Science.gov

Sample records for cr pb cu

  1. Microstructures of phased-in Cr-Cu/Cu/Au bump-limiting metallization and its soldering behavior with high Pb content and eutectic PbSn solders

    NASA Astrophysics Data System (ADS)

    Pan, G. Z.; Liu, Ann A.; Kim, H. K.; Tu, K. N.; Totta, Paul A.

    1997-11-01

    The microstructure of phased-in Cr-Cu/Cu/Au multilayer thin films and their solderability with high Pb-content PbSn solder (95/5%) and eutectic PbSn solder (37/63%) were studied by using cross-sectional transmission electron microscopy and scanning electron microscopy. We found that the phased-in Cr-Cu layer is intermixed and grains of both Cr and Cu are elongated along the growth direction. This special compositionally graded or functionally graded microstructure presents a lock-in effect of the Cr and Cu grains. It has succeeded in preventing the spalling of Cu3Sn in solder joints formed using the 95/5% solder, but failed in preventing the spalling of Cu6Sn5 in those formed using the eutectic solder. We suggest that the difference may be due to the different dissolution rates of the two compounds in the solders.

  2. Half-metallic antiferromagnetism in double perovskite BiPbCrCuO{sub 6}

    SciTech Connect

    Weng, Ke-Chuan; Wang, Y. K.

    2015-05-07

    The electronic structure and magnetic properties of BiPbCrCuO{sub 6} double perovskite are investigated based on first-principles density functional calculations with generalized gradient approximation (GGA) and GGA incorporated with Coulomb correlation interaction U (GGA + U). The results suggest the half-metallic (HM) and antiferromagnetic (AFM) properties of BiPbCrCuO{sub 6} double perovskite. The HM-AFM property of the double perovskite is caused by the double-exchange mechanism between neighboring Cr{sup 5+}(t{sub 2g}{sup 1}↓) and Cu{sup 2+}(t{sub 2g}{sup 3}↑t{sub 2g}{sup 3}↓e{sub g}{sup 2}↑e{sub g}↓) via the intermediate O{sup 2−}(2s{sup 2}2p{sup 6}) ion.

  3. Sorption of Cu, Pb and Cr on Na-montmorillonite: competition and effect of major elements.

    PubMed

    Zhu, Jun; Cozzolino, Vincenza; Pigna, Massimo; Huang, Qiaoyun; Caporale, Antonio Giandonato; Violante, Antonio

    2011-07-01

    The competitive sorption among Cu, Pb and Cr in ternary system on Na-montmorillonite at pH 3.5, 4.5 and 5.5 and at different heavy metal concentrations, and the effect of varying concentrations of Al, Fe, Ca and Mg on the sorption of heavy metals were studied. Competitive sorption of Cu, Pb and Cr in ternary system on montmorillonite followed the sequence of Cr≫Cu>Pb. Moreover, the competition was weakened by the increase of pH while was intensified by the increase of heavy metal concentration. The sorption of heavy metal on montmorillonite was inhibited by the presence of Ca and Mg, while Al and Fe showed different patterns in affecting heavy metal sorption. Aluminum and Fe generally inhibited the sorption of heavy metal when the pH and/or concentration of major elements were relatively low. However, promoting effects on heavy metal sorption by Al and Fe were found at relatively high pH and/or great concentration of major elements. The inhibition of major elements on heavy metal sorption generally followed the order of Al>Fe>Ca⩾Mg, while Fe was more efficient than Al in promoting the sorption of heavy metals. These findings are of fundamental significance for evaluating the mobility of heavy metals in polluted environments.

  4. [Response of Nostoc flageliforme cell to Cu2+, Cr2+ and Pb2+ stress].

    PubMed

    Guo, Jinying; Shi, Mingke; Zhao, Yanli; Ren, Guoyan; Yi, Junpeng; Niu, Leilei; Li, Juan

    2013-06-04

    This study aimed to investigate the effects of Cu2+, Cr2+ and Pb2+ stress on Nostoc flagelliforme cell. The response of Nostoc flagelliforme cell was analyzed under the stress. The modified BG11 culture medium containing different heavy metal ions of 0, 0.1, 1.0, 10, 100 mg/L was used to cultivate Nostoc flagelliforme cell at 25 degrees C and light intensity of 80 micromol/(m x s). Electrolyte leakage, the activities of superoxide dismutase, the content of malondialdehyde, proline, soluble protein and trehalose were analyzed. Under 1 - 100 mg/L Cu2+, Cr2+ and Pb2+ stress, electrolyte leakage and malondialdehyde contents in Nostoc flagelliforme cell were higher than those in the control group during heavy metal ions stress. Meanwhile, superoxide dismutase activity increased slightly under 10 mg/L, but was lower afterwards. The contents of proline, soluble protein and trehalose increased under 10 mg/L heavy metal ions stress, while declined under extreme heavy metal ions stress (100 mg/L). Nostoc flagelliforme cell has resistance to low heavy metal ions stress, but is damaged badly under extreme heavy metal ions stress.

  5. Effects of heavy metals (Cd, Cu, Cr, Pb, Zn) on fish glutathione metabolism.

    PubMed

    Eroglu, A; Dogan, Z; Kanak, E G; Atli, G; Canli, M

    2015-03-01

    The glutathione metabolism contains crucial antioxidant molecules to defend the organisms against oxidants. Thus, the aim of this study was to investigate the response of the glutathione metabolism in the liver of freshwater fish Oreochromis niloticus exposed to metals (Cu, Cd, Cr, Pb, Zn) in different periods. Fish were exposed to metals (as 1 μg/mL) individually for 1, 7, and 14 days and subsequently antioxidant enzymes (glutathione peroxidase, GPX; glutathione reductase, GR and glutathione S-transferase, GST) and glutathione levels (total glutathione, tGSH; reduced glutathione, rGSH; oxidized glutathione, GSSG and GSH/GSSG ratios) in the liver were measured. There was no fish mortality during the experiments, except Cu exposure. The antioxidant enzymes responded differently to metal exposures depending on metal types and exposure durations. GPX activity increased only after Cd exposure, while GST activity increased following 7 days of all metal exposures. However, GR activity did not alter in most cases. Total GSH and GSH/GSSG levels generally decreased, especially after 7 days. Data showed that metal exposures significantly altered the response of antioxidant system parameters, particularly at day 7 and some recovery occurred after 14 days. This study suggests that the response of antioxidant system could help to predict metal toxicity in the aquatic environments and be useful as an "early warning tool" in natural monitoring studies.

  6. Assessment of the effects of Cr, Cu, Ni and Pb soil contamination by ecotoxicological tests.

    PubMed

    Maisto, Giulia; Manzo, Sonia; De Nicola, Flavia; Carotenuto, Rita; Rocco, Annamaria; Alfani, Anna

    2011-11-01

    This study aimed to assess soil quality by chemical and ecotoxicological investigations and to check the correspondence between soil metal concentrations and ecotoxicity. For these purposes, surface soils collected at four adjacent roadside urban parks and at a former industrial area were characterized for C/N, organic matter content, texture, and pH. Cr, Cu, Ni and Pb, chosen among the most representative soil metal contaminants, were measured as total content and as available and water soluble fractions. In addition, the total concentrations of the investigated metals were used to calculate two chemical indices: the contamination and the potential ecological risk factors. The toxicity of the investigated soils was evaluated by an ecotoxicity test battery carried out on both soil samples (Vibrio fischeri, Heterocypris incongruens and Sinapis alba) and elutriates (Vibrio fischeri, Daphnia magna and Selenastrum capricornutum). The findings, both by the chemical and ecotoxicological approaches, would suggest that the soils with high metal contamination pose ecological risks. On the other hand, moderately metal contaminated soils did not exclude soil ecotoxicity. In fact, toxic effects were also highlighted in soils with low metal content, toxicity being affected by metal availability and soil characteristics. Moreover, the results suggest the importance of using a battery of tests to assess soil ecotoxicity.

  7. Accumulation of Zn, Pb, Cu, Cr and Ni in Sediments Between Roots of the Tagus Estuary Salt Marshes, Portugal

    NASA Astrophysics Data System (ADS)

    Ca çador, Isabel; Vale, Carlos; Catarino, Fernando

    1996-03-01

    Sediment cores of 60 cm length were collected from two Tagus estuary salt marshes. At each salt marsh, samples were taken from a non-vegetated zone and one from each of areas dominated by Halimione portulacoides, Spartina maritimaand Arthrocnemum fruticosum.Cores were sliced in situand, at each sediment layer, redox potential and pH were measured, and the organic matter content (LOI), grain size, and concentrations of Zn, Cu, Pb, Ni and Cr were determined. Sediment between roots and non-vegetated sediments of the same depth (5 -15 cm) were extracted with several acid solutions, and the metal concentrations were compared. Metal residues were determined in roots of vascular plants. Sediment between roots was more oxidative, more acidic and richer in organic matter than non-vegetated sediment. Profiles of Zn, Pb and Cu concentrations in vegetated sediments differed from those recorded in non-vegetated areas: at subsurface layers (where root density is higher), Zn, Pb and Cu were enriched. The percentages of Zn, Pb and Cu removed by acetic acid, nitric acid and DTPA extractions from sediment between roots were much lower than those from non-vegetated sediments, being preferentially linked to the residual fraction. Chromium and Ni behave differently no subsurface enrichment being found and their associations being similar in the two types of sediment. Furthermore, Ni concentrations in roots were much lower than in bulk sediments, while levels of Zn and Pb were similar and Cu values higher. These results point out that plants are an important feature for metal accumulation in salt marshes.

  8. The action of Cd, Cu, Cr, Zn, and Pb on fluid composition of Anodonta cygnea (L.): organic components.

    PubMed

    Moura, G; Vilarinho, L; Machado, J

    2000-09-01

    The heavy metals, Cd, Cu, Cr, Zn, and Pb, were used to incubate healthy specimens of the freshwater mussel species, Anodonta cygnea. Afterwards, their biological fluids, either haemolymph or extrapallial fluid were analyzed for the presence of several organic constituents, known to be important for biomineralization, such as proteins, glycosaminoglycans (GAGs) and glucosamine. Proteins were subjected to further study, namely through the total amino acid determination after acid hydrolysis. The most disturbing pollutants tested seem to be Pb, Zn, and Cr, which caused highly decreased overall compositions, namely with respect to protein, and glucosamine, in comparison to the control group. This suggests that this group contributes to a decrease of the metabolic activity, and thus mineralization, in the exposed animals.

  9. Simultaneous sorption and desorption of Cd, Cr, Cu, Ni, Pb, and Zn in acid soils I. Selectivity sequences.

    PubMed

    Covelo, E F; Vega, F A; Andrade, M L

    2007-08-25

    The sorption and desorption of six heavy metals by and from the surface or immediately subsurface horizons of eleven acid soils of Galicia (N.W. Spain) were characterized by means of batch experiments in which the initial sorption solution contained identical mass concentrations of each metal. Concentration-dependent coefficients K(d) were calculated for the distribution of the metals between the soil and solution phases, and the values obtained for initial sorption solution concentrations of 100mgL(-1) of each metal (K(d100)) were used, for each soil, to order the metals as regards their sorption and retention. Pb and Cu were sorbed and retained to a greater extent than Cd, Ni or Zn, which had low K(d100) values. Pb was sorbed more than any other metal. Cr was generally sorbed only slightly more than Cd, Ni or Zn, but was strongly retained, with K(d100) (retention) values greater than those of Pb and Cu in soils with very low CEC (<3cmol((+))kg(-1)). The sorption of Pb and Cu correlated with organic matter content, while the retention of these and the other metals considered appeared to depend on clay minerals, especially kaolinite, gibbsite, and vermiculite.

  10. Importance of lithology in defining natural background concentrations of Cr, Cu, Ni, Pb and Zn in sedimentary soils, northeastern Brazil.

    PubMed

    Gloaguen, Thomas Vincent; Passe, José João

    2017-11-01

    The sedimentary basins of Recôncavo and Tucano, Bahia, represent the most important Brazilian Phanerozoic continental basin system, formed during fracturing of Gondwana. The northern basin of Tucano has a semiarid climate (Bsh) while the southern basin of Recôncavo has a tropical rainforest climate (Af). The aim of this study was to determine the distribution of trace metals in soils derived from various sedimentary rocks and climates. Soils were collected at 30 sites in 5 geological units at 0-20 cm and 60-80 cm deep under native vegetation. Physical and chemical attributes (particle size distribution, pH, Al, exchangeable bases, organic matter) were determined, as well as the pseudo-total concentrations (EPA 3050 b) and the total concentrations (X-ray fluorescence) of Cr, Cu, Ni, Pb and Zn. The concentrations of metals were overall correlated to soil texture, according to lithologic origin. Shales resulted in Vertisols 30.4 (Zn), 27.2 (Ni), 16.9 (Cu), 7.5 (Cr) and 2.5 (Pb) times more concentrated than Arenosols derived from the sandstones. High Cr and Ni values in clay soils from shales were attributed to diffuse contamination by erosion of mafic rocks of the Greenstone Belt River Itapicuru (from 3 km northwest of the study area) during the late Jurassic. Tropical rainforest climate resulted in a slight enrichment of Pb and Cr, and Ni had the higher mobility during soil formation (enrichment factor up to 6.01). In conclusion, the geological environment is a much more controlling factor than pedogenesis in the concentration of metals in sedimentary soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Translocation and accumulation of Cr, Hg, As, Pb, Cu and Ni by Amaranthus dubius (Amaranthaceae) from contaminated sites.

    PubMed

    Mellem, John J; Baijnath, Himansu; Odhav, Bharti

    2009-05-01

    Phytoremediation is an emerging technology where specially selected and engineered metal-accumulating plants are used for bioremediation. This study was undertaken to evaluate the potential of Amaranthus dubius for phytoremediation of chromium (Cr), mercury (Hg), arsenic (As), lead (Pb), copper (Cu) and nickel (Ni). Locally gathered soil and plants of A. dubius were investigated for the metals from a regularly cultivated area, a landfill site and a waste water treatment site. Metals were extracted from the samples using microwave-digestion and analyzed using Inductively Coupled Plasma-Mass Spectroscopy. The mode of phytoremediation, effect of the metals on the plants, ability of the plant to extract metals from soil (Bioconcentration Factor) and the ability of the plants to move the metals to the aerial parts of the plants (Translocation Factor) were evaluated. The survey of the three sites showed that soils were heavily contaminated with Cr, Hg, Cu and Ni. These levels were far above acceptable standards set for soils and above the standards set for the Recommended Dietary Allowance. Specimens of A. dubius from the three sites showed that they could tolerate Hg, sequester it from the soil, and translocate it to the shoots. Cr could only be removed from the soil and stored in the roots, with limited amounts translocated to the aerial parts. Pb, As, Ni, and Cu have some degree of transportability from the soil to the roots but not to aerial parts. The ability of A. dubius to be considered for phytoremediation has to be viewed with caution because translocation of the metals to the aerial parts of the plant is limited.

  12. Removal of Cu, Zn, Pb, and Cr from Yangtze Estuary Using the Phragmites australis Artificial Floating Wetlands.

    PubMed

    Huang, Xiaofeng; Zhao, Feng; Yu, Gao; Song, Chao; Geng, Zhi; Zhuang, Ping

    2017-01-01

    Contamination of heavy metals would threaten the water and soil resources; phytoremediation can be potentially used to remediate metal contaminated sites. We constructed the Phragmites australis artificial floating wetlands outside the Qingcaosha Reservoir in the Yangtze Estuary. Water characteristic variables were measured in situ by using YSI Professional Pro Meter. Four heavy metals (copper, zinc, lead, and chromium) in both water and plant tissues were determined. Four heavy metals in estuary water were as follows: 0.03 mg/Kg, 0.016 mg/Kg, 0.0015 mg/Kg, and 0.004 mg/Kg. These heavy metals were largely retained in the belowground tissues of P. australis. The bioaccumulation (BAF) and translation factor (TF) value of four heavy metals were affected by the salinity, temperature, and dissolved oxygen. The highest BAF of each metal calculated was as follows: Cr (0.091 in winter) > Cu (0.054 in autumn) > Pb (0.016 in summer) > Zn (0.011 in summer). Highest root-rhizome TF values were recorded for four metals: 6.450 for Cu in autumn, 2.895 for Zn in summer, 7.031 for Pb in autumn, and 2.012 for Cr in autumn. This indicates that the P. australis AFW has potential to be used to protect the water of Qingcaosha Reservoir from heavy metal contamination.

  13. Removal of Cu, Zn, Pb, and Cr from Yangtze Estuary Using the Phragmites australis Artificial Floating Wetlands

    PubMed Central

    Zhao, Feng; Yu, Gao; Song, Chao; Geng, Zhi

    2017-01-01

    Contamination of heavy metals would threaten the water and soil resources; phytoremediation can be potentially used to remediate metal contaminated sites. We constructed the Phragmites australis artificial floating wetlands outside the Qingcaosha Reservoir in the Yangtze Estuary. Water characteristic variables were measured in situ by using YSI Professional Pro Meter. Four heavy metals (copper, zinc, lead, and chromium) in both water and plant tissues were determined. Four heavy metals in estuary water were as follows: 0.03 mg/Kg, 0.016 mg/Kg, 0.0015 mg/Kg, and 0.004 mg/Kg. These heavy metals were largely retained in the belowground tissues of P. australis. The bioaccumulation (BAF) and translation factor (TF) value of four heavy metals were affected by the salinity, temperature, and dissolved oxygen. The highest BAF of each metal calculated was as follows: Cr (0.091 in winter) > Cu (0.054 in autumn) > Pb (0.016 in summer) > Zn (0.011 in summer). Highest root-rhizome TF values were recorded for four metals: 6.450 for Cu in autumn, 2.895 for Zn in summer, 7.031 for Pb in autumn, and 2.012 for Cr in autumn. This indicates that the P. australis AFW has potential to be used to protect the water of Qingcaosha Reservoir from heavy metal contamination. PMID:28717650

  14. Assessing the origin and fate of Cr, Ni, Cu, Zn, Pb, and V in industrial polluted soil by combined microspectroscopic techniques and bulk extraction methods.

    PubMed

    Terzano, Roberto; Spagnuolo, Matteo; Vekemans, Bart; De Nolf, Wout; Janssens, Koen; Falkenberg, Gerald; Fiore, Saverio; Ruggiero, Pacifico

    2007-10-01

    The major geochemical forms of Cr, Ni, Cu, Zn, Pb, and V in a soil from an industrial polluted site in the south of Italy were determined by means of synchrotron X-ray microanalytical techniques such as coupled micro-X-ray fluorescence/micro-X-ray diffraction and micro-X-ray absorption near edge structure spectroscopy in combination with bulk extraction methods (sequential extraction procedures, EDTA extractions, and toxicity leaching characteristic procedure tests). Cr, Ni, Zn, and Cu were found in spinel-type geochemical forms (chromite, trevorite, franklinite, zincochromite, and cuprospinel) and often in association with magnetite and hematite. Vwas mainly present as V(V) associated with iron-oxides or in the form of volborthite [Cu3(OH)2V2O7.2H2O]. Pb was speciated as minium (Pb3O4), lanarkite [Pb2O(SO4)], and, in association with Cr(VI), as crocoite (PbCrO4). In general, despite a high total concentration, metals appear to be speciated for the most part as rather insoluble geochemical forms. However, particular attention should be paid to Zn, Cu, V, and Pb that show non-negligible mobilizable fractions. On the basis of the geochemical forms identified, among others, two major former industrial activities were tentatively ascribed as being responsible for the observed major pollution: polyvinyl chloride and cement-asbestos productions.

  15. A survey of Pb, Cu, Zn, Cd, Cr, As, and Se in earthworms and soil from diverse sites

    USGS Publications Warehouse

    Beyer, W.N.; Cromartie, E.J.

    1987-01-01

    Earthworms and soils were collected from 20 diverse sites in Maryland, Pennsylvania, and Virginia, and were analyzed for Pb, Cu, Zn, Cd, Cr, As, and Se. Correlation coefficients relating Iconcentrations of the elements in earthworms to concentrations in soil were low (-0.20Pb (2100 ppm), Zn (1600 ppm), Cd (23 ppm) and Se (7.6 ppm) detected in earthworms were in the range reported to be toxic to animals fed diets containing these elements; however, even in the absence of any environmental contamination, some species of earthworms may contain high concentrations of Pb, Zn, and Se. Earthworms of the genus Eisenoides, for example, were exceptional in their ability to concentrate Pb. When earthworms are used as indicators of environmental contamination, it is important to identify the species, to report the soil characteristics, and to collect similar earthworms from very similar but uncontaminated soil.

  16. The effect of model soil contamination with Cr, Cu, Ni, and Pb on the biological properties of soils in the dry steppe and semidesert regions of southern Russia

    NASA Astrophysics Data System (ADS)

    Kolesnikov, S. I.; Spivakova, N. A.; Kazeev, K. Sh.

    2011-09-01

    Model soil contamination with Cr, Cu, Ni, and Pb in the dry steppes and semideserts of southern Russia has worsened the biological soil properties. With respect to the degree of deterioration of the biological properties, the soils can be arranged in the following sequence: dark chestnut soils > chestnut soils > light chestnut soils > brown semidesert soils > sandy brown semidesert soils. The sequence of metal oxides according to the adverse effect on the biological soil properties is as follows: CrO3 > CuO ≥ PbO ≥ NiO.

  17. Nanosized Cr2O3 as pinning center in (Bi,Pb)-Sr-Ca-Cu-O superconductor tapes

    NASA Astrophysics Data System (ADS)

    Lee, G. H.; Abd-Shukor, R.

    2013-05-01

    Nanosized Cr2O3 (6 nm) has been introduced into (Bi,Pb)-Sr-Ca-Cu-O/Ag tapes fabricated by the powderin-tube method. The starting powder with composition (Bi,Pb)2Sr2Ca2Cu3O10(Cr2O3)0.05 was prepared by the solid state reaction method. The superconductor tapes with thickness of about 0.3 mm and length about 2 cm were heated at 845°C for 96, 144, 192 and 240 h. The samples were characterized by the four point probe electrical measurements, X-ray powder diffraction method and scanning electron microscopy. The transport critical current density, Jc was measured from 30 to 65 K using the 1 μ/cm criterion. The highest Jc was obtained for the tape heated for 240 h with Jc = 1700 A/cm2 at 30 K. XRD patterns showed that the samples consisted of the 2212 and 2223 phase. SEM micrographs showed the plat-like structure. The role of nano-Cr2O3 in the superconductor system is discussed. The size of the nanoparticle (R) was larger than the coherence length, ξ but smaller than the penetration depth, λ(ξ< R <λ). The temperature dependent Jc from 30 to 65 K showed a linear relation for all except for the tapes heated at 240 h. Using the self-field approximation together with the Jc dependence on temperature, it was observed that between 30 and 65 K the characteristic length (Lc) associated with the pinning force Fp is approximately the same as the average grain size (Rg) in all samples except for the tapes heated for 240 h where Rg < Lc. This shows that a change in the flux pinning mechanism occurred in the tapes when the heating time was prolonged.

  18. Immobilization of heavy metals (Pb, Cu, Cr, Zn, Cd, Mn) in the mineral additions containing concrete composites.

    PubMed

    Giergiczny, Zbigniew; Król, Anna

    2008-12-30

    The presented work determines the level of heavy metals (Pb+2, Cu+2, Zn+2, Cr+6, Cd+2, Mn+2) immobilization in the composites produced using Ordinary Portland Cement (OPC) as well as of binders containing large amount of mineral additives in its composition-siliceous fly ash (FA), fluidized bed combustion ash (FFA) and ground granulated blast furnace slag (GGBFS). Heavy metals were introduced to cementitious materials in the form of soluble salts as well as components of hazardous wastes (medical ash, metallurgical dust). It has been stated, that the level of heavy metals immobilization is combined with composites composition. Majority of analyzed heavy metals, added to binders' composition in the form of heavy metal salts achieves high level of immobilization, in mortar based on binder with 85% GGBFS and 15% OPC. The lowest immobilization level was reached for chromium Cr+6 added to hardening mortars as Na2Cr2O72H2O. The level ranges from 85.97% in mortars made on blended binder (20% OPC, 30% FFA and 50% GGBFS) to 93.33% in mortar produced on OPC. The increase of the so-called immobilization degree with time of hardened material maturing was found. This should be attributed to the pozzolanic or pozzolanic/hydraulic properties of components used; their effect on microstructure of hardened material is also important. Mineral additions enter the hydration reactions in the mixtures and favor the formation of specific microstructure promoting the immobilization of hazardous elements.

  19. Geospatial Mapping of Pb, Cr, Cu, Zn, Cd, and Sb in Urban Soil, Cd. Juarez, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Amaya, M. A.; Grimida, S. E.; Elkekli, A. R.; Aldouri, R. K.; Benedict, B. A.; Pingitore, N. E., Jr.

    2015-12-01

    Population-based random stratified sampling of the city of Cd. Juarez, Chihuahua, Mexico provided 500 city blocks for study. We collected soil from the public space (where present) in front of each house on a selected block; equal measured small volumes of these were combined to produce a composite sample for analysis. Such composite samples (1) decrease, by an order of magnitude, laboratory processing and analysis costs, and (2) smooth the data to represent blocks as averages of individual houses. Retention of the unanalyzed samples of the individual houses permits their later analysis should the composites suggest further study of individual houses on an anomalous block. Elemental analysis of 10 mg pressed powders was performed on a Panalytical Epsilon5 EDS-XRF, via 8 secondary targets and 12 USGS and NIST multi-element rock standards. The mean and (range) of concentration for Pb was 43 (13-550) ppm; for Cr, 31 (1.8-76); for Cu, 22 (6-550); for Zn 84 (42-415) ppm; for Cd, 1.9 (0.1-6.2); and for Sb, 5.9 (2.7-29). The old urban core of Cd. Juarez was marked by high levels of Pb, Cr, Cu, and Zn, and, to a smaller degree, of Cd and Sb. This pattern mirrors that of contiguous El Paso, Texas, USA, directly across the narrow Rio Grande. Businesses, industrial facilities, transportation (both railroads and highways), traditional "downtown" shopping, and old residential districts cluster in this urban core. A Pb-Cu-Zn smelter, which operated for more than a century until 1999, is present in the US adjacent to the Rio Grande, about two km away from downtown Cd. Juarez. Thus the city has been subject to both traditional metal sources (e.g., leaded gasoline, highway debris) and smelter emissions. The poplation of Cd. Juarez has exploded in the last few decades to some 1.5 million inhabitants due both to natural growth and in-migration from rural districts for economic opportunity. Most of this growth has been accommodated by radial expansion of the city into the surrounding

  20. Heavy Metals (Cd, Cu, Cr, Pb and Zn) in Meretrix meretrix Roding, Water and Sediments from Estuaries in Sabah, North Borneo

    ERIC Educational Resources Information Center

    Abdullah, Mohd. Harun; Sidi, Jovita; Aris, Ahmad Zaharin

    2007-01-01

    Concentrations of heavy metals (Cd, Cu, Cr, Pb and Zn) in tissues of Meretrix meretrix Roding (M. meretrix R.), water and sediments from two estuaries were determined. One estuary is located in an urban area of Kota Kinabalu (Likas estuary) and the other in a rural district of Kota Belud (Kota Belud estuary), where both are in Sabah, North of…

  1. Determination of Cu, Cd, Pb and Cr in yogurt by slurry sampling electrothermal atomic absorption spectrometry: A case study for Brazilian yogurt.

    PubMed

    de Andrade, Camila Kulek; de Brito, Patrícia Micaella Klack; Dos Anjos, Vanessa Egéa; Quináia, Sueli Pércio

    2018-02-01

    A slurry sampling electrothermal atomic absorption spectrometric method is proposed for the determination of trace elements such as Cu, Cr, Cd and Pb in yogurt. The main factors affecting the slurry preparation were optimized: nature and concentration of acid solution and sonication time. The analytical method was validated in-house by calibration, linearity, limits of detection and quantification, precision and accuracy test obtaining satisfactory results in all cases. The proposed method was applied for the determination of Cd, Cr, Cu and Pb in some Brazilian yogurt samples. For these samples, the concentrations ranged from 2.5±0.2 to 12.4±0.2ngg(-1); 34±3 to 899±7ngg(-1); <8.3 to 12±1ngg(-1); and <35.4 to 210±16ngg(-1) for Cd, Cu, Cr and Pb, respectively. The daily intake of Cd, Cu, Cr and Pb via consumption of these samples was estimated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Ion exchange of Pb(2+), Cu(2+), Fe(3+), and Cr(3+) on natural clinoptilolite: selectivity determination and influence of acidity on metal uptake.

    PubMed

    Inglezakis, Vassilis J; Loizidou, Maria D; Grigoropoulou, Helen P

    2003-05-01

    In the present study ion exchange of Pb(2+), Cu(2+), Fe(3+), and Cr(3+) on natural Greek clinoptilolite was examined in terms of selectivity toward the above heavy metals in single- and multicomponent solutions in batch systems. Also examined are the influence of clinoptilolite on solution acidity and the effect of acidity on the ion exchange process. Clinoptilolite increases solution acidity due to the exchange of H(+) cations with the cations initially present in its structure. H(+) cations should be considered as competitive ones in ion exchange processes, and consequently ion exchange of metals is favored at high acidity values. Cu(2+) and Cr(3+) are the most sensitive cations with respect to acidity. Selectivity determination demonstrates that the selectivity at total concentration 0.01 N and acidity 2 in both single- and multicomponent solutions is following the order Pb(2+)>Fe(3+)>Cr(3+) > or =Cu(2+). This order is set since the first days of equilibration. However, Cu(2+) shows remarkable changes in selectivity and generally its uptake and selectivity are increasing with time. On the other hand selectivity in single metal solutions where acidity is not adjusted is following the order Pb(2+)>Cr(3+)>Fe(3+) congruent with Cu(2+).

  3. Evaluation of Cd, Cr, Cu, Ni, and Pb in selected cosmetic products from Jordanian, Sudanese, and Syrian markets.

    PubMed

    Massadeh, A M; El-Khateeb, M Y; Ibrahim, S M

    2017-08-01

    There is no sufficient data that evaluate heavy metal content in cosmetic products in Jordan as well as Sudan and Syria. This study aims to assess metal levels which include Cadmium (Cd), Chromium (Cr), Copper (Cu), Nickel (Ni), and Lead (Pb) in cosmetic products. These elements have draft limits because they are identified as potential impurities and are known to be toxic. This study aims to provide information to the population that may be beneficial to public health. Samples were collected from different brands obtained from markets in Jordan, Sudan, and Syria. Some of the selected cosmetic products were eyeliner, eye pencil, mascara, lipstick, powder, face cream, body cream, sun block, Vaseline, and the traditional eye cosmetic (kohl). The heavy metal content in these samples were determined by atomic absorption spectrometry (AAS). Based on analysis of variance analysis, a significant difference in heavy metal levels was found for samples obtained from Jordanian and Sudanese markets. The acid digestion method used in this study was based on procedures recommended by Nnorom et al. with some modifications as follows. (i) A weight of 2.0 g of cosmetic sample was dissolved in a mixture of 6 mL of high quality concentrated 69% nitric acid (HNO3; Merck, Darmstadt, Germany) and 4 mL of concentrated 37% hydrochloric acid (Scharlau, Spain) in a porcelain crucible and heated on a hotplate to near dryness. (ii) An aliquot of 15 mL HNO3 (1.00 M) was added to the digested sample and filtered through a Whatman No. 40 filter paper. (iii) The digested sample was transferred quantitatively into a 25 mL volumetric flask and then diluted with deionized water. (iv) Each digested sample was evaporated at 70 °C to about 1 mL and transferred into a polyethylene flask and diluted with 25 mL deionized water. (v) Blank was treated in the same procedure. In Jordan the concentration ranges of heavy metals in the collected samples were: Cd (0.03-0.10 μg/g), Cr (0.0-1.00

  4. Assessment of noise and heavy metals (Cr, Cu, Cd, Pb) in the ambience of the production line for recycling waste printed circuit boards.

    PubMed

    Xue, Mianqiang; Yang, Yichen; Ruan, Jujun; Xu, Zhenming

    2012-01-03

    The crush-pneumatic separation-corona electrostatic separation production line provides a feasible method for industrialization of waste printed circuit boards (PCBs) recycling. To determine the potential environmental contamination in the automatic line workshop, noise and heavy metals (Cr, Cu, Cd, Pb) in the ambience of the production line have been evaluated in this paper. The mean noise level in the workshop has been reduced from 96.4 to 79.3 dB since the engineering noise control measures were employed. Noise whose frequency ranged from 500 to 1000 Hz is controlled effectively. The mass concentrations of TSP and PM(10) in the workshop are 282.6 and 202.0 μg/m(3), respectively. Pb (1.40 μg/m(3)) and Cu (1.22 μg/m(3)) are the most enriched metals in TSP samples followed by Cr (0.17 μg/m(3)) and Cd (0.028 μg/m(3)). The concentrations of Cu, Pb, Cr, and Cd in PM(10) are 0.88, 0.56, 0.12, and 0.88 μg/m(3), respectively. Among the four metals, Cr and Pb are released into the ambience of the automatic line more easily in the crush and separation process. Health risk assessment shows that noncancerous effects might be possible for Pb (HI = 1.45), and noncancerous effects are unlikely for Cr, Cu, and Cd. The carcinogenic risks for Cr and Cd are 3.29 × 10(-8) and 1.61 × 10(-9), respectively. It indicates that carcinogenic risks on workers are relatively light in the workshop. These findings suggest that this technology is advanced from the perspective of environmental protection in the waste PCBs recycling industry.

  5. Optimization of Ultrasound-Assisted Extraction of Cr, Cu, Zn, Cd, and Pb from Sediment, Followed by FAAS and GFAAS Analysis.

    PubMed

    Mimura, Aparecida M S; Oliveira, Marcone A L; Ciminelli, Virginia S T; Silva, Julio C J

    2016-01-01

    An ultrasound method for simultaneous extraction of Cr, Cu, Zn, Cd, and Pb from sediment, and determination by flame atomic absorption spectrometry (FAAS) and graphite furnace atomic absorption spectrometry (GFAAS) was proposed. The experimental results obtained using analytical curves and the method of standard additions agreed at a confidence level of 95% for all the analytes, as determined by FAAS and GFAAS, indicating no significant matrix effects. Recoveries ranged from 80.1 to 93.7% (certified reference material) and from 89 to 107% (spike tests). The LOD and LOQ results from the method were consistent with the techniques used (FAAS and GFAAS), with high analytical throughput. The proposed method was then used to determine Cr, Cu, Zn, Cd, and Pb in river sediment samples from Rio Doce, Minas Gerais, Brazil. The results indicated levels below those permitted by Brazilian legislation for all the analytes, with the exception of Cr.

  6. Fe(III) hydroxide nucleation and growth on quartz in the presence of Cu(II), Pb(II), and Cr(III): metal hydrolysis and adsorption.

    PubMed

    Dai, Chong; Hu, Yandi

    2015-01-06

    Fe(III) hydroxide nanoparticles are an essential carrier for aqueous heavy metals. Particularly, iron hydroxide precipitation on mineral surfaces can immobilize aqueous heavy metals. Here, we used grazing-incidence small-angle X-ray scattering (GISAXS) to quantify nucleation and growth of iron hydroxide on quartz in 0.1 mM Fe(NO3)3 solution in the presence of Na(+), Cu(2+), Pb(2+), or Cr(3+) at pH = 3.7 ± 0.1. In 30 min, the average radii of gyration (R(g)) of particles on quartz grew from around 2 to 6 nm in the presence of Na(+) and Cu(2+). Interestingly, the particle sizes remained 3.3 ± 0.3 nm in the presence of Pb(2+), and few particles formed in the presence of Cr(3+). Quartz crystal microbalance dissipation (QCM-D) measurements showed that only Cr(3+) adsorbed onto quartz, while Cu(2+) and Pb(2+) did not. Cr(3+) adsorption changed the surface charge of quartz from negative to positive, thus inhibiting the precipitation of positively charged iron hydroxide on quartz. Masses and compositions of the precipitates were also quantified. This study provided new insights on interactions among quartz, iron hydroxide, and metal ions. Such information is helpful not only for environmental remediation but also for the doping design of iron oxide catalysts.

  7. Amine functionalized radiation-induced grafted water hyacinth fibers for Pb2+, Cu2+ and Cr3+ uptake

    NASA Astrophysics Data System (ADS)

    Madrid, Jordan F.; Nuesca, Guillermo M.; Abad, Lucille V.

    2014-04-01

    An amine group containing fibrous adsorbent was prepared by reaction of grafted water hyacinth fibers with ethylenediamine. Glycidyl methacrylate (GMA) was grafted onto water hyacinth fibers using gamma radiation induced graft polymerization through simultaneous grafting technique and this was used as base material for producing the amine type adsorbents. The conversion of the epoxy group from GMA into amine group was investigated. The concentration of ethylenediamine solution that gave the highest amine functional group density was 50% by volume in 2-propanol. The amine functionalized water hyacinth fibers were characterized using Attenuated Total Reflectance-Fourier Transformed Infrared Spectroscopy (ATR-FTIR), Thermogravimetric Analysis (TGA), and Energy Dispersive X-ray Spectroscopy (EDX). Information derived from these analyses confirms the successful conversion of the epoxy group. The amine-type adsorbent was evaluated for its uptake of Pb2+, Cu2+ and Cr3+ from aqueous solutions. The initial concentration of the metal ions and pH of the solutions were found to influence the amount of metal ions adsorbed by the amine-type adsorbent. The kinetics of adsorption was observed to follow Lagergren's first order equation. Results of ion sorption studies indicate that gamma radiation-induced grafting and subsequent chemical modification improved the ion sorption behaviour of water hyacinth fibers.

  8. Comparative assessment of the biological tolerance of chernozems in the south of Russia towards contamination with Cr, Cu, Ni, and Pb in a model experiment

    NASA Astrophysics Data System (ADS)

    Kolesnikov, S. I.; Yaroslavtsev, M. V.; Spivakova, N. A.; Kazeev, K. Sh.

    2013-02-01

    The biological properties of chernozems in the south of Russia worsen under the impact of contamination with Cr, Cu, Ni, and Pb compounds. The tolerance of chernozems towards contamination decreases in the following sequence: ordinary chernozems > typical chernozems > southern chernozems > leached vertic chernozems. This sequence is specified by the soil reaction and the organic matter content. The high humus content determines the high buffer capacity of chernozems towards contamination with chromium, whereas the high pH values ensure the soil tolerance towards contamination with copper, nickel, and lead. With respect to their adverse effect on the biological properties of the chernozems, the studied heavy metals can be arranged into the following sequence: CrO3 > CuO > PbO ≥ NiO.

  9. Comparison of open microwave digestion and digestion by conventional heating for the determination of Cd, Cr, Cu and Pb in algae using transverse heated electrothermal atomic absorption spectrometry.

    PubMed

    Meeravali, N N; Kumar, S J

    2000-02-01

    A comparison between open microwave digestion and digestion by conventional heating was carried out for the determination of Cd, Cr, Cu, and Pb in two algae matrices using transverse heated electrothermal atomic absorption spectrometry (ETAAS). A SRM GBW 08504 cabbage was also analysed. These matrices were digested with HNO3, using a quartz vessel for microwave digestion and PFA vessel for digestion by conventional heating. Cd, Cu and Cr were determined without any modifier, while magnesium nitrate and ammonium phosphate mixed modifier was used for Pb. Results obtained by both the procedures were in good agreement with each other at 95% confidence level, and for SRM GBW 08504 cabbage the values agree well with the certified values. The limits of detection obtained were 0.0004, 0.060, 0.065 and 0.054 mg/kg for Cd, Cr, Cu, and Pb, respectively, using the microwave digestion process. The RSD for Cd was 10-15% and for the other elements 5-10%.

  10. Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, Typha angustifolia and Cyperus esculentus.

    PubMed

    Chandra, Ram; Yadav, Sangeeta

    2011-07-01

    A comparative bioaccumulation pattern and ultra structural changes were studied in Phragmites cummunis, Typha angustifolia and Cyperus esculentus in mixed metals solution of cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb) and zinc (Zn). P. cummunis was observed to be a shoot accumulator for Cr, Fe, Mn, Ni, Pb, and Zn. However, T. angustifolia was found to be a root accumulator for Cd, Cr, Cu, Fe, Ni and Pb. In addition, C. esculentus also accumulated most of the tested heavy metals in the roots, while Mn and Fe were translocated up to leaves. Further, the long term metal treatment showed maximum accumulation of all heavy metals in P. cummunis followed by T. angustifolia and C. esculentus. Among heavy metals, Fe was accumulated maximum, i.e., >1000 microg g(-1) by all three plants. Simultaneously, the adverse effects on biochemical parameters were noted earlier in C. esculentus than T. angustifolia and P. cummunis. Ultra structural observation showed the cellular changes in wetland plants after longer exposure. Results revealed that P. cummunis and T. angustifolia had more potential for tested metals than C. esculentus. This study established that these wetland plants could be used for heavy metals phytoremediation from metal containing industrial wastewater.

  11. Accumulation of Cr, Cd, Pb, Cu, and Zn by plants in tanning sludge storage sites: opportunities for contamination bioindication and phytoremediation.

    PubMed

    Yuan, Yongqiang; Yu, Shen; Bañuelos, G S; He, Yunfeng

    2016-11-01

    Tanning sludge enriched with high concentrations of Cr and other metals has adverse effects on the environment. Plants growing in the metalliferous soils may have the ability to cope with high metal concentrations. This study focuses on potentials of using native plants for bioindication and/or phytoremediation of Cr-contaminated sites. In the study, we characterized plants and soils from six tanning sludge storage sites. Soil in these sites exhibited toxic levels of Cr (averaged 16,492 mg kg(-1)) and other metals (e.g., 48.3 mg Cu kg(-1), 2370 mg Zn kg(-1), 44.9 mg Pb kg(-1), and 0.59 mg Cd kg(-1)). Different metal tolerance and accumulation patterns were observed among the sampled plant species. Phragmites australis, Zephyranthes candida, Cynodon dactylon, and Alternanthera philoxeroides accumulated moderate-high concentrations of Cr and other metals, which could make them good bioindicators of heavy metal pollution. High Cr and other metal concentrations (e.g., Cd and Pb) were found in Chenopodium rubrum (372 mg Cr kg(-1)), Aster subulatus (310 mg Cr kg(-1)), and Brassica chinensis (300 mg Cr kg(-1)), being considered as metal accumulators. In addition, Nerium indicum and Z. candida were able to tolerate high concentrations of Cr and other metals, and they may be used as preferable pioneer species to grow or use for restoration in Cr-contaminated sites. This study can be useful for establishing guidelines to select the most suitable plant species to revegetate and remediate metals in tanning sludge-contaminated fields.

  12. Effects of tree vegetation and waste amendments on the fractionation of Cr, Cu, Ni, Pb and Zn in polluted mine soils.

    PubMed

    Asensio, Verónica; Vega, Flora A; Singh, Bal Ram; Covelo, Emma F

    2013-01-15

    Soils at a depleted copper mine in Touro (Galicia, Spain) are physically and chemically degraded and have also polluted the surrounding area. Due to these environmental problems and the large area of these mine soils, the reclamation strategies carried out at Touro have consisted of planting trees (pine or eucalyptus), amending with waste material (sewage sludge and paper mill residues), or using both treatments. Tree planting has been carried out for 21 years and waste amending for 10. Two different zones were selected in the mine (the settling pond and mine tailing) in order to evaluate the effect of the different reclamation practices on the chemical fractions of Cr, Cu, Ni, Pb and Zn. The results showed that soils in the untreated sites were polluted by Cr and Cu. Planting pines and eucalyptus on mine soils decreased the concentration of these heavy metals in non-mobile soil fractions. Amendments also attenuated pollution by Cr and Cu as the wastes that were used had lower concentrations than the untreated mine soils. Planting trees increased Ni, Pb and Zn retention in the non-mobile fractions, preventing them from being leached into surrounding areas. However, caution should be exercised when adding organic wastes, as they can lead to increase concentrations of Ni, Pb and Zn and their phytoavailable form. The results also showed that changes in the chemical fractionation of heavy metals in soils was more influenced by the clay percentage and both dissolved and soil organic carbon (SOC and DOC) than by soil pH or cation exchange capacity.

  13. Sugar beet factory lime affects the mobilization of Cd, Co, Cr, Cu, Mo, Ni, Pb, and Zn under dynamic redox conditions in a contaminated floodplain soil.

    PubMed

    Shaheen, Sabry M; Rinklebe, Jörg

    2017-01-15

    The impact of sugar beet factory lime (SBFL) on the release dynamics and mobilization of toxic metals (TMs) under dynamic redox conditions in floodplain soils has not been studied up to date. Therefore, the aim of this study was to verify the scientific hypothesis that SBFL is able to immobilize Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, and Zn under different redox potentials (EH) in a contaminated floodplain soil. For this purpose, the non-treated contaminated soil (CS) and the same soil treated with SBFL (CS+SBFL) were flooded in the laboratory using a highly sophisticated automated biogeochemical microcosm apparatus. The experiment was conducted stepwise from reducing (-13 mV) to oxidizing (+519 mV) soil conditions. Soil pH decreased under oxic conditions in CS (from 6.9 to 4.0) and in CS+SBFL (from 7.5 to 4.4). The mobilization of Cu, Cr, Pb, and Fe were lower in CS+SBFL than in CS under both reducing/neutral and oxic/acidic conditions. Those results demonstrate that SBFL is able to decrease concentrations of these elements under a wide range of redox and pH conditions. The mobilization of Cd, Co, Mn, Mo, Ni, and Zn were higher in CS+SBFL than in CS under reducing/neutral conditions; however, these concentrations showed an opposite behavior under oxic/acidic conditions and were lower in CS+SBFL than in CS. We conclude that SBFL immobilized Cu, Cr, Pb, and Fe under dynamic redox conditions and immobilized Cd, Co, Mn, Mo, Ni, and Zn under oxic acidic conditions; however, the latter elements were mobilized under reducing neutral conditions in the studied soil. Therefore, the addition of SBFL to acid floodplain soils contaminated with TMs might be an important alternative for ameliorating these soils with view to a sustainable management of these soils.

  14. Determination of normal concentration levels of Cd, Cr, Cu, Hg, Pb, Se and Zn in hair of the child population in the Czech Republic.

    PubMed

    Benes, B; Sladká, J; Spevácková, V; Smid, J

    2003-12-01

    Knowledge of normal levels of concentrations of trace elements (Cd, Cr, Cu, Hg, Pb, Se and Zn) in the population serve, among others, in the designing of regulations of exposure limits and prevention of diseases caused by deficiency in essential trace elements. Concentrations of the named elements in the hair of children in the Czech population were determined by means of atomic absorption spectrometry. The samples of hair were collected during 1994- 2001 from 3,556 children (1,741 boys and 1,815 girls, average age 9.9 years). Mineralization in a microwave digestion system was used following a washing procedure. The accuracy of results was checked by means of the control materials CRM Human Hair GBW 07601. Values of concentrations of the trace elements in hair found for children were (in medians) 0.14 microg Cd.g(-1), 0.22 microg Cr.g(-1), 12 microg Cu.g(-1), 0.19 microg Hg.g(-1), 1.6 microg Pb.g(-1), 0.22 microg Se.g(-1) and 124 microg Zn.g(-1), respectively. Statistically significant differences between boys and girls were found for Cd, Cu and Zn. Concentrations of the elements under study correspond to the published values for the non-exposed population.

  15. Simultaneous separation and preconcentration of Cr(III), Cu(II), Cd(II) and Pb(II) from environmental samples prior to inductively coupled plasma optical emission spectrometric determination

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Li, Zhenhua; Du, Xianghui; Li, Ruijun; Chang, Xijun

    2012-02-01

    We have developed a new method of the separation, preconcentration, and determination of Cr(III), Cu(II), Cd(II) and Pb(II) ion in water samples. It is based on the use of activated carbon that was modified with rhodamine 6G to yield a solid-phase sorbent. The experimental conditions for adsorption were optimized. Cr(III), Cu(II), Cd(II) and Pb(II) can be quantitatively adsorbed at pH 4, and adsorbed Cr(III), Cu(II), Cd(II) and Pb(II) can be completely eluted with 1 M hydrochloric acid. The maximum adsorption capacity is 37.8, 47.8, 56.5 and 41.7 mg g -1 for Cr(III), Cu(II), Cd(II) and Pb(II). Cr(III), Cu(II), Cd(II) and Pb(II) ions were then determined by inductively coupled plasma optical emission spectrometry. The detection limit (3 σ) is under 0.35 ng mL -1, and the relative standard deviation is lower than 3.5% ( n = 11). Common potentially interfering ions do not interfere with the adsorption and determination of the analytes. The method displays selectivity, sensitivity and reproducibility, and was successfully applied to the determination of biological and water samples.

  16. Doping of BiSrCaCuO compounds with (V+Y), As, Sb, Pb, Cr and Ge

    NASA Astrophysics Data System (ADS)

    Yaroslavsky, Y.; Schieber, M.; Beilin, V.; Litvin, S.; Burtman, V.; Cinodman, V.; Shaltiel, D.

    1993-04-01

    The effect of various doping elements such as (V+Y), As, Sb, Pb, Ag and Ge in range of 3-5 atom% on the phase stability of the high temperature superconducting (HTS) Bi - Sr - Ca - Cu - O system was investigated by preparing (1) small single crystals from flux solvents, and (2) thick films by doctor blade casting. It was found that the Bi 2Sr 2CaCu 2O x (2212) is the predominant phase in all doped samples Examples of HTS critical temperature Tc results measured by microwave absorption are 94 K for (V+Y), 78 K for As, 74 K for Ge. For the Sb doped compound a two phase BSCCO material was obtained with two T c of 90 and 78°K in the proportion of 20 to 80% respectively.

  17. Concentrations of Mn, Fe, Cu, Zn, Cr, Cd, Pb, Ni in selected Nigerian tubers, legumes and cereals and estimates of the adult daily intakes.

    PubMed

    Akinyele, I O; Shokunbi, O S

    2015-04-15

    This study was designed to determine the levels of microminerals (manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), chromium (Cr)) and heavy metals (cadmium (Cd), lead (Pb) and nickel (Ni)) in some tubers, legumes and cereals obtained from the markets in Abeokuta city, South-West Nigeria. The food samples were digested by dry ashing procedure and their minerals were determined by atomic absorption spectrophotometer. The results show mean values of 1.67-32.00, 7.25-61.58, 1.59-10.56, 6.65-46.99, 0.02-0.58, <0.01-0.09, <0.08, and 0.06-0.14 mg/kg for Mn, Fe, Cu, Zn, Cr, Cd, Pb and Ni respectively. The levels of these metals in all the samples analysed were within the ranges reported for similar tubers, legumes and cereals from various parts of the world. The daily intakes of the metals through tubers, legumes and cereals were found to be lower than the provisional tolerable daily intakes proposed by Joint FAO/WHO Expert Committee on Food Additives.

  18. Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment.

    PubMed

    Song, Yue; Ammami, Mohamed-Tahar; Benamar, Ahmed; Mezazigh, Salim; Wang, Huaqing

    2016-06-01

    In recent years, electrokinetic (EK) remediation method has been widely considered to remove metal pollutants from contaminated dredged sediments. Chelating agents are used as electrolyte solutions to increase metal mobility. This study aims to investigate heavy metal (HM) (As, Cd, Cr, Cu, Ni, Pb and Zn) mobility by assessing the effect of different chelating agents (ethylenediaminetetraacetic acid (EDTA), ethylenediaminedisuccinic acid (EDDS), nitrilotriacetic acid (NTA) or citric acid (CA)) in enhancing EK remediation efficiency. The results show that, for the same concentration (0.1 mol L(-1)), EDTA is more suitable to enhance removal of Ni (52.8 %), Pb (60.1 %) and Zn (34.9 %). EDDS provides effectiveness to increase Cu removal efficiency (52 %), while EDTA and EDDS have a similar enhancement removal effect on As EK remediation (30.5∼31.3 %). CA is more suitable to enhance Cd removal (40.2 %). Similar Cr removal efficiency was provided by EK remediation tests (35.6∼43.5 %). In the migration of metal-chelate complexes being directed towards the anode, metals are accumulated in the middle sections of the sediment matrix for the tests performed with EDTA, NTA and CA. But, low accumulation of metal contamination in the sediment was observed in the test using EDDS.

  19. Adsorption of Pb(II), Cr(III), Cu(II), Cd(II) and Ni(II) onto a vanadium mine tailing from aqueous solution.

    PubMed

    Shi, Taihong; Jia, Shiguo; Chen, Ying; Wen, Yinghong; Du, Changming; Guo, Huilin; Wang, Zhuochao

    2009-09-30

    The adsorption of heavy metal cations Pb(II), Cr(III), Cu(II), Cd(II) and Ni(II) from aqueous solution by a mine tailing which mainly contains muscovite was investigated. The property of the mineral was investigated by using SEM, FT-IR, XRD and BET analysis. pH(pzc) was measured by an titration technique to give a value of 5.4+/-0.1. Kinetics experiments indicated that the processes can be simulated by pseudo-second-order model. Total adsorption amounts of the heavy metal increased, while the adsorption density decreased when the solid-to-liquid ratio (S/L) increased. Grain size did not affect the adsorption capacity significantly. The resulting isotherms can be described by Frendlich relationship. And the maximum adsorption capacity (molar basis) followed the order of Cr(III)>Pb(II)>Cu(II)>Ni(II)>Cd(II). Thermodynamic analysis showed that the adsorption processed were endothermic and may be chemical in nature with positive DeltaH(0). The positive DeltaS(0) suggested that dissociative processed were involved. Small positive DeltaG(0) suggested that the adsorption processes required a small amount of energy. Adsorption processes were slightly affected by electrolyte ion concentration but strongly dependent on pH value. The most possible mechanism of the adsorption processes involve the inner-sphere-complexions by the aluminol or silanol groups on the surface of the mineral.

  20. Determination of V, Cr, Cu, As, and Pb Ions in Water and Biological Samples by Combining ICP-MS with Online Preconcentration Using Impregnated Resin.

    PubMed

    Wang, Shuo; Dong, Xv; Dai, Bingye; Pan, Mingfei; He, Shaoyuan; Wang, Junping

    2015-01-01

    A method was developed for detection of V, Cr, Cu, As, and Pb in water and biological samples by combining online flow injection and preconcentration with inductively coupled plasma-MS. The 2-nitroso-1-naphthol-4-sulfonic acid (Nitroso-S) impregnated MCI GEL CHP20P resin was prepared as an enrichment sorbent. Some parameters affecting the efficiency of the preconcentration process were investigated in the experiment, including the pH and volume of sample solution, the flow rate for sample loading, the type and concentration of eluent, and the influence of co-existing ions. Under the optimal experimental conditions, the enrichment factor and LOD (3s) of chosen metal ions V, Cr, Cu, As, and Pb were in the ranges of 71-268 and 4.89-23.76 ng/L, respectively. Based on 11 repeated measurements of standard solutions (1.0 μg/L), the RSD of the ions ranged from 1.2 to 2.9%. The detection procedure was also performed for analyzing two certified reference materials, GBW 08607 (water) and GBW 10052 (green tea), as well as environmental water and biological samples. Good agreement with certified values and high recoveries have demonstrated improved accuracy of the proposed method.

  1. Historical perspective of heavy metals contamination (Cd, Cr, Cu, Hg, Pb, Zn) in the Seine River basin (France) following a DPSIR approach (1950-2005).

    PubMed

    Meybeck, Michel; Lestel, Laurence; Bonté, Philippe; Moilleron, Régis; Colin, Jean Louis; Rousselot, Olivier; Hervé, Daniel; de Pontevès, Claire; Grosbois, Cécile; Thévenot, Daniel R

    2007-04-01

    The Driver-Pressures-State-Impact-Response approach is applied to heavy metals in the Seine River catchment (65,000 km(2); 14 million people of which 10 million are aggregated within Paris megacity; 30% of French industrial and agricultural production). The contamination pattern at river mouth is established on the particulate material at different time scales: 1930-2000 for floodplain cores, 1980-2003 for suspended particulate matter (SPM) and bed-sediments, 1994-2003 for atmospheric fallout and annual flood deposits. The Seine has been among the most contaminated catchments with maximum contents recorded at 130 mg kg(-1) for Cd, 24 for Hg, 558 for Pb, 1620 for Zn, 347 for Cu, 275 for Cr and 150 for Ni. Today, the average levels for Cd (1.8 mg kg(-1)), Hg (1.08), Pb (108), Zn (370), Cu (99), Cr (123) and Ni (31) are much lower but still in the upper 90% of the global scale distribution (Cr and Ni excepted) and well above the natural background values determined on pre-historical deposits. All metal contents have decreased at least since 1955/65, well before metal emission regulations that started in the mid 1970's and the metal monitoring in the catchment that started in the early 1980's. In the last 20 y, major criteria changes for the management of contaminated particulates (treated urban sludge, agricultural soils, dredged sediments) have occurred. In the mid 1990's, there was a complete shift in the contamination assessment scales, from sediment management and water usage criteria to the good ecological state, now required by the 2000 European Directive. When comparing excess metal outputs, associated to river SPM, to the average metal demand within the catchment from 1950 to 2000, the leakage ratios decrease exponentially from 1950 to 2000 for Cd, Cr, Cu, Pb and Zn, meanwhile, a general increase of the demand is observed: the rate of recycling and/or treatment of metals within the anthroposphere has been improved ten-fold. Hg environmental trajectory is very

  2. Valence analysis of Pb and Cu and superconductivity of (Pb,Cu)(Sr,La) 2CuO y

    NASA Astrophysics Data System (ADS)

    Minako Shida; Eriko Ohshima; Masae Kikuchi; Masayasu Nagoshi; Yasuhiko Syono

    1996-02-01

    The Pb 1201 phases, Pb 0.5Cu 0.5Sr 2- xLa xCuO y, with x = 1.0-1.2 and Pb 0.6Cu 0.4Sr 2- xLa x CuO y, with x = 0.9-1.2 have been prepared at 1010-1015°C for 1.7-2.0 hours in flowing oxygen. To evaluate the Cu valence in the CuO 2 sheet, the Pb valence is separately determined by K 2Cr 2O 7 titration, in addition to the oxygen content determination by iodometry. The Tc (onset) rises as the oxygen content decreases due to release of the overdoping, but was not affected by La 3+ substitution for Sr 2+ and by the Pb content in the (Pb,Cu)O layer. The explanation is that the Cu valence in the CuO 2 sheet decreases as the oxygen content decreases, while the Pb valence is reduced by La 3+ substitution or the Pb content increases.

  3. Sensitive determinations of Cu, Pb, Cd, and Cr elements in aqueous solutions using chemical replacement combined with surface-enhanced laser-induced breakdown spectroscopy.

    PubMed

    Yang, X Y; Hao, Z Q; Li, C M; Li, J M; Yi, R X; Shen, M; Li, K H; Guo, L B; Li, X Y; Lu, Y F; Zeng, X Y

    2016-06-13

    In this study, chemical replacement combined with surface-enhanced laser-induced breakdown spectroscopy (CR-SENLIBS) was for the first time applied to improve the detection sensitivities of trace heavy metal elements in aqueous solutions. Utilizing chemical replacement effect, heavy metal ions in aqueous solution were enriched on the magnesium alloy surface as a solid replacement layer through reacting with the high chemical activity metallic magnesium (Mg) within 1 minute. Unitary and mixed solutions with Cu, Pb, Cd, and Cr elements were prepared to construct calibration curves, respectively. The CR-SENLIBS showed a much better detection sensitivity and accuracy for both unitary and mixed solutions. The coefficients of determination R2 of the calibration curves were above 0.96, and the LoDs were of the same order of magnitude, i.e., in the range of 0.016-0.386 μg/mL for the unitary solution, and in the range of 0.025-0.420 μg/mL for the mixed solution. These results show that CR-SENLIBS is a feasible method for improving the detection sensitivity of trace element in liquid sample, which definitely provides a way for wider application of LIBS in water quality monitoring.

  4. Atmospheric deposition of Pb, Cu, Ni, As, Sb, V, Cr, Co, Cd and Zn recorded in the Misten peat bog (Hautes-Fagnes, Belgium) during the Industrial Revolution

    NASA Astrophysics Data System (ADS)

    Allan, M.; Le Roux, G.; De Vleeschouwer, F.; Mattielli, N.; Fagel, N.

    2012-04-01

    A 40 cm peat core was studied from ombrotrophic bog in Western Europe (Misten bog, Hautes-Fagnes, Belgium). Trace metal and metalloid content (TM) and Pb isotopes were analysed by Q-ICP-MS and MC-ICP-MS, respectively. We focused our attention to a selected number of TM according to their specific enrichment (i.e. Pb, Cu, Ni, As, Sb, Cr, Co, V, Cd and Zn). Our aims were: 1) to investigate TM mobility; 2) to determine TM accumulation rates and 3) to link TM accumulation rates with established histories of anthropogenic atmospheric emission. According to 210Pb and 14C data the studied peat core section covered the last two centuries. The general agreement in TM concentration and flux profiles suggested that all TM (except Zn and Cd), were immobile in the Misten peat bog. The temporal increase of TM fluxes between the inception of the Industrial Revolution and the present vary by a factor of 5 to 50 according to TM. The maximum fluxes of TM were found between 1991 and 1995 AD. The coal consumption and metallurgical activities were the predominant source of pollution. The historical TM profiles in the Misten peat profile are in agreement with other European records, reflecting the influence of regional European pollution.

  5. Chemical fractionation of Cu, Zn, Cd, Cr, and Pb in sewage sludge amended soils at the end of 65-d sorghum-sudan grass growth.

    PubMed

    Sivapatham, Paramasivam; Lettimore, Jon M; Alva, Ashok K; Jayaraman, Kuppuswamy; Harper, Legia M

    2014-09-19

    Heavy metals are potentially toxic to human life and the environment. Metal toxicity depends on chemical associations in soil. Understanding the chemical association of trace elements in soils amended with biosolids is very important since it determines their availability within rhizosphere and mobility beyond the rhizosphere. A sequential extraction method was used to determine the various chemical associations [labile (exchangeable + sorbed), organic, carbonates, and sulfides] of Cu, Zn, Cd, Cr, and Pb at the end of sorghum-sudan grass growth (65d) in Candler fine sand (pH = 6.8) and in Ogeechee loamy sand (pH = 5.2) amended with wastewater treatment sludge (WWTS) obtained from two different sources at application rates of 0, 24.7, 49.4, 98.8, and 148.2 Mg ha(-1). Results of this study indicated that irrespective of the soil type, Cu, Cd, Cr, and Pb in the labile fractions (exchangeable + sorbed) were in the range of 0-3.0 mg kg(-1) and the amount for Zn was in the range of 0.2-6.6 mg kg(-1). Therefore, their availability to plants and mobility beyond rhizosphere would be substantially low unless further transformations occur from other fractions. Results also indicated that the presence of substantial amounts of trace elements studied were in sulfide (HNO3) fraction and in organic (NaOH) fraction irrespective of soil type with the exception of Pb which was mainly present as carbonate (Na2EDTA) fraction and the remaining Pb equally as sulfide (HNO3) and organic (NaOH) fractions. Furthermore, results indicated that Cd was mainly present as carbonate (Na2EDTA) fraction. Irrespective of soil type, source and rate of WWTS application, summation of quantities of various fractions of all the trace elements studied through sequential extraction procedure were 1 to 25 % lower than that of total recoverable quantities of these trace elements determined on acid digestion described by US EPA method 3050 B. It was further evident that growing sorghum sudan grass for 65-d

  6. Sol-gel zirconia coating capillary microextraction on-line hyphenated with inductively coupled plasma mass spectrometry for the determination of Cr, Cu, Cd and Pb in biological samples.

    PubMed

    Wu, Yiwei; Hu, Bin; Jiang, Zucheng; Feng, Yuqi; Lu, Peng; Li, Boyangzi

    2006-01-01

    A sol-gel zirconia coating was developed for the preconcentration/separation of trace Cr, Cu, Cd and Pb by capillary microextraction, and the adsorbed analytes were on-line eluted for detection using inductively coupled plasma mass spectrometry (ICP-MS). By immobilizing sol-gel zirconia on the inner surface of a fused-silica capillary, the sol-gel zirconia coating was simply prepared. Its adsorption properties, stability and the factors affecting the adsorption behaviors of Cr, Cu, Cd and Pb were investigated in detail. In the pH range from 7.8 to 10, the zirconia-coated capillary (35 cm x 0.15 mm) is selective towards Cr, Cu, Cd and Pb, and the analyzed ions could be desorbed quantitatively with 0.2 mL of 0.5 mol/L HNO(3) at a rate of 0.2 mL/min. With a consumption of 1.25 mL sample solution, an enrichment factor of 6.25, and detection limits (3sigma) of 9.9 pg/mL Cr, 17.9 pg/mL Cu, 4.5 pg/mL Cd and 3.7 pg/mL Pb were obtained. The precisions for nine replicate measurements of 1 ng/mL Cr, Cu, Cd and Pb were 4.9% Cr, 2.2% Cu, 2.0% Cd and 3.2% Pb (RSD), respectively. The proposed procedure has been applied to the determination of Cr, Cu, Cd and Pb in human urine, which was subjected to microwave-assisted digestion prior to analysis, and the recoveries for these elements were 89.2-101.8%. In order to validate the developed procedure, a NIES No.10-a Rice Flour-Unpolished certified reference material and a BCR No. 184 Bovine Muscle certified reference material were analyzed, and the results are in good agreement with the certified values. Copyright (c) 2006 John Wiley & Sons, Ltd.

  7. Proximity effect between a superconductor and a partially spin-polarized ferromagnet: Case study of the Pb/Cu /Co 2Cr1 -xFexAl trilayer

    NASA Astrophysics Data System (ADS)

    Kamashev, A. A.; Leksin, P. V.; Schumann, J.; Kataev, V.; Thomas, J.; Gemming, T.; Büchner, B.; Garifullin, I. A.

    2017-07-01

    We have studied the proximity effect in thin-film heterostructures composed of the superconducting Pb (S) and of the ferromagnetic Heusler alloy Co2Cr1 -xFexAl (F) with different degrees of the spin polarization of the conduction band. A thin Cu interlayer is inserted in between the S and F layers to ensure the stability of the S/F interface. The analysis of the dependences of the superconducting transition temperatures in such heterostructures on the thickness of the Pb or of the Heusler alloy using the theory by Fominov et al. [Ya. V. Fominov, N. M. Chtchelkatchev, and A. A. Golubov, Phys. Rev. B 66, 014507 (2002), 10.1103/PhysRevB.66.014507] shows that, with increasing the exchange splitting of the conduction band of a ferromagnet and, respectively, of the degree of the spin polarization, the probability of transmission of the superconducting Cooper pairs through the S/F interface decreases. We conclude that the spin imbalance plays a key role in the processes taking place at the interface between a superconductor and a ferromagnet with spin-polarized conduction electrons.

  8. Assessment of heavy metals/metalloid (As, Pb, Cd, Ni, Zn, Cr, Cu, Mn) concentrations in edible fish species tissue in the Pearl River Delta (PRD), China.

    PubMed

    Leung, H M; Leung, A O W; Wang, H S; Ma, K K; Liang, Y; Ho, K C; Cheung, K C; Tohidi, F; Yung, K K L

    2014-01-15

    The major aim of this study was to investigate heavy metal content of edible fish in the PRD. Eleven species of fish (consisting of 711 individuals) [catfish (Clarias fuscus), tilapia (Oreochromis mossambicus), grass carp (Ctenopharyngodon idellus), bighead carp (Aristichthys nobilis), mandarin fish (Siniperca kneri), snakehead (Channa asiatiea), black bass (Micropterus salmoides), mangrove snapper (Lutjanus griseus), star snapper (Lutjanu stellatus), snubnose pompano (Trachinotus blochii) and orange-spotted grouper (Epinephelus coioides)] were collected for the analyses of heavy metals. Overall concentrations (mg/kg, ww) in the fish muscles were: As (0.03-1.53), Pb (0.03-8.62), Cd (0.02-0.06), Ni (0.44-9.75), Zn (15.7-29.5), Cr (0.22-0.65), Cu (0.79-2.26), Mn (0.82-6.91). Significant level of Pb were found in tilapia at all locations. It is recommended that heavy metal concentrations in different fish species must be determined on a regular basis in the future so as to reduce human health risks from acute and chronic food intoxication.

  9. Sorption and desorption of Cd, Cr, Cu, Ni, Pb and Zn by a Fibric Histosol and its organo-mineral fraction.

    PubMed

    Covelo, E F; Vega, F A; Andrade, M L

    2008-11-30

    It has often been stated that the contribution of soil organic matter (OM) to the sorption of heavy metals can be evaluated using the surface horizon of a Histosol as typical of soil organic matter. However, components of Histosols other than organic matter, such as clay minerals and Fe or Mn oxides, can also sorb heavy metals. In this work we compared the heavy metal sorption and desorption behaviour of a Fibric Histosol H horizon with that of its organo-mineral fraction (OMF, defined as the fraction of wet particle size <100 microm) in experiments in which Cd, Cr, Cu, Ni, Pb and Zn were sorbed simultaneously from solutions of various concentrations. The OMF sorbed the metals reversibly and apparently mainly at specific sites to each particular metal, in keeping with the good fit of Langmuir isotherms to the sorption data; greatest sorption capacity was for lead and copper. Whole H horizon appeared to include sites at which binding was less reversible and chromium competed with the other metals, especially copper. Organo-mineral fraction is suggested to evaluate the soil organic matter contribution to heavy metal fixation.

  10. Succulent species differ substantially in their tolerance and phytoextraction potential when grown in the presence of Cd, Cr, Cu, Mn, Ni, Pb, and Zn.

    PubMed

    Zhang, Chengjun; Sale, Peter W G; Clark, Gary J; Liu, Wuxing; Doronila, Augustine I; Kolev, Spas D; Tang, Caixian

    2015-12-01

    Plants for the phytoextraction of heavy metals should have the ability to accumulate high concentrations of such metals and exhibit multiple tolerance traits to cope with adverse conditions such as coexistence of multiple heavy metals, high salinity, and drought which are the characteristics of many contaminated soils. This study compared 14 succulent species for their phytoextraction potential of Cd, Cr, Cu, Mn, Ni, Pb, and Zn. There were species variations in metal tolerance and accumulation. Among the 14 succulent species, an Australian native halophyte Carpobrotus rossii exhibited the highest relative growth rate (20.6-26.6 mg plant(-1) day(-1)) and highest tolerance index (78-93%), whilst Sedum "Autumn Joy" had the lowest relative growth rate (8.3-13.6 mg plant(-1) day(-1)), and Crassula multicava showed the lowest tolerance indices (<50%). Carpobrotus rossii and Crassula helmsii showed higher potential for phytoextraction of these heavy metals than other species. These findings suggest that Carpobrotus rossii is a promising candidate for phytoextraction of multiple heavy metals, and the aquatic or semiterrestrial Crassula helmsii is suitable for phytoextraction of Cd and Zn from polluted waters or wetlands.

  11. The Uptake Mechanism of Cd(II), Cr(VI), Cu(II), Pb(II), and Zn(II) by Mycelia and Fruiting Bodies of Galerina vittiformis

    PubMed Central

    Damodaran, Dilna; Balakrishnan, Raj Mohan; Shetty, Vidya K.

    2013-01-01

    Optimum concentrations of heavy metals like copper, cadmium, lead, chromium, and zinc in soil are essential in carrying out various cellular activities in minimum concentrations and hence help in sustaining all life forms, although higher concentration of these metals is lethal to most of the life forms. Galerina vittiformis, a macrofungus, was found to accumulate these heavy metals into its fleshy fruiting body in the order Pb(II) > Cd(II) > Cu(II) > Zn(II) > Cr(VI) from 50 mg/kg soil. It possesses various ranges of potential cellular mechanisms that may be involved in detoxification of heavy metals and thus increases its tolerance to heavy metal stress, mainly by producing organic acids and phytochelatins (PCs). These components help in repairing stress damaged proteins and compartmentalisation of metals to vacuoles. The stress tolerance mechanism can be deduced by various analytical tools like SEM-EDX, FTIR, and LC-MS. Production of two kinds of phytochelatins was observed in the organism in response to metal stress. PMID:24455671

  12. Environmental behaviors and potential ecological risks of heavy metals (Cd, Cr, Cu, Pb, and Zn) in multimedia in an oilfield in China.

    PubMed

    Hu, Yan; Wang, Dazhou; Li, Yu

    2016-07-01

    The environmental behaviors of five heavy metals (Cd, Cr, Cu, Pb, and Zn) in a Chinese oilfield were investigated using a steady-state multimedia aquivalence (SMA) model. The modeling results showed good agreement with the actual measured values, with average residual errors of 0.69, 0.83, 0.35, 0.16, and 0.54 logarithmic units for air, water, soil, sediment, and vegetation compartments, respectively. Model results indicated that most heavy metals were buried in sediment, and that transfers between adjacent compartments were mainly deposition from the water to the sediment compartment (48.59 %) and from the air to the soil compartment (47.74 %) via atmospheric dry/wet deposition. Sediment and soil were the dominant sinks, accounting for 68.80 and 25.26 % of all the heavy metals in the multimedia system, respectively. The potential ecological risks from the five heavy metals in the sediment and soil compartments were assessed by the potential ecological risk index (PERI). The assessment results demonstrate that the heavy metals presented low levels of ecological risk in the sediment compartment, and that Cd was the most significant contributor to the integrated potential ecological risk in the oilfield. The SMA model provided useful simulations of the transport and fate of heavy metals and is a useful tool for ecological risk assessment and contaminated site management.

  13. Kinetic sorption modelling of Cu, Ni, Zn, Pb and Cr ions to pine bark and blast furnace slag by using batch experiments.

    PubMed

    Nehrenheim, E; Gustafsson, J P

    2008-04-01

    Storm water and landfill leachate can both contain significant amounts of toxic metals such as Zn, Cu, Pb, Cr and Ni. Pine bark and blast furnace slag are both residual waste products that have shown a large potential for metal removal from contaminated water. There are however many variables that must be optimized in order to achieve efficient metal retention. One of these variables is the time of which the solution is in contact with each unit of filter material. Metal sorption was studied in two laboratory experiments to improve the knowledge of the effects of contact time. The results showed that pine bark was generally more efficient than blast furnace slag when the metal concentrations were relatively small, whereas blast furnace slag sorbed most metals to a larger extent at increased metal loads. In addition, sorption to blast furnace slag was found to be faster than metal binding to pine bark. A pseudo-second-order kinetic model was able to describe the data well within 1000 s of reaction time.

  14. The uptake mechanism of Cd(II), Cr(VI), Cu(II), Pb(II), and Zn(II) by mycelia and fruiting bodies of Galerina vittiformis.

    PubMed

    Damodaran, Dilna; Balakrishnan, Raj Mohan; Shetty, Vidya K

    2013-01-01

    Optimum concentrations of heavy metals like copper, cadmium, lead, chromium, and zinc in soil are essential in carrying out various cellular activities in minimum concentrations and hence help in sustaining all life forms, although higher concentration of these metals is lethal to most of the life forms. Galerina vittiformis, a macrofungus, was found to accumulate these heavy metals into its fleshy fruiting body in the order Pb(II) > Cd(II) > Cu(II) > Zn(II) > Cr(VI) from 50 mg/kg soil. It possesses various ranges of potential cellular mechanisms that may be involved in detoxification of heavy metals and thus increases its tolerance to heavy metal stress, mainly by producing organic acids and phytochelatins (PCs). These components help in repairing stress damaged proteins and compartmentalisation of metals to vacuoles. The stress tolerance mechanism can be deduced by various analytical tools like SEM-EDX, FTIR, and LC-MS. Production of two kinds of phytochelatins was observed in the organism in response to metal stress.

  15. Investigation of heavy metal (Cu, Pb, Cd, and Cr) stabilization in river sediment by nano-zero-valent iron/activated carbon composite.

    PubMed

    Chen, Wei-fang; Zhang, Jinghui; Zhang, Xiaomao; Wang, Weiya; Li, Yuxiang

    2016-01-01

    Nano-zero-valent iron/activated carbon (nZVI/AC) composite was evaluated for its effectiveness in the stabilization of Cu, Pb, Cd, and Cr in dredged river sediment. Synthetic precipitation leaching procedure (SPLP) and toxicity characteristic leaching procedure (TCLP) were adopted to compare the effects of nZVI/AC dosage, particle size, time duration, and temperature on heavy metal leachability. The results show that leachability dropped considerably with the addition of nZVI/AC and powdered particles in the size of 0.075-0.18 mm was more effective in stabilization than granular ones. Stabilization effect was stable in long-term and robust against changes in temperature. Tessier sequential extraction revealed that heavy metals were associated with solid particle, inorganic or organic matters in sediment. The addition of nZVI/AC was able to convert relatively weakly bound heavy metals into more strongly bound species and thus reduce the bioavailability and toxicity. Also, the standard potential of heavy metals may decide the mechanism of stabilization process.

  16. Cu-Cr Literature Review

    SciTech Connect

    Need, Ryan F.

    2012-08-09

    Cu-Cr alloys are part of a class of face-centered cubic (FCC)-body-centered cubic (BCC) composites that includes similar alloys, such as Cu-Nb and Cu-Ta. When heavily deformed, these FCC-BCC materials create 'in situ' composites with a characteristic structure-nanoscale BCC filaments in a ductile FCC matrix. The strength of these composites is vastly greater than predicted by the rule of mixtures, and has been shown to be inversely proportional to the filament spacing. Lower raw materials costs suggest that Cu-Cr alloys may offer more economical solution to high-strength, high-conductivity wire than either their Nb or Ta counterparts. However, Cr is also more brittle and soluble in Cu than Nb or Ta. These qualities necessitate thermal treatments to remove solute atoms from the Cu matrix, improve conductivity, and maintain the ductility of the Cr filaments. Through the use of different thermomechanical processing routes or the addition of select dopants, alloys with strength in excess of 1 GPa at 70% IACS have been achieved. To date, previous research on Cu-Cr alloys has focused on a relatively small number of alloy compositions and processing methods while the effects of dopants and ageing treatments have only been studied independently. Consequently, there remains considerable opportunity for the development and optimization of these alloys as a leading high-strength, high-conductivity material.

