Science.gov

Sample records for cr pb cu

  1. Half-metallic antiferromagnetism in double perovskite BiPbCrCuO{sub 6}

    SciTech Connect

    Weng, Ke-Chuan; Wang, Y. K.

    2015-05-07

    The electronic structure and magnetic properties of BiPbCrCuO{sub 6} double perovskite are investigated based on first-principles density functional calculations with generalized gradient approximation (GGA) and GGA incorporated with Coulomb correlation interaction U (GGA + U). The results suggest the half-metallic (HM) and antiferromagnetic (AFM) properties of BiPbCrCuO{sub 6} double perovskite. The HM-AFM property of the double perovskite is caused by the double-exchange mechanism between neighboring Cr{sup 5+}(t{sub 2g}{sup 1}↓) and Cu{sup 2+}(t{sub 2g}{sup 3}↑t{sub 2g}{sup 3}↓e{sub g}{sup 2}↑e{sub g}↓) via the intermediate O{sup 2−}(2s{sup 2}2p{sup 6}) ion.

  2. Biosorption of Cu(2+), Pb(2+) and Cr(6+) by a novel exopolysaccharide from Arthrobacter ps-5.

    PubMed

    Shuhong, Ye; Meiping, Zhang; Hong, Yang; Han, Wang; Shan, Xiao; Yan, Liu; Jihui, Wang

    2014-01-30

    The biosorption behaviors and mechanisms for Cu(2+), Pb(2+) and Cr(6+) by a novel exopolysaccharide (EPS) from Arthrobacter ps-5 have been studied in the paper. The influences of EPS concentration, solution pH and ionic strength on adsorption property were investigated. The EPS showed strong biosorption capability, up to 169.15mg/g of Cu(2+), 216.09mg/g of Pb(2+) and 84.47mg/g of Cr(6+), respectively. With the additional concentration of Ca(2+) and K(+) increased, the biosorption ability on Cu(2+), Pb(2+) and Cr(6+) decreased significantly and followed the order of K(+)

  3. An experimental and thermodynamic equilibrium investigation of the Pb, Zn, Cr, Cu, Mn and Ni partitioning during sewage sludge incineration.

    PubMed

    Liu, Jingyong; Fu, Jiewen; Ning, Xun'an; Sun, Shuiyu; Wang, Yujie; Xie, Wuming; Huang, Shaosong; Zhong, Sheng

    2015-09-01

    The effects of different chlorides and operational conditions on the distribution and speciation of six heavy metals (Pb, Zn, Cr, Cu, Mn and Ni) during sludge incineration were investigated using a simulated laboratory tubular-furnace reactor. A thermodynamic equilibrium investigation using the FactSage software was performed to compare the experimental results. The results indicate that the volatility of the target metals was enhanced as the chlorine concentration increased. Inorganic-Cl influenced the volatilization of heavy metals in the order of Pb>Zn>Cr>Cu>Mn>Ni. However, the effects of organic-Cl on the volatility of Mn, Pb and Cu were greater than the effects on Zn, Cr and Ni. With increasing combustion temperature, the presence of organic-Cl (PVC) and inorganic-Cl (NaCl) improved the transfer of Pb and Zn from bottom ash to fly ash or fuse gas. However, the presence of chloride had no obvious influence on Mn, Cu and Ni. Increased retention time could increase the volatilization rate of heavy metals; however, this effect was insignificant. During the incineration process, Pb readily formed PbSiO4 and remained in the bottom ash. Different Pb compounds, primarily the volatile PbCl2, were found in the gas phase after the addition of NaCl; the dominant Pb compounds in the gas phase after the addition of PVC were PbCl2, Pb(ClO4)2 and PbCl2O4. Copyright © 2015. Published by Elsevier B.V.

  4. Generation of covariance files for the isotopes of Cr, Fe, Ni, Cu, and Pb in ENDF/B-VI

    SciTech Connect

    Hetrick, D.M.; Larson, D.C.; Fu, C.Y.

    1991-02-01

    The considerations that governed the development of the uncertainty files for the isotopes of Cr, Fe, Ni, Cu, and Pb in ENDF/B-VI are summarized. Four different approaches were used in providing the covariance information. Some examples are given which show the standard deviations as a function of incident energy and the corresponding correlation matrices. 11 refs., 5 tabs.

  5. Importance of lithology in defining natural background concentrations of Cr, Cu, Ni, Pb and Zn in sedimentary soils, northeastern Brazil.

    PubMed

    Gloaguen, Thomas Vincent; Passe, José João

    2017-11-01

    The sedimentary basins of Recôncavo and Tucano, Bahia, represent the most important Brazilian Phanerozoic continental basin system, formed during fracturing of Gondwana. The northern basin of Tucano has a semiarid climate (Bsh) while the southern basin of Recôncavo has a tropical rainforest climate (Af). The aim of this study was to determine the distribution of trace metals in soils derived from various sedimentary rocks and climates. Soils were collected at 30 sites in 5 geological units at 0-20 cm and 60-80 cm deep under native vegetation. Physical and chemical attributes (particle size distribution, pH, Al, exchangeable bases, organic matter) were determined, as well as the pseudo-total concentrations (EPA 3050 b) and the total concentrations (X-ray fluorescence) of Cr, Cu, Ni, Pb and Zn. The concentrations of metals were overall correlated to soil texture, according to lithologic origin. Shales resulted in Vertisols 30.4 (Zn), 27.2 (Ni), 16.9 (Cu), 7.5 (Cr) and 2.5 (Pb) times more concentrated than Arenosols derived from the sandstones. High Cr and Ni values in clay soils from shales were attributed to diffuse contamination by erosion of mafic rocks of the Greenstone Belt River Itapicuru (from 3 km northwest of the study area) during the late Jurassic. Tropical rainforest climate resulted in a slight enrichment of Pb and Cr, and Ni had the higher mobility during soil formation (enrichment factor up to 6.01). In conclusion, the geological environment is a much more controlling factor than pedogenesis in the concentration of metals in sedimentary soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Translocation and accumulation of Cr, Hg, As, Pb, Cu and Ni by Amaranthus dubius (Amaranthaceae) from contaminated sites.

    PubMed

    Mellem, John J; Baijnath, Himansu; Odhav, Bharti

    2009-05-01

    Phytoremediation is an emerging technology where specially selected and engineered metal-accumulating plants are used for bioremediation. This study was undertaken to evaluate the potential of Amaranthus dubius for phytoremediation of chromium (Cr), mercury (Hg), arsenic (As), lead (Pb), copper (Cu) and nickel (Ni). Locally gathered soil and plants of A. dubius were investigated for the metals from a regularly cultivated area, a landfill site and a waste water treatment site. Metals were extracted from the samples using microwave-digestion and analyzed using Inductively Coupled Plasma-Mass Spectroscopy. The mode of phytoremediation, effect of the metals on the plants, ability of the plant to extract metals from soil (Bioconcentration Factor) and the ability of the plants to move the metals to the aerial parts of the plants (Translocation Factor) were evaluated. The survey of the three sites showed that soils were heavily contaminated with Cr, Hg, Cu and Ni. These levels were far above acceptable standards set for soils and above the standards set for the Recommended Dietary Allowance. Specimens of A. dubius from the three sites showed that they could tolerate Hg, sequester it from the soil, and translocate it to the shoots. Cr could only be removed from the soil and stored in the roots, with limited amounts translocated to the aerial parts. Pb, As, Ni, and Cu have some degree of transportability from the soil to the roots but not to aerial parts. The ability of A. dubius to be considered for phytoremediation has to be viewed with caution because translocation of the metals to the aerial parts of the plant is limited.

  7. Study of the ambient air metallic elements Cr, Cu, Zn, Cd and Pb at HAF sampling sites.

    PubMed

    Fang, Guor-Cheng; Kuo, Yu-Chen; Zhuang, Yuan-Jie; Tsai, Kai-Hsiang; Huang, Wen-Chuan

    2017-08-01

    This study characterized diurnal variations in the compositions of total suspended particulates (TSP) and dry deposits of particulates from ambient air, and the metallic elements that are contained in them at harbor, airport and farmland (HAF) sampling sites from August, 2013 to July, 2014. Two-way ANOVA of the amounts of metallic elements in the TSP and dry deposits was carried out in all four seasons at the HAF sampling sites. The metallic elements Cr and Cu originated in local emission sources at the airport. Metallic elements Zn and Pb originated in local emission sources at the harbor. Finally, metallic element Cd originated in local emissions form farmland. The following results were also obtained. (1) The metallic composition of the TSP differed significantly from that of the dry deposits in all four seasons at the harbor and farmland sampling sites, but not at the airport sampling site. (2) High correlations coefficients were found between the amounts of metallic elements Cr and Cu in the TSP and those in the dry deposits at the airport sampling site. (3) Pb was present in the TSP and the dry deposits at the harbor sampling site.

  8. A survey of Pb, Cu, Zn, Cd, Cr, As, and Se in earthworms and soil from diverse sites

    USGS Publications Warehouse

    Beyer, W.N.; Cromartie, E.J.

    1987-01-01

    Earthworms and soils were collected from 20 diverse sites in Maryland, Pennsylvania, and Virginia, and were analyzed for Pb, Cu, Zn, Cd, Cr, As, and Se. Correlation coefficients relating Iconcentrations of the elements in earthworms to concentrations in soil were low (-0.20Pb (2100 ppm), Zn (1600 ppm), Cd (23 ppm) and Se (7.6 ppm) detected in earthworms were in the range reported to be toxic to animals fed diets containing these elements; however, even in the absence of any environmental contamination, some species of earthworms may contain high concentrations of Pb, Zn, and Se. Earthworms of the genus Eisenoides, for example, were exceptional in their ability to concentrate Pb. When earthworms are used as indicators of environmental contamination, it is important to identify the species, to report the soil characteristics, and to collect similar earthworms from very similar but uncontaminated soil.

  9. Soil Cd, Cr, Cu, Ni, Pb and Zn sorption and retention models using SVM: Variable selection and competitive model.

    PubMed

    González Costa, J J; Reigosa, M J; Matías, J M; Covelo, E F

    2017-09-01

    The aim of this study was to model the sorption and retention of Cd, Cu, Ni, Pb and Zn in soils. To that extent, the sorption and retention of these metals were studied and the soil characterization was performed separately. Multiple stepwise regression was used to produce multivariate models with linear techniques and with support vector machines, all of which included 15 explanatory variables characterizing soils. When the R-squared values are represented, two different groups are noticed. Cr, Cu and Pb sorption and retention show a higher R-squared; the most explanatory variables being humified organic matter, Al oxides and, in some cases, cation-exchange capacity (CEC). The other group of metals (Cd, Ni and Zn) shows a lower R-squared, and clays are the most explanatory variables, including a percentage of vermiculite and slime. In some cases, quartz, plagioclase or hematite percentages also show some explanatory capacity. Support Vector Machine (SVM) regression shows that the different models are not as regular as in multiple regression in terms of number of variables, the regression for nickel adsorption being the one with the highest number of variables in its optimal model. On the other hand, there are cases where the most explanatory variables are the same for two metals, as it happens with Cd and Cr adsorption. A similar adsorption mechanism is thus postulated. These patterns of the introduction of variables in the model allow us to create explainability sequences. Those which are the most similar to the selectivity sequences obtained by Covelo (2005) are Mn oxides in multiple regression and change capacity in SVM. Among all the variables, the only one that is explanatory for all the metals after applying the maximum parsimony principle is the percentage of sand in the retention process. In the competitive model arising from the aforementioned sequences, the most intense competitiveness for the adsorption and retention of different metals appears between

  10. Immobilization of heavy metals (Pb, Cu, Cr, Zn, Cd, Mn) in the mineral additions containing concrete composites.

    PubMed

    Giergiczny, Zbigniew; Król, Anna

    2008-12-30

    The presented work determines the level of heavy metals (Pb+2, Cu+2, Zn+2, Cr+6, Cd+2, Mn+2) immobilization in the composites produced using Ordinary Portland Cement (OPC) as well as of binders containing large amount of mineral additives in its composition-siliceous fly ash (FA), fluidized bed combustion ash (FFA) and ground granulated blast furnace slag (GGBFS). Heavy metals were introduced to cementitious materials in the form of soluble salts as well as components of hazardous wastes (medical ash, metallurgical dust). It has been stated, that the level of heavy metals immobilization is combined with composites composition. Majority of analyzed heavy metals, added to binders' composition in the form of heavy metal salts achieves high level of immobilization, in mortar based on binder with 85% GGBFS and 15% OPC. The lowest immobilization level was reached for chromium Cr+6 added to hardening mortars as Na2Cr2O72H2O. The level ranges from 85.97% in mortars made on blended binder (20% OPC, 30% FFA and 50% GGBFS) to 93.33% in mortar produced on OPC. The increase of the so-called immobilization degree with time of hardened material maturing was found. This should be attributed to the pozzolanic or pozzolanic/hydraulic properties of components used; their effect on microstructure of hardened material is also important. Mineral additions enter the hydration reactions in the mixtures and favor the formation of specific microstructure promoting the immobilization of hazardous elements.

  11. Geospatial Mapping of Pb, Cr, Cu, Zn, Cd, and Sb in Urban Soil, Cd. Juarez, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Amaya, M. A.; Grimida, S. E.; Elkekli, A. R.; Aldouri, R. K.; Benedict, B. A.; Pingitore, N. E., Jr.

    2015-12-01

    Population-based random stratified sampling of the city of Cd. Juarez, Chihuahua, Mexico provided 500 city blocks for study. We collected soil from the public space (where present) in front of each house on a selected block; equal measured small volumes of these were combined to produce a composite sample for analysis. Such composite samples (1) decrease, by an order of magnitude, laboratory processing and analysis costs, and (2) smooth the data to represent blocks as averages of individual houses. Retention of the unanalyzed samples of the individual houses permits their later analysis should the composites suggest further study of individual houses on an anomalous block. Elemental analysis of 10 mg pressed powders was performed on a Panalytical Epsilon5 EDS-XRF, via 8 secondary targets and 12 USGS and NIST multi-element rock standards. The mean and (range) of concentration for Pb was 43 (13-550) ppm; for Cr, 31 (1.8-76); for Cu, 22 (6-550); for Zn 84 (42-415) ppm; for Cd, 1.9 (0.1-6.2); and for Sb, 5.9 (2.7-29). The old urban core of Cd. Juarez was marked by high levels of Pb, Cr, Cu, and Zn, and, to a smaller degree, of Cd and Sb. This pattern mirrors that of contiguous El Paso, Texas, USA, directly across the narrow Rio Grande. Businesses, industrial facilities, transportation (both railroads and highways), traditional "downtown" shopping, and old residential districts cluster in this urban core. A Pb-Cu-Zn smelter, which operated for more than a century until 1999, is present in the US adjacent to the Rio Grande, about two km away from downtown Cd. Juarez. Thus the city has been subject to both traditional metal sources (e.g., leaded gasoline, highway debris) and smelter emissions. The poplation of Cd. Juarez has exploded in the last few decades to some 1.5 million inhabitants due both to natural growth and in-migration from rural districts for economic opportunity. Most of this growth has been accommodated by radial expansion of the city into the surrounding

  12. Heavy Metals (Cd, Cu, Cr, Pb and Zn) in Meretrix meretrix Roding, Water and Sediments from Estuaries in Sabah, North Borneo

    ERIC Educational Resources Information Center

    Abdullah, Mohd. Harun; Sidi, Jovita; Aris, Ahmad Zaharin

    2007-01-01

    Concentrations of heavy metals (Cd, Cu, Cr, Pb and Zn) in tissues of Meretrix meretrix Roding (M. meretrix R.), water and sediments from two estuaries were determined. One estuary is located in an urban area of Kota Kinabalu (Likas estuary) and the other in a rural district of Kota Belud (Kota Belud estuary), where both are in Sabah, North of…

  13. Evaluation of Cd, Cr, Cu, Ni, and Pb in selected cosmetic products from Jordanian, Sudanese, and Syrian markets.

    PubMed

    Massadeh, A M; El-Khateeb, M Y; Ibrahim, S M

    2017-08-01

    There is no sufficient data that evaluate heavy metal content in cosmetic products in Jordan as well as Sudan and Syria. This study aims to assess metal levels which include Cadmium (Cd), Chromium (Cr), Copper (Cu), Nickel (Ni), and Lead (Pb) in cosmetic products. These elements have draft limits because they are identified as potential impurities and are known to be toxic. This study aims to provide information to the population that may be beneficial to public health. Samples were collected from different brands obtained from markets in Jordan, Sudan, and Syria. Some of the selected cosmetic products were eyeliner, eye pencil, mascara, lipstick, powder, face cream, body cream, sun block, Vaseline, and the traditional eye cosmetic (kohl). The heavy metal content in these samples were determined by atomic absorption spectrometry (AAS). Based on analysis of variance analysis, a significant difference in heavy metal levels was found for samples obtained from Jordanian and Sudanese markets. The acid digestion method used in this study was based on procedures recommended by Nnorom et al. with some modifications as follows. (i) A weight of 2.0 g of cosmetic sample was dissolved in a mixture of 6 mL of high quality concentrated 69% nitric acid (HNO3; Merck, Darmstadt, Germany) and 4 mL of concentrated 37% hydrochloric acid (Scharlau, Spain) in a porcelain crucible and heated on a hotplate to near dryness. (ii) An aliquot of 15 mL HNO3 (1.00 M) was added to the digested sample and filtered through a Whatman No. 40 filter paper. (iii) The digested sample was transferred quantitatively into a 25 mL volumetric flask and then diluted with deionized water. (iv) Each digested sample was evaporated at 70 °C to about 1 mL and transferred into a polyethylene flask and diluted with 25 mL deionized water. (v) Blank was treated in the same procedure. In Jordan the concentration ranges of heavy metals in the collected samples were: Cd (0.03-0.10 μg/g), Cr (0.0-1.00

  14. Assessment of noise and heavy metals (Cr, Cu, Cd, Pb) in the ambience of the production line for recycling waste printed circuit boards.

    PubMed

    Xue, Mianqiang; Yang, Yichen; Ruan, Jujun; Xu, Zhenming

    2012-01-03

    The crush-pneumatic separation-corona electrostatic separation production line provides a feasible method for industrialization of waste printed circuit boards (PCBs) recycling. To determine the potential environmental contamination in the automatic line workshop, noise and heavy metals (Cr, Cu, Cd, Pb) in the ambience of the production line have been evaluated in this paper. The mean noise level in the workshop has been reduced from 96.4 to 79.3 dB since the engineering noise control measures were employed. Noise whose frequency ranged from 500 to 1000 Hz is controlled effectively. The mass concentrations of TSP and PM(10) in the workshop are 282.6 and 202.0 μg/m(3), respectively. Pb (1.40 μg/m(3)) and Cu (1.22 μg/m(3)) are the most enriched metals in TSP samples followed by Cr (0.17 μg/m(3)) and Cd (0.028 μg/m(3)). The concentrations of Cu, Pb, Cr, and Cd in PM(10) are 0.88, 0.56, 0.12, and 0.88 μg/m(3), respectively. Among the four metals, Cr and Pb are released into the ambience of the automatic line more easily in the crush and separation process. Health risk assessment shows that noncancerous effects might be possible for Pb (HI = 1.45), and noncancerous effects are unlikely for Cr, Cu, and Cd. The carcinogenic risks for Cr and Cd are 3.29 × 10(-8) and 1.61 × 10(-9), respectively. It indicates that carcinogenic risks on workers are relatively light in the workshop. These findings suggest that this technology is advanced from the perspective of environmental protection in the waste PCBs recycling industry.

  15. Fe(III) hydroxide nucleation and growth on quartz in the presence of Cu(II), Pb(II), and Cr(III): metal hydrolysis and adsorption.

    PubMed

    Dai, Chong; Hu, Yandi

    2015-01-06

    Fe(III) hydroxide nanoparticles are an essential carrier for aqueous heavy metals. Particularly, iron hydroxide precipitation on mineral surfaces can immobilize aqueous heavy metals. Here, we used grazing-incidence small-angle X-ray scattering (GISAXS) to quantify nucleation and growth of iron hydroxide on quartz in 0.1 mM Fe(NO3)3 solution in the presence of Na(+), Cu(2+), Pb(2+), or Cr(3+) at pH = 3.7 ± 0.1. In 30 min, the average radii of gyration (R(g)) of particles on quartz grew from around 2 to 6 nm in the presence of Na(+) and Cu(2+). Interestingly, the particle sizes remained 3.3 ± 0.3 nm in the presence of Pb(2+), and few particles formed in the presence of Cr(3+). Quartz crystal microbalance dissipation (QCM-D) measurements showed that only Cr(3+) adsorbed onto quartz, while Cu(2+) and Pb(2+) did not. Cr(3+) adsorption changed the surface charge of quartz from negative to positive, thus inhibiting the precipitation of positively charged iron hydroxide on quartz. Masses and compositions of the precipitates were also quantified. This study provided new insights on interactions among quartz, iron hydroxide, and metal ions. Such information is helpful not only for environmental remediation but also for the doping design of iron oxide catalysts.

  16. Anthropogenically derived changes in the sedimentary flux of Mg, Cr, Ni, Cu, Zn, Hg, Pb, and P in Lough Neagh, Northern Ireland

    SciTech Connect

    Rippey, B.; Murphy, R.J.; Kyle, S.W.

    1982-01-01

    The concentration-depth behavior of Mg, Cr, Ni, Cu, Zn, Hg, Pb, and P in three sediment cores from a central site in Lough Neagh, Northern Ireland, was examined for changes in the sedimentary flux of these elements. Two main periods of change were found. A change in the catchment erosion-leaching regime in the 17th century, caused by widespread and comprehensive woodland clearance, produced increased sedimentary Mg, Cu, and Pb concentrations. A second and larger change occurred after about 1880 A.D. Cr, Cu, Zn, Hg, Pb, and P, and , to a lesser extent, Ni concentrations increase toward the sediment surface.more » Differing P and trace-metal profiles, a comparison of the estimated anthropogenic sedimentary flux with background atmospheric contributions, and a general comparison with other situations all suggest that background atmospheric sources make a substantial contribution to the more recent Cu, Zn, Hg, and Pb sedimentary contamination. The trace-metal contamination of Lough Neagh is part of a global pattern.« less

  17. Amine functionalized radiation-induced grafted water hyacinth fibers for Pb2+, Cu2+ and Cr3+ uptake

    NASA Astrophysics Data System (ADS)

    Madrid, Jordan F.; Nuesca, Guillermo M.; Abad, Lucille V.

    2014-04-01

    An amine group containing fibrous adsorbent was prepared by reaction of grafted water hyacinth fibers with ethylenediamine. Glycidyl methacrylate (GMA) was grafted onto water hyacinth fibers using gamma radiation induced graft polymerization through simultaneous grafting technique and this was used as base material for producing the amine type adsorbents. The conversion of the epoxy group from GMA into amine group was investigated. The concentration of ethylenediamine solution that gave the highest amine functional group density was 50% by volume in 2-propanol. The amine functionalized water hyacinth fibers were characterized using Attenuated Total Reflectance-Fourier Transformed Infrared Spectroscopy (ATR-FTIR), Thermogravimetric Analysis (TGA), and Energy Dispersive X-ray Spectroscopy (EDX). Information derived from these analyses confirms the successful conversion of the epoxy group. The amine-type adsorbent was evaluated for its uptake of Pb2+, Cu2+ and Cr3+ from aqueous solutions. The initial concentration of the metal ions and pH of the solutions were found to influence the amount of metal ions adsorbed by the amine-type adsorbent. The kinetics of adsorption was observed to follow Lagergren's first order equation. Results of ion sorption studies indicate that gamma radiation-induced grafting and subsequent chemical modification improved the ion sorption behaviour of water hyacinth fibers.

  18. Pollution of soils (Pb, Cd, Cr, Zn, Cu, Ni) along the ring road of Wrocław (Poland)

    NASA Astrophysics Data System (ADS)

    Hołtra, Anna; Zamorska-Wojdyła, Dorota

    2017-11-01

    The concentrations of metallic pollution in soils and plants along the ring road of Wrocław, Poland, have been determined. Environmental samples were collected from the surface layer of the profile within 2-3 m from the edge of the road. The analysis of metals (Pb, Cd, Cr, Zn, Cu and Ni) has been carried out through FAAS and GFAAS methods. The mineralizates of soils and plants were prepared in HNO3, 65% supra pure, using the Microwave Digestion System. The pH and conductivity of the soil solutions were measured to evaluate their active and exchangeable acidity and the salinity of the soils. The index of the enrichment of soils in metals (Wn) and the bioaccumulation coefficient (WB) have been determined. Also, histograms of the frequency of the occurrence of metals in the environmental samples and the Pearson's correlation coefficients were presented. The results of metal concentrations in soils were compared to the geochemical background in uncontaminated soils of Poland. The assessment of the results in the soils was also made relative to the standard, according to the Polish Ministry of Environment Regulation from September 1st, 2016. During the assessment of the bioaccumulation coefficients of metals in plants a reference was made to the content of undesirable substances in feed in agreement with the Polish Ministry of Agriculture and Rural Development Regulation from January 23rd, 2007.

  19. Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Hu, Xin; Zhang, Yun; Ding, Zhuhong; Wang, Tijian; Lian, Hongzhen; Sun, Yuanyuan; Wu, Jichun

    2012-09-01

    The bioaccessibility and human health risks of As and heavy metals (Cu, Pb, Zn, Ni, Co, Cr, Cd and Mn) in total suspended particulates (TSP) and fine particulate matter (PM2.5) in Nanjing, China were investigated. The average mass concentration ratios of PM2.5 to TSP were 0.61 for Gulou sampling site and 0.50 for Pukou sampling site, respectively. Zn, Pb, Mn and Cu were the most abundant elements among the studied metal(loid)s in both TSP and PM2.5. The results of a simple bioaccessibility extraction test of the studied metal(loid)s varied among elements, with Cd, Zn, Mn, Pb and As showing the higher bioaccessibility. The carcinogenic risks of As, Cd, Co, Cr and Ni in both TSP and PM2.5 via dermal contact and inhalation exposure were within the acceptable level (<1 × 10-4) for both children and adults, but there was potential carcinogenic risk posed by Pb via ingestion to children and adults. The hazard index values for all of the studied elements suggested no non-carcinogenic health risks via ingestion and dermal contact, but a potential non-carcinogenic health risk via inhalation to adults. Values of hazard quotient and hazard index indicated the non-carcinogenic risks from the studied metal(loid)s to children via ingestion, dermal contact and inhalation pathways in Nanjing given the present air quality.

  20. Accumulation of Cr, Cd, Pb, Cu, and Zn by plants in tanning sludge storage sites: opportunities for contamination bioindication and phytoremediation.

    PubMed

    Yuan, Yongqiang; Yu, Shen; Bañuelos, G S; He, Yunfeng

    2016-11-01

    Tanning sludge enriched with high concentrations of Cr and other metals has adverse effects on the environment. Plants growing in the metalliferous soils may have the ability to cope with high metal concentrations. This study focuses on potentials of using native plants for bioindication and/or phytoremediation of Cr-contaminated sites. In the study, we characterized plants and soils from six tanning sludge storage sites. Soil in these sites exhibited toxic levels of Cr (averaged 16,492 mg kg -1 ) and other metals (e.g., 48.3 mg Cu kg -1 , 2370 mg Zn kg -1 , 44.9 mg Pb kg -1 , and 0.59 mg Cd kg -1 ). Different metal tolerance and accumulation patterns were observed among the sampled plant species. Phragmites australis, Zephyranthes candida, Cynodon dactylon, and Alternanthera philoxeroides accumulated moderate-high concentrations of Cr and other metals, which could make them good bioindicators of heavy metal pollution. High Cr and other metal concentrations (e.g., Cd and Pb) were found in Chenopodium rubrum (372 mg Cr kg -1 ), Aster subulatus (310 mg Cr kg -1 ), and Brassica chinensis (300 mg Cr kg -1 ), being considered as metal accumulators. In addition, Nerium indicum and Z. candida were able to tolerate high concentrations of Cr and other metals, and they may be used as preferable pioneer species to grow or use for restoration in Cr-contaminated sites. This study can be useful for establishing guidelines to select the most suitable plant species to revegetate and remediate metals in tanning sludge-contaminated fields.

  1. Effects of tree vegetation and waste amendments on the fractionation of Cr, Cu, Ni, Pb and Zn in polluted mine soils.

    PubMed

    Asensio, Verónica; Vega, Flora A; Singh, Bal Ram; Covelo, Emma F

    2013-01-15

    Soils at a depleted copper mine in Touro (Galicia, Spain) are physically and chemically degraded and have also polluted the surrounding area. Due to these environmental problems and the large area of these mine soils, the reclamation strategies carried out at Touro have consisted of planting trees (pine or eucalyptus), amending with waste material (sewage sludge and paper mill residues), or using both treatments. Tree planting has been carried out for 21 years and waste amending for 10. Two different zones were selected in the mine (the settling pond and mine tailing) in order to evaluate the effect of the different reclamation practices on the chemical fractions of Cr, Cu, Ni, Pb and Zn. The results showed that soils in the untreated sites were polluted by Cr and Cu. Planting pines and eucalyptus on mine soils decreased the concentration of these heavy metals in non-mobile soil fractions. Amendments also attenuated pollution by Cr and Cu as the wastes that were used had lower concentrations than the untreated mine soils. Planting trees increased Ni, Pb and Zn retention in the non-mobile fractions, preventing them from being leached into surrounding areas. However, caution should be exercised when adding organic wastes, as they can lead to increase concentrations of Ni, Pb and Zn and their phytoavailable form. The results also showed that changes in the chemical fractionation of heavy metals in soils was more influenced by the clay percentage and both dissolved and soil organic carbon (SOC and DOC) than by soil pH or cation exchange capacity. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Doping of BiSrCaCuO compounds with (V+Y), As, Sb, Pb, Cr and Ge

    NASA Astrophysics Data System (ADS)

    Yaroslavsky, Y.; Schieber, M.; Beilin, V.; Litvin, S.; Burtman, V.; Cinodman, V.; Shaltiel, D.

    1993-04-01

    The effect of various doping elements such as (V+Y), As, Sb, Pb, Ag and Ge in range of 3-5 atom% on the phase stability of the high temperature superconducting (HTS) Bi - Sr - Ca - Cu - O system was investigated by preparing (1) small single crystals from flux solvents, and (2) thick films by doctor blade casting. It was found that the Bi 2Sr 2CaCu 2O x (2212) is the predominant phase in all doped samples Examples of HTS critical temperature Tc results measured by microwave absorption are 94 K for (V+Y), 78 K for As, 74 K for Ge. For the Sb doped compound a two phase BSCCO material was obtained with two T c of 90 and 78°K in the proportion of 20 to 80% respectively.

  3. Simultaneous separation and preconcentration of Cr(III), Cu(II), Cd(II) and Pb(II) from environmental samples prior to inductively coupled plasma optical emission spectrometric determination

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Li, Zhenhua; Du, Xianghui; Li, Ruijun; Chang, Xijun

    2012-02-01

    We have developed a new method of the separation, preconcentration, and determination of Cr(III), Cu(II), Cd(II) and Pb(II) ion in water samples. It is based on the use of activated carbon that was modified with rhodamine 6G to yield a solid-phase sorbent. The experimental conditions for adsorption were optimized. Cr(III), Cu(II), Cd(II) and Pb(II) can be quantitatively adsorbed at pH 4, and adsorbed Cr(III), Cu(II), Cd(II) and Pb(II) can be completely eluted with 1 M hydrochloric acid. The maximum adsorption capacity is 37.8, 47.8, 56.5 and 41.7 mg g -1 for Cr(III), Cu(II), Cd(II) and Pb(II). Cr(III), Cu(II), Cd(II) and Pb(II) ions were then determined by inductively coupled plasma optical emission spectrometry. The detection limit (3 σ) is under 0.35 ng mL -1, and the relative standard deviation is lower than 3.5% ( n = 11). Common potentially interfering ions do not interfere with the adsorption and determination of the analytes. The method displays selectivity, sensitivity and reproducibility, and was successfully applied to the determination of biological and water samples.

  4. Adsorption of Pb(II), Cr(III), Cu(II), Cd(II) and Ni(II) onto a vanadium mine tailing from aqueous solution.

    PubMed

    Shi, Taihong; Jia, Shiguo; Chen, Ying; Wen, Yinghong; Du, Changming; Guo, Huilin; Wang, Zhuochao

    2009-09-30

    The adsorption of heavy metal cations Pb(II), Cr(III), Cu(II), Cd(II) and Ni(II) from aqueous solution by a mine tailing which mainly contains muscovite was investigated. The property of the mineral was investigated by using SEM, FT-IR, XRD and BET analysis. pH(pzc) was measured by an titration technique to give a value of 5.4+/-0.1. Kinetics experiments indicated that the processes can be simulated by pseudo-second-order model. Total adsorption amounts of the heavy metal increased, while the adsorption density decreased when the solid-to-liquid ratio (S/L) increased. Grain size did not affect the adsorption capacity significantly. The resulting isotherms can be described by Frendlich relationship. And the maximum adsorption capacity (molar basis) followed the order of Cr(III)>Pb(II)>Cu(II)>Ni(II)>Cd(II). Thermodynamic analysis showed that the adsorption processed were endothermic and may be chemical in nature with positive DeltaH(0). The positive DeltaS(0) suggested that dissociative processed were involved. Small positive DeltaG(0) suggested that the adsorption processes required a small amount of energy. Adsorption processes were slightly affected by electrolyte ion concentration but strongly dependent on pH value. The most possible mechanism of the adsorption processes involve the inner-sphere-complexions by the aluminol or silanol groups on the surface of the mineral.

  5. Atmospheric deposition of Pb, Cu, Ni, As, Sb, V, Cr, Co, Cd and Zn recorded in the Misten peat bog (Hautes-Fagnes, Belgium) during the Industrial Revolution

    NASA Astrophysics Data System (ADS)

    Allan, M.; Le Roux, G.; De Vleeschouwer, F.; Mattielli, N.; Fagel, N.

    2012-04-01

    A 40 cm peat core was studied from ombrotrophic bog in Western Europe (Misten bog, Hautes-Fagnes, Belgium). Trace metal and metalloid content (TM) and Pb isotopes were analysed by Q-ICP-MS and MC-ICP-MS, respectively. We focused our attention to a selected number of TM according to their specific enrichment (i.e. Pb, Cu, Ni, As, Sb, Cr, Co, V, Cd and Zn). Our aims were: 1) to investigate TM mobility; 2) to determine TM accumulation rates and 3) to link TM accumulation rates with established histories of anthropogenic atmospheric emission. According to 210Pb and 14C data the studied peat core section covered the last two centuries. The general agreement in TM concentration and flux profiles suggested that all TM (except Zn and Cd), were immobile in the Misten peat bog. The temporal increase of TM fluxes between the inception of the Industrial Revolution and the present vary by a factor of 5 to 50 according to TM. The maximum fluxes of TM were found between 1991 and 1995 AD. The coal consumption and metallurgical activities were the predominant source of pollution. The historical TM profiles in the Misten peat profile are in agreement with other European records, reflecting the influence of regional European pollution.

  6. Chemical fractionation of Cu, Zn, Cd, Cr, and Pb in sewage sludge amended soils at the end of 65-d sorghum-sudan grass growth.

    PubMed

    Sivapatham, Paramasivam; Lettimore, Jon M; Alva, Ashok K; Jayaraman, Kuppuswamy; Harper, Legia M

    2014-09-19

    Heavy metals are potentially toxic to human life and the environment. Metal toxicity depends on chemical associations in soil. Understanding the chemical association of trace elements in soils amended with biosolids is very important since it determines their availability within rhizosphere and mobility beyond the rhizosphere. A sequential extraction method was used to determine the various chemical associations [labile (exchangeable + sorbed), organic, carbonates, and sulfides] of Cu, Zn, Cd, Cr, and Pb at the end of sorghum-sudan grass growth (65d) in Candler fine sand (pH = 6.8) and in Ogeechee loamy sand (pH = 5.2) amended with wastewater treatment sludge (WWTS) obtained from two different sources at application rates of 0, 24.7, 49.4, 98.8, and 148.2 Mg ha(-1). Results of this study indicated that irrespective of the soil type, Cu, Cd, Cr, and Pb in the labile fractions (exchangeable + sorbed) were in the range of 0-3.0 mg kg(-1) and the amount for Zn was in the range of 0.2-6.6 mg kg(-1). Therefore, their availability to plants and mobility beyond rhizosphere would be substantially low unless further transformations occur from other fractions. Results also indicated that the presence of substantial amounts of trace elements studied were in sulfide (HNO3) fraction and in organic (NaOH) fraction irrespective of soil type with the exception of Pb which was mainly present as carbonate (Na2EDTA) fraction and the remaining Pb equally as sulfide (HNO3) and organic (NaOH) fractions. Furthermore, results indicated that Cd was mainly present as carbonate (Na2EDTA) fraction. Irrespective of soil type, source and rate of WWTS application, summation of quantities of various fractions of all the trace elements studied through sequential extraction procedure were 1 to 25 % lower than that of total recoverable quantities of these trace elements determined on acid digestion described by US EPA method 3050 B. It was further evident that growing sorghum sudan grass for 65-d

  7. The Uptake Mechanism of Cd(II), Cr(VI), Cu(II), Pb(II), and Zn(II) by Mycelia and Fruiting Bodies of Galerina vittiformis

    PubMed Central

    Damodaran, Dilna; Balakrishnan, Raj Mohan; Shetty, Vidya K.

    2013-01-01

    Optimum concentrations of heavy metals like copper, cadmium, lead, chromium, and zinc in soil are essential in carrying out various cellular activities in minimum concentrations and hence help in sustaining all life forms, although higher concentration of these metals is lethal to most of the life forms. Galerina vittiformis, a macrofungus, was found to accumulate these heavy metals into its fleshy fruiting body in the order Pb(II) > Cd(II) > Cu(II) > Zn(II) > Cr(VI) from 50 mg/kg soil. It possesses various ranges of potential cellular mechanisms that may be involved in detoxification of heavy metals and thus increases its tolerance to heavy metal stress, mainly by producing organic acids and phytochelatins (PCs). These components help in repairing stress damaged proteins and compartmentalisation of metals to vacuoles. The stress tolerance mechanism can be deduced by various analytical tools like SEM-EDX, FTIR, and LC-MS. Production of two kinds of phytochelatins was observed in the organism in response to metal stress. PMID:24455671

  8. A review of activation cross sections in the ENDF/B-VI general purpose files for Cr, Fe, Ni, Cu, and Pb

    SciTech Connect

    Fu, C.Y. )

    1989-01-01

    Isotopic evaluations for {sup 50,52,53,54}Cr, {sup 54,56,57,58}Fe, {sup 58,60,61,62,64}Ni, {sup 63,65}Cu, and {sup 206,207,208}Pb are included in ENDF/B-VI for the first time. These general purpose files, all by the ORNL evaluation group, include many activation cross sections. In this review, the 34 activation reactions for these materials in the priority-I CSEWG list were checked for their presence and contents in the general purpose files. These cross sections are reviewed in terms of the experimental data base and the evaluation methods. Most of them have been significantly improved over ENDF/B-V through the improved data base and the use of advanced codes such as SAMMY for resonance analysis, GLUCS for handling ratio data and covariances, and TNG for cross-section shape and for extracting individual cross sections from the measured particle spectrum. 18 refs., 1 fig., 1 tab.

  9. Environmental behaviors and potential ecological risks of heavy metals (Cd, Cr, Cu, Pb, and Zn) in multimedia in an oilfield in China.

    PubMed

    Hu, Yan; Wang, Dazhou; Li, Yu

    2016-07-01

    The environmental behaviors of five heavy metals (Cd, Cr, Cu, Pb, and Zn) in a Chinese oilfield were investigated using a steady-state multimedia aquivalence (SMA) model. The modeling results showed good agreement with the actual measured values, with average residual errors of 0.69, 0.83, 0.35, 0.16, and 0.54 logarithmic units for air, water, soil, sediment, and vegetation compartments, respectively. Model results indicated that most heavy metals were buried in sediment, and that transfers between adjacent compartments were mainly deposition from the water to the sediment compartment (48.59 %) and from the air to the soil compartment (47.74 %) via atmospheric dry/wet deposition. Sediment and soil were the dominant sinks, accounting for 68.80 and 25.26 % of all the heavy metals in the multimedia system, respectively. The potential ecological risks from the five heavy metals in the sediment and soil compartments were assessed by the potential ecological risk index (PERI). The assessment results demonstrate that the heavy metals presented low levels of ecological risk in the sediment compartment, and that Cd was the most significant contributor to the integrated potential ecological risk in the oilfield. The SMA model provided useful simulations of the transport and fate of heavy metals and is a useful tool for ecological risk assessment and contaminated site management.

  10. Bioavailability of Pb, Zn, Cu, Cd, Ni and Cr in the sediments of the Tessa River: A mining area in the North-West Tunisia

    NASA Astrophysics Data System (ADS)

    Sebei, Abdelaziz; Helali, Mohamed Amine; Oueslati, Walid; Abdelmalek-Babbou, Chiraz; Chaabani, Fredj

    2018-01-01

    Tessa River is seen as one of the important rivers in Tunisia. Its catchment is known for its agricultural and mining activities, especially the Bougrine and Fedj Lahdhoum mines. Eighteen (18) surface sediments and five (5) water samples were collected from the Tessa River, near these two mining sites. Sediments are essentially sandy (>80%), the most important mineral is quartz (20-73%), then calcite (41%) and dolomites (4%). Heavy metal contents are relatively high near the mining sites, 356 μg g-1 for Pb, 3000 μg g-1 for Zn, and 5 μg g-1 for Cd. These values are lower downstream due to watercourse dilution effects. Other heavy metals: Cu, Ni and Cr, are low, and values are relatively constant in all the studied samples, even near the mining sites. The metals originate from natural sources and not from mining activities. This trend is confirmed by the enrichment factor (EF) where EFNi, EFCu and EFCr are lower or equal to 1, unlike EFPb, EFZn or EFCd where values are much higher (>20). Chemical speciation of these metals does not show any spatial variation. Except for cadmium which is bound to the residual fraction and in the carbonates; all other heavy metals are bound to the five sediment chemical fractions: the residual fraction (>52%), followed by the oxyhydroxides fraction (21%) and carbonates (16%), and finally bound to the organic matter and to the exchangeable fraction (<10%). The bioavailable fraction of the studied heavy metals exceeds 45%, which present risk of toxicity.

  11. Radionuclides (40K, 232Th and 238U) and Heavy Metals (Cr, Ni, Cu, Zn, As and Pb) Distribution Assessment at Renggam Landfill, Simpang Renggam, Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Zaidi, E.; FahrulRazi, MJ; Azhar, ATS; Hazreek, ZAM; Shakila, A.; Norshuhaila, MS; Omeje, M.

    2017-08-01

    The assessment of radioactivity levels and the distribution of heavy metals in soil samples at CEP Farm landfill, Renggam in Johor State was to determine the activity concentrations of naturally occurring radionuclides and heavy metal concentrations of this landfill. The background radiation was monitored to estimate the exposure level. The activity concentrations of radionuclides in soil samples were determined using HPGe gamma ray spectroscopy whereas the heavy metal concentration was measured using X-RF analysis. The mean exposure rate at the landfill site was 36.2±2.4 μR hr-1 and the annual effective dose rate at the landfill site was 3.19 ± 0.22 mSv yr-1. However, residential area has lower mean exposure dose rate of about 16.33±0.72 μR hr-1 and has an annual effective dose rate of 1.43±0.06 mSv yr-1 compared to landfill sites. The mean activity concentration of 40K, 238U and 232Th at landfill site were 239.95±15.89 Bq kg-1, 20.90±2.49 Bq kg-1 and 40.61±4.59 Bq kg-1, respectively. For heavy metal compositions, Cr, Ni and Cu have mean concentration of 232±10 ppm, 23±2 ppm, and 46±19 ppm, respectively. Whereas, Zn has concentration of 64±9 ppm and concentration of 12±1 ppm and 71±2 ppm was estimated for As and Pb respectively. The higher activity concentration of 40K down the slope through leaching process whereas the higher activity level of 238U content at the landfill site may be attributed to the soil disruption to local equilibrium.

  12. Evaluation of the Accumulation of Trace Metals (as, U, CR, CU, PB, Zn) on Iron-Manganese Coatings on in Situ Stream Pebbles and Emplaced Substrates

    NASA Astrophysics Data System (ADS)

    Turpin, M. M.; Blake, J.; Crossey, L. J.; Ali, A.; Hansson, L.

    2015-12-01

    Exposure to trace metals (As, U, Cr, Cu, Pb, Zn) has potential negative health effects on human populations and wildlife. Geothermal waters often have elevated concentrations of trace elements and understanding the geochemical cycling of these elements can be challenging. Previous studies have utilized in situ stream pebbles and glass or ceramic substrates with iron-manganese oxide coatings to understand contamination and or chemical cycling. This project's main focus is to develop an ideal tracing method using adsorption onto substrate surfaces and to define key parameters that are necessary for the phenomenon of adsorption between trace metals and these surface coatings to occur. Sampling locations include the Jemez River and Rio San Antonio in the Jemez mountains, northern New Mexico. Both streams have significant geothermal inputs. Pebbles and cobbles were gathered from the active stream channel and 6mm glass beads and 2 X1 in. ceramic plates were placed in streams for three weeks to allow for coating accumulation. Factors such as leachate type, water pH, substrate type, coating accumulation period and leach time were all considered in this experiment. It was found that of the three leachates (aqua regia, 10% aqua regia and hydroxylamine), hydroxylamine was the most effective at leaching coatings without dissolving substrates. Samples leached with aqua regia and 10% aqua regia were found to lose weight and mass over the following 5, 7, and 10 day measurements. Glass beads were determined to be more effective than in stream pebbles as an accumulation substrate: coatings were more easily controlled and monitored. Samples leached with hydroxylamine for 5 hours and 72 hours showed little difference in their leachate concentrations, suggesting that leach time has little impact on the concentration of leachate samples. This research aims to find the best method for trace metal accumulation in streams to aid in understanding geochemical cycling.

  13. Genotoxicity and cytotoxicity response to environmentally relevant complex metal mixture (Zn, Cu, Ni, Cr, Pb, Cd) accumulated in Atlantic salmon (Salmo salar). Part I: importance of exposure time and tissue dependence.

    PubMed

    Stankevičiūtė, Milda; Sauliutė, Gintarė; Svecevičius, Gintaras; Kazlauskienė, Nijolė; Baršienė, Janina

    2017-10-01

    Health impact of metal mixture at environment realistic concentrations are difficult to predict especially for long-term effects where cause-and-effect relationships may not be directly obvious. This study was aimed to evaluate metal mixture (Zn-0.1, Cu-0.01, Ni-0.01, Cr-0.01, Pb-0.005 and Cd-0.005 mg/L, respectively for 1, 2, 4, 7, 14 and 28 days at concentrations accepted for the inland waters in EU) genotoxicity (micronuclei, nuclear buds, nuclear buds on filament), cytotoxicity (8-shaped nuclei, fragmented-apoptotic erythrocytes), bioaccumulation, steady-state and the reference level of geno-cytotoxicity in hatchery-reared Atlantic salmon tissues. Metals accumulated mostly in gills and kidneys, to the lesser extent in the muscle. Uptake of metals from an entire mixture in the fish for 14 days is sufficient to reach steady-state Cr, Pb concentrations in all tissues; Zn, Cu-in kidneys and muscle, Ni-in liver, kidneys, muscle and Cd-in muscle. Treatment with metal mixture significantly increased summed genotoxicity levels at 7 days of exposure in peripheral blood and liver erythrocytes, at 14 days of exposure in gills and kidney erythrocytes. Significant elevation of cytotoxicity was detected after 2 and 14 days of exposure in gills erythrocytes and after 28 days-in peripheral blood erythrocytes. The amount of Cu, Cr, Pb and Cd accumulated in tissues was dependent upon duration of exposure; nuclear buds, 8-shaped nuclei frequencies also were dependent upon duration of exposure. This study indicates that metals at low levels when existing in mixture causes significant geno-cytotoxicity responses and metals bioaccumulation in salmon.

  14. Evaluation of the use of a reflux system for sample preparation of processed fruit juices and subsequent determination of Cr, Cu, K, Mg, Na, Pb and Zn by atomic spectrometry techniques.

    PubMed

    Pereira, Camila Corrêa; de Souza, Alexander Ossanes; Oreste, Eliézer Quadro; Vieira, Mariana Antunes; Ribeiro, Anderson Schwingel

    2018-02-01

    The acid decomposition method was applied for the sample preparation of processed fruit juice. The decomposition of 15mL of juice sample using HNO3 and H2O2 was performed in a digester block with reflux system and heated at 200°C for 150min. The limits of detection were 0.03; 0.24; 0.8; 0.008; 0.026 and 0.056mgL-1 for Cr, Cu, K, Mg, Na and Zn, respectively and for Pb was 0.99μgL-1. The accuracy was evaluated by spiked experiments (80 to 119%). Four processed fruit juice samples commercialized in Brazil (strawberry, mango, peach, and orange) were analyzed and indicated the absence of Cr, Zn and Cu in the samples, except for Cu in strawberry juice. Pb was found in the mango juice sample (17.8±0.9μgL-1) and the concentration is below the maximum values recommended by Brazilian legislation for juices of citric fruits (0.3mgkg-1). Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Chemical speciation of Fe, Mn, Pb, Zn, Cd, Cu, Co, Ni and Cr in the suspended particulate matter off the Mejerda River Delta (Gulf of Tunis, Tunisia)

    NASA Astrophysics Data System (ADS)

    Helali, Mohamed Amine; Oueslati, Walid; Zaaboub, Noureddine; Added, Ayed; Aleya, Lotfi

    2016-06-01

    Fluxes of suspended particulate matter (SPM) and their associated metals were performed off the Mejerda River Delta during both the wet (March) and the dry (July) seasons in 2012, using sediment traps at study stations at depths of 10, 20 and 40 m. Fluxes nearest to the Mejerda outlet were more significant, especially during winter (36 g m-2 day-1), but dissipated further offshore, 24.5-6 g m-2 day-1 at the 20 m and 21.8-4.8 g m-2 day-1 at the 40 m stations. Many variations observed in seasonal and spatial metal fluxes are similar to those of SPM, in particular Pb and Zn, probably because they are associated with the mining activity characteristic of the Mejerda catchment. Chemical speciation reveals that most of the metals (20-100%) are bound to the residual fraction. The most toxic metals (Pb, Zn) are bound in part to the exchangeable fraction (20-50% for Pb and 5-15% for Zn) making them relatively bioavailable and therefore potentially toxic. While Cu and Cd fluxes are not always clearly established according to season, both metals are apparently sequestered deep in the sediment, bound especially to clays (40-80% for Cd and up to 100% for Cu).

  16. Adsorption of Pb²⁺, Cd²⁺, Cu²⁺ and Cr³⁺ onto titanate nanotubes: competition and effect of inorganic ions.

    PubMed

    Liu, Wen; Wang, Ting; Borthwick, Alistair G L; Wang, Yanqi; Yin, Xiaochen; Li, Xuezhao; Ni, Jinren

    2013-07-01

    Adsorption of Pb(2+), Cd(2+), Cu(2+) and Cr(3+) from aqueous solutions onto titanate nanotubes (TNTs) in multiple systems was systematically studied. Particular attention was paid to competitive adsorption and the effect of inorganic ions. TNTs showed large adsorption capacity for the four heavy metals, with the mechanism of ion-exchange between metal ions and H(+)/Na(+) located in the interlayers of TNTs. Binary or quaternary competitive adsorption indicated that the adsorption capacity of the four heavy metals onto TNTs followed the sequence of Pb(2+) (2.64 mmol g(-1)) ≫ Cd(2+) (2.13 mmol g(-1)) > Cu(2+) (1.92 mmol g(-1)) ≫ Cr(3+) (1.37 mmol g(-1)), which followed the reverse order of their hydration energies. Moreover, inorganic ions including Na(+), K(+), Mg(2+) and Ca(2+) inhibited the adsorption of heavy metals on TNTs, because they competed for adsorption sites, decreased the activity of heavy metal ions, and promoted the aggregation of TNTs. However, Al(3+) and Fe(3+) generally enhanced adsorption because the resulting hydroxyl-Al/Fe intercalated or coated TNTs could also capture metal ions. Furthermore, minor effect of inorganic ions on adsorption of Pb(2+) resulted from its strong affinity to TNTs. Difficult desorption and small inhibiting effect by Na(+), K(+), Mg(2+) and Ca(2+) on adsorption of Cr(3+) was due to the formed stable complex of HOCr(OTi)₂ ≡ with TNTs. Present study indicated potential applications of TNTs in wastewater treatment for heavy metals. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Separation/preconcentration of trace amounts of Cr, Cu and Pb in environmental samples by magnetic solid-phase extraction with Bismuthiol-II-immobilized magnetic nanoparticles and their determination by ICP-OES.

    PubMed

    Suleiman, Jibrin Sabo; Hu, Bin; Peng, Hanyong; Huang, Chaozhang

    2009-03-15

    A new method for separation/preconcentration of trace amounts of Cr, Cu and Pb in environmental samples by magnetic solid-phase extraction (SPE) with Bismuthiol-II-immobilized magnetic nanoparticles and their determination by ICP-OES has been developed. The separation of the target analytes from the aqueous solution containing the target analytes and Bismuthiol-II-immobilized magnetic nanoparticles was simply achieved by applying external magnetic field. Optimal experimental conditions including pH, sample volume, eluent concentration and volume and co-existing ions have been studied and established. Under the optimal experimental conditions, the detection limits for Cr, Cu and Pb with enrichment factors of 96, 95 and 87 were found to be 0.043, 0.058 and 0.085 ngmL(-1) and their relative standard deviations (R.S.D.s) were 3.5%, 4.6% and 3.7% (n=5, C=2 ngmL(-1)), respectively. The method was validated with certified reference material (GBW50009-88) of environmental water sample and the analytical results coincided well with the certified values. Furthermore, the method was successfully applied to the determination of target analytes in river and lake water samples. Compared with established methods, the proposed method is characterized with high enrichment factor, fast separation and low detection limits.

  18. Concentration of Cu, Zn, Cr, Ni, Cd, and Pb in soil, sugarcane leaf and juice: residual effect of sewage sludge and organic compost application.

    PubMed

    Moretti, Sarah Mello Leite; Bertoncini, Edna Ivani; Vitti, André César; Alleoni, Luís Reynaldo Ferracciú; Abreu-Junior, Cassio Hamilton

    2016-03-01

    Many researchers have evaluated the effects of successive applications of sewage sludge (SS) on soil plant-systems, but most have not taken into account the residual effect of organic matter remaining from prior applications. Furthermore, few studies have been carried out to compare the effects of the agricultural use of SS and sewage sludge compost (SSC). Therefore, we evaluated the residual effect of SS and SSC on the heavy metal concentrations in soil and in sugarcane (Saccharum spp.) leaves and juice. The field experiment was established after the second harvesting of unburned sugarcane, when the organic materials were applied. The SS and SSC rates were (t ha(-1), dry base): 0, 12.5, 25, and 50; and 0, 21, 42, and 84, respectively. All element concentrations in the soil were below the standards established by São Paulo State environmental legislation. SS promoted small increases in Zn concentrations in soil and Cu concentrations in leaves. However, all heavy metals concentrations in the leaves were lower than the limits established for toxic elements and were in accordance with the limits established for micronutrients. There were reductions in the concentrations of Ni and Cu in soil and the concentration of Pb in juice, with increasing rates of SSC. The heavy metal concentrations were very low in the juice. Under humid tropical conditions and with short-term use, SS and SSC containing low heavy metal concentrations did not have negative effects on plants and soil.

  19. Effect of CaO on retention of S, Cl, Br, As, Mn, V, Cr, Ni, Cu, Zn, W and Pb in bottom ashes from fluidized-bed coal combustion power station.

