 at.% of N in Cr/Sc multilayers. A pure Cr/Sc multilayer x-ray mirror starts a continuous degradation already at {approx}100 deg. C with a complete destruction of the multilayer at 500 deg. C. The resulting structure is a mixture of Cr and Sc nanocrystallites. The degradation can be described by linear diffusion theory and is suggested to be due to the formation of uniformly distributed phase-separated nanocrystallites followed by an Ostwald ripening process with an apparent activation energy of 0.5 eV. At the multilayer-substrate interface, a 7 nm thin Sc-Si layer is formed which effectively hinders indiffusion of Si and outdiffusion of Cr and Sc. A nitrided multilayer, initially consisting of crystalline fcc CrN{sub x} and fcc ScN{sub y} layers (x and y<1), is observed to improve in structural quality up to {approx}250 deg. C where it is stable for more than 12 h. At {approx}330 deg. C, the multilayer separates into regions with two multilayer periods, differing by less than 0.04 nm, which are stable at 420 deg. C over an extended period of time >40 h. It is proposed that the separation into the different multilayer periods is a consequence of redistribution of N within the Cr layers. Sc is observed to be stabilized in the ScN layers, which, in turn, inhibit the formation of a Sc-Si barrier layer at the substrate leading to a strong exchange of Si and Cr across the film substrate. This leads to a Cr-Si/ScN layered structure close to the substrate and chromium silicide crystallites inside the substrate. Close to the top of the multilayer, a CrN/ScN multilayer appears to be retained.

  14. Growth and Magnetic Properties of Zincblende CrSb Epilayers on Relaxed and Strained (In, Ga)As Buffers

    NASA Astrophysics Data System (ADS)

    Deng, Jia-Jun; Zhao, Jian-Hua; Bi, Jing-Feng; Zheng, Yu-Hong; Jia, Quan-Jie; Niu, Zhi-Chuan; Wu, Xiao-Guang; Zheng, Hou-Zhi

    2006-02-01

    Zincblende CrSb (zb-CrSb) layers with room-temperature ferromagnetism have been grown on relaxed and strained (In,Ga)As buffer layers epitaxially prepared on (001) GaAs substrates by molecular-beam epitaxy. The structural characterizations of CrSb layers fabricated under the two cases are studied by using synchrotron grazing incidence x-ray diffraction (GID). The results of GID experiments indicate that no sign of second phase exists in all the zb-CrSb layers. Superconducting quantum interference device measurements demonstrate that the thickness of zb-CrSb layers grown on both relaxed and strained (In,Ga)As buffer layers can be increased to ~12 monolayers (~3.6 nm), compared to ~3 monolayers (~1 nm) on GaAs directly.

  15. Segregation, precipitation, and α -α' phase separation in Fe-Cr alloys

    NASA Astrophysics Data System (ADS)

    Kuronen, A.; Granroth, S.; Heinonen, M. H.; Perälä, R. E.; Kilpi, T.; Laukkanen, P.; Lâng, J.; Dahl, J.; Punkkinen, M. P. J.; Kokko, K.; Ropo, M.; Johansson, B.; Vitos, L.

    2015-12-01

    Iron-chromium alloys, the base components of various stainless steel grades, have numerous technologically and scientifically interesting properties. However, these features are not yet sufficiently understood to allow their full exploitation in technological applications. In this work, we investigate segregation, precipitation, and phase separation in Fe-Cr systems analyzing the physical mechanisms behind the observed phenomena. To get a comprehensive picture of Fe-Cr alloys as a function of composition, temperature, and time the present investigation combines Monte Carlo simulations using semiempirical interatomic potential, first-principles total energy calculations, and experimental spectroscopy. In order to obtain a general picture of the relation of the atomic interactions and properties of Fe-Cr alloys in bulk, surface, and interface regions several complementary methods have to be used. Using the exact muffin-tin orbitals method with the coherent potential approximation (CPA-EMTO) the effective chemical potential as a function of Cr content (0-15 at. % Cr) is calculated for a surface, second atomic layer, and bulk. At ˜10 at. % Cr in the alloy the reversal of the driving force of a Cr atom to occupy either bulk or surface sites is obtained. The Cr-containing surfaces are expected when the Cr content exceeds ˜10 at. %. The second atomic layer forms about a 0.3 eV barrier for the migration of Cr atoms between the bulk and surface atomic layer. To get information on Fe-Cr in larger scales we use semiempirical methods. However, for Cr concentration regions less than 10 at. %, the ab initio (CPA-EMTO) result of the important role of the second atomic layer to the surface is not reproducible from the large-scale Monte Carlo molecular dynamics (MCMD) simulation. On the other hand, for the nominal concentration of Cr larger than 10 at. % the MCMD simulations show the precipitation of Cr into isolated pockets in bulk Fe-Cr and the existence of the upper limit of

  16. Magnetic phase transitions in epitaxial Fe/Cr superlattices

    SciTech Connect

    Fullerton, E.E.

    1995-07-01

    Fe/Cr superlattices exhibit a variety of intriguing magnetic properties not observed in bulk materials. Examples include oscillatory interlayer coupling and giant magnetoresistance. Growth of epitaxial superlattices allows the interlayer coupling and magnetic anisotropy to be tailored to probe rather subtle magnetic ordering transitions of thin-film antiferromagnets. The author discusses two such transitions, the surface spin-flop transition in Fe/Cr(211) superlattices and the Neel transition of thin Cr layers in proximity with Fe in Fe/Cr(001) superlattices. The surface spin-flop transition is a first-order, field-induced phase transition in antiferromagnets with uniaxial magnetic anisotropy and the field applied along the easy direction. In Fe/Cr(100) superlattices, the antiferromagnetic ordering of the Cr spacers results in anomalies in a variety of physical properties. The transition temperature is strongly Cr thickness dependent. A `transition-temperature shift exponent` is extracted from the data in the thick Cr regime (< 160 {angstrom}) and discussed in terms of a combination of finite-size and spin-frustration effects.

  17. Calcium polysulfide treatment of Cr(VI)-contaminated soil.

    PubMed

    Chrysochoou, Maria; Ferreira, Daniel R; Johnston, Chad P

    2010-07-15

    Batch treatability studies for a Cr(VI)-contaminated glacial soil from a Cr plating facility were conducted using 1X and 2X the stoichiometric ratio of calcium polysulfide (CPS). The pH of the treated soil increased from 6 to 11 upon CPS addition, but progressively returned to 8-8.5 over the course of 1 year. The 1X dosage maintained a highly reducing environment up to 21 days of monitoring with the samples exposed to atmospheric oxygen, while 2X was reducing up to 180 days of curing. The EPA regulatory method for solid Cr(VI) could not reliably predict Cr(VI) in the treated solid due to ongoing reduction during the test. SPLP results showed that the CPS created an apparent Cr(VI) mobilization during the first 60 days of treatment, with subsequent decrease in soluble Cr(VI) up to 1 year of monitoring. Synchrotron micro-X-ray analyses at 60 days curing showed that Cr(VI) was predominantly bound as highly insoluble PbCrO(4) that precipitated in the interstitial pores of the soil, with very little to no Cr(VI) associated with the abundant iron oxyhydroxides. Despite its spatial accessibility and due to its low solubility, PbCrO(4) was recalcitrant to treatment, which proceeded only very slowly as judged by the SPLP data. It is concluded that, while CPS has a long residence time in the environment and is a promising reductant, in situ reduction is not an efficient treatment method for soils with highly insoluble Cr(VI) compounds, especially in surficial layers such as the one studied.

  18. The stability of DLC film on nitrided CoCrMo alloy in phosphate buffer solution

    NASA Astrophysics Data System (ADS)

    Zhang, T. F.; Liu, B.; Wu, B. J.; Liu, J.; Sun, H.; Leng, Y. X.; Huang, N.

    2014-07-01

    CoCrMo alloy is often used as the material for metal artificial joint, but metal debris and metal ions are the main concern on tissue inflammation or tissue proliferation for metal prosthesis. In this paper, nitrogen ion implantation and diamond like carbon (DLC) film composite treatment was used to reduce the wear and ion release of biomedical CoCrMo substrate. The mechanical properties and stability of N-implanted/DLC composite layer in phosphate buffer solution (PBS) was evaluated to explore the full potential of N-implanted/DLC composite layer as an artificial joint surface modification material. The results showed that the DLC film on N implanted CoCrMo (N-implanted/DLC composite layer) had the higher surface hardness and wear resistance than the DLC film on virgin CoCrMo alloy, which was resulted from the strengthen effect of the N implanted layer on CoCrMo alloy. After 30 days immersion in PBS, the structure of DLC film on virgin CoCrMo or on N implanted CoCrMo had no visible change. But the adhesion and corrosion resistance of DLC on N implanted CoCrMo (N-implanted/DLC composite layer) was weakened due to the dissolution of the N implanted layer after 30 days immersion in PBS. The adhesion reduction of N-implanted/DLC composite layer was adverse for in vivo application in long term. So researcher should be cautious to use N implanted layer as an inter-layer for increasing CoCrMo alloy load carrying capacity in vivo environment.

  19. Investigation of magnetic properties and electronic structure of layered-structure borides AlT{sub 2}B{sub 2} (T=Fe, Mn, Cr) and AlFe{sub 2–x}Mn{sub x}B{sub 2}

    SciTech Connect

    Chai, Ping; Stoian, Sebastian A.; Tan, Xiaoyan; Dube, Paul A.; Shatruk, Michael

    2015-04-15

    The ternary phases AlT{sub 2}B{sub 2} (T=Fe, Mn, Cr) and quaternary phases AlFe{sub 2–x}Mn{sub x}B{sub 2} have been synthesized by arc-melting and characterized by powder X-ray diffraction, magnetic measurements, Mössbauer spectroscopy, and electronic band structure calculations. All the compounds adopt the AlFe{sub 2}B{sub 2}-type structure, in which infinite zigzag chains of B atoms are connected by Fe atoms into [Fe{sub 2}B{sub 2}] slabs that alternate with layers of Al atoms along the b axis. The magnetic measurements reveal that AlFe{sub 2}B{sub 2} is a ferromagnet with T{sub C}=282 K while AlMn{sub 2}B{sub 2} and AlCr{sub 2}B{sub 2} do not show magnetic ordering in the studied temperature range of 1.8–400 K. A systematic investigation of solid solutions AlFe{sub 2−x}Mn{sub x}B{sub 2} showed a non-linear change in the structural and magnetic behavior. The ferromagnetic ordering temperature is gradually decreased as the Mn content (x) increases. The Mössbauer spectra reveal the presence of non-magnetic (NM) and ferromagnetic (FM) spectral components in all Mn-containing samples, with the amount of NM fraction increasing as the Mn content increases. While for the AlFe{sub 2−x}Mn{sub x}B{sub 2} samples with x=0.0 and 0.4 the hyperfine splitting of the FM spectral component collapses at temperatures close to the Curie temperatures determined from the magnetic measurements, for the x=1.2 and 1.6 samples the FM fraction exhibits a sizable unquenched hyperfine splitting at room temperature, a finding that is inconsistent with the observed magnetic properties. Along with the increase in the amount of the NM fraction, this observation suggests formation of Fe-rich and Mn-rich regions in the structure of the solid solutions. Quantum-chemical calculations and crystal orbital Hamilton population analysis provide a clear explanation of the distinction in properties for this series of compounds and also reveal the importance of electronic factors in modifying the

  20. X-Ray Diffraction and Electron Microscopy Study of Cr/Sb Multilayered Films

    NASA Astrophysics Data System (ADS)

    Dohnomae, Hitoshi

    1994-03-01

    Structures of [Cr(2 Å)/Sb(50 Å)] n multilayered films have been investigated by X-ray diffraction and transmission electron microscopy (TEM) of cross sections. When the substrate temperature (T s) was 90° C, an epitaxial structure with a coherent stacking of Sb and compound (CrSb) layers was formed by the interfacial reaction. On the other hand, at T s=-50° C, a non-epitaxial structure composed of crystalline Sb layers and amorphous Cr metal layers was obtained. Interfaces of multilayers observed by TEM are very flat for both samples. The structures of very thin Cr layers depend on the reactivity of interfaces and greatly affect on the orientations of Sb layers.

  1. Characterization of Cr-rich Cr-Sb multilayer films: Syntheses of a new metastable phase using modulated elemental reactants

    SciTech Connect

    Regus, Matthias; Mankovsky, Sergiy; Polesya, Svitlana; Kuhn, Gerhard; Ditto, Jeffrey; Schürmann, Ulrich; Jacquot, Alexandre; Bartholomé, Kilian; Näther, Christian; Winkler, Markus; König, Jan D.; Böttner, Harald; Kienle, Lorenz; Johnson, David C.; Ebert, Hubert; Bensch, Wolfgang

    2015-10-15

    The new metastable compound Cr{sub 1+x}Sb with x up to 0.6 has been prepared via a thin film approach using modulated elemental reactants and investigated by in-situ X-ray reflectivity, X-ray diffraction, differential scanning calorimetry, energy dispersive X-ray analysis as well as transmission electron microscopy and atomic force microscopy. The new Cr-rich antimonide crystallizes in a structure related to the Ni{sub 2}In-type structure, where the crystallographic position (1/3, 2/3, 3/4) is partially occupied by excess Cr. The elemental layers of the pristine material interdiffused significantly before Cr{sub 1+x}Sb crystallized. A change in the activation energy was observed for the diffusion process when crystal growth starts. First-principles electronic structure calculations provide insight into the structural stability, magnetic properties and resistivity of Cr{sub 1+x}Sb. - Graphical abstract: 1 amorphous multilayered film 2 interdiffused amorphous film 3 metastable crystalline phase 4 thermodynamic stable phase (and by-product). - Highlights: • Interdiffusion of amorphous Cr and Sb occurs before crystallization. • Crystallization of a new metastable phase Cr{sub 1.6}Sb in Ni{sub 2}In-type structure. • The new Cr-rich phase shows half-metallic behavior.

  2. Magnetic Properties of Epitaxial Cr/Cr2O3/ Cr Multilayers

    NASA Astrophysics Data System (ADS)

    Mukherjee, Tathagata; Sahoo, Sarbeswar; Binek, Christian

    2007-03-01

    We study Cr/Cr2O3/Cr trilayer structures grown by Molecular Beam Epitaxy on (111) oriented Al2O3 substrates. X-ray diffraction reveals perfect single crystalline (110) Cr and stoichiometric single crystalline Cr2O3 (111) films. Both, Cr and Cr2O3 order antiferromagnetically with bulk N'eel temperatures of 311 and 307K, respectively. Cr is an itinerant antiferromagnet where the antiferromagnetic (AF) order establishes as an incommensurate spin density wave. Cr2O3 in contrast is an AF insulator with localized magnetic moments where magnetoelectric and piezomagnetic effects are both symmetry allowed. Its insulating, magnetoelectric and piezoelectric properties make Cr2O3 an interesting material for extrinsically controlled tunnel barriers in TMR type structures. The lattice mismatch of ˜1.2% at the Cr -- Cr2O3 interface creates a strong stress induced piezomagnetic moment revealed by SQUID measurements. The interaction between the piezomoment and the spin distribution at the Cr- interface gives rise to a rich scenario of magnetic proximity effects which we study by SQUID magnetometry, magneto-optical Kerr effect and electrical transport measurements.

  3. Molecular-beam epitaxy of CrSi2 on Si(111)

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; Grunthaner, P. J.; Lin, T. L.; Chang, K. T.; Mazur, J. H.

    1988-01-01

    The growth of CrSi2 on Si(111) in a commercial MBE system with a base pressure in the low 10 to the -11th torr range is reported. CrSi2 layers grown on Si(111) exhibit a strong tendency to form islands. Two particular epitaxial relationships are identified. Thick (210 nm) layers have been grown by four different techniques, with best results obtained by codepositing Cr and Si at elevated temperature. The grain size is observed to increase with substrate temperature, reaching 1-2 microns in a layer deposited at 825 C.

  4. Microstructures and mechanical properties of sputtered Cu/Cr multilayers

    SciTech Connect

    Misra, A.; Kung, H.; Mitchell, T.E.; Jervis, T.R.; Nastasi, M.

    1998-03-01

    The microstructures and mechanical properties of Cu/Cr multilayers prepared by sputtering onto {l_brace}100{r_brace} Si substrates at room temperature are presented. The films exhibit columnar grain microstructures with nanoscale grain sizes. The interfaces are planar and abrupt with no intermixing, as expected from the phase diagram. The multilayers tend to adopt a Kurdjumov-Sachs (KS) orientation relationship: {l_brace}110{r_brace}Cr // {l_brace}111{r_brace}Cu, <111>Cr // <110>Cu. The hardness of the multilayered structures, as measured by nanoindentation, increase with decreasing layer thickness for layer thicknesses ranging from 200 nm to 50 nm, whereas for lower thicknesses the hardness of the multilayers is independent of the layer thickness. Dislocation-based models are used to interpret the variation of hardness with layer periodicity. The possible effects of factors such as grain size within the layers, density and composition of films and residual stress in the multilayers are highlighted. Comparisons are made to the mechanical properties of sputtered polycrystalline Cu/Nb multilayers which, like Cu/Cr, exhibit sharp fcc/bcc interfaces with no intermixing and a KS orientation relationship, but have a small shear modulus mismatch.

  5. Layer Resolved Imaging of Magnetic Domain Motion in Epitaxial Heterostructures

    NASA Astrophysics Data System (ADS)

    Zohar, Sioan; Choi, Yongseong; Love, David; Mansell, Rhodri; Barnes, Crispin; Keavney, David; Rosenberg, Richard

    We use X-ray Excited Luminescence Microscopy (XELM) to image the elemental and layer resolved magnetic domain structure of an epitaxial Fe/Cr wedge/Co heterostructure in the presence of large magnetic fields. The observed magnetic domains exhibit several unique behaviors that depend on the Cr thickness (tCr) modulated interlayer exchange coupling (IEC) strength. For Cr thickness tCr?Cr?>?1.5?nm, strongly coupled parallel Co-Fe reversal and weakly coupled layer independent reversal are observed, respectively. The transition between these two reversal mechanisms for 0.34?Cr?

  6. Solar-diurnal variations of Cosmic rays (CR), connected with the passage of the Earth through the Neutral Layer of the Interplanetary Magnetic Fields (IMF) and the earthquake problem

    NASA Astrophysics Data System (ADS)

    Khazaradze, N.; Vanishvili, G.; Bakradze, T.; Kordzadze, L.; Bazerashvili, E.; Elizbarashvili, M.

    2013-02-01

    Key explanation on effect of Fundamental Law of Momentum Conservation is given on the basis of Cosmo-Physical processes, which can be connected with all kinds of recently known geo-effective phenomena. Many works have been devoted to searches of extraterrestrial sources of generation of earthquake initiation preconditions. There is a direct indication on the fact in these works that all kinds of geo-active fluxes of plasma, which goes ahead of strong geomagnetic storms, concomitant to the earthquakes, may be served as favourable conditions for earthquake appearance. If in one group of works, the increase of seismic activity during geo-active solar flare is reported, then in the other group of works, there is the direct indication on the fact, that it is necessary to study the mechanism of generation of electro-magnetic emanation in the seismically active regions of Earth. Certain strong destructive earthquakes are putting in touch by some authors with the outburst of cosmic rays in distant regions of Universe during stellar explosion of supernovae. It's impossible to avoid our attention from announcement of 100% increase of hard component of cosmic radiation above Yerevan 30 minutes ahead of 1988 Spitak Earthquake. And finally, the data on article, in which is shown that about 75% of earthquakes with magnitude M>=6 takes place during traverse of neutral layer of Interplanetary Magnetic Field by the Earth, in the presence of good correlation with 11-years cycle of Solar Activity. Above mentioned geo-effective phenomena, with an increasable amount, can be reviewed in frame of the Law of Momentum Conservation, if we take into account the peculiarities of its development for a given specific cases.

  7. Biosorption of Cr (VI) by Typha angustifolia: mechanism and responses to heavy metal stress.

    PubMed

    Chen, Ya-Li; Hong, Xiao-Qing; He, Hui; Luo, Hong-Wei; Qian, Ting-Ting; Li, Ru-Zhong; Jiang, Hong; Yu, Han-Qing

    2014-05-01

    In this study, Typha angustifolia was proven to have an excellent accumulation ability in high concentrations of wastewater solutions having Cr (VI) concentrations up to 30 mg L(-1) for 20 days (74% of removal efficiency). Synchrotron microfocus micro X-ray fluorescence (μ-XRF) mapping showed that the uptaken Cr was mainly enriched in the outer layer of the roots and a small portion of it was uniformly distributed in the fronds. The total proteins, soluble sugars, and malondialdehyde in T. angustifolia increased when the concentration of Cr (VI) increased from 9 to 30 mg L(-1). Transmission electron microscope (TEM) assay showed that no lignifications were observed when Cr was absorbed by T. angustifolia. It was concluded that T. angustifolia can uptake Cr by means of surface layer absorption and transportation, and alleviate stresses associated with the sorption of Cr (VI) by thickening of cell walls or secretion of chemical substances. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. CR reliability testing

    NASA Astrophysics Data System (ADS)

    Honeyman-Buck, Janice C.; Rill, Lynn; Frost, Meryll M.; Staab, Edward V.

    1998-07-01

    The purpose of this work was to develop a method for systematically testing the reliability of a CR system under realistic daily loads in a non-clinical environment prior to its clinical adoption. Once digital imaging replaces film, it will be very difficult to revert back should the digital system become unreliable. Prior to the beginning of the test, a formal evaluation was performed to set the benchmarks for performance and functionality. A formal protocol was established that included all the 62 imaging plates in the inventory for each 24-hour period in the study. Imaging plates were exposed using different combinations of collimation, orientation, and SID. Anthropomorphic phantoms were used to acquire images of different sizes. Each combination was chosen randomly to simulate the differences that could occur in clinical practice. The tests were performed over a wide range of times with batches of plates processed to simulate the temporal constraints required by the nature of portable radiographs taken in the Intensive Care Unit (ICU). Current patient demographics were used for the test studies so automatic routing algorithms could be tested. During the test, only three minor reliability problems occurred, two of which were not directly related to the CR unit. One plate was discovered to cause a segmentation error that essentially reduced the image to only black and white with no gray levels. This plate was removed from the inventory to be replaced. Another problem was a PACS routing problem that occurred when the DICOM server with which the CR was communicating had a problem with disk space. The final problem was a network printing failure to the laser cameras. Although the units passed the reliability test, problems with interfacing to workstations were discovered. The two issues that were identified were the interpretation of what constitutes a study for CR and the construction of the look-up table for a proper gray scale display.

  9. Backbending in 50Cr

    NASA Astrophysics Data System (ADS)

    Martínez-Pinedo, G.; Poves, A.; Robledo, L. M.; Caurier, E.; Nowacki, F.; Retamosa, J.; Zuker, A.

    1996-11-01

    The collective yrast band and the high spin states of the nucleus 50Cr are studied using the spherical shell model and the cranked Hartree-Fock-Bogoliubov method. The two descriptions lead to nearly the same values for the relevant observables. A first backbending is predicted at I=10ħ corresponding to a collective to noncollective transition. At J=16ħ a second backbending occurs, associated to a configuration change that can also be interpreted as a spherical to triaxial transition.

  10. Structure and magnetic property of the FePt/CrPt bilayer.

    PubMed

    Wang, Xiaoyu; Wang, Hai; Jiang, Hongwei; Wang, Peijie; Wang, Jinliang

    2012-02-01

    In this work we have studied the growth sequence of L10-CrPt antiferromagnetic layer effects on the microstructure and magnetic properties of the FePt/CrPt bilayer. The microstructure characteristics were investigated by means of X-ray diffraction and the magnetic properties were measured at room temperature by using a vibrating sample magnetometer. Structural analysis showed that the low-temperature ordering and the in-plane orientation of the FePt layer with the CrPt underlayer were promoted due to lattice mismatch optimized after annealing at 350 degrees. Meanwhile, magnetic analysis also revealed that the FePt/CrPt bilayer had much larger exchange bias (H(E)) and higher coercivity (Hc) when the CrPt layer was as the underlayer after annealing at 350 degrees.

  11. Preparation and Oxidation Performance of Y and Ce-Modified Cr Coating on open-cell Ni-Cr-Fe Alloy Foam by the Pack Cementation

    NASA Astrophysics Data System (ADS)

    Pang, Q.; Hu, Z. L.; Wu, G. H.

    2016-12-01

    Metallic foams with a high fraction of porosity, low density and high-energy absorption capacity are a rapidly emerging class of novel ultralight weight materials for various engineering applications. In this study, Y-Cr and Ce-Cr-coated Ni-Cr-Fe alloy foams were prepared via the pack cementation method, and the effects of Y and Ce addition on the coating microstructure and oxidation performance were analyzed in order to improve the oxidation resistance of open-cell nickel-based alloy foams. The results show that the Ce-Cr coating is relatively more uniform and has a denser distribution on the surface of the nickel-based alloy foam. The surface grains of the Ce-Cr-coated alloy foam are finer compared to those of the Y-Cr-coated alloy foam. An obvious Ce peak appears on the interface between the coating and the alloy foam strut, which gives rise to a "site-blocking" effect for the short-circuit transport of the cation in the substrate. X-ray diffraction analysis shows that the Y-Cr-coated alloy foam mainly consists of Cr, (Fe, Ni) and (Ni, Cr) phases in the surface layer. The Ce-Cr-coated alloy foam is mainly composed of Cr and (Ni, Cr) phases. Furthermore, the addition of Y and Ce clearly lead to an improvement in the oxidation resistance of the coated alloy foams in the temperature range of 900-1000 °C. The addition of Ce is especially effective in enhancing the diffusion of chromium to the oxidation front, thus, accelerating the formation of a Cr2O3 layer.

  12. Auger electron spectroscopy study of interdiffusion, oxidation and segregation during thermal treatment of NiCr/CuNi(Mn)/NiCr thin films

    NASA Astrophysics Data System (ADS)

    Baunack, S.; Brückner, W.; Pitschke, W.; Thomas, J.

    1999-04-01

    The effect of annealing on sputter deposited thin-films NiCr/CuNi(Mn)/NiCr is studied by Auger electron depth profiling. The samples were annealed to maximum temperatures of 300°C to 550°C and investigated at ambient temperature. Auger transitions of Cu and Ni are separated by target factor analysis, principal component analysis and linear least squares fit to standard spectra. For the CuNi(Mn) layer in the as-received state AES results shows a Cu depletion caused by bombardment induced segregation. After annealing the measured Cu concentration has increased due to Ni diffusion to the interfaces. The NiCr layer is degraded with increasing annealing temperature due to formation of a chromium oxide and diffusion of Ni from the CuNi(Mn) layer. A sequence with nominal compositions near Cr 2Ni, CrNi and CrNi 2 is found. At the NiCr/CuNi(Mn) interface an interdiffusion zone phase Ni 0.6Cr 0.2Cu 0.2 is formed.

  13. TI--CR--AL--O thin film resistors

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2000-01-01

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  14. Hot Corrosion Performance of AlO-CrO/NiCoCrAlYTa and AlO/NiCoCrAlYTa Coatings Deposited by Atmospheric Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Tao, Chong; Wang, Lei; Cheng, Nailiang; Hu, Hengfa; Liu, Yang; Song, Xiu

    2016-04-01

    AlO-CrO/NiCoCrAlYTa and AlO/NiCoCrAlYTa coatings were deposited on 316L stainless steel substrate using atmospheric plasma spraying, respectively, in order to improve the oxidation and corrosion resistance. The hot corrosion performance of the coatings at 700 and 900 °C were studied, and the detailed microstructures and phase composition of the coatings were analyzed using x-ray diffraction, scanning electron microscope with energy dispersive spectrometer, and transmission electron microscope. The results show that both coatings are structurally featured by slatted layers, consisting of amorphous phase, Cr2O3, Ni3Al, and Al2O3. The hot corrosion resistance of AlO-CrO/NiCoCrAlYTa coating is better than that of AlO/NiCoCrAlYTa coating. This improvement is attributed to lower porosity and more compact Cr2O3 in AlO-CrO/NiCoCrAlYTa coating which performs better than Al2O3 in blocking further inward progress of corrosion and oxidization.

  15. Abrasive wear properties of Cr-Cr3Si composites

    SciTech Connect

    Newkirk, J.W.; Hawk, Jeffrey A.

    2001-10-01

    A series of composites based on the Cr?Cr3Si system, and containing between 50 and 100%Cr3Si, were fabricated by hot pressing. These composites have high stiffness, good thermal conductivity, excellent chemical resistance, and high temperature creep and oxidation resistance, making them potential candidates for hard-facing applications and cutting tools in harsh environments. In this study, the Cr?Cr3Si composites were abrasion tested at ambient temperatures in order to evaluate their wear properties. Single scratch tests were performed to give insight into material removal mechanisms. Although like most metal silicides, these materials behave in a brittle manner, the results of this study indicate that the addition of a ductile second phase (Cr) can enhance both their fracture toughness and abrasive wear resistance. The addition of 10% of the rare earth oxide Er2O3 improves the density of the composite, but has no apparent influence on the wear resistance.

  16. Atomistic investigation of Cr influence on primary radiation damage in Fe-12 at.% Cr grain boundaries

    NASA Astrophysics Data System (ADS)

    Esfandiarpour, A.; Feghhi, S. A. H.; Arjhangmehr, A.

    2016-08-01

    In this paper, we investigate the influence of Cr on the primary radiation damage in Fe-12 at.% Cr with different atomic grain boundaries (GBs). Four different GB structures, two twists and two symmetric tilt boundaries are selected as the model structures. The primary radiation damage near each GB in α-Fe and Fe-12 at.% Cr is simulated using Molecular Dynamics for 9 keV primary knock-on atoms with velocity vectors perpendicular to the GB plane. In agreement with previous works, the results indicate that the atomic GBs are biased toward interstitials and due to the reduction of ‘in-cascade’ interstitial-vacancy annihilation rates, vacancies accumulate in the bulk grains. The minimum defect production occurs when the overlap between cascade center and GB plane is maximum; in contrast, the number of residual defects in the bulk (vacancies and interstitials) increases when the overlap decreases. Moreover, we find that the presence of Cr hardly affects the number of residual defects in the grain interiors, and causes a Cr-enrichment in the surviving self-interstitial atoms in bulk during relaxation of the primary cascades—also in agreement with previous studies. Further, in order to study the effect of 12 at.% Cr on the energetic and kinetic properties of vacancies near the atomic GBs, we calculate formation energies and diffusion barriers of defects using Molecular Static and climbing-Nudged Elastic Band methods. The results reveal that the vacancies energetically and kinetically tend to form and cluster around the GB plane due to the substantial reduction of their formation energies and migration barriers in layers close to the GB center and are immobile on the simulated time frame (~ps).

  17. Layer-by-layer co-immobilization of soluble complement receptor 1 and heparin on islets.

    PubMed

    Luan, Nguyen Minh; Teramura, Yuji; Iwata, Hiroo

    2011-09-01

    Early graft loss due to instant blood-mediated inflammatory reactions (IBMIRs) is a major obstacle of clinical islet transplantation; inhibition of blood coagulation and complement activation is necessary to inhibit IBMIRs. Here, human soluble form complement receptor 1 (sCR1) and heparin were co-immobilized onto the surfaces of islet cells. sCR1 molecules carrying thiol groups were immobilized through maleimide-poly(ethylene glycol)-phospholipids anchored in the lipid bilayers of islet cells. Heparin was immobilized on the sCR1 layer via the affinity between sCR1 and heparin, and additional layers of sCR1 and heparin were formed layer-by-layer. The sCR1 and heparin molecules in these layers maintained anti-complement activation and anti-coagulation activities, respectively. This promising method could be employed to reduce the number of islet cells required to reverse hyperglycemia and prolong graft survival in both allo- and xeno-islet transplantation.

  18. Microstructure and phase evolution in laser clad chromium carbide-NiCrMoNb

    NASA Astrophysics Data System (ADS)

    Venkatesh, L.; Samajdar, I.; Tak, Manish; Doherty, Roger D.; Gundakaram, Ravi C.; Prasad, K. Satya; Joshi, S. V.

    2015-12-01

    Microstructural development in laser clad layers of Chromium carbide (CrxCy)-NiCrMoNb on SA 516 steel has been investigated. Although the starting powder contained both Cr3C2 and Cr7C3, the clad layers showed only the presence of Cr7C3. Microtexture measurements by electron back scattered diffraction (EBSD) revealed primary dendritic Cr7C3 with Ni rich FCC metallic phase being present in the interdendritic spaces. Further annealing of the laser clad layers and furnace melting of the starting powder confirmed that Cr7C3 is the primary as well as stable carbide phase in this multi component system. Increase in laser power and scanning speed progressively reduced carbide content in the laser clad layers. Increased scanning speed, which enhances the cooling rate, also led to reduction in the secondary arm spacing (λ2) of the Cr7C3 dendrites. The clad layer hardness increased with carbide content and with decreased dendrite arm spacing.

  19. Transient Oxidation of a γ-Ni-28Cr-11Al Alloy

    SciTech Connect

    Hu, L; Hovis, D B; Heuer, A H

    2012-04-02

    γ-NiCrAl alloys with relatively low Al contents tend to form a layered oxide scale during the early stages of oxidation, rather than an exclusive α-Al2O3 scale, the so-called 'thermally grown oxide' (TGO). A layered oxide scale was established on a model γ-Ni-28Cr-11Al (at.%) alloy after isothermal oxidation for several minutes at 1100 °C. The layered scale consisted of an NiO layer at the oxide/gas interface, an inner Cr2O3 layer, and an α-Al2O3 layer at the oxide/alloy interface. The evolution of such an NiO/Cr2O3/Al2O3 layered structure on this alloy differs from that proposed in earlier work. During heating, a Cr2O3 outer layer and a discontinuous inner layer of Al2O3 initially formed, with metallic Ni particles dispersed between the two layers. A rapid transformation occurred in the scale shortly after the sample reached maximum temperature (1100°C), when two (possibly coupled) phenomena occurred: (i) the inner transition alumina transformed to α-Al2O3, and (ii) Ni particles oxidized to form the outer NiO layer. Subsequently, NiO reacted with Cr2O3 and Al2O3 to form spinel. Continued growth of the oxide scale and development of the TGO was dominated by growth of the inner α-Al2O3 layer.

  20. Investigations of the crystallization mechanism of CrSb and CrSb{sub 2} multilayered films using in-situ X-ray diffraction and in-situ X-ray reflectometry

    SciTech Connect

    Regus, Matthias; Kuhn, Gerhard; Mankovsky, Sergej; Ebert, Hubert; Bensch, Wolfgang

    2012-12-15

    Chromium and antimony multilayered films with variable elemental layer thickness were deposited on (1 0 0)-Si substrate cooled with liquid nitrogen. The stoichiometry of the films was adjusted to Cr:Sb=1:1 and 1:2. The thickness of Cr-Sb repeating units of these multifilms was varied between 11.4 and 102.5 A. Satellite maxima in the X-ray reflectivity curves observed for films in the as-deposited state demonstrate an alternating stacking of the evaporated elements. The reactivity of the superlattice reactants was investigated with temperature dependent in-situ X-ray diffractometry and X-ray reflectometry. The crystallization temperature of CrSb depends on the double-layer thickness and is about 90 Degree-Sign C for a Cr:Sb ratio of 1:1 and double-layer thickness of 53.7 A where nucleation and crystal formation occurs at the element interfaces, while for a thin double-layer thickness (11.4 A) first interdiffusion of the elements occurs before crystallization starts, i.e., an amorphous intermediate is formed prior to crystallization of CrSb. A decomposition reaction into CrSb{sub 2} occurs at about 230 Degree-Sign C, and up to about 575 Degree-Sign C, CrSb, CrSb{sub 2} and amorphous Cr coexist. For the ratio Cr:Sb=1:2 and a thin double-layer thickness prior to crystallization of CrSb{sub 2} nano-sized crystallites with a composition near CrSb{sub 2} nucleate and grow. These crystallites are then successively transformed in long-range ordered crystals exhibiting a pronounced preferred orientation. For films with a thicker repeat unit first formation of CrSb is observed which then reacts with elemental Sb yielding crystalline CrSb{sub 2}. An activation energy for interdiffusion of Cr and Sb of about 1.8 eV is estimated for a film with Cr:Sb=1:1 exhibiting a double-layer thickness of about 53.7 A and an energy for crystal growth of about 1.1 eV. For the film with the thinner double-layer thickness of 11.4 A a lower value of the activation energy for interdiffusion is

  1. Surface modification to improve fireside corrosion resistance of Fe-Cr ferritic steels

    DOEpatents

    Park, Jong-Hee; Natesan, Krishnamurti; Rink, David L.

    2010-03-16

    An article of manufacture and a method for providing an Fe--Cr ferritic steel article of manufacture having a surface layer modification for corrosion resistance. Fe--Cr ferritic steels can be modified to enhance their corrosion resistance to liquid coal ash and other chemical environments, which have chlorides or sulfates containing active species. The steel is modified to form an aluminide/silicide passivating layer to reduce such corrosion.

  2. Improve oxidation resistance at high temperature by nanocrystalline surface layer

    PubMed Central

    Xia, Z. X.; Zhang, C.; Huang, X. F.; Liu, W. B.; Yang, Z. G.

    2015-01-01

    An interesting change of scale sequence occurred during oxidation of nanocrystalline surface layer by means of a surface mechanical attrition treatment. The three-layer oxide structure from the surface towards the matrix is Fe3O4, spinel FeCr2O4 and corundum (Fe,Cr)2O3, which is different from the typical two-layer scale consisted of an Fe3O4 outer layer and an FeCr2O4 inner layer in conventional P91 steel. The diffusivity of Cr, Fe and O is enhanced concurrently in the nanocrystalline surface layer, which causes the fast oxidation in the initial oxidation stage. The formation of (Fe,Cr)2O3 inner layer would inhabit fast diffusion of alloy elements in the nanocrystalline surface layer of P91 steel in the later oxidation stage, and it causes a decrease in the parabolic oxidation rate compared with conventional specimens. This study provides a novel approach to improve the oxidation resistance of heat resistant steel without changing its Cr content. PMID:26269034

  3. Improve oxidation resistance at high temperature by nanocrystalline surface layer

    NASA Astrophysics Data System (ADS)

    Xia, Z. X.; Zhang, C.; Huang, X. F.; Liu, W. B.; Yang, Z. G.

    2015-08-01

    An interesting change of scale sequence occurred during oxidation of nanocrystalline surface layer by means of a surface mechanical attrition treatment. The three-layer oxide structure from the surface towards the matrix is Fe3O4, spinel FeCr2O4 and corundum (Fe,Cr)2O3, which is different from the typical two-layer scale consisted of an Fe3O4 outer layer and an FeCr2O4 inner layer in conventional P91 steel. The diffusivity of Cr, Fe and O is enhanced concurrently in the nanocrystalline surface layer, which causes the fast oxidation in the initial oxidation stage. The formation of (Fe,Cr)2O3 inner layer would inhabit fast diffusion of alloy elements in the nanocrystalline surface layer of P91 steel in the later oxidation stage, and it causes a decrease in the parabolic oxidation rate compared with conventional specimens. This study provides a novel approach to improve the oxidation resistance of heat resistant steel without changing its Cr content.

  4. Recent progress in the study of protective rust-layer formation on weathering steel

    SciTech Connect

    Yamashita, M.; Misawa, T.

    1998-12-31

    Latest understanding of protective rust layer on weathering steel and its application for structural steels is discussed. Phase transformation of the weathering steel rust layer during long-time exposure brings {alpha}-(Fe{sub 1{minus}x},Cr{sub x})OOH, Cr-substituted goethite, as the final protective rust layer. It is said that the Cr content in the Cr-substituted goethite layer increases gradiently with reaching the rust-steel interface. This increase in the Cr content gives densely packed fine crystal structure end cation selective ability, which impedes the penetration of aggressive corrosives including anions such as Cl{sup {minus}} and SO{sub 4}{sup 2{minus}}. Quite recently, new surface-treatment technique employing Cr{sub 2}(SO{sub 4}){sub 3}, was proposed, which provides a possibility for obtaining the protective rust layer in a relatively short period even in the severe environment such as coastal region.

  5. South Layers

    NASA Image and Video Library

    2006-05-20

    This MOC image shows remnants of layered materials near the west rim of South Crater, Mars. The composition of these layered rocks is unknown -- are they the remains of sedimentary rocks or accumulations of dust and ice?

  6. Intermediate coating layer for high temperature rubbing seals for rotary regenerators

    SciTech Connect

    Schienle, J.L.; Strangman, T.E.

    1995-03-14

    A metallic regenerator seal is provided having multi-layer coating comprising a NiCrAlY bond layer, a yttria stabilized zirconia (YSZ) intermediate layer, and a ceramic high temperature solid lubricant surface layer comprising zinc oxide, calcium fluoride, and tin oxide. Because of the YSZ intermediate layer, the coating is thermodynamically stable and resists swelling at high temperatures. 2 figs.

  7. Intermediate coating layer for high temperature rubbing seals for rotary regenerators

    DOEpatents

    Schienle, James L.; Strangman, Thomas E.

    1995-01-01

    A metallic regenerator seal is provided having multi-layer coating comprising a NiCrAlY bond layer, a yttria stabilized zirconia (YSZ) intermediate layer, and a ceramic high temperature solid lubricant surface layer comprising zinc oxide, calcium fluoride, and tin oxide. Because of the YSZ intermediate layer, the coating is thermodynamically stable and resists swelling at high temperatures.

  8. Molecular-Beam Epitaxy Of CrSi2 on Si(111)

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W.; Grunthaner, Paula J.; Lin, True-Lon; Jamieson, David N.; Mazur, Jurek H.

    1989-01-01

    Crystalline layers grown in commercial apparatus. Experiments show CrSi2 grown on (111) face of single-crystal Si substrate by molecular-beam epitaxy. Epitaxial CrSi2 produced thus far not in desired single-crystal form. Because CrSi2 semiconductor with band gap of 0.3 eV, experimental process potential for monolitic integration of microelectronic devices based on CrSi2 (e.g., infrared detectors) with signal-processing circuitry based on Si.

  9. Oxygen-induced immediate onset of the antiferromagnetic stacking in thin Cr films on Fe(001)

    SciTech Connect

    Berti, Giulia Brambilla, Alberto; Calloni, Alberto; Bussetti, Gianlorenzo; Finazzi, Marco; Duò, Lamberto; Ciccacci, Franco

    2015-04-20

    We investigated the magnetic coupling of ultra-thin Cr films grown at 600 K on a Fe(001)-p(1 × 1)O substrate by means of spin-polarized photoemission spectroscopy. Our findings show that the expected antiferromagnetic stacking of the magnetization in Cr(001) layers occurs right from the first atomic layer at the Cr/Fe interface. This is at variance with all previous observations in similar systems, prepared in oxygen-free conditions, which always reported on a delayed onset of the magnetic oscillations due to the occurrence of significant chemical alloying at the interface, which is substantially absent in our preparation.

  10. Exchange bias effect in NiMnSb/CrN heterostructures deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Sharma Akkera, Harish; Barman, Rahul; Kaur, Navjot; Choudhary, Nitin; Kaur, Davinder

    2013-05-01

    Exchange bias has been studied in various Ni50Mn36.8Sb13.2/CrN heterostructures with different CrN thicknesses (15 nm-80 nm), grown on Si (100) substrate using magnetron sputtering. The shift in hysteresis loop up to 51 Oe from the origin was observed at 10 K for Ni-Mn-Sb film without CrN layer. On the other hand, a significant shifting of hysteresis loop was observed with antiferromagnetic (AFM) CrN layer in Ni50Mn36.8Sb13.2/CrN heterostructure. The exchange coupled 140 nm Ni50Mn36.8Sb13.2/35 nm CrN heterostructure exhibited a relatively large exchange coupling field of 148 Oe at 10 K compared to other films, which may be related to uncompensated and pinned AFM spins at FM-AFM interface and different AFM domain structures for different thicknesses of CrN layer. Further nanoindentation measurements revealed the higher values of hardness and elastic modulus of about 12.7 ± 0.38 GPa and 179.83 ± 1.24 GPa in Ni50Mn36.8Sb13.2/CrN heterostructures making them promising candidate for various multifunctional MEMS devices.

  11. Oxidation behavior of TD-NiCr in a dynamic high temperature environment

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Young, C. T.; Herring, H. W.

    1974-01-01

    The oxidation behavior of TD-NiCr has been studied in static and high-speed flowing air environments at 1100 and 1200 C. It has been found that the stable oxide morphologies formed on the specimens exposed to the static and dynamic environments were markedly different. The faceted crystal morphology characteristic of static oxidation was found to be unstable under high-temperature, high-speed flow conditions and was quickly replaced by a porous NiO 'mushroom' type structure. Also, it was found that the rate of formation of CrO3 from Cr2O3 was greatly enhanced by high gas velocity conditions. The stability of Cr2-O3 was found to be greatly improved by the presence of an outer NiO layer, even though the NiO layer was very porous. An oxidation model is proposed to explain the observed microstructures and overall oxidation behavior of TD-NiCr alloys.

  12. Formation of Cr2O3 Diffusion Barrier Between Cr-Contained Stainless Steel and Cold-Sprayed Ni Coatings at High Temperature

    NASA Astrophysics Data System (ADS)

    Xu, Ya-Xin; Luo, Xiao-Tao; Li, Cheng-Xin; Yang, Guan-Jun; Li, Chang-Jiu

    2016-02-01

    A novel approach to prepare a coating system containing an in situ grown Cr2O3 diffusion barrier between a nickel top layer and 310SS was reported. Cold spraying was employed to deposit Ni(O) interlayer and top nickel coating on the Cr-contained stainless steel substrate. Ni(O) feedstock was prepared by mechanical alloying of pure nickel powders in ambient atmosphere, acting as an oxygen provider. The post-spray annealing was adopted to grow in situ Cr2O3 layer between the substrate and nickel coating. The results revealed that the diffusible oxygen can be introduced into nickel powders by mechanical alloying. The oxygen content increases to 3.25 wt.% with the increase of the ball milling duration to 8 h, while Ni(O) powders maintain a single phase of Ni. By annealing the sample in Ar atmosphere at 900 °C, a continuous Cr2O3 layer of 1-2 μm thick at the interface between 310SS and cold-sprayed Ni coating is formed. The diffusion barrier effect evaluation by thermal exposure at 750 °C shows that the Cr2O3 oxide layer effectively suppresses the outward diffusion of Fe and Cr in the substrate effectively.

  13. Effect of CrO3 Sealing Time on Anodized A12024-T3

    NASA Astrophysics Data System (ADS)

    Korda, Akhmad A.; Hidayat, R. Z.

    2016-08-01

    The effect of CrO3 sealing time on anodized aluminum alloy has been investigated. A1 2024-T3 were used as substrate. Anodizing was carried out using chromic acid. CrO3 sealing was conducted in CrO3 solution for 30, 60, 90, 120 and 150 minutes. As comparison, other specimens were also prepared as anodized and boiled water sealing. Thickness of the coating was observed by optical microscope. Anodized and sealing layer was analyzed by X- ray diffraction. The hardness of as anodized, boiled water sealing and CrO3 sealing were compared. The highest hardness is achieved by CrO3 sealed specimen and followed by boiled water sealing and as anodized specimens. The longer the processes of CrO3 sealing the higher layer thickness and therefore the higher hardness of the oxide layer. The best resistance to electrolyte penetration is achieved by the CrO3 sealed specimen followed by boiled water sealed and as anodized specimens. The higher thickness of oxide layer, the higher the resistance against electrolyte penetration.

  14. Remediation of Cr(VI) by biogenic magnetic nanoparticles: An x-ray magnetic circular dichroism study

    SciTech Connect

    Telling, N. D.; Coker, V. S.; Cutting, R. S.; van der Laan, G.; Pearce, C. I.; Pattrick, R. A. D.; Arenholz, E.; Lloyd, J. R.

    2009-09-04

    Biologically synthesized magnetite (Fe{sub 3}O{sub 4}) nanoparticles are studied using x-ray absorption and x-ray magnetic circular dichroism following exposure to hexavalent Cr solution. By examining their magnetic state, Cr cations are shown to exist in trivalent form on octahedral sites within the magnetite spinel surface. The possibility of reducing toxic Cr(VI) into a stable, non-toxic form, such as a Cr{sup 3+}-spinel layer, makes biogenic magnetite nanoparticles an attractive candidate for Cr remediation.