  17. Separation and preconcentration of Cu(II), Pb(II), Zn(II), Fe(III) and Cr(III) ions with coprecipitation method without carrier element and their determination in food and water samples.

    PubMed

    Mendil, Durali; Karatas, Murat; Tuzen, Mustafa

    2015-06-15

    In this study, Cu(II), Pb(II), Zn(II), Fe(III) and Cr(III) were determined in some food and water samples after development 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) coprecipitation procedure using flame atomic absorption spectrometry (FAAS). Effects of some analytical parameter including pH, sample volume, reagent amount, centrifuge rate and time, etc. on the presented coprecipitation system were studied for the quantitative recoveries of Cu(II), Pb(II), Zn(II), Fe(III) and Cr(III) ions. The influences of matrix ions were examined. The recovery values for analyte ions were calculated ⩾ 95%. The relative standard deviation was found 8.0% and the preconcentration factor was found as 25 for all analyte ions. The detection limits (k=3, N=21) were found to be as 0.80 μg L(-1) Cu(II), 3.08 μg L(-1) Pb(II), 0.28 μg L(-1) Zn(II), 0.91 μg L(-1) Fe(III) and 1.82 μg L(-1) Cr(III). NIST SRM 1515 Apple leaves and GBW-07605 Tea certified reference materials were used to confirm the accuracy of the method. The simultaneous coprecipitation method was applied to various water and microwave digested food samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Regional background concentrations of heavy metals (Cr, Co, Ni, Cu, Zn, Pb) in coastal sediments of the South Sea of Korea.

    PubMed

    Song, Yunho; Choi, Man Sik; Lee, Ji Youn; Jang, Dong Jun

    2014-06-01

    The background concentration (BC) of metals in coastal sediments may be a useful tool for assessing the extent of sediment contamination by human activities. This study presents an approach to establish BCs that are applicable at the regional scale, particularly for coastal areas with relatively tortuous coastlines and complex coastal geology and/or geomorphology like the South Sea of Korea. The approach is based on the sorption hypothesis for metal enrichment of coastal sediments and was verified using 33 core and 187 surface sediments. The concentrations of major and heavy metals, grain size parameters, organic carbon, and sedimentation rates were determined. Cs was selected as the most suitable geochemical normalizer to correct the grain-size effect. Non-contaminated samples from core sediments were selected according to the sedimentation rate, 32 types of profile pattern based on metal concentrations and metal/Cs ratios, and their variability in past sediments. Metal concentrations in the selected non-contaminated samples were well correlated with Cs, with a given Cs amounts in surface sediments corresponding to the lowest metal concentrations. This result supported the use of a procedure based on the sorption hypothesis, which was then used to synthesize all core samples and establish the regional BC of heavy metals in the coastal sediments. Linear regression equations between metal and Cs concentrations provided the following BCs of metals in coastal sediments in the South Sea of Korea: 70 (Cr), 13 (Co), 30 (Ni), 13 (Cu), 87 (Zn), and 23 (Pb)mg/kg at 8mg/kg of Cs (mean concentration of 393 sediments).

  19. Evaluation of the Accumulation of Trace Metals (as, U, CR, CU, PB, Zn) on Iron-Manganese Coatings on in Situ Stream Pebbles and Emplaced Substrates

    NASA Astrophysics Data System (ADS)

    Turpin, M. M.; Blake, J.; Crossey, L. J.; Ali, A.; Hansson, L.

    2015-12-01

    Exposure to trace metals (As, U, Cr, Cu, Pb, Zn) has potential negative health effects on human populations and wildlife. Geothermal waters often have elevated concentrations of trace elements and understanding the geochemical cycling of these elements can be challenging. Previous studies have utilized in situ stream pebbles and glass or ceramic substrates with iron-manganese oxide coatings to understand contamination and or chemical cycling. This project's main focus is to develop an ideal tracing method using adsorption onto substrate surfaces and to define key parameters that are necessary for the phenomenon of adsorption between trace metals and these surface coatings to occur. Sampling locations include the Jemez River and Rio San Antonio in the Jemez mountains, northern New Mexico. Both streams have significant geothermal inputs. Pebbles and cobbles were gathered from the active stream channel and 6mm glass beads and 2 X1 in. ceramic plates were placed in streams for three weeks to allow for coating accumulation. Factors such as leachate type, water pH, substrate type, coating accumulation period and leach time were all considered in this experiment. It was found that of the three leachates (aqua regia, 10% aqua regia and hydroxylamine), hydroxylamine was the most effective at leaching coatings without dissolving substrates. Samples leached with aqua regia and 10% aqua regia were found to lose weight and mass over the following 5, 7, and 10 day measurements. Glass beads were determined to be more effective than in stream pebbles as an accumulation substrate: coatings were more easily controlled and monitored. Samples leached with hydroxylamine for 5 hours and 72 hours showed little difference in their leachate concentrations, suggesting that leach time has little impact on the concentration of leachate samples. This research aims to find the best method for trace metal accumulation in streams to aid in understanding geochemical cycling.

  20. Radionuclides (40K, 232Th and 238U) and Heavy Metals (Cr, Ni, Cu, Zn, As and Pb) Distribution Assessment at Renggam Landfill, Simpang Renggam, Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Zaidi, E.; FahrulRazi, MJ; Azhar, ATS; Hazreek, ZAM; Shakila, A.; Norshuhaila, MS; Omeje, M.

    2017-08-01

    The assessment of radioactivity levels and the distribution of heavy metals in soil samples at CEP Farm landfill, Renggam in Johor State was to determine the activity concentrations of naturally occurring radionuclides and heavy metal concentrations of this landfill. The background radiation was monitored to estimate the exposure level. The activity concentrations of radionuclides in soil samples were determined using HPGe gamma ray spectroscopy whereas the heavy metal concentration was measured using X-RF analysis. The mean exposure rate at the landfill site was 36.2±2.4 μR hr-1 and the annual effective dose rate at the landfill site was 3.19 ± 0.22 mSv yr-1. However, residential area has lower mean exposure dose rate of about 16.33±0.72 μR hr-1 and has an annual effective dose rate of 1.43±0.06 mSv yr-1 compared to landfill sites. The mean activity concentration of 40K, 238U and 232Th at landfill site were 239.95±15.89 Bq kg-1, 20.90±2.49 Bq kg-1 and 40.61±4.59 Bq kg-1, respectively. For heavy metal compositions, Cr, Ni and Cu have mean concentration of 232±10 ppm, 23±2 ppm, and 46±19 ppm, respectively. Whereas, Zn has concentration of 64±9 ppm and concentration of 12±1 ppm and 71±2 ppm was estimated for As and Pb respectively. The higher activity concentration of 40K down the slope through leaching process whereas the higher activity level of 238U content at the landfill site may be attributed to the soil disruption to local equilibrium.

  1. Evaluation of the use of a reflux system for sample preparation of processed fruit juices and subsequent determination of Cr, Cu, K, Mg, Na, Pb and Zn by atomic spectrometry techniques.

    PubMed

    Pereira, Camila Corrêa; de Souza, Alexander Ossanes; Oreste, Eliézer Quadro; Vieira, Mariana Antunes; Ribeiro, Anderson Schwingel

    2018-02-01

    The acid decomposition method was applied for the sample preparation of processed fruit juice. The decomposition of 15mL of juice sample using HNO3 and H2O2 was performed in a digester block with reflux system and heated at 200°C for 150min. The limits of detection were 0.03; 0.24; 0.8; 0.008; 0.026 and 0.056mgL(-1) for Cr, Cu, K, Mg, Na and Zn, respectively and for Pb was 0.99μgL(-1). The accuracy was evaluated by spiked experiments (80 to 119%). Four processed fruit juice samples commercialized in Brazil (strawberry, mango, peach, and orange) were analyzed and indicated the absence of Cr, Zn and Cu in the samples, except for Cu in strawberry juice. Pb was found in the mango juice sample (17.8±0.9μgL(-1)) and the concentration is below the maximum values recommended by Brazilian legislation for juices of citric fruits (0.3mgkg(-1)). Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Chemical speciation of Fe, Mn, Pb, Zn, Cd, Cu, Co, Ni and Cr in the suspended particulate matter off the Mejerda River Delta (Gulf of Tunis, Tunisia)

    NASA Astrophysics Data System (ADS)

    Helali, Mohamed Amine; Oueslati, Walid; Zaaboub, Noureddine; Added, Ayed; Aleya, Lotfi

    2016-06-01

    Fluxes of suspended particulate matter (SPM) and their associated metals were performed off the Mejerda River Delta during both the wet (March) and the dry (July) seasons in 2012, using sediment traps at study stations at depths of 10, 20 and 40 m. Fluxes nearest to the Mejerda outlet were more significant, especially during winter (36 g m-2 day-1), but dissipated further offshore, 24.5-6 g m-2 day-1 at the 20 m and 21.8-4.8 g m-2 day-1 at the 40 m stations. Many variations observed in seasonal and spatial metal fluxes are similar to those of SPM, in particular Pb and Zn, probably because they are associated with the mining activity characteristic of the Mejerda catchment. Chemical speciation reveals that most of the metals (20-100%) are bound to the residual fraction. The most toxic metals (Pb, Zn) are bound in part to the exchangeable fraction (20-50% for Pb and 5-15% for Zn) making them relatively bioavailable and therefore potentially toxic. While Cu and Cd fluxes are not always clearly established according to season, both metals are apparently sequestered deep in the sediment, bound especially to clays (40-80% for Cd and up to 100% for Cu).

  3. Ligandless cloud point extraction of Cr(III), Pb(II), Cu(II), Ni(II), Bi(III), and Cd(II) ions in environmental samples with Tween 80 and flame atomic absorption spectrometric determination.

    PubMed

    Candir, Secil; Narin, Ibrahim; Soylak, Mustafa

    2008-10-19

    A cloud point extraction (CPE) procedure has been developed for the determination trace amounts of Cr(III), Pb(II), Cu(II), Ni(II), Bi(III), and Cd(II) ions by using flame atomic absorption spectrometry. The proposed cloud point extraction method was based on cloud point extraction of analyte metal ions without ligand using Tween 80 as surfactant. The surfactant-rich phase was dissolved with 1.0 mL 1.0 mol L(-1) HNO(3) in methanol to decrease the viscosity. The analytical parameters were investigated such as pH, surfactant concentration, incubation temperature, and sample volume, etc. Accuracy of method was checked analysis by reference material and spiked samples. Developed method was applied to several matrices such as water, food and pharmaceutical samples. The detection limits of proposed method were calculated 2.8, 7.2, 0.4, 1.1, 0.8 and 1.7 microg L(-1) for Cr(III), Pb(II), Cu(II), Ni(II), Bi(III), and Cd(II), respectively.

  4. Chemometric evaluation of Cd, Co, Cr, Cu, Ni (inductively coupled plasma optical emission spectrometry) and Pb (graphite furnace atomic absorption spectrometry) concentrations in lipstick samples intended to be used by adults and children.

    PubMed

    Batista, Érica Ferreira; Augusto, Amanda dos Santos; Pereira-Filho, Edenir Rodrigues

    2016-04-01

    A method was developed for determining the concentrations of Cd, Co, Cr, Cu, Ni and Pb in lipstick samples intended to be used by adults and children using inductively coupled plasma optical emission spectrometry (ICP OES) and graphite furnace atomic absorption spectrometry (GF AAS) after treatment with dilute HNO3 and hot block. The combination of fractional factorial design and Desirability function was used to evaluate the ICP OES operational parameters and the regression models using Central Composite and Doehlert designs were calculated to stablish the best working condition for all analytes. Seventeen lipstick samples manufactured in different countries with different colors and brands were analyzed. Some samples contained high concentrations of toxic elements, such as Cr and Pb, which are carcinogenic and cause allergic and eczematous dermatitis. The maximum concentration detected was higher than the permissible safe limits for human use, and the samples containing these high metal concentrations were intended for use by children. Principal component analysis (PCA) was used as a chemometrics tool for exploratory analysis to observe the similarities between samples relative to the metal concentrations (a correlation between Cd and Pb was observed).

  5. Influence of the type of tree habitat on the character of co-occurrence of Fe, Mn, Zn, Cu, Pb, Ni, Cr and Co in the soil of the Tatra Mountain National Park.

    PubMed

    Kwapuliński, Jerzy; Paprotny, Łukasz; Paukszto, Andrzej; Kowol, Jolanta; Rochel, Robert; Nogaj, Ewa; Musielińska, Renata; Celiński, Rafał

    2013-01-01

    The objective of the research was to determine the effect of habitat type of selected species of trees on the nature of co-occurrence of Fe, Mn, Zn, Cu, Pb, Cd, Ni, Cr and Co. The presence of speciation forms of these metals was investigated, with reference to the species composition of tree stands in selected areas of the Tatra Mountain National Park (Chochołowska Valley, Strążyska Valley, Kościeliska Valley, as well as Mała Łąka Valley).Contents of selected metals in samples were determined by the flame ASA method, with an accuracy of 0.1 µg/g. In habitats dominated by maples, the Pb content in the Chochołowska Valley, unlike Kościeliska Valley covered with beeches, the Pb content in the form directly bioavailable, was twice as high. This was clearly proved in the case of Strążyska Valley where the soil in beech tree habitats contained larger quantities of exchangeable forms of Pb, than that in the Chochołowska Valley. The soil of the valleys, including the Mała Łąka Valley, showed peculiar characteristic averaging of the contents of selected speciation forms of metals in the soil. Content corresponding to 10 percentile and geometrical average may be regarded as benchmarks in future studies of the Tatra Mountain National Park, or other protected areas.

  6. Concentration of Cu, Zn, Cr, Ni, Cd, and Pb in soil, sugarcane leaf and juice: residual effect of sewage sludge and organic compost application.

    PubMed

    Moretti, Sarah Mello Leite; Bertoncini, Edna Ivani; Vitti, André César; Alleoni, Luís Reynaldo Ferracciú; Abreu-Junior, Cassio Hamilton

    2016-03-01

    Many researchers have evaluated the effects of successive applications of sewage sludge (SS) on soil plant-systems, but most have not taken into account the residual effect of organic matter remaining from prior applications. Furthermore, few studies have been carried out to compare the effects of the agricultural use of SS and sewage sludge compost (SSC). Therefore, we evaluated the residual effect of SS and SSC on the heavy metal concentrations in soil and in sugarcane (Saccharum spp.) leaves and juice. The field experiment was established after the second harvesting of unburned sugarcane, when the organic materials were applied. The SS and SSC rates were (t ha(-1), dry base): 0, 12.5, 25, and 50; and 0, 21, 42, and 84, respectively. All element concentrations in the soil were below the standards established by São Paulo State environmental legislation. SS promoted small increases in Zn concentrations in soil and Cu concentrations in leaves. However, all heavy metals concentrations in the leaves were lower than the limits established for toxic elements and were in accordance with the limits established for micronutrients. There were reductions in the concentrations of Ni and Cu in soil and the concentration of Pb in juice, with increasing rates of SSC. The heavy metal concentrations were very low in the juice. Under humid tropical conditions and with short-term use, SS and SSC containing low heavy metal concentrations did not have negative effects on plants and soil.

  7. The influence of metal speciation in combustion waste on the efficiency of Cu, Pb, Zn, Cd, Ni and Cr bioleaching in a mixed culture of sulfur-oxidizing and biosurfactant-producing bacteria.

    PubMed

    Karwowska, Ewa; Wojtkowska, Małgorzata; Andrzejewska, Dorota

    2015-12-15

    Metal leachability from ash and combustion slag is related to the physico-chemical properties, including their speciation in the waste. Metals speciation is an important factor that influences the efficiency of metal bioleaching from combustion wastes in a mixed culture of acidophilic and biosurfactant-producing bacteria. It was observed that individual metals tended to occur in different fractions, which reflects their susceptibility to bioleaching. Cr and Ni were readily removed from wastes when present with a high fraction bound to carbonates. Cd and Pb where not effectively bioleached when present in high amounts in a fraction bound to organic matter. The best bioleaching results were obtained for power plant slag, which had a high metal content in the exchangeable, bound to carbonates and bound to Fe and Mg oxides fractions- the metal recovery percentage for Zn, Cu and Ni from this waste exceeded 90%.

  8. Determination of labile species of As(V), Ba, Cd, Co, Cr(III), Cu, Mn, Ni, Pb, Sr, V(V), and Zn in natural waters using diffusive gradients in thin-film (DGT) devices modified with montmorillonite.

    PubMed

    Dos Anjos, Vanessa E; Abate, Gilberto; Grassi, Marco T

    2017-03-01

    A binding phase based on the clay mineral montmorillonite (MT) was used as a sorbent in this work, which employed diffusive gradients in thin-film (DGT) devices to determine the lability of trace elements in natural waters. Montmorillonite exhibits low cost, wide availability, ease of handling, high ion-exchange capacity, and reusability. As(V), Ba(2+), Cd(2+), Co(2+), Cr(III), Cu(2+), Mn(2+), Ni(2+), Pb(2+), Sr(2+), V(V), and Zn(2+) were quantitatively sorbed by MT and eluted with 1.0 mol L(-1) HNO3, which provided efficiency above 70% of recovery. Validation tests were performed with synthetic solutions. The recovery of known concentrations ranged from 83 to 110%. The performance of modified DGT was compared with conventional DGT devices in experiments lasting 6 and 48 h. The results obtained with both DGT devices showed no significant differences with 95% confidence. DGT samplers with MT were deployed in the determination of labile forms of the elements in water samples from Iguaçu River (Paraná, Brazil). The measured masses of elements in MT for various durations showed good fit to a theoretical line, indicating that the results agreed with the principle of the DGT technique. The concentrations of labile species in the sample proceeded as follows; Sr > Cd > Ba > Cu > Cr > Mn > Zn > Pb. The results suggest that DGT devices with MT are an effective alternative for speciation analysis of a wide range of elements (cations as well as anions) in natural waters.

  9. Effect of CaO on retention of S, Cl, Br, As, Mn, V, Cr, Ni, Cu, Zn, W and Pb in bottom ashes from fluidized-bed coal combustion power station.

    PubMed

    Bartoňová, Lucie; Klika, Zdeněk

    2014-07-01

    This work was conducted to evaluate whether Ca-bearing additives used during coal combustion can also help with the retention of some other elements. This work was focused on the evaluation of bottom ashes collected during four full-scale combustion tests at an operating thermal fluidized-bed power station. Bottom ashes were preferred to fly ashes for the study to avoid interference from condensation processes usually occurring in the post-combustion zone. This work focused on the behaviors of S, Cl, Br, As, Mn, V, Cr, Ni, Cu, Zn, W, and Pb. Strong positive correlations with CaO content in bottom ashes were observed (for all four combustion tests) for S, As, Cl and Br (R=0.917-0.999). Strong inverse proportionality was calculated between the contents of Pb, Zn, Ni, Cr and Mn and CaO, so these elements showed association to materials other than Ca-bearing compounds (e.g., to aluminosilicates, organic matter, etc.). Somewhat unclear behaviors were observed for W, Cu, and V. Their correlation coefficients were evaluated as statistically "not significant", i.e., these elements were not thought to be significantly associated with CaO. It was also discovered that major enrichment of CaO in the finest bottom ash fractions could be advantageously used for simple separation of elements strongly associated with these fractions, mainly S and As, but also Cl or Br. Removal of 5% of the finest ash particles brings about a decrease in As concentration down to 77%-80% of its original bulk ash content, which can be conveniently used e.g., when high As content complicates further ash utilization.

  10. Yield strength of Cu and a CuPb alloy (1% Pb)

    NASA Astrophysics Data System (ADS)

    Buttler, W. T.; Gray, G. T.; Fensin, S. J.; Grover, M.; Prime, M. B.; Stevens, G. D.; Stone, J. B.; Turley, W. D.

    2017-01-01

    With PBX9501 we explosively loaded fully annealed OFHC-Cu and an OFHC-CuPb (extruded with 1% Pb that aggregates at the Cu grain boundaries) to study the effects of the 1% Pb on the elastic-plastic yield Y of Cu. The yield-stress Y was studied through observation of surface velocimetry and total ejected mass ρA from periodic surface perturbations machined onto the sample surfaces. The perturbation's wavelengths were λ ≈ 65 µm, and their amplitudes h were varied to determine the wavenumber (2π/λ) amplitude product kh at which ejecta production for the Cu and CuPb begins, which relates to Y. The Y of the two materials is apparently different.

  11. Enhancement of Transport Critical Current Density in Nano Cr2O3 Added Ag-SHEATHED (Bi1.6Pb0.4)Sr2Ca2Cu3O10 Superconductor Tapes

    NASA Astrophysics Data System (ADS)

    Kong, W.; Abd-Shukor, R.

    Ag-sheathed (Bi1.6Pb0.4)Sr2Ca2Cu3O10 (Bi-2223) high temperature superconductor tapes with 0.1 wt% nano Cr2O3 were fabricated using the powder-in-tube method. The effects of intermediate rolling and sintering temperature on the transport critical current density (Jc) under self-field and applied magnetic field were studied. The X-ray patterns showed a dominant Bi-2223 phase (~80%). A decrease in Jc in applied magnetic field, parallel or perpendicular to the sample wide surface was observed for all tapes. Intermediate rolling improved the self-field Jc (T=77 K) of the tapes by 25%. Both Jc versus applied field curves and normalized pinning force density Fp/Fpmax versus applied field curves showed that the pinning strength was significantly enhanced with thermo-mechanical treatments. SEM micrographs showed improvements in the grain alignment of tapes with intermediate rolling. Enhancement in Jc was observed in the nano Cr2O3 added tapes.

  12. Accumulation of Cr, Cd, Pb, Cu, and Zn by plants in tanning sludge storage sites: opportunities for contamination bioindication and phytoremediation

    USDA-ARS?s Scientific Manuscript database

    The lack of appropriate disposal strategies of tanning sludge (e.g., uncontrolled landfills and disposing sludge to open areas) has led to severe Cr pollution in waters and soils in many developing countries. Excessive Cr can be highly toxic to many living organisms and may damage the ecosystem. In ...

  13. Yield strength of Cu and an engineered material of Cu with 1% Pb

    NASA Astrophysics Data System (ADS)

    Buttler, William; Gray, George, III; Fensin, Saryu; Grover, Mike; Stevens, Gerald; Stone, Joseph; Turley, William

    2015-06-01

    To study the effects of engineered elastic-plastic yield on the mass-ejection from shocked materials we fielded explosively driven Cu and CuPb experiments. The Cu and CuPb experiments fielded fully annealed disks in contact with PBX 9501; the CuPb was extruded with 1% Pb that aggregates at the Cu grain boundaries. The elastic-plastic yield strength is explored as a difference of ejecta production of CuPb versus Cu, where the ejecta production of solid materials ties directly to the surface perturbation geometries of wavelengths (fixed at 65 μm) and amplitudes (which were varied). We observed that the Cu performs as expected, with ejecta turning on at the previously observed yield threshold, but the CuPb ejects mass in much larger quantities, at much lower wavenumber (k = 2 π/ λ) amplitude (h) products (kh), implying a reduced elastic-plastic yield stress of the engineered material, CuPb.

  14. Melting of Pb Charge Glass and Simultaneous Pb-Cr Charge Transfer in PbCrO3 as the Origin of Volume Collapse

    DOE PAGES

    Yu, Runze; Hojo, Hajime; Watanuki, Tetsu; ...

    2015-09-15

    A metal to insulator transition in integer or half integer charge systems can be regarded as crystallization of charges. The insulating state tends to have a glassy nature when randomness or geometrical frustration exists. In this paper, we report that the charge glass state is realized in a perovskite compound PbCrO3, which has been known for almost 50 years, without any obvious inhomogeneity or triangular arrangement in the charge system. PbCrO3 has a valence state of Pb2+0.5Pb4+0.5Cr3+O3 with Pb2+–Pb4+ correlation length of three lattice-spacings at ambient condition. A pressure induced melting of charge glass and simultaneous Pb–Cr charge transfer causesmore » an insulator to metal transition and ~10% volume collapse.« less

  15. Strengthening in rapidly solidified age hardened Cu-Cr and Cu-Cr-Zr alloys

    SciTech Connect

    Correia, J.B.; Davies, H.A.; Sellars, C.M.

    1997-01-01

    Cu-Cr and Cu-Cr-Zr alloy powders were produced by water atomization and consolidated by warm extrusion. Coherent Cr precipitation is associated with the peak hardness condition in these alloys. The mechanical properties obtained after aging treatments, namely the peak hardness, and the corresponding proof stress are related to the concentration of the alloying element initially in solid solution in the powders. The strengthening observed is interpreted in terms of theories of precipitation and dispersion strengthening and compared with similar analyses reported previously in the literature for these alloy systems.

  16. Tensile behavior of pb-sn solder/cu joints

    NASA Astrophysics Data System (ADS)

    Quan, Lenora; Frear, Darrel; Grivas, Dennis; Morris, J. W.

    1987-05-01

    Solders of nominal 95Pb-5Sn and 60Sn-40Pb were used to join Cu plates. The effect of ternary additions of In, Ag, Sb, and Bi to the near-eutectic solder were also investigated. Bulk solder and interfacial joint microstructures were characterized for each solder alloy. The solder joints were strained to failure in tension; joint strength and failure mode were determined. 95Pb-5Sn/Cu and 60Sn-40Pb/Cu specimens were tested both as-processed and after reflow. 95Pb-5Sn/Cu as-processed and reflow specimens failed in tension in a ductile mode. Voids initiated at β-Sn precipitates in the as-processed specimens and at the Cu3Sn intermetallic in the reflow specimens. 60Sn-40Pb/Cu failed transgranularly through the Cu6Sn5 intermetallic in both the as-processed and reflow conditions. The joint tensile strength of the reflow specimens was approximately half that of the as-processed specimens for both the high-Pb and near-eutectic alloys. The Cu6Sn{5} intermetallic dominated the tensile failure mode of the near-eutectic solder/Cu joints. The fracture path of the near-eutectic alloys with ternary additions depended on the presence of Cu6Sn5 rods in the solder within the Cu plates. Specimens with ternary additions of In and Ag contained only interfacial intermetallics and exhibited interfacial failure at the Cu6Sn5. Joints manufactured with ternary additions of Sb and Bi contained rods of Cu6Sn5 within the solder. Tensile failure of the Sb and Bi specimens occurred through the solder at the Cu6Sn5 rods.

  17. Observations of a Cast Cu-Cr-Zr Alloy

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2006-01-01

    Prior work has demonstrated that Cu-Cr-Nb alloys have considerable advantages over the copper alloys currently used in regeneratively cooled rocket engine liners. Observations indicated that Zr and Nb have similar chemical properties and form very similar compounds. Glazov and Zakharov et al. reported the presence of Cr2Zr in Cu-Cr-Zr alloys with up to 3.5 wt% Cr and Zr though Zeng et al. calculated that Cr2Zr could not exist in a ternary Cu-Cr-Zr alloy. A cast Cu-6.15 wt% Cr-5.25 wt% Zr alloy was examined to determine if the microstructure developed would be similar to GRCop-84 (Cu-6.65 wt% Cr-5.85 wt% Nb). It was observed that the Cu-Cr-Zr system did not form any Cr2Zr even after a thermal exposure at 875 C for 176.5 h. Instead the alloy consisted of three phases: Cu, Cu5Zr, and Cr.

  18. Magnetic resonance in a Cu-Cr-S structure

    SciTech Connect

    Vorotynov, A. M. Abramova, G. M.; Pankrats, A. I.; Petrakovskii, G. A.; Zharkov, S. M.; Zeer, G. M.; Tugarinov, V. I.; Rautskii, M. V.; Sokolov, V. V.

    2013-11-15

    A layered Cu-Cr-S structure composed of single-crystal CuCrS{sub 2} layers and thin CuCr{sub 2}S{sub 4} plates embedded in them has been investigated by the magnetic resonance and scanning electron microscopy methods. The Curie temperature and saturation magnetization of the spinel phase of the investigated samples have been determined. The thickness of the CuCr{sub 2}S{sub 4} layers has been estimated. The dependence of the growncrystal topology on synthesis conditions has been established. An interpretation of the anomalous behavior of the magnetostatic oscillation intensity is offered.

  19. Bioaccumulation of Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn in trophosome and vestimentum of the tube worm Riftia pachyptila from Guaymas basin, Gulf of California

    NASA Astrophysics Data System (ADS)

    Ruelas-Inzunza, J.; Páez-Osuna, F.; Soto, Luis A.

    2005-07-01

    Twenty two specimens of vestimentiferan tube worms Riftia pachyptila were collected from Guaymas Basin. The distribution of ten trace metals in trophosome and vestimentum was investigated. Highest mean concentrations of Co, Cu and Fe were detected in the trophosome; while higher mean levels of Cd, Hg, Mn, Ni, Pb and Zn were measured in the vestimentum. However, the t-student test resulted in significant differences (p<0.05) only in the case of Co. Cd and Fe concentrations in vestimentum increased accordingly with the size of specimens. With respect to vent fluids, extreme uptake seems to be a characteristic of R. pachyptila in the case of Cu and Zn but not for the rest of the analyzed metals. Studies concerning accumulation mechanisms of trace metals in R. pachyptila are needed, particularly on the capacity of this organism to tolerate elevated levels of elements considered as non-essential.

  20. [Cu and Pb absorption and tolerance of Agrostis stolonifera and Festuca arundinacea].

    PubMed

    Wang, Yan; Xin, Shi-Gang; Ma, Lian-Ju; Dai, Bao-Qing; Yu, Long; Wang, Lan-Lan

    2007-03-01

    This paper studied the seed germination rate, chlorophyll content, net photosynthetic rate, SOD activity, and Cu and Pb absorption of Agrostis stolonifera and Festuca arundinacea under Cu and Pb pollution. The results showed that Cu and Pb pollution had a significant effect on the seed germination rate of F. arundinacea. The chlorophyll content of F. arundinacea decreased dramatically under Pb and Cu-Pb pollution, while decreased slightly under Cu pollution. No significant effect of Cu and Pb was observed on the chlorophyll content of A. stolonifera. The SOD activity of A. stolonifera increased under 350 mg Cu x kg(-1) and all test concentrations of Pb, while that of F. arundinacea only increased under 700 mg Pb x kg(-1) and 350 mg Cu x kg(-1) + 1100 mg Pb x kg(-1). The net photosynthetic rate of F. arundinacea decreased more under Pb pollution than under Cu pollution, but that of A. stolonifera all decreased under Cu or Pb pollution. It was suggested that A. stolonifera was more tolerant in physiological characteristics to Cu and Pb pollution than F. arundinacea, while F. arundinacea was more tolerant to Cu than to Pb. The Cu absorption amount of F. arundinacea was relatively large, but did not increase with increasing Cu pollution. A. stolonifera had a high absorption ability of Pb, and the absorbed Pb amount was increased with increasing Pb pollution. A. stolonifera and F. arundinace could be the potential phytoremediation plants for Pb and Cu-polluted soil, respectively.

  1. Adjustment of temperature coefficient of resistance in NiCr/CuNi(Mn)/NiCr films

    NASA Astrophysics Data System (ADS)

    Brückner, W.; Baunack, St.; Elefant, D.; Reiss, G.

    1996-06-01

    The thin-film system Ni0.37Cr0.63/Cu0.57Ni0.42Mn0.01/Ni0.37Cr0. 63 with a typical thickness of 1 μm is used for low-ohmic precision resistors. The necessary adjustment of the temperature coefficient of resistance (TCR) by annealing has been studied by investigating the irreversible changes of the resistance during various annealing steps of NiCr/CuNi(Mn)/NiCr multilayers in comparison with single layers of CuNi(Mn) and NiCr. Auger depth profiles showed that the interdiffusion of CuNi(Mn) and NiCr results in an impoverishment of Ni in CuNi(Mn), explaining the TCR shift by comparison with data of Cu1-xNix bulk material. The decrease of the resistivity and the reduction of the width of the copper-nickel conductive layer by formation of a Ni0.6Cr0.2Cu0.2 interdiffusion zone phase (in accordance with the Cu-Ni-Cr phase diagram) cause a significant curvature of the resistance-temperature curve. As main result, it is shown that the NiCr base and cover layers and their interdiffusion with CuNi(Mn) play the decisive role in adjusting the TCR. It was checked that oxidation and topography effects have no remarkable influences.

  2. Reversion phenomena of Cu-Cr alloys

    NASA Technical Reports Server (NTRS)

    Nishikawa, S.; Nagata, K.; Kobayashi, S.

    1985-01-01

    Cu-Cr alloys which were given various aging and reversion treatments were investigated in terms of electrical resistivity and hardness. Transmission electron microscopy was one technique employed. Some results obtained are as follows: the increment of electrical resistivity after the reversion at a constant temperature decreases as the aging temperature rises. In a constant aging condition, the increment of electrical resistivity after the reversion increases, and the time required for a maximum reversion becomes shorter as the reversion temperature rises. The reversion phenomena can be repeated, but its amount decreases rapidly by repetition. At first, the amount of reversion increases with aging time and reaches its maximum, and then tends to decrease again. Hardness changes by the reversion are very small, but the hardness tends to soften slightly. Any changes in transmission electron micrographs by the reversion treatment cannot be detected.

  3. Structure and growth of Cr on Cu(100)

    NASA Astrophysics Data System (ADS)

    Jandeleit, J.; Gauthier, Y.; Wuttig, M.

    1994-11-01

    The structure, growth and morphology of ultrathin Cr films on Cu(100) were investigated using Auger electron spectroscopy (AES), and low and medium energy electron diffraction (LEED and MEED). From the LEED pattern and the measurements of LEED {I}/{V} curves the structure of the Cr films was determined. By comparison with full dynamical calculations the resulting structure is identified as bcc Cr which grows with the (110) surface parallel to the Cu(100) substrate. The atomic positions within the film closely resemble the positions of bulk Cr. MEED and AES reveal that Cr grows in three-dimensional islands on the Cu(100) surface for the temperature range studied (200-470 K). The structure and growth of the Cr films is compared with the similar epitaxial system of Fe on Cu(100).

  4. Melting of Pb Charge Glass and Simultaneous Pb-Cr Charge Transfer in PbCrO3 as the Origin of Volume Collapse

    SciTech Connect

    Yu, Runze; Hojo, Hajime; Watanuki, Tetsu; Mizumaki, Masaichiro; Mizokawa, Takashi; Okada, Kengo; Kim, Hyunjeong; Machida, Akihiko; Sakaki, Kouji; Nakamura, Yumiko; Agui, Akane; Mori, Daisuke; Inaguma, Yoshiyuki; Schlipf, Martin; Rushchanskii, Konstantin; Lezaic, Marjana; Matsuda, Masaaki; Ma, Jie; Calder, Stuart A.; Isobe, Masahiko; Ikuhara, Yuichi; Azuma, Masaki

    2015-09-15

    A metal to insulator transition in integer or half integer charge systems can be regarded as crystallization of charges. The insulating state tends to have a glassy nature when randomness or geometrical frustration exists. In this paper, we report that the charge glass state is realized in a perovskite compound PbCrO3, which has been known for almost 50 years, without any obvious inhomogeneity or triangular arrangement in the charge system. PbCrO3 has a valence state of Pb2+0.5Pb4+0.5Cr3+O3 with Pb2+Pb4+ correlation length of three lattice-spacings at ambient condition. A pressure induced melting of charge glass and simultaneous Pb–Cr charge transfer causes an insulator to metal transition and ~10% volume collapse.

  5. Observations Of A Cast Cu-Cr-Zr Alloy

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2006-01-01

    The calculated phase diagram and observations of Zeng et al were confirmed. 1) Additional X-ray diffraction peaks for aged sample indicates possibility that additional metastable phases may form; 2) Cu5Zr was observed rather than the Cu9Zr2 proposed for the binary Cu-Zr phase diagram. Despite similarities between Zr and Nb, Cu-Cr-Zr does not appear to be a good candidate alloy system for rocket engine applications.

  6. Molecular Dynamics study of Pb overlayer on Cu(100)

    NASA Technical Reports Server (NTRS)

    Karimi, M.; Tibbits, P.; Ila, D.; Dalins, I.; Vidali, G.

    1991-01-01

    Isothermal-isobaric Molecular Dynamics (MD) simulation of a submonolayer Pb film in c(2x2) ordered structure adsorbed on a Cu(100) substrate showed retention of order to high T. The Embedded Atom Method (EAM) calculated the energy of atoms of overlayer and substrate. The time-averaged squared modulus of the two dimensional structure factor for the Pb overlayer measured the order of the overlayer. The results are for increasing T only, and require verification by simulated cooling.

  7. Molecular Dynamics study of Pb overlayer on Cu(100)

    NASA Technical Reports Server (NTRS)

    Karimi, M.; Tibbits, P.; Ila, D.; Dalins, I.; Vidali, G.

    1991-01-01

    Isothermal-isobaric Molecular Dynamics (MD) simulation of a submonolayer Pb film in c(2x2) ordered structure adsorbed on a Cu(100) substrate showed retention of order to high T. The Embedded Atom Method (EAM) calculated the energy of atoms of overlayer and substrate. The time-averaged squared modulus of the two dimensional structure factor for the Pb overlayer measured the order of the overlayer. The results are for increasing T only, and require verification by simulated cooling.

  8. Mesoporous delafossite CuCrO2 and spinel CuCr2O4: synthesis and catalysis

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Shi, Yifeng; Chi, Miaofang; Park, Jung-Nam; Stucky, Galen D.; McFarland, Eric W.; Gao, Lian

    2013-08-01

    Delafossite CuCrO2 and spinel CuCr2O4 with mesoporous structures have been successfully synthesized using nanocasting methods based on a KIT-6 template. The functional activity of the mesoporous materials was evaluated in applications as heterogeneous catalysts. The activity for photocatalytic hydrogen production of the delafossite structures with different morphologies was characterized and the oxidation state changes associated with photocorrosion of Cu+ investigated using electron energy loss spectroscopy (EELS). Mg2+ doping was found to facilitate the casting of ordered structures for CuCrO2 and improves the photocorrosion resistance of delafossite structures. The mesoporous spinel CuCr2O4 nanostructures were found to be active for low temperature CO oxidation.

  9. Geologic cross sections showing the concentrations of As, Cd, Co, Cu, Cr, Fe, Mo, Ni, Pb, and Zn in acid-insoluble residues of Paleozoic rocks within the Doniphan/Eleven Point Ranger District of the Mark Twain National Forest, Missouri, USA

    USGS Publications Warehouse

    Lee, Lopaka; Goldhaber, Martin B.

    2002-01-01

    This report is a product of a U.S. Geological Survey investigation that is focused on characterizing the potential environmental impacts of lead-zinc mining within the Doniphan/Eleven Point ranger district of the Mark Twain national forest. The elemental concentrations of iron (Fe), arsenic (As), cadmium (Cd), cobalt (Co), copper (Cu), chromium (Cr), nickel (Ni), lead (Pb), and zinc (Zn) in acidinsoluble residues are shown for boreholes along two geologic cross sections within Doniphan/Elevan Point ranger district (Figure 1). The purpose of this report is to characterize, in a general sense, the distribution of economically and environmentally important elements within the rocks and aquifers of the Doniphan/Eleven Point ranger district

  10. Surface alloying of Pb on Cu(111): a TEAS study

    NASA Astrophysics Data System (ADS)

    de Beauvais, Ch.; Girard, Y.; Pérard, C.; Croset, B.; Mutaftschiev, B.

    1996-11-01

    Thermal energy atom scattering on vacuum deposited Pb submonolayers on Cu(111) in close to equilibrium conditions, at substrate temperatures between 303 K and 413 K, gives evidence for: (a) decoration by Pb atoms of monatomic steps on the Cu surface at degree of coverage 0 < θ < 0.004; (b) formation of disordered surface alloy in the first lattice plane of the copper substrate in the coverage range 0.004 < θ < 0.21; (c) formation of non-alloyed Pb layer with a p(4 × 4) structure above this coverage, up to the monolayer ( θ ≈ 0.56). The latter transition is shown to be of first order. The role of the deposition kinetics in far from equilibrium conditions is pointed out.

  11. Failure analysis of PB-1 (EBTS Be/Cu mockup)

    SciTech Connect

    Odegard, B.C. Jr.; Cadden, C.H.

    1996-11-01

    Failure analysis was done on PB-1 (series of Be tiles joined to Cu alloy) following a tile failure during a high heat flux experiment in EBTS (electron beam test system). This heat flux load simulated ambient conditions inside ITER; the Be tiles were bonded to the Cu alloy using low-temperature diffusion bonding, which is being considered for fabricating plasma facing components in ITER. Results showed differences between the EBTS failure and a failure during a room temperature tensile test. The latter occurred at the Cu-Be interface in an intermetallic phase formed by reaction of the two metals at the bonding temperature. Fracture strengths measured by these tests were over 300 MPa. The high heat flux specimens failed at the Cu-Cu diffusion bond. Fracture morphology in both cases was a mixed mode of dimple rupture and transgranular cleavage. Several explanations for this difference in failure mechanism are suggested.

  12. Unusual Mott transition in multiferroic PbCrO3

    PubMed Central

    Wang, Shanmin; Zhu, Jinlong; Zhang, Yi; Yu, Xiaohui; Zhang, Jianzhong; Wang, Wendan; Bai, Ligang; Qian, Jiang; Yin, Liang; Sullivan, Neil S.; Jin, Changqing; He, Duanwei; Xu, Jian; Zhao, Yusheng

    2015-01-01

    The Mott insulator in correlated electron systems arises from classical Coulomb repulsion between carriers to provide a powerful force for electron localization. Turning such an insulator into a metal, the so-called Mott transition, is commonly achieved by “bandwidth” control or “band filling.” However, both mechanisms deviate from the original concept of Mott, which attributes such a transition to the screening of Coulomb potential and associated lattice contraction. Here, we report a pressure-induced isostructural Mott transition in cubic perovskite PbCrO3. At the transition pressure of ∼3 GPa, PbCrO3 exhibits significant collapse in both lattice volume and Coulomb potential. Concurrent with the collapse, it transforms from a hybrid multiferroic insulator to a metal. For the first time to our knowledge, these findings validate the scenario conceived by Mott. Close to the Mott criticality at ∼300 K, fluctuations of the lattice and charge give rise to elastic anomalies and Laudau critical behaviors resembling the classic liquid–gas transition. The anomalously large lattice volume and Coulomb potential in the low-pressure insulating phase are largely associated with the ferroelectric distortion, which is substantially suppressed at high pressures, leading to the first-order phase transition without symmetry breaking. PMID:26604314

  13. Unusual Mott transition in multiferroic PbCrO 3

    DOE PAGES

    Wang, Shanmin; Zhu, Jinlong; Zhang, Yi; ...

    2015-11-24

    The Mott insulator in correlated electron systems arises from classical Coulomb repulsion between carriers to provide a powerful force for electron localization. When turning such an insulator into a metal, the so-called Mott transition, is commonly achieved by "bandwidth" control or "band filling." However, both mechanisms deviate from the original concept of Mott, which attributes such a transition to the screening of Coulomb potential and associated lattice contraction. We report a pressure-induced isostructural Mott transition in cubic perovskite PbCrO3. At the transition pressure of similar to 3 GPa, PbCrO3 exhibits significant collapse in both lattice volume and Coulomb potential. Concurrentmore » with the collapse, it transforms from a hybrid multiferroic insulator to a metal. For the first time to our knowledge, these findings validate the scenario conceived by Mott. Close to the Mott criticality at similar to 300 K, fluctuations of the lattice and charge give rise to elastic anomalies and Laudau critical behaviors resembling the classic liquid-gas transition. Moreover, the anomalously large lattice volume and Coulomb potential in the low-pressure insulating phase are largely associated with the ferroelectric distortion, which is substantially suppressed at high pressures, leading to the first-order phase transition without symmetry breaking.« less

  14. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, I.E.; Yost, F.G.; Smith, J.F.; Miller, C.M.; Terpstra, R.L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217 C and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid ``mushy`` zone) relative to the eutectic melting temperature (e.g. up to 15 C above the eutectic melting temperature). 5 figs.

  15. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, Iver E.; Yost, Frederick G.; Smith, John F.; Miller, Chad M.; Terpstra, Robert L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217.degree. C. and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid "mushy" zone) relative to the eutectic melting temperature (e.g. up to 15.degree. C. above the eutectic melting temperature).

  16. Structural Investigations of Nanocrystalline Cu-Cr-Mo Alloy Prepared by High-Energy Ball Milling

    NASA Astrophysics Data System (ADS)

    Kumar, Avanish; Pradhan, Sunil Kumar; Jayasankar, Kalidoss; Debata, Mayadhar; Sharma, Rajendra Kumar; Mandal, Animesh

    2017-02-01

    Cu-Cr-Mo alloy could be a suitable candidate material for collector electrodes in high-power microwave tube devices. An attempt has been made to synthesize ternary Cu-Cr-Mo alloys by mechanical alloying of elemental Cu, Cr, and Mo powders, to extend the solid solubility of Cr and Mo in Cu, using a commercial planetary ball mill. For the first ternary alloy, a mixture of 80 wt.% Cu, 10 wt.% Cr, and 10 wt.% Mo was mechanically milled for 50 h. For the second ternary alloy, a mixture of 50 wt.% Cr and 50 wt.% Mo was mechanically milled for 50 h to obtain nanocrystalline Cr(Mo) alloy, which was later added to Cu powder and milled for 40 h to obtain Cu-20 wt.%Cr(Mo) alloy. Both nanocrystalline Cu-Cr-Mo ternary alloys exhibited crystallite size below 20 nm. It was concluded that, with addition of nanocrystalline Cr(Mo) to Cu, it was possible to extend the solid solubility of Cr and Mo in Cu, which otherwise was not possible by mechanical alloying of elemental powders. The resulting microstructure of the Cu-20 wt.%Cr(Mo) alloy comprised a homogeneous distribution of fine and hard (Cr, Mo) particles in a copper matrix. Furthermore, Cu-20 wt.%Cr(Mo) alloy showed better densification compared with Cu-10 wt.%Cr-10 wt.%Mo alloy.

  17. Electrochemical Behavior of Ion-Plated TiN and Cu-Cr Coatings

    DTIC Science & Technology

    1993-09-01

    results show that Cu-Cr alloys containing up to about 25 atomic percent CR consist of single phase FCC structure . The alloys containing more than 60...19), curve 4 for CuCr(40), and curve 5 for Cu-Cr(85)]. Note that Curves 1, 2, and 3 are from FCC structure , curve 4 from dual-phase structure, and

  18. Microstructures and mechanical properties of sputtered Cu/Cr multilayers

    SciTech Connect

    Misra, A.; Kung, H.; Mitchell, T.E.; Jervis, T.R.; Nastasi, M.

    1998-03-01

    The microstructures and mechanical properties of Cu/Cr multilayers prepared by sputtering onto {l_brace}100{r_brace} Si substrates at room temperature are presented. The films exhibit columnar grain microstructures with nanoscale grain sizes. The interfaces are planar and abrupt with no intermixing, as expected from the phase diagram. The multilayers tend to adopt a Kurdjumov-Sachs (KS) orientation relationship: {l_brace}110{r_brace}Cr // {l_brace}111{r_brace}Cu, <111>Cr // <110>Cu. The hardness of the multilayered structures, as measured by nanoindentation, increase with decreasing layer thickness for layer thicknesses ranging from 200 nm to 50 nm, whereas for lower thicknesses the hardness of the multilayers is independent of the layer thickness. Dislocation-based models are used to interpret the variation of hardness with layer periodicity. The possible effects of factors such as grain size within the layers, density and composition of films and residual stress in the multilayers are highlighted. Comparisons are made to the mechanical properties of sputtered polycrystalline Cu/Nb multilayers which, like Cu/Cr, exhibit sharp fcc/bcc interfaces with no intermixing and a KS orientation relationship, but have a small shear modulus mismatch.

  19. Mechanical properties of Cr-Cu coatings produced by electroplating

    NASA Astrophysics Data System (ADS)

    Riyadi, Tri Widodo Besar; Sarjito, Masyrukan, Riswan, Ricky Ary

    2017-06-01

    Hard chromium coatings has long been considered as the most used electrodeposited coating in several industrial applications such as in petrochemistry, oil and gas industries. When hard coatings used in fastener components, the sliding contact during fastening operation produces high tensile stresses on the surface which can generate microcracks. For component used in high oxidation and corrosion environment, deep cracks cannot be tolerated. In this work, a laminated structure of Cr-Cu coating was prepared using electroplating on carbon steel substrates. Two baths of chrome and copper electrolyte solutions were prepared to deposit Cr as the first layer and Cu as the second layer. The effect of current voltages on the thickness, hardness and specific wear rate of the Cu layer was investigated. The results show that an increase of the current voltages increased the thickness and hardness of the Cu layer, but reduced the specific wear rate. This study showed that the use of Cu can be a potential candidate as a laminated structure Cr-Cu for chromium plating.

  20. Novel CuCr2O4 embedded CuO nanocomposites for efficient photodegradation of organic dyes

    NASA Astrophysics Data System (ADS)

    Mageshwari, K.; Sathyamoorthy, R.; Lee, Jeong Yong; Park, Jinsub

    2015-10-01

    Novel photocatalyst based on CuO-CuCr2O4 nanocomposites was synthesized for different Cr3+ concentration by reflux condensation method, and their photocatalytic activity was evaluated by monitoring the photodegradation of methyl orange (MO) and methylene blue dyes (MB) under UV light irradiation. Phase evolution by X-ray diffraction showed monoclinic CuO and tetragonal CuCr2O4 as the components of the prepared nanocomposites. Morphological analysis by scanning electron microscope and transmission electron microscope revealed that the incorporation of Cr3+ in CuO lattice alters the morphology of CuO from microsphere to cluster shape. Photoluminescence spectra of CuO-CuCr2O4 nanocomposites exhibited reduced PL emissions compared to pure CuO, indicating the low recombination rate of photogenerated electrons and holes. As expected, the CuCr2O4 loaded CuO showed enhanced photocatalytic activity for MO and MB dyes, and the kinetic studies suggest that the degradation follows pseudo-first-order kinetics. The enhanced photocatalytic activity of CuO-CuCr2O4 nanocomposites can be attributed to the presence of CuCr2O4 as an electron acceptor, which improves the effective charge separation in CuO.

  1. Study of Cu and Pb partitioning in mine tailings using the Tessier sequential extraction scheme

    SciTech Connect

    Andrei, Mariana Lucia; Senila, Marin; Hoaghia, Maria Alexandra; Levei, Erika-Andrea; Borodi, Gheorghe

    2015-12-23

    The Cu and Pb partitioning in nonferrous mine tailings was investigated using the Tessier sequential extraction scheme. The contents of Cu and Pb found in the five operationally defined fractions were determined by inductively coupled plasma optical emission spectrometry. The results showed different partitioning patterns for Cu and Pb in the studied tailings. The total Cu and Pb contents were higher in tailings from Brazesti than in those from Saliste, while the Cu contents in the first two fractions considered as mobile were comparable and the content of mobile Pb was the highest in Brazesti tailings. In the tailings from Saliste about 30% of Cu and 3% of Pb were found in exchangeable fraction, while in those from Brazesti no metals were found in the exchangeable fraction, but the percent of Cu and Pb found in the bound to carbonate fraction were high (20% and 26%, respectively). The highest Pb content was found in the residual fraction in Saliste tailings and in bound to Fe and Mn oxides fraction in Brazesti tailings, while the highest Cu content was found in the fraction bound to organic matter in Saliste tailings and in the residual fraction in Brazesti tailings. In case of tailings of Brazesti medium environmental risk was found both for Pb and Cu, while in case of Saliste tailings low risk for Pb and high risk for Cu were found.

  2. Thermomechanical Processing and Roll Bonding of Tri-Layered Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn Composite

    NASA Astrophysics Data System (ADS)

    Kim, Hobyung; Kang, Gyeong Tae; Hong, Sun Ig

    2016-05-01

    Tri-layered Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn composite was processed by roll bonding and the effect of thermomechanical processing on the mechanical performance and electrical conductivity was studied. Roll-bonded composite exhibited the brief work hardening and subsequent rapid work softening because of the high stored deformation energy, leading to failure at the plastic strain of 8 to 10 pct. The mechanical instability of as-roll-bonded composites was abated by heat treatment (HT) at 723 K (450 °C) and the extended work hardening with enhanced ductility compared to that of the as-roll-bonded composites was observed after HT. The strength and electrical conductivity of clad composite is dependent on the precipitation strengthening of Cu-Cr and recovery softening of Cu-Ni-Zn during post-roll-bonding HT. The increase of roll-bonding temperature enhances the precipitation kinetics and it takes shorter time to reach maximum hardness in Cu-Cr layer during post-roll-bonding HT. The toughness of as-roll-bonded Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn clad composite at 773 K (500 °C) [42 MJ/mm3] is greater than those at 723 K (450 °C) [24 MJ/mm3] and 823 K (550 °C) [38 MJ/mm3]. The maximum toughness [100 MJ/mm3] with the electrical conductivity of 68 pct IACS was obtained in the Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn clad composite roll-bonded at 773 K (500 °C) and subsequently heat-treated at 723 K (450 °C).

  3. Synthesis of BiPbSrCaCuO superconductor

    DOEpatents

    Hults, W.L.; Kubat-Martin, K.A.; Salazar, K.V.; Phillips, D.S.; Peterson, D.E.

    1994-04-05

    A process and a precursor composition for preparing a lead-doped bismuth-strontium-calcium-copper oxide superconductor of the formula Bi[sub a]Pb[sub b]Sr[sub c]Ca[sub d]Cu[sub e]O[sub f] wherein a is from about 1.7 to about 1.9, b is from about 0.3 to about 0.45, c is from about 1.6 to about 2.2, d is from about 1.6 to about 2.2, e is from about 2.97 to about 3.2 and f is 10[+-]z by reacting a mixture of Bi[sub 4]Sr[sub 3]Ca[sub 3]Cu[sub 4]O[sub 16[+-]z], an alkaline earth metal cuprate, e.g., Sr[sub 9]Ca[sub 5]Cu[sub 24]O[sub 41], and an alkaline earth metal plumbate, e.g., Ca[sub 2[minus]x]Sr[sub x]PbO[sub 4] wherein x is about 0.5, is disclosed.

  4. Synthesis of BiPbSrCaCuO superconductor

    DOEpatents

    Hults, William L.; Kubat-Martin, Kimberly A.; Salazar, Kenneth V.; Phillips, David S.; Peterson, Dean E.

    1994-01-01

    A process and a precursor composition for preparing a lead-doped bismuth-strontium-calcium-copper oxide superconductor of the formula Bi.sub.a Pb.sub.b Sr.sub.c Ca.sub.d Cu.sub.e O.sub.f wherein a is from about 1.7 to about 1.9, b is from about 0.3 to about 0.45, c is from about 1.6 to about 2.2, d is from about 1.6 to about 2.2, e is from about 2.97 to about 3.2 and f is 10.+-.z by reacting a mixture of Bi.sub.4 Sr.sub.3 Ca.sub.3 Cu.sub.4 O.sub.16.+-.z, an alkaline earth metal cuprate, e.g., Sr.sub.9 Ca.sub.5 Cu.sub.24 O.sub.41, and an alkaline earth metal plumbate, e.g., Ca.sub.2-x Sr.sub.x PbO.sub.4 wherein x is about 0.5, is disclosed.

  5. Magnetic resonance in a gallium-doped Cu-Cr-S structure

    NASA Astrophysics Data System (ADS)

    Vorotynov, A. M.; Pankrats, A. I.; Abramova, G. M.; Velikanov, D. A.; Bovina, A. F.; Sokolov, V. V.; Filatova, I. Yu.

    2016-04-01

    A layered Cu-Cr-S structure doped with Ga ions and consisting of single-crystal CuCrS2 layers, embedded with thin plates of spinel phases CuCr2S4 and CuGa x Cr2- x S4, has been studied using the magnetic resonance and magnetic susceptibility methods. The Curie temperature and the saturation magnetization of the spinel phases of the samples have been determined. The spinel phase layer thickness has been estimated.

  6. Mechanical and Thermal Properties of Two Cu-Cr-Nb Alloys and NARloy-Z

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Michal, Gary M.

    1996-01-01

    A series of creep tests were conducted on Cu-8 Cr-4 Nb (Cu-8 at.% Cr-4 at.% Nb), Cu-4 Cr-2 Nb (Cu-4 at.% Cr-2 at% Nb), and NARloy-Z (Cu-3 wt.% Ag-0.5 wt.% Zr) samples to determine their creep properties. In addition, a limited number of low cycle fatigue and thermal conductivity tests were conducted. The Cu-Cr-Nb alloys showed a clear advantage in creep life and sustainable load over the currently used NARloy-Z. Increases in life at a given stress were between 100% and 250% greater for the Cu-Cr-Nb alloys depending on the stress and temperature. For a given life, the Cu-Cr-Nb alloys could support a stress between 60% and 160% greater than NARloy-Z. Low cycle fatigue lives of the Cu-8 Cr-4 Nb alloy were equivalent to NARloy-Z at room temperature. At elevated temperatures (538 C and 650 C), the fatigue lives were 50% to 200% longer than NARloy-Z samples tested at 538 C. The thermal conductivities of the Cu-Cr-Nb alloys remained high, but were lower than NARloy-Z and pure Cu. The Cu-Cr-Nb thermal conductivities were between 72% and 96% that of pure Cu with the Cu-4 Cr-2 Nb alloy having a significant advantage in thermal conductivity over Cu-8 Cr4 Nb. In comparison, stainless steels with equivalent strengths would have thermal conductivities less than 25% the thermal conductivity of pure Cu. The combined results indicate that the Cu-Cr-Nb alloys offer an attractive alternative to current high temperature Cu-based alloys such as NARloy-Z.

  7. High temperature coarsening of Cr2Nb precipitates in Cu-8 Cr-4 Nb alloy

    NASA Technical Reports Server (NTRS)

    Anderson, Kenneth Reed

    1996-01-01

    A new high-temperature-strength, high-conductivity Cu-Cr-Nb alloy with a CrNb ratio of 2:1 was developed to achieve improved performance and durability. The Cu-8 Cr4 Nb alloy studied has demonstrated remarkable thermal and microstructural stability after long exposures at temperatures up to 0.98 T(sub m). This stability was mainly attributed to the slow coarsening kinetics of the Cr2Nb precipitates present in the alloy. At all temperatures, the microstructure consists of a bimodal and sometimes trimodal distribution of strengthening Cr2Nb precipitates, depending on precipitation condition, i.e. from liquid or solid solution, and cooling rates. These precipitates remain in the same size range, i.e. large precipitates of approximately I pm, and small precipitates less dm 300 nm, and effectively pin the grain boundaries thus retaining a fine grain size of 2.7 micro-m after 100 h at 1323 K. (A relatively small number of Cr-rich and Nb-rich particles were also present.) This grain boundary pinning and sluggish coarsening of Cr2Nb particles explain the retention of good mechanical properties after prolonged holding at very high temperatures, e.g., 75% of the original hardness after aging for 100 h at 1273 K. Application of LSW-based coarsening models indicated that the coarsening kinetics of the large precipitates are most likely governed by grain boundary diffsion and, to a lesser extent, volume diffusion mechanisms.

  8. Concentrations of Pb, Zn, and Cu in Taraxacum spp. in relation to urban pollution

    SciTech Connect

    Cook, C.M.; Lanaras, T.; Sgardelis, S.P.; Pantis, J.D. )

    1994-08-01

    The combustion of petroleum fuel and exhaust emissions are major sources of atmospheric pollution in cities which result in the deposition of toxic substances, particularly heavy metals, in the surface layers of soils. Lead in particular enters the environment from the use of tetraethyl lead as an antiknock agent for petrol engines constituting 21% of fine particles emitted from cars burning leaded petrol. Antiwear protectants incorporated in lubricants often contain Cd, Cr, Cu, Hg, Ni, Pb and/or Zn which are also released into the environment by inefficient engines and irresponsible dumping of engine oils. Zn from tyre wear and Cu from diesel engines also add considerably to the environmental metal burden. Lowering of the permitted lead content of petrol and the growing use of unleaded fuel are expected to lead to reductions in the environmental lead burden, however, until unleaded fuel becomes universally accepted lead contamination, particularly of roadside soils and vegetation is a major cause for concern. A direct relationship between car exhaust, the Pb content of needles of Abies alba and reduced growth has been observed and can extend hundreds of metres from major highways. Lead tolerance has been observed in higher plants growing mine waste soils and to a lesser extent on lead-contaminated roadside soils. Automobiles which are responsible for line sources of pollution emissions in rural and suburban areas have a more far-reaching impact on roadside vegetation, already under considerable stress, in urban areas. Information on heavy metal effects on vegetation in urban environments however, are scarce. Modeling and multivariate analysis of a few of the factors involved have provided only limited data related to plant performance in these complex environments. Therefore in this study, the extent of heavy metal pollution by Pb, Zn, Cu and Cd in soils and in dandelion plants in the city of Thessaloniki has been examined. 20 refs., 2 figs., 3 tabs.

  9. In-beam mechanical testing of CuCrZr

    NASA Astrophysics Data System (ADS)

    Marmy, P.

    2004-08-01

    In the ITER design, CuCrZr has been selected as the heat sink material for components of the first wall and the divertor. The objective of this work is to check the material fatigue performance when the CuCrZr alloy is cyclically deformed concurrently with irradiation, using an in situ testing machine placed in a 590 MeV proton accelerator. Three fatigue experiments have been conducted at 100 °C, under strain control, at a total strain range of 0.8%. The in-beam specimen reached the longest life. The post-irradiation tested specimen had the shortest life. The total plastic strain measured in the in-beam specimen was larger than the plastic strain measured in the statically irradiated specimen or in the unirradiated specimen.

  10. Lead (Pb) and copper (Cu) share a common uptake transporter in the unicellular alga Chlamydomonas reinhardtii.

    PubMed

    Sánchez-Marín, Paula; Fortin, Claude; Campbell, Peter G C

    2014-02-01

    The unicellular alga Chlamydomonas reinhardtii has a very high rate of lead (Pb) internalization and is known to be highly sensitive to dissolved Pb. However, the transport pathway that this metal uses to cross cellular membranes in microalgae is still unknown. To identify the Pb(2+) transport pathway in C. reinhartdii, we performed several competition experiments with environmentally relevant concentrations of Pb(2+) (~10 nM) and a variety of divalent cations. Among the essential trace metals tested, cobalt, manganese, nickel and zinc had no effect on Pb internalization. A greater than tenfold increase in the concentrations of the major ions calcium and magnesium led to a slight decrease (~34 %) in short-term Pb internalization by the algae. Copper (Cu) was even more effective: at a Cu concentration 50 times higher than that of Pb, Pb internalization by the algae decreased by 87 %. Pre-exposure of the algae to Cu showed that the effect was not due to a physiological effect of Cu on the algae, but rather to competition for the same transporter. A reciprocal effect of Pb on Cu internalization was also observed. These results suggest that Cu and Pb share a common transport pathway in C. reinhardtii at environmentally relevant metal concentrations.

  11. Utilization of barley straws as biosorbents for Cu2+ and Pb2+ ions.

    PubMed

    Pehlivan, Erol; Altun, Türkan; Parlayici, Serife

    2009-05-30

    The potential to remove Cu(2+) and Pb(2+) ion from aqueous solutions through biosorption using barley straw (BS) was investigated in batch experiments. The main parameters influencing Cu(2+) and Pb(2+) ion sorption on BS were: initial metal ion concentration, amount of adsorbent, contact time and pH value of solution. The influences of initial Cu(2+) and Pb(2+) ion concentration (0.1-1mM), pH (2-9), contact time (10-240 min) and adsorbent amount (0.1-1.0 g) have been reported. Equilibrium isotherms have been measured and modelled. The percent adsorption of Cu(2+) and Pb(2+) ions increased with an increase in pH and dosage of treated BS. The biosorptive capacity of the BS was dependent on the pH of Cu(2+) and Pb(2+) ion solution. Adsorption of Cu(2+) and Pb(2+) ion was in all cases pH dependent showing a maximum at equilibrium pH value at 6.0. The equilibrium sorption capacities of Cu(2+) and Pb(2+) after 2h were 4.64 mg/g and 23.20mg/g for BS, respectively. The adsorption data fit well with the Langmuir isotherm model and the experimental result inferred that complexation on surface, adsorption (chemisorption) and ion exchange is one of the major adsorption mechanisms for binding Cu(2+) and Pb(2+) ion to the sorbents.

  12. Superconducting spin-valve effect and triplet superconductivity in Co Ox/Fe1/Cu /Fe2/Cu /Pb multilayer

    NASA Astrophysics Data System (ADS)

    Leksin, P. V.; Garif'yanov, N. N.; Kamashev, A. A.; Fominov, Ya. V.; Schumann, J.; Hess, C.; Kataev, V.; Büchner, B.; Garifullin, I. A.

    2015-06-01

    We report magnetic and superconducting properties of the modified spin-valve system CoOx/Fe1/Cu /Fe2/Cu /Pb . Introduction of a Cu interlayer between Fe2 and Pb layers prevents material interdiffusion process, increases the Fe2/Pb interface transparency, stabilizes and enhances properties of the system. This allowed us to perform a comprehensive study of such heterostructures and to present theoretical description of the superconducting spin-valve effect and of the manifestation of the long-range triplet component of the superconducting condensate.

  13. Sources of Cd, Cu, Pb and Zn in biowaste.

    PubMed

    Veeken, Adrie; Hamelers, Bert

    2002-12-02

    Biowaste, the separately collected organic fraction of municipal solid waste, can be reused for soil conditioning after composting. In this way, environmentally harmful waste management strategies, such as landfilling or incineration, can be reduced. However, frequent application of composts to soil systems may lead to the accumulation of heavy metals in soils, and therefore legal criteria were laid down in a decree to guarantee the safe use of composts. The heavy metal content of biowaste-composts frequently exceeds the legal standards, and thus raises a conflict between two governmental policies: the recycling of solid waste on the one hand, and the protection of natural ecosystems and public health on the other hand. In this study, the heavy metal content (Cd, Cu, Pb and Zn) of biowaste was compared with the natural background content of Cd, Cu, Pb and Zn in the different constituents of biowaste. For this, the physical entities of biowaste were physically fractionated by wet-sieving and subsequent water-elutriation. In this way, organic and inorganic fractions of different particle sizes were obtained and the content of Cd, Cu, Pb and Zn and the organic matter content of the different fractions were determined. On the basis of particle size, density and visual appearance, the particle-size fractions were assigned to various indoor and outdoor origins of the biowaste. It was found that a large amount of biowaste was not organic, but over 50% was made up of soil minerals due to the collection of biowaste constituents from gardens. The heavy metal content of the various fractions in biowaste was compared with the natural background contents of heavy metals in the constituents of biowaste, i.e. food products, plant material, soil organic matter and soil minerals, by collecting literature data. The heavy metal content in the fractionated physical entities of biowaste corresponded with the natural background concentration of its constituents and indicated that

  14. Preparation and Performance of Cu-Cr Contact Materials for Vacuum Switches with Low Contact Pressure

    NASA Astrophysics Data System (ADS)

    Chang, Yanli; Zheng, Wei; Zhou, Zhiming; Zhai, Yuxiang; Wang, Yaping

    2016-11-01

    Insufficient anti-welding properties limit the application of Cu-Cr contact material in vacuum switches with low contact pressure. The CuCr-W-C alloys that are prepared are for decreasing welding tendencies and keeping the voltage withstand by addition of W and C elements. It is found that the average welding force of CuCr-W-C alloys is reduced more than 50% compared with that of the Cu50 Cr50 alloy. Especially for CuCrW3.0C0.3 and CuCrW1.0C0.5, the welding forces reduce to only 10% of Cu50Cr50. Arc erosion areas of CuCr-W-C alloys are enlarged by five times more than that of the Cu50Cr50 alloy in the same arcing conditions. The results of type tests were qualified. The results suggested that the CuCrW2.0C1.0 alloy could be used in vacuum switches with low contact pressure to replace the W-Cu type contacts.

  15. Contribution of Ca^{2+} ions influx in Cu (II) or Cr (VI) induced hepatocyte cytotoxicity

    NASA Astrophysics Data System (ADS)

    Pourahmad, J.; O'Brien, P. J.

    2003-05-01

    Previously we showed that hepatocyte lysis induced by Cu (II) or Cr (VI) could be partly attributed to membrane lipid peroxidation induced by Cu (II) or Cr (VI) [1, 2]. Changes in Na^+ and Ca^{+2} homeostasis induced when Cu^{+2} or Cr VI were incubated with hepatocytes. Na^+ omission from the media or addition of the Na^+/H^+ exchange inhibitor 5-(N, N-dimethyl)-amiloride markedly increased Cu (II) or Cr (VI) cytotoxicity even though Cu (II) or Cr (VI) did not increase hepatocyte Na^+ when the media contained Na^+. The omission of CI^- from the media or addition of glycine, a CI^- channel blocker also enhanced Cu (II) or Cr (VI) induced cytotoxicity. Intracellular Ca^{+2} levels however were markedly increased when the hepatocytes were incubated with Cu^{+2} or Cr VI in a Na^+ free media and removing media Ca^{+2} with EGTA also prevented Cu (II) or Cr (VI) induced hepatocyte cytotoxicity. This suggests that intracellular Ca^{+2} accumulation contributes to Cu (II) or Cr (VI) induced cytotoxicity and a Na^+_- dependent Ca^{+2} transporter is involved in controlling excessive Ca^{+2} accumulation caused by Cu (II) or Cr (VI).

  16. Antibacterial Cr-Cu-O films prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Musil, J.; Blažek, J.; Fajfrlík, K.; Čerstvý, R.; Prokšová, Š.

    2013-07-01

    The paper reports on the effect of Cu content in the Cr-Cu-O film and its structure on its antibacterial activity and mechanical properties. The Cr-Cu-O films were prepared by reactive magnetron sputtering from composed Cr/Cu targets using a dual magnetron. The antibacterial activity of Cr-Cu-O films was tested on the killing of Escheria coli bacteria. Correlations between the structure of the Cr-Cu-O film, the content of Cu in the film and its (i) antibacterial efficiency and (ii) mechanical properties were investigated in detail. It was found that the 100% efficiency of the killing of E. coli bacteria on the surface of the Cr-Cu-O film is achieved if (1) the Cu content in the film is ≥15 at.% and (2) the film is either X-ray amorphous or crystalline with the CuCrO2 delafossite structure. These Cr-Cu-O films need no excitation and very effectively kill E. coli bacteria in the daylight as well as in the dark. The X-ray amorphous Cr-Cu-O films with ~20 at.% Cu exhibit a higher (i) hardness H ≈ 4 GPa, (ii) effective Young's modulus E* ≈ 72 GPa and (iii) elastic recovery We ≈ 37% compared with the crystalline Cr-Cu-O film with the CuCrO2 delafossite structure exhibiting H ≈ 1.2 GPa, E* ≈ 21 GPa and We ≈ 21%. Both films very effectively kill the E. coli bacteria, however, exhibit a low ratio H/E* < 0.1.

  17. Precipitation in 9Ni-12Cr-2Cu maraging steels

    SciTech Connect

    Stiller, K.; Haettestrand, M.; Danoix, F.

    1998-11-02

    Two maraging steels with the compositions 9Ni-12Cr-2Cu-4Mo (wt%) and 9Ni-12Cr-2Cu and with small additions of Al and Ti were investigated using atom probe field ion microscopy. Tomographic atom probe investigations were performed to clarify the spatial distribution of elements in and close to the precipitates. Materials heat treated at 475 C for 5, 25 min, 1, 2, 4 and 400 h were analyzed. Precipitates in the Mo-rich material were observed already after 5 min of aging, while in the material without MO, precipitation started later. In both materials precipitation begins with the formation of Cu-rich particles which work as nucleation sites for a Ni-rich phase of type Ni{sub 3}(Ti,Al). A Mo-rich phase was detected in the Mo-rich steel after 2 h of aging. The distribution of alloying elements in the precipitates, their role in the precipitation process, and the mechanism of hardening in the two materials are discussed.

  18. Varied roles of Pb in transition-metal PbMO3 perovskites (M = Ti, V, Cr, Mn, Fe, Ni, Ru).

    PubMed

    Goodenough, John B; Zhou, Jianshi

    2015-06-01

    Different structural chemistries resulting from the Pb(2+) lone-pair electrons in the PbMO3 perovskites are reviewed. The Pb(2+) lone-pair electrons enhance the ferroelectric transition temperature in PbTiO3, stabilize vanadyl formation in PbVO3, and induce a disproportionation reaction of Cr(IV) in PbCrO3. A Pb(2+) + Ni(IV) = Pb(4+) + Ni(II) reaction in PbNiO3 stabilizes the LiNbO3 structure at ambient pressure, but an A-site Pb(4+) in an orthorhombic perovskite PbNiO3 is stabilized at modest pressures at room temperature. In PbMnO3, a ferroelectric displacement due to the lone pair electron effect is minimized by the spin-spin exchange interaction and the strong octahedral site preference of the Mn(IV/III) cation. PbRuO3 is converted under pressure from the defective pyrochlore to the orthorhombic (Pbnm) perovskite structure where Pb-Ru interactions via a common O -2p orbital stabilize at low temperature a metallic Imma phase at ambient pressure. Above Pc [Formula: see text] a covalent Pb-Ru bond is formed by Pb(2+) + Ru(IV) = Pb(4+) + Ru(II) electron sharing.

  19. Closure Temperatures of Mn-Cr and Pb-Pb Decay Systems in Pyroxenes: Implications for Ages of Cumulate Eucrite and Angrite

    NASA Astrophysics Data System (ADS)

    Ganguly, J.; Ito, M.; Zhang, X. Y.

    2007-03-01

    Diffusion study of Cr in enstatite and thermochronological analysis of Mn-Cr and Pb-Pb decay systems in pyroxenes yield high temperature cooling rates of a cumulate eucrite and an angrite, and constrain crustal thickness of the HED parent body, Vesta.

  20. [Remediation of Cu-Pb-contaminated loess soil by leaching with chelating agent and biosurfactant].

    PubMed

    Liu, Xia; Wang, Jian-Tao; Zhang, Meng; Wang, Li; Yang, Ya-Ti

    2013-04-01

    Because of its strong chelation, solubilization characteristics, the chelating agents and biosurfactant are widely used in remediation of heavy metals and organic contaminated soils. Ethylenediamine tetraacetic acid (EDTA), citric acid (CIT) and dirhamnolipid (RL2) were selected as the eluent. Batch experiments and column experiments were conducted to investigate the leaching effect of the three kinds of eluent, as well as the mixture of biosurfactant and chelating agent for Cu, Pb contaminated loess soil. The results showed that the leaching efficiencies of different eluent on Cu, Pb contaminated loess soil followed the sequence of EDTA > CIT > RL2. At an eluent concentration of 0.02 mol x L(-1), the Cu leaching efficiency was 62.74% (EDTA), 52.28% (CIT) and 15.35% (RL2), respectively; the Pb leaching efficiency was 96.10% (EDTA), 23.08% (CIT) and 14.42% (RL2), respectively. When the concentration of RL2 was 100 CMC, it had synergistic effects on the other two kinds of chelating agent in Cu leaching, and when the concentration of RL2 was 200 CMC, it had antagonism effects. The effect of RL2 on EDTA in Pb leaching was similar to that in Cu leaching. Pb leaching by CIT was inhibited in the presence of RL2. EDTA and CIT could effectively remove Cu and Pb in exchangeable states, adsorption states, carbonate salts and organic bound forms; RL2 could effectively remove Cu and Pb in exchangeable and adsorbed states.

  1. Stabilization of As-, Pb-, and Cu-contaminated soil using calcined oyster shells and steel slag.

    PubMed

    Moon, Deok Hyun; Wazne, Mahmoud; Cheong, Kyung Hoon; Chang, Yoon-Young; Baek, Kitae; Ok, Yong Sik; Park, Jeong-Hun

    2015-07-01

    In this study, As-, Pb-, and Cu-contaminated soil was stabilized using calcined oyster shells (COS) and steel slag (SS). The As-contaminated soil was obtained from a timber mill site where chromate copper arsenate (CCA) was used as a preservative. On the other hand, Pb- and Cu-contaminated soil was obtained from a firing range. These two soils were thoroughly mixed to represent As-, Pb-, and Cu-contaminated soil. Calcined oyster shells were obtained by treating waste oyster shells at a high temperature using the calcination process. The effectiveness of stabilization was evaluated by 1-N HCl extraction for As and 0.1-N HCl extraction for Pb and Cu. The treatment results showed that As, Pb, and Cu leachability were significantly reduced upon the combination treatment of COS and SS. The sole treatment of SS (10 wt%) did not show effective stabilization. However, the combination treatment of COS and SS showed a significant reduction in As, Pb, and Cu leachability. The best stabilization results were obtained from the combination treatment of 15 wt% COS and 10 wt% SS. The SEM-EDX results suggested that the effective stabilization of As was most probably achieved by the formation of Ca-As and Fe-As precipitates. In the case of Pb and Cu, stabilization was most probably associated with the formation of pozzolanic reaction products such as CSHs and CAHs.

  2. CuCrZr alloy microstructure and mechanical properties after hot isostatic pressing bonding cycles

    NASA Astrophysics Data System (ADS)

    Frayssines, P.-E.; Gentzbittel, J.-M.; Guilloud, A.; Bucci, P.; Soreau, T.; Francois, N.; Primaux, F.; Heikkinen, S.; Zacchia, F.; Eaton, R.; Barabash, V.; Mitteau, R.