    PubMed

    Bartoňová, Lucie; Klika, Zdeněk

    2014-07-01

    This work was conducted to evaluate whether Ca-bearing additives used during coal combustion can also help with the retention of some other elements. This work was focused on the evaluation of bottom ashes collected during four full-scale combustion tests at an operating thermal fluidized-bed power station. Bottom ashes were preferred to fly ashes for the study to avoid interference from condensation processes usually occurring in the post-combustion zone. This work focused on the behaviors of S, Cl, Br, As, Mn, V, Cr, Ni, Cu, Zn, W, and Pb. Strong positive correlations with CaO content in bottom ashes were observed (for all four combustion tests) for S, As, Cl and Br (R=0.917-0.999). Strong inverse proportionality was calculated between the contents of Pb, Zn, Ni, Cr and Mn and CaO, so these elements showed association to materials other than Ca-bearing compounds (e.g., to aluminosilicates, organic matter, etc.). Somewhat unclear behaviors were observed for W, Cu, and V. Their correlation coefficients were evaluated as statistically "not significant", i.e., these elements were not thought to be significantly associated with CaO. It was also discovered that major enrichment of CaO in the finest bottom ash fractions could be advantageously used for simple separation of elements strongly associated with these fractions, mainly S and As, but also Cl or Br. Removal of 5% of the finest ash particles brings about a decrease in As concentration down to 77%-80% of its original bulk ash content, which can be conveniently used e.g., when high As content complicates further ash utilization. Copyright © 2014. Published by Elsevier B.V.

  20. Determination of labile species of As(V), Ba, Cd, Co, Cr(III), Cu, Mn, Ni, Pb, Sr, V(V), and Zn in natural waters using diffusive gradients in thin-film (DGT) devices modified with montmorillonite.

    PubMed

    Dos Anjos, Vanessa E; Abate, Gilberto; Grassi, Marco T

    2017-03-01

    A binding phase based on the clay mineral montmorillonite (MT) was used as a sorbent in this work, which employed diffusive gradients in thin-film (DGT) devices to determine the lability of trace elements in natural waters. Montmorillonite exhibits low cost, wide availability, ease of handling, high ion-exchange capacity, and reusability. As(V), Ba 2+ , Cd 2+ , Co 2+ , Cr(III), Cu 2+ , Mn 2+ , Ni 2+ , Pb 2+ , Sr 2+ , V(V), and Zn 2+ were quantitatively sorbed by MT and eluted with 1.0 mol L -1 HNO 3 , which provided efficiency above 70% of recovery. Validation tests were performed with synthetic solutions. The recovery of known concentrations ranged from 83 to 110%. The performance of modified DGT was compared with conventional DGT devices in experiments lasting 6 and 48 h. The results obtained with both DGT devices showed no significant differences with 95% confidence. DGT samplers with MT were deployed in the determination of labile forms of the elements in water samples from Iguaçu River (Paraná, Brazil). The measured masses of elements in MT for various durations showed good fit to a theoretical line, indicating that the results agreed with the principle of the DGT technique. The concentrations of labile species in the sample proceeded as follows; Sr > Cd > Ba > Cu > Cr > Mn > Zn > Pb. The results suggest that DGT devices with MT are an effective alternative for speciation analysis of a wide range of elements (cations as well as anions) in natural waters.

  1. Accumulation of Cr, Cd, Pb, Cu, and Zn by plants in tanning sludge storage sites: opportunities for contamination bioindication and phytoremediation

    USDA-ARS?s Scientific Manuscript database

    The lack of appropriate disposal strategies of tanning sludge (e.g., uncontrolled landfills and disposing sludge to open areas) has led to severe Cr pollution in waters and soils in many developing countries. Excessive Cr can be highly toxic to many living organisms and may damage the ecosystem. In ...

  2. Melting of Pb Charge Glass and Simultaneous Pb-Cr Charge Transfer in PbCrO 3 as the Origin of Volume Collapse

    DOE PAGES

    Yu, Runze; Hojo, Hajime; Watanuki, Tetsu; ...

    2015-09-15

    A metal to insulator transition in integer or half integer charge systems can be regarded as crystallization of charges. The insulating state tends to have a glassy nature when randomness or geometrical frustration exists. In this paper, we report that the charge glass state is realized in a perovskite compound PbCrO 3, which has been known for almost 50 years, without any obvious inhomogeneity or triangular arrangement in the charge system. PbCrO 3 has a valence state of Pb 2+ 0.5Pb 4+ 0.5Cr 3+O 3 with Pb 2+–Pb 4+ correlation length of three lattice-spacings at ambient condition. A pressure inducedmore » melting of charge glass and simultaneous Pb–Cr charge transfer causes an insulator to metal transition and ~10% volume collapse.« less

  3. Observations of a Cast Cu-Cr-Zr Alloy

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2006-01-01

    Prior work has demonstrated that Cu-Cr-Nb alloys have considerable advantages over the copper alloys currently used in regeneratively cooled rocket engine liners. Observations indicated that Zr and Nb have similar chemical properties and form very similar compounds. Glazov and Zakharov et al. reported the presence of Cr2Zr in Cu-Cr-Zr alloys with up to 3.5 wt% Cr and Zr though Zeng et al. calculated that Cr2Zr could not exist in a ternary Cu-Cr-Zr alloy. A cast Cu-6.15 wt% Cr-5.25 wt% Zr alloy was examined to determine if the microstructure developed would be similar to GRCop-84 (Cu-6.65 wt% Cr-5.85 wt% Nb). It was observed that the Cu-Cr-Zr system did not form any Cr2Zr even after a thermal exposure at 875 C for 176.5 h. Instead the alloy consisted of three phases: Cu, Cu5Zr, and Cr.

  4. On reversion phenomena in Cu-Zr-Cr alloys

    NASA Technical Reports Server (NTRS)

    Suzuki, H.; Kitano, H.; Kanno, M.

    1985-01-01

    Reversion phenomena in aged Cu-0.12% Zr-0.28% Cr alloy were investigated by means of resistivity measurement and transmission electron microscopy and compared with those of Cu-0.30% Zr and Cu-0.26% Cr alloys. Specimens in the form of a 0.5 mm sheet were solution-treated at 950 F for 1 hr water-quenched, aged, and finally reversed. The reversion phenomena were confirmed to exist in Cu-Zr and Cu-Zr-Cr alloys as well as Cu-Cr alloys, at aging temperatures of 300 to 500 F. The critical aging temperature for the reversion was not observed in all the alloys. Split aging increased the amount of reversion, particularly in Cu-Zr and Cu-Zr-Cr alloys, compared with that by conventional aging. The amount of reversion in Cu-Zr-Cr alloy was greatly affected by the resolution of Cr precipitate formed by preaging. Structural changes in Cu-Zr-Cr alloy due to the reversion were hardly observed by transmission electron microscopy.

  5. Bioaccumulation of Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn in trophosome and vestimentum of the tube worm Riftia pachyptila from Guaymas basin, Gulf of California

    NASA Astrophysics Data System (ADS)

    Ruelas-Inzunza, J.; Páez-Osuna, F.; Soto, Luis A.

    2005-07-01

    Twenty two specimens of vestimentiferan tube worms Riftia pachyptila were collected from Guaymas Basin. The distribution of ten trace metals in trophosome and vestimentum was investigated. Highest mean concentrations of Co, Cu and Fe were detected in the trophosome; while higher mean levels of Cd, Hg, Mn, Ni, Pb and Zn were measured in the vestimentum. However, the t-student test resulted in significant differences (p<0.05) only in the case of Co. Cd and Fe concentrations in vestimentum increased accordingly with the size of specimens. With respect to vent fluids, extreme uptake seems to be a characteristic of R. pachyptila in the case of Cu and Zn but not for the rest of the analyzed metals. Studies concerning accumulation mechanisms of trace metals in R. pachyptila are needed, particularly on the capacity of this organism to tolerate elevated levels of elements considered as non-essential.

  6. Recyclable colorimetric sensor of Cr3 + and Pb2 + ions simultaneously using a zwitterionic amino acid modified gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Sang, Fuming; Li, Xin; Zhang, Zhizhou; Liu, Jia; Chen, Guofu

    2018-03-01

    In this work, a rapid, simple and sensitive colorimetric sensor for simultaneous (or respective) detection of Cr3 + and Pb2 + using tyrosine functionalized gold nanoparticles (AuNPsTyr) has been developed. Tyrosine, a natural and zwitterionic amino acid, could be as a reducing and capping agent to synthesise AuNPs and allow for the simultaneous and selective detection of Cr3 + and Pb2 +. Upon the addition of Cr3 + or Pb2 + (a combination of them), the color of AuNPsTyr solution changes from red to blue grey and the characteristic surface plasmon resonance (SPR) band is red-shifted to 580 nm due to the aggregation of AuNPs. Interestingly, the aggregated AuNPsTyr can be regnerated and recycled by removing Pb2 + and Cr3 +. Even after 3 rounds, AuNPsTyr show almost the same A580 nm / A520 nm value for the assays of Pb2 + and Cr3 +, indicating the good recyclability of the colorimetric sensor. The responding time (within 1 min) and sensitivity of the colorimetric sensor are largely improved after the addition of 0.1 M NaCl. Moreover, the AuNPsTyr aggregated by Cr3 + or Pb2 + (a combination of them) show excellent selectivity compared to other metal ions (Cr3 +, Pb2 +, Fe2 +,Cu2 +,Zn2 +,Cr6 +,Ni2 +,Co2 +,Hg2 +,Mn2 +,Mg2 +,Ca2 +,Cd2 +). More importantly, the developed sensor manifests good stability at room temperature for 3 months, which has been successfully used to determine Cr3 + and Pb2 + in the real water samples with a high sensitivity.

  7. Melting of Pb Charge Glass and Simultaneous Pb-Cr Charge Transfer in PbCrO3 as the Origin of Volume Collapse

    SciTech Connect

    Yu, Runze; Hojo, Hajime; Watanuki, Tetsu; Mizumaki, Masaichiro; Mizokawa, Takashi; Okada, Kengo; Kim, Hyunjeong; Machida, Akihiko; Sakaki, Kouji; Nakamura, Yumiko; Agui, Akane; Mori, Daisuke; Inaguma, Yoshiyuki; Schlipf, Martin; Rushchanskii, Konstantin; Lezaic, Marjana; Matsuda, Masaaki; Ma, Jie; Calder, Stuart A.; Isobe, Masahiko; Ikuhara, Yuichi; Azuma, Masaki

    2015-09-15

    A metal to insulator transition in integer or half integer charge systems can be regarded as crystallization of charges. The insulating state tends to have a glassy nature when randomness or geometrical frustration exists. In this paper, we report that the charge glass state is realized in a perovskite compound PbCrO3, which has been known for almost 50 years, without any obvious inhomogeneity or triangular arrangement in the charge system. PbCrO3 has a valence state of Pb2+0.5Pb4+0.5Cr3+O3 with Pb2+Pb4+ correlation length of three lattice-spacings at ambient condition. A pressure induced melting of charge glass and simultaneous Pb–Cr charge transfer causes an insulator to metal transition and ~10% volume collapse.

  8. Observations Of A Cast Cu-Cr-Zr Alloy

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2006-01-01

    The calculated phase diagram and observations of Zeng et al were confirmed. 1) Additional X-ray diffraction peaks for aged sample indicates possibility that additional metastable phases may form; 2) Cu5Zr was observed rather than the Cu9Zr2 proposed for the binary Cu-Zr phase diagram. Despite similarities between Zr and Nb, Cu-Cr-Zr does not appear to be a good candidate alloy system for rocket engine applications.

  9. Metal (Cu, Zn, Fe, Pb) concentrations in human placentas.

    PubMed

    Zagrodzki, P; Zamorska, L; Borowski, P

    2003-12-01

    The concentrations of some metals (Cu, Zn, Fe, Pb) in human placentas at term in two populations living in polluted (Krakow, n = 10) and non-polluted (Bieszczady, n = 13) areas were investigated by means of graphite furnace--or flame atomic absorption spectrometry (GF-AAS or F-AAS). The concentrations of Cu, Fe and Pb were higher in Krakow vs. Bieszczady, while Zn concentration was lower, but these differences were not significant. The following results were obtained for the whole studied group: Cu 1.17 +/- 0.25 microg/g w.w., Zn 8.44 +/- 2.10 microg/g w.w., Fe 115.0 +/- 31.9 microg/g w.w., Pb 51.6 +/- 18.0 ng/g w.w. The inverse accumulation of Zn and Pb is in accord with previous observations. In the whole group of placenta specimens the statistically significant correlation was also found between concentrations of Cu and Pb. The correlations between metal concentrations and placental or maternal features were the strongest for lead.

  10. Geologic cross sections showing the concentrations of As, Cd, Co, Cu, Cr, Fe, Mo, Ni, Pb, and Zn in acid-insoluble residues of Paleozoic rocks within the Doniphan/Eleven Point Ranger District of the Mark Twain National Forest, Missouri, USA

    USGS Publications Warehouse

    Lee, Lopaka; Goldhaber, Martin B.

    2002-01-01

    This report is a product of a U.S. Geological Survey investigation that is focused on characterizing the potential environmental impacts of lead-zinc mining within the Doniphan/Eleven Point ranger district of the Mark Twain national forest. The elemental concentrations of iron (Fe), arsenic (As), cadmium (Cd), cobalt (Co), copper (Cu), chromium (Cr), nickel (Ni), lead (Pb), and zinc (Zn) in acidinsoluble residues are shown for boreholes along two geologic cross sections within Doniphan/Elevan Point ranger district (Figure 1). The purpose of this report is to characterize, in a general sense, the distribution of economically and environmentally important elements within the rocks and aquifers of the Doniphan/Eleven Point ranger district

  11. Failure analysis of PB-1 (EBTS Be/Cu mockup)

    SciTech Connect

    Odegard, B.C. Jr.; Cadden, C.H.

    1996-11-01

    Failure analysis was done on PB-1 (series of Be tiles joined to Cu alloy) following a tile failure during a high heat flux experiment in EBTS (electron beam test system). This heat flux load simulated ambient conditions inside ITER; the Be tiles were bonded to the Cu alloy using low-temperature diffusion bonding, which is being considered for fabricating plasma facing components in ITER. Results showed differences between the EBTS failure and a failure during a room temperature tensile test. The latter occurred at the Cu-Be interface in an intermetallic phase formed by reaction of the two metals at the bonding temperature. Fracture strengths measured by these tests were over 300 MPa. The high heat flux specimens failed at the Cu-Cu diffusion bond. Fracture morphology in both cases was a mixed mode of dimple rupture and transgranular cleavage. Several explanations for this difference in failure mechanism are suggested.

  12. Cu, Pb and Zn contamination in Nuuanu watershed, Oahu, Hawaii.

    PubMed

    Andrews, Stephanie; Sutherland, Ross A

    2004-05-25

    Trace metal contamination in urban aquatic ecosystems in Hawaii is a significant problem, especially in terms of Cu, Pb, and Zn. These trace metals are linked to automobile usage. An in-depth study was designed to determine the influence of road sediments and storm sewers on bioavailable (0.5 M HCl) trace metal concentrations in bed sediments of Nuuanu stream, Oahu. Lead was the most enriched trace metal in the watershed. Compared to baseline Pb concentrations of <3 mg/kg, road sediments averaged 186 mg/kg, with a maximum value of 3140 mg/kg. Stream bed sediments had average Pb values of 122 mg/kg, with a maximum of 323 mg/kg. Al-normalized enrichment ratios (ERs) for the <63 microm fraction indicated that the watershed was significantly polluted in the lower, urbanized reaches, with maximum ER values of 560 and 94 for Pb in road sediments and stream sediments, respectively. Median ER values for Cu, Pb, and Zn in stream sediments were 2, 36, and 5, respectively. Rainfall events prior to sediment sampling masked any influence that storm sewer outlets might have had on the localized spatial distribution of metals associated with bed sediments. However, there was a general pattern of increasing trace metal concentrations downstream as the fluvial network traversed residential areas and commercial, highly trafficked areas in the lower portions of the watershed.

  13. Crystallography and morphology of nanosized Cr particles in a Cu-0.2% Cr alloy

    SciTech Connect

    Fujii, T.; Nakazawa, H.; Kato, M.

    2000-03-14

    The crystallography and morphology of nanosized Cr precipitate particles in a Cu matrix have been examined using an aged Cu-0.20 mass% Cr alloy at 773 K. By HRTEM observations, the Cr particles were found to have the b.c.c. structure even for sizes smaller than 10 nm. The orientation relationships between the fine Cr particles and the Cu matrix were analyzed by observing Moire fringes. Two distinct orientation relationships were found: one close to the Kurdjumov-Sachs relationship and the other close to the Nishiyama-Wassermann relationship. The particles exhibited major facet planes: (533){sub f}/(134){sub b} for the Kurdjumov-Sachs particles and (533){sub f}/(035){submore » b} for the Nishiyama-Wassermann particles. The relative stability of the two types of Cr particles is discussed by adopting the invariant-line concept and the eigenvectors of the transformation.« less

  14. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, I.E.; Yost, F.G.; Smith, J.F.; Miller, C.M.; Terpstra, R.L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217 C and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid ``mushy`` zone) relative to the eutectic melting temperature (e.g. up to 15 C above the eutectic melting temperature). 5 figs.

  15. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, Iver E.; Yost, Frederick G.; Smith, John F.; Miller, Chad M.; Terpstra, Robert L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217.degree. C. and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid "mushy" zone) relative to the eutectic melting temperature (e.g. up to 15.degree. C. above the eutectic melting temperature).

  16. Unusual Mott transition in multiferroic PbCrO3

    PubMed Central

    Wang, Shanmin; Zhu, Jinlong; Zhang, Yi; Yu, Xiaohui; Zhang, Jianzhong; Wang, Wendan; Bai, Ligang; Qian, Jiang; Yin, Liang; Sullivan, Neil S.; Jin, Changqing; He, Duanwei; Xu, Jian; Zhao, Yusheng

    2015-01-01

    The Mott insulator in correlated electron systems arises from classical Coulomb repulsion between carriers to provide a powerful force for electron localization. Turning such an insulator into a metal, the so-called Mott transition, is commonly achieved by “bandwidth” control or “band filling.” However, both mechanisms deviate from the original concept of Mott, which attributes such a transition to the screening of Coulomb potential and associated lattice contraction. Here, we report a pressure-induced isostructural Mott transition in cubic perovskite PbCrO3. At the transition pressure of ∼3 GPa, PbCrO3 exhibits significant collapse in both lattice volume and Coulomb potential. Concurrent with the collapse, it transforms from a hybrid multiferroic insulator to a metal. For the first time to our knowledge, these findings validate the scenario conceived by Mott. Close to the Mott criticality at ∼300 K, fluctuations of the lattice and charge give rise to elastic anomalies and Laudau critical behaviors resembling the classic liquid–gas transition. The anomalously large lattice volume and Coulomb potential in the low-pressure insulating phase are largely associated with the ferroelectric distortion, which is substantially suppressed at high pressures, leading to the first-order phase transition without symmetry breaking. PMID:26604314

  17. Unusual Mott transition in multiferroic PbCrO 3

    DOE PAGES

    Wang, Shanmin; Zhu, Jinlong; Zhang, Yi; ...

    2015-11-24

    The Mott insulator in correlated electron systems arises from classical Coulomb repulsion between carriers to provide a powerful force for electron localization. When turning such an insulator into a metal, the so-called Mott transition, is commonly achieved by "bandwidth" control or "band filling." However, both mechanisms deviate from the original concept of Mott, which attributes such a transition to the screening of Coulomb potential and associated lattice contraction. We report a pressure-induced isostructural Mott transition in cubic perovskite PbCrO3. At the transition pressure of similar to 3 GPa, PbCrO3 exhibits significant collapse in both lattice volume and Coulomb potential. Concurrentmore » with the collapse, it transforms from a hybrid multiferroic insulator to a metal. For the first time to our knowledge, these findings validate the scenario conceived by Mott. Close to the Mott criticality at similar to 300 K, fluctuations of the lattice and charge give rise to elastic anomalies and Laudau critical behaviors resembling the classic liquid-gas transition. Moreover, the anomalously large lattice volume and Coulomb potential in the low-pressure insulating phase are largely associated with the ferroelectric distortion, which is substantially suppressed at high pressures, leading to the first-order phase transition without symmetry breaking.« less

  18. Mechanical properties of Cr-Cu coatings produced by electroplating

    NASA Astrophysics Data System (ADS)

    Riyadi, Tri Widodo Besar; Sarjito, Masyrukan, Riswan, Ricky Ary

    2017-06-01

    Hard chromium coatings has long been considered as the most used electrodeposited coating in several industrial applications such as in petrochemistry, oil and gas industries. When hard coatings used in fastener components, the sliding contact during fastening operation produces high tensile stresses on the surface which can generate microcracks. For component used in high oxidation and corrosion environment, deep cracks cannot be tolerated. In this work, a laminated structure of Cr-Cu coating was prepared using electroplating on carbon steel substrates. Two baths of chrome and copper electrolyte solutions were prepared to deposit Cr as the first layer and Cu as the second layer. The effect of current voltages on the thickness, hardness and specific wear rate of the Cu layer was investigated. The results show that an increase of the current voltages increased the thickness and hardness of the Cu layer, but reduced the specific wear rate. This study showed that the use of Cu can be a potential candidate as a laminated structure Cr-Cu for chromium plating.

  19. Bifunctional calix[4]arene sensor for Pb(II) and Cr2O7(2-) ions.

    PubMed

    Qazi, Mansoor Ahmed; Ocak, Ummühan; Ocak, Miraç; Memon, Shahabuddin; Solangi, Imam Bakhsh

    2013-05-01

    A readily available chromionophore 5,11,17,23-tetra-tert-butyl-25,27-bis(hydrazidecarbonylmethoxy)-26,28-dihydroxycalix[4]arene (HCC4) was employed as a chromogenic sensing probe selective for Pb(II) and Cr2O7(2-) ions among a series of various ions such as Li(I), Na(I), K(I), Rb(I), Ba(II), Sr(II), Al(III), Cd(II), Co(II), Cu(II), Hg(II), Ni(II), Pb(II) and Zn(II) as well as Cr2O7(2-), CH3CO2(-), Br(-), Cl(-), F(-), I(-), ClO4(-) and NO3(-) that have been examined by UV-visible and fluorescence spectroscopic techniques. The HCC4 in DCM-MeCN system forms 2:1 (ligand-metal) complex with Pb(II). It also shows 2:1 stoichiometry with Cr2O7(2-). The complexation phenomenon has been confirmed by FTIR spectroscopy that favors the selective nature of HCC4 with Pb(II) and Cr2O7(2-). Thermal gravimetric analysis (TGA) also supports its utility in drastic conditions.

  20. Study of Cu and Pb partitioning in mine tailings using the Tessier sequential extraction scheme

    SciTech Connect

    Andrei, Mariana Lucia, E-mail: marianaluciaandrei@yahoo.com; Babes-Bolyai University, Environmental Science and Engineering Faculty, 30 Fantanele, 400294, Cluj-Napoca; Senila, Marin

    2015-12-23

    The Cu and Pb partitioning in nonferrous mine tailings was investigated using the Tessier sequential extraction scheme. The contents of Cu and Pb found in the five operationally defined fractions were determined by inductively coupled plasma optical emission spectrometry. The results showed different partitioning patterns for Cu and Pb in the studied tailings. The total Cu and Pb contents were higher in tailings from Brazesti than in those from Saliste, while the Cu contents in the first two fractions considered as mobile were comparable and the content of mobile Pb was the highest in Brazesti tailings. In the tailings frommore » Saliste about 30% of Cu and 3% of Pb were found in exchangeable fraction, while in those from Brazesti no metals were found in the exchangeable fraction, but the percent of Cu and Pb found in the bound to carbonate fraction were high (20% and 26%, respectively). The highest Pb content was found in the residual fraction in Saliste tailings and in bound to Fe and Mn oxides fraction in Brazesti tailings, while the highest Cu content was found in the fraction bound to organic matter in Saliste tailings and in the residual fraction in Brazesti tailings. In case of tailings of Brazesti medium environmental risk was found both for Pb and Cu, while in case of Saliste tailings low risk for Pb and high risk for Cu were found.« less

  1. Synthesis of BiPbSrCaCuO superconductor

    DOEpatents

    Hults, W.L.; Kubat-Martin, K.A.; Salazar, K.V.; Phillips, D.S.; Peterson, D.E.

    1994-04-05

    A process and a precursor composition for preparing a lead-doped bismuth-strontium-calcium-copper oxide superconductor of the formula Bi[sub a]Pb[sub b]Sr[sub c]Ca[sub d]Cu[sub e]O[sub f] wherein a is from about 1.7 to about 1.9, b is from about 0.3 to about 0.45, c is from about 1.6 to about 2.2, d is from about 1.6 to about 2.2, e is from about 2.97 to about 3.2 and f is 10[+-]z by reacting a mixture of Bi[sub 4]Sr[sub 3]Ca[sub 3]Cu[sub 4]O[sub 16[+-]z], an alkaline earth metal cuprate, e.g., Sr[sub 9]Ca[sub 5]Cu[sub 24]O[sub 41], and an alkaline earth metal plumbate, e.g., Ca[sub 2[minus]x]Sr[sub x]PbO[sub 4] wherein x is about 0.5, is disclosed.

  2. Synthesis of BiPbSrCaCuO superconductor

    DOEpatents

    Hults, William L.; Kubat-Martin, Kimberly A.; Salazar, Kenneth V.; Phillips, David S.; Peterson, Dean E.

    1994-01-01

    A process and a precursor composition for preparing a lead-doped bismuth-strontium-calcium-copper oxide superconductor of the formula Bi.sub.a Pb.sub.b Sr.sub.c Ca.sub.d Cu.sub.e O.sub.f wherein a is from about 1.7 to about 1.9, b is from about 0.3 to about 0.45, c is from about 1.6 to about 2.2, d is from about 1.6 to about 2.2, e is from about 2.97 to about 3.2 and f is 10.+-.z by reacting a mixture of Bi.sub.4 Sr.sub.3 Ca.sub.3 Cu.sub.4 O.sub.16.+-.z, an alkaline earth metal cuprate, e.g., Sr.sub.9 Ca.sub.5 Cu.sub.24 O.sub.41, and an alkaline earth metal plumbate, e.g., Ca.sub.2-x Sr.sub.x PbO.sub.4 wherein x is about 0.5, is disclosed.

  3. Synthesis, characterization and thermochemistry of synthetic Pb-As, Pb-Cu and Pb-Zn jarosites

    NASA Astrophysics Data System (ADS)

    Forray, Ferenc Lázár; Smith, A. M. L.; Navrotsky, A.; Wright, K.; Hudson-Edwards, K. A.; Dubbin, W. E.

    2014-02-01

    The enthalpy of formation from the elements of well characterized Pb-As, Pb-Cu, and Pb-Zn synthetic jarosites, corresponding to chemical formulas (H3O)0.68±0.03Pb0.32±0.002Fe2.86±0.14(SO4)1.69±0.08(AsO4)0.31±0.02(OH)5.59±0.28(H2O)0.41±0.02, (H3O)0.67±0.03Pb0.33±0.02Fe2.71±0.14Cu0.25±0.01(SO4)2±0.00(OH)5.96±0.30(H2O)0.04±0.002 and (H3O)0.57±0.03Pb0.43±0.02Fe2.70±0.14Zn0.21±0.01(SO4)2±0.00(OH)5.95±0.30(H2O)0.05±0.002, was measured by high temperature oxide melt solution calorimetry and gave ΔH°f = -3691.2 ± 8.6 kJ/mol, ΔH°f = -3653.6 ± 8.2 kJ/mol, and ΔH°f = -3669.4 ± 8.4 kJ/mol, respectively. Using estimated entropies, the standard Gibbs free energy of formation from elements at 298 K ΔG°f of the three compounds were calculated to be -3164.8 ± 9.1, -3131.4 ± 8.7, and -3153.6 ± 8.9 kJ/mol, respectively. Based on these free energies, their log Ksp values are -13.94 ± 1.89, -4.38 ± 1.81 and -3.75 ± 1.80, respectively. For this compounds, a log10{Pb2+}-pH diagram is presented. The diagram shows that the formation of Pb-As jarosite may decrease aqueous arsenic and lead concentrations to meet drinking water standards. The new thermodynamic data confirm that transformation of Pb-As jarosite to plumbojarosite is thermodynamically possible.

  4. Substitution of chromium for univalent copper in superconducting Pb{sub 2}Sr{sub 2}(Ca, Y)Cu{sub 3}O{sub 8-{delta}}

    SciTech Connect

    Seshadri, R.; Maignan, A.; Hervieu, M.

    1996-11-15

    Following considerations of geometry and the similarity between chromate and carbonate groups in terms of size and charge, the authors have investigated the possibility of replacing the two-coordinate Cu{sup I} in superconducting lead cuprates of the general formula Pb{sub 2}Sr{sub 2}(Ca, Y)Cu{sub 3}O{sub 8} by Cr. A high-resolution electron microscopy study coupled with energy dispersive X-ray analysis on small crystals of the title phases suggests that between 10 and 15% of the Cu{sup 1} can be replaced by Cr. While from the present structural study using HRTEM and Rietveld refinement of X-ray powder data the authors are unable to precisely obtain the oxidation state and oxygen coordination of Cr, the authors suggest in analogy with Cr substitution in other similar cuprates that in the title phases Cu{sup I}O{sub 2} rods are partially replaced by tetrahedral CrO{sub 4}{sup 2-} groups. Infrared spectroscopy supports the presence of CrO{sub 4}{sup 2-} groups. The phases Pb{sub 1.75}Sr{sub 2}Ca{sub 0.2}Y{sub 0.8}Cu{sub 3}O{sub 8-{delta}} and Pb{sub 1.75}Sr{sub 2}Ca{sub 0.2}Y{sub 0.8}Cu{sub 2.85}Cr{sub 0.15}O{sub 8-{delta}} are superconducting as-prepared, but the substitution of Cr for Cu{sup I} results in a decrease of the T{sub C} as well as the superconducting volume fraction.

  5. Mechanical and Thermal Properties of Two Cu-Cr-Nb Alloys and NARloy-Z

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Michal, Gary M.

    1996-01-01

    A series of creep tests were conducted on Cu-8 Cr-4 Nb (Cu-8 at.% Cr-4 at.% Nb), Cu-4 Cr-2 Nb (Cu-4 at.% Cr-2 at% Nb), and NARloy-Z (Cu-3 wt.% Ag-0.5 wt.% Zr) samples to determine their creep properties. In addition, a limited number of low cycle fatigue and thermal conductivity tests were conducted. The Cu-Cr-Nb alloys showed a clear advantage in creep life and sustainable load over the currently used NARloy-Z. Increases in life at a given stress were between 100% and 250% greater for the Cu-Cr-Nb alloys depending on the stress and temperature. For a given life, the Cu-Cr-Nb alloys could support a stress between 60% and 160% greater than NARloy-Z. Low cycle fatigue lives of the Cu-8 Cr-4 Nb alloy were equivalent to NARloy-Z at room temperature. At elevated temperatures (538 C and 650 C), the fatigue lives were 50% to 200% longer than NARloy-Z samples tested at 538 C. The thermal conductivities of the Cu-Cr-Nb alloys remained high, but were lower than NARloy-Z and pure Cu. The Cu-Cr-Nb thermal conductivities were between 72% and 96% that of pure Cu with the Cu-4 Cr-2 Nb alloy having a significant advantage in thermal conductivity over Cu-8 Cr4 Nb. In comparison, stainless steels with equivalent strengths would have thermal conductivities less than 25% the thermal conductivity of pure Cu. The combined results indicate that the Cu-Cr-Nb alloys offer an attractive alternative to current high temperature Cu-based alloys such as NARloy-Z.

  6. High temperature coarsening of Cr2Nb precipitates in Cu-8 Cr-4 Nb alloy

    NASA Technical Reports Server (NTRS)

    Anderson, Kenneth Reed

    1996-01-01

    A new high-temperature-strength, high-conductivity Cu-Cr-Nb alloy with a CrNb ratio of 2:1 was developed to achieve improved performance and durability. The Cu-8 Cr4 Nb alloy studied has demonstrated remarkable thermal and microstructural stability after long exposures at temperatures up to 0.98 T(sub m). This stability was mainly attributed to the slow coarsening kinetics of the Cr2Nb precipitates present in the alloy. At all temperatures, the microstructure consists of a bimodal and sometimes trimodal distribution of strengthening Cr2Nb precipitates, depending on precipitation condition, i.e. from liquid or solid solution, and cooling rates. These precipitates remain in the same size range, i.e. large precipitates of approximately I pm, and small precipitates less dm 300 nm, and effectively pin the grain boundaries thus retaining a fine grain size of 2.7 micro-m after 100 h at 1323 K. (A relatively small number of Cr-rich and Nb-rich particles were also present.) This grain boundary pinning and sluggish coarsening of Cr2Nb particles explain the retention of good mechanical properties after prolonged holding at very high temperatures, e.g., 75% of the original hardness after aging for 100 h at 1273 K. Application of LSW-based coarsening models indicated that the coarsening kinetics of the large precipitates are most likely governed by grain boundary diffsion and, to a lesser extent, volume diffusion mechanisms.

  7. Availability of heavy metals (Cd, Pb, And Cr) in agriculture from commercial fertilizers.

    PubMed

    Nacke, H; Gonçalves, A C; Schwantes, D; Nava, I A; Strey, L; Coelho, G F

    2013-05-01

    The purpose of this study was to investigate the availability of the heavy metals cadmium (Cd), lead (Pb), and chromium (Cr) to soil and maize plants fertilized with different sources and doses of zinc (Zn) in a Rhodic Eutrudox soil. For that purpose, concentrations of Cd, Pb, and Cr were evaluated in leaf tissue and grains of maize plants and in 0-20 and 20-40 cm soil layers after fertilization with four doses of Zn from eight different sources of fertilizer. There was no accumulation of Cd, Pb, and Cr in maize grain and Cd and Cr in leaf tissue of the plants; nevertheless, there was accumulation of Pb in leaf tissue, showing its availability throughout different sources of Zn and consequent uptake by plants. Regarding the soil, it was observed that fertilizer from the different sources made Cd, Pb, and Cr available at increasing amounts proportional to increased Zn doses. Under experimental conditions, fertilization with Zn increased concentrations of heavy metals Cd, Pb and Cr in soil, further highlighting the importance of conducting more studies related to the application of mineral fertilizers for micronutrient supply and the availability of heavy metals.

  8. Morphology and crystallography of Cr precipitates in a Cu-0. 33wt% Cr alloy

    SciTech Connect

    Luo, C.P.; Dahmen, U.; Westmacott, K.H.

    1994-06-01

    Lath-shaped, faceted Cr-rich precipitates in a Cu-0.33wt%Cr alloy were investigated by transmission electron microscopy. Their orientation relationship with the matrix was identical for all precipitates observed. One set of close-packed planes in the two phases were exactly parallel, with the close packed directions enclosing an angle of 0.5[degree], a systematic deviation of 0.5[degree] from the Kurdjumov-Sachs orientation relationship, or 5.76[degree] from Nishiyama-Wassermann. The lath axis was aligned precisely with the [[bar 5]6[bar 1

  9. PbCrO4 mediates cellular responses via reactive oxygen species.

    PubMed

    Leonard, Stephen S; Roberts, Jenny R; Antonini, James M; Castranova, Vince; Shi, Xianglin

    2004-01-01

    Exposure to certain particulate hexavalent chromium [Cr(VI)] compounds, such as lead chromate (PbCrO4), has been associated with lung cancer and respiratory tract toxicity. Previous studies indicate that the solubility of Cr(VI)-compounds is an important factor in Cr(VI)-induced carcinogenesis. The present study investigates reactive oxygen species (ROS) generation by PbCrO4 particles and cellular responses using RAW 264.7 cells. A mixture containing PbCrO4 and RAW 264.7 cells generated hydroxyl radical ((.)OH), using cellularly generated H2O2 as a precursor, as measured by electron spin resonance (ESR) spin trapping in combination with H2O2 and (.)OH scavengers, catalase and sodium formate. The effect of ascorbic acid on (.)OH radicals was also measured using ESR. Confocal microscopy showed that particles could become either bound to the cell surface or engulfed over a 120 min time period. H2O2 generation and O2 consumption were also increased after treatment of the cells with PbCrO4. Both NF-kappaB and AP-1 were activated after exposure to PbCrO4 particles as measured by the NF-kappaB or AP-1 luciferase reporter plasmid assay. Our investigation thus demonstrated that the RAW 264.7 cells phagocytized the PbCrO4 particles leading to accumulation of the particles within vacuoles in the cytoplasm. These particles could induce chronic production of ROS and activation of NF-kappaB and AP-1. Such induction of transcription pathways may be involved in the inflammatory and carcinogenic responses induced by Cr(VI)-containing particles.

  10. Phase Transformation in Pb 4(PO 4) 2CrO 4

    NASA Astrophysics Data System (ADS)

    Barbier, Jacques; Maxin, David

    1995-04-01

    A phase transformation has been discovered in the Pb4(PO4)2CrO4 compound between a high-temperature cubic eulytite -type phase and a low-temperature rhombohedral Pb3(PO4)2-type phase. Structural refinements of both phases have been carried out using neutron powder diffraction data. The possible role in the transformation of the stereoactive lone-pairs of electrons on the Pb atoms is discussed.

  11. Low-field spin dynamics of Cr7Ni and Cr7Ni-Cu -Cr 7Ni molecular rings as detected by μ SR

    NASA Astrophysics Data System (ADS)

    Sanna, S.; Arosio, P.; Bordonali, L.; Adelnia, F.; Mariani, M.; Garlatti, E.; Baines, C.; Amato, A.; Sabareesh, K. P. V.; Timco, G.; Winpenny, R. E. P.; Blundell, S. J.; Lascialfari, A.

    2017-11-01

    Muon spin rotation measurements were used to investigate the spin dynamics of heterometallic Cr7Ni and Cr7Ni -Cu-Cr7Ni molecular clusters. In Cr7Ni the magnetic ions are arranged in a quasiplanar ring and interact via an antiferromagnetic exchange coupling constant J , while Cr7Ni -Cu-Cr7Ni is composed of two Cr7Ni linked by a bridging moiety containing one Cu ion, that induces an inter-ring ferromagnetic interaction J'≪J . The longitudinal muon relaxation rate λ collected at low magnetic fields μ0H <0.15 Tesla, shows that the two systems present differences in spin dynamics vs temperature. While both samples exhibit a main peak in the muon relaxation rate vs temperature, at T ˜10 K for Cr7Ni and T ˜8 K for Cr7Ni -Cu-Cr7Ni , the two compounds have distinct additional features: Cr7Ni shows a shoulder in λ (T ) for T <8 K, while Cr7Ni -Cu-Cr7Ni shows a flattening of λ (T ) for T <2 K down to temperatures as low as T =20 mK. The main peak of both systems is explained by a Bloembergen-Purcell-Pound (BPP)-like heuristic fitting model that takes into account of a distribution of electronic spin characteristic times for T >5 K, while the shoulder presented by Cr7Ni can be reproduced by a BPP function that incorporates a single electronic characteristic time theoretically predicted to dominate for T <5 K. The flattening of λ (T ) in Cr7Ni -Cu-Cr7Ni occurring at very low temperature can be tentatively attributed to field-dependent quantum effects and/or to an inelastic term in the spectral density of the electronic spin fluctuations.

  12. Architecture of CuS/PbS heterojunction semiconductor nanowire arrays for electrical switches and diodes.

    PubMed

    Qian, Xuemin; Liu, Huibiao; Chen, Nan; Zhou, Haiqing; Sun, Lianfeng; Li, Yongjun; Li, Yuliang

    2012-06-18

    CuS/PbS p-n heterojunction nanowires arrays have been successfully synthesized. Association of template and DC power sources by controllable electrochemistry processes offers a technique platform to efficiently grow a combined heterojunction nanowire arrays driven by a minimization of interfacial energy. The resulting p-n junction materials of CuS/PbS show highly uniform 1D wire architecture. The single CuS/PbS p-n heterojunction nanowire based devices were fabricated, and their electrical behaviors were investigated. The independent nanowires exhibited a very high ON/OFF ratio of 1195, due to the association effect of electrical switches and diodes.

  13. Deposition of Cu-doped PbS thin films with low resistivity using DC sputtering

    NASA Astrophysics Data System (ADS)

    Soetedjo, Hariyadi; Siswanto, Bambang; Aziz, Ihwanul; Sudjatmoko

    2018-03-01

    Investigation of the electrical resistivity of Cu-doped PbS thin films has been carried out. The films were prepared using a DC sputtering technique. The doping was achieved by introducing the Cu dopant plate material directly on the surface of the PbS sputtering target plate. SEM-EDX data shows the Cu concentration in the PbS film to be proportional to the Cu plate diameter. The XRD pattern indicates the film is in crystalline cubic form. The Hall effect measurement shows that Cu doping yields an increase in the carrier concentration to 3.55 × 1019 cm-3 and a significant decrease in electrical resistivity. The lowest resistivity obtained was 0.13 Ωcm for a Cu concentration of 18.5%. Preferential orientation of (1 1 1) and (2 0 0) occurs during deposition.

  14. CuCrZr alloy microstructure and mechanical properties after hot isostatic pressing bonding cycles

    NASA Astrophysics Data System (ADS)

    Frayssines, P.-E.; Gentzbittel, J.-M.; Guilloud, A.; Bucci, P.; Soreau, T.; Francois, N.; Primaux, F.; Heikkinen, S.; Zacchia, F.; Eaton, R.; Barabash, V.; Mitteau, R.

    2014-04-01

    ITER first wall (FW) panels are a layered structure made of the three following materials: 316L(N) austenitic stainless steel, CuCrZr alloy and beryllium. Two hot isostatic pressing (HIP) cycles are included in the reference fabrication route to bond these materials together for the normal heat flux design supplied by the European Union (EU). This reference fabrication route ensures sufficiently good mechanical properties for the materials and joints, which fulfil the ITER mechanical specifications, but often results in a coarse grain size for the CuCrZr alloy, which is not favourable, especially, for the thermal creep properties of the FW panels. To limit the abnormal grain growth of CuCrZr and make the ITER FW fabrication route more reliable, a study began in 2010 in the EU in the frame of an ITER task agreement. Two material fabrication approaches have been investigated. The first one was dedicated to the fabrication of solid CuCrZr alloy in close collaboration with an industrial copper alloys manufacturer. The second approach investigated was the manufacturing of CuCrZr alloy using the powder metallurgy (PM) route and HIP consolidation. This paper presents the main mechanical and microstructural results associated with the two CuCrZr approaches mentioned above. The mechanical properties of solid CuCrZr, PM CuCrZr and joints (solid CuCrZr/solid CuCrZr and solid CuCrZr/316L(N) and PM CuCrZr/316L(N)) are also presented.

  15. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17%Cr and Cu-17%Cr-5%Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu- 17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 9.5 kJ mol-1. In contrast, the oxidation kinetics for the Cu-17%Cr- 5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR- 5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  16. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu-17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9+/-9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu-17%Cr-5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR-5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  17. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17%Cr and Cu-17%Cr-5%Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu- 17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 +/- 9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu-17%Cr- 5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR- 5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  18. Microstructure-Wear Resistance Correlation and Wear Mechanisms of Spark Plasma Sintered Cu-Pb Nanocomposites

    NASA Astrophysics Data System (ADS)

    Sharma, Amit Siddharth; Biswas, Krishanu; Basu, Bikramjit

    2014-01-01

    The dispersion of a softer phase in a metallic matrix reduces the coefficient of friction (COF), often at the expense of an increased wear rate at the tribological contact. To address this issue, unlubricated fretting wear tests were performed on spark plasma sintered Cu-Pb nanocomposites against bearing steel. The sintering temperature and the Pb content as well as the fretting parameters were judiciously selected and varied to investigate the role of microstructure (grain size, second-phase content) on the wear resistance properties of Cu-Pb nanocomposites. A combination of the lowest wear rate (~1.5 × 10-6 mm3/Nm) and a modest COF (~0.4) was achieved for Cu-15 wt pct Pb nanocomposites. The lower wear rate of Cu-Pb nanocomposites with respect to unreinforced Cu is attributed to high hardness (~2 to 3.5 GPa) of the matrix, Cu2O/Fe2O3-rich oxide layer formation at tribological interface, and exuding of softer Pb particles. The wear properties are discussed in reference to the characteristics of transfer layer on worn surface as well as subsurface damage probed using focused ion beam microscopy. Interestingly, the flash temperature has been found to have insignificant effect on the observed oxidative wear, and alternative mechanisms are proposed. Importantly, the wear resistance properties of the nanocomposites reveal a weak Hall-Petch-like relationship with grain size of nanocrystalline Cu.

  19. Divalent Cu, Cd, and Pb Biosorption in Mixed Solvents

    PubMed Central

    Al-Qunaibit, M. H.

    2009-01-01

    Dead dried Chlorella vulgaris was studied in terms of its performance in binding divalent copper, cadmium, and lead ions from their aqueous or 50% v/v methanol, ethanol, and acetone solutions. The percentage uptake of cadmium ions exhibited a general decrease with decrease in dielectric constant values, while that of copper and lead ions showed a general decrease with increase in donor numbers. Uptake percentage becomes less sensitive to solvent properties the larger the atomic radius of the biosorbed ion, and uptake of copper was the most affected. FT-IR analyses revealed stability of the biomass in mixed solvents and a shift in vibrations of amide(I) and (II), carboxylate, glucose ring, and metal oxygen upon metal binding in all media. ΔνCOO values (59–69 cm−1) confirmed bidentate metal coordination to carboxylate ligands. The value of ν asCOO increased slightly upon Cu, Cd, and Pb biosorption from aqueous solutions indicating lowering of symmetry, while a general decrease was noticed in mixed solvents pointing to the opposite. M–O stretching frequencies increased unexpectedly with increase in atomic mass as a result of solvent effect on the nature of binding sites. Lowering polarity of the solvent permits variations in metal-alga bonds strengths; the smaller the metal ion, the more affected. PMID:19688108

  20. Divalent cu, cd, and pb biosorption in mixed solvents.

    PubMed

    Al-Qunaibit, M H

    2009-01-01

    Dead dried Chlorella vulgaris was studied in terms of its performance in binding divalent copper, cadmium, and lead ions from their aqueous or 50% v/v methanol, ethanol, and acetone solutions. The percentage uptake of cadmium ions exhibited a general decrease with decrease in dielectric constant values, while that of copper and lead ions showed a general decrease with increase in donor numbers. Uptake percentage becomes less sensitive to solvent properties the larger the atomic radius of the biosorbed ion, and uptake of copper was the most affected. FT-IR analyses revealed stability of the biomass in mixed solvents and a shift in vibrations of amide(I) and (II), carboxylate, glucose ring, and metal oxygen upon metal binding in all media. Delta(nuCOO) values (59-69 cm(-1)) confirmed bidentate metal coordination to carboxylate ligands. The value of nu(as)COO increased slightly upon Cu, Cd, and Pb biosorption from aqueous solutions indicating lowering of symmetry, while a general decrease was noticed in mixed solvents pointing to the opposite. M-O stretching frequencies increased unexpectedly with increase in atomic mass as a result of solvent effect on the nature of binding sites. Lowering polarity of the solvent permits variations in metal-alga bonds strengths; the smaller the metal ion, the more affected.

  1. Total metal concentrations and partitioning of Cd, Cr, Cu, Fe, Ni and Zn in sewage sludge.

    PubMed

    Scancar, J; Milacic, R; Strazar, M; Burica, O

    2000-04-24

    Application of the BCR three-step sequential extraction procedure to sewage sludge samples collected at an urban wastewater treatment plant (Domzale, Slovenia) is reported. The total concentrations of Cd, Cr, Cu, Fe, Ni and Zn and their concentrations in fractions after extraction were determined by flame or electrothermal atomic absorption spectrometry (FAAS, ETAAS) under optimised measurement conditions. Total acid digestion including hydrofluoric acid (HF) treatment and aqua regia extraction were compared in order to estimate the efficiency of aqua regia extraction for determination of total metal concentrations in sewage sludge. It was found experimentally that aqua regia quantitatively leached these heavy metals from the sewage sludge and could therefore be applied in analysis of total heavy metal concentrations. The total concentrations of 856 mg kg(-1) Cr, 621 mg kg(-1) Ni and 2032 mg kg(-1) Zn were higher than those set by Slovenian legislation for sludge to be used in agriculture. Total concentrations of 2.78 mg kg(-1) Cd, 433 mg kg(-1) Cu and 126 mg kg(-1) Pb were below those permitted in the relevant legislation. CRM 146R reference material was used to follow the quality of the analytical process. The results of the BCR three-step sequential extraction procedure indicate high Ni and Zn mobility in the sludge analysed. The other heavy metals were primarily in sparingly soluble fractions and hence poorly mobile. Due to the high total Ni concentration and its high mobility the investigated sewage sludge could not be used in agriculture.

  2. Electronic structure of CuCr 2S 4 by XPS, XANES and EXAFS

    NASA Astrophysics Data System (ADS)

    Lenglet, M.; Foulatier, P.; D'Huysser, A.; Jørgensen, C. K.; Dürr, J.

    1988-03-01

    The present paper reports the K X-ray absorption spectra of copper and chromium and XPS spectra (Cu2p 3/2, Cr2p 3/2 and S2p levels) in the copper-chromium chalcogenide spinel CuCr 2S 4. From XAS measurements (chemical shift of the K absorption discontinuity of copper and Cr-S distance) and XPS study (at 293 and 493 K) one can conclude in a valence distribution: Cu +[Cr 2- x3+Cr x4+]S 4 with two inequivalent sulfur atoms.

  3. Involvement of CTR1 and ATP7A in lead (Pb)-induced copper (Cu) accumulation in choroidal epithelial cells.

    PubMed

    Zheng, Gang; Zhang, Jieqiong; Xu, Yan; Shen, Xuefeng; Song, Han; Jing, Jinfei; Luo, Wenjing; Zheng, Wei; Chen, Jingyuan

    2014-02-10

    The blood-cerebrospinal fluid barrier (BCB) plays a key role in maintaining copper (Cu) homeostasis in the brain. Cumulative evidences indicate that lead (Pb) exposure alters cerebral Cu homeostasis, which may underlie the development of neurodegenerative diseases. This study investigated the roles of Cu transporter 1 (CTR1) and ATP7A, two Cu transporters, in Pb-induced Cu accumulation in the choroidal epithelial cells. Pb exposure resulted in increased intracellular (64)Cu retention, accompanying with up-regulated CTR1 level. Knockdown of CTR1 using siRNA before Pb exposure diminished the Pb-induced increase of (64)Cu uptake. The expression level of ATP7A was down-regulated following the Pb exposure. ATP7A siRNA knockdown, or PCMB treatment, inhibited the (64)Cu efflux from the cells, while the following additional incubation with Pb failed to further increase the intracellular (64)Cu retention. Cu exposure, or intracellular Cu accumulation following the tetracycline (Tet)-induced overexpression of CTR1, did not result in significant change in ATP7A expression. Taken together, these data indicate that CTR1 and ATP7A play important roles in Cu transport in choroidal epithelial cells, and the Pb-induced intracellular Cu accumulation appears to be mediated, at least in part, via the alteration of CTR1 and ATP7A expression levels following Pb exposure. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Biosorption of Cu2+ and Pb2+ using sophora alopecuroides residue

    NASA Astrophysics Data System (ADS)

    Feng, N.; Fan, W.; Zhu, M.; Zhang, Y.

    2016-08-01

    Sophora alopecuroides residue (SAP), a kind of traditional Chinese herbal medicine residue, was developed in an alternative biosorbent for the removal Cu2+ and Pb2+ in simulated wastewater. The morphology and surface texture of SAP were characterized by scanning electron microscopy, which showed a loose and porous structure. The biosorption experiments of Cu2+ and Pb2+ onto SAP were investigated by using batch techniques. High biosorption percentage appeared at pH values of 4.5-6.0. The experimental data followed the second-order kinetic model well. Equilibrium fit with the Langmuir isotherm model well. The maximum biosorption capacity of an adsorbent at 25 °C was respectively 60.6 mg/g Cu2+ and 128.1 mg/g Pb2+. The findings of the present study show that SAP is an attractive and effective biosorbent for Cu2+ and Pb2+.

  5. Preparation of 110K (Bi, Pb)-Sr-Ca-Cu-O superconductor from glass precursor

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1989-01-01

    The Bi1.5Pb0.5Sr2Ca2Cu3O(x) glass, prepared by rapid quenching of the melt, showed T(sub g) of 383 C, crystallization temperature of approx. 446 C, melting temperature of approx. 855 C, and bulk density of 5.69 g/cu. cm. in air. The as-quenched glass was oxygen deficient. On heating in O2, it showed a slow, irreversible, and continuous weight gain starting at approx. 530 C. The influence of annealing conditions on the formation of various phases was investigated by XRD and electrical resistivity measurements. The 110K-T(sub c) phase did not form below 840 C. The amount of this phase increased with the sintering time at 840 C. A sample annealed at 840 C for 243 h in air and furnace cooled showed the highest T(sub c)(R=0) of 107.2K and transition width delta T(sub c)(10 to 90 percent) of approx. 2 K.

  6. The General Isothermal Oxidation Behavior of Cu-8Cr-4Nb

    NASA Technical Reports Server (NTRS)

    Thomas-Ogbuji, L. U.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Oxidation kinetics of Cu-8Cr-4Nb was investigated by TGA (thermogravimetric) exposures between 500 and 900-C (at 25-50 C intervals) and the oxide scale morphologies examined by microscopy and micro-analysis. Because Cu-8Cr-4Nb is comprised of fine Cr2Nb precipitates in a Cu matrix, the results were interpreted by comparison with the behavior of copper (OFHC) and 'NARloy-Z' (a rival candidate material for thrust cell liner applications in advanced rocket engines) under the same conditions. While NARloy-Z and Cu exhibited identical oxidation behavior, Cu-8Cr-4Nb differed markedly in several respects: below approx. 700 C its oxidation rates were significantly lower than those of Cu; At higher temperatures its oxidation rates fell into two categories: an initial rate exceeding that of Cu, and a terminal rate comparable to that of Cu. Differences in oxide morphologies paralleled the kinetic differences at higher temperature: While NARloy-Z and Cu produced a uniform oxide scale of Cu2O inner layer and CuO outer layer, the inner (Cu2O) layer on Cu-8Cr-4Nb was stratified, with a highly porous/spongy inner stratum (responsible for the fast initial kinetics) and a dense/blocky outer stratum (corresponding to the slow terminal kinetics). Single and spinel oxides of Nb and Cr were found at the interface between the oxide scale and Cu-8Cr-4Nb substrate and it appears that these oxides were responsible for its suppressed oxidation rates at the intermediate temperatures. No difference was found between Cu-8Cr-4Nb oxidation in air and in oxygen at 1.0 atm.

  7. Magnetism of the A -site ordered perovskites CaCu3Cr4O12 and LaCu3Cr4O12

    NASA Astrophysics Data System (ADS)

    Sugiyama, Jun; Nozaki, Hiroshi; Umegaki, Izumi; Miwa, Kazutoshi; Higemoto, Wataru; Ansaldo, Eduardo J.; Brewer, Jess H.; Sakurai, Hiroya; Isobe, Masahiko; Takagi, Hidenori; Mânsson, Martin

    2018-01-01

    The microscopic magnetic nature of the A -site ordered chromium perovskites CaCu3Cr4O12 and LaCu3Cr4O12 and their solid-solution system, Ca1 -xLaxCu3Cr4O12 , with x =0.2 , 0.4, and 0.8, has been studied with muon spin rotation and relaxation (μ+SR ) measurements down to 2 K using a powder sample. For CaCu3Cr4O12 , μ+SR revealed the formation of static antiferromagnetic (AF) order below 122 K (=TN ), although magnetization measurements showed a very small change at TN. Analyses of the internal magnetic field Hint at the muon sites, predicted with first-principles calculations, suggested G -type AF order as a ground state. For LaCu3Cr4O12 with TN=225 K, μ+SR also supported the presence of a G -type AF ordered state, which was recently proposed based on neutron diffraction measurements. However, the ordered Cr moments were found to change the direction at around 10 K. For Ca1 -xLaxCu3Cr4O12 , both TN and Hint at 2 K increase monotonically with x .

  8. Engineering of electronic and optical properties of PbS thin films via Cu doping

    NASA Astrophysics Data System (ADS)

    Touati, Baligh; Gassoumi, Abdelaziz; Dobryden, Illia; Natile, Marta Maria; Vomiero, Alberto; Turki, Najoua Kamoun

    2016-09-01

    Copper-doped PbS polycrystalline thin films were deposited by chemical bath deposition by adding small amount of Cu (ysolution = [Cu2+]/[Pb2+]) between 0.5 and 2 at%. The composition, structure, morphology, optical and electrical properties of the films were investigated by means of X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS), atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray photoemission spectroscopy (XPS), UV-visible-near infrared (UV-Vis-NIR) spectrophotometry and Hall effect measurements. The XRD studies showed that the undoped films have PbS face centered cubic structure with (111) preferential orientation, while preferential orientation changes to (200) plane with increasing Cu doping concentration. The AFM and SEM measurements indicated that the film surfaces consisted of nanosized grains with pyramidal shape. Optical band gap was blue shifted from 0.72 eV to 1.69 eV with the increase in Cu doping concentration. The film obtained with the [Cu2+]/[Pb2+] ratio equal to 1.5 at% Cu showed the minimum resistivity of 0.16 Ω cm at room temperature and optimum value of optical band gap close to 1.5 eV. 1.5 at% Cu-doped PbS thin films exhibit the best optical and electrical properties, suitable for solar cells applications.