  15. Chromium oxide as a metal diffusion barrier layer: An x-ray absorption fine structure spectroscopy study

    NASA Astrophysics Data System (ADS)

    Ahamad Mohiddon, Md.; Lakshun Naidu, K.; Ghanashyam Krishna, M.; Dalba, G.; Ahmed, S. I.; Rocca, F.

    2014-01-01

    The interaction at the interface between chromium and amorphous Silicon (a-Si) films in the presence of a sandwich layer of chromium oxide is investigated using X-ray absorption fine structure (XAFS) spectroscopy. The oxidized interface was created, in situ, prior to the deposition of a 400 nm tick a-Si layer over a 50 nm tick Cr layer. The entire stack of substrate/metallic Cr/Cr2O3/a-Si was then annealed at temperatures from 300 up to 700 °C. Analysis of the near edge and extended regions of each XAFS spectrum shows that only a small fraction of Cr is able to diffuse through the oxide layer up to 500 °C, while the remaining fraction is buried under the oxide layer in the form of metallic Cr. At higher temperatures, diffusion through the oxide layer is enhanced and the diffused metallic Cr reacts with a-Si to form CrSi2. At 700 °C, the film contains Cr2O3 and CrSi2 without evidence of unreacted metallic Cr. The activation energy and diffusion coefficient of Cr are quantitatively determined in the two temperature regions, one where the oxide acts as diffusion barrier and another where it is transparent to Cr diffusion. It is thus demonstrated that chromium oxide can be used as a diffusion barrier to prevent metal diffusion into a-Si.

  16. Layer resolved magnetic domain imaging of epitaxial heterostructures in large applied magnetic fields

    SciTech Connect

    Zohar, S.; Choi, Y.; Love, D. M.; Mansell, R.; Barnes, C. H. W.; Keavney, DJ.; Rosenberg, R. A.

    2015-02-16

    We use X-ray Excited Luminescence Microscopy to investigate the elemental and layer resolved magnetic reversal in an interlayer exchange coupled (IEC) epitaxial Fe/Cr wedge/Co heterostructure. The transition from strongly coupled parallel Co-Fe reversal for Cr thickness t(Cr) < 0.34 nm to weakly coupled layer independent reversal for t(Cr) > 1.5 nm is punctuated at 0.34 < t(Cr) < 1.5 nm by a combination of IEC guided domain wall motion and stationary zig zag domain walls. Domain walls nucleated at switching field minima are guided by IEC spatial gradients and collapse at switching field maxima.

  17. Layer resolved magnetic domain imaging of epitaxial heterostructures in large applied magnetic fields

    NASA Astrophysics Data System (ADS)

    Zohar, S.; Choi, Y.; Love, D. M.; Mansell, R.; Barnes, C. H. W.; Keavney, D. J.; Rosenberg, R. A.

    2015-02-01

    We use X-ray Excited Luminescence Microscopy to investigate the elemental and layer resolved magnetic reversal in an interlayer exchange coupled (IEC) epitaxial Fe/Cr wedge/Co heterostructure. The transition from strongly coupled parallel Co-Fe reversal for Cr thickness tCr < 0.34 nm to weakly coupled layer independent reversal for tCr > 1.5 nm is punctuated at 0.34 < tCr < 1.5 nm by a combination of IEC guided domain wall motion and stationary zig zag domain walls. Domain walls nucleated at switching field minima are guided by IEC spatial gradients and collapse at switching field maxima.

  18. Studies of the Cr-CrN coating characteristics formed by means of the magnetron sputtering method from bulk target

    NASA Astrophysics Data System (ADS)

    Kachalin, G. V.; Mednikov, A. F.; Tkhabisimov, A. B.; Sidorov, S. V.

    2017-07-01

    The paper presents the study’s results of ion-plasma chromium based coating characteristics produced on blade steel samples 12Kh13 and EI961 by means of the magnetron sputtering method from the bulk “hot” target. A set of metallographic studies and erosion tests of coatings were carried out using the research equipment URI (unique research installation) “Hydroshock rig Erosion-M” of NRU “MPEI”. Cr-CrN based coatings have a layered structure; thickness of intermediate Cr layers ranges from 0.7 to 1.7 μm, thickness of nitride layers CrN ranges from 1.5 to 4 μm, while the overall coating thickness is 17.0-21.5 μm coating microhardness is 1830-1880 HV0.05. The resulting coatings are found to increase 1.5 times the incubation period duration of erosion wear for steels 12Kh13 and EI961; they reduce the maximum erosion rate 1.3 times, and the steady erosion rate - 1.5 times.

  19. Redox and complexation chemistry of the Cr(VI)/Cr(V)/Cr(IV)-D-glucuronic acid system.

    PubMed

    González, Juan Carlos; García, Silvia; Bellú, Sebastián; Salas Peregrín, Juan Manuel; Atria, Ana María; Sala, Luis Federico; Signorella, Sandra

    2010-03-07

    When excess uronic acid over Cr(VI) is used, the oxidation of D-glucuronic acid (Glucur) by Cr(VI) yields D-glucaric acid (Glucar) and Cr(III) as final products. The redox reaction involves the formation of intermediate Cr(IV) and Cr(V) species, with Cr(VI) and Cr(V) reacting with Glucur at comparable rates. The rate of disappearance of Cr(VI), and Cr(V) increases with [H(+)] and [substrate]. The experimental results indicated that Cr(IV) is a very reactive intermediate since its disappearance rate is much faster than Cr(VI)/Cr(V) and decreases when [H(+)] rises. Even at high [H(+)] Cr(IV) intermediate was involved in fast steps and does not accumulate in the reaction. Kinetic studies show that the redox reaction between Glucur and Cr(VI) proceeds through a mechanism combining one- and two-electron pathways for the reduction of intermediate Cr(IV) by the organic substrate: Cr(VI) --> Cr(IV) --> Cr(II) and Cr(VI) --> Cr(IV) --> Cr(III). The mechanism is supported by the observation of free radicals, CrO(2)(2+) (superoxoCr(III) ion) and Cr(V) as reaction intermediates. The EPR spectra show that five-co-ordinate oxo-Cr(V) bischelates are formed at pH < or = 4 with the uronic acid bound to Cr(V) through the carboxylate and the alpha-OH group of the furanose form. Five-co-ordinated oxo-Cr(V) monochelates are observed as minor species in addition to the major five-co-ordinated oxo-Cr(V) bischelates. At pH 7.5 the EPR spectra show the formation of a Cr(V) complex where the cis-diol groups of Glucur participate in the bonding to Cr(V). In vitro, our studies on the chemistry of Cr(V) complexes can provide information on the nature of the species that are likely to be stabilized in vivo. In particular, the EPR pattern of Glucur-Cr(V) species can be used as a finger print to identify Cr(V) complexes formed in biological systems.

  20. Cr/B4C multilayer mirrors: Study of interfaces and X-ray reflectance

    DOE PAGES

    Burcklen, C.; Soufli, R.; Gullikson, E.; ...

    2016-03-24

    Here, we present an experimental study of the effect of layer interfaces on the x-ray reflectance in Cr/B4C multilayer interference coatings with layer thicknesses ranging from 0.7 nm to 5.4 nm. The multilayers were deposited by magnetron sputtering and by ion beam sputtering. Grazing incidence x-ray reflectometry, soft x-ray reflectometry, and transmission electron microscopy reveal asymmetric multilayer structures with a larger B4C-on-Cr interface, which we modeled with a 1–1.5 nm thick interfacial layer. Reflectance measurements in the vicinity of the Cr L2,3 absorption edge demonstrate fine structure that is not predicted by simulations using the currently tabulated refractive index (opticalmore » constants) values for Cr.« less

  1. The effect of Be and Cr electrode deposition rate on the performance of MIS solar cells

    NASA Astrophysics Data System (ADS)

    Moharram, A. H.; Panayotatos, P.; Yeh, J. L.; Lalevic, B.

    1985-07-01

    An experimental study has been performed on MIS solar cells with Be, Cr and layered Cr-Be electrodes on single crystal Si, Wacker and Monsanto poly-Si substrates. Electrical characterization in the dark and under illumination was correlated to X-ray and Auger spectroscopy results. It was found that the electrode deposition rate directly affects the oxygen content of the electrodes for all metal-substrate configurations. This oxygen is believed to originate from the deposition ambient as well as from the SiO2 layer. In the case of cells with Cr and layered Cr-Be electrodes oxygen acts to reduce the electrode work function (thus increasing the open-circuit voltage) in direct proportion to the relative content of oxygen to chromium.

  2. Cr/B4C multilayer mirrors: Study of interfaces and X-ray reflectance

    NASA Astrophysics Data System (ADS)

    Burcklen, C.; Soufli, R.; Dennetiere, D.; Polack, F.; Capitanio, B.; Gullikson, E.; Meltchakov, E.; Thomasset, M.; Jérome, A.; de Rossi, S.; Delmotte, F.

    2016-03-01

    We present an experimental study of the effect of layer interfaces on the x-ray reflectance in Cr/B4C multilayer interference coatings with layer thicknesses ranging from 0.7 nm to 5.4 nm. The multilayers were deposited by magnetron sputtering and by ion beam sputtering. Grazing incidence x-ray reflectometry, soft x-ray reflectometry, and transmission electron microscopy reveal asymmetric multilayer structures with a larger B4C-on-Cr interface, which we modeled with a 1-1.5 nm thick interfacial layer. Reflectance measurements in the vicinity of the Cr L2,3 absorption edge demonstrate fine structure that is not predicted by simulations using the currently tabulated refractive index (optical constants) values for Cr.

  3. Cr/B{sub 4}C multilayer mirrors: Study of interfaces and X-ray reflectance

    SciTech Connect

    Burcklen, C.; Meltchakov, E.; Jérome, A.; Rossi, S. de; Delmotte, F.; Soufli, R.; Dennetiere, D.; Polack, F.; Capitanio, B.; Thomasset, M.; Gullikson, E.

    2016-03-28

    We present an experimental study of the effect of layer interfaces on the x-ray reflectance in Cr/B{sub 4}C multilayer interference coatings with layer thicknesses ranging from 0.7 nm to 5.4 nm. The multilayers were deposited by magnetron sputtering and by ion beam sputtering. Grazing incidence x-ray reflectometry, soft x-ray reflectometry, and transmission electron microscopy reveal asymmetric multilayer structures with a larger B{sub 4}C-on-Cr interface, which we modeled with a 1–1.5 nm thick interfacial layer. Reflectance measurements in the vicinity of the Cr L{sub 2,3} absorption edge demonstrate fine structure that is not predicted by simulations using the currently tabulated refractive index (optical constants) values for Cr.

  4. Delocalization in Cr3+ luminescence of clinochlore: A pressure-induced transition from single-ion emission to pair emission

    NASA Astrophysics Data System (ADS)

    O'Bannon, Earl; Williams, Quentin

    2017-10-01

    The luminescence spectra of Cr3+ in (Mg,Fe2+)5Al(Si3Al)O10(OH)8-clinochlore, a layered silicate compound, are reported to pressures of ∼25 GPa at 298 K: our results encompass emission from single-ions, paired neighbors and vibronic lines. A transition from sharp single Cr3+ ion (R-line) dominated emission to Cr-Cr pair (N-Line) dominated emission is observed under compression. Since Cr atoms are confined to a discrete layer within the structure, efficient Cr-Cr exchange only occurs within a single layer; the distance between the layers is too large for significant interlayer coupling to occur. This 2-dimensional, single-layer arrangement gives rise to three distinguishable Cr3+ nearest neighbor pairs. Neighbor lines are assigned based on ferromagnetic coupling of these three emitting pairs. We observe a decrease in the separation between the split components of the R-line under compression, confirming that the Cr sites become less distorted up to at least ∼11.0 GPa. An increase in overlap between eg orbitals of neighboring Cr-ions (corresponding to delocalization of the excited state) under compression also likely occurs. The R-to N-line transition is fully reversible and hysteresis is not observed, indicating that this transition is purely electronic in nature. The intensity transfer between the single-ion and paired-ion emission changes with a ∼1/4th power law as a function of the Cr-Cr separation.

  5. Electric field control of ferromagnetism at room temperature in GaCrN (p-i-n) device structures

    NASA Astrophysics Data System (ADS)

    El-Masry, N. A.; Zavada, J. M.; Reynolds, J. G.; Reynolds, C. L.; Liu, Z.; Bedair, S. M.

    2017-08-01

    We have demonstrated a room temperature dilute magnetic semiconductor based on GaCrN epitaxial layers grown by metalorganic chemical vapor deposition. Saturation magnetization Ms increased when the GaCrN film is incorporated into a (p-GaN/i-GaCrN/n-GaN) device structure, due to the proximity of mediated holes present in the p-GaN layer. Zero field cooling and field cooling were measured to ascertain the absence of superparamagnetic behavior in the films. A (p-GaN/i-GaCrN/n-GaN) device structure with room temperature ferromagnetic (FM) properties that can be controlled by an external applied voltage has been fabricated. In this work, we show that the applied voltage controls the ferromagnetic properties, by biasing the (p-i-n) structure. With forward bias, ferromagnetism in the GaCrN layer was increased nearly 4 fold of the original value. Such an enhancement is due to carrier injection of holes into the Cr deep level present in the i-GaCrN layer. A "memory effect" for the FM behavior of the (p-i-n) GaCrN device structure persisted for 42 h after the voltage bias was turned off. These measurements also support that the observed ferromagnetism in the GaCrN film is not due to superparamagnetic clusters but instead is a hole-mediated phenomenon.

  6. Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Gil; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jeong-Yong; Koo, Yang-Hyun

    2015-10-01

    A 3D laser coating technology using Cr powder was developed for Zr-based alloys considering parameters such as: the laser beam power, inert gas flow, cooling of Zr-based alloys, and Cr powder control. This technology was then applied to Zr cladding tube samples to study the effect of Cr coating on the high-temperature oxidation of Zr-based alloys in a steam environment of 1200 °C for 2000s. It was revealed that the oxide layer thickness formed on the Cr-coated tube surface was about 25-times lower than that formed on a Zircaloy-4 tube surface. In addition, both the ring compression and the tensile tests were performed to evaluate the adhesion properties of the Cr-coated sample. Although some cracks were formed on the Cr-coated layer, the Cr-coated layer had not peeled off after the two tests.

  7. Mechanical properties of Cr-Cu coatings produced by electroplating

    NASA Astrophysics Data System (ADS)

    Riyadi, Tri Widodo Besar; Sarjito, Masyrukan, Riswan, Ricky Ary

    2017-06-01

    Hard chromium coatings has long been considered as the most used electrodeposited coating in several industrial applications such as in petrochemistry, oil and gas industries. When hard coatings used in fastener components, the sliding contact during fastening operation produces high tensile stresses on the surface which can generate microcracks. For component used in high oxidation and corrosion environment, deep cracks cannot be tolerated. In this work, a laminated structure of Cr-Cu coating was prepared using electroplating on carbon steel substrates. Two baths of chrome and copper electrolyte solutions were prepared to deposit Cr as the first layer and Cu as the second layer. The effect of current voltages on the thickness, hardness and specific wear rate of the Cu layer was investigated. The results show that an increase of the current voltages increased the thickness and hardness of the Cu layer, but reduced the specific wear rate. This study showed that the use of Cu can be a potential candidate as a laminated structure Cr-Cu for chromium plating.

  8. Galle Cr. Dunes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03637 Galle Cr. Dunes

    These dunes are located on the floor of Galle Crater.

    Image information: VIS instrument. Latitude 51.5S, Longitude 329.0E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. Hot Corrosion Behavior of Stainless Steel with Al-Si/Al-Si-Cr Coating

    NASA Astrophysics Data System (ADS)

    Fu, Guangyan; Wu, Yongzhao; Liu, Qun; Li, Rongguang; Su, Yong

    2017-03-01

    The 1Cr18Ni9Ti stainless steel with Al-Si/Al-Si-Cr coatings is prepared by slurry process and vacuum diffusion, and the hot corrosion behavior of the stainless steel with/without the coatings is studied under the condition of Na2SO4 film at 950 °C in air. Results show that the corrosion kinetics of stainless steel, the stainless steel with Al-Si coating and the stainless steel with Al-Si-Cr coating follow parabolic laws in several segments. After 24 h corrosion, the sequence of the mass gain for the three alloys is the stainless steel with Al-Si-Cr coating < the stainless steel with Al-Si coating < the stainless steel without any coating. The corrosion products of the three alloys are layered. Thereinto, the corrosion products of stainless steel without coating are divided into two layers, where the outside layer contains a composite of Fe2O3 and FeO, and the inner layer is Cr2O3. The corrosion products of the stainless steel with Al-Si coating are also divided into two layers, of which the outside layer mainly consists of Cr2O3, and the inner layer is mainly SiO2. The corrosion film of the stainless steel with Al-Si-Cr coating is thin and dense, which combines well with substrate. Thereinto, the outside layer is mainly Cr2O3, and the inside layer is Al2O3. In the matrix of all of the three alloys, there exist small amount of sulfides. Continuous and protective films of Cr2O3, SiO2 and Al2O3 form on the surface of the stainless steel with Al-Si and Al-Si-Cr coatings, which prevent further oxidation or sulfide corrosion of matrix metals, and this is the main reason for the much smaller mass gain of the two alloys than that of the stainless steel without any coatings in the 24 h hot corrosion process.

  10. Ferromagnetic resonance investigation of Py/Cr multilayer system

    NASA Astrophysics Data System (ADS)

    Erkovan, M.; Öztürk, S. T.; Topkaya, R.; Özdemir, M.; Aktaş, B.; Öztürk, O.

    2011-07-01

    The multilayer thin films consisting of alternating stacks of ferromagnetic Permalloy (Py) and ultra thin non-magnetic (sub-nanometer) spacer (Cr) layers have been investigated by using ferromagnetic resonance (FMR) and dc magnetization measurement techniques. The non-magnetic spacer layer thickness changes from 0.5 Å to 2.5 Å by 0.5 Å steps. Polycrystalline composite metallic films were grown on Si substrate by usual magnetron sputtering techniques at UHV conditions. The magnetic hysteresis curves were recorded by conventional dc magnetization. The ac and dc magnetic properties were investigated by using ferromagnetic resonance. FMR measurements were carried out for different directions of external dc magnetic field in order to search magnetic anisotropy. Two strong and well defined peaks (acoustic and optic mode) were observed in FMR spectrum as the magnetic field direction approaches to the film normal. Their positions and relative intensities helped to characterize coupling species. The magnetic parameters have been deduced by using a theoretical model. It has been found that the exchange coupling parameter between ferromagnetic layers through non-magnetic Cr spacer is ferromagnetic in nature and strongly decreases with increasing spacer layer thickness. The magnetic anisotropy parameters strictly depend on magnetic layer thickness while the dc magnetization is almost constant for a few nanometer thick Permalloy as well. We observed only ferromagnetic coupling between ferromagnetic layers in all samples.

  11. Growth of InN nanorods prepared by plasma-assisted molecular beam epitaxy with varying Cr thicknesses

    NASA Astrophysics Data System (ADS)

    Liu, K. W.; Young, S. J.; Chang, S. J.; Hsueh, T. H.; Chen, Y. Z.; Chen, K. J.; Hung, H.; Wang, S. M.; Wu, Y. L.

    2012-05-01

    This study investigates how the thickness of Cr deposited on the Si substrate after the nitridation process influences the AIN buffer layer and the InN nanorods. Atomic force microscopy results reveal that different thicknesses of Cr form varying sizes of CrN nanoislands. The results of scanning electron microscopy and X-ray diffraction show that a Cr deposition thickness of 10 nm results in CrN nanoislands after the nitridation process, improving the quality and density of InN nanorods. A Cr layer that was too thick led to polycrystalline InN growth. The results of transmission electron microscopy indicate a baseball bat-like InN nanorod growth mechanism.

  12. Repassivation of 13% Cr steel dependent on brine pH

    SciTech Connect

    Skogsberg, J.W.; Walker, M.L.

    2000-02-01

    A joint laboratory project, involving an oil production and oil well service company, investigated repassivation of martensitic 13% Cr steel. The rate at which this alloy is repassivated after losing its protective passive oxide layer to hydrochloric acid (HCI) depended on the pH of the spent acid returns. Test samples of 13% Cr cut from oilfield tubing were subjected to a fluid sequence of (1) initial brine, (2) HCI, (3) spent acid, and (4) final brine. In 9 days, the samples regained their passive oxide layers. When spent acid was taken out of the fluid sequence, the samples regained passive oxide layers in 3 days.

  13. Degradation of Fe-25Cr, Fe-25Cr-20Ni and Fe-25Cr-6A1 alloys in H/sub 2//H/sub 2/O/H/sub 2/S environments at 700/degree/C

    SciTech Connect

    Vedula, K.

    1989-03-01

    Fe-25wt%Cr, Fe-25wt%Cr-20wt%Ni and Fe-25wt%Cr-6wt%Al alloys have been exposed to H/sub 2//H/sub 2/O/H/sub 2/S/Ar gas mixtures at 700/degree/C. The mechanisms of formation and degradation of oxide scales on these alloys have been investigated using electron microscopy and surface analytical techniques. The Fe-25Cr-6Al alloy is attacked the least as a result of the formation of a Al/sub 2/O/sub 3/ layer in the scale, whereas the Fe-25Cr-20Ni alloy is attacked the most, through rapid formation of Fe and Ni sulfides. The Fe-25Cr alloy, forms a Cr/sub 2/O/sub 3/ scale containing CrS/sub 1. 17/ precipitates, and other phases which eventually lead to scale breakdown. 17 refs., 8 figs., 3 tabs.

  14. Threshold photodissociation of Cr+2

    NASA Astrophysics Data System (ADS)

    Lessen, D. E.; Asher, R. L.; Brucat, P. J.

    1991-08-01

    A one-photon photodissociation threshold for supersonically cooled Cr+2 is determined to be 2.13 eV. This threshold provides a strict upper limit to the adiabatic binding energy of the ground state of chromium dimer cation if the initial internal energy of the parent ion may be neglected. From the difference in the IPs of chromium atom and dimer, an upper limit to the dissociation of Cr2 is placed at 1.77 eV.

  15. Magnetotransmission and magnetoreflection in multilayer FeCr nanostructures

    SciTech Connect

    Ustinov, V. V.; Sukhorukov, Yu. P. Milyaev, M. A.; Granovskii, A. B. Yurasov, A. N.; Gan'shina, E. A.; Telegin, A. V.

    2009-02-15

    The magnetotransmission and magnetoreflection spectra of a seven-layer Cr(28 A)/Fe(36 A)/Cr(13 A)/Fe(18 A)/Cr(13 A)/Fe(36 A)/Cr(28 A) film, their temperature and field dependences measured at various directions of a magnetic field with respect to the film plane, and the correlations between these effects are studied. The experimental results are compared with the data on the magnetization and transverse Kerr effect. The magnetotransmittance and magnetoreflectance are calculated for this film in terms of the magnetorefractive effect theory. Apart from the film layer thickness, the effective relaxation time, the plasma frequency, and the spin asymmetry parameter are shown to strongly affect both the magnitudes and spectral dependences of the magnetotransmittance and magnetoreflectance. Although the calculation results qualitatively describe the signs and the spectral and field dependences of the magnetotransmittance and magnetoreflectance, they do not agree quantitatively with the experimental results, in particular, near the visible region. The causes of the quantitative discrepancies are discussed.

  16. Boundary Layer

    NASA Technical Reports Server (NTRS)

    Loitsianskii. L. G.

    1956-01-01

    The fundamental, practically the most important branch of the modern mechanics of a viscous fluid or a gas, is that branch which concerns itself with the study of the boundary layer. The presence of a boundary layer accounts for the origin of the resistance and lift force, the breakdown of the smooth flow about bodies, and other phenomena that are associated with the motion of a body in a real fluid. The concept of boundary layer was clearly formulated by the founder of aerodynamics, N. E. Joukowsky, in his well-known work "On the Form of Ships" published as early as 1890. In his book "Theoretical Foundations of Air Navigation," Joukowsky gave an account of the most important properties of the boundary layer and pointed out the part played by it in the production of the resistance of bodies to motion. The fundamental differential equations of the motion of a fluid in a laminar boundary layer were given by Prandtl in 1904; the first solutions of these equations date from 1907 to 1910. As regards the turbulent boundary layer, there does not exist even to this day any rigorous formulation of this problem because there is no closed system of equations for the turbulent motion of a fluid. Soviet scientists have done much toward developing a general theory of the boundary layer, and in that branch of the theory which is of greatest practical importance at the present time, namely the study of the boundary layer at large velocities of the body in a compressed gas, the efforts of the scientists of our country have borne fruit in the creation of a new theory which leaves far behind all that has been done previously in this direction. We shall herein enumerate the most important results by Soviet scientists in the development of the theory of the boundary layer.

  17. Nonmixing layers

    NASA Astrophysics Data System (ADS)

    Gaillard, Pierre; Giovangigli, Vincent; Matuszewski, Lionel

    2016-12-01

    We investigate the impact of nonideal diffusion on the structure of supercritical cryogenic binary mixing layers. This situation is typical of liquid fuel injection in high-pressure rocket engines. Nonideal diffusion has a dramatic impact in the neighborhood of chemical thermodynamic stability limits where the components become quasi-immiscible and ultimately form a nonmixing layer. Numerical simulations are performed for mixing layers of H2 and N2 at a pressure of 100 atm and temperature around 120-150 K near chemical thermodynamic stability limits.

  18. The development of a nanostructured, graded multilayer Cr-CrxNy-Cr1-xAlxN coating produced by pulsed closed field unbalanced magnetron sputtering (P-CFUBMS) for use in aluminum pressure die casting dies.

    PubMed

    Lin, Jianliang; Mishra, Brajendra; Myers, Sterling; Ried, Peter; Moore, John J

    2009-06-01

    The main objective of this research is to design an optimized 'coating system' that extends die life by minimizing premature die failure. The concept of the multilayer coating system with desired combinations of different kinds of single-layer coatings was introduced. A pulsed closed field unbalanced magnetron sputtering (P-CFUBMS) deposition system has been used to deposit Cr-CrxNy-Cr1-xAlxN compositionally graded multilayer coating structures. In this study, three power law scenarios have been adopted to vary the aluminum concentration in the graded Cr1-xAlxN layer: (i) p = 1, the aluminum concentration was increased linearly in the Cr1-xAlxN layer. (ii) p = 0.2, the Cr1-xAlxN layer is an aluminum-rich graded layer, and (iii) p = 2, the Cr1-xAlxN layer is a chromium-rich graded layer. It was found that all the graded coatings exhibit lower residual stress and higher adhesion strength than the homogeneous Cr1-xAlxN (x = 0.585) film. However, different power law grading architectures have significant influence on the hardness and wear resistance of the films. When p = 2 and p = 1, the graded films exhibited relatively low hardness values (24 and 26 GPa respectively) and high COF (0.55 to 0.60). When p = 0.2 the graded film exhibited both high hardness (34 GPa) and good wear resistance (COF = 0.45) due to the structural consistency in the graded zone. The paper discusses the correlation between the pulsing parameters and coating architecture with the resulting nanostructure and tribological properties of this Cr-CrxNy-Cr1-xAlxN coating system.

  19. Spallanzani Layers

    NASA Technical Reports Server (NTRS)

    2006-01-01

    31 March 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a layered, light-toned mesa among other layered materials exposed in a mound that covers much of the floor of Spallanzani Crater.

    Location near: 58.3oS, 273.9oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  20. Inelastic neutron scattering of the itinerant magnets Cr2Te3 and tr-Cr5Te8

    NASA Astrophysics Data System (ADS)

    Aczel, Adam; Granroth, Garrett; Ghimire, Nirmal; McGuire, Michael; Mandrus, David; Nagler, Steve

    2012-02-01

    Itinerant magnets based on transition metal chalcogenide compounds are of current interest, in part due to their relationship to the parent compounds of Fe-based superconductors. Two particularly interesting systems in this family are the chromium tellurides Cr2Te3 and trigonal (tr) Cr5Te8. These materials crystallize in layered structures with alternating partially and fully-occupied planes of Cr atoms stacked along the c-axis. Magnetization measurements along different crystallographic directions show a net ferromagnetic response and large magnetic anisotropy. In addition, the saturation moments are smaller than predicted by an ionic model; consistent with itinerant behavior. Previous neutron diffraction results for Cr2Te3 revealed an ordered moment of < 0.2 μB in the partially-occupied planes. We examined the magnetic excitations in these materials by powder neutron spectroscopy measurements using the SEQUOIA instrument at the SNS. We find similar moment sizes for the magnetic Cr atoms of both systems. However, despite their similar crystal structures, ordered moment sizes, and chemical compositions, their magnetic excitation spectra are strikingly different. We compare our data to the predictions of various models in an effort to determine the relevant exchange parameters, put constraints on their magnitudes, and understand the differences between the inelastic magnetic spectra. We find that exchange along the c-direction is critical to explain our data.

  1. Characterization of Cr-rich Cr-Sb multilayer films: Syntheses of a new metastable phase using modulated elemental reactants

    NASA Astrophysics Data System (ADS)

    Regus, Matthias; Mankovsky, Sergiy; Polesya, Svitlana; Kuhn, Gerhard; Ditto, Jeffrey; Schürmann, Ulrich; Jacquot, Alexandre; Bartholomé, Kilian; Näther, Christian; Winkler, Markus; König, Jan D.; Böttner, Harald; Kienle, Lorenz; Johnson, David C.; Ebert, Hubert; Bensch, Wolfgang

    2015-10-01

    The new metastable compound Cr1+xSb with x up to 0.6 has been prepared via a thin film approach using modulated elemental reactants and investigated by in-situ X-ray reflectivity, X-ray diffraction, differential scanning calorimetry, energy dispersive X-ray analysis as well as transmission electron microscopy and atomic force microscopy. The new Cr-rich antimonide crystallizes in a structure related to the Ni2In-type structure, where the crystallographic position (1/3, 2/3, 3/4) is partially occupied by excess Cr. The elemental layers of the pristine material interdiffused significantly before Cr1+xSb crystallized. A change in the activation energy was observed for the diffusion process when crystal growth starts. First-principles electronic structure calculations provide insight into the structural stability, magnetic properties and resistivity of Cr1+xSb. 2 interdiffused amorphous film 3 metastable crystalline phase 4 thermodynamic stable phase (and by-product)

  2. Film Thickness Influences on the Thermoelectric Properties of NiCr/NiSi Thin Film Thermocouples

    NASA Astrophysics Data System (ADS)

    Chen, Y. Z.; Jiang, H. C.; Zhang, W. L.; Liu, X. Z.; Jiang, S. W.

    2013-06-01

    NiCr/NiSi thin film thermocouples (TFTCs) with a multi-layer structure were fabricated on Ni-based superalloy substrates (95 mm × 35 mm × 2 mm) by magnetron sputtering and electron beam evaporation. The five-layer structure is composed of NiCrAlY buffer layer (2 μm), thermally grown Al2O3 bond layer (200 nm), Al2O3 insulating layer (10 μm), NiCr/NiSi TFTCs (1 μm), and Al2O3 protective layer (500 nm). Influences of thermocouple layer thickness on thermoelectric properties were investigated. Seebeck coefficient of the samples with the increase in thermocouple layer thickness from 0.5 μm to 1 μm increased from 27.8 μV/°C to 33.8 μV/°C, but exhibited almost no change with further increase in thermocouple layer thickness from 1 μm to 2 μm. Dependence on temperature of the thermal electromotive force of the samples almost followed standard thermocouple characteristic curves when the thickness of the thermocouple layer was 1 μm and 2 μm. Sensitive coefficient K of the samples increased greatly with the increase in thickness of the thermocouple layer from 0.5 μm to 1 μm, but decreased insignificantly with the increase in thermocouple layer thickness from 1 μm to 2 μm, and continuously decreased with the increase in temperature. The sensitive coefficient and the stability of NiCr/NiSi TFTCs were both improved after annealing at 600°C.

  3. Enhanced photoelectrochemical and optical performance of ZnO films tuned by Cr doping

    NASA Astrophysics Data System (ADS)

    Salem, M.; Akir, S.; Massoudi, I.; Litaiem, Y.; Gaidi, M.; Khirouni, K.

    2017-04-01

    In this paper, pure and Cr-doped nanostructured Zinc oxide thin films were synthesized by simple and low cost co-precipitation and spin-coating method with Cr concentration varying between 0.5 and 5 at.%. Crystalline structure of the prepared films was investigated by X-ray diffraction (XRD) and Raman spectroscopy techniques. XRD analysis indicated that the films were indexed as the hexagonal phase of wurtzite-type structure and demonstrated a decrease in the crystallite size with increasing Cr doping content. Cr doping revealed a significant effect on the optical measurements such as transmission and photoluminescence properties. The optical measurements indicated that Cr doping decreases the optical band gap and it has been shifted from 3.41 eV for pure ZnO film to 3.31 eV for 5 at.% Cr-doped one. The photoelectrochemical (PEC) sensing characteristics of Cr-doped ZnO layers were investigated. Amongst all photo-anodes with different Cr dopant concentration, the 2 at.% Cr incorporated ZnO films exhibited fast response and higher photoconduction sensitivity.

  4. Cr(VI) Adsorption on Red Mud Modified by Lanthanum: Performance, Kinetics and Mechanisms

    PubMed Central

    Cui, You-Wei; Li, Jie; Du, Zhao-Fu; Peng, Yong-Zhen

    2016-01-01

    Water pollution caused by the highly toxic metal hexavalent chromium (Cr(VI)) creates significant human health and ecological risks. In this study, a novel adsorbent was used to treat Cr(VI)-containing wastewater; the adsorbent was prepared using red mud (RM) generated from the alumina production industry and the rare earth element lanthanum. This study explored adsorption performance, kinetics, and mechanisms. Results showed that the adsorption kinetics of the RM modified by lanthanum (La-RM), followed the pseudo-second-order model, with a rapid adsorption rate. Cr(VI) adsorption was positively associated with the absorbent dose, pH, temperature, and initial Cr(VI) concentration; coexisting anions had little impact. The maximum Cr(VI) adsorption capacity was 17.35 mg/g. Cr(VI) adsorption on La-RM was a mono-layer adsorption pattern, following the Langmuir isotherm model. Thermodynamic parameters showed the adsorption was spontaneous and endothermic. The adsorption of Cr(VI) on La-RM occurred as a result of LaOCl formation on the RM surface, which in turn further reacted with Cr(VI) in the wastewater. This study highlighted a method for converting industrial waste into a valuable material for wastewater treatment. The novel absorbent could be used as a potential adsorbent for treating Cr(VI)-contaminating wastewater, due to its cost-effectiveness and high adsorption capability. PMID:27658113

  5. Cr(VI) Adsorption on Red Mud Modified by Lanthanum: Performance, Kinetics and Mechanisms.

    PubMed

    Cui, You-Wei; Li, Jie; Du, Zhao-Fu; Peng, Yong-Zhen

    Water pollution caused by the highly toxic metal hexavalent chromium (Cr(VI)) creates significant human health and ecological risks. In this study, a novel adsorbent was used to treat Cr(VI)-containing wastewater; the adsorbent was prepared using red mud (RM) generated from the alumina production industry and the rare earth element lanthanum. This study explored adsorption performance, kinetics, and mechanisms. Results showed that the adsorption kinetics of the RM modified by lanthanum (La-RM), followed the pseudo-second-order model, with a rapid adsorption rate. Cr(VI) adsorption was positively associated with the absorbent dose, pH, temperature, and initial Cr(VI) concentration; coexisting anions had little impact. The maximum Cr(VI) adsorption capacity was 17.35 mg/g. Cr(VI) adsorption on La-RM was a mono-layer adsorption pattern, following the Langmuir isotherm model. Thermodynamic parameters showed the adsorption was spontaneous and endothermic. The adsorption of Cr(VI) on La-RM occurred as a result of LaOCl formation on the RM surface, which in turn further reacted with Cr(VI) in the wastewater. This study highlighted a method for converting industrial waste into a valuable material for wastewater treatment. The novel absorbent could be used as a potential adsorbent for treating Cr(VI)-contaminating wastewater, due to its cost-effectiveness and high adsorption capability.

  6. Kinetics of Cr(III) and Cr(VI) removal from water by two floating macrophytes.

    PubMed

    Maine, M A; Hadad, H R; Sánchez, G; Caffaratti, S; Pedro, M C

    2016-01-01

    The aim of this work was to compare Cr(III) and Cr(VI) removal kinetics from water by Pistia stratiotes and Salvinia herzogii. The accumulation in plant tissues and the effects of both Cr forms on plant growth were also evaluated. Plants were exposed to 2 and 6 mg L(-1) of Cr(III) or Cr(VI) during 30 days. At the end of the experiment, Cr(VI) removal percentages were significantly lower than those obtained for Cr(III) for both macrophytes. Cr(III) removal kinetics involved a fast and a slow component. The fast component was primarily responsible for Cr(III) removal while Cr(VI) removal kinetics involved only a slow process. Cr accumulated principally in the roots. In the Cr(VI) treatments a higher translocation from roots to aerial parts than in Cr(III) treatments was observed. Both macrophytes demonstrated a high ability to remove Cr(III) but not Cr(VI). Cr(III) inhibited the growth at the highest studied concentration of both macrophytes while Cr(VI) caused senescence. These results have important implications in the use of constructed wetlands for secondary industrial wastewater treatment. Common primary treatments of effluents containing Cr(VI) consists in its reduction to Cr(III). Cr(III) concentrations in these effluents are normally below the highest studied concentrations in this work.

  7. Comparison in mechanical and tribological properties of CrTiAlMoN and CrTiAlN nano-multilayer coatings deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhang, Guojun; Jiang, Bailing

    2016-02-01

    CrTiAlN and CrTiAlMoN nano-multilayer coatings were deposited by closed field unbalanced magnetron sputtering. TiMoN and CrTiMoN nano-multilayer coatings with same Mo2N layer thickness were also prepared for comparison. The structure of these coatings is investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The mechanical and tribological properties were characterized and compared by nano-indentation and ball-on-disc test. It was found that these coatings were structured by fcc metal nitride phases (including CrN, TiN, AlN and Mo2N) and the preferred orientation changed from (1 1 1) to (2 0 0) with the increase of Mo content. The TEM results showed that the coatings exhibited typical columnar structure and nano-multilayer structure with modulation periods ranged from 3.2 nm to 7.6 nm. Among these coatings, CrTiAlMoN coatings presented the highest hardness, lowest coefficient of friction (COF) and wear rate. The hardness of these nano-multilayer coatings were determined by layer interfaces: TiN/Mo2N and AlN/Mo2N layer interface showed benefit on hardness enhancement while CrN/Mo2N layer interface led to a great hardness decrement. In comparison with the other as-deposited coatings, the low COF of CrTiAlMoN coatings was not only affected by Mo addition but also related to its oxidation behaviors.

  8. Structure and mechanical properties of nanoscale multilayered CrN/ZrSiN coatings

    SciTech Connect

    Zhang, Z. G.; Rapaud, O.; Allain, N.; Baraket, M.; Dong, C.; Coddet, C.

    2009-07-15

    Nanocrystalline/amorphous CrN/ZrSiN multilayer coatings with a bilayer thickness ranging from 11 to 153 nm were prepared by reactive magnetron sputtering technique. The microstructure and mechanical properties of these thin films were characterized by x-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and nanoindentation. The formation of nanocrystalline CrN and nanocomposite ZiSiN in the single layer coatings was identified by XRD and FTIR. The periodic structure of the as-deposited multilayer coatings was confirmed by TEM observation. Nanoindentation tests showed that both the values of hardness (H) and reduced elastic modulus (E{sub r}) of CrN/ZrSiN multilayers remained almost constant despite varying the bilayer thickness. The multilayer coatings exhibited higher H of 30 GPa and higher resistance to plastic deformation when compared to the single layer CrN and ZrSiN coatings.

  9. Cu-Cr Literature Review

    SciTech Connect

    Need, Ryan F.

    2012-08-09

    Cu-Cr alloys are part of a class of face-centered cubic (FCC)-body-centered cubic (BCC) composites that includes similar alloys, such as Cu-Nb and Cu-Ta. When heavily deformed, these FCC-BCC materials create 'in situ' composites with a characteristic structure-nanoscale BCC filaments in a ductile FCC matrix. The strength of these composites is vastly greater than predicted by the rule of mixtures, and has been shown to be inversely proportional to the filament spacing. Lower raw materials costs suggest that Cu-Cr alloys may offer more economical solution to high-strength, high-conductivity wire than either their Nb or Ta counterparts. However, Cr is also more brittle and soluble in Cu than Nb or Ta. These qualities necessitate thermal treatments to remove solute atoms from the Cu matrix, improve conductivity, and maintain the ductility of the Cr filaments. Through the use of different thermomechanical processing routes or the addition of select dopants, alloys with strength in excess of 1 GPa at 70% IACS have been achieved. To date, previous research on Cu-Cr alloys has focused on a relatively small number of alloy compositions and processing methods while the effects of dopants and ageing treatments have only been studied independently. Consequently, there remains considerable opportunity for the development and optimization of these alloys as a leading high-strength, high-conductivity material.

  10. CuCrZr alloy microstructure and mechanical properties after hot isostatic pressing bonding cycles

    NASA Astrophysics Data System (ADS)

    Frayssines, P.-E.; Gentzbittel, J.-M.; Guilloud, A.; Bucci, P.; Soreau, T.; Francois, N.; Primaux, F.; Heikkinen, S.; Zacchia, F.; Eaton, R.; Barabash, V.; Mitteau, R.

    2014-04-01

    ITER first wall (FW) panels are a layered structure made of the three following materials: 316L(N) austenitic stainless steel, CuCrZr alloy and beryllium. Two hot isostatic pressing (HIP) cycles are included in the reference fabrication route to bond these materials together for the normal heat flux design supplied by the European Union (EU). This reference fabrication route ensures sufficiently good mechanical properties for the materials and joints, which fulfil the ITER mechanical specifications, but often results in a coarse grain size for the CuCrZr alloy, which is not favourable, especially, for the thermal creep properties of the FW panels. To limit the abnormal grain growth of CuCrZr and make the ITER FW fabrication route more reliable, a study began in 2010 in the EU in the frame of an ITER task agreement. Two material fabrication approaches have been investigated. The first one was dedicated to the fabrication of solid CuCrZr alloy in close collaboration with an industrial copper alloys manufacturer. The second approach investigated was the manufacturing of CuCrZr alloy using the powder metallurgy (PM) route and HIP consolidation. This paper presents the main mechanical and microstructural results associated with the two CuCrZr approaches mentioned above. The mechanical properties of solid CuCrZr, PM CuCrZr and joints (solid CuCrZr/solid CuCrZr and solid CuCrZr/316L(N) and PM CuCrZr/316L(N)) are also presented.

  11. Investigations of the crystallization mechanism of CrSb and CrSb2 multilayered films using in-situ X-ray diffraction and in-situ X-ray reflectometry

    NASA Astrophysics Data System (ADS)

    Regus, Matthias; Kuhn, Gerhard; Mankovsky, Sergej; Ebert, Hubert; Bensch, Wolfgang

    2012-12-01

    Chromium and antimony multilayered films with variable elemental layer thickness were deposited on (1 0 0)-Si substrate cooled with liquid nitrogen. The stoichiometry of the films was adjusted to Cr:Sb=1:1 and 1:2. The thickness of Cr-Sb repeating units of these multifilms was varied between 11.4 and 102.5 Å. Satellite maxima in the X-ray reflectivity curves observed for films in the as-deposited state demonstrate an alternating stacking of the evaporated elements. The reactivity of the superlattice reactants was investigated with temperature dependent in-situ X-ray diffractometry and X-ray reflectometry. The crystallization temperature of CrSb depends on the double-layer thickness and is about 90 °C for a Cr:Sb ratio of 1:1 and double-layer thickness of 53.7 Å where nucleation and crystal formation occurs at the element interfaces, while for a thin double-layer thickness (11.4 Å) first interdiffusion of the elements occurs before crystallization starts, i.e., an amorphous intermediate is formed prior to crystallization of CrSb. A decomposition reaction into CrSb2 occurs at about 230 °C, and up to about 575 °C, CrSb, CrSb2 and amorphous Cr coexist. For the ratio Cr:Sb=1:2 and a thin double-layer thickness prior to crystallization of CrSb2 nano-sized crystallites with a composition near CrSb2 nucleate and grow. These crystallites are then successively transformed in long-range ordered crystals exhibiting a pronounced preferred orientation. For films with a thicker repeat unit first formation of CrSb is observed which then reacts with elemental Sb yielding crystalline CrSb2. An activation energy for interdiffusion of Cr and Sb of about 1.8 eV is estimated for a film with Cr:Sb=1:1 exhibiting a double-layer thickness of about 53.7 Å and an energy for crystal growth of about 1.1 eV. For the film with the thinner double-layer thickness of 11.4 Å a lower value of the activation energy for interdiffusion is obtained. For CrSb2 the energy for crystal growth is

  12. Doping and Thermal Conductivity Studies of CrSiTe3

    NASA Astrophysics Data System (ADS)

    Haglund, Amanda; Yan, Jiaqiang; Keppens, Veerle; Mandrus, David

    CrSiTe3 is a layered material with a 2-dimensional crystal structure, and has recently become of more interest due to the possibility of using its ferromagnetic and semiconducting properties for spintronics applications. To further investigate the properties of CrSiTe3, we doped it with various transition elements on the Cr site in an attempt to tune and control the magnetism, as well as study changes in the thermal conductivity. We synthesized pure CrSiTe3 and doped samples through flux growth, producing plate-like bulk crystals. Crystal quality was checked by x-ray diffraction and energy dispersive spectroscopy, and then thermal conductivity and magnetization measurements were obtained on the doped materials to compare variations from the pristine CrSiTe3.

  13. Two-dimensional ferromagnetism and spin filtering in Cr and Mn-doped graphdiyne

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Gao, Pengfei; Guo, Lei; Wen, Yanni; Zhang, Yang; Zhang, Shengli

    2017-06-01

    Ferromagnetism in half-metallic two-dimensional material can lead to unique spintronics application. In this work, Cr-doped single-layer graphdiyne is predicted to be two-dimensional ferromagnetic semiconductor, and Mn-doped graphdiyne is predicted to be ferromagnetic conductor using first-principle calculations. Cr and Mn adatoms could be stabilized on the corner sites of graphdiyne sheet due to high migration barriers. The currents through Cr- and Mn-doped graphdiyne possess spin polarization feature. For Cr-doped graphdiyne system, the transmission polarization is up to 100% and could be controlled by the gate voltage. Cr-/Mn-doped graphdiyne with spin-polarized semiconductor/conductor properties could be promising material for combined usage in spintronics application.

  14. Properties of Cr2AlC MAX phase thin films prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Buck, Zachary; Donato, Tyler; Rotella, Christopher; Lunk, Carl; Lofland, S. E.; Hettinger, J. D.

    2012-02-01

    Mn+ 1AXn (MAX) phases, where n is 1, 2, and 3, M is an early transition metal, A is an A-group element, and X is either C or N, are ternary carbides with unique properties such as low density, easy machinability, and good oxidation resistance. The MAX phase Cr2AlC is of particular interest for industrial applications to its excellent high-temperature oxidation resistance and relatively low synthesis temperature. We prepared Cr2AlC thin films on c-axis oriented single crystal Al2O3, glassy carbon and Si thermal oxide substrates using reactive magnetron sputtering as precursor materials for carbide-derived carbon (CDC) films for ``on-chip'' supercapacitors. Film deposition was optimized using elemental composition data obtained by WDXRF. Optimized films were characterized using XRD and scanning electron microscopy. It was found that textured Cr2AlC films only form when the composition was Al-rich allowing the formation of a Cr5Al8 interfacial layer. As film composition was optimized, the interfacial layer did not form but the XRD peaks associated with the Cr2AlC also decreased in magnitude. Extremely high-textured films were grown when a thin buffer layer of CrAl2 was deposited on the substrate before depositing the Cr2AlC films. This result suggests that Cr2AlC films may not be ideal for CDC applications since the films may ``lift-off'' during conversion due to the existence of the naturally occurring buffer-layer.