    2014-04-01

    ITER first wall (FW) panels are a layered structure made of the three following materials: 316L(N) austenitic stainless steel, CuCrZr alloy and beryllium. Two hot isostatic pressing (HIP) cycles are included in the reference fabrication route to bond these materials together for the normal heat flux design supplied by the European Union (EU). This reference fabrication route ensures sufficiently good mechanical properties for the materials and joints, which fulfil the ITER mechanical specifications, but often results in a coarse grain size for the CuCrZr alloy, which is not favourable, especially, for the thermal creep properties of the FW panels. To limit the abnormal grain growth of CuCrZr and make the ITER FW fabrication route more reliable, a study began in 2010 in the EU in the frame of an ITER task agreement. Two material fabrication approaches have been investigated. The first one was dedicated to the fabrication of solid CuCrZr alloy in close collaboration with an industrial copper alloys manufacturer. The second approach investigated was the manufacturing of CuCrZr alloy using the powder metallurgy (PM) route and HIP consolidation. This paper presents the main mechanical and microstructural results associated with the two CuCrZr approaches mentioned above. The mechanical properties of solid CuCrZr, PM CuCrZr and joints (solid CuCrZr/solid CuCrZr and solid CuCrZr/316L(N) and PM CuCrZr/316L(N)) are also presented.

  3. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu-17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9+/-9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu-17%Cr-5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR-5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  4. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17%Cr and Cu-17%Cr-5%Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu- 17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 +/- 9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu-17%Cr- 5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR- 5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  5. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17%Cr and Cu-17%Cr-5%Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu- 17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 9.5 kJ mol-1. In contrast, the oxidation kinetics for the Cu-17%Cr- 5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR- 5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  6. Magnetic properties of CuCr2Se4 and CuCr1.5Ti0.5Se4

    NASA Astrophysics Data System (ADS)

    Behera, P. Suchismita; Bhobe, P. A.; Nigam, A. K.

    2016-05-01

    CuCr2Se4 is a potentially attractive versatile material, from the point of view of spintronics application. It shows characteristics of a ferromagnetic conductor at room temperature and with suitable doping it is proposed to show half-metallicity. With an aim to understand the effect of doping at Cr-site by a non-magnetic ion, we carried out investigation of magnetic and crystal structure properties of polycrystalline CuCr2Se4 and CuCr1.5Ti0.5Se4 spinel. These materials were prepared by solid state synthesis and characterized using room temperature powder XRD and measurement of magnetic properties. The XRD patterns were analyzed using Rietveld technique and lattice constants were estimated. Formation of a small amount of Cr3Se4 phase was identified from the XRD profiles. However, the magnetic properties do not seem to be affected much by it. Compared to parent compound, CuCr2Se4, the ferromagnetic Curie temperature TC in CuCr1.5Ti0.5Se4 was found to decrease to 208 K. But its magnetic moment (μB/f.u.) determined from the saturation magnetization value measured at 5 K, differed only slightly from that of CuCr2Se4. Our preliminary results are presented here.

  7. Synthesis and spectroscopic investigations of Cu- and Pb-doped colloidal ZnS nanocrystals.

    PubMed

    Ehlert, Oliver; Osvet, Andres; Batentschuk, Miroslaw; Winnacker, Albrecht; Nann, Thomas

    2006-11-23

    A novel organometallic synthesis method for the preparation of colloidal ZnS nanoparticles is presented. This method enables the synthesis of undoped ZnS nanocrystals as well as doping with Cu, Pb, or both. The particles can be covered with an undoped layer of ZnS, forming core/shell-type particles with the ZnS:Pb, ZnS:Cu, or ZnS:Cu,Pb cores. The particles were characterized via TEM, XRD, dynamic light scattering, and optical spectroscopy. We investigated the extrinsic surface defects and their coverage with an additional ZnS layer in detail by temperature-dependent luminescence and luminescence lifetime spectroscopy.

  8. Modelling the leaching of Pb, Cd, As, and Cr from cementitious waste using PHREEQC.

    PubMed

    Halim, Cheryl E; Short, Stephen A; Scott, Jason A; Amal, Rose; Low, Gary

    2005-10-17

    A leaching model was developed using the United States Geological Survey public domain PHREEQC geochemical package to simulate the leaching of Pb, Cd, As, and Cr from cementitious wastes. The model utilises both kinetic terms and equilibrium thermodynamics of key compounds and provides information on leachate and precipitate speciation. The model was able to predict the leaching of Pb, Cd, As, and Cr from cement in the presence of both simple (0.1 and 0.6M acetic acid) and complex municipal landfill leachates. Heavy metal complexation by the municipal landfill leachate was accounted for by the introduction of a monoprotic organic species into the model. The model indicated Pb and As were predominantly incorporated within the calcium silicate hydrate matrix while a greater portion of Cd was seen to exist as discrete particles in the cement pores and Cr (VI) existed mostly as free CrO4(2-) ions. Precipitation was found to be the dominant mechanism controlling heavy metal solubility with carbonate and silicate species governing the solubility of Pb and carbonate, silicate and hydroxide species governing the solubility of Cd. In the presence of acetic acid, at low pH values Pb and Cd acetate complexes were predominant whereas, at high pH values, hydroxide species dominated. At high pH values, the concentration of As in the leachate was governed by the solubility of Ca3(AsO4)2 with the presence of carbonate alkalinity competing with arsenate for Ca ions. In the presence of municipal landfill leachate, Pb and Cd organic complexes dominated the heavy metal species in solution. The reduction of As and Cr in municipal landfill leachate was crucial for determining aqueous speciation, with typical municipal landfill conditions providing the reduced forms of As and Cr.

  9. Formation of the (Bi, Pb) 2Sr 2Ca 2Cu 3O 10+δ phase with light transition-metal oxide additions

    NASA Astrophysics Data System (ADS)

    Grivel, J.-C.; Flükiger, R.

    1996-02-01

    In view of the mechanical reinforcement of the Ag sheath of (Bi, Pb) 2Sr 2Ca 2Cu 3O 10+δ (Bi, Pb(2223)) tapes by dispersion hardening, the effect of TiO 2, V 2O 5, Cr 2O 3 and MnO on the formation of the Bi,Pb(2223) phase has been studied. By means of DTA measurements, it was found that the onset temperature of partial melting in the precursor powders is affected by the presence of these oxides, consequently influencing the optimum temperature for the synthesis of the Bi,Pb(2223) phase. XRD and EDX analysis showed that small oxide additions result in the formation of non-superconducting phases containing the transition-metal elements. Lattice-parameter calculations from XRD patterns, EDX measurements as well as Tc determinations by use of AC susceptibility show that the substitution of Ti, V, Cr and Mn in the structure of the Bi,Pb(2223) phase is limited to low values. It was found that the Bi,Pb(2223) phase formation is less affected by TiO 2 and MnO than V 2O 5 and Cr 2O 3 additions. The results are discussed in relation with the possible use of these elements for the reinforcement of the sheath of superconducting Bi,Pb(2223) tapes.

  10. Microstructure-Wear Resistance Correlation and Wear Mechanisms of Spark Plasma Sintered Cu-Pb Nanocomposites

    NASA Astrophysics Data System (ADS)

    Sharma, Amit Siddharth; Biswas, Krishanu; Basu, Bikramjit

    2014-01-01

    The dispersion of a softer phase in a metallic matrix reduces the coefficient of friction (COF), often at the expense of an increased wear rate at the tribological contact. To address this issue, unlubricated fretting wear tests were performed on spark plasma sintered Cu-Pb nanocomposites against bearing steel. The sintering temperature and the Pb content as well as the fretting parameters were judiciously selected and varied to investigate the role of microstructure (grain size, second-phase content) on the wear resistance properties of Cu-Pb nanocomposites. A combination of the lowest wear rate (~1.5 × 10-6 mm3/Nm) and a modest COF (~0.4) was achieved for Cu-15 wt pct Pb nanocomposites. The lower wear rate of Cu-Pb nanocomposites with respect to unreinforced Cu is attributed to high hardness (~2 to 3.5 GPa) of the matrix, Cu2O/Fe2O3-rich oxide layer formation at tribological interface, and exuding of softer Pb particles. The wear properties are discussed in reference to the characteristics of transfer layer on worn surface as well as subsurface damage probed using focused ion beam microscopy. Interestingly, the flash temperature has been found to have insignificant effect on the observed oxidative wear, and alternative mechanisms are proposed. Importantly, the wear resistance properties of the nanocomposites reveal a weak Hall-Petch-like relationship with grain size of nanocrystalline Cu.

  11. The General Isothermal Oxidation Behavior of Cu-8Cr-4Nb

    NASA Technical Reports Server (NTRS)

    Thomas-Ogbuji, L. U.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Oxidation kinetics of Cu-8Cr-4Nb was investigated by TGA (thermogravimetric) exposures between 500 and 900-C (at 25-50 C intervals) and the oxide scale morphologies examined by microscopy and micro-analysis. Because Cu-8Cr-4Nb is comprised of fine Cr2Nb precipitates in a Cu matrix, the results were interpreted by comparison with the behavior of copper (OFHC) and 'NARloy-Z' (a rival candidate material for thrust cell liner applications in advanced rocket engines) under the same conditions. While NARloy-Z and Cu exhibited identical oxidation behavior, Cu-8Cr-4Nb differed markedly in several respects: below approx. 700 C its oxidation rates were significantly lower than those of Cu; At higher temperatures its oxidation rates fell into two categories: an initial rate exceeding that of Cu, and a terminal rate comparable to that of Cu. Differences in oxide morphologies paralleled the kinetic differences at higher temperature: While NARloy-Z and Cu produced a uniform oxide scale of Cu2O inner layer and CuO outer layer, the inner (Cu2O) layer on Cu-8Cr-4Nb was stratified, with a highly porous/spongy inner stratum (responsible for the fast initial kinetics) and a dense/blocky outer stratum (corresponding to the slow terminal kinetics). Single and spinel oxides of Nb and Cr were found at the interface between the oxide scale and Cu-8Cr-4Nb substrate and it appears that these oxides were responsible for its suppressed oxidation rates at the intermediate temperatures. No difference was found between Cu-8Cr-4Nb oxidation in air and in oxygen at 1.0 atm.

  12. Involvement of CTR1 and ATP7A in lead (Pb)-induced copper (Cu) accumulation in choroidal epithelial cells

    PubMed Central

    Zheng, Gang; Zhang, Jieqiong; Xu, Yan; Shen, Xuefeng; Song, Han; Jing, Jinfei; Luo, Wenjing; Zheng, Wei; Chen, Jingyuan

    2014-01-01

    The blood–cerebrospinal fluid barrier (BCB) plays a key role in maintaining copper (Cu) homeostasis in the brain. Cumulative evidences indicate that lead (Pb) exposure alters cerebral Cu homeostasis, which may underlie the development of neurodegenerative diseases. This study investigated the roles of Cu transporter 1 (CTR1) and ATP7A, two Cu transporters, in Pb-induced Cu accumulation in the choroidal epithelial cells. Pb exposure resulted in increased intracellular 64Cu retention, accompanying with up-regulated CTR1 level. Knockdown of CTR1 using siRNA before Pb exposure diminished the Pb-induced increase of 64Cu uptake. The expression level of ATP7A was down-regulated following the Pb exposure. ATP7A siRNA knockdown, or PCMB treatment, inhibited the 64Cu efflux from the cells, while the following additional incubation with Pb failed to further increase the intracellular 64Cu retention. Cu exposure, or intracellular Cu accumulation following the tetracycline (Tet)-induced overexpression of CTR1, did not result in significant change in ATP7A expression. Taken together, these data indicate that CTR1 and ATP7A play important roles in Cu transport in choroidal epithelial cells, and the Pb-induced intracellular Cu accumulation appears to be mediated, at least in part, via the alteration of CTR1 and ATP7A expression levels following Pb exposure. PMID:24316150

  13. Involvement of CTR1 and ATP7A in lead (Pb)-induced copper (Cu) accumulation in choroidal epithelial cells.

    PubMed

    Zheng, Gang; Zhang, Jieqiong; Xu, Yan; Shen, Xuefeng; Song, Han; Jing, Jinfei; Luo, Wenjing; Zheng, Wei; Chen, Jingyuan

    2014-02-10

    The blood-cerebrospinal fluid barrier (BCB) plays a key role in maintaining copper (Cu) homeostasis in the brain. Cumulative evidences indicate that lead (Pb) exposure alters cerebral Cu homeostasis, which may underlie the development of neurodegenerative diseases. This study investigated the roles of Cu transporter 1 (CTR1) and ATP7A, two Cu transporters, in Pb-induced Cu accumulation in the choroidal epithelial cells. Pb exposure resulted in increased intracellular (64)Cu retention, accompanying with up-regulated CTR1 level. Knockdown of CTR1 using siRNA before Pb exposure diminished the Pb-induced increase of (64)Cu uptake. The expression level of ATP7A was down-regulated following the Pb exposure. ATP7A siRNA knockdown, or PCMB treatment, inhibited the (64)Cu efflux from the cells, while the following additional incubation with Pb failed to further increase the intracellular (64)Cu retention. Cu exposure, or intracellular Cu accumulation following the tetracycline (Tet)-induced overexpression of CTR1, did not result in significant change in ATP7A expression. Taken together, these data indicate that CTR1 and ATP7A play important roles in Cu transport in choroidal epithelial cells, and the Pb-induced intracellular Cu accumulation appears to be mediated, at least in part, via the alteration of CTR1 and ATP7A expression levels following Pb exposure.

  14. Preparation of 110K (Bi, Pb)-Sr-Ca-Cu-O superconductor from glass precursor

    NASA Astrophysics Data System (ADS)

    Bansal, Narottam P.

    1989-10-01

    The Bi1.5Pb0.5Sr2Ca2Cu3O(x) glass, prepared by rapid quenching of the melt, showed T(sub g) of 383 C, crystallization temperature of approx. 446 C, melting temperature of approx. 855 C, and bulk density of 5.69 g/cu. cm. in air. The as-quenched glass was oxygen deficient. On heating in O2, it showed a slow, irreversible, and continuous weight gain starting at approx. 530 C. The influence of annealing conditions on the formation of various phases was investigated by XRD and electrical resistivity measurements. The 110K-T(sub c) phase did not form below 840 C. The amount of this phase increased with the sintering time at 840 C. A sample annealed at 840 C for 243 h in air and furnace cooled showed the highest T(sub c)(R=0) of 107.2K and transition width delta T(sub c)(10 to 90 percent) of approx. 2 K.

  15. Preparation of 110K (Bi, Pb)-Sr-Ca-Cu-O superconductor from glass precursor

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1989-01-01

    The Bi1.5Pb0.5Sr2Ca2Cu3O(x) glass, prepared by rapid quenching of the melt, showed T(sub g) of 383 C, crystallization temperature of approx. 446 C, melting temperature of approx. 855 C, and bulk density of 5.69 g/cu. cm. in air. The as-quenched glass was oxygen deficient. On heating in O2, it showed a slow, irreversible, and continuous weight gain starting at approx. 530 C. The influence of annealing conditions on the formation of various phases was investigated by XRD and electrical resistivity measurements. The 110K-T(sub c) phase did not form below 840 C. The amount of this phase increased with the sintering time at 840 C. A sample annealed at 840 C for 243 h in air and furnace cooled showed the highest T(sub c)(R=0) of 107.2K and transition width delta T(sub c)(10 to 90 percent) of approx. 2 K.

  16. Biosorption of Cu2+ and Pb2+ using sophora alopecuroides residue

    NASA Astrophysics Data System (ADS)

    Feng, N.; Fan, W.; Zhu, M.; Zhang, Y.

    2016-08-01

    Sophora alopecuroides residue (SAP), a kind of traditional Chinese herbal medicine residue, was developed in an alternative biosorbent for the removal Cu2+ and Pb2+ in simulated wastewater. The morphology and surface texture of SAP were characterized by scanning electron microscopy, which showed a loose and porous structure. The biosorption experiments of Cu2+ and Pb2+ onto SAP were investigated by using batch techniques. High biosorption percentage appeared at pH values of 4.5-6.0. The experimental data followed the second-order kinetic model well. Equilibrium fit with the Langmuir isotherm model well. The maximum biosorption capacity of an adsorbent at 25 °C was respectively 60.6 mg/g Cu2+ and 128.1 mg/g Pb2+. The findings of the present study show that SAP is an attractive and effective biosorbent for Cu2+ and Pb2+.

  17. Genesis of the Bangbule Pb-Zn-Cu polymetallic deposit in Tibet, western China: Evidence from zircon U-Pb geochronology and S-Pb isotopes

    NASA Astrophysics Data System (ADS)

    Kan, Tian; Zheng, Youye; Gao, Shunbao

    2016-04-01

    The Banbule Pb-Zn-Cu skarn deposit is located in the Longger-Gongbujiangda volcanic magma arc in the Gangdese-Nyainqentanglha Plate. It is the only lead-zinc polymetallic deposit discovered in the westernmost Nyainqentanglha metallogenic belt. The measured and indicated resources include 0.9 Mt of Pb+Zn (4.77% Pb and 4.74% Zn, respectively), 6499 t of Cu, and 178 t of Ag (18.75g/t Ag). The orebodies mainly occur as lenses, veins and irregular shapes in the contact zone between the quartz-porphyry and limestone of the Upper Permian Xiala Formation, or in the boundaries between limestone and sandstone. Pb-Zn-Cu mineralization in the Banbule deposit is closely associated with skarns. The ore minerals are dominated by galena, sphalerite, chalcopyrite, bornite, and magnetite, with subordinate pyrite, malachite, and azurite. The gangue minerals are mainly garnet, actinolite, diopside, quartz, and calcite. The ore-related quartz-porphyry displays LA-ICP-MS zircon U-Pb age of 77.31±0.74 Ma. The δ34S values of sulfides define a narrow range of -0.8 to 4.7‰ indicating a magmatic source for the ore-forming materials. Lead isotopic systematics yield 206Pb/204Pb of 18.698 to 18.752, 207Pb/204Pb of 15.696 to 15.760, and 208Pb/204Pb of 39.097 to 39.320. The data points are constrained around the growth curves of upper crust and orogenic belt according to the tectonic discrimination diagrams. The calculated Δβ - Δγ values plot within the magmatic field according to the discrimination diagram of Zhu et al. (1995). The S-Pb isotopic data suggest that Bangbule is a typical skarn deposit, and the Pb-Zn-Cu mineralization is genetically related to the quartz-porphyry in the mining district. The discovery of the Bangbule deposit indicates that there is metallogenic potential in the westernmost Nyainqentanglha belt, which is of great importance for the exploration work in this area.

  18. Phytoextraction of Pb and Cu contaminated soil with maize and microencapsulated EDTA.

    PubMed

    Xie, Zhiyi; Wu, Longhua; Chen, Nengchang; Liu, Chengshuai; Zheng, Yuji; Xu, Shengguang; Li, Fangbai; Xu, Yanling

    2012-09-01

    Chelate-assisted phytoextraction using agricultural crops has been widely investigated as a remediation technique for soils contaminated with low mobility potentially toxic elements. Here, we report the use of a controlled-release microencapsulated EDTA (Cap-EDTA) by emulsion solvent evaporation to phytoremediate soil contaminated with Pb and Cu. Incubation experiments were carried out to assess the effect of Cap- and non-microencapsulated EDTA (Ncap-EDTA) on the mobility of soil metals. Results showed EDTA effectively increased the mobility of Pb and Cu in the soil solution and Cap-EDTA application provided lower and more constant water-soluble concentrations of Pb and Cu in comparison with. Phytotoxicity may be alleviated and plant uptake of Pb and Cu may be increased after the incorporation of Cap-EDTA. In addition phytoextraction efficiencies of maize after Cap- and Ncap-EDTA application were tested in a pot experiment. Maize shoot concentrations of Pb and Cu were lower with Cap-EDTA application than with Ncap-EDTA. However, shoot dry weight was significantly higher with Cap-EDTA application. Consequently, the Pb and Cu phytoextraction potential of maize significantly increased with Cap-EDTA application compared with the control and Ncap-EDTA application.

  19. Adsorption on vicinal surfaces: {Pb}/{Cu(1,1,11) } — a TEAS study

    NASA Astrophysics Data System (ADS)

    Goapper, S.; Barbier, L.; Salanon, B.

    1996-08-01

    Pb adsorption on Cu(1,1,11) has been studied by He diffraction. Measurements of Pb cross-sections for He scattering as a function of coverage and temperature indicate a complex behavior of the absorbate. Dense island formation, preferential adsorption at steps and surface alloying effects were found.

  20. Photovoltaic properties of Cu-doped CH3NH3PbI3 with perovskite structure

    NASA Astrophysics Data System (ADS)

    Shirahata, Yasuhiro; Oku, Takeo

    2017-01-01

    Photovoltaic properties of copper (Cu)-doped perovskite (CH3NH3PbCuxI3+x) photovoltaic devices with different Cu content were investigated. The CH3NH3PbCuxI3+x films were polycrystalline with a tetragonal system, and their lattice constants and crystallite size varied with Cu doping. Compared to conversion efficiencies of non-doped CH3NH3PbI3 photovoltaic device, those of CH3NH3PbCuxI3+x photovoltaic devises increased. The improvement of photovoltaic properties was attributed to partial substitution of Cu at the Pb sites.

  1. Engineering of electronic and optical properties of PbS thin films via Cu doping

    NASA Astrophysics Data System (ADS)

    Touati, Baligh; Gassoumi, Abdelaziz; Dobryden, Illia; Natile, Marta Maria; Vomiero, Alberto; Turki, Najoua Kamoun

    2016-09-01

    Copper-doped PbS polycrystalline thin films were deposited by chemical bath deposition by adding small amount of Cu (ysolution = [Cu2+]/[Pb2+]) between 0.5 and 2 at%. The composition, structure, morphology, optical and electrical properties of the films were investigated by means of X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS), atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray photoemission spectroscopy (XPS), UV-visible-near infrared (UV-Vis-NIR) spectrophotometry and Hall effect measurements. The XRD studies showed that the undoped films have PbS face centered cubic structure with (111) preferential orientation, while preferential orientation changes to (200) plane with increasing Cu doping concentration. The AFM and SEM measurements indicated that the film surfaces consisted of nanosized grains with pyramidal shape. Optical band gap was blue shifted from 0.72 eV to 1.69 eV with the increase in Cu doping concentration. The film obtained with the [Cu2+]/[Pb2+] ratio equal to 1.5 at% Cu showed the minimum resistivity of 0.16 Ω cm at room temperature and optimum value of optical band gap close to 1.5 eV. 1.5 at% Cu-doped PbS thin films exhibit the best optical and electrical properties, suitable for solar cells applications.

  2. Adsorption of Cr(VI) and Pb(II) from aqueous solution using agricultural solid waste.

    PubMed

    Geetha, A; Sivakumar, P; Sujatha, M; Palanisamy, P N

    2009-04-01

    Areca nut shell, an agricultural solid waste by-product, has been studied for the removal of heavy metals Cr(VI) and Pb(II) from aqueous solution. Parameters, such as equilibrium time, effect of initial metal ion concentration, effect of pH on the removal, were analyzed. An initial pH of 4.0 was found most favourable for Cr(VI) removal and 5.0 for Pb(II) removal. Two theoretical isotherm models, namely Langmuir and Freundlich, were analyzed for the applicability of the experimental data. The Langmuir adsorption capacity (Q0) was calculated. The results of thermodynamic parameters suggest the exothermic nature of the adsorption. The desorption studies were carried out using dilute hydrochloric acid. Maximum desorption of 88% for Cr(VI) and 91% for Pb(II) were achieved. Areca nut shell waste, the low cost adsorbent is found to be effective in the removal of Cr(VI) and Pb(II) ions, and hence it can be applied for the removal of heavy metals from industrial wastewater.

  3. Characterization of transparent conductive delafossite-CuCr1-xO2 films

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Ying; Chang, Kuei-Ping; Yang, Chun-Chao

    2013-05-01

    In this study, the CuCr1-xO2 films with x = 0.00-0.25 were prepared on a quartz substrate by sol-gel processing. The films were first deposited onto a quartz substrate by spin-coating. The specimens were annealed at 500 °C in air for 1 h and post-annealed in N2 at 700 °C for 2 h. As the films were post-annealed in N2, a pure delafossite-CuCrO2 phase appeared in the CuCr1-xO2 films below x = 0.20. However, an additional CuO phase appeared at x = 0.25. The pure delafossite-CuCrO2 phase can exist within x ≤ 0.20 in CuCr1-xO2 films. The binding energies of Cu-2p3/2 and Cr-2p3/2 in the CuCr1-xO2 films with the pure delafossite-CuCrO2 phase were 932.1 ± 0.2 eV and 576.0 ± 0.2 eV, respectively. The surface exhibited elongated grain features when the pure delafossite-CuCrO2 phase was present in the CuCr1-xO2 films. The maximum transmittance of the CuCr1-xO2 films with the pure delafossite-CuCrO2 phase was approximately 80%, which moved toward the visible region with the increasing x-value. The film absorption edges were observed at 400 nm, which were sharper with the increasing x-value. The optical bandgaps of CuCr1-xO2 films with the pure delafossite-CuCrO2 phase were approximately 3.0 eV. The electrical conductivity of CuCr1-xO2 films with the pure delafossite-CuCrO2 phase was 1.1 × 10-3 S cm-1 (x = 0.00), and increased to 0.16 S cm-1 (x = 0.20). The corresponding carrier concentration of CuCr1-xO2 films with the pure delafossite-CuCrO2 phase was 2.8 × 1014 cm-3 (x = 0.00), and markedly increased to 1.8 × 1016 cm-3 (x = 0.20). The Cr-deficient condition in delafossite-CuCrO2 films enhances film electrical conductivity and carrier concentration, but retains the film's high-visible transparency.

  4. Measurement of the 208Pb(52Cr, n)259Sg Excitation Function

    SciTech Connect

    Folden III, C.M.; Dragojevic, I.; Dullmann, Ch.E.; Eichler, R.; Garcia, M.A.; Gates, J.M.; Nelson, S.L.; Sudowe, R.; Gregorich, K.E.; Hoffman, D.C.; Nitsche, H.

    2010-03-19

    The excitation function for the 208Pb(52Cr, n)259Sg reaction has been measured using the Berkeley Gas-filled Separator at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. The maximum cross section of pb is observed at a center-of-target laboratory-frame energy of 253.0 MeV. In total, 25 decay chains originating from 259Sg were observed and the measured decay properties are in good agreement with previous reports. In addition, a partial excitation function for the 208Pb(52Cr, 2n)258Sg reaction was obtained, and an improved 258Sg half-life of ms was calculated by combining all available experimental data.

  5. Theoretical study of the Pb adsorption on Ni, Cr, Fe surfaces and on Ni based alloys

    NASA Astrophysics Data System (ADS)

    Bonnet, Marie-Laure; Costa, Dominique; Protopopoff, Elie; Marcus, Philippe

    2017-12-01

    Adsorption of Pb atoms on the Ni(111), Ni(100), Fe(110), and Cr(110) metallic surfaces was studied theoretically within an ab initio density functional theory approach (DFT). (√3 × √3)R30° super structures for Ni(111), and (2 × 2) for the other surfaces, corresponding to the saturation state, were considered. The preferred adsorption sites are found to be ternary sites for Ni(111), Fe(110), Cr(110) and quaternary sites for Ni(100). Adsorption on Fe and Cr is less exothermic than on Ni, by 0.16 and 0.33 eV/mol respectively. Adsorption on model surfaces of Ni based alloys was also investigated. It was found that the energy of adsorption depends mostly on the chemical composition of the ternary site, and can be described by a linear combination of the energies of adsorption on the pure metals. The nature of the second nearest neighbour of the adsorbed Pb atom has no significant influence on the adsorption energy. Average energies of adsorption were calculated in two cases: the limit of low coverage, and the saturation. The energies of adsorption of Pb at saturation on nickel base alloy surface representative of alloy 600 (Ni-15Cr-8Fe) and alloy 690 (Ni-30Cr-8Fe) were calculated to be 0.07 and 0.11 eV lower than on pure Ni respectively.

  6. Remediation of Pb/Cr co-contaminated soil using electrokinetic process and approaching electrode technique.

    PubMed

    Ng, Yee-Sern; Sen Gupta, Bhaskar; Hashim, Mohd Ali

    2016-01-01

    Electrokinetic process has emerged as an important tool for remediating heavy metal-contaminated soil. The process can concentrate heavy metals into smaller soil volume even in the absence of hydraulic flow. This makes it an attractive soil pre-treatment method before other remediation techniques are applied such that the chemical consumption in the latter stage can be reduced. The present study evaluates the feasibility of electrokinetic process in concentrating lead (Pb) and chromium (Cr) in a co-contaminated soil using different types of wetting agents, namely 0.01 M NaNO3, 0.1 M citric acid and 0.1 M EDTA. The data obtained showed that NaNO3 and citric acid resulted in poor Pb electromigration in this study. As for Cr migration, these agents were also found to give lower electromigration rate especially at low pH region as a result of Cr(VI) adsorption and possible reduction into Cr(III). In contrast, EDTA emerged as the best wetting agent in this study as it formed water-soluble anionic complexes with both Pb and Cr. This provided effective one-way electromigration towards the anode for both ions, and they were accumulated into smaller soil volume with an enrichment ratio of 1.55-1.82. A further study on the application of approaching cathode in EDTA test showed that soil alkalisation was achieved, but this did not provide significant enhancement on electromigration for Pb and Cr. Nevertheless, the power consumption for electrokinetic process was decreased by 22.5%.

  7. Protection of Advanced Copper Alloys With Lean Cu-Cr Coatings

    NASA Technical Reports Server (NTRS)

    Greenbauer-Seng, L. (Technical Monitor); Thomas-Ogbuji, L.

    2003-01-01

    Advanced copper alloys are used as liners of rocket thrusters and nozzle ramps to ensure dissipation of the high thermal load generated during launch, and Cr-lean coatings are preferred for the protection of these liners from the aggressive ambient environment. It is shown that adequate protection can be achieved with thin Cu-Cr coatings containing as little as 17 percent Cr.

  8. Orientation dependence of heterogeneous nucleation at the Cu-Pb solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Palafox-Hernandez, J. Pablo; Laird, Brian B.

    2016-12-01

    In this work, we examine the effect of surface structure on the heterogeneous nucleation of Pb crystals from the melt at a Cu substrate using molecular-dynamics (MD) simulation. In a previous work [Palafox-Hernandez et al., Acta Mater. 59, 3137 (2011)] studying the Cu/Pb solid-liquid interface with MD simulation, we observed that the structure of the Cu(111) and Cu(100) interfaces was significantly different at 625 K, just above the Pb melting temperature (618 K for the model). The Cu(100) interface exhibited significant surface alloying in the crystal plane in contact with the melt. In contrast, no surface alloying was seen at the Cu(111) interface; however, a prefreezing layer of crystalline Pb, 2-3 atomic planes thick and slightly compressed relative to bulk Pb crystal, was observed to form at the interface. We observe that at the Cu(111) interface the prefreezing layer is no longer present at 750 K, but surface alloying in the Cu(100) interface persists. In a series of undercooling MD simulations, heterogeneous nucleation of fcc Pb is observed at the Cu(111) interface within the simulation time (5 ns) at 592 K—a 26 K undercooling. Nucleation and growth at Cu(111) proceeded layerwise with a nearly planar critical nucleus. Quantitative analysis yielded heterogeneous nucleation barriers that are more than two orders of magnitude smaller than the predicted homogeneous nucleation barriers from classical nucleation theory. Nucleation was considerably more difficult on the Cu(100) surface-alloyed substrate. An undercooling of approximately 170 K was necessary to observe nucleation at this interface within the simulation time. From qualitative observation, the critical nucleus showed a contact angle with the Cu(100) surface of over 90°, indicating poor wetting of the Cu(100) surface by the nucleating phase, which according to classical heterogeneous nucleation theory provides an explanation of the large undercooling necessary to nucleate on the Cu(100) surface

  9. 210Pb geochronology and trace metal fluxes (Cd, Cu and Pb) in the Gulf of Tehuantepec, South Pacific of Mexico.

    PubMed

    Ruiz-Fernández, Ana Carolina; Páez-Osuna, Federico; Machain-Castillo, María Luisa; Arellano-Torres, Elsa

    2004-01-01

    Distributions of Al, Cd, Cu, Fe, Li, Mn and Pb were analyzed in a sediment core collected in the Gulf of Tehuantepec, an important fisheries region located in the South Pacific of Mexico, where data on metal accumulation and accretion rates were previously almost nonexistent. Depth profiles of metal concentrations were converted to time-based profiles by using a 210Pb-derived vertical accretion rate, estimated to be 0.05 cm year(-1) on the average. Sediments were dated up to 8 cm depth, corresponding to a layer of ca. 140 years old. The historical changes of metal accumulation along the sediment core have shown a moderate enrichment of Cd, Cu and Pb concentrations at present, of about threefold the corresponding background concentrations. Chronological trace metal records showed that metal fluxes have increased over the last 20 years, reaching the maximum values at present of 2.5, 22.5 and 45.8 (microg cm(-2) year(-1)) for Cd, Pb and Cu, respectively. These increments in metal fluxes are likely influenced by the development of anthropogenic land-based activities since over this period of time oil production activities in the region have had a significant development.

  10. Assessment of Pb, Cd, Cr and Ag leaching from electronics waste using four extraction methods.

    PubMed

    Keith, Ashley; Keesling, Kara; Fitzwater, Kendra K; Pichtel, John; Houy, Denise

    2008-12-01

    Heavy metals present in electronic components may leach upon disposal and therefore pose significant environmental hazards. The potential leaching of Pb, Cd, Cr and Ag from PC cathode ray tubes, printed circuit boards (PCBs), PC mice, TV remote controls, and mobile phones was assessed. After controlled crushing, each component was extracted using the Toxicity Characteristic Leaching Procedure (TCLP), EPA Method 1312 (SPLP), NEN 7371 (Dutch Environmental Agency), and DIN S4 (Germany). The TCLP consistently leached the greatest amounts of Pb from all components. The SPLP, NEN 7371 and DIN S4 extracted relatively small amounts of metals compared with the TCLP and were not considered effective as leaching tests for e-waste. The smallest size fraction (< 2 mm) of CRT glass and PCBs leached significantly (p < 0.05) highest Pb via the TCLP. A modified TCLP removed 50.9% more extractable Pb compared with the conventional procedure.

  11. Optical spectroscopy of the Triangular Lattice Antiferromagnets CuCrO2 and α-CaCr2O4

    NASA Astrophysics Data System (ADS)

    Schmidt, Michael; Wang, Zhe; Mayr, F.; Toth, S.; Lake, B.; Islam, A. T. M. N.; Tsurkan, V.; Loidl, A.; Deisenhofer, J.

    2012-02-01

    We will compare and discuss our results obtained by optical spectroscopy on CuCrO2 and α-CaCr2O4. While CuCrO2 is famous for its multiferroicity [1], in α-CaCr2O4 a polarization can only be observed under the application of electric or magnetic field, despite having a closely related structure [2]. At near infrared and visible light frequencies we observe Cr^3+ crystal field absorptions and below TN excitons and exciton-magnon-transitions appear. The width of these exciton-magnon transitions is analyzed with respect to the existence of Z2 vortices as proposed by Kojima et al. [3]. [4pt] [1] S. Seki et al., Phys. Rev. Lett. 101, 067240 (2008)[0pt] [2] K. Singh et al., Phys. Rev. B 84, 064129 (2011)[0pt] [3] N. Kojima et al., J. Phys. Soc. Jpn. 62, 4137 (1993)

  12. Preparation of single 110 K phase of the Bi-Pb-Sr-Ca-Cu-O superconductor

    NASA Astrophysics Data System (ADS)

    Koyama, Satoshi; Endo, Utako; Kawai, Tomoji

    1988-10-01

    A pure 110 K phase of the Bi-Pb-Sr-Ca-Cu-O superconductor was obtained by co-decomposition of metal nitrates and a solid reaction under low oxygen pressure. The best starting compositions were in the region close to Bi(1.84)Pb(0.34)Sr2Ca2Cu3O(y) with a little excess of Ca and Cu. In this region, the samples showed the absence of the 80 K and semiconducting phase, and there was no indication of impurities at all. The 110 K phase without stacking faults is stabilized by the addition of Pb, so that the nominal composition close to the ideal one is required at the start. A little excess of Ca and Cu, however, effectively decreases the 80 K phase.

  13. Removal of Cu (II) and Pb (II) from Aqueous Solution using engineered Iron Oxide Nanoparticles

    PubMed Central

    Tamez, Carlos; Hernandez, Rebecca; Parsons, J. G.

    2015-01-01

    Nano-sized Fe3O4 and Fe2O3 were synthesized using a precipitation method. The nanomaterials were tested as adsorbents for the removal of both Cu2+ and Pb2+ ions. The nanomaterials were characterized using X-ray powder diffraction to determine both the phase and the average grain size of the synthesized nanomaterials. Batch pH studies were performed to determine the optimum binding pH for both the Cu2+ and Pb2+ to the synthesized nanomaterials. The optimum binding was observed to occur at pH 4 and above. Time dependency studies for Cu2+ and Pb2+ showed the binding occurred within the first five minutes of contact and remained constant up to 2 hours of contact. Isotherm studies were utilized to determine the binding capacity of each of the nanomaterials for Cu2+ and Pb2+. The binding capacity of Fe3O4 with Cu2+ and Pb2+ were 37.04 mg/g and 166.67 mg/g, respectively. The binding capacities of the Fe2O3 nanomaterials with Cu2+ and Pb2+ were determined to be 19.61 mg/g and 47.62 mg/g, respectively. In addition, interference studies showed no significant reduction in the binding of either Cu2+ or Pb2+ to the Fe3O4 or Fe2O3 nanomaterials in the presence of solutions containing the individual ions Na+, K+, Mg2+ and Ca2+ or a solution consisting of a combination of all the aforementioned cations in one solution. PMID:26811549

  14. Removal of Cu (II) and Pb (II) from Aqueous Solution using engineered Iron Oxide Nanoparticles.

    PubMed

    Tamez, Carlos; Hernandez, Rebecca; Parsons, J G

    2016-03-01

    Nano-sized Fe3O4 and Fe2O3 were synthesized using a precipitation method. The nanomaterials were tested as adsorbents for the removal of both Cu(2+) and Pb(2+) ions. The nanomaterials were characterized using X-ray powder diffraction to determine both the phase and the average grain size of the synthesized nanomaterials. Batch pH studies were performed to determine the optimum binding pH for both the Cu(2+) and Pb(2+) to the synthesized nanomaterials. The optimum binding was observed to occur at pH 4 and above. Time dependency studies for Cu(2+) and Pb(2+) showed the binding occurred within the first five minutes of contact and remained constant up to 2 hours of contact. Isotherm studies were utilized to determine the binding capacity of each of the nanomaterials for Cu(2+) and Pb(2+). The binding capacity of Fe3O4 with Cu(2+) and Pb(2+) were 37.04 mg/g and 166.67 mg/g, respectively. The binding capacities of the Fe2O3 nanomaterials with Cu(2+) and Pb(2+) were determined to be 19.61 mg/g and 47.62 mg/g, respectively. In addition, interference studies showed no significant reduction in the binding of either Cu(2+) or Pb(2+) to the Fe3O4 or Fe2O3 nanomaterials in the presence of solutions containing the individual ions Na(+), K(+), Mg(2+) and Ca(2+) or a solution consisting of a combination of all the aforementioned cations in one solution.

  15. Lead chromate detected as a source of atmospheric Pb and Cr (VI) pollution

    PubMed Central

    Lee, Pyeong-Koo; Yu, Soonyoung; Chang, Hye Jung; Cho, Hye Young; Kang, Min-Ju; Chae, Byung-Gon

    2016-01-01

    Spherical black carbon aggregates were frequently observed in dust dry deposition in Daejeon, Korea. They were tens of micrometers in diameter and presented a mixture of black carbon and several mineral phases. Transmission electron microscopy (TEM) observations with energy-dispersive X-ray spectroscopy (EDS) and selected area diffraction pattern (SADP) analyses confirmed that the aggregates were compact and included significant amounts of lead chromate (PbCrO4). The compositions and morphologies of the nanosized lead chromate particles suggest that they probably originated from traffic paint used in roads and were combined as discrete minerals with black carbon. Based on Pb isotope analysis and air-mass backward trajectories, the dust in Daejeon received a considerable input of anthropogenic pollutants from heavily industrialized Chinese cities, which implies that long-range transported aerosols containing PbCrO4 were a possible source of the lead and hexavalent chromium levels in East Asia. Lead chromate should be considered to be a source of global atmospheric Pb and Cr(VI) pollution, especially given its toxicity. PMID:27779222

  16. Lead chromate detected as a source of atmospheric Pb and Cr (VI) pollution

    NASA Astrophysics Data System (ADS)

    Lee, Pyeong-Koo; Yu, Soonyoung; Chang, Hye Jung; Cho, Hye Young; Kang, Min-Ju; Chae, Byung-Gon

    2016-10-01

    Spherical black carbon aggregates were frequently observed in dust dry deposition in Daejeon, Korea. They were tens of micrometers in diameter and presented a mixture of black carbon and several mineral phases. Transmission electron microscopy (TEM) observations with energy-dispersive X-ray spectroscopy (EDS) and selected area diffraction pattern (SADP) analyses confirmed that the aggregates were compact and included significant amounts of lead chromate (PbCrO4). The compositions and morphologies of the nanosized lead chromate particles suggest that they probably originated from traffic paint used in roads and were combined as discrete minerals with black carbon. Based on Pb isotope analysis and air-mass backward trajectories, the dust in Daejeon received a considerable input of anthropogenic pollutants from heavily industrialized Chinese cities, which implies that long-range transported aerosols containing PbCrO4 were a possible source of the lead and hexavalent chromium levels in East Asia. Lead chromate should be considered to be a source of global atmospheric Pb and Cr(VI) pollution, especially given its toxicity.

  17. Lead chromate detected as a source of atmospheric Pb and Cr (VI) pollution.

    PubMed

    Lee, Pyeong-Koo; Yu, Soonyoung; Chang, Hye Jung; Cho, Hye Young; Kang, Min-Ju; Chae, Byung-Gon

    2016-10-25

    Spherical black carbon aggregates were frequently observed in dust dry deposition in Daejeon, Korea. They were tens of micrometers in diameter and presented a mixture of black carbon and several mineral phases. Transmission electron microscopy (TEM) observations with energy-dispersive X-ray spectroscopy (EDS) and selected area diffraction pattern (SADP) analyses confirmed that the aggregates were compact and included significant amounts of lead chromate (PbCrO4). The compositions and morphologies of the nanosized lead chromate particles suggest that they probably originated from traffic paint used in roads and were combined as discrete minerals with black carbon. Based on Pb isotope analysis and air-mass backward trajectories, the dust in Daejeon received a considerable input of anthropogenic pollutants from heavily industrialized Chinese cities, which implies that long-range transported aerosols containing PbCrO4 were a possible source of the lead and hexavalent chromium levels in East Asia. Lead chromate should be considered to be a source of global atmospheric Pb and Cr(VI) pollution, especially given its toxicity.

  18. Spalling of Cu3Sn intermetallics in high-lead 95Pb5Sn solder bumps on Cu under bump metallization during solid-state annealing

    NASA Astrophysics Data System (ADS)

    Jang, Jin-Wook; Ramanathan, Lakshmi N.; Lin, Jong-Kai; Frear, Darrel R.

    2004-06-01

    We report the spalling of Cu3Sn intermetallics in high-lead 95Pb5Sn solder bumps on Cu under bump metallization (UBM) during solid state annealing. Upon reflow, the Cu3Sn intermetallics formed on Cu UBM. However, after solid state annealing at 170 °C, the Cu3Sn intermetallics spalled off from Cu UBM and the Pb phase filled the gap between the Cu3Sn intermetallics and Cu UBM. This is primarily explained by the loss of chemical adhesion between the Cu3Sn intermetallics and Cu UBM due to no additional chemical reaction. Thermodynamic principles are used to interpret the spalling phenomenon and the analysis showed that the interfacial free energy without spalling is greater than that with spalling after solid-state annealing. Spalling of the Cu3Sn intermetallics initiated at an open interface such as the edge of Cu UBM and finally extended to the flat interface at a slower rate.

  19. The Health Risk assessment of Pb and Cr leached from fly ash monolith landfill.

    PubMed

    Hung, Ming-Lung; Wu, Sheng-Yao; Chen, Yen-Chuan; Shih, Hsiu-Ching; Yu, Yue-Hwa; Ma, Hwong-wen

    2009-12-15

    As of 2004, nearly two hundred thousand tons of fly ash monoliths are created each year in Taiwan to confine heavy metals for reducing the leaching quantity by precipitation. However, due to abnormal monolith fracture, poorly liner quality or exceeding usage over designed landfill capacity, serious groundwater pollution of the landfills has been reported. This research focuses on Pb and Cr leaching from monolithic landfill to assess the risk of groundwater pollution in the vicinity. The methodology combines water budget simulations using HELP model with fate and risk simulations using MMSOILS model for 5 kinds of landfill structures and 2 types of leaching models, and calculates the risk distribution over 400 grids in the down gradient direction of groundwater. The results demonstrated that the worst liner quality will cause the largest risk and the most significant exposure pathway is groundwater intake, which accounted for 98% of the total risk. Comparing Pb and Cr concentrations in the groundwater with the drinking water standards, only 14.25% of the total grids are found to be under 0.05 mg/L of Pb, and over 96.5% of the total grids are in the safety range of Cr. It indicates that Pb leaching from fly ash monolithic landfills may cause serious health risks. Without consideration of the parameters uncertainty, the cancer and noncancer risk of Pb with the sanitary landfill method was 4.23E-07 and 0.63, respectively, both under acceptable levels. However, by considering the parameters uncertainty, the non-carcinogenic risk of Pb became 1.43, exceeding the acceptable level. Only under the sealed landfill method was the hazard quotient below 1. It is important to use at least the sealed landfill for fly ash monoliths containing lead to effectively reduce health risks.

  20. Electronic Structure of Halogen Doped CuCr2Se4

    SciTech Connect

    Arenholz, Elke; Liberati, M.; Neulinger, J. R.; Chopdekar, R.V.; Bettinger, J.S.; Arenholz, E.; Butler, W.; Stacy, A.M.; Idzerda, Y.I.; Suzuki, Y.

    2008-09-13

    We have employed element and chemically sensitive X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) in order to address a long standing controversy regarding the electronic and magnetic state of CuCr{sub 2}Se{sub 4} via halogen doping of the Se anion site in CuCr{sub 2}Se{sub 4-x}Y{sub x} (Y=Cl and Br). Long range magnetic order is observed above room temperature for all samples. The Cr L{sub 2,3} XAS spectra show a prevalent 3+ valence for the Cr ions independent of doping concentration and doping agent. The Cu L{sub 2,3} XAS spectra show a combination of 1+ and 2+ valence states for all samples. XMCD spectra indicate the presence of a magnetic moment associated with the Cu ions that is aligned antiparallel to the Cr moment.

  1. A new Cu-8 Cr-4 Nb alloy for high temperature applications

    SciTech Connect

    Ellis, D.L.; Michal, G.M.; Dreshfield, R.L.

    1995-06-01

    Various applications exist where a high conductivity alloy with good strength and creep resistance are required. NASA LeRC has developed a Cu-8 at. percent Cr-4 at. percent Nb (Cu-8 Cr-4 Nb) alloy for these applications. The alloy is designed for use up to 700 C and shows exceptional strength, low cycle fatigue (LCF) resistance, and creep resistance. Cu-8 Cr-4 Nb also has a thermal conductivity of at least 72 percent that of pure Cu. Furthermore, the microstructure and mechanical properties of the alloy are very stable. In addition to the original application in combustion chambers, Cu-8 Cr-4 Nb shows promise for welding electrodes, brazing fixtures, and other applications requiring high conductivity and strength at elevated temperatures.

  2. A new Cu-8 Cr-4 Nb alloy for high temperature applications

    NASA Technical Reports Server (NTRS)

    Ellis, D. L.; Michal, G. M.; Dreshfield, R. L.

    1995-01-01

    Various applications exist where a high conductivity alloy with good strength and creep resistance are required. NASA LeRC has developed a Cu-8 at. percent Cr-4 at. percent Nb (Cu-8 Cr-4 Nb) alloy for these applications. The alloy is designed for use up to 700 C and shows exceptional strength, low cycle fatigue (LCF) resistance, and creep resistance. Cu-8 Cr-4 Nb also has a thermal conductivity of at least 72 percent that of pure Cu. Furthermore, the microstructure and mechanical properties of the alloy are very stable. In addition to the original application in combustion chambers, Cu-8 Cr-4 Nb shows promise for welding electrodes, brazing fixtures, and other applications requiring high conductivity and strength at elevated temperatures.

  3. Spectral properties and energy transfer in PbWO(4) co-doped with Cr(3+) and F(-).

    PubMed

    Li, Weifeng; Feng, Xiqi; Duan, Chengjun; Zhao, Jingtai; Cao, Dunhua; Gu, Mu

    2006-07-05

    A Cr(3+), F(-)-co-doped PbWO(4) crystal was grown by the Czochralski method and its spectroscopic properties were investigated. In addition to the intrinsic luminescence of PbWO(4), the sample showed [Formula: see text] radiation of Cr(3+) excited by x-radiation or UV-vis light. This indicated that the Cr(3+) is submitted to a strong crystal field and a doping mechanism is hereby proposed that Cr(3+) replaces W(6+) with the cooperation of F(-). The reabsorption and resonant energy transfer mechanisms from host to Cr(3+) were studied. As a result, the PbWO(4) intrinsic emission was intensively suppressed and the [Formula: see text] luminescence increased when excited by x-radiation compared to excitation by UV-vis light, and the decay constants of PbWO(4) host scintillation reduce. The significant [Formula: see text] luminescence of this material may be of interest for further application.

  4. Dependence of Cu, Pb and Zn remobilization on physicochemical properties of marine sediments.

    PubMed

    Durán, Iria; Sánchez-Marín, Paula; Beiras, Ricardo

    2012-06-01

    The resuspension of 65 marine sediments was simulated in the laboratory with elutriates from 30 different sites from the north coast of Spain. The partitioning of Cu, Pb and Zn between sediment and elutriate was studied as a function of different physicochemical characteristics of the sediment: organic matter (OM), fine fraction (FF), redox potential and acid volatile sulfides (AVS). Mean remobilization factors (RF) -calculated as metal concentration in the elutriate (μg/L) divided by metal concentration in the sediment (μg/g dry weight)- were 0.072 for Cu, 0.012 for Pb and 0.071 for Zn. Remobilization of Pb was significantly lower than that of Cu and Zn. Although AVS, OM and FF presented a strong intercorrelation, OM explained great part of the variability on Cu and Pb remobilization while AVS did it for Zn. A multiple regression model considering both OM and AVS explained slightly better the remobilization of Pb and Cu, but not that of Zn.

  5. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid.

    PubMed

    Cao, Xinde; Wahbi, Ammar; Ma, Lena; Li, Bing; Yang, Yongliang

    2009-05-30

    Considerable research has been done on P-induced Pb immobilization in Pb-contaminated soils. However, application of P to soils contaminated with multiple heavy metals is limited. The present study examined effectiveness of phosphoric acid (PA) and/or phosphate rock (PR) in immobilizing Pb, Cu, and Zn in two contaminated soils. The effectiveness was evaluated using water extraction, plant uptake, and a simple bioaccessibility extraction test (SBET) mimicking metal uptake in the acidic environment of human stomach. The possible mechanisms for metal immobilization were elucidated using X-ray diffraction, scanning electron microscopy, and chemical speciation program Visual MINTEQ. Compared to the control, all P amendments significantly reduced Pb water solubility, phytoavailability, and bioaccessibility by 72-100%, 15-86%, and 28-92%, respectively. The Pb immobilization was probably attributed to the formation of insoluble Pb phosphate minerals. Phosphorus significantly reduced Cu and Zn water solubility by 31-80% and 40-69%, respectively, presumably due to their sorption on minerals (e.g., calcite and phosphate phases) following CaO addition. However, P had little effect on the Cu and Zn phytoavailability; while the acid extractability of Cu and Zn induced by SBET (pH 2) were even elevated by up to 48% and 40%, respectively, in the H(3)PO(4) treatments (PA and PR+PA). Our results indicate that phosphate was effective in reducing Pb availability in terms of water solubility, bioaccessibility, and phytoavailability. Caution should be exercised when H(3)PO(4) was amended to the soil co-contaminated with Cu and Zn since the acidic condition of SBET increased Cu and Zn bioaccessibility though their water solubility was reduced.

  6. Development of a new Pb-free solder: Sn-Ag-Cu

    SciTech Connect

    Miller, Chad M.

    1995-02-10

    With the ever increasing awareness of the toxicity of Pb, significant pressure has been put on the electronics industry to get the Pb out of solder. This work pertains to the development and characterization of an alloy which is Pb-free, yet retains the proven positive qualities of current Sn-Pb solders while enhancing the shortcomings of Sn-Pb solder. The solder studied is the Sn-4.7Ag-1.7Cu wt% alloy. By utilizing a variety of experimental techniques the alloy was characterized. The alloy has a melting temperature of 217°C and exhibits eutectic melting behavior. The solder was examined by subjecting to different annealing schedules and examining the microstructural stability. The effect of cooling rate on the microstructure of the solder was also examined. Overall, this solder alloy shows great promise as a viable alternative to Pb-bearing solders and, as such, an application for a patent has been filed.

  7. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al Part II: Scale Microstructures

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. Details of the oxidation kinetics of these alloys were discussed in Part I. This paper analyzes the microstructures of the scale and its composition in an attempt to elucidate the oxidation mechanisms in these alloys. The scales formed on Cu-17%Cr specimens oxidized between 773 and 973 K consisted of external CuO and subsurface Cu2O layers. The total thickness of these scales varied from about 10 m at 773 K to about 450 m at 973 K. In contrast, thin scales formed on Cu-17%Cr-5%Al alloys oxidized between 773 and 1173 K. The exact nature of these scales could not be determined by x-ray diffraction but energy dispersive spectroscopy analyses were used to construct a scale composition map. Phenomenological oxidation mechanisms are proposed for the two alloys.

  8. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al. Part 2; Scale Microstructures

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. Details of the oxidation kinetics of these alloys were discussed in Part I. This paper analyzes the microstructures of the scale and its composition in an attempt to elucidate the oxidation mechanisms in these alloys. The scales formed on Cu-17%Cr specimens oxidized between 773 and 973 K consisted of external CuO and subsurface Cu2O layers. The total thickness of these scales varied from about 10 m at 773 K to about 450 m at 973 K. In contrast, thin scales formed on Cu-17%Cr-5%Al alloys oxidized between 773 and 1173 K. The exact nature of these scales could not be determined by x-ray diffraction but energy dispersive spectroscopy analyses were used to construct a scale composition map. Phenomenological oxidation mechanisms are proposed for the two alloys.

  9. Microstructures and Thermal Properties of Cold-Sprayed Cu-Cr Composite Coatings

    NASA Astrophysics Data System (ADS)

    Kikuchi, S.; Yoshino, S.; Yamada, M.; Fukumoto, M.; Okamoto, K.

    2013-08-01

    Copper-based composites for thermal conductive components were prepared via the cold spray process, and the deposition efficiency and adhesion morphology of feedstock powders on Cu substrate were evaluated. Cu-based composites were fabricated using Cu-Cr mixed powders with their mixture ratio of 20, 35, 50, and 65 mass% Cr onto oxygen-free copper substrate with N2 carrier gas. Cu-Cr composite coatings were investigated for their Cr content ratio, microstructures, and thermal conductivity. The Cr content ratio in the coating was approximately 50-60% of feedstock mixture ratio due to the low formability of the hard particles. Transmission electron microscopy characterizations revealed that an oxygen-rich layer exists at the Cr particle/Cu substrate interface, which contributes to the deposition of the Cr particles. After the heat treatment at 1093 K, the coatings showed denser cross-sectional structures than those before the heat treatment, and the thermal conductivity was improved as a result of the recrystallization of Cu matrix.

  10. Simultaneous determination of Cu, Cd and Pb in drinking-water using W-Coil AAS.

    PubMed

    Salido, A; Jones, B T

    1999-10-01

    An inexpensive, multi-element, W-coil atomic absorption spectrometer has been developed. Atomization occurs on W-coils extracted from commercially available slide projector bulbs. The system has minimal power requirements, 120 ACV and 15 A. A small, computer controlled CCD spectrometer is used as the detector. A multi-element Cu, Cd and Pb hollow cathode lamp is used as the source. 20 mul volumes are deposited on the coil and atomized at 6.7 A or approximately 2200 degrees C. Cu, Cd and Pb were simultaneously determined in tap water, drinking water and a quality control sample. The instrument detection limits are 0.8, 0.2 and 3.0 mug/l for Cu, Cd and Pb, respectively.

  11. Determination of Cd, Cr and Pb in phosphate fertilizers by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Nunes, Lidiane Cristina; de Carvalho, Gabriel Gustinelli Arantes; Santos, Dario; Krug, Francisco José

    2014-07-01

    A validated method for quantitative determination of Cd, Cr, and Pb in phosphate fertilizers by laser-induced breakdown spectroscopy (LIBS) is presented. Laboratory samples were comminuted and homogenized by cryogenic or planetary ball milling, pressed into pellets and analyzed by LIBS. The experimental setup was designed by using a Q-switched Nd:YAG at 1064 nm with 10 Hz repetition rate, and the intensity signals from Cd II 214.441 nm, Cr II 267.716 nm and Pb II 220.353 nm emission lines were measured by using a spectrometer furnished with an intensified charge-coupled device. LIBS parameters (laser fluence, lens-to-sample distance, delay time, integration time gate, number of sites and number of laser pulses per site) were chosen after univariate experiments with a pellet of NIST SRM 695 (Trace Elements in Multi-Nutrient Fertilizer). Calibration and validation were carried out with 30 fertilizer samples from single superphosphate, triple superphosphate, monoammonium phosphate, and NPK mixtures. Good results were obtained by using 30 pulses of 50 J cm- 2 (750 μm spot size), 2.0 μs delay time and 5.0 μs integration time gate. No significant differences between Cd, Cr, and Pb mass fractions determined by the proposed LIBS method and by ICP OES after microwave-assisted acid digestion (AOAC 2006.03 Official Method) were found at 95% confidence level. The limits of detection of 1 mg kg- 1 Cd, 2 mg kg- 1 Cr and 15 mg kg- 1 Pb and the precision (coefficients of variation of results ranging from 2% to 15%) indicate that the proposed LIBS method can be recommended for the determination of these analytes in phosphate fertilizers.

  12. Assessment of Cr, Ni and Pb Pollution in Rural Agricultural Soils of Tonalite-Trondjhemite Series in Central India.

    PubMed

    Shukla, Kriti; Kumar, Bijendra; Agrawal, Rahul; Priyanka, Kumari; Venkatesh, Madavi; Anshumali

    2017-06-01

    Chromium (Cr), nickel (Ni) and lead (Pb) contamination was investigated in wheat cultivated rain-fed and irrigated rural agricultural soils (n = 31) of Tonalite-Trondjhemite Series in Central India. The soil sampling was carried out by using stratified random sampling method. The mean concentrations of Cr, Ni and Pb were 54.8, 38.1 and 68.9 mg/kg, respectively. The average values of enrichment factor (EF), geoaccumulation index (I geo ) and contamination factor (CF) followed the order as: Pb > Ni > Cr. Distribution patterns of soil parent material and weathering processes govern mineral enrichments, irrespective of rainfed or irrigated agricultural practices. Principal component analysis (PCA) showed strong loading of Cr and Ni (PC1) and Pb and clay (PC3). The strong loading on Cr and Ni indicates soils are originating from basic and volcanic rocks in the study area. The strong loading of Pb and clay indicates Pb is strongly adsorbed on clay minerals and Fe-oxides. The cancer risk (CR) index showed negligible carcinogenic risk to the residing population. However, hazard index (HI) values for children exceed the safe limit (HI > 1) for Cr and Pb. Spatial distribution of pollution load index suggest highest pollution in the northeastern part of the district. The study revealed that geogenically enriched soils of the area are suitable for agricultural activities under present conditions.

  13. Electroless deposition of NiCrB diffusion barrier layer film for ULSI-Cu metallization

    NASA Astrophysics Data System (ADS)

    Wang, Yuechun; Chen, Xiuhua; Ma, Wenhui; Shang, Yudong; Lei, Zhengtao; Xiang, Fuwei

    2017-02-01

    NiCrB films were deposited on Si substrates using electroless deposition as a diffusion barrier layer for Cu interconnections. Samples of the prepared NiCrB/SiO2/Si and NiCrB/Cu/NiCrB/SiO2/Si were annealed at temperatures ranging from 500 °C to 900 °C. The reaction mechanism of the electroless deposition of the NiCrB film, the failure temperature and the failure mechanism of the NiCrB diffusion barrier layer were investigated. The prepared samples were subjected to XRD, XPS, FPP and AFM to determine the phases, composition, sheet resistance and surface morphology of samples before and after annealing. The results of these analyses indicated that the failure temperature of the NiCrB barrier film was 900 °C and the failure mechanism led to crystallization and grain growth of the NiCrB barrier layer after high temperature annealing. It was found that this process caused Cu grains to reach Si substrate through the grain boundaries, and then the reaction between Cu and Si resulted in the formation of highly resistive Cu3Si.

  14. Spectroscopy study of Zn, Cd, Pb and Cr ions immobilization on C-S-H phase.

    PubMed

    Żak, Renata; Deja, Jan

    2015-01-05

    Calcium silicate hydrates (C-S-H) have a large number of structural sites available for cations and anions to bind. The C-S-H phases are materials which have ability to toxic ions immobilization. Immobilization mechanisms for C-S-H include sorption, phase mixing, substitution and precipitation of insoluble compounds. This study presents the C-S-H (prepared with C/S ratios 1.0) phase as absorbent for immobilization of Zn, Cd, Pb and Cr ions. The C-S-H spectra before and after incorporation of heavy metals ions into the C-S-H structure were obtained. The effect of added heavy metals ions on the hydration phenomena was studied by means of X-ray diffractions analysis. FTIR spectra was measured. The microstructure and phase composition of C-S-H indicate that they can play an essential role in the immobilization of heavy metals. The properties of C-S-H in the presence of Zn, Cd, Pb and Cr cations were studied. The leaching ML test was used to evaluate the level of immobilization of heavy metals in C-S-H. The leached solutions are diluted and analyzed using atomic absorption spectrometry (AAS) and the activated solid particles are separated, washed, desiccated and analyzed by Fourier transform infrared (FTIR) spectroscopy. It was found that the degree of Cd, Zn, Pb and Cr cations immobilization was very high (exceeding 99.96%).

  15. Chemical behavior of Cu, Zn, Cd, and Pb in a eutrophic reservoir: speciation and complexation capacity.

    PubMed

    Tonietto, Alessandra Emanuele; Lombardi, Ana Teresa; Choueri, Rodrigo Brasil; Vieira, Armando Augusto Henriques

    2015-10-01

    This research aimed at evaluating cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) speciation in water samples as well as determining water quality parameters (alkalinity, chlorophyll a, chloride, conductivity, dissolved organic carbon, dissolved oxygen, inorganic carbon, nitrate, pH, total suspended solids, and water temperature) in a eutrophic reservoir. This was performed through calculation of free metal ions using the chemical equilibrium software MINEQL+ 4.61, determination of labile, dissolved, and total metal concentrations via differential pulse anodic stripping voltammetry, and determination of complexed metal by the difference between the total concentration of dissolved and labile metal. Additionally, ligand complexation capacities (CC), such as the strength of the association of metals-ligands (logK'ML) and ligand concentrations (C L) were calculated via Ruzic's linearization method. Water samples were taken in winter and summer, and the results showed that for total and dissolved metals, Zn > Cu > Pb > Cd concentration. In general, higher concentrations of Cu and Zn remained complexed with the dissolved fraction, while Pb was mostly complexed with particulate materials. Chemical equilibrium modeling (MINEQL+) showed that Zn(2+) and Cd(2+) dominated the labile species, while Cu and Pb were complexed with carbonates. Zinc was a unique metal for which a direct relation between dissolved species with labile and complexed forms was obtained. The CC for ligands indicated a higher C L for Cu, followed by Pb, Zn, and Cd in decreasing amounts. Nevertheless, the strength of the association of all metals and their respective ligands was similar. Factor analysis with principal component analysis as the extraction procedure confirmed seasonal effects on water quality parameters and metal speciation. Total, dissolved, and complexed Cu and total, dissolved, complexed, and labile Pb species were all higher in winter, whereas in summer, Zn was mostly present in the

  16. Cyclic Oxidation Behavior of CuCrAl Cold-Sprayed Coatings for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, Sai; Karthikeyan, J.

    2009-01-01

    The next generation of reusable launch vehicles is likely to use GRCop-84 [Cu-8(at.%)Cr-4%Nb] copper alloy combustion liners. The application of protective coatings on GRCop-84 liners can minimize or eliminate many of the environmental problems experienced by uncoated liners and significantly extend their operational lives and lower operational cost. A newly developed Cu- 23 (wt.%) Cr-5% Al (CuCrAl) coating, shown to resist hydrogen attack and oxidation in an as-cast form, is currently being considered as a protective coating for GRCop-84. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique, where the CuCrAl was procured as gas-atomized powders. Cyclic oxidation tests were conducted between 773 and 1,073 K to characterize the coated substrates.

  17. Accumulation and transport of Cd, Cu, and Pb in an estuarine salt marsh surface microlayer

    SciTech Connect

    Lion, L.W.; Leckie, J.O.

    1982-01-01

    Dissolved and particulate Cd, Cu, and Pb were measured in bulk solution and surface microlayer samples from an intertidal salt marsh in south San Francisco Bay. The phase distribution (dissolved vs. particulate) of metals was consistent with their calculated speciation in computer-simulated sea-salt matrices. Trace metal enrichment at the microlayer corresponded with physical events at the sample site. Advective exchange of Cd, Cu, and Pb between the estuary and marsh systems was dominated by transport of bulk suspended particulate metals, with an apparent net export from the marsh to the bay.

  18. Synthesis of highly phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor

    DOEpatents

    Dorris, S.E.; Poeppel, R.B.; Prorok, B.C.; Lanagan, M.T.; Maroni, V.A.

    1994-10-11

    An article and method of manufacture of (Bi,Pb)-Sr-Ca-Cu-O superconductor are disclosed. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi,Pb)-Sr-Ca-Cu-O superconductor. 5 figs.

  19. Synthesis of highly phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor

    DOEpatents

    Dorris, Stephen E.; Poeppel, Roger B.; Prorok, Barton C.; Lanagan, Michael T.; Maroni, Victor A.

    1994-01-01

    An article and method of manufacture of (Bi,Pb)-Sr-Ca-Cu-O superconductor. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi,Pb)-Sr-Ca-Cu-O superconductor.

  20. Electrical conductivity and mechanical properties of Cu-0.7wt% Cr and Cu-1.0wt% Cr alloys processed by severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Kommel, L.; Pokatilov, A.

    2014-08-01

    As-cast Cu-0.7wt% Cr and Cu-1.0wt% Cr alloys were subjected to equal-channel angular pressing (ECAP), hard cyclic viscoplastic (HCV) deformation and post deformation heat treatment for receiving an ultrafine grained material with a combination of high strength, good wear resistance and high electric conductivity. Samples from Cu-0.7wt% Cr alloy were processed up to six passes and Cu-1wt% Cr alloy samples were processed up to four passes of ECAP via Bc route. HCV deformation of samples was conducted by frequency of 0.5 Hz for 20 cycles at tension-compression strain amplitudes of +/-0.05%, +/-0.1%, +/-0.5%, +/-1% and +/-1.5%, respectively. During HCV deformation, as-cast Cu-0./wt% Cr alloy show fully viscoelastic behavior at strain/stress amplitude of +/-0.05% while ECAP processed material show the same behavior at strain amplitude of +/-0.1%. The Young modulus was increased from ~120 GPa up to ~150 GPa. The results illustrated that specific volume wear decrease with increasing of hardness but the measured coefficient of friction (COF ~ 0.6) was approximately the same for all samples at the end of wear testing. The hardness after ECAP for 6 passes by Bc route was 192HV0.1 and electric conduction 74.16% IACS, respectively. By this the as-cast Cu-0./wt% Cr alloy (heat treated at 1000 °C for 2h) has microhardness ~70HV0.1 and electrical conductivity of ~40% IACS. During aging at the temperatures in the interval of 250-550 °C for 1h the hardness and electrical conductivity were stabilized to mean values of 120+/-5HV0.1 and to 93.4+/-0.3% IACS, respectively. The hardness and electric conductivity took decrease by temperature increase over ~550 °C, respectively. The results of present experimental investigation show that UFG Cu- 0.7wt% Cr alloy with compare to Cu-1.0% Cr alloy is a highly electrical conductive and high temperature wear resistant material for using in electrical industry.

  1. Bioaccessibility of As, Cd, Cu, Ni, Pb, and Sb in toys and low-cost jewelry.

    PubMed

    Guney, Mert; Zagury, Gerald J

    2014-01-21

    Children can be exposed to toxic elements in toys and jewelry following ingestion. As, Cd, Cu, Ni, Pb, and Sb bioavailability was assessed (n = 24) via the in vitro gastrointestinal protocol (IVG), the physiologically based extraction test (PBET), and the European Toy Safety Standard protocol (EN 71-3), and health risks were characterized. Cd, Cu, Ni, and Pb were mobilized from 19 metallic toys and jewelry (MJ) and one crayon set. Bioaccessible Cd, Ni, or Pb exceeded EU migratable concentration limits in four to six MJ, depending on the protocol. Using two-phase (gastric + intestinal) IVG or PBET might be preferable over EN 71-3 since they better represent gastrointestinal physiology. Bioaccessible and total metal concentrations were different and not always correlated, indicating that bioaccessibility measurement may provide more accurate risk characterization. More information on impacts of multiple factors affecting metals mobilization from toys and jewelry is needed before recommending specific tests. Hazard index (HI) for Cd, Ni, or Pb were >1 for all six MJ exceeding the EU limits. For infants (6-12 mo old), 10 MJ had HI > 1 for Cd, Cu, Ni, or Pb (up to 75 for Cd and 43 for Pb). Research on prolonged exposure to MJ and comprehensive risk characterization for toys and jewelry exposure is recommended.

  2. Sources of Cu, Zn, Cd and Pb in rainwater at a subtropical islet offshore northern Taiwan

    NASA Astrophysics Data System (ADS)

    Cheng, Miao-Ching; You, Chen-Feng; Lin, Fei-Jan; Huang, Kuo-Fang; Chung, Chuan-Hsiung

    2011-02-01

    Pollutants derived from long-range transport and local emission impact significantly of heavy metal compositions in rainwater and aerosols. To identify their sources and relative contributions in rainwater, 47 monthly rainwater samples from January 1998 to December 2001, collected at Peng Chia Yu (PCY), a non-residential islet offshore Taiwan, were analyzed for heavy metals (i.e. Cu, Zn, Cd, and Pb) and Pb isotopic compositions. The dissolved metals concentrations of Al, Mn, Fe, Cu, Zn, Rb, Ba, and Pb in PCY rains are high in spring and winter, but low in summer. This can be understood in terms of pollutant source changes due to wind direction shifted seasonally. The average EF crust and EF seawater values calculated for Cu, Zn, Cd and Pb are far greater than 1500, suggesting their strong anthropogenic sources, also supported by the PCA results. The pollutants derived from long-range transport are the predominated heavy metals sources during the winter monsoon season, whereas local traffic emissions play the most important role during the summer monsoon period. Unique Pb isotopic fingerprints, similar to those of iron ore sinter dusts and oil combustion dusts from Shanghai and the traffic emissions from Taiwan were identified in PCY rainwater. A mixing model based on three typical end-member Pb isotopic compositions derived from Taiwan and China was applied to evaluate the pollutant sources variations.

  3. Giant Magnetoresistance and Coercivity of electrodeposited multilayered FeCoNi/Cu and CrFeCoNi/Cu

    NASA Astrophysics Data System (ADS)

    Shakya, P.; Cox, B.; Davis, D.

    2012-02-01

    The effect of Cr addition on electrodeposited multilayered nanowires CrFeCoNi/Cu was investigated from a magnetic property perspective: current perpendicular to the plane-Giant Magnetoresistance (CPP-GMR) and Coercivity (BH loops). The magnetic behavior of multilayered nanowires of CrFeNiCo/Cu was also affected by the alloy deposition potential, alloy pulsing time (layer thickness) and number of bilayers. Furthermore, the addition of Cr influenced both the nanowires GMR and Coercivity. Cr addition to the ferromagnetic FeCoNi layer induced a reduction in the room temperature GMR from 10.64% to 5.62%; however, the magnetic saturation field decreased from 0.45 to 0.27 T. The increase in the number of bilayers, from 1000 to 2500, resulted in a higher GMR value, 14.56% with 0.35 T magnetic saturation field. Addition of Cr to the ferromagnetic layer decreased the coercivity from 0.015 to 0.0054 T. Low saturation field CPP-GMR nanowires showing low coercivity at room temperature opens a new door for magnetic sensing devices. To the best of our knowledge, this is the first study on electrodeposited CrFeCoNi/Cu multilayered nanowires.

  4. Tensile and Fracture Toughness Properties of Neutron-Irradiated CuCrZr

    SciTech Connect

    Sokolov, Mikhail A; Zinkle, Steven J; Li, Meimei

    2009-01-01

    Tensile and fracture toughness properties of a precipitation-hardened CuCrZr alloy were investigated in two heat treatment conditions: solutionized, water quenched and aged (CuCrZr SAA), and hot isostatic pressed, solutionized, slow-cooled and aged (CuCrZr SCA). The second heat treatment simulated the manufacturing cycle for large components, and is directly relevant for the ITER divertor components. Specimens were neutron irradiated at {approx}80 C to two fluences, 2 x 10{sup 24} and 2 x 10{sup 25} n/m{sup 2} (E > 0.1 MeV), corresponding to displacement doses of 0.15 and 1.5 displacements per atom (dpa). Tensile and fracture toughness tests were carried out at room temperature. Significant irradiation hardening and plastic instability at yield occurred in both heat treatment conditions with a saturation dose of {approx}0.1 dpa. Neutron irradiation slightly reduced fracture toughness in CuCrZr SAA and CuCrZr SCA. The fracture toughness of CuCrZr remained high up to 1.5 dpa (J{sub Q} > 200 kJ/m{sup 2}) for both heat treatment conditions.

  5. Investigation of vacuum properties of CuCrZr alloy for high-heat-load absorber

    NASA Astrophysics Data System (ADS)

    Shueh, C.; Chan, C. K.; Chang, C. C.; Sheng, I. C.

    2017-01-01

    The Taiwan Photon Source (TPS) uses high-heat-load (HHL) absorbers to protect downstream ultrahigh-vacuum chambers from overheating. In this work, we propose to use the CuCrZr alloy (ASTM C18150) for the HHL absorber body and the ConFlat flanges. We use the throughput method to measure the thermal outgassing rate and a helium leak detector to verify the vacuum seal between the CuCrZr alloy and stainless-steel flanges. The measured outgassing rate of the CuCrZr alloy was 5.8×10-10 Pa m/s after 72 h of pumping and decreased to 2.0 × 10-10 Pa m/s after 100 h of pumping. The leak rate through the vacuum seal between a CuCrZr flange and a stainless-steel flange was less than 1 × 10-10 Pa m3/s even after mounting and unmounting the flanges ten times and baking them at 250 °C. These results indicate that CuCrZr alloy is suitable for integrating HHL components with ConFlat CuCrZr flanges for the absorption of the synchrotron radiation generated by the TPS.

  6. Characterization of transparent superconductivity Fe-doped CuCrO2 delafossite oxide

    NASA Astrophysics Data System (ADS)

    Taddee, Chutirat; Kamwanna, Teerasak; Amornkitbamrung, Vittaya

    2016-09-01

    Delafossite CuCr1-xFexO2 (0.0 ≤ x ≤ 0.15) semiconductors were synthesized using a self-combustion urea nitrate process. The effects of Fe concentration on its microstructural, optical, magnetic, and electrical properties were investigated. X-ray diffraction (XRD) analysis results revealed the delafossite structure in all the samples. The lattice spacing of CuCr1-xFexO2 slightly increased with increasing substitution of Fe at the Cr sites. The optical properties measured at room temperature using UV-visible spectroscopy showed a weak absorbability in the visible light and near IR regions. The corresponding direct optical band gap was about 3.61 eV, exhibiting transparency in the visible region. The magnetic hysteresis loop measurements showed that the Fe-doped CuCrO2 samples exhibited ferromagnetic behavior at room temperature. This indicated that the substitution of Fe3+ for Cr3+ produced a mixed effect on the magnetic properties of CuCrO2 delafossite oxide. The temperature dependent resistivity measurements clearly revealed the presence of superconductivity in the CuCr1-xFexO2 with a superconducting transition up to 118 K.

  7. Sorption behavior of Cd, Cu, Pb, and Zn and their interactions in phytoremediated soil.

    PubMed

    Trakal, L; Komárek, M; Száková, J; Tlustos, P; Tejnecký, V; Drábek, O

    2012-09-01

    The aim of our study was to compare the sorption properties of a contaminated soil before and after two types of phytoremediation (natural phytoextraction vs. phytostabilization with dolomite limestone (DL) application). Soil from a pot experiment in controlled greenhouse conditions performed for two vegetation periods was used for the study. Lead, as the main contaminant in the studied soil, was easily desorbed by Cu, especially due to the increased affinity of Cu for soil organic matter; hence input of Cu to the studied soil can present another environmental risk in soils contaminated with other metals (such as Pb). In addition, the sorption behavior of chosen metals from single-element solutions differed from multielement solutions. The obtained results proved the different sorption behavior of metals in the single-element solution compared to the multi-element ones. Soil sorption behavior of Cd, Cu, and Zn decreased with the presence of the competitive metals; nevertheless, Pb sorption potential was not influenced by other competitive metals. Natural phytoextraction showed no significant effect on the sorption of Cd, Cu, Pb, and Zn onto the soil On the other hand, phytostabilization associated with DL application improved the soil sorption efficiency of all chosen metals, especially of Cu.