  9. Varied roles of Pb in transition-metal PbMO3 perovskites (M = Ti, V, Cr, Mn, Fe, Ni, Ru)

    PubMed Central

    Goodenough, John B; Zhou, Jianshi

    2015-01-01

    Different structural chemistries resulting from the Pb2+ lone-pair electrons in the PbMO3 perovskites are reviewed. The Pb2+ lone-pair electrons enhance the ferroelectric transition temperature in PbTiO3, stabilize vanadyl formation in PbVO3, and induce a disproportionation reaction of CrIV in PbCrO3. A Pb2+ + NiIV = Pb4+ + NiII reaction in PbNiO3 stabilizes the LiNbO3 structure at ambient pressure, but an A-site Pb4+ in an orthorhombic perovskite PbNiO3 is stabilized at modest pressures at room temperature. In PbMnO3, a ferroelectric displacement due to the lone pair electron effect is minimized by the spin–spin exchange interaction and the strong octahedral site preference of the MnIV/III cation. PbRuO3 is converted under pressure from the defective pyrochlore to the orthorhombic (Pbnm) perovskite structure where Pb–Ru interactions via a common O −2p orbital stabilize at low temperature a metallic Imma phase at ambient pressure. Above Pc a covalent Pb–Ru bond is formed by Pb2+ + RuIV = Pb4+ + RuII electron sharing. PMID:27877814

  10. Influence of Zn additions on the interfacial reaction and microstructure of Sn37Pb/Cu solder joints

    NASA Astrophysics Data System (ADS)

    Qiu, Yu; Hu, Xiaowu; Li, Yulong; Jiang, Xiongxin

    2017-10-01

    The effects of Zn (5 and 10 wt%) additions into Sn37Pb solder and isothermal solid state aging on the interfacial reactions between Sn37Pb- xZn solders and Cu substrates were investigated in this study. It was found that the addition of Zn changed the types and morphologies of interfacial IMC layers during reflowing and thereafter under aging condition. During reflowing, the planar-type Cu5Zn8 compound was the interfacial IMC for Sn37Pb- xZn (5 and 10 wt%) solder, while the scallop-type Cu6Sn5 was the interfacial IMC for Sn37Pb solder. After aging, the final interfacial structure for Sn37Pb-5Zn solder was solder/Cu5Zn8/Cu6(Sn,Zn)5/Cu, while solder/Cu6Sn5/Cu3Sn/Cu for Sn37Pb solder and solder/Cu5Zn8/Cu for Sn37Pb-10Zn solder, respectively. The Kirkendall voids disappeared with Zn addition into Sn37Pb solder. For the Sn37Pb-5Zn/Cu solder joint, the thickness of Cu6(Sn,Zn)5 layer increased, while the thickness of Cu5Zn8 layer decreased with aging time extended to 360 h due to the decomposition of the Cu5Zn8 IMC layer by diffusing Cu and Zn atoms into nether IMC layer, combining Sn atoms diffused from solder matrix to form Cu6(Sn,Zn)5 IMCs. Furthermore, the growth of Cu6Sn5 and Cu3Sn layers for Sn37Pb/Cu solder joint and the total IMC layer at the interface of Sn37Pb- xZn ( x = 0, 5, and 10 wt%) solder with Cu substrate followed the diffusion control mechanism. Compared to the Sn37Pb-5Zn/Cu solder joint, higher Zn concentration depressed the growth of Cu5Zn8 layer for Sn37Pb-10Zn solder. In the end, refining effect on IMC grains was found by the addition of Zn into Sn37Pb solder and the 10 wt% Zn-doping significantly refined the interfacial IMC grains.

  11. Dielectric properties of multiferroic CuCrO2

    NASA Astrophysics Data System (ADS)

    Apostolov, Angel T.; Apostolova, Illiana N.; Trimper, Steffen; Wesselinowa, Julia M.

    2017-12-01

    We propose a microscopic model in order to study the multiferroic properties of the triangular compound CuCrO2 taking into account antiferromagnetic interactions in the ab plane, spin-phonon interactions and quadratic magnetoelectric (ME) coupling. The temperature and magnetic field dependence of the polarization Pab and dielectric constant ɛab is calculated. Pab increases when h is parallel to its direction and decreases when h is perpendicular to it. We show that ɛab has a kink near the magnetic phase transition TN = 24 K which disappears with increasing of an external magnetic field hab. This behavior is an evidence for a strong ME coupling and in qualitative agreement with the experimental data.

  12. Peel strength in the Cu/Cr/polyimide system

    SciTech Connect

    Park, I.S.; Yu, J.; Park, Y.B.

    1997-05-01

    In the microelectronics industry, the adhesion strength of thin metal films to dielectric substrate is often measured by the peel test and the peel strength is directly related to the interfacial fracture resistance. In order to understand the effects of plastic deformation and the interfacial fracture energy on the peel strength, thickness of the metal layer and the pretreatment conditions of polyimide were varied in the Cu/Cr/polyimide system. The work expenditure during the peel test was estimated using the stress strain curves of metal films, X-ray measurements of the plastic strain in the peeled films, and the elastoplastic beam analysis.more » Results indicate that the peel strength is strongly affected by the film thickness and the pretreatment condition in a synergistic way, and that the measured peel strength is more a measure of the plastic deformation during the peel test than a measure of the true interfacial energy.« less

  13. Orientation dependence of heterogeneous nucleation at the Cu-Pb solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Palafox-Hernandez, J. Pablo; Laird, Brian B.

    2016-12-01

    In this work, we examine the effect of surface structure on the heterogeneous nucleation of Pb crystals from the melt at a Cu substrate using molecular-dynamics (MD) simulation. In a previous work [Palafox-Hernandez et al., Acta Mater. 59, 3137 (2011)] studying the Cu/Pb solid-liquid interface with MD simulation, we observed that the structure of the Cu(111) and Cu(100) interfaces was significantly different at 625 K, just above the Pb melting temperature (618 K for the model). The Cu(100) interface exhibited significant surface alloying in the crystal plane in contact with the melt. In contrast, no surface alloying was seen at the Cu(111) interface; however, a prefreezing layer of crystalline Pb, 2-3 atomic planes thick and slightly compressed relative to bulk Pb crystal, was observed to form at the interface. We observe that at the Cu(111) interface the prefreezing layer is no longer present at 750 K, but surface alloying in the Cu(100) interface persists. In a series of undercooling MD simulations, heterogeneous nucleation of fcc Pb is observed at the Cu(111) interface within the simulation time (5 ns) at 592 K—a 26 K undercooling. Nucleation and growth at Cu(111) proceeded layerwise with a nearly planar critical nucleus. Quantitative analysis yielded heterogeneous nucleation barriers that are more than two orders of magnitude smaller than the predicted homogeneous nucleation barriers from classical nucleation theory. Nucleation was considerably more difficult on the Cu(100) surface-alloyed substrate. An undercooling of approximately 170 K was necessary to observe nucleation at this interface within the simulation time. From qualitative observation, the critical nucleus showed a contact angle with the Cu(100) surface of over 90°, indicating poor wetting of the Cu(100) surface by the nucleating phase, which according to classical heterogeneous nucleation theory provides an explanation of the large undercooling necessary to nucleate on the Cu(100) surface

  14. Removal of Cu (II) and Pb (II) from Aqueous Solution using engineered Iron Oxide Nanoparticles

    PubMed Central

    Tamez, Carlos; Hernandez, Rebecca; Parsons, J. G.

    2015-01-01

    Nano-sized Fe3O4 and Fe2O3 were synthesized using a precipitation method. The nanomaterials were tested as adsorbents for the removal of both Cu2+ and Pb2+ ions. The nanomaterials were characterized using X-ray powder diffraction to determine both the phase and the average grain size of the synthesized nanomaterials. Batch pH studies were performed to determine the optimum binding pH for both the Cu2+ and Pb2+ to the synthesized nanomaterials. The optimum binding was observed to occur at pH 4 and above. Time dependency studies for Cu2+ and Pb2+ showed the binding occurred within the first five minutes of contact and remained constant up to 2 hours of contact. Isotherm studies were utilized to determine the binding capacity of each of the nanomaterials for Cu2+ and Pb2+. The binding capacity of Fe3O4 with Cu2+ and Pb2+ were 37.04 mg/g and 166.67 mg/g, respectively. The binding capacities of the Fe2O3 nanomaterials with Cu2+ and Pb2+ were determined to be 19.61 mg/g and 47.62 mg/g, respectively. In addition, interference studies showed no significant reduction in the binding of either Cu2+ or Pb2+ to the Fe3O4 or Fe2O3 nanomaterials in the presence of solutions containing the individual ions Na+, K+, Mg2+ and Ca2+ or a solution consisting of a combination of all the aforementioned cations in one solution. PMID:26811549

  15. Protection of Advanced Copper Alloys With Lean Cu-Cr Coatings

    NASA Technical Reports Server (NTRS)

    Greenbauer-Seng, L. (Technical Monitor); Thomas-Ogbuji, L.

    2003-01-01

    Advanced copper alloys are used as liners of rocket thrusters and nozzle ramps to ensure dissipation of the high thermal load generated during launch, and Cr-lean coatings are preferred for the protection of these liners from the aggressive ambient environment. It is shown that adequate protection can be achieved with thin Cu-Cr coatings containing as little as 17 percent Cr.

  16. Simultaneous analysis of Cr and Pb in contaminated pork by laser-induced breakdown spectroscopy.

    PubMed

    Yao, Mingyin; Rao, Gangfu; Huang, Lin; Liu, Muhua; Yang, Hui; Chen, Jinyin; Chen, Tianbing

    2017-10-10

    Laser-induced breakdown spectroscopy (LIBS) as a rapid and green method was used to detect heavy metals Cr and Pb in pork contaminated in the lab. The laser-induced plasma was generated by a Q-switched Nd:YAG laser, and the LIBS signal was collected by a spectrometer with a charge-coupled device detector. The traditional calibration curves (CC) and multivariate partial least squares (PLS) algorithm were applied and compared to validate the accuracy in predicting the content of heavy metals in samples. The results demonstrated that the correlation coefficient of CC is poor by the classical univariate calibration method, so the univariate calibration analysis cannot effectively serve the quantitative purpose in analyzing heavy metals' residue in pork with a complex matrix. The analysis accuracy was improved effectively by the PLS method, and the correlation coefficient is 0.9894 for Cr and 0.9908 for Pb. The concentration of Cr and Pb in samples from a prediction set was obtained using the PLS calibration method, and the average relative errors for the 21 samples in the prediction set are lower than 6.53% and 7.82% for Cr and Pb, respectively. The investigated results display that the matrix effect would be reduced effectively during the quantitative analysis of pork by a LIBS-combined PLS model, and the predictive accuracy would be improved greatly compared to traditional univariate analysis.

  17. Theoretical study of the Pb adsorption on Ni, Cr, Fe surfaces and on Ni based alloys

    NASA Astrophysics Data System (ADS)

    Bonnet, Marie-Laure; Costa, Dominique; Protopopoff, Elie; Marcus, Philippe

    2017-12-01

    Adsorption of Pb atoms on the Ni(111), Ni(100), Fe(110), and Cr(110) metallic surfaces was studied theoretically within an ab initio density functional theory approach (DFT). (√3 × √3)R30° super structures for Ni(111), and (2 × 2) for the other surfaces, corresponding to the saturation state, were considered. The preferred adsorption sites are found to be ternary sites for Ni(111), Fe(110), Cr(110) and quaternary sites for Ni(100). Adsorption on Fe and Cr is less exothermic than on Ni, by 0.16 and 0.33 eV/mol respectively. Adsorption on model surfaces of Ni based alloys was also investigated. It was found that the energy of adsorption depends mostly on the chemical composition of the ternary site, and can be described by a linear combination of the energies of adsorption on the pure metals. The nature of the second nearest neighbour of the adsorbed Pb atom has no significant influence on the adsorption energy. Average energies of adsorption were calculated in two cases: the limit of low coverage, and the saturation. The energies of adsorption of Pb at saturation on nickel base alloy surface representative of alloy 600 (Ni-15Cr-8Fe) and alloy 690 (Ni-30Cr-8Fe) were calculated to be 0.07 and 0.11 eV lower than on pure Ni respectively.

  18. Development of a new Pb-free solder: Sn-Ag-Cu

    SciTech Connect

    Miller, Chad M.

    1995-02-10

    With the ever increasing awareness of the toxicity of Pb, significant pressure has been put on the electronics industry to get the Pb out of solder. This work pertains to the development and characterization of an alloy which is Pb-free, yet retains the proven positive qualities of current Sn-Pb solders while enhancing the shortcomings of Sn-Pb solder. The solder studied is the Sn-4.7Ag-1.7Cu wt% alloy. By utilizing a variety of experimental techniques the alloy was characterized. The alloy has a melting temperature of 217°C and exhibits eutectic melting behavior. The solder was examined by subjecting to different annealing schedules and examining the microstructural stability. The effect of cooling rate on the microstructure of the solder was also examined. Overall, this solder alloy shows great promise as a viable alternative to Pb-bearing solders and, as such, an application for a patent has been filed.

  19. Effect of different Zr contents on properties and microstructure of Cu-Cr-Zr alloys

    NASA Astrophysics Data System (ADS)

    Jinshui, Chen; Bin, Yang; Junfeng, Wang; Xiangpeng, Xiao; Huiming, Chen; Hang, Wang

    2018-02-01

    The crystallography and morphology of precipitate particles of Cu-Cr-Zr alloys with varying Zr contents were studied by transmission electron microscopy (TEM) after solution treatments at 950 °C for 1 h and aging treatments at 500 °C for different times ranged from 0.5 h to 24 h. The microhardness and electrical conductivity of Cu-Cr-Zr alloys after various aging process were tested. The results show that the microhardness and electrical conductivity rapidly increased at first, then the microhardness decreased slowly after reaching the peak, while the conductivity continues to increase. Nano-scaled precipitates exhibit two kinds of morphology (coffee bean and ellipse shaped). With increasing Zr content, the Zr-containing precipitation sequence of Cu-Cr-Zr alloys at peak-ageing is Heusler CrCu2Zr → Cu5Zr → Cu4Zr. The Heusler CrCu2Zr phase decomposed into fine and homogeneous Cr and Cu4Zr, resulting in improved alloy properties.

  20. Remediation of Pb/Cr co-contaminated soil using electrokinetic process and approaching electrode technique.

    PubMed

    Ng, Yee-Sern; Sen Gupta, Bhaskar; Hashim, Mohd Ali

    2016-01-01

    Electrokinetic process has emerged as an important tool for remediating heavy metal-contaminated soil. The process can concentrate heavy metals into smaller soil volume even in the absence of hydraulic flow. This makes it an attractive soil pre-treatment method before other remediation techniques are applied such that the chemical consumption in the latter stage can be reduced. The present study evaluates the feasibility of electrokinetic process in concentrating lead (Pb) and chromium (Cr) in a co-contaminated soil using different types of wetting agents, namely 0.01 M NaNO3, 0.1 M citric acid and 0.1 M EDTA. The data obtained showed that NaNO3 and citric acid resulted in poor Pb electromigration in this study. As for Cr migration, these agents were also found to give lower electromigration rate especially at low pH region as a result of Cr(VI) adsorption and possible reduction into Cr(III). In contrast, EDTA emerged as the best wetting agent in this study as it formed water-soluble anionic complexes with both Pb and Cr. This provided effective one-way electromigration towards the anode for both ions, and they were accumulated into smaller soil volume with an enrichment ratio of 1.55-1.82. A further study on the application of approaching cathode in EDTA test showed that soil alkalisation was achieved, but this did not provide significant enhancement on electromigration for Pb and Cr. Nevertheless, the power consumption for electrokinetic process was decreased by 22.5%.

  1. Assessment of Pb, Cd, Cr and Ag leaching from electronics waste using four extraction methods.

    PubMed

    Keith, Ashley; Keesling, Kara; Fitzwater, Kendra K; Pichtel, John; Houy, Denise

    2008-12-01

    Heavy metals present in electronic components may leach upon disposal and therefore pose significant environmental hazards. The potential leaching of Pb, Cd, Cr and Ag from PC cathode ray tubes, printed circuit boards (PCBs), PC mice, TV remote controls, and mobile phones was assessed. After controlled crushing, each component was extracted using the Toxicity Characteristic Leaching Procedure (TCLP), EPA Method 1312 (SPLP), NEN 7371 (Dutch Environmental Agency), and DIN S4 (Germany). The TCLP consistently leached the greatest amounts of Pb from all components. The SPLP, NEN 7371 and DIN S4 extracted relatively small amounts of metals compared with the TCLP and were not considered effective as leaching tests for e-waste. The smallest size fraction (< 2 mm) of CRT glass and PCBs leached significantly (p < 0.05) highest Pb via the TCLP. A modified TCLP removed 50.9% more extractable Pb compared with the conventional procedure.

  2. Removal of Cd, Cr, and Pb from aqueous solution by unmodified and modified agricultural wastes.

    PubMed

    Mahmood-Ul-Hassan, Muhammad; Suthor, Vishandas; Rafique, Ejaz; Yasin, Muhammad

    2015-02-01

    The adsorption of cadmium (Cd), chromium (Cr), and lead (Pb), widely detected in wastewater, by unmodified and modified banana stalks, corn cob, and sunflower achene was explored. The three agricultural wastes were chemically modified with sodium hydroxide (NaOH), in combination with nitric acid (HNO3) and sulfuric acid (H2SO4), in order to improve their adsorptive binding capacity. The experiments were conducted as a function of contact time and initial metal ion concentrations. Of the three waste materials, corn cob had the highest adsorptive capacity for Pb than Cr and Cd. The NaOH-modified substrates had higher adsorptive capacity than the acid modified samples. The chemical treatment invariably increased the adsorption capacity between 10 and 100 %. The Langmuir maximum sorption capacity (q m) of Pb was highest (21-60 mg g(-1) of banana, 30-57 mg g(-1) of corn cob, and 23-28 mg g(-1) of sunflower achene) and that of Cd was least (4-7 mg g(-1) of banana, 14-20 mg g(-1) of corn cob, and 11-16 mg g(-1) of sunflower achene). The q m was in the order of Pb > Cr > Cd for all the three adsorbents. The results demonstrate that the agricultural waste materials used in this study could be used to remediate water polluted with heavy metals.

  3. Lead chromate detected as a source of atmospheric Pb and Cr (VI) pollution

    NASA Astrophysics Data System (ADS)

    Lee, Pyeong-Koo; Yu, Soonyoung; Chang, Hye Jung; Cho, Hye Young; Kang, Min-Ju; Chae, Byung-Gon

    2016-10-01

    Spherical black carbon aggregates were frequently observed in dust dry deposition in Daejeon, Korea. They were tens of micrometers in diameter and presented a mixture of black carbon and several mineral phases. Transmission electron microscopy (TEM) observations with energy-dispersive X-ray spectroscopy (EDS) and selected area diffraction pattern (SADP) analyses confirmed that the aggregates were compact and included significant amounts of lead chromate (PbCrO4). The compositions and morphologies of the nanosized lead chromate particles suggest that they probably originated from traffic paint used in roads and were combined as discrete minerals with black carbon. Based on Pb isotope analysis and air-mass backward trajectories, the dust in Daejeon received a considerable input of anthropogenic pollutants from heavily industrialized Chinese cities, which implies that long-range transported aerosols containing PbCrO4 were a possible source of the lead and hexavalent chromium levels in East Asia. Lead chromate should be considered to be a source of global atmospheric Pb and Cr(VI) pollution, especially given its toxicity.

  4. Lead chromate detected as a source of atmospheric Pb and Cr (VI) pollution.

    PubMed

    Lee, Pyeong-Koo; Yu, Soonyoung; Chang, Hye Jung; Cho, Hye Young; Kang, Min-Ju; Chae, Byung-Gon

    2016-10-25

    Spherical black carbon aggregates were frequently observed in dust dry deposition in Daejeon, Korea. They were tens of micrometers in diameter and presented a mixture of black carbon and several mineral phases. Transmission electron microscopy (TEM) observations with energy-dispersive X-ray spectroscopy (EDS) and selected area diffraction pattern (SADP) analyses confirmed that the aggregates were compact and included significant amounts of lead chromate (PbCrO4). The compositions and morphologies of the nanosized lead chromate particles suggest that they probably originated from traffic paint used in roads and were combined as discrete minerals with black carbon. Based on Pb isotope analysis and air-mass backward trajectories, the dust in Daejeon received a considerable input of anthropogenic pollutants from heavily industrialized Chinese cities, which implies that long-range transported aerosols containing PbCrO4 were a possible source of the lead and hexavalent chromium levels in East Asia. Lead chromate should be considered to be a source of global atmospheric Pb and Cr(VI) pollution, especially given its toxicity.

  5. Chemical behavior of Cu, Zn, Cd, and Pb in a eutrophic reservoir: speciation and complexation capacity.

    PubMed

    Tonietto, Alessandra Emanuele; Lombardi, Ana Teresa; Choueri, Rodrigo Brasil; Vieira, Armando Augusto Henriques

    2015-10-01

    This research aimed at evaluating cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) speciation in water samples as well as determining water quality parameters (alkalinity, chlorophyll a, chloride, conductivity, dissolved organic carbon, dissolved oxygen, inorganic carbon, nitrate, pH, total suspended solids, and water temperature) in a eutrophic reservoir. This was performed through calculation of free metal ions using the chemical equilibrium software MINEQL+ 4.61, determination of labile, dissolved, and total metal concentrations via differential pulse anodic stripping voltammetry, and determination of complexed metal by the difference between the total concentration of dissolved and labile metal. Additionally, ligand complexation capacities (CC), such as the strength of the association of metals-ligands (logK'ML) and ligand concentrations (C L) were calculated via Ruzic's linearization method. Water samples were taken in winter and summer, and the results showed that for total and dissolved metals, Zn > Cu > Pb > Cd concentration. In general, higher concentrations of Cu and Zn remained complexed with the dissolved fraction, while Pb was mostly complexed with particulate materials. Chemical equilibrium modeling (MINEQL+) showed that Zn(2+) and Cd(2+) dominated the labile species, while Cu and Pb were complexed with carbonates. Zinc was a unique metal for which a direct relation between dissolved species with labile and complexed forms was obtained. The CC for ligands indicated a higher C L for Cu, followed by Pb, Zn, and Cd in decreasing amounts. Nevertheless, the strength of the association of all metals and their respective ligands was similar. Factor analysis with principal component analysis as the extraction procedure confirmed seasonal effects on water quality parameters and metal speciation. Total, dissolved, and complexed Cu and total, dissolved, complexed, and labile Pb species were all higher in winter, whereas in summer, Zn was mostly present in the

  6. Microstructures and Thermal Properties of Cold-Sprayed Cu-Cr Composite Coatings

    NASA Astrophysics Data System (ADS)

    Kikuchi, S.; Yoshino, S.; Yamada, M.; Fukumoto, M.; Okamoto, K.

    2013-08-01

    Copper-based composites for thermal conductive components were prepared via the cold spray process, and the deposition efficiency and adhesion morphology of feedstock powders on Cu substrate were evaluated. Cu-based composites were fabricated using Cu-Cr mixed powders with their mixture ratio of 20, 35, 50, and 65 mass% Cr onto oxygen-free copper substrate with N2 carrier gas. Cu-Cr composite coatings were investigated for their Cr content ratio, microstructures, and thermal conductivity. The Cr content ratio in the coating was approximately 50-60% of feedstock mixture ratio due to the low formability of the hard particles. Transmission electron microscopy characterizations revealed that an oxygen-rich layer exists at the Cr particle/Cu substrate interface, which contributes to the deposition of the Cr particles. After the heat treatment at 1093 K, the coatings showed denser cross-sectional structures than those before the heat treatment, and the thermal conductivity was improved as a result of the recrystallization of Cu matrix.

  7. Synthesis of highly phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor

    DOEpatents

    Dorris, S.E.; Poeppel, R.B.; Prorok, B.C.; Lanagan, M.T.; Maroni, V.A.

    1994-10-11

    An article and method of manufacture of (Bi,Pb)-Sr-Ca-Cu-O superconductor are disclosed. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi,Pb)-Sr-Ca-Cu-O superconductor. 5 figs.

  8. Synthesis of highly phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor

    DOEpatents

    Dorris, Stephen E.; Poeppel, Roger B.; Prorok, Barton C.; Lanagan, Michael T.; Maroni, Victor A.

    1994-01-01

    An article and method of manufacture of (Bi,Pb)-Sr-Ca-Cu-O superconductor. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi,Pb)-Sr-Ca-Cu-O superconductor.

  9. Accumulation and transport of Cd, Cu, and Pb in an estuarine salt marsh surface microlayer

    SciTech Connect

    Lion, L.W.; Leckie, J.O.

    1982-01-01

    Dissolved and particulate Cd, Cu, and Pb were measured in bulk solution and surface microlayer samples from an intertidal salt marsh in south San Francisco Bay. The phase distribution (dissolved vs. particulate) of metals was consistent with their calculated speciation in computer-simulated sea-salt matrices. Trace metal enrichment at the microlayer corresponded with physical events at the sample site. Advective exchange of Cd, Cu, and Pb between the estuary and marsh systems was dominated by transport of bulk suspended particulate metals, with an apparent net export from the marsh to the bay.

  10. Sources of Cu, Zn, Cd and Pb in rainwater at a subtropical islet offshore northern Taiwan

    NASA Astrophysics Data System (ADS)

    Cheng, Miao-Ching; You, Chen-Feng; Lin, Fei-Jan; Huang, Kuo-Fang; Chung, Chuan-Hsiung

    2011-02-01

    Pollutants derived from long-range transport and local emission impact significantly of heavy metal compositions in rainwater and aerosols. To identify their sources and relative contributions in rainwater, 47 monthly rainwater samples from January 1998 to December 2001, collected at Peng Chia Yu (PCY), a non-residential islet offshore Taiwan, were analyzed for heavy metals (i.e. Cu, Zn, Cd, and Pb) and Pb isotopic compositions. The dissolved metals concentrations of Al, Mn, Fe, Cu, Zn, Rb, Ba, and Pb in PCY rains are high in spring and winter, but low in summer. This can be understood in terms of pollutant source changes due to wind direction shifted seasonally. The average EF crust and EF seawater values calculated for Cu, Zn, Cd and Pb are far greater than 1500, suggesting their strong anthropogenic sources, also supported by the PCA results. The pollutants derived from long-range transport are the predominated heavy metals sources during the winter monsoon season, whereas local traffic emissions play the most important role during the summer monsoon period. Unique Pb isotopic fingerprints, similar to those of iron ore sinter dusts and oil combustion dusts from Shanghai and the traffic emissions from Taiwan were identified in PCY rainwater. A mixing model based on three typical end-member Pb isotopic compositions derived from Taiwan and China was applied to evaluate the pollutant sources variations.

  11. Dynamics of Cd, Cu and Pb added to soil through different kinds of sewage sludge.

    PubMed

    Torri, S I; Lavado, R S

    2008-01-01

    A greenhouse experiment was set up to study the distribution of Cd, Cu and Pb in three typical soils of the Pampas Region amended with sewage sludge. A sequential extraction procedure was used to obtain four operationally defined geochemical species: exchangeable, bound to organic matter, bound to carbonates, and residual. Two kinds of sewage sludge were used: pure sewage sludge and sewage sludge containing 30% DM of its own incinerated ash, at rates equivalent to a field application of 150 t DM ha(-1). Pots were maintained at 80% of field capacity through daily irrigation with distilled water. Soil samples were obtained on days 1, 60, 270 and 360, and then air-dried and passed through a 2 mm sieve for analysis. Results showed that sludge application increased the less available forms of Cd, Cu and Pb. The inorganic forms became the most prevalent forms for Cu and Pb, whereas Cd was only found in the residual fraction. The concentrations of OM-Cu and INOR-Cu in the amended soil samples were closely correlated with soil pH, whereas the chemical behavior of Cd and Pb did not depend on soil physico-chemical characteristics.

  12. Cyclic Oxidation Behavior of CuCrAl Cold-Sprayed Coatings for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, Sai; Karthikeyan, J.

    2009-01-01

    The next generation of reusable launch vehicles is likely to use GRCop-84 [Cu-8(at.%)Cr-4%Nb] copper alloy combustion liners. The application of protective coatings on GRCop-84 liners can minimize or eliminate many of the environmental problems experienced by uncoated liners and significantly extend their operational lives and lower operational cost. A newly developed Cu- 23 (wt.%) Cr-5% Al (CuCrAl) coating, shown to resist hydrogen attack and oxidation in an as-cast form, is currently being considered as a protective coating for GRCop-84. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique, where the CuCrAl was procured as gas-atomized powders. Cyclic oxidation tests were conducted between 773 and 1,073 K to characterize the coated substrates.

  13. On the structure and microstructure of 'PbCrO{sub 3}'

    SciTech Connect

    Arevalo-Lopez, Angel M.; Alario-Franco, Miguel A.

    2007-11-15

    The reliability factors of a Rietveld X-ray powder refinement of PbCrO{sub 3} could be improved by considering the lead ion in a multi-minimum potential displaced from its special position. These studies coupled to EDX analysis show a certain lead deficiency. Electron diffraction and high-resolution electron microscopy reveal that the microstructure of this material is a rather complex perovskite superstructure that presents a compositional modulation, within a microdomain distribution. The proposed supercell is {approx}a{sub p}x3a{sub p}x({approx}14-18)a{sub p}. - Graphical abstract: Model of the structure of PbCrO{sub 3} obtained by electron microscopy and diffraction.

  14. Determination of Cd, Cr and Pb in phosphate fertilizers by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Nunes, Lidiane Cristina; de Carvalho, Gabriel Gustinelli Arantes; Santos, Dario; Krug, Francisco José

    2014-07-01

    A validated method for quantitative determination of Cd, Cr, and Pb in phosphate fertilizers by laser-induced breakdown spectroscopy (LIBS) is presented. Laboratory samples were comminuted and homogenized by cryogenic or planetary ball milling, pressed into pellets and analyzed by LIBS. The experimental setup was designed by using a Q-switched Nd:YAG at 1064 nm with 10 Hz repetition rate, and the intensity signals from Cd II 214.441 nm, Cr II 267.716 nm and Pb II 220.353 nm emission lines were measured by using a spectrometer furnished with an intensified charge-coupled device. LIBS parameters (laser fluence, lens-to-sample distance, delay time, integration time gate, number of sites and number of laser pulses per site) were chosen after univariate experiments with a pellet of NIST SRM 695 (Trace Elements in Multi-Nutrient Fertilizer). Calibration and validation were carried out with 30 fertilizer samples from single superphosphate, triple superphosphate, monoammonium phosphate, and NPK mixtures. Good results were obtained by using 30 pulses of 50 J cm- 2 (750 μm spot size), 2.0 μs delay time and 5.0 μs integration time gate. No significant differences between Cd, Cr, and Pb mass fractions determined by the proposed LIBS method and by ICP OES after microwave-assisted acid digestion (AOAC 2006.03 Official Method) were found at 95% confidence level. The limits of detection of 1 mg kg- 1 Cd, 2 mg kg- 1 Cr and 15 mg kg- 1 Pb and the precision (coefficients of variation of results ranging from 2% to 15%) indicate that the proposed LIBS method can be recommended for the determination of these analytes in phosphate fertilizers.

  15. Mid-twentieth century increases in anthropogenic Pb, Cd and Cu in central Asia set in hemispheric perspective using Tien Shan ice core

    NASA Astrophysics Data System (ADS)

    Grigholm, B.; Mayewski, P. A.; Aizen, V.; Kreutz, K.; Wake, C. P.; Aizen, E.; Kang, S.; Maasch, K. A.; Handley, M. J.; Sneed, S. B.

    2016-04-01

    High-resolution major and trace element (Al, As, Ca, Cd, Co, Cr, Cu, Fe, Li, Mn, Na, Pb, S, Ti, and V) ice core records from Inilchek glacier (5120 m above sea level) on the northwestern margin of the Tibetan Plateau provide the first multi-decadal ice core record spanning the period 1908-1995 AD in central Tien Shan. The trace element records reveal pronounced temporal baseline trends and concentration maxima characteristic of post-1950 anthropogenic emissions. Examination of Pb, Cd and Cu concentrations, along with non-crustal calculation estimates (i.e. excess (ex) and enrichment factor (EF)), reveal that discernable anthropogenic inputs began during the 1950s and rapidly increased to the late-1970s and early 1980s, by factors up to of 5, 6 and 3, respectively, relative to a 1910-1950 means. Pb, Cd and Cu concentrations between the 1950s-1980s are reflective of large-scale Soviet industrial and agricultural development, including the growth of production and/or consumption of the non-ferrous metals, coal and phosphate fertilizers. NOAA HYSPLIT back-trajectory frequency analysis suggests pollutant sources originating primarily from southern Kazakhstan (e.g. Shymkent and Balkhash) and the Fergana Valley (located in Kazakhstan, Uzbekistan and Kyrgyzstan). Inilchek ice core Pb, Cd and Cu reveals declines during the 1980s concurrent with Soviet economic declines, however, due to the rapid industrial and agricultural growth of western China, Pb, Cd and Cu trends increase during the 1990s reflecting a transition from primarily central Asian sources to emission sources from western China (e.g. Xinjiang Province).

  16. Microstructural Evolution and Tensile Properties of SnAgCu Mixed with Sn-Pb Solder Alloys (Preprint)

    DTIC Science & Technology

    2009-03-01

    The effect of incorporating eutectic Sn-Pb solder with Sn-3.0Ag-0.5Cu (SAC 305) Pb-free solder on the microstructure and tensile properties of the...mixed alloys was investigated. Alloys containing 100, 75, 50, 25, 20, 15, 10, 5 and 0 wt. % SAC 305, with the balance being Sn-37Pb eutectic solder...Rolla, MO, 65401. 2.—e-mail: mjokeefe@mst.edu Abstract: The effect of incorporating eutectic Sn-Pb solder with Sn-3.0Ag-0.5Cu (SAC 305) Pb- free

  17. Assessment of Cr, Ni and Pb Pollution in Rural Agricultural Soils of Tonalite-Trondjhemite Series in Central India.

    PubMed

    Shukla, Kriti; Kumar, Bijendra; Agrawal, Rahul; Priyanka, Kumari; Venkatesh, Madavi; Anshumali

    2017-06-01

    Chromium (Cr), nickel (Ni) and lead (Pb) contamination was investigated in wheat cultivated rain-fed and irrigated rural agricultural soils (n = 31) of Tonalite-Trondjhemite Series in Central India. The soil sampling was carried out by using stratified random sampling method. The mean concentrations of Cr, Ni and Pb were 54.8, 38.1 and 68.9 mg/kg, respectively. The average values of enrichment factor (EF), geoaccumulation index (I geo ) and contamination factor (CF) followed the order as: Pb > Ni > Cr. Distribution patterns of soil parent material and weathering processes govern mineral enrichments, irrespective of rainfed or irrigated agricultural practices. Principal component analysis (PCA) showed strong loading of Cr and Ni (PC1) and Pb and clay (PC3). The strong loading on Cr and Ni indicates soils are originating from basic and volcanic rocks in the study area. The strong loading of Pb and clay indicates Pb is strongly adsorbed on clay minerals and Fe-oxides. The cancer risk (CR) index showed negligible carcinogenic risk to the residing population. However, hazard index (HI) values for children exceed the safe limit (HI > 1) for Cr and Pb. Spatial distribution of pollution load index suggest highest pollution in the northeastern part of the district. The study revealed that geogenically enriched soils of the area are suitable for agricultural activities under present conditions.

  18. Comparing the Pressure-Induced Structural Behavior of CuCr 2 O 4 and CuCr 2 Se 4 Spinels

    SciTech Connect

    Efthimiopoulos, I.; Tsurkan, V.; Loidl, A.

    2017-07-20

    We have conducted high-pressure measurements on the CuCr2O4 and CuCr2Se4 spinels to unravel the structural systematics of these materials under compression. Our studies have revealed diverse structural behavior in these two compounds. In particular, CuCr2O4 retains its ambient-pressure I41/amd structure up to 50 GPa. Close inspection of the lattice and interatomic parameters reveals a compressibility change near 23 GPa, which is accompanied by an expansion of the apical Cr–O bond distances. We speculate that an outer Cr3+ 3d orbital reorientation might be at play in this system, manifesting as the change in compressibility at that pressure point. On the othermore » hand, CuCr2Se4 undergoes a structural transformation from the starting Fd3¯m phase toward a monoclinic structure initiated at ~8 GPa and completed at ~20 GPa. This high-pressure behavior resembles that of ZnCr2Se4, and it appears that, unlike similar chalcogenide Cr spinels, steric effects take a leading role in this pressure-induced Fd3¯m → monoclinic transition. Close comparison of our results with the reported literature yields significant insights behind the pressure-induced structural systematics of this important family of materials, thus both allowing for the careful manipulation of the structural/physical properties of these systems by strain and promoting our understanding of similar pressure-induced effects in relevant systems.« less

  19. Creep Testing of High-Temperature Cu-8 Cr-4 Nb Alloy Completed

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A Cu-8 at.% Cr-4 at.% Nb (Cu-8 Cr-4 Nb) alloy is under development for high-temperature, high heatflux applications, such as actively cooled, hypersonic vehicle heat exchangers and rocket engine combustion chambers. Cu-8 Cr-4 Nb offers a superior combination of strength and conductivity. It has also shown exceptional low-cycle fatigue properties. Following preliminary testing to determine the best processing route, a more detailed testing program was initiated to determine the creep lives and creep rates of Cu-8 Cr-4 Nb alloy specimens produced by extrusion. Testing was conducted at the NASA Lewis Research Center with constant-load vacuum creep units. Considering expected operating temperatures and mission lives, we developed a test matrix to accurately determine the creep properties of Cu-8 Cr-4 Nb between 500 and 800 C. Six bars of Cu-8 Cr-4 Nb were extruded. From these bars, 54 creep samples were machined and tested. The figure on the left shows the steady-state, or second-stage, creep rates for the samples. Comparison data for NARloy-Z (Cu-3 wt % Ag-0.5 wt % Zr), the alloy currently used in combustion chamber liners, were not unavailable. Therefore the steady-state creep rates for Cu at similar temperatures are presented. As expected, in comparison to pure Cu, the creep rates for Cu-8 Cr-4 Nb are much lower. The lives of the samples are presented in the figure on the right. As shown, Cu-8 Cr-4 Nb at 800 C is comparable to NARloy-Z at 648 C. At equivalent temperatures, Cu-8 Cr-4 Nb enjoys a 20 to 50 percent advantage in stress for a given life and 1 to 3 orders of magnitude greater life at a given stress. The improved properties allow for design tradeoffs and improvements in new and existing heat exchangers such as the next generation of combustion chamber liners. Average creep rates for Cu-8 Cr-4 Nb and pure Cu are shown. Average creep lives for Cu-8 Cr- 4 Nb and NARloy-Z are also shown. Currently, two companies are interested in the commercial usage of the Cu

  20. Biosorption of Pb2+ and Cu2+ in aqueous solutions using agricultural wastes

    NASA Astrophysics Data System (ADS)

    Nieva, Aileen D.; Doma, Bonifacio T.; Chao, Huan-Ping; Siang Leng, Lai

    2017-11-01

    This study aimed to determine and compare the adsorptive capacity of Pb2+ and Cu2+ in simulated wastewater onto three agricultural wastes The adsorption capacities of Pb2+ onto the agricultural wastes can be arranged as Litchi chinensis (4.30 mg of sorbate per g of sorbent (mg g-1), 85.68% adsorption) > Bambusa vulgaris (3.83 mg g-1, 76.19% adsorption) > Annona squamosa (2.70 mg g-1, 53.66% adsorption) while the adsorption capacities of Cu2+ onto the same agricultural wastes can be arranged in the order: Bambusa vulgaris (3.86 mg g-1, 77.17% adsorption) > Annona squamosal (3.58 mg g-1, 71.58% adsorption) > Litchi chinensis (3.42 mg g-1, 68.32% adsorption). The biosorbents had relatively higher adsorptive capacities with Cu2+ as compared to that of Pb2+ except for Litchi chinensis. Although the results show lower adsorptive capacity as compared to a number of treated agricultural wastes showing 80% up to almost 100% adsorption of Pb2+ and Cu2+, the results show that Annona squamosa, Bamubusa vulgaris, and Litchi chinensis are potential biosorbents and promote sustainable treatment process.

  1. Study on structure and properties of CuZn40Pb alloy

    NASA Astrophysics Data System (ADS)

    Achiţei, D. C.; Minciună, M. G.; Vizureanu, P.; Sandu, A. V.; Cimpoeşu, R.; Istrate, B.

    2016-06-01

    The paper shows aspects about the behavior of Cu-Zn-Pb alloys a subjected to the temperatures variation and corrosion resistance in saline medium (sea water). The chemical composition was determined by spectral analysis on optical spectrometer, type Foundry Masters. The experiments are completed by a microstructure analysis made on scanning electronic microscope.

  2. Behaviors of heavy metals (Cd, Cu, Ni, Pb and Zn) in soil amended with composts.

    PubMed

    Gusiatin, Zygmunt Mariusz; Kulikowska, Dorota

    2016-09-01

    This study investigated how amendment with sewage sludge compost of different maturation times (3, 6, 12 months) affected metal (Cd, Cu, Ni, Pb, Zn) bioavailability, fractionation and redistribution in highly contaminated sandy clay soil. Metal transformations during long-term soil stabilization (35 months) were determined. In the contaminated soil, Cd, Ni and Zn were predominately in the exchangeable and reducible fractions, Pb in the reducible fraction and Cu in the reducible, exchangeable and oxidizable fractions. All composts decreased the bioavailability of Cd, Ni and Zn for up to 24 months, which indicates that cyclic amendment with compost is necessary. The bioavailability of Pb and Cu was not affected by compost amendment. Based on the reduced partition index (IR), metal stability in amended soil after 35 months of stabilization was in the following order: Cu > Ni = Pb > Zn > Cd. All composts were more effective in decreasing Cd, Ni and Zn bioavailability than in redistributing the metals, and increasing Cu redistribution more than that of Pb. Thus, sewage sludge compost of as little as 3 months maturation can be used for cyclic amendment of multi-metal-contaminated soil.

  3. Bioaccessibility of Ba, Cu, Pb, and Zn in urban garden and orchard soils.

    PubMed

    Cai, Meifang; McBride, Murray B; Li, Kaiming

    2016-01-01

    Exposure of young children to toxic metals in urban environments is largely due to soil and dust ingestion. Soil particle size distribution and concentrations of toxic metals in different particle sizes are important risk factors in addition to bioaccessibility of these metals in the particles. Analysis of particle size distribution and metals concentrations for 13 soils, 12 sampled from urban gardens and 1 from orchard found that fine particles (<105 μm) comprised from 22 to 66% by weight of the tested soils, with Ba, Cu, Pb and Zn generally at higher concentrations in the finer particles. However, metal bioaccessibility was generally lower in finer particles, a trend most pronounced for Ba and Pb. Gastric was higher than gastrointestinal bioaccessibility for all metals except Cu. The lower bioaccessibility of Pb in urban garden soils compared to orchard soil is attributable to the higher organic matter content of the garden soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Numerical Simulation of Droplets Behavior of Cu-Pb Immiscible Alloys Solidifying under Magnetic Field.

    PubMed

    Zhang, Lin; Man, Tiannan; Huang, Minghao; Gao, Jianwen; Zuo, Xiaowei; Wang, Engang

    2017-08-28

    A model has been presented for the coarsening of the dispersed phase of liquid-liquid two-phase mixtures in Cu-Pb alloys under the effect of a high magnetic field (HMF). The numerical results show that the evolution of size distribution is the result of several factors and the diffusional growth, the collision-coagulation of the Cu-rich droplets (gravity sedimentation and Marangoni migration), and melt flow also have obvious effects on the movement of droplets and coarsening process. The effect of the HMF in the coarsening process of Cu-Pb alloy is studied in this work both by simulation and experiment. The analysis shows that the HMF leads to a decrease in the melt flow velocity, and can also lead to a decrease in the moving velocity of Cu-rich droplets. The HMF significantly reduces the coarsening rate of droplets as compared by the distribution evolutions. Finally, it is shown that droplet collision and coagulation can be dramatically retarded by the HMF. The results of the simulation are compared with the experiments performed with immiscible Cu-Pb alloys, and the discrepancy between theory and experiment is discussed.

  5. Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers

    NASA Astrophysics Data System (ADS)

    He, Junyong; Li, Yulian; Wang, Chengming; Zhang, Kaisheng; Lin, Dongyue; Kong, Lingtao; Liu, Jinhuai

    2017-12-01

    Removing heavy metals from aqueous solutions has drawn more and more attentions these years because of their serious global health challenge to human society. To develop an adsorbent with low-cost and high-efficiency for removal of heavy metals (HMs), β-cyclodextrin (β-CD) polymers crosslinked with rigid aromatic groups were prepared and used for lead (Pb), copper (Cu) and cadmium (Cd) removal for the first time. The negatively charged β-CD polymers with large BET surface area were suitable to be used in HMs adsorption. The adsorption process completed in 5 min was well fit by Freundlich isotherm model and pseudo-second-order model. The intraparticle diffusion model was also appropriate to describe the adsorption of Pb, Cu and Cd on β-CD polymer. The maximum of adsorption capacities at 25 °C for Pb, Cu and Cd were 196.42, 164.43 and 136.43 mg/g when the initial concentration was 200 mg/L. The HMs adsorption process on the surface of β-CD polymer was an endothermic and spontaneous process. Both of the electrostatic interaction and distribution of Pb, Cu and Cd species influenced the adsorption process at different pH values. The order of removal efficiencies in multi-component adsorption for the three metal ions were Pb > Cu > Cd. The adsorption mechanisms were H+ ions on hydroxyl groups exchanged with heavy metal ions and electrostatic interactions. This study indicated that β-CD polymers could be developed into effective adsorbents for rapid removal of heavy metals.

  6. Structural and magnetic characterization of the complete delafossite solid solution (CuAlO₂)₁-x(CuCrO₂)x.

    PubMed

    Barton, Phillip T; Seshadri, Ram; Knöller, Andrea; Rosseinsky, Matthew J

    2012-01-11

    We have prepared the complete delafossite solid solution series between diamagnetic CuAlO(2) and the t(2g)(3)frustrated antiferromagnet CuCrO(2). The evolution with composition x in CuAl(1-x)Cr(x)O(2) of the crystal structure and magnetic properties has been studied and is reported here. The room-temperature unit cell parameters follow the Végard law and increase with x as expected. The μ(eff) is equal to the Cr(3+) spin-only S = 3/2 value throughout the entire solid solution. Θ(CW) is negative, indicating that the dominant interactions are antiferromagnetic, and its magnitude increases with Cr substitution. For dilute Cr compositions, the nearest-neighbor exchange coupling constant J(BB) was estimated by mean-field theory to be 3.0 meV. Despite the sizable Θ(CW), long-range antiferromagnetic order does not develop until x is almost 1, and is preceded by glassy behavior. The data presented here, and those on dilute Al substitution from Okuda et al, suggest that the reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as chemical disorder and dilution of the magnetic exchange. For all samples, the 5 K isothermal magnetization does not saturate in fields up to 5 T and minimal hysteresis is observed. The presence of antiferromagnetic interactions is clearly evident in the sub-Brillouin behavior with a reduced magnetization per Cr atom. An inspection of the scaled Curie plot reveals that significant short-range antiferromagnetic interactions occur in CuCrO(2) above its Néel temperature, consistent with its magnetic frustration. Uncompensated short-range behavior is present in the Al-substituted samples and is likely a result of chemical disorder.

  7. Capability of diatomaceous earth to preconcentrate and store Pb and Cr: on-line determination by FI-FAAS.

    PubMed

    Cabañero, Isabel; Madrid, Yolanda; Cámara, Carmen

    2002-07-01

    The diatomaceous earth (DE) has an important ability to retain metals such as Cd, Cr, Mn and Pb, which can be used for their stabilization in the environment and for analytical purposes. In this paper a fast on-line preconcentration method for the determination of Cr and Pb in waters by flow injection flame atomic absorption spectrometry is described. Preconcentration was based on the retention of Cr and Pb on a DE immobilized in silica gel at pH 3.0 and subsequent elution with 200 microL of 3 mol L(-1) HCl. The preconcentration factors were 100 and 150 for Pb and Cr respectively, for 16 mL water sample volume. The detection limits under these conditions were 3 ng mL(-1) and 1 ng mL(-1) for Pb and Cr, respectively. The stability of Cr and Pb retained on silica gel-DE columns was established. Silica gel-DE microcolumns with the retained analytes were stored for 2 months at two different temperatures: 4 degrees C and room temperature. At regular time intervals, both metals were eluted and quantified. The results showed the potential of the procedure for sampling and storing water samples for subsequent metal determination, avoiding the problems associated with maintaining species integrity in aqueous solution, and the possibility to of decontaminating polluted spaces.

  8. Evaluation of Pb-17Li compatibility of ODS Fe-12Cr-5Al alloys

    NASA Astrophysics Data System (ADS)

    Unocic, Kinga A.; Hoelzer, David T.

    2016-10-01

    The Dual Coolant Lead Lithium (DCLL: eutectic Pb-17Li and He) blanket concept requires improved Pb-17Li compatibility with ferritic steels in order to demonstrate acceptable performance in fusion reactors. As an initial step, static Pb-17at.%Li (Pb-17Li) capsule experiments were conducted on new oxide dispersion strengthened (ODS) FeCrAl alloys ((1) Y2O3 (125Y), (2) Y2O3 + ZrO2 (125YZ), (3) Y2O3 + HfO2 (125YH), and (4) Y2O3 + TiO2 (125YT)) produced at ORNL via mechanical alloying (MA). Tests were conducted in static Pb-17Li for 1000 h at 700 °C. Alloys showed promising compatibility with Pb-17Li with small mass change after testing for 125YZ, 125YH and 125YT, while the 125Y alloy experienced the highest mass loss associated with some oxide spallation and subsequent alloy dissolution. X-ray diffraction methods identified the surface reaction product as LiAlO2 on all four alloys. A small decrease (∼1 at.%) in Al content beneath the oxide scale was observed in all four ODS alloys, which extended 60 μm beneath the oxide/metal interface. This indicates improvements in alloy dissolution by decreasing the amount of Al loss from the alloy. Scales formed on 125YZ, 125YH and 125YT were examined via scanning transmission electron microscopy (S/TEM) and revealed incorporation of Zr-, Hf-, and Ti-rich precipitates within the LiAlO2 product, respectively. This indicates an inward scale growth mechanism. Future work in flowing Pb-17Li is needed to further evaluate the effectiveness of this strategy in a test blanket module.

  9. Effect of chemical fertilizers on the fractionation of Cu, Cr and Ni in contaminated soil

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Duan, Chang-Qun; Zhu, Yi-Nian; Zhang, Xue-Hong; Wang, Cheng-Xian

    2007-08-01

    Effect of chemical fertilizers (urea, NH4Cl, Ca(NO3)2, KCl and KH2PO4) on the fractionation of Cu, Cr and Ni was studied by a 4-month incubation experiment. Using sequential extraction procedure, it was found that the application of fertilizers could change the distribution of Cu, Cr and Ni in the fractions of soil. Applying urea (CO(NH2)2) significantly decreased the concentrations of Cu, Cr and Ni in water soluble plus exchangeable (WE) fraction, but increased those in Fe-Mn oxides bound (FM) fraction ( p < 0.01). However, application of NH4Cl caused an increase in the WE fraction by 27.7% for Cu, 111.5% for Cr and 20.4% for Ni. The CO(NH2)2 raised the soil pH from 4.51 to 4.96, whereas NH4Cl lowered the pH of soil by 0.44 units. The WE fraction of the three heavy metals was significantly increased, while the FM fraction was significantly decreased by adding KCl ( p < 0.01). Moreover, the supply of KH2PO4 reduced the WE and carbonate bound (CB) fractions of Cu, Cr and Ni in the soil, however, it raised Cu and Ni in the residual (RS) fraction and Cr in the FM fraction. In addition, the mobility index indicated that KCl and NH4Cl increased the mobility of Cu, Cr and Ni in the soil, whereas urea and KH2PO4 decreased the mobility of the three metals in the soil. These results suggest that applying chemical fertilizers does not only provide plant nutrients, but may also change the speciation and mobility of heavy metals in the soil.

  10. Microstructure and Mechanical Properties of Vacuum Plasma Sprayed Cu-8Cr-4Nb

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Ellis, David; McKechnie, Timothy; Hickman, Robert

    1997-01-01

    This paper compares the tensile properties of Cu-8Cr-4Nb material produced by VPS to material previously produced by extrusion. The microstructure of the VPS material is also presented. The combustion chamber liner of rocket motors represents an extreme materials application. The liner hot wall is exposed to a 2760 C (5000 F) flame while the cold side is exposed to cryogenic hydrogen liquid. Materials for use in the combustion chamber liner require a combination of high temperature strength, creep resistance, and low cycle fatigue resistance along with high thermal conductivity. The hot side is also subject to localized cycles between reducing and oxidizing environments that degrade the liner by a process called blanching. A new Cu-8 at.% Cr-4 at% Nb (Cu-8Cr-4Nb) alloy has been developed at NASA Lewis Research Center as a replacement for the currently used alloy, NARloy-z (Cu-3 wt.% Ag-0.5 wt.% Zr). The alloy is strengthened by a fine dispersion of Cr2Nb particles. The alloy has better mechanical properties than NARloy-Z while retaining most of the thermal conductivity of pure copper. The alloy has been successfully consolidated by extrusion and hot isostatic pressing (HIPing). However, vacuum plasma spraying (VPS) offers several advantages over prior consolidation methods. VPS can produce a near net shape piece with the profile of the liner. In addition, oxidation resistant and thermal barrier coatings can be incorporated as an integral part of the liner hot wall during the VPS deposition. The low oxygen VPS Cu-8Cr-4Nb exhibits a higher strength than Cu-8Cr-4Nb produced by extrusion at elevated temperatures and a comparable strength at room temperature. Moduli and ductility were not significantly different. However, the ability to produce parts to near-net shape and maintain the good elevated temperature tensile properties of the extruded Cu-8Cr-4Nb makes VPS an attractive processing method for fabricating rocket engine combustion liners.

  11. Characterization and CO oxidation activity of Cu/Cr/Al{sub 2}O{sub 3} catalysts

    SciTech Connect

    Park, P.W.; Ledford, J.S.

    1998-03-01

    X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) have been used to characterize a series of Cu/Cr/Al{sub 2}O{sub 3} catalysts prepared by stepwise incipient wetness impregnation of first chromium followed by copper (designated CuCry). The copper loading was held constant at 8 wt% CuO, and chromium loadings were varied from 0 to 20 wt% Cr{sub 2}O{sub 3}. The information obtained from surface and bulk characterization has been correlated with the CO oxidation activity of the catalysts. XPS and XRD results of analogous Cry indicated that the Cr dispersion decreased and the concentration of Cr{sup 3+} species increased with increasing Crmore » content. The decrease in Cu dispersion of CuCry with increasing Cr content has been attributed to the formation of large crystalline CuO and CuCr{sub 2}O{sub 4}. Copper addition decreased the Cr dispersion by reacting selectively with a dispersed Cr{sup 3+} species to form CuCr{sub 2}O{sub 4} species. However, the Cu addition did not affect the Cr oxidation state distribution compared to that of Cry. For low Cr loading CuCry catalysts (Cr/Al {le} 0.027), the CO oxidation activity increased with increasing Cr content due to the formation of crystalline CuO on the Cr-modified alumina. This has been attributed to the inhibition of Cu ion diffusion into alumina lattice vacancies by highly dispersed chromium species. The CuCry catalyst of Cr/Al = 0.054 showed the highest CO oxidation activity due to the formation of CuCr{sub 2}O{sub 4} which was more active than the CuO phase. For Cr-rich catalysts (Cr/Al {ge} 0.080), the decrease in CO oxidation activity has been ascribed to the encapsulation of the active site with Cr{sub 2}O{sub 3} species.« less

  12. Neutron powder diffraction study of the Pb-based copper oxide containing thick fluorite blocks: (Pb,Cu)Sr 2(Ho,Ce) 3Cu 2O 11+ z

    NASA Astrophysics Data System (ADS)

    Wada, Takahiro; Ichinose, Ataru; Izumi, Fujio; Nara, Akiko; Yamauchi, H.; Hajime-Asano; Tanaka, Shoji

    1991-09-01

    The structure parameters of non-superconducting (Pb {1}/{2}Cu {1}/{2})Sr 2(Ho {1}/{3}Ce {2}/{3}) 3Cu 2O 11+z (Pb-based “1232”) have been refined by the Rietveld analysis of time-of-flight (TOF) neutron powder diffraction data. It has a tetragonal unit cell with a space group of P4/mmm and lattice constants: a = 3.82615(6) Åand c = 17.2028(4) Å. This compound belongs to a homologous series given by (Pb,Tl,Cu)(Sr,Ba,R) 2(R,Ce,Ca) nCu 2O 5+2n+ z ( R = lanthanide elements; 1 ⩽n⩽3). Its unit cell consists of two types of structural blocks: a double-MO 2-unit fluorite block, i.e., [(Ho,Ce)O 2] 2, and a Pb-based “1212” block, i.e., ( Pb, Cu) Sr2( Ho, Ce) Cu2O7+ z. Excess oxygen atoms occupy an interstitial site at (0, {1}/{2,0}). Each Cu ion is coordinated to five oxide ions with a square-pyramidal configuration, and two-dimensional CuO 2 sheets are formed by sharing the four corners of [CuO 5] pyramids. These structural characteristics suggest that this type of compounds may become superconducting if a proper amount of holes is doped.