  15. Enhanced removal of trace Cr(VI) ions from aqueous solution by titanium oxide-Ag composite adsorbents.

    PubMed

    Liu, Si Si; Chen, Yong Zhou; De Zhang, Li; Hua, Guo Min; Xu, Wei; Li, Nian; Zhang, Ye

    2011-06-15

    Titanium oxide-Ag composite (TOAC) adsorbents were prepared by a facile solution route with Ag nanoparticles being homogeneously dispersed on layered titanium oxide materials. The as-synthesized TOAC exhibited a remarkable capability for trace Cr(VI) removal from an aqueous solution, where the concentration of Cr(VI) could be decreased to a level below 0.05 mg/L within 1h. We have systematically investigated the factors that influenced the adsorption of Cr(VI), for example, the pH value of the solution, and the contact time of TOAC with Cr(VI). We found that the adsorption of Cr(VI) was strongly pH-dependent. The adsorption behavior of Cr(VI) onto TOAC fitted well the Langmuir isotherm and a maximum adsorption capacity of Cr(VI) as 25.7 mg/g was achieved. The adsorption process followed the pseudo-second-order kinetic model, which implied that the adsorption was composed of two steps: the adsorption of Cr(VI) ions onto TOAC followed by the reduction of Cr(VI) to Cr(III) by Ag nanoparticles. Our results revealed that TOAC with high capacity of Cr(VI) removal had promising potential for wastewater treatment.

  16. High-pressure BaCrO{sub 3} polytypes and the 5H–BaCrO{sub 2.8} phase

    SciTech Connect

    Arévalo-López, Angel M.; Paul Attfield, J.

    2015-12-15

    Polytypism of BaCrO{sub 3} perovskites has been investigated at 900–1100 °C and pressures up to 22 GPa. Hexagonal 5H, 4H, and 6H perovskites are observed with increasing pressure, and the cubic 3C perovskite (a=3.99503(1) Å) is observed in bulk form for the first time at 19–22 GPa. An oxygen-deficient material with limiting composition 5H–BaCrO{sub 2.8} is synthesised at 1200 °C under ambient pressure. This contains double tetrahedral Cr{sup 4+} layers and orders antiferromagnetically below 260 K with a (0 0 1/2) magnetic structure. - Graphical abstract: Hexagonal 5H, 4H, and 6H perovskites polytypes of BaCrO{sub 3} are observed with increasing pressure and the cubic 3C perovskite is stabilised in bulk form for the first time at 19–22 GPa. Oxygen-deficient 5H–BaCrO{sub 2.8} synthesised at ambient pressure contains double tetrahedral Cr{sup 4+} layers and orders antiferromagnetically below 260 K with a (0 0 1/2) magnetic structure.

  17. The influence of Cr and Al pack cementation on low carbon steel to improve oxidation resistance

    NASA Astrophysics Data System (ADS)

    Prasetya, Didik; Sugiarti, Eni; Destyorini, Fredina; Thosin, Kemas Ahmad Zaini

    2012-06-01

    Pack chromizing and aluminizing has been widely used for many years to improve hot temperature oxidation and corrosion resistance of metals. The coating process involves packing the steel in a powder mixture which contain aluminum and chromium source, and inert filler (usually alumina), and halide activator NH4Cl. Al and Cr were deposited onto carbon steel by pack cementation process using elemental Al and Cr powder as Al and Cr source, whereas NiCo alloys codeposited by electrodeposition. The position of Al and Cr could be under or over Ni-Co alloys deposited. Pack cementation was heated on dry inert gas at temperature 800 °C about 5 hours and 20 minute for Cr and Al respectively. Al and Cr was successfully deposited. Laying down effect of Al and Cr onto carbon steel whether up and down toward NiCo alloys coating have affected to oxidation resistance. The pack aluminizing as top layer given best resitance to restrain excessive oxide scale, in contrast pack chromizing reveal bad oxidation resistance, moreover occured spallation on layer.

  18. Improved oxide spallation resistance of microcrystalline Ni-Cr-Al coatings

    SciTech Connect

    Liu, Z.; Gao, W.; Dahm, K.L.; Wang, F.

    1998-08-01

    Microcrystalline Ni-20Cr-3Al coatings were deposited on Ni-20Cr-3Al substrates by unbalanced magnetron-sputter deposition. The grain size of the coatings was varied by using different Ar pressures. Cyclic-oxidation testing was performed at 1100 C. It was found that (1) an external {alpha}-Al{sub 2}O{sub 3} scale formed on coating A (4.7 {micro}m thick, 50 nm grain size); (2) an external Cr{sub 2}O{sub 3} scale and internal Al{sub 2}O{sub 3} oxide formed on coating B (14 {micro}m thick, 500 nm grain size); and (3) an outer layer scale of Cr{sub 2}O{sub 3} + NiCr{sub 2}O{sub 4} and interior layer of Al{sub 2}O{sub 3} formed on the as-cast alloy. Extensive spallation of the Cr{sub 2}O{sub 3} + NiCr{sub 2}O{sub 4} scale took place on the as-cast alloy, but no obvious spallation occurred on the two coatings. Improvement of the spallation resistance of the scale is explained by effective diffusional creep of the coatings and the micropegging effect of the inward-grown oxides.

  19. Ultrathin nanosheets of CrSiTe3. A semiconducting two-dimensional ferromagnetic material

    DOE PAGES

    Lin, Ming -Wei; Zhung, Houlong L.; Yan, Jiaqiang; ...

    2015-11-27

    Finite range ferromagnetism and antiferromagnetism in two-dimensional (2D) systems within an isotropic Heisenberg model at non-zero temperature were originally proposed to be impossible. However, recent theoretical studies using an Ising model have recently shown that 2D magnetic crystals can exhibit magnetism. Experimental verification of existing 2D magnetic crystals in this system has remained elusive. In this work we for the first time exfoliate the CrSiTe3, a bulk ferromagnetic semiconductor, to mono- and few-layer 2D crystals onto a Si/SiO2 substrate. The Raman spectra show the good stability and high quality of the exfoliated flakes, consistent with the computed phonon spectra ofmore » 2D CrSiTe3, giving a strong evidence for the existence of 2D CrSiTe3 crystals. When the thickness of the CrSiTe3 crystals is reduced to few-layers, we observed a clear change in resistivity at 80~120 K, consistent with the theoretical calculations on the Curie temperature (Tc) of ~80 K for the magnetic ordering of 2D CrSiTe3 crystals. As a result, the ferromagnetic mono- and few-layer 2D CrSiTe3 indicated here should enable numerous applications in nano-spintronics.« less

  20. Dynamic oxidation behavior of TD-NiCr alloy with different surface pretreatments

    NASA Technical Reports Server (NTRS)

    Young, C. T.; Tenney, D. R.; Herring, H. W.

    1975-01-01

    Oxidation tests of TD-NiCr alloy with different surface pretreatments were conducted in a Mach-5 arc-jet at 1200 C and 0.002 lb/sec flowing air environment. The mechanisms responsible for the observed oxidation behavior are examined. The presence of atomic oxygen in the air stream plays a significant role in determining the oxidation characteristic of the alloy. The rate of Cr2O3 vaporization by formation of volatile CrO3 is greatly enhanced by the flowing conditions. The typical microstructure of oxides formed in the dynamic tests consists of an external layer of NiO with a porous mushroom-type morphology, an intermediate layer of NiO and Cr2O3 oxide mixture, and a continuous inner layer of Cr2O3 in contact with the Cr-depleted alloy substrate. Three basic processes underlying the formation of mushroom-type NiO are identified and discussed. The oxidation rate is determined by the rate of vaporization of NiO. Surface pretreatment has a significant effect on the oxidation behavior of the alloy in the early stage of oxidation, but becomes less important as exposure time increases. Mechanical polishing induces surface recrystallization, but promotes the concurrence of external growth of NiO and internal oxidation of the alloy in the dynamic atmosphere.

  1. Magnetic structure and electromagnetic properties of LnCrAsO with a ZrCuSiAs-type structure (Ln = La, Ce, Pr, and Nd).

    PubMed

    Park, Sang-Won; Mizoguchi, Hiroshi; Kodama, Katsuaki; Shamoto, Shin-ichi; Otomo, Toshiya; Matsuishi, Satoru; Kamiya, Toshio; Hosono, Hideo

    2013-12-02

    We report the synthesis, structure, and electromagnetic properties of Cr-based layered oxyarsenides LnCrAsO (Ln = La, Ce, Pr, and Nd) with a ZrCuSiAs-type structure. All LnCrAsO samples showed metallic electronic conduction. Electron doping in LaCrAsO by Mn-substitution for the Cr sites gave rise to a metal-insulator transition. Analysis of powder neutron diffraction data revealed that LaCrAsO had G-type antiferromagnetic (AFM) ordering, i.e., a checkerboard-type AFM ordering in the CrAs plane and antiparallel spin coupling between the adjacent CrAs planes, at 300 K with a large spin moment of 1.57 μB along the c axis. The magnetic susceptibility of LaCrAsO was very small (on the order of 10(-3) emu/mol) and showed a broad hump at ∼550 K. First-principles density functional theory calculations of LaCrAsO explained its crystal structure and metallic nature well, but could not replicate the antiparallel spin coupling between the CrAs layers. The electronic structure of LaCrAsO is discussed with regard to those of related compounds LaFeAsO and LaMnAsO.

  2. Method for forming a barrier layer

    DOEpatents

    Weihs, Timothy P.; Barbee, Jr., Troy W.

    2002-01-01

    Cubic or metastable cubic refractory metal carbides act as barrier layers to isolate, adhere, and passivate copper in semiconductor fabrication. One or more barrier layers of the metal carbide are deposited in conjunction with copper metallizations to form a multilayer characterized by a cubic crystal structure with a strong (100) texture. Suitable barrier layer materials include refractory transition metal carbides such as vanadium carbide (VC), niobium carbide (NbC), tantalum carbide (TaC), chromium carbide (Cr.sub.3 C.sub.2), tungsten carbide (WC), and molybdenum carbide (MoC).

  3. Spectroscopic investigation of Cr(III)- and Cr(VI)-treated nanoscale zerovalent iron.

    PubMed

    Manning, Bruce A; Kiser, Jon R; Kwon, Hancheol; Kanel, Sushil Raj

    2007-01-15

    The reaction of hexavalent chromium (Cr(VI)) with zerovalent iron (Fe0) during soil and groundwater remediation is an important environmental process. This study used several techniques including X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy to investigate nanometer scale Fe0 particles (nano Fe0) treated with Cr(III) and Cr(VI). X-ray diffraction and XPS analyses of oxidized nano Fe0 showed the crystalline Fe(III) phase is composed of lepidocrocite (gamma-FeOOH). Results of XPS Cr 2p data and Cr K-edge X-ray absorption near edge spectroscopy (XANES) provided evidence that Cr(VI) was entirely reduced to Cr(III) by nano Fe0 with no residual Cr(VI) after reaction. In addition, XPS and XANES results of Cr(III) precipitated as Cr(OH)3 in the presence of corroding nano Fe0 were nearly identical to the Cr(VI)-nano Fe0 reaction product. Detailed analysis of XPS O 1s line spectra revealed that both Cr(III)- and Cr(VI)-treated nano Fe0 yielded a predominantly hydroxylated Cr(OH)3 and/ or a mixed phase CrxFe(1 - x)(OH)3 product. The structure of the Cr(III)- and Cr(VI)-treated nano Fe0 determined using extended X-ray absorption fine structure spectroscopy (EXAFS) revealed octahedral Cr(III) with Cr-O interatomic distances between 1.97 and 1.98 A for both Cr(III) and Cr(VI) treatments and a pronounced Cr-Cr second interatomic shell at 3.01 A. Our results suggest that the reaction product of Cr(VI)-treated nano Fe0 is either a poorly ordered Cr(OH)3 precipitate or possibly a mixed phase CrxFe(1 - x)(OH)3 product, both of which are highly insoluble under environmental conditions.

  4. Enhanced biocompatibility of Co-Cr implant material by Ti coating and micro-arc oxidation.

    PubMed

    Han, Cheol-Min; Kim, Hyoun-Ee; Kim, Yong-Sik; Han, Suk-Ku

    2009-07-01

    The biocompatibility of Co-Cr alloy was significantly improved by forming a rough TiO(2) layer on its surface. The TiO(2) layer was formed by coating the Co-Cr alloy with titanium (Ti) through electron beam deposition followed by microarc oxidation (MAO). When Ti was coated on the surface, the biocompatibility of the Co-Cr alloy was enhanced and it was further improved by the MAO treatment. There were close relationships between the phase, morphology, and thickness of the TiO(2) layer and the applied voltage. The biocompatibility of the specimens coated with Ti and subjected to MAO treatment was evaluated by in vitro alkaline phosphatase activity tests. (c) 2008 Wiley Periodicals, Inc.

  5. Hardness and wear properties of laminated Cr-Ni coatings formed by electroplating

    NASA Astrophysics Data System (ADS)

    Riyadi, Tri Widodo Besar; Masyrukan

    2017-04-01

    In this work, a laminated structure of Cr-Ni coating was prepared using electroplating on carbon steel substrates. Two baths of chrome and nickel electrolyte solutions were prepared to deposit laminated Cr and Ni layers. Chrome was firstly plated on a steel substrate in constant routes whereas nickel was subsequently electroplated on the Cr coating using varied plating times. The effect of Ni plating time on the thickness, hardness and wear specific of the Ni layer was investigated. The results show that an increase of plating times increased the thickness and hardness of the Ni layer, but reduced the wear specific. This study showed that Ni can be a potential candidate as a material replacement for chromium plating maintenance.

  6. Characteristics of CrAlSiN + DLC coating deposited by lateral rotating cathode arc PVD and PACVD process

    NASA Astrophysics Data System (ADS)

    Lukaszkowicz, Krzysztof; Sondor, Jozef; Balin, Katarzyna; Kubacki, Jerzy

    2014-09-01

    Coating system composed of CrAlSiN film covered by diamond-like carbon (DLC)-based lubricant, deposited on hot work tool steel substrate was the subject of the research. The CrAlSiN and DLC layers were deposited by PVD lateral rotating ARC-cathodes (LARC) and PACVD technology on the X40CrMoV5-1 respectively. HRTEM investigation shows an amorphous character of DLC layer. It was found that the tested CrAlSiN layer has a nanostructural character with fine crystallites while their average size is less than 10 nm. Based on the XRD pattern of the CrAlSiN, the occurrence of fcc phase was only observed in the coating, the texture direction <3 1 1> is perpendicular to the sample surface. Combined SEM, AES and ToF-SIMS studies confirmed assumed chemical composition and layered structure of the coating. The chemical distribution of the elements inside the layers and at the interfaces was analyzed by SEM and AES methods. It was shown that additional CrN layer is present between substrate and CrAlSiN coating. The atomic concentration of the particular elements of DLC and CrAlSiN layer was calculated from the XPS measurements. In sliding dry friction conditions the friction coefficient for the investigated elements is set in the range between 0.05 and 0.07. The investigated coating reveals high wear resistance. The coating demonstrated a dense cross-sectional morphology as well as good adhesion to the substrate.

  7. Key Role of Rutile Structure for Layered Magnetism in Chromium Compounds

    NASA Astrophysics Data System (ADS)

    Kondo, Yasuhiro; Hotta, Takashi

    CrCl2 and CrF2 with the distorted Rutile-type crystal structure are known to exhibit different antiferromagnetic (AF) structures at low temperatures. CrF2 has a simple N_eel structure in common with other uorides, whereas CrCl2 exhibits a characteristic layered AF structure. We provide a simple scenario to understand the emergence of such layered AF structure on the basis of an orbital degenerate double-exchange model on the Rutile-type structure lattice.

  8. A study of interdiffusion in beta + gamma/gamma + gamma prime Ni-Cr-Al. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Carol, L. A.

    1985-01-01

    Ternary diffusion in the NiCrAl system at 1200 C was studied with beta + gamma/gamma + gamma prime infinite diffusion couples. Interdiffusion resulted in the formation of complex, multiphase diffusion zones. Concentration/distance profiles for Cr and Al in the phases present in the diffusion zone were measured after 200 hr. The Ni-rich portion of the NiCrAl phase diagram (1200 C) was also determined. From these data, bulk Cr and Al profiles were calculated and translated to diffusion paths on the ternary isotherm. Growth layer kinetics of the layers present in the diffusion zone were also measured.

  9. Study on Optical Properties of Nanostructured NiCr Film Prepared by Magnetron Sputtering and RIE for Terahertz Applications

    NASA Astrophysics Data System (ADS)

    Gou, Jun; Wang, Jun; Li, Weizhi; Gu, Deen; Jiang, Yadong

    2015-09-01

    Nanoscale NiCr thin film has been proven to be an effective metallic terahertz (THz) absorption layer. To prepare NiCr film with a small thickness and enhanced THz absorption, a combined process of magnetron sputtering and reactive ion etching (RIE) is suggested to obtain nanostructured NiCr film with different thicknesses by precise control of process parameters and etch time. Optical characteristics tests show that both transmission and reflection of NiCr film are weakened by the RIE treatment. NiCr absorption layer is prepared in 80 × 60 infrared focal plane arrays (IRFPAs) by a combination of substrate modification process and RIE thinning process. THz absorption is effectively enhanced by RIE processes applied to the dielectric substrate and NiCr film, which generates nanoscale structures on upper and lower surfaces of NiCr absorption film for an increased specific surface area. The noise equivalent power (NEP) of the THz detection unit achieves 162.8 pW/Hz1/2, which is suitable for the application of active THz imaging. The results indicate that nanostructured NiCr film is an effective THz absorption layer for applications in thermal sensing and its absorption performance can be further improved by RIE.

  10. Conceptual design and experiments of electrochemistry-flushing technology for the remediation of historically Cr(Ⅵ)-contaminated soil.

    PubMed

    Li, Dong; Sun, Delin; Hu, Siyang; Hu, Jing; Yuan, Xingzhong

    2016-02-01

    A conceptual design and experiments, electrochemistry-flushing (E-flushing), using electrochemistry to enhance flushing efficiency for the remediation of Cr(Ⅵ)-contaminated soil is presented. The rector contained three compartments vertically superposed. The upper was airtight cathode compartment containing an iron-cathode. The middle was soil layer. The bottom was anode compartment containing an iron-anode and connected to a container by circulation pumps. H2 and OH(-) ions were produced at cathode. H2 increased the gas pressure in cathode compartment and drove flushing solution into soil layer forming flushing process. OH(-) ions entered into soil layer by eletromigration and hydraulic flow to enhance the desorption of Cr(Ⅵ). High potential gradient was applied to accelerate the electromigration of desorbed Cr(Ⅵ) ions and produced joule heat to increase soil temperature to enhance Cr(Ⅵ) desorption. In anode compartment, Fe(2+) ions produced at iron-anode reduced the desorbed Cr(Ⅵ) into Cr(3+) ions, which reacted with OH(-) ions forming Cr(OH)3. Experimental results show that Cr(Ⅵ) removal efficiency of E-flushing experiments was more than double of flushing experiments and reached the maximum of removal efficiency determined by desorption kinetics. All electrochemistry processes were positively used in E-flushing technology.

  11. Layered materials

    NASA Astrophysics Data System (ADS)

    Johnson, David; Clarke, Simon; Wiley, John; Koumoto, Kunihito

    2014-06-01

    Layered compounds, materials with a large anisotropy to their bonding, electrical and/or magnetic properties, have been important in the development of solid state chemistry, physics and engineering applications. Layered materials were the initial test bed where chemists developed intercalation chemistry that evolved into the field of topochemical reactions where researchers are able to perform sequential steps to arrive at kinetically stable products that cannot be directly prepared by other approaches. Physicists have used layered compounds to discover and understand novel phenomena made more apparent through reduced dimensionality. The discovery of charge and spin density waves and more recently the remarkable discovery in condensed matter physics of the two-dimensional topological insulating state were discovered in two-dimensional materials. The understanding developed in two-dimensional materials enabled subsequent extension of these and other phenomena into three-dimensional materials. Layered compounds have also been used in many technologies as engineers and scientists used their unique properties to solve challenging technical problems (low temperature ion conduction for batteries, easy shear planes for lubrication in vacuum, edge decorated catalyst sites for catalytic removal of sulfur from oil, etc). The articles that are published in this issue provide an excellent overview of the spectrum of activities that are being pursued, as well as an introduction to some of the most established achievements in the field. Clusters of papers discussing thermoelectric properties, electronic structure and transport properties, growth of single two-dimensional layers, intercalation and more extensive topochemical reactions and the interleaving of two structures to form new materials highlight the breadth of current research in this area. These papers will hopefully serve as a useful guideline for the interested reader to different important aspects in this field and

  12. Physical, Mechanical, and Dry Sliding Wear Properties of Fe-Cr-W-C Hardfacing Alloys Under Different Tungsten Addition

    NASA Astrophysics Data System (ADS)

    Hajihashemi, Mahdi; Shamanian, Morteza; Azimi, Ghasem

    2015-04-01

    In this study, the effects of tungsten on microstructure and wear performance of Fe-Cr-C claddings were evaluated. In this regard, tungsten inert gas surfacing process was employed to deposit Fe-Cr-C and Fe-Cr-C-W hardfacing alloys on plain carbon steel substrate using preplaced powders. Phase composition, microstructure, and wear behavior of clad layers were investigated using X-ray diffraction analysis, optical and scanning electron microscopy, and reciprocating wear tests, respectively. The claddings were well bonded to the substrate and showed a uniform microstructure. Cr7C3 and WC carbides were detected in the deposited layers. Further investigations indicated that the hardness and wear resistance can be improved by adding tungsten into Fe-Cr-C hardfacing alloys.

  13. Effect of Cr on the passive film formation mechanism of steel rebar in saturated calcium hydroxide solution

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Cheng, Xuequn; Li, Xiaogang; Pan, Yue; Li, Jun

    2016-12-01

    Passive films grow on the surface of Cr-modified steels subjected to saturated Ca(OH)2 solution. Electrochemical techniques, such as measurement of open circuit potentials, polarization curves, and electrochemical impedance spectroscopy combined with X-ray photoelectron spectrometer and auger electron spectroscopy, were applied to study the influence of low Cr content on the passive film formation mechanism of steel rebar in saturated Ca(OH)2 solution. Results show that Cr inhibits the formation of passive film at the beginning of its formation. Corrosion current density decreases and polarization resistance increases with the extension of the immersion time. A stable passive film takes at least three days to form. The passive film resistance of HRB400 carbon steel is higher than that of Cr-modified steels in the early stage of immersion (<72 h). The polarization resistance of Cr-modified steel is larger after a stable passive film is formed (>72 h), and Cr promotes the formation of a denser and more compact passive film. The stable passive film is primarily made up of iron oxides with a thickness of 5-6 nm. Cr are involved in the formation of passive films, thereby resulting in a film that consists of an inner layer that contains Cr-Fe oxides and an outer layer that contains Fe oxides, whose thickness presents a slight increase as the content of Cr increases.

  14. Evaluation of dry etching and defect repair of EUVL mask absorber layer

    NASA Astrophysics Data System (ADS)

    Abe, Tsukasa; Nishiguchi, Masaharu; Amano, Tsuyoshi; Motonaga, Toshiaki; Sasaki, Shiho; Mohri, Hiroshi; Hayashi, Naoya; Tanaka, Yuusuke; Nishiyama, Iwao

    2004-12-01

    EUVL mask process of absorber layer, buffer layer dry etching and defect repair were evaluated. TaGeN and Cr were selected for absorber layer and buffer layer, respectively. These absorber layer and buffer layer were coated on 6025 Qz substrate. Two dry etching processes were evaluated for absorber layer etching. One is CF4 plasma process and the other is Cl2 plasma process. Etch bias uniformity, selectivity, cross section profile and resist damage were evaluated for each process. Disadvantage of CF4 plasma process is low resist selectivity and Cl2 plasma process is low Cr selectivity. CF4 plasma process caused small absorber layer damage on isolate line and Cl2 plasma process caused Cr buffer layer damage. To minimize these damages overetch time was evaluated. Buffer layer process was also evaluated. Buffer layer process causes capping layer damage. Therefore, etching time was optimized. FIB-GAE and AFM machining were applied for absorber layer repair test. XeF2 gas was used for FIB-GAE. Good selectivity between absorber layer and buffer layer was obtained using XeF2 gas. However, XeF2 gas causes side etching of TaGeN layer. AFM machining repair technique was demonstrated for TaGeN layer repair.

  15. Oxidation of Cr(III) to Cr(VI) during chlorination of drinking water.

    PubMed

    Lindsay, Dana R; Farley, Kevin J; Carbonaro, Richard F

    2012-07-01

    Drinking water treatment typically uses strong oxidants such as chlorine which are capable of converting Cr(III) to Cr(VI). The rates and extent of Cr(III) oxidation by chlorine are not well established. Cr(III) oxidation experiments were therefore conducted in distilled deionized water and New York City tap water dosed initially with Cr(III) and supplemented with sodium hypochlorite to increase free chlorine residual. Reaction progress was monitored using capillary electrophoresis which quenched reactions and allowed for quantification of Cr(VI). Three different forms of Cr(III) were used as reactants: a Cr(III) nitrate salt, Cr(III)-EDTA, and Cr(III) hydroxide. Rates of Cr(VI) production for all three forms of Cr(III) were rapid, on the order of hours. However, oxidation rates slowed and a plateau in Cr(VI) concentrations was reached. This resulted in less than 100% conversion of Cr(III) to Cr(VI) even at relatively high chlorine doses (10 to 100 mg L(-1) as Cl(2)). The loss of free chlorine due to a non-Cr chlorine demand, the precipitation of Cr(III) to Cr(OH)(3)(s), and the partial oxidation of Cr(III) to intermediate oxidation states (i.e. Cr(IV) and Cr(V)) were examined and eliminated as possible explanations for this behavior. Consumption of chlorine via reaction with intermediate oxidation states of Cr is therefore offered as a possible explanation for the plateau in Cr(VI) concentrations.

  16. High temperature wear performance of HVOF-sprayed Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr hardmetal coatings

    NASA Astrophysics Data System (ADS)

    Zhou, Wuxi; Zhou, Kesong; Li, Yuxi; Deng, Chunming; Zeng, Keli

    2017-09-01

    A novel Cr3C2-WC-NiCoCrMo and commercial Cr3C2-NiCr thermal spray-grade powders with particle size of -45 + 15 μm were prepared by an agglomeration and sintering process. Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr coatings were deposited by high velocity oxygen fuel (HVOF) spraying. The fundamental properties of both coatings were evaluated and friction wear test against Al2O3 counterbodies of both coatings at high temperatures (450 °C, 550 °C, 650 °C) were carried out ball-on-disk high temperature tribometer. All specimens were characterized by optical microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) and 3D non-contact surface mapping profiler. The results have shown that the Cr3C2-WC-NiCoCrMo coating exhibited lower porosity, higher micro-hardness compared to the Cr3C2-NiCr coating. The Cr3C2-WC-NiCoCrMo coating also exhibited better wear resistance and higher friction coefficient compared to the Cr3C2-NiCr coating when sliding against the Al2O3 counterpart. Wear rates of both coatings increased with raising temperature. Both coatings experienced abrasive wear; hard phase particles (WC and Cr3C2) with different sizes, distributed in the matrix phase, will effectively improve the resistance against wear at high temperatures.

  17. Textured growth of the high moment material Gd(0 0 0 1)/Cr(0 0 1)/Fe(0 0 1)

    NASA Astrophysics Data System (ADS)

    Stromberg, F.; Antoniak, C.; von Hörsten, U.; Keune, W.; Sanyal, B.; Eriksson, O.; Wende, H.

    2011-07-01

    By magnetic coupling of Fe and Gd via Cr interlayers, the large local moment of Gd can be combined with the high Curie temperature of Fe. The textured growth of a Gd film is studied here by preparing trilayer systems of Fe/Cr/Gd on MgO(1 0 0) substrates by molecular-beam epitaxy (MBE). The thickness of the Cr interlayer was varied between 3 and 5 monolayers. The structural quality of the samples was confirmed by in situ RHEED and ex situ XRD measurements. Epitaxial Cr(0 0 1)/Fe(0 0 1) growth was observed, as expected. By use of 57Fe-CEMS (conversion electron Mössbauer spectroscopy) in combination with the 57Fe tracer layer method the Fe/Cr interface could be examined on an atomic scale and well separated Fe/Gd layers for all Cr thicknesses were confirmed. The unusual Gd/Cr crystallographic relationship of Gd(0 0 0 1)parCr(0 0 1), with domains of the hexagonal Gd basal planes randomly oriented in the sample plane and not in registry with the underlying Cr(0 0 1) lattice, was found from combined RHEED and x-ray measurements. Annealing of the samples resulted in a remarkable improvement of the crystalline structure of the Gd layers. On the other hand, the appearance of a single line in the CEM spectrum leads to the conclusion that during annealing a small amount of Fe diffuses into the Cr layer. The electronic structure and magnetism of this system are investigated by first-principles theory.

  18. Surface stabilized GMR nanorods of silver coated CrO2 synthesized via a polymer complex at ambient pressure

    NASA Astrophysics Data System (ADS)

    Biswas, S.; Singh, G. P.; Ram, S.; Fecht, H.-J.

    2013-08-01

    Stable anisotropic nanorods of surface modified CrO2 (˜18 nm diameter) with a correlated diamagnetic layer (2-3 nm thickness) of silver efficiently tailors useful magnetic and magnetoresistance (MR) properties. Essentially, it involves a core-shell structure that is developed by displacing part of Cr4+ ions by Ag atoms on the CrO2 surface (topotactic surface layer) via an etching reaction of a CrO2-polymer complex with Ag+ ions in hot water followed by heating the dried sample at 300-400 °C in air. The stable Ag-layer so obtained in the form of a shell protects CrO2 such that it no longer converts to Cr2O3 in ambient pressure during the processing. X-ray diffractogram of the Rutile type tetragonal CrO2 structure (lattice parameters a=0.4429 nm and c=0.2950 nm) includes weak peaks of a minority phase of an fcc-Ag (a=0.4086 nm). The silver surface layer, which manifests itself in a doublet of the 3d5/2 and 3d3/2 X-ray photoelectron bands of binding energies 368.46 eV and 374.48 eV, respectively, suppresses almost all Cr bands to appear in a measurable intensity. The sample exhibits a distinctly enhanced MR-value, e.g., (-) 7.6% at 77 K, than reported values in compacted CrO2 powders or composites. Such a large MR-value in the Coulomb blockade regime (<100 K) arises not only due to the suppressed spin flipping at low temperature but also from a spin dependent co-tunneling through an interlinked structure of silver and silver coated CrO2 nanorods.

  19. Removal of Cr(VI) from groundwater by Fe(0)

    NASA Astrophysics Data System (ADS)

    Gao, Yanjiao; Liu, Rui

    2016-12-01

    This research was conducted to investigate the treatment of hexavalent chromium (Cr(VI)) by iron powder (Fe(0)) columns of simulated permeable reactive barriers with and without calcium carbonate (CaCO3). Two columns filled with Fe(0) were used as Cr(VI) removal equipment running at a flow velocity of 10 ml/min at room temperature. After 200 days running of the two columns, the results showed that Fe(0) was an effective material for Cr(VI) reduction with an average removal rate of above 84.6%. The performance of Column 2 with CaCO3 was better than Column 1 without CaCO3 in terms of average Cr(VI) removal rate. The presence of CaCO3 buffered the increasing pH caused by Fe(0) corrosion in Column 2 and enhanced the removal rate of Column 2. Scanning Electron Microscopy (SEM) images of Fe(0) in the three stages of running of the two columns illustrated that the coat layer of Column 1 was a little thicker than that of Column 2. Energy-dispersive spectrometry (EDS) results showed that the surface of Fe(0) of Column 2 contained more chromium elements. Raman spectroscopy found that all iron oxide was generated on the Fe(0) surface of Column 1 and Column 2 and chromium class objects were only detected on Fe(0) surface in Column 2.

  20. Cr/B4C multilayer mirrors: Study of interfaces and X-ray reflectance

    SciTech Connect

    Burcklen, C.; Soufli, R.; Gullikson, E.; Meltchakov, E.; Dennetiere, D.; Polack, F.; Capitanio, B.; Thomasset, M.; Jerome, A.; de Rossi, S.; Delmotte, F.

    2016-03-24

    Here, we present an experimental study of the effect of layer interfaces on the x-ray reflectance in Cr/B4C multilayer interference coatings with layer thicknesses ranging from 0.7 nm to 5.4 nm. The multilayers were deposited by magnetron sputtering and by ion beam sputtering. Grazing incidence x-ray reflectometry, soft x-ray reflectometry, and transmission electron microscopy reveal asymmetric multilayer structures with a larger B4C-on-Cr interface, which we modeled with a 1–1.5 nm thick interfacial layer. Reflectance measurements in the vicinity of the Cr L2,3 absorption edge demonstrate fine structure that is not predicted by simulations using the currently tabulated refractive index (optical constants) values for Cr.

  1. Anti-wetting Cu/Cr coating with micro-posts array structure fabricated by electrochemical approaches

    NASA Astrophysics Data System (ADS)

    Zhou, Yufeng; Hang, Tao; Li, Feng; Li, Ming

    2013-04-01

    Microposts structured Cu/Cr multilayer coating was prepared by a simple two-step approach combining electroless and electro deposition. Surface morphologies of the as-prepared Cu/Cr multilayer coating characterized by field emission scanning electron microscopy show that this multilayer coating exhibits micro-posts arrayed structure with a layer of Cr uniformly covering the circular conical surface of Cu micro-cones array. The wettability test shows that the contact angle of Cu/Cr multilayer surface with water drop can be greater than 140° by optimizing the electrodeposition time of Cr. The mechanism of hydrophobicity of both the micro-cones arrayed and micro-posts arrayed structures was briefly discussed by comparing two different wetting modes. Due to its good anti-wetting property and unique structure, the micro-posts arrayed Cu/Cr multilayer coating is expected for extensive practical applications.

  2. Inhibited Aluminization of an ODS FeCr Alloy

    SciTech Connect

    Vande Put Ep Rouaix, Aurelie; Pint, Bruce A

    2012-01-01

    Aluminide coatings are of interest for fusion energy applications both for compatibility with liquid Pb-Li and to form an alumina layer that acts as a tritium permeation barrier. Oxide dispersion strengthened (ODS) ferritic steels are a structural material candidate for commercial reactor concepts expected to operate above 600 C. Aluminizing was conducted in a laboratory scale chemical vapor deposition reactor using accepted conditions for coating Fe- and Ni-base alloys. However, the measured mass gains on the current batch of ODS Fe-14Cr were extremely low compared to other conventional and ODS alloys. After aluminizing at two different Al activities at 900 C and at 1100 C, characterization showed that the ODS Fe-14Cr specimens formed a dense, primarily AlN layer that prevented Al uptake. This alloy batch contained a higher (> 5000 ppma) N content than the other alloys coated and this is the most likely reason for the inhibited aluminization. Other factors such as the high O content, small ({approx} 140 nm) grain size and Y-Ti oxide nano-clusters in ODS Fe-14Cr also could have contributed to the observed behavior. Examples of typical aluminide coatings formed on conventional and ODS Fe- and Ni-base alloys are shown for comparison.

  3. Absorption, excretion and retention of 51Cr from labelled Cr-(III)-picolinate in rats.

    PubMed

    Kottwitz, Karin; Laschinsky, Niels; Fischer, Roland; Nielsen, Peter

    2009-04-01

    The bioavailability of chromium from Cr-picolinate (CrPic(3)) and Cr-chloride (CrCl(3)) was studied in rats using (51)Cr-labelled compounds and whole-body-counting. The intestinal absorption of Cr was twice as high from CrPic(3) (1.16% vs 0.55%) than from CrCl(3), however most of the absorbed (51)Cr from CrPic(3) was excreted into the urine within 24 h. After i.v. or i.p. injection, the whole-body retention curves fitted well to a multiexponential function, demonstrating that plasma chromium is in equilibrium with three pools. For CrPic(3), a large pool exists with a very rapid exchange (T (1/2) = <0.5 days), suggesting that CrPic(3) is absorbed as intact molecule, from which the main part is directly excreted by the kidney before degradation of the chromium complex in the liver can occur. CrCl(3) is less well absorbed but the rapid exchange pool is much smaller, resulting in even higher Cr concentrations in tissue such as muscle and fat. However, 1-3 days after application, the relative distribution of (51)Cr from both compounds was similar in all tissues studied, indicating that both compounds contribute to the same storage pool. In summary, the bioavailability of CrPic(3) in rats is not superior compared to CrCl(3).

  4. Structural investigation of Cr(Al)N/SiOx films prepared on Si substrates by differential pumping cosputtering.

    PubMed

    Kawasaki, Masahiro; Takabatake, Hiroshi; Onishi, Ichiro; Nose, Masateru; Shiojiri, Makoto

    2013-05-01

    Analytical electron microscopy revealed the structure and growth of hard coating Cr(Al)N/SiOx nanocomposite films prepared in a differential pumping cosputtering (DPCS) system, which has two chambers to sputter different materials and a rotating substrate holder. The substrate holder was heated at 250 °C and rotated at a speed as low as 1 rpm. In order to promote the adhesion between the substrate and composite film, transition layers were deposited on a (001) Si substrate by sputtering from the CrAl target with an Ar flow and a mixture flow of Ar and N2 (Ar/N2) gases, subsequently, prior to the composite film deposition. Then, the Cr(Al)N/SiOx nanocomposite film was fabricated on the transition layers by cosputtering from the CrAl target with the Ar/N2 gas flow and from the SiO2 target with the Ar gas flow. The film had a multilayer structure of ∼1.6 nm thick crystallite layers of Cr(Al)N similar to NaCl-type CrN and ∼1 nm thick amorphous silicon oxide layers. The structure of the transition layers was also elucidated. These results can help with the fabrication of new hard nanocomposite films by DPCS.

  5. New needle-crystalline CR detector

    NASA Astrophysics Data System (ADS)

    Leblans, Paul J. R.; Struye, Luc; Willems, Peter

    2001-06-01

    The storage phosphor RbBr:Tl+ can be grown in needles via vacuum deposition. Thanks to reduced lateral light diffusion thick needle screens still offer acceptable resolution. Due to its low intrinsic X-ray absorption, however, a RbBr:Tl+ needle screen does not lead to a better absorption/resolution compromise than a BaFBr1-xIx:Eu2+ powder screen. CsBr:Eu2+ does combine high specific X-ray absorption and the possibility of needle growth. Its blue emission, peaking at 440 nm and near IR stimulation band, with maximum at 685 nm, make it well suited for use in CR systems. Sensitivity and sharpness of a 500 (mu) thick CsBr:Eu2+ needle screen were measured in a flying-spot scanner. The number of photostimulated light quanta per absorbed X-ray quantum is higher than for BaFBr1-xIx:Eu2+. At 70 kVp and 0.5 mm Cu filtration, equal sharpness is obtained for 85% vs. 46% X-ray absorption in BaFBr1-xIx:Eu2+ screens. DQE was measured at 2.5 (mu) Gy, 70 kVp, and 0.5 mm Cu filtration for a CsBr:Eu2+ needle screen in a flying-spot scanner. Up to 3 lp/mm, DQE was 2 times higher than for state-of-the-art CR systems and equal to the DQE claimed for flat panel DR systems, based on a-Si photodiodes combined with a CsI:Tl scintillator layer.

  6. The General Isothermal Oxidation Behavior of Cu-8Cr-4Nb

    NASA Technical Reports Server (NTRS)

    Thomas-Ogbuji, L. U.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Oxidation kinetics of Cu-8Cr-4Nb was investigated by TGA (thermogravimetric) exposures between 500 and 900-C (at 25-50 C intervals) and the oxide scale morphologies examined by microscopy and micro-analysis. Because Cu-8Cr-4Nb is comprised of fine Cr2Nb precipitates in a Cu matrix, the results were interpreted by comparison with the behavior of copper (OFHC) and 'NARloy-Z' (a rival candidate material for thrust cell liner applications in advanced rocket engines) under the same conditions. While NARloy-Z and Cu exhibited identical oxidation behavior, Cu-8Cr-4Nb differed markedly in several respects: below approx. 700 C its oxidation rates were significantly lower than those of Cu; At higher temperatures its oxidation rates fell into two categories: an initial rate exceeding that of Cu, and a terminal rate comparable to that of Cu. Differences in oxide morphologies paralleled the kinetic differences at higher temperature: While NARloy-Z and Cu produced a uniform oxide scale of Cu2O inner layer and CuO outer layer, the inner (Cu2O) layer on Cu-8Cr-4Nb was stratified, with a highly porous/spongy inner stratum (responsible for the fast initial kinetics) and a dense/blocky outer stratum (corresponding to the slow terminal kinetics). Single and spinel oxides of Nb and Cr were found at the interface between the oxide scale and Cu-8Cr-4Nb substrate and it appears that these oxides were responsible for its suppressed oxidation rates at the intermediate temperatures. No difference was found between Cu-8Cr-4Nb oxidation in air and in oxygen at 1.0 atm.

  7. A Cr Isotope Proxy For Ocean Deoxygenation

    NASA Astrophysics Data System (ADS)

    Holmden, C. E.; Scheiderich, K. D.; Amini, M.; Francois, R. H. G. M.; Bacconais, I.

    2015-12-01

    The concentration and distribution of Cr in the oceans is strongly controlled by its oxidation state. Cr(VI) (as soluble chromate) is the dominant oxidation state in oxygenated seawater. Chromate is typically greater than 70% of total dissolved Cr in the open ocean, consistent with thermodynamic predictions. However, lower than average chromate concentrations in coastal seas and oxygen minimum zones suggest that chromate is being removed in these settings by reduction to Cr(III), which favours particle reactive species. Cr is an element whose isotopes are fractionated by redox changes. Reduction of Cr(VI) causes light isotopes of Cr to be enriched in the product Cr(III). Accordingly, any local-scale increase in reductive Cr removal fluxes will cause the seawater Cr concentration to decrease and the δ53Cr value to increase. A recent study of Cr isotopes in the oceans1 supports this prediction. Cr isotopes show a range of δ53Cr values correlating inversely with Cr concentration. The fractionation factor deduced from this correlation is -0.80 ±0.03 ‰ (2s) on a global scale. The difference in solubility of oxidized and reduced Cr in seawater, and the isotopic fractionation between them, is the basis on which the Cr isotope proxy may be used for tracing ocean deoxygenation events in the geological past. More specifically, changes in the size of the chromate inventory of seawater, both locally and globally, should be traceable from reconstructions of seawater-derived Cr isotope variations in marine sedimentary successions. Geological records of Cr isotope changes in the oceans during past deoxygenation events may be used to gauge the impact of global warming on future deoxygenation of the oceans, particularly if proxy records of temperature and ocean pH are also reconstructed. However, study of the modern ocean Cr cycle is still in its early stages, and important knowledge gaps need to be filled going forward. In this talk, we present results of our seawater Cr

  8. Preparation of Copper and Chromium Alloyed Layers on Pure Titanium by Plasma Surface Alloying Technology

    NASA Astrophysics Data System (ADS)

    He, Xiaojing; Li, Meng; Wang, Huizhen; Zhang, Xiangyu; Tang, Bin

    2015-05-01

    Cu-Cr alloyed layers with different Cu and Cr contents on pure titanium were obtained by means of plasma surface alloying technology. The microstructure, chemical composition and phase composition of Cu-Cr alloyed layers were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD), respectively. The experimental results demonstrate that the alloyed layers are bonded strongly to pure titanium substrate and consist of unbound Ti, CuTi, Cu3Ti, CuTi3 and Cr2Ti. The thickness of Cu5Cr5 and Cu7Cr3 alloyed layer are about 18 μm and 28 μm, respectively. The antibacterial properties against gram-negative Escherichia coli (E.coli, ATCC10536) and gram-positive Staphylococcus aureus (S. aureus, ATCC6538) of untreated pure titanium and Cu-Cr alloyed specimen were investigated by live/dead fluorescence staining method. The study shows that Cu-Cr alloyed layers exhibit excellent antibacterial activities against both E.coli and S.aureus within 24 h, which may be attributed to the formation of Cu-containing phases.

  9. X-ray photoelectron spectroscopy investigation of commercial passivated tinplate surface layer

    NASA Astrophysics Data System (ADS)

    Chen, Sheng; Xie, Long; Xue, Fei

    2013-07-01

    X-ray photoelectron spectroscopy (XPS) combined with the low energy Ar+ sputtering technique has been used to investigate the chemical compositions and chemical states of elements at different depths of commercial passivated tinplate surface layer. It is found that Cr2O3, SnO, Cr(OH)3, metallic Sn and a small amount of metallic Cr have been mixed in this layer. According to peak fitting and relative sensitivity factor method, the concentrations of elements in various chemical environments on different depth planes of the passivated tinplate surface layer have been obtained.

  10. Chromizing of 3Cr Steel

    SciTech Connect

    Ravi, Vilupanur; Harrison, Bradley; Koch, Jordan; Ly, Alexander; Schissler, Andrew; Pint, Bruce A; Haynes, James A

    2011-01-01

    Grade 315 steel (Fe-2.9 Cr-1.7 W-0.7 Mo-0.3 Mn-0.3 Si-0.2 V-0.1 Ni-0.13 C-0.01 N) was chromized by the halide-activated pack cementation (HAPC) process. Key process parameters, i.e., coating temperatures and pack compositions, were investigated. Ammonium chloride-activated packs in the 700-1000 C range produced coatings nominally in the 1-8 {micro}m range, as determined by optical and scanning electron microscopy (SEM). Coatings applied in the 900-1000 C temperature range resulted in Cr-rich coatings. The predominant phase in the coating was identified as Cr23C6 by X-ray diffraction. In addition, the presence of chromium nitride, Cr2N, was observed in the coating. The power generation industry is faced with an ever-increasing demand for energy while simultaneously having to reduce carbon emissions. These goals can be facilitated by increasing plant efficiency through the use of higher operating temperatures and pressures. Traditional construction materials, e.g., the ferritic Grade 22 high strength low alloy steel, are limited to operations below {approx} 550 C. Therefore, new materials are required for future plants designed to operate up to 650 C and possibly higher. These new materials need to have improved tensile strength, ductility, toughness, corrosion resistance, and creep properties at elevated temperatures. Oak Ridge National Laboratory (ORNL) is investigating the oxidation and creep behavior of various coatings on Grade 315 steel (Fe-2.9 Cr-1.7 W-0.7 Mo-0.3 Mn-0.3 Si-0.2 V-0.1 Ni-0.13 C-0.01 N), a super-bainitic steel developed for superior creep properties. Thin, chemical vapor-deposited (CVD) aluminide coatings were used to compensate for the reduced corrosion and oxidation resistance that resulted from the low chromium content of the alloy. However, the aluminized Grade 315 alloys performed less-than-favorably under conditions relevant to fossil boilers, leading to the conclusion that higher chromium contents are required for the formation of

  11. Hf-W Chronology of CR Chondrites

    NASA Astrophysics Data System (ADS)

    Budde, G.; Kruijer, T. S.; Kleine, T.

    2017-02-01

    Hf-W systematics of CR chondrites define an age of 3.7 Ma after CAIs for CR chondrule formation. CR metal and silicates have complementary nucleosynthetic W and Mo isotope anomalies due to the uneven distribution of a presolar s-process carrier.

  12. An investigation on corrosion protection of chromium nitride coated Fe-Cr alloy as a bipolar plate material for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Pan, T. J.; Zhang, B.; Li, J.; He, Y. X.; Lin, F.

    2014-12-01

    The corrosion properties of chromium nitride (CrN) coating are investigated to assess the potential use of this material as a bipolar plate for proton exchange membrane fuel cells (PEMFCs). Conductive metallic ceramic CrN layers are firstly deposited onto Fe-Cr alloy using a multi-arc ion plating technique to increase the corrosion resistance of the base alloy. Electrochemical measurements indicate that the corrosion resistance of the substrate alloy is greatly enhanced by the CrN coating. The free corrosion potential of the substrate is increased by more than 50 mV. Furthermore, a decrease in three orders of magnitude of corrosive current density for the CrN-coated alloy is observed compared to the as-received Fe-Cr alloy. Long-term immersion tests show that the CrN layer is highly stable and effectively acts as a barrier to inhibit permeation of corrosive species. On the contrary, corrosion of the Fe-Cr alloy is rather severe without the protection of CrN coating due to the active dissolution. Finally, the corresponding electrochemical impedance models are proposed to elucidate the corrosion process of the CrN/Fe-Cr alloy submerged in a simulated PEMFCs environment.

  13. [The effect of solid phase transformation on the metal-ceramic compatibility of Co-Cr alloy].