  8. Concentrations of heavy metals (Mn, Co, Ni, Cr, Ag, Pb) in coffee.

    PubMed

    Nędzarek, Arkadiusz; Tórz, Agnieszka; Karakiewicz, Beata; Clark, Jeremy Simon; Laszczyńska, Maria; Kaleta, Agnieszka; Adler, Grażyna

    2013-01-01

    Technologies involved in roasting coffee beans, as well as the methods used to prepare infusions, vary according to culture, and contribute to differences in the concentration of elements in the drink. Concentrations of six elements: manganese (Mn), cobalt (Co), nickel (Ni), chrome (Cr), silver (Ag) and lead (Pb) were investigated in coffee infusions from eleven samples of coffee, roasted and purchased in four countries: Bosnia and Herzegovina, Brazil, Lebanon and Poland. Metal concentrations were determined using an induction coupled plasma technique in combination with mass spectrometry (ICP-MS, Perkin Elmer) which measures total metal (ionic and non-ionic) content. Metal intake estimated for individual countries (in the respective order; mean consumption per person per year) was as follows: Mn: 26.8-33.1, 28.3-29.5, 29.7, 12.6-18.9 mg; Co: 0.33-0.48, 0.42-0.35, 0.32, 0.12-0.17 mg; Ni: 3.83-5.68, 4.85-5.51, 4.04, 2.06-2.24 mg; Cr: 0.17-0.41, 0.21-0.47, 0.17, 0.09-0.28 mg; Ag: 0.16-1.13, 0.26-0.70, 0.61, 0.33-1.54 mg, Pb: 4.76-7.56, 3.59-5.13, 3.33, 1.48-2.43 mg. This finding gives new data for Mn, Co, Ni, Cr, and Ag intake from coffee , and suggests that the amounts are negligible. However, the data for Pb consumption in heavy drinkers, for example in Bosnia and Herzegovina, indicate that Pb intake from coffee may contribute to the disease burden. The high lead level in some coffees suggests the need for a more precise control of coffee contamination.

  9. Evaluation of Pb-17Li compatibility of ODS Fe-12Cr-5Al alloys

    NASA Astrophysics Data System (ADS)

    Unocic, Kinga A.; Hoelzer, David T.

    2016-10-01

    The Dual Coolant Lead Lithium (DCLL: eutectic Pb-17Li and He) blanket concept requires improved Pb-17Li compatibility with ferritic steels in order to demonstrate acceptable performance in fusion reactors. As an initial step, static Pb-17at.%Li (Pb-17Li) capsule experiments were conducted on new oxide dispersion strengthened (ODS) FeCrAl alloys ((1) Y2O3 (125Y), (2) Y2O3 + ZrO2 (125YZ), (3) Y2O3 + HfO2 (125YH), and (4) Y2O3 + TiO2 (125YT)) produced at ORNL via mechanical alloying (MA). Tests were conducted in static Pb-17Li for 1000 h at 700 °C. Alloys showed promising compatibility with Pb-17Li with small mass change after testing for 125YZ, 125YH and 125YT, while the 125Y alloy experienced the highest mass loss associated with some oxide spallation and subsequent alloy dissolution. X-ray diffraction methods identified the surface reaction product as LiAlO2 on all four alloys. A small decrease (∼1 at.%) in Al content beneath the oxide scale was observed in all four ODS alloys, which extended 60 μm beneath the oxide/metal interface. This indicates improvements in alloy dissolution by decreasing the amount of Al loss from the alloy. Scales formed on 125YZ, 125YH and 125YT were examined via scanning transmission electron microscopy (S/TEM) and revealed incorporation of Zr-, Hf-, and Ti-rich precipitates within the LiAlO2 product, respectively. This indicates an inward scale growth mechanism. Future work in flowing Pb-17Li is needed to further evaluate the effectiveness of this strategy in a test blanket module.

  10. Toxicity of seabird guano to sea urchin embryos and interaction with Cu and Pb.

    PubMed

    Rial, Diego; Santos-Echeandía, Juan; Álvarez-Salgado, Xosé Antón; Jordi, Antoni; Tovar-Sánchez, Antonio; Bellas, Juan

    2016-02-01

    Guano is an important source of marine-derived nutrients to seabird nesting areas. Seabirds usually present high levels of metals and other contaminants because the bioaccumulation processes and biotic depositions can increase the concentration of pollutants in the receiving environments. The objectives of this study were to investigate: the toxicity of seabird guano and the joint toxicity of guano, Cu and Pb by using the sea urchin embryo-larval bioassay. In a first experiment, aqueous extracts of guano were prepared at two loading rates (0.462 and 1.952 g L(-1)) and toxicity to sea-urchin embryos was tested. Toxicity was low and not dependent of the load of guano used (EC50 0.42 ± 0.03 g L(-1)). Trace metal concentrations were also low either in guano or in aqueous extracts of guano and the toxicity of extracts were apparently related to dissolved organic matter. In a second experiment, the toxicity of Cu-Pb mixtures in artificial seawater and in extracts of guano (at two loadings: 0.015 and 0.073 g L(-1)), was tested. According to individual fittings, Cu added to extracts of guano showed less toxicity than when dissolved in artificial seawater. The response surfaces obtained for mixtures of Cu and Pb in artificial seawater, and in 0.015 g L(-1) and 0.073 g L(-1) of guano, were better described by Independent Action model adapted to describe antagonism, than by the other proposed models. This implied accepting that EC50 for Cu and Pb increased with the load of guano and with a greater interaction for Cu than for Pb. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Mid-twentieth century increases in anthropogenic Pb, Cd and Cu in central Asia set in hemispheric perspective using Tien Shan ice core

    NASA Astrophysics Data System (ADS)

    Grigholm, B.; Mayewski, P. A.; Aizen, V.; Kreutz, K.; Wake, C. P.; Aizen, E.; Kang, S.; Maasch, K. A.; Handley, M. J.; Sneed, S. B.

    2016-04-01

    High-resolution major and trace element (Al, As, Ca, Cd, Co, Cr, Cu, Fe, Li, Mn, Na, Pb, S, Ti, and V) ice core records from Inilchek glacier (5120 m above sea level) on the northwestern margin of the Tibetan Plateau provide the first multi-decadal ice core record spanning the period 1908-1995 AD in central Tien Shan. The trace element records reveal pronounced temporal baseline trends and concentration maxima characteristic of post-1950 anthropogenic emissions. Examination of Pb, Cd and Cu concentrations, along with non-crustal calculation estimates (i.e. excess (ex) and enrichment factor (EF)), reveal that discernable anthropogenic inputs began during the 1950s and rapidly increased to the late-1970s and early 1980s, by factors up to of 5, 6 and 3, respectively, relative to a 1910-1950 means. Pb, Cd and Cu concentrations between the 1950s-1980s are reflective of large-scale Soviet industrial and agricultural development, including the growth of production and/or consumption of the non-ferrous metals, coal and phosphate fertilizers. NOAA HYSPLIT back-trajectory frequency analysis suggests pollutant sources originating primarily from southern Kazakhstan (e.g. Shymkent and Balkhash) and the Fergana Valley (located in Kazakhstan, Uzbekistan and Kyrgyzstan). Inilchek ice core Pb, Cd and Cu reveals declines during the 1980s concurrent with Soviet economic declines, however, due to the rapid industrial and agricultural growth of western China, Pb, Cd and Cu trends increase during the 1990s reflecting a transition from primarily central Asian sources to emission sources from western China (e.g. Xinjiang Province).

  12. Creep Testing of High-Temperature Cu-8 Cr-4 Nb Alloy Completed

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A Cu-8 at.% Cr-4 at.% Nb (Cu-8 Cr-4 Nb) alloy is under development for high-temperature, high heatflux applications, such as actively cooled, hypersonic vehicle heat exchangers and rocket engine combustion chambers. Cu-8 Cr-4 Nb offers a superior combination of strength and conductivity. It has also shown exceptional low-cycle fatigue properties. Following preliminary testing to determine the best processing route, a more detailed testing program was initiated to determine the creep lives and creep rates of Cu-8 Cr-4 Nb alloy specimens produced by extrusion. Testing was conducted at the NASA Lewis Research Center with constant-load vacuum creep units. Considering expected operating temperatures and mission lives, we developed a test matrix to accurately determine the creep properties of Cu-8 Cr-4 Nb between 500 and 800 C. Six bars of Cu-8 Cr-4 Nb were extruded. From these bars, 54 creep samples were machined and tested. The figure on the left shows the steady-state, or second-stage, creep rates for the samples. Comparison data for NARloy-Z (Cu-3 wt % Ag-0.5 wt % Zr), the alloy currently used in combustion chamber liners, were not unavailable. Therefore the steady-state creep rates for Cu at similar temperatures are presented. As expected, in comparison to pure Cu, the creep rates for Cu-8 Cr-4 Nb are much lower. The lives of the samples are presented in the figure on the right. As shown, Cu-8 Cr-4 Nb at 800 C is comparable to NARloy-Z at 648 C. At equivalent temperatures, Cu-8 Cr-4 Nb enjoys a 20 to 50 percent advantage in stress for a given life and 1 to 3 orders of magnitude greater life at a given stress. The improved properties allow for design tradeoffs and improvements in new and existing heat exchangers such as the next generation of combustion chamber liners. Average creep rates for Cu-8 Cr-4 Nb and pure Cu are shown. Average creep lives for Cu-8 Cr- 4 Nb and NARloy-Z are also shown. Currently, two companies are interested in the commercial usage of the Cu

  13. Diffusion bonding of beryllium to CuCrZr for ITER applications.

    SciTech Connect

    Cadden, Charles H.; Puskar, Joseph David; Goods, Steven Howard

    2008-08-01

    Low temperature diffusion bonding of beryllium to CuCrZr was investigated for fusion reactor applications. Hot isostatic pressing was accomplished using various metallic interlayers. Diffusion profiles suggest that titanium is effective at preventing Be-Cu intermetallics. Shear strength measurements suggest that acceptable results were obtained at temperatures as low as 540C.

  14. Behaviors of heavy metals (Cd, Cu, Ni, Pb and Zn) in soil amended with composts.

    PubMed

    Gusiatin, Zygmunt Mariusz; Kulikowska, Dorota

    2016-09-01

    This study investigated how amendment with sewage sludge compost of different maturation times (3, 6, 12 months) affected metal (Cd, Cu, Ni, Pb, Zn) bioavailability, fractionation and redistribution in highly contaminated sandy clay soil. Metal transformations during long-term soil stabilization (35 months) were determined. In the contaminated soil, Cd, Ni and Zn were predominately in the exchangeable and reducible fractions, Pb in the reducible fraction and Cu in the reducible, exchangeable and oxidizable fractions. All composts decreased the bioavailability of Cd, Ni and Zn for up to 24 months, which indicates that cyclic amendment with compost is necessary. The bioavailability of Pb and Cu was not affected by compost amendment. Based on the reduced partition index (IR), metal stability in amended soil after 35 months of stabilization was in the following order: Cu > Ni = Pb > Zn > Cd. All composts were more effective in decreasing Cd, Ni and Zn bioavailability than in redistributing the metals, and increasing Cu redistribution more than that of Pb. Thus, sewage sludge compost of as little as 3 months maturation can be used for cyclic amendment of multi-metal-contaminated soil.

  15. Some Experiments on Flux Pinning in Pb Doped Bi-Sr-Ca-Cu-O System

    NASA Astrophysics Data System (ADS)

    Nagashima, Toshio; Watanabe, Kenji; Watahiki, Masaya; Fukai, Yuh

    1989-02-01

    In order to investigate the mechanism of energy dissipation by irreversible motion of fluxoids, we performed two different types of experiments; the oscillating-pendulum in magnetic field and the magnetic hysteresis including both major and minor loops. Results obtained for Pb-doped Bi-Sr-Ca-Cu-O system at 77 K are presented and some preliminary discussions are made.

  16. Bioaccessibility of Ba, Cu, Pb, and Zn in urban garden and orchard soils.

    PubMed

    Cai, Meifang; McBride, Murray B; Li, Kaiming

    2016-01-01

    Exposure of young children to toxic metals in urban environments is largely due to soil and dust ingestion. Soil particle size distribution and concentrations of toxic metals in different particle sizes are important risk factors in addition to bioaccessibility of these metals in the particles. Analysis of particle size distribution and metals concentrations for 13 soils, 12 sampled from urban gardens and 1 from orchard found that fine particles (<105 μm) comprised from 22 to 66% by weight of the tested soils, with Ba, Cu, Pb and Zn generally at higher concentrations in the finer particles. However, metal bioaccessibility was generally lower in finer particles, a trend most pronounced for Ba and Pb. Gastric was higher than gastrointestinal bioaccessibility for all metals except Cu. The lower bioaccessibility of Pb in urban garden soils compared to orchard soil is attributable to the higher organic matter content of the garden soils.

  17. Novel Cu-Cr alloy matrix CNT composites with enhanced thermal conductivity

    NASA Astrophysics Data System (ADS)

    Kong, Jian; Zhang, Chao-ying; Cheng, Xiang

    2013-09-01

    Carbon nanotubes (CNTs) are incorporated into the Cu-Cr matrix to fabricate bulk CNT/Cu-Cr composites by means of a powder metallurgy method, and their thermal conductivity behavior is investigated. It is found that the formation of Cr3C2 interfacial layer improves the interfacial bonding between CNTs and Cu-Cr matrix, producing a reduction of interfacial thermal resistance, and subsequently enhancing the thermal conductivity of the composites. The thermal conductivity of the composites increases by 12 % and 17 % with addition of 5 vol.% and 10 vol.% CNTs, respectively. The experimental results are also theoretically analyzed using an effective medium approximation (EMA) model, and it is found that the EMA model combined with a Debye model can provide a satisfactory agreement to the experimental data.

  18. Comparison of serum Concentration of Se, Pb, Mg, Cu, Zn, between MS patients and healthy controls

    PubMed Central

    Alizadeh, Anahita; Mehrpour, Omid; Nikkhah, Karim; Bayat, Golnaz; Espandani, Mahsa; Golzari, Alireza; Jarahi, Lida; Foroughipour, Mohsen

    2016-01-01

    Introduction Multiple Sclerosis (MS) is defined as one of the inflammatory autoimmune disorders and is common. Its exact etiology is unclear. There are some evidences on the role of environmental factors in susceptible genetics. The aim of this study is to evaluate the possible role of Selenium, Zinc, Copper, Lead and Magnesium metals in Multiple Sclerosis patients. Methods In the present analytical cross-sectional study, 56 individuals including 26 patients and 30 healthy controls were enrolled in the evaluation. The serum level of Se, Zn, Cu, Pb were quantified in graphite furnace conditions and flame conditions by utilizing an atomic absorption Perkin Elmer spectrophotometer 3030. The serum levels of Mg were measured by auto analyzer 1500 BT. The mean level of minerals (Zn, Pb, Cu, Mg, Se) in serum samples were compared in both cases and controls. The mean level of minerals (Zn, Pb, Cu, Mg, Se) in serum samples were compared in both cases and controls by using independent-samples t-test for normal distribution and Mann-Whitney U test as a non-parametric test. All statistical analyses were carried out using SPSS 11.0. Results As well as the Zn, Cu, and Se, there was no significant difference between MS patients and healthy individuals in Pb concentrations (p-value = 0.11, 0.14, 0.32, 0.20 respectively) but the level of Mg was significantly different (p= 0.001). Conclusion All serum concentrations of Zn, Pb, Se, Cu in both groups were in normal ranges and there was no difference in MS patients compared with the healthy group who were matched in genetics. Blood level of Mg was significantly lower in MS patients. But it should be noted that even with the low level of serum magnesium in MS patients, this value is still in the normal range. PMID:27757186

  19. Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers

    NASA Astrophysics Data System (ADS)

    He, Junyong; Li, Yulian; Wang, Chengming; Zhang, Kaisheng; Lin, Dongyue; Kong, Lingtao; Liu, Jinhuai

    2017-12-01

    Removing heavy metals from aqueous solutions has drawn more and more attentions these years because of their serious global health challenge to human society. To develop an adsorbent with low-cost and high-efficiency for removal of heavy metals (HMs), β-cyclodextrin (β-CD) polymers crosslinked with rigid aromatic groups were prepared and used for lead (Pb), copper (Cu) and cadmium (Cd) removal for the first time. The negatively charged β-CD polymers with large BET surface area were suitable to be used in HMs adsorption. The adsorption process completed in 5 min was well fit by Freundlich isotherm model and pseudo-second-order model. The intraparticle diffusion model was also appropriate to describe the adsorption of Pb, Cu and Cd on β-CD polymer. The maximum of adsorption capacities at 25 °C for Pb, Cu and Cd were 196.42, 164.43 and 136.43 mg/g when the initial concentration was 200 mg/L. The HMs adsorption process on the surface of β-CD polymer was an endothermic and spontaneous process. Both of the electrostatic interaction and distribution of Pb, Cu and Cd species influenced the adsorption process at different pH values. The order of removal efficiencies in multi-component adsorption for the three metal ions were Pb > Cu > Cd. The adsorption mechanisms were H+ ions on hydroxyl groups exchanged with heavy metal ions and electrostatic interactions. This study indicated that β-CD polymers could be developed into effective adsorbents for rapid removal of heavy metals.

  20. Distributions and pollution assessment of heavy metals Pb, Cd and Cr in the water system of Kendari Bay, Indonesia

    NASA Astrophysics Data System (ADS)

    Armid, A.; Shinjo, R.; Ruslan, R.; Fahmiati

    2017-02-01

    The concentrations of heavy metals Pb, Cd and Cr in the coastal waters of Kendari Bay were analyzed to assess their pollution status. Water samples from 32 sampling points were analyzed for dissolved heavy metals concentrations by using inductively coupled plasma mass spectrometry (ICP-MS). The RSD(%) of each metal was accounted to analyze the diversity of the heavy metals among 32 sampling points. The results demonstrate that the dissolved heavy metal Pb had the highest concentrations (0.009 to 0.549 μg/L, average = 0.210 μg/L) followed by Cr (0.085 to 0.386 μg/L, average = 0.149 μg/L), and Cd (0.001 to 0.015 μg/L, average = 0.008 μg/L). Based on the the RSD values (Pb = 87.8%, Cd = 45.2% and Cr = 41.3%), it is suggested that the antropogenic activities controls the high diversity of concentrations for heavy metal Pb relative to those of Cd and Cr. Comparing the data with the mean oceanic concentrations, only the concentrations of Pb exceed the mean oceanic level (210 folds). Therefore, the water system of Kendari Bay is severely polluted with heavy metal Pb. More management and treatment should be introduced to protect the marine environment in the study area, especially from Pb pollution.

  1. Microstructure and Mechanical Properties of Vacuum Plasma Sprayed Cu-8Cr-4Nb

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Ellis, David; McKechnie, Timothy; Hickman, Robert

    1997-01-01

    This paper compares the tensile properties of Cu-8Cr-4Nb material produced by VPS to material previously produced by extrusion. The microstructure of the VPS material is also presented. The combustion chamber liner of rocket motors represents an extreme materials application. The liner hot wall is exposed to a 2760 C (5000 F) flame while the cold side is exposed to cryogenic hydrogen liquid. Materials for use in the combustion chamber liner require a combination of high temperature strength, creep resistance, and low cycle fatigue resistance along with high thermal conductivity. The hot side is also subject to localized cycles between reducing and oxidizing environments that degrade the liner by a process called blanching. A new Cu-8 at.% Cr-4 at% Nb (Cu-8Cr-4Nb) alloy has been developed at NASA Lewis Research Center as a replacement for the currently used alloy, NARloy-z (Cu-3 wt.% Ag-0.5 wt.% Zr). The alloy is strengthened by a fine dispersion of Cr2Nb particles. The alloy has better mechanical properties than NARloy-Z while retaining most of the thermal conductivity of pure copper. The alloy has been successfully consolidated by extrusion and hot isostatic pressing (HIPing). However, vacuum plasma spraying (VPS) offers several advantages over prior consolidation methods. VPS can produce a near net shape piece with the profile of the liner. In addition, oxidation resistant and thermal barrier coatings can be incorporated as an integral part of the liner hot wall during the VPS deposition. The low oxygen VPS Cu-8Cr-4Nb exhibits a higher strength than Cu-8Cr-4Nb produced by extrusion at elevated temperatures and a comparable strength at room temperature. Moduli and ductility were not significantly different. However, the ability to produce parts to near-net shape and maintain the good elevated temperature tensile properties of the extruded Cu-8Cr-4Nb makes VPS an attractive processing method for fabricating rocket engine combustion liners.

  2. Microstructure and Mechanical Properties of Vacuum Plasma Sprayed Cu-8Cr-4Nb

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Ellis, David; McKechnie, Timothy; Hickman, Robert

    1997-01-01

    This paper compares the tensile properties of Cu-8Cr-4Nb material produced by VPS to material previously produced by extrusion. The microstructure of the VPS material is also presented. The combustion chamber liner of rocket motors represents an extreme materials application. The liner hot wall is exposed to a 2760 C (5000 F) flame while the cold side is exposed to cryogenic hydrogen liquid. Materials for use in the combustion chamber liner require a combination of high temperature strength, creep resistance, and low cycle fatigue resistance along with high thermal conductivity. The hot side is also subject to localized cycles between reducing and oxidizing environments that degrade the liner by a process called blanching. A new Cu-8 at.% Cr-4 at% Nb (Cu-8Cr-4Nb) alloy has been developed at NASA Lewis Research Center as a replacement for the currently used alloy, NARloy-z (Cu-3 wt.% Ag-0.5 wt.% Zr). The alloy is strengthened by a fine dispersion of Cr2Nb particles. The alloy has better mechanical properties than NARloy-Z while retaining most of the thermal conductivity of pure copper. The alloy has been successfully consolidated by extrusion and hot isostatic pressing (HIPing). However, vacuum plasma spraying (VPS) offers several advantages over prior consolidation methods. VPS can produce a near net shape piece with the profile of the liner. In addition, oxidation resistant and thermal barrier coatings can be incorporated as an integral part of the liner hot wall during the VPS deposition. The low oxygen VPS Cu-8Cr-4Nb exhibits a higher strength than Cu-8Cr-4Nb produced by extrusion at elevated temperatures and a comparable strength at room temperature. Moduli and ductility were not significantly different. However, the ability to produce parts to near-net shape and maintain the good elevated temperature tensile properties of the extruded Cu-8Cr-4Nb makes VPS an attractive processing method for fabricating rocket engine combustion liners.

  3. Effect of chemical fertilizers on the fractionation of Cu, Cr and Ni in contaminated soil

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Duan, Chang-Qun; Zhu, Yi-Nian; Zhang, Xue-Hong; Wang, Cheng-Xian

    2007-08-01

    Effect of chemical fertilizers (urea, NH4Cl, Ca(NO3)2, KCl and KH2PO4) on the fractionation of Cu, Cr and Ni was studied by a 4-month incubation experiment. Using sequential extraction procedure, it was found that the application of fertilizers could change the distribution of Cu, Cr and Ni in the fractions of soil. Applying urea (CO(NH2)2) significantly decreased the concentrations of Cu, Cr and Ni in water soluble plus exchangeable (WE) fraction, but increased those in Fe-Mn oxides bound (FM) fraction ( p < 0.01). However, application of NH4Cl caused an increase in the WE fraction by 27.7% for Cu, 111.5% for Cr and 20.4% for Ni. The CO(NH2)2 raised the soil pH from 4.51 to 4.96, whereas NH4Cl lowered the pH of soil by 0.44 units. The WE fraction of the three heavy metals was significantly increased, while the FM fraction was significantly decreased by adding KCl ( p < 0.01). Moreover, the supply of KH2PO4 reduced the WE and carbonate bound (CB) fractions of Cu, Cr and Ni in the soil, however, it raised Cu and Ni in the residual (RS) fraction and Cr in the FM fraction. In addition, the mobility index indicated that KCl and NH4Cl increased the mobility of Cu, Cr and Ni in the soil, whereas urea and KH2PO4 decreased the mobility of the three metals in the soil. These results suggest that applying chemical fertilizers does not only provide plant nutrients, but may also change the speciation and mobility of heavy metals in the soil.

  4. Structural and magnetic characterization of the complete delafossite solid solution (CuAlO₂)₁-x(CuCrO₂)x.

    PubMed

    Barton, Phillip T; Seshadri, Ram; Knöller, Andrea; Rosseinsky, Matthew J

    2012-01-11

    We have prepared the complete delafossite solid solution series between diamagnetic CuAlO(2) and the t(2g)(3)frustrated antiferromagnet CuCrO(2). The evolution with composition x in CuAl(1-x)Cr(x)O(2) of the crystal structure and magnetic properties has been studied and is reported here. The room-temperature unit cell parameters follow the Végard law and increase with x as expected. The μ(eff) is equal to the Cr(3+) spin-only S = 3/2 value throughout the entire solid solution. Θ(CW) is negative, indicating that the dominant interactions are antiferromagnetic, and its magnitude increases with Cr substitution. For dilute Cr compositions, the nearest-neighbor exchange coupling constant J(BB) was estimated by mean-field theory to be 3.0 meV. Despite the sizable Θ(CW), long-range antiferromagnetic order does not develop until x is almost 1, and is preceded by glassy behavior. The data presented here, and those on dilute Al substitution from Okuda et al, suggest that the reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as chemical disorder and dilution of the magnetic exchange. For all samples, the 5 K isothermal magnetization does not saturate in fields up to 5 T and minimal hysteresis is observed. The presence of antiferromagnetic interactions is clearly evident in the sub-Brillouin behavior with a reduced magnetization per Cr atom. An inspection of the scaled Curie plot reveals that significant short-range antiferromagnetic interactions occur in CuCrO(2) above its Néel temperature, consistent with its magnetic frustration. Uncompensated short-range behavior is present in the Al-substituted samples and is likely a result of chemical disorder.

  5. Auger electron spectroscopy study of interdiffusion, oxidation and segregation during thermal treatment of NiCr/CuNi(Mn)/NiCr thin films

    NASA Astrophysics Data System (ADS)

    Baunack, S.; Brückner, W.; Pitschke, W.; Thomas, J.

    1999-04-01

    The effect of annealing on sputter deposited thin-films NiCr/CuNi(Mn)/NiCr is studied by Auger electron depth profiling. The samples were annealed to maximum temperatures of 300°C to 550°C and investigated at ambient temperature. Auger transitions of Cu and Ni are separated by target factor analysis, principal component analysis and linear least squares fit to standard spectra. For the CuNi(Mn) layer in the as-received state AES results shows a Cu depletion caused by bombardment induced segregation. After annealing the measured Cu concentration has increased due to Ni diffusion to the interfaces. The NiCr layer is degraded with increasing annealing temperature due to formation of a chromium oxide and diffusion of Ni from the CuNi(Mn) layer. A sequence with nominal compositions near Cr 2Ni, CrNi and CrNi 2 is found. At the NiCr/CuNi(Mn) interface an interdiffusion zone phase Ni 0.6Cr 0.2Cu 0.2 is formed.

  6. Distribution of Cd, Ni, Cr and Pb in sewage sludge amended soils

    NASA Astrophysics Data System (ADS)

    Sanfeliu, Teófilo

    2010-05-01

    Restoration of degraded soils with organic wastes could be a feasible practice to minimise erosion in the Mediterranean area. Today the use of sewage sludge to improve the nutrient contents of a soil is a common practice. Contamination of soils by potentially toxic elements (e.g. Cd, Ni, Cr, Pb) from amendments of sewage sludge is subject to strict controls within the European Community in relation to total permissible metal concentrations, soil properties and intended use. This study is aimed at ascertaining the chemical partitioning of Cd, Ni, Cr and Pb in agricultural soils repeatedly amended with sludge. Five surface soils (0-15 cm) that were polluted as a result of agricultural activities were used in this experiment. The sewage sludge amended soils were selected for diversity of physicochemical properties, especially pH and carbonate content. The soils are classified as non-calcareous and calcareous soils. The distribution of chemical forms of Cd, Ni, Cr and Pb in five sewage sludge amended soils was studied using a sequential extraction procedure that fractionates the metal into soluble-exchangeable, specifically sorbed-carbonate bound, oxidizable, reducible and residual forms. With regard to the mineralogical composition of the soil clay fraction, the mineralogical association found was: illite, kaolinite and chlorite. This paper provides quantitative evidence regarding the form of the association of metals and indirectly of their bioavailability. It can help to explain the process by which metals are eliminated from sewage sludge and also indicate the impact of the use of sludge on agricultural soils, as amendments. Data obtained showed different metal distribution trend among the fractions in sludge-amended soils. Comparison of distribution pattern of metals in sludge-applied soils shows that there is possible redistribution of metals among the different phases. Detailed knowledge of the soil at the application site, especially pH, CEC, buffering capacity

  7. The mutual influence of speciation and combination of Cu and Pb on the photodegradation of dimethyl o-phthalate.

    PubMed

    Jiang, Xinshu; Wang, Zhe; Zhang, Yiyue; Wang, Fei; Zhu, Mijia; Yao, Jun

    2016-12-01

    Specific industrial application of dimethyl o-phthalate (DMP) in ore flotation has led to DMP-heavy metals combined pollution, which causes the abiotic degradation of DMP in the environment more complex. This study focused on the effect of Cu and Pb on photodegradation of DMP. The major mechanism of inhibiting effect of Cu and Pb on degradation of DMP involved their speciation and combination. It was found that the Cu (5 mg/L, I = 95.4%) and Pb (5 mg/L, I = 100%) could inhibit the photodegradation of DMP. The main species that inhibit the DMP degradation were Cu(OH)(+) and Pb(OH)(+), respectively. The intensity of the UV-Vis absorbance of DMP was obviously related to the concentration of Cu(2+) (R(2) = 0.8655) or Pb(2+) (R(2) = 0.9019) ions. Fluorescence quenching effect of Cu(2+) (R(2) > 0.9946), Pb(2+) (R(2) > 0.6879) on DMP is strongly correlated with the concentration of ions. And the equilibrium membrane dialysis experiment has also verified the combination of DMP and Cu, Pb. These results are useful to understand the effect mechanism of metal species on the photodegradation of organic chemicals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Cu, Cr and As distribution in soils adjacent to pressure-treated decks, fences and poles.

    PubMed

    Chirenje, Tait; Ma, L Q; Clark, C; Reeves, M

    2003-01-01

    Chromated copper arsenate (CCA)-treated wood has been widely used in the Southeastern United States to protect wood products from microbial and fungal decay. The aims of this study were to (1). determine the distribution of arsenic (As), chromium (Cr), and copper (Cu), in soils surrounding CCA-treated wood structures such as decks, fences and poles; and (2). evaluate the impacts of these structures on As, Cr and Cu loading of the soils. Profile and lateral soil samples were collected under CCA-treated decks and adjacent to poles and fences. The results showed elevation of As, Cr and Cu concentrations close to and under the structures, with mean As concentrations as high as 23 mg x kg(-1) close to utility poles compared with less than 3 mg x kg (-1) at distances of about 1.5 m away. Concentrations of As, Cr, and Cu decreased with depth in areas close to CCA-treated poles. However, these results were only apparent in relatively new structures. A combination of weathering and leaching with time may have reduced the impact in older poles. Increased concentrations of As, Cu and Cr were also observed close to CCA-treated decks and fences, with age showing a similar impact. These results are helpful for CCA-treated wood product users to determine the safe use of these structures.

  9. Valorization of biosorbent obtained from a forestry waste: Competitive adsorption, desorption and transport of Cd, Cu, Ni, Pb and Zn.

    PubMed

    Cutillas-Barreiro, Laura; Paradelo, Remigio; Igrexas-Soto, Alba; Núñez-Delgado, Avelino; Fernández-Sanjurjo, María José; Álvarez-Rodriguez, Esperanza; Garrote, Gil; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2016-09-01

    Bark from Pinus pinaster is one of the most abundant forestry wastes in Europe, and among the proposed technologies for its reutilization, the removal of heavy metals from wastewater has been gaining increasing attention. In this work, we have studied the performance of pine bark for heavy metal biosorption on competitive systems. Pb, Cu, Ni, Zn and Cd sorption and desorption at equilibrium were studied in batch experiments, whereas transport was studied in column experiments. Batch experiments were performed adding simultaneously different concentrations (0.08-3.15mM) of two or more metals in solution to pine bark samples. Column experiments were performed with 10mM solutions of two metals or a 5mM solution of the five metals. In general, the results under competitive conditions were different to those obtained in monoelemental experiments. The multi-metal batch experiments showed the adsorption sequence Pb≈Cu>Cd>Zn>Ni for lower metal doses, Pb>Cu>Cd>Zn>Ni for intermediate doses, and Pb>Cu>Cd≈Zn≈Ni for high metal doses. Desorption followed the sequence PbPbCu and Pb suffered the highest retention, with high capacity to displace Cd, Ni and Zn from adsorption sites on pine bark. The transport experiments produced comparable results to those obtained in the batch experiments, with pine bark retention capacity following the sequence Pb>Cu>Zn>Cd>Ni. The presence of a second metal affected the transport of all the elements studied except Pb, and confirmed the strong influence of Pb and Cu on the retention of the other metals. These results can help to appropriately design decontamination systems using this forestry waste. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Low-temperature thermoelectric properties of Pb doped Cu2SnSe3

    NASA Astrophysics Data System (ADS)

    Prasad K, Shyam; Rao, Ashok; Gahtori, Bhasker; Bathula, Sivaiah; Dhar, Ajay; Chang, Chia-Chi; Kuo, Yung-Kang

    2017-09-01

    A series of Cu2Sn1-xPbxSe3 (0 ≤ x ≤ 0.04) compounds was prepared by solid state synthesis technique. The electrical resistivity (ρ) decreased with increase in Pb content up to x = 0.01, thereafter it increased with further increase in x (till x = 0.03). However, the lowest value of electrical resistivity is observed for Cu2Sn0.96Pb0.04Se3. Analysis of electrical resistivity of all the samples suggests that small poloron hoping model is operative in the high temperature regime while variable range hopping is effective in the low temperature regime. The positive Seebeck coefficient (S) for pristine and doped samples in the entire temperature range indicates that the majority charge carriers are holes. The electronic thermal conductivity (κe) of the Cu2Sn1-xPbxSe3 compounds was estimated by the Wiedemann-Franz law and found that the contribution from κe is less than 1% of the total thermal conductivity (κ). The highest ZT 0.013 was achieved at 400 K for the sample Cu2Sn0.98Pb0.02Se3, about 30% enhancement as compared to the pristine sample.

  11. Immobilization of Cu, Pb and Zn in mine-contaminated soils using reactive materials.

    PubMed

    Navarro, Andrés; Cardellach, Esteve; Corbella, Mercé

    2011-02-28

    Immobilization processes were used to chemically stabilize soil contaminated with Cu, Pb and Zn from mine tailings and industrial impoundments. We examined the effectiveness of ordinary Portland cement (OPC), phosphoric acid and MgO at immobilizing Cu, Pb and Zn in soil contaminated by either mine tailings or industrial and mine wastes. The effectiveness was evaluated using column leaching experiments and geochemical modelling, in which we assessed possible mechanisms for metal immobilization using PHREEQC and Medusa numerical codes. Experimental results showed that Cu was mobilized in all the experiments, whereas Pb immobilization with H(3)PO(4) may have been related to the precipitation of chloropyromorphite. Thus, the Pb concentrations of leachates of pure mining and industrial contaminated soils (32-410 μg/l and 430-1000 μg/l, respectively) were reduced to 1-60 and 3-360 μg/l, respectively, in the phosphoric acid experiment. The mobilization of Pb at high alkaline conditions, when Pb(OH)(4)(-) is the most stable species, may be the main obstacle to the use of OPC and MgO in the immobilization of this metal. In the mining- and industry-contaminated soil, Zn was retained by OPC but removed by MgO. The experiments with OPC showed the Zn decrease in the leachates of mining soil from 226-1960 μg/l to 92-121 μg/l. In the industrial contaminated soil, the Zn decrease in the leachates was most elevated, showing >2500 μg/l in the leachates of contaminated soil and 76-173 μg/l in the OPC experiment. Finally, when H(3)PO(4) was added, Zn was mobilized.

  12. CrCuAgN PVD nanocomposite coatings: Effects of annealing on coating morphology and nanostructure

    NASA Astrophysics Data System (ADS)

    Liu, Xingguang; Iamvasant, Chanon; Liu, Chang; Matthews, Allan; Leyland, Adrian

    2017-01-01

    CrCuAgN PVD nanocomposite coatings were produced using pulsed DC unbalanced magnetron sputtering. This investigation focuses on the effects of post-coat annealing on the surface morphology, phase composition and nanostructure of such coatings. In coatings with nitrogen contents up to 16 at.%, chromium exists as metallic Cr with N in supersaturated solid solution, even after 300 °C and 500 °C post-coat annealing. Annealing at 300 °C did not obviously change the phase composition of both nitrogen-free and nitrogen-containing coatings; however, 500 °C annealing resulted in significant transformation of the nitrogen-containing coatings. The formation of Ag aggregates relates to the (Cu + Ag)/Cr atomic ratio (threshold around 0.2), whereas the formation of Cu aggregates relates to the (Cu + Ag + N)/Cr atomic ratio (threshold around 0.5). The primary annealing-induced changes were reduced solubility of Cu, Ag and N in Cr, and the composition altering from a mixed ultra-fine nanocrystalline and partly amorphous phase constitution to a coarser, but still largely nanocrystalline structure. It was also found that, with sufficient Cu content (>12 at.%), annealing at a moderately high temperature (e.g. 500 °C) leads to transportation of both Cu and Ag (even at relatively low concentrations of Ag, ≤3 at.%) from inside the coating to the coating surface, which resulted in significant reductions in friction coefficient, by over 50% compared to that of the substrate (from 0.31 to 0.14 with a hemispherical diamond indenter, and from 0.83 to 0.40 with an alumina ball counterface, respectively). Results indicate that the addition of both Cu and Ag (in appropriate concentrations) to nitrogen-containing chromium is a viable strategy for the development of 'self-replenishing' silver-containing thin film architectures for temperature-dependent solid lubrication requirements or antimicrobial coating applications.

  13. Biosorption of Cr (VI), Cr (III), Pb (II) and Cd (II) from aqueous solutions by Sargassum wightii and Caulerpa racemosa algal biomass

    NASA Astrophysics Data System (ADS)

    Tamilselvan, Narayanaswamy; Saurav, Kumar; Kannabiran, Krishnan

    2012-03-01

    Heavy metal pollution is one of the most important environmental problems today. Biosorption is an innovative technology that employs biological materials to accumulate heavy metals from waste water through metabolic process or physicochemical pathways of uptake. Even though several physical and chemical methods are available for removal of heavy metals, currently many biological materials such as bacteria, algae, yeasts and fungi have been widely used due to their good performance, low cost and large quantity of availability. The aim of the present study is to explore the biosorption of toxic heavy metals, Cr(VI), Cr(III), Pb(II) and Cd(II) by algal biomass obtained from algae Sargassum wightii (brown) and Caulerpa racemosa (green). Biosorption of algal biomass was found to be biomass concentration- and pH-dependent, while the maximal biosorption was found at pH 5.0 and with the metal concentration of 100 mg L-1. S. wightii showed the maximal metal biosorption at the biomass concentration of 25 g L-1, followed by C. racemosa with the maximal biosorption at 30 g L-1. S. wightii showed 78% biosorption of Cr(VI), Cr(III), Pb(II) and Cd(II) ions. C. racemosa exhibited 85% biosorption of Cd(II) and Cr(VI), and 50% biosorption of Cr(III) and Pb(II). The results of our study suggest that seaweed biomass can be used efficiently for biosorption of heavy metals.

  14. Recrystallization Behavior of CoCrCuFeNi High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Park, Nokeun; Watanabe, Ikuto; Terada, Daisuke; Yokoyama, Yoshihiko; Liaw, Peter K.; Tsuji, Nobuhiro

    2015-04-01

    We investigated the recrystallization behavior of a cold-rolled CoCrCuFeNi high-entropy alloy (HEA). Two different face-centered cubic phases having different chemical compositions and lattice constants in the as-cast specimen have different chemical compositions: One phase was the Cu-lean matrix and the other was the Cu-rich second phase. The second phase remained even after a heat treatment at 1373 K (1100 °C) and Cu enriched more in the Cu-rich second phase. The calculated mixing enthalpies of both Cu-lean and Cu-rich phases in the as-cast and heat-treated specimens explained that Cu partitioning during the heat treatment decreased the mixing enthalpy in both phases. In the specimens 90 pct cold rolled and annealed at 923 K, 973 K, and 1073 K (650 °C, 700 °C, and 800 °C), recrystallization proceeded with increasing the annealing temperature, and ultrafine recrystallized grains with grain sizes around 1 μm could be obtained. The microhardness tended to decrease with increasing the fraction recrystallized, but it was found that the microhardness values of partially recrystallized specimens were much higher than those expected by a simple rule of mixture between the initial and cold-rolled specimens. The reason for the higher hardness was discussed based on the ultrafine grain size, sluggish diffusion expected in HEAs, and two-phase structure in the CoCrCuFeNi alloy.

  15. Ti3CrCu4: A possible 2-D ferromagnetic spin fluctuating system

    NASA Astrophysics Data System (ADS)

    Dhar, S. K.; Provino, A.; Manfrinetti, P.; Kulkarni, R.; Goyal, Neeraj; Paudyal, D.

    2016-05-01

    Ti3CrCu4 is a new ternary compound which crystallizes in the tetragonal Ti3Pd5 structure type. The Cr atoms form square nets in the a-b plane (a = 3.124 Å) which are separated by an unusually large distance c = 11.228 Å along the tetragonal axis, thus forming a -2-D Cr-sublattice. The paramagnetic susceptibility is characterized by a low effective moment, μeff = 1.1 μB, a low paramagnetic Curie temperature θP (below 7 K) and a temperature independent χ0 = 6.7 x 10-4 emu/mol. The magnetization at 1.8 K increases rapidly with field nearly saturating to 0.2 μB/f.u. The zero field heat capacity C/T shows an upturn below 7 K (˜190 mJ/mol K2 at ˜0.1K) which is suppressed in applied magnetic fields and interpreted as suggesting the presence of spin fluctuations. The resistivity at low temperatures shows non-Fermi liquid behavior. Overall, the experimental data thus reveal an unusual magnetic state in Ti3CrCu4, which likely has its origin in the layered nature of the Cr sub-lattice and ferromagnetic spin fluctuations. Density functional theoretical calculations reveal a sharp Cr density of states peak just above the Fermi level, indicating the propensity of Ti3CrCu4 to become magnetic.

  16. Unusual Mott transition in multiferroic PbCrO 3

    SciTech Connect

    Wang, Shanmin; Zhu, Jinlong; Zhang, Yi; Yu, Xiaohui; Zhang, Jianzhong; Wang, Wendan; Bai, Ligang; Qian, Jiang; Yin, Liang; Sullivan, Neil S.; Jin, Changqing; He, Duanwei; Xu, Jian; Zhao, Yusheng

    2015-11-24

    The Mott insulator in correlated electron systems arises from classical Coulomb repulsion between carriers to provide a powerful force for electron localization. When turning such an insulator into a metal, the so-called Mott transition, is commonly achieved by "bandwidth" control or "band filling." However, both mechanisms deviate from the original concept of Mott, which attributes such a transition to the screening of Coulomb potential and associated lattice contraction. We report a pressure-induced isostructural Mott transition in cubic perovskite PbCrO3. At the transition pressure of similar to 3 GPa, PbCrO3 exhibits significant collapse in both lattice volume and Coulomb potential. Concurrent with the collapse, it transforms from a hybrid multiferroic insulator to a metal. For the first time to our knowledge, these findings validate the scenario conceived by Mott. Close to the Mott criticality at similar to 300 K, fluctuations of the lattice and charge give rise to elastic anomalies and Laudau critical behaviors resembling the classic liquid-gas transition. Moreover, the anomalously large lattice volume and Coulomb potential in the low-pressure insulating phase are largely associated with the ferroelectric distortion, which is substantially suppressed at high pressures, leading to the first-order phase transition without symmetry breaking.

  17. Transparent ferrimagnetic semiconducting CuCr2O4 thin films by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Tripathi, T. S.; Yadav, C. S.; Karppinen, M.

    2016-04-01

    We report the magnetic and optical properties of CuCr2O4 thin films fabricated by atomic layer deposition (ALD) from Cu(thd)2, Cr(acac)3, and ozone; we deposit 200 nm thick films and anneal them at 700 °C in oxygen atmosphere to crystallize the spinel phase. A ferrimagnetic transition at 140 K and a direct bandgap of 1.36 eV are determined for the films from magnetic and UV-vis spectrophotometric measurements. Electrical transport measurements confirm the p-type semiconducting behavior of the films. As the ALD technique allows the deposition of conformal pin-hole-free coatings on complex 3D surfaces, our CuCr2O4 films are interesting material candidates for various frontier applications.

  18. Uptake and accumulation of potentially toxic metals (Zn, Cu and Pb) in soils and plants of Durgapur industrial belt.

    PubMed

    Kisku, Ganesh Chandra; Pandey, Poonam; Negi, Mahendra Pratap Singh; Misra, Virendra

    2011-11-01

    Uptake and accumulation of metals in crops may cause possible health risks through food chain. A field survey was conducted to investigate the accumulation of potentially toxic metals contamination in soil and plants irrigated with complexed industrial effluents. Concentration of Zn, Cu and Pb was 205-255,101-130,118-177 microg g(-1) in rhizosphere soils and 116-223, 57-102 and 63-95 microg g(-1) d. wt. in root and 95-186, 44-75 and 27-58 microg g(-1) d. wt. in shoot, respectively. The trend in Cu and Pb was in the order: soil > root > shoot > seed while in Zn it was soil > root > seed > shoot. Roots accumulated a larger fraction of soil Cu (70%) > Zn (67%) > Pb (54%). Bioaccumulation coefficient of soil to root ranged from 51-98 for Zn, 54-85 for Cu and 43-63 for Pb.Analysis of variance showed marginal change in bioaccumulation coefficient, noticed between plants (p > 0.05) while it varied significantly (p < 0.01) between tissues and metals. It increased from root to seed/fruit (root > shoot > seed/fruit) while decreased between metals from Zn to Pb (Zn > Cu > Pb). Out of the three, two Cu and Pb accumulated to phyotoxic levels while Zn was within threshold limit of phytotoxicity.

  19. Anti-wetting Cu/Cr coating with micro-posts array structure fabricated by electrochemical approaches

    NASA Astrophysics Data System (ADS)

    Zhou, Yufeng; Hang, Tao; Li, Feng; Li, Ming

    2013-04-01

    Microposts structured Cu/Cr multilayer coating was prepared by a simple two-step approach combining electroless and electro deposition. Surface morphologies of the as-prepared Cu/Cr multilayer coating characterized by field emission scanning electron microscopy show that this multilayer coating exhibits micro-posts arrayed structure with a layer of Cr uniformly covering the circular conical surface of Cu micro-cones array. The wettability test shows that the contact angle of Cu/Cr multilayer surface with water drop can be greater than 140° by optimizing the electrodeposition time of Cr. The mechanism of hydrophobicity of both the micro-cones arrayed and micro-posts arrayed structures was briefly discussed by comparing two different wetting modes. Due to its good anti-wetting property and unique structure, the micro-posts arrayed Cu/Cr multilayer coating is expected for extensive practical applications.

  20. Storage and behavior of As, Sb, Pb, and Cu in ombrotrophic peat bogs under contrasting water table conditions.

    PubMed

    Rothwell, James J; Taylor, Kevin G; Chenery, Simon R N; Cundy, Andrew B; Evans, Martin G; Allott, Timothy E H

    2010-11-15

    Concentration depth profiles and inventories of solid-phase As, Sb, Pb, and Cu were determined in ²¹⁰Pb-dated cores from an ombrotrophic peat bog in northwest England. Cores were collected from the peat dome and adjacent to an eroding gully. Down-core distributions of As, Sb, Pb, and Cu in the dome core are almost identical. The water table is close to the dome surface with only short-term draw-down. Under these conditions, As, Sb, Pb, and Cu are immobile, allowing the reconstruction of trends in historical contaminant deposition. The peak in atmospheric deposition of As, Sb, Pb, and Cu (4.59, 2.78, 147, and 26.7 mg m⁻² y⁻¹, respectively) occurred during the late 19th century. Stable Pb isotope ratios reveal that Pb deposition during this period was from indigenous and foreign sources. The mean water table is much lower at the gully edge, and there are pronounced interannual fluctuations. These conditions have not affected the integrity of the Pb and Cu records but have caused postdepositional mobilization and redistribution of As and Sb. Cumulative inventories show significant loss of As and Sb at the gully edge site. Long-term water table draw-down in ombrotrophic peat bogs has the potential to alter the geochemistry and fate of previously deposited As and Sb.

  1. Cu(II) Catalytic Reduction of Cr(VI) by Tartaric Acid Under the Irradiation of Simulated Solar Light

    PubMed Central

    Li, Ying; Qin, Chao; Zhang, Jing; Lan, Yeqing; Zhou, Lixiang

    2014-01-01

    Abstract Cu(II) catalytic reduction of Cr(VI) by tartaric acid under the irradiation of simulated solar light was investigated through batch experiments at pHs from 3 to 6 and at temperatures from 15°C to 35°C. Results demonstrated that introduction of Cu(II) could markedly improve reduction of Cr(VI) in comparison with tartaric acid alone. Optimal removal of Cr(VI) was achieved at pH 4. Reduction of Cr(VI) increased with increasing temperatures and initial concentrations of Cu(II) and tartaric acid. The catalytic role of Cu(II) in the reduction of Cr(VI) was ascribed to the formation of Cu(II)-tartaric acid complex, which generated active reductive intermediates, including Cu(I) and tartaric acid radicals through a pathway of metal–ligand–electron transfer with light. Cu(II) photocatalytic reduction of Cr(VI) by tartaric acid followed pseudo zero-order kinetics with regard to Cr(VI), and the activation energy was calculated to be 21.48 kJ/mol. To date, such a role of Cu(II) has not been reported. The results from the present study are helpful in fully understanding the photochemical reductive behavior of Cr(VI) in the presence of both tartaric acid and Cu(II) in soil and aquatic environments. PMID:25125941

  2. Cu(II) Catalytic Reduction of Cr(VI) by Tartaric Acid Under the Irradiation of Simulated Solar Light.

    PubMed

    Li, Ying; Qin, Chao; Zhang, Jing; Lan, Yeqing; Zhou, Lixiang

    2014-08-01

    Cu(II) catalytic reduction of Cr(VI) by tartaric acid under the irradiation of simulated solar light was investigated through batch experiments at pHs from 3 to 6 and at temperatures from 15°C to 35°C. Results demonstrated that introduction of Cu(II) could markedly improve reduction of Cr(VI) in comparison with tartaric acid alone. Optimal removal of Cr(VI) was achieved at pH 4. Reduction of Cr(VI) increased with increasing temperatures and initial concentrations of Cu(II) and tartaric acid. The catalytic role of Cu(II) in the reduction of Cr(VI) was ascribed to the formation of Cu(II)-tartaric acid complex, which generated active reductive intermediates, including Cu(I) and tartaric acid radicals through a pathway of metal-ligand-electron transfer with light. Cu(II) photocatalytic reduction of Cr(VI) by tartaric acid followed pseudo zero-order kinetics with regard to Cr(VI), and the activation energy was calculated to be 21.48 kJ/mol. To date, such a role of Cu(II) has not been reported. The results from the present study are helpful in fully understanding the photochemical reductive behavior of Cr(VI) in the presence of both tartaric acid and Cu(II) in soil and aquatic environments.

  3. Shape-controlled synthesis of PbCrO4 micro/nanostructures and their luminescent properties.

    PubMed

    Mao, Chang-Jie; Wu, Xing-Cai; Zhu, Jun-Jie

    2010-08-01

    PbCrO4 with different morphologies have been synthesized via a facile sonochemical route from an aqueous solution of lead acetate and potassium dichromate in the presence of nitrilotriacetate acid (H3NTA). The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The pH and the concentration of complexing reagent were found to have close relation with morphology of the final product. The possible growth mechanism of PbCrO4 microcube has been proposed. UV-Vis spectra and room-temperature photoluminescence of the PbCrO4 micro/nanostructures have also been investigated. Results showed that all the samples possessed strong photoluminescence (PL) properties, suggesting that the micro/nanostructures could be used in novel optoelectronic devices.

  4. Possible Mesozoic age of Ellenville Zn-Pb-Cu(Ag) deposit, Shawangunk Mountains, New York

    USGS Publications Warehouse

    Friedman, J.D.; Conrad, J.E.; McKee, E.H.; Mutschler, F.E.; Zartman, R.E.

    1994-01-01

    Ore textures, epithermal open-space filling of Permian structures of the Alleghanian orogeny, and largely postorogenic mineralization of the Ellenville, New York, composite Zn-Pb-Cu(Ag) vein system, provide permissive evidence for post-Permian mineralization. Isochron ages determined by 40Ar/39Ar laser-fusion techniques for K-bearing liquid inclusions in main-stage quartz from the Ellenville deposit additionally suggest a Mesozoic time of mineralization, associated with extensional formation of the Newark basin. The best 40Ar/39Ar total-fusion age range is 165 ?? 30 to 193 ?? 35 Ma. The Mesozoic 40Ar/39Ar age agrees with that of many other dated northern Appalachian Zn-Pb-Cu(Ag) deposits with near-matching lead isotope ratios, and adds new evidence of Jurassic tectonism and mineralization as an overprint to Late Paleozoic tectonism at least as far north as Ellenville (lat. 41??43???N). ?? 1994 Springer-Verlag.

  5. Monte-Carlo simulation of {Pb}/{Cu (100) } surface superstructures

    NASA Astrophysics Data System (ADS)

    Tan, S.; Ghazali, A.; Lévy, J.-C. S.

    1997-04-01

    Three surface superstructures of {Pb}/{Cu (100) } at low lead coverage are well known experimentally: c(4 × 4),c(2 × 2) and c(5√2×√2)R45°. The present study consists in (i) using generalized Lennard-Jones pair potentials for lead-lead and copper-copper interactions fitted on structural and elastic bulk properties, (ii) deriving an effective potential for lead-copper and (iii) developing a Monte-Carlo extensive relaxation of superstructure models. The MC simulations reveal the stability of these approximate superstructures and yield structural details that are all observed in STM and LEED experiments: the adlayer corrugation, surface alloying, structural modulations as well as PbPb and PbCu spacings. The simulated results on structures and on melting temperatures are in close agreement with experimental data.

  6. Effects of Thermal and Mechanical Processing on Microstructures and Desired Properties of Particle-Strengthened Cu-Cr-Nb Alloys

    NASA Technical Reports Server (NTRS)

    Anderson, Kenneth Reed

    2000-01-01

    Ternary Cu-Cr-Nb alloys, particularly Cu-8 Cr-4 Nb (in at.%), have demonstrated good thermal stability as well as high strength and conductivity at elevated temperatures. The initial powder material has a bimodal size distribution of Cr2Nb precipitates. Primary Cr2Nb precipitates are approx. 1 micron, and secondary Cr2Nb particles are 30-200 nm. The particle coarsening was analyzed and found to follow LSW-type behavior, This study provides a detailed examination of the stability and strengthening effects of Cr2Nb particles. This investigation also revealed that the primary particles provide direct grain boundary pinning and indirect grain boundary strengthening but virtually no Orowan strengthening. The secondary particles found within grains do provide Orowan strengthening. For extruded material, grain bound-ary strengthening (Hall-Petch effect) accounts for two-thirds of the strength with Orowan effects contributing the remainder. The proven advantages of Cu-Cr-Nb were the motivation to improve these attributes via microstructural refinement. Mechanical milling (MM) of Cu- 4 Cr-2 Nb and Cu-8 Cr-2 Nb produced an increase in hot pressed Vickers hardness of 122% and 96%, respectively. The increase in hardness was more due to Cu grain-size refinement than to Cr,,Nb refinement. This study also demonstrated enhanced stability of MM Cu-4 Cr-2 Nb. Hot pressed 4 h milled Cu-4 Cr-2 Nb experienced only a 22% drop in hardness when annealed at 1273 K for 50 h versus a 30% drop for extruded Cu-8 Cr-4 Nb. The goal of improving the strength and stability of Cu-4 Cr-2 Nb to better than such properties for as- extruded Cu-8 Cr-4 Nb has been met. In addition, a figure-of-merit (FOM) coupling hardness and thermal conductivity was maximized for the case of 4 h milled Cu-4 Cr-2 Nb material. Overall, Cu-Cr-Nb alloys not only possess high strength, conductivity and thermal stability but also can be further developed to improve strength and stability.

  7. Equation of State of an AlCoCrCuFeNi High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Li, Gong; Xiao, Daihong; Yu, Pengfei; Zhang, Lijun; Liaw, Peter K.; Li, Yanchun; Liu, Riping

    2015-08-01

    The pressure-volume (P-V) relationship of the AlCoCrCuFeNi high-entropy alloy (HEA) at room temperature has been studied using in situ high-pressure energy-dispersive x-ray diffraction with synchrotron radiation at high pressures. The equation of state of the AlCoCrCuFeNi HEA is determined by the calculation of the radial distribution function. The experimental results indicate that the HEA keeps a stable face-centered-cubic + body-centered-cubic structure in the experimental pressure range from 0 GPa to 24 GPa.

  8. New type of Schottky diode-based Cu-Al-Mn-Cr shape memory material films

    NASA Astrophysics Data System (ADS)

    Aksu Canbay, C.; Dere, A.; Mensah-Darkwa, Kwadwo; Al-Ghamdi, Ahmed; Karagoz Genç, Z.; Gupta, R. K.; Yakuphanoglu, F.

    2016-07-01

    Cr-doped CuAlMn shape memory alloys were produced by arc melting method. The effects of Cr content on microstructure and transformation parameters of were investigated. The alloys were characterized by X-ray analysis, optical microscope observations and differential scanning calorimetry measurements. The grain size of the alloys was decreased by the addition of Cr into CuAlMn alloy system. The martensite transformation temperature was shifted both the lower temperature and higher temperature with the addition of chromium. This change was explained on the basis of the change in the thermodynamics such as enthalpy, entropy and activation energy values. The obtained results indicate that the phase transformation temperatures of the CuAlMn alloy system can be controlled by addition of Cr. We fabricated a Schottky barrier diode and observed that ideality factor and barrier height increase with increasing temperature. The diodes exhibited a thermal sensor behavior. This indicates that Schottky diode-based Cu-Al-Mn-Cr shape memory material films can be used as a sensor in high-temperature measurement applications.

  9. Factors affecting chelating extraction of Cr, Cu, and As from CCA-treated wood.

    PubMed

    Chang, Fang-Chih; Wang, Ya-Nang; Chen, Pin-Jui; Ko, Chun-Han

    2013-06-15

    The disposal of chromated copper arsenate (CCA)-treated waste wood is becoming a serious problem in many countries due to potential leaching of hazardous elements from in-service use in the environment or disposal of solutions after remediation; therefore, it is necessary to develop proper remediation techniques. The effects of concentration, extraction period, temperature, and sequential extraction on the extraction of Cr, Cu, and As from CCA-treated wood using [S,S]-ethylenediaminedisuccinic acid (EDDS), ethylenediaminetetraacetic acid (EDTA), and nitrilotriacetic acid (NTA) were studied. Mobility of metal in the samples was evaluated by using a sequential extraction scheme that could give the information needed to explain different extraction efficiencies for different metals. Results of long-term leaching tests of CCA-treated wood before and after EDDS extraction were used to evaluate Cr, Cu, and As leachability. Kinetic experiments showed that 6 h was the optimum extraction time for all metals and CCA-treated wood. Experimental results showed that EDDS is a very effective chelating agent for the extraction of Cr, Cu, and As from CCA-treated wood. Increased temperature significantly enhanced the extraction efficiency of CCA metals, especially Cr and As. The much better extractability of Cu compared to Cr and As by chelating agents can be attributed to the presence of larger weakly bound fractions. The CCA-treated woods after EDDS extraction have met the EPA's TCLP regulatory limit and could be classified as a non-hazardous waste according to identification standard of hazardous wastes.

  10. Grain Refinement and Mechanical Properties of Cu-Cr-Zr Alloys with Different Nano-Sized TiCp Addition.

    PubMed

    Zhang, Dongdong; Bai, Fang; Wang, Yong; Wang, Jinguo; Wang, Wenquan

    2017-08-08

    The TiCp/Cu master alloy was prepared via thermal explosion reaction. Afterwards, the nano-sized TiCp/Cu master alloy was dispersed by electromagnetic stirring casting into the melting Cu-Cr-Zr alloys to fabricate the nano-sized TiCp-reinforced Cu-Cr-Zr composites. Results show that nano-sized TiCp can effectively refine the grain size of Cu-Cr-Zr alloys. The morphologies of grain in Cu-Cr-Zr composites changed from dendritic grain to equiaxed crystal because of the addition and dispersion of nano-sized TiCp. The grain size decreased from 82 to 28 μm with the nano-sized TiCp content. Compared with Cu-Cr-Zr alloys, the ultimate compressive strength (σUCS) and yield strength (σ0.2) of 4 wt% TiCp-reinforced Cu-Cr-Zr composites increased by 6.7% and 9.4%, respectively. The wear resistance of the nano-sized TiCp-reinforced Cu-Cr-Zr composites increased with the increasing nano-sized TiCp content. The wear loss of the nano-sized TiCp-reinforced Cu-Cr-Zr composites decreased with the increasing TiCp content under abrasive particles. The eletrical conductivity of Cu-Cr-Zr alloys, 2% and 4% nano-sized TiCp-reinforced Cu-Cr-Zr composites are 64.71% IACS, 56.77% IACS and 52.93% IACS, respectively.

  11. The effect of intermetallic compound morphology on Cu diffusion in Sn-Ag and Sn-Pb solder bump on the Ni/Cu Under-bump metallization

    NASA Astrophysics Data System (ADS)

    Jang, Guh-Yaw; Duh, Jenq-Gong

    2005-01-01

    The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1-x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1-x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1-y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1-y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016-1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.

  12. Enhancement of Thermoelectric Performance of n-Type PbSe by Cr Doping with Optimized Carrier Concentration

    SciTech Connect

    Zhang, Qian; Chere, Eyob Kebede; McEnaney, Kenneth; Yao, Mengliang; Cao, Feng; Ni, Yizhou; Chen, Shuo; Opeil, Cyril; Chen, Gang; Ren, Zhifeng

    2015-01-07

    Ti, V, Cr, Nb, and Mo are found to be effective at increasing the Seebeck coefficient and power factor of n-type PbSe at temperatures below 600 K. It is found that the higher Seebeck coefficients and power factors are due to higher Hall mobility ≈1000 cm2 V-1s-1 at lower carrier concentration. A larger average ZT value (relevant for applications) can be obtained by an optimization of carrier concentration to ≈1018-1019 cm-3. Even though the highest room temperature power factor ≈3.3 × 10-3 W m-1 K-2 is found in 1 at% Mo-doped PbSe, the highest ZT is achieved in Cr-doped PbSe. Combined with the lower thermal conductivity, ZT is improved to ≈0.4 at room temperature and peak ZTs of ≈1.0 are observed at ≈573 K for Pb0.9925Cr0.0075Se and ≈673 K for Pb0.995Cr0.005Se. The calculated device efficiency of Pb0.995Cr0.005Se is as high as ≈12.5% with cold side 300 K and hot side 873 K, higher than those of all the n-type PbSe materials reported in the literature.

  13. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils.

    PubMed

    Huang, Guoyong; Su, Xiaojuan; Rizwan, Muhammad Shahid; Zhu, Yifei; Hu, Hongqing

    2016-08-01

    Soil contamination with toxic metals has increasingly become a global concern over the past few decades. Phosphate and carbonate compounds are good passivation materials for Pb immobilization, while the effect of phosphate and carbonate on the immobilization of multiple heavy metals (Pb, Cu, and Cd) in contaminated soils was seldom investigated. In this study, bone meal (BM), phosphate rock (PR), oxalic acid-activated phosphate rock (APR), super phosphate (SP), and calcium carbonate (CC) were added to the contaminated soils to evaluate the effect of phosphate materials and calcium carbonate on the immobilization of Pb, Cu, and Cd. The results showed that the pH of the treated soils increased 1.3-2.7, except SP which decreased 0.5 at most. Compared to the control treatment, all phosphates and calcium carbonate added to the polluted soils increased the fraction of residual metals, and the application of APR, PR, BM, and CC significantly reduced exchangeable and carbonate-bound fraction metals. PR and APR were the most effective for the immobilization of Pb, Cu, and Cd in the soils among these materials. Moreover, the concentrations of all metals in the toxicity characteristic leaching procedure (TCLP) leachate decreased with increasing amounts of amendments, and the concentrations of Pb in the TCLP leachate for soils treated with PR and APR were below the nonhazardous regulatory limit of 5 mg L(-1) (US Environmental Protection Agency). Based on our results, phosphate rock and oxalic acid-activated phosphate rock are effective in the immobilization of multiple metals by reducing their mobility in the co-contaminated soils.

  14. Leaching potential of pervious concrete and immobilization of Cu, Pb and Zn using pervious concrete

    NASA Astrophysics Data System (ADS)

    Solpuker, U.; Sheets, J.; Kim, Y.; Schwartz, F. W.

    2014-06-01

    This paper investigates the leaching potential of pervious concrete and its capacity for immobilizing Cu, Pb and Zn, which are common contaminants in urban runoff. Batch experiments showed that the leachability of Cu, Pb and Zn increased when pH < 8. According to PHREEQC equilibrium modeling, the leaching of major ions and trace metals was mainly controlled by the dissolution/precipitation and surface complexation reactions, respectively. A 1-D reactive transport experiment was undertaken to better understand how pervious concrete might function to attenuate contaminant migration. A porous concrete block was sprayed with low pH water (pH = 4.3 ± 0.1) for 190 h. The effluent was highly alkaline (pH ~ 10 to 12). In the first 50 h, specific conductance and trace-metal were high but declined towards steady state values. PHREEQC modeling showed that mixing of interstitial alkaline matrix waters with capillary pore water was required in order to produce the observed water chemistry. The interstitial pore solutions seem responsible for the high pH values and relatively high concentrations of trace metals and major cations in the early stages of the experiment. Finally, pervious concrete was sprayed with a synthetic contaminated urban runoff (10 ppb Cu, Pb and Zn) with a pH of 4.3 ± 0.1 for 135 h. It was found that Pb immobilization was greater than either Cu or Zn. Zn is the most mobile among three and also has the highest variation in the observed degree of immobilization.

  15. Leaching potential of pervious concrete and immobilization of Cu, Pb and Zn using pervious concrete.

    PubMed

    Solpuker, U; Sheets, J; Kim, Y; Schwartz, F W

    2014-06-01

    This paper investigates the leaching potential of pervious concrete and its capacity for immobilizing Cu, Pb and Zn, which are common contaminants in urban runoff. Batch experiments showed that the leachability of Cu, Pb and Zn increased when pH<8. According to PHREEQC equilibrium modeling, the leaching of major ions and trace metals was mainly controlled by the dissolution/precipitation and surface complexation reactions, respectively. A 1-D reactive transport experiment was undertaken to better understand how pervious concrete might function to attenuate contaminant migration. A porous concrete block was sprayed with low pH water (pH=4.3±0.1) for 190 h. The effluent was highly alkaline (pH~10 to 12). In the first 50 h, specific conductance and trace-metal were high but declined towards steady state values. PHREEQC modeling showed that mixing of interstitial alkaline matrix waters with capillary pore water was required in order to produce the observed water chemistry. The interstitial pore solutions seem responsible for the high pH values and relatively high concentrations of trace metals and major cations in the early stages of the experiment. Finally, pervious concrete was sprayed with a synthetic contaminated urban runoff (10 ppb Cu, Pb and Zn) with a pH of 4.3±0.1 for 135 h. It was found that Pb immobilization was greater than either Cu or Zn. Zn is the most mobile among three and also has the highest variation in the observed degree of immobilization.

  16. Microstructure-property correlations in the Bi(Pb)-Sr-Ca-Cu-O superconducting system

    SciTech Connect

    Ramesh, R.; Green, S. M.; Mei, Y.; Manzi, A. E.; Luo, H. L.

    1989-08-01

    The microstructure of solid-state processed (Bi,Pb)-Sr-Ca-Cu-O ceramics was characterized using transmission electron microscopy techniques. A strong sensitivity of the transport properties to small deviations in the nominal Bi-Ca ratio is evidenced. Significant differences in the microstructure are shown to correlate to the changes in the transport properties. It is suggested that the microstructure can be predicted by combining the results of resistivity, Meissner, and shielding experiments.

  17. EDTA and citric acid mediated phytoextraction of Zn, Cu, Pb and Cd through marigold (Tagetes erecta).

    PubMed

    Sinhal, V K; Srivastava, Alok; Singh, V P

    2010-05-01

    Phytoextraction is an emerging cost-effective solution for remediation of contaminated soils which involves the removal of toxins, especially heavy metals and metalloids, by the roots of the plants with subsequent transport to aerial plant organs. The aim of the present investigation is to study the effects of EDTA and citric acid on accumulation potential of marigold (Tagetes erecta) to Zn, Cu, Pb, and Cd and also to evaluate the impacts of these chelators (EDTA and citric acid) in combination with all the four heavy metals on the growth of marigold. The plants were grown in pots and treated with Zn (7.3 mg l(-1)), Cu (7.5 mg I(-1)), Pb (3.7 mg l(-1)) and Cd (0.2 mg l(-1)) alone and in combination with different doses of EDTA i.e., 10, 20 and 30 mg l(-1). All the three doses of EDTA i.e., 10, 20 and 30 mg l(-1) significantly increased the accumulation of Zn, Cu, Pb and Cd by roots, stems and leaves as compared to control treatments. The 30 mg l(-1) concentration of citric acid showed reduced accumulation of these metals by root, stem and leaves as compared to lower doses i.e., 10 and 20 mg l(-1). Among the four heavy metals, Zn accumulated in the great amount (526.34 mg kg(-1) DW) followed by Cu (443.14 mg kg(-1) DW), Pb (393.16 mg kg(-1) DW) and Cd (333.62 mg kg(-1) DW) in leaves with 30 mg l(-1) EDTA treatment. The highest concentration of EDTA and citric acid (30 mg l(-1)) caused significant reduction in growth of marigold in terms of plant height, fresh weight of plant, total chlorophyll, carbohydrate content and protein content. Thus EDTA and citric acid efficiently increased the phytoextractability of marigold which can be used to remediate the soil contaminated with these metals.

  18. Accumulation of as, pb, and cu associated with the recent sedimentary processes in the colorado delta, South of the United States-Mexico boundary.

    PubMed

    Daesslé, L W; Lugo-Ibarra, K C; Tobschall, H J; Melo, M; Gutiérrez-Galindo, E A; García-Hernández, J; Alvarez, L G

    2009-05-01

    Sediment cores from the Colorado River (CR) remnant delta were used to assess the changing sedimentation and pollutant deposition processes in response to extensive human manipulation of the river. The cores are formed of alternating layers of clays and silts, with isolated sandy horizons. The clayey units are interpreted as periods of flood flows into this low gradient and meandering estuary after dam construction in the United States. The geochemistry of these sediments is particular because of the association of MnO with CaO rather than with the Fe(2)O(3)-rich clays. Past pollution of the CR delta by As, and probably also Pb and Cu, is recorded in some cores. Enrichment factors (EFs) >1 for these elements and their statistical association suggest anthropogenic inputs. The most likely sources for these element enrichments (especially As) are the arsenate-based pesticides used intensively in the area during the first half of the 20th century. The transport of these elements from the nearby agricultural lands into the present river reaches appears to have been driven in part by flooding events of the CR. Flushing by river and tide flows appear to be responsible of a lower pollutant deposition in the CR compared to the adjacent Hardy River (HR). Arsenic in the buried clay units of the HR has concentrations above the probable toxic effect level (PEL) for dwelling organisms, with maximum concentrations of 30 microg g(-1). Excess (210)Pb activities ((210)Pb(xs)) indicate that fluxes of this unsupported atmospheric isotope were not constant in this estuarine environment. However, the presence of (210)Pb(xs) does indicate that these sediments accumulated during the last ~100 years. Aproximate sediment ages were estimated from the correlation of historic flooding events with the interpretation of the stratigraphic record. They are in fair agreement with the reported onset of DDT metabolites at the bottom of one core.

  19. Geopolymers for immobilization of Cr(6+), Cd(2+), and Pb(2+).

    PubMed

    Zhang, Jianguo; Provis, John L; Feng, Dingwu; van Deventer, Jannie S J

    2008-09-15

    Alkali activation of fly ash by sodium silicate solutions, forming geopolymeric binders, provides a potential means of treating wastes containing heavy metals. Here, the effects on geopolymer structure of contamination of geopolymers by Cr(VI), Cd(II) and Pb(II) in the forms of various nitrate and chromate salts are investigated. The addition of soluble salts results in a high extent of dispersal of contaminant ions throughout the geopolymer matrix, however very little change in geopolymer structure is observed when these materials are compared to their uncontaminated counterparts. Successful immobilization of these species will rely on chemical binding either into the geopolymer gel or into other low-solubility (silicate or aluminosilicate) phases. In the case of Pb, the results of this work tentatively support a previous identification of Pb(3)SiO(5) as a potential candidate phase for hosting Pb(II) within the geopolymer structure, although the data are not entirely conclusive. The addition of relatively low levels of heavy metal salts is seen to have little effect on the compressive strength of the geopolymeric material, and in some cases actually gives an increase in strength. Sparingly soluble salts may undergo some chemical conversion due to the highly alkaline conditions prevalent during geopolymerization, and in general are trapped in the geopolymer matrix by a simple physical encapsulation mechanism. Lead is in general very effectively immobilized in geopolymers, as is cadmium in all except the most acidic leaching environments. Hexavalent chromium is problematic, whether added as a highly soluble salt or in sparingly soluble form.

  20. Pb, Cu and Cd distribution in five estuary systems of Marche, central Italy.

    PubMed

    Annibaldi, Anna; Illuminati, Silvia; Truzzi, Cristina; Libani, Giulia; Scarponi, Giuseppe

    2015-07-15

    Heavy metals are subjected to monitoring in estuarine and marine water by the European Union Water Framework Directive, which requires water body health to be achieved by 2021. This is the first survey of heavy metals content in five estuaries of Marche, a region in central Italy. Results showed that total Pb and Cu concentrations decreased by 70-80%, from 1000-2000 to 100-200 ng L(-1) (Pb) and from 2000-3000 to 500-1000 ng L(-1) (Cu) from river to sea. Cd was consistently 20-40 ng L(-1). Dissolved Pb and Cu concentrations declined by 50% and 70% respectively passing from oligohaline to euhaline water, from 150 to 70 ng L(-1) and from 2000-1000 to 600-400 ng L(-1). Cd decreased slightly from ∼20 to ∼10 ng L(-1). Although such concentrations are in the range allowed by the Water Framework Directive, they far exceed (up to 10×) the ground content ceiling set for 2021.

  1. Interactions of aqueous Cu2+, Zn2+ and Pb2+ ions with crushed concrete fines.

    PubMed

    Coleman, Nichola J; Lee, William E; Slipper, Ian J

    2005-05-20

    The crushing of reclaimed concrete-based demolition waste to produce recycled aggregate gives rise to a large volume of cement-rich fine material for which market development would be beneficial. It was envisaged that this fine fraction may prove to be an effective sorbent for aqueous heavy metal species by virtue of its ion exchangeable phases and high pH. A batch sorption study confirmed that crushed concrete, in the particle size range 1-2 mm, successfully excluded Cu2+ (35 mg g(-1)), Zn2+ (33 mg g(-1)) and Pb2+ (37 mg g(-1)) from aqueous media. Subsequent distilled water leaching of the metal-laden concrete particles indicated that 1.9, 0.9 and 0.2% of the bound metals, Cu2+, Zn2+ and Pb2+, respectively, were readily soluble. Scanning electron microscopy revealed that the removal of Cu2+ and Zn2+ arose from surface precipitation reactions, whereas, the principal mechanism of uptake of Pb2+ was found to be by diffusion into the cement matrix. The metal ion removal efficiency of crushed concrete fines is compared with those of other low cost sorbents and potential applications which may exploit this sorptive property are also discussed.

  2. Adsorption of Cu2+ and Pb2+ ion on dolomite powder.

    PubMed

    Pehlivan, Erol; Ozkan, Ali Müjdat; Dinç, Salih; Parlayici, Serife

    2009-08-15

    Natural Turkish dolomite was shown to be effective for removing Cu(2+) and Pb(2+) from aqueous solution. Selected information on pH, dose required, initial metal concentration, adsorption capacity of the raw dolomite powder was evaluated for its efficiency in adsorbing metal ions. Dolomite exhibited good Cu(2+) and Pb(2+) removal levels at all initial metal amount tested (0.04-0.32 mmol, 20 mL). It is important to note that the adsorption capacities of the materials in equilibrium vary, depending on the characteristics of the individual adsorbent, the initial concentration of the adsorbate and pH of the solution. One hour was enough for the removal of metal ions from (0.2 mmol in 20 mL) aqueous solution. Effective removal of metal ions was demonstrated at pH values of 5.0. The adsorptive behavior of dolomite was described by fitting data generated from the study of the Langmuir and Freundlich isotherm models. The adsorption capacity of dolomite was found as 8.26 mg for Cu(2+) and 21.74 mg for Pb(2+), respectively, from the calculation of adsorption isotherm equation. More than 85% of studied cations were removed by dolomite from aqueous solution in single step. The mechanism for cations removal by dolomite includes surface complexation and ion exchange.

  3. On the low-temperature growth of Pb on Cu (100)

    NASA Astrophysics Data System (ADS)

    Bocquet, F.; Robert, S.; Gauthier, S.; Duvault, J. L.; Klein, J.

    1997-12-01

    The morphology and structure of Pb deposits on Cu(100) between 150 and 220 K is investigated using low-energy electron diffraction (LEED), auger electron spectroscopy (AES) and scanning tunneling microscopy (STM). It is found that Pb grows along a <111> axis, with Pb<110> parallel to Cu<100>. In the surface plane, this relationship of epitaxy induces tensile stress of 3.1% in the direction of the common axis and compressive stress of -0.8% in the perpendicular direction. Starting from the wetting monolayer made above room temperature, the growth proceeds by a three regime sequence. The growth of a complete bilayer is followed by a quasi layer-by-layer regime which switches, at a temperature-dependent critical coverage, into a three-dimensional pyramidal growth mode. LEED observations suggest that the stresses are fully relaxed by the bilayer. These results are shown to be in good agreement with published thermal energy atom scattering (TEAS) data obtained on the same system. It is shown that the transition from the quasi layer-by-layer regime to the three-dimensional pyramidal growth mode is triggered by the development of islands with a triangular shape, which results in a limitation of the mass transport between atomic Pb layers.