  13. Selective adsorption/recovery of Pb, Cu, and Cd with multiple fixed beds containing immobilized bacterial biomass

    SciTech Connect

    Chang, J.S.; Huang, J.C.

    1998-09-01

    Fixed-bed columns packed with calcium alginate (CA)-immobilized biomass of Pseudomonas aeruginosa PU21 were utilized to remove lead (Pb), copper (Cu), and cadmium (Cd) from the contaminated water. In the absence of competing metals, saturano capacity of CA-immobilized cells in batch operations was 1.60, 2.42, and 1.06 mmol/g, for Pb, Cu, and Cd, respectively. The Langmuir constants (K) obtained from the langmuir isotherm were 157.6, 4.2, and 3.7 mM{sup {minus}1} for Pb, Cu, and Cd, respectively. Results from single-metal biosorption with 10-cm immobilized-cell columns show that, for an influent metal concentration of 193 {micro}M, the total capacities for Pb, Cu, and Cd, respectively, were 5.12, 4.03, and 3.48 mmol, which is nearly 25--30% higher than those obtained from columns containing only cell-free CA matrix. With the influent containing ternary mixtures of Pb, Cu, and Cd, columns with immobilized cells exhibited predominant selectivity to Pb, whereas in the cell-free columns, the dominance of Pb adsorption reduced, along with an appreciable increases in the adsorption of Cu. The metal-laden columns were regenerated by elution with HCl solution (pH 2.0). The metal recovery ratios were 80:1, 60:1, and 27:1 for Cu, Cd, and Pb, respectively. Moreover, with a pH gradient elution, the column-trapped metals can be optimally recovered at distinct pH values. Continuous biosorption of Pb, Cu, and Cu with four columns in series was also conducted.

  14. Diffraction based characterization of a directionally solidified Cu Cr eutectic alloy

    NASA Astrophysics Data System (ADS)

    Sinclair, C. W.; Embury, J. D.; Weatherly, G. C.; Conlon, K. T.; Luo, C. P.; Yu-Zhang, K.

    2005-03-01

    This paper describes the use of diffraction to experimentally characterize a directionally solidified Cu-Cr eutectic alloy containing sub-micron diameter Cr whiskers. This material has been analyzed in terms of its texture and thermal residual elastic strains as measured by neutron diffraction. Observations of the defect structure of the material and the crystallographic relationship between phases are also made. It is observed that the Cr phase in the directionally solidified material is similar in morphology and crystallographic orientation relationship to Cr precipitates formed in the solid state.

  15. Sorption of Cu and Pb to kaolinite-fulvic acid colloids: Assessment of sorbent interactions

    NASA Astrophysics Data System (ADS)

    Heidmann, Ilona; Christl, Iso; Kretzschmar, Ruben

    2005-04-01

    The sorption of Cu(II) and Pb(II) to kaolinite-fulvic acid colloids was investigated by potentiometric titrations. To assess the possible interactions between kaolinite and fulvic acid during metal sorption, experimental sorption isotherms were compared with predictions based on a linear additivity model (LAM). Suspensions of 5 g L -1 kaolinite and 0.03 g L -1 fulvic acid in 0.01 M NaNO 3 were titrated with Cu and Pb solutions, respectively. The suspension pH was kept constant at pH 4, 6, or 8. The free ion activities of Cu 2+ and Pb 2+ were monitored in the titration vessel using ion selective electrodes. Total dissolved concentrations of metals (by ICP-MS) and fulvic acid (by UV-absorption) were determined in samples taken after each titration step. The amounts of metals sorbed to the solid phase, comprised of kaolinite plus surface-bound fulvic acid, were calculated by difference. Compared to pure kaolinite, addition of fulvic acid to the clay strongly increased metal sorption to the solid phase. This effect was more pronounced at pH 4 and 6 than at pH 8, because more fulvic acid was sorbed to the kaolinite surface under acidic conditions. Addition of Pb enhanced the sorption of fulvic acid onto kaolinite at pH 6 and 8, but not at pH 4. Addition of Cu had no effect on the sorption of fulvic acid onto kaolinite. In the LAM, metal sorption to the kaolinite surface was predicted by a two-site, 1-pK basic Stern model and metal sorption to the fulvic acid was calculated with the NICA-Donnan model, respectively. The LAM provided good predictions of Cu sorption to the kaolinite-fulvic acid colloids over the entire range in pH and free Cu 2+ ion activity (10 -12 to 10 -5). The sorption of Pb was slightly underestimated by the LAM under most conditions. A fractionation of the fulvic acid during sorption to kaolinite was observed, but this could not explain the observed deviations of the LAM predictions from the experimental Pb sorption isotherms.

  16. Effect of hydrogen exposure on a Cu-8 Cr-4 Nb alloy

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Misra, Ajay K.; Dreshfield, Robert L.

    1993-01-01

    The advanced regeneratively cooled rocket thrust chamber may require new materials to achieve long life and improved performance. Current materials such as NARloy-Z (Cu-3 wt. percent Ag-0.5 wt. percent Zr), while highly conductive, do not have sufficient high temperature strength and creep resistance to meet the projected needs of advanced rocket motors. A Cu-8 at. percent Cr-4 at. percent Nb (Cu-8 Cr-4 Nb) alloy has been identified as a promising material for this application. However, hydrogen embrittlement is a concern given the presence of high pressure, high temperature hydrogen in regeneratively cooled rocket motors. Thermodynamic analysis of the reaction between Cr-rich Cr2Nb and H2 showed that there is a possibility of reaction at temperatures up to 323 K in a 35 MPa H2 environment. Above 323 K the pressure necessary to achieve reaction rapidly increased beyond the range experienced in rocket motors. Tensile specimens exposed in 34.5 MPa H2 at room temperatures and during cycling to 705 C did not show any degradation of properties. No evidence of reaction was observed for Cr2Nb precipitate observed on the fracture surfaces. Based on these results the Cu-8 Cr-4 Nb alloy was judged to be sufficiently stable for use in rocket motors.

  17. CrCuAgN PVD nanocomposite coatings: Effects of annealing on coating morphology and nanostructure

    NASA Astrophysics Data System (ADS)

    Liu, Xingguang; Iamvasant, Chanon; Liu, Chang; Matthews, Allan; Leyland, Adrian

    2017-01-01

    CrCuAgN PVD nanocomposite coatings were produced using pulsed DC unbalanced magnetron sputtering. This investigation focuses on the effects of post-coat annealing on the surface morphology, phase composition and nanostructure of such coatings. In coatings with nitrogen contents up to 16 at.%, chromium exists as metallic Cr with N in supersaturated solid solution, even after 300 °C and 500 °C post-coat annealing. Annealing at 300 °C did not obviously change the phase composition of both nitrogen-free and nitrogen-containing coatings; however, 500 °C annealing resulted in significant transformation of the nitrogen-containing coatings. The formation of Ag aggregates relates to the (Cu + Ag)/Cr atomic ratio (threshold around 0.2), whereas the formation of Cu aggregates relates to the (Cu + Ag + N)/Cr atomic ratio (threshold around 0.5). The primary annealing-induced changes were reduced solubility of Cu, Ag and N in Cr, and the composition altering from a mixed ultra-fine nanocrystalline and partly amorphous phase constitution to a coarser, but still largely nanocrystalline structure. It was also found that, with sufficient Cu content (>12 at.%), annealing at a moderately high temperature (e.g. 500 °C) leads to transportation of both Cu and Ag (even at relatively low concentrations of Ag, ≤3 at.%) from inside the coating to the coating surface, which resulted in significant reductions in friction coefficient, by over 50% compared to that of the substrate (from 0.31 to 0.14 with a hemispherical diamond indenter, and from 0.83 to 0.40 with an alumina ball counterface, respectively). Results indicate that the addition of both Cu and Ag (in appropriate concentrations) to nitrogen-containing chromium is a viable strategy for the development of 'self-replenishing' silver-containing thin film architectures for temperature-dependent solid lubrication requirements or antimicrobial coating applications.

  18. Effects of CuBr addition to CH3NH3PbI3(Cl) perovskite photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Oku, Takeo; Ohishi, Yuya; Tanaka, Hiroki

    2018-01-01

    Effects of CuBr addition to perovskite CH3NH3PbI3(Cl) precursor solutions on photovoltaic properties were investigated. The CH3NH3Pb(Cu)I3(Cl,Br)-based photovoltaic devices were fabricated by a spin-coating technique, and the microstructures of the devices were investigated by X-ray diffraction, optical microscopy and scanning electron microscopy. Current density-voltage characteristics were improved by a small amount of CuBr addition, which resulted in improvement of the conversion efficiencies of the devices. The structure analysis showed decrease of unit cell volume and increase of Cu/Br composition by the CuBr addition, which would indicate the Cu/Br substitution at the Pb/I sites in the perovskite crystal, respectively.

  19. Distributions and pollution assessment of heavy metals Pb, Cd and Cr in the water system of Kendari Bay, Indonesia

    NASA Astrophysics Data System (ADS)

    Armid, A.; Shinjo, R.; Ruslan, R.; Fahmiati

    2017-02-01

    The concentrations of heavy metals Pb, Cd and Cr in the coastal waters of Kendari Bay were analyzed to assess their pollution status. Water samples from 32 sampling points were analyzed for dissolved heavy metals concentrations by using inductively coupled plasma mass spectrometry (ICP-MS). The RSD(%) of each metal was accounted to analyze the diversity of the heavy metals among 32 sampling points. The results demonstrate that the dissolved heavy metal Pb had the highest concentrations (0.009 to 0.549 μg/L, average = 0.210 μg/L) followed by Cr (0.085 to 0.386 μg/L, average = 0.149 μg/L), and Cd (0.001 to 0.015 μg/L, average = 0.008 μg/L). Based on the the RSD values (Pb = 87.8%, Cd = 45.2% and Cr = 41.3%), it is suggested that the antropogenic activities controls the high diversity of concentrations for heavy metal Pb relative to those of Cd and Cr. Comparing the data with the mean oceanic concentrations, only the concentrations of Pb exceed the mean oceanic level (210 folds). Therefore, the water system of Kendari Bay is severely polluted with heavy metal Pb. More management and treatment should be introduced to protect the marine environment in the study area, especially from Pb pollution.

  20. Ti 3CrCu 4: A possible 2-D ferromagnetic spin fluctuating system

    DOE PAGES

    Dhar, S. K.; Provino, A.; Manfrinetti, P.; ...

    2016-03-09

    Ti 3CrCu 4 is a new ternary compound which crystallizes in the tetragonal Ti 3Pd 5 structure type. The Cr atoms form square nets in the a-b plane (a = 3.124 Å) which are separated by an unusually large distance c = 11.228 Å along the tetragonal axis, thus forming a -2-D Cr-sublattice. The paramagnetic susceptibility is characterized by a low effective moment, μ eff = 1.1 μ B, a low paramagnetic Curie temperature θ P (below 7 K) and a temperature independent χ0 = 6.7 x 10 –4 emu/mol. The magnetization at 1.8 K increases rapidly with field nearlymore » saturating to 0.2 μ B/f.u. The zero field heat capacity C/T shows an upturn below 7 K (~190 mJ/mol K 2 at ~0.1K) which is suppressed in applied magnetic fields and interpreted as suggesting the presence of spin fluctuations. The resistivity at low temperatures shows non-Fermi liquid behavior. Overall, the experimental data thus reveal an unusual magnetic state in Ti 3CrCu 4, which likely has its origin in the layered nature of the Cr sub-lattice and ferromagnetic spin fluctuations. Here, density functional theoretical calculations reveal a sharp Cr density of states peak just above the Fermi level, indicating the propensity of Ti 3CrCu 4 to become magnetic.« less

  1. Uptake and accumulation of potentially toxic metals (Zn, Cu and Pb) in soils and plants of Durgapur industrial belt.

    PubMed

    Kisku, Ganesh Chandra; Pandey, Poonam; Negi, Mahendra Pratap Singh; Misra, Virendra

    2011-11-01

    Uptake and accumulation of metals in crops may cause possible health risks through food chain. A field survey was conducted to investigate the accumulation of potentially toxic metals contamination in soil and plants irrigated with complexed industrial effluents. Concentration of Zn, Cu and Pb was 205-255,101-130,118-177 microg g(-1) in rhizosphere soils and 116-223, 57-102 and 63-95 microg g(-1) d. wt. in root and 95-186, 44-75 and 27-58 microg g(-1) d. wt. in shoot, respectively. The trend in Cu and Pb was in the order: soil > root > shoot > seed while in Zn it was soil > root > seed > shoot. Roots accumulated a larger fraction of soil Cu (70%) > Zn (67%) > Pb (54%). Bioaccumulation coefficient of soil to root ranged from 51-98 for Zn, 54-85 for Cu and 43-63 for Pb.Analysis of variance showed marginal change in bioaccumulation coefficient, noticed between plants (p > 0.05) while it varied significantly (p < 0.01) between tissues and metals. It increased from root to seed/fruit (root > shoot > seed/fruit) while decreased between metals from Zn to Pb (Zn > Cu > Pb). Out of the three, two Cu and Pb accumulated to phyotoxic levels while Zn was within threshold limit of phytotoxicity.

  2. Numerical exploration into the potential of tungsten reinforced CuCrZr matrix composites

    NASA Astrophysics Data System (ADS)

    Hohe, Jörg; Fliegener, Sascha; Findeisen, Claudio; Reiser, Jens; Widak, Verena; Rieth, Michael

    2016-03-01

    The present study provides a numerical investigation into the potential of tungsten reinforced CuCrZr materials in order to overcome their limited performance at higher temperatures. Metal matrix composites including (i) particle reinforced microstructures, (ii) short fiber reinforced microstructures with both randomly orientated and (iii) aligned fibers as well as (iv) laminates consisting of stacked tungsten and CuCrZr layers are considered. The numerical analysis is performed by means of an energy based homogenization procedure in conjunction with a finite element analysis of representative volume elements for the respective microstructures. The results of the screening analysis reveal a distinct improvement of the mechanical properties of CuCrZr materials by the tungsten reinforcements even for moderate tungsten volume fractions. In a comparison of the different microstructures, the ordered microstructures, i.e. laminates and the aligned short fiber reinforced composites in most cases outperform their disordered counterparts.

  3. Transparent ferrimagnetic semiconducting CuCr2O4 thin films by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Tripathi, T. S.; Yadav, C. S.; Karppinen, M.

    2016-04-01

    We report the magnetic and optical properties of CuCr2O4 thin films fabricated by atomic layer deposition (ALD) from Cu(thd)2, Cr(acac)3, and ozone; we deposit 200 nm thick films and anneal them at 700 °C in oxygen atmosphere to crystallize the spinel phase. A ferrimagnetic transition at 140 K and a direct bandgap of 1.36 eV are determined for the films from magnetic and UV-vis spectrophotometric measurements. Electrical transport measurements confirm the p-type semiconducting behavior of the films. As the ALD technique allows the deposition of conformal pin-hole-free coatings on complex 3D surfaces, our CuCr2O4 films are interesting material candidates for various frontier applications.

  4. Possible Mesozoic age of Ellenville Zn-Pb-Cu(Ag) deposit, Shawangunk Mountains, New York

    USGS Publications Warehouse

    Friedman, J.D.; Conrad, J.E.; McKee, E.H.; Mutschler, F.E.; Zartman, R.E.

    1994-01-01

    Ore textures, epithermal open-space filling of Permian structures of the Alleghanian orogeny, and largely postorogenic mineralization of the Ellenville, New York, composite Zn-Pb-Cu(Ag) vein system, provide permissive evidence for post-Permian mineralization. Isochron ages determined by 40Ar/39Ar laser-fusion techniques for K-bearing liquid inclusions in main-stage quartz from the Ellenville deposit additionally suggest a Mesozoic time of mineralization, associated with extensional formation of the Newark basin. The best 40Ar/39Ar total-fusion age range is 165 ?? 30 to 193 ?? 35 Ma. The Mesozoic 40Ar/39Ar age agrees with that of many other dated northern Appalachian Zn-Pb-Cu(Ag) deposits with near-matching lead isotope ratios, and adds new evidence of Jurassic tectonism and mineralization as an overprint to Late Paleozoic tectonism at least as far north as Ellenville (lat. 41??43???N). ?? 1994 Springer-Verlag.

  5. Effects of heating rates and alloying elements (Sn, Cu and Cr) on the α → α + β phase transformation of Zr-Sn-Nb-Fe-(Cu, Cr) alloys

    NASA Astrophysics Data System (ADS)

    Qiu, R. S.; Luan, B. F.; Chai, L. J.; Zhang, X. Y.; Liu, Q.

    2014-10-01

    In this investigation, differential scanning calorimetry (DSC) and metallographic experiments supplemented by back-scattered electron imaging (BSEI) and electron back-scattered diffraction (EBSD) techniques were performed to study the effects of heating rates and alloying elements on the α → α + β phase transformation of Zr-Sn-Nb-Fe-(Cu, Cr) alloys. Results show that the α → α + β phase transformation peaks shift to higher temperature with increasing heating rates, indicating that the reactions are thermally activated and kinetically controlled processes. The α → α + β phase transformation temperature (Tα→α+β) are affected by the solid solubility limit as well as the diffusivities of various elements in these alloys. For the zirconium alloys with low Nb contents, the Tα→α+β increases with an increase of Sn content. The addition of Cu in zirconium alloys decrease the Tα→α+β, while the addition of Cr increase it.

  6. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils.

    PubMed

    Huang, Guoyong; Su, Xiaojuan; Rizwan, Muhammad Shahid; Zhu, Yifei; Hu, Hongqing

    2016-08-01

    Soil contamination with toxic metals has increasingly become a global concern over the past few decades. Phosphate and carbonate compounds are good passivation materials for Pb immobilization, while the effect of phosphate and carbonate on the immobilization of multiple heavy metals (Pb, Cu, and Cd) in contaminated soils was seldom investigated. In this study, bone meal (BM), phosphate rock (PR), oxalic acid-activated phosphate rock (APR), super phosphate (SP), and calcium carbonate (CC) were added to the contaminated soils to evaluate the effect of phosphate materials and calcium carbonate on the immobilization of Pb, Cu, and Cd. The results showed that the pH of the treated soils increased 1.3-2.7, except SP which decreased 0.5 at most. Compared to the control treatment, all phosphates and calcium carbonate added to the polluted soils increased the fraction of residual metals, and the application of APR, PR, BM, and CC significantly reduced exchangeable and carbonate-bound fraction metals. PR and APR were the most effective for the immobilization of Pb, Cu, and Cd in the soils among these materials. Moreover, the concentrations of all metals in the toxicity characteristic leaching procedure (TCLP) leachate decreased with increasing amounts of amendments, and the concentrations of Pb in the TCLP leachate for soils treated with PR and APR were below the nonhazardous regulatory limit of 5 mg L(-1) (US Environmental Protection Agency). Based on our results, phosphate rock and oxalic acid-activated phosphate rock are effective in the immobilization of multiple metals by reducing their mobility in the co-contaminated soils.

  7. Leaching potential of pervious concrete and immobilization of Cu, Pb and Zn using pervious concrete.

    PubMed

    Solpuker, U; Sheets, J; Kim, Y; Schwartz, F W

    2014-06-01

    This paper investigates the leaching potential of pervious concrete and its capacity for immobilizing Cu, Pb and Zn, which are common contaminants in urban runoff. Batch experiments showed that the leachability of Cu, Pb and Zn increased when pH<8. According to PHREEQC equilibrium modeling, the leaching of major ions and trace metals was mainly controlled by the dissolution/precipitation and surface complexation reactions, respectively. A 1-D reactive transport experiment was undertaken to better understand how pervious concrete might function to attenuate contaminant migration. A porous concrete block was sprayed with low pH water (pH=4.3±0.1) for 190 h. The effluent was highly alkaline (pH~10 to 12). In the first 50 h, specific conductance and trace-metal were high but declined towards steady state values. PHREEQC modeling showed that mixing of interstitial alkaline matrix waters with capillary pore water was required in order to produce the observed water chemistry. The interstitial pore solutions seem responsible for the high pH values and relatively high concentrations of trace metals and major cations in the early stages of the experiment. Finally, pervious concrete was sprayed with a synthetic contaminated urban runoff (10 ppb Cu, Pb and Zn) with a pH of 4.3±0.1 for 135 h. It was found that Pb immobilization was greater than either Cu or Zn. Zn is the most mobile among three and also has the highest variation in the observed degree of immobilization. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Pollution, fractionation, and mobility of Pb, Cd, Cu, and Zn in garden and paddy soils from a Pb/Zn mining area.

    PubMed

    Lei, Ming; Zhang, Yong; Khan, Sardan; Qin, Pu-feng; Liao, Bo-han

    2010-09-01

    This study was conducted to investigate the pollution load index, fraction distributions, and mobility of Pb, Cd, Cu, and Zn in garden and paddy soils collected from a Pb/Zn mine in Chenzhou City, China. The samples were analyzed using Leleyter and Probst's sequential extraction procedures. Total metal concentrations including Pb, Cd, Cu, and Zn exceeded the maximum permissible limits for soils set by the Ministry of Environmental Protection of China, and the order of the pollution index was Cd > Zn > Pb > Cu, indicating that the soils from both sites seriously suffered from heavy metal pollution, especially Cd. The sums of metal fractions were in agreement with the total contents of heavy metals. However, there were significant differences in fraction distributions of heavy metals in garden and paddy soils. The residual fractions of heavy metals were the predominant form with 43.0% for Pb, 32.3% for Cd, 33.5% for Cu, and 44.2% for Zn in garden soil, while 51.6% for Pb, 40.4% for Cd, 40.3% for Cu, and 40.9% for Zn in paddy soil. Furthermore, the proportions of water-soluble and exchangeable fractions extracted by the selected analytical methods were the lowest among all fractions. On the basis of the speciation of heavy metals, the mobility factor values of heavy metals have the following order: Cd (25.2-19.8%) > Cu (22.6-6.3%) > Zn (9.6-6.0%) > Pb (6.7-2.5%) in both contaminated soils.

  9. Assessment of the Pb and Cu in vitro availability in wines by means of speciation procedures.

    PubMed

    Azenha, M A; Vasconcelos, M T

    2000-10-01

    The speciation of Pb and Cu in white and red table wines was investigated, in order to estimate their respective bioavailability to man. For this purpose, wines were subjected to in vitro gastrointestinal digestion, and the following properties were studied in the wines and in their gastric and intestinal digests: (1) the average conditional stability constant (Kav) of the strongest complexes (those inert to cathodic voltammetry) and of the respective ligand concentration (CCinert); (2) the distribution of the metal among the different bands of reverse phase high performance liquid chromatography (RP-HPLC) (groups of compounds of different molecular weight and/or polarity); (3) the total metal concentration and metal present in the soluble and in the dialyzable fractions of the digest. The CCinert of the red wines and the respective digests were much greater than those of the white wines and their digests. The conditional stability constants of the strongest soluble complexes after the digestion ranged between 5.9 and 6.1 for Pb. These parameters could not be determined for Cu. After the digestion the dialyzable metal fraction (a relative index of the metal potentially available for interaction with the inner biologic ligands) was only 16% of the total Pb in red wine, 62% in white Verde and 75% in white wine. For Cu the dialyzable metal fraction was 45% of the total metal in red wine, 64% in white Verde and 98% in white wine.

  10. Interactions of aqueous Cu2+, Zn2+ and Pb2+ ions with crushed concrete fines.

    PubMed

    Coleman, Nichola J; Lee, William E; Slipper, Ian J

    2005-05-20

    The crushing of reclaimed concrete-based demolition waste to produce recycled aggregate gives rise to a large volume of cement-rich fine material for which market development would be beneficial. It was envisaged that this fine fraction may prove to be an effective sorbent for aqueous heavy metal species by virtue of its ion exchangeable phases and high pH. A batch sorption study confirmed that crushed concrete, in the particle size range 1-2 mm, successfully excluded Cu2+ (35 mg g(-1)), Zn2+ (33 mg g(-1)) and Pb2+ (37 mg g(-1)) from aqueous media. Subsequent distilled water leaching of the metal-laden concrete particles indicated that 1.9, 0.9 and 0.2% of the bound metals, Cu2+, Zn2+ and Pb2+, respectively, were readily soluble. Scanning electron microscopy revealed that the removal of Cu2+ and Zn2+ arose from surface precipitation reactions, whereas, the principal mechanism of uptake of Pb2+ was found to be by diffusion into the cement matrix. The metal ion removal efficiency of crushed concrete fines is compared with those of other low cost sorbents and potential applications which may exploit this sorptive property are also discussed.

  11. Pb, Cu and Cd distribution in five estuary systems of Marche, central Italy.

    PubMed

    Annibaldi, Anna; Illuminati, Silvia; Truzzi, Cristina; Libani, Giulia; Scarponi, Giuseppe

    2015-07-15

    Heavy metals are subjected to monitoring in estuarine and marine water by the European Union Water Framework Directive, which requires water body health to be achieved by 2021. This is the first survey of heavy metals content in five estuaries of Marche, a region in central Italy. Results showed that total Pb and Cu concentrations decreased by 70-80%, from 1000-2000 to 100-200 ng L(-1) (Pb) and from 2000-3000 to 500-1000 ng L(-1) (Cu) from river to sea. Cd was consistently 20-40 ng L(-1). Dissolved Pb and Cu concentrations declined by 50% and 70% respectively passing from oligohaline to euhaline water, from 150 to 70 ng L(-1) and from 2000-1000 to 600-400 ng L(-1). Cd decreased slightly from ∼20 to ∼10 ng L(-1). Although such concentrations are in the range allowed by the Water Framework Directive, they far exceed (up to 10×) the ground content ceiling set for 2021. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Corrosion resistance study of grey cast iron implanted with C, N, Cr and Cu ions

    NASA Astrophysics Data System (ADS)

    Usanova, O. Yu; Maryushin, L. A.; Kazantsev, A. Yu; Dyukova, A. I.

    2017-10-01

    This article deals with the corrosion resistance of gray cast iron implanted with C, N, Cr and Cu ions in sodium chloride solution and sulfuric acid solution. The potentiodynamic research was conducted in atmosphere, simulating corrosion conditions: in 3% sodium chloride solution and in 0,1 N sulfuric acid solution. Potentiodynamic curves were obtained and surfaces of samples were observed. The research proves that the implantation of ions with N and Cr leads to an increase in the corrosion resistance of cast iron in sodium chloride solution, and the implantation of ions with N and Cu leads to increased corrosion resistance in sulfuric acid solution.

  13. Grain Refinement and Mechanical Properties of Cu-Cr-Zr Alloys with Different Nano-Sized TiCpAddition.

    PubMed

    Zhang, Dongdong; Bai, Fang; Wang, Yong; Wang, Jinguo; Wang, Wenquan

    2017-08-08

    The TiC p /Cu master alloy was prepared via thermal explosion reaction. Afterwards, the nano-sized TiC p /Cu master alloy was dispersed by electromagnetic stirring casting into the melting Cu-Cr-Zr alloys to fabricate the nano-sized TiC p -reinforced Cu-Cr-Zr composites. Results show that nano-sized TiC p can effectively refine the grain size of Cu-Cr-Zr alloys. The morphologies of grain in Cu-Cr-Zr composites changed from dendritic grain to equiaxed crystal because of the addition and dispersion of nano-sized TiC p . The grain size decreased from 82 to 28 μm with the nano-sized TiC p content. Compared with Cu-Cr-Zr alloys, the ultimate compressive strength (σ UCS ) and yield strength (σ 0.2 ) of 4 wt% TiC p -reinforced Cu-Cr-Zr composites increased by 6.7% and 9.4%, respectively. The wear resistance of the nano-sized TiCp-reinforced Cu-Cr-Zr composites increased with the increasing nano-sized TiCp content. The wear loss of the nano-sized TiC p -reinforced Cu-Cr-Zr composites decreased with the increasing TiC p content under abrasive particles. The eletrical conductivity of Cu-Cr-Zr alloys, 2% and 4% nano-sized TiCp-reinforced Cu-Cr-Zr composites are 64.71% IACS, 56.77% IACS and 52.93% IACS, respectively.

  14. Effects of Thermal and Mechanical Processing on Microstructures and Desired Properties of Particle-Strengthened Cu-Cr-Nb Alloys

    NASA Technical Reports Server (NTRS)

    Anderson, Kenneth Reed

    2000-01-01

    Ternary Cu-Cr-Nb alloys, particularly Cu-8 Cr-4 Nb (in at.%), have demonstrated good thermal stability as well as high strength and conductivity at elevated temperatures. The initial powder material has a bimodal size distribution of Cr2Nb precipitates. Primary Cr2Nb precipitates are approx. 1 micron, and secondary Cr2Nb particles are 30-200 nm. The particle coarsening was analyzed and found to follow LSW-type behavior, This study provides a detailed examination of the stability and strengthening effects of Cr2Nb particles. This investigation also revealed that the primary particles provide direct grain boundary pinning and indirect grain boundary strengthening but virtually no Orowan strengthening. The secondary particles found within grains do provide Orowan strengthening. For extruded material, grain bound-ary strengthening (Hall-Petch effect) accounts for two-thirds of the strength with Orowan effects contributing the remainder. The proven advantages of Cu-Cr-Nb were the motivation to improve these attributes via microstructural refinement. Mechanical milling (MM) of Cu- 4 Cr-2 Nb and Cu-8 Cr-2 Nb produced an increase in hot pressed Vickers hardness of 122% and 96%, respectively. The increase in hardness was more due to Cu grain-size refinement than to Cr,,Nb refinement. This study also demonstrated enhanced stability of MM Cu-4 Cr-2 Nb. Hot pressed 4 h milled Cu-4 Cr-2 Nb experienced only a 22% drop in hardness when annealed at 1273 K for 50 h versus a 30% drop for extruded Cu-8 Cr-4 Nb. The goal of improving the strength and stability of Cu-4 Cr-2 Nb to better than such properties for as- extruded Cu-8 Cr-4 Nb has been met. In addition, a figure-of-merit (FOM) coupling hardness and thermal conductivity was maximized for the case of 4 h milled Cu-4 Cr-2 Nb material. Overall, Cu-Cr-Nb alloys not only possess high strength, conductivity and thermal stability but also can be further developed to improve strength and stability.

  15. Biosorption of Cr (VI), Cr (III), Pb (II) and Cd (II) from aqueous solutions by Sargassum wightii and Caulerpa racemosa algal biomass

    NASA Astrophysics Data System (ADS)

    Tamilselvan, Narayanaswamy; Saurav, Kumar; Kannabiran, Krishnan

    2012-03-01

    Heavy metal pollution is one of the most important environmental problems today. Biosorption is an innovative technology that employs biological materials to accumulate heavy metals from waste water through metabolic process or physicochemical pathways of uptake. Even though several physical and chemical methods are available for removal of heavy metals, currently many biological materials such as bacteria, algae, yeasts and fungi have been widely used due to their good performance, low cost and large quantity of availability. The aim of the present study is to explore the biosorption of toxic heavy metals, Cr(VI), Cr(III), Pb(II) and Cd(II) by algal biomass obtained from algae Sargassum wightii (brown) and Caulerpa racemosa (green). Biosorption of algal biomass was found to be biomass concentration- and pH-dependent, while the maximal biosorption was found at pH 5.0 and with the metal concentration of 100 mg L-1. S. wightii showed the maximal metal biosorption at the biomass concentration of 25 g L-1, followed by C. racemosa with the maximal biosorption at 30 g L-1. S. wightii showed 78% biosorption of Cr(VI), Cr(III), Pb(II) and Cd(II) ions. C. racemosa exhibited 85% biosorption of Cd(II) and Cr(VI), and 50% biosorption of Cr(III) and Pb(II). The results of our study suggest that seaweed biomass can be used efficiently for biosorption of heavy metals.

  16. Antifriction coating of Cu-Fe-Al-Pb system for plain bearings

    NASA Astrophysics Data System (ADS)

    Kotenkov, Pavel; Kontsevoi, Yurii; Mejlakh, Anna; Pastukhov, Eduard; Shubin, Alexey; Goyda, Eduard; Sipatov, Ivan

    2017-09-01

    Aluminium, copper and their compounds are used in common as basis for antifriction coatings of plain bearings. Antifriction testing of plain bearings (based on Al and Cu) made by leading automotive manufacturers from Germany, Japan, USA, United Kingdom and Russia were carried out to make judicious selection of basis for development of new antifriction material. Testing was carried out using friction machine. It was defined that materials based on Cu provide better durability and robustness of plain bearings in comparison with Al based ones. The new antifriction composite coatings based on copper were developed taking into account the requirements specified for plain bearings of internal-combustion engine. Pilot samples of plain bearings with antifriction coatings of Cu-Fe-Al-Pb system were produced. The antifriction composite having Cu-5Fe-5Al5Fe2-10Pb (mass %) composition has demonstrated low friction factor and high wear-resistance. Metallographic analysis of pilot samples was carried out by means of optical and scanning electron microscopy.

  17. Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem.

    PubMed

    Iskandar, Nur Liyana; Zainudin, Nur Ain Izzati Mohd; Tan, Soon Guan

    2011-01-01

    Filamentous fungi are able to accumulate significant amount of metals from their environment. The potential of fungal biomass as agents for biosorption of heavy metals from contaminated sediments is currently receiving attention. In the present study, a total of 41 isolates of filamentous fungi obtained from the sediment of the Langat River, Selangor, Malaysia were screened for their tolerance and uptake capability of copper (Cu) and lead (Pb). The isolates were identified as Aspergillus niger, A. fumigatus, Trichoderma asperellum, Penicillium simplicissimum and P. janthinellum. A. niger and P. simplicissimum, were able to survive at 1000 mg/L of Cu(II) concentration on Potato Dextrose Agar (PDA) while for Pb, only A. niger survived at 5000 mg/L concentration. The results showed that A. niger, P. simplicissimum and T. asperellum have a better uptake capacity for Pb compared to Cu and the findings indicated promising biosorption of Cu and Pb by these filamentous fungi from aqueous solution. The present study was also determined the maximum removal of Cu(II) and Pb(II) that was performed by A. niger. The metal removal which occurred at Cu(II) 200 mg/L was (20.910 +/- 0.581) mg/g and at 250 mg/L of Pb(II) was (54.046 +/- 0.328) mg/g.

  18. Preparation of W/CuCrZr mono-block test mock-up using vacuum brazing technique

    NASA Astrophysics Data System (ADS)

    Premjit Singh, K.; Khirwadkar, S.; Bhope, Kedar; Patel, Nikunj; Mokaria, Prakash

    2017-04-01

    Development of the joining for W/CuCrZr mono-block PFC test mock-up is an interesting area in Fusion R&D. W/Cu bimetallic material has been prepared using OFHC Copper casting approach on the radial surface of W mono-block tile surface. The W/Cu bimetallic material has been joined with CuCrZr tube (heat sink) material with the vacuum brazing route. Vacuum brazing of W/Cu-CuCrZr has been performed @ 970°C for 10 min using NiCuMn-37 filler material under deep vacuum environment (10-6 mbar). Graphite fixture was used for OFHC Copper casting and vacuum brazing experiments. The joint integrity of W/Cu-CuCrZr mono-block mock-up of W/Cu and Cu-CuCrZr interface has been checked using ultrasonic immersion technique. The result of the experimental work is presented in the paper.

  19. Vacuum Plasma Spray of CuCrNb Alloy for Advanced Liquid - Fuel Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank

    2000-01-01

    The copper-8 atomic percent chromium-4 atomic percent niobium (CuCrNb) alloy was developed by Glenn Research Center (formally Lewis Research Center) as an improved alloy for combustion chamber liners. In comparison to NARloy-Z, the baseline (as in Space Shuttle Main Engine) alloy for such liners, CuCrNb demonstrates mechanical and thermophysical properties equivalent to NARloy-Z, but at temperatures 100 C to 150 C (180 F to 270 F) higher. Anticipated materials related benefits include decreasing the thrust cell liner weight 5% to 20%, increasing the service life at least two fold over current combustion chamber design, and increasing the safety margins available to designers. By adding an oxidation and thermal barrier coating to the liner, the combustion chamber can operate at even higher temperatures. For all these benefits, however, this alloy cannot be formed using conventional casting and forging methods because of the levels of chromium and niobium, which exceed their solubility limit in copper. Until recently, the only forming process that maintains the required microstructure of CrNb intermetallics is powder metallurgy formation of a billet from powder stock, followed by extrusion. This severely limits its usefulness in structural applications, particularly the complex shapes required for combustion chamber liners. Vacuum plasma spray (VPS) has been demonstrated as a method to form structural articles including small combustion chambers from the CuCrNb alloy. In addition, an oxidation and thermal barrier layer can be formed integrally on the hot wall of the liner that improve performance and extend service life. This paper discusses the metallurgy and thermomechanical properties of VPS formed CuCrNb versus the baseline powder metallurgy process, and the manufacturing of small combustion chamber liners at Marshall Space Flight Center using the VPS process. The benefits to advanced propulsion initiatives of using VPS to fabricate combustion chamber liners

  20. A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties.

    PubMed

    Ren, Ling; Memarzadeh, Kaveh; Zhang, Shuyuan; Sun, Ziqing; Yang, Chunguang; Ren, Guogang; Allaker, Robert P; Yang, Ke

    2016-10-01

    The aim of this study was to fabricate a novel coping metal CoCrCu alloy using a selective laser melting (SLM) technique with antimicrobial and antibiofilm activities and to investigate its microstructure, mechanical properties, corrosion resistance and biocompatibility. Novel CoCrCu alloy was fabricated using SLM from a mixture of commercial CoCr based alloy and elemental Cu powders. SLM CoCr without Cu served as control. Antibacterial activity was analyzed using standard antimicrobial tests, and antibiofilm properties were investigated using confocal laser scanning microscope. Cu distribution and microstructure were determined using scanning electron microscope, optical microscopy and X-ray diffraction. Corrosion resistance was evaluated by potential dynamic polarization and biocompatibility measured using an MTT assay. SLM CoCrCu alloys were found to be bactericidal and able to inhibit biofilm formation. Other factors such as microstructure, mechanical properties, corrosion resistance and biocompatibility were similar to those of SLM CoCr alloys. The addition of appropriate amounts of Cu not only maintains normal beneficial properties of CoCr based alloys, but also provides SLM CoCrCu alloys with excellent antibacterial and antibiofilm capabilities. This material has the potential to be used as a coping metal for dental applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Cu-Zn powders as potential Cr(VI) adsorbents for drinking water.

    PubMed

    Kaprara, E; Seridou, P; Tsiamili, V; Mitrakas, M; Vourlias, G; Tsiaoussis, I; Kaimakamis, G; Pavlidou, E; Andritsos, N; Simeonidis, K

    2013-11-15

    This work examines the possibility of applying CuZn alloys as a reducing medium for the efficient removal of hexavalent chromium from drinking water. In an effort to develop a route for producing powders of CuZn alloys under mild conditions and investigate the optimum composition for such application, a series of alloys in the form of powders were prepared, by a sequence of Cu and Zn ball-milling and low temperature annealing. Batch Cr(VI) removal tests, performed to evaluate and compare the efficiency of the products under typical natural water parameters (pH 7 and natural-like water), indicated that the best performing material have a composition around 50 wt% Cu. The dominant reduction mechanisms are both the corrosion of the alloy surface and the electron transfer to the solution. The behavior of granulated CuZn media was tested in rapid-scale column tests using the commercial KDF which verified the high potential of CuZn alloys in Cr(VI) removal. Nevertheless, Cu and Zn leaching problems should be also considered. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Crystalline style and tissue redistribution in Perna viridis as indicators of Cu and Pb bioavailabilities and contamination in coastal waters.

    PubMed

    Yap, C K; Ismail, A; Cheng, W H; Tan, S G

    2006-03-01

    The concentrations of Cu, Pb, and Zn in the crystalline style (CS) and in the remaining soft tissues (ST) of the green-lipped mussel Perna viridis from 10 geographical sites along the coastal waters off peninsular Malaysia were determined. The CS, compared with the remaining ST, accumulated higher levels of Cu in both contaminated and uncontaminated samples, indicating that the style has a higher affinity for the essential Cu to bind with metallothioneins. The similar pattern of Cu accumulation in the different ST of mussels collected from clean and Cu-contaminated sites indicated that the detoxification capacity of the metallothioneins had not been overloaded. For Pb, higher levels of the metal in the CS than in the remaining ST were found only in mussels collected from a contaminated site at Kg. Pasir Puteh. This indicated a tissue redistribution of Pb due to its binding to metallothioneins for Pb detoxification and the potential of the CS as an indicator organ of Pb bioavailability and contamination. For Zn, the above two phenomena were not found since no obvious patterns were observed (lower levels of Zn in the CS than in the remaining ST) in contaminated and uncontaminated samples due to the mechanism of partial regulation. Generally, all the different STs studied (foot, mantle, gonad, CS, gill, muscle, and byssus) are good biomonitoring tissues for Cu and Pb bioavailabilities and contamination. Among these organs, the CS was found to be the best organ for biomonitoring Cu. The present data also suggest the use of the tissue redistribution of Pb in P. viridis as an indicator of Pb bioavailability and contamination in coastal waters.

  3. Geopolymers for immobilization of Cr(6+), Cd(2+), and Pb(2+).

    PubMed

    Zhang, Jianguo; Provis, John L; Feng, Dingwu; van Deventer, Jannie S J

    2008-09-15

    Alkali activation of fly ash by sodium silicate solutions, forming geopolymeric binders, provides a potential means of treating wastes containing heavy metals. Here, the effects on geopolymer structure of contamination of geopolymers by Cr(VI), Cd(II) and Pb(II) in the forms of various nitrate and chromate salts are investigated. The addition of soluble salts results in a high extent of dispersal of contaminant ions throughout the geopolymer matrix, however very little change in geopolymer structure is observed when these materials are compared to their uncontaminated counterparts. Successful immobilization of these species will rely on chemical binding either into the geopolymer gel or into other low-solubility (silicate or aluminosilicate) phases. In the case of Pb, the results of this work tentatively support a previous identification of Pb(3)SiO(5) as a potential candidate phase for hosting Pb(II) within the geopolymer structure, although the data are not entirely conclusive. The addition of relatively low levels of heavy metal salts is seen to have little effect on the compressive strength of the geopolymeric material, and in some cases actually gives an increase in strength. Sparingly soluble salts may undergo some chemical conversion due to the highly alkaline conditions prevalent during geopolymerization, and in general are trapped in the geopolymer matrix by a simple physical encapsulation mechanism. Lead is in general very effectively immobilized in geopolymers, as is cadmium in all except the most acidic leaching environments. Hexavalent chromium is problematic, whether added as a highly soluble salt or in sparingly soluble form.

  4. Pressure- and Temperature-Dependent Study of Heusler Alloys Cu2MGa (M = Cr and V)

    NASA Astrophysics Data System (ADS)

    Gupta, Dinesh C.; Ghosh, Sukriti

    2017-04-01

    Full-potential computation of the electronic, magnetic, elastic and thermodynamic properties of Cu2MGa (M = Cr and V) alloys has been performed in the most stable Fm-3 m phase. The equilibrium lattice parameter is 5.9660 Å for Cu2CrGa and 5.9629 Å for Cu2VGa in the stable state. The application of mBJ potential has also found no energy gap in these alloys in either of the spin channels, hence they are metallic. The total and partial density of states, second-order elastic constants and their combinations are computed to show the electronic, magnetic, stability and brittle or ductile nature of these alloys, which are reported for the first time. Cauchy's pressure and Pugh's index predict Cu2CrGa to be brittle and Cu2VGa to be ductile. Both the materials are stiff enough to break. We have found that both the compounds are anisotropic, ferromagnetic and metallic in nature. We have used quasi-harmonic approximations to study the pressure and temperature variation of the thermodynamic properties of these alloys.

  5. Constitutive Behavior of Mixed Sn-Pb/Sn-3.0Ag-0.5Cu Solder Alloys

    NASA Astrophysics Data System (ADS)

    Tucker, J. P.; Chan, D. K.; Subbarayan, G.; Handwerker, C. A.

    2012-03-01

    During the transition from Pb-containing solders to Pb-free solders, joints composed of a mixture of Sn-Pb and Sn-Ag-Cu often result from either mixed assemblies or rework. Comprehensive characterization of the mechanical behavior of these mixed solder alloys resulting in a deformationally complete constitutive description is necessary to predict failure of mixed alloy solder joints. Three alloys with 1 wt.%, 5 wt.%, and 20 wt.% Pb were selected so as to represent reasonable ranges of Pb contamination expected from different 63Sn-37Pb components mixed with Sn-3.0Ag-0.5Cu. Creep and displacement-controlled tests were performed on specially designed assemblies at temperatures of 25°C, 75°C, and 125°C using a double lap shear test setup that ensures a nearly homogeneous state of plastic strain at the joint interface. The observed changes in creep and tensile behavior with Pb additions were related to phase equilibria and microstructure differences observed through differential scanning calorimetric and scanning electron microscopic cross-sectional analysis. As Pb content increased, the steady-state creep strain rates increased, and primary creep decreased. Even 1 wt.% Pb addition was sufficient to induce substantially large creep strains relative to the Sn-3.0Ag-0.5Cu alloy. We describe rate-dependent constitutive models for Pb-contaminated Sn-Ag-Cu solder alloys, ranging from the traditional time-hardening creep model to the viscoplastic Anand model. We illustrate the utility of these constitutive models by examining the inelastic response of a chip-scale package (CSP) under thermomechanical loading through finite-element analysis. The models predict that, as Pb content increases, total inelastic dissipation decreases.

  6. Theoretical and Experimental Study of the Crystal Structures, Lattice Vibrations, and Band Structures of Monazite-Type PbCrO4, PbSeO4, SrCrO4, and SrSeO4.

    PubMed

    Errandonea, Daniel; Muñoz, Alfonso; Rodríguez-Hernández, Placida; Proctor, John E; Sapiña, Fernando; Bettinelli, Marco

    2015-08-03

    The crystal structures, lattice vibrations, and electronic band structures of PbCrO4, PbSeO4, SrCrO4, and SrSeO4 were studied by ab initio calculations, Raman spectroscopy, X-ray diffraction, and optical-absorption measurements. Calculations properly describe the crystal structures of the four compounds, which are isomorphic to the monazite structure and were confirmed by X-ray diffraction. Information is also obtained on the Raman- and IR-active phonons, with all of the vibrational modes assigned. In addition, the band structures and electronic densities of states of the four compounds were determined. All are indirect-gap semiconductors. In particular, chromates are found to have band gaps smaller than 2.5 eV and selenates higher than 4.3 eV. In the chromates (selenates), the upper part of the valence band is dominated by O 2p states and the lower part of the conduction band is composed primarily of electronic states associated with the Cr 3d and O 2p (Se 4s and O 2p) states. Calculations also show that the band gap of PbCrO4 (PbSeO4) is smaller than the band gap of SrCrO4 (SrSeO4). This phenomenon is caused by Pb states, which, to some extent, also contribute to the top of the valence band and the bottom of the conduction band. The agreement between experiments and calculations is quite good; however, the band gaps are underestimated by calculations, with the exception of the bang gap of SrCrO4, for which theory and calculations agree. Calculations also provide predictions of the bulk modulus of the studied compounds.

  7. Heavy metal concentrations (Cd, Cu and Pb) in five aquatic plant species in Tasik Chini, Malaysia

    NASA Astrophysics Data System (ADS)

    Ebrahimpour, M.; Mushrifah, I.

    2008-04-01

    The purpose of this study was to determine the levels of heavy metals namely cadmium (Cd), copper (Cu) and lead (Pb) in the five aquatic plants. For this purpose, the concentration of heavy metals were measured in water and in the five aquatic plant species, Lepironia articulata, Pandanus helicopus, Scirpus grossus, Cabomba furcata and Nelumbo nucifera, in 15 sites from Tasik Chini. The concentrations were different among the plant species as well as among the parts of plants. The highest concentration of heavy metals among the aquatic plants and plant parts was found in the roots of S. grossus. The concentrations of Cd in the leaves and stems of submerged aquatic plant, C . furcata, were higher than concentration of Cd in the leaves and stems of emergent aquatic plant and floating leaf plant. The concentration of Cu in the stem of C. furcata was greater than that in the leaf, while the concentration of Cd was more in the leaf than in the stem. The heavy metal contents of the aquatic plants were in descending order of Pb > Cu > Cd. The metal concentration quotient of leaves/roots and stems/roots (ML/MR and MS/MR) were calculated. The highest internal translocation was found in P. helicopus, while the lowest internal translocation was found in S. grossus.

  8. As-grown superconducting Bi(-Pb)-Sr-Ca-Cu-O films by electron cyclotron resonance plasma sputtering

    NASA Astrophysics Data System (ADS)

    Masumoto, H.; Goto, T.; Hirai, T.

    1989-07-01

    Bi(-Pb)-Sr-Ca-Cu-O thin films were prepared on MgO(100) single-crystal substrates by electron cyclotron resonance (ECR) plasma sputtering at substrate temperatures from room temperature to 590 °C. Pb-doped superconducting as-grown films were obtained above 560 °C. The Tc values of the Pb-doped films prepared at 570-590 °C were 58-64 K which increased with increasing substrate temperature. Pb-undoped as-grown films obtained at 590 °C showed superconduction (Tc =30 K), but the films obtained below 580 °C were semiconductors. The grain sizes and contents of the 37 Å phase (110 K phase) were increased by the Pb doping into the as-grown Bi-Sr-Ca-Cu-O films.

  9. Pb/Cu effects on the organization of microtubule cytoskeleton in interphase and mitotic cells of Allium sativum L.

    PubMed

    Liu, Donghua; Xue, Ping; Meng, Qingmin; Zou, Jing; Gu, Jiegang; Jiang, Wusheng

    2009-04-01

    The effects of lead and copper on the arrangement of microtubule (MT) cytoskeleton in root tip cells of Allium sativum L. were investigated. Batch cultures of garlic were carried out under defined conditions in the presence 10(-4) M Pb/Cu of various duration treatments. With tubulin immunolabelling and transmission electron microscopy (TEM), we found four different types of MT structures depending on the cell cycle stage: the interphase array, preprophase band, mitotic spindle and phragmoplast were typical for the control cells. Pb/Cu affected the mechanisms controlling the organization of MT cytoskeleton, and induces the following aberrations in interphase and mitotic cells. (1) Pb/Cu induced the formation of atypical MT arrays in the cortical cytoplasm of the interphase cells, consisting of skewed, wavy MT bundles, MT fragments and ring-like tubulin aggregations. (2) Pb/Cu disordered the chromosome movements carried out by the mitotic spindle. The outcome was chromosome aberrations, for example, chromosome bridges and chromosome stickiness, as well as inhibition of cells from entering mitosis. (3) Depending on the time of exposure, MTs disintegrated into shorter fragments or they completely disappeared, indicating MT depolymerization. (4) Different metals had different effects on MT organization. MTs were more sensitive to the pressure of Cu ions than Pb. Moreover, TEM observations showed that the MTs were relatively short and in some places wavy when exposed to 10(-4) M Pb/Cu solutions for 1-2 h. In many sections MTs were no longer visible with increasing duration of treatment (>4 h). Based on these results, we suggested that MT cytoskeleton is primarily responsible for Pb/Cu-associated toxicity and tolerance in plants.

  10. Reduced Carrier Recombination in PbS - CuInS2 Quantum Dot Solar Cells.

    PubMed

    Sun, Zhenhua; Sitbon, Gary; Pons, Thomas; Bakulin, Artem A; Chen, Zhuoying

    2015-05-29

    Energy loss due to carrier recombination is among the major factors limiting the performance of TiO2/PbS colloidal quantum dot (QD) heterojunction solar cells. In this work, enhanced photocurrent is achieved by incorporating another type of hole-transporting QDs, Zn-doped CuInS2 (Zn-CIS) QDs into the PbS QD matrix. Binary QD solar cells exhibit a reduced charge recombination associated with the spatial charge separation between these two types of QDs. A ~30% increase in short-circuit current density and a ~20% increase in power conversion efficiency are observed in binary QD solar cells compared to cells built from PbS QDs only. In agreement with the charge transfer process identified through ultrafast pump/probe spectroscopy between these two QD components, transient photovoltage characteristics of single-component and binary QDs solar cells reveal longer carrier recombination time constants associated with the incorporation of Zn-CIS QDs. This work presents a straightforward, solution-processed method based on the incorporation of another QDs in the PbS QD matrix to control the carrier dynamics in colloidal QD materials and enhance solar cell performance.

  11. Reduced Carrier Recombination in PbS - CuInS2 Quantum Dot Solar Cells

    PubMed Central

    Sun, Zhenhua; Sitbon, Gary; Pons, Thomas; Bakulin, Artem A.; Chen, Zhuoying

    2015-01-01

    Energy loss due to carrier recombination is among the major factors limiting the performance of TiO2/PbS colloidal quantum dot (QD) heterojunction solar cells. In this work, enhanced photocurrent is achieved by incorporating another type of hole-transporting QDs, Zn-doped CuInS2 (Zn-CIS) QDs into the PbS QD matrix. Binary QD solar cells exhibit a reduced charge recombination associated with the spatial charge separation between these two types of QDs. A ~30% increase in short-circuit current density and a ~20% increase in power conversion efficiency are observed in binary QD solar cells compared to cells built from PbS QDs only. In agreement with the charge transfer process identified through ultrafast pump/probe spectroscopy between these two QD components, transient photovoltage characteristics of single-component and binary QDs solar cells reveal longer carrier recombination time constants associated with the incorporation of Zn-CIS QDs. This work presents a straightforward, solution-processed method based on the incorporation of another QDs in the PbS QD matrix to control the carrier dynamics in colloidal QD materials and enhance solar cell performance. PMID:26024021

  12. Immobilization of Cu, Zn, Cd and Pb in mine drainage stream sediment using Chinese loess.

    PubMed

    Zang, Fei; Wang, Shengli; Nan, Zhongren; Ma, Jianmin; Li, Yepu; Zhang, Qian; Chen, Yazhou

    2017-08-01

    The in situ immobilization of metal-contaminated sediment, using various amendments, has attracted great attention owing to their cost-effectiveness. The present study investigated the effectiveness of Chinese loess on Cu, Zn, Cd and Pb stabilization by decreasing their bioavailability in contaminated sediment. The loess was mixed with the sediment in doses of 0, 0.5, 1, 2, 5, 10 and 20 kg. Approximately 70 d after loess application, the effectiveness was evaluated using the Tessier sequential extraction procedure and single extractants, including ethylenediaminetetraacetic acid disodium salt (EDTA-2Na), diethylenetriaminepentaacetic acid (DTPA), calcium chloride (CaCl 2 ) and hydrochloric acid (HCl). The results indicated that the loess can effectively transform Cu from the carbonate fraction into the residual fraction when the loess dose was ≥5 kg. However, loess had little effect on Zn, Cd and Pb immobilization. Correlation analysis showed that these four extractants can provide a good indication of the toxicity of Cu, Zn, Cd and Pb in the amended sediment. Additionally, the organic matter content in the amended sediment decreased by 1.4% for CK, 1.6% for L0.5, 1.7% for L1, 1.5% for L2, 1.5% for L5, 1.9% for L10 and 1.9% for L20 (CK: untreated sediment; L0.5 to L20 represent loess doses of 0.5, 1, 2, 5, 10 and 20 kg, respectively) compared to the initial organic matter content in the unamended sediment, which may increase the atmospheric carbon dioxide owing to the degradation of organic matter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings

    PubMed Central

    Huang, Longbin; Li, Xiaofang; Nguyen, Tuan A. H.