    PubMed

    Wu, Zhikai; Xu, Sheng; Li, Ning

    2011-12-01

    To study the effect of solid phase transformation on the metal-ceramic compatibility of Co-Cr alloy during firing programs. 9 foils of Co-Cr and Ni-Cr alloy with the dimension of 25 mmx3 mmx0.5 mm were casted using lost wax technology respectively. Among them, 6 specimens were subjected to metal-ceramic bonding strength test (three point bending method), the ceramic layer of 3 specimens were removed for X-ray diffraction (XRD) analysis. One cylindrical specimen of each alloy was casted for the test of coefficient of thermal expansion, cooling curves were recorded. The metal-ceramic bonding strength of Ni-Cr, Co-Cr alloy was (49.1 +/- 3.40), (40.9 +/- 2.02) MPa respectively. There was significant difference between the two groups' bonding strength (P = 0.00). The coefficient of thermal expansion in the 20-500 degrees C interval of Ni-Cr and Co-Cr alloy was 13.9 x 10(-6), 13.8 x 10(-6) x K(-1) respectively. XRD analysis indicated that the microstructure of Ni-Cr alloy was austenite. While Co-Cr alloy was constituted by fcc phase, hcp phase and sigma phase. During the cooling procedure, the transformation of fcc phase to hcp phase and segregation of needle-like sigma phase intensify the linear contraction speed of Co-Cr alloy, which decreases the metal-ceramic adaptability.

  14. Magnetic interaction reversal in watermelon nanostructured Cr-doped Fe nanoclusters

    SciTech Connect

    Kaur, Maninder; Dai, Qilin; Bowden, Mark; Engelhard, Mark; Wu, Yaqiao; Tang, Jinke; Qiang, You

    2013-01-01

    Cr-doped core-shell Fe/Fe-oxide nanoclusters (NCs) were synthesized at varied atomic percentages of Cr from 0 at. % to 8 at. %. The low concentrations of Cr (<10 at. %) were selected in order to inhibit the complete conversion of the Fe-oxide shell to Cr2O3 and the Fe core to FeCr alloy. The magnetic interaction in Fe/Fe-oxide NCs (rv25 nm) can be controlled by antiferromagnetic Cr-dopant. We report the origin of r-FeCr phase at very low Cr concentration (2 at. %) unlike in previous studies, and the interaction reversal from dipolar to exchange interaction in watermelon-like Cr-doped core-shell NCs. The giant magnetoresistance (GMR) effect,1,2 where an antiferromagnetic (AFM) exchange coupling exists between two ferromagnetic (FM) layers separated by a certain type of magnetic or non-magnetic spacer,3 has significant potential for application in the magnetic recording industry. Soon after the discovery of the GMR, the magnetic properties of multilayer systems (FeCr) became a subject of intensive study. The application of bulk iron-chromium (Fe-Cr) alloys has been of great interest, as these alloys exhibit favorable prop- erties including corrosion resistance, high strength, hardness, low oxidation rate, and strength retention at elevated temper- ature. However, the structural and magnetic properties of Cr-doped Fe nanoclusters (NCs) have not been investigated in-depth. Of all NCs, Fe-based clusters have unique magnetic properties as well as favorable catalytic characteristics in reactivity, selectivity, and durability.4 The incorporation of dopant of varied type and concentration in Fe can modify its chemical ordering, thereby optimizing its electrical, optical, and magnetic properties and opening up many new applications. The substitution of an Fe atom (1.24 A°) by a Cr atom (1.25 A° ) can easily modify the magnetic properties, since (i) the curie temperature (Tc ) of Fe is 1043 K, while Cr is an itinerant AFM with a bulk Neel temperature TN =311 K, and (ii) Fe

  15. Characterising the Terrestrial Stable Cr Isotope Cycle

    NASA Astrophysics Data System (ADS)

    Schoenberg, R.; Zink, S.; Staubwasser, M.; von Blanckenburg, F.

    2006-12-01

    Cr isotopes were shown to present a sensitive tracer of redox changes in aqueous solutions [1,2]. Here, the potential of stable Cr isotope fractionation in the environment was further investigated by high-precision double- spike MC-ICP-MS measurements. Reduction experiments of Cr(VI) to Cr(III) in aqueous solutions on ion exchange columns confirmed the mass-dependent Cr isotope fractionation of -3.4‰ per atomic mass unit reported by Ellis et al. [1]. Furthermore, these experiments revealed that the fractionation associated with adsorption is minor. This is shown by a very small preferential adsorption of isotopically heavy chromium of most likely Cr(III) species on the anion resin. A similar observation was made for Cr(III) species on cation resin. This is in line with the negligible fractionation effects that have been reported for adsorption of Cr(VI) onto γ-Al2O3 and goethite surfaces [2], respectively. Thus, the large Cr isotope fractionation that accompanies Cr reduction and the small sorption effects of both Cr(VI) and Cr(III) species make stable Cr isotopes a sensitive tracer to detect and quantify redox changes in a variety of geochemical reservoirs. The stable Cr isotope compositions of the principle silicic igneous reservoirs of the Earth do not show measurable variations. δ^{53}Cr/^{52}Cr values (relative to SRM3112a) of six mantle lherzolites (- 0.014±0.083‰; 2 SD), six ultramafic cumulate rocks (-0.034±0.094‰) and five continental and oceanic basalts that represent partial mantle melts (-0.044±0.089‰) are indistinguishable within uncertainties. Thus, unlike as was suggested for Fe isotopes [3], partial mantle melting appears not to fractionate Cr isotopes. Cr(III)-bearing uvarovite and fuchsite minerals from amphibolite facies metamorphic rocks are also equal to those of igneous rock reservoirs. These observations are not unexpected, because there is no apparent redox change of Cr involved during partial mantle melting or metamorphism

  16. (BiSe)1.23CrSe2 and (BiSe)1.22(Cr1.2Se2)2: magnetic anisotropy in the first structurally characterized Bi-Se-Cr ternary compounds.

    PubMed

    Clarke, Samantha M; Freedman, Danna E

    2015-03-16

    Compounds containing both heavy main group elements and paramagnetic transition metals form a fertile area for the study of magnetic anisotropy. We pursued the synthesis, characterization, and magnetic measurements of Bi-Se-Cr compounds: a ternary system with no structurally characterized materials. Those efforts led to the isolation of two novel misfit layer compounds, namely, (BiSe)1.23CrSe2 (1) and (BiSe)1.22(Cr1.2Se2)2 (2). The crystal structure of 1 consists of alternating BiSe and CrSe2 layers along the c-axis, and 2 is composed of alternating BiSe and (Cr1.2Se2)2 layers along the c-axis. Lattice mismatch occurs in both compounds along the b-axis and leads to positional modulation of the atoms. Field- and temperature-dependent measurements were performed to assess the degree of magnetic anisotropy. Temperature-dependent susceptibility measurements on aligned crystals of 1 display increased bifurcation of zero-field cooled and field cooled data when crystals are oriented with H perpendicular to c than when the crystals are oriented with H parallel to c. Magnetic anisotropy is less pronounced in 2 where both crystallographic orientations exhibit bifurcation at 26 K. The complexity of the magnetic behavior in both compounds likely signifies a competition between CrSe2 intralayer ferromagnetic coupling and interlayer antiferromagnetic coupling. These results highlight the exciting magnetic properties that can arise from the exploration of new ternary phases.

  17. Layered Slope

    NASA Technical Reports Server (NTRS)

    2005-01-01

    28 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a frost-covered slope in the south polar region of Mars. The layered nature of the terrain in the south polar region is evident in a series of irregular, somewhat stair-stepped bands that run across the image.

    Location near: 84.3oS, 27.2oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  18. Flux States and Topological Phases from Spontaneous Time-Reversal Symmetry Breaking in CrSi (Ge )Te3 -Based Systems

    NASA Astrophysics Data System (ADS)

    Liu, Jianpeng; Park, Se Young; Garrity, Kevin F.; Vanderbilt, David

    2016-12-01

    We study adatom-covered single layers of CrSiTe3 and CrGeTe3 using first-principles calculations based on hybrid functionals. We find that the insulating ground state of a monolayer of La (Lu) deposited on single-layer CrSiTe3 (CrGeTe3 ) carries spontaneously generated current loops around the Cr sites. These "flux states" induce antiferromagnetically ordered orbital moments on the Cr sites and are also associated with nontrivial topological properties. The calculated Chern numbers for these systems are predicted to be ±1 even in the absence of spin-orbit coupling, with sizable gaps on the order of 100 meV. The flux states and the associated topological phases result from spontaneous time-reversal symmetry breaking due to the presence of nonlocal Coulomb interactions.

  19. C-Cr-Fe (181)

    NASA Astrophysics Data System (ADS)

    Carow-Watamura, U.; Louzguine, D. V.; Takeuchi, A.

    This document is part of Part 2 http://dx.doi.org/10.1007/97.etType="URL"/> 'Systems from B-Be-Fe to Co-W-Zr' of Subvolume B 'Physical Properties of Ternary Amorphous Alloys' of Volume 37 'Phase Diagrams and Physical Properties of Nonequilibrium Alloys' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains the Chapter 'C-Cr-Fe (181)' with the content:

  20. C-Cr-H (182)

    NASA Astrophysics Data System (ADS)

    Carow-Watamura, U.; Louzguine, D. V.; Takeuchi, A.

    This document is part of Part 2 http://dx.doi.org/10.1007/9getType="URL"/> 'Systems from B-Be-Fe to Co-W-Zr' of Subvolume B 'Physical Properties of Ternary Amorphous Alloys' of Volume 37 'Phase Diagrams and Physical Properties of Nonequilibrium Alloys' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains the Chapter 'C-Cr-H (182)' with the content:

  1. Evaluation of Ni-Cr-Base Alloys for SOFC Interconnect Applications

    SciTech Connect

    Yang, Z Gary; Xia, Gordon; Stevenson, Jeffry W.

    2006-10-06

    To further understand the suitability of Ni-Cr-base alloys for solid oxide fuel cell (SOFC) interconnect applications, three commercial Ni-Cr-base alloys, Haynes 230, Hastelloy S and Haynes 242 were selected and evaluated for oxidation behavior under different exposure conditions, scale conductivity and thermal expansion. Haynes 230 and Hastelloy S, which have a relatively high Cr content, formed a thin scale mainly comprised of Cr2O3 and (Mn,Cr,Ni)3O4 spinels under SOFC operating conditions, demonstrating excellent oxidation resistance and a high scale electrical conductivity. In contrast, a thick double-layer scale with a NiO outer layer above a chromia-rich substrate was grown on Haynes 242 in moist air or at the air side of dual exposure samples, indicating limited oxidation resistance for the interconnect application. With a face-centered-cubic (FCC) substrate, all three alloys possess a coefficient of thermal expansion (CTE) that is higher than that of candidate ferritic stainless steels, e.g. Crofer22 APU. Among the three alloys, Haynes 242, which is heavily alloyed with W and Mo and contains a low Cr content, demonstrated the lowest average CTE at 13.1x10-6 K-1 from room temperature to 800oC, but it was also observed that the CTE behavior of Haynes 242 was very nonlinear.

  2. [Composition and morphology of oxides on porcelain fused to Ni-Cr alloys. Be containing alloys].

    PubMed

    Watanabe, T

    1989-06-01

    Bonding strength between porcelain and Ni-Cr alloy for the porcelain fused-to metal crown in which Be is contained in the alloy is known to be higher than those in which Be is not contained. Since, bonding between porcelain and alloy is the reaction of oxides and porcelain, the bonding is thought to be influenced by the quality the oxides film which forms on the alloy surface. The purpose of this study was to determine the composition and morphology of the oxides formed on both Be containing and non-Be contained Ni-Cr alloys. The oxides analysis was done using an EPMA and Auger analysis. Also, the Porcelain/Ni-Cr alloy interface was observed by a scanning electron microscope (SEM). The following results are indicated from this investigation: 1. The oxides from the alloys not containing Be are corundum type Cr2O3 and spinel type NiCr2O4. These oxide layers are uniform, thick and porous and the adhesion to alloy is poor. 2. The oxides from alloy containing Be is BeO only. The BeO is uniform, thin and condensed. The adhesion to the alloy is good. 3. The oxide layer formed when the porcelain is fused to alloy containing Be is thin (1 micron average) and has good adhesion to alloy. 4. Be is selectively oxidized and controlled the form of Cr2O3 and NiO.

  3. Sorption of phosphate and Cr(VI) by Fe(III) and Cr(III) hydroxides.

    PubMed

    Tzou, Y M; Wang, M K; Loeppert, R H

    2003-05-01

    Understanding the chemical behavior and interactions of Cr(VI) ( e.g., HCrO(4)(-)) and other anions, such as orthophosphate (P) with insoluble metal hydroxides ( i.e., Cr[III] and Fe[III]) in disposal landfills or in chromite ore processing residue (CORP)-enriched soil is very important in predicting the movement and the fate of Cr(VI). This study evaluates the sorption behavior of P and Cr(VI) by Fe(III) ( i.e., ferrihydrite), Cr(III) ( i.e., Cr[OH](3)), and coprecipitated Fe(III)/Cr(III) hydroxides. These metal hydroxide sorbents were synthesized, and sorption of P and Cr(VI) were conducted at different pH using a batch technology. Our results show that P and Cr(VI) sorption by metal hydroxides decreased with increasing suspension pH. Greater decrease in P sorption was observed when Cr(III) was present in the structures of hydroxides. Following the sorption of low concentration of P ( i.e., 0.5 mM), the sorption of subsequently added Cr(VI) by hydroxides was less influenced. However, Cr(VI) sorption was greatly inhibited when high concentration of P ( i.e., 10 mM) prereacted with hydroxides, particularly in Fe(III) hydroxide system. Results also indicated that high concentration of Cr(VI) (10 mM) could dissolve Cr(III) hydroxide at pH 3 and reprecipitate as an amorphous form of Cr(VI) and Cr(III) compound at pH about 6.5. Although coprecipitation of Cr(VI) with Cr(III) can inhibit Cr(VI) movement through soil profiles, the inhibition seems to be low due to the gradual release of Cr(VI) with increasing pH.

  4. High-temperature oxidation of Fe-2 1/4Cr-1Mo in oxygen

    SciTech Connect

    Simms, N.J.; Little, J.A.

    1987-06-01

    The oxidation of a 2 1/4Cr-1Mo steel in dry flowing oxygen has been studied in the temperature range 550-700/sup 0/C for periods of up to 100 hr. A detailed low-resolution microstructural investigation revealed a layered oxide consisting of a very fine-grained and finely pored innermost layer of doped spinel, a central columnar-grained relatively coarsely pored layer of magnetite, and an outer fine-grained hematite layer with fine pores and covered with whiskers of ..cap alpha..-Fe/sub 2/O/sub 3/. This structure is compared with previous results on Fe and model Fe-Cr alloys, as are the kinetics of the oxidation reaction.

  5. Equilibrium isotopic fractionation and isotopic exchange kinetics between Cr(III) and Cr(VI)

    NASA Astrophysics Data System (ADS)

    Wang, Xiangli; Johnson, Thomas M.; Ellis, Andre S.

    2015-03-01

    We determined the equilibrium isotope fractionation between Cr(III) and Cr(VI), defined as Δ53CrVI-III = δ53Cr(VI) - δ53Cr(III), and the rates of isotopic exchange between the two redox species under different conditions. In high Cr concentration, low-pH experiments we determined the Δ53CrV-III between CrO42- and Cr(H2O)63+ to be 5.2 ± 0.3‰ and 5.5 ± 0.3‰ at 60 °C and 40 °C, respectively. At 25 °C, the system only progressed 25% toward isotopic equilibrium after 684 days. By extrapolating from the 60 °C and 40 °C experiments we estimated the Δ53CrVI-III between CrO42- and Cr(H2O)63+ to be 5.8 ± 0.5‰ at 25 °C. Isotope exchange rates between dissolved Cr(III) and dissolved Cr(VI) at 25 °C, 40 °C, and 60 °C were determined to be 3.13 × 10-5 M day-1, 6.83 × 10-4 M day-1, and 8.37 × 10-3 M day-1, respectively. In low concentration, neutral-pH experiments we determined the isotopic exchange rates between dissolved Cr(VI) and solid Cr(III) oxyhydroxide at 25 °C. In these experiments, significant isotopic exchange was found on time scales of months, though the magnitude of isotopic shifts was limited by the small mass of Cr(III) available for exchange on the surfaces of Cr(III) oxyhydroxide particles. Exchange rates were relatively fast, compared to rates obtained from high concentration, low-pH experiments. This faster isotopic exchange is attributed to adsorption of Cr(VI) to Cr(III) particle surfaces, which keeps Cr(III) and Cr(VI), and potentially intermediate species Cr(V), in close proximity long enough to allow multiple electron transfers. The isotopic exchange rate at neutral-pH was found to conform to the rate law R = k·[Cr(VI)]adsorbed, in which R is the isotopic exchange rate (M day-1); k is the rate constant, determined to be 0.00047 day-1; [CrO42-]adsorbed is the concentration of Cr(VI) adsorbed to Cr(III) oxyhydroxide (M). The impact of isotopic exchange on the 53Cr/52Cr ratio of the dissolved Cr(VI) depends on the relative masses

  6. Highly and Stably Water Permeable Thin Film Nanocomposite Membranes Doped with MIL-101 (Cr) Nanoparticles for Reverse Osmosis Application.

    PubMed

    Xu, Yuan; Gao, Xueli; Wang, Xiaojuan; Wang, Qun; Ji, Zhiyong; Wang, Xinyan; Wu, Tao; Gao, Congjie

    2016-10-26

    A hydrophilic, hydrostable porous metal organic framework (MOF) material-MIL-101 (Cr) was successfully doped into the dense selective polyamide (PA) layer on the polysulfone (PS) ultrafiltration (UF) support to prepare a new thin film nanocomposite (TFN) membrane for water desalination. The TFN-MIL-101 (Cr) membranes were characterized by SEM, AFM, XPS, wettability measurement and reverse osmosis (RO) test. The porous structures of MIL-101 (Cr) can establish direct water channels in the dense selective PA layer for water molecules to transport through quickly, leading to the increasing water permeance of membranes. With good compatibility between MIL-101 (Cr) nanoparticles and the PA layer, the lab made TFN-MIL-101 (Cr) membranes integrated tightly and showed a high NaCl salt rejection. MIL-101 (Cr) nanoparticles increased water permeance to 2.2 L/m²·h·bar at 0.05 w/v % concentration, 44% higher than the undoped PA membranes; meanwhile, the NaCl rejection remained higher than 99%. This study experimentally verified the potential use of MIL-101 (Cr) in advanced TFN RO membranes, which can be used in the diversified water purification field.

  7. Highly and Stably Water Permeable Thin Film Nanocomposite Membranes Doped with MIL-101 (Cr) Nanoparticles for Reverse Osmosis Application

    PubMed Central

    Xu, Yuan; Gao, Xueli; Wang, Xiaojuan; Wang, Qun; Ji, Zhiyong; Wang, Xinyan; Wu, Tao; Gao, Congjie

    2016-01-01

    A hydrophilic, hydrostable porous metal organic framework (MOF) material-MIL-101 (Cr) was successfully doped into the dense selective polyamide (PA) layer on the polysulfone (PS) ultrafiltration (UF) support to prepare a new thin film nanocomposite (TFN) membrane for water desalination. The TFN-MIL-101 (Cr) membranes were characterized by SEM, AFM, XPS, wettability measurement and reverse osmosis (RO) test. The porous structures of MIL-101 (Cr) can establish direct water channels in the dense selective PA layer for water molecules to transport through quickly, leading to the increasing water permeance of membranes. With good compatibility between MIL-101 (Cr) nanoparticles and the PA layer, the lab made TFN-MIL-101 (Cr) membranes integrated tightly and showed a high NaCl salt rejection. MIL-101 (Cr) nanoparticles increased water permeance to 2.2 L/m2·h·bar at 0.05 w/v % concentration, 44% higher than the undoped PA membranes; meanwhile, the NaCl rejection remained higher than 99%. This study experimentally verified the potential use of MIL-101 (Cr) in advanced TFN RO membranes, which can be used in the diversified water purification field. PMID:28773990

  8. Microstructure and Mechanical Properties of Cr-SiC Particles-Reinforced Fe-Based Alloy Coating

    NASA Astrophysics Data System (ADS)

    Wang, Fu-cheng; Du, Xiao-dong; Zhan, Ma-ji; Lang, Jing-wei; Zhou, Dan; Liu, Guang-fu; Shen, Jian

    2015-12-01

    In this study, SiC particles were first coated with Cr to form a layer that can protect the SiC particles from dissolution in the molten pool. Then, the Cr-SiC powder was injected into the tail of molten pool during plasma-transferred arc welding process (PTAW), where the temperature was relatively low, to prepare Cr-SiC particles reinforced Fe-based alloy coating. The microstructure and phase composition of the powder and surface coatings were analyzed, and the element distribution and hardness at the interfacial region were also evaluated. The protective layer consists of Cr3Si, Cr7C3, and Cr23C6, which play an important role in the microstructure and mechanical properties. The protective layer is dissolved in the molten pool forming a flocculent region and a transition region between the SiC particles and the matrix. The tribological performance of the coating was also assessed using a ring-block sliding wear tester with GGr15 grinding ring under 490 and 980 N load. Cr-SiC particles-reinforced coating has a lower wear rate than the unreinforced coating.

  9. Giant Magnetoresistance and Coercivity of electrodeposited multilayered FeCoNi/Cu and CrFeCoNi/Cu

    NASA Astrophysics Data System (ADS)

    Shakya, P.; Cox, B.; Davis, D.

    2012-02-01

    The effect of Cr addition on electrodeposited multilayered nanowires CrFeCoNi/Cu was investigated from a magnetic property perspective: current perpendicular to the plane-Giant Magnetoresistance (CPP-GMR) and Coercivity (BH loops). The magnetic behavior of multilayered nanowires of CrFeNiCo/Cu was also affected by the alloy deposition potential, alloy pulsing time (layer thickness) and number of bilayers. Furthermore, the addition of Cr influenced both the nanowires GMR and Coercivity. Cr addition to the ferromagnetic FeCoNi layer induced a reduction in the room temperature GMR from 10.64% to 5.62%; however, the magnetic saturation field decreased from 0.45 to 0.27 T. The increase in the number of bilayers, from 1000 to 2500, resulted in a higher GMR value, 14.56% with 0.35 T magnetic saturation field. Addition of Cr to the ferromagnetic layer decreased the coercivity from 0.015 to 0.0054 T. Low saturation field CPP-GMR nanowires showing low coercivity at room temperature opens a new door for magnetic sensing devices. To the best of our knowledge, this is the first study on electrodeposited CrFeCoNi/Cu multilayered nanowires.

  10. Some TEM observations of Al2O3 scales formed on NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Smialek, J.; Gibala, R.

    1979-01-01

    The microstructural development of Al2O3 scales on NiCrAl alloys has been examined by transmission electron microscopy. Voids were observed within grains in scales formed on a pure NiCrAl alloy. Both voids and oxide grains grew measurably with oxidation time at 1100 C. The size and amount of porosity decreased towards the oxide-metal growth interface. The voids resulted from an excess number of oxygen vacancies near the oxidemetal interface. Short-circuit diffusion paths were discussed in reference to current growth stress models for oxide scales. Transient oxidation of pure, Y-doped, and Zr-doped NiCrAl was also examined. Oriented alpha-(Al, Cr)2O3 and Ni(Al, Cr)2O4 scales often coexisted in layered structures on all three alloys. Close-packed oxygen planes and directions in the corundum and spinel layers were parallel. The close relationship between oxide layers provided a gradual transition from initial transient scales to steady state Al2O3 growth.

  11. Some TEM observations of Al2O3 scales formed on NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Smialek, J.; Gibala, R.

    1979-01-01

    The microstructural development of Al2O3 scales on NiCrAl alloys has been examined by transmission electron microscopy. Voids have been observed within grains in scales formed on a pure NiCrAl alloy. Both voids and oxide grains grew measurably with oxidation time at 1100 C. The size and amount of porosity decreased towards the oxide-metal growth interface. It was postulated that the voids resulted from an excess number of oxygen vacancies near the oxide-metal interface. Short-circuit diffusion paths were discussed in reference to current growth stress models for oxide scales. Transient oxidations of pure, Y-doped, and Zr-doped NiCrAl was also examined. Oriented alpha-(Al,Cr)2O3 and Ni(Al,Cr)2O4 scales often coexisted in layered structures on all three alloys. Close-packed oxygen planes and directions in the corundum and spinel layers were parallel. The close relationships between oxide layers provided a gradual transition from initial transient scales to steady state Al2O3 growth.

  12. Reflective and transmissive CR ScanHead technology on needle image plates

    NASA Astrophysics Data System (ADS)

    Frankenberger, Jorg; Mair, Stephan; Herrmann, Clemens; Lamotte, Johan; Fasbender, Robert

    2005-04-01

    The image quality of needle-image-plate (NIP) Computed Radiography (CR) scanners based on ScanHead technology was optimized. In order to get the best image quality for different applications, the influence of the phosphor layer thickness on the detective quantum efficiency (DQE) for different beam qualities was investigated. We compared a cassette-based, reflective CR-NIP-scanner to a new, transmissive flat-panel CR scanner with fixed, mounted NIP. The image quality was analyzed by DQE- and modulation transfer function (MTF) measurements supported by an observer study. The NIP systems reached DQE values up to three times higher than that of high-quality, state of the art CR scanners independent of the scanning principle. This allows a dose reduction by a factor of two to three without loss of image quality for both scanning systems. For high tube voltages, the variation of the phosphor layer thickness results in a DQE maximum at relatively large thicknesses. For lower tube voltages the DQE is less dependent on the layer thickness, reaching excellent values already at considerably lower thicknesses. Consequently, CR scanners can be adapted to different applications by using NIPs with different thicknesses. This could be easily realized for the cassette based system, but not for the flat-panel system with fixed IP. The latter demands a compromise with respect to the phosphor thickness, to yield superior image quality for all applications.

  13. Phonon density of states in epitaxial Fe/Cr(001) superlattices

    SciTech Connect

    Ruckert, T.; Keune, W.; Sturhahn, W.; Hu, M. Y.; Sutter, J. P.; Toellner, T. S.; Alp, E. E.

    1999-10-21

    Incoherent nuclear resonant absorption of synchrotron radiation at the 14.413 keV nuclear resonance of {sup 57}Fe was employed to measure directly the Fe-projected (partial) photon density of states (DOS) in epitaxial [Fe(8.7ML)/Cr(8ML)]{sub 200} superlattices and alloy films MBE-grown on MgO(001). Isotopically depleted {sup 56}Fe was used which gives no resonance signal. 0.7 monolayers (ML) thick {sup 57}Fe-probe layer (1{angstrom}) of 95.5% enrichment were placed either at the {sup 56}Fe-on-Cr interfaces or at the center of the {sup 56}Fe layers, thus providing a nuclear resonance signal from different places in the films. In addition, the authors prepared an epitaxial film which contains only a 1{angstrom}-thick {sup 57}Fe submonolayer in Cr(001) and no {sup 56}Fe layers. Moreover, they prepared a 7000 {angstrom}-thick epitaxial {sup 57}Fe{sub 0.03}Cr{sub 0.97}(001) alloy film. The measurements were performed at 300 K with 2.3 meV energy resolution around 14.413 keV. The phonon DOS of the center site was found to be very similar to that of bulk bcc Fe. Compared to the center site, the DOS of the other samples show distinct differences. In particular, longitudinal vibrations of Fe atoms are suppressed at the Fe/Cr interfaces.

  14. Self-lubricating CrAlN/VN multilayer coatings at room temperature

    NASA Astrophysics Data System (ADS)

    Qiu, Yuexiu; Zhang, Sam; Lee, Jyh-Wei; Li, Bo; Wang, Yuxi; Zhao, Dongliang

    2013-08-01

    Vanadium nitride (VN) is easily oxidized to form vanadium oxides and becomes lubricious under stress. CrAlN is hard thus CrAlN/VN multilayer coatings render both hardness and lubricious properties attractive in dry machining of soft metals. This study investigates the effect of multi-layering on the coating's mechanical and tribological properties at room temperature. The CrAlN/VN multilayer coatings are deposited on cemented tungsten carbide and Si wafer (1 0 0) substrates in an in-line magnetron sputtering system. A period contains one layer of CrAlN plus one adjacent layer of VN. The period thickness varies roughly from 3 nm to 30 nm; the total number of the periods varies from 30 to 300. X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and electron probe micro-analyzer are employed to characterize the microstructures and chemistry. Nanoindentation and ball-on-disk wear test are used in mechanical and tribological studies. The CrAlN/VN multilayer coatings have good lubricant property with lowest coefficient of friction of 0.26. At the period thickness of 20 nm, the multilayer coatings obtained the best mechanical properties (hardness of 32.4 GPa, elastic modulus of 375 GPa, minimum wear rate of 1.1 × 10-7 mm3/Nm).

  15. Some TEM observations of Al2O3 scales formed on NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Smialek, J.; Gibala, R.

    1979-01-01

    The microstructural development of Al2O3 scales on NiCrAl alloys has been examined by transmission electron microscopy. Voids have been observed within grains in scales formed on a pure NiCrAl alloy. Both voids and oxide grains grew measurably with oxidation time at 1100 C. The size and amount of porosity decreased towards the oxide-metal growth interface. It was postulated that the voids resulted from an excess number of oxygen vacancies near the oxide-metal interface. Short-circuit diffusion paths were discussed in reference to current growth stress models for oxide scales. Transient oxidations of pure, Y-doped, and Zr-doped NiCrAl was also examined. Oriented alpha-(Al,Cr)2O3 and Ni(Al,Cr)2O4 scales often coexisted in layered structures on all three alloys. Close-packed oxygen planes and directions in the corundum and spinel layers were parallel. The close relationships between oxide layers provided a gradual transition from initial transient scales to steady state Al2O3 growth.

  16. Oxygen Plasma Activation of Cr(CO)(6) on α-Fe2O3(0001)

    SciTech Connect

    Henderson, Michael A.

    2010-08-30

    The chemistry of Cr(CO)6 on the Fe3O4(111) surface termination of α-Fe2O3(0001) was explored using temperature programmed desorption (TPD), Auger electron spectroscopy (AES), static secondary ion mass spectrometry (SSIMS) and low energy electron diffraction (LEED) both with and without activation from an oxygen plasma source. No thermal decomposition of Cr(CO)6 was detected on the surface in the absence of O2 plasma treatment, with first layer molecules desorbing in TPD at 215 K from a close-packed overlayer. The interaction of first layer Cr(CO)6 with the Fe3O4(111)-termination was weak, desorbing only ~30 K above the leading edge of the multilayer state. Activation of multilayer coverages of Cr(CO)6 with the O2 plasma source at 100K resulted in complete conversion of the outer Cr(CO)6 layers, presumably to a disordered Cr oxide film, with Cr(CO)6 molecules near the surface left unaffected. Absence of CO or CO2 desorption states suggests that all carbonyl ligands are liberated for each Cr(CO)6 molecule activated by the plasma. AES and SSIMS both show that O2 plasma activation of Cr(CO)6 results in a carbon-free surface (after desorption of unreacted Cr(CO)6). LEED, however, shows that the Cr oxide film is disordered at 600 K and likely O-terminated based on subsequent water TPD. Attempts to order the film at temperatures above 650 K results in dissolution of Cr into the α-Fe2O3(0001) crystal based on SSIMS, an observation that is linked to the Fe3O4(111) termination of the surface and not to the properties of α-Cr2O3/α-Fe2O3 corundum interfaces. Nevertheless, this study shows that O2 plasma activation of Cr(CO)6 is an effect means of depositing Cr oxide films on surface without accompanying carbon contamination.

  17. Corrosion Behavior of NiCrFe Alloy 600 in High Temperature, Hydrogenated Water

    SciTech Connect

    SE Ziemniak; ME Hanson

    2004-11-02

    The corrosion behavior of Alloy 600 (UNS N06600) is investigated in hydrogenated water at 260 C. The corrosion kinetics are observed to be parabolic, the parabolic rate constant being determined by chemical descaling to be 0.055 mg dm{sup -2} hr{sup -1/2}. A combination of scanning and transmission electron microscopy, supplemented by energy dispersive X-ray spectroscopy and grazing incidence X-ray diffraction, are used to identify the oxide phases present (i.e., spinel) and to characterize their morphology and thickness. Two oxide layers are identified: an outer, ferrite-rich layer and an inner, chromite-rich layer. X-ray photoelectron spectroscopy with argon ion milling and target factor analysis is applied to determine spinel stoichiometry; the inner layer is (Ni{sub 0.7}Fe{sub 0.3})(Fe{sub 0.3}Cr{sub 0.7}){sub 2}O{sub 4}, while the outer layer is (Ni{sub 0.9}Fe{sub 0.1})(Fe{sub 0.85}Cr{sub 0.15}){sub 2}O{sub 4}. The distribution of trivalent iron and chromium cations in the inner and outer oxide layers is essentially the same as that found previously in stainless steel corrosion oxides, thus confirming their invariant nature as solvi in the immiscible spinel binary Fe{sub 3}O{sub 4}-FeCr{sub 2}O{sub 4} (or NiFe{sub 2}O{sub 4}-NiCr{sub 2}O{sub 4}). Although oxidation occurred non-selectively, excess quantities of nickel(II) oxide were not found. Instead, the excess nickel was accounted for as recrystallized nickel metal in the inner layer, as additional nickel ferrite in the outer layer, formed by pickup of iron ions from the aqueous phase, and by selective release to the aqueous phase.

  18. Double Layers in Astrophysics

    NASA Technical Reports Server (NTRS)

    Williams, Alton C. (Editor); Moorehead, Tauna W. (Editor)

    1987-01-01

    Topics addressed include: laboratory double layers; ion-acoustic double layers; pumping potential wells; ion phase-space vortices; weak double layers; electric fields and double layers in plasmas; auroral double layers; double layer formation in a plasma; beamed emission from gamma-ray burst source; double layers and extragalactic jets; and electric potential between plasma sheet clouds.

  19. Interaction of metal layers with polycrystalline Si

    NASA Technical Reports Server (NTRS)

    Nakamura, K.; Olowolafe, J. O.; Lau, S. S.; Nicolet, M.-A.; Mayer, J. W.; Shima, R.

    1976-01-01

    Solid-phase reactions of metal films deposited on 0.5-micron-thick polycrystalline layers of Si grown by chemical vapor deposition at 640 C were investigated by MeV He-4 backscattering spectrometry, glancing angle X-ray diffraction, and SEM observations. For the metals Al, Ag, and Au, which form simple eutectics, heat treatment at temperatures below the eutectic results in erosion of the poly-Si layer and growth of Si crystallites in the metal film. Crystallite formation is observed at temperatures exceeding 550 C for Ag, at those exceeding 400 C for Al, and at those exceeding 200 C for Au films. For Pd, Ni, and Cr, heat treatment results in silicide formation. The same initial silicides (Pd2Si, Ni2Si, and CrSi2), are formed at similar temperatures on single-crystal substrates.

  20. Perpendicular magnetic properties of CoCr films on GaAs

    NASA Astrophysics Data System (ADS)

    Manago, T.; Kuramochi, H.; Akinaga, H.

    2005-01-01

    CoCr films were deposited on three types of GaAs substrates, GaAs(001), GaAs(111), and Al oxide/GaAs(001). The perpendicular magnetic properties were investigated by magneto-optical Kerr-effect measurements. The direct deposition of the CoCr film on the GaAs substrate did not show any perpendicular magnetic properties. This fact indicates that the lattice distortion influenced by the GaAs lattice suppresses the perpendicular magnetism. The CoCr film on the Al oxide layer showed a tilted squarelike hysteresis loop. The thickness dependence of the hysteresis loop and the magnetic force microscopy showed that the onset thickness of ferromagnetism was 6.5nm. The domain size of the CoCr films monotonously decreases with the increasing thickness (6.5-75nm).

  1. Novel Cu-Cr alloy matrix CNT composites with enhanced thermal conductivity

    NASA Astrophysics Data System (ADS)

    Kong, Jian; Zhang, Chao-ying; Cheng, Xiang

    2013-09-01

    Carbon nanotubes (CNTs) are incorporated into the Cu-Cr matrix to fabricate bulk CNT/Cu-Cr composites by means of a powder metallurgy method, and their thermal conductivity behavior is investigated. It is found that the formation of Cr3C2 interfacial layer improves the interfacial bonding between CNTs and Cu-Cr matrix, producing a reduction of interfacial thermal resistance, and subsequently enhancing the thermal conductivity of the composites. The thermal conductivity of the composites increases by 12 % and 17 % with addition of 5 vol.% and 10 vol.% CNTs, respectively. The experimental results are also theoretically analyzed using an effective medium approximation (EMA) model, and it is found that the EMA model combined with a Debye model can provide a satisfactory agreement to the experimental data.

  2. Pt Diffusion Dynamics for the Formation Cr-Pt Core-Shell Nanoparticles.

    PubMed

    Gupta, G; Iqbal, P; Yin, F; Liu, J; Palmer, R E; Sharma, S; Leung, K Cham-Fai; Mendes, P M

    2015-06-23

    Layered core-shell bimetallic Cr-Pt nanoparticles were prepared by the formation and later reduction of an intermediate Pt-ion-containing supramolecular complex onto preformed Cr nanoparticles. The resultant nanoparticles were characterized by X-ray diffraction analysis, transmission electron microscopy, X-ray photoelectron spectroscopy, and aberration-corrected scanning transmission electron microscopy. The results are consistent with the presence of Pt diffusion during or after bimetallic nanoparticle formation, which has resulted in a Pt/Cr-alloyed core and shell. We postulate that such Pt diffusion occurs by an electric-field-assisted process according to Cabrera-Mott theory and that it originates from the low work function of the preformed oxygen-defective Cr nanoparticles and the rather large electron affinity of Pt.

  3. Flat panel display using Ti-Cr-Al-O thin film

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2002-01-01

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  4. Process for producing Ti-Cr-Al-O thin film resistors

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2001-01-01

    Thin films of Ti-Cr-Al-O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti-Cr-Al-O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti-Cr-Al-O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti-Cr-Al-O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  5. C/CrC nanocomposite coating deposited by magnetron sputtering at high ion irradiation conditions

    SciTech Connect

    Zhou, Z.; Rainforth, W. M.; Gass, M. H.; Bleloch, A.; Ehiassarian, A. P.; Hovsepian, P. Eh.

    2011-10-01

    CrC with the fcc NaCl (B1) structure is a metastable phase that can be obtained under the non-equilibrium conditions of high ion irradiation. A nano-composite coating consisting of amorphous carbon embedded in a CrC matrix was prepared via the unbalanced magnetron sputtering of graphite and Cr metal targets in Ar gas with a high ionized flux (ion-to-neutral ratio Ji/Jn = 6). The nanoscale amorphous carbon clusters self-assembled into layers alternated by CrC, giving the composite a multilayer structure. The phase, microstructure, and composition of the coating were characterized using x-ray diffraction, transmission electron microscopy, and aberration corrected scanning transmission electron microscopy coupled with electron energy loss spectroscopy. The interpretation of the true coating structure, in particular the carbide type, is discussed.

  6. Comparison of different chelating agents to enhance reductive Cr(VI) removal by pyrite treatment procedure.

    PubMed

    Kantar, Cetin; Ari, Cihan; Keskin, Selda

    2015-06-01

    New technologies involving in-situ chemical hexavalent chromium [Cr(VI)] reduction to trivalent chromium [Cr(III)] with natural Fe(II)-containing minerals can offer viable solutions to the treatment of wastewater and subsurface systems contaminated with Cr(VI). Here, the effects of five different chelating agents including citrate, EDTA, oxalate, tartrate and salicylate on reductive Cr(VI) removal from aqueous systems by pyrite were investigated in batch reactors. The Cr(VI) removal was highly dependent on the type of ligand used and chemical conditions (e.g., ligand concentration). While salicylate and EDTA had no or little effect on Cr(VI) removal, the ligands including citrate, tartrate and oxalate significantly enhanced Cr(VI) removal at pH < 7 relative to non-ligand systems. In general, the efficiency of organic ligands on Cr(VI) removal decreased in the order: citrate ≥ oxalate ≈ tartrate > EDTA > salicylate ≈ non-ligand system. Organic ligands enhanced Cr(VI) removal by 1) removing surface oxide layer via the formation of soluble Fe-Cr-ligand complexes, and 2) enhancing the reductive iron redox cycling for the regeneration of new surface sites. While citrate, oxalate and tartrate eliminated the formation of surface Cr (III)-Fe(III)-oxides, the surface phase Cr (III) species was observed in the presence of EDTA and salicylate indicating that Cr(III) complexed with EDTA and salicylate sorbed or precipitated onto pyrite surface, thereby blocking the access of CrO4(2-) to pyrite surface. The binding of Fe(III) with the disulfide reactive sites (≡Fe-S-S-Fe(III)) was essential for the regeneration of new surface sites through pyrite oxidation. Although Fe(III)-S species was detected at the pyrite surface in the presence of citrate, oxalate and tartrate, Fe(III) complexed with EDTA and salicylate did not strongly interact with the disulfide reactive sites due to the formation of non-sorbing Fe(III)-ligand complexes. The absence of surface Fe

  7. Efficiency enhancement of CIGS compound solar cell fabricated using homomorphic thin Cr2O3 diffusion barrier formed on stainless steel substrate

    NASA Astrophysics Data System (ADS)

    Sim, Jae-Kwan; Lee, Seung-Kyu; Kim, Jin-Soo; Jeong, Kwang-Un; Ahn, Haeng-Keun; Lee, Cheul-Ro

    2016-12-01

    It is known that the efficiency of flexible Cu(In,Ga)Se2 (CIGS) solar cells fabricated on stainless-steel (STS) substrates deteriorates due to iron (Fe) and Cr impurities diffusing into the CIGS absorber layer. To overcome this problem, a nanoscale homomorphic chromium oxide layer was formed as a diffusion barrier by thermal oxidation on the surface of STS substrates for 1 min at 600 °C in oxygen atmosphere. By TEM and grazing-incidence X-ray diffraction (GIXRD), it was confirmed that the formed oxide layer on surface of STS substrates was a Cr2O3 layer. It was found that the formed homomorphic Cr2O3 thin layer of about 15 nm thickness was an effective diffusion barrier to reduce impurity diffusion into the CIGS layer by secondary ion mass spectroscopy (SIMS). In contrast to the efficiency of CIGS solar cell without homomorphic Cr2O3 diffusion layer is 8.6%, whereas with diffusion barrier it increases to 10.6% because of impurities such as Fe and Cr from the STS substrate into the CIGS layer. It reveals that the layer formed on the surface of STS substrate by thermal oxidation process plays an important role in increasing the performance of CIGS solar cells.

  8. Effect of Al and Cr Content on Air and Steam Oxidation of FeCrAl Alloys and Commercial APMT Alloy

    DOE PAGES

    Unocic, Kinga A.; Yamamoto, Yukinori; Pint, Bruce A.

    2017-03-09

    To develop the next generation of accident-tolerant fuel cladding for light-water nuclear reactors, wrought FeCrAlY alloys with varying amounts of Cr and Al and commercial Kanthal APMT alloy were evaluated for short-term (4 h) oxidation resistance in steam and air at 1200–1475 °C. Model alloys with lower Cr contents and higher Al contents were evaluated in this paper as lower Cr contents are desirable for radiation damage resistance during operation. As expected, a synergistic effect was found between the Cr and Al contents to enable protective Al2O3 formation under these conditions. Characterization of the alumina scales formed in steam foundmore » that the scale morphology was affected by the alloy Y content and detailed scanning transmission electron microscopy (STEM) detected Y segregation along scale grain boundaries at 1200 °C. However, after 4 h at 1475 °C, Y and Hf were not segregated to the oxide grain boundaries formed on APMT and the scale had a single layer structure. Finally, compared to oxidation in air, STEM characterization of the outer scale showed differences in the Fe and Cr distributions in steam.« less

  9. Microstructures and Thermal Properties of Cold-Sprayed Cu-Cr Composite Coatings

    NASA Astrophysics Data System (ADS)

    Kikuchi, S.; Yoshino, S.; Yamada, M.; Fukumoto, M.; Okamoto, K.

    2013-08-01

    Copper-based composites for thermal conductive components were prepared via the cold spray process, and the deposition efficiency and adhesion morphology of feedstock powders on Cu substrate were evaluated. Cu-based composites were fabricated using Cu-Cr mixed powders with their mixture ratio of 20, 35, 50, and 65 mass% Cr onto oxygen-free copper substrate with N2 carrier gas. Cu-Cr composite coatings were investigated for their Cr content ratio, microstructures, and thermal conductivity. The Cr content ratio in the coating was approximately 50-60% of feedstock mixture ratio due to the low formability of the hard particles. Transmission electron microscopy characterizations revealed that an oxygen-rich layer exists at the Cr particle/Cu substrate interface, which contributes to the deposition of the Cr particles. After the heat treatment at 1093 K, the coatings showed denser cross-sectional structures than those before the heat treatment, and the thermal conductivity was improved as a result of the recrystallization of Cu matrix.

  10. Electron microscopy characterization of Ni-Cr-B-Si-C laser deposited coatings.

    PubMed

    Hemmati, I; Rao, J C; Ocelík, V; De Hosson, J Th M

    2013-02-01

    During laser deposition of Ni-Cr-B-Si-C alloys with high amounts of Cr and B, various microstructures and phases can be generated from the same chemical composition that results in heterogeneous properties in the clad layer. In this study, the microstructure and phase constitution of a high-alloy Ni-Cr-B-Si-C coating deposited by laser cladding were analyzed by a combination of several microscopy characterization techniques including scanning electron microscopy in secondary and backscatter imaging modes, energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). The combination of EDS and EBSD allowed unequivocal identification of micron-sized precipitates as polycrystalline orthorhombic CrB, single crystal tetragonal Cr5B3, and single crystal hexagonal Cr7C3. In addition, TEM characterization showed various equilibrium and metastable Ni-B, Ni-Si, and Ni-Si-B eutectic products in the alloy matrix. The findings of this study can be used to explain the phase formation reactions and to tune the microstructure of Ni-Cr-B-Si-C coatings to obtain the desired properties.

  11. Strengthening effect of Cr 2O 3 thermally grown on alloy 617 foils at high temperature

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Li, F. X.; Ko, G. D.; Kang, K. J.

    2010-10-01

    Alloy 617 has been selected for the intermediate heat exchanger (IHX) of the very high temperature gas-cooled reactor (VHTR) for the economic production of electricity and hydrogen. In this work, the strengthening effects of Cr 2O 3 thermally grown on alloy 617 foils at 800 and 900 °C were investigated. A micro-tensile test system was used for in situ measurement of tensile strain in the foils and superficial thermally-grown Cr 2O 3. Each foil was heated until the thermally-grown Cr 2O 3 reached a predetermined thickness; then, a load was applied to measure the tensile response. As the Cr 2O 3 layer thickened on the surface of the metal foils, the strengths and stiffnesses of the foils were enhanced. We assumed that there was no interaction between the substrate and the superficial chromia, and the strength of Cr 2O 3 itself was measured. At 800 °C, the Cr 2O 3 was brittle and the strength was governed by crack initiation. At 900 °C, the Cr 2O 3 was much more ductile, and strain hardening was observed for even the smallest thickness. The strength was maintained even after crack initiation was observed on the surface.

  12. Ti3CrCu4: A possible 2-D ferromagnetic spin fluctuating system

    NASA Astrophysics Data System (ADS)

    Dhar, S. K.; Provino, A.; Manfrinetti, P.; Kulkarni, R.; Goyal, Neeraj; Paudyal, D.

    2016-05-01

    Ti3CrCu4 is a new ternary compound which crystallizes in the tetragonal Ti3Pd5 structure type. The Cr atoms form square nets in the a-b plane (a = 3.124 Å) which are separated by an unusually large distance c = 11.228 Å along the tetragonal axis, thus forming a -2-D Cr-sublattice. The paramagnetic susceptibility is characterized by a low effective moment, μeff = 1.1 μB, a low paramagnetic Curie temperature θP (below 7 K) and a temperature independent χ0 = 6.7 x 10-4 emu/mol. The magnetization at 1.8 K increases rapidly with field nearly saturating to 0.2 μB/f.u. The zero field heat capacity C/T shows an upturn below 7 K (˜190 mJ/mol K2 at ˜0.1K) which is suppressed in applied magnetic fields and interpreted as suggesting the presence of spin fluctuations. The resistivity at low temperatures shows non-Fermi liquid behavior. Overall, the experimental data thus reveal an unusual magnetic state in Ti3CrCu4, which likely has its origin in the layered nature of the Cr sub-lattice and ferromagnetic spin fluctuations. Density functional theoretical calculations reveal a sharp Cr density of states peak just above the Fermi level, indicating the propensity of Ti3CrCu4 to become magnetic.