  4. Theoretical and Experimental Study of the Crystal Structures, Lattice Vibrations, and Band Structures of Monazite-Type PbCrO4, PbSeO4, SrCrO4, and SrSeO4.

    PubMed

    Errandonea, Daniel; Muñoz, Alfonso; Rodríguez-Hernández, Placida; Proctor, John E; Sapiña, Fernando; Bettinelli, Marco

    2015-08-03

    The crystal structures, lattice vibrations, and electronic band structures of PbCrO4, PbSeO4, SrCrO4, and SrSeO4 were studied by ab initio calculations, Raman spectroscopy, X-ray diffraction, and optical-absorption measurements. Calculations properly describe the crystal structures of the four compounds, which are isomorphic to the monazite structure and were confirmed by X-ray diffraction. Information is also obtained on the Raman- and IR-active phonons, with all of the vibrational modes assigned. In addition, the band structures and electronic densities of states of the four compounds were determined. All are indirect-gap semiconductors. In particular, chromates are found to have band gaps smaller than 2.5 eV and selenates higher than 4.3 eV. In the chromates (selenates), the upper part of the valence band is dominated by O 2p states and the lower part of the conduction band is composed primarily of electronic states associated with the Cr 3d and O 2p (Se 4s and O 2p) states. Calculations also show that the band gap of PbCrO4 (PbSeO4) is smaller than the band gap of SrCrO4 (SrSeO4). This phenomenon is caused by Pb states, which, to some extent, also contribute to the top of the valence band and the bottom of the conduction band. The agreement between experiments and calculations is quite good; however, the band gaps are underestimated by calculations, with the exception of the bang gap of SrCrO4, for which theory and calculations agree. Calculations also provide predictions of the bulk modulus of the studied compounds.

  5. Preparation of W/CuCrZr mono-block test mock-up using vacuum brazing technique

    NASA Astrophysics Data System (ADS)

    Premjit Singh, K.; Khirwadkar, S.; Bhope, Kedar; Patel, Nikunj; Mokaria, Prakash

    2017-04-01

    Development of the joining for W/CuCrZr mono-block PFC test mock-up is an interesting area in Fusion R&D. W/Cu bimetallic material has been prepared using OFHC Copper casting approach on the radial surface of W mono-block tile surface. The W/Cu bimetallic material has been joined with CuCrZr tube (heat sink) material with the vacuum brazing route. Vacuum brazing of W/Cu-CuCrZr has been performed @ 970°C for 10 min using NiCuMn-37 filler material under deep vacuum environment (10-6 mbar). Graphite fixture was used for OFHC Copper casting and vacuum brazing experiments. The joint integrity of W/Cu-CuCrZr mono-block mock-up of W/Cu and Cu-CuCrZr interface has been checked using ultrasonic immersion technique. The result of the experimental work is presented in the paper.

  6. Structure, Magnetism, and Transport of CuCr2Se4 Thin Films

    SciTech Connect

    Bettinger, J.S.; Chopdekar, R.V.; Liberati, M.; Neulinger, J.R.; Chshiev, M.; Takamura, Y.; Alldredge, L.M.B.; Arenholz, E.; Idzerda,Y.U.; Stacy, A.M.; Butler, W.H.; Suzuki, Y.

    2007-04-01

    We report the successful growth of highly spin-polarized chalcogenide thin films of CuCr{sub 2}Se{sub 4}, which are promising candidates for spin-based electronic applications. We also present electronic structure calculations for CuCr{sub 2}Se{sub 4} that, together with magnetic and transport data, imply that the stoichiometric compound is a metallic ferromagnet with a relatively low density of hole-like carriers at the Fermi energy. These calculations also predict that a deficiency of Se will deplete the minority density of states at the Fermi energy perhaps leading to a half-metal. We have successfully grown thin films of CuCr{sub 2}Se{sub 4} by pulsed laser deposition on isostructural MgAl{sub 2}O{sub 4} substrates followed by an anneal in a Se-rich environment. X-ray diffraction confirms the structure of CuCr{sub 2}Se{sub 4} on MgAl{sub 2}O{sub 4} substrates as well as a secondary phase of Cr{sub 2}Se{sub 3}. X-ray absorption spectroscopy indicates that the chemical structure at the surface of the films is similar to that of bulk CuCr{sub 2}Se{sub 4} single crystals. Magnetization measurements indicate that these films saturate with a magnetic moment close to 5 {micro}{sub B} per formula unit and a T{sub c} above 400 K. X-ray magnetic circular dichroism shows that the magnetism persists to the surface of the film. Resistivity and Hall effect measurements are consistent with a p-type ferromagnetic metallic behavior and with the electronic structure calculations.

  7. Vacuum Plasma Spray of CuCrNb Alloy for Advanced Liquid - Fuel Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank

    2000-01-01

    The copper-8 atomic percent chromium-4 atomic percent niobium (CuCrNb) alloy was developed by Glenn Research Center (formally Lewis Research Center) as an improved alloy for combustion chamber liners. In comparison to NARloy-Z, the baseline (as in Space Shuttle Main Engine) alloy for such liners, CuCrNb demonstrates mechanical and thermophysical properties equivalent to NARloy-Z, but at temperatures 100 C to 150 C (180 F to 270 F) higher. Anticipated materials related benefits include decreasing the thrust cell liner weight 5% to 20%, increasing the service life at least two fold over current combustion chamber design, and increasing the safety margins available to designers. By adding an oxidation and thermal barrier coating to the liner, the combustion chamber can operate at even higher temperatures. For all these benefits, however, this alloy cannot be formed using conventional casting and forging methods because of the levels of chromium and niobium, which exceed their solubility limit in copper. Until recently, the only forming process that maintains the required microstructure of CrNb intermetallics is powder metallurgy formation of a billet from powder stock, followed by extrusion. This severely limits its usefulness in structural applications, particularly the complex shapes required for combustion chamber liners. Vacuum plasma spray (VPS) has been demonstrated as a method to form structural articles including small combustion chambers from the CuCrNb alloy. In addition, an oxidation and thermal barrier layer can be formed integrally on the hot wall of the liner that improve performance and extend service life. This paper discusses the metallurgy and thermomechanical properties of VPS formed CuCrNb versus the baseline powder metallurgy process, and the manufacturing of small combustion chamber liners at Marshall Space Flight Center using the VPS process. The benefits to advanced propulsion initiatives of using VPS to fabricate combustion chamber liners

  8. Vacuum Plasma Spray of CuCrNb Alloy for Advanced Liquid - Fuel Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank

    2000-01-01

    The copper-8 atomic percent chromium-4 atomic percent niobium (CuCrNb) alloy was developed by Glenn Research Center (formally Lewis Research Center) as an improved alloy for combustion chamber liners. In comparison to NARloy-Z, the baseline (as in Space Shuttle Main Engine) alloy for such liners, CuCrNb demonstrates mechanical and thermophysical properties equivalent to NARloy-Z, but at temperatures 100 C to 150 C (180 F to 270 F) higher. Anticipated materials related benefits include decreasing the thrust cell liner weight 5% to 20%, increasing the service life at least two fold over current combustion chamber design, and increasing the safety margins available to designers. By adding an oxidation and thermal barrier coating to the liner, the combustion chamber can operate at even higher temperatures. For all these benefits, however, this alloy cannot be formed using conventional casting and forging methods because of the levels of chromium and niobium, which exceed their solubility limit in copper. Until recently, the only forming process that maintains the required microstructure of CrNb intermetallics is powder metallurgy formation of a billet from powder stock, followed by extrusion. This severely limits its usefulness in structural applications, particularly the complex shapes required for combustion chamber liners. Vacuum plasma spray (VPS) has been demonstrated as a method to form structural articles including small combustion chambers from the CuCrNb alloy. In addition, an oxidation and thermal barrier layer can be formed integrally on the hot wall of the liner that improve performance and extend service life. This paper discusses the metallurgy and thermomechanical properties of VPS formed CuCrNb versus the baseline powder metallurgy process, and the manufacturing of small combustion chamber liners at Marshall Space Flight Center using the VPS process. The benefits to advanced propulsion initiatives of using VPS to fabricate combustion chamber liners

  9. A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties.

    PubMed

    Ren, Ling; Memarzadeh, Kaveh; Zhang, Shuyuan; Sun, Ziqing; Yang, Chunguang; Ren, Guogang; Allaker, Robert P; Yang, Ke

    2016-10-01

    The aim of this study was to fabricate a novel coping metal CoCrCu alloy using a selective laser melting (SLM) technique with antimicrobial and antibiofilm activities and to investigate its microstructure, mechanical properties, corrosion resistance and biocompatibility. Novel CoCrCu alloy was fabricated using SLM from a mixture of commercial CoCr based alloy and elemental Cu powders. SLM CoCr without Cu served as control. Antibacterial activity was analyzed using standard antimicrobial tests, and antibiofilm properties were investigated using confocal laser scanning microscope. Cu distribution and microstructure were determined using scanning electron microscope, optical microscopy and X-ray diffraction. Corrosion resistance was evaluated by potential dynamic polarization and biocompatibility measured using an MTT assay. SLM CoCrCu alloys were found to be bactericidal and able to inhibit biofilm formation. Other factors such as microstructure, mechanical properties, corrosion resistance and biocompatibility were similar to those of SLM CoCr alloys. The addition of appropriate amounts of Cu not only maintains normal beneficial properties of CoCr based alloys, but also provides SLM CoCrCu alloys with excellent antibacterial and antibiofilm capabilities. This material has the potential to be used as a coping metal for dental applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem.

    PubMed

    Iskandar, Nur Liyana; Zainudin, Nur Ain Izzati Mohd; Tan, Soon Guan

    2011-01-01

    Filamentous fungi are able to accumulate significant amount of metals from their environment. The potential of fungal biomass as agents for biosorption of heavy metals from contaminated sediments is currently receiving attention. In the present study, a total of 41 isolates of filamentous fungi obtained from the sediment of the Langat River, Selangor, Malaysia were screened for their tolerance and uptake capability of copper (Cu) and lead (Pb). The isolates were identified as Aspergillus niger, A. fumigatus, Trichoderma asperellum, Penicillium simplicissimum and P. janthinellum. A. niger and P. simplicissimum, were able to survive at 1000 mg/L of Cu(II) concentration on Potato Dextrose Agar (PDA) while for Pb, only A. niger survived at 5000 mg/L concentration. The results showed that A. niger, P. simplicissimum and T. asperellum have a better uptake capacity for Pb compared to Cu and the findings indicated promising biosorption of Cu and Pb by these filamentous fungi from aqueous solution. The present study was also determined the maximum removal of Cu(II) and Pb(II) that was performed by A. niger. The metal removal which occurred at Cu(II) 200 mg/L was (20.910 +/- 0.581) mg/g and at 250 mg/L of Pb(II) was (54.046 +/- 0.328) mg/g.

  11. Influence of IMC in the Semisolid Behaviour of an Eutectic Sn-Pb/Cu Slurry

    SciTech Connect

    Merizalde, Carlos; Cabrera, Jose-Maria; Prado, Jose-Manuel

    2007-04-07

    A mixture of a liquid Sn-Pb alloy reinforced with solid Cu particles has been found to show thixotropic and pseudoplastic behaviour. The presence of an intermetallic compound (IMC) between the Cu particles and the molten matrix has some very important consequences in the rheological behaviour of the slurry. The semisolid material is obtained mixing a sufficient amount of Cu particles with a liquid eutectic Sn-Pb alloy by mechanical stirring at a given temperature and time. The intermetallic compound is formed from the reaction of solid Cu and liquid Sn. This reaction results in some displacement in the phase diagram, affecting the liquid alloy composition, moving the liquidus temperature and therefore altering the balance of %wt solid- %wt liquid necessary to obtain the best thixotropic behaviour. In this work a model of the solid fraction of the slurry taking into account the IMC growth rate is presented. This model is also used to predict the processing window under which the material keeps the thixotropic behaviour.

  12. Interaction Between Ni and Cu Across 95Pb-5Sn High-Lead Layer

    NASA Astrophysics Data System (ADS)

    Chang, C. C.; Chung, H. Y.; Lai, Y. S.; Kao, C. R.

    2010-12-01

    Ni/95Pb-5Sn/Cu ternary diffusion couples were used to investigate the cross-interaction between Ni and Cu across a layer of 95Pb-5Sn solder. High-lead solder layers with a thickness of 100 μm or 400 μm were electroplated over Cu foils. A pure Ni layer (20 μm) was then deposited over the as-deposited high-lead solder surface. The diffusion couples were then aged at 150°C to 250°C for different periods of time. With this technique, the diffusion couples were assembled without experiencing any high-temperature process such as reflow, which would have accelerated the interaction and caused difficulties in analysis. This study revealed that massive spalling also occurred during aging even though reflow was not used. The massive spalling began with the formation of microvoids. When the microvoids had congregated into large enough voids, intermetallic compounds (Cu3Sn) started to spall from the interface. This spalling phenomenon occurred sooner with increasing temperature and decreasing solder volume.

  13. A systematic study of superconductivity in BiPb(Sn)-Sb Sr-Ca-Cu-O systems

    NASA Technical Reports Server (NTRS)

    Akbar, Sheikh A.; Botelho, M. J.; Wong, M. S.; Alauddin, M.

    1990-01-01

    Superconducting transition above 160 K has been reported in the Bi-Pb-Sb-Sr-Ca-Cu-O system. Results of a systematic study emphasizing the correlations between the type and amount of dopant, and superconducting transition is presented. The effect of Sn (instead of Pb) substitution is also highlighted.

  14. Cu-Zn powders as potential Cr(VI) adsorbents for drinking water.

    PubMed

    Kaprara, E; Seridou, P; Tsiamili, V; Mitrakas, M; Vourlias, G; Tsiaoussis, I; Kaimakamis, G; Pavlidou, E; Andritsos, N; Simeonidis, K

    2013-11-15

    This work examines the possibility of applying CuZn alloys as a reducing medium for the efficient removal of hexavalent chromium from drinking water. In an effort to develop a route for producing powders of CuZn alloys under mild conditions and investigate the optimum composition for such application, a series of alloys in the form of powders were prepared, by a sequence of Cu and Zn ball-milling and low temperature annealing. Batch Cr(VI) removal tests, performed to evaluate and compare the efficiency of the products under typical natural water parameters (pH 7 and natural-like water), indicated that the best performing material have a composition around 50 wt% Cu. The dominant reduction mechanisms are both the corrosion of the alloy surface and the electron transfer to the solution. The behavior of granulated CuZn media was tested in rapid-scale column tests using the commercial KDF which verified the high potential of CuZn alloys in Cr(VI) removal. Nevertheless, Cu and Zn leaching problems should be also considered. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Thermoelectric Properties of CuAgSe doped with Co, Cr

    NASA Astrophysics Data System (ADS)

    Czajka, Peter; Yao, Mengliang; Opeil, Cyril

    Thermoelectric materials represent one way that reliable cooling below the boiling point of nitrogen can be realized. Current materials do not exhibit sufficiently high efficiencies at cryogenic temperatures, but significant progress is being made. One material that has generated significant interest recently is CuAgSe. It has been demonstrated (Ishiwata et al., Nature Mater. 2013) that doping CuAgSe with 10% Ni at the Cu sites increases the material's thermoelectric figure of merit (ZT) at 100 K from 0.02 to 0.10. This is intriguing not just because of the dramatic effect that the Ni doping produces, but also because CuAgSe is a semimetal and semimetals are not usually able to exhibit the kind of asymmetric carrier activation necessary for strong thermoelectric performance. In order to further investigate the unusual nature of thermoelectricity in CuAgSe and its strong dependence on chemical composition, we have synthesized and measured the thermoelectric properties of a series of CuAgSe samples doped with Co and Cr. Temperature-dependent magnetic and thermoelectric transport properties of CuAgSe as a function of Co and Cr doping will be discussed. This work is supported by the Department of Defense, AFOSR, MURI Program Contract # FA9550-10-1-0533 and the Trustees of Boston College.

  16. Wetting and interface phenomena in the molten Sn/CuFeNiCoCr high-entropy alloy system

    NASA Astrophysics Data System (ADS)

    Ma, G. F.; Li, Z. K.; Ye, H.; He, C. L.; Zhang, H. F.; Hu, Z. Q.

    2015-11-01

    The wetting behavior and the interfacial characteristics of the molten Sn on a CuFeNiCoCr high-entropy alloy (HEA) substrate were investigated by the sessile drop method. Oxidation of the CuCoNiFeCr HEA surface inhibited the interaction between the molten Sn and the CuCoNiFeCr HEA substrate, leading to a very poor wetting at 573 K, 623 K and 673 K. However, the equilibrium contact angle decreased monotonously with the temperature increasing in the temperature range of 673-923 K. Moreover, the interfacial microstructure depended on temperature. An intermetallic compound existed at the interface between the molten Sn and the CuFeNiCoCr HEA substrate, and the interface thickness varied with the wetting temperature. The wetting process of the molten Sn on the CuFeNiCoCr HEA substrate consisted of three stages according to the wetting temperature.

  17. Photo-transport properties of Pb{sub 2}CrO{sub 5} single crystals

    SciTech Connect

    Mondal, P. S.; Okazaki, R. Taniguchi, H.; Terasaki, I.

    2014-11-21

    We report photo-thermoelectric transport phenomena in Pb{sub 2}CrO{sub 5} single crystals. Without illumination, this material exhibits an insulating behavior characterized by an activation-type temperature variation of the electrical conductivity. The Seebeck coefficient contrastingly shows a crossover from high-temperature insulating to low-temperature metallic behavior, which is attributed to degenerate carriers in a donor level. We have found that under illumination, both the conductivity and the Seebeck coefficient increase in magnitude with increasing photon flux density in the degenerate-conduction regime. This result is difficult to understand within a simple photo-doping effect, which usually leads to a decrease in the Seebeck coefficient under illumination. The observed phenomenon is discussed in terms of a two-carrier contribution to the transport properties.

  18. Photo-transport properties of Pb2CrO5 single crystals

    NASA Astrophysics Data System (ADS)

    Mondal, P. S.; Okazaki, R.; Taniguchi, H.; Terasaki, I.

    2014-11-01

    We report photo-thermoelectric transport phenomena in Pb2CrO5 single crystals. Without illumination, this material exhibits an insulating behavior characterized by an activation-type temperature variation of the electrical conductivity. The Seebeck coefficient contrastingly shows a crossover from high-temperature insulating to low-temperature metallic behavior, which is attributed to degenerate carriers in a donor level. We have found that under illumination, both the conductivity and the Seebeck coefficient increase in magnitude with increasing photon flux density in the degenerate-conduction regime. This result is difficult to understand within a simple photo-doping effect, which usually leads to a decrease in the Seebeck coefficient under illumination. The observed phenomenon is discussed in terms of a two-carrier contribution to the transport properties.

  19. Characterization of Cold Sprayed CuCrAl Coated GRCop-84 Substrates for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, S . V.; Barrett, C. A.; Lerch, B. A.; Karthikeyan, J.; Ghosn, L. J.; Haynes, J.

    2005-01-01

    An advanced Cu-8(at.%)Cr-4%Nb alloy developed at NASA's Glenn Research Center, and designated as GRCop-84, is currently being considered for use as combustor liners and nozzles in NASA's future generations of reusable launch vehicles (RLVs). Despite the fact that this alloy has superior mechanical and oxidation properties compared to many commercially available copper alloys, it is felt that its high temperature and environmental resistance capabilities can be further enhanced with the development and use of suitable coatings. Several coatings and processes are currently being evaluated for their suitability and future down selection. A newly developed CuCrAl has shown excellent oxidation resistance compared to current generation Cu-Cr coating alloys. Cold spray technology for depositing the CuCrAl coating on a GRCop-84 substrate is currently being developed under NASA's Next Generation Launch Technology (NGLT) Propulsion Research and Technology (PR&T) project. The microstructures, mechanical and thermophysical properties of overlay coated GRCop-84 substrates are discussed.

  20. Electrokinetic Treatment of Cr-, Cu-, and Zn-Contaminated Sediment: Cathode Modification

    PubMed Central

    Rajić, Ljiljana; Dalmacija, Božo; Perović, Svetlana Ugarčina; Krčmar, Dejan; Rončević, Srđan; Tomašević, Dragana

    2013-01-01

    Abstract Enhanced electrokinetic (EK) removal of Cr, Cu, and Zn from sediment by using original and modified integrated ion exchange (IIX™) cathodes was investigated. IIX cathode design and EK device process modifications were made to improve performance: separation of IIX cathode components (IIXS), combination of modified IIX cathode with pulsed electric field (IIXSP), and separation of IIX cathode components with addition of an anion exchange resin compartment (IIXA). After using the IIXSP, overall Cr, Cu, and Zn removal efficacies were significantly improved compared with the other treatments investigated. No improvements in overall Cr, Cu, and Zn removal efficacies were achieved by utilization of IIXA. Nevertheless, significant removal efficacies occurred at the anode region since distribution of the alkaline front was prevented. However, metal accumulation in the cathode region occurred. This was a consequence of metal cation complexation with Cl− released from the anion exchange resin that changed the direction of metal migration. Enhancing EK remediation of Cr-, Cu-, and Zn-contaminated sediment can be achieved by using a modified IIX cathode. PMID:24381480

  1. Electrokinetic Treatment of Cr-, Cu-, and Zn-Contaminated Sediment: Cathode Modification.

    PubMed

    Rajić, Ljiljana; Dalmacija, Božo; Perović, Svetlana Ugarčina; Krčmar, Dejan; Rončević, Srđan; Tomašević, Dragana

    2013-12-01

    Enhanced electrokinetic (EK) removal of Cr, Cu, and Zn from sediment by using original and modified integrated ion exchange (IIX™) cathodes was investigated. IIX cathode design and EK device process modifications were made to improve performance: separation of IIX cathode components (IIXS), combination of modified IIX cathode with pulsed electric field (IIXSP), and separation of IIX cathode components with addition of an anion exchange resin compartment (IIXA). After using the IIXSP, overall Cr, Cu, and Zn removal efficacies were significantly improved compared with the other treatments investigated. No improvements in overall Cr, Cu, and Zn removal efficacies were achieved by utilization of IIXA. Nevertheless, significant removal efficacies occurred at the anode region since distribution of the alkaline front was prevented. However, metal accumulation in the cathode region occurred. This was a consequence of metal cation complexation with Cl(-) released from the anion exchange resin that changed the direction of metal migration. Enhancing EK remediation of Cr-, Cu-, and Zn-contaminated sediment can be achieved by using a modified IIX cathode.

  2. Catalytic determination of Pb(II) in the presence of Cu(II).

    PubMed

    Rustoiu-Csavdari, A; Bâldea, S; Mihai, D

    2002-09-01

    A kinetic method is presented to determine micro-molar amounts of Pb(II) from various river and wastewater samples, in the presence of trace copper. The procedure is based on the catalytic effect of both species on the oxidation of mercaptosuccinic acid by chromate in acidic media. The extent of the reaction is followed spectrophotometrically at 420 nm and pseudo-first-order rate coefficients of the rate-determining step are determined as a function of catalyst concentrations. The optimum operating conditions (ionic strength, temperature, and concentration of reagents) regarding sensitivity towards lead were established. Interference by several ionic species has been studied. The effect of Fe(III), the only severe interferent, is suppressed by complexation with 1,10-phenantroline. The bi-component calibration model employs an artificial neural network to compute the Pb(II) concentration from a k(obsd) value and the a priori-known Cu(II) concentration of the sample. Working concentration ranges are 20-2160 micro g L(-1) for Pb(II) and 80-650 micro g L(-1) for Cu(II), respectively. Detection limits are 20 micro g L(-1) Pb(II) and 80 micro g L(-1) Cu(II), respectively. The relative standard deviations (3 measurements) for four different testing points are lower than 2.5%. The method was applied to samples of river and wastewater of the mining region of Baia-Mare, Northern Romania. The results were compared to those obtained by an officially standardized AAS method. Good agreement was achieved. The method is inexpensive, fairly rapid, and sensitive. Its working range covers the exact range of concentrations usually encountered in the mentioned geographic area.

  3. Crystalline style and tissue redistribution in Perna viridis as indicators of Cu and Pb bioavailabilities and contamination in coastal waters.

    PubMed

    Yap, C K; Ismail, A; Cheng, W H; Tan, S G

    2006-03-01

    The concentrations of Cu, Pb, and Zn in the crystalline style (CS) and in the remaining soft tissues (ST) of the green-lipped mussel Perna viridis from 10 geographical sites along the coastal waters off peninsular Malaysia were determined. The CS, compared with the remaining ST, accumulated higher levels of Cu in both contaminated and uncontaminated samples, indicating that the style has a higher affinity for the essential Cu to bind with metallothioneins. The similar pattern of Cu accumulation in the different ST of mussels collected from clean and Cu-contaminated sites indicated that the detoxification capacity of the metallothioneins had not been overloaded. For Pb, higher levels of the metal in the CS than in the remaining ST were found only in mussels collected from a contaminated site at Kg. Pasir Puteh. This indicated a tissue redistribution of Pb due to its binding to metallothioneins for Pb detoxification and the potential of the CS as an indicator organ of Pb bioavailability and contamination. For Zn, the above two phenomena were not found since no obvious patterns were observed (lower levels of Zn in the CS than in the remaining ST) in contaminated and uncontaminated samples due to the mechanism of partial regulation. Generally, all the different STs studied (foot, mantle, gonad, CS, gill, muscle, and byssus) are good biomonitoring tissues for Cu and Pb bioavailabilities and contamination. Among these organs, the CS was found to be the best organ for biomonitoring Cu. The present data also suggest the use of the tissue redistribution of Pb in P. viridis as an indicator of Pb bioavailability and contamination in coastal waters.

  4. A new, low-cost adsorbent: preparation, characterization, and adsorption behavior of Pb(II) and Cu(II).

    PubMed

    Huang, Gailing; Wang, Dong; Ma, Shulan; Chen, Junli; Jiang, Ling; Wang, Peiyuan

    2015-05-01

    This work aimed to develop waste (i.e., sulfonated lignin) application in simulated wastewater treatment. Sulfonated lignin (LS), a byproduct of the paper industry, was intercalated into a parent host of layered double hydroxides (LDH) by swelling-restacking method. X-ray diffraction patterns of the composite confirmed that long-chain LS anions exited in the interlayer of Mg2Al-LDH in two forms: (1) a "flat" form with d003=0.88 nm; and (2) a "vertical" form with d003=9.08 nm. Results showed that the obtained Mg2Al-LS-LDH composite was highly selective and efficient for the removal of Pb(2+) and Cu(2+), especially Pb(2+), compared with the NO3-LDH precursor. The coexisting cations decreased the removal efficiency of Pb(2+) or Cu(2+) on Mg2Al-LS-LDH composite, which could be ascribed to outer-sphere sorption style, and the effect order of cations is Li(+)>Ca(2+)>K(+)>Na(+). The pseudo-second-order model appropriately described the sorption kinetics of Mg2Al-LS-LDH composite for Pb(2+) and Cu(2+). Sorption isotherms for Pb(2+) and Cu(2+) by the Mg2Al-LS-LDH composite were found to be more satisfactorily fitted by the Langmuir model than by the Freundlich one. With increased Pb(2+) or Cu(2+) concentration from 2 ppm to 200 ppm, the maximum absorption capacity of the composite toward Pb(2+) was ∼123 mg/g and that toward Cu(2+) was ∼64 mg/g. Therefore, a new, low-cost adsorbent was synthesized by utilizing the byproduct LS, which may be a potential remedy for Pb(2+) or Cu(2+) in contaminated water.

  5. Continuous biosorption of Pb/Cu and Pb/Cd in fixed-bed column using algae Gelidium and granulated agar extraction algal waste.

    PubMed

    Vilar, Vítor J P; Loureiro, José M; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Continuous metal ions biosorption from Pb/Cu and Pb/Cd solutions onto seaweed Gelidium sesquipedale and a composite material prepared from an industrial algal waste was performed in a packed bed column. A binary Langmuir equation describes well the equilibrium data and indicates a good adsorption capacity. In the sorption process, Cd and Cu break through the column faster than Pb due to its lower affinity for the biosorbent. An overshoot in the outlet Cd concentration was observed and explained by competitive adsorption between Pb and Cd, whereby the higher Pb affinity for the biosorbent displaces bound Cd ions. A small overshoot happens for Cu adsorption in the presence of Pb ions. Desorption using 0.1 M HNO3 as eluant, was 100% effective. A mass transfer model for the adsorption and desorption processes, considering an external and intraparticle film resistance, adequately simulates the column performance. A binary Langmuir equation was used to describe equilibrium for the saturation process and a mass action law for the desorption process. Elution process is defined as an ion exchange mechanism, between protons and metal ions.

  6. Pressure- and Temperature-Dependent Study of Heusler Alloys Cu2MGa (M = Cr and V)

    NASA Astrophysics Data System (ADS)

    Gupta, Dinesh C.; Ghosh, Sukriti

    2017-04-01

    Full-potential computation of the electronic, magnetic, elastic and thermodynamic properties of Cu2MGa (M = Cr and V) alloys has been performed in the most stable Fm-3 m phase. The equilibrium lattice parameter is 5.9660 Å for Cu2CrGa and 5.9629 Å for Cu2VGa in the stable state. The application of mBJ potential has also found no energy gap in these alloys in either of the spin channels, hence they are metallic. The total and partial density of states, second-order elastic constants and their combinations are computed to show the electronic, magnetic, stability and brittle or ductile nature of these alloys, which are reported for the first time. Cauchy's pressure and Pugh's index predict Cu2CrGa to be brittle and Cu2VGa to be ductile. Both the materials are stiff enough to break. We have found that both the compounds are anisotropic, ferromagnetic and metallic in nature. We have used quasi-harmonic approximations to study the pressure and temperature variation of the thermodynamic properties of these alloys.

  7. Do Cd, Cu, Ni, Pb, and Zn biomagnify in aquatic ecosystems?

    PubMed

    Cardwell, Rick D; Deforest, David K; Brix, Kevin V; Adams, William J

    2013-01-01

    In this review, we sought to assess from a study of the literature whether five in organic metals (viz., cadmium, copper, lead, nickel, and zinc) bio magnify in aquatic food webs. We also examined whether accumulated metals were toxic to consumers/predators and whether the essential metals (Cu and Zn and possibly Ni) behaved differently from non-essential ones (Cd and Pb). Biomagnification potential was indexed by the magnitude of single and multiple trophic transfers in food chains. In this analysis, we used three lines of evidence-laboratory empirical, biokinetic modeling, and field studies-to make assessments. Trophic transfer factors, calculatedfrom lab studies, field studies, and biokinetic modeling, were generally congruent.Results indicated that Cd, Cu, Pb, and Zn generally do not biomagnify in food chains consisting of primary producers, macro invertebrate consumers, and fish occupying TL 3 and higher. However, bio magnification of Zn (TTFs of 1-2) is possible for circumstances in which dietary Zn concentrations are below those required for metabolism. Cd, Cu, Ni, and Zn may biomagnify in specific marine food chains consisting of bivalves, herbivorous gastropods, and barnacles at TL2 and carnivorous gastropods at TL3. There was an inverse relationship between TTF and exposure concentration for Cd, Cu, Pb, and Zn, a finding that is consistent with previous reviews of bioconcentration factors and bioaccumulation factors for metals. Our analysis also failed to demonstrate a relationship between the magnitude of TTFsand dietary toxicity to consumer organisms. Consequently, we conclude that TTFs for the metals examined are not an inherently useful predictor of potential hazard(i.e., toxic potential) to aquatic organisms. This review identified several uncertainties or data gaps, such as the relatively limited data available for nickel, reliance upon highly structured food chains in laboratory studies compared to the unstructured food webs found in nature, and

  8. Direct detection of Pb in urine and Cd, Pb, Cu, and Ag in natural waters using electrochemical sensors immobilized with DMSA functionalized magnetic nanoparticles

    SciTech Connect

    Yantasee, Wassana; Hongsirikarn, Kitiya; Warner, Cynthia L.; Choi, Daiwon; Sangvanich, Thanapon; Toloczko, Mychailo B.; Warner, Marvin G.; Fryxell, Glen E.; Addleman, Raymond S.; Timchalk, Chuck

    2008-03-01

    Urine is universally recognized as one of the best non-invasive matrices for biomonitoring exposure to a broad range of xenobiotics including toxic metals. For direct, simple, and field-deployable monitoring of urinary Pb, electrochemical sensors employing superparamagnetic iron oxide (Fe3O4) nanoparticles with a surface functionalization of dimercaptosuccinic acid (DMSA) has been developed. The metal detection involves rapid collection of dispersed metal-bound nanoparticles from a sample solution at a magnetic or electromagnetic electrode, followed by the stripping voltammetry of the metal in acidic medium. The sensors were evaluated as a function of solution pH, the binding affinity of Pb to DMSA-Fe3O4, the ratio of nanoparticles per sample volume, preconcentration time, and Pb concentrations. The effect of binding competitions between the DMSA-Fe3O4 and urine constituents for Pb on the sensor responses was studied. After 90s of preconcentration in samples containing 25 vol.% of rat urine and 0.1 g/L of DMSA-Fe3O4, the sensor could detect background level of Pb (< 1 ppb) and yielded linear responses from 0 to 50 ppb of Pb, excellent reproducibility (%R.S.D of 5.3 for seven measurements of 30 ppb Pb), and Pb concentrations comparable to those measured by ICP-MS. The sensor could also simultaneously detect background levels (< 1 ppb) of Cd, Pb, Cu, and Ag in river and seawater.

  9. Low temperature spin dynamics in Cr{sub 7}Ni-Cu-Cr{sub 7}Ni coupled molecular rings

    SciTech Connect

    Bordonali, L.; Furukawa, Y.; Mariani, M.; Sabareesh, K. P. V.; Garlatti, E.; Borsa, F.

    2014-05-07

    Proton Nuclear Magnetic Resonance (NMR) relaxation measurements have been performed down to very low temperature (50 mK) to determine the effect of coupling two Cr{sub 7}Ni molecular rings via a Cu{sup 2+} ion. No difference in the spin dynamics was found from nuclear spin lattice relaxation down to 1.5 K. At lower temperature, the {sup 1}H-NMR line broadens dramatically indicating spin freezing. From the plot of the line width vs. magnetization, it is found that the freezing temperature is higher (260 mK) in the coupled ring with respect to the single Cr{sub 7}Ni ring (140 mK)

  10. Measurement of the {sup 208}Pb({sup 52}Cr,n){sup 259}Sg excitation function

    SciTech Connect

    Folden III, C. M.; Dragojevic, I.; Garcia, M. A.; Gates, J. M.; Nelson, S. L.; Hoffman, D. C.; Nitsche, H.; Duellmann, Ch. E.; Sudowe, R.; Gregorich, K. E.; Eichler, R.

    2009-02-15

    The excitation function for the {sup 208}Pb({sup 52}Cr,n){sup 259}Sg reaction has been measured using the Berkeley Gas-filled Separator at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. The maximum cross section of 320{sub -100}{sup +110} pb is observed at a center-of-target laboratory-frame energy of 253.0 MeV. In total, 25 decay chains originating from {sup 259}Sg were observed and the measured decay properties are in good agreement with previous reports. In addition, a partial excitation function for the {sup 208}Pb({sup 52}Cr,2n){sup 258}Sg reaction was obtained, and an improved {sup 258}Sg half-life of 2.6{sub -0.4}{sup +0.6} ms was calculated by combining all available experimental data.

  11. Physical, Optical and Electron paramagnetic resonance studies of PbBr2-PbO-B2O3 glasses containing Cu2+ ions

    NASA Astrophysics Data System (ADS)

    Sekhar, K. Chandra; Hameed, Abdul; Chary, M. Narasimha; Shareefuddin, Md

    2016-09-01

    The glasses with the composition PbBr2-PbO-B2O3 glasses containing Cu2+ ions were prepared by melt quenching technique. X-ray diffractograms revealed the amorphous nature of the glasses. Density and molar volume were determined. Density is found to decrease while the molar volume increases with increase of PbBr2 content. The optical absorption spectra exhibited a broad band corresponding to the d- d transition of Cu2+ ion. From optical absorption spectra Eopt and Urbach energies were determined. Electron Paramagnetic Resonance (EPR) studies were carried out by introducing Cu2+ as the spin probe. Glasses containing transition metal(TM) ions such as Cu2+ give the information about the structure and the site symmetry around the TM ions. EPR spectra of all the glass samples were recorded at X-band frequencies. From the EPR spectra spin-Hamiltonian parameters were evaluated. It was observed that g∥ >g±>ge (2.0023) and A∥>A±. From this values it is concluded that the ground state of Cu2+ is dx2-y2 (2B1g) and the site symmetry around Cu2+ ion is tetragonally distorted octahedral. From the EPR and Optical data bonding coefficients were evaluated. The in plane o-bonding(α2) is moderately ionic while out of plane 7t-bonding(β2) and in plane 7t-bonding(β1 2) are ionic nature

  12. Responses of Sesbania rostrata and S. cannabina to Pb, Zn, Cu and Cd toxicities.

    PubMed

    Yang, Zhong-yi; Chen, Fu-hua; Yuan, Jian-gang; Zheng, Zheng-wei; Wong, Ming-hung

    2004-01-01

    Responses of Sesbania rostrata and S. cannabina to Pb, Zn, Cu and Cd toxicities were assessed by a seed-suspending seedbed(SSS) approach. The results showed that the SSS approach was suitable for testing the tolerance of a plant to the stress of toxic metals. The endpoints include seed germination success, straightened radicle and hypocotyl of the seedlings from the seeds. The measurements could be done easily and accurately. It was found that the elongation of radicle was the most sensitive indicator to the stress of heavy metals among the endpoints. When exposure to lower or medium concentrations of Pb, Zn, and Cd, the development of the lateral roots were favorable. Species of S. rostrata was more tolerant than S. cannabina to the heavy metals, especially to Zn and Cd. The ED50 of Pb, Zn, Cu and Cd were 32.90, 5.32, 4.40 and 12.00 microg/ml for S. rostrata, respectively, and they were 30.11, 2.87, 4.05 and 4.94 microg/ml respectively for S. cannabina.

  13. Charge disproportionation and the pressure-induced insulator–metal transition in cubic perovskite PbCrO 3

    DOE PAGES

    Cheng, Jinguang; Kweon, K. E.; Larregola, S. A.; ...

    2015-01-26

    The perovskite PbCrO3 is an antiferromagnetic insulator. But, the fundamental interactions leading to the insulating state in this single-valent perovskite are unclear. Moreover, the origin of the unprecedented volume drop observed at a modest pressure of P = 1.6 GPa remains an outstanding problem. Our report shows a variety of in situ pressure measurements including electron transport properties, X-ray absorption spectrum, and crystal structure study by X-ray and neutron diffraction. These studies reveal key information leading to the elucidation of the physics behind the insulating state and the pressure-induced transition. Furthermore, we argue that a charge disproportionation 3Cr4+ → 2Cr3+more » + Cr6+ in association with the 6s-p hybridization on the Pb2+ is responsible for the insulating ground state of PbCrO3 at ambient pressure and the charge disproportionation phase is suppressed under pressure to give rise to a metallic phase at high pressure. The model is well supported by density function theory plus the correlation energy U (DFT + U) calculations.« less

  14. Ti3CrCu4: A possible 2-D ferromagnetic spin fluctuating system

    DOE PAGES

    Dhar, S. K.; Provino, A.; Manfrinetti, P.; ...

    2016-03-09

    Ti3CrCu4 is a new ternary compound which crystallizes in the tetragonal Ti3Pd5 structure type. The Cr atoms form square nets in the a-b plane (a = 3.124 Å) which are separated by an unusually large distance c = 11.228 Å along the tetragonal axis, thus forming a -2-D Cr-sublattice. The paramagnetic susceptibility is characterized by a low effective moment, μeff = 1.1 μB, a low paramagnetic Curie temperature θP (below 7 K) and a temperature independent χ0 = 6.7 x 10–4 emu/mol. The magnetization at 1.8 K increases rapidly with field nearly saturating to 0.2 μB/f.u. The zero field heatmore » capacity C/T shows an upturn below 7 K (~190 mJ/mol K2 at ~0.1K) which is suppressed in applied magnetic fields and interpreted as suggesting the presence of spin fluctuations. The resistivity at low temperatures shows non-Fermi liquid behavior. Overall, the experimental data thus reveal an unusual magnetic state in Ti3CrCu4, which likely has its origin in the layered nature of the Cr sub-lattice and ferromagnetic spin fluctuations. Here, density functional theoretical calculations reveal a sharp Cr density of states peak just above the Fermi level, indicating the propensity of Ti3CrCu4 to become magnetic.« less

  15. The molecular structure of the vanadate mineral mottramite [PbCu(VO4)(OH)] from Tsumeb, Namibia--a vibrational spectroscopic study.

    PubMed

    Frost, Ray L; Xi, Yunfei; López, Andrés; Corrêa, Lívia; Scholz, Ricardo

    2014-03-25

    We have studied a mineral sample of mottramite PbCu(VO4)(OH) from Tsumeb, Namibia using a combination of scanning electron microscopy with EDX, Raman and infrared spectroscopy. Chemical analysis shows principally the elements V, Pb and Cu. Ca occurs as partial substitution of Pb as well as P and As in substitution to V. Minor amounts of Si and Cr were also observed. The Raman band of mottramite at 829 cm(-1), is assigned to the ν1 symmetric (VO4(-)) stretching mode. The complexity of the spectra is attributed to the chemical composition of the Tsumeb mottramite. The ν3 antisymmetric vibrational mode of mottramite is observed as very low intensity bands at 716 and 747 cm(-1). The series of Raman bands at 411, 439, 451 cm(-1) and probably also the band at 500 cm(-1) are assigned to the (VO4(-)) ν2 bending mode. The series of Raman bands at 293, 333 and 366 cm(-1) are attributed to the (VO4(-)) ν4 bending modes. The ν3, ν3 and ν4 regions are complex for both minerals and this is attributed to symmetry reduction of the vanadate unit from Td to Cs. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Effect of dissolved organic matter (DOM) of contrasting origins on Cu and Pb speciation and toxicity to Paracentrotus lividus larvae.

    PubMed

    Sánchez-Marín, Paula; Santos-Echeandía, Juan; Nieto-Cid, Mar; Alvarez-Salgado, Xosé Antón; Beiras, Ricardo

    2010-01-31

    Water samples of contrasting origin, including natural seawater, two sediment elutriates and sewage-influenced seawater, were collected and obtained to examine the effect of the dissolved organic matter (DOM) present on metal bioavailability. The carbon content (DOC) and the optical properties (absorbance and fluorescence) of the coloured DOM fraction (CDOM) of these materials were determined. Cu and Pb complexation properties were measured by anodic stripping voltammetry (ASV) and the effect of DOM on Cu and Pb bioavailability was studied by means of the Paracentrotus lividus embryo-larval bioassay. Sediment elutriates and sewage-influenced water (1) were enriched 1.4-1.7 times in DOC; (2) absorbed and reemitted more light; and (3) presented higher Cu complexation capacities (L(Cu)) than the natural seawater used for their preparation. L(Cu) varied from 0.08 microM in natural seawater to 0.3 and 0.5 microM in sediment elutriates and sewage-influenced water, respectively. Differences in DOC, CDOM and Cu complexation capacities were reflected in Cu toxicity. DOM enriched samples presented a Cu EC(50) of 0.64 microM, significantly higher than the Cu EC(50) of natural and artificial seawater, which was 0.38 microM. The protecting effect of DOM on Cu toxicity greatly disappeared when the samples were irradiated with high intensity UV-light. Cu toxicity could be successfully predicted considering ASV-labile Cu concentrations in the samples. Pb complexation by DOM was only detected in the DOM-enriched samples and caused little effect on Pb EC(50). This effect was contrary for both elutriates: one elutriate reduced Pb toxicity in comparison with the control artificial seawater, while the other increased it. UV irradiation of the samples caused a marked increase in Pb toxicity, which correlated with the remaining DOC concentration. DOM parameters were related to Cu speciation and toxicity: good correlations were found between DOC and Cu EC(50), while L(Cu) correlated

  17. Cd, Ni, Cr and Pb distribution in biosolid pellets used as soil amendment

    NASA Astrophysics Data System (ADS)

    Jordán, Manuel M.; Rincón-Mora, Beatriz; Belén Almendro-Candel, María; Navarro Pedreño, Jose; Gómez Lucas, Ignacio; Bech, Jaume; Roca, Nuria; Pardo, Francisco

    2016-04-01

    The application of biosolids to a soil is a method that offers important benefits (Navarro et al. 2003). The transport and application costs are quite low (mostly if they are dehydrated biosolids or pellets) if soils are located near a wastewater treatment plant. It is possible to recycle nutrients (N, P, and K) and organic matter by improving the physical and chemical characteristics of the soil and by reducing the fertilizer costs. However, the use of biosolids may also has several problems, such as the presence of quantities of metals that could be toxic for plants or could contaminate ground-waters after being leached. Heavy metals are one of the most serious environmental pollutants because of its high toxicity, abundance and easy accumulation by plant (Soriano-Disla et al. 2014; Rosen and Chen 2014). Contamination of soils by potentially toxic elements (e.g. Cd, Ni, Cr, Pb) from amendments of biosolids is subject to rigorous controls within the European Union. The present study was designed to examine the partition of selected heavy metals in biosolid pellets, and also to relate the distribution patterns of these metals. Samples were collected from the treatment of urban wastewater at the drying grounds of a wastewater processing plant. The samples correspond to biosolids with humidities below 20% and are representative of the three horizons within the pile: the isolation surface (H1), the mesophilous area (H2), and the thermophilous area (H3). Biosolid aggregates were placed in a pellet press and then compacted. Total content of metals was determined following microwave digestion and analysed by ICP/MS. Triplicate samples were weighed in polycarbonate centrifuge tubes and sequentially extracted. The distribution of chemical forms of Cd, Ni, Cr, and Pb in the biosolids was studied using a sequential extraction procedure that fractionates the metal into soluble-exchangeable, specifically sorbed-carbonate bound, oxidizable, reducible, and residual forms. The

  18. The adsorption of Cu, Pb, Zn, and Cd on goethite from major ion seawater

    NASA Astrophysics Data System (ADS)

    Balistrieri, L. S.; Murray, J. W.

    1982-07-01

    The adsorption of Cu, Pb, Zn, and Cd on goethite (αFeOOH) from NaNO 3 solutions and from major ion seawater was compared to assess the effect of the major ions of seawater (Na, Mg, Ca, K, Cl, and SO 4) on the adsorption behavior of the metals. Magnesium and sulphate are the principal seawater ions which enhance or inhibit adsorption relative to the inert system. Their effect, as determined from the site-binding model of Davis et al. (1978), was a combination of changing the electrostatic conditions at the interface and decreasing the available binding sites. The basic differences between the experimental system of major ion seawater and natural seawater were examined. It was concluded that: 1) although the experimental metal concentrations in major ion seawater were higher than those found in natural seawater, estimates of the binding energy of Cu, Zn, and Cd with αFeOOH for natural seawater concentrations could be made from the data, 2) Cu, Pb, Zn, and Cd showed little or no competition for surface sites on goethite, and 3) the presence of carbonate, phosphate, and silicate had little or no effect on the adsorption of Zn and Cd on goethite.

  19. Pb/Cu effects on the organization of microtubule cytoskeleton in interphase and mitotic cells of Allium sativum L.

    PubMed

    Liu, Donghua; Xue, Ping; Meng, Qingmin; Zou, Jing; Gu, Jiegang; Jiang, Wusheng

    2009-04-01

    The effects of lead and copper on the arrangement of microtubule (MT) cytoskeleton in root tip cells of Allium sativum L. were investigated. Batch cultures of garlic were carried out under defined conditions in the presence 10(-4) M Pb/Cu of various duration treatments. With tubulin immunolabelling and transmission electron microscopy (TEM), we found four different types of MT structures depending on the cell cycle stage: the interphase array, preprophase band, mitotic spindle and phragmoplast were typical for the control cells. Pb/Cu affected the mechanisms controlling the organization of MT cytoskeleton, and induces the following aberrations in interphase and mitotic cells. (1) Pb/Cu induced the formation of atypical MT arrays in the cortical cytoplasm of the interphase cells, consisting of skewed, wavy MT bundles, MT fragments and ring-like tubulin aggregations. (2) Pb/Cu disordered the chromosome movements carried out by the mitotic spindle. The outcome was chromosome aberrations, for example, chromosome bridges and chromosome stickiness, as well as inhibition of cells from entering mitosis. (3) Depending on the time of exposure, MTs disintegrated into shorter fragments or they completely disappeared, indicating MT depolymerization. (4) Different metals had different effects on MT organization. MTs were more sensitive to the pressure of Cu ions than Pb. Moreover, TEM observations showed that the MTs were relatively short and in some places wavy when exposed to 10(-4) M Pb/Cu solutions for 1-2 h. In many sections MTs were no longer visible with increasing duration of treatment (>4 h). Based on these results, we suggested that MT cytoskeleton is primarily responsible for Pb/Cu-associated toxicity and tolerance in plants.

  20. Reduced Carrier Recombination in PbS - CuInS2 Quantum Dot Solar Cells.

    PubMed

    Sun, Zhenhua; Sitbon, Gary; Pons, Thomas; Bakulin, Artem A; Chen, Zhuoying

    2015-05-29

    Energy loss due to carrier recombination is among the major factors limiting the performance of TiO2/PbS colloidal quantum dot (QD) heterojunction solar cells. In this work, enhanced photocurrent is achieved by incorporating another type of hole-transporting QDs, Zn-doped CuInS2 (Zn-CIS) QDs into the PbS QD matrix. Binary QD solar cells exhibit a reduced charge recombination associated with the spatial charge separation between these two types of QDs. A ~30% increase in short-circuit current density and a ~20% increase in power conversion efficiency are observed in binary QD solar cells compared to cells built from PbS QDs only. In agreement with the charge transfer process identified through ultrafast pump/probe spectroscopy between these two QD components, transient photovoltage characteristics of single-component and binary QDs solar cells reveal longer carrier recombination time constants associated with the incorporation of Zn-CIS QDs. This work presents a straightforward, solution-processed method based on the incorporation of another QDs in the PbS QD matrix to control the carrier dynamics in colloidal QD materials and enhance solar cell performance.

  1. Reduced Carrier Recombination in PbS - CuInS2 Quantum Dot Solar Cells

    PubMed Central

    Sun, Zhenhua; Sitbon, Gary; Pons, Thomas; Bakulin, Artem A.; Chen, Zhuoying

    2015-01-01

    Energy loss due to carrier recombination is among the major factors limiting the performance of TiO2/PbS colloidal quantum dot (QD) heterojunction solar cells. In this work, enhanced photocurrent is achieved by incorporating another type of hole-transporting QDs, Zn-doped CuInS2 (Zn-CIS) QDs into the PbS QD matrix. Binary QD solar cells exhibit a reduced charge recombination associated with the spatial charge separation between these two types of QDs. A ~30% increase in short-circuit current density and a ~20% increase in power conversion efficiency are observed in binary QD solar cells compared to cells built from PbS QDs only. In agreement with the charge transfer process identified through ultrafast pump/probe spectroscopy between these two QD components, transient photovoltage characteristics of single-component and binary QDs solar cells reveal longer carrier recombination time constants associated with the incorporation of Zn-CIS QDs. This work presents a straightforward, solution-processed method based on the incorporation of another QDs in the PbS QD matrix to control the carrier dynamics in colloidal QD materials and enhance solar cell performance. PMID:26024021

  2. Pb/Cu (100) surface superstructures: Monte Carlo and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Tan, S.; Ghazali, A.; L´vy, J. C. S.

    1997-12-01

    Monte Carlo simulations with simple pair potentials of the Lennard-Jones type enable us to show the stability of the three experimentally known superstructures of Pb/Cu (100) at different lead submonolayer coverages: c(4 × 4)atθ = 3/8,c(2 × 2)atθ = 0.5 and c(5√2 × √2)R45° at θ = 0.6. In addition, numerous details of these superstructures, including interatomic distances, surface alloying, corrugation and weak modulation are obtained numerically in quantitative and qualitative accord with the experimentally observed and measured data. By molecular dynamics the melting of these structures is studied from the temperature dependence of the Pb-atom average energy and diffusion coefficient, with evidence for a first-order transition for every superstructure. The dispersion of surface phonons is also derived.

  3. Investigation of the nanostructure and wear properties of physical vapor deposited CrCuN nanocomposite coatings

    SciTech Connect

    Baker, M.A.; Kench, P.J.; Tsotsos, C.; Gibson, P.N.; Leyland, A.; Matthews, A.

    2005-05-01

    This article presents results on CrCuN nanocomposite coatings grown by physical vapor deposition. The immiscibility of Cr (containing a supersaturation of nitrogen) and Cu offers the potential of depositing a predominantly metallic (and therefore tough) nanocomposite, composed of small Cr(N) metallic and/or {beta}-Cr{sub 2}N ceramic grains interdispersed in a (minority) Cu matrix. A range of CrCuN compositions have been deposited using a hot-filament enhanced unbalanced magnetron sputtering system. The stoichiometry and nanostructure have been studied by x-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy, and x-ray diffraction. Hardness, wear resistance, and impact resistance have been determined by nanoindentation, reciprocating-sliding, and ball-on-plate high-cycle impact. Evolution of the nanostructure as a function of composition and correlations of the nanostructure and mechanical properties of the CrCuN coatings are discussed. A nanostructure comprised of 1-3 nm {alpha}-Cr(N) and {beta}-Cr{sub 2}N grains separated by intergranular regions of Cu gives rise to a coating with significantly enhanced resistance to impact wear.

  4. Biological diversity of Salix taxa in Cu, Pb and Zn phytoextraction from soil.

    PubMed

    Mleczek, Mirosław; Rutkowski, Paweł; Goliński, Piotr; Kaczmarek, Zygmunt; Szentner, Kinga; Waliszewska, Bogusława; Stolarski, Mariusz; Szczukowski, Stefan

    2017-02-01

    The aim of the study was to estimate the efficiency of copper (Cu), lead (Pb) and zinc (Zn) phytoextraction by 145 Salix taxa cultivated in an area affected by industrial activity. Survivability and biomass of plants were also analyzed. The highest Cu, Pb and Zn content in shoots was 33.38 ± 2.91 (S. purpurea × viminalis 8), 24.64 ± 1.97 (S. fragilis 1) and 58.99 ± 4.30 (S. eriocephala 7) mg kg(-1) dry weight, respectively. In the case of unwashed leaves, the highest content of these metals was 135.06 ± 8.14 (S. purpurea 26), 67.98 ± 5.27 (S. purpurea 45) and 142.56 ± 12.69 (S. alba × triandra 2) mg kg(-1) dw, while in washed leaves it was 106.02 ± 11.12 (S. purpurea 45), 55.06 ± 5.75 (S. purpurea 45) and 122.87 ± 12.33 (S. alba × triandra 2) mg kg(-1) dw, respectively. The differences between the highest and lowest values for Cu, Pb and Zn were 545%, 20500% and 535% in shoots; 2692%, 2560% and 7500% in unwashed leaves; and 3286%, 2221% and 6950% in washed leaves, respectively. S. acutifolia was able to effectively accumulate all three metals jointly, producing shoots that were well developed in both length and diameter when compared with the other tested willows-an ability that would suggest its high suitability for practical application.

  5. Immobilization of Cu, Zn, Cd and Pb in mine drainage stream sediment using Chinese loess.

    PubMed

    Zang, Fei; Wang, Shengli; Nan, Zhongren; Ma, Jianmin; Li, Yepu; Zhang, Qian; Chen, Yazhou

    2017-08-01

    The in situ immobilization of metal-contaminated sediment, using various amendments, has attracted great attention owing to their cost-effectiveness. The present study investigated the effectiveness of Chinese loess on Cu, Zn, Cd and Pb stabilization by decreasing their bioavailability in contaminated sediment. The loess was mixed with the sediment in doses of 0, 0.5, 1, 2, 5, 10 and 20 kg. Approximately 70 d after loess application, the effectiveness was evaluated using the Tessier sequential extraction procedure and single extractants, including ethylenediaminetetraacetic acid disodium salt (EDTA-2Na), diethylenetriaminepentaacetic acid (DTPA), calcium chloride (CaCl2) and hydrochloric acid (HCl). The results indicated that the loess can effectively transform Cu from the carbonate fraction into the residual fraction when the loess dose was ≥5 kg. However, loess had little effect on Zn, Cd and Pb immobilization. Correlation analysis showed that these four extractants can provide a good indication of the toxicity of Cu, Zn, Cd and Pb in the amended sediment. Additionally, the organic matter content in the amended sediment decreased by 1.4% for CK, 1.6% for L0.5, 1.7% for L1, 1.5% for L2, 1.5% for L5, 1.9% for L10 and 1.9% for L20 (CK: untreated sediment; L0.5 to L20 represent loess doses of 0.5, 1, 2, 5, 10 and 20 kg, respectively) compared to the initial organic matter content in the unamended sediment, which may increase the atmospheric carbon dioxide owing to the degradation of organic matter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Variation of photon interaction parameters with energy for some Cu-Pb alloys

    SciTech Connect

    Singh, Tejbir Kaur, Sarpreet; Kaur, Parminder; Kaur, Harvinder; Singh, Parjit S.

    2015-08-28

    Various photon interaction parameters (mass attenuation coefficients, effective atomic numbers and effective electron numbers) have been computed for different compositions of Cu-Pb alloys in the wide energy regime of 1 keV to 100 GeV. The mass attenuation coefficients have been computed using mixture rule with the help of WinXCom (mass attenuation coefficient database for elements). The variation of mass attenuation coefficients, effective atomic numbers and electron density has been analysed and discussed in terms of dominance of different photon interaction processes viz. Compton scattering, photoelectric effect and pair production.

  7. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings

    PubMed Central

    Huang, Longbin; Li, Xiaofang; Nguyen, Tuan A. H.

    2015-01-01

    Elevated inorganic phosphate (Pi) concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu)-lead (Pb)-zinc (Zn) mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7), the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5), EHM-TD (fresh Cu-stream, high magnetite content) and local soil (weathered shale and schist), respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed), oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2), ankerite (Ca(Fe Mg)(CO3)2 and siderite (FeCO3), as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,Fe)S, ZnS, (Zn,Cd)S)) may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal. PMID

  8. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings.

    PubMed

    Huang, Longbin; Li, Xiaofang; Nguyen, Tuan A H

    2015-01-01

    Elevated inorganic phosphate (Pi) concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu)-lead (Pb)-zinc (Zn) mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7), the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5), EHM-TD (fresh Cu-stream, high magnetite content) and local soil (weathered shale and schist), respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed), oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2), ankerite (Ca(Fe Mg)(CO3)2 and siderite (FeCO3), as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,Fe)S, ZnS, (Zn,Cd)S)) may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal.

  9. The exciton absorption spectrum of thin CuPb3Br7 superionic conductor films

    NASA Astrophysics Data System (ADS)

    Yunakova, O. N.; Yunakov, N. N.; Kovalenko, E. N.; Kovalenko, V. V.

    2016-09-01

    A study of the absorption spectrum of thin CuPb2Br7 films in the 2-6 eV spectral and 90-500 K temperature ranges. It is shown that the exciton spectrum of the compound is associated with transitions in the lead ion. The temperature dependence of the spectral position and half-width of the low-frequency exciton band contains features associated with phase transitions γ → β (Tc1 = 159 K) and β → α (Tc2 = 434 K) and the disordering of the cation sublattice of the compound in the transition to the superionic state.

  10. Preparation of Bulky Bi(Pb)-Sr-Ca-Cu-O Superconductor by Magnetized Twin-Roll

    NASA Astrophysics Data System (ADS)

    Kawahara, Nobuaki; Kawabata, Sanemasa; Enami, Hiroyoshi; Shinohara, Toshiyuki; Hoshizaki, Hiroki; Hasegawa, Masashi; Asai, Shigeo; Imura, Toru

    1990-02-01

    A highly oriented (Bi, Pb)2Sr2Ca2Cu3Ox bulk superconductor has been prepared by magnetized twin-roll processing. In these bulks, plate-like crystal grains were highly oriented by a magnetic and mechanical force. The grain c-axes were parallel to the magnetic field and pressing directions. In fact, both critical current density (Jc) and orientation degree of the sample rolled under 2 T were higher than those of the sample rolled with no magnetic field. The magnetized twin-roll processing is effective not only in enhancing grain-orientation but also in packing to improve Jc.

  11. Preparation and thermoelectric properties of ternary superionic conductor CuCrS{sub 2}

    SciTech Connect

    Chen Yuexing; Zhang Boping; Ge Zhenhua; Shang Pengpeng

    2012-02-15

    Transition metal chalcogenide CuCrS{sub 2} powder was synthesized by mechanical alloying (MA) and then consolidated by spark plasma sintering (SPS) technique at 673-1073 K. The phase structure, microstructure and thermoelectric properties of samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and Seebeck coefficient/electrical conductivity measuring system, respectively. All the bulks indicated a single phase CuCrS{sub 2}, while the high relative density over 90% were attained for the samples sintered at 873-1073 K. The electrical conductivity of bulk samples displayed a typical characteristic of semiconductor. With increasing measuring temperature, the conductive behaviour of bulk samples sintered over 973 K showed a semiconductor transformation from n-type to p-type due to the changes of main carrier type. The sample obtained by applying SPS at 873 K got the highest power factor 83.2 {mu}W m{sup -1} K{sup -2}, and the largest ZT value 0.11 at 673 K. - Graphical abstract: The samples sintered above 873 K, both of the Seebeck coefficient and electrical conductivity exhibit an increase tendency with increasing temperature, which is due to the mechanism of mix-conduction for CuCrS{sub 2}. Highlights: Black-Right-Pointing-Pointer Single phase CuCrS{sub 2} powder was synthesized by ball-milling at 425 rpm for 40 h. Black-Right-Pointing-Pointer Dense CuCrS{sub 2} bulks were fabricated using SPS techniques at sintering temperature 873-1073 K. Black-Right-Pointing-Pointer Seebeck coefficient of CuCrS{sub 2} samples sintered over 973 K change the signs. Black-Right-Pointing-Pointer Highest power factor reached 83.2 {mu}W m{sup -1} K{sup -2} at 673 K for the sample sintered at 873 K. Black-Right-Pointing-Pointer ZT value was 0.11 at 673 K for the sample sintered at 873 K.

  12. Calculation of Liquid-Solid Interfacial Free Energy in Pb-Cu Binary Immiscible System

    NASA Astrophysics Data System (ADS)

    Li, Hong-shan; Zhou, Sheng-gang; Cao, Yong

    2016-11-01

    Based on the solid-liquid interfacial free energy theory of the complex Warren binary & pseudo-binary system and through the simplification of it by taking Pb-Cu binary system as an example, the physical model for it in binary immiscible system can be obtained. Next, its thermodynamic formula is derived to obtain a theoretical formula that only contains two parameters, and comparisons are made with regard to γSL calculated values and experimental values of MPE (multiphase equilibrium method) under several kinds of temperatures. As manifested in the outcomes, the improved physical model and theoretical formula will become not only easy to understand but also simple for calculation (the calculated value of γSL depends on two parameters, i.e. temperature and percentage composition of Cu atom). It can be treated as the foundation of application for the γSL calculation of liquid-solid interfacial free energy in other immiscible systems.

  13. Processing Bi-Pb-Sr-Ca-Cu-O superconductors from amorphous state

    NASA Technical Reports Server (NTRS)

    Chiang, C. K.; Wong-Ng, W.; Cook, L. P.; Freiman, S. W.; Hwang, N. M.; Vaudin, M.; Hill, M. D.; Shull, R. D.; Shapiro, A. J.; Swartzendruber, L. J.

    1991-01-01

    The bismuth based high T sub c superconductors can be processed via an amorphous Bi-Pb-Sr-Ca-Cu oxide. The amorphous oxides were prepared by melting the constituent powders in an alumina crucible at 1200 C in air followed by pouring the liquid onto an aluminum plate, and rapidly pressing with a second plate. In the amorphous state, no crystalline phase was identified in the powder x ray diffraction pattern of the quenched materials. After heat treatment at high temperature the amorphous materials crystallized into a glass ceramic containing a large fraction of the Bi2Sr2Ca2Cu3O(x) phase T sub c = 110 K. The processing method, crystallization, and results of dc electrical resistivity and ac magnetic susceptibility measurements are discussed.

  14. 1D chain formation by coadsorption of Pb and Bi on Cu(001): Determination using low energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Kabiruzzaman, Md; Ahmed, Rezwan; Nakagawa, Takeshi; Mizuno, Seigi

    2017-10-01

    Coadsorption of two heavy metals, Pb and Bi, on Cu(001) at room temperature has been studied using low energy electron diffraction (LEED). c(4 × 4), c(2 × 2), and c(9√{ 2}×√{ 2}) phases are obtained at different coverages; here, we have determined the best-fit structure of c(4 × 4) phase. This structure can be described as a 1D substitutional chain arrangement of Pb and Bi atoms between the Cu rows along the [110] direction. The unit cell in the two-dimensional (2D) surface consists of one Bi atom, two Pb atoms, and four Cu atoms with one vacancy at the center. The optimal structure parameters demonstrate that Bi atoms are located at fourfold-hollow sites and that Pb atoms are laterally displaced by 0.78 Å from the fourfold-hollow site toward the vacancy. The reasons for the formation of the c(4 × 4) structure upon deposition of Pb and Bi on Cu(001) are discussed in comparison with a similar structure formed by the individual adsorption of Pb on the same substrate.

  15. Hidden transition in multiferroic and magnetodielectric CuCrO2 evidenced by ac-susceptibility

    NASA Astrophysics Data System (ADS)

    Shukla, Kaushak K.; Pal, Arkadeb; Singh, Abhishek; Singh, Rahul; Saha, J.; Sinha, A. K.; Ghosh, A. K.; Patnaik, S.; Awasthi, A. M.; Chatterjee, Sandip

    2017-04-01

    Ferroelectric polarization, magnetic-field dependence of the dielectric constant and ac and dc magnetizations of frustrated CuCrO2 have been measured. A new spin freezing transition below 32 K is observed which is thermally driven. The nature of the spin freezing is to be a single-ion process. Dilution by the replacements of Cr ions by magnetic Mn ions showed suppression of the spin freezing transition suggesting it to be fundamentally a single-ion freezing process. The observed freezing, which is seemingly associated to geometrical spin frustration, represents a novel form of magnetic glassy behavior.

  16. Tolerance and hyperaccumulation of a mixture of heavy metals (Cu, Pb, Hg, and Zn) by four aquatic macrophytes.

    PubMed

    Romero-Hernández, Jorge Alberto; Amaya-Chávez, Araceli; Balderas-Hernández, Patricia; Roa-Morales, Gabriela; González-Rivas, Nelly; Balderas-Plata, Miguel Ángel

    2017-03-04

    In the present investigation, four macrophytes, namely Typha latifolia (L.), Lemna minor (L.), Eichhornia crassipes (Mart.) Solms-Laubach, and Myriophyllum aquaticum (Vell.) Verdc, were evaluated for their heavy metal (Cu, Pb, Hg, and Zn) hyperaccumulation potential under laboratory conditions. Tolerance analyses were performed for 7 days of exposure at five different treatments of the metals mixture (Cu(+2), Hg(+2), Pb(+2), and Zn(+2)). The production of chlorophyll and carotenoids was determined at the end of each treatment. L. minor revealed to be sensitive, because it did not survive in all the tested concentrations after 72 hours of exposure. E. crassipes and M. aquaticum displayed the highest tolerance to the metals mixture. For the most tolerant species of aquatic macrophytes, The removal kinetics of E. crassipes and M. aquaticum was carried out, using the following mixture of metals: Cu (0.5 mg/L) and Hg, Pb, and Zn 0.25 mg/L. The obtained results revealed that E. crassipes can remove 99.80% of Cu, 97.88% of Pb, 99.53% of Hg, and 94.37% of Zn. M. aquaticum withdraws 95.2% of Cu, 94.28% of Pb, 99.19% of Hg, and 91.91% of Zn. The obtained results suggest that these two species of macrophytes could be used for the phytoremediation of this mixture of heavy metals from the polluted water bodies.

  17. Direct determination of Cd, Cu and Pb in wines and grape juices by thermospray flame furnace atomic absorption spectrometry.

    PubMed

    Schiavo, Daniela; Neira, José Y; Nóbrega, Joaquim A

    2008-09-15

    The applicability of thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was evaluated for direct determination of Cu, Cd and Pb in wines and grape juices. The developed procedure does not require preliminary acid digestion of the samples. The optimum conditions for determination of Cu, Cd and Pb in wines were studied and the performance was compared to those typically obtained by flame atomic absorption spectrometry (FAAS). A sample volume of 150 microL was introduced into a heated nickel tube at a flow rate of 0.54 mLmin(-1) and 0.14 molL(-1) HNO(3) was used as sample carrier flowing at 2.5 mLmin(-1) for determining all analytes. The effect of ethanol concentrations on Cu, Cd and Pb absorbance signals were studied. All determinations were carried out by adopting optimized conditions and quantification was based on the standard additions method. Limits of detection (LOD) of 12.9, 1.8 and 5.3 microgL(-1) (n=14) for Cu, Cd and Pb, respectively, were obtained for wine samples (3sigma(blank)/slope, n=14). Relative standard deviations (R.S.D., %) of 2.7, 2.1 and 2.6 for Cu, Cd and Pb, were obtained (n=6) for wine samples. The values determined for grape juice samples were similar to these ones. The analytical throughput was 45 determinations h(-1) and accuracy was checked by addition-recovery experiments.

  18. Effects of carbon nanotube and biochar on bioavailability of Pb, Cu and Sb in multi-metal contaminated soil.

    PubMed

    Vithanage, Meththika; Herath, Indika; Almaroai, Yaser A; Rajapaksha, Anushka Upamali; Huang, Longbin; Sung, Jwa-Kyung; Lee, Sang Soo; Ok, Yong Sik

    2017-03-22

    This study examined the effects of carbon nanotube and biochar on the bioavailability of Pb, Cu and Sb in the shooting range soils for developing low-cost remediation technology. Commercially available multi-walled carbon nanotube (MWCNT) and biochar pyrolyzed from soybean stover at 300 °C (BC) at 0.5, 1 and 2.5% (w w(-1)) were used to remediate the contaminated soil in an incubation experiment. Both DTPA (bioavailable) and TCLP (leaching) extraction procedures were used to compare the metal/loid availability and leaching by the amendments in soil. The addition of BC was more effective in immobilizing mobile Pb and Cu in the soil than that in MWCNT. The BC reduced the concentrations of Pb and Cu in the soil by 17.6 and 16.2%, respectively. However, both MWCNTs and BC increased Sb bioavailability by 1.4-fold and 1.6-fold, respectively, in DTPA extraction, compared to the control. The toxicity characteristic leaching procedure (TCLP) test showed that the leachability of Pb in the soil amended with 2.5% MWCNT was 1.3-fold higher than that the unamended soil, whereas the BC at 2.5% decreased the TCLP-extractable Pb by 19.2%. Precipitation and adsorption via electrostatic and π-π electron donor-acceptor interactions were postulated to be involved in the interactions of Pb and Cu with surfaces of the BC in the amended soils, whereas ion exchange mechanisms might be involved in the immobilization of Cu in the MWCNT-amended soils. The application of BC derived from soybean stover can be a low-cost technology for simultaneously immobilizing bioavailable Pb and Cu in the shooting range soils; however, neither of amendments was effective in Sb immobilization.

  19. Accumulation of Sb, Pb, Cu, Zn and Cd by various plants species on two different relocated military shooting range soils.

    PubMed

    Evangelou, Michael W H; Hockmann, Kerstin; Pokharel, Rasesh; Jakob, Alfred; Schulin, Rainer

    2012-10-15

    Annually, more than 400 t Pb and 10 t Sb enter Swiss soils at some 2000 military shooting ranges. After the decommission of military shooting ranges, heavily contaminated soils (>2000 mg kg(-1) Pb) are landfilled or processed by soil washing, whereas for soils with less contamination, alternate strategies are sought. Although the use of military shooting ranges for grazing in Switzerland is common practice, no assessment has been done about the uptake of Sb in plants and its subsequent potential intake by grazing animals. We determined the uptake of Sb, Pb, Cu, Zn and Cd in the aboveground biomass of nine plant species growing on a calcareous (Chur) and a weakly acidic (Losone) military shooting range soil in order to assess if grazing would be safe to employ on decommissioned military shooting ranges. The two soils did not differ in their total concentrations of Cu, Zn, Sb and Cd, they differed however in the total concentration of Pb. Additionally, their physical and chemical properties were significantly different. The accumulation of Zn, Cu, Cd and Pb in the shoots of all nine plant species remained below the Swiss tolerance values for fodder plants (150 mg kg(-1) Zn, 15-35 mg kg(-1) Cu, 40 mg kg(-1) Pb, and 1 mg kg(-1) Cd DW), with the only exception of Pb in Chenopodium album shoots which reached a concentration of 62 mg kg(-1) DW. Antimony concentrations were 1.5-2.6-fold higher in plants growing on the calcareous soil than on the weakly acidic soil. Considering Cu, Zn, Pb, Sb and Cd, all plants, with the exception C. album, would be suitable for grazing on similar shooting range soils.

  20. Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants.

    PubMed

    Aboughalma, Hanssan; Bi, Ran; Schlaak, Michael

    2008-07-01

    The use of a combination of electrokinetic remediation and phytoremediation to decontaminate soil polluted with heavy metals has been demonstrated in a laboratory-scale experiment. Potato tubers were planted in plastic vessels filled with Zn, Pb, Cu and Cd contaminated soil and grown in a greenhouse. Three of these vessels were treated with direct current electric field (DC), three with alternative current (AC) and three remained untreated as control vessels. The soil pH varied from anode to cathode with a minimum of pH 3 near the anode and a maximum of pH 8 near the cathode in the DC treated soil profile. There was an accumulation of Zn, Cu and Cd at about 12 cm distance from anode when soil pH was 5 in the DC treated soil profile. There was no significant metal redistribution and pH variation between anode and cathode in the AC soil profile. The biomass production of the plants was 72% higher under AC treatment and 27% lower under DC treatment compared to the control. Metal accumulation was generally higher in the plant roots treated with electrical fields than the control. The overall metal uptake in plant shoots was lower under DC treatment compared to AC treatment and control, although there was a higher accumulation of Zn and Cu in the plant roots treated with electrical fields. The Zn uptake in plant shoots under AC treatment was higher compared to the control and DC treatment. Zn and Cu accumulation in the plant roots under AC and DC treatment was similar, and both were higher comparing to control. Cd content in plant roots under all three treatments was found to be higher than that in the soil. The Pb accumulation in the roots and the uptake into the shoots was lower compared to its content in the soil.

  1. Enhanced magnetism of Cu{sub n} clusters capped with N and endohedrally doped with Cr

    SciTech Connect

    Datta, Soumendu; Banerjee, Radhashyam; Mookerjee, Abhijit

    2015-01-14

    The focus of our work is on the production of highly magnetic materials out of Cu clusters. We have studied the relative effects of N-capping as well as N mono-doping on the structural stability and electronic properties of the small Cu clusters using first principles density functional theory based electronic structure calculations. We find that the N-capped clusters are more promising in producing giant magnetic moments, such as 14 μ{sub B} for the Cu{sub 6}N{sub 6} cluster and 29 μ{sub B} for the icosahedral Cu{sub 13}N{sub 12} cluster. This is accompanied by a substantial enhancement in their stability. We suggest that these giant magnetic moments of the capped Cu{sub n} clusters have relevance to the observed room temperature ferromagnetism of Cu doped GaN. For cage-like hollow Cu-clusters, an endohedral Cr-doping together with the N-capping appears as the most promising means to produce stable giant magnetic moments in the copper clusters.

  2. Evaluation of Pb-17Li compatibility of ODS Fe-12Cr-5Al alloys

    DOE PAGES

    Unocic, Kinga A.; Hoelzer, David T.

    2016-07-09

    The Dual Coolant Lead Lithium (DCLL: eutectic Pb–17Li and He) blanket concept requires improved Pb–17Li compatibility with ferritic steels in order to demonstrate acceptable performance in fusion reactors. As an initial step, static Pb-17at.%Li (Pb-17Li) capsule experiments were conducted on new oxide dispersion strengthened (ODS) FeCrAl alloys ((1) Y2O3 (125Y), (2) Y2O3+ZrO2 (125YZ), (3) Y2O3+HfO2 (125YH), and (4) Y2O3+TiO2 (125YT)) produced at ORNL via mechanical alloying (MA). Tests were conducted in static Pb–17Li for 1000 h at 700°C. Alloys showed promising compatibility with Pb–17Li with small mass change after testing for 125YZ, 125YH and 125YT, while the 125Y alloy experiencedmore » the highest mass loss associated with some oxide spallation and subsequent alloy dissolution. X-ray diffraction methods identified the surface reaction product as LiAlO2 on all four alloys. A small decrease (~1 at.%) in Al content beneath the oxide scale was observed in all 4 ODS alloys, which extended through 60 μm beneath the oxide/metal interface. This indicates improvements in alloy dissolution by decreasing the amount of Al loss from the alloy. Scales formed on 125YZ, 125YH and 125YT were examined via scanning transmission electron microscopy (S/TEM) and revealed incorporation of Zr-, Hf-, and Ti-rich precipitates within the LiAlO2 product, respectively. This indicates an inward scale growth mechanism. Future work in flowing Pb–17Li is needed to further evaluate the effectiveness of this strategy in a test blanket module.« less

  3. Evaluation of Pb-17Li compatibility of ODS Fe-12Cr-5Al alloys

    SciTech Connect

    Unocic, Kinga A.; Hoelzer, David T.