    2015-01-01

    Elevated inorganic phosphate (Pi) concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu)-lead (Pb)-zinc (Zn) mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7), the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5), EHM-TD (fresh Cu-stream, high magnetite content) and local soil (weathered shale and schist), respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed), oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2), ankerite (Ca(Fe Mg)(CO3)2 and siderite (FeCO3), as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,Fe)S, ZnS, (Zn,Cd)S)) may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal. PMID

  14. Tolerance and hyperaccumulation of a mixture of heavy metals (Cu, Pb, Hg, and Zn) by four aquatic macrophytes.

    PubMed

    Romero-Hernández, Jorge Alberto; Amaya-Chávez, Araceli; Balderas-Hernández, Patricia; Roa-Morales, Gabriela; González-Rivas, Nelly; Balderas-Plata, Miguel Ángel

    2017-03-04

    In the present investigation, four macrophytes, namely Typha latifolia (L.), Lemna minor (L.), Eichhornia crassipes (Mart.) Solms-Laubach, and Myriophyllum aquaticum (Vell.) Verdc, were evaluated for their heavy metal (Cu, Pb, Hg, and Zn) hyperaccumulation potential under laboratory conditions. Tolerance analyses were performed for 7 days of exposure at five different treatments of the metals mixture (Cu +2 , Hg +2 , Pb +2 , and Zn +2 ). The production of chlorophyll and carotenoids was determined at the end of each treatment. L. minor revealed to be sensitive, because it did not survive in all the tested concentrations after 72 hours of exposure. E. crassipes and M. aquaticum displayed the highest tolerance to the metals mixture. For the most tolerant species of aquatic macrophytes, The removal kinetics of E. crassipes and M. aquaticum was carried out, using the following mixture of metals: Cu (0.5 mg/L) and Hg, Pb, and Zn 0.25 mg/L. The obtained results revealed that E. crassipes can remove 99.80% of Cu, 97.88% of Pb, 99.53% of Hg, and 94.37% of Zn. M. aquaticum withdraws 95.2% of Cu, 94.28% of Pb, 99.19% of Hg, and 91.91% of Zn. The obtained results suggest that these two species of macrophytes could be used for the phytoremediation of this mixture of heavy metals from the polluted water bodies.

  15. Bioavailability and health risk of some potentially toxic elements (Cd, Cu, Pb and Zn) in street dust of Asansol, India.

    PubMed

    Gope, Manash; Masto, Reginald Ebhin; George, Joshy; Hoque, Raza Rafiqul; Balachandran, Srinivasan

    2017-04-01

    Street dust samples were collected from five different types of land use patterns (busy traffic zone, urban residential area, national highways, industrial area and sensitive area) in a medium sized industrial city Asansol, India. The samples were fractionated into ≤53µm and analyzed for potential toxic elements (PTEs) viz. Zn, Cd, Pb and Cu. The mean total concentration of Zn, Cd, Pb and Cu in the urban street dust samples were 192, 0.75, 110 and 132mgkg -1 respectively. Chemical speciation was performed for PTEs to evaluate the bio-available fractions. Cu was mostly associated with organic matter phase while Zn, Pb and Cd with residual phase. Mean mobility factor (MF) for heavy metals in Asansol was Zn (54.6%)>Pb (49.1%)>Cu (25.3%)>Cd (22.7%). Geo-chemical indices such as Enrichment Factor (EF), geo-accumulation index (Igeo) and contamination Factor (CF) were in the order of Pb>Cd>Zn>Cu. Cluster analysis was done to understand the similarities among the sites. The risks of all metals was calculated with mobile fraction, which indicated actual risk due to PTEs was less (HI<1). Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Accumulation of Sb, Pb, Cu, Zn and Cd by various plants species on two different relocated military shooting range soils.

    PubMed

    Evangelou, Michael W H; Hockmann, Kerstin; Pokharel, Rasesh; Jakob, Alfred; Schulin, Rainer

    2012-10-15

    Annually, more than 400 t Pb and 10 t Sb enter Swiss soils at some 2000 military shooting ranges. After the decommission of military shooting ranges, heavily contaminated soils (>2000 mg kg(-1) Pb) are landfilled or processed by soil washing, whereas for soils with less contamination, alternate strategies are sought. Although the use of military shooting ranges for grazing in Switzerland is common practice, no assessment has been done about the uptake of Sb in plants and its subsequent potential intake by grazing animals. We determined the uptake of Sb, Pb, Cu, Zn and Cd in the aboveground biomass of nine plant species growing on a calcareous (Chur) and a weakly acidic (Losone) military shooting range soil in order to assess if grazing would be safe to employ on decommissioned military shooting ranges. The two soils did not differ in their total concentrations of Cu, Zn, Sb and Cd, they differed however in the total concentration of Pb. Additionally, their physical and chemical properties were significantly different. The accumulation of Zn, Cu, Cd and Pb in the shoots of all nine plant species remained below the Swiss tolerance values for fodder plants (150 mg kg(-1) Zn, 15-35 mg kg(-1) Cu, 40 mg kg(-1) Pb, and 1 mg kg(-1) Cd DW), with the only exception of Pb in Chenopodium album shoots which reached a concentration of 62 mg kg(-1) DW. Antimony concentrations were 1.5-2.6-fold higher in plants growing on the calcareous soil than on the weakly acidic soil. Considering Cu, Zn, Pb, Sb and Cd, all plants, with the exception C. album, would be suitable for grazing on similar shooting range soils. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Preparation and thermoelectric properties of ternary superionic conductor CuCrS{sub 2}

    SciTech Connect

    Chen Yuexing; Zhang Boping; Ge Zhenhua; Shang Pengpeng

    2012-02-15

    Transition metal chalcogenide CuCrS{sub 2} powder was synthesized by mechanical alloying (MA) and then consolidated by spark plasma sintering (SPS) technique at 673-1073 K. The phase structure, microstructure and thermoelectric properties of samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and Seebeck coefficient/electrical conductivity measuring system, respectively. All the bulks indicated a single phase CuCrS{sub 2}, while the high relative density over 90% were attained for the samples sintered at 873-1073 K. The electrical conductivity of bulk samples displayed a typical characteristic of semiconductor. With increasing measuring temperature, the conductive behaviour of bulk samples sintered over 973 K showed a semiconductor transformation from n-type to p-type due to the changes of main carrier type. The sample obtained by applying SPS at 873 K got the highest power factor 83.2 {mu}W m{sup -1} K{sup -2}, and the largest ZT value 0.11 at 673 K. - Graphical abstract: The samples sintered above 873 K, both of the Seebeck coefficient and electrical conductivity exhibit an increase tendency with increasing temperature, which is due to the mechanism of mix-conduction for CuCrS{sub 2}. Highlights: Black-Right-Pointing-Pointer Single phase CuCrS{sub 2} powder was synthesized by ball-milling at 425 rpm for 40 h. Black-Right-Pointing-Pointer Dense CuCrS{sub 2} bulks were fabricated using SPS techniques at sintering temperature 873-1073 K. Black-Right-Pointing-Pointer Seebeck coefficient of CuCrS{sub 2} samples sintered over 973 K change the signs. Black-Right-Pointing-Pointer Highest power factor reached 83.2 {mu}W m{sup -1} K{sup -2} at 673 K for the sample sintered at 873 K. Black-Right-Pointing-Pointer ZT value was 0.11 at 673 K for the sample sintered at 873 K.

  18. Enhanced magnetism of Cu{sub n} clusters capped with N and endohedrally doped with Cr

    SciTech Connect

    Datta, Soumendu; Banerjee, Radhashyam; Mookerjee, Abhijit

    2015-01-14

    The focus of our work is on the production of highly magnetic materials out of Cu clusters. We have studied the relative effects of N-capping as well as N mono-doping on the structural stability and electronic properties of the small Cu clusters using first principles density functional theory based electronic structure calculations. We find that the N-capped clusters are more promising in producing giant magnetic moments, such as 14 μ{sub B} for the Cu{sub 6}N{sub 6} cluster and 29 μ{sub B} for the icosahedral Cu{sub 13}N{sub 12} cluster. This is accompanied by a substantial enhancement in their stability. We suggest that these giant magnetic moments of the capped Cu{sub n} clusters have relevance to the observed room temperature ferromagnetism of Cu doped GaN. For cage-like hollow Cu-clusters, an endohedral Cr-doping together with the N-capping appears as the most promising means to produce stable giant magnetic moments in the copper clusters.

  19. Charge disproportionation and the pressure-induced insulator–metal transition in cubic perovskite PbCrO3

    PubMed Central

    Cheng, Jinguang; Kweon, K. E.; Larregola, S. A.; Ding, Yang; Shirako, Y.; Marshall, L. G.; Li, Z.-Y.; Li, X.; dos Santos, António M.; Suchomel, M. R.; Matsubayashi, K.; Uwatoko, Y.; Hwang, G. S.; Goodenough, John B.; Zhou, J.-S.

    2015-01-01

    The perovskite PbCrO3 is an antiferromagnetic insulator. However, the fundamental interactions leading to the insulating state in this single-valent perovskite are unclear. Moreover, the origin of the unprecedented volume drop observed at a modest pressure of P = 1.6 GPa remains an outstanding problem. We report a variety of in situ pressure measurements including electron transport properties, X-ray absorption spectrum, and crystal structure study by X-ray and neutron diffraction. These studies reveal key information leading to the elucidation of the physics behind the insulating state and the pressure-induced transition. We argue that a charge disproportionation 3Cr4+ → 2Cr3+ + Cr6+ in association with the 6s-p hybridization on the Pb2+ is responsible for the insulating ground state of PbCrO3 at ambient pressure and the charge disproportionation phase is suppressed under pressure to give rise to a metallic phase at high pressure. The model is well supported by density function theory plus the correlation energy U (DFT+U) calculations. PMID:25624483

  20. Cd, Ni, Cr and Pb distribution in biosolid pellets used as soil amendment

    NASA Astrophysics Data System (ADS)

    Jordán, Manuel M.; Rincón-Mora, Beatriz; Belén Almendro-Candel, María; Navarro Pedreño, Jose; Gómez Lucas, Ignacio; Bech, Jaume; Roca, Nuria; Pardo, Francisco

    2016-04-01

    The application of biosolids to a soil is a method that offers important benefits (Navarro et al. 2003). The transport and application costs are quite low (mostly if they are dehydrated biosolids or pellets) if soils are located near a wastewater treatment plant. It is possible to recycle nutrients (N, P, and K) and organic matter by improving the physical and chemical characteristics of the soil and by reducing the fertilizer costs. However, the use of biosolids may also has several problems, such as the presence of quantities of metals that could be toxic for plants or could contaminate ground-waters after being leached. Heavy metals are one of the most serious environmental pollutants because of its high toxicity, abundance and easy accumulation by plant (Soriano-Disla et al. 2014; Rosen and Chen 2014). Contamination of soils by potentially toxic elements (e.g. Cd, Ni, Cr, Pb) from amendments of biosolids is subject to rigorous controls within the European Union. The present study was designed to examine the partition of selected heavy metals in biosolid pellets, and also to relate the distribution patterns of these metals. Samples were collected from the treatment of urban wastewater at the drying grounds of a wastewater processing plant. The samples correspond to biosolids with humidities below 20% and are representative of the three horizons within the pile: the isolation surface (H1), the mesophilous area (H2), and the thermophilous area (H3). Biosolid aggregates were placed in a pellet press and then compacted. Total content of metals was determined following microwave digestion and analysed by ICP/MS. Triplicate samples were weighed in polycarbonate centrifuge tubes and sequentially extracted. The distribution of chemical forms of Cd, Ni, Cr, and Pb in the biosolids was studied using a sequential extraction procedure that fractionates the metal into soluble-exchangeable, specifically sorbed-carbonate bound, oxidizable, reducible, and residual forms. The

  1. Thermoelectric Properties of Bi₂Te₃: CuI and the Effect of Its Doping with Pb Atoms.

    PubMed

    Han, Mi-Kyung; Jin, Yingshi; Lee, Da-Hee; Kim, Sung-Jin

    2017-10-26

    In order to understand the effect of Pb-CuI co-doping on the thermoelectric performance of Bi₂Te₃, n-type Bi₂Te₃ co-doped with x at % CuI and 1/2x at % Pb (x = 0, 0.01, 0.03, 0.05, 0.07, and 0.10) were prepared via high temperature solid state reaction and consolidated using spark plasma sintering. Electron and thermal transport properties, i.e., electrical conductivity, carrier concentration, Hall mobility, Seebeck coefficient, and thermal conductivity, of CuI-Pb co-doped Bi₂Te₃ were measured in the temperature range from 300 K to 523 K, and compared to corresponding x% of CuI-doped Bi₂Te₃ and undoped Bi₂Te₃. The addition of a small amount of Pb significantly decreased the carrier concentration, which could be attributed to the holes from Pb atoms, thus the CuI-Pb co-doped samples show a lower electrical conductivity and a higher Seebeck coefficient when compared to CuI-doped samples with similar x values. The incorporation of Pb into CuI-doped Bi₂Te₃ rarely changed the power factor because of the trade-off relationship between the electrical conductivity and the Seebeck coefficient. The total thermal conductivity(κtot) of co-doped samples (κtot ~ 1.4 W/m∙K at 300 K) is slightly lower than that of 1% CuI-doped Bi₂Te₃ (κtot ~ 1.5 W/m∙K at 300 K) and undoped Bi₂Te₃ (κtot ~ 1.6 W/m∙K at 300 K) due to the alloy scattering. The 1% CuI-Pb co-doped Bi₂Te3 sample shows the highest ZT value of 0.96 at 370 K. All data on electrical and thermal transport properties suggest that the thermoelectric properties of Bi₂Te3 and its operating temperature can be controlled by co-doping.

  2. Creep of Uncoated and Cu-Cr Coated NARloy-Z

    NASA Technical Reports Server (NTRS)

    Walter, R. J.; Chiang, K. T.

    1998-01-01

    Stress rupture creep tests were performed on uncoated and Cu-30vol%Cr coated NARloy-Z copper alloy specimens exposed to air at 482 C to 704 C. The results showed that creep failure in air of unprotected NARloy-Z was precipitated by brittle intergranular surface cracking produced by strain assisted grain boundary oxidation (SAGBO) which in turn caused early onset of tertiary creep. For the protected specimens, the Cu-Cr coating remained adherent throughout the tests and was effective in slowing down the rate of oxygen absorption, particularly at the higher temperatures, by formation of a continuous chromium oxide scale. As the result of reducing oxygen ingress, the coating prevented SAGBO initiated early creep failure, extended creep deformation and increased the creep rupture life of NARloy-Z over the entire 482 C to 704 C test temperature range.

  3. Effect of Cr on Microstructure and Properties of a Series of AlTiCr x FeCoNiCu High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Li, Anmin; Ma, Ding; Zheng, Qifeng

    2014-04-01

    A series of AlTiCr x FeCoNiCu ( x: molar ratio, x = 0.5, 1.0, 1.5, 2.0, 2.5) high-entropy alloys (HEAs) were prepared by vacuum arc furnace. These alloys consist of α-phase, β-phase, and γ-phase. These phases are solid solutions. The structure of α-phase and γ-phase is face-centered cubic structure and that of β-phase is body-centered cubic (BCC) structure. There are four typical cast organizations in these alloys such as petal organization (α-phase), chrysanthemum organization (α-phase + β-phase), dendrite (β-phase), and inter-dendrite (γ-phase). The solidification mode of these alloys is affected by Chromium. If γ-phase is not considered, AlTiCr0.5FeCoNiCu and AlTiCrFeCoNiCu belong to hypoeutectic alloys; AlTiCr1.5FeCoNiCu, AlTiCr2.0FeCoNiCu, and AlTiCr2.5FeCoNiCu belong to hypereutectic alloys. The cast organizations of these alloys consist of pro-eutectic phase and eutectic structure (α + β). Compact eutectic structure and a certain amount of fine β-phase with uniform distribution are useful to improve the microhardness of the HEAs. More γ-phase and the microstructure with similar volume ratio values of α-phase and β-phase improve the compressive strength and toughness of these alloys. The compressive fracture of the series of AlTiCr x FeCoNiCu HEAs shows brittle characteristics, suggesting that these HEAs are brittle materials.

  4. Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces

    SciTech Connect

    Wang, Yingge; Michel, F. Marc; Choi, Yongseong; Eng, Peter J.; Levard, Clement; Siebner, Hagar; Gu, Baohua; Bargar, John R.; Brown, Gordon E.

    2016-05-09

    Here, mineral surfaces are often coated by natural organic matter (NOM), which has a major influence on metal-ion sorption and sequestration because of the abundance of binding sites in such coatings and the changes they cause in local nanoscale environments. The effects of NOM coatings on mineral surfaces are, however, still poorly understood at the molecular level due to the complexity of these systems. In this study, we have applied long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy to measure the partitioning of naturally present Cu(II) (0.0226%), Zn(II) (0.009%), and Pb(II) ( 0.0004%) between Elliott Soil Humic Acid (ESHA) coatings and three model single-crystal metal-oxide substrates: α-Al2O3 (0 0 0 1), α-Al2O3 (1 1 0 2), and α-Fe2O3 (0 0 0 1). The competitive sorption effects among these metal ions for binding sites in the ESHA coatings and on the metal-oxide surfaces were investigated as a function of reaction time, calcium content, and solution pH. Pb(II) ions present in the ESHA coatings were found to redistribute to reactive α-Al2O3 (1 1 0 2) and α-Fe2O3 (0 0 0 1) surfaces after 3 h of reaction (pH = 6.0, [Ca(II)] = 2 mM). Pb(II) partitioning onto these reactive metal-oxide surfaces increased with increasing reaction time (up to 7 d). In addition, the partitioning of Cu(II) and Zn(II) from the ESHA coating to the α-Fe2O3 (0 0 0 1) substrate increased slightly with reaction time (2.4% and 3.7% for Cu(II) and Zn(II), respectively, after 3 h and 6.4% and 7.7% for Cu(II) and Zn(II), respectively, after 72 h of reaction time).

  5. Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces

    DOE PAGES

    Wang, Yingge; Michel, F. Marc; Choi, Yongseong; ...

    2016-05-09

    Here, mineral surfaces are often coated by natural organic matter (NOM), which has a major influence on metal-ion sorption and sequestration because of the abundance of binding sites in such coatings and the changes they cause in local nanoscale environments. The effects of NOM coatings on mineral surfaces are, however, still poorly understood at the molecular level due to the complexity of these systems. In this study, we have applied long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy to measure the partitioning of naturally present Cu(II) (0.0226%), Zn(II) (0.009%), and Pb(II) ( 0.0004%) between Elliott Soil Humic Acid (ESHA) coatings andmore » three model single-crystal metal-oxide substrates: α-Al 2O 3 (0 0 0 1), α-Al 2O 3 (1 1 0 2), and α-Fe 2O 3 (0 0 0 1). The competitive sorption effects among these metal ions for binding sites in the ESHA coatings and on the metal-oxide surfaces were investigated as a function of reaction time, calcium content, and solution pH. Pb(II) ions present in the ESHA coatings were found to redistribute to reactive α-Al 2O 3 (1 1 0 2) and α-Fe 2O 3 (0 0 0 1) surfaces after 3 h of reaction (pH = 6.0, [Ca(II)] = 2 mM). Pb(II) partitioning onto these reactive metal-oxide surfaces increased with increasing reaction time (up to 7 d). In addition, the partitioning of Cu(II) and Zn(II) from the ESHA coating to the α-Fe 2O 3 (0 0 0 1) substrate increased slightly with reaction time (2.4% and 3.7% for Cu(II) and Zn(II), respectively, after 3 h and 6.4% and 7.7% for Cu(II) and Zn(II), respectively, after 72 h of reaction time).« less

  6. Magnetic-field-induced phases in anisotropic triangular antiferromagnets: Application to CuCrO2

    NASA Astrophysics Data System (ADS)

    Lin, Shi-Zeng; Barros, Kipton; Mun, Eundeok; Kim, Jae-Wook; Frontzek, Matthias; Barilo, S.; Shiryaev, S. V.; Zapf, Vivien S.; Batista, Cristian D.

    2014-06-01

    We introduce a minimal spin model for describing the magnetic properties of CuCrO2. Our Monte Carlo simulations of this model reveal a rich magnetic-field-induced phase diagram, which explains the measured field dependence of the electric polarization. The sequence of phase transitions between different multiferroic states arises from a subtle interplay between spatial and spin anisotropy, magnetic frustration, and thermal fluctuations. Our calculations are compared to new measurements up to 92 T.

  7. Primary Phase Field of the Pb-Doped 2223 High-Tc Superconductor in the (Bi, Pb)-Sr-Ca-Cu-O System

    PubMed Central

    Wong-Ng, W.; Cook, L. P.; Kearsley, A.; Greenwood, W.

    1999-01-01

    Both liquidus and subsolidus phase equilibrium data are of central importance for applications of high temperature superconductors in the (Bi, Pb)-Sr-Ca-Cu-O system, including material synthesis, melt processing and single crystal growth. The subsolidus equilibria of the 110 K high-Tc Pb-doped 2223 ([Bi, Pb], Sr, Ca, Cu) phase and the location of the primary phase field (crystallization field) have been determined in this study. For the quantitative determination of liquidus data, a wicking technique was developed to capture the melt for quantitative microchemical analysis. A total of 29 five-phase volumes that include the 2223 phase as a component was obtained. The initial melt compositions of these volumes range from a mole fraction of 7.3 % to 28.0 % for Bi, 11.3 % to 27.8 % for Sr, 1.2 % to 19.4 % for Pb, 9.8 % to 30.8 % for Ca, and 17.1 % to 47.0 % for Cu. Based on these data, the crystallization field for the 2223 phase was constructed using the convex hull technique. A section of this “volume” was obtained by holding two components of the composition at the median value, allowing projection on the other three axes to show the extent of the field.

  8. Cu-Zn-Pb multi isotopic characterization of a small watershed (Loire river basin, France)

    NASA Astrophysics Data System (ADS)

    Desaulty, A. M.; Millot, R.; Perret, S.; Bourrain, X.

    2015-12-01

    Combating metal pollution in surface water is a major environmental, public health and economic issue. Knowledge of the behavior of metals, such as copper (Cu), zinc (Zn) and lead (Pb) in sediments and dissolved load, is a key factor to improve the management of rivers. Recent advances in mass spectrometry related to the development of MC-ICPMS allow to analyze the isotopic composition of these elements, and previous studies show the effectiveness of isotopic analyses to determine the anthropogenic sources of pollution in environment. The goal of this study is to use the Cu-Zn-Pb multi-isotopic signature to track the pollutions in surface water, and to understand the complex processes causing the metals mobilization and transport in environment. More particularly we investigate the mechanisms of distribution between the dissolved load and particulate load, known to play an important role in the transport of metals through river systems. As case study, we chose a small watershed, poorly urbanized in the Loire river basin. Its spring is in a pristine area, while it is only impacted some kilometers further by the releases rich in metals coming from a hospital water treatment plant. First a sampling of these liquid effluents as well as dissolved load and sediment from upstream to downstream was realized and their concentrations and isotopic data were determined. Then to simulate a lot of potential natural and anthropogenic modifications of environmental conditions, we made sequential extraction protocol using various reagents on the sediments. Isotopic analyzes were performed also on the various extracting solutions. Isotopic ratios were measured using a Neptune MC-ICPMS at the BRGM, after a protocol of purification for Zn and Cu. The results showed that, these isotopic systematics reveal important informations about the mechanists of mobilization and transport of metals through river systems. However experiments performed under laboratory conditions will be necessary

  9. Influence of Cu-Cr substitution on structural, morphological, electrical and magnetic properties of magnesium ferrite

    NASA Astrophysics Data System (ADS)

    Yonatan Mulushoa, S.; Murali, N.; Tulu Wegayehu, M.; Margarette, S. J.; Samatha, K.

    2018-03-01

    Cu-Cr substituted magnesium ferrite materials (Mg1 - xCuxCrxFe21 - xO4 with x = 0.0-0.7) have been synthesized by the solid state reaction method. XRD analysis revealed the prepared samples are cubic spinel with single phase face centered cubic. A significant decrease of ∼41.15 nm in particle size is noted in response to the increase in Cu-Cr substitution level. The room temperature resistivity increases gradually from 0.553 × 105 Ω cm (x = 0.0) to 0.105 × 108 Ω cm (x = 0.7). Temperature dependent DC-electrical resistivity of all the samples, exhibits semiconductor like behavior. Cu-Cr doped materials can be suitable to limit the eddy current losses. VSM result shows pure and doped magnesium ferrite particles show soft ferrimagnetic nature at room temperature. The saturation magnetization of the samples decreases initially from 34.5214 emu/g for x = 0.0 to 18.98 emu/g (x = 0.7). Saturation magnetization, remanence and coercivity are decreased with doping, which may be due to the increase in grain size.

  10. Essential (Cu) and nonessential (Cd and Pb) metals in ichthyofauna from the coasts of Sinaloa state (SE Gulf of California).

    PubMed

    Ruelas-Inzunza, J; Páez-Osuna, F; García-Flores, D

    2010-03-01

    With the aim of giving an overview on concentration and distribution of Cd, Cu, and Pb in fish from the coasts of Sinaloa state (SE Gulf of California), specimens with different feeding habits were collected in five locations. Sampling occurred between June 2003 and March 2004. Metal analyses on fish tissues were made by graphite furnace (Cd, Pb) and flame (Cu) atomic absorption spectrophotometry. Metal concentrations in tissues of carnivorous fish were grouped together and compared with corresponding concentrations in non-carnivorous fish; Cu and Pb levels were significantly (p < 0.05) higher in liver of non-carnivorous species. Though no samples exceeded the maximum level set in international legislation for fish, from the perspective of the public health and considering the legal limits of fishery products for human consumption, Cu concentrations were exceeded (in tissues different from muscle) in four carnivorous and five non-carnivorous species according to the Australian legislation. In the case of Cd, two carnivorous species (Pomadasys leuciscus and Caulolatilus princeps) and one non-carnivorous species (Mugil cephalus), showed concentrations over the maximum level of 2 microg g(-1) dry weight considered in the Mexican legislation. Considering average amounts of fish consumption in Mexico, daily mineral intake (DMI) values for Cu and percentage weekly intake (PWI) of Cd and Pb were estimated; none of the analyzed metals in edible portion of analyzed fish could be detrimental to humans.

  11. Evaluation of Pb-17Li compatibility of ODS Fe-12Cr-5Al alloys

    SciTech Connect

    Unocic, Kinga A.; Hoelzer, David T.

    2016-07-09

    The Dual Coolant Lead Lithium (DCLL: eutectic Pb–17Li and He) blanket concept requires improved Pb–17Li compatibility with ferritic steels in order to demonstrate acceptable performance in fusion reactors. As an initial step, static Pb-17at.%Li (Pb-17Li) capsule experiments were conducted on new oxide dispersion strengthened (ODS) FeCrAl alloys ((1) Y2O3 (125Y), (2) Y2O3+ZrO2 (125YZ), (3) Y2O3+HfO2 (125YH), and (4) Y2O3+TiO2 (125YT)) produced at ORNL via mechanical alloying (MA). Tests were conducted in static Pb–17Li for 1000 h at 700°C. Alloys showed promising compatibility with Pb–17Li with small mass change after testing for 125YZ, 125YH and 125YT, while the 125Y alloy experienced the highest mass loss associated with some oxide spallation and subsequent alloy dissolution. X-ray diffraction methods identified the surface reaction product as LiAlO2 on all four alloys. A small decrease (~1 at.%) in Al content beneath the oxide scale was observed in all 4 ODS alloys, which extended through 60 μm beneath the oxide/metal interface. This indicates improvements in alloy dissolution by decreasing the amount of Al loss from the alloy. Scales formed on 125YZ, 125YH and 125YT were examined via scanning transmission electron microscopy (S/TEM) and revealed incorporation of Zr-, Hf-, and Ti-rich precipitates within the LiAlO2 product, respectively. This indicates an inward scale growth mechanism. Future work in flowing Pb–17Li is needed to further evaluate the effectiveness of this strategy in a test blanket module.

  12. Evaluation of Pb-17Li compatibility of ODS Fe-12Cr-5Al alloys

    SciTech Connect

    Unocic, Kinga A.; Hoelzer, David T.

    2016-07-09

    The Dual Coolant Lead Lithium (DCLL: eutectic Pb–17Li and He) blanket concept requires improved Pb–17Li compatibility with ferritic steels in order to demonstrate acceptable performance in fusion reactors. As an initial step, static Pb-17at.%Li (Pb-17Li) capsule experiments were conducted on new oxide dispersion strengthened (ODS) FeCrAl alloys ((1) Y 2O 3 (125Y), (2) Y 2O 3+ZrO 2 (125YZ), (3) Y 2O 3+HfO 2 (125YH), and (4) Y 2O 3+TiO 2 (125YT)) produced at ORNL via mechanical alloying (MA). Tests were conducted in static Pb–17Li for 1000 h at 700°C. Alloys showed promising compatibility with Pb–17Li with small mass change aftermore » testing for 125YZ, 125YH and 125YT, while the 125Y alloy experienced the highest mass loss associated with some oxide spallation and subsequent alloy dissolution. X-ray diffraction methods identified the surface reaction product as LiAlO 2 on all four alloys. A small decrease (~1 at.%) in Al content beneath the oxide scale was observed in all 4 ODS alloys, which extended through 60 μm beneath the oxide/metal interface. This indicates improvements in alloy dissolution by decreasing the amount of Al loss from the alloy. Scales formed on 125YZ, 125YH and 125YT were examined via scanning transmission electron microscopy (S/TEM) and revealed incorporation of Zr-, Hf-, and Ti-rich precipitates within the LiAlO2 product, respectively. This indicates an inward scale growth mechanism. Future work in flowing Pb–17Li is needed to further evaluate the effectiveness of this strategy in a test blanket module.« less

  13. Heavy metal content (Cd, Ni, Cr and Pb) in soil amendment with a low polluted biosolid

    NASA Astrophysics Data System (ADS)

    Gomez Lucas, Ignacio; Lag Brotons, Alfonso; Navarro-Pedreño, Jose; Belén Almendro-Candel, Maria; Jordán, Manuel M.; Bech, Jaume; Roca, Nuria

    2016-04-01

    The progressively higher water quality standards in Europe has led to the generation of large quantities of sewage sludge derived from wastewater treatment (Fytili and Zabaniotou 2008). Composting is an effective method to minimize these risks, as pathogens are biodegraded and heavy metals are stabilized as a result of organic matter transformations (Barker and Bryson 2002; Noble and Roberts 2004). Most of the studies about sewage sludge pollution are centred in medium and high polluted wastes. However, the aim of this study was to assess the effects on soil heavy metal content of a low polluted sewage sludge compost in order to identify an optimal application rate based in heavy metal concentration under a period of cultivation of a Mediterranean horticultural plant (Cynara carducnculus). The experiment was done between January to June: rainfall was 71 mm, the volume of water supplied every week was 10.5 mm, mean air temperatures was 14.2, 20.4 (maximum), and 9.2◦C (minimum). The soil was a clay-loam anthrosol (WRB 2006). The experimental plot (60 m2) was divided into five subplots with five treatments corresponding to 0, 2, 4, 6, and 8 kg compost/m2. Three top-soil (first 20 cm) samples from each treatment were taken (January, April and June) and these parameters were analysed: pH, electrical conductivity, organic matter and total content of heavy metals (microwave acid digestion followed by AAS-spectrometry determination). The results show that sewage sludge compost treatments increase the organic matter content and salinity (electrical conductivity of the soils) and diminish the pH. Cd and Ni total content in top-soil was affected and both slightly reduce their concentration. Pb and Cr show minor changes. In general, the application of this low polluted compost may affect the mobility of Cd and Ni due to the pH modification and the water added by irrigation along time but Pb and Cr remain their content in the top-soil. References Barker, A.V., and G.M. Bryson

  14. Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria.

    PubMed

    Braud, Armelle; Jézéquel, Karine; Bazot, Stéphane; Lebeau, Thierry

    2009-01-01

    Bioaugmentation-assisted phytoextraction may enhance the phytoextraction efficiency thanks to larger metal mobilization by microbial metabolites. Green fluorescent protein-tagged cells of Pseudomonas aeruginosa, Pseudomonas fluorescens or Ralstonia metallidurans, able to produce siderophores, were inoculated in an agricultural soil containing Cr (488 mg kg(-1)) and Pb (382 mg kg(-1)) and maize was cultivated. Bacteria were inoculated as free or immobilized cells in Ca-alginate beads, with skim milk in the aim at improving both the bacterial survival and the in situ siderophore production. Skim milk addition increased inoculated Pseudomonads concentration in soil. Soil inoculation with free cells of R. metallidurans supplied with skim milk increased Cr accumulation in maize shoots by a factor of 5.2 and inoculation with immobilized P. aeruginosa cells supplied with skim milk increased Cr and Pb uptake by maize shoots by a factor of 5.4 and 3.8, respectively. However total metal taken up by the whole plant decreases almost always with bioaugmentation. Translocation factor also increased with P. aeruginosa or R. metallidurans by a factor of 6 up to 7. Inoculated bacteria concentration in soil was correlated with metals in the exchangeable fraction. Cr and Pb concentrations in the exchangeable fraction were correlated with metal contents in shoots or roots. Our results suggest that bioaugmentation-assisted phytoextraction is a relevant method in the aim at increasing the phytoextraction rate which usually limits the use of phytoremediation technologies.

  15. Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Yingge; Michel, F. Marc; Choi, Yongseong; Eng, Peter J.; Levard, Clement; Siebner, Hagar; Gu, Baohua; Bargar, John R.; Brown, Gordon E.

    2016-09-01

    Mineral surfaces are often coated by natural organic matter (NOM), which has a major influence on metal-ion sorption and sequestration because of the abundance of binding sites in such coatings and the changes they cause in local nanoscale environments. The effects of NOM coatings on mineral surfaces are, however, still poorly understood at the molecular level due to the complexity of these systems. In this study, we have applied long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy to measure the partitioning of naturally present Cu(II) (0.0226%), Zn(II) (0.009%), and Pb(II) (∼0.0004%) between Elliott Soil Humic Acid (ESHA) coatings and three model single-crystal metal-oxide substrates: α-Al2O3 (0 0 0 1), α-Al2O3 (1 -1 0 2), and α-Fe2O3 (0 0 0 1). The competitive sorption effects among these metal ions for binding sites in the ESHA coatings and on the metal-oxide surfaces were investigated as a function of reaction time, calcium content, and solution pH. Pb(II) ions present in the ESHA coatings were found to redistribute to reactive α-Al2O3 (1 -1 0 2) and α-Fe2O3 (0 0 0 1) surfaces after 3 h of reaction (pH = 6.0, [Ca(II)] = 2 mM). Pb(II) partitioning onto these reactive metal-oxide surfaces increased with increasing reaction time (up to 7 d). In addition, the partitioning of Cu(II) and Zn(II) from the ESHA coating to the α-Fe2O3 (0 0 0 1) substrate increased slightly with reaction time (2.4% and 3.7% for Cu(II) and Zn(II), respectively, after 3 h and 6.4% and 7.7% for Cu(II) and Zn(II), respectively, after 72 h of reaction time). However, no changes in the partitioning of Cu(II) and Zn(II) onto the α-Al2O3 (1 -1 0 2) surface were observed with increasing reaction time, suggesting that these ions strongly complex with functional groups in the ESHA coatings. Similar results were obtained for Cu(II) and Zn(II) on the ESHA-coated α-Al2O3 (1 -1 0 2) surfaces in samples without the addition of calcium. However, the amounts of Pb

  16. Ab Initio Investigation on Cu/Cr Codoped Amorphous Carbon Nanocomposite Films with Giant Residual Stress Reduction.

    PubMed

    Li, Xiaowei; Guo, Peng; Sun, Lili; Wang, Aiying; Ke, Peiling

    2015-12-23

    Amorphous carbon films (a-C) codoped by two metal elements exhibit the desirable combination of tribological and mechanical properties for widely potential applications, but are also prone to catastrophic failure due to the inevitable residual compressive stress. Thus far, the residual stress reduction mechanism remains unclear due to the insufficient understanding of the structure from the atomic and electronic scale. In this paper, using ab initio calculations, we first designed a novel Cu/Cr codoped a-C film and demonstrated that compared with pure and Cu/Cr monodoped cases, the residual stress in Cu/Cr codoped a-C films could be reduced by 93.6% remarkably. Atomic bond structure analysis revealed that the addition of Cu and Cr impurities in amorphous carbon structure resulted in the critical and significant relaxation of distorted C-C bond lengths. On the other hand, electronic structure calculation indicated a weak bonding interaction between the Cr and C atoms, while the antibonding interaction was observed for the Cu-C bonds, which would play a pivot site for the release of strain energy. Those interactions combined with the structural evolution could account for the drastic residual stress reduction caused by Cu/Cr codoping. Our results provide the theoretical guidance and desirable strategy to design and fabricate a new nanocomposite a-C films with combined properties for renewed applications.

  17. Preliminary assessment of metal-porcelain bonding strength of CoCrW alloy after 3wt.% Cu addition.

    PubMed

    Lu, Yanjin; Zhao, Chaoqian; Ren, Ling; Guo, Sai; Gan, Yiliang; Yang, Chunguang; Wu, Songquan; Lin, Junjie; Huang, Tingting; Yang, Ke; Lin, Jinxin

    2016-06-01

    In this work, a novel Cu-bearing CoCrW alloy fabricated by selective laser melting for dental application has been studied. For its successful application, the bonding strength of metal-porcelain is essential to be systematically investigated. Therefore, the aim of this study was to evaluate the metal-porcelain bonding strength of CoCrWCu alloy by three-point bending test, meanwhile the Ni-free CoCrW alloy was used as control. The oxygen content was investigated by an elemental analyzer; X-ray photoelectron spectroscopy (XPS) was used to analyze the surface chemical composition of CoCrW based alloy after preoxidation treatment; the fracture mode was investigated by X-ray energy spectrum analysis (EDS) and scanning electron microscope (SEM). Result from the oxygen content analysis showed that the content of oxygen dramatically increased after the Cu addition. And the XPS suggested that Co-oxidation, Cr2O3, CrO2, WO3, Cu2O and CuO existed on the preoxidated surface of the CoCrWCu alloy; the three-point bending test showed that the bonding strength of the CoCrWCu alloy was 43.32 MPa, which was lower than that of the CoCrW group of 47.65 MPa. However, the average metal-porcelain bonding strength is significantly higher than the minimum value in the ISO 9693 standard. Results from the SEM images and EDS indicated that the fracture mode of CoCrWCu-porcelain was mixed between cohesive and adhesive. Based on the results obtained in this study, it can be indicated that the Cu-bearing CoCrW alloy fabricated by the selective laser melting is a promising candidate for use in dental application. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Trace level determination of u, zn, cd, pb and cu in drinking water samples.

    PubMed

    Kumar, Mukesh; Singh, Surinder; Mahajan, Rakesh Kumar

    2006-01-01

    The concentration of uranium has been assessed in drinking water samples collected from different locations in Bathinda district, Punjab, India. The water samples are taken from hand pumps and tube wells. Uranium is determined using fission track technique. Uranium concentration in the water samples varies from 2.23+/- 0.05 to 87.05+/- 0.29 microg/L. These values are compared with safe limit values recommended for drinking water. The uranium concentration in almost all drinking water samples is found to be more than the safe limit. Analysis of some heavy metals viz. Zn, Cd, Pb and Cu in water is made. The concentration of sodium, potassium, calcium, magnesium, chlorine and total hardness along with the pH value and conductivity of the water samples are measured. Some of the samples show stunningly high values of these parameters.

  19. Spatial and temporal variations in inhalable CuZnPb aerosols within the Mexico City pollution plume.

    PubMed

    Moreno, T; Querol, X; Pey, J; Minguillón, M C; Pérez, N; Alastuey, A; Bernabé, R M; Blanco, S; Cárdenas, B; Eichinger, W; Salcido, A; Gibbons, W

    2008-03-01

    We report on the CuPbZn content of PM10 and PM2.5 samples collected from three sites (urban T0, suburban T1 and rural T2) during the Mexico City MILAGRO campaign of March 2006. Daytime city centre concentrations of summation operator CuZnPb(PM10) were much higher (T0 > 450 ng m(-3)) than at the suburban site (T1 < 200 ng m(-3)). Rural site (T2) summation operator CuZnPb(PM10) concentrations exceeded 50 ng m(-3) when influenced by the megacity plume but dropped to 10 ng m(-3) during clean northerly winds. Nocturnal metal concentrations more than doubled at T0, as pollutants became trapped in the nightly inversion layer, but decreased at the rural site. Transient spikes in concentrations of different metals, e.g. a "copper event" at T0 (CuPM10 281 ng m(-3)) and "zinc event" at T1 (ZnPM10 1481 ng m(-3)) on the night of March 7-8, demonstrate how industrial pollution sources produce localised chemical inhomogeneities in the city atmosphere. Most metal aerosols are <2.5 microm and SEM study demonstrates the dominance of Fe, Ti, Ba, Cu, Pb and Zn (and lesser Sn, Mo, Sb, W, Ni, V, As, Bi) in metalliferous particles that have shapes including spherical condensates, efflorescent CuZnClS particles, cindery Zn, and Cu wire. Metal aerosol concentrations do not change in concert with PM10 mass, which is more influenced by wind resuspension than industrial emissions. Metalliferous particles can induce cell damage, and PM composition is probably more important than PM mass, with respect to negative health effects, so that better monitoring and control of industrial emissions would likely produce significant improvements in air quality.

  20. Modelling the concentrations of dissolved contaminants (Cd, Cu, Ni, Pb, Zn) in floodplain soils.

    PubMed

    Rennert, Thilo; Rabus, Widar; Rinklebe, Jörg

    2017-04-01

    Central European floodplain soils are often contaminated with potentially toxic metals. The prediction of their aqueous concentrations is a prerequisite for an assessment of environmental concerns. We tested the aqueous concentrations of cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) derived from multi-surface adsorption modelling (on hydrous iron, aluminum and manganese oxides, clay and soil organic matter) against those analyzed in situ in the soil solution of four horizons of floodplain soils at the Elbe River, Germany. The input data for the reactive metals were derived from a seven-step sequential extraction scheme or from extraction with 0.43 M nitric acid (HNO 3 ) and evaluated in four modelling scenarios. In all scenarios, measured and modelled concentrations were positively related, except partially for Pb. Close reproduction of the measured data was obtained using measured data of accompanying cations and anions together with amounts of reactive metals from both the sequential extraction or from 0.43 M HNO 3 extraction, except for Cu, which was often strongly overestimated, and partially Cd. We recommend extraction with 0.43 M HNO 3 to quantify reactive metals in soil because the modelling results were metal-specific with better or equal results using the single extractant, the application of which is also less laborious. Approximations of ion concentrations and water contents yielded similar results. Modelled solid-phase speciation of metals varied with pH and differed from that from sequential extraction. Multi-surface modelling may be an effective tool to predict both aqueous concentrations and solid-phase speciation of metals in soil.

  1. Comparing the Pressure-Induced Structural Behavior of CuCr 2 O 4 and CuCr 2 Se 4 Spinels

    SciTech Connect

    Efthimiopoulos, I.; Tsurkan, V.; Loidl, A.; Zhang, Dongzhou; Wang, Y.

    2017-07-20

    We have conducted high-pressure measurements on the CuCr2O4 and CuCr2Se4 spinels to unravel the structural systematics of these materials under compression. Our studies have revealed diverse structural behavior in these two compounds. In particular, CuCr2O4 retains its ambient-pressure I41/amd structure up to 50 GPa. Close inspection of the lattice and interatomic parameters reveals a compressibility change near 23 GPa, which is accompanied by an expansion of the apical Cr–O bond distances. We speculate that an outer Cr3+ 3d orbital reorientation might be at play in this system, manifesting as the change in compressibility at that pressure point. On the other hand, CuCr2Se4 undergoes a structural transformation from the starting Fd3¯m phase toward a monoclinic structure initiated at ~8 GPa and completed at ~20 GPa. This high-pressure behavior resembles that of ZnCr2Se4, and it appears that, unlike similar chalcogenide Cr spinels, steric effects take a leading role in this pressure-induced Fd3¯m → monoclinic transition. Close comparison of our results with the reported literature yields significant insights behind the pressure-induced structural systematics of this important family of materials, thus both allowing for the careful manipulation of the structural/physical properties of these systems by strain and promoting our understanding of similar pressure-induced effects in relevant systems.

  2. Growth of nucleation sites on Pb-doped Bi2Sr2Ca1Cu2O8 + delta

    NASA Astrophysics Data System (ADS)

    Finnemore, D. K.; Xu, Ming; Kouzoudis, D.; Bloomer, T.; Kramer, M. J.; McKernan, Stuart; Balachandran, U.; Haldar, Pradeep

    1996-01-01

    In the growth of Bi2Sr2Ca2Cu3O10+δ from mixed powders of Pb-doped Bi2Sr2Ca1Cu2O8+δ and other oxides, it has been discovered that a dense array of hillocks or mesas grow at the interface between a Ag overlay and Pb-doped Bi2Sr2Ca1Cu2O8+δ grains during the ramp up to the reaction temperature. As viewed in an environmental scanning electron microscope, the Ag coated grains develop a texture that looks like ``chicken pox'' growing on the grains at about 700 °C. These hillocks are about 100 nm across and are spaced at about 500 to 1000 nm. If there is no Ag, this texture does not develop. Preliminary measurements indicate that the hillocks are a recrystallization of (Bi,Pb)2Sr2Ca1Cu2O8+δ, and are definitely not a Pb rich phase.

  3. Comparison of tolerance and biosorption of three trace metals (Cd, Cu, Pb) by the soil fungus Absidia cylindrospora.

    PubMed

    Albert, Quentin; Leleyter, Lydia; Lemoine, Mélanie; Heutte, Natacha; Rioult, Jean-Philippe; Sage, Lucile; Baraud, Fabienne; Garon, David

    2018-04-01

    Trace metals cause deterioration of the soil and constitute a major concern for the environment and human health. Bioremediation could be an effective solution for the rectification of contaminated soils. Fungi could play an important role in biodegradation because of the morphology of their mycelium (highly reactive and extensive biological surface) and its physiology (high tolerance to many stresses, production of enzymes and secondary metabolites). Fungi can effectively biosequestrate, or biotransform many organic and inorganic contaminants into a non-bioavailable form. This experiment was designed to evaluate the tolerance and the biosorption abilities of the fungus Absidia cylindrospora against three trace metals: Cadmium (Cd), Copper (Cu), and Lead (Pb). Firstly, the tolerance of the strain was evaluated on metal-enriched malt extract agar (MEA). Secondly, the strain was exposed to trace metals, in a liquid malt extract medium. After 3 or 7 days of exposure, the quantities of absorbed and adsorbed metals were measured with Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). Biomass production and pH evolution were also evaluated during the test. Our experiment revealed differences between the three metals. In agar medium, Cd and Pb were better tolerated than Cu. In liquid medium, Cd and Pb were mostly absorbed whereas Cu was mostly adsorbed. A. cylindrospora biosorbed 14% of Cu, 59% of Pb and 68% of Cd when exposed for 3 days at 50 mg L -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Water pollution by Cu and Pb can adversely affect mallard embryonic development.

    PubMed

    Kertész, Virág; Bakonyi, Gábor; Farkas, Beáta

    2006-09-01

    The effects of heavy metal pollutants on aquatic birds have been widely studied in ecotoxicological investigations; however, the predominant focus has been on the postnatal period of life. Limited information on the adverse effects of metals to bird eggs is available. The possible toxic effects of lead and copper were studied in mallard eggs. After the accidental severe heavy metal pollution of the Tisa river (Hungary) in March 2000, these metals were detected in the highest concentration in both the water and the sediment, reaching far beyond acceptable concentrations. Pb treatment (2.9 mg/L) significantly increased the rate of mortality after a single immersion of the eggs into polluted water for 30 min. The rate of dead embryos significantly increased after the combined exposure to Cu and Pb (0.86 and 2.9 mg/L, respectively) both in the single- (once for 30 min) and in the multiple- (10s daily during first trimester of incubation) immersion groups. It was concluded that elevated metal concentrations similar to those found in the Tisa river after the tailing dam failure may cause toxic effects (mortality and teratogenicity) upon exposure of mallard eggs.

  5. Mobility of Pb, Zn, Cu and As in disturbed forest soils affected by acid rain.

    PubMed

    Kochergina, Yulia V; Udatný, Martin; Penížek, Vít; Mihaljevič, Martin

    2017-10-18

    Early efforts at remediation of contaminated soils involve overturn or removal of the uppermost soil horizons. We find that such disruption is counterproductive, as it actually increases the mobility of the heavy metals involved. In our study, we sought to replicate in a controlled manner this commonly used remediation strategy and measure Pb, Zn, Cu and As concentrations in all soil horizons-both prior to and 1 year after disruption by trenching. BCR analyses (sequential leaching) indicate that Pb is affected to the greatest degree and is most highly mobile; however, Zn and As remain insoluble, thus partially ameliorating the detrimental effect. Differences in vegetation cover (i.e. spruce vs. beech forest) have little influence on overall element mobility patterns. The Krušné hory (Ore Mts., Czech Republic) study area is one of the more heavily contaminated areas in Central Europe, and thus the results reported here are applicable to areas affected by brown-coal-burning power plants.

  6. Modelling the potential mobility of Cd, Cu, Ni, Pb and Zn in Mollic Fluvisols.

    PubMed

    Rennert, Thilo; Rinklebe, Jörg

    2017-12-01

    European floodplain soils are frequently contaminated with potentially toxic inorganic substances. We used a multi-surface model to estimate the aqueous concentrations of Cd, Cu, Ni, Pb and Zn in three Mollic Fluvisols from the Central Elbe River (Germany). The model considered complexation in solution and interactions with soil organic matter (SOM), a clay mineral and hydrous Al, Fe and Mn oxides. The amounts of reactive metals were derived from extraction with 0.43 M HNO 3 . Modelling was carried out as a function of pH (soil pH ± 1.4) because it varies in floodplain soils owing to redox processes that consume or release protons. The fraction of reactive metals, which were dissolved according to the modelling, was predominantly <1%. Depending on soil properties, especially pH and contents of SOM and minerals of the clay fraction, the modelled concentrations partially exceeded the trigger values for the soil-groundwater pathway of the German soil legislation. This differentiation by soil properties was given for Ni, Pb and Zn. On the other hand, Cd was more mobile, i.e., the trigger values were mostly exceeded. Copper represented the opposite, as the modelling did not predict exceeding the trigger values in any horizon. Except for Pb and partially Zn (where oxides were more important), SOM was the most important adsorbent for metals. However, given the special composition and dynamics of SOM in mollic horizons, we suggest further quantitative and qualitative investigations on SOM and on its interaction with metals to improve the prediction of contaminant dynamics.

  7. The Characterization of Fixation of Ba, Pb, and Cu in Alkali-Activated Fly Ash/Blast Furnace Slag Matrix

    PubMed Central

    Koplík, Jan; Kalina, Lukáš; Másilko, Jiří; Šoukal, František

    2016-01-01

    The fixation of heavy metals (Ba, Cu, Pb) in an alkali-activated matrix was investigated. The matrix consisted of fly ash and blast furnace slag (BFS). The mixture of NaOH and Na-silicate was used as alkaline activator. Three analytical techniques were used to describe the fixation of heavy metals—X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), and X-ray powder diffraction (XRD). All heavy metals formed insoluble salts after alkaline activation. Ba was fixed as BaSO4, and only this product was crystalline. EDS mapping showed that Ba was cumulated in some regions and formed clusters. Pb was present in the form of Pb(OH)2 and was dispersed throughout the matrix on the edges of BFS grains. Cu was fixed as Cu(OH)2 and also was cumulated in some regions and formed clusters. Cu was present in two different chemical states; apart from Cu(OH)2, a Cu–O bond was also identified. PMID:28773655

  8. Preparation of 110K (Bi, Pb)-Sr-Ca-Cu-O superconductor from glass precursor

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1990-01-01

    The Bi1.5Pb0.5Sr2Ca2Cu3O(x) glass, prepared by rapid quenching of the melt, showed T(sub g) of 383 C, crystallization temperature of approx. 446 C, melting temperature of approx. 855 C, and bulk density of 5.69 g/cu. cm. in air. The as-quenched glass was oxygen deficient. On heating in O2, it showed a slow, irreversible, and continuous weight gain starting at approx. 530 C. The influence of annealing conditions on the formation of various phases was investigated by XRD and electrical resistivity measurements. The 110K-T(sub c) phase did not form below 840 C. The amount of this phase increased with the sintering time at 840 C. A sample annealed at 840 C for 243 h in air and furnace cooled showed the highest T(sub c) (R=0) of 107.2 K and transition width delta T(sub c) (10 to 90 percent) of approx. 2 K.

  9. Properties of complexes of galactomannan of Leucaena leucocephala and Al3+, Cu2+ and Pb2+.

    PubMed

    Lombardi, Simone Cristina; Mercê, Ana Lucia Ramalho

    2003-08-01

    The use of biopolymers in many industrial processes is on the increase. The different interactions of biopolymers and electrolytes either in aqueous solutions or in solid state provide different physico-chemical properties and a simple correlation cannot be established. In this study, in order to determine the properties of the complexes of galactomannan of Leucaena leucocephala (gal) with the metal ions Al3+ and Pb2+, toxic elements and Cu2+, essential, the logs of the binding constants of the complexes formed in the aqueous solutions were calculated. Their rheological properties, their thermal behavior, the infrared characteristics and shape and form of the films formed by those complexes in solid state were also determined. The aqueous solutions properties have shown a better complexation between gal and Al3+. The species distribution diagrams have shown an existence of complex species going from acidic to basic pH values. Infrared spectra have proved the complexations as well as the viscosity studies. Thermal stabilities in general were smaller in the complexed species than in the native biopolymers and the films obtained from aqueous solutions showed for Cu2+ the most different morphology compared to the biopolymer itself. A use can be suggested of this biopolymer in environmental remediations besides its already established industrial uses.

  10. Facile fabrication of CuO-Pb2O3 nanophotocatalyst for efficient degradation of Rose Bengal dye under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Kamaraj, Eswaran; Somasundaram, Sivaraman; Balasubramani, Kavitha; Eswaran, Muthu Prema; Muthuramalingam, Rajarajan; Park, Sanghyuk

    2018-03-01

    A p-type CuO/n-type Pb2O3 heterojunction photocatalyst was prepared by a simple wet chemical process and the photocatalytic ability was evaluated for the degradation of Rose Bengal (RB) under visible light irradiation. Synthesized nanocatalysts were characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDS), Brunauer-Emmett-Teller (BET) surface area analysis, and X-ray photoelectron spectroscopy (XPS). The p-n heterojunction of CuO-Pb2O3 nanostructures can promote the light absorption capability of photocatalyst and charge separation of electron-hole pairs. Photodegradation assays showed that the addition of CuO effectively enhanced the photocatalytic activity of CuO-Pb2O3 under visible light irradiation (λmax > 420 nm). Compared with pure Pb2O3 and CuO, the CuO-Pb2O3 exhibited significantly enhanced photocatalytic degradation activity. The reaction rate constant of CuO-Pb2O3 is 0.092 min-1, which is much higher than those of CuO (0.073 min-1) and Pb2O3 (0.045 min-1).

  11. Molecular dynamics simulations of concentration-dependent defect production in Fe-Cr and Fe-Cu alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Yaxuan; Schwen, Daniel; Bai, Xian-Ming

    2017-12-01

    Molecular dynamics simulations are conducted to study the effects of alloying elements on the primary damage behaviors in three Fe-based ferritic alloy systems: (1) a Fe-Cr system in which the heat of mixing changes its sign with the Cr concentration; (2) a Fe-Cu system that has a positive heat of mixing; and (3) an ideal but artificial Fe-Cr system that has a zero heat of mixing, which is used as a reference system to investigate solute interstitial formation based on probability. It is found that in these alloys, the solute type and concentration do not have a significant effect on the total number of surviving Frenkel pairs. However, the fraction of solute interstitials has distinct behaviors. In Fe-Cr, the Cr interstitial fraction is much higher than the Cr solute concentration and the Cr interstitial production efficiency decreases with the increasing Cr concentration. By contrast, in Fe-Cu, Cu interstitials are barely produced. In the ideal alloy, the solute interstitial fraction is close to the solute concentration. The defect formation energies in both dilute and concentrated alloys, interstitial binding energies, liquid diffusivities of Fe and solute atoms, and heat of mixing have been calculated for both Fe-Cr and Fe-Cu alloys. Among them, we find that the relative thermodynamic stability between Fe self-interstitials and solute interstitials plays the most important role in the solute interstitial production behaviors. The decrease of Cr interstitial production efficiency with increasing Cr concentration can be explained by the probability distribution functions of solute interstitial formation energy in concentrated alloys.