  13. Becquerel Layers

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-350, 4 May 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layered sedimentary rock outcrops in Becquerel Crater of western Arabia Terra. These materials were deposited in the crater some time in the distant past, and later eroded to their present form. They probably consist of fine-grained sediments; they could have been deposited directly from dust and/or volcanic ash settling out of the martian atmosphere, or silt and sand settling to the floor of an ancient lake. The image does not provide enough information to distinguish between the two possibilities. The picture is located near 21.5oN, 8.1oW. Sunlight illuminates the scene from the lower left.

  14. Polar Layers

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03581 Polar Layers

    This image shows just one example of the bright and dark markings that appear during summer time. The marks are related to the polar layers. If you happen to see a wild-eyed guy sticking his tongue out at you, you'll know why this image qualifies for the old 'art' category of THEMIS releases.

    Image information: VIS instrument. Latitude 80.6S, Longitude 34.1E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  15. High-temperature oxidation of advanced FeCrNi alloy in steam environments

    DOE PAGES

    Elbakhshwan, Mohamed S.; Gill, Simerjeet K.; Rumaiz, Abdul K.; ...

    2017-07-04

    Alloys of iron-chromium-nickel are being explored as alternative cladding materials to improve safety margins under severe accident conditions. Here, our research focuses on non-destructively investigating the oxidation behavior of the FeCrNi alloy “Alloy 33” using synchrotron-based methods. The evolution and structure of oxide layer formed in steam environments were characterized using X-ray diffraction, hard X-ray photoelectron spectroscopy, X-ray fluorescence methods and scanning electron microscopy. In conclusion, our results demonstrate that a compact and continuous oxide scale was formed consisting of two layers, chromium oxide and spinel phase (FeCr2O4) oxides, wherein the concentration of the FeCr2O4 phase decreased from the surfacemore » to the bulk-oxide interface.« less

  16. Development of multilayer oxidation resistant coatings on Cr-50Nb alloy

    NASA Astrophysics Data System (ADS)

    Zheng, Haizhong; Xiong, Lingling; Luo, Qinhao; Lu, Shiqiang

    2015-12-01

    To protect Cr-50Nb alloys from high-temperature oxidation, the Al2O3/Si-Al multilayer coatings were produced by pack cementation process, followed by sol-gel process and hot pressing. The results indicate that the multilayer coating is dense and exhibits good adherence to the substrate, which consists of a compact Al2O3 outer layer and an inner layer composed of Si, Al, Cr, Nb. Uncoated Cr-50Nb alloy occurs catastrophic oxidation at the initial oxidation stage at 1200 °C. However, the scale spalling resistance of the multilayer coating is improved significantly, and the multilayer coating exhibits good resistance to oxidation. During cyclic oxidation in air at 1200 °C for 100 h, the weight loss is 0.13 mg/cm2 and the mass gain is 3.38 mg/cm2.

  17. Ozone Layer Protection

    MedlinePlus

    ... EPA United States Environmental Protection Agency Search Search Ozone Layer Protection Share Facebook Twitter Google+ Pinterest Contact Us Ozone Layer Protection Welcome to EPA's ozone layer protection web ...

  18. Transient oxidation of multiphase Ni-Cr base alloys

    SciTech Connect

    Baran, G.; Meraner, M.; Farrell, P.

    1988-06-01

    Four commercially available Ni-Cr-based alloys used with porcelain enamels were studied. Major alloying elements were Al, Be, Si, B, Nb, and Mo. All alloys were multiphase. During heat treatments simulating enameling conditions, phase changes occurred in most alloys and were detected using hardness testing, differential thermal analysis (DTA), and microscopy. Oxidation of these alloys at 1000/degrees/C for 10 min produced an oxide layer consisting principally of chromium oxide, but the oxide morphology varied with each alloy depending on the alloy microstructure. Controlling alloy microstructure while keeping the overall composition unchanged may be a means of preventing wrinkled poorly adherent scales from forming.

  19. Microstructure and Corrosion Behavior of CrN and CrSiCN Coatings

    NASA Astrophysics Data System (ADS)

    Cai, Feng; Yang, Qi; Huang, Xiao; Wei, Ronghua

    2010-07-01

    Three CrN-based coatings were deposited on 17-4PH stainless steel substrate using plasma enhanced magnetron sputtering (PEMS) technique. The microstructure and corrosion resistance were evaluated to examine the effect of Si and C in the coatings. The three coating compositions were CrN(Cr0.69N0.31), CrSiCN-1 (Cr0.55Si0.014C0.14N0.3), and CrSiCN-2 (Cr0.43Si0.037C0.24N0.3). The testing results indicated that with the increase of Si concentration, the coating microstructure transformed from B1 structure to B1 + Si3N4 structure. All the three coating systems were subjected to electrochemical tests in 3.5% NaCl solution at room temperature. Potentiodynamic polarization results revealed that the CrSiCN-2 coating had a higher anodic current density and a lower corrosion potential when compared to the CrN and CrSiCN-1 coatings. Extended exposure in 3.5% NaCl caused several localized corrosion to the CrSiCN-2 coating due to the porous coating structure. Electrochemical impedance spectroscopic measurements demonstrated that the CrSiCN-1 has better corrosion resistance than CrN and CrSiCN-2.

  20. Highly Corrosion Resistant and Sandwich-like Si3N4/Cr-CrNx/Si3N4 Coatings Used for Solar Selective Absorbing Applications.

    PubMed

    Zhang, Ke; Du, Miao; Haoa, Lei; Meng, Jianping; Wang, Jining; Mi, Jing; Liu, Xiaopeng

    2016-12-14

    Highly corrosion resistant, layer-by-layer nanostructured Si3N4/Cr-CrNx/Si3N4 coatings were deposited on aluminum substrate by DC/RF magnetron sputtering. Corrosion resistance experiments were performed in 0.5, 1.0, 3.0, and 5.0 wt % NaCl salt spray at 35 °C for 168 h. Properties of the coatings were comprehensively investigated in terms of optical property, surface morphology, microstructure, elemental valence state, element distribution, and potentiodynamic polarization. UV-vis-near-IR spectrophotometer and FTIR measurements show that the change process in optical properties of Si3N4/Cr-CrNx/Si3N4/Al coatings can be divided into three stages: a rapid active degradation stage, a steady passivation stage, and a transpassivation degradation stage. With the increase in the concentration of NaCl salt spray, solar absorptance and thermal emittance experienced a slight degradation. SEM images reveal that there is an increase in surface defects, such as microcracks and holes and -cracks. XRD and TEM measurements indicate that the phase structure changed partially and the content of CrOx and Al2O3 has increased. Auger electron spectroscopy shows that the elements of Cr, N, and O have undergone a minor diffusion. Electrochemical polarization curves show that the as-deposited Si3N4/Cr-CrNx/Si3N4/Al coatings have excellent corrosion resistance of 3633.858 kΩ, while after corroding in 5.0 wt % NaCl salt spray for 168 h the corrosion resistance dropped to 13.759 kΩ. However, these coatings still have an outstanding performance of high solar absorptance of 0.924 and low thermal emittance of 0.090 after corroding in 3.0 wt % NaCl salt spray for 120 h. Thus, the Si3N4/Cr-CrNx/Si3N4/Al coating is a good choice for solar absorber coatings applied in the high-saline environment.

  1. Strain fields and electronic structure of CrN

    NASA Astrophysics Data System (ADS)

    Rojas, Tomas; Ulloa, Sergio E.

    Chromium nitride (CrN) has a promising future for its resistance to corrosion and hardness, and very interesting magnetic and electronic properties. CrN presents a phase transition in which the crystal structure, magnetic ordering and electronic properties change at a (Néel) temperature ~ 280 K . Thin films from different labs exhibit different conductance behavior at low temperature. We study the unusual electronic and magnetic properties of thin layers. For that purpose we develop a tight binding Hamiltonian based on the Slater-Koster approach, and estimate the interaction between the Cr-3d and N-2p orbitals, by analyzing the band structure and comparing it with ab initio calculations performed using the LSDA+U method. These calculations show the system to behave as a semiconductor below the Néel temperature. Based on our model we calculate the effective masses and analyze the effect of strain fields in the electronic structure in order to understand the electronic behavior near the phase transition. Supported by NSF DMR-1508325.

  2. Chemical filtration of Cr (VI) with electrospun chitosan nanofiber membranes.

    PubMed

    Li, Lei; Li, Yanxiang; Yang, Chuanfang

    2016-04-20

    Chitosan nanofibers (average diameter of 75nm) were electrospun on polyester (PET) scrim to form composite nanofiber membranes with controlled pore size. The membranes were then stacked as a membrane bed for chemical filtration of Cr (VI) of 1-5mg/L. The performance of the bed with respect to loading capacity at breakthrough, bed saturation and utilization efficiency were carefully investigated. The results showed that while these three parameters were dependent on pH, flow rate, flow distribution and packed pattern of the membrane, the latter two were less affected by feed Cr (VI) concentration and bed length. The maximum bed loading capacity for 1mg/L Cr (VI) filtration at breakthrough was found to be 16.5mg-chromium/g-chitosan, higher than the static adsorption capacity of 11.0mg-chromium/g-chitosan using nanofiber mats, indicating the membranes' better potential for dynamic adsorption. The minimum bed length required to avoid breakthrough was determined to be three layers of stacked membranes with nanofiber deposition density of 1g/m(2) by applying bed depth service time (BDST) model.

  3. Effect of continuous layer in CGC perpendicular recording media

    NASA Astrophysics Data System (ADS)

    Sonobe, Y.; Tham, K. K.; Umezawa, T.; Takasu, C.; Dumaya, J. A.; Leo, P. Y.

    2006-08-01

    The effect of continuous layer on CoCrPt-SiO 2 granular layer is studied in coupled granular continuous (CGC) perpendicular recording media. In the cross-section transmission electron microscope (TEM) observation, magnetic grain in the granular layer shows columnar structure, while Co/Pd multilayer shows continuous layer. The plane-view TEM image of the granular layer shows well-isolated grain structure with average grain size of around 6 nm, and grain-to-grain separation width of around 2 nm. Therefore, the interactions among the grains are negligible ( J˜0). By depositing a continuous layer on a CoCrPt-SiO 2 granular layer, the grains in the granular layer are magnetically coupled through capping layer that leads to the suppression of magnetic anisotropy dispersion. This CGC structure reduces the coercivity dispersion ( ΔH/H) from 0.26 to 0.15 and saturation field ( Hs) from 10.4 to 6.7 kOe. The reduction of Hs and ΔH/H improves the OW by 21.3 dB. The small ΔH/H also maintains SNR of CGC media with strong magnetic exchange coupling. Furthermore, the coupling of grains through continuous layer enlarges the magnetic nucleation field ( Hn) from 0.4 to -1.7 kOe. Consequently, CGC media shows better thermal stability compared to non-CGC media.

  4. Simulation of tunable Cr:YSO Q-switched Cr:LiSAF laser

    NASA Astrophysics Data System (ADS)

    Chen, Hsiu-Fen; Hsieh, Shang-Wei; Kuo, Yen-Kuang

    2005-01-01

    In this work, we numerically investigate the passive Q-switching performance of the tunable Cr:YSO Q-switched Cr:LiSAF laser over its entire tuning range. Specifically, the optical performance of the Cr:YSO Q-switched Cr:LiSAF laser as functions of the initial population in the ground state of the Cr:YSO saturable absorber, the pumping rate, the reflectivity of the output coupler, and the dissipative loss inside the laser cavity are studied. Simulation results show that the Cr:YSO is an effective saturable absorber Q switch for the Cr:LiSAF laser over its entire tuning range. Unlike the Cr:YSO Q-switched alexandrite laser and the Cr:YSO Q-switched Cr:LiCAF laser, the Cr:YSO Q-switched Cr:LiSAF laser has similar passive Q-switching performance when the laser polarization is along each of the three principal axes of the Cr:YSO. The results obtained numerically in this work are in good agreement with those obtained experimentally by other researchers. Our simulation results indicate that, a Q-switched laser pulse with an output energy of 10 mJ and a pulse width of 17 ns may be obtained at 850 nm, the peak of its tuning spectrum.

  5. Cr isotope fractionation factors for Cr(VI) reduction by a metabolically diverse group of bacteria

    NASA Astrophysics Data System (ADS)

    Basu, Anirban; Johnson, Thomas M.; Sanford, Robert A.

    2014-10-01

    Reduction of Cr(VI) is an important process that determines the geochemical behavior, mobility and bioavailability of Cr in both terrestrial and marine environments. Many metabolically diverse microorganisms possess Cr(VI) reduction capacity. Cr(VI) reduction fractionates Cr isotopes and thus 53Cr/52Cr ratios can be used to monitor Cr(VI) reduction and redox conditions. The magnitude of isotopic fractionation (ε) for a variety of microbial reduction mechanisms must be known for accurate interpretation of observed shifts in 53Cr/52Cr ratios. We determined isotopic fractionation factors for Cr(VI) reduction by metal reducers Geobacter sulfurreducens and Shewanella sp. strain NR, a denitrifying soil bacterium Pseudomonas stutzeri DCP-Ps1, and a sulfate reducer Desulfovibrio vulgaris. All bacteria investigated in this study produced significant Cr isotope fractionation. The fractionation (ε) for G. sulfurreducens, Shewanella sp. (NR), P. stutzeri DCP-Ps1, and D. vulgaris were -3.03‰ ± 0.12‰, -2.17‰ ± 0.22‰, -3.14‰ ± 0.13‰, and -3.01‰ ± 0.11‰, respectively. Despite differences in microbial strains in this study, the ε did not vary significantly except for Shewanella sp. (NR). Our results suggest that strong isotopic fractionation is induced during Cr(VI) reduction under electron donor poor (∼300 μM) conditions.

  6. Diffusive Interaction Between Ni-Cr-Al Alloys

    NASA Astrophysics Data System (ADS)

    Tkacz-Śmiech, Katarzyna; Danielewski, Marek; Bożek, Bogusław; Berent, Katarzyna; Zientara, Dariusz; Zajusz, Marek

    2017-03-01

    In high-temperature coatings, welded parts, and a range of other applications, components in the contact zone interdiffuse at elevated temperatures and may react to change the phase composition. The diffusion zone can be complex and can consist of sequential layers of intermediate phases, solid solutions, and in the case of multicomponent systems also of multiphase layers. In this work, the interdiffusion in Ni-Cr-Al alloys is studied experimentally and modeled numerically. The diffusion multiples were prepared by hot isostatic pressing and post-annealing at 1473 K (1200 °C). The concentration profiles were measured with wide-line EDS technique which allowed obtaining high-accuracy diffusion paths. The experimental profiles and diffusion paths were compared with numerical results simulated with application of very recent model of interdiffusion in muticomponent-multiphase systems. The calculated and experimental data show good agreement.

  7. Diffusive Interaction Between Ni-Cr-Al Alloys

    NASA Astrophysics Data System (ADS)

    Tkacz-Śmiech, Katarzyna; Danielewski, Marek; Bożek, Bogusław; Berent, Katarzyna; Zientara, Dariusz; Zajusz, Marek

    2017-05-01

    In high-temperature coatings, welded parts, and a range of other applications, components in the contact zone interdiffuse at elevated temperatures and may react to change the phase composition. The diffusion zone can be complex and can consist of sequential layers of intermediate phases, solid solutions, and in the case of multicomponent systems also of multiphase layers. In this work, the interdiffusion in Ni-Cr-Al alloys is studied experimentally and modeled numerically. The diffusion multiples were prepared by hot isostatic pressing and post-annealing at 1473 K (1200 °C). The concentration profiles were measured with wide-line EDS technique which allowed obtaining high-accuracy diffusion paths. The experimental profiles and diffusion paths were compared with numerical results simulated with application of very recent model of interdiffusion in muticomponent-multiphase systems. The calculated and experimental data show good agreement.

  8. Cyclic and isothermal oxidation behavior at 1100 and 1200 C of Ni-20Cr, Ni-20Cr-3Mn, Ni-20Cr-3Si, and Ni-40Cr alloys

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.

    1973-01-01

    Alloys of Ni-20Cr, Ni-20Cr-3Mn, Ni-20Cr-3Si, and Ni-40Cr were cyclically oxidized at 1100 and 1200 C for up to 100 hours. Oxidation behavior was judged by sample thickness and weight change, metallography, diffraction, and microprobe analysis. The least attacked were Ni-40Cr and Ni-20Cr-3Si. The alloy Ni-20Cr-3Mn was much less attacked than Ni-20Cr, but more than the other alloys. The formation of Cr2O3 accounted for the increased resistance of Ni-Cr and Ni-20Cr-3Si, and the formation of MnCr2O4 accounts for the improvement in Ni-20Cr-3mn over Ni-20Cr.

  9. Thermodynamic Assessment of Chrome-Spinel Formation in Laser-Sintered Coatings with Cr2O3 Particles

    NASA Astrophysics Data System (ADS)

    Krivilyov, Mikhail; Kharanzhevskiy, Evgeny; Reshetnikov, Sergey; Beyers, Lesley J.

    2016-06-01

    Formation of a thin passive layer has been performed using short pulse laser dispersion of Cr2O3 particles in a C22 steel substrate. As a result, the coating's corrosion resistance is substantially improved compared to unprocessed samples. Microstructure analysis by TEM, XPS, and XRD showed that laser processing leads to dissolution of Cr2O3 with formation of Cr and Fe oxides, chrome-spinel, and metallic Cr dispersed in alpha and gamma Fe. Thermodynamic assessment revealed that the formation of pure chromium is caused by reduction of Cr2O3 and oxidation of iron. This reaction is promoted by shifting of chemical equilibrium at elevated temperatures in the molten zone under short pulse laser processing.

  10. A comprehensive study of piezomagnetic response in CrPS4 monolayer: mechanical, electronic properties and magnetic ordering under strains

    NASA Astrophysics Data System (ADS)

    Joe, Minwoong; Lee, Hosik; Menderes Alyörük, M.; Lee, Jinhwan; Youb Kim, Sung; Lee, Changgu; Lee, Jun Hee

    2017-10-01

    We performed first-principles calculations to investigate the magnetic, mechanical and electronic properties of the tetrachalcogenide CrPS4. Although bulk CrPS4 has been shown to exhibit a low-dimensional antiferromagnetic (AFM) ground state where ferromagnetic (FM) Cr-chains are coupled antiferromagnetically, our calculations indicated that the monolayer can be transformed to an FM material by applying a uniaxial tensile strain of  ⩾4% along the FM Cr-chain direction. The AFM-to-FM transition is explained to be driven by an increase of the exchange interaction induced by a decrease in the distance between the FM Cr-chains. A huge nonlinear piezomagnetism was predicted at the strain-induced magnetic phase boundary. Our study provides insight about rational design of single-layer magnetic materials for a wide range of spintronic devices and energy applications.

  11. Thermodynamics of Cr2O3, FeCr2O4, ZnCr2O4 and CoCr2O4

    SciTech Connect

    Ziemniak SE, Anovitz LM, Castelli RA, Porter WD

    2007-01-09

    High temperature heat capacity measurements were obtained for Cr{sub 2}O{sub 3}, FeCr{sub 2}O{sub 4}, ZnCr{sub 2}O{sub 4} and CoCr{sub 2}O{sub 4} using a differential scanning calorimeter. These data were combined with previously-available, overlapping heat capacity data at temperatures up to 400 K and fitted to 5-parameter Maier-Kelley C{sub p}(T) equations. Expressions for molar entropy were then derived by suitable integration of the Maier-Kelley equations in combination with recent S{sup o}(298) evaluations. Finally, a database of high temperature equilibrium measurements on the formation of these oxides was constructed and critically evaluated. Gibbs energies of Cr{sub 2}O{sub 3}, FeCr{sub 2}O{sub 4} and CoCr{sub 2}O{sub 4} were referenced by averaging the most reliable results at reference temperatures of 1100, 1400 and 1373 K, respectively, while Gibbs energies for ZnCr{sub 2}O{sub 4} were referenced to the results of Jacob [Thermochim. Acta 15 (1976) 79-87] at 1100 K. Thermodynamic extrapolations from the high temperature reference points to 298.15 K by application of the heat capacity correlations gave {Delta}{sub f}G{sup o}(298) = -1049.96, -1339.40, -1428.35 and -1326.75 kJ mol{sup -1} for Cr{sub 2}O{sub 3}, FeCr{sub 2}O{sub 4}, ZnCr{sub 2}O{sub 4} and CoCr{sub 2}O{sub 4}, respectively.

  12. Studies on Transient-Stage-Scale Growth on Fe-22wt.% Cr Alloys Containing 120 PPM La + 270 PPM Ce

    DTIC Science & Technology

    2009-02-01

    diffuse towards the surface where a scale rich in spinel starts to form. This spinel evolves becoming richer in Cr and Mn and nodules made out of chromium ... chromium content iron alloys Abstract Reactive elements (RE), such as Ce, La or Y, are known to improve oxidation resistance of Fe based alloys that...but when the oxidation time is long enough, Cr and Mn oxides will bury it under an oxides layer. This indicates the formation of chromium and

  13. Core layering

    NASA Astrophysics Data System (ADS)

    Jacobson, S. A.; Rubie, D. C.; Hernlund, J. W.; Morbidelli, A.

    2015-12-01

    We have created a planetary accretion and differentiation model that self-consistently builds and evolves Earth's core. From this model, we show that the core grows stably stratified as the result of rising metal-silicate equilibration temperatures and pressures, which increases the concentrations of light element impurities into each newer core addition. This stable stratification would naturally resist convection and frustrate the onset of a geodynamo, however, late giant impacts could mechanically mix the distinct accreted core layers creating large homogenous regions. Within these regions, a geodynamo may operate. From this model, we interpret the difference between the planetary magnetic fields of Earth and Venus as a difference in giant impact histories. Our planetary accretion model is a numerical N-body integration of the Grand Tack scenario [1]—the most successful terrestrial planet formation model to date [2,3]. Then, we take the accretion histories of Earth-like and Venus-like planets from this model and post-process the growth of each terrestrial planet according to a well-tested planetary differentiation model [4,5]. This model fits Earth's mantle by modifying the oxygen content of the pre-cursor planetesimals and embryos as well as the conditions of metal-silicate equilibration. Other non-volatile major, minor and trace elements included in the model are assumed to be in CI chondrite proportions. The results from this model across many simulated terrestrial planet growth histories are robust. If the kinetic energy delivered by larger impacts is neglected, the core of each planet grows with a strong stable stratification that would significantly impede convection. However, if giant impact mixing is very efficient or if the impact history delivers large impacts late, than the stable stratification can be removed. [1] Walsh et al. Nature 475 (2011) [2] O'Brien et al. Icarus 223 (2014) [3] Jacobson & Morbidelli PTRSA 372 (2014) [4] Rubie et al. EPSL 301

  14. Method and closing pores in a thermally sprayed doped lanthanum chromite interconnection layer

    DOEpatents

    Singh, P.; Ruka, R.J.

    1995-02-14

    A dense, substantially gas-tight electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an air electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO{sub 3} particles doped with an element or elements selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by thermal spraying doped LaCrO{sub 3} particles, either by plasma arc spraying or flame spraying; (C) depositing a mixture of CaO and Cr{sub 2}O{sub 3} on the surface of the thermally sprayed layer; and (D) heating the doped LaCrO{sub 3} layer coated with CaO and Cr{sub 2}O{sub 3} surface deposit at from about 1,000 C to 1,200 C to substantially close the pores, at least at a surface, of the thermally sprayed doped LaCrO{sub 3} layer. The result is a dense, substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the nonselected portion of the air electrode. A fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell, for example for generation of electrical power. 5 figs.

  15. Method and closing pores in a thermally sprayed doped lanthanum chromite interconnection layer

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.

    1995-01-01

    A dense, substantially gas-tight electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an air electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO.sub.3 particles doped with an element or elements selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by thermal spraying doped LaCrO.sub.3 particles, either by plasma arc spraying or flame spraying; (C) depositing a mixture of CaO and Cr.sub.2 O.sub.3 on the surface of the thermally sprayed layer; and (D) heating the doped LaCrO.sub.3 layer coated with CaO and Cr.sub.2 O.sub.3 surface deposit at from about 1000.degree. C. to 1200.degree. C. to substantially close the pores, at least at a surface, of the thermally sprayed doped LaCrO.sub.3 layer. The result is a dense, substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the nonselected portion of the air electrode. A fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell, for example for generation of electrical power.

  16. Introduction to AIRS and CrIS

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2004-01-01

    "Introduction to AIRS and CrIS" is a chapter in a book dealing with various aspects of remote sensing. AIRS and CrIS are both high spectral resolution IR sounding instruments, which were recently launched (AIRS) or will soon be launched (CrIS). The chapter explains the general principles of infra-red remote sensing, and explains the significance and information content of high spectral resolution IR measurements. The chapter shows results obtained using AIRS observations, and explains why similar quality results should be obtainable from CrIS data.

  17. GALPROP: New Developments in CR Propagation Code

    NASA Technical Reports Server (NTRS)

    Moskalenko, I. V.; Jones, F. C.; Mashnik, S. G.; Strong, A. W.; Ptuskin, V. S.

    2003-01-01

    The numerical Galactic CR propagation code GALPROP has been shown to reproduce simultaneously observational data of many kinds related to CR origin and propagation. It has been validated on direct measurements of nuclei, antiprotons, electrons, positrons as well as on astronomical measurements of gamma rays and synchrotron radiation. Such data provide many independent constraints on model parameters while revealing some contradictions in the conventional view of Galactic CR propagation. Using a new version of GALPROP we study new effects such as processes of wave-particle interactions in the interstellar medium. We also report about other developments in the CR propagation code.

  18. Nucleation of Cr precipitates in Fe-Cr alloy under irradiation

    SciTech Connect

    Dai, Y. Y.; Ao, L.; Sun, Qing- Qiang; Yang, L.; Nie, JL; Peng, SM; Long, XG; Zhou, X. S.; Zu, Xiaotao; Liu, L.; Sun, Xin; Terentyev, Dimtry; Gao, Fei

    2015-04-01

    The nucleation of Cr precipitates induced by overlapping of displacement cascades in Fe-Cr alloys has been investigated using the combination of molecular dynamics (MD) and Metropolis Monte Carlo (MMC) simulations. The results reveal that the number of Frenkel pairs increases with the increasing of overlapped cascades. Overlapping cascades could promote the formation of Cr precipitates in Fe-Cr alloys, as analyzed using short range order (SRO) parameters to quantify the degree of ordering and clustering of Cr atoms. In addition, the simulations using MMC approach show that the presence of small Cr clusters and vacancy clusters formed within cascade overlapped region enhance the nucleation of Cr precipitates, leading to the formation of large Cr dilute precipitates.

  19. Diffusion of cations in chromia layers grown on iron-base alloys

    SciTech Connect

    Lobnig, R.E.; Hennesen, K.; Grabke, H.J. ); Schmidt, H.P.

    1992-02-01

    Diffusion of the cations Cr, Fe, Mn, and Ni in Cr{sub 2}O{sub 3} has been investigated at 1,173 K. The diffusion measurements were performed on chromia layers grown on the model alloys Fe-20Cr and Fe-20Cr-12Ni in order to consider effects of small amounts of dissolved alien cations in Cr{sub 2}O{sub 3}. The samples were diffusion annealed in H{sub 2}-H{sub 2}O at an oxygen partial pressure close to the Cr{sub 2}O{sub 3}/Cr equilibrium. For all tracers the lattice-diffusion coefficients are 3-5 orders of magnitude smaller than the grain-boundary diffusion coefficients. The lattice diffusivity of Mn is about two orders of magnitude greater than the other lattice-diffusion coefficients, especially in Cr{sub 2}O{sub 3} grown on Fe-20Cr-12Ni. The values of the diffusion coefficients for Cr, Fe, and Ni are in the same range. Diffusion of the tracers in Cr{sub 2}O{sub 3} grown on different alloys did not show significant differences with the exception of Mn.

  20. Epitaxial Cr on n-SrTiO3(001)—An ideal Ohmic contact

    SciTech Connect

    Capan, Cigdem; Sun, Guangyuan; Bowden, Mark E.; Chambers, Scott A.

    2012-01-30

    Epitaxial Cr metallizations grown on n-SrTiO3(001) by molecular beam epitaxy are shown to result in an ordered interface with Cr bound to O in the terminal TiO2 layer, no reduction of the SrTiO3, and a near-perfect Ohmic contact. Cr/n-SrTiO3(001) thus constitutes an ideal interface between a pure metal and wide gap oxide in which interface redox chemistry does not occur, and the Fermi level remains unpinned.

  1. LET spectrum measurements in Cr-39 PNTD with AFM

    SciTech Connect

    Johnson, Carl Edward; De Witt, Joel M; Benton, Eric R; Yasuda, Nakahiro; Benton, Eugene V

    2010-01-01

    Energetic protons, neutrons, and heavy ions undergoing collisions with target nuclei of varying Z can produce residual heavy recoil fragments via intra-nuclear cascade/evaporation reactions. The particles produced in these non-elastic collisions generally have such extremely short range ({approx}< 10 {mu}m) that they cannot be directly observed by conventional detection methods including CR-39 plastic nuclear track detector (PNTD) that has been chemically etched for analysis by standard visible light microscopy. However, high-LET recoil fragments having range on the order of several cell diameters can be produced in tissue during radiotherapy using proton and carbon beams. We have developed a method to analyze short-range, high-LET tracks in CR-39 plastic nuclear track detector (PNTD) using short duration chemical etching ({approx}< 1 {mu}m) followed by automated atomic force microscope (AFM) scanning. The post-scan data processing used in this work was based on semi-automated matrix analysis opposed to traditional grey-scale image analysis. This method takes advantage of the 3-D data obtained via AFM to achieve robust discrimination of nuclear tracks from other features. Through automation of AFM scanning, sufficient AFM scan frames were obtained to attain an LET spectrum spanning the LET range from 200-1500 keV/{mu}m. In addition to our experiments, simulations were carried out with the Monte Carlo transport code, FLUKA. To demonstrate this method, CR-39 PNTD was exposed to the proton therapy beam at Loma Linda University Medical Center (LLUMC) at 60 and 230 MeV. Additionally, detectors were exposed to I GeV protons at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). For these exposures CR-39 PNTD, Al and Cu target foils were used between detector layers.

  2. LET Spectrum Measurements In CR-39 PNTD With AFM

    SciTech Connect

    Johnson, C. E.; DeWitt, J. M.; Benton, E. R.; Yasuda, N.; Benton, E. V.

    2011-06-01

    Energetic protons, neutrons, and heavy ions undergoing collisions with target nuclei of varying Z can produce residual heavy recoil fragments via intra-nuclear cascade/evaporation reactions. The particles produced in these non-elastic collisions generally have such extremely short range ({approx}<10 {mu}m) that they cannot be directly observed by conventional detection methods including CR-39 plastic nuclear track detector (PNTD) that has been chemically etched for analysis by standard visible light microscopy. However, high-LET recoil fragments having range on the order of several cell diameters can be produced in tissue during radiotherapy using proton and carbon beams. We have developed a method to analyze short-range, high-LET tracks in CR-39 plastic nuclear track detector (PNTD) using short duration chemical etching ({approx}<1 {mu}m) following by automated atomic force microscope (AFM) scanning. The post-scan data processing used in this work was based on semi-automated matrix analysis opposed to traditional grey-scale image analysis. This method takes advantage of the 3-D data obtained via AFM to achieve robust discrimination of nuclear tracks from other features inherently present in the post-etch detector surface. Through automation of AFM scanning, sufficient AFM scan frames were obtained to attain an LET spectrum spanning the LET range from 200-1500 keV/{mu}m. In addition to our experiments, simulations were carried out with the Monte Carlo transport code, FLUKA. To demonstrate this method, CR-39 PNTD was exposed to the proton therapy beam at Loma Linda University Medical Center (LLUMC) at 60 and 230 MeV. Additionally, detectors were exposed to 1 GeV protons at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). For these exposures CR-39 PNTD, Al and Cu target foils were used between detector layers.

  3. LET Spectrum Measurements In CR-39 PNTD With AFM

    NASA Astrophysics Data System (ADS)

    Johnson, C. E.; DeWitt, J. M.; Benton, E. R.; Yasuda, N.; Benton, E. V.

    2011-06-01

    Energetic protons, neutrons, and heavy ions undergoing collisions with target nuclei of varying Z can produce residual heavy recoil fragments via intra-nuclear cascade/evaporation reactions. The particles produced in these non-elastic collisions generally have such extremely short range (˜<10 μm) that they cannot be directly observed by conventional detection methods including CR-39 plastic nuclear track detector (PNTD) that has been chemically etched for analysis by standard visible light microscopy. However, high-LET recoil fragments having range on the order of several cell diameters can be produced in tissue during radiotherapy using proton and carbon beams. We have developed a method to analyze short-range, high-LET tracks in CR-39 plastic nuclear track detector (PNTD) using short duration chemical etching (˜<1 μm) following by automated atomic force microscope (AFM) scanning. The post-scan data processing used in this work was based on semi-automated matrix analysis opposed to traditional grey-scale image analysis. This method takes advantage of the 3-D data obtained via AFM to achieve robust discrimination of nuclear tracks from other features inherently present in the post-etch detector surface. Through automation of AFM scanning, sufficient AFM scan frames were obtained to attain an LET spectrum spanning the LET range from 200-1500 keV/μm. In addition to our experiments, simulations were carried out with the Monte Carlo transport code, FLUKA. To demonstrate this method, CR-39 PNTD was exposed to the proton therapy beam at Loma Linda University Medical Center (LLUMC) at 60 and 230 MeV. Additionally, detectors were exposed to 1 GeV protons at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). For these exposures CR-39 PNTD, Al and Cu target foils were used between detector layers.

  4. A low-Cr metallic interconnect for intermediate-temperature solid oxide fuel cells

    SciTech Connect

    Geng, Shujiang; Zhu, Jiahong; Brady, Michael P; Anderson, Harlan; ZHOU, XIADONG; YANG, ZHENGUO

    2007-01-01

    Solid oxide fuel cells (SOFCs) have attracted significant attention due to the potential for environmentally-friendly power generation with high efficiency, fuel flexibility, and zero/no emissions. However, the main hurdles thwarting the commercial introduction of SOFCs are the stack cost and durability, particularly related to the long-term stability of stack/cell materials such as the interconnect 1-3. There has been recent interest in utilizing the Cr2O3-forming alloys as interconnect for intermediate-temperature SOFCs4-6. As a consequence, volatile Cr species from the Cr2O3 scale can cause severe degradation of electrical and catalytic properties of the cathode7-9. Here, we report a new low-Cr Fe-Co-Ni base alloy that demonstrates a close match in coefficient of thermal expansion (CTE) with adjacent cell components; good oxidation resistance; and low oxide scale area specific resistance (ASR). The formation of a Cr-free (Fe,Co,Ni)3O4 spinel outer layer over the chromia inner layer upon thermal exposure effectively reduces the chromium evaporation.

  5. Characterization of phases formed between U-Pu-Mo fuels and Fe-12Cr cladding

    NASA Astrophysics Data System (ADS)

    Aitkaliyeva, Assel; Madden, James W.; Miller, Brandon D.; Papesch, Cynthia A.; Cole, James I.

    2015-09-01

    Exposure to high temperatures and irradiation can lead to interaction between fuel and cladding constituents, inter-diffusion, and formation of brittle or low-melting phases. Therefore, understanding of fuel-cladding interaction (FCCI) is critical for evaluation of fuel performance in a reactor environment. In this contribution, phases formed between U-22Pu-4Mo and U-25Pu-15Mo (in wt%) fuel alloys and Fe-12Cr cladding were characterized using scanning and transmission electron microscopy (SEM/TEM) techniques. Phases formed within FCCI layers in both alloys were identified by implementing selective area diffraction pattern analysis as Cr0.3Mo0.7 (Im-3m), Fe2U (Fd-3m), UCrFe (Fd-3m), and Fe2Pu (Fd-3m). Phases formed at the end of the FCCI layer in the U-22Pu-4Mo alloy included UCrFe (Fd-3m), Fe2U (Fd-3m), and Cr2FeO4 (Fd-3m) while in the U-25Pu-15Mo alloy the phases were consistent with Cr0.49Fe0.51 (P42/mnm), Cr0.8Fe0.2 (Im-3m), and UCrFe (Fd-3m).

  6. Ultrathin nanosheets of CrSiTe3. A semiconducting two-dimensional ferromagnetic material

    SciTech Connect

    Lin, Ming -Wei; Zhung, Houlong L.; Yan, Jiaqiang; Ward, Thomas Zac; Puretzky, Alexander A.; Rouleau, Christopher M.; Gai, Zheng; Liang, Liangbo; Meunier, Vincent; Ganesh, Panchapakesan; Kent, Paul R. C.; Sumpter, Bobby G.; Mandrus, David G.; Geohegan, David B.; Xiao, Kai

    2015-11-27

    Finite range ferromagnetism and antiferromagnetism in two-dimensional (2D) systems within an isotropic Heisenberg model at non-zero temperature were originally proposed to be impossible. However, recent theoretical studies using an Ising model have recently shown that 2D magnetic crystals can exhibit magnetism. Experimental verification of existing 2D magnetic crystals in this system has remained elusive. In this work we for the first time exfoliate the CrSiTe3, a bulk ferromagnetic semiconductor, to mono- and few-layer 2D crystals onto a Si/SiO2 substrate. The Raman spectra show the good stability and high quality of the exfoliated flakes, consistent with the computed phonon spectra of 2D CrSiTe3, giving a strong evidence for the existence of 2D CrSiTe3 crystals. When the thickness of the CrSiTe3 crystals is reduced to few-layers, we observed a clear change in resistivity at 80~120 K, consistent with the theoretical calculations on the Curie temperature (Tc) of ~80 K for the magnetic ordering of 2D CrSiTe3 crystals. As a result, the ferromagnetic mono- and few-layer 2D CrSiTe3 indicated here should enable numerous applications in nano-spintronics.

  7. Suppressing the chromium disproportionation reaction in O3-type layered cathode materials for high capacity sodium-ion batteries

    DOE PAGES

    Cao, Ming -Hui; Wang, Yong; Shadike, Zulipiya; ...

    2017-02-14

    Chromium-based layered cathode materials suffer from the irreversible disproportionation reaction of Cr4+ to Cr3+ and Cr6+, which hinders the reversible multi-electron redox of Cr ions in layered cathodes, and limits their capacity and reversibility. To address this problem, a novel O3-type layer-structured transition metal oxide of NaCr1/3Fe1/3Mn1/3O2 (NCFM) was designed and studied as a cathode material. A high reversible capacity of 186 mA h g–1 was achieved at a current rate of 0.05C in a voltage range of 1.5 to 4.2 V. X-ray diffraction revealed an O3 → (O3 + P3) → (P3 + O3'') → O3'' phase-transition pathway formore » NCFM during charge. X-ray absorption, X-ray photoelectron and electron energy-loss spectroscopy measurements revealed the electronic structure changes of NCFM during Na+ deintercalation/intercalation processes. It is confirmed that the disproportionation reaction of Cr4+ to Cr3+ and Cr6+ can be effectively suppressed by Fe3+ and Mn4+ substitution. Lastly, these results demonstrated that the reversible multi-electron oxidation/reduction of Cr ions can be achieved in NCFM during charge and discharge accompanied by CrO6 octahedral distortion and recovery.« less

  8. Suppressing the chromium disproportionation reaction in O3-type layered cathode materials for high capacity sodium-ion batteries

    SciTech Connect

    Cao, Ming-Hui; Wang, Yong; Shadike, Zulipiya; Yue, Ji-Li; Hu, Enyuan; Bak, Seong-Min; Zhou, Yong-Ning; Yang, Xiao-Qing; Fu, Zheng-Wen

    2017-01-01

    Chromium-based layered cathode materials suffer from the irreversible disproportionation reaction of Cr4+ to Cr3+ and Cr6+, which hinders the reversible multi-electron redox of Cr ions in layered cathodes, and limits their capacity and reversibility. To address this problem, a novel O3-type layer-structured transition metal oxide of NaCr1/3Fe1/3Mn1/3O2 (NCFM) was designed and studied as a cathode material. A high reversible capacity of 186 mA h g-1 was achieved at a current rate of 0.05C in a voltage range of 1.5 to 4.2 V. X-ray diffraction revealed an O3 → (O3 + P3) → (P3 + O3'') → O3'' phase-transition pathway for NCFM during charge. X-ray absorption, X-ray photoelectron and electron energy-loss spectroscopy measurements revealed the electronic structure changes of NCFM during Na+ deintercalation/intercalation processes. It is confirmed that the disproportionation reaction of Cr4+ to Cr3+ and Cr6+ can be effectively suppressed by Fe3+ and Mn4+ substitution. These results demonstrated that the reversible multi-electron oxidation/reduction of Cr ions can be achieved in NCFM during charge and discharge accompanied by CrO6 octahedral distortion and recovery.

  9. Wetted Foam Liquid DT Layer ICF Experiments at the NIF

    NASA Astrophysics Data System (ADS)

    Olson, R. E.; Leeper, R. J.; Peterson, R. R.; Yi, S. A.; Zylstra, A. B.; Kline, J. L.; Bradley, P. A.; Yin, L.; Wilson, D. C.; Haines, B. M.; Batha, S. H.

    2016-10-01

    A key physics issue in indirect-drive ICF relates to the understanding of the limitations on hot spot convergence ratio (CR), principally set by the hohlraum drive symmetry, the capsule mounting hardware (the ``tent''), and the capsule fill tube. An additional key physics issue relates to the complex process by which a hot spot must be dynamically formed from the inner ice surface in a DT ice-layer implosion. These physics issues have helped to motivate the development of a new liquid DT layer wetted foam platform at the NIF that provides an ability to form the hot spot from DT vapor and experimentally study and understand hot spot formation at a variety of CR's in the range of 12<CR<25. Flexibility in CR will provide a means for exploring variations in the partitioning of available energy between the hot spot and the low adiabat cold fuel during the stagnation process and can allow for a fundamentally different (and potentially more robust) process of hot spot formation. This new experimental platform is currently being used in a series of experiments to discover a range of CR's at which DT layered implosions will have understandable performance - providing a sound basis from which to determine the requirements for ICF ignition. This work was performed under the auspices of the U. S. DOE by LANL under contract DE-AC52-06NA25396.

  10. Temperature- and rate-dependent RHEED oscillation studies of epitaxial Fe(001) on Cr(001)

    NASA Astrophysics Data System (ADS)

    Theis-Bröhl, K.; Zoller, I.; Bödeker, P.; Schmitte, T.; Zabel, H.; Brendel, L.; Belzer, M.; Wolf, D. E.

    1998-02-01

    Reflection high-energy electron diffraction (RHEED) intensity studies were performed during the growth of thin Fe layers on vicinal Cr(001)/Nb(001)/Al2O3(11¯02) substrates. The results are compared with those of recent molecular-beam epitaxy (MBE) growth models. General agreement is found as concerns the linear relationship between the logarithm of the number of RHEED oscillations and the inverse growth temperature. In agreement with theory the RHEED oscillation damping time is found to depend algebraically on the growth rate. However, contrary to expectations, the RHEED oscillations vanish faster at higher growth temperatures and lower growth rates. This behavior can be explained by a change in the growth mode from layer-by-layer to step flow. Numerical simulations in which step bunch melting during the Fe growth on the Cr buffer is assumed reproduce well the present experimental results.

  11. Band Structure Simulations of the Photoinduced Changes in the MgB2:Cr Films

    PubMed Central

    Kityk, Iwan V.; Fedorchuk, Anatolii O.; Ozga, Katarzyna; AlZayed, Nasser S.

    2015-01-01

    An approach for description of the photoinduced nonlinear optical effects in the superconducting MgB2:Cr2O3 nanocrystalline film is proposed. It includes the molecular dynamics step-by-step optimization of the two separate crystalline phases. The principal role for the photoinduced nonlinear optical properties plays nanointerface between the two phases. The first modified layers possess a form of slightly modified perfect crystalline structure. The next layer is added to the perfect crystalline structure and the iteration procedure is repeated for the next layer. The total energy here is considered as a varied parameter. To avoid potential jumps on the borders we have carried out additional derivative procedure.

  12. Tissue accumulation and urinary excretion of Cr in chromium picolinate (CrPic)-supplemented lambs.

    PubMed

    Dallago, Bruno Stéfano Lima; Lima, Bárbara Alcântara Ferreira; Braz, Shélida Vasconcelos; Mustafa, Vanessa da Silva; McManus, Concepta; Paim, Tiago do Prado; Campeche, Aline; Gomes, Edgard Franco; Louvandini, Helder

    2016-05-01

    Chromium (Cr) concentrations in liver, kidney, spleen, heart, lymph node, skeletal muscle, bone, testis and urine of lambs were measured to trace the biodistribution and bioaccumulation of Cr after oral supplementation with chromium picolinate (CrPic). Twenty-four Santa Inês lambs were treated with four different concentrations of CrPic: placebo, 0.250, 0.375 and 0.500 mg of CrPic/animal/day for 84 days. The basal diet consisted of Panicum maximum cv Massai hay and concentrate. Cr concentrations were measured by ICP-MS measuring (52)Cr as collected mass. There was a positive linear relationship between dose administered and the accumulation of Cr in the heart, lungs and testis. Urinary excretion of Cr occurred in a time and dose-dependent manner, so the longer or more dietary Cr provided, the greater excretion of the element. As some non-carcass components (such as lungs or heart) are added to bone and visceral meal to feed animals, there is a risk of bioaccumulation and biomagnification due to Cr offered as CrPic in the diet.

  13. First principles study of CrH and CrM2H

    NASA Astrophysics Data System (ADS)

    Kanagaprabha, S.; Santhosh, M.; Rajeswarapalanichamy, R.; Iyakutti, K.

    2013-06-01

    First principles calculation were performed using Tight-binding LMTO method with Local density approximation (LDA) and Atomic sphere approximation (ASA) to understand the electronic properties of CrH. A pressure induced structural phase transition from cubic to hexagonal structure of CrH is predicted. The stability of CrM2H is analyzed.

  14. Observation of ferromagnetism above 900 K in Cr-GaN and Cr-AlN

    NASA Astrophysics Data System (ADS)

    Liu, H. X.; Wu, Stephen Y.; Singh, R. K.; Gu, Lin; Smith, David J.; Newman, N.; Dilley, N. R.; Montes, L.; Simmonds, M. B.

    2004-11-01

    We report ferromagnetism at over 900K in Cr-GaN and Cr-AlN thin films. The magnetic properties vary as a function of Cr concentration with 60%, and 20%, of the Cr being magnetically active at 3% doping in GaN, and 7% in AlN, respectively. In the GaN sample with the highest magnetically active Cr (60%), channeling Rutherford backscattering indicates that over 70% of Cr impurities are located on substitutional sites. These results give indisputable evidence that substitutional Cr defects are involved in the magnetic behavior. While Cr-AlN is highly resistive, Cr-GaN exhibits properties characteristic of hopping conduction including T-1/2 resistivity dependence and small Hall mobility (0.06cm2/Vs). A large negative magnetoresistance is attributed to the influence of the magnetic field on the quantum interference between the many paths linking two hopping sites. The results strongly suggest that ferromagnetism in Cr-GaN and Cr-AlN can be attributed to the double exchange mechanism as a result of hopping between near-midgap substitutional Cr impurity bands.

  15. Role of Y in the oxidation resistance of CrAlYN coatings

    NASA Astrophysics Data System (ADS)

    Domínguez-Meister, S.; El Mrabet, S.; Escobar-Galindo, R.; Mariscal, A.; Jiménez de Haro, M. C.; Justo, A.; Brizuela, M.; Rojas, T. C.; Sánchez-López, J. C.

    2015-10-01

    CrAlYN coatings with different aluminum (4-12 at.%) and yttrium (2-5 at.%) contents are deposited by d.c. reactive magnetron sputtering on silicon and M2 steel substrates using metallic targets and Ar/N2 mixtures. The influence of the nanostructure and chemical elemental distribution on the oxidation resistance after heating in air at 1000 °C is studied by means of cross-sectional scanning electron microscopy (X-SEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and glow discharge optical emission spectroscopy (GD-OES). The sequential exposure to the metallic targets during the synthesis leads to a multilayer structure where concentration of metallic elements (Cr, Al and Y) is changing periodically. A good oxidation resistance is observed when Al- and Y-rich regions are separated by well-defined CrN layers, maintaining crystalline coherence along the columnar structure. This protective behavior is independent of the type of substrate and corresponds to the formation of a thin mixed (Al, Cr)-oxide scale that protects the film underneath. The GD-OES and XRD analysis have demonstrated that Y acts as a reactive element, blocking the Fe and C atoms diffusion from the steel and favoring higher Al/Cr ratio in the passivation layer after heating. The coating with Y content around 4 at.% exhibited the best performance with a thinner oxide scale, a delay in the CrN decomposition and transformation to Cr2N, and a more effective Fe and C blocking.