    2016-07-09

    The Dual Coolant Lead Lithium (DCLL: eutectic Pb–17Li and He) blanket concept requires improved Pb–17Li compatibility with ferritic steels in order to demonstrate acceptable performance in fusion reactors. As an initial step, static Pb-17at.%Li (Pb-17Li) capsule experiments were conducted on new oxide dispersion strengthened (ODS) FeCrAl alloys ((1) Y2O3 (125Y), (2) Y2O3+ZrO2 (125YZ), (3) Y2O3+HfO2 (125YH), and (4) Y2O3+TiO2 (125YT)) produced at ORNL via mechanical alloying (MA). Tests were conducted in static Pb–17Li for 1000 h at 700°C. Alloys showed promising compatibility with Pb–17Li with small mass change after testing for 125YZ, 125YH and 125YT, while the 125Y alloy experienced the highest mass loss associated with some oxide spallation and subsequent alloy dissolution. X-ray diffraction methods identified the surface reaction product as LiAlO2 on all four alloys. A small decrease (~1 at.%) in Al content beneath the oxide scale was observed in all 4 ODS alloys, which extended through 60 μm beneath the oxide/metal interface. This indicates improvements in alloy dissolution by decreasing the amount of Al loss from the alloy. Scales formed on 125YZ, 125YH and 125YT were examined via scanning transmission electron microscopy (S/TEM) and revealed incorporation of Zr-, Hf-, and Ti-rich precipitates within the LiAlO2 product, respectively. This indicates an inward scale growth mechanism. Future work in flowing Pb–17Li is needed to further evaluate the effectiveness of this strategy in a test blanket module.

  4. Evaluation of Pb-17Li compatibility of ODS Fe-12Cr-5Al alloys

    SciTech Connect

    Unocic, Kinga A.; Hoelzer, David T.

    2016-07-09

    The Dual Coolant Lead Lithium (DCLL: eutectic Pb–17Li and He) blanket concept requires improved Pb–17Li compatibility with ferritic steels in order to demonstrate acceptable performance in fusion reactors. As an initial step, static Pb-17at.%Li (Pb-17Li) capsule experiments were conducted on new oxide dispersion strengthened (ODS) FeCrAl alloys ((1) Y2O3 (125Y), (2) Y2O3+ZrO2 (125YZ), (3) Y2O3+HfO2 (125YH), and (4) Y2O3+TiO2 (125YT)) produced at ORNL via mechanical alloying (MA). Tests were conducted in static Pb–17Li for 1000 h at 700°C. Alloys showed promising compatibility with Pb–17Li with small mass change after testing for 125YZ, 125YH and 125YT, while the 125Y alloy experienced the highest mass loss associated with some oxide spallation and subsequent alloy dissolution. X-ray diffraction methods identified the surface reaction product as LiAlO2 on all four alloys. A small decrease (~1 at.%) in Al content beneath the oxide scale was observed in all 4 ODS alloys, which extended through 60 μm beneath the oxide/metal interface. This indicates improvements in alloy dissolution by decreasing the amount of Al loss from the alloy. Scales formed on 125YZ, 125YH and 125YT were examined via scanning transmission electron microscopy (S/TEM) and revealed incorporation of Zr-, Hf-, and Ti-rich precipitates within the LiAlO2 product, respectively. This indicates an inward scale growth mechanism. Future work in flowing Pb–17Li is needed to further evaluate the effectiveness of this strategy in a test blanket module.

  5. Heavy metal content (Cd, Ni, Cr and Pb) in soil amendment with a low polluted biosolid

    NASA Astrophysics Data System (ADS)

    Gomez Lucas, Ignacio; Lag Brotons, Alfonso; Navarro-Pedreño, Jose; Belén Almendro-Candel, Maria; Jordán, Manuel M.; Bech, Jaume; Roca, Nuria

    2016-04-01

    The progressively higher water quality standards in Europe has led to the generation of large quantities of sewage sludge derived from wastewater treatment (Fytili and Zabaniotou 2008). Composting is an effective method to minimize these risks, as pathogens are biodegraded and heavy metals are stabilized as a result of organic matter transformations (Barker and Bryson 2002; Noble and Roberts 2004). Most of the studies about sewage sludge pollution are centred in medium and high polluted wastes. However, the aim of this study was to assess the effects on soil heavy metal content of a low polluted sewage sludge compost in order to identify an optimal application rate based in heavy metal concentration under a period of cultivation of a Mediterranean horticultural plant (Cynara carducnculus). The experiment was done between January to June: rainfall was 71 mm, the volume of water supplied every week was 10.5 mm, mean air temperatures was 14.2, 20.4 (maximum), and 9.2◦C (minimum). The soil was a clay-loam anthrosol (WRB 2006). The experimental plot (60 m2) was divided into five subplots with five treatments corresponding to 0, 2, 4, 6, and 8 kg compost/m2. Three top-soil (first 20 cm) samples from each treatment were taken (January, April and June) and these parameters were analysed: pH, electrical conductivity, organic matter and total content of heavy metals (microwave acid digestion followed by AAS-spectrometry determination). The results show that sewage sludge compost treatments increase the organic matter content and salinity (electrical conductivity of the soils) and diminish the pH. Cd and Ni total content in top-soil was affected and both slightly reduce their concentration. Pb and Cr show minor changes. In general, the application of this low polluted compost may affect the mobility of Cd and Ni due to the pH modification and the water added by irrigation along time but Pb and Cr remain their content in the top-soil. References Barker, A.V., and G.M. Bryson

  6. Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria.

    PubMed

    Braud, Armelle; Jézéquel, Karine; Bazot, Stéphane; Lebeau, Thierry

    2009-01-01

    Bioaugmentation-assisted phytoextraction may enhance the phytoextraction efficiency thanks to larger metal mobilization by microbial metabolites. Green fluorescent protein-tagged cells of Pseudomonas aeruginosa, Pseudomonas fluorescens or Ralstonia metallidurans, able to produce siderophores, were inoculated in an agricultural soil containing Cr (488 mg kg(-1)) and Pb (382 mg kg(-1)) and maize was cultivated. Bacteria were inoculated as free or immobilized cells in Ca-alginate beads, with skim milk in the aim at improving both the bacterial survival and the in situ siderophore production. Skim milk addition increased inoculated Pseudomonads concentration in soil. Soil inoculation with free cells of R. metallidurans supplied with skim milk increased Cr accumulation in maize shoots by a factor of 5.2 and inoculation with immobilized P. aeruginosa cells supplied with skim milk increased Cr and Pb uptake by maize shoots by a factor of 5.4 and 3.8, respectively. However total metal taken up by the whole plant decreases almost always with bioaugmentation. Translocation factor also increased with P. aeruginosa or R. metallidurans by a factor of 6 up to 7. Inoculated bacteria concentration in soil was correlated with metals in the exchangeable fraction. Cr and Pb concentrations in the exchangeable fraction were correlated with metal contents in shoots or roots. Our results suggest that bioaugmentation-assisted phytoextraction is a relevant method in the aim at increasing the phytoextraction rate which usually limits the use of phytoremediation technologies.

  7. Surface precipitation of chromium in rapidly solidified Cu-Cr alloys

    NASA Astrophysics Data System (ADS)

    Bizjak, Milan; Karpe, Blaž; Jakša, Gregor; Kovač, Janez

    2013-07-01

    Rapidly solidified ribbons of Cu-Cr alloys with 2.27 and 4.20 at.% of chromium were produced using the melt-spinning method. Alloys were analyzed by electron microscopy for complete solubility of Cr in copper matrix. To avoid disturbing effects of Cr phase particles, the kinetics and the sequence of microstructural transformations during heating were analyzed only the sample with 2.27 at.% of chromium with complete Cr solubility in the copper matrix. We then investigated the precipitation process for this alloy that was subsequently heated at a constant rate. The increased solid solubility obtained allowed the extensive precipitation of a Cr-rich phase. The kinetics and the sequence of microstructural changes that occurred during the heating were analyzed using an in situ measurement of the electrical resistance. The quenched microstructure was analyzed at transition points using scanning and transmission electron microscopy. X-ray photoelectron spectroscopy, as a very surface-sensitive method, was applied to study the changes in the chemical composition of the surface for the Cu-Cr alloy ribbons in the temperature range 400-700 °C during an in situ heat treatment in an ultra-high vacuum. The results show a relatively rapid precipitation of chromium to the surface, which starts at 400 °C and is correlated with a change in the microstructure and the electrical resistance. The Cr-precipitation is faster at higher temperatures and follows the parabolic law. The resistivity results for the supersaturated binary alloy were analyzed using the Ozawa method to give an activation energy for the precipitation of 196 ± 10 kJ mol-1.

  8. Wear behavior of self-lubricating Fe-Cr-C-Mn-Cu alloys: Smearing effect of second phase particles

    NASA Astrophysics Data System (ADS)

    Kim, Ki Nam; Kim, Byung Sik; Shin, Gyeong Su; Park, Myung Chul; Lee, Deok Hyun; Kim, Seon Jin

    2011-08-01

    Newly developed self-lubricating Fe-Cr-C-Mn-Cu cast composite alloys were investigated to study the role of Cu-rich second phase particles which smear on the wear surface during sliding. The wear resistance of the material was improved with an increasing copper concentration. The improved wear resistance was probably obtained by forming a protective tribofilm, which prevented metal-to-metal contact through smearing of the embedded Cu-rich second phase particles. This formation of protective oxide films during sliding is likely to improve the wear resistance of austenitic Fe-Cr-C-Mn-Cu cast composite alloys.

  9. Electrical resistivity, magnetoresistance, magnetisation, hall coefficient and excess conductivity in Pb-doped Bi-Sr-Ca-Cu oxides

    NASA Astrophysics Data System (ADS)

    Poddar, A.; Mandal, P.; Das, A. N.; Ghosh, B.; Choudhury, P.

    1989-12-01

    The electrical resistance, Meissner signal, magnetoresistance and Hall coefficient of Bi 1.75Pb 0.25Sr 2Ca 2Cu 3O x and Bi 1.5Pb 0.5Sr 2Ca 2Cu 3O x (nominal compositions) have been measured. Resistance of the Bi 1.75Pb 0.25 sample becomes zero for T≤106 K while the Bi 1.5Pb 0.5 sample shows a 65% drop in the resistance around 106 K and TR = 0 c ≈ 73 K. Powder X-ray diffraction analysis reveals that the major phase in the Bi 1.75Pb 0.25 sample is the high-T c phase and in the Bi 1.5 Pb 0.5 sample the low-T c phase. The Hall coefficients (R H) of both samples are positive with R-1H> linear in temperature. The temperature dependence of R H is stronger in the Bi 1.75Pb 0.25 sample than in the Bi 1.5Pb 0.5 sample. The carrier concentration determined R-1H for the Bi 1.75Pb 0.25 and the Bi 1.5Pb 0.5 samples at 300 K are 1.59 × 10 21 cm -3 and 3.66 × 10 21 cm -3, respectively. The excess conductivity of both samples is analyzed using the Aslamazov-Larkin expression. The critical exponent λ obtained for the Bi 1.75Pb 0.25 sample is 0.78 and that for the Bi 1.5Pb 0.5 sample, in the temperature region where the high- Tc phase contributes only, is 0.77.

  10. Creep of Uncoated and Cu-Cr Coated NARloy-Z

    NASA Technical Reports Server (NTRS)

    Walter, R. J.; Chiang, K. T.

    1998-01-01

    Stress rupture creep tests were performed on uncoated and Cu-30vol%Cr coated NARloy-Z copper alloy specimens exposed to air at 482 C to 704 C. The results showed that creep failure in air of unprotected NARloy-Z was precipitated by brittle intergranular surface cracking produced by strain assisted grain boundary oxidation (SAGBO) which in turn caused early onset of tertiary creep. For the protected specimens, the Cu-Cr coating remained adherent throughout the tests and was effective in slowing down the rate of oxygen absorption, particularly at the higher temperatures, by formation of a continuous chromium oxide scale. As the result of reducing oxygen ingress, the coating prevented SAGBO initiated early creep failure, extended creep deformation and increased the creep rupture life of NARloy-Z over the entire 482 C to 704 C test temperature range.

  11. Enhanced Magnetization of CuCr2O4 Thin Films by Substrate-Induced Strain

    SciTech Connect

    Iwata, Jodi M.; Chopdekar, Rajesh V.; Wong, Franklin; Nelson-Cheeseman, Brittany B.; Arenholz, Elke; Suzuki, Yuri

    2008-09-17

    We report the synthesis of epitaxial spinel CuCr{sub 2}O{sub 4} thin films that display enhanced magnetization in excess of 200% of the bulk values when grown on single-crystal (110) MgAl{sub 2}O{sub 4} substrates. Bulk CuCr{sub 2}O{sub 4} is a ferrimagnetic insulator with a net magnetic moment of 0.5 {micro}{sub B} due to its distorted tetragonal unit cell (c/a= 1.29) and frustrated triangular moment configuration. We show that through epitaxial growth and substrate-induced strain, it is possible to tune the magnetic functionality of our films by reducing the tetragonal distortion of the unit cell which effectively decreases the frustration of the magnetic moments allowing for an overall greater net moment.

  12. Magnetic properties of delafossite oxide: CuCr1-xTixO2

    NASA Astrophysics Data System (ADS)

    Majee, M. K.; Bhobe, P. A.; Nigam, A. K.

    2016-05-01

    In order to increase the possibility for technological applications of CuCrO2, there have been attempts to introduce ferromagnetic (FM) order by doping at B-site. With this aim, we present here study of polycrystalline CuCr1-xTixO2 with x=0.0, 0.05, 0.1. The samples have been prepared using solid state synthesis method and characterized for its crystal structure and magnetic properties. All the samples crystallize in the 2H delafossite structure with R-3m space group. Ti substitution causes the expansion of unit cell with increase in both the lattice constants. Antiferromagnetic ordering temperature is seen to decrease with increasing Ti. Ferromagnetic-like signature is obtained in one of the compositions at low applied magnetic field of 100 Oe.

  13. Electronic effects at interfaces in Cu - Cr, Mo, Ta, Re Multilayers

    SciTech Connect

    Barbee, T W; Bello, A F; Klepeis, J E; Van Buuren, T

    1999-06-28

    In this study we characterize electronic effects in short-period ({approx}20 {angstrom}) metallic multilayer films in which 40% of the atoms are at an interface using near-edge (L{sub 3,2}) x-ray absorption. This study investigates Cu/TM where TM = Cr, MO, W, Ta, Re. These immiscible elemental pairs are ideal to study as they form no compounds and exhibit terminal solid solubility. An interest in the charge transfer between elements in alloys and compounds has led to studies using x-ray absorption as described above. Near edge x-ray absorption fine structure (NEXAFS), a technique used for analyzing x-ray absorption near the absorption edge of the element, is especially suited to study the amount of unoccupied states in the conduction band of a metal. The d-metals spectra show large peaks at the absorption edges called ''white lines.'' These are due to the unoccupied d-states just above the Fermi level in these metals. A study of the white lines in the 3d metals show that as the d-band is increasingly occupied the white lines decrease in intensity. Starting with Ti (3d{sup 2} 4s{sup 2}), which has an almost empty d-band and shows strong white lines, the white-line intensities decrease across the Periodic Chart to Cu (3d{sup 10} 4s{sup 1}), which has a full d-band and no white lines. Systematic measurement of the L{sub 3,2} absorption spectra of bulk elemental Cu and Cu in the Cu/TM multilayers enabled measurement of the charge transfer. NEXAFS on metallic multilayers has received less attention than alloys because of the difficulty in synthesizing multilayers with controllability up to the monolayer level and because there is little difference between the signal from the bulk and from longer period (> 30 {angstrom}) multilayers. For high-quality short period multilayers, however, the difference is clear. This is highlighted in a study of short period Co/Cu multilayers, where the electronic density of states of Cu in Cu/Co greatly differed from that of bulk Cu. The

  14. [Determination of Cd, Cu, Pb, Hg by reversed-phase high performance liquid chromatography].

    PubMed

    Ding, C; Li, H

    1998-11-01

    The chromatographic behaviors of Me(n+)-Dz (dithizone) have been studied with RP-HPLC. A method for the determination of Cd, Cu, Pb and Hg has been established. The chromatographic conditions were: column: Shim-pack CLC-ODS, 150 mm x 6.0 mm i.d.; mobile phase: V(methanol): V(water): V (chloroform) (containing volume fraction 1% triethylamine) = 80:12:8; flow rate: 1 mL/min; column temperature: 35 degrees C; detection wavelength: 254 nm. The linear ranges were from 0.01 mg/mL to 2.0 mg/mL with correlation coefficients of 0.9993-0.9998. The detection limits of Cd, Cu, Pb, Hg were from 2.4 micrograms/L to 5.0 micrograms/L. The RSDs were in the range from 1.8% to 9.7%, and the recoveries ranged from 94% to 103% (except Hg). The method has been applied to the analysis of hair.

  15. Super high removal capacities of heavy metals (Pb(2+) and Cu(2+)) using CNT dendrimer.

    PubMed

    Hayati, Bagher; Maleki, Afshin; Najafi, Farhood; Daraei, Hiua; Gharibi, Fardin; McKay, Gordon

    2017-08-15

    This research demonstrates the capability of carbon nanotubes (CNT) modified with four generations of poly-amidoamine dendrimer (PAMAM, G4) to remove Cu(2+) and Pb(2+) heavy metals from aqueous solution in single and binary component systems. Uniquely high adsorption capacities for copper and lead, which are 3333 and 4870mg/g respectively, were achieved. FTIR, H(1) NMR, Zeta potential, SEM and TEM techniques were employed for characterizing the synthetic nanocomposite and indicated that the dendrimer functionalized CNTs have been synthesized. The effects of several parameters including initial metal ion concentration, solution pH and the nanocomposite dosage were studied. The experimental data were analyzed by the Langmuir and Freundlich isotherms and the pseudo-first order and pseudo-second order kinetics models. The maximum adsorption occurred at pH=7. The adsorption process for Cu(2+) and Pb(2+) in single and binary component systems fit the Langmuir and extended Langmuir models respectively. This study also tested the kinetic sorption of the metals on PAMAM/CNT in single and binary component metal systems at various metal ions concentrations. The results showed that PAMAM/CNT nanocomposite was a super-adsorbent, able to uptake uniquely large quantities of heavy metal from single and binary component liquid phase. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Neutron-Induced Partial γ-ray Cross-Section Measurements on Cu, Ge and Pb

    NASA Astrophysics Data System (ADS)

    Kwan, E.; Esterline, J. H.; Fallin, B.; Howell, C. R.; Hutcheson, A.; Kidd, M. F.; Tonchev, A.; Tornow, W.; Karwowski, H. J.; Kelley, J. H.; Mei, D. M.

    2008-10-01

    In high-precision low-statistic measurements such as those carried out in deep underground low-background environments, naturally-occurring radiation can obscure the region of interest. For example, energetic neutrons produced from natural radioactivity or muon-induced reactions will interact with the experimental apparatus producing a continuous background. A survey of neutron-induced γ-ray transitions in ^natCu, enriched ^76Ge, and ^natPb from 150-4000 keV was carried out at TUNL using pulsed mono-energetic neutron beams, with an emphasis on the region around 2039 keV where the 0νββ decay peak of ^76Ge is expected to appear. Transitions at 2041, 2615, and 3062 keV in the shielding materials of Pb and Cu may either directly interfere with the ^76Ge 0νββ peak at 2039 keV or may produce nearby escape peaks. The rates at which these background peaks occur are needed to determine whether events due to 0νββ decay are observed and whether neutrinos are indeed their own anti-particles.

  17. Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions.

    PubMed

    Modin, Oskar; Wang, Xiaofei; Wu, Xue; Rauch, Sebastien; Fedje, Karin Karlfeldt

    2012-10-15

    In a microbial bioelectrochemical system (BES) living microorganisms catalyze the anodic oxidation of organic matter at a low anode potential. We used a BES with a biological anode to power the cathodic recovery of Cu, Pb, Cd, and Zn from a simulated municipal solid waste incineration ash leachate. By varying the control of the BES, the four metals could sequentially be recovered from a mixed solution by reduction on a titanium cathode. First, the cell voltage was controlled at zero, which allowed recovery of Cu from the solution without an electrical energy input. Second, the cathode potential was controlled at -0.51 V to recover Pb, which required an applied voltage of about 0.34 V. Third, the cathode potential was controlled at -0.66 V to recover Cd, which required an applied voltage of 0.51 V. Finally, Zn was the only metal remaining in solution and was recovered by controlling the anode at +0.2V to maximize the generated current. The study is the first to demonstrate that a BES can be used for cathodic recovery of metals from a mixed solution, which potentially could be used not only for ash leachates but also for e.g. metallurgical wastewaters and landfill leachates.

  18. Electrical and magnetic properties of honeycomb-type Bi(Pb)-Sr-Ca-Cu-O superconductors

    NASA Astrophysics Data System (ADS)

    Altunbas, M.; Yanmaz, E.; Nezir, S.; Karal, H.; Vidadi, Yu. A.

    1994-11-01

    Bi2O3, PbO, SrCO3, CaO and CuO compounds have been dissolved in liquid ammonium nitrate in order to produce Bi(1.8)Pb(0.2)Sr2Ca2Cu3O10 (2223) superconductors of honeycomb-type structure. The resulting metal nitrate and nitrate complexes have been decomposed in an environment activated by the exothermic reaction. Powders, homogeneous on the molecular scale, containing the binary and ternary oxides as the necessary constituents have been produced. Samples in the form of pellets have been annealed at 845 deg C for 25-125 h. This honeycomb-type BSCCO superconductor with a critical temperature T(sub c) = 110 K and a density of 3 g/cc has been produced. The volume of the sample has increased by about 25%-40% after annealing. Electrical and magnetic properties of the samples have been investigated in three regions: the superconducting region T less than T(sub c), the region T(sub c) less than T less than T(sub c) + Delta T(sub F) where the Flicker effect has been observed (Delta T(sub F) = 20 K), and the normal region T greater than T(sub c) Delta T(sub F). It has been found that it is possible to have a controllable variation in critical current density and that the optimum annealing time was about 100 h in order to obtain its maximum value.

  19. Analyzing spotless mode of current transfer to cathodes of Cr, Gd, and Pb vapour arcs

    NASA Astrophysics Data System (ADS)

    Benilova, Larissa; Benilov, Mikhail

    2015-09-01

    Diffuse mode of current transfer occurs on cathodes of vacuum arcs if the average cathode surface temperature is high enough, which can be achieved by placing the (evaporating) cathode into a thermally insulated crucible. It is shown that in the case of Cr or Pb cathodes the usual mechanism of current transfer to arc cathodes cannot sustain current densities of the order of 105 -106 Am-2 observed in the experiment, the reason being that the electrical power deposited into electron gas in the near-cathode space-charge sheath is too low. It is hypothesized that the electrical power is supplied to the electron gas primarily in the bulk plasma, rather than in the sheath, and a high level of electron energy at the sheath edge is sustained by electron heat conduction from the bulk plasma. Estimates of the current of ions diffusing to the sheath edge from the quasi-neutral plasma gave values comparable to the experimental current density, which supports the above hypothesis. On the contrary, the spotless attachment of vacuum arcs to Gd cathodes may be interpreted as a manifestation of the usual arc cathode mechanism. Results given for Gd cathodes by a model of near-cathode layers in vacuum arcs conform to available experimental information. Work supported by FCT of Portugal through the projects PTDC/FIS-PLA/2708/2012 and Pest-OE/UID/FIS/50010/2013.

  20. Dynamic Embrittlement in Cu-Cr-Zr-Ti Alloy: Evidence of Intergranular Segregation of Sulphur

    NASA Astrophysics Data System (ADS)

    Chenna Krishna, S.; Radhika, K. V.; Tharian, K. Thomas; Swathi Kiranmayee, M.; Sudarshan Rao, G.; Jha, Abhay K.; Pant, Bhanu

    2013-08-01

    In the present investigation, Cu-0.6Cr-0.005Zr-0.0045Ti alloy was subjected to different heat treatment and thermomechanical treatment (TMT) to simulate the conditions experienced during brazing and forming, respectively. Grain coarsening was observed in the samples subjected to heat treatment, and grain refinement was observed in the samples subjected to TMT. Tensile tests conducted with these samples at room temperature and 600 °C have shown that Cu-Cr-Zr-Ti alloy was susceptible to dynamic embrittlement (DE). However, the observation was limited to coarse-grained samples (280-350 μm) at 600 °C. On the other hand, the fine-grained samples (20-40 μm) showed good ductility. Electron microscopy studies conducted on the tensile-tested specimens prone to DE indicated the presence of sulfur on the fractured surface and intergranular segregation of sulfur. Therefore, it can be inferred from the results that DE due to sulfur can occur in Cu-Cr-Zr-Ti alloy at elevated temperature for coarse-grained samples.

  1. Monolithic Cu-Cr-Nb Alloys for High Temperature, High Heat Flux Applications

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Locci, Ivan E.; Michal, Gary M.; Humphrey, Derek M.

    1999-01-01

    Work during the prior four years of this grant has resulted in significant advances in the development of Cu-8 Cr4 Nb and related Cu-Cr-Nb alloys. The alloys are nearing commercial use in the Reusable Launch Vehicle (RLV) where they are candidate materials for the thrust cell liners of the aerospike engines being developed by Rocketdyne. During the fifth and final year of the grant, it is proposed to complete development of the design level database of mechanical and thermophysical properties and transfer it to NASA Glenn Research Center and Rocketdyne. The database development work will be divided into three main areas: Thermophysical Database Augmentation, Mechanical Testing and Metallography and Fractography. In addition to the database development, work will continue that is focussed on the production of alternatives to the powder metallurgy alloys currently used. Exploration of alternative alloys will be aimed at both the development of lower cost materials and higher performance materials. A key element of this effort will be the use of Thermo-Calc software to survey the solubility behavior of a wide range of alloying elements in a copper matrix. The ultimate goals would be to define suitable alloy compositions and processing routes to produce thin sheets of the material at either a lower cost, or, with improved mechanical and thermal properties compared to the current Cu-Cr-Nb powder metallurgy alloys.

  2. Effects of Ce Addition on High Temperature Deformation Behavior of Cu-Cr-Zr Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Volinsky, Alex A.; Tran, Hai T.; Chai, Zhe; Liu, Ping; Tian, Baohong

    2015-10-01

    Hot deformation behavior of the Cu-Cr-Zr and Cu-Cr-Zr-Ce alloys was investigated by compressive tests using the Glee-ble-1500D thermomechanical simulator at 650-850 °C and 0.001-10 s-1 strain rate. The flow stress decreased with the deformation temperature at a given stain rate. However, the flow stress increased with the strain rate at the same deformation temperature. The constitutive equations for two kinds of alloys were obtained by correlating the flow stress, the strain rate and temperature using stepwise regression analysis. The addition of Ce can refine the grain and effectively accelerate dynamic recrystallization. The processing maps were established, based on the dynamic material model. Instability zones in the flow behavior can be easily recognized. Hot deformation optimal processing parameters were obtained in the range of this experiment. The hot deformation characteristics and microstructure were also analyzed by the processing maps. The addition of Ce can optimize hot workability of the Cu-Cr-Zr alloy.

  3. Sources and build up of Zn, Cd, Cr and Pb in the sludge of Gaza.

    PubMed

    Shomar, Basem

    2009-08-01

    A comprehensive monitoring program was conducted for the sludge of Gaza between 2001 and 2006. All 32 tested parameters except zinc and adsorbable organic halogens were within the allowable values for sludge to be applied in agriculture. Average concentrations of zinc (Zn) in the sludge from the Gaza Strip for the 4 years 2002-2005 reached 2,000 mg/kg which represents a major limiting factor for sludge application in agriculture. This study aimed to measure levels of Zn in the wastewater and sludge in December 2006 and to identify the sources and the build up of Zn in the sludge in Gaza. Cd, Cr and Pb were also assessed for their relationship to sources and buildup of Zn. The results showed that there is no significant fluctuation in the concentration of Cd, Cr and Pb in the different stages of wastewater treatment. Zn, however, is concentrated inside the treatment plant by processes of precipitation and/or absorption, particularly in the aerobic facilities. Although the plant receives wastewater with Zn concentrations of only 9 microg/l, this concentration increased 18-fold inside the aerobic lagoon of the treatment plant, before dropping to an average of 14 microg/l in the effluent wastewater. The sludge from the first sedimentation pond showed a Zn concentration of 567 mg/kg and increased in the effluent polishing pond to 1,643 mg/kg. The Zn concentration in 3-month-old sludge averaged 592 mg/kg. There was no correlation between the Zn concentrations in the sludge and the wastewater at the same location. However, there was a strong correlation between Zn and Pb in the sludge. The electroplating and galvanization industries are the major Zn producing industries in Gaza, with an average Zn of 2,995 and 1,557 microg/l, respectively in their effluent wastewater. These values do not represent a significant Zn pollution load to the treatment plant because these industries are limited in size and number, and their effluents are diluted before entering the treatment

  4. Removal of Cd, Cu, Pb, and Zn from aqueous solutions by biochars.

    PubMed

    Doumer, M E; Rigol, A; Vidal, M; Mangrich, A S

    2016-02-01

    Sorption and desorption of heavy metals (Cd, Cu, Pb, and Zn) was evaluated in biochars derived from sugarcane bagasse (SB), eucalyptus forest residues (CE), castor meal (CM), green coconut pericarp (PC), and water hyacinth (WH) as candidate materials for the treatment of contaminated waters and soils. Solid-liquid distribution coefficients depended strongly on the initial metal concentration, with K d,max values mostly within the range 10(3)-10(4) L kg(-1). For all biochars, up to 95 % removal of all the target metals from water was achieved. The WH biochar showed the highest K d,max values for all the metals, especially Cd and Zn, followed by CE (for Cd and Pb) and PC (for Cd, Pb, and Zn). Sorption data were fitted satisfactorily with Freundlich and linear models (in the latter case, for the low concentration range). The sorption appeared to be controlled by cationic exchange, together with specific surface complexation at low metal concentrations. The low desorption yields, generally less than 5 %, confirmed that the sorption process was largely irreversible and that the biochars could potentially be used in decontamination applications.

  5. Sharpness-induced energy shifts of quantum well states in Pb islands on Cu(111)

    NASA Astrophysics Data System (ADS)

    Chan, Wen-Yuan; Lu, Shin-Ming; Su, Wei-Bin; Liao, Chun-Chieh; Hoffmann, Germar; Tsai, Tsong-Ru; Chang, Chia-Seng

    2017-03-01

    We elucidate that the tip sharpness in scanning tunneling microscopy (STM) can be characterized through the number of field-emission (FE) resonances. A higher number of FE resonances indicates higher sharpness. We observe empty quantum well (QW) states in Pb islands on Cu(111) under different tip sharpness levels. We found that QW states observed by sharper tips always had lower energies, revealing negative energy shifts. This sharpness-induced energy shift originates from an inhomogeneous electric field in the STM gap. An increase in sharpness increases the electric field inhomogeneity, that is, enhances the electric field near the tip apex, but weakens the electric field near the sample. As a result, higher sharpness can increase the electronic phase in vacuum, causing the lowering of QW state energies. Moreover, the behaviors of negative energy shift as a function of state energy are entirely different for Pb islands with a thickness of two and nine atomic layers. This thickness-dependent behavior results from the electrostatic force in the STM gap decreasing with increasing tip sharpness. The variation of the phase contributed from the expansion deformation induced by the electrostatic force in a nine-layer Pb island is significantly greater, sufficient to effectively negate the increase of electronic phase in vacuum.

  6. Sharpness-induced energy shifts of quantum well states in Pb islands on Cu(111).

    PubMed

    Chan, Wen-Yuan; Lu, Shin-Ming; Su, Wei-Bin; Liao, Chun-Chieh; Hoffmann, Germar; Tsai, Tsong-Ru; Chang, Chia-Seng

    2017-03-03

    We elucidate that the tip sharpness in scanning tunneling microscopy (STM) can be characterized through the number of field-emission (FE) resonances. A higher number of FE resonances indicates higher sharpness. We observe empty quantum well (QW) states in Pb islands on Cu(111) under different tip sharpness levels. We found that QW states observed by sharper tips always had lower energies, revealing negative energy shifts. This sharpness-induced energy shift originates from an inhomogeneous electric field in the STM gap. An increase in sharpness increases the electric field inhomogeneity, that is, enhances the electric field near the tip apex, but weakens the electric field near the sample. As a result, higher sharpness can increase the electronic phase in vacuum, causing the lowering of QW state energies. Moreover, the behaviors of negative energy shift as a function of state energy are entirely different for Pb islands with a thickness of two and nine atomic layers. This thickness-dependent behavior results from the electrostatic force in the STM gap decreasing with increasing tip sharpness. The variation of the phase contributed from the expansion deformation induced by the electrostatic force in a nine-layer Pb island is significantly greater, sufficient to effectively negate the increase of electronic phase in vacuum.

  7. Interfacial diffusion of metal atoms during air annealing of chemically deposited ZnS-CuS and PbS-CuS thin films

    SciTech Connect

    Huang, L.; Zingaro, R.A.; Meyers, E.A. . Dept. of Chemistry); Nair, P.K.; Nair, M.T.S. . Lab. de Energia Solar)

    1994-09-01

    The authors report on the interfacial diffusion of metal ions occurring during air annealing of multilayer CuS films (0.15-0.6[mu]m) deposited on thin coating of ZnS or PbS ([approximately]0.06 [mu]m) on glass substrates. All the films are deposited from chemical baths at room temperature. The interfacial diffusion on the metal atoms during the air annealing is illustrate by X-ray photoelectron spectroscopy studies. A multilayer of 0.3 [mu]m thick CuS film deposited over a thin film of ZnS upon annealing at 150 C shows atomic ratios of Zn to Cu of [approximately]0.15 and [approximately]0.48 at the surface layers of the samples annealed for 12 and 24 h, respectively. In the case of CuS on PbS film, the corresponding Pb to Cu atomic ratios at the surface layers are 0.43 and 0.83. The optical transmittance spectra and sheet resistance of these multilayer films indicate thermal stabilities superior to that of the CuS-only coatings. Application of the interfacial diffusion process in the production of thermally stable solar control coatings, solar absorber coating, or p-type films for solar cell structures is discussed.

  8. Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces

    DOE PAGES

    Wang, Yingge; Michel, F. Marc; Choi, Yongseong; ...

    2016-05-09

    Here, mineral surfaces are often coated by natural organic matter (NOM), which has a major influence on metal-ion sorption and sequestration because of the abundance of binding sites in such coatings and the changes they cause in local nanoscale environments. The effects of NOM coatings on mineral surfaces are, however, still poorly understood at the molecular level due to the complexity of these systems. In this study, we have applied long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy to measure the partitioning of naturally present Cu(II) (0.0226%), Zn(II) (0.009%), and Pb(II) ( 0.0004%) between Elliott Soil Humic Acid (ESHA) coatings andmore » three model single-crystal metal-oxide substrates: α-Al2O3 (0 0 0 1), α-Al2O3 (1 1 0 2), and α-Fe2O3 (0 0 0 1). The competitive sorption effects among these metal ions for binding sites in the ESHA coatings and on the metal-oxide surfaces were investigated as a function of reaction time, calcium content, and solution pH. Pb(II) ions present in the ESHA coatings were found to redistribute to reactive α-Al2O3 (1 1 0 2) and α-Fe2O3 (0 0 0 1) surfaces after 3 h of reaction (pH = 6.0, [Ca(II)] = 2 mM). Pb(II) partitioning onto these reactive metal-oxide surfaces increased with increasing reaction time (up to 7 d). In addition, the partitioning of Cu(II) and Zn(II) from the ESHA coating to the α-Fe2O3 (0 0 0 1) substrate increased slightly with reaction time (2.4% and 3.7% for Cu(II) and Zn(II), respectively, after 3 h and 6.4% and 7.7% for Cu(II) and Zn(II), respectively, after 72 h of reaction time).« less

  9. Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces

    SciTech Connect

    Wang, Yingge; Michel, F. Marc; Choi, Yongseong; Eng, Peter J.; Levard, Clement; Siebner, Hagar; Gu, Baohua; Bargar, John R.; Brown, Gordon E.

    2016-05-09

    Here, mineral surfaces are often coated by natural organic matter (NOM), which has a major influence on metal-ion sorption and sequestration because of the abundance of binding sites in such coatings and the changes they cause in local nanoscale environments. The effects of NOM coatings on mineral surfaces are, however, still poorly understood at the molecular level due to the complexity of these systems. In this study, we have applied long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy to measure the partitioning of naturally present Cu(II) (0.0226%), Zn(II) (0.009%), and Pb(II) ( 0.0004%) between Elliott Soil Humic Acid (ESHA) coatings and three model single-crystal metal-oxide substrates: α-Al2O3 (0 0 0 1), α-Al2O3 (1 1 0 2), and α-Fe2O3 (0 0 0 1). The competitive sorption effects among these metal ions for binding sites in the ESHA coatings and on the metal-oxide surfaces were investigated as a function of reaction time, calcium content, and solution pH. Pb(II) ions present in the ESHA coatings were found to redistribute to reactive α-Al2O3 (1 1 0 2) and α-Fe2O3 (0 0 0 1) surfaces after 3 h of reaction (pH = 6.0, [Ca(II)] = 2 mM). Pb(II) partitioning onto these reactive metal-oxide surfaces increased with increasing reaction time (up to 7 d). In addition, the partitioning of Cu(II) and Zn(II) from the ESHA coating to the α-Fe2O3 (0 0 0 1) substrate increased slightly with reaction time (2.4% and 3.7% for Cu(II) and Zn(II), respectively, after 3 h and 6.4% and 7.7% for Cu(II) and Zn(II), respectively, after 72 h of reaction time).

  10. Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces

    SciTech Connect

    Wang, Yingge; Michel, F. Marc; Choi, Yongseong; Eng, Peter J.; Levard, Clement; Siebner, Hagar; Gu, Baohua; Bargar, John R.; Brown, Gordon E.

    2016-05-09

    Here, mineral surfaces are often coated by natural organic matter (NOM), which has a major influence on metal-ion sorption and sequestration because of the abundance of binding sites in such coatings and the changes they cause in local nanoscale environments. The effects of NOM coatings on mineral surfaces are, however, still poorly understood at the molecular level due to the complexity of these systems. In this study, we have applied long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy to measure the partitioning of naturally present Cu(II) (0.0226%), Zn(II) (0.009%), and Pb(II) ( 0.0004%) between Elliott Soil Humic Acid (ESHA) coatings and three model single-crystal metal-oxide substrates: α-Al2O3 (0 0 0 1), α-Al2O3 (1 1 0 2), and α-Fe2O3 (0 0 0 1). The competitive sorption effects among these metal ions for binding sites in the ESHA coatings and on the metal-oxide surfaces were investigated as a function of reaction time, calcium content, and solution pH. Pb(II) ions present in the ESHA coatings were found to redistribute to reactive α-Al2O3 (1 1 0 2) and α-Fe2O3 (0 0 0 1) surfaces after 3 h of reaction (pH = 6.0, [Ca(II)] = 2 mM). Pb(II) partitioning onto these reactive metal-oxide surfaces increased with increasing reaction time (up to 7 d). In addition, the partitioning of Cu(II) and Zn(II) from the ESHA coating to the α-Fe2O3 (0 0 0 1) substrate increased slightly with reaction time (2.4% and 3.7% for Cu(II) and Zn(II), respectively, after 3 h and 6.4% and 7.7% for Cu(II) and Zn(II), respectively, after 72 h of reaction time).

  11. Investigation on the microstructure and mechanical properties of CuCrZr after manufacturing thermal cycle for plasma facing component

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Yong; Jung, Yang-Il; Choi, Byung-Kwon; Lee, Jung-Suk; Jeong, Yong Hwan; Hong, Bong Guen

    2011-10-01

    The effects of manufacturing thermal cycle on the various mechanical properties of CuCrZr were investigated. Vickers hardness was changed with an aging temperature in an identical manner with the strength change in a wide range of heat treatment. The change of Charpy impact energy with an aging temperature exhibited an opposite trend to the changes of the strength and hardness. At least in terms of the impact energy of CuCrZr, aging at a higher temperate would be preferable if the strength of CuCrZr could be maintained higher than the limitation value after the completion of the fabrication of ITER first wall. The fatigue life of CuCrZr was influenced to a certain extent by the cooling rate and the aging temperature. Especially in the higher strain amplitude, the contribution of the elastic and plastic components to the fatigue response was dependent on the yield strength which is determined by the aging temperature.

  12. Dependency of simultaneous Cr(VI), Cu(II) and Cd(II) reduction on the cathodes of microbial electrolysis cells self-driven by microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Yu, Lihua; Wu, Dan; Huang, Liping; Zhou, Peng; Quan, Xie; Chen, Guohua

    2015-01-01

    Microbial fuel cells (MFCs) using either Cr(VI) (MFCsCr) or Cu(II) (MFCsCu) as a final electron acceptor, are stacked to self-drive microbial electrolysis cells (MECs) using Cd(II) (MECsCd) as an electron acceptor for simultaneous reduction of Cr(VI) in MFCsCr, Cu(II) in MFCsCu and Cd(II) in MECsCd with no external energy consumption. Titanium sheet (TS) and carbon rod (CR) as the cathodes of MECsCd are assessed for efficient system performance. MFCsCr and MFCsCu in series is superior to the parallel configuration, and higher Cd(II) reduction along with simultaneous Cr(VI) and Cu(II) reduction supports TS function as a good cathode material. Conversely, CR can not entirely proceed Cd(II) reduction in MECsCd despite of more Cr(VI) and Cu(II) reduction in the same serial configuration than either system alone. While a decrease in cathode volume in both MFCsCr and MFCsCu with serial connection benefits to reduction of Cr(VI) in MFCsCr and Cu(II) in MFCsCu, Cd(II) reduction in MECsCd is substantially enhanced under a decrease in cathode volume in individual MFCsCr and serially connected with volume-unchanged MFCsCu. This study demonstrates simultaneous Cr(VI), Cu(II) and Cd(II) recovery from MFCsCr-MFCsCu-MECsCd self-driven system is feasible, and TS as the cathodes of MECsCd is critical for efficient system performance.

  13. Effect of preparation conditions on superconducting properties of (Bi,Pb)-Sr-Ca-Cu-O glass-ceramics

    NASA Astrophysics Data System (ADS)

    Gazda, M.; Kusz, B.; Pitosa, J.; Bienias, A.; Puniak, R.; Stizza, S.; Chudinov, S.; Natali, R.

    2005-03-01

    In this work we present the influence of annealing conditions on superconducting properties of (Bi,Pb)-Sr-Ca-Cu-O high temperature superconductors prepared by the glass-ceramic method. Superconducting (Bi,Pb)-Sr-Ca-Cu-O samples were obtained by annealing of amorphous (Bi0.8Pb0.2)4Sr3Ca3Cu4Ox at temperatures between 750 °C and 865 °C for various time intervals between 1 minute and 43 hours. The electrical and superconducting properties of the material change during annealing because oxide superconductors belonging to the bismuth family (Bi,Pb)2Sr2CuOx (2201), (Bi,Pb)2Sr2CaCu2Ox (2212) and (Bi,Pb)2Sr2Ca2Cu3Ox (2223) crystallise forming a granular metal and superconductor. Low temperature resistivity and magnetic measurements show that during the growth of crystalline phases superconducting properties develop rapidly. Measurements of magnetisation reveal that isolated grains of superconducting 2212 phase crystallise already in the first minute of annealing at 850 °C. Further development of superconducting phases leads to subsequent improvement of superconducting properties. Properties of the material (e.g. critical temperature, critical current) and kinetics of changes depend on the temperature and time of annealing. The highest critical current densities were obtained for samples annealed at 850 °C for 43 hours.

  14. Electronic structure of metastable bcc Cu-Cr alloy thin films: Comparison of electron energy-loss spectroscopy and first-principles calculations.

    PubMed

    Liebscher, C H; Freysoldt, C; Dennenwaldt, T; Harzer, T P; Dehm, G

    2016-07-12

    Metastable Cu-Cr alloy thin films with nominal thickness of 300nm and composition of Cu67Cr33 (at%) are obtained by co-evaporation using molecular beam epitaxy. The microstructure, chemical phase separation and electronic structure are investigated by transmission electron microscopy (TEM). The thin film adopts the body-centered cubic crystal structure and consists of columnar grains with ~50nm diameter. Aberration-corrected scanning TEM in combination with energy dispersive X-ray spectroscopy confirms compositional fluctuations within the grains. Cu- and Cr-rich domains with composition of Cu85Cr15 (at%) and Cu42Cr58 (at%) and domain size of 1-5nm are observed. The alignment of the interface between the Cu- and Cr-rich domains shows a preference for {110}-type habit plane. The electronic structure of the Cu-Cr thin films is investigated by electron energy loss spectroscopy (EELS) and is contrasted to an fcc-Cu reference sample. The experimental EEL spectra are compared to spectra computed by density functional theory. The main differences between bcc-and fcc-Cu are related to differences in van Hove singularities in the electron density of states. In Cu-Cr solid solutions with bcc crystal structure a single peak after the L3-edge, corresponding to a van Hove singularity at the N-point of the first Brillouin zone is observed. Spectra computed for pure bcc-Cu and random Cu-Cr solid solutions with 10at% Cr confirm the experimental observations. The calculated spectrum for a perfect Cu50Cr50 (at%) random structure shows a shift in the van Hove singularity towards higher energy by developing a Cu-Cr d-band that lies between the delocalized d-bands of Cu and Cr.

  15. Effect of Cu(II), Cd(II) and Zn(II) on Pb(II) biosorption by algae Gelidium-derived materials.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Biosorption of Pb(II), Cu(II), Cd(II) and Zn(II) from binary metal solutions onto the algae Gelidium sesquipedale, an algal industrial waste and a waste-based composite material was investigated at pH 5.3, in a batch system. Binary Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II) solutions have been tested. For the same equilibrium concentrations of both metal ions (1 mmol l(-1)), approximately 66, 85 and 86% of the total uptake capacity of the biosorbents is taken by lead ions in the systems Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II), respectively. Two-metal results were fitted to a discrete and a continuous model, showing the inhibition of the primary metal biosorption by the co-cation. The model parameters suggest that Cd(II) and Zn(II) have the same decreasing effect on the Pb(II) uptake capacity. The uptake of Pb(II) was highly sensitive to the presence of Cu(II). From the discrete model it was possible to obtain the Langmuir affinity constant for Pb(II) biosorption. The presence of the co-cations decreases the apparent affinity of Pb(II). The experimental results were successfully fitted by the continuous model, at different pH values, for each biosorbent. The following sequence for the equilibrium affinity constants was found: Pb>Cu>Cd approximately Zn.

  16. Thermoelectric transport properties of PbTe-based composites incorporated with Cu2Se nano-inclusions

    NASA Astrophysics Data System (ADS)

    Guo, Haifeng; Xin, Hongxing; Qin, Xiaoying; Jian, Zhang; Li, Di; Li, Yuanyue; Li, Cong

    2016-02-01

    Thermoelectric transport properties of Lead telluride (PbTe)-based composites incorporated with Cuprous selenide (Cu2Se) nano-inclusions were investigated from 300 K to 800 K. Here, except for the transition from p-type to n-type conduction that occurs in pristine PbTe at ~530 K due to the difference of mobility between thermally electron and hole at high temperature, another transition from p-type to n-type conduction at 300 K with an increasing proportion of Cu2Se could be due to the donor levels introduced by defects and unsaturated bonds at the interfaces. Moreover, by incorporating a small proportion (5 vol.%) of Cu2Se nanoparticles into the PbTe matrix to form nano-composites, both a reduction (~55%) in lattice thermal conductivity and an enhanced electrical conductivity compared with that of pristine PbTe are obtained, which allows the thermoelectric power factor to reach a larger value (~11.2 μW cm-1 K-2). Consequently, a maximum value ZT  =  0.91 is obtained at 760 K in the PbTe-5 vol.% Cu2Se sample.

  17. Cu-Zn-Pb multi isotopic characterization of a small watershed (Loire river basin, France)

    NASA Astrophysics Data System (ADS)

    Desaulty, A. M.; Millot, R.; Perret, S.; Bourrain, X.

    2015-12-01

    Combating metal pollution in surface water is a major environmental, public health and economic issue. Knowledge of the behavior of metals, such as copper (Cu), zinc (Zn) and lead (Pb) in sediments and dissolved load, is a key factor to improve the management of rivers. Recent advances in mass spectrometry related to the development of MC-ICPMS allow to analyze the isotopic composition of these elements, and previous studies show the effectiveness of isotopic analyses to determine the anthropogenic sources of pollution in environment. The goal of this study is to use the Cu-Zn-Pb multi-isotopic signature to track the pollutions in surface water, and to understand the complex processes causing the metals mobilization and transport in environment. More particularly we investigate the mechanisms of distribution between the dissolved load and particulate load, known to play an important role in the transport of metals through river systems. As case study, we chose a small watershed, poorly urbanized in the Loire river basin. Its spring is in a pristine area, while it is only impacted some kilometers further by the releases rich in metals coming from a hospital water treatment plant. First a sampling of these liquid effluents as well as dissolved load and sediment from upstream to downstream was realized and their concentrations and isotopic data were determined. Then to simulate a lot of potential natural and anthropogenic modifications of environmental conditions, we made sequential extraction protocol using various reagents on the sediments. Isotopic analyzes were performed also on the various extracting solutions. Isotopic ratios were measured using a Neptune MC-ICPMS at the BRGM, after a protocol of purification for Zn and Cu. The results showed that, these isotopic systematics reveal important informations about the mechanists of mobilization and transport of metals through river systems. However experiments performed under laboratory conditions will be necessary

  18. Temporal and spatial variation characteristics of atmospheric emissions of Cd, Cr, and Pb from coal in China

    NASA Astrophysics Data System (ADS)

    Tian, Hezhong; Cheng, Ke; Wang, Yan; Zhao, Dan; Lu, Long; Jia, Wenxiao; Hao, Jiming

    2012-04-01

    Multiple-year inventory of atmospheric emissions of cadmium (Cd), chromium (Cr), and lead (Pb) from coal burning in China have been established for the period 1980-2008 by using best available emission factors and annual activity data which are specified by different sub-categories of combustion facilities, coal types, and air pollution control devices. Our results show that the total emissions of Cd, Cr, and Pb have rapidly increased from 31.14 t, 1019.07 t, and 2671.73 t in 1980 to 261.52 t, 8593.35 t, and 12 561.77 t in 2008, respectively. The industrial sector ranks as the leading source, contributing ˜88.3%, ˜86.7%, and ˜81.8% of the total Cd, Cr, and Pb emissions, respectively. Remarkably uneven spatial allocation features are observed. The emissions are primarily concentrated in the provinces of the northern and eastern region of China owing to the dramatic difference in coal use by the industrial and power sectors. Monthly temporal emission profiles for different sectors are established by using indexes such as monthly thermal electricity generation, monthly gross industrial output values and monthly average ambient temperature. For the power plants, there are two peaks during cold and hot season while for the industrial sector, emissions are most substantial in the summer and autumn season. Further, uncertainties in the bottom-up inventories are quantified by Monte Carlo simulation, and the overall uncertainties are demonstrated as -16% to 45% for Cd, -13% to 20% for Cr, and -21% to 48% for Pb, respectively. To better understand the emissions of these metals and to adopt effective measures to prevent poisoning, more specific data collection and analysis are necessary.

  19. Effect of Doping on Thermoelectric Properties of Delafossite-Type Oxide CuCrO2

    NASA Astrophysics Data System (ADS)

    Hayashi, Kei; Sato, Ken-ichi; Nozaki, Tomohiro; Kajitani, Tsuyoshi

    2008-01-01

    We have studied the effects of doping on the high-temperature thermoelectric properties of the delafossite-type oxide CuCrO2. The single or double doping of divalent cations for Cr3+ ions was carried out to introduce hole carriers. For the first step, we measured the electrical conductivity σ and Seebeck coefficient S of single-doped samples, and calculated the power factor P=σS2. Mg-, Zn-, Ca-, Ni-, and Co-doped samples showed a higher power factor than CuCrO2, while the Fe-, V-, and Mn-doped samples exhibited a lower power factor. The maximum power factor P=2.36×10-4 W/mK2 at 1100 K was obtained with the Mg-doped sample. The above tendencies of the power factor are well explained by the valence states and ionic radii of the dopants. For the next step, Mg and M (M = Zn, Ca, Ni, or Co) double-doped samples were prepared. Since there was no impurity phase in the Mg+Ni cases, we have elucidated the structure and high-temperature thermoelectric properties of CuCr0.97-xMg0.03NixO2 (0Cu 3d orbitals. Since the Cu-O bond distance of the double-doped samples is shorter than that of the Mg-doped sample, it was found that hole carriers are introduced into the Cu site by the double doping. The shorter Cu-O bond distance also results in the increase in the overlapping integral between Cu 3d and O 2p orbitals. Because of the increase in the overlapping integral between the electronic orbitals caused by the topological reason and the increase in the number of hole carriers in the Cu site, the double-doped samples exhibited a higher electrical conductivity than the Mg-doped sample. The maximum electrical conductivity 45 S/cm around 1000 K was obtained for the sample of x=0.04. The Seebeck coefficient of the double-doped samples was higher than that of the Mg-doped sample, in which the total number of hole carriers (i.e., the sum of the hole

  20. Experimental determination of nonequilibrium transport parameters reflecting the competitive sorption between Cu and Pb in slag-sand column.

    PubMed

    Chung, Jaeshik; Kim, Young-Jin; Lee, Gwanghun; Nam, Kyoungphile

    2016-07-01

    Competitive sorption and resulting nonequilibrium transport of Cu and Pb were investigated using slag as a primary sorbent. A series of estimation models were applied based on the equilibrium, and nonequilibrium sorption respectively, and finally calibrated by incorporating the experimentally determined batch kinetic data. When applied individually, the behavior of metals in slag-sand column were well predicted by both equilibrium and nonequilibrium models in CXTFIT code. However, coexisting Cu and Pb exhibited competition for sorption sites, generating an irregular breakthrough curves such as overshoot (higher concentration in effluent than the feed concentration) of Cu and corresponding earlier peak of Pb followed by gradual re-rising. Although two-site nonequilibrium model further considers coupled hydrochemical process, desorption of the Cu from competition made the model prediction inaccurate. However, the parameter estimation could be improved by incorporating the experimentally determined mass transfer rate, ωexp from batch kinetics. Based on the calibrated model, the fraction of instantaneous retardation, βexp of Pb decreased from 0.41 in the single system to 0.30 in the binary system, indicating the shift from equilibrium to nonequilibrium state, where which of Cu increased from 0.39 to 0.94, representing the shift towards equilibrium. The modified results were also compared with five-step sequential extraction data, confirming that the shift of particular metal fractions from the competition triggered the nonequilibrium transport.

  1. Preparation of superconducting (Bi, Pb)-Sr-Ca-Cu oxide tapes with a highly oriented structure by the solidification method

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Kunio; Inoue, Akihisa; Masumoto, Tsuyoshi

    1989-11-01

    Composite tapes consisting of Au and superconducting Bi-Sr-Ca-Cu or Bi-Pb-Sr-Ca-Cu oxide with a pseudotetragonal structure were prepared by annealing the oxide phase which was slowly solidified on the Au tape. The oxide phase has a highly oriented structure, and the c plane lies parallel to the surface of the tape. The tapes were found to exhibit zero resistance at temperatures above 100 K as well as good bending flexibility. The critical current density at 77 K in the absence of applied field is 96 A/sq cm for the BiSrCaCu2O(y)-Au tape and 108 A/sq cm for the Pb(0.2)BiSrCaCu(1.5)O(y)-Au tape.

  2. Large volume collapse observed in the phase transition in cubic PbCrO[subscript 3] perovskite

    SciTech Connect

    Xiao, Wansheng; Tan, Dayong; Xiong, Xiaolin; Liu, Jing; Xu, Jian

    2010-08-27

    When cubic PbCrO{sub 3} perovskite (Phase I) is squeezed up to {approx}1.6 GPa at room temperature, a previously undetected phase (Phase II) has been observed with a 9.8% volume collapse. Because the structure of Phase II can also be indexed into a cubic perovskite as Phase I, the transition between Phases I and II is a cubic to cubic isostructural transition. Such a transition appears independent of the raw materials and synthesizing methods used for the cubic PbCrO{sub 3} perovskite sample. In contrast to the high-pressure isostructural electronic transition that appears in Ce and SmS, this transition seems not related with any change of electronic state, but it could be possibly related on the abnormally large volume and compressibility of the PbCrO{sub 3} Phase I. The physical mechanism behind this transition and the structural and electronic/magnetic properties of the condensed phases are the interesting issues for future studies.

  3. Direct detection of Pb in urine and Cd, Pb, Cu, and Ag in natural waters using electrochemical sensors immobilized with DMSA functionalized magnetic nanoparticles.

    PubMed

    Yantasee, Wassana; Hongsirikarn, Kitiya; Warner, Cynthia L; Choi, Daiwon; Sangvanich, Thanapon; Toloczko, Mychailo B; Warner, Marvin G; Fryxell, Glen E; Addleman, R Shane; Timchalk, Charles

    2008-03-01

    Urine is universally recognized as one of the best non-invasive matrices for biomonitoring exposure to a broad range of xenobiotics, including toxic metals. Detection of metal ions in urine has been problematic due to the protein competition and electrode fouling. For direct, simple, and field-deployable monitoring of urinary Pb, electrochemical sensors employing superparamagnetic iron oxide (Fe3O4) nanoparticles with a surface functionalization of dimercaptosuccinic acid (DMSA) has been developed. The metal detection involves rapid collection of dispersed metal-bound nanoparticles from a sample solution at a magnetic or electromagnetic electrode, followed by the stripping voltammetry of the metal in acidic medium. The sensors were evaluated as a function of solution pH, the binding affinity of Pb to DMSA-Fe3O4, the ratio of nanoparticles per sample volume, preconcentration time, and Pb concentrations. The effect of binding competitions between the DMSA-Fe3O4 and urine constituents for Pb on the sensor responses was studied. After 90 s of preconcentration in samples containing 25 vol.% of rat urine and 0.1 g L(-1) of DMSA-Fe3O4, the sensor could detect background level of Pb (0.5 ppb) and yielded linear responses from 0 to 50 ppb of Pb, excellent reproducibility (%RSD of 5.3 for seven measurements of 30 ppb Pb), and Pb concentrations comparable to those measured by ICP-MS. The sensor could also simultaneously detect background levels (<1 ppb) of Cd, Pb, Cu, and Ag in river and seawater.

  4. Self-assembly of the unique heterotrimetallic Cu/Co/M complexes possessing triangular antiferromagnetic {Cu2CoPb}2 and linear ferromagnetic {Cu2CoCd2} cores.

    PubMed

    Nesterov, Dmytro S; Kokozay, Volodymyr N; Skelton, Brian W; Jezierska, Julia; Ozarowski, Andrew

    2007-02-07

    Two novel heterotrimetallic octa-[Cu2CoPbCl4(L)4]2 (1) and pentanuclear [Cu2CoCd2Cl6(L)4(HOMe)2] (2) complexes have been prepared in one-pot reactions of zerovalent copper with metal chlorides in a methanol (for 1) or acetonitrile (for 2) solution of 2-(dimethylamino)ethanol (HL) in open air. The crystal structures of both compounds consist of discrete centrosymmetric heterotrimetallic molecules revealing triangular (1) and unique consecutive (2) arrangements of magnetic CuII(2)CoII cores. The complex 1 can be viewed as a dimer made up of tetranuclear Cu2CoPbCl4(L)4 units linked through the two micro(2)-Cl atoms. The molecular structure of 2 is a pentanuclear assembly containing the previously unknown Cu(micro-O)(2)Co(micro-O)(2)Cu core. The magnetic studies of 1 revealed an antiferromagnetic coupling (J(CoCu) = 37 cm(-1) and J(CuCu) = 87 cm(-1)) while 2 exhibits a weak ferromagnetic behavior (J(CoCu) = -3.2 cm(-1) and J(CuCu) = -14.2 cm(-1)). The correlations between magnetic behaviour and structures as well as synthetic features are also discussed.

  5. Nano-structured CuO-Cu2O Complex Thin Film for Application in CH3NH3PbI3 Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Chen, Lung-Chieh; Chen, Cheng-Chiang; Liang, Kai-Chieh; Chang, Sheng Hsiung; Tseng, Zhong-Liang; Yeh, Shih-Chieh; Chen, Chin-Ti; Wu, Wen-Ti; Wu, Chun-Guey

    2016-09-01

    Nano-structured CuO-Cu2O complex thin film-based perovskite solar cells were fabricated on an indium tin oxide (ITO)-coated glass and studied. Copper (Cu) thin films with a purity of 99.995 % were deposited on an ITO-coated glass by magnetron reactive sputtering. To optimize the properties of the nano-structured CuO-Cu2O complex thin films, the deposited Cu thin films were thermally oxidized at various temperatures from 300 to 400 °C. A CH3NH3PbI3 perovskite absorber was fabricated on top of CuO-Cu2O complex thin film by a one-step spin-coating process with a toluene washing treatment. Following optimization, the maximum power conversion efficiency (PCE) exceeded 8.1 %. Therefore, the low-cost, solution-processed, stable nano-structured CuO-Cu2O complex thin film can be used as an alternative hole transport layer (HTL) in industrially produced perovskite solar cells.

  6. Nano-structured CuO-Cu2O Complex Thin Film for Application in CH3NH3PbI3 Perovskite Solar Cells.

    PubMed

    Chen, Lung-Chieh; Chen, Cheng-Chiang; Liang, Kai-Chieh; Chang, Sheng Hsiung; Tseng, Zhong-Liang; Yeh, Shih-Chieh; Chen, Chin-Ti; Wu, Wen-Ti; Wu, Chun-Guey

    2016-12-01

    Nano-structured CuO-Cu2O complex thin film-based perovskite solar cells were fabricated on an indium tin oxide (ITO)-coated glass and studied. Copper (Cu) thin films with a purity of 99.995 % were deposited on an ITO-coated glass by magnetron reactive sputtering. To optimize the properties of the nano-structured CuO-Cu2O complex thin films, the deposited Cu thin films were thermally oxidized at various temperatures from 300 to 400 °C. A CH3NH3PbI3 perovskite absorber was fabricated on top of CuO-Cu2O complex thin film by a one-step spin-coating process with a toluene washing treatment. Following optimization, the maximum power conversion efficiency (PCE) exceeded 8.1 %. Therefore, the low-cost, solution-processed, stable nano-structured CuO-Cu2O complex thin film can be used as an alternative hole transport layer (HTL) in industrially produced perovskite solar cells.

  7. Preliminary assessment of metal-porcelain bonding strength of CoCrW alloy after 3wt.% Cu addition.

    PubMed

    Lu, Yanjin; Zhao, Chaoqian; Ren, Ling; Guo, Sai; Gan, Yiliang; Yang, Chunguang; Wu, Songquan; Lin, Junjie; Huang, Tingting; Yang, Ke; Lin, Jinxin

    2016-06-01

    In this work, a novel Cu-bearing CoCrW alloy fabricated by selective laser melting for dental application has been studied. For its successful application, the bonding strength of metal-porcelain is essential to be systematically investigated. Therefore, the aim of this study was to evaluate the metal-porcelain bonding strength of CoCrWCu alloy by three-point bending test, meanwhile the Ni-free CoCrW alloy was used as control. The oxygen content was investigated by an elemental analyzer; X-ray photoelectron spectroscopy (XPS) was used to analyze the surface chemical composition of CoCrW based alloy after preoxidation treatment; the fracture mode was investigated by X-ray energy spectrum analysis (EDS) and scanning electron microscope (SEM). Result from the oxygen content analysis showed that the content of oxygen dramatically increased after the Cu addition. And the XPS suggested that Co-oxidation, Cr2O3, CrO2, WO3, Cu2O and CuO existed on the preoxidated surface of the CoCrWCu alloy; the three-point bending test showed that the bonding strength of the CoCrWCu alloy was 43.32 MPa, which was lower than that of the CoCrW group of 47.65 MPa. However, the average metal-porcelain bonding strength is significantly higher than the minimum value in the ISO 9693 standard. Results from the SEM images and EDS indicated that the fracture mode of CoCrWCu-porcelain was mixed between cohesive and adhesive. Based on the results obtained in this study, it can be indicated that the Cu-bearing CoCrW alloy fabricated by the selective laser melting is a promising candidate for use in dental application.

  8. Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Yingge; Michel, F. Marc; Choi, Yongseong; Eng, Peter J.; Levard, Clement; Siebner, Hagar; Gu, Baohua; Bargar, John R.; Brown, Gordon E.

    2016-09-01

    Mineral surfaces are often coated by natural organic matter (NOM), which has a major influence on metal-ion sorption and sequestration because of the abundance of binding sites in such coatings and the changes they cause in local nanoscale environments. The effects of NOM coatings on mineral surfaces are, however, still poorly understood at the molecular level due to the complexity of these systems. In this study, we have applied long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy to measure the partitioning of naturally present Cu(II) (0.0226%), Zn(II) (0.009%), and Pb(II) (∼0.0004%) between Elliott Soil Humic Acid (ESHA) coatings and three model single-crystal metal-oxide substrates: α-Al2O3 (0 0 0 1), α-Al2O3 (1 -1 0 2), and α-Fe2O3 (0 0 0 1). The competitive sorption effects among these metal ions for binding sites in the ESHA coatings and on the metal-oxide surfaces were investigated as a function of reaction time, calcium content, and solution pH. Pb(II) ions present in the ESHA coatings were found to redistribute to reactive α-Al2O3 (1 -1 0 2) and α-Fe2O3 (0 0 0 1) surfaces after 3 h of reaction (pH = 6.0, [Ca(II)] = 2 mM). Pb(II) partitioning onto these reactive metal-oxide surfaces increased with increasing reaction time (up to 7 d). In addition, the partitioning of Cu(II) and Zn(II) from the ESHA coating to the α-Fe2O3 (0 0 0 1) substrate increased slightly with reaction time (2.4% and 3.7% for Cu(II) and Zn(II), respectively, after 3 h and 6.4% and 7.7% for Cu(II) and Zn(II), respectively, after 72 h of reaction time). However, no changes in the partitioning of Cu(II) and Zn(II) onto the α-Al2O3 (1 -1 0 2) surface were observed with increasing reaction time, suggesting that these ions strongly complex with functional groups in the ESHA coatings. Similar results were obtained for Cu(II) and Zn(II) on the ESHA-coated α-Al2O3 (1 -1 0 2) surfaces in samples without the addition of calcium. However, the amounts of Pb

  9. EPR Study of Cr5+ and Cu2+ in Some Zeolites Introduced by Solid- and Liquid-State Reactions

    NASA Astrophysics Data System (ADS)

    Köksal, Fevzi; Ucun, Fatih; Kartal, İbrahim

    1996-04-01

    This study reports on the EPR of Cr5+ and Cu2+ ions, introduced by solid- and liquid-state reactions with the synthetic zeolites 3A, 4A and 5A, and the natural zeolite clinoptilolite. Cr3+ was oxidized to Cr5+ in the samples, the coordination around Cr5+ being square pyramidal. Super-hyperfine (shf) interaction of Cr5+ with 27Al nucleus was observed in both solid-and liquid-state-introduced 5A zeolite, whereas this shf could not be observed for the solid-state introduced 4A zeolite. The liquid-state Cr-introduced 4A zeolite needed a heat treatment at 473 K for ½ h for the appearance of shfs. Furthermore, it has been found that the coordination structure around the Cu2+ is square pyramidal in solid-state introduced samples, whereas it is octahedral in the liquid-state introduced ones.

  10. Heavy Metals Pollution and Pb Isotopic Signatures in Surface Sediments Collected from Bohai Bay, North China

    PubMed Central

    Gao, Bo; Lu, Jin; Hao, Hong; Yin, Shuhua; Yu, Xiao; Wang, Qiwen; Sun, Ke

    2014-01-01

    To investigate the characteristics and potential sources of heavy metals pollution, surface sediments collected from Bohai Bay, North China, were analyzed for the selected metals (Cd, Cr, Cu, Ni, Pb, and Zn). The Geoaccumulation Index was used to assess the level of heavy metal pollution. Pb isotopic compositions in sediments were also measured to effectively identify the potential Pb sources. The results showed that the average concentrations of Cd, Cr, Cu, Ni, Pb, and Zn were 0.15, 79.73, 28.70, 36.56, 25.63, and 72.83 mg/kg, respectively. The mean concentrations of the studied metals were slightly higher than the background values. However, the heavy metals concentrations in surface sediments in Bohai Bay were below the other important bays or estuaries in China. The assessment by Geoaccumulation Index indicated that Cr, Zn, and Cd were classified as “the unpolluted” level, while Ni, Cu, and Pb were ranked as “unpolluted to moderately polluted” level. The order of pollution level of heavy metals was: Pb > Ni > Cu > Cr > Zn > Cd. The Pb isotopic ratios in surface sediments varied from 1.159 to 1.185 for 206Pb/207Pb and from 2.456 to 2.482 for 208Pb/207Pb. Compared with Pb isotopic radios in other sources, Pb contaminations in the surface sediments of Bohai Bay may be controlled by the mix process of coal combustion, aerosol particles deposition, and natural sources. PMID:24982926

  11. Effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the phytoremediation potential of Catharanthus roseus (L.) in Cu and Pb-contaminated soils.

    PubMed

    Khan, Waheed Ullah; Ahmad, Sajid Rashid; Yasin, Nasim Ahmad; Ali, Aamir; Ahmad, Aqeel

    2017-06-03

    The remediation of heavy metal-contaminated soils has become a critical issue due to toxic effects of these metals on living organisms. The current research was conducted to study the effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the growth and phytoremediation potential of Catharanthus roseus in Cu- and Pb-contaminated soils. The bacterial strains exhibited significantly higher level of water-extractable Pb and Cu in Pb, Cu, and Cu+Pb-contaminated. The P. fluorescens RB4 inoculated plants, produced 102%, 48%, and 45% higher fresh weight (FW) in soils contaminated with Cu, Pb, and both elements, respectively, as compared to un-inoculated control plants. Similarly, B. subtilis 189 inoculated plants produced 108%, 43%, and 114% more FW in the presence of Cu, Pb, and both elements. The plants co-cultivated with both bacteria exhibited 121%, 102%, and 177% higher FW, in Cu, Pb, and both elements contaminated soils, as compared to respective un-inoculated control. Co-cultivation of P. fluorescens RB4, B. subtilis 189, and P. fluorescens RB4 + B. subtilis 189 resulted in higher accumulation of Cu and Pb in shoots of the C. roseus grown in contaminated soils as compared to un-inoculated control. Bacterial treatments also improved the translocation and metal bioconcentration factors. The growth and phytoextraction capability of C. roseus was improved by inoculation of P. fluorescens RB4 and B. subtilis 189.

  12. Interaction of the water soluble fraction of MSW-composts with Pb(II) and Cu(II) ions.

    PubMed

    Castaldi, Paola; Demurtas, Daniela; Silvetti, Margherita; Deiana, Salvatore; Garau, Giovanni

    2017-05-01

    In this study we report on the interactions between the water-soluble fraction (WSF) of two municipal solid waste composts (C1- and C2-WSF) with Pb(II) and Cu(II) ions at pH 4.5. The Me(II) addition to the compost-WSFs led to the formation of soluble Me(II)-organic complexes (as highlighted by FT-IR spectroscopy), and to a decrease of the trace metals' solubility, which was greater for Pb(II) than Cu(II). This was due to the formation of insoluble Me(II) complexes involving the water-soluble organic carbon (WSOC) and the inorganic anions within both WSFs [1.10 and 0.62 mmol L(-1) and 2.06 and 0.42 mmol L(-1) of Pb(II) and Cu(II) precipitated from C1- and C2-WSF respectively, when 6.4 mmol L(-1) Me(II) was added]. A loss of WSOC from both WSFs, i.e. ∼13% and <5%, was detected in the systems containing 6.4 mmol L(-1) Pb(II) and Cu(II) respectively. A significant contribution in the formation of Pb(II) precipitates was also due to phosphate, chloride and sulphate anions, since their concentrations in the WSF decreased of 80, 25 and 90%, respectively, after the addition of 6.4 mmol L(-1) Pb(II). A decrease of phosphate anions in both WSFs (∼30%) was found in the systems containing Cu(II).

  13. Fate of Cu, Cr, and As during combustion of impregnated wood with and without peat additive

    SciTech Connect

    Karin Lundholm; Dan Bostroem; Anders Nordin; Andrei Shchukarev

    2007-09-15

    The EU Directive on incineration of waste regulates the harmful emissions of particles and twelve toxic elements, including copper, chromium, and arsenic. Using a 15 kW pellets-fueled grate burner, experiments were performed to determine the fate of copper, chromium, and arsenic during combustion of chromate copper arsenate (CCA) preservative wood. The fate and speciation of copper, chromium, and arsenic were determined from analysis of the flue gas particles and the bottom ash using SEM-EDS, XRD, XPS, and ICP-AES. Chemical equilibrium model calculations were performed to interpret the experimental findings. The results revealed that about 5% copper, 15% chromium, and 60% arsenic were volatilized during combustion of pure CCA-wood, which is lower than predicted volatilization from the individual arsenic, chromium, and copper oxides. This is explained by the formation of more stable refractory complex oxide phases for which the stability trends and patterns are presented. When co-combusted with peat, an additional stabilization of these phases was obtained and thus a small but noteworthy decrease in volatilization of all three elements was observed. The major identified phases for all fuels were CuCrO{sub 2}(s), (Fe,Mg,Cu)(Cr,Fe,Al)O{sub 4}(s), Cr{sub 2}O{sub 3}(s), and Ca{sub 3}(AsO{sub 4}){sub 2}(s). Arsenic was also identified in the fine particles as KH{sub 2}AsO{sub 4}(s) and As{sub 2}O{sub 3}). A strong indication of hexavalent chromium in the form of K{sub 2}CrO{sub 4} or as a solid solution between K{sub 3}Na(CrO{sub 4}){sub 2} and K{sub 3}Na(SO{sub 4}){sub 2} was found in the fine particles. Good qualitative agreement was observed between experimental data and chemical equilibrium model calculations. 38 refs., 6 figs., 2 tabs.

  14. Development of an odd-Z-projectile reaction for heavy element synthesis: 208Pb(64Ni, n)271Ds and 208Pb(65Cu, n)272111

    SciTech Connect

    Folden III, C.M.; Gregorich, K.E.; Dullmann, Ch.E.; Mahmud, H.; Pang, G.K.; Schwantes, J.M.; Sudowe, R.; Zielinski, P.M.; Nitsche, H.; Hoffman, D.C.

    2004-08-16

    Seven {sup 271}Ds decay chains were identified in the bombardment of {sup 208}Pb targets with 311.5- and 314.3-MeV {sup 64}Ni projectiles using the Berkeley Gas-filled Separator. These data, combined with previous results, provide an excitation function for this reaction. From these results, an optimum energy of 321 MeV was estimated for the production of {sup 272}111 in the reaction {sup 208}Pb({sup 65}Cu, n). One decay chain was observed, resulting in a cross section of 1.7{sub -1.4}{sup +3.9} pb. This experiment confirms the discovery of element 111 by the Darmstadt group who used the {sup 209}Bi({sup 64}Ni, n){sup 272}111 reaction.

  15. Microstructural refinement and strengthening of Cu-4 Cr-2 Nb alloy by mechanical milling

    SciTech Connect

    Anderson, K.R.; Groza, J.R.; Ulmer, D.G.

    1997-07-15

    Lately, a variety of dispersion strengthened (DS) copper alloys that provide a good combination of thermal/electrical conductivity and mechanical strength have been developed. Strengthening is usually achieved by the introduction of a ceramic, refractory metal or intermetallic secondary phase. Cu-Cr-Nb is one such DS alloy in which strengthening is provided by Cr{sub 2}Nb intermetallic particles. Mechanical milling of as-atomized Cu-4 Cr-2 Nb alloy powders substantially increases the mechanical strength (hardness) of the starting material. This is achieved through a drastic grain size, as well as large precipitate size refinement. A more uniform precipitate distribution is also attained. Whether milling is performed with steel or WC vial and balls the hardness saturates at approximately 100 HRB after about 4 hr milling. However, this benefit of MM was offset by an equally severe decrease in electrical conductivity. This decrease is attributed to impurities/contamination from the milling media introduced into the milled powder, primarily, Fe and C, or, WC and Co.

  16. Study of Carbon Nanotubes in Cu-Cr Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Gill, Puneet; Munroe, Norman

    2012-11-01

    A novel metal matrix composite (MMC), Cu-Cr-MWCNT (copper-chromium-multiwalled carbon nanotube), was manufactured using a powder metallurgy technique. Cu-Cr alloy is widely adopted for contacts in vacuum circuit breakers. MWCNT was incorporated in an effort to enhance electrical conductivity and decrease the usage of Cr as strategic metal. Optimized milling conditions and sintering profiles were utilized to minimize any significant damage to the MWCNTs but yet provide homogeneous distribution of all constituents. Raman spectroscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM) were used to determine the crystal structure orientation, microstructure, and morphology, respectively, of the composite. Raman peak shift and intensity ratios assessed the stresses induced and the degree of disorder of MWCNTs in the composite. TEM indicated carbide and oxide formations in the composite. SEM images revealed the presence of MWCNTs within the metal matrix. The corrosion resistances of the composite with and without MWCNTs was determined by cyclic potentiodynamic polarization (ASTM F 2129-08) in phosphate buffer saline solution at 37 °C.