  12. Uptake and toxicity of Cd, Cu and Pb mixtures in the isopod Asellus aquaticus from waterborne exposure.

    PubMed

    Van Ginneken, M; De Jonge, M; Bervoets, L; Blust, R

    2015-12-15

    The present study evaluated interactions of waterborne Cd, Cu and Pb mixtures on metal uptake rates in the isopod Asellus aquaticus and related this to mixture effects on toxicity. Secondly, it was assessed whether observed mixture effects were better related to isopod body concentrations compared to exposure concentrations. Isopods were exposed for 10 days to single, binary and tertiary mixtures including five different concentrations of Cd (0.107 to 277 μg L(-1)), Cu (3.35 to 2117 μg L(-1)) and Pb (0.782 to 443 μg L(-1)). Mortality was assessed every day while isopod body concentrations, growth (biomass) and energy reserves (glycogen, lipid and protein reserves) were assessed at the end of the experiment. Synergistic interactions of combined Cd and Pb exposure on Cd and Pb uptake as well as on growth rates and mortality rates were observed. Mixture effects of combined Cd and Pb exposure on toxicity endpoints were directly related to increased Cd uptake in the Cd+Pb treatment. No mixture interactions of Cu on Cd or Pb uptake (and vice versa), nor on toxicity endpoints were observed. All toxicity endpoints were related to body concentrations. However, mixture effects disappeared when growth and mortality rates were expressed on body concentrations instead of exposure concentrations. By combining information of mixture effects on metal uptake with mixture toxicity data, the present study provides more insight in the way metal mixtures interfere with aquatic organisms and how they can induce toxic effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Effect of the ITER FW Manufacturing Process on the Microstructure and Properties of a CuCrZr Alloy

    NASA Astrophysics Data System (ADS)

    Liu, Danhua; Wang, Pinghuai; Song, Yi; Li, Qian; Chen, Jiming

    2015-10-01

    The first wall (FW) is one of the core components in ITER. As the heat sink material, the CuCrZr alloy shall be properly jointed with beryllium and stainless steel. At present, the grains of CuCrZr are prone to coarsen seriously in the thermal cycle process of FW manufacturing, which has become a critical issue for ITER parties. To investigate the mirostructure and mechanical properties of the optimized CuCrZr alloy in the first wall fabricating thermal cycle, simulative experiments have been done in this study. The alloy ingot was forged and hot rolled into plates, and then solid solution annealed, cold rolled and aged for strengthening. Several heat treatments were done to the CuCrZr samples, and the changes of microstructure, micro-hardness and tensile strength were investigated. The results indicated that the original elongated grains had changed into equiaxed ones, and the vickers hardness had declined to about 60 after experiencing the process of CuCrZr/316L(N) bi-metallic plate manufacturing, either by hot isostatic pressing at a higher temperature or by explosion welding followed by solution annealing. Joining Be/CuCrZr by hot isostatic pressing acts as an aging process for CuCrZr, so after the simulated heat treatment, the hardness of the alloy increased to about 110 HV and the tensile yield strength at 250°C rose to about 170 MPa. Meanwhile, the average grain size was controlled below 200 μm. supported by the International Nuclear Thermonuclear Experimental Reactor (ITER) Specific Program of China (No. 2014GB126000)

  14. Lattice dynamics and thermal transport in multiferroic CuCrO 2

    DOE PAGES

    Bansal, Dipanshu; Niedziela, Jennifer L.; May, Andrew F.; ...

    2017-02-09

    Inelastic neutron and x-ray scattering measurements of phonons and spin waves in CuCrO 2 were performed over a wide range of temperature, and complemented with first-principles simulations. The phonon dispersions and density of states are well reproduced by our density functional cal- culations, and reveal a strong anisotropy of Cu vibrations, with large amplitudes of low-frequency in-plane motions. In addition, we find that spin fluctuations persist above 300 K, far above the N eel temperature for long-range antiferromagnetic order, TN. Modeling of the thermal conductivity, based on our phonon measurements and simulations, reveals a significant anisotropy and indicates that themore » spin fluctuations above TN constitute a strong source of phonon scattering.« less

  15. Nanostructured Cu-Cr alloy with high strength and electrical conductivity

    SciTech Connect

    Islamgaliev, R. K. Nesterov, K. M.; Bourgon, J.; Champion, Y.; Valiev, R. Z.

    2014-05-21

    The influence of nanostructuring by high pressure torsion (HPT) on strength and electrical conductivity in the Cu-Cr alloy has been investigated. Microstructure of HPT samples was studied by transmission electron microscopy with special attention on precipitation of small chromium particles after various treatments. Effect of dynamic precipitation leading to enhancement of strength and electrical conductivity was observed. It is shown that nanostructuring leads to combination of high ultimate tensile strength of 790–840 MPa, enhanced electrical conductivity of 81%–85% IACS and thermal stability up to 500 °C. The contributions of grain refinement and precipitation to enhanced properties of nanostructured alloy are discussed.

  16. Assessment of Ni, Cu, Zn and Pb levels in beach and dune sands from Havana resorts, Cuba.

    PubMed

    Díaz Rizo, Oscar; Buzón González, Fran; Arado López, Juana O

    2015-11-15

    Concentrations of nickel (Ni), copper (Cu), zinc (Zn) and lead (Pb) in beach and dune sands from thirteen Havana (Cuba) resorts were estimated by X-ray fluorescence analysis. Determined mean metal contents (in mg·kg(-1)) in beach sand samples were 28±12 for Ni, 35±12 for Cu, 31±11 for Zn and 6.0±1.8 for Pb, while for dune sands were 30±15, 38±22, 37±15 and 6.8±2.9, respectively. Metal-to-iron normalization shows moderately severe and severe enrichment by Cu. The comparison with sediment quality guidelines shows that dune sands from various resorts must be considered as heavily polluted by Cu and Ni. Almost in every resort, the Ni and Cu contents exceed their corresponding TEL values and, in some resorts, the Ni PEL value. The comparison with a Havana topsoil study indicates the possible Ni and Cu natural origin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Photocatalytic removal of M(2+) (Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+) and Ag(+)) over new catalyst CuCrO(2).

    PubMed

    Ketir, W; Bouguelia, A; Trari, M

    2008-10-30

    The metal ions M(2+) (Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+) and Ag(+)) are potentially toxic. Their electro deposition has been carried out in aqueous air-equilibrated CuCrO(2) suspension upon visible illumination. The delafossite CuCrO(2) is p-type semiconductor characterized by a low band gap (1.28 eV) and a long-term chemical stability. The corrosion rate is found to be 10(-2) micromol m(-2)month(-1) in aqua regia. The oxide has been elaborated through nitrate route where the specific surface area is increased via the surface/bulk ratio. A correlation exists between the dark M(2+) adsorption, the redox potential of M(2+/0) couple and the conduction band of CuCrO(2) positioned at -1.06 V(SCE). Ag(+) cannot be photoreduced because of its positive potential located far above the valence band. By contrast, Zn(2+) is efficiently deposited due to the large driving force at the interface. The improved photoactivity of copper with a deposition percentage (90%) is attributed to the strong dark adsorption onto the surface catalyst. The results indicate a competitive effect with the water reduction; it has been observed that the M(2+) deposition goes parallel with the hydrogen evolution. Such behavior is attributed to the low H(2) over voltage when ultra fine aggregate of M islands are photodeposited onto CuCrO(2) substrate.

  18. Cu-Cr-Nb-Zr Alloy for Rocket Engines and Other High-Heat- Flux Applications

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2013-01-01

    Rocket-engine main combustion chamber liners are used to contain the burning of fuel and oxidizer and provide a stream of high-velocity gas for propulsion. The liners in engines such as the Space Shuttle Main Engine are regeneratively cooled by flowing fuel, e.g., cryogenic hydrogen, through cooling channels in the back side of the liner. The heat gained by the liner from the flame and compression of the gas in the throat section is transferred to the fuel by the liner. As a result, the liner must either have a very high thermal conductivity or a very high operating temperature. In addition to the large heat flux (>10 MW/sq m), the liners experience a very large thermal gradient, typically more than 500 C over 1 mm. The gradient produces thermally induced stresses and strains that cause low cycle fatigue (LCF). Typically, a liner will experience a strain differential in excess of 1% between the cooling channel and the hot wall. Each time the engine is fired, the liner undergoes an LCF cycle. The number of cycles can be as few as one for an expendable booster engine, to as many as several thousand for a reusable launch vehicle or reaction control system. Finally, the liners undergo creep and a form of mechanical degradation called thermal ratcheting that results in the bowing out of the cooling channel into the combustion chamber, and eventual failure of the liner. GRCop-84, a Cu-Cr-Nb alloy, is generally recognized as the best liner material available at the time of this reporting. The alloy consists of 14% Cr2Nb precipitates in a pure copper matrix. Through experimental work, it has been established that the Zr will not participate in the formation of Laves phase precipitates with Cr and Nb, but will instead react with Cu to form the desired Cu-Zr compounds. It is believed that significant improvements in the mechanical properties of GRCop-84 will be realized by adding Zr. The innovation is a Cu-Cr-Nb-Zr alloy covering the composition range of 0.8 to 8.1 weight

  19. Stabilization of Pb²⁺ and Cu²⁺ contaminated firing range soil using calcined oyster shells and waste cow bones.

    PubMed

    Moon, Deok Hyun; Cheong, Kyung Hoon; Khim, Jeehyeong; Wazne, Mahmoud; Hyun, Seunghun; Park, Jeong-Hun; Chang, Yoon-Young; Ok, Yong Sik

    2013-05-01

    Pb(2+) and Cu(2+) contamination at army firing ranges poses serious environmental and health risks to nearby communities necessitating an immediate and prompt remedial action. In this study, a novel mixture of calcined oyster shells (COSs) and waste cow bones (WCBs) was utilized to immobilize Pb(2+) and Cu(2+) in army firing range soils. The effectiveness of the treatment was evaluated based on the Korean Standard leaching test. The treatment results showed that Pb(2+) and Cu(2+) immobilization in the army firing range soil was effective in significantly reducing Pb(2+) and Cu(2+) leachability upon the combined treatment with COS and WCB. A drastic reduction in Pb(2+) (99%) and Cu(2+) leachability (95%) was obtained as compared to the control sample, upon treatment with 5 wt.% COS and 5 wt.% WCB. The combination treatment of COS and WCB was more effective for Pb immobilization, than the treatment with COS or WCB alone. The 5 wt.% COS alone treatment resulted in 95% reduction in Cu(2+) leachability. The SEM-EDX results suggested that Pb(2+) and Cu(2+) immobilization was most probably associated with the formation of ettringite, pozzolanic reaction products and pyromorphite-like phases at the same time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Sorption properties of an amorphous hydroxo titanate towards Pb(2+), Ni(2+), and Cu(2+) ions in aqueous solution.

    PubMed

    Volpe, Angela; Pagano, Michele; Pastore, Carlo; Cuocci, Corrado; Milella, Antonella

    2016-11-09

    Titanates may be selectively used as inorganic adsorbents for heavy metal ions owing to their stability and fast adsorption kinetics. Nevertheless, the synthesis of such materials usually requires extreme reaction conditions. In this work, a new titanium-based material was rapidly synthesized under mild laboratory conditions. The obtained amorphous hydroxo titanate was tested for heavy metal sorption through kinetic and equilibrium batch tests, which indicated that the new material had high adsorption rates and adsorption capacities towards Cu(2+), Ni(2+) and Pb(2) ions. Adsorption kinetics were pseudo-second order, and equilibrium data fitted the Langmuir isotherm model. The calculated maximum adsorption capacities of Cu(2+), Ni(2+) and Pb(2+) in deionized water were around 1 mmol g(-1), and they decreased for Cu(2+) and Ni(2+) in the presence of Na(+), Ca(2+) and Mg(2+) ions, whereas the alkali metal ions did not influence Pb(2+) uptake. The efficiency of adsorption and recovery of lead ions were evaluated through column dynamic tests, by feeding the column with groundwater and tap water spiked with Pb(2+). The high performance of the hydroxo titanate over several cycles of retention and elution suggested that the product is potentially useful for the solid phase extraction of lead at trace levels in natural water samples, with potential use in metal pre-concentration for analytical applications.

  1. [Study on the chemical form and extraction rate of Cr, Cu, Fe, Mn, Ni and Zn in tea].

    PubMed

    Gao, G; Tao, R

    2000-07-01

    The content of Cr, Cu, Fe, Mn, Ni and Zn in the tea commonly available in China market were measured by inductivity coupled plasma-optical emission spectrometry (ICP-OES). The extraction rates of the six elements in tea leachate were measured. The solubilitied were 39.8% for Cr, 42.5% for Cu, 8.6% for Fe, 45.5% for Mn, 87.1% for Ni and 71.0% for Zn. The process of making tea leachate affects the elements extraction rates. The content of the microelements in tea leave extracts decreases gradually with the processing. About 80% of Cr, Cu, Mn, Ni and Zn and 60% of Fe were in the first infusion of tea. Moreover, the chemical forms of six elements were determined. The ratios of organic to inorganic forms were 0.33 for Cr, 0.022 for Cu, 0.18 for Fe, 0.002 for Mn, 0.01 for Ni and 0.18 for Zn. It is concluded that the six elements from the tea infusion extracted from 5 g tea are too little to meet the recommend dietary allowance (RDA). Therefore, tea is not a rich food source of Cr, Cu, Fe, Mn, Ni and Zn.

  2. Pb(II), Cr(VI) and atrazine sorption behavior on sludge-derived biochar: role of humic acids.

    PubMed

    Zhou, Fengsa; Wang, Hong; Fang, Sheng'en; Zhang, Weihua; Qiu, Rongliang

    2015-10-01

    Pyrolyzing municipal wastewater treatment sludge into biochar can be a promising sludge disposal approach, especially as the produced sludge-derived biochar (SDBC) is found to be an excellent sorbent for heavy metals and atrazine. The aim of this study was to investigate how and why the coexisting humic acids influence the sorption capacity, kinetic, and binding of these contaminants on SDBC surface. Results showed humic acids enhanced Pb(II)/Cr(VI) sorption binding, and increased the corresponding Pb(II) Langmuir sorption capacity at pH 5.0 from 197 to 233 μmol g(-1), and from 688 to 738 μmol g(-1) for Cr(VI) at pH 2.0. It can be mainly attributed to the sorbed humic acids, whose active functional groups can offer the additional sites to form stronger inner-sphere complexes with Pb(2+), and supply more reducing agent to facilitate the transformation of Cr(VI) to Cr(III). However, humic acids reduced the atrazine adsorption Freundlich constant from 1.085 to 0.616 μmol g(-1). The pore blockage, confirmed by the decreased BET-specific surface area, as well as the more hydrophilic surface with more sorbed water molecules may be the main reasons for that suppression. Therefore, the coexisting humic acids may affect heavy metal stabilization or pesticide immobilization during SDBC application to contaminated water or soils, and its role thus should be considered especially when organic residues are also added significantly to increase the humic acid content there.

  3. Compatibility of an FeCrAl alloy with flowing Pb-Li in a thermal convection loop

    NASA Astrophysics Data System (ADS)

    Pawel, Steven J.; Unocic, Kinga A.

    2017-08-01

    A mono-metallic thermal convection loop (TCL) fabricated from alloy APMT (Fe21Cr5Al3Mo) tubing and filled with 0.025 m long tensile specimens of the same alloy was operated continuously for 1000 h with commercially pure Pb-17 at.%Li (Pb-Li) at a peak temperature of 550 ± 1.5 °C and a temperature gradient of ∼116 °C. The resulting Pb-Li flow rate was ∼0.0067 m/s. A 1050 °C pre-oxidation treatment (to form an external alumina scale) given to most specimens exposed within the TCL decreased total mass loss by a factor of 3-30 compared to adjacent specimens that were not pre-oxidized. However, all specimens exposed above 500 °C lost mass suggesting that the alumina scale was not entirely stable in flowing Pb-Li at these temperatures. Post-exposure room temperature tensile tests indicated that the mechanical properties of APMT were substantially influenced by extended exposures in the range of 435-490 °C, which caused an increase in yield strength (∼65%) and a corresponding decrease in ductility associated with α‧ embrittlement. Specimens annealed in argon at the same temperature exhibited identical changes without exposure to Pb-Li. Scanning transmission electron microscopy revealed Cr-clusters within the microstructure in specimens exposed in the low temperature regions (<490 °C) of the TCL, indicating the formation of α‧ consistent with the mechanism of α‧ embrittlement.

  4. Compatibility of an FeCrAl alloy with flowing Pb-Li in a thermal convection loop

    SciTech Connect

    Pawel, Steven J.; Unocic, Kinga A.

    2017-08-01

    A mono-metallic thermal convection loop (TCL) fabricated from alloy APMT (Fe21Cr5Al3Mo) tubing and filled with 0.025 m long tensile specimens of the same alloy was operated continuously for 1000 h with commercially pure Pb-17 at.%Li (Pb-Li) at a peak temperature of 550 ± 1.5 °C and a temperature gradient of ~116 °C. The resulting Pb-Li flow rate was ~0.0067 m/s. A 1050 °C pre-oxidation treatment (to form an external alumina scale) given to most specimens exposed within the TCL decreased total mass loss by a factor of 3–30 compared to adjacent specimens that were not pre-oxidized. However, all specimens exposed above 500 °C lost mass suggesting that the alumina scale was not entirely stable in flowing Pb-Li at these temperatures. Post-exposure room temperature tensile tests indicated that the mechanical properties of APMT were substantially influenced by extended exposures in the range of 435–490 °C, which caused an increase in yield strength (~65%) and a corresponding decrease in ductility associated with α' embrittlement. Specimens annealed in argon at the same temperature exhibited identical changes without exposure to Pb-Li. In conclusion, scanning transmission electron microscopy revealed Cr-clusters within the microstructure in specimens exposed in the low temperature regions (<490 °C) of the TCL, indicating the formation of α' consistent with the mechanism of α' embrittlement.

  5. Compatibility of an FeCrAl alloy with flowing Pb-Li in a thermal convection loop

    DOE PAGES

    Pawel, Steven J.; Unocic, Kinga A.

    2017-08-01

    A mono-metallic thermal convection loop (TCL) fabricated from alloy APMT (Fe21Cr5Al3Mo) tubing and filled with 0.025 m long tensile specimens of the same alloy was operated continuously for 1000 h with commercially pure Pb-17 at.%Li (Pb-Li) at a peak temperature of 550 ± 1.5 °C and a temperature gradient of ~116 °C. The resulting Pb-Li flow rate was ~0.0067 m/s. A 1050 °C pre-oxidation treatment (to form an external alumina scale) given to most specimens exposed within the TCL decreased total mass loss by a factor of 3–30 compared to adjacent specimens that were not pre-oxidized. However, all specimens exposedmore » above 500 °C lost mass suggesting that the alumina scale was not entirely stable in flowing Pb-Li at these temperatures. Post-exposure room temperature tensile tests indicated that the mechanical properties of APMT were substantially influenced by extended exposures in the range of 435–490 °C, which caused an increase in yield strength (~65%) and a corresponding decrease in ductility associated with α' embrittlement. Specimens annealed in argon at the same temperature exhibited identical changes without exposure to Pb-Li. In conclusion, scanning transmission electron microscopy revealed Cr-clusters within the microstructure in specimens exposed in the low temperature regions (<490 °C) of the TCL, indicating the formation of α' consistent with the mechanism of α' embrittlement.« less

  6. Pb solubility of the high-temperature superconducting phase Bi2Sr2Ca2Cu3O(10+d)

    NASA Technical Reports Server (NTRS)

    Kaesche, Stefanie; Majewski, Peter; Aldinger, Fritz

    1995-01-01

    For the nominal composition of Bi(2.27-x)Pb(x)Sr2 Ca2 Cu3 O(10+d) lead content was varied from x = 0.05 to 0.45. The compositions were examined between 830 and 890 C which is supposed to be the temperature range over which the so-called 2223 phase (Bi2Sr2Ca2Cu3O(10+d)) is stable. Only compositions between x = 0.18 to 0.36 could be synthesized in a single phase state. For x is greater than 0.36 a lead containing phase with a stoichiometry of Pb4(Sr,Ca)5CuO(d) is formed, for x is less than 0.18 mainly Bi2Sr2CaCu2O(10+d) and cuprates are the equilibrium phases. The temperature range for the 2223 phase was found to be 830 to 890 C but the 2223 phase has extremely varying cation ratios over this temperature range. Former single phase 2223 samples turn to multi phase samples when annealed at slightly higher or lower temperatures. A decrease in the Pb solubility with increasing temperature was found for the 2223 phase.

  7. Rapid and nondestructive measurement of labile Mn, Cu, Zn, Pb and As in DGT by using field portable-XRF.

    PubMed

    Chen, Zheng; Williams, Paul N; Zhang, Hao

    2013-09-01

    The technique of diffusive gradients in thin films (DGT) is often employed to quantify labile metals in situ; however, it is a challenge to perform the measurements in-field. This study evaluated the capability of field-portable X-ray fluorescence (FP-XRF) to swiftly generate elemental speciation information with DGT. Biologically available metal ions in environmental samples passively preconcentrate in the thin films of DGT devices, providing an ideal and uniform matrix for XRF nondestructive detection. Strong correlation coefficients (r > 0.992 for Mn, Cu, Zn, Pb and As) were obtained for all elements during calibration. The limits of quantitation (LOQ) for the investigated elements of FP-XRF on DGT devices are 2.74 for Mn, 4.89 for Cu, 2.89 for Zn, 2.55 for Pb, and 0.48 for As (unit: μg cm(-2)). When Pb and As co-existed in the solution trials, As did not interfere with Pb detection when using Chelex-DGT. However, there was a significant enhancement of the Pb reading attributed to As when ferrihydrite binding gels were tested, consistent with Fe-oxyhydroxide surfaces absorbing large quantities of As. This study demonstrates the value of the FP-XRF technique to rapidly and nondestructively detect the metals accumulated in DGT devices, providing a new and simple diagnostic tool for on-site environmental monitoring of labile metals/metalloids.

  8. Treatment of electroplating wastewater containing Cu2+, Zn2+ and Cr(VI) by electrocoagulation.

    PubMed

    Adhoum, Nafaâ; Monser, Lotfi; Bellakhal, Nizar; Belgaied, Jamel-Eddine

    2004-08-30

    The performance of electrocoagulation, with aluminium sacrificial anode, in the treatment of metal ions (Cu2+, Zn2+ and Cr(VI)) containing wastewater, has been investigated. Several working parameters, such as pH, current density and metal ion concentrations were studied in an attempt to achieve a higher removal capacity. Results obtained with synthetic wastewater revealed that the most effective removal capacities of studied metals could be achieved when the pH was kept between 4 and 8. In addition, the increase of current density, in the range 0.8-4.8 A dm(-2), enhanced the treatment rate without affecting the charge loading, required to reduce metal ion concentrations under the admissible legal levels. The removal rates of copper and zinc were found to be five times quicker than chromium because of a difference in the removal mechanisms. The process was successfully applied to the treatment of an electroplating wastewater where an effective reduction of (Cu2+, Zn2+ and Cr(VI)) concentrations under legal limits was obtained, just after 20 min. The electrode and electricity consumptions were found to be 1 g l(-1) and 32 A h l(-1), respectively. The method was found to be highly efficient and relatively fast compared to conventional existing techniques.

  9. Effect of annealing treatment on ECAP structure in Cu-Cr-Zr bronze

    NASA Astrophysics Data System (ADS)

    Morozova, A.; Belyakov, A.; Kaibyshev, R.

    2017-12-01

    The study is carried out to explore the microstructure and hardness evolution of low alloyed Cu-Cr-Zr alloy subjected to solution treatment or aging followed by equal channel angular pressing (ECAP) at 400°C via route BC with subsequent annealing at 300-700°C for 1 h. The plastic deformation resulted in the formation of new fine grains with the size below 1 µm. The ultrafine grain formation was accompanied by significant hardening. Annealing at 300-500°C led to recovery accompanied by hardening due to particle strengthening. Subsequent softening at 600°C was a result of the grain and particle growth and a decrease in the dislocation density. Preliminary solution and aging treatments affected the microstructure and hardness of low alloyed Cu-Cr-Zr bronze after ECAP and annealing due to the difference in the particle size and their volume fraction. Annealing softening was discussed in terms of Zener pinning pressure and driving pressure for grain growth.

  10. Direct catalytic oxyamination of benzene to aniline over Cu(II) nanoclusters supported on CuCr2O4 spinel nanoparticles via simultaneous activation of C-H and N-H bonds.

    PubMed

    Acharyya, Shankha S; Ghosh, Shilpi; Bal, Rajaram

    2014-11-11

    We report the facile synthesis of a highly efficient, reusable catalyst comprising Cu(II) nanoclusters supported on CuCr2O4 spinel nanoparticles for the oxyamination of benzene to aniline (H2O2 + NH3) under mild aqueous reaction conditions. The synergy between the Cu(II) nanoclusters and CuCr2O4 spinel nanoparticles plays the most vital role towards its high catalytic activity.

  11. Residual Stresses in Thermal Barrier Coatings for a Cu-8Cr-4Nb Substrate System

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Raj, Sai V.

    2002-01-01

    Analytical calculations were conducted to determine the thermal stresses developed in a coated copper-based alloy, Cu-8%(at.%)Cr-4%Nb (designated as GRCop-84), after plasma spraying and during heat-up in a simulated rocket engine environment. Finite element analyses were conducted for two coating systems consisting of a metallic top coat, a pure copper bond coat and the GRCop-84. The through thickness temperature variations were determined as a function of coating thickness for two metallic coatings, a Ni-17%(wt%)Cr-6%Al-0.5%Y alloy and a Ni-50%(at.%)Al alloy. The residual stresses after low-pressure plasma spraying of the NiCrAlY and NiAl coatings on GRCop-84 substrate were also evaluated. These analyses took into consideration a 50.8 mm copper bond coat and the effects of an interface coating roughness. The through the thickness thermal stresses developed in coated liners were also calculated after 15 minutes of exposure in a rocket environment with and without an interfacial roughness.

  12. Morphological, thermal and optical studies of jute-reinforced PbSrCaCuO-polypropylene composite

    NASA Astrophysics Data System (ADS)

    Jacob, Reenu; Isac, Jayakumari

    2016-11-01

    New research with modern technologies has always grabbed substantial attention. Conservation of raw materials like natural fibers has helped composite world to explore eco-friendly components. The aim of this paper is to study the potential of jute fiber-reinforced ceramic polymers. Alkali-treated jute fiber has been incorporated in a polypropylene ceramic matrix at different volume fractions. The morphological, thermal and optical studies of jute-reinforced ceramic Pb2Sr2CaCu2O9 (PbSrCaCuO) are studied. Morphological results evidently demonstrate that when the polypropylene ceramic matrix is reinforced with jute fiber, interfacial interaction between the varying proportions of the jute fiber and ceramic composite takes place. TGA and DSC results confirm the enhancement in the thermal stability of ceramic composites reinforced with jute fiber. The UV analysis of the composite gives a good quality measure on the optical properties of the new composite prepared.

  13. Upward Continuous Casting in the Manufacture of Cu-Cr-Ag Alloys: Potential for Enhancing Strength Whilst Maintaining Ductility

    NASA Astrophysics Data System (ADS)

    Yuan, Dawei; Yang, Bin; Chen, Jinshui; Chen, Huiming; Zhang, Jianbo; Wang, Hang

    2017-12-01

    Upward continuous casting was used to manufacture Cu-Cr-Ag high-strength high-conductivity alloys, for comparison with conventional processing methods. The behavior of the alloy samples was measured, including tensile strength, microhardness, and electrical conductivity. The microstructure was characterized using optical microscopy and transmission electron microscopy after each processing step. It was found that microstructure with columnar grains due to upward continuous casting made it possible to enhance strength whilst maintaining the ductility of the alloys during the aging process. The combined drawing-aging process has the potential to be used numerous times during the manufacture of Cu-Cr-based high-strength high-conductivity alloys.

  14. Atrazine immobilization on sludge derived biochar and the interactive influence of coexisting Pb(II) or Cr(VI) ions.

    PubMed

    Zhang, Weihua; Zheng, Juan; Zheng, Pingping; Qiu, Rongliang

    2015-09-01

    Sludge derived biochars (SDBCs) may have the potential to simultaneously remove heavy metals and organic contaminants in relation to their various active sorption sites for both metal ions and organic compounds. SDBCs have been proven to provide a considerable capacity for immobilizing Pb(II) and Cr(VI) ions in solution, and in this study their ability to sorb atrazine, in addition to their corresponding interactive influences with coexisting metal ions, is extensively investigated. The results indicate that all atrazine adsorption isotherms fit well with the Freundlich equation, and the greatest value of 16.8 mg g(-1) sorption capacity occurred with SDBCs pyrolyzed at 400°C for 2h. The slow sorption kinetics fit well with the Lagergren's 2nd order reaction, and depend upon the initial atrazine concentration, indicating the significance of a site-specific process. The ionic strength-dependence of the atrazine adsorption behavior further consolidates the involvement of the mechanism of the H-bond with hydroxyl groups on SDBC. However, when Pb(II)/Cr(VI) metal ions coexist in solution, they substantially suppress atrazine adsorption, probably because the inner complex between the hydroxyl groups on SDBCs and Pb(II)/Cr(III) ions intrude the weak H-bond with atrazine. As a result, metal adsorption was found to be unaffected by the coexisting atrazine. Therefore, although SDBC is applicable for atrazine removal/immobilization in most of environmentally relevant conditions, a two-step process may be required if heavy metal ions coexist. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Aided phytoextraction of Cu, Pb, Zn, and As in copper-contaminated soils with tobacco and sunflower in crop rotation: Mobility and phytoavailability assessment.

    PubMed

    Hattab-Hambli, Nour; Motelica-Heino, Mikael; Mench, Michel

    2016-02-01

    Copper-contaminated soils were managed with aided phytoextraction in 31 field plots at a former wood preservation site, using a single incorporation of compost (OM) and dolomitic limestone (DL) followed by a crop rotation with tobacco and sunflower. Six amended plots, with increasing total soil Cu, and one unamended plot were selected together with a control uncontaminated plot. The mobility and phytoavailability of Cu, Zn, Cr and As were investigated after 2 and 3 years in soil samples collected in these eight plots. Total Cu, Zn, Cr and As concentrations were determined in the soil pore water (SPW) and available soil Cu and Zn fractions by DGT. The Cu, Zn, Cr and As phytoavailability was characterized by growing dwarf beans on potted soils and determining the biomass of their plant parts and their foliar ionome. Total Cu concentrations in the SPW increased with total soil Cu. Total Cu, Zn, Cr and As concentrations in the SPW decreased in year 3 as compared to year 2, likely due to annual shoot removals by the plants and the lixiviation. Available soil Cu and Zn fractions also declined in year 3. The Cu, Zn, Cr and As phytoavailability, assessed by their concentration and mineral mass in the primary leaves of beans, was reduced in year 3. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Bioavailability of adsorbed and coprecipitated Cu, Ni, Pb, and Cd on iron and iron/aluminum hydroxide to Phragmites australis.

    PubMed

    Wang, He; Jia, Yongfeng

    2017-01-01

    The bioavailability of heavy metals strongly depends on their speciation in the environment. Adsorption (ADS) and coprecipitation (CPT) on amorphous metal hydroxides are important processes, controlling the fates of heavy metals in an aqueous environment. This work studied the bioavailability of Cu, Cd, Ni, and Pb adsorbed on and/or coprecipitated with amorphous iron and iron/aluminum mixed hydroxides to the wetland plant Phragmites australis. After a 13-day treatment, there was an apparent uptake of the heavy metals by the plant, and the amount of metal bioaccumulation was measurably different for different association forms (ADS vs. CPT). The bioaccumulation of Cd associated with Fe0.5Al0.5(OH)3 was greater than that with Fe(OH)3; the adsorbed metals were found to be more bioavailable than the coprecipitated forms for most of the treatments while the aging treatment significantly reduced the bioaccumulation of ADS metals. In the single metal treatment, root metal concentrations in the Fe(OH)3 ADS system followed the order Ni (68 mg kg-1) > Cu (32 mg kg-1) > Cd (28 mg kg-1) > Pb (9 mg kg-1), while the CPT system followed the order of Cu (30 mg kg-1) > Ni (22 mg kg-1) > Pb (9 mg kg-1) > Cd (7 mg kg-1). The order of metal accumulation in a combined metal treatment was similar to that for single metal treatments, but observed Ni concentration declines by 22 and 71 % and Cu and Cd concentrations increase by 30 and 50 % (for CPT and ADS treatments, respectively), while Pb concentrations increased by 30~50 % in both of them. When treated with low-molecular-weight organic acids (LMWOAs), metal desorption, indicative of metal oxide bonding strength and metal bioavailability, was consistent with metal accumulation in the plant.

  17. High-density Bi-Pb-Sr-Ca-Cu-O superconductor prepared by rapid thermal melt processing

    NASA Astrophysics Data System (ADS)

    Moon, B. M.; Lalevic, B.; Kear, B. H.; McCandlish, L. E.; Safari, A.; Meskoob, M.

    1989-10-01

    A high quality, dense Bi-Pb-Sr-Ca-Cu-O superconductor has been successfully synthesized by rapid thermal melt processing. Conventionally sintered pellets were melted at 1200 °C, cooled rapidly, and then annealed. As-melted samples exhibited semiconductor behavior, which upon annealing became superconducting at 115 K [Tc(zero)=105 K]. A detailed study of various processing techniques has been carried out.

  18. Characterization and adsorption performance of Pb(II) on CuO nanorods synthesized by the hydrothermal method

    SciTech Connect

    Arfaoui, Lobna; Kouass, Salah; Dhaouadi, Hassouna, E-mail: dhaouadihassouna@yahoo.fr

    2015-10-15

    Highlights: • The nanorods of CuO were synthesized by a hydrothermal route without any surfactant. • X-ray diffraction showed monoclinic structure with space group C{sub 2/c}. • The nanorods show relatively high adsorption capacity for the removal of Pb(II). • The adsorption kinetics could be fitted well by the pseudo-second-order model. • The equilibrium data can be fitted well using the Langmuir isotherm model - Abstract: Copper oxide (CuO) nanorods were synthesized by hydrothermal method. The detailed structural, compositional and optical characterization of this material was also evaluated with XRD, FT-IR, EDS, and UV–vis spectroscopy, which confirmed that the obtainedmore » nanorods are well-crystallized CuO and possess good optical properties. SEM and TEM studies revealed that the as-synthesized CuO nanorods are uniform with an average diameter of 17 nm. The adsorption activity of the CuO nanostructures was studied. The adsorption results showed that the CuO nanorods are an effective and efficient adsorbent for the removal of Pb(II) ions. The influence of various operational parameters such as the pH of the solution, the contact time and the initial concentrations were also studied and the results were discussed. The estimated maximum lead ion adsorption capacity of the CuO nanorods was found to be 188.67 mg g{sup −1} at an optimum pH of 6.« less

  19. Structural, electronic transport and optical properties of Cr doped PbS thin film by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Preetha, K. C.

    2017-06-01

    Incorporation of Chromium ions into Lead Sulphide thin films have been achieved by CBD technique. Effects of doping were investigated as a function of Pb/Cr ratio from o to 2 at %. X-ray diffraction patterns showed that films were polycrystalline in nature with increase in crystallite size up to an optimum doping concentration. Scanning electron microscopic study revealed excellent morphology with doping concentration. The low transmittance in the UV-VIS region offered the suitability of the samples as solar control coatings. The thin films were found to be P type and electrical conductivity enhanced on doping.

  20. Adsorption behavior of hydrotalcite-like modified bentonite for Pb2+, Cu2+and methyl orange removal from water

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Peng, Jingdong; Xiao, Huan; Peng, Huanjun; Bu, Lingli; Pan, Ziyu; He, Yan; Chen, Fang; Wang, Xiang; Li, Shiyu

    2017-10-01

    Hydrotalcite-like compound (HTlc) which contained lanthanum cation was prepared successfully. The title compound was characterized by thermogravimetry analysis, element analysis, X-ray fluorescence, Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, as well as specific surface area. The study sought to investigate the adsorption of heavy metals and dye (Pb2+, Cu2+ and methyl orange) in aqueous solution on Ben-HTlc. For optimization of adsorption behavior of the three elements, the pH value, contact time, adsorbate concentration were optimized. As for Pb2+, Cu2+ and methyl orange (MO), the single-component adsorption generally reached the maximum quantity in first 20 min and their respective adsorption capacities were 384.6 mg g-1, 156.3 mg g-1 and 333.3 mg g-1 (pH = 6.5 ± 0.1), the adsorption affinities were in the following sequence Pb2+ > MO > Cu2+. The repeated adsorption and regeneration studies showed the promising application of Ben-HTlc. The breakthrough experimental consequence had shown that the synthesized Ben-HTlc could efficiently remove heavy metals and dye from water, suggesting the potential utilization of Ben-HTlc in pollutants removal.

  1. Crystal Growth of the S =1/2 Antiferromagnet K2PbCu(NO2)6 Elpasolite

    NASA Astrophysics Data System (ADS)

    Dong, Lianyang; Besara, Tiglet; Siegrist, Theo

    The elpasolite K2PbCu(NO2)6is known for its two structural transitions at 281 K and 273 K. Single crystals of K2PbCu(NO2)6 have been grown in aqueous solution, but the rapid nucleation rate and convective transport renders it difficult to obtain large high quality single crystals. We developed a gel method to grow K2PbCu(NO2)6 Elpasolite with sizes up to 5x5x5 mm3, suitable for neutron diffraction measurements. Susceptibility measurements clearly show that the Jahn-Teller distortions at 286K and 273K with associated orbital ordering produce a linear chain Heisenberg antiferromagnetic system. The intrachain interaction strength has been derived from a Bonner-Fisher analysis that yielded a value of 5.4K. This work was supported by the National Science Foundation, under award DMR-1534818. A portion of this work has been performed at the National High Magnetic Field Laboratory, which is supported by the National Science Foundation Cooperative Agreement.

  2. Counter-current acid leaching process for the removal of Cu, Pb, Sb and Zn from shooting range soil.

    PubMed

    Lafond, Stéphanie; Blais, Jean-François; Mercier, Guy; Martel, Richard

    2013-01-01

    This research explores the performance of a counter-current leaching process (CCLP) for Cu, Pb, Sb and Zn extraction in a polluted shooting range soil. The initial metal concentrations in the soil were 1790 mg Cu/kg, 48,300 mg Pb/kg, 840 mg Sb/kg and 368 mg Zn/kg. The leaching process consisted of five one-hour acid leaching steps, which used 1 M H2SO4 + 4 M NaCl (20 degrees C, soil suspension = 100 g/L) followed by two water rinsing steps. Ten counter-current remediation cycles were completed and the average metal removal yields were 98.3 +/- 0.3% of Cu, 99.5 +/- 0.1% of Pb, 75.5 +/- 5.1% of Sb and 29.1 +/- 27.2% of Zn. The quality of metal leaching did not deteriorate throughout the 10 remediation cycles completed for this study. The CCLP reduced acid and salt use by approximately 68% and reduced water consumption by approximately 60%, exceeding reductions achieved by a standard acid leaching process.

  3. Porous cellulosic adsorbent for the removal of Cd (II), Pb(II) and Cu(II) ions from aqueous media

    NASA Astrophysics Data System (ADS)

    Barsbay, Murat; Kavaklı, Pınar Akkaş; Tilki, Serhad; Kavaklı, Cengiz; Güven, Olgun

    2018-01-01

    The main objective of this work is to prepare a renewable cellulosic adsorbent by γ-initiated grafting of poly(glycidyl methacrylate) (PGMA) from cellulose substrate and subsequent modification of PGMA with chelating species, iminodiacetic acid (IDA), for Cd (II), Pb(II) and Cu(II) removal from aqueous media. Modification of PGMA grafted cellulose with IDA in aqueous solution under mild conditions has proceeded efficiently to yield a natural-based and effective porous adsorbent with well-defined properties as provided by the controlled polymerization technique, namely RAFT, applied during the radiation-induced graft copolymerization step and with sufficient degree of IDA immobilization as confirmed by XPS, FTIR, contact angle measurements and elemental analysis. In order to examine the Cd (II), Pb(II) and Cu(II) removing performance of the resulting adsorbent, batch experiments were carried out by ICP-MS. The adsorption capacities were determined as 53.4 mg Cd(II)/g polymer, 52.0 mg Pb(II)/g polymer and 69.6 mg Cu(II)/g polymer at initial feed concentration of 250 ppm, showing the promising potential of the natural-based adsorbent to steadily and efficiently chemisorb toxic metal ions.

  4. Influences of traffic on Pb, Cu and Zn concentrations in roadside soils of an urban park in Dublin, Ireland.

    PubMed

    Dao, Ligang; Morrison, Liam; Zhang, Hongxuan; Zhang, Chaosheng

    2014-06-01

    Soils in the vicinity of roads are recipients of contaminants from traffic emissions. In order to obtain a better understanding of the impacts of traffic on soils, a total of 225 surface soil samples were collected from an urban park (Phoenix Park, Dublin, Ireland) in a grid system. Metal (Pb, Cu and Zn) concentrations were determined using a portable X-ray fluorescence analyzer. Strong spatial variations for the concentrations of Pb, Cu and Zn were observed. The spatial distribution maps created using geographical information system techniques revealed elevated metal concentrations close to the main traffic route in the park. The relationships between the accumulation of Pb, Cu and Zn in the roadside soils and the distance from the road were well fitted with an exponential model. Elevated metal concentrations from traffic pollution extended to a distance of approximately 40 m from the roadside. The results of this study provide useful information for the management of urban parks particularly in relation to policies aimed at reducing the impact of traffic related pollution on soils.

  5. Relation of pH and other soil variables to concentrations of Pb, Cu, Zn, Cd, and Se in earthworms

    USGS Publications Warehouse

    Beyer, W.N.; Hensler, G.L.; Moore, J.

    1987-01-01

    Various soil treatments (clay, composted peat, superphosphate, sulfur, calcium carbonate, calcium chloride, zinc chloride, selenous acid) were added to experimental field plots to test the effect of different soil variables on the concentrations of 5 elements in earthworms (Pb, Cu, Zn, Cd, Se). Concentrations of the 5 elements were related to 9 soil variables (soil Pb, soil Cu, soil Zn, pH, organic matter, P, K, Mg, and Ca) with linear multiple regression. Lead concentrations in earthworms were positively correlated with soil Pb and soil organic matter, and negatively correlated with soil pH and soil Mg, with an R2 of 64%. Se concentrations were higher in earthworms from plots amended with Se, and Zn concentrations were higher in earthworms from plots amended with Zn. However, none of the other soil variables had important effects on the concentrations of Cu, Zn, Cd and Se in earthworms. Although some significant statistical relations were demonstrated, the values of r2 of all relations (> 20%) were so low that they had little predictive value.

  6. Nitrilotriacetic acid functionalizedAdansonia digitatabiosorbent: Preparation, characterization and sorption of Pb (II) and Cu (II) pollutants from aqueous solution.

    PubMed

    Adewuyi, Adewale; Pereira, Fabiano Vargas

    2016-11-01

    Nitrilotriacetic acid functionalized Adansonia digitata (NFAD) biosorbent has been synthesized using a simple and novel method. NFAD was characterized by X-ray Diffraction analysis technique (XRD), Scanning Electron Microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analyzer, Fourier Transform Infrared spectrometer (FTIR), particle size dispersion, zeta potential, elemental analysis (CHNS/O analyzer), thermogravimetric analysis (TGA), differential thermal analysis (DTA), derivative thermogravimetric analysis (DTG) and energy dispersive spectroscopy (EDS). The ability of NFAD as biosorbent was evaluated for the removal of Pb (II) and Cu (II) ions from aqueous solutions. The particle distribution of NFAD was found to be monomodal while SEM revealed the surface to be heterogeneous. The adsorption capacity of NFAD toward Pb (II) ions was 54.417 mg/g while that of Cu (II) ions was found to be 9.349 mg/g. The adsorption of these metals was found to be monolayer, second-order-kinetic, and controlled by both intra-particle diffusion and liquid film diffusion. The results of this study were compared better than some reported biosorbents in the literature. The current study has revealed NFAD to be an effective biosorbent for the removal of Pb (II) and Cu (II) from aqueous solution.

  7. Glass formation in the system Li2B4O7-Pb3O4-CuO using X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Kashif, I.; AL-Shourbagy, M.; Sanad, A. M.

    2015-05-01

    X-ray diffraction was performed to construct the phase diagram for the ternary Li2B4O7-Pb3O4-CuO glass system. Three principal regions were identified: (1) a glass-forming region observed at the composition (75 < Li2B4O7 < 100) mol%, (0 < CuO < 35) mol% and (0 < Pb3O4 < 70) mol% in the ternary system, and (100 - x) mol% Li2B4O7-x mol% Pb3O4 where x = 0 up to 70, (100 - y) mol% Li2B4O7-y mol% CuO where y = 0 up to 25 in the binary system;. (2) a crystalline region: all compositions prepared from the binary system Pb3O4-CuO and the ternary system containing Li2B4O7 up to 60 mol%; (3) a partially crystalline region formed between the glass and crystalline regions.

  8. Sr-Nd-Pb-Hf isotope systematics of the Hugo Dummett Cu-Au porphyry deposit (Oyu Tolgoi, Mongolia)

    NASA Astrophysics Data System (ADS)

    Dolgopolova, A.; Seltmann, R.; Armstrong, R.; Belousova, E.; Pankhurst, R. J.; Kavalieris, I.

    2013-04-01

    Major and trace element geochemistry including Sr-Nd-Pb-Hf isotopic data are presented for a representative sample suite of Late Devonian to Early Carboniferous plutonic and volcanic rocks from the Hugo Dummett deposit of the giant Oyu Tolgoi porphyry Cu-Au district in South Gobi, Mongolia. Sr and Nd isotopes (whole-rock) show restricted ranges of initial compositions, with positive ɛNdt mainly between + 3.4 and + 7.4 and (87Sr/86Sr)t predominantly between 0.7037 and 0.7045 reflecting magma generation from a relatively uniform juvenile lithophile-element depleted source. Previously dated zircons from the plutonic rocks exhibit a sample-averaged range of ɛHft values of + 11.6 to + 14.5. Depleted-mantle model ages of 420-830 (Nd) and 320-730 Ma (zircon Hf) limit the involvement of pre-Neoproterozoic crust in the petrogenesis of the intermediate to felsic calc-alkaline magmas to, at most, a minor role. Pb isotopes (whole-rock) show a narrow range of unradiogenic initial compositions: 206Pb/204Pb 17.40-17.94, 207Pb/204Pb 15.43-15.49 and 208Pb/204Pb 37.25-37.64, in agreement with Sr-Nd-Hf isotopes indicating the dominance of a mantle component. All four isotopic systems suggest that the magmas from which the large Oyu Tolgoi porphyry system was generated originated predominantly from juvenile material within the subduction-related setting of the Gurvansayhan terrane.

  9. Influence of bioenergy waste biochar on proton- and ligand-promoted release of Pb and Cu in a shooting range soil.

    PubMed

    Kumarathilaka, Prasanna; Ahmad, Mahtab; Herath, Indika; Mahatantila, Kushani; Athapattu, B C L; Rinklebe, Jörg; Ok, Yong Sik; Usman, Adel; Al-Wabel, Mohammad I; Abduljabbar, Adel; Vithanage, Meththika

    2017-12-29

    Presence of organic and inorganic acids influences the release rates of trace metals (TMs) bound in contaminated soil systems. This study aimed to investigate the influence of bioenergy waste biochar, derived from Gliricidia sepium (GBC), on the proton and ligand-induced bioavailability of Pb and Cu in a shooting range soil (17,066mg Pb and 1134mg Cu per kg soil) in the presence of inorganic (sulfuric, nitric, and hydrochloric) and organic acids (acetic, citric, and oxalic). Release rates of Pb and Cu in the shooting range soil were determined under different acid concentrations (0.05, 0.1, 0.5, 1, 5, and 10mM) and in the presence/absence of GBC (10% by weight of soil). The dissolution rates of Pb and Cu increased with increasing acid concentrations. Lead was preferentially released (2.79×10 -13 to 8.86×10 -13 molm -2 s -1 ) than Cu (1.07×10 -13 to 1.02×10 -13 molm -2 s -1 ) which could be due to the excessive Pb concentrations in soil. However, the addition of GBC to soil reduced Pb and Cu dissolution rates to a greater extent of 10.0 to 99.5% and 15.6 to 99.5%, respectively, under various acid concentrations. The increased pH in the medium and different adsorption mechanisms, including electrostatic attractions, surface diffusion, ion exchange, precipitation, and complexation could immobilize Pb and Cu released by the proton and ligands in GBC amended soil. Overall, GBC could be utilized as an effective soil amendment to immobilize Pb and Cu in shooting range soil even under the influence of soil acidity. Copyright © 2017. Published by Elsevier B.V.

  10. Effects of Additives on Electrochemical Growth of Cu Film on Co/SiO2/Si Substrate by Alternating Underpotential Deposition of Pb and Surface-Limited Redox Replacement by Cu

    NASA Astrophysics Data System (ADS)

    Fang, J. S.; Lin, L. Y.; Wu, C. L.; Cheng, Y. L.; Chen, G. S.

    2017-11-01

    The effects of additives to an acidic electrolyte for electrochemical deposition of copper film to prevent corrosion of the Co/SiO2/Si substrate have been investigated. A sacrificial Pb layer was formed by underpotential deposition (UPD), then a Cu layer was prepared using surface-limited redox replacement (SLRR) to exchange the UPD-Pb layer in an acidic copper electrolyte with trisodium citrate, sodium perchlorate, and ethylenediamine as additives. The additives significantly affected the replacement of UPD-Pb by Cu and prevented galvanic corrosion of the Co/SiO2/Si substrate in the acidic Cu electrolyte. The results showed that both sodium perchlorate and ethylenediamine reduced the corrosion of the Co substrate and resulted in Cu film with low electrical resistivity. However, residual Pb was present in the Cu film when using trisodium citrate, as the citrate ions slowed copper displacement. The proposed sequential UPD-Pb and SLRR-Cu growth method may enable electrochemical deposition for fabrication of Cu interconnects on Co substrate from acidic Cu electrolyte.

  11. Mössbauer study of Cu0.5Fe0.5Cr2S4

    NASA Astrophysics Data System (ADS)

    Ok, Hang Nam; Baek, Kyung Seon; Lee, Heung Soo; Kim, Chul Sung

    1990-01-01

    Cu0.5Fe0.05Cr2S4 has been studied by Mössbauer spectroscopy and x-ray diffraction. The crystal structure is found to be a cubic spinel with the lattice parameter a0=9.922 Å. The temperature dependence of both the magnetic hyperfine field and magnetization is explained by the Néel theory of ferrimagnetism using three exchange integrals: JFe-Cr/kB=-13.7 K, JFe-Fe/kB=-8.3 K, and JCr-Cr/kB=8.7 K.

  12. Magnetic structure of CuCrO₂: a single crystal neutron diffraction study.

    PubMed

    Frontzek, M; Ehlers, G; Podlesnyak, A; Cao, H; Matsuda, M; Zaharko, O; Aliouane, N; Barilo, S; Shiryaev, S V

    2012-01-11

    This paper presents results of a recent study of multiferroic CuCrO(2) by means of single crystal neutron diffraction. This system has two close magnetic phase transitions at T(N) = 24.2 K and T(mf) = 23.6 K. The low temperature magnetic structure below T(mf) is unambiguously determined to be a fully three-dimensional proper screw. Between T(N) and T(mf) antiferromagnetic order is found that is essentially two-dimensional. In this narrow temperature range, magnetic near neighbor correlations are still long range in the (H,K) plane, whereas nearest neighbors along the L direction are uncorrelated. Thus, the multiferroic state is realized only in the low temperature three-dimensional state and not in the two-dimensional state.

  13. Achieving optimum mechanical performance in metallic nanolayered Cu/X (X = Zr, Cr) micropillars

    NASA Astrophysics Data System (ADS)

    Zhang, J. Y.; Li, J.; Liang, X. Q.; Liu, G.; Sun, J.

    2014-03-01

    The selection and design of modern high-performance structural engineering materials such as nanostructured metallic multilayers (NMMs) is driven by optimizing combinations of mechanical properties and requirements for predictable and noncatastrophic failure in service. Here, the Cu/X (X = Zr, Cr) nanolayered micropillars with equal layer thickness (h) spanning from 5-125 nm are uniaxially compressed and it is found that these NMMs exhibit a maximum strain hardening capability and simultaneously display a transition from bulk-like to small-volume materials behavior associated with the strength at a critical intrinsic size h ~ 20 nm. We develop a deformation mode-map to bridge the gap between the interface characteristics of NMMs and their failure phenomena, which, as shrinking the intrinsic size, transit from localized interface debonding/extrusion to interface shearing. Our findings demonstrate that the optimum robust performance can be achieved in NMMs and provide guidance for their microstructure sensitive design for performance optimization.

  14. CuCrW(Al2O3) nanocomposite: mechanical alloying, microstructure, and tribological properties

    NASA Astrophysics Data System (ADS)

    Baghani, Mohammad; Aliofkhazraei, Mahmood

    2017-11-01

    The effect of alumina nanoparticle addition on the microstructure and tribological properties of a CuCrW alloy was investigated in this work. Mechanical alloying was carried out in a satellite ball mill. The tribological properties of the samples were evaluated using pin-on-disk wear tests with different pins (alumina, tungsten carbide, and steel pins). The results indicated that the tungsten carbide pin had a lower coefficient of friction than the alumina and steel pins because of its high hardness and low surface roughness. In addition, when the sliding rate was decreased, the weight-loss rate increased. The existence of alumina nanoparticles in the nanocomposite led to a lower weight-loss rate and to a change in the wear mechanism from adhesive to abrasive.

  15. Energy levels and radiative rates for Cr-like Cu VI and Zn VII

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Bogdanovich, P.; Keenan, F. P.; Kisielius, R.

    2016-09-01

    Energy levels and radiative rates (A-values) for transitions in Cr-like Cu VI and Zn VII are reported. These data are determined in the quasi-relativistic approach (QR), by employing a very large configuration interaction (CI) expansion which is highly important for these ions. No radiative rates are available in the literature to compare with our results, but our calculated energies are in close agreement with those compiled by NIST and other available theoretical data, for a majority of the levels. The A-values (and resultant lifetimes) are listed for all significantly contributing E1, E2 and M1 radiative transitions among the energetically lowest 322 levels of each ion.

  16. Analysis of the deformation behavior of low Cu-Cr-Zr alloy

    NASA Astrophysics Data System (ADS)

    Morozova, A.; Belyakov, A.; Kaibyshev, R.

    2016-11-01

    Mechanical properties and the microstrustural evolution of low Cu-Cr-Zr alloy subjected to equal channel angular pressing (ECAP) at 400°C via route BC after the solution treatment were investigated. Plastic deformation resulted in the formation of a large number of low-angle subgrain boundaries in initial coarse grains. New fine grains formed due to a progressive increase in misorientations of strain-induced (sub)boundaries. The ultrafine grain formation during large plastic deformation was accompanied by significant strengthening. The variation of the strain hardening rate with the flow stress after the total strain ɛ ˜ 1-12 was studied. The deformation behavior was discussed in terms of the dislocation-density-related Voce equation. Large plastic deformation led to an increase in both the ɛC and ɛV parameters in the Voce equation. The relationship between strain hardening and microstructure is considered in detail using the Voce parameters.

  17. Characterization of primary precipitate composition formed during co-removal of Cr(VI) with Cu(II) in synthetic wastewater.