  16. Advanced oxidation process based on the Cr(III)/Cr(VI) redox cycle.

    PubMed

    Bokare, Alok D; Choi, Wonyong

    2011-11-01

    Oxidative degradation of aqueous organic pollutants, using 4-chlorophenol (4-CP) as a main model substrate, was achieved with the concurrent H(2)O(2)-mediated transformation of Cr(III) to Cr(VI). The Fenton-like oxidation of 4-CP is initiated by the reaction between the aquo-complex of Cr(III) and H(2)O(2), which generates HO(•) along with the stepwise oxidation of Cr(III) to Cr(VI). The Cr(III)/H(2)O(2) system is inactive in acidic condition, but exhibits maximum oxidative capacity at neutral and near-alkaline pH. Since we previously reported that Cr(VI) can also activate H(2)O(2) to efficiently generate HO(•), the dual role of H(2)O(2) as an oxidant of Cr(III) and a reductant of Cr(VI) can be utilized to establish a redox cycle of Cr(III)-Cr(VI)-Cr(III). As a result, HO(•) can be generated using both Cr(III)/H(2)O(2) and Cr(VI)/H(2)O(2) reactions, either concurrently or sequentially. The formation of HO(•) was confirmed by monitoring the production of p-hydroxybenzoic acid from [benzoic acid + HO(•)] as a probe reaction and by quenching the degradation of 4-CP in the presence of methanol as a HO(•) scavenger. The oxidation rate of 4-CP in the Cr(III)/H(2)O(2) solution was highly influenced by pH, which is ascribed to the hydrolysis of Cr(III)(H(2)O)(n) into Cr(III)(H(2)O)(n-m)(OH)(m) and the subsequent condensation to oligomers. The present study proposes that the Cr(III)/H(2)O(2) combined with Cr(VI)/H(2)O(2) process is a viable advanced oxidation process that operates over a wide pH range using the reusable redox cycle of Cr(III) and Cr(VI).

  17. Zinc-oxide charge trapping memory cell with ultra-thin chromium-oxide trapping layer

    SciTech Connect

    El-Atab, Nazek; Rizk, Ayman; Nayfeh, Ammar; Okyay, Ali K.

    2013-11-15

    A functional zinc-oxide based SONOS memory cell with ultra-thin chromium oxide trapping layer was fabricated. A 5 nm CrO{sub 2} layer is deposited between Atomic Layer Deposition (ALD) steps. A threshold voltage (V{sub t}) shift of 2.6V was achieved with a 10V programming voltage. Also for a 2V V{sub t} shift, the memory with CrO{sub 2} layer has a low programming voltage of 7.2V. Moreover, the deep trapping levels in CrO{sub 2} layer allows for additional scaling of the tunnel oxide due to an increase in the retention time. In addition, the structure was simulated using Physics Based TCAD. The results of the simulation fit very well with the experimental results providing an understanding of the charge trapping and tunneling physics.

  18. Effects of temperature on the oxygen aided Cr growth on Fe(001)

    NASA Astrophysics Data System (ADS)

    Calloni, A.; Picone, A.; Brambilla, A.; Finazzi, M.; Duò, L.; Ciccacci, F.

    2011-12-01

    The morphology of ultra-thin Cr films deposited on Fe(001) substrates at two growth temperatures, namely 380 K and 570 K, with and without the presence of a surface oxygen layer, has been studied by means of scanning tunneling microscopy and X-ray photoemission spectroscopy. A direct comparison between the Cr growth mechanisms on the pristine Fe(001) surface and on the oxygen covered Fe-p(1 × 1)O surface illustrates the role of the oxygen action during the growth of the Cr films. In presence of oxygen, layer by layer growth takes place at the lower temperature thanks to the low Ehrlich-Schwoebel barrier for adatom descent at the islands edges. Epitaxial growth of Cr at the higher temperature is characterized by a reduced roughness at sub-monolayer coverages. When increasing the coverage, on the other hand, the high temperature hinders the oxygen surfactant effect and chromium growth proceeds via the formation of mounds and spirals.

  19. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    SciTech Connect

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-03-19

    FeCrAl is an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In our study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. Also, the total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.

  20. Revisiting AgCrSe2 as a promising thermoelectric material.

    PubMed

    Wu, Di; Huang, Sizhao; Feng, Dan; Li, Bing; Chen, Yuexing; Zhang, Jian; He, Jiaqing

    2016-08-24

    We revisited and investigated a layer-structured thermoelectric material AgCrSe2, which has an extremely low thermal conductivity. After using both differential scanning calorimetry and a comparative laser flash method, we realized that the specific heat of this material, the main contributor to the reported low thermal conductivity, is unlikely to be way below the Dulong-Petit limit as revealed in the literature. Besides, our in situ X-ray diffraction pattern up to 873 K indicated the instability of AgCrSe2 over 723 K, where it begins to decompose into Cr2Se3 and Ag2Se. This unexpected decomposition phenomenon resulted in the gradual increment of specific heat and thermal diffusivity, hence the deterioration of the overall thermoelectric performance. We deliberately introduced Ag and Cr vacancies into the lattice for carrier concentration optimization and could achieve an optimal figure of merit of ZT ∼ 0.5 at 723 K in the nominal composition Ag0.96CrSe2 in the direction perpendicular to the sintering press. Our findings suggest that more thorough investigations are necessary to ensure that AgCrSe2 is a promising thermoelectric material.

  1. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    DOE PAGES

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; ...

    2015-03-19

    FeCrAl is an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In our study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. Also, the total tritium inventory insidemore » the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.« less

  2. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    NASA Astrophysics Data System (ADS)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-06-01

    FeCrAl, an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In this study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. The total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.

  3. Microstructure and Properties of FeCrB Alloy Coatings Prepared by Wire-Arc Spraying

    NASA Astrophysics Data System (ADS)

    Yao, H. H.; Zhou, Z.; Wang, Y. M.; He, D. Y.; Bobzin, K.; Zhao, L.; Öte, M.; Königstein, T.

    2017-02-01

    To improve the heat transfer ability and wear resistance of drying cylinders in paper production machines, a series of Fe87- x Cr13B x ( x = 1 wt.%, 1.5 wt.%, 2 wt.%, 2.5 wt.%, 3 wt.%, and 4 wt.%) cored wires have been produced and used to prepare coatings by wire-arc spraying, in comparison with conventional X30Cr13 solid wire. All coatings presented dense layered structure with porosity of around 4%. The boron content in the cored wires significantly affected the thermal conductivity of the coating, which is attributed to the combined effects of the crystal structure, grain size, and oxide content of the coating. In the investigated range, the coating with 2 wt.% boron content exhibited the highest thermal conductivity, reaching 8.83 W/m-K, greater than that of X30Cr13 coating (5.45 W/m-K). Furthermore, the microhardness and relative wear resistance of the FeCrB coatings obtained from cored wires with boron addition were greatly increased compared with commercial X30Cr13 coating. Therefore, wire-arc-sprayed FeCrB coating has promise as an effective and economic approach to improve the heat transfer behavior and wear resistance of drying cylinders in the paper industry.

  4. K4Nb6O17·4.5H2O: a novel dual functional material with quick photoreduction of Cr(VI) and high adsorptive capacity of Cr(III).

    PubMed

    Ma, Yuli; Liu, Xiaoqing; Li, Yang; Su, Yiguo; Chai, Zhanli; Wang, Xiaojing

    2014-08-30

    A series of orthorhombic phase K4Nb6O17·4.5H2O was synthesized via a hydrothermal approach. When presented in an acidic pH range, K4Nb6O17·4.5H2O showed a strong ability in quick reduction from Cr(VI) to Cr(III). The resulted Cr(III) ions were removed by an effective adsorption through simply adjusting the solution pH from strong acidity to near neutrality, owing to the sample's unique nano-sheet structure with a wide layer spacing. The Cr(III) ions adsorbed onto samples were released again for reusing by eluting with 1molL(-1) HCl solution, and K4Nb6O17·4.5H2O regenerated by immersing in a KOH solution. The reduction efficiency of Cr(VI) was still up to 98% after irradiation for 60min, and the removal efficiency of Cr(III) ions was as high as 83% even after five cycles. Therefore, K4Nb6O17·4.5H2O is clearly demonstrated to be an excellent dual functional material with quick photoreduction of Cr(VI) and high adsorptive capacity of Cr(III). The relevant materials reported herein might be found various environment-related applications.

  5. Effects of adhesion layer on Ag nanorod growth mode and morphology using glancing angle physical vapor deposition

    NASA Astrophysics Data System (ADS)

    Davies, Matthew P.; McKinney, Casey S.; Serrano, Joel M.; Mullen, Thomas J.; Stagon, Stephen P.

    2017-01-01

    This letter reports on the transition from a non-wetting to an effectively wetting growth mode of silver (Ag) nanorods when an adhesion layer is used during glancing angle physical vapor deposition growth. When deposited onto a silicon substrate without an adhesion layer, Ag nanorods grow from partially interconnected non-wetting islands with diameters of ˜100 nm, although many connect with their neighbors due to small rod-to-rod spacing. When a 1 nm thick Cr adhesion layer is used, which is shown not to completely coat the substrate, the growth mode becomes effectively wetting through the coalescence of closely spaced nuclei, and both Ag nanorod diameter and spacing increase. Alternatively, when a thicker 10 nm Cr adhesion layer is used, the growth mode becomes mixed, as both small effective wetting regions and film gaps exist. For the cases of no adhesion layer and 1 nm Cr adhesion layer, the nanorods are oriented at ˜23° from the substrate but lay down onto the substrate when a 10 nm thick Cr adhesion layer is used. Thin film adhesion tests demonstrate that both 1 nm and 10 nm Cr adhesion layers offer an enhanced performance over no adhesion layer or a glancing angle adhesion layer.

  6. Passive behaviour of alloy corrosion-resistant steel Cr10Mo1 in simulating concrete pore solutions with different pH

    NASA Astrophysics Data System (ADS)

    Ai, Zhiyong; Jiang, Jinyang; Sun, Wei; Song, Dan; Ma, Han; Zhang, Jianchun; Wang, Danqian

    2016-12-01

    The passive behaviour of new alloy corrosion-resistant steel Cr10Mo1 and plain carbon steel (as a comparison) in simulating concrete pore solutions of different pH (ranging from 13.5 to 9.0) under open circuit potential conditions, was evaluated by various electrochemical techniques: potentiodynamic polarization, capacitance measurements and electrochemical impedance spectroscopy. The chemical composition and structure of passive films were investigated by X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). The electrochemical responses of passive films show that Cr10Mo1 steel has an increasing passivity with pH decreasing while carbon steel dose conversely, revealing carbonation does no negative effect on passivation of the corrosion-resistant steel. SIMS reveals that the passive film on the corrosion-resistant steel presents a bilayer structure: an outer layer mainly consisting of Fe oxides and hydroxides, and an inner layer enriched in Cr species, while only a Fe-concentrated layer for carbon steel. According to the XPS analysis results, as the pH decreases, more stable and protective Cr oxides are enriched in the film on Cr10Mo1 steel while Fe oxides gradually decompose. Higher content of Cr oxides in the film layer provides Cr10Mo1 corrosion-resistant steel more excellent passivity at lower pH.

  7. Effect of roll-bonding temperature on the strength and electrical conductivity of an α-brass-clad Cu-1Cr alloy composite

    NASA Astrophysics Data System (ADS)

    Kang, G. T.; Song, J. S.; Hong, S. I.

    2017-02-01

    Tri-layered α-brass-clad Cu-Cr-alloy composite plates were prepared by hot roll-bonding. Neither intermetallic-compound layers nor interface defects were observed at the interfaces in the as-rolled and heat-treated α-brass-clad Cu-Cr composite plates. The hardness of the as-rolled α-brass layer was greater than that of the Cu-Cr substrate, since the α-brass was strengthened by strain hardening more efficiently upon rolling. The hardness of the α-brass decreased appreciably upon annealing because of the recovery processes, whereas that of the Cu-Cr layer slightly increased after heat treatment at 450°C due to the precipitation strengthening. After the post-roll-bonding heat treatment at 450°C, the strength of the α-brass-clad Cu-Cr-alloy composite decreased with a significant increase in ductility. The electrical conductivity of the asroll-bonded α-brass clad Cu-Cr alloy composite (47-52% IACS) increased significantly (to 72-74% IACS) after the 1-h heat treatment. The strength and conductivity of the clad composite are dependent on the precipitation strengthening of Cu-Cr and recovery softening of α-brass in the course of the post-roll-bonding heat treatment.

  8. Development of new layered selenide oxides with perovskite-type oxide layers

    NASA Astrophysics Data System (ADS)

    Ushiyama, Koichi; Ogino, Hiraku; Kishio, Kohji; Shimoyama, Jun-Ichi

    2010-03-01

    Several Fe-based superconductors with perovskite-type oxide layers, such as Sr2ScFePO3 (Tc ˜ 17 K)^[1], were discovered in our previous study. These compounds are composed of alternate stacking of superconducting layers with antifluorite structure and perovskite-type blocking layers. Since both layers are flexible in terms of chemical composition, development of various new functional materials can be expected from this family. In the present study, we have attempted to synthesize new layered selenide oxides with CuSe layers and discovered more than ten compounds, such as Sr2MCu2Se2O2 (M = Mn, Co, Ni, Cu, Zn) and Sr2MCuSeO3 (M = Sc, Cr, Mn, Fe, Ga, In), thus far. These indicated that the CuSe layer can accommodate various types of blocking layers, which may lead various functions. Among them, Sr2Cu3Se2O2 has a potential as for the mother compound of superconductor, if appropriate concentration of carrier is introduced to the CuO2 layer. Crystal structure and physical properties of these newly found compounds will be reported. [1] H. Ogino et al., Supercond. Sci. Technol. 22 (2009) 075008

  9. Homogeneous and Heterogeneous (Fex, Cr1-x)(OH)3 Precipitation: Implications for Cr Sequestration.

    PubMed

    Dai, Chong; Zuo, Xiaobing; Cao, Bo; Hu, Yandi

    2016-02-16

    The formation of (Fe, Cr)(OH)3 nanoparticles determines the fate of aqueous Cr in many aquatic environments. Using small-angle X-ray scattering, precipitation rates of (Fe, Cr)(OH)3 nanoparticles in solution and on quartz were quantified from 0.1 mM Fe(III) solutions containing 0-0.25 mM Cr(III) at pH = 3.7 ± 0.2. Concentration ratio of aqueous Cr(III)/Fe(III) controlled the chemical composition (x) of (Fex, Cr1-x)(OH)3 precipitates, solutions' supersaturation with respect to precipitates, and the surface charge of quartz. Therefore, the aqueous Cr(III)/Fe(III) ratio affected homogeneous (in solution) and heterogeneous (on quartz) precipitation rates of (Fex, Cr1-x)(OH)3 through different mechanisms. The sequestration mechanisms of Cr(III) in precipitates were also investigated. In solutions with high aqueous Cr(III)/Fe(III) ratios, surface enrichment of Cr(III) on the precipitates occurred, resulting in slower particle growth in solutions. From solutions with 0-0.1 mM Cr(III), the particles on quartz grew from 2 to 4 nm within 1 h. Interestingly, from solution with 0.25 mM Cr(III), particles of two distinct sizes (2 and 6 nm) formed on quartz, and their sizes remained unchanged throughout the reaction. Our study provided new insights on homogeneous and heterogeneous precipitation of (Fex, Cr1-x)(OH)3 nanoparticles, which can help determine the fate of Cr in aquatic environments.

  10. Isolation and Cr(VI) reduction characteristics of quinone respiration in Mangrovibacter plantisponsor strain CR1.

    PubMed

    Lian, Jing; Li, Zifu; Xu, Zhifang; Guo, Jianbo; Hu, Zhenzhen; Guo, Yankai; Li, Min; Yang, Jingliang

    2016-07-01

    A Cr(VI)-reducing Mangrovibacter plantisponsor strain, CR1, was isolated from tannery effluent sludge and had quinone respiration characteristics. Its chromate (CrO4 (2-) ) resistance, quinone respiration characteristics, and Cr(VI) reduction efficiencies were evaluated in detail. Strain CR1 exhibited a high Cr(VI) resistance with a minimal inhibitory concentration (MIC) of 32 mM in LB medium, and its quinone respiration could occur when an electron donor and strain CR1 both existed in the reaction system. Cr(VI) reduction by strain CR1 was significantly enhanced by a factor of 0.4-4.3 with five different quinone compounds: anthraquinone-2,7-disulfonate, anthraquinone-1-sulfonate, anthraquinone-2-sulfonate (AQS), anthraquinone-2,6-disulfonate, and anthraquinone-1,5-disulfonate. AQS was the best electron shuttle among them, and the greatest enhancement to the Cr(VI) bio-reduction was achieved with 0.96 mM AQS. The correlation between the reaction constant k (mg Cr(VI) g(-1) dry cell weight H(-1) ) and thermodynamic temperature T (K) was expressed as an Arrhenius equation lnk=-7662.9/T+27.931(R2=0.9486); the activation energy Ea was 63.71 kJ mol(-1) , and the pre-exponential factor A was 1.35 × 10(12)  mg Cr(VI) g(-1) dry cell weight H(-1) . During the Cr(VI) reduction process, the pH tended to become neutral, and the oxidation-reduction potential decreased to -440 mV. The efficient reduction of Cr(VI) mediated by a quinone respiration strain shows potential for the rapid anaerobic removal of Cr(VI). © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  11. Homogeneous and Heterogeneous (Fex, Cr1-x)(OH)3 Precipitation: Implications for Cr Sequestration

    SciTech Connect

    Dai, Chong; Zuo, Xiaobing; Cao, B; Hu, Yandi

    2016-02-16

    The formation of (Fe, Cr)(OH)3 nanoparticles determines the fate of aqueous Cr in many aquatic environments. Using small angle X-ray scattering, precipitation rates of (Fe, Cr)(OH)3 nanoparticles in solution and on quartz were quantified from 0.1 mM Fe(III) solutions containing 0 – 0.25 mM Cr(III) at pH = 3.7 ± 0.2. Concentration ratio of aqueous Cr(III)/Fe(III) controlled the chemical composition (x) of (Fex, Cr1-x)(OH)3 precipitates, solutions’ supersaturation with respect to precipitates, and the surface charge of quartz. Therefore, aqueous Cr(III)/Fe(III) ratio affected homogeneous (in solution) and heterogeneous (on quartz) precipitation rates of (Fex, Cr1-x)(OH)3 through different mechanisms. The sequestration mechanisms of Cr(III) in precipitates were also investigated. In solutions with high aqueous Cr(III)/Fe(III) ratios, surface enrichment of Cr(III) on the precipitates occurred, resulting in slower particle growth in solution. From solutions with 0 – 0.1 mM Cr(III), the particles on quartz grew from 2 to 4 nm within 1 h. Interestingly, from solution with 0.25 mM Cr(III), particles of two distinct sizes (2 and 6 nm) formed on quartz, and their sizes remained unchanged throughout the reaction. Our study provided new insights on homogeneous and heterogeneous precipitation of (Fex, Cr1-x)(OH)3 nanoparticles, which can help determine the fate of Cr in aquatic environments.

  12. Distribution of hexavalent Cr species across the clay mineral surface-water interface.

    PubMed

    Fritzen, Mauricia B; Souza, Aloisio J; Silva, Tiago A G; Souza, Luciana; Nome, Rene A; Fiedler, Haidi D; Nome, Faruk

    2006-04-15

    The adsorption isotherms of Cr(VI) on kaolinite, montmorillonite, and alumina were adequately treated with Langmuir model showing behavior characteristic of single-layer adsorption. The efficiency of the adsorbents in removing Cr(VI) from water follows the order alumina > kaolinite > montmorillonite > silica. Speciation studies indicate that hydrogen chromate ions were the major adsorbed species and simultaneous adsorption of dichromate ion occurred at concentrations greater than approximately 10(-3) mol L(-1). It is most probable that the mechanism of adsorption of the hydrogen chromate ion at the surface of alumina is predominantly electrostatic adsorption, with outer sphere complex formation.

  13. Picosecond laser patterning of NiCr thin film strain gages

    NASA Astrophysics Data System (ADS)

    Suttmann, Oliver; Gosselin, Michael; Klug, Ulrich; Kling, Rainer

    2010-02-01

    This paper presents results of ablation experiments of NiCr layers with thicknesses ranging from 23nm to 246nm on Al2O3 substrates. Investigated parameters are fluence, number of pulses, film thickness and substrate roughness. The influence of the parameters on the removal threshold is analyzed in order to identify stable processing parameters. Patterned NiCr thin films as an essential component for the measurement of mechanical stress are required for the development of sputtered thin film strain gages. With this new approach strain sensors will be resistant against creeping or swelling through changing ambient conditions unlike conventional strain gages.

  14. Generation of a novel Cr2 gene allele by homologous recombination that abrogates production of Cr2 but is sufficient for expression of Cr1

    PubMed Central

    Donius, Luke R.; Orlando, Christopher M.; Weis, Janis J.; Weis, John H.

    2014-01-01

    The enhancing effects of the complement system for humoral immunity have primarily focused upon the recognition of complement-bound foreign antigens by a co-receptor complex of the antigen-specific B cell receptor (BCR) and complement receptor 2 (Cr2). In vivo experiments using Cr2 gene deficient mice (which lack the expression of both the Cr1 and Cr2 proteins) do demonstrate depressed humoral responses to immunization but cannot be used to define specific contributions of the singular Cr1 or Cr2 proteins on B cell functions. To study the effect of a Cr2 deficiency in a Cr1 sufficient environment we created a mouse line in which the alternative splice site required for the expression of the Cr2 isoform was removed. This mouse line, Cr2KO, still expressed Cr1 on B cells but was deficient for the full length Cr2 protein. Surprisingly a new alternative splice within the Cr2 gene created a truncated product that encoded a novel protein termed iCr2 that was expressed on the surface of the cells. The Cr2KO mouse thus provides a new model system for the analysis of Cr1 and Cr2 functions in the immune response of the mouse. PMID:24012440

  15. Changes induced in a ZnS:Cr-based electroluminescent waveguide structure by intrinsic near-infrared laser radiation

    SciTech Connect

    Vlasenko, N. A. Oleksenko, P. F.; Mukhlyo, M. A.; Veligura, L. I.

    2013-08-15

    The causes of changes that occur in a thin-film electroluminescent metal-insulator-semiconductor-insulator-metal waveguide structure based on ZnS:Cr (Cr concentration of {approx}4 Multiplication-Sign 10{sup 20} cm{sup -3}) upon lasing ({lambda} Almost-Equal-To 2.6 {mu}m) and that induce lasing cessation are studied. It is established that lasing ceases because of light-scattering inhomogeneities formed in the structure and, hence, optical losses enhance. The origin of the inhomogeneities and the causes of their formation are clarified by studying the surface topology and the crystal structure of constituent layers of the samples before and after lasing. The studies are performed by means of atomic force microscopy and X-ray radiography. It is shown that a substantial increase in the sizes of grains on the surface of the structure is the manifestation of changes induced in the ZnS:Cr film by recrystallization. Recrystallization is initiated by local heating by absorbed laser radiation in existing Cr clusters and quickened by a strong electric field (>1 MV cm{sup -1}). The changes observed in the ZnS:Cr film are as follows: the textured growth of ZnS crystallites, an increase in the content of Cr clusters, and the appearance of some CrS and a rather high ZnO content. Some ways for improving the stability of lasing in the ZnS:Cr-based waveguide structures are proposed.

  16. Microstructures and friction-wear behaviors of cathodic arc ion plated CrC coating at high temperatures

    NASA Astrophysics Data System (ADS)

    Dejun, Kong; Shouyu, Zhu

    2016-11-01

    A CrC coating was deposited on YT14 cemented carbide cutting tools by a CAIP (cathodic arc ion plating). The surface and interface morphologies, chemical composition, and phases of the obtained coating were analyzed with a field emission scanning electronic microscope (FESEM), energy dispersive spectroscope (EDS), and x-ray diffraction (XRD), respectively. The COFs (coefficient of frictions) and worn morphologies of the CrC coating at 300 °C, 400 °C, and 500 °C were investigated by using a high temperature tribometer, the effects of wear temperatures on the friction-wear properties of the CrC coating were discussed. The results show that the CrC coating exhibits fine dense structure, and the lattice constants of CrC coatings are dependent on processing parameters. The C and Cr elements in the coating are mutually diffused with the W, Co, and Ti in the substrate. The average COF of the coating at 300 °C, 400 °C, and 500 °C is 0.64, 0.63, and 0.40, respectively. The Cr2O3 layer formed on the CrC coating at 500 °C has excellent oxidation resistance, which improves lubrication and wear performance, the wear mechanism is abrasive wear and oxidation wear.

  17. Hafnium influence on the microstructure of FeCrAl alloys

    NASA Astrophysics Data System (ADS)

    Geanta, V.; Voiculescu, I.; Stanciu, E.-M.

    2016-06-01

    Due to their special properties at high temperatures, FeCrAl alloys micro-alloyed with Zr can be regarded as potential materials for use at nuclear power plants, generation 4R. These materials are resistant to oxidation at high temperatures, to corrosion, erosion and to the penetrating radiations in liquid metal environments. Also, these are able to form continuously, by the self-generation process of an oxide coating with high adhesive strength. The protective oxide layers must be textured and regenerable, with a good mechanical strength, so that crack and peeling can not appear. To improve the mechanical and chemical characteristics of the oxide layer, we introduced limited quantities of Zr, Ti, Y, Hf, Ce in the range of 1-3%wt in the FeCrAl alloy. These elements, with very high affinity to the oxygen, are capable to stabilize the alumina structure and to improve the oxide adherence to the metallic substrate. FeCrAl alloys microalloyed with Hf were prepared using VAR (Vacuum Arc Remelting) unit, under high argon purity atmosphere. Three different experimental alloys have been prepared using the same metallic matrix of Fe-14Cr-5Al, by adding of 0.5%wt Hf, 1.0%wt Hf and respectively 1.5%wt Hf. The microhardness values for the experimental alloys have been in the range 154 ... 157 HV0.2. EDAX analyses have been performed to determine chemical composition on the oxide layer and in the bulk of sample and SEM analyze has been done to determine the microstructural features. The results have shown the capacity of FeCrAl alloy to form oxide layers, with different texture and rich in elements such as Al and Hf.

  18. Tailoring graphene layer-to-layer growth

    NASA Astrophysics Data System (ADS)

    Li, Yongtao; Wu, Bin; Guo, Wei; Wang, Lifeng; Li, Jingbo; Liu, Yunqi

    2017-06-01

    A layered material grown between a substrate and the upper layer involves complex interactions and a confined reaction space, representing an unusual growth mode. Here, we show multi-layer graphene domains grown on liquid or solid Cu by the chemical vapor deposition method via this ‘double-substrate’ mode. We demonstrate the interlayer-induced coupling effect on the twist angle in bi- and multi-layer graphene. We discover dramatic growth disunity for different graphene layers, which is explained by the ideas of a chemical ‘gate’ and a material transport process within a confined space. These key results lead to a consistent framework for understanding the dynamic evolution of multi-layered graphene flakes and tailoring the layer-to-layer growth for practical applications.

  19. Anticorrosion nitrided layers on unalloyed and alloyed steels

    NASA Astrophysics Data System (ADS)

    Wach, P.; Michalski, J.; Burdyński, K.; Ciski, A.

    2017-02-01

    In the paper, nitrided layers on unalloyed and alloyed steels and their corrosion properties are presented. Nitrided layers in the controlled gas nitriding process on C10 and 42CrMo4 steels were formed. Two types of nitrided layers are presented: with nitride iron layers above and below 15 µm. Nitrided layer with nitride layer above 15 µm has good corrosion resistance, but after nitriding of machine parts were subsequently oxidised and impregnated. In the second type of nitrided layer, the surface layers of iron nitrides had a thickness of 3.0 to 11.0 µm. Nitrided layers with a surface layer of iron nitrides with the γ’ (Fe4N) structure were formed on unalloyed steel and investigated. The so-formed layers were subject to basic metallographic, X-ray diffraction and corrosion resistance studies carried out by electrochemical methods and in a neutral salt spray chamber. It was found that the layers consisting only of γ’ phase had a good corrosion resistance. Necessary requirements for achieving an enhanced resistance comprise their complete tightness and thickness not lower than 9.0 µm. Thinner layers had good electrochemical properties but did not exhibit corrosion resistance in the salt spray chamber.

  20. High-temperature corrosion of Cr[sub 2]O[sub 3]-forming alloys in CO-CO[sub 2]-N[sub 2] atmospheres

    SciTech Connect

    Zheng, X.G.; Young, D.J. )

    1994-10-01

    The corrosion of Fe-28Cr, Ni-28Cr, Co-28Cr, and pure chromium in a number of gas atmospheres made up of CO-CO[sub 2](-N[sub 2]) was studied at 900[degrees]C. In addition, chromium was reacted with H[sub 2]-H[sub 2]O-N[sub 2], and Fe-28Cr was reacted with pure oxygen at 1 atm. Exposure of pure chromium to H[sub 2]-H[sub 2]O-N[sub 2] produced a single-phase of Cr[sub 2]O[sub 3]. In a CO-CO[sub 2] mixture, a sublayer consisting of Cr[sub 2]O[sub 3] and Cr[sub 7]C[sub 3] was formed underneath an external Cr[sub 2]O[sub 3] layer. Adding nitrogen to the CO-CO[sub 2] mixture resulted in the formation of an additional single-phase layer of Cr[sub 2]N next to the metal substrate. Oxidizing the binary alloys in CO-CO[sub 2]-N[sub 2] resulted in a single Cr[sub 2]O[sub 3] scale on Fe-28Cr and Ni-28Cr, while oxide precipitation occurred below the outer-oxide scale on Co-28Cr, which is ascribed to the slow alloy interdiffusion and possibly high oxygen solubility of Co-Cr alloys. Oxide growth followed the parabolic law, and the rate constant was virtually independent of oxygen partial pressure for Fe-28Cr, but varied between the different materials, decreasing in the order chromium >Fe-28Cr>Ni(Co)-28Cr. The formation of an inner corrosion zone on chromium caused a reduction in external-oxide growth rate. Permeation of carbon and nitrogen through Cr[sub 2]O[sub 3] is thought to be due to molecular diffusion, and it is concluded that the nature of the atmosphere affects the permeability of the oxide.

  1. Thermal stability dependence on the stacking order and thickness ratio of the CoPt -TiO2/CoCrPt-SiO2 stacked media

    NASA Astrophysics Data System (ADS)

    Park, S. H.; Lee, T. D.; Kong, S. H.; Yoon, S. Y.; Lee, H. S.; Kim, H. J.; Oh, H. S.

    2008-04-01

    Thermal stability of the present CoCrPt -SiO2 media becomes a more critical issue as recording density steadily increases. In the present study, thermal stability of the stacked media composed of high Ku CoPt -TiO2 and normal Ku CoCrPt -SiO2 was studied by changing stacking order and thickness of each layer while keeping a constant total thickness. When the CoPt -TiO2 layer was placed under the CoCrPt -SiO2 layer, negative nucleation field and coercivity increased much more than those of the reverse stacking case. Thermal stability of the CoPt -TiO2 bottom group was superior to that of the CoCrPt -SiO2 bottom group when measured by a spin stand.

  2. Stratification Mechanism and Interface Characterization of (TiN), (TiC)/NiCrBSi Composite Coatings Synthesized by Laser Remelting

    NASA Astrophysics Data System (ADS)

    Liu, Rongxiang; Lei, Tingquan; Guo, Lixin

    TiC/TiN-reinforced composite coatings were fabricated on the substrate of Ti-6Al-4V alloy using laser remelting. X-ray diffraction (XRD) was used to identify the phases in the laser-clad composite coating; the interface characterization of the dilution zone-clad zone (IDC) and the dilution zone-heat-affected zone (IDH) was observed with a scanning electron microscope (SEM). The results show that the microstructure of a cross-section has stratification characterization, and consists of the clad zone (CZ), the dilution zone (DZ), the diffusion layer (DL) and the heat-affected zone (HAZ). The layer-by-layer microstructure results from the boundary layer phenomenon of viscous melt-fluid and diffusion. The kind of reinforced particle has an effect on the interface morphology, microstructure and flow characterization of the melt-fluid. The phase constitution in the clad zone consists of (Cr-Ni-Fe), TiC, Ni4B3, Ti2Ni, Cr2B and M23C6 for TiC+NiCrBSi coating, and (Cr-Ni-Fe), TiN, NiB, Cr2Ti and Ti2Ni for TiN+NiCrBSi coating. The interfaces of the IDC in the NiCrBSi-clad layer is clear and clean; those of TiC+NiCrBSi and TiN+NiCrBSi are illegible. Ti-Ni phases with acicular microstructure link dilution zone and clad zone, and two kinds of phase with acicular microstructure, are similar in composition and shape.

  3. Structural analysis of Cr aggregation in ferromagnetic semiconductor (Zn,Cr)Te

    SciTech Connect

    Kobayashi, H.; Yamawaki, K.; Nishio, Y.; Kanazawa, K.; Kuroda, S.; Mitome, M.; Bando, Y.

    2013-12-04

    The Cr aggregation in a ferromagnetic semiconductor (Zn,Cr)Te was studied by performing precise analyses using TEM and XRD of microscopic structure of the Cr-aggregated regions formed in iodine-doped Zn{sub 1−x}Cr{sub x}Te films with a relatively high Cr composition x ∼ 0.2. It was found that the Cr-aggregated regions are composed of Cr{sub 1−δ}Te nanocrystals of the hexagonal structure and these hexagonal precipitates are stacked preferentially on the (111)A plane of the zinc-blende (ZB) structure of the host ZnTe crystal with its c-axis nearly parallel to the (111){sub ZB} plane.

  4. Iodine Sequestration Using Delafossites and Layered Hydroxides

    SciTech Connect

    J.D. Pless; J.B. Chwirka; J.L. Krumhansl

    2006-03-28

    The objective of this document is to report on early success for sequestering {sup 129}I. Sorption coefficients (K{sub d}) for I{sup -} and IO{sub 3}{sup -} onto delafossites, spinels and layered metal hydroxides were measured in order to compare their applicability for sequestering {sup 129}I. The studies were performed using a dilute fluid composition representative of groundwater indigenous to the Yucca mountain area. Delafossites generally exhibited relatively poor sorption coefficients (< 10{sup 1.7} mL/g). In contrast, the composition of the layered hydroxides significantly affects their ability to sorb I. Cu/Al and Cu/Cr layered hydroxide samples exhibit K{sub d}'s greater than 10{sup 3} mL/g for both I{sup -} and IO{sub 3}{sup -}.

  5. Be/W and W/Be bilayers deposited on Si substrates with hydrogenated Fe-Cr and Fe-Cr-Al interlayers for plasma facing components

    NASA Astrophysics Data System (ADS)

    Greculeasa, S. G.; Palade, P.; Schinteie, G.; Lungu, G. A.; Porosnicu, C.; Jepu, I.; Lungu, C. P.; Kuncser, V.

    2016-12-01

    Be/W and W/Be bilayers, of interest in regard to the specific behavior of plasma facing components (PFCs) were deposited on Si substrates by thermionic vacuum arc, with Fe, Fe-Cr and Fe-Cr-Al interlayers. The interlayers, with compositions approaching the one of the reduced activation steels used in supporting PFCs, were subsequently annealed in hydrogen atmosphere. The multilayers were characterized with respect to morphologic, structural, diffusional and atomic intermixing aspects via XRD, XRR, X-ray photoemission spectroscopy and Mössbauer spectroscopy. All as-prepared samples present partially amorphous structures. A main α-Fe phase is observed, as well as (superparamagnetic) secondary Fe oxides, metallic Fe with Si, Cr, W and Be neighbors, Be-rich Fe-Be and Fe-Si phases. High amounts of tungsten and tungsten oxides were also evidenced in the Fe layer. The strong atomic intermixing of W and Be layers was indirectly supported by the unusual densities of W and Be layers and 57Fe Mössbauer spectroscopy results.

  6. Interface bonding of NiCrAlY coating on laser modified H13 tool steel surface

    NASA Astrophysics Data System (ADS)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2016-06-01

    Bonding strength of thermal spray coatings depends on the interfacial adhesion between bond coat and substrate material. In this paper, NiCrAlY (Ni-164/211 Ni22 %Cr10 %Al1.0 %Y) coatings were developed on laser modified H13 tool steel surface using atmospheric plasma spray (APS). Different laser peak power, P p, and duty cycle, DC, were investigated in order to improve the mechanical properties of H13 tool steel surface. The APS spraying parameters setting for coatings were set constant. The coating microstructure near the interface was analyzed using IM7000 inverted optical microscope. Interface bonding of NiCrAlY was investigated by interfacial indentation test (IIT) method using MMT-X7 Matsuzawa Hardness Tester Machine with Vickers indenter. Diffusion of atoms along NiCrAlY coating, laser modified and substrate layers was investigated by energy-dispersive X-ray spectroscopy (EDXS) using Hitachi Tabletop Microscope TM3030 Plus. Based on IIT method results, average interfacial toughness, K avg, for reference sample was 2.15 MPa m1/2 compared to sample L1 range of K avg from 6.02 to 6.96 MPa m1/2 and sample L2 range of K avg from 2.47 to 3.46 MPa m1/2. Hence, according to K avg, sample L1 has the highest interface bonding and is being laser modified at lower laser peak power, P p, and higher duty cycle, DC, prior to coating. The EDXS analysis indicated the presence of Fe in the NiCrAlY coating layer and increased Ni and Cr composition in the laser modified layer. Atomic diffusion occurred in both coating and laser modified layers involved in Fe, Ni and Cr elements. These findings introduce enhancement of coating system by substrate surface modification to allow atomic diffusion.

  7. Diffusion kinetics of Cr in spinel: Experimental studies and implications for 53Mn-53Cr cosmochronology

    NASA Astrophysics Data System (ADS)

    Posner, Esther S.; Ganguly, Jibamitra; Hervig, Richard

    2016-02-01

    The 53Mn-53Cr decay system, in which 53Mn decays to 53Cr (t1/2 = 3.7 Ma) has been widely used to construct 53Cr/52Cr vs. 55Mn/52Cr isochrons and thus determine relative ages of early solar system objects or events, assuming that the initial Cr isotopic ratio, (53Cr/52Cr)o, equals (53Mn/52Cr)o. With the primary objective of interpretation of these ages within a diffusion kinetic framework, we have determined the tracer diffusion coefficient of Cr in natural spinels, which are very close to the MgAl2O4 end-member composition, as a function of temperature and oxygen fugacity (f(O2)). It is found that the diffusion coefficient of Cr, D(Cr), in two stocks of spinels (referred to as cut-gems and gem-gravels) with very similar major element chemistry is consistently different, but the data in each stock yield well defined Arrhenius relations that show a difference of log D of 0.6-1.0, depending on temperature, with the D(Cr) in gem-gravel being higher than that in the cut-gem stock. The D(Cr) was found to have a positive dependence on f(O2) in the range of f(O2) of around ±2 log units relative to that of the wüstite-magnetite buffer. The difference in the D(Cr) between the two stocks and the observed D(Cr) vs. f(O2) relation has been explained in terms of a change of point defect concentration resulting from heterovalent substitution of trace elements and equilibration with the imposed f(O2) conditions, respectively. Assuming a homogeneous semi-infinite matrix, the closure temperature (Tc) of Cr diffusion in spinel has been calculated as a function of grain size, cooling rate, peak temperature (To) and f(O2). Also the dependence of D(Cr) and Tc(Cr) on the Cr# (i.e. Cr/(Cr + Al) ratio) has been accounted for using available D(Cr) vs. Cr# data in Suzuki et al. (2008). We argue, on the basis of crystal chemical considerations and available diffusion kinetic data for minerals, that the Tc for Mn should be much lower than that for Cr in spinel, olivine and orthopyroxene, and

  8. Bright nitriding of Cr-Mo-steels in plasma and gas

    SciTech Connect

    Larisch, B.; Spies, H.J.; Hoeck, K.

    1995-12-31

    Although the reduction of the white layer in special gas atmospheres directly after nitriding and bright nitriding were reported a long time ago, the white layer is mostly removed by mechanical or chemical means in industrial practice. The main reason for this is poor process control. However, new requirements such as the duplex treatment (nitriding + hardcoating), demand a more detailed examination of bright nitriding. Today, new possibilities exist for process control in gas nitriding by solid electrolyte sensors. Steel grades 17CrMoV10 and 31CrMoV9 were bright nitrided in gas and plasma. In contrast to the above experiments, in the two-step technology no white layer forms in the first step (20min) at a higher nitriding potential. By this, the formation of a soft surface layer (of iron) can be avoided. Limits of this technology--for instance in the depth of the formed nitrided case--are discussed. Reasons for the often discussed faster nitriding in plasma are explained on the basis of the experimental results. The influence of ion bombardment in plasma nitriding on the activation of the surface and the nitriding results is discussed in comparison to gas nitriding. In this context the advantages of plasma nitriding--with respect to higher chromium alloyed steels (>5%Cr), which tend to passivation--are shown.

  9. Interstitial loop transformations in FeCr

    SciTech Connect

    Béland, Laurent Karim; Osetsky, Yuri N.; Stoller, Roger E.; Xu, Haixuan

    2015-03-27

    Here, we improve the Self-Evolving Atomistic Kinetic Monte Carlo (SEAKMC) algorithm by integrating the Activation Relaxation Technique nouveau (ARTn), a powerful open-ended saddle-point search method, into the algorithm. We use it to investigate the reaction of 37-interstitial 1/2[1 1 1] and 1/2[View the MathML source] loops in FeCr at 10 at.% Cr. They transform into 1/2[1 1 1], 1/2[View the MathML source], [1 0 0] and [0 1 0] 74-interstitial clusters with an overall barrier of 0.85 eV. We find that Cr decoration locally inhibits the rotation of crowdions, which dictates the final loop orientation. Moreover, the final loop orientation depends on the details of the Cr decoration. Generally, a region of a given orientation is favored if Cr near its interface with a region of another orientation is able to inhibit reorientation at this interface more than the Cr present at the other interfaces. Also, we find that substitutional Cr atoms can diffuse from energetically unfavorable to energetically favorable sites within the interlocked 37-interstitial loops conformation with barriers of less than 0.35 eV.

  10. Interstitial loop transformations in FeCr

    DOE PAGES

    Béland, Laurent Karim; Osetsky, Yuri N.; Stoller, Roger E.; ...

    2015-03-27

    Here, we improve the Self-Evolving Atomistic Kinetic Monte Carlo (SEAKMC) algorithm by integrating the Activation Relaxation Technique nouveau (ARTn), a powerful open-ended saddle-point search method, into the algorithm. We use it to investigate the reaction of 37-interstitial 1/2[1 1 1] and 1/2[View the MathML source] loops in FeCr at 10 at.% Cr. They transform into 1/2[1 1 1], 1/2[View the MathML source], [1 0 0] and [0 1 0] 74-interstitial clusters with an overall barrier of 0.85 eV. We find that Cr decoration locally inhibits the rotation of crowdions, which dictates the final loop orientation. Moreover, the final loop orientationmore » depends on the details of the Cr decoration. Generally, a region of a given orientation is favored if Cr near its interface with a region of another orientation is able to inhibit reorientation at this interface more than the Cr present at the other interfaces. Also, we find that substitutional Cr atoms can diffuse from energetically unfavorable to energetically favorable sites within the interlocked 37-interstitial loops conformation with barriers of less than 0.35 eV.« less

  11. Effect of annealing treatment on the electrical characteristics of Pt/Cr-embedded ZnO/Pt resistance random access memory devices

    SciTech Connect

    Chang, Li-Chun; Kao, Hsuan-Ling; Liu, Keng-Hao

    2014-03-15

    ZnO/Cr/ZnO trilayer films sandwiched with Pt electrodes were prepared for nonvolatile resistive memory applications. The threshold voltage of a ZnO device embedded with a 3-nm Cr interlayer was approximately 50% lower than that of a ZnO monolayer device. This study investigated threshold voltage as a function of Cr thickness. Both the ZnO monolayer device and the Cr-embedded ZnO device structures exhibited resistance switching under electrical bias both before and after rapid thermal annealing (RTA) treatment, but resistive switching effects in the two cases exhibited distinct characteristics. Compared with the as-fabricated device, the memory cell after RTA demonstrated remarkable device parameter improvements, including a lower threshold voltage, a lower write current, and a higher R{sub off}/R{sub on} ratio. Both transmission electron microscope observations and Auger electron spectroscopy revealed that the Cr charge trapping layer in Cr-embedded ZnO dispersed uniformly into the storage medium after RTA, and x-ray diffraction and x-ray photoelectron spectroscopy analyses demonstrated that the Cr atoms lost electrons to become Cr{sup 3+} ions after dispersion. These results indicated that the altered status of Cr in ZnO/Cr/ZnO trilayer films during RTA treatment was responsible for the switching mechanism transition.

  12. Modifications to EPA Method 3060A to Improve Extraction of Cr(VI) from Chromium Ore Processing Residue-Contaminated Soils.

    PubMed

    Mills, Christopher T; Bern, Carleton R; Wolf, Ruth E; Foster, Andrea L; Morrison, Jean M; Benzel, William M

    2017-10-03

    It has been shown that EPA Method 3060A does not adequately extract Cr(VI) from chromium ore processing residue (COPR). We modified various parameters of EPA 3060A toward understanding the transformation of COPR minerals in the alkaline extraction and improving extraction of Cr(VI) from NIST SRM 2701, a standard COPR-contaminated soil. Aluminum and Si were the major elements dissolved from NIST 2701, and their concentrations in solution were correlated with Cr(VI). The extraction fluid leached additional Al and Si from the method-prescribed borosilicate glass vessels which appeared to suppress the release of Cr(VI). Use of polytetrafluoroethylene vessels and intensive grinding of NIST 2701 increased the amount of Cr(VI) extracted. These modifications, combined with an increased extraction fluid to sample ratio of ≥900 mL g(-1) and 48-h extraction time resulted in a maximum release of 1274 ± 7 mg kg(-1) Cr(VI). This is greater than the NIST 2701 certified value of 551 ± 35 mg kg(-1) but less than 3050 mg kg(-1) Cr(VI) previously estimated by X-ray absorption near edge structure spectroscopy. Some of the increased Cr(VI) may have resulted from oxidation of Cr(III) released from brownmillerite which rapidly transformed during the extractions. Layered-double hydroxides remained stable during extractions and represent a potential residence for unextracted Cr(VI).

  13. Innovation in Layer-by-Layer Assembly.

    PubMed

    Richardson, Joseph J; Cui, Jiwei; Björnmalm, Mattias; Braunger, Julia A; Ejima, Hirotaka; Caruso, Frank

    2016-12-14

    Methods for depositing thin films are important in generating functional materials for diverse applications in a wide variety of fields. Over the last half-century, the layer-by-layer assembly of nanoscale films has received intense and growing interest. This has been fueled by innovation in the available materials and assembly technologies, as well as the film-characterization techniques. In this Review, we explore, discuss, and detail innovation in layer-by-layer assembly in terms of past and present developments, and we highlight how these might guide future advances. A particular focus is on conventional and early developments that have only recently regained interest in the layer-by-layer assembly field. We then review unconventional assemblies and approaches that have been gaining popularity, which include inorganic/organic hybrid materials, cells and tissues, and the use of stereocomplexation, patterning, and dip-pen lithography, to name a few. A relatively recent development is the use of layer-by-layer assembly materials and techniques to assemble films in a single continuous step. We name this "quasi"-layer-by-layer assembly and discuss the impacts and innovations surrounding this approach. Finally, the application of characterization methods to monitor and evaluate layer-by-layer assembly is discussed, as innovation in this area is often overlooked but is essential for development of the field. While we intend for this Review to be easily accessible and act as a guide to researchers new to layer-by-layer assembly, we also believe it will provide insight to current researchers in the field and help guide future developments and innovation.

  14. Microstructure and properties of borocarburized 15CrNi6 steel after laser surface modification

    NASA Astrophysics Data System (ADS)

    Kulka, M.; Pertek, A.