  17. Spatial and temporal variations in inhalable CuZnPb aerosols within the Mexico City pollution plume.

    PubMed

    Moreno, T; Querol, X; Pey, J; Minguillón, M C; Pérez, N; Alastuey, A; Bernabé, R M; Blanco, S; Cárdenas, B; Eichinger, W; Salcido, A; Gibbons, W

    2008-03-01

    We report on the CuPbZn content of PM10 and PM2.5 samples collected from three sites (urban T0, suburban T1 and rural T2) during the Mexico City MILAGRO campaign of March 2006. Daytime city centre concentrations of summation operator CuZnPb(PM10) were much higher (T0 > 450 ng m(-3)) than at the suburban site (T1 < 200 ng m(-3)). Rural site (T2) summation operator CuZnPb(PM10) concentrations exceeded 50 ng m(-3) when influenced by the megacity plume but dropped to 10 ng m(-3) during clean northerly winds. Nocturnal metal concentrations more than doubled at T0, as pollutants became trapped in the nightly inversion layer, but decreased at the rural site. Transient spikes in concentrations of different metals, e.g. a "copper event" at T0 (CuPM10 281 ng m(-3)) and "zinc event" at T1 (ZnPM10 1481 ng m(-3)) on the night of March 7-8, demonstrate how industrial pollution sources produce localised chemical inhomogeneities in the city atmosphere. Most metal aerosols are <2.5 microm and SEM study demonstrates the dominance of Fe, Ti, Ba, Cu, Pb and Zn (and lesser Sn, Mo, Sb, W, Ni, V, As, Bi) in metalliferous particles that have shapes including spherical condensates, efflorescent CuZnClS particles, cindery Zn, and Cu wire. Metal aerosol concentrations do not change in concert with PM10 mass, which is more influenced by wind resuspension than industrial emissions. Metalliferous particles can induce cell damage, and PM composition is probably more important than PM mass, with respect to negative health effects, so that better monitoring and control of industrial emissions would likely produce significant improvements in air quality.

  18. A multiwave CuBr and PbBr 2 laser with a sectioned active volume

    NASA Astrophysics Data System (ADS)

    Sukhanov, V. B.; Filonov, A. G.; Shiyanov, D. V.

    2010-10-01

    The operation of a CuBr and PbBr 2 laser with a two-section gas-discharge tube with working media in different sections and an additional electrode between the sections was studied for the first time. Effective lasing was achieved in both media under control of time location of lasing pulses in different active media. The total mean lasing power equal to 1.5 W was distributed over wavelengths as follows: 1 W (510.6 nm), 0.3 W (578.2 nm), and 0.2 W (722.9 nm). The specific features of operation of the multicomponent laser and methods for its optimization are discussed. It is shown that the lasing power in a section is close to the power of an individual active element.

  19. Experimental determination of the Cu-In-Pb ternary phase diagram

    SciTech Connect

    Bolcavage, A.; Kao, C.R.; Chang, Y.A.; Romig, A.D. Jr.

    1993-12-01

    Use of lead-indium solders in microelectronics packaging has increased over the last decade. Increased usage is due to improved properties, such as greater thermo-mechanical fatigue resistance, lower intermetallic formation rates with base metallizations, such as copper, and lower reflow temperatures. However, search of literature reveals no comprehensive studies on phase equilibrium relations between copper metal and lead-indium solder. Our effort involves a combination of experimental data acquisition and computer modeling to obtain the Cu-In-Pb ternary phase diagram. Isotherms and isopleths of interest at low temperatures are achieved by means of differential scanning calorimetry and electron probe microanalysis. Thermodynamic models of these sections served as a guide for efficient experimentation.

  20. Trace level determination of u, zn, cd, pb and cu in drinking water samples.

    PubMed

    Kumar, Mukesh; Singh, Surinder; Mahajan, Rakesh Kumar

    2006-01-01

    The concentration of uranium has been assessed in drinking water samples collected from different locations in Bathinda district, Punjab, India. The water samples are taken from hand pumps and tube wells. Uranium is determined using fission track technique. Uranium concentration in the water samples varies from 2.23+/- 0.05 to 87.05+/- 0.29 microg/L. These values are compared with safe limit values recommended for drinking water. The uranium concentration in almost all drinking water samples is found to be more than the safe limit. Analysis of some heavy metals viz. Zn, Cd, Pb and Cu in water is made. The concentration of sodium, potassium, calcium, magnesium, chlorine and total hardness along with the pH value and conductivity of the water samples are measured. Some of the samples show stunningly high values of these parameters.

  1. Microstructure and flux pinning in superconducting Bi-Pb-Sr-Ca-Cu-O wires

    NASA Astrophysics Data System (ADS)

    Dou, S. X.; Liu, H. K.; Wang, J.; Apperley, M. H.; Sorrell, C. C.; Guo, S. J.; Loberg, B.; Easterling, K. E.

    1990-12-01

    The critical current density ( Jc) of Ag-clad Bi-Pb-Sr-Ca-Cu-O wire has been measured to be 1.2×10 4 A/cm 2 at 77 K in zero field. The high Jc is attributed to a combination of elimination of the poisoning effect of Ag on superconductivity, grain alignment, and enhancement of flux pinning. Jc- H dependence was significantly improved in the Ag-clad tape, which has a Jc of 1.0×10 3 A /cm 2 at 77 K and 4000 Oe, while the Jc of the sintered pellet drops two orders of magnitude at only 100 Oe. A pronounced anisotropy in Jc under high magnetic field is attributed to the grain alignment. Planar defects, such as heavy stacking faults parallel to the a- b plane in the rolled tape, are considered to be effective pinning centres.

  2. LFZ growth of (Bi,Pb)--Sr--Ca--Cu--O superconducting fibers

    SciTech Connect

    de la Fuente, G.F.; Navarro, R.; Lera, F.; Rillo, C.; Bartolome, J.; Badia, A. ); Beltran, D.; Ibanez, R.; Beltran, A. ); Sinn, E. )

    1991-04-01

    Powder x-ray diffraction, d.c. and a.c. susceptibilities, and SEM have been used to study (Bi{sub 1{minus}{ital x}}Pb{sub {ital x}}){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+{delta}} fibers grown by the Laser Floating Zone method. The well-oriented, long-grained superconductor fiber properties are shown to be highly dependent on the partial pressure of oxygen in the growth atmosphere, as well as on fiber pulling rate. Slowly grown fibers contain initially the 2212 (80 K) phase; the 2223 (110 K) phase also appears upon annealing in air. Faster growth rates result in fibers that contain a mixture of the 2212 and 2201 phases and, in this case, long annealing procedures are necessary to observe the 2223 phase.

  3. Fabrication and characterization of (Bi,Pb)-Sr-Ca-Cu-O (2223) bars

    SciTech Connect

    Chudzik, M.P.; Polzin, B.J.; Thayer, R.; Picciolo, J.J.; Fisher, B.L.; Lanagan, M.T.

    1996-08-01

    Bulk bars for current lead applications were fabricated from (Bi,Pb)- Sr-Ca-Cu-O (Bi-2223) for low thermal conductivity and high critical current. Bars measuring 17.8 cm in length were made by uniaxially pressing Bi-2223 powder of controlled (1.7/0.34)223 and (1.8/0.4)223 phase composition. The bulk bars were densified by subjecting them to a schedule of alternate liquid-phase sintering and cold isostatic pressing. Liquid phase sintering temperatures were optimized from differential thermal analysis and microstructure morphology. Phase purity and microstructure were evaluated by x-ray diffraction and scanning electron microscopy. Low-resistance silver contacts were applied to the bars by hot-pressing at 820{degrees}C and 3 MPa. Critical current densities {approx} 1000 A/cm{sup 3} (critical currents of 750 A at 77 K in self-field conditions) were achieved.

  4. Immobilisation of Cu, Pb and Zn in Scrap Metal Yard Soil Using Selected Waste Materials.

    PubMed

    Kamari, A; Putra, W P; Yusoff, S N M; Ishak, C F; Hashim, N; Mohamed, A; Isa, I M; Bakar, S A

    2015-12-01

    Immobilisation of heavy metals in a 30-year old active scrap metal yard soil using three waste materials, namely coconut tree sawdust (CTS), sugarcane bagasse (SB) and eggshell (ES) was investigated. The contaminated soil was amended with amendments at application rates of 0 %, 1 % and 3 % (w/w). The effects of amendments on metal accumulation in water spinach (Ipomoea aquatica) and soil metal bioavailability were studied in a pot experiment. All amendments increased biomass yield and reduced metal accumulation in the plant shoots. The bioconcentration factor and translocation factor values of the metals were in the order of Zn > Cu > Pb. The addition of ES, an alternative source of calcium carbonate (CaCO3), has significantly increased soil pH and resulted in marked reduction in soil metal bioavailability. Therefore, CTS, SB and ES are promising low-cost immobilising agents to restore metal contaminated land.

  5. Effect of Co doping on optical properties of chemically synthesized delafossite structured CuCrO2 thin film

    NASA Astrophysics Data System (ADS)

    Bera, A.; Deb, K.; Sarkar, K.; Saha, B.

    2017-05-01

    In this communication, thin films of delafossite structured oxide material of CuCrO2 with different concentration of cobalt (0%, 1%, 2% and 3%) have been grown on quartz substrate by sol-gel spin coating method. Prepared films were annealed at 800 °C in ambient condition for 5 hours. The microstructure, surface topography and optical properties of as prepared Co doped CuCrO2 thin films were analyzed by using X-ray diffractometer (XRD) with Cu-Kα radiation, Atomic Force Microscopy (AFM) and UV-Vis NIR photospectrometer respectively. Maximum transparency was found to be 50% from transmittance spectra. Red shifts of optical energy band gap have been observed due to increase of carrier concentration of cobalt in CuCrO2 thin films. The doping of cobalt in CuCrO2 thin films have a significant influence on the optical properties of CuCrO2 which can be used to shape up smart semiconductor devices.

  6. Manufacturing and High Heat Flux Testing of Brazed Flat-Type W/CuCrZr Plasma Facing Components

    NASA Astrophysics Data System (ADS)

    Lian, Youyun; Liu, Xiang; Feng, Fan; Chen, Lei; Cheng, Zhengkui; Wang, Jin; Chen, Jiming

    2016-02-01

    Water-cooled flat-type W/CuCrZr plasma facing components with an interlayer of oxygen-free copper (OFC) have been developed by using vacuum brazing route. The OFC layer for the accommodation of thermal stresses was cast onto the surface of W at a temperature range of 1150 °C-1200 °C in a vacuum furnace. The W/OFC cast tiles were vacuum brazed to a CuCrZr heat sink at 940 °C using the silver-free filler material CuMnSiCr. The microstructure, bonding strength, and high heat flux properties of the brazed W/CuCrZr joint samples were investigated. The W/Cu joint exhibits an average tensile strength of 134 MPa, which is about the same strength as pure annealed copper. High heat flux tests were performed in the electron beam facility EMS-60. Experimental results indicated that the brazed W/CuCrZr mock-up experienced screening tests of up to 15 MW/m2 and cyclic tests of 9 MW/m2 for 1000 cycles without visible damage. supported by National Natural Science Foundation of China (No. 11205049) and the National Magnetic Confinement Fusion Science Program of China (No. 2011GB110004)

  7. Efficiency of several leaching reagents on removal of Cu, Pb, Cd, and Zn from highly contaminated paddy soil.

    PubMed

    Gao, Ruili; Zhu, Pengfei; Guo, Guangguang; Hu, Hongqing; Zhu, Jun; Fu, Qingling

    2016-11-01

    The efficiency of five different single leaching reagents (tartaric acid (TA), citric acid (CA), CaCl2, FeCl3, EDTA) and two different composite leaching reagents (CA + FeCl3, CA + EDTA) on removing Cu, Pb, Zn, and Cd from contaminated paddy soil in Hunan Province (in China) was studied. The results indicated that the efficiencies of CA, FeCl3, and EDTA on extracting Cu, Pb, Cd, and Zn from soil were greater than that of TA and CaCl2, and their extraction efficiencies were EDTA ≥ FeCl3 > CA. The efficiencies of CA + FeCl3 on extracting Cu, Pb, Cd, and Zn were higher than that of single CA or FeCl3. The 25 mmol L(-1) CA + 20 mmol L(-1) FeCl3 was a promising composite leaching reagent for paddy soil, and it could remove Cu (57.6 %), Pb (59.3 %), Cd (84.8 %), and Zn (28.0 %), respectively. With the same amount of leaching reagent, the efficiency of continuous leaching by several times was higher than that by once. In addition, the easily reducible and oxidizable fractions of heavy metals showed significant decrease during the process of leaching.

  8. Sorption and desorption of Cd, Cu and Pb using biomass from an eutrophized habitat in monometallic and bimetallic systems.

    PubMed

    Lezcano, J M; González, F; Ballester, A; Blázquez, M L; Muñoz, J A; García-Balboa, C

    2011-10-01

    This work examines the sorption capacity of a natural biomass collected from an irrigation pond. The biomass mainly consisted of a mixture of chlorophyte algae with caducipholic plants. Biosorption experiments were performed in monometallic and bimetallic solutions containing different metals commonly found in industrial effluents (Cd, Cu and Pb). The biosorption process was slightly slower in the binary system comparing with monometallic system which was related to competition phenomena between metal cations in solution. The biosorbent behaviour was quantified by the sorption isotherms fitting the experimental data to mathematical models. In monometallic systems, the Langmuir model showed a better fit with the following sorption order: Cu ~ Pb > Cd; and biomass-metal affinity order: Pb > Cd ~ Cu. In bimetallic systems, the binary-type Langmuir model was used and the sorption order obtained was: Pb ~ Cu > Cd. In addition, the effectiveness of the biomass was investigated in several sorption-desorption cycles using HCl and NaHCO(3). The recovery of metal was higher with HCl than with NaHCO(3), though the sorption uptake of the biomass was sensitively affected by the former desorption agent in subsequent sorption cycles.

  9. Selective Cu{sup 2+} and Pb{sup 2+} exchange with highly charged cation exchanger of Na-4-mica

    SciTech Connect

    Kodama, Tatsuya; Komarneni, Sridhar

    1999-09-01

    Selective cation exchange for Cu and Pb has been demonstrated with the high-charge-density sodium fluorophlogopite mica, Na-4-mica. The 2Na{sup +} {yields} M{sup 2+} exchange reaction (M = Cu or Pb) was investigated with Na-4-micas prepared by two different synthetic processes. One was easily and economically prepared by crystallization from a mixture of NaF, MgO, and metakaolin, the latter serves as an inexpensive aluminosilicate source. Another was prepared by solution-sol-gel processing. Ion-exchange isotherms for Cu{sup 2+} and Pb{sup 2+} were obtained at room temperature. The thermodynamic functions for the initial ion-exchange reactions were calculated because the isotherms were not completed., High selectivities for both copper and lead exchange were found on the highly crystallized Na-4-mica prepared from metakaolin. Their ion-exchange capacities were 225 and 257 milliequivalents per 100 g of dry clay for Cu{sup 2+} and Pb{sup 2+}, respectively. This high level decontamination of copper and lead with the highly crystallized Na-4-mica from metakaolin will be a very important separation required for purification of drinking water as well as for wastewater treatment and disposal.

  10. Growth of nucleation sites on Pb-doped Bi2Sr2Ca1Cu2O8 + delta

    NASA Astrophysics Data System (ADS)

    Finnemore, D. K.; Xu, Ming; Kouzoudis, D.; Bloomer, T.; Kramer, M. J.; McKernan, Stuart; Balachandran, U.; Haldar, Pradeep

    1996-01-01

    In the growth of Bi2Sr2Ca2Cu3O10+δ from mixed powders of Pb-doped Bi2Sr2Ca1Cu2O8+δ and other oxides, it has been discovered that a dense array of hillocks or mesas grow at the interface between a Ag overlay and Pb-doped Bi2Sr2Ca1Cu2O8+δ grains during the ramp up to the reaction temperature. As viewed in an environmental scanning electron microscope, the Ag coated grains develop a texture that looks like ``chicken pox'' growing on the grains at about 700 °C. These hillocks are about 100 nm across and are spaced at about 500 to 1000 nm. If there is no Ag, this texture does not develop. Preliminary measurements indicate that the hillocks are a recrystallization of (Bi,Pb)2Sr2Ca1Cu2O8+δ, and are definitely not a Pb rich phase.

  11. Modelling the concentrations of dissolved contaminants (Cd, Cu, Ni, Pb, Zn) in floodplain soils.

    PubMed

    Rennert, Thilo; Rabus, Widar; Rinklebe, Jörg

    2017-04-01

    Central European floodplain soils are often contaminated with potentially toxic metals. The prediction of their aqueous concentrations is a prerequisite for an assessment of environmental concerns. We tested the aqueous concentrations of cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) derived from multi-surface adsorption modelling (on hydrous iron, aluminum and manganese oxides, clay and soil organic matter) against those analyzed in situ in the soil solution of four horizons of floodplain soils at the Elbe River, Germany. The input data for the reactive metals were derived from a seven-step sequential extraction scheme or from extraction with 0.43 M nitric acid (HNO3) and evaluated in four modelling scenarios. In all scenarios, measured and modelled concentrations were positively related, except partially for Pb. Close reproduction of the measured data was obtained using measured data of accompanying cations and anions together with amounts of reactive metals from both the sequential extraction or from 0.43 M HNO3 extraction, except for Cu, which was often strongly overestimated, and partially Cd. We recommend extraction with 0.43 M HNO3 to quantify reactive metals in soil because the modelling results were metal-specific with better or equal results using the single extractant, the application of which is also less laborious. Approximations of ion concentrations and water contents yielded similar results. Modelled solid-phase speciation of metals varied with pH and differed from that from sequential extraction. Multi-surface modelling may be an effective tool to predict both aqueous concentrations and solid-phase speciation of metals in soil.

  12. Tartrazine modified activated carbon for the removal of Pb(II), Cd(II) and Cr(III).

    PubMed

    Monser, Lotfi; Adhoum, Nafaâ

    2009-01-15

    A two in one attempt for the removal of tartrazine and metal ions on activated carbon has been developed. The method was based on the modification of activated carbon with tartrazine then its application for the removal of Pb(II), Cd(II) and Cr(III) ions at different pH values. Tartrazine adsorption data were modelled using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacities qm were 121.3, 67 and 56.7mgg(-1) at initial pH values of 1.0, 6.0 and 10, respectively. The adsorption of tartrazine onto activated carbon followed second-order kinetic model. The equilibrium time was found to be 240min at pH 1.0 and 120min at pH 10 for 500mgL(-1) tartrazine concentration. A maximum removal of 85% was obtained after 1h of contact time. The presence of tartrazine as modifier enhances attractive electrostatic interactions between metal ions and carbon surface. The adsorption capacity for Pb(II), Cd(II) and Cr(III) ions has been improved with respect to non-modified carbon reaching a maximum of 140%. The adsorption capacity was found to be a pH dependent for both modified and non-modified carbon with a greater adsorption at higher pH values except for Cr(III). The enhancement percent of Pb(II), Cd(II) and Cr(III) at different pH values was varied from 28% to 140% with respect to non-modified carbon. The amount of metal ions adsorbed using static regime was 11-40% higher than that with dynamic mode. The difference between adsorption capacities could be attributed to the applied flow rate.

  13. Pb(II), Cr(VI) and atrazine sorption behavior on sludge-derived biochar: role of humic acids.

    PubMed

    Zhou, Fengsa; Wang, Hong; Fang, Sheng'en; Zhang, Weihua; Qiu, Rongliang

    2015-10-01

    Pyrolyzing municipal wastewater treatment sludge into biochar can be a promising sludge disposal approach, especially as the produced sludge-derived biochar (SDBC) is found to be an excellent sorbent for heavy metals and atrazine. The aim of this study was to investigate how and why the coexisting humic acids influence the sorption capacity, kinetic, and binding of these contaminants on SDBC surface. Results showed humic acids enhanced Pb(II)/Cr(VI) sorption binding, and increased the corresponding Pb(II) Langmuir sorption capacity at pH 5.0 from 197 to 233 μmol g(-1), and from 688 to 738 μmol g(-1) for Cr(VI) at pH 2.0. It can be mainly attributed to the sorbed humic acids, whose active functional groups can offer the additional sites to form stronger inner-sphere complexes with Pb(2+), and supply more reducing agent to facilitate the transformation of Cr(VI) to Cr(III). However, humic acids reduced the atrazine adsorption Freundlich constant from 1.085 to 0.616 μmol g(-1). The pore blockage, confirmed by the decreased BET-specific surface area, as well as the more hydrophilic surface with more sorbed water molecules may be the main reasons for that suppression. Therefore, the coexisting humic acids may affect heavy metal stabilization or pesticide immobilization during SDBC application to contaminated water or soils, and its role thus should be considered especially when organic residues are also added significantly to increase the humic acid content there.

  14. Characterization and adsorption performance of Pb(II) on CuO nanorods synthesized by the hydrothermal method

    SciTech Connect

    Arfaoui, Lobna; Kouass, Salah; Dhaouadi, Hassouna; Jebali, Raouf; Touati, Fathi

    2015-10-15

    Highlights: • The nanorods of CuO were synthesized by a hydrothermal route without any surfactant. • X-ray diffraction showed monoclinic structure with space group C{sub 2/c}. • The nanorods show relatively high adsorption capacity for the removal of Pb(II). • The adsorption kinetics could be fitted well by the pseudo-second-order model. • The equilibrium data can be fitted well using the Langmuir isotherm model - Abstract: Copper oxide (CuO) nanorods were synthesized by hydrothermal method. The detailed structural, compositional and optical characterization of this material was also evaluated with XRD, FT-IR, EDS, and UV–vis spectroscopy, which confirmed that the obtained nanorods are well-crystallized CuO and possess good optical properties. SEM and TEM studies revealed that the as-synthesized CuO nanorods are uniform with an average diameter of 17 nm. The adsorption activity of the CuO nanostructures was studied. The adsorption results showed that the CuO nanorods are an effective and efficient adsorbent for the removal of Pb(II) ions. The influence of various operational parameters such as the pH of the solution, the contact time and the initial concentrations were also studied and the results were discussed. The estimated maximum lead ion adsorption capacity of the CuO nanorods was found to be 188.67 mg g{sup −1} at an optimum pH of 6.

  15. Compatibility of an FeCrAl alloy with flowing Pb-Li in a thermal convection loop

    NASA Astrophysics Data System (ADS)

    Pawel, Steven J.; Unocic, Kinga A.

    2017-08-01

    A mono-metallic thermal convection loop (TCL) fabricated from alloy APMT (Fe21Cr5Al3Mo) tubing and filled with 0.025 m long tensile specimens of the same alloy was operated continuously for 1000 h with commercially pure Pb-17 at.%Li (Pb-Li) at a peak temperature of 550 ± 1.5 °C and a temperature gradient of ∼116 °C. The resulting Pb-Li flow rate was ∼0.0067 m/s. A 1050 °C pre-oxidation treatment (to form an external alumina scale) given to most specimens exposed within the TCL decreased total mass loss by a factor of 3-30 compared to adjacent specimens that were not pre-oxidized. However, all specimens exposed above 500 °C lost mass suggesting that the alumina scale was not entirely stable in flowing Pb-Li at these temperatures. Post-exposure room temperature tensile tests indicated that the mechanical properties of APMT were substantially influenced by extended exposures in the range of 435-490 °C, which caused an increase in yield strength (∼65%) and a corresponding decrease in ductility associated with α‧ embrittlement. Specimens annealed in argon at the same temperature exhibited identical changes without exposure to Pb-Li. Scanning transmission electron microscopy revealed Cr-clusters within the microstructure in specimens exposed in the low temperature regions (<490 °C) of the TCL, indicating the formation of α‧ consistent with the mechanism of α‧ embrittlement.

  16. Nucleation and evolution of dynamic damage at Cu/Pb interfaces using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Fensin, S. J.; Valone, S. M.; Cerreta, E. K.; Gray, G. T.; Shao, S.

    2017-01-01

    For ductile metals, the process of dynamic fracture occurs through nucleation, growth and coalescence of voids. For high purity single-phase metals, it has been observed by numerous investigators that voids tend to heterogeneously nucleate at grain boundaries and all grain boundaries are not equally susceptible to void nucleation. However, for materials of engineering significance, especially those with second phase particles, it is less clear if the type of bi-metal interface between the two phases will affect void nucleation and growth. To approach this problem in a systematic manner two bi-metal interfaces between Cu and Pb have been investigated: {111} and {100}. Qualitative and quantitative analysis of the collected data from molecular dynamics shock and spall simulations suggests that Pb becomes disordered during shock compression and is the preferred location for void nucleation under tension. Despite the interfaces being aligned with the spall plane (by design), they are not the preferred location for void nucleation irrespective of interface type.

  17. Pb(II), Cu(II) and Cd(II) removal through untreated rice husk; thermodynamics and kinetics.

    PubMed

    Guiso, Maria Giovanna; Alberti, Giancarla; Emma, Giovanni; Pesavento, Maria; Biesuz, Raffaela

    2012-01-01

    The sorption properties of rice husk towards Cu(II), Cd(II) and Pb(II) were studied. The sorption isotherms are described by the Langmuir equation, and Pb(II) shows a higher affinity for rice husk compared to Cu(II) and Cd(II) under the same conditions. The kinetics of sorption obeys to a pseudo second-order equation for all metals. The sorption profiles as a function of the pH were used to characterize the stoichiometry of the sorption reaction. The competition for metal complexation by any ligand in solution is also accounted for. Upon increasing the ionic strength, the sorption curves of Pb(II) move to basic pH; this shift can be explained by considering the effect of nitrate complexes on the free metal ion concentration, since KNO(3) is used as the ionic medium. An attempt to employ rice husk in a dynamic system is presented.

  18. [Soil pollution of Cu, Zn, Pb and Cd in different city zones of Nanjing].

    PubMed

    Wu, Xinmin; Li, Lianqing; Pan, Genxing; Ju, Yufen; Jiang, Haiyang

    2003-05-01

    The Nanjing city was divided into six zones as smelter industry, inner commercial, inner residence, newly developed, urban greenland and preserved scenic. In each zone, soil samples were randomly collected by triple subsampling technique. Total 56 soil samples were digested by mixed solution of nitric, chloridic and sulphatic acids and by sequential extractants respectively according to the standard methods. The total and fractional heavy metals were determined by AAS. The mean total content of Pb, Cu, Zn and Cd of the soils from smelter industry, inner commercial, inner residence, newly developed, urban greenland and preserved scenic zone was 117.1 +/- 103.7 mg.kg-1, 39.86 +/- 39.9 mg.kg-1, 273.3 +/- 131.6 mg.kg-1 and 1.13 +/- 0.7 mg.kg-1, with the overall pollution index being 5.4, 4.9, 3.4, 1.6, 2.4 and 2.3 respectively. The pollution in the smelter industrial zone was characterized by high concentration but low chemical mobility of Pb and Cd, while that in inner cities by high concentration of lead and zinc with quite larger acelatic acid extractable pool. Except for the soils from newly developed and preserved zones, the heavy metals were more or less superficial in respect to their depth distribution in the urban soils. The dramatic soil pollution of Pb and Cd in the urban area might cause any health risks for children, whose activities are believed to happen in a relative limited area. The future research on urban soil pollution should pursue the effect of soil pollution on human environment in the urban area.

  19. Effect of the ITER FW Manufacturing Process on the Microstructure and Properties of a CuCrZr Alloy

    NASA Astrophysics Data System (ADS)

    Liu, Danhua; Wang, Pinghuai; Song, Yi; Li, Qian; Chen, Jiming

    2015-10-01

    The first wall (FW) is one of the core components in ITER. As the heat sink material, the CuCrZr alloy shall be properly jointed with beryllium and stainless steel. At present, the grains of CuCrZr are prone to coarsen seriously in the thermal cycle process of FW manufacturing, which has become a critical issue for ITER parties. To investigate the mirostructure and mechanical properties of the optimized CuCrZr alloy in the first wall fabricating thermal cycle, simulative experiments have been done in this study. The alloy ingot was forged and hot rolled into plates, and then solid solution annealed, cold rolled and aged for strengthening. Several heat treatments were done to the CuCrZr samples, and the changes of microstructure, micro-hardness and tensile strength were investigated. The results indicated that the original elongated grains had changed into equiaxed ones, and the vickers hardness had declined to about 60 after experiencing the process of CuCrZr/316L(N) bi-metallic plate manufacturing, either by hot isostatic pressing at a higher temperature or by explosion welding followed by solution annealing. Joining Be/CuCrZr by hot isostatic pressing acts as an aging process for CuCrZr, so after the simulated heat treatment, the hardness of the alloy increased to about 110 HV and the tensile yield strength at 250°C rose to about 170 MPa. Meanwhile, the average grain size was controlled below 200 μm. supported by the International Nuclear Thermonuclear Experimental Reactor (ITER) Specific Program of China (No. 2014GB126000)

  20. Feasibility of constructed wetland planted with Leersia hexandra Swartz for removing Cr, Cu and Ni from electroplating wastewater.

    PubMed

    You, Shao-Hong; Zhang, Xue-Hong; Liu, Jie; Zhu, Yi-Nian; Gu, Chen

    2014-01-01

    As a low-cost treatment technology for effluent, the constructed wetlands can be applied to remove the heavy metals from wastewater. Leersia hexandra Swartz is a metal-accumulating hygrophyte with great potential to remove heavy metal from water. In this study, two pilot-scale constructed wetlands planted with L. hexandra (CWL) were set up in greenhouse to treat electroplating wastewater containing Cr, Cu and Ni. The treatment performance of CWL under different hydraulic loading rates (HLR) and initial metal concentrations were also evaluated. The results showed that CWL significantly reduced the concentrations of Cr, Cu and Ni in wastewater by 84.4%, 97.1% and 94.3%, respectively. High HLR decreased the removal efficiencies of Cr, Cu and Ni; however, the heavy metal concentrations in effluent met Emission Standard of Pollutants for Electroplating in China (ESPE) at HLR less than 0.3 m3/m2 d. For the influent of 5 mg/L Cr, 10 mg/L Cu and 8 mg/L Ni, effluent concentrations were below maximum allowable concentrations in ESPE, indicating that the removal of Cr, Cu and Ni by CWL was feasible at considerably high influent metal concentrations. Mass balance showed that the primary sink for the retention of contaminants within the constructed wetland system was the sediment, which accounted for 59.5%, 83.5%, and 73.9% of the Cr, Cu and Ni, respectively. The data from the pilot wetlands support the view that CWL could be used to successfully remove Cr, Cu and Ni from electroplating wastewater.

  1. Fabrication and properties of (Hg,Pb)Ba2Ca2Cu3O8+δ silver-sheathed tapes

    NASA Astrophysics Data System (ADS)

    Su, J. H.; Sastry, P. V. P. S. S.; van der Laan, D. C.; Schwartz, J.

    2002-05-01

    (Hg,Pb)Ba2Ca2Cu3O8+δ (HgPb1223) samples have been fabricated by wrapping Pb0.2Ba2Ca2Cu3Oy precursor powder within Ag foil and pressing or rolling. The precursor/Ag composite is then reacted with CaHgO2 in sealed reaction quartz glass tubes. The XRD pattern of as-prepared tapes shows only one superconducting phase, HgPb1223, was obtained, in agreement with the Tc measurements showing an onset critical temperature (Tc) of about 132 K. The microstructures of these tapes examined by ESEM show defects such as cracks, voids, sausaging, and non-superconducting phases, resulting from mechanical deformation and sintering. Although the localized grain alignment of the silver interface has been observed, globally the HgPb1223 grains are almost randomly aligned, in agreement with magneto-optical images. The irreversibility behavior and the temperature dependence of magnetic (intragrain) critical current density Jc,m, estimated by using Bean's model, are also reported. The average transport Jc,t of the HgPb1223 tapes was ˜103A/cm2 at 4.2 K and self-field, only 1/1000 of Jc,m, which was ˜106A/cm2. The much lower transport Jc,t is explained in terms of grain-linking and defects mentioned above.

  2. Influence of Cu, Fe, Pb, and Zn chlorides and oxides on formation of chlorinated aromatic compounds in MSWI fly ash.

    PubMed

    Fujimori, Takashi; Takaoka, Masaki; Takeda, Nobuo

    2009-11-01

    Model fly ashes containing admixed Cu, Fe, Pb, and Zn chlorides and oxides were heated at a temperature corresponding to the postcombustion zone of a municipal solid waste incinerator (MSWI), resulting in the formation of chlorinated aromatic compounds, including polychlorinated dibenzo-p-dioxins (PCDDs) and furans (PCDFs), polychlorinated biphenyls (PCBs), and chlorobenzenes (CBzs). The concentrations of these compounds were measured and compared with those occurring in real fly ash. The order with respect generative capacity of each metal additive was calculated from principal component analysis of the concentrations of the different chlorinated aromatic compounds as CuCl(2)*2H(2)O > Cu(2)(OH)(3)Cl > FeCl(3)*6H(2)O > FeCl(2)*4H(2)O > CuO > Fe(2)O(3) > PbCl(2) > blank (no metal added) > ZnCl(2) > PbO > ZnO. From hierarchical cluster analysis of the concentrations and congener distribution patterns of the PCDDs, PCDFs, PCBs, and CBzs, the metallic compounds were divided into five groups: Group A (CuCl(2)*2H(2)O and Cu(2)(OH)(3)Cl), B (FeCl(3)*6H(2)O and FeCl(2)*4H(2)O), C (CuO and PbCl(2)), D (Fe(2)O(3), blank, and ZnCl(2)), and E (PbO and ZnO). Cluster analysis showed the congener distribution patterns of model fly ashes to be similar to the pattern of real MSWI fly ash. The formation of PCDDs was influenced mainly by group B, blank, and PbO; PCDFs, mainly by CuO, Fe(2)O(3) and ZnCl(2); PCBs, mainly by groups B and C; and CBzs, mainly by groups A and B. Thus, the multiple promotion of chlorinated aromatic compound formation by metallic chlorides and oxides in the fly ashes of MSWIs and other thermal processes has considerable importance for the environment.

  3. The Characterization of Fixation of Ba, Pb, and Cu in Alkali-Activated Fly Ash/Blast Furnace Slag Matrix

    PubMed Central

    Koplík, Jan; Kalina, Lukáš; Másilko, Jiří; Šoukal, František

    2016-01-01

    The fixation of heavy metals (Ba, Cu, Pb) in an alkali-activated matrix was investigated. The matrix consisted of fly ash and blast furnace slag (BFS). The mixture of NaOH and Na-silicate was used as alkaline activator. Three analytical techniques were used to describe the fixation of heavy metals—X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), and X-ray powder diffraction (XRD). All heavy metals formed insoluble salts after alkaline activation. Ba was fixed as BaSO4, and only this product was crystalline. EDS mapping showed that Ba was cumulated in some regions and formed clusters. Pb was present in the form of Pb(OH)2 and was dispersed throughout the matrix on the edges of BFS grains. Cu was fixed as Cu(OH)2 and also was cumulated in some regions and formed clusters. Cu was present in two different chemical states; apart from Cu(OH)2, a Cu–O bond was also identified. PMID:28773655

  4. Structural percolation in the PbM(1-x)M(x)'O(3) (M, M' =Ti, Cr, and V) perovskites.

    PubMed

    Arévalo-López, Ángel M; Alario-Franco, Miguel Á

    2011-08-01

    Structural properties and the influence of d electrons' insertion in PbTiO(3) have been determined in the study of PbM(1-x)M(x)'O(3) (M, M' = Ti, Cr, and V) solid solutions by means of X-ray diffraction, high-resolution transmission electron microscopy, magnetization measurements, and strain mapping analysis. PbTi(1-x)V(x)O(3) is the only system that preserves the same space group (P4mm) for all x, whereas PbTi(1-x)Cr(x)O(3) and PbV(1-x)Cr(x)O(3) change to cubic (Pm ̅3m) at x = 0.30 and 0.4, respectively. These values have been related with the percolation threshold for a cubic net (P(c) = 0.31). The microscopy study coincides with the X-ray diffraction determination, and neither supercell nor short-range order maxima are observed. However, for x ≥ 0.7 in PbTi(1-x)Cr(x)O(3) the presence of modulated zones is observed in both the electron diffraction pattern as well as high-resolution transmission electron micrographs, as is typical for PbCrO(3). (1) Furthermore, the tetragonal region in PbV(1-x)Cr(x)O(3) suffers a great stress because of the contrast of [Cr-O(6)] octahedra and [V-O(5)] square-based pyramids end members basic units. © 2011 American Chemical Society

  5. Biomonitoring of Cd, Cr, Hg and Pb in the Baluarte River basin associated to a mining area (NW Mexico).

    PubMed

    Ruelas-Inzunza, J; Green-Ruiz, C; Zavala-Nevárez, M; Soto-Jiménez, M

    2011-08-15

    With the purpose of knowing seasonal variations of Cd, Cr, Hg and Pb in a river basin with past and present mining activities, elemental concentrations were measured in six fish species and four crustacean species in Baluarte River, from some of the mining sites to the mouth of the river in the Pacific Ocean between May 2005 and March 2006. In fish, highest levels of Cd (0.06 μg g ⁻¹ dry weight) and Cr (0.01 μg g⁻¹) were detected during the dry season in Gobiesox fluviatilis and Agonostomus monticola, respectively; the highest levels of Hg (0.56 μg g⁻¹) were detected during the dry season in Guavina guavina and Mugil curema. In relation to Pb, the highest level (1.65 μg g⁻¹) was detected in A. monticola during the dry season. In crustaceans, highest levels of Cd (0.05 μg g⁻¹) occurred in Macrobrachium occidentale during both seasons; highest concentration of Cr (0.09 μg g⁻¹) was also detected in M. occidentale during the dry season. With respect to Hg, highest level (0.20 μg g⁻¹) was detected during the rainy season in Macrobrachium americanum; for Pb, the highest concentration (2.4 μg g⁻¹) corresponded to Macrobrachium digueti collected in the dry season. Considering average concentrations of trace metals in surficial sediments from all sites, Cd (p<0.025), Cr (p<0.10) and Hg (p<0.15) were significantly higher during the rainy season. Biota sediment accumulation factors above unity were detected mostly in the case of Hg in fish during both seasons. On the basis of the metal levels in fish and crustacean and the provisional tolerable weekly intake of studied elements, people can eat up to 13.99, 0.79 and 2.34 kg of fish in relation to Cd, Hg and Pb, respectively; regarding crustaceans, maximum amounts were 11.33, 2.49 and 2.68 kg of prawns relative to levels of Cd, Hg and Pb, respectively.

  6. The potential pool of Co, Ni, Cu, Pb and Cd organic complexing ligands in coastal and urban rain waters

    NASA Astrophysics Data System (ADS)

    Nimmo, Malcolm; Fones, Gary R.

    The detection of dissolved ACSV (adsorptive cathodic stripping voltammetry) Co, Ni, Cu, Cd and Pb in rain waters collected from an urban and a coastal site in the northwest of England is described. The presence of metal complexing organic ligands in rain waters is indicated with an overall percentage of ACSV non - labile dissolved metal of the total dissolved metal fraction ( = %ACSV nl/t) being 33 (33); 28 (35); 26 (32); 33 (25); 27 (34): for Co, Ni, Cu, Cd and Pb, respectively, for the urban site (and coastal site). ACSV metal lability is theoretically defined and is dependent upon the a-coefficient ( β' MAL [AL]) of the added ACSV ligand (AL). No major differences were observed between %ACSV nl/t metal fractions in rain waters collected at the two contrasting sites for all the metals considered. As Cu, Pb, Cd and Ni had values greater than 10 for their Ef crust (crustal enrichment factor), rain water collected from both sites had predominantly anthropic chemical characteristics. The commonality of the aerosol chemical characteristics at the two sites may account for the observed similar (relative to total metal concentrations) proportions of metal organic complexation at the two different sites. The general order of increasing organic associations was Cu = Pb = Ni < Co < Cd, although the analytical log α-coefficients ( β' MAL [AL]) for each metal were different (9.62—Ni; 9.27—Cu; 5.29—Co; 2.15—Pb; 1.13—Cd). Significant correlations were encountered between ACSV non - labile and total dissolved trace metal concentrations of the pooled data from both sites, again an indication of the similarity of the chemical characteristics of the scavenged soluble organic ligands associated with background aerosol material.

  7. Modification of pineapple peel fibre with succinic anhydride for Cu2+, Cd2+ and Pb2+ removal from aqueous solutions.

    PubMed

    Hu, Xiuyi; Zhao, Mouming; Song, Guosheng; Huang, Huihua

    2011-01-01

    Research on chemical modification of pineapple peel fibre with succinic anhydride was carried out to create a novel adsorbent for Cu2+, Cd2+ and Pb2+ removal from aqueous solution. After pretreatment with iso-propyl alcohol and NaOH, pineapple peel fibre was modified via reaction with succinic anhydride for introduction of carboxylic functional groups. The modified pineapple peel fibre was characterized with Fourier transform infrared (FTIR) spectroscopy and evaluated for its adsorptive ability for Cu2+, Cd2+ and Pb2+ from synthetic metal solutions. The FTIR analysis proved the introduction of carboxylic functional groups in the backbone of the modified pineapple peel fibre. The modified pineapple peel fibre showed higher adsorptive capacity for Cu2+, Cd2+ and Pb2+ compared with raw pineapple peel and pineapple peel fibre pretreated with iso-propyl alcohol. The adsorption of Cu2+, Cd2+ and Pb2+ on the modified pineapple peel fibre depended on solution pH value, adsorption time and initial metal concentration. The maximum adsorption capacities of the modified fibre were observed at pH 5.4 for Cu2+ (27.68 +/- 0.83 mg g(-1) or 0.44 mmol g(-1)), at pH 7.5 for Cd2+ (34.18 +/- 1.02 mg g(-1) or 0.30 mmol g(-1)) and at pH 5.6 for Pb2+ (70.29 +/- 2.11 mg g(-1) or 0.34 mmol g(-1)) respectively. The adsorption followed the pseudo-second-order kinetics model and the experimental data coincided well with the Langmuir model.

  8. Ultrasonic spray-pyrolyzed CuCrO2 thin films

    NASA Astrophysics Data System (ADS)

    Sánchez-Alarcón, R. I.; Oropeza-Rosario, G.; Gutierrez-Villalobos, A.; Muro-López, M. A.; Martínez-Martínez, R.; Zaleta-Alejandre, E.; Falcony, C.; Alarcón-Flores, G.; Fragoso, R.; Hernández-Silva, O.; Perez-Cappe, E.; Mosqueda Laffita, Yodalgis; Aguilar-Frutis, M.

    2016-05-01

    In this paper the optical, structural and electrical properties of CuCrO2 thin films deposited by ultrasonic spray pyrolysis at temperatures from 400 to 600 °C in steps of 50 °C are presented. Copper and chromium acetylacetonates were chosen as sources of Cu and Cr, respectively, and N,N-dimethylformamide was used as the solvent. X-ray results confirmed that the films as deposited showed the CuCrO2 phase without any post-deposition thermal annealing. The surface morphology was observed to be mirror like, and as the films were deposited at different temperatures, they gradually revealed the presence of small crystallites. The best film’s optical percentage transmission (in the visible region), about 58%, was obtained in films deposited at 450 °C, and the highest band gap energy (3.17 eV) was measured in films deposited at 400 °C. The electrical properties of the films were obtained by the Hall effect. A hole concentration in the range 1019-1021 cm-3, conductivity as high as 35 S cm-1, and mobility lower than 1 cm2 V-1 s-1 were obtained in the films. p-type conductivity was confirmed using the hot point probe arrangement, and the Seebeck coefficient was estimated. The hole conductivity is thought to be due to excess oxygen in the films. Finally, the minimum energy required to transfer carriers from acceptor level to the valence band in the films was estimated by impedance spectroscopy.

  9. Precipitation behavior of dispersoids in Al-Mg-Si-Cu-Mn-Cr alloy during homogenization annealing

    NASA Astrophysics Data System (ADS)

    Han, Yi; Ma, Ke; Wang, Chuyan; Nagaumi, Hiromi

    The precipitation behavior of dispersoids containing Mn and Cr in Al-Mg-Si-Cu-Mn-Cr alloy during homogenization annealing with different heating rate was investigated in this paper. Scanning transmission electron microscopy (STEM) was used to measure the difference in the size and number density of dispersoids after the two treatments. The effect of homogenization treatment on the recrystallization fraction and grain size was determined by examining hot forged and solution treated specimens using electron back-scatter diffraction (EBSD). It was found that the slow homogenization heating rate promotes to an increase in the average dispersoid number density and decrease in particle size. The enhanced dispersoids distribution resulting from the slow homogenization heating rate leads to a reduction in the recrystallization fraction (24 29% lower) and grain size (18 22% smaller).

  10. Role of metal mixtures (Ca, Cu and Pb) on Cd bioaccumulation and phytochelatin production by Chlamydomonas reinhardtii.

    PubMed

    Abboud, Pauline; Wilkinson, Kevin J

    2013-08-01

    The goal of the study was to determine whether metal uptake and biological effects could be predicted by free ion concentrations when organisms were exposed to Cd and a second metal. Bioaccumulation and algal phytochelatin (PC) concentrations were determined for Chlamydomonas reinhardtii following a 6-h exposure. Bioaccumulation results, after six hours of exposure, showed that Cd uptake decreased in the presence of relatively high concentrations of Ca, Cu and Pb, however, Cd bioaccumulation increased in the presence of ca. equimolar concentrations of Cu. A good correlation was observed between the production of PCs and the amount of metals bioaccumulated for the binary mixtures of Cd-Pb and Cd-Cu, but not the Cd-Ca mixture. Overall, the results suggested that, in the case of mixtures, bioaccumulated metal rather than free ion concentrations would be a better predictor of biological effect. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Spatial distribution of gut juice extractable Cu, Pb and Zn in sediments from the Pearl River Estuary, Southern China.

    PubMed

    Wang, Fei; Wang, Wen-Xiong; Huang, Xiao-Ping

    2012-06-01

    In this study, we compared the spatial distribution of total metals (Cu, Pb, and Zn) and bioaccessible metals, which were quantified by incubating sediments with the digestive fluid of sipunculans Sipunculus nudus, in natural sediments of the Pearl River Estuary (PRE). The spatial distribution of bioaccessible metal was not the same as that of total metals in PRE sediments, which were mainly controlled by fine-grained size, total organic carbon (TOC) and Fe. Geochemical factors were important in interpreting this different spatial variation. The similar spatial variations of bioaccessible Cu and total Cu were related to TOC in PRE sediments. Differently from the total Zn, a higher bioaccessible Zn was detected near the West Channel of PRE because of a lower TOC. However, the distribution of bioaccessible Pb was not significantly related to any sediment geochemistry. This study provides a more accurate view of metal pollution in the PRE natural sediments. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Preparation of 110K (Bi, Pb)-Sr-Ca-Cu-O superconductor from glass precursor

    NASA Astrophysics Data System (ADS)

    Bansal, Narottam P.

    The Bi1.5Pb0.5Sr2Ca2Cu3O(x) glass, prepared by rapid quenching of the melt, showed T(sub g) of 383 C, crystallization temperature of approx. 446 C, melting temperature of approx. 855 C, and bulk density of 5.69 g/cu. cm. in air. The as-quenched glass was oxygen deficient. On heating in O2, it showed a slow, irreversible, and continuous weight gain starting at approx. 530 C. The influence of annealing conditions on the formation of various phases was investigated by XRD and electrical resistivity measurements. The 110K-T(sub c) phase did not form below 840 C. The amount of this phase increased with the sintering time at 840 C. A sample annealed at 840 C for 243 h in air and furnace cooled showed the highest T(sub c) (R=0) of 107.2 K and transition width delta T(sub c) (10 to 90 percent) of approx. 2 K.

  13. Preparation of 110K (Bi, Pb)-Sr-Ca-Cu-O superconductor from glass precursor

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1990-01-01

    The Bi1.5Pb0.5Sr2Ca2Cu3O(x) glass, prepared by rapid quenching of the melt, showed T(sub g) of 383 C, crystallization temperature of approx. 446 C, melting temperature of approx. 855 C, and bulk density of 5.69 g/cu. cm. in air. The as-quenched glass was oxygen deficient. On heating in O2, it showed a slow, irreversible, and continuous weight gain starting at approx. 530 C. The influence of annealing conditions on the formation of various phases was investigated by XRD and electrical resistivity measurements. The 110K-T(sub c) phase did not form below 840 C. The amount of this phase increased with the sintering time at 840 C. A sample annealed at 840 C for 243 h in air and furnace cooled showed the highest T(sub c) (R=0) of 107.2 K and transition width delta T(sub c) (10 to 90 percent) of approx. 2 K.

  14. Properties of complexes of galactomannan of Leucaena leucocephala and Al3+, Cu2+ and Pb2+.

    PubMed

    Lombardi, Simone Cristina; Mercê, Ana Lucia Ramalho

    2003-08-01

    The use of biopolymers in many industrial processes is on the increase. The different interactions of biopolymers and electrolytes either in aqueous solutions or in solid state provide different physico-chemical properties and a simple correlation cannot be established. In this study, in order to determine the properties of the complexes of galactomannan of Leucaena leucocephala (gal) with the metal ions Al3+ and Pb2+, toxic elements and Cu2+, essential, the logs of the binding constants of the complexes formed in the aqueous solutions were calculated. Their rheological properties, their thermal behavior, the infrared characteristics and shape and form of the films formed by those complexes in solid state were also determined. The aqueous solutions properties have shown a better complexation between gal and Al3+. The species distribution diagrams have shown an existence of complex species going from acidic to basic pH values. Infrared spectra have proved the complexations as well as the viscosity studies. Thermal stabilities in general were smaller in the complexed species than in the native biopolymers and the films obtained from aqueous solutions showed for Cu2+ the most different morphology compared to the biopolymer itself. A use can be suggested of this biopolymer in environmental remediations besides its already established industrial uses.

  15. Lattice dynamics and thermal transport in multiferroic CuCrO2

    DOE PAGES

    Bansal, Dipanshu; Niedziela, Jennifer L.; May, Andrew F.; ...

    2017-02-09

    Inelastic neutron and x-ray scattering measurements of phonons and spin waves in CuCrO2 were performed over a wide range of temperature, and complemented with first-principles simulations. The phonon dispersions and density of states are well reproduced by our density functional cal- culations, and reveal a strong anisotropy of Cu vibrations, with large amplitudes of low-frequency in-plane motions. In addition, we find that spin fluctuations persist above 300 K, far above the N eel temperature for long-range antiferromagnetic order, TN. Modeling of the thermal conductivity, based on our phonon measurements and simulations, reveals a significant anisotropy and indicates that the spinmore » fluctuations above TN constitute a strong source of phonon scattering.« less

  16. Overview spectra and axial distribution of spectral line intensities in a high-current vacuum arc with CuCr electrodes

    SciTech Connect

    Lisnyak, M.; Pipa, A. V.; Gorchakov, S. E-mail: weltmann@inp-greifswald.de; Iseni, S.; Franke, St.; Khapour, A.; Methling, R.; Weltmann, K.-D. E-mail: weltmann@inp-greifswald.de

    2015-09-28

    Spectroscopic investigations of free-burning vacuum arcs in diffuse mode with CuCr electrodes are presented. The experimental conditions of the investigated arc correspond to the typical system for vacuum circuit breakers. Spectra of six species Cu I, Cu II, Cu III, Cr I, Cr II, and Cr III have been analyzed in the wavelength range 350–810 nm. The axial intensity distributions were found to be strongly dependent on the ionization stage of radiating species. Emission distributions of Cr II and Cu II can be distinguished as well as the distributions of Cr III and Cu III. Information on the axial distribution was used to identify the spectra and for identification of overlapping spectral lines. The overview spectra and some spectral windows recorded with high resolution are presented. Analysis of axial distributions of emitted light, which originates from different ionization states, is presented and discussed.

  17. Contents and leachability of heavy metals (Pb, Cu, Sb, Zn, As) in soil at the Pantex firing range, Amarillo, Texas.

    PubMed

    Basunia, S; Landsberger, S

    2001-10-01

    Pantex firing range soil samples were analyzed for Pb, Cu, Sb, Zn, and As. One hundred ninety-seven samples were collected from the firing range and vicinity area. There was a lack of knowledge about the distribution of Pb in the firing range, so a random sampling with proportional allocation was chosen. Concentration levels of Pb and Cu in the firing range were found to be in the range of 11-4675 and 13-359 mg/kg, respectively. Concentration levels of Sb were found to be in the range of 1-517 mg/kg. However, the Zn and As concentration levels were close to average soil background levels. The Sn concentration level was expected to be higher in the Pantex firing range soil samples. However, it was found to be below the neutron activation analysis (NAA) detection limit of 75 mg/kg. Enrichment factor analysis showed that Pb and Sb were highly enriched in the firing range with average magnitudes of 55 and 90, respectively. Cu was enriched approximately 6 times more than the usual soil concentration levels. Toxicity characteristic leaching procedure (TCLP) was carried out on size-fractionated homogeneous soil samples. The concentration levels of Pb in leachates were found to be approximately 12 times higher than the U.S. Environmental Protection Agency (EPA) regulatory concentration level of 5 mg/L. Sequential extraction (SE) was also performed to characterize Pb and other trace elements into five different fractions. The highest Pb fraction was found with organic matter in the soil.

  18. Contents and Leachability of Heavy Metals (Pb, Cu, Sb, Zn, As) in Soil at the Pantex Firing Range, Amarillo, Texas.

    PubMed

    Basunia, Shamsuzzoha; Landsberger, Sheldon

    2001-10-01

    Pantex firing range soil samples were analyzed for Pb, Cu, Sb, Zn, and As. One hundred ninety-seven samples were collected from the firing range and vicinity area. There was a lack of knowledge about the distribution of Pb in the firing range, so a random sampling with proportional allocation was chosen. Concentration levels of Pb and Cu in the firing range were found to be in the range of 11-4675 and 13-359 mg/kg, respectively. Concentration levels of Sb were found to be in the range of 1-517 mg/kg. However, the Zn and As concentration levels were close to average soil background levels. The Sn concentration level was expected to be higher in the Pantex firing range soil samples. However, it was found to be below the neutron activation analysis (NAA) detection limit of 75 mg/kg. Enrichment factor analysis showed that Pb and Sb were highly enriched in the firing range with average magnitudes of 55 and 90, respectively. Cu was enriched ~6 times more than the usual soil concentration levels. Tox-icity characteristic leaching procedure (TCLP) was carried out on size-fractionated homogeneous soil samples. The concentration levels of Pb in leachates were found to be ~12 times higher than the U.S. Environmental Protection Agency (EPA) regulatory concentration level of 5 mg/L. Sequential extraction (SE) was also performed to characterize Pb and other trace elements into five different fractions. The highest Pb fraction was found with organic matter in the soil.

  19. Raman spectroscopy of the superconductor CuCrO2 delafossite oxide

    NASA Astrophysics Data System (ADS)

    Monteiro, J. F. H. L.; Jurelo, A. R.; Siqueira, E. C.

    2017-02-01

    Polycrystalline CuCrO2 samples were successfully prepared by traditional solid-state reaction method and using self-combustion urea nitrate process. The crystal structure and the effect of the sample preparation on the Raman vibrational modes were systematically investigated. Raman spectra at room temperature were obtained with light focused on several points inside a single grain. Phonon modes allowed by symmetry were identified, besides of some additional lines. Significant differences in phonon modes between samples prepared by solid state reaction method and self-combustion urea nitrate process were observed.

  20. Nanostructured Cu-Cr alloy with high strength and electrical conductivity

    SciTech Connect

    Islamgaliev, R. K. Nesterov, K. M.; Bourgon, J.; Champion, Y.; Valiev, R. Z.

    2014-05-21

    The influence of nanostructuring by high pressure torsion (HPT) on strength and electrical conductivity in the Cu-Cr alloy has been investigated. Microstructure of HPT samples was studied by transmission electron microscopy with special attention on precipitation of small chromium particles after various treatments. Effect of dynamic precipitation leading to enhancement of strength and electrical conductivity was observed. It is shown that nanostructuring leads to combination of high ultimate tensile strength of 790–840 MPa, enhanced electrical conductivity of 81%–85% IACS and thermal stability up to 500 °C. The contributions of grain refinement and precipitation to enhanced properties of nanostructured alloy are discussed.

  1. Relaxor-like dielectric response of spin liquid CuCrO{sub 2}

    SciTech Connect

    Mazumder, N. Roy, R.; Ghorai, U. K.; Saha, S.; Chattopadhyay, K. K.

    2014-04-24

    Broadband dielectric analysis (10{sup −2}-10{sup 7} Hz) of layered triangular lattice CuCrO{sub 2} is performed (123 K - 473 K) and analyzed in connection with recently observed spin frustration in this multiferroic [M. Poienar et al. Phys. Rev. B 81, 104411, (2010); M. Frontzek et al. Phys. Rev. B 84, 094448, (2011)]. Most unexpectedly, this well known delafossite has found to have nontrivial charge degrees of freedom, being characterized by a relaxor-like dielectric relaxation around 375 K with FWHM of ∼100K. The result strongly suggests the existence of intermolecular Coulomb interaction between charge disproportionation induced electric dipoles.

  2. Geochemical and Sr-Pb-Nd isotopic characteristics of the Shakhtama porphyry Mo-Cu system (Eastern Transbaikalia, Russia)

    NASA Astrophysics Data System (ADS)

    Berzina, A. P.; Berzina, A. N.; Gimon, V. O.

    2014-01-01

    The Shakhtama Mo-Cu porphyry deposit is located within the eastern segment of the Central Asian Orogenic Belt, bordering the southern margin of the Mongol-Okhotsk suture zone. The deposit includes rocks of two magmatic complexes: the precursor plutonic (J2) and ore-bearing porphyry (J3) complexes. The plutonic complex was emplaced at the final stages of the collisional regime in the region; the formation of the porphyry complex may have overlapped with a transition to extension. The Shakhtama rocks are predominantly metaluminous, I-type high K calc-alkaline to shoshonitic in composition, with relatively high Mg#, Ni, Cr and V. They are characterized by crustal-like ISr (0.70741-0.70782), relatively radiogenic Pb isotopic compositions, ɛNd(T) values close to CHUR (-2.7 to +2.1) and Nd model ages from 0.8 to 1.2 Ga. Both complexes are composed of rocks with K-adakitic features and rocks without adakite trace element signatures. The regional geological setting together with geochemical and isotopic data indicate that both juvenile and old continental crust contributed to their origin. High-Mg# K-adakitic Shakhtama magmas were most likely generated by partial melting of thickened lower crust during delamination and interaction with mantle material, while magmas lacking adakite-like signatures were probably generated at shallower levels of lower crust. The derivation of melts, related to the formation of plutonic and porphyry complexes involved variable amounts of old Precambrian lower crust and juvenile Phanerozoic crust. Isotopic data imply stronger contribution of juvenile mantle-derived material to the fertile magmas of the porphyry complex. Juvenile crust is proposed as an important source of fluids and metals for the Shakhtama ore-magmatic system.

  3. Oxidation Behavior of GRCop-84 (Cu-8Cr-4Nb) at Intermediate and High Temperatures

    NASA Technical Reports Server (NTRS)

    Thomas-Ogbuji, Linus U.; Humphrey, Donald L.; Greenbauer-Seng, Leslie (Technical Monitor)

    2000-01-01

    The oxidation behavior of GRCop-84 (Cu-8 at %Cr-4 at %Nb) has been investigated in air and in oxygen, for durations of 0.5 to 50 hours and temperatures ranging from 500 to 900 C. For comparison, data was also obtained for the oxidation of Cu and NARloy-Z (Cu-3 wt% Ag-0.5 wt% Zr) under the same conditions. Arrhenius plots of those data showed that all three materials had similar oxidation rates at high temperatures (> 750 C). However, at intermediate temperatures (500 to 750 C) GRCop exhibited significantly higher oxidation resistance than Cu and NARloy-Z. The oxidation kinetics of GRCop-84 exhibited a sharp and discontinuous jump between the two regimes. Also, in the high temperature regime GRCop-84 oxidation rate was found to change from a high initial value to a significantly smaller terminal value at each temperature, with progress of oxidation; the two different oxidation rates were found to correlate with a porous intial oxide and a dense final oxide, respectively.

  4. Comparative modular analysis of two complex sulfosalt structures: sterryite, Cu(Ag,Cu)3Pb19(Sb,As)22(As-As)S56, and parasterryite, Ag4Pb20(Sb,As)24S58.

    PubMed

    Moëlo, Yves; Guillot-Deudon, Catherine; Evain, Michel; Orlandi, Paolo; Biagioni, Cristian

    2012-10-01

    The crystal structures of two very close, but distinct complex minerals of the lead sulfosalt group have been solved: sterryite, Cu(Ag,Cu)(3)Pb(19)(Sb,As)(22)(As-As)S(56), and parasterryite, Ag(4)Pb(20)(Sb,As)(24)S(58). They are analyzed and compared according to modular analysis. The fundamental building block is a complex column centred on a Pb(6)S(12) triangular prismatic core, with two additional long and short arms. The main chemical and topological differences relate to the short arm, which induces a relative a/4 shift (~2 Å along the elongation parameter) of the constitutive rod layers, as illustrated by distinct cell settings within the same space group (P2(1)/n and P2(1)/c, respectively). Selection of the shortest (i.e. strongest) (Sb,As)-S bonds permitted to enhance the polymeric organization of (Sb,As) atoms with triangular pyramidal coordination. These two quasi-homeotypic structures are expanded derivatives of owyheeite, Ag(3)Pb(10)Sb(11)S(28). The hierarchy of organization levels from zero- to three-dimensional entities is subordinated to building operators, which appear as the driving force for the construction of such complex structures. Minor cations (Ag, Cu) or the As-As pair in sterryite secure the final locking, which favours the formation of one or the other compound.

  5. The Transfiguration continental red-bed Cu-Pb-Zn-Ag deposit, Quebec Appalachians, Canada

    NASA Astrophysics Data System (ADS)

    Cabral, Alexandre Raphael; Beaudoin, Georges; Taylor, Bruce E.

    2009-04-01

    The Transfiguration Cu-Pb-Zn-Ag deposit, enclosed within reduced grey sandstone, is associated with continental red beds of the Lower Silurian Robitaille Formation in the Quebec Appalachians, Canada. The Robitaille Formation rests unconformably on foliated Cambro-Ordovician rocks. The unconformity is locally cut by barite veins. The basal unit of the Robitaille Formation comprises green wacke and pebble conglomerate, which locally contain calcite nodules. The latter have microstructures characteristic of alpha-type calcretes, such as “floating” fabrics, calcite-filled fractures (crystallaria) and circumgranular cracks. Massive, grey sandstone overlies the basal green wacke and pebble conglomerate unit, which is overlain, in turn, by red, fine-grained sandstone. Mineralisation occurred underneath the red sandstone unit, chiefly in the grey sandstone unit, as disseminated and veinlet sulphides. Chalcopyrite, the most abundant Cu sulphide, replaced early pyrite. Calcrete, disseminated carbonate and vein carbonate have stable isotope ratios varying from -7.5‰ to -1.1‰ δ13C and from 14.7‰ to 21.3‰ δ18O. The negative δ13C values indicate the oxidation of organic matter in a continental environment. Sulphur isotope ratios for pyrite, chalcopyrite and galena vary from -19‰ to 25‰ δ34S, as measured on mineral concentrates by a conventional SO2 technique. Laser-assisted microanalyses (by fluorination) of S isotopes in pyrite show an analogous range in δ34S values, from -21‰ to 25‰. Negative and positive δ34S values are compatible with bacterial sulphate reduction (BSR) in systems open and closed with respect to sulphate. We interpret similarly high δ34S values for sulphide concentrates (25.1‰) and for vein barite (26.2‰) to result from rapid and complete thermochemical reduction of pore-water sulphate. Two early to late diagenetic stages of mineralisation best explain the origin of the Transfiguration deposit. The first stage was characterised

  6. Cu-Cr-Nb-Zr Alloy for Rocket Engines and Other High-Heat- Flux Applications

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2013-01-01

    Rocket-engine main combustion chamber liners are used to contain the burning of fuel and oxidizer and provide a stream of high-velocity gas for propulsion. The liners in engines such as the Space Shuttle Main Engine are regeneratively cooled by flowing fuel, e.g., cryogenic hydrogen, through cooling channels in the back side of the liner. The heat gained by the liner from the flame and compression of the gas in the throat section is transferred to the fuel by the liner. As a result, the liner must either have a very high thermal conductivity or a very high operating temperature. In addition to the large heat flux (>10 MW/sq m), the liners experience a very large thermal gradient, typically more than 500 C over 1 mm. The gradient produces thermally induced stresses and strains that cause low cycle fatigue (LCF). Typically, a liner will experience a strain differential in excess of 1% between the cooling channel and the hot wall. Each time the engine is fired, the liner undergoes an LCF cycle. The number of cycles can be as few as one for an expendable booster engine, to as many as several thousand for a reusable launch vehicle or reaction control system. Finally, the liners undergo creep and a form of mechanical degradation called thermal ratcheting that results in the bowing out of the cooling channel into the combustion chamber, and eventual failure of the liner. GRCop-84, a Cu-Cr-Nb alloy, is generally recognized as the best liner material available at the time of this reporting. The alloy consists of 14% Cr2Nb precipitates in a pure copper matrix. Through experimental work, it has been established that the Zr will not participate in the formation of Laves phase precipitates with Cr and Nb, but will instead react with Cu to form the desired Cu-Zr compounds. It is believed that significant improvements in the mechanical properties of GRCop-84 will be realized by adding Zr. The innovation is a Cu-Cr-Nb-Zr alloy covering the composition range of 0.8 to 8.1 weight

  7. Photocatalytic removal of M(2+) (Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+) and Ag(+)) over new catalyst CuCrO(2).

    PubMed

    Ketir, W; Bouguelia, A; Trari, M

    2008-10-30

    The metal ions M(2+) (Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+) and Ag(+)) are potentially toxic. Their electro deposition has been carried out in aqueous air-equilibrated CuCrO(2) suspension upon visible illumination. The delafossite CuCrO(2) is p-type semiconductor characterized by a low band gap (1.28 eV) and a long-term chemical stability. The corrosion rate is found to be 10(-2) micromol m(-2)month(-1) in aqua regia. The oxide has been elaborated through nitrate route where the specific surface area is increased via the surface/bulk ratio. A correlation exists between the dark M(2+) adsorption, the redox potential of M(2+/0) couple and the conduction band of CuCrO(2) positioned at -1.06 V(SCE). Ag(+) cannot be photoreduced because of its positive potential located far above the valence band. By contrast, Zn(2+) is efficiently deposited due to the large driving force at the interface. The improved photoactivity of copper with a deposition percentage (90%) is attributed to the strong dark adsorption onto the surface catalyst. The results indicate a competitive effect with the water reduction; it has been observed that the M(2+) deposition goes parallel with the hydrogen evolution. Such behavior is attributed to the low H(2) over voltage when ultra fine aggregate of M islands are photodeposited onto CuCrO(2) substrate.

  8. Preparation and characterization of CuCrO2/TiO2 heterostructure photocatalyst with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Xiong, Dehua; Chang, Haimei; Zhang, Qingqing; Tian, Shouqin; Liu, Baoshun; Zhao, Xiujian

    2015-08-01

    A series of novel p-type CuCrO2/n-type TiO2 heterostructure photocatalysts were fabricated for the first time by depositing CuCrO2 nanoparticles on TiO2 nanorod-array film through a facile spin-coating method. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and photocurrent response were employed to characterize the as-synthesized composites. The photocatalytic activity of CuCrO2/TiO2 for degradation of methylene blue (MB) aqueous solution was much higher than pure TiO2, which could be ascribed to the formation of p-n heterojunctions between CuCrO2 nanoparticles and TiO2 nanorods. In particular, the best degradation efficiency of CuCrO2/TiO2 heterojunction was 85.3%, about 1.14 times higher than pure TiO2 (74.6%), which could be attributed to their high separation efficiency of photogenerated electrons and holes. It is expected this strategy of p-n junction for enhancing photocatalytic activity can have considerable impact to promote the development of high efficient photocatalyst and industrial application for degrading pollutant, treating waste water and other environmental protection fields.

  9. Sequential electrokinetic treatment and oxalic acid extraction for the removal of Cu, Cr and As from wood.

    PubMed

    Isosaari, Pirjo; Marjavaara, Pieti; Lehmus, Eila

    2010-10-15

    Removal of Cu, Cr and As from utility poles treated with chromated copper arsenate (CCA) was investigated using different one- to three-step combinations of oxalic acid extraction and electrokinetic treatment. The experiments were carried out at room temperature, using 0.8% oxalic acid and 30 V (200 V/m) of direct current (DC) or alternating current in combination (DC/AC). Six-hour extraction removed only 15%, 11% and 28% and 7-day electrokinetic treatment 57%, 0% and 17% of Cu, Cr and As from wood chips, respectively. The best combination for all the metals was a three-step process consisting of pre-extraction, electrokinetics and post-extraction steps, yielding removals of 67% for Cu, 64% for Cr and 81% for As. Oxalic acid extraction prior to electrokinetic treatment was deleterious to further removal of Cu, but it was necessary for Cr and As removal. Chemical equilibrium modelling was used to explain the differences in the behaviour of Cu, Cr and As. Due to the dissimilar nature of these metals, it appeared that even more process sequences and/or stricter control of the process conditions would be needed to obtain the >99% removals required for safe recycling of the purified wood material.

  10. Control of p-type conduction in Mg doped monophase CuCrO2 thin layers

    NASA Astrophysics Data System (ADS)

    Chikoidze, E.; Boshta, M.; Gomaa, M.; Tchelidze, T.; Daraselia, D.; Japaridze, D.; Shengelaya, A.; Dumont, Y.; Neumann-Spallart, M.

    2016-05-01

    This work aims to clarify the origin of hole conduction in undoped and Mg-doped CuCrO2 oxide in order to have the possibility of controlling it by corresponding growth parameters. A chemical spray pyrolysis procedure for the deposition of p-type semiconductor thin films is described. The as-deposited films were amorphous. The formation of highly crystalline CuCrO2 and Mg-doped CuCrO2 films with a single phase delafossite structure was realized by annealing between 600 °C and 960 °C in a nitrogen atmosphere. The carrier concentration and the point defects of the samples are calculated by using the developed Kroger method of quasi-chemical reactions. p-type conductivity was predicted and observed in the undoped and Mg doped CuCrO2 sample, and with n ~ 1018 cm-3 carrier concentrations for 4%Mg doping. The electrical resistivity for a 4% Mg doped sample was 1.4 Ω·cm with a Seebeck coefficient of  +130 μV K-1 at 40 °C. By electroparamagnetic resonance spectroscopy Cr3+ and Cu2+ related defects were studied.

  11. Assessment of Ni, Cu, Zn and Pb levels in beach and dune sands from Havana resorts, Cuba.

    PubMed

    Díaz Rizo, Oscar; Buzón González, Fran; Arado López, Juana O

    2015-11-15

    Concentrations of nickel (Ni), copper (Cu), zinc (Zn) and lead (Pb) in beach and dune sands from thirteen Havana (Cuba) resorts were estimated by X-ray fluorescence analysis. Determined mean metal contents (in mg·kg(-1)) in beach sand samples were 28±12 for Ni, 35±12 for Cu, 31±11 for Zn and 6.0±1.8 for Pb, while for dune sands were 30±15, 38±22, 37±15 and 6.8±2.9, respectively. Metal-to-iron normalization shows moderately severe and severe enrichment by Cu. The comparison with sediment quality guidelines shows that dune sands from various resorts must be considered as heavily polluted by Cu and Ni. Almost in every resort, the Ni and Cu contents exceed their corresponding TEL values and, in some resorts, the Ni PEL value. The comparison with a Havana topsoil study indicates the possible Ni and Cu natural origin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Stabilization of Pb²⁺ and Cu²⁺ contaminated firing range soil using calcined oyster shells and waste cow bones.

    PubMed

    Moon, Deok Hyun; Cheong, Kyung Hoon; Khim, Jeehyeong; Wazne, Mahmoud; Hyun, Seunghun; Park, Jeong-Hun; Chang, Yoon-Young; Ok, Yong Sik

    2013-05-01

    Pb(2+) and Cu(2+) contamination at army firing ranges poses serious environmental and health risks to nearby communities necessitating an immediate and prompt remedial action. In this study, a novel mixture of calcined oyster shells (COSs) and waste cow bones (WCBs) was utilized to immobilize Pb(2+) and Cu(2+) in army firing range soils. The effectiveness of the treatment was evaluated based on the Korean Standard leaching test. The treatment results showed that Pb(2+) and Cu(2+) immobilization in the army firing range soil was effective in significantly reducing Pb(2+) and Cu(2+) leachability upon the combined treatment with COS and WCB. A drastic reduction in Pb(2+) (99%) and Cu(2+) leachability (95%) was obtained as compared to the control sample, upon treatment with 5 wt.% COS and 5 wt.% WCB. The combination treatment of COS and WCB was more effective for Pb immobilization, than the treatment with COS or WCB alone. The 5 wt.% COS alone treatment resulted in 95% reduction in Cu(2+) leachability. The SEM-EDX results suggested that Pb(2+) and Cu(2+) immobilization was most probably associated with the formation of ettringite, pozzolanic reaction products and pyromorphite-like phases at the same time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Atrazine immobilization on sludge derived biochar and the interactive influence of coexisting Pb(II) or Cr(VI) ions.

    PubMed

    Zhang, Weihua; Zheng, Juan; Zheng, Pingping; Qiu, Rongliang

    2015-09-01

    Sludge derived biochars (SDBCs) may have the potential to simultaneously remove heavy metals and organic contaminants in relation to their various active sorption sites for both metal ions and organic compounds. SDBCs have been proven to provide a considerable capacity for immobilizing Pb(II) and Cr(VI) ions in solution, and in this study their ability to sorb atrazine, in addition to their corresponding interactive influences with coexisting metal ions, is extensively investigated. The results indicate that all atrazine adsorption isotherms fit well with the Freundlich equation, and the greatest value of 16.8 mg g(-1) sorption capacity occurred with SDBCs pyrolyzed at 400°C for 2h. The slow sorption kinetics fit well with the Lagergren's 2nd order reaction, and depend upon the initial atrazine concentration, indicating the significance of a site-specific process. The ionic strength-dependence of the atrazine adsorption behavior further consolidates the involvement of the mechanism of the H-bond with hydroxyl groups on SDBC. However, when Pb(II)/Cr(VI) metal ions coexist in solution, they substantially suppress atrazine adsorption, probably because the inner complex between the hydroxyl groups on SDBCs and Pb(II)/Cr(III) ions intrude the weak H-bond with atrazine. As a result, metal adsorption was found to be unaffected by the coexisting atrazine. Therefore, although SDBC is applicable for atrazine removal/immobilization in most of environmentally relevant conditions, a two-step process may be required if heavy metal ions coexist. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. As, Cd, Cr, Ni and Pb pressurized liquid extraction with acetic acid from marine sediment and soil samples

    NASA Astrophysics Data System (ADS)

    Moreda-Piñeiro, Jorge; Alonso-Rodríguez, Elia; López-Mahía, Purificación; Muniategui-Lorenzo, Soledad; Prada-Rodríguez, Darío; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Adela; Bermejo-Barrera, Pilar

    2006-12-01

    Rapid leaching procedures by Pressurized Liquid Extraction (PLE) have been developed for As, Cd, Cr, Ni and Pb leaching from environmental matrices (marine sediment and soil samples). The Pressurized Liquid Extraction is completed after 16 min. The released elements by acetic acid Pressurized Liquid Extraction have been evaluated by inductively coupled plasma-optical emission spectrometry. The optimum multi-element leaching conditions when using 5.0 ml stainless steel extraction cells, were: acetic acid concentration 8.0 M, extraction temperature 100 °C, pressure 1500 psi, static time 5 min, flush solvent 60%, two extraction steps and 0.50 g of diatomaceous earth as dispersing agent (diatomaceous earth mass/sample mass ratio of 2). Results have showed that high acetic acid concentrations and high extraction temperatures increase the metal leaching efficiency. Limits of detection (between 0.12 and 0.5 μg g - 1 ) and repeatability of the over-all procedure (around 6.0%) were assessed. Finally, accuracy was studied by analyzing PACS-2 (marine sediment), GBW-07409 (soil), IRANT-12-1-07 (cambisol soil) and IRANT-12-1-08 (luvisol soil) certified reference materials (CRMs). These certified reference materials offer certified concentrations ranges between 2.9 and 26.2 μg g - 1 for As, from 0.068 to 2.85 μg g - 1 for Cd, between 26.4 and 90.7 μg g - 1 for Cr, from 9.3 to 40.0 μg g - 1 for Ni and between 16.3 and 183.0 μg g - 1 for Pb. Recoveries after analysis were between 95.7 and 105.1% for As, 96.2% for Cd, 95.2 and 100.6% for Cr, 95.7 and 103% for Ni and 94.2 and 105.5% for Pb.

  15. Enhanced thermoelectric performance of Pb doped Cu2SnSe3 synthesized employing spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Shyam Prasad, K.; Rao, Ashok; Tyagi, Kriti; Singh Chauhan, Nagendra; Gahtori, Bhasker; Bathula, Sivaiah; Dhar, Ajay

    2017-05-01

    We report an enhancement in the thermoelectric performance of Cu2SnSe3 alloy on Pb doping, owing to a sharp increase in its power factor. The powder XRD pattern of all samples of Cu2Sn1-xPbxSe3 (0≤x≤0.03), prepared using solid state reaction, exhibited a cubic structure with a space group of F 4 ̅ 3 m . The results show that temperature dependent electrical resistivity, ρ(T) increases with increasing temperature thereby demonstrating that the samples display heavily doped semiconducting nature, which could be satisfactorily described by small polaron hopping model in the whole temperature range of measurement for all the samples. Both the resistivity and the Seebeck coefficient are reduced with 2 vol% Pb doping. The thermal conductivity of all the samples reduces with increasing temperature. Despite a decrease in Seebeck coefficient the power factor shows an increase on Pb doping, owing to a sharp surge in the electrical conductivity which results in an enhanced ZTmax 0.64 at 700 K for an optimized composition of Cu2Sn0.98Pb0.02Se3, which is nearly twice the value of the corresponding undoped counterpart.