    PubMed

    Sun, Jing-Mei; Zhu, Wen-Ting; Huang, Ju-Chang

    2006-10-01

    Hexavalent chromium [Cr(VI)] cannot react with either carbonate or hydroxide to form chromium precipitates. However, by using a precipitation technology to treat plating wastewater containing Cr(VI), Cu(II), Ni(II) and Zn(II), approximately 78% of Cr(VI) (initial 60 mg/L) was co-removed with the precipitation of Cu(II), Ni(II) and Zn(II) (each 150 mg/L) by dosing with Na2CO3 (Sun 2003). Direct precipitation by forming Cu(II)-Cr(VI) precipitates followed by adsorption of Cr(VI) onto freshly formed Cu-precipitates was subsequently found to be the main mechanism(s) involved in Cr(VI) co-removal with Cu(II) precipitation by dosing Na2CO3 stepwise to various pH values (Sun et al. 2003). This study was. carried out to further characterize the formation of primary precipitates during the early stages of copper precipitation and simultaneous removal of Cr(VI) with Cu(II). Test metal-solutions were prepared with industrial grade chemicals: CuCl2 x 2H2O, Na2SO4 and K2Cr2207. NaCO3 was added drop-wise to synthetic metal-solution to progressively increase pH. For each pH increment, removal of soluble metals was detected by atomic absorption spectrophotometer (AAS) and surface morphology of precipitates was analyzed by scanning electron microscope (SEM). To further characterize the formation of primary precipitates, a series of MINEQL+ thermodynamic calculations/analyses and equilibrium calculations/ analyses were conducted. MINEQL+ thermodynamic calculation indicated that, for a system containing 150 mg/L Cu(II) and 60 mg/L Cr(VI) with gradual Na2CO3 dosing, if any precipitates can be formed at pH 5.0 or lower, it should be in the form of CuCrO4. Comparison tests using systems containing the same equivalent of Cu(II) plus Cr(VI) and Cu(II) plus SO4(2-) showed that the precipitation occurred at a pH of around 5.0 in the Cu(II)-Cr(VI) system and around 6.0 in the Cu(II)-SO4(2-) system. The discrepancy of the precipitation was indeed caused by the formation of Cu-Cr precipitates

  18. Creep and oxidation behavior of modified CF8C-plus with W, Cu, Ni, and Cr

    DOE PAGES

    Unocic, Kinga A.; Dryepondt, Sebastien N.; Yamamoto, Yukinori; ...

    2016-02-01

    Here, the microstructures of modified CF8C-Plus (Fe-19Cr-12Ni-0.4W-3.8Mn-0.2Mo-0.6Nb-0.5Si-0.9C) with W and Cu (CF8CPWCu) and CF8CPWCu enhanced with 21Cr + 15Ni or 22Cr + 17.5Ni were characterized in the as-cast condition and after creep testing. When imaged at lower magnifications, the as-cast microstructure was similar among all three alloys as they all contained a Nb-rich interdendritic phase and Mn-based inclusions. Transmission electron microscopy (TEM) analysis showed the presence of nanoscale Cu-rich nanoprecipitates distributed uniformly throughout the matrix of CF8CPWCu, whereas in CF8CPWCu22/17, Cu precipitates were found primarily at the grain boundaries. The presence of these nanoscale Cu-rich particles, in addition to W-richmore » Cr 23C 6, nanoscale Nb carbides, and Z-phase (Nb 2Cr 2N 2), improved the creep strength of the CF8CPWCu steel. Modification of CF8CPWCu with Cr and Ni contents slightly decreased the creep strength but significantly improved the oxidation behavior at 1073 K (800 °C). In particular, the addition of 22Cr and 17.5Ni strongly enhanced the oxidation resistance of the stainless steel resulting in a 100 degrees or greater temperature improvement, and this composition provided the best balance between improving both mechanical properties and oxidation resistance.« less

  19. Creep and oxidation behavior of modified CF8C-plus with W, Cu, Ni, and Cr

    SciTech Connect

    Unocic, Kinga A.; Dryepondt, Sebastien N.; Yamamoto, Yukinori; Maziasz, Philip J.

    2016-02-01

    Here, the microstructures of modified CF8C-Plus (Fe-19Cr-12Ni-0.4W-3.8Mn-0.2Mo-0.6Nb-0.5Si-0.9C) with W and Cu (CF8CPWCu) and CF8CPWCu enhanced with 21Cr + 15Ni or 22Cr + 17.5Ni were characterized in the as-cast condition and after creep testing. When imaged at lower magnifications, the as-cast microstructure was similar among all three alloys as they all contained a Nb-rich interdendritic phase and Mn-based inclusions. Transmission electron microscopy (TEM) analysis showed the presence of nanoscale Cu-rich nanoprecipitates distributed uniformly throughout the matrix of CF8CPWCu, whereas in CF8CPWCu22/17, Cu precipitates were found primarily at the grain boundaries. The presence of these nanoscale Cu-rich particles, in addition to W-rich Cr23C6, nanoscale Nb carbides, and Z-phase (Nb2Cr2N2), improved the creep strength of the CF8CPWCu steel. Modification of CF8CPWCu with Cr and Ni contents slightly decreased the creep strength but significantly improved the oxidation behavior at 1073 K (800 °C). In particular, the addition of 22Cr and 17.5Ni strongly enhanced the oxidation resistance of the stainless steel resulting in a 100 degrees or greater temperature improvement, and this composition provided the best balance between improving both mechanical properties and oxidation resistance.

  20. Strongly reduced Ehrlich-Schwoebel barriers at the Cu (111) stepped surface with In and Pb surfactants

    NASA Astrophysics Data System (ADS)

    Hao, Jialei; Zhang, Lixin

    2018-01-01

    A surfactant can modify the properties of the surface and induce different mode of epitaxy growth. The atomistic mechanism is not fully understood yet. In this first-principles study, taking Cu homoepitaxy along (111) direction as an example, we show that the distribution of the surfactant atoms on the surface is the key. For In and Pb, they prefer to locate at the step edges and remain isolated. Once the growth is started, the distribution can be further modified by Cu adatoms. The uniquely decorated step edges have much lowered Ehrlich-Schwoebel (ES) barriers than that of the clean edges, thus the two dimensional growth on Cu (111) surface is promoted significantly. On the other hand, for Rh, Ir, and Au, these atoms are not favored at the step edges. The ES barriers can't be affected and these metals are not surfactants. The result is very helpful for searching of the optimal surfactants in metal homoepitaxy.

  1. Evaluation of vermicompost as bioadsorbent substrate of Pb, Ni, V and Cr for waste waters remediation using Total Reflection X-ray Fluorescence

    NASA Astrophysics Data System (ADS)

    Urdaneta, Cynthia; Parra, Lué-Merú Marcó; Matute, Saida; Garaboto, Mayantino Angel; Barros, Hayden; Vázquez, Cristina

    2008-12-01

    The use of vermicompost as adsorbent substrate for removing Pb, Ni, V and Cr from waste waters is proposed. In this work, after a preliminary physical and chemical characterization of the vermicompost, the optimal parameters for the heavy metal adsorption were obtained. A synthetic multielemental solution of Pb, Cr and Ni and a solution of NH 4VO 3 for vanadium were evaluated. The optimized parameters were pH, vermicompost mass to volume ratio, agitation time and particle size of the adsorbent. A batch system was employed for the assays. The elements were determined in the supernatant solution after filtration of the substrate. An optimal pH of 4.5 was found for ion removal. The agitation time slightly influences the adsorption of Pb and Cr, but it has a high influence on the Ni and V adsorption. The highest adsorption and removal of the metals was observed for a vermicompost mass of 2 g per 500 mL using a particle size between 75 to 841 µm for Pb, Cr and Ni, and 841 till 1192 µm for V. The mean removal percentage for each element is around 95% for Pb. Ni and Cr in the multielemental synthetic sample, demonstrating a high removal capacity of the substrate. For V it was found a removal efficiency of 50%.

  2. [Concentration of Hg, Pb, Cd, Cr and As in liver Carcharhinus limbatus (Carcharhiniformes: Carcharhinidae) captured in Veracruz, Mexico].

    PubMed

    Mendoza-Díaz, Fernando; Serrano, Arturo; Cuervo-López, Liliana; López-Jiménez, Alejandra; Galindo, José A; Basañez-Muñoz, Agustin

    2013-06-01

    Pollution by heavy metals in marine ecosystems in the Gulf of Mexico is one of the hardest conservation issues to solve. Sharks as top predators are bioindicators of the marine ecosystem health, since they tend to bioaccumulate and biomagnify contaminants; they also represent a food source for local consumption. Thus, the objective of this study was to study the possible presence of heavy metals and a metalloid in livers of Carcharhinus limbatus. For this, a total of 19 shark livers were taken from animals captured nearby Tamihua, Veracruz, Mexico from December 2007 to April 2008. 12 out of the 19 captured sharks were males, one was an adult female, three were juvenile males, and three juvenile females. Four heavy metals (Hg, Pb, Cd, and Cr) and one metaloid (As) were analyzed in shark livers using an atomic absorption spectrophotometry with flame and hydride generator. Our results showed that the maximum concentrations found were: Hg = 0.69 mg/kg, Cd = 0.43 mg/kg, As = 27.37 mg/kg, Cr = 0.70 mg/kg. The minimum concentrations found were: As = 14.91 mg/kg, Cr = 0.35 mg/kg. The Pb could not be determined because the samples did not have the spectrophotometer minimum detectable amount (0.1 mg/kg). None of the 19 samples analyzed showed above the permissible limits established by Mexican and American laws. There was a correlation between shark size and Cr and As concentration (Pearson test). The concentration of Cr and As was observed to be higher in bigger animals. There was not a significant difference in heavy metals concentration between juveniles and adults; however, there was a difference between males and females. A higher Cr concentration was found in females when compared to males. None of the samples exceed the maximum limit established by the laws of Mexico and the United States of America. Much longer studies are needed with C. limbatus and other species caught in the region, in order to determine the degree of contaminants exposure in aquatic ecosystems

  3. Tunable Magnetic Properties in CuCr2- x Fe x O4 Ceramics by Doping of Fe

    NASA Astrophysics Data System (ADS)

    Zhu, C. M.; Wang, L. G.; Bao, D. L. G. C.; Luo, H.; Tian, Z. M.; Yuan, S. L.

    2016-08-01

    CuCr2- x Fe x O4 ceramics have been successfully synthesized using the sol-gel method for the first time. With pure formation, material structure has been characterized by x-ray diffraction. The samples have been identified as having the spinel structure with formulae CuCr2- x Fe x O4. Micrographs obtained by scanning electron microscopy show the dense microstructure of the samples. The stoichiometric ratio of the ceramics has been measured through energy dispersive spectra. Magnetic properties of CuCr2- x Fe x O4 ceramics have been discussed. Temperature dependence of magnetization presents the gradually increasing irreversible temperature as the content of Fe element increases from x = 0 to 1. Coercive field ( H C), remanent magnetization ( M r), and saturation magnetization ( M S) respectively display the monotonous variation phenomena with increasing content of Fe. The increasing M r, M S and the decreasing H C can be attributed to the change of magnetic exchange interaction because of the doped Fe. It also proves that the magnetic properties of CuCr2- x Fe x O4 ceramics can be effectively tuned by the doping content of Fe.

  4. Characterization of Cold Sprayed CuCrAl-Coated and Uncoated GRCop-84 Substrates for Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Karthikeyan, J.; Lerch, B. A.; Barrett, C.; Garlich, R.

    2007-01-01

    A newly developed Cu-23(wt.%)Cr-5%Al (CuCrAl) alloy is currently being considered as a protective coating for GRCop-84 (Cu-8(at.%)Cr-4%Nb). The coating was deposited on GRCop-84 substrates by the cold spray deposition technique. Cyclic oxidation tests conducted in air on both coated and uncoated substrates between 773 and 1073 K revealed that the coating remained intact and protected the substrate up to 1073 K. No significant weight loss of the coated specimens were observed at 773 and 873 K even after a cumulative cyclic time of 500 h. In contrast, the uncoated substrate lost as much as 80% of its original weight under similar test conditions. Low cycle fatigue tests revealed that the fatigue lives of thinly coated GRCop-84 specimens were similar to the uncoated specimens within the limits of experimental scatter. It is concluded that the cold sprayed CuCrAl coating is suitable for protecting GRCop-84 substrates.

  5. Thermoelectric and Transport Properties of Delafossite CuCrO2:Mg Thin Films Prepared by RF Magnetron Sputtering

    PubMed Central

    Sinnarasa, Inthuga; Thimont, Yohann; Presmanes, Lionel; Barnabé, Antoine; Tailhades, Philippe

    2017-01-01

    P-type Mg doped CuCrO2 thin films have been deposited on fused silica substrates by Radio-Frequency (RF) magnetron sputtering. The as-deposited CuCrO2:Mg thin films have been annealed at different temperatures (from 450 to 650 °C) under primary vacuum to obtain the delafossite phase. The annealed samples exhibit 3R delafossite structure. Electrical conductivity σ and Seebeck coefficient S of all annealed films have been measured from 40 to 220 °C. The optimized properties have been obtained for CuCrO2:Mg thin film annealed at 550 °C. At a measurement temperature of 40 °C, this sample exhibited the highest electrical conductivity of 0.60 S·cm−1 with a Seebeck coefficient of +329 µV·K−1. The calculated power factor (PF = σS²) was 6 µW·m−1·K−2 at 40 °C and due to the constant Seebeck coefficient and the increasing electrical conductivity with measurement temperature, it reached 38 µW·m−1·K−2 at 220 °C. Moreover, according to measurement of the Seebeck coefficient and electrical conductivity in temperature, we confirmed that CuCrO2:Mg exhibits hopping conduction and degenerates semiconductor behavior. Carrier concentration, Fermi level, and hole effective mass have been discussed. PMID:28654011

  6. Li, Cr, Mn, Co, Ni, Cu, Zn, Se and Mo levels in foodstuffs from the Second French TDS.

    PubMed

    Noël, Laurent; Chekri, Rachida; Millour, Sandrine; Vastel, Christelle; Kadar, Ali; Sirot, Véronique; Leblanc, Jean-Charles; Guérin, Thierry

    2012-06-01

    In 2006, the French Food Safety Agency (AFSSA) conducted the Second French Total Diet Study (TDS) to estimate dietary exposures to the main minerals and trace elements from 1319 samples of foods typically consumed by the French population. The foodstuffs were analysed by inductively coupled plasma-mass spectrometry (ICP-MS) after microwave-assisted digestion. Occurrence data for lithium, chromium, manganese, cobalt, nickel, copper, zinc, selenium and molybdenum were reported and compared with results from the previous French TDS. The results indicate that the food groups presenting the highest levels of these essential trace elements were "tofu" (for Li, Mn, Ni, Cu, Zn and Mo),"fish and fish products" particularly "shellfish" (for Li, Co, Cu, Zn, Se and Mo), "sweeteners, honey and confectionery" particularly dark chocolate (for Cr, Mn, Co, Ni and Cu), "cereals and cereal products" (for Mn, Ni and Mo) and "ice cream" (for Cr, Co and Ni). Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. β-Cyclodextrin assisted solubilization of Cu and Cr complexes of flavonoids in aqueous medium: A DNA-interaction study

    NASA Astrophysics Data System (ADS)

    Jabeen, Erum; Janjua, Naveed Kausar; Hameed, Shahid

    2014-07-01

    Cu and Cr complexes of three flavonoids (morin, quercetin and 6-hydroxyflavone) were synthesized and included in beta-cyclodextrin (βCD) with the objective of improving their pharmacokinetic profiles. Then binding with ds.DNA was studied to monitor their interactive tendencies at physiological conditions. The binding constants and other thermodynamic data from UV-vis spectroscopy and cyclic voltammetry revealed Cr-flavonoid-βCD to interact with ds.DNA at pH-7.4 through electrostatic mode of binding while Cu-flavonoid-βCD can intercalate into DNA. The strong binding propensity of Cu-flavonoid-βCD with ds.DNA encourages their application as anticancerous agent.

  8. Annealing characteristics and calcium doping effects in the superconducting Pb 2CuSr 2[Eu 1- xCa x]Cu 2O 8+δ system

    NASA Astrophysics Data System (ADS)

    Karlemo, T.; Karppinen, M.; Niinistö, L.; Lindén, J.; Lippmaa, M.

    1997-02-01

    Essentially single-phase samples of Pb 2CuSr 2[Eu 1- xCa x]Cu 2O 8+δ have been investigated in a compositional range of x = 0.0-0.3. Annealing characteristics in oxygen and nitrogen atmospheres were systematically monitored by thermogravimetric measurements. Activation energies were determined for both the oxygen uptake and loss processes. The effect of Ca doping on the critical temperature was studied, and the Tc was found to be quite independent of the Ca content. The highest value of Tc = 74 K was measured for the sample of x = 0.25. The hyperfine parameters of the Eu site were determined by 151Eu Mössbauer spectroscopy. The asymmetry parameter η of the electric field gradient showed a clear dependence on both x and δ.

  9. High pressure synthesis and properties of Bi{sub 0.5}Pb{sub 0.5}CrO{sub 3}: A novel Cr{sup 4+}/Cr{sup 3+} perovskite

    SciTech Connect

    Pirrotta, Ivan; Schmidt, Rainer; Morán, Emilio; and others

    2015-05-15

    We have synthesized a new Bi{sub 0.5}Pb{sub 0.}5CrO{sub 3} perovskite phase by means of a high pressure reaction at 70 kbar and 1000 °C. The distorted orthorhombic perovskite structure can be indexed in the space group Pnma with lattice parameters a=5.4768 (1) Å, b=7.7450 (2) Å, and c=5.4574 (1) Å at room temperature, but undergoes a structural phase transition and enters into a P2{sub 1}/m monoclinic distorted perovskite phase below 150 K with a=5.4173 (2), b=7.7286 (4) and c=5.4930 (3). The structural transition is coincident with the onset of magnetic interactions. At lower temperatures a weak ferromagnetic structure is evident related to antiferromagnetic Cr-spin canting and a spin-glass transition is observed at ≈40 K. The semiconducting-type electrical resistivity is relatively low, associated with Cr{sup 3+}/Cr{sup 4+} electron hopping, and shows considerable magneto-resistance (up to 15%). Due to the low resistivity the dielectric permittivity ε{sub r} could be determined only below T<80 K to be ≈300 and did not show any strong temperature-dependence. Ferroelectricity was not detected in the T-range investigated and no magnetocapacitance effects were observed. - Graphical abstract: A new Bi{sub 0.5}Pb{sub 0.}5CrO{sub 3} perovskite phase has been synthesized under high pressure (70 kbar) and high temperature (1000 °C) conditions. The room temperature structure is orthorhombic and can be indexed in the space group Pnma but below 150 K undergoes a structural phase transition and enters into a P2{sub 1}/m monoclinic distorted perovskite phase. The structural transition is coincident with the onset of magnetic interactions. Mott variable-range hopping charge transport and magnetoresistance effects are evident. - Highlights: • A new Bi{sub 0.5}Pb{sub 0.}5CrO{sub 3} perovskite has been synthesized under HP/HT conditions. • An orthorhombic-to monoclinic phase transition takes place at 150 K. • The structural transition is coincident with the onset

  10. High pressure synthesis and properties of Bi{sub 0.5}Pb{sub 0.5}CrO{sub 3}: A novel Cr{sup 4+}/Cr{sup 3+} perovskite

    SciTech Connect

    Pirrotta, Ivan; Schmidt, Rainer; Unidad Asociada “Laboratorio de heteroestructuras con aplicación en spintrónica”, UCM/CSIC, Sor Juana Ines de la Cruz, 3, Cantoblanco E-28049 Madrid

    2015-05-15

    We have synthesized a new Bi{sub 0.5}Pb{sub 0.}5CrO{sub 3} perovskite phase by means of a high pressure reaction at 70 kbar and 1000 °C. The distorted orthorhombic perovskite structure can be indexed in the space group Pnma with lattice parameters a=5.4768 (1) Å, b=7.7450 (2) Å, and c=5.4574 (1) Å at room temperature, but undergoes a structural phase transition and enters into a P2{sub 1}/m monoclinic distorted perovskite phase below 150 K with a=5.4173 (2), b=7.7286 (4) and c=5.4930 (3). The structural transition is coincident with the onset of magnetic interactions. At lower temperatures a weak ferromagnetic structure is evidentmore » related to antiferromagnetic Cr-spin canting and a spin-glass transition is observed at ≈40 K. The semiconducting-type electrical resistivity is relatively low, associated with Cr{sup 3+}/Cr{sup 4+} electron hopping, and shows considerable magneto-resistance (up to 15%). Due to the low resistivity the dielectric permittivity ε{sub r} could be determined only below T<80 K to be ≈300 and did not show any strong temperature-dependence. Ferroelectricity was not detected in the T-range investigated and no magnetocapacitance effects were observed. - Graphical abstract: A new Bi{sub 0.5}Pb{sub 0.}5CrO{sub 3} perovskite phase has been synthesized under high pressure (70 kbar) and high temperature (1000 °C) conditions. The room temperature structure is orthorhombic and can be indexed in the space group Pnma but below 150 K undergoes a structural phase transition and enters into a P2{sub 1}/m monoclinic distorted perovskite phase. The structural transition is coincident with the onset of magnetic interactions. Mott variable-range hopping charge transport and magnetoresistance effects are evident. - Highlights: • A new Bi{sub 0.5}Pb{sub 0.}5CrO{sub 3} perovskite has been synthesized under HP/HT conditions. • An orthorhombic-to monoclinic phase transition takes place at 150 K. • The structural transition is coincident with the

  11. Formation of the 110-K superconducting phase in Pb-doped Bi-Sr-Ca-Cu-O thin films

    SciTech Connect

    Kula, W.; Sobolewski, R.; Gorecka, J.; Lewandowski, S.J. )

    1991-09-15

    Investigation of the 110-K Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub {ital x}} phase formation in superconducting thin films of Bi-based cuprates is reported. The films were dc magnetron sputtered from single Bi(Pb)-Sr-Ca-Cu-O targets of various stoichiometries, and subsequently annealed in air at high temperatures. The influence of the initial Pb content, annealing conditions, as well as the substrate material on the growth of the 110-K phase was investigated. We found that the films, fully superconducting above 100 K could be reproducibly fabricated on various dielectric substrates from Pb-rich targets by optimizing annealing conditions for each initial Pb/Bi ratio. Heavy Pb doping considerably accelerated formation of the 110-K phase, reducing the film annealing time to less than 1 h. Films containing, according to the x-ray measurement, more than 90% of the 110-K phase were obtained on MgO substrates, after sputtering from the Bi{sub 2}Pb{sub 2.5}Sr{sub 2}Ca{sub 2.15}Cu{sub 3.3}O{sub {ital x}} target and annealing in air for 1 h at 870 {degree}C. The films were {ital c}-axis oriented, with 4.5-K-wide superconducting transition, and zero resistivity at 106 K. Their critical current density was 2 {times} 10{sup 2} A/cm{sup 2} at 90 K, and above 10{sup 4} A/cm{sup 2} below 60 K. The growth of the 110-K phase on epitaxial substrates, such as CaNdAlO{sub 4} and SrTiO{sub 3}, was considerably deteriorated, and the presence of the 80- and 10-K phases was detected. Nevertheless, the best films deposited on these substrates were fully superconducting at 104 K and exhibited critical current densities above 2 {times} 10{sup 5} A/cm{sup 2} below 60 K{minus}one order of magnitude greater than the films deposited on MgO.

  12. Determination of Cd, Cr, Hg and Pb in plastics from waste electrical and electronic equipment by inductively coupled plasma mass spectrometry with collision-reaction interface technology.

    PubMed

    Santos, Mirian C; Nóbrega, Joaquim A; Cadore, Solange

    2011-06-15

    A procedure based on the use of a quadrupole inductively coupled plasma-mass spectrometer equipped with a collision-reaction interface (CRI) for control of spectral overlap interferences was developed for simultaneous determination of Cd, Cr, Hg, and Pb in plastics from waste electrical and electronic equipment (WEEE). The injection of H(2) and He (80 and 60 mL min(-1), respectively) into the sampled plasma, colliding and reacting with potentially interfering polyatomic ions, allows interference-free determination of chromium via its isotopes (52)Cr and (53)Cr that are freed from overlap due to the occurrence of (40)Ar(12)C(+), (40)Ar(12)C(1)H(+), (36)S(16)O(+) or (1)H(36)S(16)O(+). Cadmium, Hg and Pb were directly determined via their isotopes (110)Cd, (111)Cd, (112)Cd, (199)Hg, (200)Hg, (201)Hg, (202)Hg, (206)Pb, (207)Pb, and (208)Pb, without using CRI. The CRI can be quickly activated or deactivated before each analyte measurement. Limits of detection for (52)Cr were 0.04 or 0.14 μg L(-1) with He or H(2) injected in CRI. Cadmium and Pb have LODs between 0.02 and 0.08 μg L(-1) and Hg had 0.93-0.98 μg L(-1), without using CRI. Analyte concentrations for samples varied from 16 to 43, 1 to 11, 4 to 12, and 5 to 13 mg kg(-1) for Cr, Cd, Hg and Pb, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Terahertz conductivity in the under-doped Pb1-ySr2Y1-xCaxCu2+yO7+δ epitaxial film

    NASA Astrophysics Data System (ADS)

    Uzawa, Akira; Komori, Sachio; Kamei, Yuta; Kakeya, Itsuhiro

    2016-11-01

    We measured the complex conductivity at the frequencies from 0.2 THz to 1.0 THz in the under-doped Pb1-ySr2Y1-xCaxCu2+yO7+δ (Pb1212) epitaxial film with terahertz time-domain specteroscopy. By analyzing temperature and frequency dependence of the complex conductivity, we found that the superconducting fluctuation persists up to 12 K above Tc, onset. Compared with previous reports, the superconducting fluctuation in Pb1212 is observed shorter temperature range than Bi2Sr2CaCu2O8+δ and La2-xSrxCuO4. This is ascribed to the lower anisotropy of Pb1212.

  14. Timing of porphyry (Cu-Mo) and base metal (Zn-Pb-Ag-Cu) mineralisation in a magmatic-hydrothermal system—Morococha district, Peru

    NASA Astrophysics Data System (ADS)

    Catchpole, Honza; Kouzmanov, Kalin; Bendezú, Aldo; Ovtcharova, Maria; Spikings, Richard; Stein, Holly; Fontboté, Lluís

    2015-12-01

    The Morococha district in central Peru is characterised by economically important Cordilleran polymetallic (Zn-Pb-Ag-Cu) vein and replacement bodies and the large Toromocho porphyry Cu-Mo deposit in its centre. U-Pb, Re-Os, and 40Ar/39Ar geochronology data for various porphyry-related hydrothermal mineralisation styles record a 3.5-Ma multi-stage history of magmatic-hydrothermal activity in the district. In the late Miocene, three individual magmatic-hydrothermal centres were active: the Codiciada, Toromocho, and Ticlio centres, each separated in time and space. The Codiciada centre is the oldest magmatic-hydrothermal system in the district and consists of a composite porphyry stock associated with anhydrous skarn and quartz-molybdenite veins. The hydrothermal events are recorded by a titanite U-Pb age at 9.3 ± 0.2 Ma and a molybdenite Re-Os age at 9.26 ± 0.03 Ma. These ages are indistinguishable from zircon U-Pb ages for porphyry intrusions of the composite stock and indicate a time span of 0.2 Ma for magmatic-hydrothermal activity. The small Ticlio magmatic-hydrothermal centre in the west of the district has a maximum duration of 0.3 Ma, ranging from porphyry emplacement to porphyry mineralisation at 8.04 ± 0.14 Ma (40Ar/39Ar muscovite cooling age). The Toromocho magmatic-hydrothermal centre has a minimum of five recorded porphyry intrusions that span a total of 1.3 Ma and is responsible for the formation of the giant Toromocho Cu-Mo deposit. At least two hydrothermal pulses are identified. Post-dating a first pulse of molybdenite mineralisation, wide-spread hydrous skarn covers an area of over 6 km2 and is recorded by five 40Ar/39Ar cooling ages at 7.2-6.8 Ma. These ages mark the end of the slowly cooling and long-lived Toromocho magmatic-hydrothermal centre soon after last magmatic activity at 7.26 ± 0.02 Ma. District-wide (50 km2) Cordilleran base metal vein and replacement bodies post-date the youngest recorded porphyry mineralisation event at Toromocho

  15. Ti{sub 3}CrCu{sub 4}: A possible 2-D ferromagnetic spin fluctuating system

    SciTech Connect

    Dhar, S. K.; Kulkarni, R.; Goyal, Neeraj

    2016-05-15

    Ti{sub 3}CrCu{sub 4} is a new ternary compound which crystallizes in the tetragonal Ti{sub 3}Pd{sub 5} structure type. The Cr atoms form square nets in the a-b plane (a = 3.124 Å) which are separated by an unusually large distance c = 11.228 Å along the tetragonal axis, thus forming a -2-D Cr-sublattice. The paramagnetic susceptibility is characterized by a low effective moment, μ{sub eff} = 1.1 μ{sub B}, a low paramagnetic Curie temperature θ{sub P} (below 7 K) and a temperature independent χ{sub 0} = 6.7 x 10{sup −4} emu/mol. The magnetization at 1.8 K increases rapidly with field nearly saturatingmore » to 0.2 μ{sub B}/f.u. The zero field heat capacity C/T shows an upturn below 7 K (∼190 mJ/mol K{sup 2} at ∼0.1K) which is suppressed in applied magnetic fields and interpreted as suggesting the presence of spin fluctuations. The resistivity at low temperatures shows non-Fermi liquid behavior. Overall, the experimental data thus reveal an unusual magnetic state in Ti{sub 3}CrCu{sub 4}, which likely has its origin in the layered nature of the Cr sub-lattice and ferromagnetic spin fluctuations. Density functional theoretical calculations reveal a sharp Cr density of states peak just above the Fermi level, indicating the propensity of Ti{sub 3}CrCu{sub 4} to become magnetic.« less

  16. Determination of some heavy metals (Fe, Cu, Zn and Pb) in blood by total reflection X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Bounakhla, M.; Doukkali, A.; Lalaoui, K.; Aguenaou, H.; Mokhtar, N.; Attrassi, B.

    2003-05-01

    The main purpose of this study is the interaction between nutrition (micronutrients heavy metals: Fe, Zn, Cu) and toxic heavy metals such as Pb in blood of children living in Gharb region of Morocco. This region receives all pollution carried by the Sebou river coming mainly from industrial activities. A rapid and simple analytical procedure was used for the determination of Fe, Cu and Zn trace amounts in blood by total-reflection X-ray fluorescence technique. This method is an energy dispersive XRF technique in a special geometry of primary beam, sample and detector. The sample is deposited on a plane polished surface of a suitable reflector material. It is presented as a few drops (25 μl) from a solution of blood digested in a mixture of HNO3 and H2O2 using a microwaves accelerated reaction system. The accuracy of measurements has been investigated by using certified materials. The concentration of Cu was found to be normal in all samples (\\cong1 ppm) which ruled out any interaction between this element and the others. On the other hand, amounts of Fe and Zn are very variables, suggesting an interaction between Fe and Zn. However, amounts of Pb in blood are inferior to 50 ppb, suggesting that no interaction exist with this metal and micronutrients.

  17. Electrochemical Study of Carbon Nanotubes/Nanohybrids for Determination of Metal Species Cu2+ and Pb2+ in Water Samples

    PubMed Central

    Oliveira Silva, Andréa Claudia; de Oliveira, Luis Carlos Ferreira; Vieira Delfino, Angladis; Meneghetti, Mario Roberto

    2016-01-01

    The use of nanomaterials, such as nanoparticles and nanotubes, for electrochemical detection of metal species has been investigated as a way of modifying electrodes by electrochemical stripping analysis. The present study develops a new methodology based on a comparative study of nanoparticles and nanotubes with differential pulse anodic stripping voltammetry (DPASV) and examines the simultaneous determination of copper and lead. The glassy carbon electrode modified by gold nanoparticles demonstrated increased sensitivity and decreased detection limits, among other improvements in analytical performance data. Under optimized conditions (deposition potential −0.8 V versus Ag/AgCl; deposition time, 300 s; resting time, 10 s; pulse amplitude, 50 mV; and voltage step height, 4 mV), the detection limits were 0.2279 and 0.3321 ppb, respectively, for determination of Pb2+ and Cu2+. The effects of cations and anions on the simultaneous determination of metal ions do not exhibit significant interference, thereby demonstrating the selectivity of the electrode for simultaneous determination of Pb2+ and Cu2+. The same method was also used to determine Cu2+ in water samples. PMID:27882263

  18. Mineralogical and geochemical characterization of supergene Cu-Pb-Zn-V ores in the Oriental High Atlas, Morocco

    NASA Astrophysics Data System (ADS)

    Verhaert, Michèle; Bernard, Alain; Dekoninck, Augustin; Lafforgue, Ludovic; Saddiqi, Omar; Yans, Johan

    2017-10-01

    In the Moroccan High Atlas, two sulfide deposits hosted by Jurassic dolostones underwent significant weathering. In the Cu deposit of Jbel Klakh, several stages of supergene mineralization are distinguished: (1) the replacement of hypogene sulfides in the protolith (chalcopyrite) by secondary sulfides in the cementation zone (bornite, digenite, chalcocite, covellite), (2) the formation of oxidized minerals in the saprolite (malachite, azurite, brochantite) where the environment becomes more oxidizing and neutral, and (3) the precipitation of late carbonates (calcite) and iron (hydr-)oxides in the laterite. The precipitation of carbonates is related to the dissolution of dolomitic host rocks, which buffers the fluid acidity due to the oxidation of sulfides. In the Jbel Haouanit Pb-Zn deposit, the mineral assemblage is dominated by typical calamine minerals, Cu minerals (chalcocite, covellite, malachite), and a Cu-Pb-Zn vanadate (mottramite). Galena is successively weathered in anglesite and cerussite. Sphalerite is weathered in smithsonite, which is rapidly replaced by hydrozincite. Late iron (hydr-)oxides are mainly found at the top of both deposits (laterite). Both deposits are thus characterized by specific mineral zoning, from laterite to protolith, related to variations in the mineralogy and ore grades and probably caused by varying Eh-pH conditions.

  19. Chelating stability of an amphoteric chelating polymer flocculant with Cu(II), Pb(II), Cd(II), and Ni(II)

    NASA Astrophysics Data System (ADS)

    Liu, Lihua; Li, Yanhong; Liu, Xing; Zhou, Zhihua; Ling, Yulin

    2014-01-01

    The absorption spectra of Cu2+, Pb2+, Cd2+, and Ni2+ chelates of an amphoteric chelating polymer flocculant (ACPF) were measured by ultraviolet spectrophotometry, and their compositions and stability constants (β) were calculated. ACPF exhibited three apparent absorption peaks at 204, 251, and 285 nm. The sbnd CSS- group of ACPF reacted with Cu2+, Ni2+, Pb2+, and Cd2+ to form ACPF-Cu2+, ACPF-Ni2+, ACPF-Pb2+, and ACPF-Cd2+ chelates, respectively, according to a molar ratio of 2:1. The maximum absorption peaks of ACPF-Cu2+, ACPF-Ni2+, ACPF-Pb2+, and ACPF-Cd2+ appeared at 319, 326, 310, and 313.5 nm, respectively. The maximum absorption peaks of the chelates showed significant red shifting compared with the absorption peaks of ACPF. The β values of the ACPF-Cu2+, ACPF-Pb2+, ACPF-Cd2+, and ACPF-Ni2+ chelates were (1.37 ± 0.35) × 1012, (3.26 ± 0.39) × 1011, (2.05 ± 0.27) × 1011, and (3.04 ± 0.45) × 1010, respectively. The leaching rate of heavy metal ions from the chelating precipitates decreased with increasing pH. ACPF-Cu2+, ACPF-Ni2+, ACPF-Pb2+, and ACPF-Cd2+ were very stable at pH ⩾ 5.6. Cu2+, Ni2+, Pb2+, and Cd2+ concentrations in the leaching liquors were lower than the corresponding limits specified by the Integrated Wastewater Discharge Standard of China.

  20. Heavy metal (Cu, Cd, Pb, Cr) washing from river sediment using biosurfactant rhamnolipid.

    PubMed

    Chen, Weifang; Qu, Yan; Xu, Zhihua; He, Feifei; Chen, Zai; Huang, Sisi; Li, Yuxiang

    2017-07-01

    Heavy metal-contaminated sediments posed a serious threat to both human beings and environment. A biosurfactant, rhamnolipid, was employed as the washing agent to remove heavy metals in river sediment. Batch experiments were conducted to test the removal capability. The effects of rhamnolipid concentration, washing time, solution pH, and liquid/solid ratio were investigated. The speciation of heavy metals before and after washing in sediment was also analyzed. Heavy metal washing was favored at high concentration, long washing time, and high pH. In addition, the efficiency of washing was closely related to the original speciation of heavy metals in sediment. Rhamnolipid mainly targeted metals in exchangeable, carbonate-bound or Fe-Mn oxide-bound fractions. Overall, rhamnolipid biosurfactant as a washing agent could effectively remove heavy metals from sediment.

  1. Effects of Pb doping on structural and electronic properties of Bi2Sr2Ca2Cu3O10

    NASA Astrophysics Data System (ADS)

    Camargo-Martínez, J. A.; Baquero, R.

    2016-02-01

    Pb doping effect in the Bi2Sr2Ca2Cu3O10 compound (Bi2223) on the structural and electronic properties were investigated, using the Local Density (LDA) and Virtual Crystal (VCA) approximations within the framework of the Density Functional Theory (DFT), taking as reference the procedure implemented by Lin et al. (2006) in the Bi2212 compound. Results show that, the incorporation of Pb-dopant in Bi2223 lead a rigid displacement of the Bi/Pb-O bands toward higher energies, with a null contribution at the Fermi level, around the high symmetry point M bar in the irreducible Brillouin zone, for Pb doping concentration equal to or more than 26%, avoiding the presence of the so-called Bi-O pockets in the Fermi surface, in good agreement with angle-resolved photoemission spectroscopy (ARPES) and nuclear magnetic resonance (NMR) experiments, although a slight metallic character of the Bi-O bonds is still observed which would disagree with some experimental reports. The calculations show that the changes on the structural properties are associated to the presence or absence of the Bi-O pockets in the Fermi surface.

  2. Compatibility between Co-Metallized PbTe Thermoelectric Legs and an Ag-Cu-In Brazing Alloy.

    PubMed

    Ben-Ayoun, Dana; Sadia, Yatir; Gelbstein, Yaniv

    2018-01-10

    In thermoelectric (TE) generators, maximizing the efficiency of conversion of direct heat to electricity requires the reduction of any thermal and electrical contact resistances between the TE legs and the metallic contacts. This requirement is especially challenging in the development of intermediate to high-temperature TE generators. PbTe-based TE materials are known to be highly efficient up to temperatures of around 500 °C; however, only a few practical TE generators based on these materials are currently commercially available. One reason for that is the insufficient bonding techniques between the TE legs and the hot-side metallic contacts. The current research is focused on the interaction between cobalt-metallized n-type 9.104 × 10-3 mol % PbI₂-doped PbTe TE legs and the Ag0.32Cu0.43In0.25 brazing alloy, which is free of volatile species. Clear and fine interfaces without any noticeable formation of adverse brittle intermetallic compounds were observed following prolonged thermal treatment testing. Moreover, a reasonable electrical contact resistance of ~2.25 mΩmm² was observed upon brazing at 600 °C, highlighting the potential of such contacts while developing practical PbTe-based TE generators.

  3. Cu assisted stabilization and nucleation of L1 2 precipitates in Al 0.3 CuFeCrNi 2 fcc-based high entropy alloy

    SciTech Connect

    Gwalani, B.; Choudhuri, D.; Soni, V.

    2017-05-01

    A detailed investigation of precipitation of the ordered L12 (γ’) phase in a Al0.3CrCuFeNi2 high entropy alloy (HEA), more generally referred to as a complex concentrated alloy (CCA), reveals the role of copper (Cu) on stabilization and precipitation of the ordered L12 ( γ’) phase. Detailed characterization via coupling of scanning and transmission electron microscopy, and atom probe tomography revealed novel insights into Cu clustering within the face-centered cubic matrix of this HEA, leading to heterogeneous nucleation sites for the γ’ precipitates. The subsequent partitioning of Cu into the γ’ precipitates indicates their stabilization is due to Cu addition. Themore » γ’ order-disorder transition temperature was determined to be ~930 _C in this alloy, based on synchrotron diffraction experiments, involving in situ annealing. The growth and high temperature stability of the γ’ precipitates was also confirmed via systematic scanning electron microscopy investigations of samples annealed at temperatures in the range of 700-900 oC. The role of Cu revealed by this study can be employed in the design of precipitation strengthened HEAs, as well as in a more general sense applied to other types of superalloys, with the objective of potentially enhancing their mechanical properties at room and elevated temperatures« less

  4. Cu assisted stabilization and nucleation of L1 2 precipitates in Al 0.3 CuFeCrNi 2 fcc-based high entropy alloy

    SciTech Connect

    Gwalani, B.; Choudhuri, D.; Soni, V.; Ren, Y.; Styles, M.; Hwang, J. Y.; Nam, S. J.; Ryu, H.; Hong, S. H.; Banerjee, R.

    2017-05-01

    A detailed investigation of precipitation of the ordered L12 (γ’) phase in a Al0.3CrCuFeNi2 high entropy alloy (HEA), more generally referred to as a complex concentrated alloy (CCA), reveals the role of copper (Cu) on stabilization and precipitation of the ordered L12 ( γ’) phase. Detailed characterization via coupling of scanning and transmission electron microscopy, and atom probe tomography revealed novel insights into Cu clustering within the face-centered cubic matrix of this HEA, leading to heterogeneous nucleation sites for the γ’ precipitates. The subsequent partitioning of Cu into the γ’ precipitates indicates their stabilization is due to Cu addition. The γ’ order-disorder transition temperature was determined to be ~930 _C in this alloy, based on synchrotron diffraction experiments, involving in situ annealing. The growth and high temperature stability of the γ’ precipitates was also confirmed via systematic scanning electron microscopy investigations of samples annealed at temperatures in the range of 700-900 oC. The role of Cu revealed by this study can be employed in the design of precipitation strengthened HEAs, as well as in a more general sense applied to other types of superalloys, with the objective of potentially enhancing their mechanical properties at room and elevated temperatures

  5. Cyclic Oxidation Behavior of Cold Sprayed CuCrAl-Coated and Uncoated GRCop-84 Substrates for Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Barrett, C.; Karthikeyan, J.; Garlick, R.

    2006-01-01

    A newly developed Cu-23 (wt %) Cr-5%Al (CuCrAl) alloy shown to resist hydridation and oxidation in an as-cast form is currently being considered as a protective coating for GRCop-84, which is an advanced copper alloy containing 8 (at.%) Cr and 4 (at.%) Nb. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique. Cyclic oxidation tests conducted in air on both coated and uncoated substrates between 773 and 1073 K revealed that the coating remained intact and protected the substrate up to 1073 K. No significant weight loss of the coated specimens were observed at 773 and 873 K even after a cumulative cyclic time of 500 h. About a 10 percent weight loss observed at 973 and 1073 K was attributed to the excessive oxidation of the uncoated sides. In contrast, the uncoated substrate lost as much as 80 percent of its original weight under similar test conditions. It is concluded that the cold sprayed CuCrAl coating is suitable for protecting GRCop-84 substrates.

  6. The accumulation of metal (Co, Cr, Cu, Mn and Zn) in freshwater Ulva (Chlorophyta) and its habitat.

    PubMed

    Rybak, Andrzej; Messyasz, Beata; Łęska, Bogusława

    2013-04-01

    The possibility of using freshwater Ulva (Chlorophyta) as a bioaccumulator of metals (Co, Cr, Cu, Mn and Zn) in lake and river water was examined weekly in the summer of 2010 in three types of samples: the water, the sediment and the thalli of Ulva. Samples of freshwater Ulva were collected from two aqueous ecosystems lie 250 km away from the basin of the Baltic Sea and 53 km from each other. A flow lake located in the centre of the big city was the first water reservoir (ten sites) and second, the suburban river (six sites). The mean metal concentrations in the Ulva tissue from the river and the lake decreased in the following order: Mn > Zn > Cr > Cu > Co and Mn > Cr > Zn > Cu > Co, respectively. Moreover, a negative and statistically significant correlation between Mn concentrations in the Ulva thalli and the river water was observed. Additionally, numerous correlations were noted between the different concentrations of metals within the Ulva thalli, in the water and in the sediment. The great concentrations of Mn and Zn and the smallest of Co were found in thalli of Ulva, irrespective of the type of the ecosystem from which samples of algal thalli originated. Freshwater Ulva populations examined in this study were clearly characterized a dozen or so times by the higher Mn and Cr accumulation than taxa from that genera coming from sea ecosystems. The calculated bioconcentration factor confirm the high potential for freshwater Ulva to be a bioaccumulator of trace metals in freshwater ecosystems.

  7. Short-term temporal variations in speciation of Pb, Cu, Zn and Sb in a shooting range runoff stream.

    PubMed

    Heier, Lene Sørlie; Meland, Sondre; Ljønes, Marita; Salbu, Brit; Strømseng, Arnljot Einride

    2010-05-01

    This study was designed to explore the changes in physico-chemical forms of Pb, Cu, Zn and Sb in a stream draining a contaminated shooting range, located at Steinsjøen in the South-Eastern part of Norway, during a period of 21days. To obtain information on the element species distribution, an interphased size and charge fractionation system was applied, where membrane filtration (0.45microm) and ultrafiltration using hollow fibre (nominal cut off 10kDa) were performed prior to charge fractionation using chromatography (cationic and anionic exchange resins). The results show that Pb mainly was present as particulate and colloidal high molecular mass (HMM) species, Cu as colloidal (HMM) and low molecular mass (LMM) species, while Sb and Zn were mainly present as LMM species. The total element concentrations of Pb, Cu, Zn and Sb were positively correlated to water flow and dissolved organic carbon (DOC), suggesting these are important factors in controlling the run-off of the investigated elements in this catchment. During episodes of higher water flow, the increase in element concentration was mainly in the colloidal fraction. Partial redundancy analysis (pRDA) revealed that variations in pH, HMM organic carbon (HMM OC) and LMM organic carbon (LMM OC) explained 47% of the variation in size distribution of the elements, while variations in precipitation and water flow explained 48% of the variation in the charge distribution of the elements. The variation in concentrations during the period varied by a factor of 4, also stressing the importance of frequent sampling opposed to spot sampling in environmental surveys and risk assessments. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Evolution of magnetic properties in the normal spinel solid solution Mg{<_1-x}Cu{<_x}Cr{<_2}P{<_4}.

    SciTech Connect

    Kemei, M. C.; Moffitt, S. L.; Seshadri, R.

    2012-01-01

    We examine the evolution of magnetic properties in the normal spinel oxides Mg{sub 1-x}Cu{sub x}Cr{sub 2}O{sub 4} using magnetization and heat capacity measurements. The end-member compounds of the solid solution series have been studied in some detail because of their very interesting magnetic behavior. MgCr{sub 2}O{sub 4} is a highly frustrated system that undergoes a first-order structural transition at its antiferromagnetic ordering temperature. CuCr{sub 2}O{sub 4} is tetragonal at room temperature as a result of Jahn-Teller active tetrahedral Cu{sup 2+} and undergoes a magnetic transition at 135 K. Substitution of magnetic cations for diamagnetic Mg{sup 2+} on the tetrahedral Amore » site in the compositional series Mg{sub 1-x}Cu{sub x}Cr{sub 2}O{sub 4} dramatically affects magnetic behavior. In the composition range 0 {le} x {le} {approx}0.3, the compounds are antiferromagnetic. A sharp peak observed at 12.5 K in the heat capacity of MgCr{sub 2}O{sub 4} corresponding to a magnetically driven first-order structural transition is suppressed even for small x. Uncompensated magnetism - with open magnetization loops - develops for samples in the x range {approx}0.43 {le} x {le} 1. Multiple magnetic ordering temperatures and large coercive fields emerge in the intermediate composition range 0.43 {le} x {le} 0.47. The Neel temperature increases with increasing x across the series while the value of the Curie-Weiss {Theta}{sub CW} decreases. A magnetic temperature-composition phase diagram of the solid solution series is presented.« less

  9. Evolution of magnetic properties in the normal spinel solid solution Mg(1-x)Cu(x)Cr2O4.

    PubMed

    Kemei, Moureen C; Moffitt, Stephanie L; Shoemaker, Daniel P; Seshadri, Ram

    2012-02-01

    We examine the evolution of magnetic properties in the normal spinel oxides Mg(1-x)Cu(x)Cr2O4 using magnetization and heat capacity measurements. The end-member compounds of the solid solution series have been studied in some detail because of their very interesting magnetic behavior. MgCr2O4 is a highly frustrated system that undergoes a first-order structural transition at its antiferromagnetic ordering temperature. CuCr2O4 is tetragonal at room temperature as a result of Jahn-Teller active tetrahedral Cu2+ and undergoes a magnetic transition at 135 K. Substitution of magnetic cations for diamagnetic Mg2+ on the tetrahedral A site in the compositional series Mg(1-x)Cu(x)Cr2O4 dramatically affects magnetic behavior. In the composition range 0 ≤ x ≤ ≈0.3, the compounds are antiferromagnetic. A sharp peak observed at 12.5 K in the heat capacity of MgCr2O4 corresponding to a magnetically driven first-order structural transition is suppressed even for small x. Uncompensated magnetism--with open magnetization loops--develops for samples in the x range ≈0.43 ≤ x ≤ 1. Multiple magnetic ordering temperatures and large coercive fields emerge in the intermediate composition range 0.43 ≤ x ≤ 0.47. The Néel temperature increases with increasing x across the series while the value of the Curie-Weiss Θ(CW) decreases. A magnetic temperature-composition phase diagram of the solid solution series is presented.

  10. High magnetic field evolution of ferroelectricity in CuCrO2

    NASA Astrophysics Data System (ADS)

    Mun, Eundeok; Frontzek, M.; Podlesnyak, A.; Ehlers, G.; Barilo, S.; Shiryaev, S. V.; Zapf, Vivien S.

    2014-02-01

    CuCrO2 offers insights into the different types of spiral magnetic orderings that can form spontaneously due to frustration in triangular-lattice antiferromagnets. We explore the magnetic phase diagram up to 65 T along all the principal axes, and also use electric polarization to probe changes in the spiral order at high magnetic fields. It is known that at zero magnetic field a proper-screw spiral of the Cr S =3/2 spins forms that in turn induces electric polarization with six possible orientations in the ab plane. Applied magnetic fields in the (hard) ab plane have been shown to induce a transition to cycloidal-spiral magnetic order above 5.3 T in those domains that have spins perpendicular to the applied magnetic field. We show that the cycloidal order remains unchanged all the way up to 65 T, which is one quarter of the extrapolated saturation magnetization. On the other hand, for magnetic fields along the (easy) c axis, we observe a transition in the electric polarization near 45 T, and it is followed by a series of steps and/or oscillations in the electric polarization. The data are consistent with a proper-screw-to-cycloidal transition that is pushed from 5.3 to 45 T by easy-axis anisotropy, and is in turn followed by stretching of the magnetic spiral through commensurate and incommensurate wave vectors. This work also highlights the ability of the magnetically induced electric polarization to probe complex magnetic orders in regimes of phase space that are difficult to reach with neutron diffraction.

  11. Infrared reflection in Bi(Pb)-Sr-Ca-Cu-O superconducting ceramic samples of mixed 2212 and 2223 phases

    SciTech Connect

    Liu, J.Q.; He, Y.S.; Revault, M.

    1991-01-10

    Investigations of superconducting energy gap with IR reflectance measurements above and below T{sub c} have been performed in Bi(Pb)-Sr-Ca-Cu-O ceramic samples of mixed 2212 and 2223 phases. The failure to get the two gap's values simultaneously in the same sample from the maxima in the R{sub s}/R{sub n} curve and a comparison between the author's results and those obtained previously by other authors for YBaCuO compounds showed the insensitivity of these maxima to T{sub c} in high-T{sub c} superconductors. This means that it might be difficult to deduce the gap's value directly from the R{sub s}/R{sub n} curve as hasmore » been done in conventional BCS superconductors.« less

  12. A simultaneous stabilization and solidification of the top five most toxic heavy metals (Hg, Pb, As, Cr, and Cd).

    PubMed

    Kim, Hyun-Taek; Lee, Tai Gyu

    2017-07-01

    A novel chemically bonded phosphate ceramic (CBPC) binder was developed for the simultaneous treatment of the top five most toxic heavy metals (Hg, Pb, As, Cr, and Cd). Various CBPC binders were synthesized and tested, and their toxicity characteristic leaching procedure (TCLP) values were obtained. A magnesium/calcium-potassium phosphate ceramic binder with FeCl 2 (M/C-KP-FeCl 2 ) simultaneously stabilized multiple heavy metals. The TCLP value of the final product for industrial waste (IW) treatment using the M/C-KP-FeCl 2 technology was well below the Universal Treatment Standard (UTS). Additionally, the compressive strength of the final product was below the US Nuclear Regulatory Commission Standard. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A comparison of physiologically based extraction test (PBET) and single-extraction methods for release of Cu, Zn, and Pb from mildly acidic and alkali soils.

    PubMed

    Li, Yi; Zhang, Ming-kui

    2013-05-01

    In vitro digestion test can be applied to evaluate the bioaccessibility of soil metals by measuring the solubility of the metals in synthetic human digestive tract. Physiologically based extraction test (PBET), composed of sequential digestion of gastric and intestinal phase, is one of the frequently used in vitro digestion tests. In this study, the PBET was chosen to determine the bioaccessibility of Cu, Zn, and Pb in 14 mildly acidic and alkali (pH 5.87-8.30) soils. The phytoavailability of Cu, Zn, and Pb in the same soils was also measured using six single-extraction methods (0.1 M HNO₃, 0.4 M HOAc, 0.1 M NaNO₃, 0.01 M CaCl₂, 0.05 M EDTA, and 0.5 M DTPA). The extraction efficiencies of the methods were compared. The PBET had a strong ability to extract metals from soil, which was much greater than neutral salt extraction and close to dilute acid and complex extraction in spite of the last 2 h neutral intestinal digestion. The amounts of bioaccessible Cu, Zn, and Pb in the gastric phase and in the gastrointestinal phase were both largely determined by the total content of soil Cu, Zn, and Pb. But the results of gastrointestinal digestion reflected more differences resulting from element and soil types than those of gastric digestion did. It was noticed that most of variations in the amounts of soil Cu, Zn, and Pb extracted by EDTA were well explained by the total soil Cu, Zn, and Pb, as same as the PBET. Moreover, the solubility of Cu, Zn, and Pb in the gastric phase and gastrointestinal phase were all positively linearly correlated with the results of EDTA. It was suggested that EDTA extraction can be used to predict the bioaccessibility of Cu, Zn, and Pb in mildly acidic and alkali (pH > 5.8) soils, and the PBET and EDTA could be applied to measure, in a certain extent, the bioaccessibility and phytoavailability of Cu, Zn, and Pb in mildly acidic and alkali (pH > 5.8) soils at the same time.

  14. Composite superconducting wires obtained by high-rate tinning in molten Bi-Pb-Sr-Ca-Cu-O system

    NASA Technical Reports Server (NTRS)

    Grozav, A. D.; Konopko, L. A.; Leporda, N. I.

    1990-01-01

    The preparation of high-T(sub c) superconducting long composite wires by short-time tinning of the metal wires in a molten Bi-Pb-Sr-Ca-Cu-O compound is discussed. The application of this method to the high-T(sub c) materials is tested, possibly for the first time. The initial materials used for this experiment were ceramic samples with nominal composition Bi(1.5)Pb(0.5)Sr2Ca2Cu3O(x) and T(sub c) = 80 K prepared by the ordinary solid-state reaction, and industrial copper wires from 100 to 400 microns in diameter and from 0.5 to 1 m long. The continuously moving wires were let through a small molten zone (approximately 100 cubic mm). The Bi-based high-T(sub c) ceramics in a molten state is a viscous liquid and it has a strongly pronounced ability to spread on metal wire surfaces. The maximum draw rate of the Cu-wire, at which a dense covering is still possible, corresponds to the time of direct contact of wire surfaces and liquid ceramics for less than 0.1 s. A high-rate draw of the wire permits a decrease in the reaction of the oxide melt and Cu-wire. This method of manufacture led to the fabrication of wire with a copper core in a dense covering with uniform thickness of about h approximately equal to 5 to 50 microns. Composite wires with h approximately equal to 10 microns (h/d approximately equal to 0.1) sustained bending on a 15 mm radius frame without cracking during flexing.

  15. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films

    NASA Astrophysics Data System (ADS)

    Soare, V.; Burada, M.; Constantin, I.; Mitrică, D.; Bădiliţă, V.; Caragea, A.; Târcolea, M.