    2004-09-01

    The paper presents the results of laser heat treatment (LHT) of the borided layers produced on the carburized 15CrNi6 low-carbon steel. The two-step treatment carburizing followed by boriding is termed borocarburizing. Laser tracks were arranged by CO 2 laser beam as a single track and as multiple tracks formed in the shape of helical line. The microstructure in both cases consists of the following zones: iron borides (FeB and Fe 2B) of laser modified morphology, needle-like iron borides, carburized layer with heat affected zone (martensite and alloyed cementite), carburized layer without heat treatment and the substrate (ferrite and pearlite). X-ray microanalysis of the laser modified borocarburized specimen confirmed the presence of the same two types of iron borides (FeB and Fe 2B), like those indicated in the as-borided layer. The layer after borocarburizing and LHT has a high microhardness of iron borides, reducing the hardness gradient between the diffusion layer and the substrate in comparison with only borided layer. Probably, the brittleness of this layer is lower. The improved wear resistance of this layer has been found in comparison with borided and borocarburized layers after conventional heat treatment. It is probably result of globular iron boride presence after laser surface modification.

  15. Speciation of Cr in cement clinkers obtained from co-burning with Cr 2O 3

    NASA Astrophysics Data System (ADS)

    Sinyoung, Suthatip; Asavapisit, Suwimol; Kajitvichyanukul, Puangrat; Songsiriritthigul, Prayoon

    2011-09-01

    XANES was used as complementary to XRD for the investigation of speciation of Cr in cement clinkers prepared by the co-burning of raw meal blended with Cr 2O 3. The concentration of Cr in the mixture was 0.1, 0.5, 1.0, 2.0, 5.0, and 10.0 wt%. The mixture was burnt at 1450 °C for 90 min. XANES spectra show that all samples contain Cr 6+ species. A similar ratio of different Cr containing compounds was found for all clinkers with a Cr concentration of 2.0 wt% and below. A discrepancy between XANES spectra and the changes in free lime concentration was observed when the Cr concentration increased from 1.0 to 2.0 wt%. Above 2.0 wt%, complicated changes in the XANES spectra were observed with increasing Cr concentration. Different Cr-compounds were formed in all samples, and reduction of free lime content was observed for the sample with a Cr concentration of 10.0 wt%.

  16. GALPROP: New Developments in CR Propagation Code

    NASA Astrophysics Data System (ADS)

    Moskalenko, I. V.; Jones, F. C.; Mashnik, S. G.; Ptuskin, V. S.; Strong, A. W.

    2003-07-01

    The numerical Galactic CR propagation code GALPROP has been shown to repro duce simultaneously observational data of many kinds related to CR origin and propagation. Its ability to propagate all CR species in a self-consistent way has led to new results and also revealed new puzzles. We report on the latest up dates of GALPROP, development of a Web-based user interface to facilitate the access to the results of our models, and a library of evaluated isotopic production cross sections. Using an up dated version of GALPROP we study effects of waveparticle interactions in the interstellar medium (ISM).

  17. Pressure-induced normal-incommensurate and incommensurate-commensurate phase transitions in CrOCl

    PubMed Central

    Bykov, Maxim; Bykova, Elena; Dubrovinsky, Leonid; Hanfland, Michael; Liermann, Hanns-Peter; van Smaalen, Sander

    2015-01-01

    The high-pressure behavior of layered CrOCl is shown to be governed by non-bonded interactions between chlorine atoms in relation to a rigid framework composed of Cr and O atoms. The competition between optimizing intra- and interlayer Cl–Cl distances and the general trend towards denser packing defines a novel mechanism for high-pressure phase transitions of inorganic materials. CrOCl possesses an incommensurate phase for 16–51 GPa. Single-crystal x-ray diffraction in a diamond anvil cell provides an accurate description of the evolution of the incommensurate wave with pressure. It thus demonstrates a continuous increase of the amplitude up to 30 GPa, followed by a decrease of the wavelength until a lock-in transition occurs at 51 GPa. PMID:25999303

  18. Etching of Cr tips for scanning tunneling microscopy of cleavable oxides

    DOE PAGES

    Huang, Dennis; Liu, Stephen; Zeljkovic, Ilija; ...

    2017-02-21

    Here, we report a detailed three-step roadmap for the fabrication and characterization of bulk Cr tips for spin-polarized scanning tunneling microscopy. Our strategy uniquely circumvents the need for ultra-high vacuum preparation of clean surfaces or films. First, we demonstrate the role of ex situ electrochemical etch parameters on Cr tip apex geometry, using scanning electron micrographs of over 70 etched tips. Second, we describe the suitability of the in situ cleaved surface of the layered antiferromagnet La1.4Sr1.6Mn2O7 to evaluate the spin characteristics of the Cr tip, replacing the ultra-high vacuum-prepared test samples that have been used in prior studies. Third,more » we outline a statistical algorithm that can effectively delineate closely spaced or irregular cleaved step edges, to maximize the accuracy of step height and spin-polarization measurements.« less

  19. Etching of Cr tips for scanning tunneling microscopy of cleavable oxides.

    PubMed

    Huang, Dennis; Liu, Stephen; Zeljkovic, Ilija; Mitchell, J F; Hoffman, Jennifer E

    2017-02-01

    We report a detailed three-step roadmap for the fabrication and characterization of bulk Cr tips for spin-polarized scanning tunneling microscopy. Our strategy uniquely circumvents the need for ultra-high vacuum preparation of clean surfaces or films. First, we demonstrate the role of ex situ electrochemical etch parameters on Cr tip apex geometry, using scanning electron micrographs of over 70 etched tips. Second, we describe the suitability of the in situ cleaved surface of the layered antiferromagnet La1.4Sr1.6Mn2O7 to evaluate the spin characteristics of the Cr tip, replacing the ultra-high vacuum-prepared test samples that have been used in prior studies. Third, we outline a statistical algorithm that can effectively delineate closely spaced or irregular cleaved step edges, to maximize the accuracy of step height and spin-polarization measurements.

  20. Radiation resistance of (Ni,Fe)Cr2O4 spinels by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Van Brutzel, Laurent; Alvarez, Pierre; Chartier, Alain

    2014-05-01

    Molecular dynamics simulations are carried out to study primary radiation damage in NiCr2O4 and FeCr2O4 spinels, which are part of the corrosion layer of the vapour generators used in nuclear reactors. The radiation resistance of both spinels is evaluated by studying point defect recombination processes, threshold displacement energies, and 20 keV displacement cascades initiated with different PKA masses. Results are mainly in agreement with previous studies involving MgAl2O4 showing that radiation facilitates the transition to inverse spinel structure or NaCl structure. However, we find some differences between the two studied spinels indicating that NiCr2O4 is more sensitive to radiation.

  1. Thermal conductivity of nitride films of Ti, Cr, and W deposited by reactive magnetron sputtering

    SciTech Connect

    Jagannadham, Kasichainula

    2015-05-15

    Nitride films of Ti, Cr, and W were deposited using reactive magnetron sputtering from metal targets in argon and nitrogen plasma. TiN films with (200) orientation were achieved on silicon (100) at the substrate temperature of 500 and 600 °C. The films were polycrystalline at lower temperature. An amorphous interface layer was observed between the TiN film and Si wafer deposited at 600 °C. TiN film deposited at 600 °C showed the nitrogen to Ti ratio to be near unity, but films deposited at lower temperature were nitrogen deficient. CrN film with (200) orientation and good stoichiometry was achieved at 600 °C on Si(111) wafer but the film deposited at 500 °C showed cubic CrN and hexagonal Cr{sub 2}N phases with smaller grain size and amorphous back ground in the x-ray diffraction pattern. An amorphous interface layer was not observed in the cubic CrN film on Si(111) deposited at 600 °C. Nitride film of tungsten deposited at 600 °C on Si(100) wafer was nitrogen deficient, contained both cubic W{sub 2}N and hexagonal WN phases with smaller grain size. Nitride films of tungsten deposited at 500 °C were nonstoichiometric and contained cubic W{sub 2}N and unreacted W phases. There was no amorphous phase formed along the interface for the tungsten nitride film deposited at 600 °C on the Si wafer. Thermal conductivity and interface thermal conductance of all the nitride films of Ti, Cr, and W were determined by transient thermoreflectance technique. The thermal conductivity of the films as function of deposition temperature, microstructure, nitrogen stoichiometry and amorphous interaction layer at the interface was determined. Tungsten nitride film containing both cubic and hexagonal phases was found to exhibit much higher thermal conductivity and interface thermal conductance. The amorphous interface layer was found to reduce effective thermal conductivity of TiN and CrN films.

  2. Method of bonding an interconnection layer on an electrode of an electrochemical cell

    DOEpatents

    Pal, U.B.; Isenberg, A.O.; Folser, G.R.

    1992-01-14

    An electrochemical cell containing an air electrode, contacting electrolyte and electronically conductive interconnection layer, and a fuel electrode, has the interconnection layer attached by: (A) applying a thin, closely packed, discrete layer of LaCrO[sub 3] particles, doped with an element selected from the group consisting of Ca, Sr, Co, Ba, Mg and their mixtures on a portion of the air electrode, and then (B) electrochemical vapor depositing a dense skeletal structure between and around the doped LaCrO[sub 3] particles. 2 figs.

  3. Method of bonding an interconnection layer on an electrode of an electrochemical cell

    DOEpatents

    Pal, Uday B.; Isenberg, Arnold O.; Folser, George R.

    1992-01-01

    An electrochemical cell containing an air electrode (16), contacting electrolyte and electronically conductive interconnection layer (26), and a fuel electrode, has the interconnection layer (26) attached by: (A) applying a thin, closely packed, discrete layer of LaCrO.sub.3 particles (30), doped with an element selected from the group consisting of Ca, Sr, Co, Ba, Mg and their mixtures on a portion of the air electrode, and then (B) electrochemical vapor depositing a dense skeletal structure (32) between and around the doped LaCrO.sub.3 particles (30).

  4. Thermal Stability of NaxCrO2 for Rechargeable Sodium Batteries; Studies by High-Temperature Synchrotron X-ray Diffraction.

    PubMed

    Yabuuchi, Naoaki; Ikeuchi, Issei; Kubota, Kei; Komaba, Shinichi

    2016-11-30

    Thermal stability and phase transition processes of NaCrO2 and Na0.5CrO2 are carefully examined by high-temperature synchrotron X-ray diffraction method. O3-type NaCrO2 shows anisotropic thermal expansion on heating, which is a common character as layered materials, without phase transition in the temperature range of 27-527 °C. In contrast, for the desodiated phase, in-plane distorted P3-type layered oxide (P'3 Na0.5CrO2), phase transition occurs in the following order. Monoclinic distortion associated with Na/vacancy ordering is gradually lost on heating, and its symmetry increases and changes to a rhombohedral lattice at 207 °C. On further heating, phase segregation to two P3 layered metastable phases, which have different interlayer distances (17.0 and 13.5 Å, presumably sodium-rich and sodium-free P3 phases, respectively) are observed on heating to 287-477 °C, but oxygen loss is not observed. Oxygen loss is observed at temperatures only above 500 °C, resulting in the formation of corundum-type Cr2O3 and O3 NaCrO2 as thermodynamically stable phases. From these results, possibility of NaxCrO2 as a positive electrode material for safe rechargeable sodium batteries is also discussed.

  5. Enhanced wear and fatigue properties of Ti-6Al-4V alloy modified by plasma carburizing/CrN coating.

    PubMed

    Park, Y G; Wey, M Y; Hong, S I

    2007-05-01

    In this study, a newly developed duplex coating method incorporating plasma carburization and CrN coating was applied to Ti-6Al-4V and its effects on the wear resistance and fatigue life were investigated. The carburized layer with approximately150 microm in depth and CrN coating film with 7.5 microm in thickness were formed after duplex coating. Hard carbide particles such as TiC And V(4)C(3) were formed in the carburized layer. XRD diffraction pattern analysis revealed that CrN film had predominant [111] and [200] textures. The hardness (Hv) was significantly improved up to about 1,960 after duplex coating while the hardness value of original Ti-6Al-4V was 402. The threshold load for the modification and/or failure of CrN coating was measured to be 32 N using the acoustic emission technique. The wear resistance and fatigue life of duplex-coated Ti-6Al-4V improved significantly compared to those of un-treated specimen. The enhanced wear resistance can be attributed to the excellent adhesion and improved hardness of CrN coating film for the duplex-coated Ti-6Al-4V. The initiation of fatigue cracks is likely to be retarded by the presence of hard and strong layers on the surface, resulting in the enhanced fatigue life.

  6. Evolution of Cr4+, Cr3+ and Cr2+ contents in Cr:Mg2SiO4 single crystals during their prolonged high-temperature oxidizing annealing

    NASA Astrophysics Data System (ADS)

    Subbotin, K. A.; Slavkina, V. V.; Lis, D. A.; Lis, O. N.; Zharikov, E. V.

    2017-06-01

    The evolution dynamics of Cr4+, Cr3+ and Cr2+ contents in chromium doped forsterite (Cr: Mg2SiO4) laser crystals during their prolonged high-temperature multi-stage oxidizing annealing have been investigated for the samples grown by Czochralski in 'standard' slightly oxidizing atmosphere (Ar +2,2 vol% O2), as well as in inert atmosphere (argon, the residual O2 content is 0,01 vol%). The contents of Cr4+ increase by factor of 1,5-3 during the first 800-1000 h of the annealing and then do not change substantially. Cr2+ practically disappears from the crystals within 800-900 h of the annealing. The content of Cr3+ passes through a maximum during the annealing. Therefore, this content is determined by two parallel reactions: Cr2+→Cr3+ and Cr3+→Cr4+.

  7. Antiproton Production by CR on Air Nuclei

    NASA Technical Reports Server (NTRS)

    Maskalenko, I. V.; Mashnik, S. G.

    2003-01-01

    Recent measurements of the cosmic ray (CR) antiproton flux have been shown to challenge existing CR propagation models. In particular, the conventional reacceleration model designed to match secondary/primary nuclei ratios produces too few antiprotons. Recently there appear some indications that the atmospheric contribution to antiproton production is considerably underestimated, which implies that antiproton CR flux might be lower. This may be the primary reason of the discrepancy discovered in CR propagation. We use the Los Alamos version of the Quark-Gluon String Model code LAQGSM together with available data on antiproton production on nuclei to analyse the accuracy of existing parameterizations of antiproton production cross section. The LAQGSM model has been shown to reproduce well nuclear reactions and hadronic data in the range 0.01-800 GeV/nucleon.

  8. a Sexafs Study of Ultrathin cr Films

    NASA Astrophysics Data System (ADS)

    Cook, J. C.; Dowling, M.; Schwarzacher, W.; McCash, E. M.

    Three types of Cr films were grown on Pd(100) at different substrate temperatures. The film thickness was found to be the crucial parameter in determining the film structure; substrate temperature was found to make little difference to the surface EXAFS pattern observed. Films with a thickness greater than 6 monolayers (ML) of Cr were body-centered-cubic (bcc); those with a thickness less than 3 ML Cr appear to be face-centered-cubic (fcc) and those in between were initially bcc but after annealing to ~500 K produced an fcc-like SEXAFS pattern. The SEXAFS of both thin and medium films can be interpreted in terms of a Cr-Pd alloy on the surface.

  9. Fiat C.R. 20 pursuit airplane

    NASA Technical Reports Server (NTRS)

    1927-01-01

    The Fiat C.R. 20 has an all metal frame covered with fireproof fabric, except for the area near the engines, which is covered in duraluminum. It is armed with 4 machine guns and is capable of 280 KPH.

  10. Antiproton Production by CR on Air Nuclei

    NASA Technical Reports Server (NTRS)

    Maskalenko, I. V.; Mashnik, S. G.

    2003-01-01

    Recent measurements of the cosmic ray (CR) antiproton flux have been shown to challenge existing CR propagation models. In particular, the conventional reacceleration model designed to match secondary/primary nuclei ratios produces too few antiprotons. Recently there appear some indications that the atmospheric contribution to antiproton production is considerably underestimated, which implies that antiproton CR flux might be lower. This may be the primary reason of the discrepancy discovered in CR propagation. We use the Los Alamos version of the Quark-Gluon String Model code LAQGSM together with available data on antiproton production on nuclei to analyse the accuracy of existing parameterizations of antiproton production cross section. The LAQGSM model has been shown to reproduce well nuclear reactions and hadronic data in the range 0.01-800 GeV/nucleon.

  11. The lattice distortion effect for zinc-blende CrAs and CrSb

    NASA Astrophysics Data System (ADS)

    Yamana, Keita; Geshi, Masaaki; Tsukamoto, Hidekazu; Uchida, Ichiro; Shirai, Masafumi; Kusakabe, Koichi; Suzuki, Naoshi

    2004-12-01

    We investigated the stability of the ferromagnetism of CrAs and CrSb in the zinc-blende structure against the lattice distortion, systematically. A calculation within the generalized gradient approximation using a full potential linearized augmented plane wave method was performed. We compared the ferromagnetic state and the antiferromagnetic state assuming tetragonal distortion with the lattice constants a and c changing independently and determined the spin polarization ratio in the ferromagnetic phase. The result shows that complete spin polarization (half-metallic ferromagnetism) remains stable even in the presence of large tetragonal distortion. On the other hand, our calculation shows that two monolayers of CrAs is enough to produce a half-metallic state in the CrAs/GaAs multilayer. Thus, the present result suggests that the half-metallic nature persists in various atomic-scale superlattices made of distorted CrAs or CrSb.

  12. Cytotoxic and genotoxic potential of Cr(VI), Cr(III)-nitrate and Cr(III)-EDTA complex in human hepatoma (HepG2) cells.

    PubMed

    Novotnik, Breda; Ščančar, Janez; Milačič, Radmila; Filipič, Metka; Žegura, Bojana

    2016-07-01

    Chromium (Cr) and ethylenediaminetetraacetate (EDTA) are common environmental pollutants and can be present in high concentrations in surface waters at the same time. Therefore, chelation of Cr with EDTA can occur and thereby stable Cr(III)-EDTA complex is formed. Since there are no literature data on Cr(III)-EDTA toxicity, the aim of our work was to evaluate and compare Cr(III)-EDTA cytotoxic and genotoxic activity with those of Cr(VI) and Cr(III)-nitrate in human hepatoma (HepG2) cell line. First the effect of Cr(VI), Cr(III)-nitrate and Cr(III)-EDTA on cell viability was studied in the concentration range from 0.04 μg mL(-1) to 25 μg mL(-1) after 24 h exposure. Further the influence of non-cytotoxic concentrations of Cr(VI), Cr(III)-nitrate and Cr(III)-EDTA on DNA damage and genomic stability was determined with the comet assay and cytokinesis block micronucleus cytome assay, respectively. Cell viability was decreased only by Cr(VI) at concentrations above 1.0 μg mL(-1). Cr(VI) at ≥0.2 μg mL(-1) and Cr(III) at ≥1.0 μg mL(-1) induced DNA damage, while after Cr(III)-EDTA exposure no formation DNA strand breaks was determined. Statistically significant formation of micronuclei was induced only by Cr(VI) at ≥0.2 μg mL(-1), while no influence on the frequency of nuclear buds nor nucleoplasmic bridges was observed at any exposure. This study provides the first evidence that Cr(III)-EDTA did not induce DNA damage and had no influence on the genomic stability of HepG2 cells.

  13. Link Layer Modeling

    NASA Astrophysics Data System (ADS)

    Mühleisen, M.; Bültmann, D.; Klagges, K.; Schinnenburg, M.

    The Data Link Layer (DLL) is located above the PHY layer described in the previous chapter and below the network layer described in Chapter 16. All data received from these layers is digital. Today most parts of the DLL are implemented in software, either as device drivers running on general purpose Central Processing Units (CPUs) or as firmware running on dedicated network interface hardware.

  14. Fabrication of Pd-Cr wire

    NASA Technical Reports Server (NTRS)

    Diamond, Sidney; Leach, Dennen M.

    1989-01-01

    Fabrication of Pd-13 percent Cr alloy wires is described. Melting, casting, swaging and annealing processes are discussed. Drawing to reach two diameters (0.003 inch and 0.00176 inch) of wire is described. Representative micrographs of the Pd-Cr alloy at selected stages during wire fabrication are included. The resistance of the wire was somewhat lower, by about 15 to 20 percent, than comparable wire of other alloys used for strain gages.

  15. Evolution of oxide scale on a Ni-Mo-Cr alloy at 900 deg. C

    SciTech Connect

    Ul-Hamid, A. . E-mail: anwar@kfupm.edu.sa; Mohammed, A.I.; Al-Jaroudi, S.S.; Tawancy, H.M.; Abbas, N.M.

    2007-01-15

    The cyclic oxidation behavior of a Ni-Mo-Cr alloy was studied in air at 900 deg. C for exposure periods of up to 1000 h. The morphology, microstructure and composition of the oxide scale was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. Oxidation kinetics was determined by weight gain measurements. The results show that steady state oxidation was achieved within 1 h of exposure. During transient oxidation, the alloy grain boundaries intersecting the alloy surface became depleted in Ni and enriched in Mo and Cr. The scale initially formed at the surface was NiO which grew outwardly. However, a protective Cr{sub 2}O{sub 3} layer developed, rapidly retarding the rate of oxidation. Formation of NiMoO{sub 4} was also observed. The presence of Mo in the alloy facilitated the formation of a Cr{sub 2}O{sub 3} layer at an early stage of oxidation. The alloy exhibited considerable oxide spalling during prolonged exposure.

  16. Magnetization at the interface of Cr2O3 and paramagnets with large stoner susceptibility.

    PubMed

    Cao, Shi; Street, M; Wang, Junlei; Wang, Jian; Zhang, Xiaozhe; Binek, Ch; Dowben, P A

    2017-03-15

    From the Cr 2p3/2 x-ray magnetic circular dichroism signal, there is clear evidence of interface polarization with overlayers of both Pd and Pt on chromia (Cr2O3). The residual boundary polarization of chomia is stronger for a Pt overlayer than in the case of a Pd overlayer. The reduction of chromia boundary magnetization with a paramagnetic metal overlayer, compared to the free surface, is interpreted as a response to the induced spin polarization in Pt and Pd. Magnetization induced in a Pt overlayer, via proximity to the chromia boundary magnetization, is evident in the polar magneto-optical Kerr measurements. These results are essential to explainations why Pt and Pd are excellent spacer layers for voltage controlled exchange bias, in the [Pd/Co] n /Pd/Cr2O3 and [Pt/Co] n /Pt/Cr2O3 perpendicular magneto-electric exchange bias systems. The findings pave the way to realize ultra-fast reversal of induced magnetization in a free moment paramagnetic layer, with possible application in voltage-controlled magnetic random access memory.

  17. Magnetization at the interface of Cr2O3 and paramagnets with large stoner susceptibility

    NASA Astrophysics Data System (ADS)

    Cao, Shi; Street, M.; Wang, Junlei; Wang, Jian; Zhang, Xiaozhe; Binek, Ch; Dowben, P. A.

    2017-03-01

    From the Cr 2p3/2 x-ray magnetic circular dichroism signal, there is clear evidence of interface polarization with overlayers of both Pd and Pt on chromia (Cr2O3). The residual boundary polarization of chomia is stronger for a Pt overlayer than in the case of a Pd overlayer. The reduction of chromia boundary magnetization with a paramagnetic metal overlayer, compared to the free surface, is interpreted as a response to the induced spin polarization in Pt and Pd. Magnetization induced in a Pt overlayer, via proximity to the chromia boundary magnetization, is evident in the polar magneto-optical Kerr measurements. These results are essential to explainations why Pt and Pd are excellent spacer layers for voltage controlled exchange bias, in the [Pd/Co] n /Pd/Cr2O3 and [Pt/Co] n /Pt/Cr2O3 perpendicular magneto-electric exchange bias systems. The findings pave the way to realize ultra-fast reversal of induced magnetization in a free moment paramagnetic layer, with possible application in voltage-controlled magnetic random access memory.

  18. Stable Layers in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Mahalov, A.; Berman, N. S.; Fernando, H. J. S.; Yu, F.; Pardyjak, E.

    1998-11-01

    Field experimental studies on the establishment and growth of the nocturnal stable layer near the ground were made in January, 1998 using a tethered balloon at a site in Phoenix, Arizona. Days and nights with clear skies and light surface winds were of particular interest because small particle and carbon monoxide concentrations can be high during such times. Closest to the ground a shallow stable layer 20 meters deep with a buoyancy frequency (N) of 0.05 1/s rapidly developed before sundown. The height of this layer and N remained constant throughout the night. Above the 20-meter level, there was a transition layer which was also stable with N = 0.025 1/s. This transition layer grew throughout the night and reached 120 meters by dawn. Above the transition layer was a neutrally stable (residual) layer left over from the previous day. An unsteady layer 10 to 100 m thick with N = 0.025 1/s was also found at the top of the troposphere with the neutrally stable troposphere below and the stable stratosphere above. The growth and/or decay of turbulence in such stable layers will be discussed in light of recent theoretical developments.

  19. Influence of boric acid coatings on the oxidation of 2. 25Cr-1Mo steel in oxygen

    SciTech Connect

    Simms, N.J. ); Little, J.A. . Dept. of Metallurgy and Materials Science)

    1989-05-01

    The oxidation of samples of 2.25Cr-1Mo steel covered with boric oxide in dry flowing oxygen has been studied at 600{sup 0}C. For all times up to 100 hours of exposure, the steel with a borate layer at the original metal-oxygen interface gains less weight than an untreated specimen. The presence of boron also modifies the grain structure of the magnetite layer formed, giving a fine equiaxed microstructure with less porosity.

  20. Microstructure and property of diamond-like carbon films with Al and Cr co-doping deposited using a hybrid beams system

    NASA Astrophysics Data System (ADS)

    Dai, Wei; Liu, Jingmao; Geng, Dongsen; Guo, Peng; Zheng, Jun; Wang, Qimin

    2016-12-01

    DLC films with weak carbide former Al and carbide former Cr co-doping (Al:Cr-DLC) were deposited by a hybrid beams system comprising an anode-layer linear ion beam source (LIS) and high power impulse magnetron sputtering using a gas mixture of C2H2 and Ar as the precursor. The doped Al and Cr contents were controlled via adjusting the C2H2 fraction in the gas mixture. The composition, microstructure, compressive stress, mechanical properties and tribological behaviors of the Al:Cr-DLC films were researched carefully using X-ray photoelectron spectroscopy, transmission electron microscopy, Raman spectroscopy, stress-tester, nanoindentation and ball-on-plate tribometer as function of the C2H2 fraction. The results show that the Al and Cr contents in the films increased continuously as the C2H2 fraction decreased. The doped Cr atoms preferred to bond with the carbon while the Al atoms mainly existed in metallic state. Structure modulation with alternate multilayer consisted of Al-poor DLC layer and Al-rich DLC layer was found in the films. Those periodic Al-rich DLC layers can effectively release the residual stress of the films. On the other hand, the formation of the carbide component due to Cr incorporation can help to increase the film hardness. Accordingly, the residual stress of the DLC films can be reduced without sacrificing the film hardness though co-doping Al and Cr atoms. Furthermore, it was found that the periodic Al-rich layer can greatly improve the elastic resilience of the DLC films and thus decreases the film friction coefficient and wear rate significantly. However, the existence of the carbide component would cause abrasive wear and thus deteriorate the wear performance of the films.

  1. Electronic band alignment and electron transport in Cr/BaTiO{sub 3}/Pt ferroelectric tunnel junctions

    SciTech Connect

    Zenkevich, A.; Minnekaev, M.; Matveyev, Yu.; Lebedinskii, Yu.; Bulakh, K.; Chouprik, A.; Baturin, A.; Maksimova, K.; Thiess, S.; Drube, W.

    2013-02-11

    Electroresistance in ferroelectric tunnel junctions is controlled by changes in the electrostatic potential profile across the junction upon polarization reversal of the ultrathin ferroelectric barrier layer. Here, hard X-ray photoemission spectroscopy is used to reconstruct the electric potential barrier profile in as-grown Cr/BaTiO{sub 3}(001)/Pt(001) heterostructures. Transport properties of Cr/BaTiO{sub 3}/Pt junctions with a sub-{mu}m Cr top electrode are interpreted in terms of tunneling electroresistance with resistance changes of a factor of {approx}30 upon polarization reversal. By fitting the I-V characteristics with the model employing an experimentally determined electric potential barrier we derive the step height changes at the BaTiO{sub 3}/Pt (Cr/BaTiO{sub 3}) interface +0.42(-0.03) eV following downward to upward polarization reversal.

  2. Large magnetization and high Curie temperature in highly disordered nanoscale Fe2CrAl thin films

    NASA Astrophysics Data System (ADS)

    Dulal, Rajendra P.; Dahal, Bishnu R.; Forbes, Andrew; Pegg, Ian L.; Philip, John

    2017-02-01

    We have successfully grown nanoscale Fe2CrAl thin films on polished Si/SiO2 substrates using an ultra-high vacuum deposition with a base pressure of 9×10-10 Torr. The thickness of thin films ranges from 30 to 100 nm. These films exhibit cubic crystal structure with lattice disorder and display ferromagnetic behavior. The Curie temperature is greater than 400 K, which is much higher than that reported for bulk Fe2CrAl. The magnetic moments of the films varies from 2.5 to 2.8 μB per formula unit, which is larger than the reported bulk values. Thus, the disordered nanoscale Fe2CrAl films exhibit strong Fe-Fe exchange interactions through Fe-Cr-Fe and Fe-Al-Fe layers, resulting in both a large magnetization and a high Curie temperature.

  3. Room-temperature ferromagnetism in CrSi2(core)/SiO2(shell) semiconducting nanocables

    NASA Astrophysics Data System (ADS)

    Hou, Te-Chien; Han, You-Hong; Lo, Shen-Chuan; Lee, Cheng-Tse; Ouyang, Hao; Chen, Lih-Juann

    2011-05-01

    Room-temperature ferromagnetism has been observed in high density free-standing CrSi2(core)/SiO2(shell) semiconducting nanocables, which is contrast to diamagnetic properties of both CrSi2 and SiO2 in bulk. The hexagonal CrSi2 C40-type nanowires, sheathed with a thin amorphous SiO2 layer, grow along [0001] direction. The results of first-principles simulations indicate that Cr atoms around the interface are with anomalously high magnetization (about 2 μB/atom), due to distorted/dangling bonds and surrounded oxygen atoms. Evaluations can be very consistent with measurements by further considering the effects of interfacial roughness and more distribution of oxygen around the interface. These results point toward a different way to tune nanomagnetism in core/shell nanowires.

  4. Effect of cryogenic burnishing on surface integrity modifications of Co-Cr-Mo biomedical alloy.

    PubMed

    Yang, Shu; Dillon, Oscar W; Puleo, David A; Jawahir, Ibrahim S

    2013-01-01

    Severe plastic deformation (SPD) processes have been used to modify the surface integrity properties of many materials by generating ultrafine or even nanometer-sized grains in the surface and subsurface region. These fine grained materials created by SPD and dynamic recrystallization in a thin layer near the surface usually have higher hardness and frequently exhibit enhanced mechanical properties (wear resistance, corrosion resistance, fatigue life, etc.). Cryogenic burnishing, a SPD process, was used to improve several surface integrity parameters of a Co-Cr-Mo biomedical alloy. Application of liquid nitrogen during the burnishing process significantly suppressed the temperature rise within and outside the nitrogen application zone. Better surface finish, high hardness value, thick burnishing-influenced surface layer, and significant grain refinement were simultaneously achieved with the application of cryogenic cooling. Current results show that cryogenic burnishing can be an effective processing method for modifying the studied surface integrity properties of Co-Cr-Mo biomedical alloy.

  5. [Effect of Cr(VI) stress on growth of three herbaceous plants and their Cr uptake].

    PubMed

    Wang, Ai-Yun; Huang, Shan-Shan; Zhong, Guo-Feng; Xu, Gang-Biao; Liu, Zhi-Xiang; Shen, Xiang-Bao

    2012-06-01

    In order to elucidate the toxic mechanisms of Trifolium repens, Festuca arundinacea and Medicago sativa under chromium [Cr (VI)] stress, provide a theoretic foundation for phytoremediation of Cr-contaminated soil, pot experiment was conducted to investigate the effects of Cr(VI) on plant growth, physiological characteristics, Cr accumulation and distribution in three herbaceous plants. Soil sample was treated by adding K2Cr2O7 with the Cr(VI) concentration of 0, 100, 200, 300 and 400 mg x kg(-1), respectively. The results indicated that the average tolerance indices of T. repens, F. arundinacea and M. sativa were 62.5, 48.3 and 36.33, respectively. Compared with control group, contents of chlorophyll, the activity of superoxide dismutase(SOD) and peroxidase (POD) were 57.14%, 51.51%, 35.76% and 63.27%, 52.96%, 41.36% in T. repens, and F. arundinacea, respectively, but M. sativa died in 400 mg x kg(-1) Cr(VI) treatment. The plant height, root length, dry mass of roots and shoots decreased under Cr(VI) stress in three herbaceous plants, and M. sativa > F. arundinacea > T. repens, however, the content of malonyldialdehyde (MDA) increased compared to the control, and the variation range of M. sativa was the highest, while T. repens was the smallest among them. The tolerance of Cr( VI) was T. repens > F. arundinacea > M. sativa. Cr mainly distributed in cell wall and then in the cytoplasm, and less distributed in the mitochondrion and chloroplast in leaves of three herbaceous plants, whereas the content of chlorophyll, MDA, the activity of SOD and POD correlated well with Cr accumulation in the mitochondrion and chloroplast. Cr concentration in the subcellular of leaves increased with the adding Cr(VI) concentration,and M. sativa > F. arundinacea > T. repens. In comparison with T. repens, F. arundinacea, Cr concentration in the leaves of M. sativa was the maximal, i.e. 51.44 mg x kg(-1), and the proportions in the mitochondrion (18.04%) and chloroplast (19.09%) were

  6. Interatomic potential to study the formation of NiCr clusters in high Cr ferritic steels

    NASA Astrophysics Data System (ADS)

    Bonny, G.; Bakaev, A.; Olsson, P.; Domain, C.; Zhurkin, E. E.; Posselt, M.

    2017-02-01

    Under irradiation NiSiPCr clusters are formed in high-Cr ferritic martensitic steels as well as in FeCr model alloys. In the literature little is known about the origin and contribution to the hardening of these clusters. In this work we performed density functional theory (DFT) calculations to study the stability of small substitutional NiCr-vacancy clusters and interstitial configurations in bcc Fe. Based on DFT data and experimental considerations a ternary potential for the ferritic FeNiCr system was developed. The potential was applied to study the thermodynamic stability of NiCr clusters by means of Metropolis Monte Carlo (MMC) simulations. The results of our simulations show that Cr and Ni precipitate as separate fractions and suggest only a limited synergetic effect between Ni and Cr. Therefore our results suggest that the NiCrSiP clusters observed in experiments must be the result of other mechanisms than the synergy of Cr and Ni at thermal equilibrium.

  7. Modulation of active Cr(III) complexes by bath preparation to adjust Cr(III) electrodeposition

    NASA Astrophysics Data System (ADS)

    Li, Lei; Wang, Zhi; Wang, Ming-yong; Zhang, Yi

    2013-09-01

    The preparation process of the Cr(III) bath was studied based on a perspective of accelerating the formation of active Cr(III) complexes. The results of ultraviolet-visible absorption spectroscopy (UV-Vis) and electrodeposition showed that active Cr(III) complexes in the bath prepared at room temperature in several days were rare for depositing chromium. The increase of heating temperature, time, and pH value during the bath preparation promoted the formation of active Cr(III) complexes. The chromium deposition rate increased with the concentration of active Cr(III) complexes increasing. Increasing the heating temperature from 60 to 96°C, the chromium deposition rate increased from 0.40 to 0.71 μm/min. When the concentration of active Cr(III) complexes increased, the grain size of Cr coatings increased, and the carbon content of the coating decreased. It is deduced that Cr(H2O)4(OH)L2+ (L is an organic ligand, and its valence is omitted) is a primary active Cr(III) complex.

  8. Epitaxial growth and electrical transport properties of Cr{sub 2}GeC thin films

    SciTech Connect

    Eklund, Per; Bugnet, Matthieu; Mauchamp, Vincent; Dubois, Sylvain; Tromas, Christophe; Jaouen, Michel; Cabioc'h, Thierry; Jensen, Jens; Piraux, Luc; Gence, Loiek

    2011-08-15

    Cr{sub 2}GeC thin films were grown by magnetron sputtering from elemental targets. Phase-pure Cr{sub 2}GeC was grown directly onto Al{sub 2}O{sub 3}(0001) at temperatures of 700-800 deg. C. These films have an epitaxial component with the well-known epitaxial relationship Cr{sub 2}GeC(0001)//Al{sub 2}O{sub 3}(0001) and Cr{sub 2}GeC(1120)//Al{sub 2}O{sub 3}(1100) or Cr{sub 2}GeC(1120)//Al{sub 2}O{sub 3}(1210). There is also a large secondary grain population with (1013) orientation. Deposition onto Al{sub 2}O{sub 3}(0001) with a TiN(111) seed layer and onto MgO(111) yielded growth of globally epitaxial Cr{sub 2}GeC(0001) with a virtually negligible (1013) contribution. In contrast to the films deposited at 700-800 deg. C, the ones grown at 500-600 deg. C are polycrystalline Cr{sub 2}GeC with (1010)-dominated orientation; they also exhibit surface segregations of Ge as a consequence of fast Ge diffusion rates along the basal planes. The room-temperature resistivity of our samples is 53-66 {mu}{Omega}cm. Temperature-dependent resistivity measurements from 15-295 K show that electron-phonon coupling is important and likely anisotropic, which emphasizes that the electrical transport properties cannot be understood in terms of ground state electronic structure calculations only.

  9. Ti3CrCu4: A possible 2-D ferromagnetic spin fluctuating system

    DOE PAGES

    Dhar, S. K.; Provino, A.; Manfrinetti, P.; ...

    2016-03-09

    Ti3CrCu4 is a new ternary compound which crystallizes in the tetragonal Ti3Pd5 structure type. The Cr atoms form square nets in the a-b plane (a = 3.124 Å) which are separated by an unusually large distance c = 11.228 Å along the tetragonal axis, thus forming a -2-D Cr-sublattice. The paramagnetic susceptibility is characterized by a low effective moment, μeff = 1.1 μB, a low paramagnetic Curie temperature θP (below 7 K) and a temperature independent χ0 = 6.7 x 10–4 emu/mol. The magnetization at 1.8 K increases rapidly with field nearly saturating to 0.2 μB/f.u. The zero field heatmore » capacity C/T shows an upturn below 7 K (~190 mJ/mol K2 at ~0.1K) which is suppressed in applied magnetic fields and interpreted as suggesting the presence of spin fluctuations. The resistivity at low temperatures shows non-Fermi liquid behavior. Overall, the experimental data thus reveal an unusual magnetic state in Ti3CrCu4, which likely has its origin in the layered nature of the Cr sub-lattice and ferromagnetic spin fluctuations. Here, density functional theoretical calculations reveal a sharp Cr density of states peak just above the Fermi level, indicating the propensity of Ti3CrCu4 to become magnetic.« less

  10. The role of Zr and Nb in oxidation/sulfidation behavior of Fe-Cr-Ni alloys

    SciTech Connect

    Natesan, K. ); Baxter, D.J. INCO Alloy Ltd., Hereford, England )

    1990-11-01

    05Structural Fe-Cr-Ni alloys may undergo rapid degradation at elevated temperatures unless protective surface oxide scales are formed and maintained. The ability of alloys to resist rapid degradation strongly depends on their Cr content and the chemistry of the exposure environment. Normally, 20 wt % Cr is required for service at temperatures up to 1000{degree}C; the presence of sulfur, however, inhibits formation of a protective surface oxide scale. The oxidation and sulfidation behavior of Fe-Cr-Ni alloys is examined over a wide temperature range (650 to 1000{degree}C), with particular emphasis on the effects of alloy Cr content and the radiation of reactive elements such as Nb and Zr. Both Nb and Zr are shown to promote protective oxidation behavior on the 12 wt % Cr alloy in oxidizing environments and to suppress sulfidation in mixed oxygen/sulfur environments. Additions of Nb and Zr at 3 wt % level resulted in stabilization of Cr{sub 2}O{sub 3} scale and led to a barrier layer of Nb- or Zr-rich oxide at the scale/metal interface, which acted to minimize the transport of base metal cations across the scale. Oxide scales were preformed in sulfur-free environments and subsequently exposed to oxygen/sulfur mixed-gas atmospheres. Preformed scales were found to delay the onset of breakaway corrosion. Corrosions test results obtained under isothermal and thermal cycling conditions are presented. 58 refs., 55 figs., 8 tabs.

  11. Solute redistribution and phase stability at FeCr/TiO2–x interfaces under ion irradiation

    DOE PAGES

    Xu, Y.; Aguiar, J. A.; Yadav, S. K.; ...

    2015-02-26

    Cr diffusion in trilayer thin films of 100 nm Fe–18Cr/125 nm TiO2–x/100 nm Fe–18Cr deposited on MgO substrates at 500 °C was studied by either annealing at 500 °C or Ni3+ ion irradiation at 500 °C. Microchemistry and microstructure evolution at the metal/oxide interfaces were investigated using (high-resolution) transmission electron microscopy, energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy. Diffusion of Cr into the O-deficient TiO2 layer, with negligible segregation to the FeCr/TiO2–x interface itself, was observed under both annealing and irradiation. Cr diffusion into TiO2–x was enhanced in ion-irradiated samples as compared to annealed. Irradiation-induced voids and amorphization ofmore » TiO2–x was also observed. The experimental results are rationalized using first-principles calculations that suggest an energetic preference for substituting Ti with Cr in sub-stoichiometric TiO2. Furthermore, the implications of these results on the irradiation stability of oxide-dispersed ferritic alloys are discussed.« less

  12. Investigation of structural changes in chiral magnet Cr1/3NbS2 under application of pressure

    NASA Astrophysics Data System (ADS)

    Mito, M.; Tajiri, T.; Tsuruta, K.; Deguchi, H.; Kishine, J.; Inoue, K.; Kousaka, Y.; Nakao, Y.; Akimitsu, J.

    2015-05-01

    We perform structural analysis experiments on the chiral magnet Cr1/3NbS2, in which Cr3+ ions are inserted between hexagonal NbS2 layers. The noncentrosymmetrical nature of the inserted Cr3+ appears as a distorted CrS6 octahedron. Under the application of hydrostatic pressure, the lattice shrinks significantly along the c-axis rather than the a-axis. However, at a pressure P of approximately 3-4 GPa, a kink in the rate of decrease in the lattice parameters is observed, and the slight movement of a Nb atom along the c-axis brings about a decrease in the distortion of the CrS6 octahedron. This structural change qualitatively suggests a decrease in the strength of the Dzyaloshinskii-Moriya (D-M) interaction. Under hydrostatic pressure, the magnetic ordering temperature TC decreases, and dTC/dP exhibits a slight change at around 3 GPa. A series of experiments indicates that the change in the structural symmetry of the CrS6 octahedron influences the exchange network between Cr3+ ions as well as the D-M interaction.

  13. Interface structure and corrosion resistance of Ti/Cr nanomultilayer film prepared by magnetron sputtering on depleted uranium.

    PubMed

    Zhu, Shengfa; Wu, Yanping; Liu, Tianwei; Tang, Kai; Wei, Qiang

    2013-07-24

    Uranium has broadened utility in military and civilization; however, it is extremely apt to oxidation corrosion. Ti/Cr nanomultilayer film was prepared by unbalanced magnetron sputtering on the surface of depleted uranium (DU) to improve its corrosion resistance. The SEM morphologies show that Ti/Cr multilayer film has fine grain and high density. The Auger electron spectroscopy is used to investigate the depth profiles of Ti, U, and O elements of interface between DU substrate and the Ti interlayer, and indicates that the mutual diffusion area of U and Ti is formed at the interface. The TEM cross-section microstructure shows that the multilayer film has alternative Ti and Cr layers and form a perfect modulation structure. The modulation period is measured to be 4.8 nm in TEM morphology, the thickness ratio of Ti to Cr could be estimated to be about 1:2. Potentiodynamic polarization curves show that, after depositing Ti/Cr nanomultilayer film, the corrosion potential increases while the corrosion current density decreases obviously. The surface of Ti/Cr nanomultilayer film exhibits a pseudo passivation behavior when the polarization potential increased from -50 to 400 mV. It was indicated that, after depositing Ti/Cr nanomultilayer film by unbalanced magnetron sputtering, the corrosion resistance of DU was effectively improved.

  14. Irradiation-induced formation of a spinel phase at the FeCr/MgO interface

    SciTech Connect

    Xu, Yun; Yadav, Satyesh Kumar; Aguiar, Jeffery A.; Anderoglu, Osman; Baldwin, Jon Kevin; Wang, Yongqiang; Misra, Amit; Luo, Hongmei; Uberuaga, Blas P.; Li, Nan

    2015-04-27

    Oxide dispersion strengthened ferritic/martensitic alloys have attracted significant attention for their potential uses in future nuclear reactors and storage vessels, as the metal/oxide interfaces act as stable high-strength sinks for point defects while also dispersing helium. Here, in order to unravel the evolution and interplay of interface structure and chemistry upon irradiation in these types of materials, an atomically sharp FeCr/MgO interface was synthesized at 500 °C and separately annealed and irradiated with Ni3+ ions at 500 °C. After annealing, a slight enrichment of Cr atoms was observed at the interface, but no other structural changes were found. However, under irradiation, sufficient Cr diffuses across the interface into the MgO to form a Cr-enriched transition layer that contains spinel precipitates. First-principles calculations indicate that it is energetically favorable to incorporate Cr, but not Fe, substitutionally into MgO. Furthermore, our results indicate that irradiation can be used to form new phases and complexions at interfaces, which may have different radiation tolerance than the pristine structures.

  15. Irradiation-induced formation of a spinel phase at the FeCr/MgO interface

    DOE PAGES

    Xu, Yun; Yadav, Satyesh Kumar; Aguiar, Jeffery A.; ...

    2015-04-27

    Oxide dispersion strengthened ferritic/martensitic alloys have attracted significant attention for their potential uses in future nuclear reactors and storage vessels, as the metal/oxide interfaces act as stable high-strength sinks for point defects while also dispersing helium. Here, in order to unravel the evolution and interplay of interface structure and chemistry upon irradiation in these types of materials, an atomically sharp FeCr/MgO interface was synthesized at 500 °C and separately annealed and irradiated with Ni3+ ions at 500 °C. After annealing, a slight enrichment of Cr atoms was observed at the interface, but no other structural changes were found. However, undermore » irradiation, sufficient Cr diffuses across the interface into the MgO to form a Cr-enriched transition layer that contains spinel precipitates. First-principles calculations indicate that it is energetically favorable to incorporate Cr, but not Fe, substitutionally into MgO. Furthermore, our results indicate that irradiation can be used to form new phases and complexions at interfaces, which may have different radiation tolerance than the pristine structures.« less

  16. Robust half-metallic ferromagnetism in Cr3C2 MXene

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Li, Feng

    2017-07-01

    Herein we report an intrinsic ferromagnetism in two-dimensional layered Cr3C2 material. The calculations based on the density-functional theory reveal that in a single Cr3C2 unit three Cr atoms are ferrimagnetically coupled, while the coupling between Cr3C2 units are ferromagnetic with a magnetic moment of 3.9μB /unit . The energy difference between the ferromagnetic and antiferromagnetic configurations is larger than 344 meV per unit, indicating the observed ferromagnetic ordering is robust. Additionally, this ferromagnetic coupling can be enhanced under the external tensile strain. At the strain rising to 0.03, the Cr3C2 converts from metallic ferromagnet to half-metallic ferromagnet with the magnetic moment saturating to an integer value of 4.0μB /unit , and this half-metallic behavior can be maintained for larger strains. Our results highlight a new promising graphene-like half-metallic ferromagnetic material for nanoscale spintronic applications.