  16. Sorption properties of an amorphous hydroxo titanate towards Pb(2+), Ni(2+), and Cu(2+) ions in aqueous solution.

    PubMed

    Volpe, Angela; Pagano, Michele; Pastore, Carlo; Cuocci, Corrado; Milella, Antonella

    2016-11-09

    Titanates may be selectively used as inorganic adsorbents for heavy metal ions owing to their stability and fast adsorption kinetics. Nevertheless, the synthesis of such materials usually requires extreme reaction conditions. In this work, a new titanium-based material was rapidly synthesized under mild laboratory conditions. The obtained amorphous hydroxo titanate was tested for heavy metal sorption through kinetic and equilibrium batch tests, which indicated that the new material had high adsorption rates and adsorption capacities towards Cu(2+), Ni(2+) and Pb(2) ions. Adsorption kinetics were pseudo-second order, and equilibrium data fitted the Langmuir isotherm model. The calculated maximum adsorption capacities of Cu(2+), Ni(2+) and Pb(2+) in deionized water were around 1 mmol g(-1), and they decreased for Cu(2+) and Ni(2+) in the presence of Na(+), Ca(2+) and Mg(2+) ions, whereas the alkali metal ions did not influence Pb(2+) uptake. The efficiency of adsorption and recovery of lead ions were evaluated through column dynamic tests, by feeding the column with groundwater and tap water spiked with Pb(2+). The high performance of the hydroxo titanate over several cycles of retention and elution suggested that the product is potentially useful for the solid phase extraction of lead at trace levels in natural water samples, with potential use in metal pre-concentration for analytical applications.

  17. Bournonite PbCuSbS3 : Stereochemically Active Lone-Pair Electrons that Induce Low Thermal Conductivity.

    PubMed

    Dong, Yongkwan; Khabibullin, Artem R; Wei, Kaya; Salvador, James R; Nolas, George S; Woods, Lilia M

    2015-10-26

    An understanding of the structural features and bonding of a particular material, and the properties these features impart on its physical characteristics, is essential in the search for new systems that are of technological interest. For several relevant applications, the design or discovery of low thermal conductivity materials is of great importance. We report on the synthesis, crystal structure, thermal conductivity, and electronic-structure calculations of one such material, PbCuSbS3 . Our analysis is presented in terms of a comparative study with Sb2 S3 , from which PbCuSbS3 can be derived through cation substitution. The measured low thermal conductivity of PbCuSbS3 is explained by the distortive environment of the Pb and Sb atoms from the stereochemically active lone-pair s(2) electrons and their pronounced repulsive interaction. Our investigation suggests a general approach for the design of materials for phase-change-memory, thermal-barrier, thermal-rectification and thermoelectric applications, as well as other functions for which low thermal conductivity is purposefully sought. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Structural, electronic transport and optical properties of Cr doped PbS thin film by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Preetha, K. C.

    2017-06-01

    Incorporation of Chromium ions into Lead Sulphide thin films have been achieved by CBD technique. Effects of doping were investigated as a function of Pb/Cr ratio from o to 2 at %. X-ray diffraction patterns showed that films were polycrystalline in nature with increase in crystallite size up to an optimum doping concentration. Scanning electron microscopic study revealed excellent morphology with doping concentration. The low transmittance in the UV-VIS region offered the suitability of the samples as solar control coatings. The thin films were found to be P type and electrical conductivity enhanced on doping.

  19. Effect of decomposition of the Cr-Fe-Co rich phase of AlCoCrCuFeNi high entropy alloy on magnetic properties.

    PubMed

    Singh, S; Wanderka, N; Kiefer, K; Siemensmeyer, K; Banhart, J

    2011-05-01

    Splat-quenched, as-cast and aged (2h at 600 °C after casting) AlCoCrCuFeNi high entropy alloys were investigated by means of transmission electron microscopy and three-dimensional atom probe (3D-AP). 3D-AP revealed anti-correlated fluctuations of the Cr and Fe-Co compositions in Cr-Fe-Co-rich regions of the as-cast alloy. The ferromagnetic behavior of AlCoCrCuFeNi high entropy alloy was correlated with the decomposition of the Cr-Fe-Co-rich regions into ferromagnetic Fe-Co-rich and antiferromagnetic Cr-rich domains, the size of which was determined by statistical analysis of 3D-AP data. The splat-quenched alloy showed a softer magnetic behavior as compared to the as-cast and aged alloys. The aged alloy possessed a higher saturation magnetization and coercivity as compared to the as-cast alloy.

  20. Dynamic recrystallization behavior and processing map of the Cu-Cr-Zr-Nd alloy.

    PubMed

    Zhang, Yi; Sun, Huili; Volinsky, Alex A; Tian, Baohong; Song, Kexing; Chai, Zhe; Liu, Ping; Liu, Yong

    2016-01-01

    Hot deformation behavior of the Cu-Cr-Zr-Nd alloy was studied by hot compressive tests in the temperature range of 650-950 °C and the strain rate range of 0.001-10 s(-1) using Gleeble-1500D thermo-mechanical simulator. The results showed that the flow stress is strongly dependent on the deformation temperature and the strain rate. With the increase of temperature or the decrease of strain rate, the flow stress significantly decreases. Hot activation energy of the alloy is about 404.84 kJ/mol and the constitutive equation of the alloy based on the hyperbolic-sine equation was established. Based on the dynamic material model, the processing map was established to optimize the deformation parameters. The optimal processing parameters for the Cu-Cr-Zr-Nd alloy hot working are in the temperature range of 900-950 °C and strain rate range of 0.1-1 s(-1). A full dynamic recrystallization structure with fine and homogeneous grain size can be obtained at optimal processing conditions. The microstructure of specimens deformed at different conditions was analyzed and connected with the processing map. The surface fracture was observed to identify instability conditions.

  1. Hot Deformation Characteristics and Processing Maps of the Cu-Cr-Zr-Ag Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Chai, Zhe; Volinsky, Alex A.; Sun, Huili; Tian, Baohong; Liu, Ping; Liu, Yong

    2016-03-01

    The hot deformation behavior of the Cu-Cr-Zr-Ag alloy has been investigated by hot compressive tests in the 650-950 °C temperature and 0.001-10 s-1 strain rate ranges using Gleeble-1500D thermo-mechanical simulator. The microstructure evolution of the alloy during deformation was characterized using optical and transmission electron microscopy. The flow stress decreases with the deformation temperature and increases with the strain rate. The apparent activation energy for hot deformation of the alloy was 343.23 kJ/mol. The constitutive equation of the alloy based on the hyperbolic-sine equation was established to characterize the flow stress as a function of the strain rate and the deformation temperature. The processing maps were established based on the dynamic material model. The optimal processing parameters for hot deformation of the Cu-Cr-Zr-Ag alloy are 900-950 °C and 0.001-0.1 s-1 strain rate. The evolution of DRX microstructure strongly depends on the deformation temperature and the strain rate.

  2. Pb solubility of the high-temperature superconducting phase Bi2Sr2Ca2Cu3O(10+d)

    NASA Technical Reports Server (NTRS)

    Kaesche, Stefanie; Majewski, Peter; Aldinger, Fritz

    1995-01-01

    For the nominal composition of Bi(2.27-x)Pb(x)Sr2 Ca2 Cu3 O(10+d) lead content was varied from x = 0.05 to 0.45. The compositions were examined between 830 and 890 C which is supposed to be the temperature range over which the so-called 2223 phase (Bi2Sr2Ca2Cu3O(10+d)) is stable. Only compositions between x = 0.18 to 0.36 could be synthesized in a single phase state. For x is greater than 0.36 a lead containing phase with a stoichiometry of Pb4(Sr,Ca)5CuO(d) is formed, for x is less than 0.18 mainly Bi2Sr2CaCu2O(10+d) and cuprates are the equilibrium phases. The temperature range for the 2223 phase was found to be 830 to 890 C but the 2223 phase has extremely varying cation ratios over this temperature range. Former single phase 2223 samples turn to multi phase samples when annealed at slightly higher or lower temperatures. A decrease in the Pb solubility with increasing temperature was found for the 2223 phase.

  3. Rapid and nondestructive measurement of labile Mn, Cu, Zn, Pb and As in DGT by using field portable-XRF.

    PubMed

    Chen, Zheng; Williams, Paul N; Zhang, Hao

    2013-09-01

    The technique of diffusive gradients in thin films (DGT) is often employed to quantify labile metals in situ; however, it is a challenge to perform the measurements in-field. This study evaluated the capability of field-portable X-ray fluorescence (FP-XRF) to swiftly generate elemental speciation information with DGT. Biologically available metal ions in environmental samples passively preconcentrate in the thin films of DGT devices, providing an ideal and uniform matrix for XRF nondestructive detection. Strong correlation coefficients (r > 0.992 for Mn, Cu, Zn, Pb and As) were obtained for all elements during calibration. The limits of quantitation (LOQ) for the investigated elements of FP-XRF on DGT devices are 2.74 for Mn, 4.89 for Cu, 2.89 for Zn, 2.55 for Pb, and 0.48 for As (unit: μg cm(-2)). When Pb and As co-existed in the solution trials, As did not interfere with Pb detection when using Chelex-DGT. However, there was a significant enhancement of the Pb reading attributed to As when ferrihydrite binding gels were tested, consistent with Fe-oxyhydroxide surfaces absorbing large quantities of As. This study demonstrates the value of the FP-XRF technique to rapidly and nondestructively detect the metals accumulated in DGT devices, providing a new and simple diagnostic tool for on-site environmental monitoring of labile metals/metalloids.

  4. Direct catalytic oxyamination of benzene to aniline over Cu(II) nanoclusters supported on CuCr2O4 spinel nanoparticles via simultaneous activation of C-H and N-H bonds.

    PubMed

    Acharyya, Shankha S; Ghosh, Shilpi; Bal, Rajaram

    2014-11-11

    We report the facile synthesis of a highly efficient, reusable catalyst comprising Cu(II) nanoclusters supported on CuCr2O4 spinel nanoparticles for the oxyamination of benzene to aniline (H2O2 + NH3) under mild aqueous reaction conditions. The synergy between the Cu(II) nanoclusters and CuCr2O4 spinel nanoparticles plays the most vital role towards its high catalytic activity.

  5. [Effects of combined pollution of Cd, Cu and Pb on antioxidant enzyme activities of earthworm in soils].

    PubMed

    Wang, Hui; Xie, Xin-Yuan

    2014-07-01

    Recently, soil heavy metal contamination becomes more and more serious in certain areas in China. Adverse effect caused by heavy metals in contaminated soils has been a wide concern for many years. In this study, a bioassay experiment with the earthworm (Eisenia foetida) was conducted to investigate the effects of compound application of Cd, Cu and Pb in soil on surperoxide dismutase (SOD), glutathione S-transferase (GST) and acid phosphatase (AP) activity in earthworms. Through a method of greenhouse soil experiment, this study utilized a uniform design method of three factors and six levels (Cd: 0-15 mg x kg(-1), Cu: 0-175 mg x kg(-1), Pb: 0-600 mg x kg(-1)) to research the physiological property and enrichment characteristics of earthworm in soils with Cd, Cu and Pb compound pollution. The activity of SOD, GST and AP were inhibited significantly under Cd, Cu and Pb compound pollution. And they were impacted by both time and heavy metal contents in the soil. Compared with the control sample, the activity of SOD increased by 7.4% -240.5% in the first eight days under the stress of heavy metals. But owing to the extremely severe stress, it was suppressed and descended by 19.4% -69.7%. Compared with the control sample, the activity of GST increased by 104.3% -217.3% in the first sixteen days under the stress of heavy metals. But owing to the extremely severe stress, it was suppressed and descended by 1.2% - 40.3%. The activity of AP changed over time in a trend of "increase, decrease, increase, decrease". Compared with the control sample, the activity of AP decreased by 9.2% -37.8% in the first eight days, then increased by 37.2% -117.2% in sixteenth days and decreased by 24.3% -34.0% to the last day. The analysis demonstrates that Pb and Cd-Cu-Pb is the dominant factor to the activity of SOD, while Cd and Cu were the dominant factors to the activity of GST and AP.

  6. Dephasing of conduction electrons by magnetic impurities in Cu/Ni and Cu/Cr samples: Influence of spin-glass transition on the superconducting proximity effect

    NASA Astrophysics Data System (ADS)

    Sosnin, I.; Nugent, P.; Zou, J.; Petrashov, V. T.; Volkov, A. F.

    2006-07-01

    The dependence of the superconducting proximity effect on the amount of magnetic impurities in the normal part of Andreev interferometers has been studied experimentally. The dephasing rates obtained from fitting experimental data to quasiclassical theory of the proximity effect are consistent with the spin flip scattering from Cr impurities forming a local moment in the Cu host. In contrast, Ni impurities do not form a local moment in Cu and as a result there is no extra dephasing from Ni as long as Cu/Ni alloy remain paramagnetic.

  7. Low voltage tunneling magnetoresistance in CuCrO{sub 2}-based semiconductor heterojunctions at room temperature

    SciTech Connect

    Li, X. R.; Han, M. J.; Shan, C.; Hu, Z. G. Zhu, Z. Q.; Chu, J. H.; Wu, J. D.

    2014-12-14

    CuCrO{sub 2}-based heterojunction diodes with rectifying characteristics have been fabricated by combining p-type Mg-doped CuCrO{sub 2} and n-type Al-doped ZnO. It was found that the current for the heterojunction in low bias voltage region is dominated by the trap-assisted tunneling mechanism. Positive magnetoresistance (MR) effect for the heterojunction can be observed at room temperature due to the tunneling-induced antiparallel spin polarization near the heterostructure interface. The MR effect becomes enhanced with the magnetic field, and shows the maximum at a bias voltage around 0.5 V. The phenomena indicate that the CuCrO{sub 2}-based heterojunction is a promising candidate for low-power semiconductor spintronic devices.

  8. Residual Stresses in Thermal Barrier Coatings for a Cu-8Cr-4Nb Substrate System

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Raj, Sai V.

    2002-01-01

    Analytical calculations were conducted to determine the thermal stresses developed in a coated copper-based alloy, Cu-8%(at.%)Cr-4%Nb (designated as GRCop-84), after plasma spraying and during heat-up in a simulated rocket engine environment. Finite element analyses were conducted for two coating systems consisting of a metallic top coat, a pure copper bond coat and the GRCop-84. The through thickness temperature variations were determined as a function of coating thickness for two metallic coatings, a Ni-17%(wt%)Cr-6%Al-0.5%Y alloy and a Ni-50%(at.%)Al alloy. The residual stresses after low-pressure plasma spraying of the NiCrAlY and NiAl coatings on GRCop-84 substrate were also evaluated. These analyses took into consideration a 50.8 mm copper bond coat and the effects of an interface coating roughness. The through the thickness thermal stresses developed in coated liners were also calculated after 15 minutes of exposure in a rocket environment with and without an interfacial roughness.

  9. Lattice dynamics and thermal transport in multiferroic CuCrO2

    NASA Astrophysics Data System (ADS)

    Bansal, Dipanshu; Niedziela, Jennifer L.; May, Andrew F.; Said, Ayman; Ehlers, Georg; Abernathy, Douglas L.; Huq, Ashfia; Kirkham, Melanie; Zhou, Haidong; Delaire, Olivier

    2017-02-01

    Inelastic neutron and x-ray scattering measurements of phonons and spin waves were performed in the delafossite compound CuCrO2 over a wide range of temperature, and complemented with first-principles lattice dynamics simulations. The phonon dispersions and density of states are well reproduced by our density functional calculations, and reveal a strong anisotropy of Cu vibrations, which exhibit low-frequency modes of large amplitude parallel to the basal plane of the layered delafossite structure. The low frequency in-plane modes also show a systematic temperature dependence of neutron and x-ray scattering intensities. In addition, we find that spin fluctuations persist above 300 K, far above the Néel temperature for long-range antiferromagnetic order, TN≃24 K . Our modeling of the thermal conductivity, based on our phonon measurements and simulations, reveals a significant anisotropy and indicates that spin fluctuations above TN constitute an important source of phonon scattering, considerably suppressing the thermal conductivity compared to that of the isostructural but nonmagnetic compound CuAlO2.

  10. Evaluation of vermicompost as bioadsorbent substrate of Pb, Ni, V and Cr for waste waters remediation using Total Reflection X-ray Fluorescence

    NASA Astrophysics Data System (ADS)

    Urdaneta, Cynthia; Parra, Lué-Merú Marcó; Matute, Saida; Garaboto, Mayantino Angel; Barros, Hayden; Vázquez, Cristina

    2008-12-01

    The use of vermicompost as adsorbent substrate for removing Pb, Ni, V and Cr from waste waters is proposed. In this work, after a preliminary physical and chemical characterization of the vermicompost, the optimal parameters for the heavy metal adsorption were obtained. A synthetic multielemental solution of Pb, Cr and Ni and a solution of NH 4VO 3 for vanadium were evaluated. The optimized parameters were pH, vermicompost mass to volume ratio, agitation time and particle size of the adsorbent. A batch system was employed for the assays. The elements were determined in the supernatant solution after filtration of the substrate. An optimal pH of 4.5 was found for ion removal. The agitation time slightly influences the adsorption of Pb and Cr, but it has a high influence on the Ni and V adsorption. The highest adsorption and removal of the metals was observed for a vermicompost mass of 2 g per 500 mL using a particle size between 75 to 841 µm for Pb, Cr and Ni, and 841 till 1192 µm for V. The mean removal percentage for each element is around 95% for Pb. Ni and Cr in the multielemental synthetic sample, demonstrating a high removal capacity of the substrate. For V it was found a removal efficiency of 50%.

  11. Isolation and characterization of heavy-metal-mobilizing bacteria from contaminated soils and their potential in promoting Pb, Cu, and Cd accumulation by Coprinus comatus.

    PubMed

    Jing, Xiao-Bing; He, Nan; Zhang, Ying; Cao, Yan-Ru; Xu, Heng

    2012-01-01

    The enhanced effect of heavy-metal-mobilizing bacteria on the uptake of Pb, Cu, and Cd by Coprinus comatus from Pb-, Cu-, and Cd-multicontaminated soil was assessed in this study. Thirteen strains, tolerating 800 mg·L(-1) Pb, 200 mg·L(-1) Cu, and 200 mg·L(-1) Cd simultaneously were selected for heavy-metal-solubilizing experiments in soil. The mobilization of heavy metals depended on the characteristics of bacteria and heavy metals. Correlation analysis demonstrated that for Pb solubilization, the acid-producing ability was the most significant factor, while for Cu and Cd, siderophores played a leading role in this process. Four strains, based on their excellent ability to solubilize heavy metal in soil, were applied in pot experiments. The results showed that all strains can promote the growth of C. comatus and meanwhile help mushroom accumulate more heavy metals (Pb, Cd, and Cu). The maximum uptake for total Pb and Cu by C. comatus was observed in inoculations with Bacillus sp. strain JSG1 (2.02- and 2.13-fold, respectively, compared with uninoculated soil), while for Cd, it was recorded in Bacillus sp. strain PB2 treated soil (2.03-fold). Therefore, this work suggests that the mushroom-bacteria interaction can be developed into a novel bioremediation strategy.

  12. Carbon-double-bond-free printed solar cells from TiO₂/CH₃NH₃PbI₃/CuSCN/Au: structural control and photoaging effects.

    PubMed

    Ito, Seigo; Tanaka, Soichiro; Vahlman, Henri; Nishino, Hitoshi; Manabe, Kyohei; Lund, Peter

    2014-04-14

    Carbon double bond-free printed solar cells have been fabricated with the structure PbI3/Au> and PbI3/CuSCN/Au>, in which CuSCN acts as a hole conductor. The thickness of the CH3NH3PbI3 layer is controlled by a hot air flow during spin coating. The best conversion efficiency (4.86%) is obtained with PbI3 (hot-air dried)/CuSCN/Au>. However, a thick CH3NH3PbI3 layer on CuSCN is better for light-exposure stability (100 mW cm(-2) AM 1.5) when not encapsulated. Without the CuSCN coverage, the black CH3NH3PbI3 crystal changes to yellow during the light-exposure stability test, which is due to the transformation of the CH3NH3PbI3 perovskite crystal into hexagonal PbI2. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Optical properties of undoped and Mg doped CuCrO{sub 2} powders synthesized by sol-gel route

    SciTech Connect

    Srinivasan, Radhakrishnan; Bolloju, Satish

    2014-01-28

    In this work, CuCrO{sub 2} was synthesized by sol-gel method using citric acid as a gelling agent. The different parameters like ratio of citric acid to metal ions, calcination temperature, and duration were studied. A green colored powder with particle size around 300 nm was formed at the calcination temperature of 800 °C for four hours duration. The increase in temperature has a profound impact on crystallite size and in turn effected the optical properties. Band gap of the obtained CuCrO{sub 2} has varied from 2.3 to 1.7 eV by increasing the temperature from 800 °C to 900 °C. Doping studies were performed by introducing Mg{sup 2+} ion to substitute Cr{sup 3+} in CuCrO{sub 2}. X-ray powder diffraction and SEM studies on 2% Mg doped samples indicated a clear formation of side phases. According to the X-ray powder patterns, the reflections from side phases were increasing with the increase in doping concentrations of Mg from 2 to 5%. The side phases were found to be MgCr{sub 2}O{sub 4} spinel and CuO. The band gap has decreased for doped samples in comparison to undoped one. In this paper, sol-gel synthesis and characterization by Xray powder diffraction, SEM studies and UV-Vis-Diffuse Reflectance spectra are presented.

  14. [Concentration of Hg, Pb, Cd, Cr and As in liver Carcharhinus limbatus (Carcharhiniformes: Carcharhinidae) captured in Veracruz, Mexico].

    PubMed

    Mendoza-Díaz, Fernando; Serrano, Arturo; Cuervo-López, Liliana; López-Jiménez, Alejandra; Galindo, José A; Basañez-Muñoz, Agustin

    2013-06-01

    Pollution by heavy metals in marine ecosystems in the Gulf of Mexico is one of the hardest conservation issues to solve. Sharks as top predators are bioindicators of the marine ecosystem health, since they tend to bioaccumulate and biomagnify contaminants; they also represent a food source for local consumption. Thus, the objective of this study was to study the possible presence of heavy metals and a metalloid in livers of Carcharhinus limbatus. For this, a total of 19 shark livers were taken from animals captured nearby Tamihua, Veracruz, Mexico from December 2007 to April 2008. 12 out of the 19 captured sharks were males, one was an adult female, three were juvenile males, and three juvenile females. Four heavy metals (Hg, Pb, Cd, and Cr) and one metaloid (As) were analyzed in shark livers using an atomic absorption spectrophotometry with flame and hydride generator. Our results showed that the maximum concentrations found were: Hg = 0.69 mg/kg, Cd = 0.43 mg/kg, As = 27.37 mg/kg, Cr = 0.70 mg/kg. The minimum concentrations found were: As = 14.91 mg/kg, Cr = 0.35 mg/kg. The Pb could not be determined because the samples did not have the spectrophotometer minimum detectable amount (0.1 mg/kg). None of the 19 samples analyzed showed above the permissible limits established by Mexican and American laws. There was a correlation between shark size and Cr and As concentration (Pearson test). The concentration of Cr and As was observed to be higher in bigger animals. There was not a significant difference in heavy metals concentration between juveniles and adults; however, there was a difference between males and females. A higher Cr concentration was found in females when compared to males. None of the samples exceed the maximum limit established by the laws of Mexico and the United States of America. Much longer studies are needed with C. limbatus and other species caught in the region, in order to determine the degree of contaminants exposure in aquatic ecosystems

  15. Superconducting Bi1.5Pb0.5Sr2Ca2Cu3O(x) ceramics by rapid melt quenching and glass crystallization

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1989-01-01

    A glass of nominal Bi(1.5)Pb(0.5)Sr2Ca2Cu3O(x) composition, prepared by rapid quenching of the melt, showed a glass transition temperature of 383 C, crystallization temperature of 446 C, melting temperature of 855 C, and bulk density of 5.69 g/cu cm in air. The activation energy for crystallization of the glass was estimated to be 292kJ/mol from non-isothermal DSC. On heating in oxygen, the glass showed a slow and continuous weight gain starting at approximately 530 C which reached a plateau at approximately 820 C. The weight gained during heating was retained on cooling to ambient conditions indicating an irreversible oxidation step. The influence of annealing conditions on the formation of various phases in the glass has been investigated. The Bi(2)Sr(2)Ca(0)Cu(1)O(6) phase crystallized out first followed by formation of other phases at higher temperatures. The high-T(sub c) phase, isostructural with Bi(2)Sr(2)Ca(2)Cu(3)O(10) was not detected below 840 C, but its fraction increased with the annealing time at 840 C. A sample annealed at 840 C for 243h in air and furnace cooled showed the highest T(sub c)(R=0) of 107.2K and a narrow transition width, delta T(sub c)(10 to 90 percent), of approximately 2 K. The high T(sub c) phase does not seem to crystallize out directly from the glass but is rather produced at high temperature by reaction between the phases formed at lower temperatures. The kinetics of 110K phase formation was sluggish. It appears that the presence of lead helps in the formation and/or stabilization of the 110 K phase.

  16. Aided phytoextraction of Cu, Pb, Zn, and As in copper-contaminated soils with tobacco and sunflower in crop rotation: Mobility and phytoavailability assessment.

    PubMed

    Hattab-Hambli, Nour; Motelica-Heino, Mikael; Mench, Michel

    2016-02-01

    Copper-contaminated soils were managed with aided phytoextraction in 31 field plots at a former wood preservation site, using a single incorporation of compost (OM) and dolomitic limestone (DL) followed by a crop rotation with tobacco and sunflower. Six amended plots, with increasing total soil Cu, and one unamended plot were selected together with a control uncontaminated plot. The mobility and phytoavailability of Cu, Zn, Cr and As were investigated after 2 and 3 years in soil samples collected in these eight plots. Total Cu, Zn, Cr and As concentrations were determined in the soil pore water (SPW) and available soil Cu and Zn fractions by DGT. The Cu, Zn, Cr and As phytoavailability was characterized by growing dwarf beans on potted soils and determining the biomass of their plant parts and their foliar ionome. Total Cu concentrations in the SPW increased with total soil Cu. Total Cu, Zn, Cr and As concentrations in the SPW decreased in year 3 as compared to year 2, likely due to annual shoot removals by the plants and the lixiviation. Available soil Cu and Zn fractions also declined in year 3. The Cu, Zn, Cr and As phytoavailability, assessed by their concentration and mineral mass in the primary leaves of beans, was reduced in year 3.

  17. Morphological, thermal and optical studies of jute-reinforced PbSrCaCuO-polypropylene composite

    NASA Astrophysics Data System (ADS)

    Jacob, Reenu; Isac, Jayakumari

    2016-11-01

    New research with modern technologies has always grabbed substantial attention. Conservation of raw materials like natural fibers has helped composite world to explore eco-friendly components. The aim of this paper is to study the potential of jute fiber-reinforced ceramic polymers. Alkali-treated jute fiber has been incorporated in a polypropylene ceramic matrix at different volume fractions. The morphological, thermal and optical studies of jute-reinforced ceramic Pb2Sr2CaCu2O9 (PbSrCaCuO) are studied. Morphological results evidently demonstrate that when the polypropylene ceramic matrix is reinforced with jute fiber, interfacial interaction between the varying proportions of the jute fiber and ceramic composite takes place. TGA and DSC results confirm the enhancement in the thermal stability of ceramic composites reinforced with jute fiber. The UV analysis of the composite gives a good quality measure on the optical properties of the new composite prepared.

  18. Geometrical frustration in a new S = \\xBD distorted check-board lattice PbCuTeO5

    NASA Astrophysics Data System (ADS)

    Chilakalapudi, S. P.; Shahee, Aga; Mahajan, A. V.; Srinath, S.; Koteswararao, B.

    2017-05-01

    Geometrical frustration, arising from the unsatisfying magnetic bonds in peculiar magnetic materials, leads to the emergence of a variety of ground states ranging from exotic disordered (quantum spin liquid) to unusual magnetic ordered states. We have prepared and studied the magnetic properties of a novel quantum magnet PbCuTeO5, whose structure suggests that it has 2D distorted check-board lattice. A large antiferromagnetic Curie-Weiss temperature of -165 K and a spin freezing temperature Tf = 6 K are observed in the magnetic data. Our results suggest that PbCuTeO5 is a new frustrated quantum magnet with a large frustration parameter f = θCW/Tf > 27.

  19. Preparation, characterization and application of CuCrO2/ZnO photocatalysts for the reduction of Cr(VI).

    PubMed

    Ketir, Wahiba; Rekhila, Gharib; Trari, Mohamed; Amrane, Abdelatif

    2012-01-01

    The delafossite CuCrO2 elaborated by sol-gel from 40 nm diameter colloid is optically active in the visible region. It is characterized physically and photoelectrochemically. The microstructure is fairly homogenous with a mean crystallite size of ca. 2 microm. The optical gap (1.30 eV), determined from the diffuse reflectance, is well suited to the sunlight spectrum. The Mott Schottky plot is characteristic of P-type conductivity with a flat band potential of -0.26 V(SCE). As application, the photoreduction of chromate is successfully achieved in air-equilibrated suspension CuCrO2/ZnO (1/1). CuCrO2 is photoactivated by visible light and the electrons in the conduction band (-1.34 V(SCE)) are injected to ZnO. In the presence of salicylic acid, a conversion of Cr(VI) to Cr(III) of 57% is obtained under optimal conditions (pH 3 at 25 degrees C, 5 x 10(-4) mol/L) because of the HCrO4- dark adsorption onto ZnO (4HCrO4- + 3C7H6O3 + 18O2 + 16H+ --> 4Cr3+ + 21CO2 + 19H2O, deltaG0 = -557 kcal/mol). Prolonged illumination is accompanied by a deceleration in the photoactivity owing to the competitive water reduction, an issue of energetic concern. The hetero-system exhibits self sensitization for hydrogen production with an evolution rate of 149 micromol/(hr x g).

  20. Bioavailability of adsorbed and coprecipitated Cu, Ni, Pb, and Cd on iron and iron/aluminum hydroxide to Phragmites australis.

    PubMed

    Wang, He; Jia, Yongfeng

    2017-01-01

    The bioavailability of heavy metals strongly depends on their speciation in the environment. Adsorption (ADS) and coprecipitation (CPT) on amorphous metal hydroxides are important processes, controlling the fates of heavy metals in an aqueous environment. This work studied the bioavailability of Cu, Cd, Ni, and Pb adsorbed on and/or coprecipitated with amorphous iron and iron/aluminum mixed hydroxides to the wetland plant Phragmites australis. After a 13-day treatment, there was an apparent uptake of the heavy metals by the plant, and the amount of metal bioaccumulation was measurably different for different association forms (ADS vs. CPT). The bioaccumulation of Cd associated with Fe0.5Al0.5(OH)3 was greater than that with Fe(OH)3; the adsorbed metals were found to be more bioavailable than the coprecipitated forms for most of the treatments while the aging treatment significantly reduced the bioaccumulation of ADS metals. In the single metal treatment, root metal concentrations in the Fe(OH)3 ADS system followed the order Ni (68 mg kg(-1)) > Cu (32 mg kg(-1)) > Cd (28 mg kg(-1)) > Pb (9 mg kg(-1)), while the CPT system followed the order of Cu (30 mg kg(-1)) > Ni (22 mg kg(-1)) > Pb (9 mg kg(-1)) > Cd (7 mg kg(-1)). The order of metal accumulation in a combined metal treatment was similar to that for single metal treatments, but observed Ni concentration declines by 22 and 71 % and Cu and Cd concentrations increase by 30 and 50 % (for CPT and ADS treatments, respectively), while Pb concentrations increased by 30~50 % in both of them. When treated with low-molecular-weight organic acids (LMWOAs), metal desorption, indicative of metal oxide bonding strength and metal bioavailability, was consistent with metal accumulation in the plant.

  1. Direct determination of Cu, Mn, Pb, and Zn in beer by thermospray flame furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Nascentes, Clésia C.; Kamogawa, Marcos Y.; Fernandes, Kelly G.; Arruda, Marco A. Z.; Nogueira, Ana Rita A.; Nóbrega, Joaquim A.

    2005-06-01

    In this work, thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was employed for Cu, Mn, Pb, and Zn determination in beer without any sample digestion. The system was optimized and calibration was based on the analyte addition technique. A sample volume of 300 μl was introduced into the hot Ni tube at a flow-rate of 0.4 ml min -1 using 0.14 mol l -1 nitric acid solution or air as carrier. Different Brazilian beers were directly analyzed after ultrasonic degasification. Results were compared with those obtained by graphite furnace atomic absorption spectrometry (GFAAS). The detection limits obtained for Cu, Mn, Pb, and Zn in aqueous solution were 2.2, 18, 1.6, and 0.9 μg l -1, respectively. The relative standard deviations varied from 2.7% to 7.3% ( n=8) for solutions containing the analytes in the 25-50 μg l -1 range. The concentration ranges obtained for analytes in beer samples were: Cu: 38.0-155 μg l -1; Mn: 110-348 μg l -1, Pb: 13.0-32.9 μg l -1, and Zn: 52.7-226 μg l -1. Results obtained by TS-FF-AAS and GFAAS were in agreement at a 95% confidence level. The proposed method is fast and simple, since sample digestion is not required and sensitivity can be improved without using expensive devices. The TS-FF-AAS presented suitable sensitivity for determination of Cu, Mn, Pb, and Zn in the quality control of a brewery.

  2. A Study on the Effect of Ni Dopping on Bi-Pb-Sr-Ca-Cu-O System

    NASA Astrophysics Data System (ADS)

    Tepe, M.; Abukay, D.

    1998-01-01

    The effect of Ni doping on superconductivity properties of the Bi1.7Pb0.3Sr2Ca2(Cu1-xNix)3Oy system has been investigated by means of x-ray diffraction, ac electrical resistance, ac magnetic susceptibility and critical current measurements. The volume fraction of the 2223 phase decreases with increasing Ni concentration. The zero-resistance temperature and the critical current density are suppressed with Ni substitution.

  3. Valorization of a treated soil via amendments: fractionation and oral bioaccessibility of Cu, Ni, Pb, and Zn.

    PubMed

    Zagury, Gerald J; Rincon Bello, Jhony A; Guney, Mert

    2016-04-01

    The present study aims to transform a treated soil (TS) into a more desirable resource by modifying physico-chemical properties via amendments while reducing toxic metals' mobility and oral bioaccessibility. A hydrocarbon-contaminated soil submitted to treatment (TS) but still containing elevated concentrations of Cu, Ni, Pb, and Zn has been amended with compost, sand, and Al2(SO4)3 to render it usable for horticulture. Characterization and sequential extraction were performed for TS and four amended mixtures (AM1-4). P and K availability and metal bioaccessibility were investigated in TS and AM2. Amendment improved soil properties for all mixtures and yielded a usable product (AM2 20 % TS, 49 % compost, 30 % sand, 1 % Al2(SO4)3) satisfying regulatory requirements except for Pb content. In particular, AM2 had improved organic matter (OM) and cation exchange capacity (CEC), highly increased P and K availability, and reduced total metal concentrations. Furthermore, amendment decreased metal mobile fraction likely to be plant-available (in mg kg(-1), assumed as soluble/exchangeable + carbonates fractions). For AM2, estimated Pb bioavailability decreased from 1.50 × 10(3) mg kg(-1) (TS) to 238 mg kg(-1) (52.4 % (TS) to 34.2 %). Bioaccessible concentrations of Cu, Ni, and Zn (mg kg(-1)) were lower in AM2 than in TS, but there was no significant decrease for Pb. The results suggest that amendment improved soil by modifying its chemistry, resulting in lower metal mobile fraction (in %, for Cu and Zn) and bioaccessibility (in %, for Cu only). Amending soils having residual metal contamination can be an efficient valorization method, indicating potential for reducing treatment cost and environmental burden by rendering disposal/additional treatment unnecessary. Further studies including plant bioavailability are recommended to confirm results.

  4. Heavy metal (Hg, Cr, Cd, and Pb) contamination in urban areas and wildlife reserves: honeybees as bioindicators.

    PubMed

    Perugini, Monia; Manera, Maurizio; Grotta, Lisa; Abete, Maria Cesarina; Tarasco, Renata; Amorena, Michele

    2011-05-01

    The degree of heavy metal (Hg, Cr, Cd, and Pb) pollution in honeybees (Apis mellifera) was investigated in several sampling sites around central Italy including both polluted and wildlife areas. The honeybee readily inhabits all environmental compartments, such as soil, vegetation, air, and water, and actively forages the area around the hive. Therefore, if it functions in a polluted environment, plant products used by bees may also be contaminated, and as a result, also a part of these pollutants will accumulate in the organism. The bees, foragers in particular, are good biological indicators that quickly detect the chemical impairment of the environment by the high mortality and the presence of pollutants in their body or in beehive products. The experiment was carried out using 24 colonies of honeybees bred in hives dislocated whether within urban areas or in wide countryside areas. Metals were analyzed on the foragers during all spring and summer seasons, when the bees were active. Results showed no presence of mercury in all samples analyzed, but honeybees accumulated several amounts of lead, chromium, and cadmium. Pb reported a statistically significant difference among the stations located in urban areas and those in the natural reserves, showing the highest values in honeybees collected from hives located in Ciampino area (Rome), next to the airport. The mean value for this sampling station was 0.52 mg kg(-1), and July and September were characterized by the highest concentrations of Pb. Cd also showed statistically significant differences among areas, while for Cr no statistically significant differences were found.

  5. Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens--a field case.

    PubMed

    Wang, Fa Yuan; Lin, Xian Gui; Yin, Rui

    2007-05-01

    A field experiment was carried out to study the effect of microbial inoculation on heavy metal phytoextraction by Elsholtzia splendens and whether chitosan could have a synergistic effect with the microbial inocula. The microbial inocula consisted of a consortium of arbuscular mycorrhizal fungi and two Penicillium fungi. Three treatments were included: the control, inoculation with microbial inocula, and the inoculation combined with chitosan. Microbial inoculation increased plant biomass especially shoot dry weight, enhanced shoot Cu, Zn and Pb concentrations but did not affect Cd, leading to higher shoot Cu, Zn, Pb and Cd uptake. Compared with microbial inoculation alone, chitosan application did not affect plant growth but increased shoot Zn, Pb and Cd concentrations except Cu, which led to higher phytoextraction efficiencies and partitioning to shoots of Zn, Pb and Cd. These results indicated synergistic effects between microbial inocula and chitosan on Zn, Pb and Cd phytoextraction.

  6. Aging effects on the microstructure, surface characteristics and wettability of Cu pretinned with Sn-Pb solders

    SciTech Connect

    Linch, Heidi Sue

    1993-11-01

    This study investigates effects of aging in air and argon at 170 C on Cu coupons which were pretinned with 75Sn-25Pb, 8Sn-92Pb, and 5Sn-95Pb solders. Coatings were applied using electroplating or hot dipping techniques. The coating thickness was controlled between 3 to 3μm and the specimens were aged for 0 hours, 2 hours, 24 hours and 2 weeks. Wetting balance tests were used to evaluate the wettability of the test specimens. Microstructural development was evaluated using X-ray diffraction, energy dispersive X-ray and Auger spectroscopy, as well as optical and scanning electron microscopy. The wetting behavior of the test specimens is interpreted with respect to observed microstructural changes and as a function of aging time, solder composition, and processing conditions.

  7. Pb electrodeposition on Cu(100) in the presence of Chloride: An in situ optical oblique-incidence reflectivity difference study

    NASA Astrophysics Data System (ADS)

    Gray, Jeremy; Scwharzacher, Walther; Zhu, Xiangdong

    2003-03-01

    The growth of submonolayer, monolayer, and multilayer Pb films electrodeposited on Cu(100) has been studied using an optical oblique-incidence reflectivity difference (OI-RD) technique. The OI-RD signal is shown to be proportional to Pb thickness during underpotential deposition (upd) of one monolayer. The optical results also suggest that subsequent overpotential growth, resulting in multilayer Pb films, can proceed in two distinctly different pathways. The two pathways are a function of the applied deposition potential and, during cyclic voltammetry (CV) scans, the potential ramping rate. Most likely, at low overpotentials and/or scan rates, a progressive two-dimensional nucleation and growth process dominates, while at higher overpotentials growth proceeds in a three-dimensional process. By observing the OI-RD behavior, we were able to control the growth mode in-situ be varying the applied pulse potential.

  8. Population health risk via dietary exposure to trace elements (Cu, Zn, Pb, Cd, Hg, and As) in Qiqihar, Northeastern China.

    PubMed

    Luo, Jinming; Meng, Jia; Ye, Yajie; Wang, Yongjie; Bai, Lin

    2016-11-15

    The estimated daily intakes (EDIs) of six trace elements (Cu, Zn, Pb, Cd, Hg, and As) in vegetables (leafy vegetable, i.e., bok choy, fruit vegetables, i.e., cucumber and tomato, and other categories, i.e., mushroom, kidney bean, and potato), cereals (rice and wheat flour), and meats (pork, mutton, and beef) most commonly consumed by adult inhabitants of Qiqihar, Northeastern China, were determined to assess the health status of local people. The average EDIs of Cu, Zn, Pb, Cd, Hg, and As were with 20.77 μg (kg bw)(-1) day(-1) of Cu, 288 μg (kg bw)(-1) day(-1) of Zn, 2.01 μg (kg bw)(-1) day(-1) of Pb, 0.41 μg (kg bw)(-1) day(-1) of Cd, 0.01 μg (kg bw)(-1) day(-1) of Hg, and 0.52 μg (kg bw)(-1) day(-1) of As, respectively, which are below the daily allowance recommended by FAO/WHO. However, the maximum EDIs of Pb and Cd were 4.56 μg (kg bw)(-1) day(-1) and 1.68 μg (kg bw)(-1) day(-1), respectively, which are above the recommended levels [i.e., 3.58 μg (kg bw)(-1) day(-1) for Pb and 1.0 μg (kg bw)(-1) day(-1) for Cd] by FAO/WHO. This finding indicates that the potential health risk induced by daily ingestion of Pb and Cd for the local residents should receive a significant concern. Similarly, we detected elevated Pb and Cd concentrations, i.e., with average of 13.58 and 0.60 mg kg(-1) dw, respectively, in the adult scalp hairs. Consumption of rice, potato, bok choy, and wheat flour contributed to 75 and 82% of Pb and Cd daily intake from foodstuffs. Nevertheless, human scalp hair is inappropriate biological material for determination of the nutritional status of trace elements in this region.

  9. Mapping of Cu and Pb contaminations in soil using combined geochemistry, topography, and remote sensing: a case study in the Le'an River floodplain, China.

    PubMed

    Chen, Yiyun; Liu, Yaolin; Liu, Yanfang; Lin, Aiwen; Kong, Xuesong; Liu, Dianfeng; Li, Xiran; Zhang, Yang; Gao, Yin; Wang, Dun

    2012-05-01

    Heavy metal pollution in soil is becoming a widely concerning environmental problem in China. The aim of this study is to integrate multiple sources of data, namely total Cu and Pb contents, digital elevation model (DEM) data, remote sensing image and interpreted land-use data, for mapping the spatial distribution of total Cu and Pb contamination in top soil along the Le'an River and its branches. Combined with geographical analyses and watershed delineation, the source and transportation route of pollutants are identified. Regions at high risk of Cu or Pb pollution are suggested. Results reveal that topography is the major factor that controls the spatial distribution of Cu and Pb. Watershed delineation shows evidence that the streamflow resulting from rainfall is the major carrier of metal pollutants.

  10. Mapping of Cu and Pb Contaminations in Soil Using Combined Geochemistry, Topography, and Remote Sensing: A Case Study in the Le’an River Floodplain, China

    PubMed Central

    Chen, Yiyun; Liu, Yaolin; Liu, Yanfang; Lin, Aiwen; Kong, Xuesong; Liu, Dianfeng; Li, Xiran; Zhang, Yang; Gao, Yin; Wang, Dun

    2012-01-01

    Heavy metal pollution in soil is becoming a widely concerning environmental problem in China. The aim of this study is to integrate multiple sources of data, namely total Cu and Pb contents, digital elevation model (DEM) data, remote sensing image and interpreted land-use data, for mapping the spatial distribution of total Cu and Pb contamination in top soil along the Le’an River and its branches. Combined with geographical analyses and watershed delineation, the source and transportation route of pollutants are identified. Regions at high risk of Cu or Pb pollution are suggested. Results reveal that topography is the major factor that controls the spatial distribution of Cu and Pb. Watershed delineation shows evidence that the streamflow resulting from rainfall is the major carrier of metal pollutants. PMID:22754479

  11. Sr-Nd-Pb-Hf isotope systematics of the Hugo Dummett Cu-Au porphyry deposit (Oyu Tolgoi, Mongolia)

    NASA Astrophysics Data System (ADS)

    Dolgopolova, A.; Seltmann, R.; Armstrong, R.; Belousova, E.; Pankhurst, R. J.; Kavalieris, I.

    2013-04-01

    Major and trace element geochemistry including Sr-Nd-Pb-Hf isotopic data are presented for a representative sample suite of Late Devonian to Early Carboniferous plutonic and volcanic rocks from the Hugo Dummett deposit of the giant Oyu Tolgoi porphyry Cu-Au district in South Gobi, Mongolia. Sr and Nd isotopes (whole-rock) show restricted ranges of initial compositions, with positive ɛNdt mainly between + 3.4 and + 7.4 and (87Sr/86Sr)t predominantly between 0.7037 and 0.7045 reflecting magma generation from a relatively uniform juvenile lithophile-element depleted source. Previously dated zircons from the plutonic rocks exhibit a sample-averaged range of ɛHft values of + 11.6 to + 14.5. Depleted-mantle model ages of 420-830 (Nd) and 320-730 Ma (zircon Hf) limit the involvement of pre-Neoproterozoic crust in the petrogenesis of the intermediate to felsic calc-alkaline magmas to, at most, a minor role. Pb isotopes (whole-rock) show a narrow range of unradiogenic initial compositions: 206Pb/204Pb 17.40-17.94, 207Pb/204Pb 15.43-15.49 and 208Pb/204Pb 37.25-37.64, in agreement with Sr-Nd-Hf isotopes indicating the dominance of a mantle component. All four isotopic systems suggest that the magmas from which the large Oyu Tolgoi porphyry system was generated originated predominantly from juvenile material within the subduction-related setting of the Gurvansayhan terrane.

  12. Mössbauer study of Cu0.5Fe0.5Cr2S4

    NASA Astrophysics Data System (ADS)

    Ok, Hang Nam; Baek, Kyung Seon; Lee, Heung Soo; Kim, Chul Sung

    1990-01-01

    Cu0.5Fe0.05Cr2S4 has been studied by Mössbauer spectroscopy and x-ray diffraction. The crystal structure is found to be a cubic spinel with the lattice parameter a0=9.922 Å. The temperature dependence of both the magnetic hyperfine field and magnetization is explained by the Néel theory of ferrimagnetism using three exchange integrals: JFe-Cr/kB=-13.7 K, JFe-Fe/kB=-8.3 K, and JCr-Cr/kB=8.7 K.

  13. Counter-current acid leaching process for the removal of Cu, Pb, Sb and Zn from shooting range soil.

    PubMed

    Lafond, Stéphanie; Blais, Jean-François; Mercier, Guy; Martel, Richard

    2013-01-01

    This research explores the performance of a counter-current leaching process (CCLP) for Cu, Pb, Sb and Zn extraction in a polluted shooting range soil. The initial metal concentrations in the soil were 1790 mg Cu/kg, 48,300 mg Pb/kg, 840 mg Sb/kg and 368 mg Zn/kg. The leaching process consisted of five one-hour acid leaching steps, which used 1 M H2SO4 + 4 M NaCl (20 degrees C, soil suspension = 100 g/L) followed by two water rinsing steps. Ten counter-current remediation cycles were completed and the average metal removal yields were 98.3 +/- 0.3% of Cu, 99.5 +/- 0.1% of Pb, 75.5 +/- 5.1% of Sb and 29.1 +/- 27.2% of Zn. The quality of metal leaching did not deteriorate throughout the 10 remediation cycles completed for this study. The CCLP reduced acid and salt use by approximately 68% and reduced water consumption by approximately 60%, exceeding reductions achieved by a standard acid leaching process.

  14. Relation of pH and other soil variables to concentrations of Pb, Cu, Zn, Cd, and Se in earthworms

    USGS Publications Warehouse

    Beyer, W.N.; Hensler, G.L.; Moore, J.

    1987-01-01

    Various soil treatments (clay, composted peat, superphosphate, sulfur, calcium carbonate, calcium chloride, zinc chloride, selenous acid) were added to experimental field plots to test the effect of different soil variables on the concentrations of 5 elements in earthworms (Pb, Cu, Zn, Cd, Se). Concentrations of the 5 elements were related to 9 soil variables (soil Pb, soil Cu, soil Zn, pH, organic matter, P, K, Mg, and Ca) with linear multiple regression. Lead concentrations in earthworms were positively correlated with soil Pb and soil organic matter, and negatively correlated with soil pH and soil Mg, with an R2 of 64%. Se concentrations were higher in earthworms from plots amended with Se, and Zn concentrations were higher in earthworms from plots amended with Zn. However, none of the other soil variables had important effects on the concentrations of Cu, Zn, Cd and Se in earthworms. Although some significant statistical relations were demonstrated, the values of r2 of all relations (> 20%) were so low that they had little predictive value.

  15. Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil: EDTA vs. citrate.

    PubMed

    Labanowski, Jérôme; Monna, Fabrice; Bermond, Alain; Cambier, Philippe; Fernandez, Christelle; Lamy, Isabelle; van Oort, Folkert

    2008-04-01

    Kinetic EDTA and citrate extractions were used to mimic metal mobilization in a soil contaminated by metallurgical fallout. Modeling of metal removal rates vs. time distinguished two metal pools: readily labile (QM1) and less labile (QM2). In citrate extractions, total extractability (QM1+QM2) of Zn and Cd was proportionally higher than for Pb and Cu. Proportions of Pb and Cu extracted with EDTA were three times higher than when using citrate. We observed similar QM1/QM2 ratios for Zn and Cu regardless of the extractant, suggesting comparable binding energies to soil constituents. However, for Pb and Cd, more heterogeneous binding energies were hypothesized to explain different kinetic extraction behaviors. Proportions of citrate-labile metals were found consistent with their short-term, in-situ mobility assessed in the studied soil, i.e., metal amount released in the soil solution or extracted by cultivated plants. Kinetic EDTA extractions were hypothesized to be more predictive for long-term metal migration with depth.

  16. Adsorption behavior of hydrotalcite-like modified bentonite for Pb2+, Cu2+and methyl orange removal from water

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Peng, Jingdong; Xiao, Huan; Peng, Huanjun; Bu, Lingli; Pan, Ziyu; He, Yan; Chen, Fang; Wang, Xiang; Li, Shiyu

    2017-10-01

    Hydrotalcite-like compound (HTlc) which contained lanthanum cation was prepared successfully. The title compound was characterized by thermogravimetry analysis, element analysis, X-ray fluorescence, Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, as well as specific surface area. The study sought to investigate the adsorption of heavy metals and dye (Pb2+, Cu2+ and methyl orange) in aqueous solution on Ben-HTlc. For optimization of adsorption behavior of the three elements, the pH value, contact time, adsorbate concentration were optimized. As for Pb2+, Cu2+ and methyl orange (MO), the single-component adsorption generally reached the maximum quantity in first 20 min and their respective adsorption capacities were 384.6 mg g-1, 156.3 mg g-1 and 333.3 mg g-1 (pH = 6.5 ± 0.1), the adsorption affinities were in the following sequence Pb2+ > MO > Cu2+. The repeated adsorption and regeneration studies showed the promising application of Ben-HTlc. The breakthrough experimental consequence had shown that the synthesized Ben-HTlc could efficiently remove heavy metals and dye from water, suggesting the potential utilization of Ben-HTlc in pollutants removal.

  17. Nitrilotriacetic acid functionalized Adansonia digitata biosorbent: Preparation, characterization and sorption of Pb (II) and Cu (II) pollutants from aqueous solution.

    PubMed

    Adewuyi, Adewale; Pereira, Fabiano Vargas

    2016-11-01

    Nitrilotriacetic acid functionalized Adansonia digitata (NFAD) biosorbent has been synthesized using a simple and novel method. NFAD was characterized by X-ray Diffraction analysis technique (XRD), Scanning Electron Microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analyzer, Fourier Transform Infrared spectrometer (FTIR), particle size dispersion, zeta potential, elemental analysis (CHNS/O analyzer), thermogravimetric analysis (TGA), differential thermal analysis (DTA), derivative thermogravimetric analysis (DTG) and energy dispersive spectroscopy (EDS). The ability of NFAD as biosorbent was evaluated for the removal of Pb (II) and Cu (II) ions from aqueous solutions. The particle distribution of NFAD was found to be monomodal while SEM revealed the surface to be heterogeneous. The adsorption capacity of NFAD toward Pb (II) ions was 54.417 mg/g while that of Cu (II) ions was found to be 9.349 mg/g. The adsorption of these metals was found to be monolayer, second-order-kinetic, and controlled by both intra-particle diffusion and liquid film diffusion. The results of this study were compared better than some reported biosorbents in the literature. The current study has revealed NFAD to be an effective biosorbent for the removal of Pb (II) and Cu (II) from aqueous solution.

  18. Distribution of trace metals (Cu, Pb, Ni, Zn) between particulate, colloidal and truly dissolved fractions in wastewater treatment.

    PubMed

    Hargreaves, Andrew J; Vale, Peter; Whelan, Jonathan; Constantino, Carlos; Dotro, Gabriela; Campo, Pablo; Cartmell, Elise

    2017-05-01

    The distribution of Cu, Pb, Ni and Zn between particulate, colloidal and truly dissolved size fractions in wastewater from a trickling filter treatment plant was investigated. Samples of influent, primary effluent, humus effluent, final effluent and sludge holding tank returns were collected and separated into particulate (i.e. > 0.45 μm), colloidal (i.e. 1 kDa to 0.45 μm), and truly dissolved (i.e. < 1 kDa) fractions using membrane filters. In the influent, substantial proportions of Cu (60%), Pb (67%), and Zn (32%) were present in the particulate fraction which was removed in conjunction with suspended particles at the works in subsequent treatment stages. In final effluent, sizeable proportions of Cu (52%), Pb (32%), Ni (44%) and Zn (68%) were found within the colloidal size fraction. Calculated ratios of soluble metal to organic carbon suggest the metal to be adsorbed to or complexed with non-humic macromolecules typically found within the colloidal size range. These findings suggest that technologies capable of removing particles within the colloidal fraction have good potential to enhance metals removal from wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Cu2+, Cd2+ and Pb2+ adsorption from aqueous solutions by pyrite and synthetic iron sulphide.

    PubMed

    Ozverdi, Arzu; Erdem, Mehmet

    2006-09-01

    In this study, removal of Cu(2+), Cd(2+) and Pb(2+) from aqueous solutions by adsorption onto pyrite and synthetic iron sulphide (SIS) was investigated as a function of pH, contact time, adsorbent dosage, initial metal concentration and temperature. It has been determined that the adsorption of metal ions onto both adsorbents is pH dependent and the adsorption capacities increase with the increasing temperature. The mechanisms governing the metal removal processes were determined as chemical precipitation at low pH (<3) due to H(2)S generation and adsorption at high pH (in the range of 3-6). The metal adsorption yields also increased with the increasing adsorbent dosage and contact time and reached to equilibrium for both adsorbents. The Cu(2+), Cd(2+) and Pb(2+) adsorption capacities of both adsorbents decrease in the order of Pb(2+)>Cu(2+)>Cd(2+). Except for cadmium, little fraction of copper and lead in the solid adsorption residues was desorbed in acidic media.

  20. Removal of Pb(II), Cd(II), Cu(II) and trichloroethylene from water by Nanofer ZVI.

    PubMed

    Eglal, Mahmoud M; Ramamurthy, Amruthur S

    2015-01-01

    Zero-valent iron nanoparticle (Nanofer ZVI) is a new reagent due to its unique structure and properties. Images of scanning electron microscopy/electron dispersive spectroscopy (SEM/EDS), transmission electron microscopy and X-ray diffraction revealed that Nanofer ZVI is stable, reactive and has a unique structure. The particles exhibited a spherical shape, a chain-like structure with a particle size of 20 to 100 nm and a surface area between 25-30 m2g(-1). The time interval for particles to agglomerate and settle was between 4-6 h. SEM/EDS Images showed that particle size increased to 2 µm due to agglomeration. Investigation of adsorption and oxidation behavior of Nanofer ZVI used for the removal of Cu(II), Pb(II), Cd(II) ions and trichloroethylene (TCE) from aqueous solutions showed that the optimal pH for Pb(II), Cu(II), Cd(II) and TCE removal were 4.5 and 4.8, 5.0 and 6.5, respectively. Test data were used to form Langmuir and Freundlich isotherms. The maximum contaminant loading was estimated as 270, 170, 110, 130 mg per gram of Nanofer ZVI for Cu(II), Pb(II), Cd(II) and TCE respectively. Removal of metal ions is interpreted in terms of their hydrated ionic radii and their electronegativity. TCE oxidation followed the dechlorination pathway resulting in nonhazardous by-products.

  1. Determination of heavy metal (Zn, Pb, Cd and Cr) concentration in benthic fauna tissues collected from the southeast Caspian Sea, Iran.

    PubMed

    Saghali, Mahmood; Hoseini, Seyyed Morteza; Hosseini, Seyed Abbas; Baqraf, Rauf

    2014-01-01

    The aim of the present study was to determine zinc (Zn), chromium (Cr), cadmium (Cd) and lead (Pb) content of benthic fauna in the southeast coast of the Caspian Sea, where the major fish restocking programs are conducted. Seasonal sampling was performed in three sampling sites: north Miankaleh (NM), south Miankaleh (SM) and Gharesoo coast (GC). Results showed that sampling sites, sampling seasons and sampling sites × sampling seasons interaction had a significant effect on the heavy metal levels (p < 0.05). The yearly heavy metal concentration order was as follows: Zn > Pb > Cd > Cr. Yearly Pb levels of the NM site were significantly higher than the other sites. Also, yearly Cr levels of the SM site were significantly higher than site GC. Comparison of the benthos heavy metal levels with the available reference values suggests that the benthos tissues might be highly polluted which can intoxicate the fish feeding on them.

  2. High pressure synthesis and properties of Bi{sub 0.5}Pb{sub 0.5}CrO{sub 3}: A novel Cr{sup 4+}/Cr{sup 3+} perovskite

    SciTech Connect

    Pirrotta, Ivan; Schmidt, Rainer; Morán, Emilio; and others

    2015-05-15

    We have synthesized a new Bi{sub 0.5}Pb{sub 0.}5CrO{sub 3} perovskite phase by means of a high pressure reaction at 70 kbar and 1000 °C. The distorted orthorhombic perovskite structure can be indexed in the space group Pnma with lattice parameters a=5.4768 (1) Å, b=7.7450 (2) Å, and c=5.4574 (1) Å at room temperature, but undergoes a structural phase transition and enters into a P2{sub 1}/m monoclinic distorted perovskite phase below 150 K with a=5.4173 (2), b=7.7286 (4) and c=5.4930 (3). The structural transition is coincident with the onset of magnetic interactions. At lower temperatures a weak ferromagnetic structure is evident related to antiferromagnetic Cr-spin canting and a spin-glass transition is observed at ≈40 K. The semiconducting-type electrical resistivity is relatively low, associated with Cr{sup 3+}/Cr{sup 4+} electron hopping, and shows considerable magneto-resistance (up to 15%). Due to the low resistivity the dielectric permittivity ε{sub r} could be determined only below T<80 K to be ≈300 and did not show any strong temperature-dependence. Ferroelectricity was not detected in the T-range investigated and no magnetocapacitance effects were observed. - Graphical abstract: A new Bi{sub 0.5}Pb{sub 0.}5CrO{sub 3} perovskite phase has been synthesized under high pressure (70 kbar) and high temperature (1000 °C) conditions. The room temperature structure is orthorhombic and can be indexed in the space group Pnma but below 150 K undergoes a structural phase transition and enters into a P2{sub 1}/m monoclinic distorted perovskite phase. The structural transition is coincident with the onset of magnetic interactions. Mott variable-range hopping charge transport and magnetoresistance effects are evident. - Highlights: • A new Bi{sub 0.5}Pb{sub 0.}5CrO{sub 3} perovskite has been synthesized under HP/HT conditions. • An orthorhombic-to monoclinic phase transition takes place at 150 K. • The structural transition is coincident with the onset

  3. Multi-metal interactions between Cd, Cu, Ni, Pb and Zn in water flea Daphnia magna, a stable isotope experiment.

    PubMed

    Komjarova, I; Blust, R

    2008-11-11

    Metal interaction effects were investigated in Daphnia magna during a simultaneous exposure to essential (Cu, Ni and Zn) and non-essential (Cd and Pb) metals at environmentally relevant concentrations using a stable isotope technique. The metals were applied in the following concentration ranges: 0.0125-0.2 microM for (106)Cd, 0.025-0.25 microM for (65)Cu and (204)Pb, 0.1-1.25 microM for (62)Ni and (67)Zn. Cadmium and copper exhibited a suppressing effect on the uptake rates of all other metals present in the mixture with the exception to lead at all studied concentrations. The effect was already pronounced at low Cd and Cu concentrations and reached a maximum at the higher concentrations. Nickel and zinc showed weaker interactions with cadmium and between each other, while having no effect on copper and lead uptake. There was a high degree of correlation between Cd, Ni and Zn uptake rates indicating that these metals share in part common uptake or interaction pathways. Moreover, a significant correlation between Zn and Cu uptake processes suggests that more than one mechanism is involved in Zn accumulation since Cu is known to interact with Na uptake sites. The uptake of lead was marked by a high initial rate, but the uptake process reached saturation within 24 h. Cd applied at a concentration of 0.2 microM was the only metal which affected the lead uptake process by stimulation of the Pb uptake. Added to the medium at a concentration of 0.25 microM, lead in turn, increased copper uptake. Current work illustrates that metal interactions are significant and occur at low environmentally realistic concentrations affecting bioavailability of both toxic and essential metals.

  4. Influence of pyrolytic and non-pyrolytic rice and castor straws on the immobilization of Pb and Cu in contaminated soil.

    PubMed

    Rizwan, Muhammad Shahid; Imtiaz, Muhammad; Chhajro, Muhammad Afzal; Huang, Guoyong; Fu, Qingling; Zhu, Jun; Aziz, Omar; Hu, Hongqing

    2016-11-01

    Soil contamination with heavy metals has become a global environmental health concern. In the present study, European Community Bureau of Reference (BCR) sequential extraction and toxicity characteristic leaching procedure (TCLP) techniques were used to evaluate the Pb and Cu subsequent transformations, immobilizing impact of pyrolytic and non-pyrolytic rice and castor straws and their efficiency to reduce the metals mobility and leachability in the polluted soil. Obtained results highlight the potential of biochar over non-pyrolytic residues to enhance the immobilization of Pb and Cu in the soil. Castor leaves-derived biochar (CLB), castor stem-derived biochar (CSB), and rice straw-derived biochar (RSB) prominently decreased the mobility (acid-soluble fraction) of Pb 49.8%, 31.1%, and 31.9%, respectively, while Cu decreased 15.8%, 11.5%, and 12%, respectively, as compare to control. Sequential extraction showed that biochar treatments prominently modified the proportioning of Pb and Cu from acid soluble to a less bioavailable fraction and increased the geochemical stability in the polluted soil as compared to relative feedstocks as well as the controlled soil. Additionally, the soil pH increased markedly after the addition of biochar. Compared with control, the TCLP-extractable Pb and Cu were reduced to 29.2-41.4% and 5.7-22.8% from the soil respectively by the application of CLB. The immobilization and reduction in leachability of Pb and Cu were correlated with the soil pH. The biochar effect on the Pb immobilization was much better as compared to Cu in co-contaminated soil. Overall addition of CLB offered the best results and could be effective in both Pb and Cu immobilization thereby reducing their mobility and bioavailability in the co-contaminated soil.

  5. Creep and oxidation behavior of modified CF8C-plus with W, Cu, Ni, and Cr

    DOE PAGES

    Unocic, Kinga A.; Dryepondt, Sebastien N.; Yamamoto, Yukinori; ...

    2016-02-01

    Here, the microstructures of modified CF8C-Plus (Fe-19Cr-12Ni-0.4W-3.8Mn-0.2Mo-0.6Nb-0.5Si-0.9C) with W and Cu (CF8CPWCu) and CF8CPWCu enhanced with 21Cr + 15Ni or 22Cr + 17.5Ni were characterized in the as-cast condition and after creep testing. When imaged at lower magnifications, the as-cast microstructure was similar among all three alloys as they all contained a Nb-rich interdendritic phase and Mn-based inclusions. Transmission electron microscopy (TEM) analysis showed the presence of nanoscale Cu-rich nanoprecipitates distributed uniformly throughout the matrix of CF8CPWCu, whereas in CF8CPWCu22/17, Cu precipitates were found primarily at the grain boundaries. The presence of these nanoscale Cu-rich particles, in addition to W-richmore » Cr23C6, nanoscale Nb carbides, and Z-phase (Nb2Cr2N2), improved the creep strength of the CF8CPWCu steel. Modification of CF8CPWCu with Cr and Ni contents slightly decreased the creep strength but significantly improved the oxidation behavior at 1073 K (800 °C). In particular, the addition of 22Cr and 17.5Ni strongly enhanced the oxidation resistance of the stainless steel resulting in a 100 degrees or greater temperature improvement, and this composition provided the best balance between improving both mechanical properties and oxidation resistance.« less

  6. Creep and oxidation behavior of modified CF8C-plus with W, Cu, Ni, and Cr

    SciTech Connect

    Unocic, Kinga A.; Dryepondt, Sebastien N.; Yamamoto, Yukinori; Maziasz, Philip J.

    2016-02-01

    Here, the microstructures of modified CF8C-Plus (Fe-19Cr-12Ni-0.4W-3.8Mn-0.2Mo-0.6Nb-0.5Si-0.9C) with W and Cu (CF8CPWCu) and CF8CPWCu enhanced with 21Cr + 15Ni or 22Cr + 17.5Ni were characterized in the as-cast condition and after creep testing. When imaged at lower magnifications, the as-cast microstructure was similar among all three alloys as they all contained a Nb-rich interdendritic phase and Mn-based inclusions. Transmission electron microscopy (TEM) analysis showed the presence of nanoscale Cu-rich nanoprecipitates distributed uniformly throughout the matrix of CF8CPWCu, whereas in CF8CPWCu22/17, Cu precipitates were found primarily at the grain boundaries. The presence of these nanoscale Cu-rich particles, in addition to W-rich Cr23C6, nanoscale Nb carbides, and Z-phase (Nb2Cr2N2), improved the creep strength of the CF8CPWCu steel. Modification of CF8CPWCu with Cr and Ni contents slightly decreased the creep strength but significantly improved the oxidation behavior at 1073 K (800 °C). In particular, the addition of 22Cr and 17.5Ni strongly enhanced the oxidation resistance of the stainless steel resulting in a 100 degrees or greater temperature improvement, and this composition provided the best balance between improving both mechanical properties and oxidation resistance.

  7. Creep and Oxidation Behavior of Modified CF8C-Plus with W, Cu, Ni, and Cr

    NASA Astrophysics Data System (ADS)

    Unocic, Kinga A.; Dryepondt, Sebastien; Yamamoto, Yukinori; Maziasz, Philip J.

    2016-04-01

    The microstructures of modified CF8C-Plus (Fe-19Cr-12Ni-0.4W-3.8Mn-0.2Mo-0.6Nb-0.5Si-0.9C) with W and Cu (CF8CPWCu) and CF8CPWCu enhanced with 21Cr + 15Ni or 22Cr + 17.5Ni were characterized in the as-cast condition and after creep testing. When imaged at lower magnifications, the as-cast microstructure was similar among all three alloys as they all contained a Nb-rich interdendritic phase and Mn-based inclusions. Transmission electron microscopy (TEM) analysis showed the presence of nanoscale Cu-rich nanoprecipitates distributed uniformly throughout the matrix of CF8CPWCu, whereas in CF8CPWCu22/17, Cu precipitates were found primarily at the grain boundaries. The presence of these nanoscale Cu-rich particles, in addition to W-rich Cr23C6, nanoscale Nb carbides, and Z-phase (Nb2Cr2N2), improved the creep strength of the CF8CPWCu steel. Modification of CF8CPWCu with Cr and Ni contents slightly decreased the creep strength but significantly improved the oxidation behavior at 1073 K (800 °C). In particular, the addition of 22Cr and 17.5Ni strongly enhanced the oxidation resistance of the stainless steel resulting in a 100 degrees or greater temperature improvement, and this composition provided the best balance between improving both mechanical properties and oxidation resistance.

  8. Determination of Cd, Cr, Hg and Pb in plastics from waste electrical and electronic equipment by inductively coupled plasma mass spectrometry with collision-reaction interface technology.

    PubMed

    Santos, Mirian C; Nóbrega, Joaquim A; Cadore, Solange

    2011-06-15

    A procedure based on the use of a quadrupole inductively coupled plasma-mass spectrometer equipped with a collision-reaction interface (CRI) for control of spectral overlap interferences was developed for simultaneous determination of Cd, Cr, Hg, and Pb in plastics from waste electrical and electronic equipment (WEEE). The injection of H(2) and He (80 and 60 mL min(-1), respectively) into the sampled plasma, colliding and reacting with potentially interfering polyatomic ions, allows interference-free determination of chromium via its isotopes (52)Cr and (53)Cr that are freed from overlap due to the occurrence of (40)Ar(12)C(+), (40)Ar(12)C(1)H(+), (36)S(16)O(+) or (1)H(36)S(16)O(+). Cadmium, Hg and Pb were directly determined via their isotopes (110)Cd, (111)Cd, (112)Cd, (199)Hg, (200)Hg, (201)Hg, (202)Hg, (206)Pb, (207)Pb, and (208)Pb, without using CRI. The CRI can be quickly activated or deactivated before each analyte measurement. Limits of detection for (52)Cr were 0.04 or 0.14 μg L(-1) with He or H(2) injected in CRI. Cadmium and Pb have LODs between 0.02 and 0.08 μg L(-1) and Hg had 0.93-0.98 μg L(-1), without using CRI. Analyte concentrations for samples varied from 16 to 43, 1 to 11, 4 to 12, and 5 to 13 mg kg(-1) for Cr, Cd, Hg and Pb, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Properties and features of structure formation CuCr-contact alloys in electron beam cladding

    SciTech Connect

    Durakov, Vasiliy G.; Dampilon, Bair V. E-mail: gnusov@rambler.ru; Gnyusov, Sergey F. E-mail: gnusov@rambler.ru

    2014-11-14

    The microstructure and properties of the contact CuCr alloy produced by electron-beam cladding have been investigated. The effect of the electron beam cladding parameters and preheating temperature of the base metal on the structure and the properties of the coatings has been determined. The bimodal structure of the cladding coating has been established. The short circuit currents tests have been carried out according to the Weil-Dobke synthetic circuit simulating procedure developed for vacuum circuit breakers (VCB) test in real electric circuits. Test results have shown that the electron beam cladding (EBC) contact material has better breaking capacity than that of commercially fabricated sintered contact material. The application of the technology of electron beam cladding for production of contact material would significantly improve specific characteristics and reliability of vacuum switching equipment.

  10. Energy levels and radiative rates for Cr-like Cu VI and Zn VII

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Bogdanovich, P.; Keenan, F. P.; Kisielius, R.

    2016-09-01

    Energy levels and radiative rates (A-values) for transitions in Cr-like Cu VI and Zn VII are reported. These data are determined in the quasi-relativistic approach (QR), by employing a very large configuration interaction (CI) expansion which is highly important for these ions. No radiative rates are available in the literature to compare with our results, but our calculated energies are in close agreement with those compiled by NIST and other available theoretical data, for a majority of the levels. The A-values (and resultant lifetimes) are listed for all significantly contributing E1, E2 and M1 radiative transitions among the energetically lowest 322 levels of each ion.

  11. Role of Zn substitution on structural, magnetic and dielectric properties of Cu-Cr spinel ferrites

    NASA Astrophysics Data System (ADS)

    Anjum, S.; Nazli, H.; Khurram, R.; Zeeshan, Talat; Riaz, S.; Usman, A.

    2016-08-01

    The Zn substituted copper chromium spinel ferrites with the chemical formula ZnxCu1-xCr0.5Fe1.5O4 (x = 0-0.8) have been fabricated using powder metallurgical route. The synthesized powders have been investigated by thermal analysis, X-ray diffraction, Fourier transform infrared spectroscopy, Field emission scanning electron microscopy, magnetic and electrical measurement. The X-ray diffraction has confirmed the formation of spinel structure. It has been observed that lattice parameter increases but both the bulk and X-ray density decrease with the increase of Zn concentration. FTIR spectra show two prominent bands in the range of 400-800 cm-1 confirming the formation of spinel ferrites. The saturation magnetization increases up to x = 0.4. As the concentration of Zn increases further, the saturation magnetization decreases. The dielectric tangent loss and dielectric constant (ɛ) decreases while the ac conductivity increases with increasing frequency.

  12. Analysis of the deformation behavior of low Cu-Cr-Zr alloy

    NASA Astrophysics Data System (ADS)

    Morozova, A.; Belyakov, A.; Kaibyshev, R.

    2016-11-01

    Mechanical properties and the microstrustural evolution of low Cu-Cr-Zr alloy subjected to equal channel angular pressing (ECAP) at 400°C via route BC after the solution treatment were investigated. Plastic deformation resulted in the formation of a large number of low-angle subgrain boundaries in initial coarse grains. New fine grains formed due to a progressive increase in misorientations of strain-induced (sub)boundaries. The ultrafine grain formation during large plastic deformation was accompanied by significant strengthening. The variation of the strain hardening rate with the flow stress after the total strain ɛ ˜ 1-12 was studied. The deformation behavior was discussed in terms of the dislocation-density-related Voce equation. Large plastic deformation led to an increase in both the ɛC and ɛV parameters in the Voce equation. The relationship between strain hardening and microstructure is considered in detail using the Voce parameters.

  13. Achieving optimum mechanical performance in metallic nanolayered Cu/X (X = Zr, Cr) micropillars

    NASA Astrophysics Data System (ADS)

    Zhang, J. Y.; Li, J.; Liang, X. Q.; Liu, G.; Sun, J.

    2014-03-01

    The selection and design of modern high-performance structural engineering materials such as nanostructured metallic multilayers (NMMs) is driven by optimizing combinations of mechanical properties and requirements for predictable and noncatastrophic failure in service. Here, the Cu/X (X = Zr, Cr) nanolayered micropillars with equal layer thickness (h) spanning from 5-125 nm are uniaxially compressed and it is found that these NMMs exhibit a maximum strain hardening capability and simultaneously display a transition from bulk-like to small-volume materials behavior associated with the strength at a critical intrinsic size h ~ 20 nm. We develop a deformation mode-map to bridge the gap between the interface characteristics of NMMs and their failure phenomena, which, as shrinking the intrinsic size, transit from localized interface debonding/extrusion to interface shearing. Our findings demonstrate that the optimum robust performance can be achieved in NMMs and provide guidance for their microstructure sensitive design for performance optimization.

  14. Tracing Cr, Pb, Fe and Mn occurrence in the Bahía Blanca estuary through commercial fish species.

    PubMed

    La Colla, Noelia S; Botté, Sandra E; Oliva, Ana L; Marcovecchio, Jorge E

    2017-05-01

    Over the last decades the anthropogenic contamination impact has substantially increased in the Bahía Blanca estuarine area, and scarce information exists regarding metals in the biotic compartment of this estuary. Thus, fish tissues were used to evaluate metal accumulation within this aquatic environment. The study focused on the determination of Cr, Pb, Fe and Mn in the gills, liver and muscle tissues of six commercial fish species (Brevoortia aurea, Odontesthes argentinensis, Micropogonias furnieri, Cynoscion guatucupa, Mustelus schmitti and Paralichthys orbignyanus). From the results it can be summarized that C. guatucupa tends to accumulate higher metal levels in the liver tissues, mostly Cr and Fe, than the other studied species. O. argentinensis and P. orbignyanus, both permanent inhabitants of the BBE, achieved the highest metal values in the gill tissues, mostly in comparison to M. schmitti. The gill tissues were found to be the main organ of Mn and Ni accumulation for most species, whereas in general, minimum concentrations were found for all the analyzed metals in the muscle tissues. Nevertheless, and according to the guidelines, all fish species showed at least one sample with concentrations of Mn and/or Cr above the permissible levels for human consumption. Finally, it was highlighted the usefulness of selecting these fish species as bioindicators of metal pollution, since they are either permanent inhabitants of the estuary or, according to the sizes under analyses, spend much of their time in this coastal waters.

  15. Crystal structure of nonsuperconducting Pb 2(Sr 0.94Nd 0.06) 2(Nd 0.76Sr 0.24)Cu 3O 8

    NASA Astrophysics Data System (ADS)

    Hayri, Eric A.; Kvick, Åke

    1990-01-01

    The crystal structure of Pb 2(Sr 0.94Nd 0.06) 2(Nd 0.76Sr 0.24)Cu 3O 8 was determined by single crystal X-ray diffraction. The compound was found to be orthorhombic ( Cmmm) with a = 5.437(3), b = 5.472(2), c = 15.797(7)Å and Z = 2. In the structure double layers of CuO square pyramids are separated by (Nd, Sr) oxygen deficient layers which are stacked between (PbO)Cu(PbO) slabs. The oxygen in the Pb planes is shifted toward a pair of Pb atoms resulting in an orthorhombic distortion of the tetragonal unit cell. The possibilities for modulations and superlattices are discussed as is the role of the PbO planes in superconductivity.

  16. Crystal structure, phonon modes and dielectric properties of 3d Cu2+ ion doped multiferroic Co1-x Cu x Cr2O4 (x  =  0.0, 0.5) chromites

    NASA Astrophysics Data System (ADS)

    Choudhary, Pankaj; Varshney, Dinesh

    2017-07-01

    Multiferroic Co1-x Cu x Cr2O4 (x  =  0.0, 0.5) chromites are synthesized by low temperature fired sol-gel auto combustion method. Synchrotron and lab x-ray diffraction (XRD) pattern confirms the single-phase crystalline nature. Structural phase transition is observed from cubic (CoCr2O4 (space group Fd3m)) to tetragonal (Co0.5Cu0.5Cr2O4 (space group I41/amd)). Scanning electron micrograph of sintered chromites discerns less agglomeration with average