  17. CoCrMo metal-on-metal hip replacements.

    PubMed

    Liao, Yifeng; Hoffman, Emily; Wimmer, Markus; Fischer, Alfons; Jacobs, Joshua; Marks, Laurence

    2013-01-21

    After the rapid growth in the use of CoCrMo metal-on-metal hip replacements since the second generation was introduced circa 1990, metal-on-metal hip replacements have experienced a sharp decline in the last two years due to biocompatibility issues related to wear and corrosion products. Despite some excellent clinical results, the release of wear and corrosion debris and the adverse response of local tissues have been of great concern. There are many unknowns regarding how CoCrMo metal bearings interact with the human body. This perspective article is intended to outline some recent progresses in understanding wear and corrosion of metal-on-metal hip replacement both in vivo and in vitro. The materials, mechanical deformation, corrosion, wear-assisted corrosion, and wear products will be discussed. Possible adverse health effects caused by wear products will be briefly addressed, as well as some of the many open questions such as the detailed chemistry of corrosion, tribochemical reactions and the formation of graphitic layers. Nowadays we design almost routinely for high performance materials and lubricants for automobiles; humans are at least as important. It is worth remembering that a hip implant is often the difference between walking and leading a relatively normal life, and a wheelchair.

  18. Strain fields and electronic structure of antiferromagnetic CrN

    NASA Astrophysics Data System (ADS)

    Rojas, Tomas; Ulloa, Sergio E.

    2017-09-01

    We present a theoretical analysis of the role that strain plays on the electronic structure of chromium nitride (CrN) crystals. We use local spin-density approximation + U calculations to study the elastic constants, deformation potentials, and strain dependence of electron and hole masses near the fundamental gap. We consider the lowest energy antiferromagnetic models believed to describe CrN at low temperatures, and apply strain along different directions. We find relatively large deformation potentials for all models, and find increasing gaps for tensile strain along most directions. Most interestingly, we find that compressive strains should be able to close the relatively small indirect gap (≃100 meV) at moderate amplitudes ≃1.3 % . We also find large and anisotropic changes in the effective masses with strain, with principal axes closely related to the magnetic ordering of neighboring layers in the antiferromagnet. It would be interesting to consider the role that these effects may have on typical film growth on different substrates, and the possibility of monitoring optical and transport properties of thin films as strain is applied.

  19. CoCrMo Metal-on-Metal Hip Replacements

    PubMed Central

    Liao, Yifeng; Hoffman, Emily; Wimmer, Markus; Fischer, Alfons; Jacobs, Joshua; Marks, Laurence

    2012-01-01

    After the rapid growth in the use of CoCrMo metal-on-metal hip replacements since the second generation was introduced circa 1990, metal-on-metal hip replacements have experienced a sharp decline in the last two years due to biocompatibility issues related to wear and corrosion products. Despite some excellent clinical results, the release of wear and corrosion debris and the adverse response of local tissues have been of great concern. There are many unknowns regarding how CoCrMo metal bearings interact with the human body. This perspective article is intended to outline some recent progresses in understanding wear and corrosion of metal-on-metal hip replacement both in-vivo and in-vitro. The materials, mechanical deformation, corrosion, wear-assisted corrosion, and wear products will be discussed. Possible adverse health effects caused by wear products will be briefly addressed, as well as some of the many open questions such as the detailed chemistry of corrosion, tribochemical reactions and the formation of graphitic layers. Nowadays we design almost routinely for high performance materials and lubricants for automobiles; humans are at least as important. It is worth remembering that a hip implant is often the difference between walking and leading a relatively normal life, and a wheelchair. PMID:23196425

  20. Atomic-level structural and chemical analysis of Cr-doped Bi2Se3 thin films

    NASA Astrophysics Data System (ADS)

    Ghasemi, A.; Kepaptsoglou, D.; Collins-McIntyre, L. J.; Ramasse, Q.; Hesjedal, T.; Lazarov, V. K.

    2016-05-01

    We present a study of the structure and chemical composition of the Cr-doped 3D topological insulator Bi2Se3. Single-crystalline thin films were grown by molecular beam epitaxy on Al2O3 (0001), and their structural and chemical properties determined on an atomic level by aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy. A regular quintuple layer stacking of the Bi2Se3 film is found, with the exception of the first several atomic layers in the initial growth. The spectroscopy data gives direct evidence that Cr is preferentially substituting for Bi in the Bi2Se3 host. We also show that Cr has a tendency to segregate at internal grain boundaries of the Bi2Se3 film.

  1. Successive reactive liquid flow episodes in a layered intrusion (Unit 9, Rum Eastern Layered Intrusion, Scotland)

    NASA Astrophysics Data System (ADS)

    Leuthold, Julien; Blundy, Jon; Holness, Marian

    2014-05-01

    We will present a detailed microstructural and geochemical study of reactive liquid flow in Unit 9 of the Rum Eastern Layered Intrusion. In the study region, Unit 9 comprises an underlying lens-like body of peridotite overlain by a sequence of troctolite and gabbro (termed allivalite), with some local and minor anorthosite. The troctolite is separated from the overlying gabbro by a distinct, sub-horizontal, undulose horizon (the major wavy horizon). Higher in the stratigraphy is another, similar, horizon (the minor wavy horizon) that separates relatively clinopyroxene-poor gabbro from an overlying gabbro. To the north of the peridotite lens, both troctolite and gabbro grade into poikilitic gabbro. Clinopyroxene habit in the allivalite varies from thin rims around olivine in troctolite, to equigranular crystals in gabbro, to oikocrysts in the poikilitic gabbro. The poikilitic gabbros contain multiple generations of clinopyroxene, with Cr-rich (~1.1 wt.% Cr2O3), anhedral cores with moderate REE concentrations (core1) overgrown by an anhedral REE-depleted second generation with moderate Cr (~0.7 wt.% Cr2O3) (core2). These composite cores are rimmed by Cr-poor (~0.2 wt.% Cr2O3) and REE-poor to moderate clinopyroxene. We interpret these microstructures as a consequence of two separate episodes of partial melting triggered by the intrusion of hot olivine-phyric picrite to form the discontinuous lenses that comprise the Unit 9 peridotite. Loss of clinopyroxene-saturated partial melt from the lower part of the allivalite immediately following the early stages of sill intrusion resulted in the formation of clinopyroxene-poor gabbro. The spatial extent of clinopyroxene loss is marked by the minor wavy horizon. A further partial melting event stripped out almost all clinopyroxene from the lowest allivalite, to form a troctolite, with the major wavy horizon marking the extent of melting during this second episode. The poikilitic gabbro formed from clinopyroxene-saturated melt

  2. Infrared spectra of giant magnetoresistance Fe/Cr/Fe trilayers

    SciTech Connect

    Uran, S.; Grimsditch, M.; Fullerton, E.E.; Bader, S.D.

    1998-02-01

    Magnetic-field-induced changes in infrared transmission and reflection from Fe/Cr/Fe trilayers are reported. Changes as large as {approx}1{percent} (compared with 4{endash}5{percent} changes in resistivity) are observed around 2000cm{sup {minus}1}, and the magnitude of the effect decreases monotonically to zero at {approx}5000cm{sup {minus}1}. The field dependence mimics that of the resistivity, and saturates at the same field at which the magnetization of the two Fe layers align parallel to each other. A simple model, which estimates the frequency dependence of the resistivity and includes the frequency dependence of the skin depth, produces semiquantitative agreement with experiment. {copyright} {ital 1998} {ital The American Physical Society}

  3. Novel reduction of Cr(VI) from wastewater using a naturally derived microcapsule loaded with rutin-Cr(III) complex.

    PubMed

    Qi, Yun; Jiang, Meng; Cui, Yuan-Lu; Zhao, Lin; Liu, Shejiang

    2015-03-21

    The harmfulness of carcinogenic hexavalent chromium (Cr(VI)) is dramatically decreased when Cr(VI) is reduced to trivalent chromium (Cr(III)). Rutin, a natural flavonoid, exhibits excellent antioxidant activity by coordinating metal ions. In this study, a complex containing rutin and Cr(III) (rutin-Cr(III)) was synthesized and characterized. The rutin-Cr(III) complex was much easier to reduce than rutin. The reduction of the rutin-Cr(III) complex was highly pH-dependent, with 90% of the Cr(VI) being reduced to Cr(III) in 2h under optimal conditions. A biodegradable, sustained-release system encapsulating the rutin-Cr(III) complex in a alginate-chitosan microcapsule (rutin-Cr(III) ACMS) was also evaluated, and the reduction of Cr(VI) was assessed. This study also demonstrated that low-pH solutions increased the reduction rate of Cr(VI). The environmentally friendly microcapsules can reduce Cr(VI) for prolonged periods of time and can easily biodegrade after releasing the rutin-Cr(III) complex. Given the excellent performance of rutin-Cr(III) ACMS, the microcapsule system represents an effective system for the remediation of Cr(VI) pollution.

  4. Reduction of Cr(VI) to Cr(III) by wetland plants: Potential for in situ heavy metal detoxification

    SciTech Connect

    Lytle, C.M.; Qian, J.H.; Hansen, D.; Zayed, A.; Terry, N.; Lytle, F.W.; Yang, N.

    1998-10-15

    Reduction of heavy metals in situ by plants may be a useful detoxification mechanism for phytoremediation. Using X-ray spectroscopy, the authors show that Eichhornia crassipes (water hyacinth), supplied with Cr(VI) in nutrient culture, accumulated nontoxic Cr(III) in root and shoot tissues. The reduction of Cr(VI) to Cr(III) appeared to occur in the fine lateral roots. The Cr(III) was subsequently translocated to leaf tissues. Extended X-ray absorption fine structure of Cr in leaf and petiole differed when compared to Cr in roots. In roots, Cr(III) was hydrated by water, but in petiole and more so in leaf, a portion of the Cr(III) may be bound to oxalate ligands. This suggests that E. crassipes detoxified Cr(VI) upon root uptake and transported a portion of the detoxified Cr to leaf tissues. Cr-rich crystalline structures were observed on the leaf surface. The chemical species of Cr in other plants, collected from wetlands that contained Cr(VI)-contaminated wastewater, was also found to be Cr(III). The authors propose that this plant-based reduction of Cr(VI) by E. crassipes has the potential to be used for the in situ detoxification of Cr(VI)-contaminated wastestreams.

  5. Cr/Sc multilayer radiator for parametric EUV radiation in “water-window” spectral range

    NASA Astrophysics Data System (ADS)

    Uglov, S. R.; Kaplin, V. V.; Kubankin, A. S.; André, J.-M.; Le Guen, K.; Jonnard, Ph; de Rossi, S.; Meltchakov, E.; Delmotte, F.

    2016-07-01

    The results of experimental investigation of parametric radiation generated by 5.7 MeV electrons in a multilayer structure consisting of 100 Cr/Sc bi-layers deposited on a Si3N4 membrane are presented. The multilayer structure was specially created for generation of parametric radiation with photon energy in “water-window” spectral range. First test measurements of angular distributions of radiation have been done and discussed.

  6. LETTER TO THE EDITOR: A CrO2-based magnetic tunnel junction

    NASA Astrophysics Data System (ADS)

    Barry, A.; Coey, J. M. D.; Viret, M.

    2000-02-01

    A tunnel junction based on the half-metallic oxide CrO2 uses a native oxide barrier layer and a cobalt top electrode. The I :V characteristic is fitted to the Simmons model with icons/Journals/Common/phi" ALT="phi" ALIGN="TOP"/> = 0.76 eV and t = 2.0 nm. The magnetoresistance is positive with icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> R /R = 1.0% at 77 K.

  7. First-principles study of point defects in an fcc Fe-10Ni-20Cr model alloy

    NASA Astrophysics Data System (ADS)

    Piochaud, J. B.; Klaver, T. P. C.; Adjanor, G.; Olsson, P.; Domain, C.; Becquart, C. S.

    2014-01-01

    The influence of the local environment on vacancy and self-interstitial formation energies has been investigated in a face-centered-cubic (fcc) Fe-10Ni-20Cr model alloy by analyzing an extensive set of first-principle calculations based on density functional theory. Chemical disorder has been considered by designing special quasirandom structures and four different collinear magnetic structures have been investigated in order to determine a relevant reference state to perform point defect calculations at 0 K. Two different convergence methods have also been used to characterize the importance of the method on the results. Although our fcc Fe-10Ni-20Cr would be better represented in terms of applications by the paramagnetic state, we found that the antiferromagnetic single-layer magnetic structure was the most stable at 0 K and we chose it as a reference state to determine the point defect properties. Point defects have been introduced in this reference state, i.e., vacancies and Fe-Fe, Fe-Ni, Fe-Cr, Cr-Cr, Ni-Ni, and Ni-Cr dumbbell interstitials oriented either parallel or perpendicular to the single layer antiferromagnetic planes. Each point defect studied was introduced at different lattice sites to consider a sufficient variety of local environments and analyze its influence on the formation energy values. We have estimated the point defect formation energies with linear regressions using variables which describe the local environment surrounding the point defects. The number and the position of Ni and Cr first nearest neighbors to the point defects were found to drive the evolution of the formation energies. In particular, Ni is found to decrease and Cr to increase the vacancy formation energy of the model alloy, while the opposite trends are found for the dumbbell interstitials. This study suggested that, to a first approximation, the first nearest atoms to point defects can provide reliable estimates of point defect formation energies.

  8. 1-Quasiconformal Mappings and CR Mappings on Goursat Groups

    PubMed Central

    Wu, Qing Yan; Fu, Zun Wei

    2014-01-01

    We show that 1-quasiconformal mappings on Goursat groups are CR or anti-CR mappings. This can reduce the determination of 1-quasiconformal mappings to the determination of CR automorphisms of CR manifolds, which is a fundamental problem in the theory of several complex variables. PMID:24895673

  9. 1-Quasiconformal mappings and CR mappings on Goursat groups.

    PubMed

    Wu, Qing Yan; Fu, Zun Wei

    2014-01-01

    We show that 1-quasiconformal mappings on Goursat groups are CR or anti-CR mappings. This can reduce the determination of 1-quasiconformal mappings to the determination of CR automorphisms of CR manifolds, which is a fundamental problem in the theory of several complex variables.

  10. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al Part II: Scale Microstructures

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. Details of the oxidation kinetics of these alloys were discussed in Part I. This paper analyzes the microstructures of the scale and its composition in an attempt to elucidate the oxidation mechanisms in these alloys. The scales formed on Cu-17%Cr specimens oxidized between 773 and 973 K consisted of external CuO and subsurface Cu2O layers. The total thickness of these scales varied from about 10 m at 773 K to about 450 m at 973 K. In contrast, thin scales formed on Cu-17%Cr-5%Al alloys oxidized between 773 and 1173 K. The exact nature of these scales could not be determined by x-ray diffraction but energy dispersive spectroscopy analyses were used to construct a scale composition map. Phenomenological oxidation mechanisms are proposed for the two alloys.

  11. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al. Part 2; Scale Microstructures

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. Details of the oxidation kinetics of these alloys were discussed in Part I. This paper analyzes the microstructures of the scale and its composition in an attempt to elucidate the oxidation mechanisms in these alloys. The scales formed on Cu-17%Cr specimens oxidized between 773 and 973 K consisted of external CuO and subsurface Cu2O layers. The total thickness of these scales varied from about 10 m at 773 K to about 450 m at 973 K. In contrast, thin scales formed on Cu-17%Cr-5%Al alloys oxidized between 773 and 1173 K. The exact nature of these scales could not be determined by x-ray diffraction but energy dispersive spectroscopy analyses were used to construct a scale composition map. Phenomenological oxidation mechanisms are proposed for the two alloys.

  12. Effect of aluminizing treatment on the oxidation properties of 12Cr heat resisting steel

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Hwan; Wang, Jei-Pil; Kang, Chang-Yong

    2011-12-01

    In order to investigate the effect of aluminization on the oxidation properties of 12Cr martensitic heat resisting steel, a specimen was prepared by forging after centrifugal casting. After aluminizing treatment under various conditions, scanning electron microscopy observation, and hardness, line profile and x-ray diffraction analysis of the alloy layer were performed. The results confirmed that the thickness of the layer of Al13Fe4, with a Vickers hardness of over 880, increased with increasing aluminizing temperature and time. Moreover, it was concluded from the results of the oxidation experiment that the oxidation properties of the aluminized specimen were improved by up to approximately 30 %.

  13. Sensitivity of a global climate model to the critical Richardson number in the boundary layer parameterization

    SciTech Connect

    Zhang, Ning; Liu, Yangang; Gao, Zhiqiu; Li, Dan

    2015-04-27

    The critical bulk Richardson number (Ricr) is an important parameter in planetary boundary layer (PBL) parameterization schemes used in many climate models. This paper examines the sensitivity of a Global Climate Model, the Beijing Climate Center Atmospheric General Circulation Model, BCC_AGCM to Ricr. The results show that the simulated global average of PBL height increases nearly linearly with Ricr, with a change of about 114 m for a change of 0.5 in Ricr. The surface sensible (latent) heat flux decreases (increases) as Ricr increases. The influence of Ricr on surface air temperature and specific humidity is not significant. The increasing Ricr may affect the location of the Westerly Belt in the Southern Hemisphere. Further diagnosis reveals that changes in Ricr affect stratiform and convective precipitations differently. Increasing Ricr leads to an increase in the stratiform precipitation but a decrease in the convective precipitation. Significant changes of convective precipitation occur over the inter-tropical convergence zone, while changes of stratiform precipitation mostly appear over arid land such as North Africa and Middle East.

  14. Adsorption of H2, Cl2, and HCl molecules on α-Cr2O3(0001) surfaces: A density functional theory investigation

    NASA Astrophysics Data System (ADS)

    Nigussa, K. N.; Nielsen, K. L.; Borck, Ø.; Støvneng, J. A.

    2016-11-01

    Density functional theory calculations show that H2, Cl2, and HCl molecules chemisorb dissociatively on the Cr2O3(0001) surface, which can be terminated by Cr atoms, Chromyl groups (Cr=O), or O atoms. It is investigated that these molecules energetically prefer to adsorb dissociatively than in molecular form. Several dissociative adsorption sites have been considered for all the molecules on all the differently terminated surfaces and the corresponding adsorption energies are calculated. Dissociation energy barriers are estimated with the nudged elastic band method. Notable results from the dissociative adsorptions of Cl2 and H2 are the formation of a CrCl2 complex on the Cr terminated surface, and H2O complex on the O and the Cr=O terminated surfaces, and a H2O layer on the Cr=O terminated surface. Dissociative adsorption of HCl is less favored on the Cr=O and O terminated surfaces than on the Cr terminated surface.

  15. Increasing the structural complexity of chromium(IV) oxides by high-pressure and high-temperature reactions of CrO2.

    PubMed

    Castillo-Martínez, E; Arévalo-López, A M; Ruiz-Bustos, R; Alario-Franco, M A

    2008-10-06

    This work presents an overview of a series of increasingly complex oxides synthesized from CrO 2, under high-pressure and high-temperature conditions, having Cr (4+) in octahedral coordination. Although the emphasis is on the structure and microstructure of the compounds as obtained from X-ray diffraction and transmission electron microscopy and diffraction, attention is also given to their interesting electronic and magnetic properties. The study is complemented with an electron energy loss spectroscopic analysis of the different phases. These are the cubic perovskite SrCrO 3, the orthorhombic perovskite CaCrO 3, the solid solution Sr 1-xCa xCrO 3, the Ruddlesden-Popper-type Sr 3Cr 2O 7, the family CrSr 2RECu 2O 8 (RE = rare earth), a compositionally modulated perovskite "PbCrO 3", and the misfit layer oxide SrO 2[CrO 2] 1.85.

  16. Progressive aqueous alteration of CR carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Harju, Ellen R.; Rubin, Alan E.; Ahn, Insu; Choi, Byeon-Gak; Ziegler, Karen; Wasson, John T.

    2014-08-01

    The wide range in the degree of aqueous alteration of CR chondrites prompted us to formulate a numerical sequence for these rocks that ranges from petrologic type 2.0 to 2.8. (Hypothetical CR3.0 chondrites should be completely free of aqueous alteration effects.) About 70% of CR chondrites are slightly altered, type-2.8 rocks that exhibit heterogeneous alteration; these meteorites contain moderately abundant metallic Fe-Ni, no magnetite, and generally, a few chondrules with clear glassy mesostases. None of the chondrules in these rocks shows evidence of alteration of mafic silicate phenocrysts, but several chondrules are surrounded by phyllosilicate-rich rims that appear “smooth” when viewed by back-scattered-electron imaging. Matrix regions in slightly altered CR chondrites contain high S (∼3 wt.%), but some matrix patches in the same thin sections record alteration effects and contain appreciably less S (<1.5 wt.%). In CR chondrites that have been more-significantly altered (e.g., Renazzo and Al Rais), metallic Fe-Ni has been partially replaced by magnetite ± sulfide; mafic silicates have been partly altered to phyllosilicates, particularly along edges, fractures and twin boundaries. One of the most-altered CR chondrites (type-2.0 GRO 95577) contains abundant magnetite, additional oxide phases, iron carbonate, only very rare metallic Fe-Ni and essentially no mafic silicate grains. The whole-rock O-isotopic compositions of CR chondrites correlate with the degree of aqueous alteration: Δ17O ranges from ∼-2.6‰ in type-2.8 samples to ∼-0.4‰ in type 2.0.

  17. Residual stresses in oxide scale formed on Fe-17Cr stainless steel

    NASA Astrophysics Data System (ADS)

    Li, Ning; Xiao, Ji; Prud'homme, Nathalie; Chen, Zhe; Ji, Vincent

    2014-10-01

    The purpose of this work was to investigate residual stresses in the oxide scale formed on ferritic stainless steel, which is proposed to be used as interconnector in the planar solid oxide fuel cells (SOFCs). The oxidation of the alloy has been conducted at 700 °C, 800 °C and 900 °C for 12-96 h by thermal gravimetric analysis (TGA) system. The oxide surface morphology, cross-section microstructure and the chemical composition of the oxide scale were studied after oxidation, and the residual stresses distribution of the oxide scale were determined at room temperature. It has been found that the oxide scale composed of an inner Cr2O3 layer and an outer Mn1.5Cr1.5O4 spinel layer, the residual stresses in both oxide layers are compressive and the growth stresses plays an important role. The competition of the stresses generation and relaxation during oxidation and cooling affects the residual stresses level. The evolution of residual stresses in the two layers is different according to the oxidation temperature, and the stresses in the two layers are interactional.

  18. Compatibility of a V-15Cr-5Ti alloy with SiC at high temperatures

    NASA Astrophysics Data System (ADS)

    Kurokawa, Kazuya; Aota, Kin-ya; Takahashi, Heishichiro

    1991-03-01

    To clarify the chemical compatibility between a V-15Cr-5Ti alloy and silicon carbide, the extent of reaction, the reaction products and the structure of reaction layer were studied at temperatures ranging from 1423 to 1523 K in an argon gas stream. The reaction layers formed in the interfacial reactions consisted of the suicides, V 5Si 3 and V 3Si, and minor amounts of TiC over the temperature range, and a remarkable internal titanium carbide was also observed. The enrichment of chromium in the alloy matrix adjacent to the reaction layer was caused by the preferential diffusion of vanadium toward the SiC side. The growth of reaction layers followed a parabolic rate law. The parabolic growth rate constant was expressed by kp( m2s-1) = 1.8 × 10 -8exp(-197 kJmol-1/ RT).

  19. Cross-track Infrared Sounder (CrIS) satellite observations of tropospheric ammonia

    NASA Astrophysics Data System (ADS)

    Shephard, M. W.; Cady-Pereira, K. E.

    2015-03-01

    Observations of atmospheric ammonia are important in understanding and modelling the impact of ammonia on both human health and the natural environment. We present a detailed description of a robust retrieval algorithm that demonstrates the capabilities of utilizing Cross-track Infrared Sounder (CrIS) satellite observations to globally retrieval ammonia concentrations. Initial ammonia retrieval results using both simulated and real observations show that (i) CrIS is sensitive to ammonia in the boundary layer with peak vertical sensitivity typically around ~ 850-750 hPa (~ 1.5 to 2.5 km), which can dip down close to the surface (~ 900 hPa) under ideal conditions, (ii) it has a minimum detection limit of ~ 1 ppbv (peak profile value typically at the surface), and (iii) the information content can vary significantly with maximum values of ~ 1 degree-of-freedom for signal. Comparisons of the retrieval with simulated "true" profiles show a small positive retrieval bias of 6% with a standard deviation of ~ ± 20% (ranging from ± 12 to ± 30% over the vertical profile). Note that these uncertainty estimates are considered as lower bound values as no potential systematic errors are included in the simulations. The CrIS NH3 retrieval applied over the Central Valley in CA, USA, demonstrates that CrIS correlates well with the spatial variability of the boundary layer ammonia concentrations seen by the nearby Quantum Cascade-Laser (QCL) in situ surface and the Tropospheric Emission Spectrometer (TES) satellite observations as part of the DISCOVER-AQ campaign. The CrIS and TES ammonia observations show quantitatively similar retrieved boundary layer values that are often within the uncertainty of the two observations. Also demonstrated is CrIS's ability to capture the expected spatial distribution in the ammonia concentrations, from elevated values in the Central Valley from anthropogenic agriculture emissions, to much lower values in the unpolluted or clean surrounding

  20. Study of Different Variants of Mo Enzyme crARC and the Interaction with Its Partners crCytb5-R and crCytb5-1.

    PubMed

    Chamizo-Ampudia, Alejandro; Galvan, Aurora; Fernandez, Emilio; Llamas, Angel

    2017-03-21

    The mARC (mitochondrial Amidoxime Reducing Component) proteins are recently discovered molybdenum (Mo) Cofactor containing enzymes. They are involved in the reduction of several N-hydroxylated compounds (NHC) and nitrite. Some NHC are prodrugs containing an amidoxime structure or mutagens such as 6-hydroxylaminopurine (HAP). We have studied this protein in the green alga Chlamydomonas reinhardtii (crARC). Interestingly, all the ARC proteins need the reducing power supplied by other proteins. It is known that crARC requires a cytochrome b₅ (crCytb5-1) and a cytochrome b₅ reductase (crCytb5-R) that form an electron transport chain from NADH to the substrates. Here, we have investigated NHC reduction by crARC, the interaction with its partners and the function of important conserved amino acids. Interactions among crARC, crCytb5-1 and crCytb5-R have been studied by size-exclusion chromatography. A protein complex between crARC, crCytb5-1 and crCytb5-R was identified. Twelve conserved crARC amino acids have been substituted by alanine by in vitro mutagenesis. We have determined that the amino acids D182, F210 and R276 are essential for NHC reduction activity, R276 is important and F210 is critical for the Mo Cofactor chelation. Finally, the crARC C-termini were shown to be involved in protein aggregation or oligomerization.

  1. Study of Different Variants of Mo Enzyme crARC and the Interaction with Its Partners crCytb5-R and crCytb5-1

    PubMed Central

    Chamizo-Ampudia, Alejandro; Galvan, Aurora; Fernandez, Emilio; Llamas, Angel

    2017-01-01

    The mARC (mitochondrial Amidoxime Reducing Component) proteins are recently discovered molybdenum (Mo) Cofactor containing enzymes. They are involved in the reduction of several N-hydroxylated compounds (NHC) and nitrite. Some NHC are prodrugs containing an amidoxime structure or mutagens such as 6-hydroxylaminopurine (HAP). We have studied this protein in the green alga Chlamydomonas reinhardtii (crARC). Interestingly, all the ARC proteins need the reducing power supplied by other proteins. It is known that crARC requires a cytochrome b5 (crCytb5-1) and a cytochrome b5 reductase (crCytb5-R) that form an electron transport chain from NADH to the substrates. Here, we have investigated NHC reduction by crARC, the interaction with its partners and the function of important conserved amino acids. Interactions among crARC, crCytb5-1 and crCytb5-R have been studied by size-exclusion chromatography. A protein complex between crARC, crCytb5-1 and crCytb5-R was identified. Twelve conserved crARC amino acids have been substituted by alanine by in vitro mutagenesis. We have determined that the amino acids D182, F210 and R276 are essential for NHC reduction activity, R276 is important and F210 is critical for the Mo Cofactor chelation. Finally, the crARC C-termini were shown to be involved in protein aggregation or oligomerization. PMID:28335548

  2. Correlation between bulk- and surface chemistry of Cr-tanned leather and the release of Cr(III) and Cr(VI).

    PubMed

    Hedberg, Yolanda S; Lidén, Carola; Odnevall Wallinder, Inger

    2014-09-15

    About 1-3% of the adult general population in Europe is allergic to chromium (Cr). The assessment of the potential release of Cr(III) and Cr(VI) from leather is hence important from a human health and environmental risk perspective. The Cr(VI) content in leather was recently restricted in the European Union. The aim of this study was to assess possible correlations between the bulk and surface chemistry of leather, released Cr(III) and Cr(VI), and capacities of co-released leather specific species to reduce and complex released Cr. Four differently tanned leathers were characterized by scanning electron microscopy with energy dispersive spectroscopy, X-ray photoelectron spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and the diphenylcarbazide colorimetric method. Their characteristics were compared with results on Cr(III) and Cr(VI) release into artificial sweat (ASW, pH<6.5) and phosphate buffer (PB, pH 7.5-8.0), measured by means of spectrophotometry and atomic absorption spectroscopy. Co-released leather-specific species were shown to reduce Cr(VI), both in ASW and in PB. Their reduction capacities correlated with findings of the surface content of Cr and of released Cr. Leather samples without this capacity, and with less aromatic surface groups visible by ATR-FTIR, revealed Cr(VI) both at the surface and in solution (PB). Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Cr Stable Isotopes in Snake River Plain Aquifer Groundwater: Evidence for Natural Reduction of Dissolved Cr(VI)

    SciTech Connect

    Amanda L. Raddatz; Thomas M. Johnson; Travis L. McLing

    2011-01-01

    At Idaho National Laboratory, Cr(VI) concentrations in a groundwater plume once exceeded regulatory limits in some monitoring wells but have generally decreased over time. This study used Cr stable isotope measurements to determine if part of this decrease resulted from removal of Cr(VI) via reduction to insoluble Cr(III). Although waters in the study area contain dissolved oxygen, the basalt host rock contains abundant Fe(II) and may contain reducing microenvironments or aerobic microbes that reduce Cr(VI). Insomecontaminated locations, 53Cr/52Cr ratios are close to that of the contaminant source, indicating a lack of Cr(VI) reduction. In other locations, ratios are elevated. Part of this shift may be caused by mixing with natural background Cr(VI), which is present at low concentrations but insomelocations has elevated 53Cr/52Cr.Somecontaminated wells have 53Cr/52Cr ratios greater than the maximum attainable by mixing between the inferred contaminant and the range of natural background observed in several uncontaminated wells, suggesting that Cr(VI) reduction has occurred. Definitive proof of reduction would require additional evidence. Depth profiles of 53Cr/52Cr suggest that reduction occurs immediately below the water table, where basalts are likely least weathered and most reactive, and is weak or nonexistent at greater depth.

  4. Real space probe of short-range interaction between Cr in a ferromagnetic semiconductor ZnCrTe.

    PubMed

    Kanazawa, Ken; Nishimura, Taku; Yoshida, Shoji; Shigekawa, Hidemi; Kuroda, Shinji

    2014-12-21

    The short-range interaction between Cr atoms was directly examined by scanning tunneling microscopy measurements on a Zn(0.95)Cr(0.05)Te film. Our measurements revealed that a Cr atom formed a localized state within the bandgap of ZnTe and this state was broadened for a pair of Cr atoms within a distance of ∼ 1 nm.

  5. Air Force Successes and Challenges in Cr(VI) Elimination

    DTIC Science & Technology

    2011-05-10

    Cr(VI) has been used for 40+ years and is an excellent corrosion inhibitor • Cr(VI) compounds are highly toxic • National & International...use of Cr(VI) • Suitable Substitutes for Specific Applications are being Actively Sought 3 Chrome Reduction Plan Description: • Reduce Cr(VI) and...ion vapor deposited Al, and Cd coatings 2. Use trivalent chromium [Cr(III)] conversion coating (CC) on Dipsol IZ- C17+ zinc- nickel (Zn-Ni) coating

  6. Local A‐Site Layering in Rare‐Earth Orthochromite Perovskites by Solution Synthesis

    PubMed Central

    Daniels, Luke M.; Kashtiban, Reza J.; Kepaptsoglou, Demie; Ramasse, Quentin M.; Sloan, Jeremy

    2016-01-01

    Abstract Cation size effects were examined in the mixed A‐site perovskites La0.5Sm0.5CrO3 and La0.5Tb0.5CrO3 prepared through both hydrothermal and solid‐state methods. Atomically resolved electron energy loss spectroscopy (EELS) in the transmission electron microscope shows that while the La and Sm cations are randomly distributed, increased cation‐radius variance in La0.5Tb0.5CrO3 results in regions of localised La and Tb layers, an atomic arrangement exclusive to the hydrothermally prepared material. Solid‐state preparation gives lower homogeneity resulting in separate nanoscale regions rich in La3+ and Tb3+. The A‐site layering in hydrothermal La0.5Tb0.5CrO3 is randomised upon annealing at high temperature, resulting in magnetic behaviour that is dependent on synthesis route. PMID:27727487

  7. Materials and processing aspects of CoCrTa/Cr longitudinal recording media. 2: Microstructure

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Wong, B. Y.; Laughlin, D. E.

    1994-12-01

    In the CoCrTa/Cr system, it has been postulated that segregation of nonmagnetic constituents to grain boundaries is responsible for the low noise and high coercivity. However, direct experimental evidence is still lacking. In this investigation, we have carried out microstructural studies using transmission electron microscopy (TEM) and atomic resolution transmission electron microscopy (ARTEM) of CoCrTa/Cr films produced under varying processing conditions. We found that the stacking fault density and the degree of crystalline perfection between the faults is most important in increasing the coercivity and improving signal-noise properties as indicated by Delta M measurement. High substrate temperatures and high Cr and Ta concentrations promote the occurrence of the stacking faults in the films. In conjunction with ARTEM results, we propose that these faults provide possible sites for elemental segregation which is partially responsible for reducing the magnetic coupling among the unfaulted hcp regions in the CoCrTa films. We also provide microstructural evidence supporting the picture that the high-frequency mechanical texture lines break the intergranular coupling normal to the texture lines resulting in circumferential anisotropy. Grains are crystallographically correlated to form clusters between the texture lines but such correlation is broken up by the texture lines. This gives rise to an effective shape-induced anisotropy. We believe that the cluster size plays a more important role than does the grain size in determining the magnetic properties of CoCrTa/Cr media.

  8. Burning Graphene Layer-by-Layer

    NASA Astrophysics Data System (ADS)

    Ermakov, Victor A.; Alaferdov, Andrei V.; Vaz, Alfredo R.; Perim, Eric; Autreto, Pedro A. S.; Paupitz, Ricardo; Galvao, Douglas S.; Moshkalev, Stanislav A.

    2015-06-01

    Graphene, in single layer or multi-layer forms, holds great promise for future electronics and high-temperature applications. Resistance to oxidation, an important property for high-temperature applications, has not yet been extensively investigated. Controlled thinning of multi-layer graphene (MLG), e.g., by plasma or laser processing is another challenge, since the existing methods produce non-uniform thinning or introduce undesirable defects in the basal plane. We report here that heating to extremely high temperatures (exceeding 2000 K) and controllable layer-by-layer burning (thinning) can be achieved by low-power laser processing of suspended high-quality MLG in air in “cold-wall” reactor configuration. In contrast, localized laser heating of supported samples results in non-uniform graphene burning at much higher rates. Fully atomistic molecular dynamics simulations were also performed to reveal details of oxidation mechanisms leading to uniform layer-by-layer graphene gasification. The extraordinary resistance of MLG to oxidation paves the way to novel high-temperature applications as continuum light source or scaffolding material.

  9. Burning Graphene Layer-by-Layer

    PubMed Central

    Ermakov, Victor A.; Alaferdov, Andrei V.; Vaz, Alfredo R.; Perim, Eric; Autreto, Pedro A. S.; Paupitz, Ricardo; Galvao, Douglas S.; Moshkalev, Stanislav A.

    2015-01-01

    Graphene, in single layer or multi-layer forms, holds great promise for future electronics and high-temperature applications. Resistance to oxidation, an important property for high-temperature applications, has not yet been extensively investigated. Controlled thinning of multi-layer graphene (MLG), e.g., by plasma or laser processing is another challenge, since the existing methods produce non-uniform thinning or introduce undesirable defects in the basal plane. We report here that heating to extremely high temperatures (exceeding 2000 K) and controllable layer-by-layer burning (thinning) can be achieved by low-power laser processing of suspended high-quality MLG in air in “cold-wall” reactor configuration. In contrast, localized laser heating of supported samples results in non-uniform graphene burning at much higher rates. Fully atomistic molecular dynamics simulations were also performed to reveal details of oxidation mechanisms leading to uniform layer-by-layer graphene gasification. The extraordinary resistance of MLG to oxidation paves the way to novel high-temperature applications as continuum light source or scaffolding material. PMID:26100466

  10. Calibration of CR-39 with monoenergetic protons

    NASA Astrophysics Data System (ADS)

    Xiaojiao, Duan; Xiaofei, Lan; Zhixin, Tan; Yongsheng, Huang; Shilun, Guo; Dawei, Yang; Naiyan, Wang

    2009-10-01

    Calibration of solid state nuclear track detector CR-39 was carried out with very low-energy monoenergetic protons of 20-100 keV from a Cockcroft Walton accelerator. To reduce the beam of the proton from the accelerator, a novel method was adopted by means of a high voltage pulse generator. The irradiation time of the proton beam on each CR-39 sheet was shortened to one pulse with duration of 100 ns, so that very separated proton tracks around 104 cm-2 can be irradiated and observed and measured on the surface of the CR-39 detector after etching. The variations of track diameter with etching time as well as with proton energy response curve has been carefully calibrated for the first time in this very low energy region. The calibration shows that the optical limit for the observation of etched tracks of protons in CR-39 is about or a little lower that 20 keV, above which the proton tracks can be seen clearly and the response curve can be used to distinguish protons from the other ions and determine the energy of the protons. The extension of response curve of protons from traditionally 20 to 100 keV in CR-39 is significant in retrieving information of protons produced in the studies of nuclear physics, plasma physics, ultrahigh intensity laser physics and laser acceleration.

  11. CrIS High Resolution Hyperspectral Radiances

    NASA Astrophysics Data System (ADS)

    Hepplewhite, C. L.; Strow, L. L.; Motteler, H.; Desouza-Machado, S. G.; Tobin, D. C.; Martin, G.; Gumley, L.

    2014-12-01

    The CrIS hyperspectral sounder flying on Suomi-NPPpresently has reduced spectral resolution in the mid-wave andshort-wave spectral bands due to truncation of the interferograms inorbit. CrIS has occasionally downlinked full interferograms for thesebands (0.8 cm max path, or 0.625 cm-1 point spacing) for a feworbits up to a full day. Starting Oct.1, 2014 CrIS will be commandedto download full interferograms continuously for the remainder of themission, although NOAA will not immediately produce high-spectralresolution Sensor Data Records (SDRs). Although the originalmotivation for operating in high-resolution mode was improved spectralcalibration, these new data will also improve (1) vertical sensitivityto water vapor, and (2) greatly increase the CrIS sensitivity tocarbon monoxide. This should improve (1) NWP data assimilation ofwater vapor and (2) provide long-term continuity of carbon monoxideretrievals begun with MOPITT on EOS-TERRA and AIRS on EOS-AQUA. Wehave developed a SDR algorithm to produce calibrated high-spectralresolution radiances which includes several improvements to theexisting CrIS SDR algorithm, and will present validation of thesehigh-spectral resolution radiances using a variety of techniques,including bias evaluation versus NWP model data and inter-comparisonsto AIRS and IASI using simultaneous nadir overpasses (SNOs). Theauthors are presently working to implement this algorithm for NASASuomi NPP Program production of Earth System Data Records.

  12. Cr precipitation in neutron irradiated industrial purity Fe-Cr model alloys

    NASA Astrophysics Data System (ADS)

    Kuksenko, V.; Pareige, C.; Pareige, P.

    2013-01-01

    The microstructure of four neutron irradiated Fe-Cr model alloys of industrial purity (Fe-2.5%Cr, Fe-5%Cr, Fe-9%Cr and Fe-12%Cr) has been characterized by atom probe tomography (APT). Irradiation has been performed at 300 °C up to 0.6 dpa in MTR reactor. APT investigations confirmed the enhanced precipitation of α' clusters as these clusters have only been observed in supersaturated model alloys. In addition a nonexpected family of clusters has been revealed due to irradiation induced segregation of impurities: NiSiPCr-enriched clusters. They might be associated to defect clusters invisible by transmission electron microscopy (TEM). A quantitative description of these objects is presented in this paper and results are compared with TEM and SANS data of the literature obtained on the same model alloy.

  13. Magnetic Properties of Cr-based Ternary Compound CrAlGe

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Soshi; Mitsui, Yoshifuru; Umetsu, Rie Y.; Koyama, Keiichi

    Structural and magnetic properties of Cr-based compound CrAlGe were investigated. The crystal structure was found to be an orthorhombic TiSi2-type with lattice parameters a = 0.4770 nm, b = 0.8254 nm and c = 0.8725 nm at room temperature. Magnetization curve of CrAlGe showed the ferromagnetic behavior. The saturation magnetic moment, spontaneous magnetic moment and Curie temperature of CrAlGe were determined to be 0.45 μB/f.u., 0.41 μB/f.u. and TC = 80 K, respectively. For the temperature T below 30 K, the decrease in the square of the spontaneous magnetization M0(T)2 was proportional to T2. However, for 30 CrAlGe is a weak itinerant electron ferromagnet.

  14. Structure and energetics of Cr(CO)6 and Cr(CO)5

    NASA Technical Reports Server (NTRS)

    Barnes, Leslie A.; Liu, Bowen; Lindh, Roland

    1993-01-01

    The geometric structures and energetics of Cr(CO)6 and Cr(CO)5 are determined at the modified coupled-pair functional, single and double excitation coupled-cluster (CCSD), and CCSD(T) levels of theory. For Cr(CO)6, the structure and force constants for the totally symmetric representation are in good agreement with experimental data once basis set constants are taken into account. In the largest basis set at the CCSD(T) level of theory, the total binding energy of CR(CO)6 is estimated at around 140 kcal/mol, or about 86 percent of the experimental value. In contrast, the first bond energy of Cr(CO)6 is very well described at the CCSD(T) level of theory, with the best estimated value of 38 kcal/mol being within the experimental uncertainty.

  15. Chromium sorption and Cr(VI) reduction to Cr(III) by grape stalks and yohimbe bark.

    PubMed

    Fiol, Núria; Escudero, Carlos; Villaescusa, Isabel

    2008-07-01

    In this work, two low cost sorbents, grape stalks and yohimbe bark wastes were used to remove Cr(VI) and Cr(III) from aqueous solutions. Batch experiments were designed to obtain Cr(VI) and Cr(III) sorption data. The mechanism of Cr(III) and Cr(VI) removal and Cr(VI) reduction to Cr(III) by the two vegetable wastes, has been investigated. Fourier transform infrared rays (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis on solid phase were performed to determine the main functional groups that might be involved in metal uptake and to confirm the presence of Cr(III) on the sorbent, respectively. Results put into evidence that both sorbents are able to reduce Cr(VI) to its trivalent form.

  16. Study of magnetism in Ni-Cr hardface alloy deposit on 316LN stainless steel using magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Kishore, G. V. K.; Kumar, Anish; Chakraborty, Gopa; Albert, S. K.; Rao, B. Purna Chandra; Bhaduri, A. K.; Jayakumar, T.

    2015-07-01

    Nickel base Ni-Cr alloy variants are extensively used for hardfacing of austenitic stainless steel components in sodium cooled fast reactors (SFRs) to avoid self-welding and galling. Considerable difference in the compositions and melting points of the substrate and the Ni-Cr alloy results in significant dilution of the hardface deposit from the substrate. Even though, both the deposit and the substrate are non-magnetic, the diluted region exhibits ferromagnetic behavior. The present paper reports a systematic study carried out on the variations in microstructures and magnetic behavior of American Welding Society (AWS) Ni Cr-C deposited layers on 316 LN austenitic stainless steels, using atomic force microscopy (AFM) and magnetic force microscopy (MFM). The phase variations of the oscillations of a Co-Cr alloy coated magnetic field sensitive cantilever is used to quantitatively study the magnetic strength of the evolved microstructure in the diluted region as a function of the distance from the deposit/substrate interface, with the spatial resolution of about 100 nm. The acquired AFM/MFM images and the magnetic property profiles have been correlated with the variations in the chemical compositions in the diluted layers obtained by the energy dispersive spectroscopy (EDS). The study indicates that both the volume fraction of the ferromagnetic phase and its ferromagnetic strength decrease with increasing distance from the deposit/substrate interface. A distinct difference is observed in the ferromagnetic strength in the first few layers and the ferromagnetism is observed only near to the precipitates in the fifth layer. The study provides a better insight of the evolution of ferromagnetism in the diluted layers of Ni-Cr alloy deposits on stainless steel.

  17. Femtosecond Cr:LiSAF and Cr:LiCAF lasers pumped by tapered diode lasers.

    PubMed

    Demirbas, Umit; Schmalz, Michael; Sumpf, Bernd; Erbert, Götz; Petrich, Gale S; Kolodziejski, Leslie A; Fujimoto, James G; Kärtner, Franz X; Leitenstorfer, Alfred

    2011-10-10

    We report compact, low-cost and efficient Cr:Colquiriite lasers that are pumped by high brightness tapered laser diodes. The tapered laser diodes provided 1 to 1.2 W of output power around 675 nm, at an electrical-to-optical conversion efficiency of about 30%. Using a single tapered diode laser as the pump source, we have demonstrated output powers of 500 mW and 410 mW together with slope efficiencies of 47% and 41% from continuous wave (cw) Cr:LiSAF and Cr:LiCAF lasers, respectively. In cw mode-locked operation, sub-100-fs pulse trains with average power between 200 mW and 250 mW were obtained at repetition rates around 100 MHz. Upon pumping the Cr:Colquiriite lasers with two tapered laser diodes (one from each side of the crystal), we have observed scaling of cw powers to 850 mW in Cr:LiSAF and to 650 mW in Cr:LiCAF. From the double side pumped Cr:LiCAF laser, we have also obtained ~220 fs long pulses with 5.4 nJ of pulse energy at 77 MHz repetition rate. These are the highest energy levels reported from Cr:Colquiriite so far at these repetition rates. Our findings indicate that tapered diodes in the red spectral region are likely to become the standard pump source for Cr:Colquiriite lasers in the near future. Moreover, the simplified pumping scheme might facilitate efficient commercialization of Cr:Colquiriite systems, bearing the potential to significantly boost applications of cw and femtosecond lasers in this spectral region (750-1000 nm).

  18. LaCrO{sub 3}-dispersed Cr for metallic interconnect of planar SOFC

    SciTech Connect

    Song, Rak-Hyun; Shin, Dong Ryul; Dokiya, Masayuki

    1996-12-31

    In the planar SOFC, the interconnect materials plays two roles as an electrical connection and as a gas separation plate in a cell stack. The interconnect materials must be chemically stable in reducing and oxidizing environments, and have high electronic conductivity, high thermal conductivity, matching thermal expansion with an electrolyte, high mechanical strength, good fabricability, and gas tightness. Lanthanum chromite so far has been mainly used as interconnect materials in planar SOFC. However, the ceramic materials are very weak in mechanical strength and have poor machining property as compared with metal. Also the metallic materials have high electronic conductivity and high thermal conductivity. Recently some researchers have studied metallic interconnects such as Al{sub 2}O{sub 3}/Inconel 600 cermet, Ni-20Cr coated with (LaSr)CoO{sub 3}, and Y{sub 2}O{sub 3-} or La{sub 2}O{sub 3}-dispersed Cr alloy. These alloys have still some problems because Ni-based alloys have high thermal expansion, the added Al{sub 2}O{sub 3}, Y{sub 2}O{sub 3} and La{sub 2}O{sub 3} to metals have no electronic conductivity, and the oxide formed on the surface of Cr alloy has high volatility. To solve these problems, in this study, LaCrO{sub 3}-dispersed Cr for metallic interconnect of planar SOFC was investigated. The LaCrO{sub 3}-dispersed Cr can be one candidate of metallic interconnect because LaCrO{sub 3} possesses electronic conductivity and Cr metal has relatively low thermal expansion. The content of 25 vol.% LaCrO{sub 3} Was selected on the basis of a theoretically calculated thermal expansion. The thermal expansion, electrical and oxidation properties were examined and the results were discussed as related to SOFC requirements.

  19. Cr-spinel/olivine and Cr-spinel/liquid nickel partition coefficients from natural samples

    NASA Astrophysics Data System (ADS)

    Li, Chusi; Ripley, Edward M.; Tao, Yan; Mathez, Edmond A.

    2008-03-01

    The Nernst partition coefficient of nickel ( DNi) between