    2015-12-01

    Al-Cr-Fe-Mn-Ni and Al-Cr-Cu-Fe-Mn-Ni high entropy alloy thin films were prepared by potentiostatic electrodeposition and the microstructure of the deposits was investigated. The thin films were co-deposited in an electrolyte based on a DMF (N,N-dimethylformamide)-CH3CN (acetonitrile) organic compound. The energy dispersive spectrometry investigation (EDS) indicated that all the five respectively six elements were successfully co-deposited. The scanning electron microscopy (SEM) analysis revealed that the film consists of compact and uniform particles with particle sizes of 500 nm to 4 μm. The X-ray diffractometry (XRD) patterns indicated that the as-deposited thin films were amorphous. Body-centered-cubic (BCC) structures were identified by XRD after the films were annealed at various temperatures under inert Ar atmosphere. The alloys adhesion on the substrate was determined by the scratch-testing method, with higher values obtained for the Al-Cr-Cu-Fe-Mn-Ni alloy.

  16. Mobility of Pb, Cu, and Zn in the phosphorus-amended contaminated soils under simulated landfill and rainfall conditions.

    PubMed

    Cao, Xinde; Liang, Yuan; Zhao, Ling; Le, Huangying

    2013-09-01

    Phosphorus-bearing materials have been widely applied in immobilization of heavy metals in contaminated soils. However, the study on the stability of the initially P-induced immobilized metals in the contaminated soils is far limited. This work was conducted to evaluate the mobility of Pb, Cu, and Zn in two contrasting contaminated soils amended with phosphate rock tailing (PR) and triple superphosphate fertilizer (TSP), and their combination (P + T) under simulated landfill and rainfall conditions. The main objective was to determine the stability of heavy metals in the P-treated contaminated soils in response to the changing environment conditions. The soils were amended with the P-bearing materials at a 2:1 molar ratio of P to metals. After equilibrated for 2 weeks, the soils were evaluated with the leaching procedures. The batch-based toxicity characteristic leaching procedure (TCLP) was conducted to determine the leachability of heavy metals from both untreated and P-treated soils under simulated landfill condition. The column-based synthetic precipitation leaching procedure (SPLP) were undertaken to measure the downward migration of metals from untreated and P-treated soils under simulated rainfall condition. Leachability of Pb, Cu, and Zn in the TCLP extract followed the order of Zn > Cu > Pb in both soils, with the organic-C- and clay-poor soil showing higher metal leachability than the organic-C- and clay-rich soil. All three P treatments reduced leachability of Pb, Cu, and Zn by up to 89.2, 24.4, and 34.3 %, respectively, compared to the untreated soil, and TSP revealed more effectiveness followed by P + T and then PR. The column experiments showed that Zn had the highest downward migration upon 10 pore volumes of SPLP leaching, followed by Pb and then Cu in both soils. However, migration of Pb and Zn to subsoil and leachate were inhibited in the P-treated soil, while Cu in the leachate was enhanced by P treatment in the organic

  17. Adsorption of Pb(II) and Cu(II) from aqueous solution on magnetic porous ferrospinel MnFe2O4.

    PubMed

    Ren, Yueming; Li, Nan; Feng, Jing; Luan, Tianzhu; Wen, Qing; Li, Zhanshuang; Zhang, Milin

    2012-02-01

    The adsorption of Pb(II) and Cu(II) from aqueous solution on magnetic porous ferrospinel MnFe(2)O(4) prepared by a sol-gel process was investigated. Single batch experiment was employed to test pH effect, sorption kinetics, and isotherm. The interaction mechanism and the regeneration were also explored. The results showed that Pb(II) and Cu(II) removal was strongly pH-dependent with an optimum pH value of 6.0, and the equilibrium time was 3.0 h. The adsorption process could be described by a pseudo-second-order model, and the initial sorption rates were 526.3 and 2631.5 μmol g(-1)min(-1) for Pb(II) and Cu(II) ions, respectively. The equilibrium data were corresponded well with Langmuir isotherm, and the maximum adsorption capacities were 333.3 and 952.4 μmol g(-1) for Pb(II) and Cu(II) ions, respectively. The adsorbed Pb(II) and Cu(II) ions were in the form of the complex with oxygen in carboxyl and hydroxyl groups binding on the surface of magnetic porous MnFe(2)O(4). The sorbent could be reused for five times with high removal efficiency. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Toxicities and tolerances of Cd, Cu, Pb and Zn in a primary producer (Isochrysis galbana) and in a primary consumer (Perna viridis).

    PubMed

    Yap, C K; Ismail, A; Omar, H; Tan, S G

    2004-02-01

    Studies on toxicities and tolerances of cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) in the brown alga Isochrysis galbana and in the green-lipped mussel Perna viridis were conducted by short-term bioassays using endpoints growth production and mortality, respectively. The 5-day EC(50) and 24-h LC(50) of these heavy metals were determined in the brown alga and mussel, respectively. The EC(50) values calculated for the alga were 0.74 mg/l for Cd, 0.91 mg/l for Cu, 1.40 mg/l for Pb and 0.60 mg/l for Zn. The LC(50) values for the mussels were 1.53 mg/l for Cd, 0.25 mg/l for Cu, 4.12 mg/l for Pb and 3.20 mg/l for Zn. These LC(50) values were within the concentration ranges as reported by other authors who used P. viridis as the test organism. Based on these EC(50) and LC(50) values, the alga was most sensitive to Zn, followed by Cd, Cu and Pb while the mussel was most sensitive to Cu, followed by Cd, Zn and Pb. Differences in the trophic levels, metal handling strategies, biology and ecology of the primary producer (brown alga) and the primary consumer (mussel) are believed to be the plausible causes for the different toxicities and tolerances of the metals studied.

  19. Salinity increases the mobility of Cd, Cu, Mn, and Pb in the sediments of Yangtze Estuary: relative role of sediments' properties and metal speciation.

    PubMed

    Zhao, Shou; Feng, Chenghong; Wang, Dongxin; Liu, Yanzhen; Shen, Zhenyao

    2013-05-01

    Batch leaching experiments, Freudlich isotherm, correlation analysis (CA) and principal component analysis (PCA) were undertaken to explore the mechanisms that govern the release of sediment-associated metals (i.e. Cd, Cu, Mn and Pb) under the salinity stress in the Yangtze River Estuary. Special attention has been paid to the role of sediments' physico-chemical properties and metal chemical speciation. The increase of salinity promoted the metal mobility which followed the order: Cd>Mn>Cu>Pb. Sediments properties (e.g., particle component and organic carbon) governed the mobility of Cd; metal chemical speciation controlled the release of Mn, while the mobility of Cu and Pb were simultaneously affected by the two factors. Different metal release mechanisms caused by salinity changes might be explained by: the chloro-complexation for Cd, the encouragement of acidity changes for Mn, and the high affinity to Fe-Mn oxides, organic substances and specific sorption sites in the sediments for Cu and Pb. Under salinity effect, Cd and Mn exhibited higher ecological risk and mobility, while Cu and Pb seemed to be more conservative. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Distribution of Cd, Cu, Fe, Mn, Pb and Zn in selected tissues of juvenile whales stranded in the SE Gulf of California (Mexico).

    PubMed

    Ruelas-Inzunza, J; Páez-Osuna, F

    2002-09-01

    With the aim of knowing the concentration and distribution of essential and nonessential metals in selected tissues of whales, analysis of Cd, Cu, Fe, Mn, Pb and Zn were carried out in kidney, liver and muscle of the gray whale Eschrichtius robustus and the sperm whale Physeter catodon. Whales were found stranded in the southeast Gulf of California. Individuals were in a juvenile stage; mean length of whales was 9.3 m for E. robustus and 7 m for P. catodon. Sequence of metal concentrations was Fe>Zn>Cu>Mn>Cd>Pb in E. robustus, and Fe>Zn>Cu>Cd>Mn>Pb in P. catodon. In E. robustus, highest concentrations of Cu, Mn, Pb and Zn (17.2, 19.6, 0.9 and 388 microg g(-1), respectively) were measured in liver, Cd (5.7 microg g(-1)) in kidney and Fe (1009 microg g(-1)) in muscle. In P. catodon, the highest levels of Cu, Fe and Pb (48.6, 5200 and 4.2 microg g(-1), respectively) were found in liver, Cd and Zn (94 and 183 microg g(-1)) in kidney and Mn (8 microg g(-1)) in muscle. Metal concentrations reported here were not considered to contribute to the stranding of specimens.

  1. Anthropogenic impacts in North Poland over the last 1300 years--a record of Pb, Zn, Cu, Ni and S in an ombrotrophic peat bog.

    PubMed

    De Vleeschouwer, François; Fagel, Nathalie; Cheburkin, Andriy; Pazdur, Anna; Sikorski, Jaroslaw; Mattielli, Nadine; Renson, Virginie; Fialkiewicz, Barbara; Piotrowska, Natalia; Le Roux, Gaël

    2009-10-15

    Lead pollution history over Northern Poland was reconstructed for the last ca. 1300 years using the elemental and Pb isotope geochemistry of a dated Polish peat bog. The data show that Polish Pb-Zn ores and coal were the main sources of Pb, other heavy metals and S over Northern Poland up until the industrial revolution. After review of the potential mobility of each element, most of the historical interpretation was based on Pb and Pb isotopes, the other chemical elements (Zn, Cu, Ni, S) being considered secondary indicators of pollution. During the last century, leaded gasoline also contributed to anthropogenic Pb pollution over Poland. Coal and Pb-Zn ores, however, remained important sources of pollution in Eastern European countries during the last 50 years, as demonstrated by a high (206)Pb/(207)Pb ratio (1.153) relative to that of Western Europe (ca. 1.10). The Pb data for the last century were also in good agreement with modelled Pb inventories over Poland and the Baltic region.

  2. Alzheimer's disease and cigarette smoke components: effects of nicotine, PAHs, and Cd(II), Cr(III), Pb(II), Pb(IV) ions on amyloid-β peptide aggregation.

    PubMed

    Wallin, Cecilia; Sholts, Sabrina B; Österlund, Nicklas; Luo, Jinghui; Jarvet, Jüri; Roos, Per M; Ilag, Leopold; Gräslund, Astrid; Wärmländer, Sebastian K T S

    2017-10-31

    Cigarette smoking is a significant risk factor for Alzheimer's disease (AD), which is associated with extracellular brain deposits of amyloid plaques containing aggregated amyloid-β (Aβ) peptides. Aβ aggregation occurs via multiple pathways that can be influenced by various compounds. Here, we used AFM imaging and NMR, fluorescence, and mass spectrometry to monitor in vitro how Aβ aggregation is affected by the cigarette-related compounds nicotine, polycyclic aromatic hydrocarbons (PAHs) with one to five aromatic rings, and the metal ions Cd(II), Cr(III), Pb(II), and Pb(IV). All PAHs and metal ions modulated the Aβ aggregation process. Cd(II), Cr(III), and Pb(II) ions displayed general electrostatic interactions with Aβ, whereas Pb(IV) ions showed specific transient binding coordination to the N-terminal Aβ segment. Thus, Pb(IV) ions are especially prone to interact with Aβ and affect its aggregation. While Pb(IV) ions affected mainly Aβ dimer and trimer formation, hydrophobic toluene mainly affected formation of larger aggregates such as tetramers. The uncharged and hydrophilic nicotine molecule showed no direct interactions with Aβ, nor did it affect Aβ aggregation. Our Aβ interaction results suggest a molecular rationale for the higher AD prevalence among smokers, and indicate that certain forms of lead in particular may constitute an environmental risk factor for AD.

  3. Structural and physical properties of the nano-crystalline Al-substituted Cr-Cu ferrite

    NASA Astrophysics Data System (ADS)

    Amer, M. A.; Meaz, T. M.; Mostafa, A. G.; El-Ghazally, H. F.

    2013-10-01

    Ferrite nanoparticles are promising future materials for applications in medicine, ferrofluids, technical designing and other fields. The as-prepared CuAlxCr0.8-xFe1.2O4 nanoparticles (0≤x≤0.8) have been prepared by the chemical co-precipitation method. A study of the structure and other physical properties of the samples was carried out by using X-ray, infrared, Mössbauer and vibrating sample magnetometer (VSM) patterns and particle size distributions. The results revealed the ultrafine nature of the particles, where the crystallite size and the average particle size have been deduced. The values of the lattice parameters and crystallite size were dependent on the substitution factor x, while the oxygen parameter was higher than the standard value and independent on x. In addition to six absorption bands, a triple band attributed to the retained water in the samples was observed in the infrared spectra. The absorption bands indicated the existence of Fe2+ ions in the sample sublattices. The Mössbauer and VSM patterns proved the presence of small magnetic field in the samples, where the saturation magnetization, coercivity, hyperfine interaction parameters, cation distributions and magnetization were dependent on x.

  4. Friction Stir Welding (FSW) of Aged CuCrZr Alloy Plates

    NASA Astrophysics Data System (ADS)

    Jha, Kaushal; Kumar, Santosh; Nachiket, K.; Bhanumurthy, K.; Dey, G. K.

    2018-01-01

    Friction Stir Welding (FSW) of Cu-0.80Cr-0.10Zr (in wt pct) alloy under aged condition was performed to study the effects of process parameters on microstructure and properties of the joint. FSW was performed over a wide range of process parameters, like tool-rotation speed (from 800 to 1200 rpm) and tool-travel speed (from 40 to 100 mm/min), and the resulting thermal cycles were recorded on both sides (advancing and retreating) of the joint. The joints were characterized for their microstructure and tensile properties. The welding process resulted in a sound and defect-free weld joint, over the entire range of the process parameters used in this study. Microstructure of the stir zone showed fine and equiaxed grains, the scale of which varied with FSW process parameters. Grain size in the stir zone showed direct correlation with tool rotation and inverse correlation with tool-travel speed. Tensile strength of the weld joints was ranging from 225 to 260 MPa, which is substantially lower than that of the parent metal under aged condition ( 400 MPa), but superior to that of the parent material under annealed condition ( 220 MPa). Lower strength of the FSW joint than that of the parent material under aged condition can be attributed to dissolution of the precipitates in the stir zone and TMAZ. These results are presented and discussed in this paper.

  5. Ultratrace Determination of Cr(VI) and Pb(II) by Microsample Injection System Flame Atomic Spectroscopy in Drinking Water and Treated and Untreated Industrial Effluents

    PubMed Central

    Baig, Jameel Ahmed; Kazi, Tasneem Gul; Elci, Latif; Afridi, Hassan Imran; Khan, Muhammad Irfan; Naseer, Hafiz Muhammad

    2013-01-01

    Simple and robust analytical procedures were developed for hexavalent chromium (Cr(VI)) and lead (Pb(II)) by dispersive liquid-liquid microextraction (DLLME) using microsample injection system coupled with flame atomic absorption spectrophotometry (MIS-FAAS). For the current study, ammonium pyrrolidine dithiocarbamate (APDC), carbon tetrachloride, and ethanol were used as chelating agent, extraction solvent, and disperser solvent, respectively. The effective variables of developed method have been optimized and studied in detail. The limit of detection of Cr(VI) and Pb(II) were 0.037 and 0.054 µg/L, respectively. The enrichment factors in both cases were 400 with 40 mL of initial volumes. The relative standard deviations (RSDs, n = 6) were <4%. The applicability and the accuracy of DLLME were estimated by the analysis of Cr(VI) and Pb(II) in industrial effluent wastewater by standard addition method (recoveries >96%). The proposed method was successfully applied to the determination of Cr(VI) and Pb(II) at ultratrace levels in natural drinking water and industrial effluents wastewater of Denizli. Moreover, the proposed method was compared with the literature reported method. PMID:24163779

  6. Copper(I) alkynyl clusters, [Cu(x+y)(hfac)(x)(C[triple chemical bond]CR)(y)], with Cu(10)-Cu(12) cores.

    PubMed

    Baxter, Christopher W; Higgs, Timothy C; Bailey, Philip J; Parsons, Simon; McLachlan, Fiona; McPartlin, Mary; Tasker, Peter A

    2006-08-07

    The facile syntheses and the structures of five new Cu(I) alkynyl clusters, [Cu(12)(hfac)(8)(C[triple chemical bond]CnPr)(4)(thf)(6)]xTHF (1), [Cu(12)(hfac)(8)(C[triple chemical bond]CtBu)(4)] (2), [Cu(12)(hfac)(8)(C[triple chemical bond]CSiMe(3))(4)] (3), [Cu(10)(hfac)(6)(C[triple chemical bond]CtBu)(4)(diethyl ether)]/[Cu(10)(hfac)(6)(C[triple chemical bond]CtBu)(3)(C[triple chemical bond]CnPr)(diethyl ether)] (4) and [Cu(10)(hfac)(6)(C[triple chemical bond]CtBu)(4)(diethyl ether)] (5) are reported, in which hfacH=1,1,1,5,5,5-hexafluoropentan-2,4-dione. The first independent molecule found in the crystals of 4 (4 a) proved to be chemically identical to 5. The Cu(10) and Cu(12) cores in these clusters are based on a central "square" Cu(4)C(4) unit. Whilst the connectivities of the Cu(10) or Cu(12) units remain identical the geometries vary considerably and depend on the bulk of the alkynyl group, weak coordination of ether molecules to copper atoms in the core and CuO intramolecular contacts formed between Cu-hfac units on the periphery of the cluster. Similar intermolecular contacts and interlocking of Cu-hfac units are formed in the simple model complex [Cu(2)(hfac)(2)(HC[triple chemical bond]CtBu)] (6). When linear alkynes, C(n)H(2n+1)C[triple chemical bond]CH, are used in the synthesis and non-coordinating solvents are used in the workup, further association of the Cu(4)C(4) cores occurs and clusters with more than eighteen copper atoms are isolated.

  7. Pecan nutshell as biosorbent to remove Cu(II), Mn(II) and Pb(II) from aqueous solutions.

    PubMed

    Vaghetti, Julio C P; Lima, Eder C; Royer, Betina; da Cunha, Bruna M; Cardoso, Natali F; Brasil, Jorge L; Dias, Silvio L P

    2009-02-15

    In the present study we reported for the first time the feasibility of pecan nutshell (PNS, Carya illinoensis) as an alternative biosorbent to remove Cu(II), Mn(II) and Pb(II) metallic ions from aqueous solutions. The ability of PNS to remove the metallic ions was investigated by using batch biosorption procedure. The effects such as, pH, biosorbent dosage on the adsorption capacities of PNS were studied. Four kinetic models were tested, being the adsorption kinetics better fitted to fractionary-order kinetic model. Besides that, the kinetic data were also fitted to intra-particle diffusion model, presenting three linear regions, indicating that the kinetics of adsorption should follow multiple sorption rates. The equilibrium data were fitted to Langmuir, Freundlich, Sips and Redlich-Peterson isotherm models. Taking into account a statistical error function, the data were best fitted to Sips isotherm model. The maximum biosorption capacities of PNS were 1.35, 1.78 and 0.946mmolg(-1) for Cu(II), Mn(II) and Pb(II), respectively.

  8. Fractionation of Pb and Cu in the fine fraction (<10 mm) of waste excavated from a municipal landfill.

    PubMed

    Kaczala, Fabio; Orupõld, Kaja; Augustsson, Anna; Burlakovs, Juris; Hogland, Marika; Bhatnagar, Amit; Hogland, William

    2017-11-01

    The fractionation of metals in the fine fraction (<10 mm) of excavated waste from an Estonian landfill was carried out to evaluate the metal (Pb and Cu) contents and their potential towards not only mobility but also possibilities of recovery/extraction. The fractionation followed the BCR (Community Bureau of Reference) sequential extraction, and the exchangeable (F1), reducible (F2), oxidizable (F3) and residual fractions were determined. The results showed that Pb was highly associated with the reducible (F2) and oxidizable (F3) fractions, suggesting the potential mobility of this metal mainly when in contact with oxygen, despite the low association with the exchangeable fraction (F1). Cu has also shown the potential for mobility when in contact with oxygen, since high associations with the oxidizable fraction (F3) were observed. On the other hand, the mobility of metals in excavated waste can be seen as beneficial considering the circular economy and recovery of such valuables back into the economy. To conclude, not only the total concentration of metals but also a better understanding of fractionation and in which form metals are bound is very important to bring information on how to manage the fine fraction from excavated waste both in terms of environmental impacts and also recovery of such valuables in the economy.

  9. The function of digestive enzymes on Cu, Zn, and Pb release from soil in in vitro digestion tests.

    PubMed

    Li, Yi; Demisie, Walelign; Zhang, Ming-kui

    2013-07-01

    The bioaccessibility of soil heavy metals is the solubility of soil heavy metals in synthetic human digestive juice, which is usually determined using in vitro digestion test. To reveal the effects of digestive enzymes on soil heavy metals bioaccessibility, three representative in vitro digestion tests, Simple Bioaccessibility Extraction Test (SBET), Physiologically Based Extraction Test (PBET), and Simple Gastrointestinal Extraction Test (SGET), were chosen. The bioaccessibility of soil Cu, Zn, and Pb in each method were respectively evaluated with and without digestive enzymes, and the differences were compared. The results showed that the effects of digestive enzymes varied with different methods and elements. Because of digestive enzymes addition, the environmental change from acid gastric phase to neutral intestinal phase of PBET did not result in apparently decrease of the bioaccessibility of soil Cu. However, the solubility of soil Zn and Pb were pH-dependent. For SGET, when digestive enzymes were added, its results reflected more variations resulting from soil and element types. The impacts of digestive enzymes on heavy metal dissolution are mostly seen in the intestinal phase. Therefore, digestive enzyme addition is indispensable to the gastrointestinal digestion methods (PBET and SGET), while the pepsin addition is not important for the methods only comprised of gastric digestion (SBET).

  10. The spatial and temporal trends of Cd, Cu, Hg, Pb and Zn in Seine River floodplain deposits (1994-2000)

    USGS Publications Warehouse

    Grosbois, C.; Meybeck, Michel; Horowitz, A.; Ficht, A.

    2006-01-01

    Fresh floodplain deposits (FD), from 11 key stations, covering the Seine mainstem and its major tributaries (Yonne, Marne and Oise Rivers), were sampled from 1994 to 2000. Background levels for Cd, Cu, Hg, Pb, and Zn were established using prehistoric FD and actual bed sediments collected in small forested sub-basins in the most upstream part of the basin. Throughout the Seine River Basin, FD contain elevated concentrations of Cd, Cu, Hg, Pb and Zn compared to local background values (by factors > twofold). In the Seine River Basin, trace element concentrations display substantial downstream increases as a result of increasing population densities, particularly from Greater Paris (10 million inhabitants), and reach their maxima at the river mouth (Poses). These elevated levels make the Seine one of the most heavily impacted rivers in the world. On the other hand, floodplain-associated trace element levels have declined over the past 7 years. This mirrors results from contemporaneous suspended sediment surveys at the river mouth for the 1984-1999 period. Most of these temporal declines appear to reflect reductions in industrial and domestic solid wastes discharged from the main Parisian sewage plant (Seine Aval). ?? 2005 Elsevier B.V. All rights reserved.

  11. Tracing Cr, Pb, Fe and Mn occurrence in the Bahía Blanca estuary through commercial fish species.

    PubMed

    La Colla, Noelia S; Botté, Sandra E; Oliva, Ana L; Marcovecchio, Jorge E

    2017-05-01

    Over the last decades the anthropogenic contamination impact has substantially increased in the Bahía Blanca estuarine area, and scarce information exists regarding metals in the biotic compartment of this estuary. Thus, fish tissues were used to evaluate metal accumulation within this aquatic environment. The study focused on the determination of Cr, Pb, Fe and Mn in the gills, liver and muscle tissues of six commercial fish species (Brevoortia aurea, Odontesthes argentinensis, Micropogonias furnieri, Cynoscion guatucupa, Mustelus schmitti and Paralichthys orbignyanus). From the results it can be summarized that C. guatucupa tends to accumulate higher metal levels in the liver tissues, mostly Cr and Fe, than the other studied species. O. argentinensis and P. orbignyanus, both permanent inhabitants of the BBE, achieved the highest metal values in the gill tissues, mostly in comparison to M. schmitti. The gill tissues were found to be the main organ of Mn and Ni accumulation for most species, whereas in general, minimum concentrations were found for all the analyzed metals in the muscle tissues. Nevertheless, and according to the guidelines, all fish species showed at least one sample with concentrations of Mn and/or Cr above the permissible levels for human consumption. Finally, it was highlighted the usefulness of selecting these fish species as bioindicators of metal pollution, since they are either permanent inhabitants of the estuary or, according to the sizes under analyses, spend much of their time in this coastal waters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Superconductivity in Pb-1212-Cu1-xPbxSr2Y0.6Ca0.4Cu2O7 (x = 0.5-0.9)

    NASA Astrophysics Data System (ADS)

    Kumar, Shiva; Mudgel, Monika; Husain, M.; Awana, V. P. S.; Kishan, H.

    2010-12-01

    We report synthesis and superconductivity of Pb-1212-Cu1-xPbxSr2Y0.6Ca0.4Cu2O7 (x = 0.5-0.9) compounds. These compounds were synthesized through solid-state reaction route with optimized sintering temperatures and conditions. In particular, one needs to employ reducing atmosphere conditions to achieve superconductivity in higher Pb content samples. The X-ray diffraction (XRD) patterns reveals that all the compounds are crystallized in space group P4/mmm RE-123 structure. Superconductivity at 56 K (onset) is achieved for Pb content as high as 90%. Our study reveals that superconductivity and structure stabilization in Pb-based are more critical to synthesizing conditions than other cuprates. It is concluded that superconductivity can be introduced in Pb-1212 compounds by synthesizing the same in reducing atmosphere and thus the Pb in lower (<+4) valence state. This ensures the replacement of Cu-Ox chains of RE-123 by Pb-Ox sheets acting as charge reservoir carrier donating blocks.

  13. Electron spin resonance in Cu1-xFexCr2Se4 nanoparticles synthesized with the thermal decomposition method

    NASA Astrophysics Data System (ADS)

    Edelman, I. S.; Zharkov, S. M.; Pankrats, A. I.; Vorotynov, A. M.; Tugarinov, V. I.; Ivantsov, R. D.; Petrov, D. A.; Velikanov, D. A.; Lin, Chun-Rong; Chen, Chin-Chang; Tseng, Yaw-Teng; Hsu, Hua-Shu

    2017-08-01

    In this paper, we present a study of the electron spin resonance (ESR) of nanoparticles (NPs) of Cu1-xFexCr2Se4 chalcogenides with x = 0, 0.2, and 0.4. NPs were synthesized via the thermal decomposition of metal chloride salts and selenium powder in a high-temperature organic solvent. According to the XRD and HRTEM data, the NPs were single crystalline nearly hexagonal plates with the structure close to CuCr2Se4 (Fd-3m, a = 10.337 Å). For x = 0 and 0.2, the NPs tend to form long stacks consisting of the plates ;face to face; attached to each other due to the magnetostatic interparticle interaction. Only separate NPs were observed in the case of x = 0.4. Peculiarities were revealed in the ESR temperature behavior for the NPs with x = 0 and 0.2 consistent with the features in the temperature dependences of the NPs magnetization. The non-monotonous dependence of the resonance field Hres on the temperature with a kink near 130 K and the energy gap in the resonance spectrum depending on the type of nanoparticle compacting are the distinct peculiarities. One of the main factors is discussed in order to explain the peculiarities: the coexistence of two types of anisotropy in the Cu1-xFexCr2Se4 NPs, in-plain shape anisotropy and magnetocrystalline anisotropy with four easy axes, which increases strongly with the temperature decrease.

  14. [Flow injection on-line double micro-column with chelating resin pre-concentration system for Cu, Pb, Cd and Mn determination by FAAS].

    PubMed

    Chen, S; Sun, M

    2001-06-01

    Trace amounts of copper, lead, cadmium and manganese were determined using a flow injection on-line double chelating resin column pre-concentration FAAS system. The average measurement sensitivities for Cu2+, Pb2+, Cd2+ and Mn2+ increased by factors of 33, 50, 37 and 29 respectively. Sampling frequency was 60 h-1. Relative standard deviations were 2.21%, 3.24%, 1.93% and 3.66% (n = 11) for Cu2+, Pb2+, Cd2+ and Mn2+ respectively. For the national standards (human hair samples, wheat sample and pork liver), the measurement results agreed with the certified values. The method was successfully applied to determinate trace amounts of Cu2+, Pb2+, Cd2+ and Mn2+ species in drinking water and environment water samples.

  15. Toxic effects of heavy metals (Cd, Cr and Pb) on seed germination and growth and DPPH-scavenging activity in Brassica rapa var. turnip.

    PubMed

    Siddiqui, Maryam Mehmood; Abbasi, Bilal Haider; Ahmad, Nisar; Ali, Mohammad; Mahmood, Tariq

    2014-04-01

    Toxicity of heavy metal is a wide spread environmental problem affecting all life forms including plants. In the present study the toxic effects of heavy metals, cadmium (Cd), chromium (Cr) and lead (Pb) on seed germination rate (%), germination index (G-index) and growth (mm) of Brassica rapa var. turnip have been investigated. The seeds were soaked either in distilled water (control) or in aqueous solutions of Cd, Cr and Pb (1 g/l, 2.5 g/l and 5 g/l) at 4°C in dark for 24 hours. Prior to inoculation onto MS0 medium, the soaked seeds were either washed with sterile distilled water or inoculated without washing on solidified MS0 medium at 25 ± 2°C with 16/8-hour photoperiod in a growth chamber to germinate in vitro. Such stress conditions revealed that by increasing the concentration of heavy metals, the germination rate (%), G-index value and growth (mm) decreased significantly, suggesting their toxic effect on B. rapa var. turnip. This study further revealed that experiment with seed washing resulted in less toxicity of selected heavy metals on germination and growth of B. rapa var. turnip, as compared to experiment without washing. However, the resulting toxicity order of the selected heavy metals remained the same (Cd > Cr > Pb). Significant decrease has been observed in seed viability and germination potential and finally heavy metals completely ceased further growth and development of plants. The 2, 2-diphenyl-1-picrylhydrazyl (DPPH)-scavenging activity revealed that significantly higher activity was observed in control plants without heavy metals treatment. Furthermore, the Cd-treated plants showed decreased antioxidant activity. Cr and Pb were less toxic as compared to Cd (control > Pb > Cr > Cd). This study revealed that selected heavy metals not only affected plant development but also disturbed plant metabolic pathways.

  16. Luminescence, magnetic and vibrational properties of novel heterometallic niccolites [(CH3)2NH2][CrIIIMII(HCOO)6] (MII=Zn, Ni, Cu) and [(CH3)2NH2][AlIIIZnII(HCOO)6]:Cr3+

    NASA Astrophysics Data System (ADS)

    Mączka, Mirosław; Pietraszko, Adam; Pikul, Adam; Hermanowicz, Krzysztof

    2016-01-01

    We report synthesis of three novel heterometallic MOFs, [(CH3)2NH2][CrIIIMII(HCOO)6] with M=Zn (DMCrZn), Ni (DMCrNi) and Cu (DMCrCu), crystallizing in the niccolite type structure. We also successfully synthesized [(CH3)2NH2][AlCu(HCOO)6] (DMAlCu) and [(CH3)2NH2][AlZn(HCOO)6] doped with 5.8 mol% of Cr3+ (DMAlZn: Cr). X-ray diffraction shows that DMCrZn, DMCrNi and DMAlZn: Cr3+ crystallize in the trigonal structure (space group P 3 bar1c) while DMCrCu and DMAlCu crystallize in the monoclinic structure (space group C2/c). Magnetic investigation of the chromium-based niccolites reveals no magnetic order in DMCrZn and ferromagnetic order in DMCrNi and DMCrCu below 23 and 11 K, respectively. Optical studies show that DMCrZn and DMAlZn: Cr samples exhibit efficient emission typical for chromium ions located at sites of strong crystal field with the Dq/B values 2.62 and 2.67, respectively. We also discuss role of geometrical parameters in stability of the perovskite and niccolite structures.

  17. Removal of Pb(II), Cd(II), Cu(II), and Zn(II) by hematite nanoparticles: effect of sorbent concentration, pH, temperature, and exhaustion.

    PubMed

    Shipley, Heather J; Engates, Karen E; Grover, Valerie A

    2013-03-01

    Nanoparticles offer the potential to improve environmental treatment technologies due to their unique properties. Adsorption of metal ions (Pb(II), Cd(II), Cu(II), Zn(II)) to nanohematite was examined as a function of sorbent concentration, pH, temperature, and exhaustion. Adsorption experiments were conducted with 0.05, 0.1, and 0.5 g/L nanoparticles in a pH 8 solution and in spiked San Antonio tap water. The adsorption data showed the ability of nanohematite to remove Pb, Cd, Cu, and Zn species from solution with adsorption increasing as the nanoparticle concentration increased. At 0.5 g/L nanohematite, 100 % Pb species adsorbed, 94 % Cd species adsorbed, 89 % Cu species adsorbed and 100 % Zn species adsorbed. Adsorption kinetics for all metals tested was described by a pseudo second-order rate equation with lead having the fastest rate of adsorption. The effect of temperature on adsorption showed that Pb(II), Cu(II), and Cd(II) underwent an endothermic reaction, while Zn(II) underwent an exothermic reaction. The nanoparticles were able to simultaneously remove multiple metals species (Zn, Cd, Pb, and Cu) from both a pH 8 solution and spiked San Antonio tap water. Exhaustion experiments showed that at pH 8, exhaustion did not occur for the nanoparticles but adsorption does decrease for Cd, Cu, and Zn species but not Pb species. The strong adsorption coupled with the ability to simultaneously remove multiple metal ions offers a potential remediation method for the removal of metals from water.

  18. Distribution and mobility of lead (Pb), copper (Cu), zinc (Zn), and antimony (Sb) from ammunition residues on shooting ranges for small arms located on mires.

    PubMed

    Mariussen, Espen; Johnsen, Ida Vaa; Strømseng, Arnljot Einride

    2017-04-01

    An environmental survey was performed on shooting ranges for small arms located on minerotrophic mires. The highest mean concentrations of Pb (13 g/kg), Cu (5.2 g/kg), Zn (1.1 g/kg), and Sb (0.83 g/kg) in the top soil were from a range located on a poor minerotrophic and acidic mire. This range had also the highest concentrations of Pb, Cu, Zn, and Sb in discharge water (0.18 mg/L Pb, 0.42 mg/L Cu, 0.63 mg/L Zn, and 65 μg/L Sb) and subsurface soil water (2.5 mg/L Pb, 0.9 mg/L Cu, 1.6 mg/L Zn, and 0.15 mg/L Sb). No clear differences in the discharge of ammunition residues between the mires were observed based on the characteristics of the mires. In surface water with high pH (pH ~7), there was a trend with high concentrations of Sb and lower relative concentrations of Cu and Pb. The relatively low concentrations of ammunition residues both in the soil and soil water, 20 cm below the top soil, indicates limited vertical migration in the soil. Channels in the mires, made by plant roots or soil layer of less decomposed materials, may increase the rate of transport of contaminated surface water into deeper soil layers and ground water. A large portion of both Cu and Sb were associated to the oxidizable components in the peat, which may imply that these elements form inner-sphere complexes with organic matter. The largest portion of Pb and Zn were associated with the exchangeable and pH-sensitive components in the peat, which may imply that these elements form outer-sphere complexes with the peat.

  19. Fatigue and retention in ferroelectric Y-Ba-Cu-O/Pb-Zr-Ti-O/Y-Ba-Cu-O heterostructures

    NASA Astrophysics Data System (ADS)

    Ramesh, R.; Chan, W. K.; Wilkens, B.; Gilchrist, H.; Sands, T.; Tarascon, J. M.; Keramidas, V. G.; Fork, D. K.; Lee, J.; Safari, A.

    1992-09-01

    Fatigue and retention characteristics of ferroelectric lead zirconate titanate thin films grown with Y-Ba-Cu-O(YBCO) thin-film top and bottom electrodes are found to be far superior to those obtained with conventional Pt top electrodes. The heterostructures reported here have been grown in situ by pulsed laser deposition on yttria-stabilized ZrO2 buffer [100] Si and on [001] LaAlO3. Both the a- and c-axis orientations of the YBCO lattice have been used as electrodes. They were prepared using suitable changes in growth conditions.

  20. Precipitation strengthened high strength, high conductivity Cu-Cr-Nb alloys produced by chill block melt spinning. Final Report Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Michal, Gary M.

    1989-01-01

    A series of Cu-based alloys containing 2 to 10 a/o Cr and 1 to 5 a/o Nb were produced by chill block melt spinning (CBMS). The melt spun ribbons were consolidated and hot rolled to sheet to produce a supersaturated Cu-Cr-Nb solid solution from which the high melting point intermetallic compound Cr2Nb could be precipitated to strengthen the Cu matrix. The results show that the materials possess electrical conductivities in excess of 90 percent that of pure Cu at 200 C and above. The strengths of the Cu-Cr-Nb alloys were much greater than Cu, Cu-0.6 Cr, NARloy-A, and NARloy-Z in the as-melt spun condition. The strengths of the consolidated materials were less than Cu-Cr and Cu-Cr-Zr below 500 C and 600 C respectively, but were significantly better above these temperatures. The strengths of the consolidated materials were greater than NARloy-Z, at all temperatures. The GLIDCOP possessed similar strength levels up to 750 C when the strength of the Cu-Cr-Nb alloys begins to degrade. The long term stability of the Cu-Cr-Nb alloys was measured by the microhardness of aged samples and the growth of precipitates. The microhardness measurements indicate that the alloys overage rapidly, but do not suffer much loss in strength between 10 and 100 hours which confirms the results of the electrical resistivity measurements taken during the aging of the alloys at 500 C. The loss in strength from peak strength levels is significant, but the strength remains exceptionally good. Transmission electron microscopy (TEM) of the as-melt spun samples revealed that Cr2Nb precipitates formed in the liquid Cu during the chill block melt spinning, indicating a very strong driving force for the formation of the precipitates. The TEM of the aged and consolidated materials indicates that the precipitates coarsen considerably, but remain in the submicron range.

  1. Multifunctional nanocomposites Fe3O4@SiO2-EDTA for Pb(II) and Cu(II) removal from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Fu, Ruiqi; Sun, Yue; Zhou, Xiaoxin; Baig, Shams Ali; Xu, Xinhua

    2016-04-01

    In this study, EDTA-functionalized Fe3O4 (Fe3O4@SiO2-EDTA) was prepared by silanization reaction between N-(trimethoxysilylpropyl) ethylenediamine triacetic acid (EDTA-silane) and hydroxyl groups for Pb(II) and Cu(II) removal from aqueous solutions. Fe3O4@SiO2-EDTA composites were characterized using SEM, TEM, EDX, FTIR, XPS, TGA and saturated magnetization techniques. Maximum Pb(II) adsorption capacity was found to be 114.94 mg g-1 with SiO2/EDTA molar ratio of 2.5:1. The adsorption rate was significantly fast and the equilibrium was reached within 10 min. The optimum pH was recorded to be 5.0. The maximum adsorption capacity of the studied heavy metal ions calculated by Langmuir model followed the order: Cu(II) (0.58 mmol g-1) > Pb(II) (0.55 mmol g-1) ≈ Ni(II) (0.55 mmol g-1) > Cd(II) (0.45 mmol g-1). Moreover, Pb(II) and Cu(II) adsorption capacities were not significantly affected by co-existing cations and NOM. These results suggested that this adsorbent can be considered as a promising adsorbent to remove Pb(II) and Cu(II) from wastewaters.

  2. Effects of Cr/Zn Substitutions on Dielectric Properties of CaCu{sub 3}Ti{sub 4}O{sub 12}(CCTO) Ceramics

    SciTech Connect

    Rajmi, R.; Yahya, A. K.; Deni, M. S. M.

    2010-07-07

    Effects of Zn and Cr substitutions on dielectric properties of CaCu{sub 3-x}Zn{sub x}Ti{sub 4-y}Cr{sub y}O{sub 12} ceramics are reported. Dielectric measurements at room temperature for un-substituted CaCu{sub 3-x}Zn{sub x}Ti{sub 4-y}Cr{sub y}O{sub 12}(x = 0, y = 0) between 10{sup 2}-10{sup 6} Hz showed dielectric constant of 2.7x10{sup 4} at 10{sup 2} Hz. Substitution of Zn for Cu in CaCu{sub 3-x}Zn{sub xTi{sub 4{sub -{sub yCr{sub yO{sub 1{sub 2}}}}}}}(y = 0, x = 0.10, 0.50)caused dielectric constant to drop with increasing x. Cr substitution at Ti-site in CaCu{sub 3-x}Zn{sub xTi{sub 4{sub -{sub yCr{sub yO{sub 1{sub 2}}}}}}}(x = 0, x = 0,) alsomore » caused decrease in dielectric constant. However, at x = 0.50, the dielectric constant at low frequency was enhanced compared to the un-substituted sample. Our results indicate that Cu and Ti sites play an important role in the formation of Internal Barrier Layer Capacitance (IBLC) in CCTO.« less

  3. Ag2Cu3Cr2O8(OH)4: a new bidimensional silver-copper mixed-oxyhydroxide with in-plane ferromagnetic coupling.

    PubMed

    Casañ-Pastor, Nieves; Rius, Jordi; Vallcorba, Oriol; Peral, Inma; Oró-Solé, Judith; Cook, Daniel S; Walton, Richard I; García, Alberto; Muñoz-Rojas, David

    2017-01-24

    Ag 2 Cu 3 Cr 2 O 8 (OH) 4 , a new Ag-Cu-Cr-O layered mixed oxide, prepared by soft hydrothermal heterogeneous reactions, is reported. The new phase is an oxyhydroxide and presents a structure with alternating brucite-like Cu-O and Ag-O layers connected by individual chromate groups. The crystallographic structure has been solved and refined from high resolution powder X-ray diffraction data and is supported by density functional theory calculations, yielding a triclinic, space group P1[combining macron], a = 5.3329(1) Å, b = 5.3871(1) Å, c = 10.0735(1) Å, α = 80.476(1)°, β = 87.020(1)°, γ = 62.383(1)°. Bond valence sums suggest the formulation of Ag + 2 Cu 2+ 3 Cr 6+ 2 O 8 (OH) 4 , an electronic state fully supported by X-ray photoelectron spectroscopy (XPS) and Cr K-edge X-ray absorption near edge structure (XANES) measurements. Ag 2 Cu 3 Cr 2 O 8 (OH) 4 exhibits bidimensional Cu-O-Cu ferromagnetic correlations that are apparent at much higher temperatures than in other similar Cu-O layered structures, without coupling between Cu-O layers, which represents a unique case in the recent family of silver copper oxides. The role of Ag inducing bidimensionality in copper oxides is therefore expanded further with the presence of chromate anions. Ab initio calculations using density functional theory show that the electronic states involved originate mainly from Cu and OH orbitals, with minor contributions from Cr and the O atoms linking the Cr tetrahedra to the brucitic Cu-O layer, and almost no contribution from Ag. Further modeling of the in-plane magnetic interactions between Cu atoms suggests that the coupled magnetized stripes are responsible for the observed behavior. The results are discussed in relation with previous Ag-Cu mixed oxide phases where metallic behavior or ferro-antiferro transitions had been observed. The structure of this new Ag-Cu-O phase as compared with previous silver copper oxides supports the conclusion that the Ag-Cu layered ordering

  4. Comparison between acetic acid and landfill leachates for the leaching of Pb(II), Cd(II), As(V), and Cr(VI) from cementitious wastes.

    PubMed

    Halim, Cheryl E; Scott, Jason A; Natawardaya, Helena; Amal, Rose; Beydoun, Donia; Low, Gary

    2004-07-15

    The Toxicity Characteristic Leaching Procedure (TCLP) has been widely used to characterize the suitability of solid wastes for disposal in landfills. However, the widespread application of this test for the assessment of wastes disposed in different landfill types is often questionable. This paper investigates the leaching profiles of cement-stabilized heavy metal ions, namely, Pb (II), Cd (II), As(V), and Cr(VI), using acetic acid and leachates from municipal and nonputrescible Australian landfill sites. The leaching profiles of Pb, Cd, As, and Cr using acetic acid were found to be similar to the nonputrescible landfill leachate and differed markedly from the municipal solid waste (MSW) leachate. The additional presence of high amounts of organic and inorganic compounds in the municipal landfill leachate influenced the leaching profiles of these metal ions as compared to the acetic acid and the nonputrescible systems. It is postulated that the organic compounds present in the municipal landfill leachate formed complexes with the Pb and Cd, increasing the mobility of these ions. Moreover, the organic compounds in the municipal landfill leachate induced a reducing environment in the leachate, causing the reduction of Cr(VI) to Cr(III). It was also found that the presence of carbonates in the municipal landfill leachate affected the stability of calcium arsenate, with the carbonate competing with arsenate for calcium at high pH, forcing arsenate into the solution.

  5. Mass change calculations of hydrothermal alterations within the volcanogenic metasediments hosted Cu-Pb (-Zn) mineralization at Halilar area, NW Turkey

    NASA Astrophysics Data System (ADS)

    Kiran Yildirim, Demet; Abdelnasser, Amr; Doner, Zeynep; Kumral, Mustafa

    2016-04-01

    The Halilar Cu-Pb (-Zn) mineralization that is formed in the volcanogenic metasediments of Bagcagiz Formation at Balikesir province, NW Turkey, represents locally vein-type deposit as well as restricted to fault gouge zone directed NE-SW along with the lower boundary of Bagcagiz Formation and Duztarla granitic intrusion in the study area. Furthermore, This granite is traversed by numerous mineralized sheeted vein systems, which locally transgress into the surrounding metasediments. Therefore, this mineralization closely associated with intense hydrothermal alteration within brecciation, and quartz stockwork veining. The ore mineral assemblage includes chalcopyrite, galena, and some sphalerite with covellite and goethite formed during three phases of mineralization (pre-ore, main ore, and supergene) within an abundant gangue of quartz and calcite. The geologic and field relationships, petrographic and mineralogical studies reveal two alteration zones occurred with the Cu-Pb (-Zn) mineralization along the contact between the Bagcagiz Formation and Duztarla granite; pervasive phyllic alteration (quartz, sericite, and pyrite), and selective propylitic alteration (albite, calcite, epidote, sericite and/or chlorite). This work, by using the mass balance calculations, reports the mass/volume changes (gain and loss) of the chemical components of the hydrothermal alteration zones associated with Halilar Cu-Pb (-Zn) mineralization at Balikesir area (Turkey). It revealed that the phyllic alteration has enrichments of Si, Fe, K, Ba, and LOI with depletion of Mg, Ca, and Na reflect sericitization of alkali feldspar and destruction of ferromagnesian minerals. This zone has high Cu and Pb with Zn contents represents the main mineralized zone. On the other hand, the propylitic zone is characterized by addition of Ca, Na, K, Ti, P, and Ba with LOI and Cu (lower content) referring to the replacement of plagioclase and ferromagnesian minerals by albite, calcite, epidote, and sericite

  6. Phytoextraction of Pb, Cr, Ni, and Zn using the aquatic plant Limnobium laevigatum and its potential use in the treatment of wastewater.

    PubMed

    Arán, Daniela Silvina; Harguinteguy, Carlos Alfredo; Fernandez-Cirelli, Alicia; Pignata, María Luisa

    2017-08-01

    In order to study the bioaccumulation of Pb, Cr, Ni, and Zn and the stress response, the floating aquatic plant Limnobium laevigatum was exposed to increasing concentrations of a mixture of these metals for 28 days, and its potential use in the treatment of wastewater was evaluated. The metal concentrations of the treatment 1 (T1) were Pb 1 μg L-1, Cr 4 μg L-1, Ni 25 μg L-1, and Zn 30 μg L-1; of treatment 2 (T2) were Pb 70 μg L-1, Cr 70 μg L-1, Ni 70 μg L-1, and Zn 70 μg L-1; and of treatment 3 (T3) were Pb 1000 μg L-1, Cr 1000 μg L-1, Ni 500 μg L-1, and Zn 100 μg L-1, and there was also a control group (without added metal). The accumulation of Pb, Cr, Ni, and Zn in roots was higher than in leaves of L. laevigatum, and the bioconcentration factor revealed that the concentrations of Ni and Zn in the leaf and root exceeded by over a thousand times the concentrations of those in the culture medium (2000 in leaf and 6800 in root for Ni; 3300 in leaf and 11,500 in root for Zn). Thus, this species can be considered as a hyperaccumulator of these metals. In general, the changes observed in the morphological and physiological parameters and the formation of products of lipid peroxidation of membranes during the exposure to moderate concentrations (T2) of the mixture of metals did not cause harmful effects to the survival of the species within the first 14 days of exposure. Taking into account the accumulation capacity and tolerance to heavy metals, L. laevigatum is suitable for phytoremediation in aquatic environments contaminated with moderated concentrations of Cr, Ni, Pb, and Zn in the early stages of exposure.

  7. Excess Conductivity Analysis of Bi1.8Pb0.4Sr2Ca2Cu3O10+ δ Added with Nano-ZnO and Nano-Fe2O3

    NASA Astrophysics Data System (ADS)

    Roumié, M.; Abdeen, W.; Awad, R.; Korek, M.; Hassan, I.; Mawassi, R.

    2014-01-01

    Superconductor samples of type Bi1.8Pb0.4Sr2Ca2Cu3O10+ δ added with nano ZnO and Fe2O3 were synthesized by the conventional solid-state reaction technique. The samples were characterized using X-ray powder diffraction (XRD), scanning electron microscope (SEM), differential scanning calorimetry (DSC) and electrical resistivity measurements. Excess conductivity analysis of the investigated samples was carried out as a function of temperature using Aslamazov and Larkin (AL) model. The analysis showed four different fluctuation regions namely critical (cr), three-dimensional (3D), two-dimensional (2D) and short-wave (sw). The zero temperature coherence length along c-axis, effective layer thickness of the two-dimensional system and inter-layer coupling strength were estimated as a function of nano-oxides concentration. In addition, the thermodynamics, lower and upper critical magnetic fields as well as critical current density were calculated from the Ginzburg number N G . It was found that the low concentration of nano-ZnO addition up to x=0.2 wt.% improved the physical properties of (Bi,Pb)-2223 phase. In contrary, these properties were deteriorated for x>0.2. These results indicated that the addition of a low amount of nano-ZnO during the final processing of (Bi,Pb)-2223 samples can be effectively improved the flux pinning ability, while the addition of a high amount of nano-ZnO decreased the volume fraction and increased the resistance of grain boundaries. Moreover, the addition of nano-Fe2O3 had a negative effect on the superconducting parameters of the (Bi,Pb)-2223 phase. This behavior was attributed to the decrease in the volume fraction of (Bi,Pb)-2223 phase with the increasing of nano-Fe2O3.

  8. Removal of Cu, Cr, Ni, Zn, and Cd from electroplating wastes and synthetic solutions by vermicompost of cattle manure.

    PubMed

    Jordão, Cláudio Pereira; Pereira, Madson de Godoi; Einloft, Rosilene; Santana, Marlete Bastos; Bellato, Carlos Roberto; de Mello, Jaime Wilson Vargas

    2002-01-01

    This study was undertaken to evaluate the retention of Cu, Cr, Ni, Zn, and Cd under laboratory conditions from synthetic solution and electroplating wastes by vermicompost. A glass column was loaded with vermicompost, and metal solutions were passed through it. Metal concentrations were then measured in the eluate in order to evaluate the amounts retained by the vermicompost. Measurements of pH, metal concentrations, moistness, organic matter and ash contents, and infrared and XRD spectroscopy were used for vermicompost characterisation. Vermicompost residues obtained from this process were used for plant nutrition in eroded soil collected from a talus near a highway. Metal retention (in g of metal/kg of vermicompost) from effluents ranged from 2 for Cr and Zn to 4 in the case of Ni. In synthetic solutions, the values for metal retention were 4 for Cd and Zn, 6 for Cu and Ni, and 9 for Cr. The results also showed that metal concentrations in the purified effluents were below the maximum values established for waste discharges into rivers by the Brazilian Environmental Standards. The relatively high available Cd concentration of the vermicompost residue resulted in plant damage. This effect was attributed to the presence of Cd in the synthetic solution passed through the vermicompost. The data obtained do not give a complete picture of using vermicompost in cultivated lands, but such values as are determined do show that it can be suitable to remove heavy metals from industrial effluents.

  9. Genotoxic Effects Induced by Cd(+2), Cr(+6), Cu(+2) in the Gill and Liver of Odontesthes bonariensis (Piscies, Atherinopsidae).

    PubMed

    Gasulla, J; Picco, S J; Carriquiriborde, P; Dulout, F N; Ronco, A E; de Luca, J C

    2016-05-01

    Genotoxic effects of Cd(+2), Cr(+6), and Cu(+2) on the gill and liver of the Argentinean Silverside (Odontesthes bonariensis) were studied using the comet assay and in relation with the metal tissue accumulation. Fish were exposed to three waterborne concentrations of each metal for 2 and 16 days. Genotoxicity was assessed by the single cell gel electrophoresis (comet assay). After 2 days, significant increase of the genetic damage index (GDI) was only observed in the gill of fish exposed to Cr(+6) and Cu(+2), and the LOECs were 2160 nM and 921.1 nM, respectively. The gill LOEC for Cd(+2) by 16 days was 9.4 nM. In the liver, LOECs were obtained only for Cd(+2) and Cr(+6) and were 9.4 and 2160 nM, respectively. The three metals were able to induce genotoxic effects at environmentally relevant concentrations and the gill was the most sensitive organ.

  10. CuMn1.8O4 protective coatings on metallic interconnects for prevention of Cr-poisoning in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Sun, Zhihao; Wang, Ruofan; Nikiforov, Alexey Y.; Gopalan, Srikanth; Pal, Uday B.; Basu, Soumendra N.

    2018-02-01

    Cr-poisoning of the cathodes due to the presence of metallic interconnects is detrimental to the performance of intermediate temperature solid oxide fuel cell stacks. Applying a protective coating on the interconnect is an effective solution to preventing Cr-poisoning. In this study, the application of a protective CuMn1.8O4 spinel coating is explored. Dense coatings are deposited on both metallic flat plates and meshes by electrophoretic deposition followed by thermal densification steps. The coating is found to be a mixture of Mn3O4 and cubic spinel phases at room temperature but is a pure cubic spinel phase between 750 °C and 850 °C. A reaction layer between the Cr2O3 scale at the coating/interconnect interface and CuMn1.8O4 coating is found to be a mixture of (Cu,Mn,Cr)3-xO4 cubic spinel phases with Cr-rich precipitates believed to be Cr2O3, indicating that the coating layer acts as a Cr getter. Solubility experiments show that 1 mol of the CuMn1.8O4 phase can getter at least 1.83 mol of Cr2O3 at 800 °C. Electrochemical testing of cells in the presence of coated interconnects show that the CuMn1.8O4 coating getters Cr effectively for 12 days at 800 °C, leading to no performance loss of the cell due to Cr-poisoning.

  11. The Uitkomst intrusion and Nkomati Ni-Cu-Cr-PGE deposit, South Africa: trace element geochemistry, Nd isotopes and high-precision geochronology

    NASA Astrophysics Data System (ADS)

    Maier, W. D.; Prevec, S. A.; Scoates, J. S.; Wall, C. J.; Barnes, S.-J.; Gomwe, T.

    2018-01-01

    The Uitkomst intrusion is a tubular mafic-ultramafic layered body that hosts one of South Africa's largest Ni-Cu-Cr-PGE deposits, Nkomati. The sulphide ore occurs in the form of massive lenses in the immediate quartzitic footwall and as disseminations within peridotite. The chromite ore forms an up to ˜10-m-thick layer in the lower portion of the intrusion. Uitkomst has generally been interpreted as a magma conduit, possibly related to the Bushveld event. Here, we present a new high-precision U-Pb zircon date of 2057.64 ± 0.69 Ma that overlaps with the age of the Merensky Reef of the Bushveld Complex and thus demonstrates a coeval relationship between the intrusions. Based on incompatible trace elements as well as O- and Nd isotope data (ɛNd -4.5 to -6.2), we show that the Uitkomst parent magmas were contaminated with up to 20% Archean upper crust prior to emplacement, and with up to 15% dolomitic country rock during emplacement. Ore formation at Nkomati was critically aided by substantial devolatisation and removal of dolomitic floor rocks leading to hydrodynamic concentration of sulphide and chromite during slumping of crystal mushes into the trough-like centre of the subsiding intrusion and its footwall.

  12. The Uitkomst intrusion and Nkomati Ni-Cu-Cr-PGE deposit, South Africa: trace element geochemistry, Nd isotopes and high-precision geochronology

    NASA Astrophysics Data System (ADS)

    Maier, W. D.; Prevec, S. A.; Scoates, J. S.; Wall, C. J.; Barnes, S.-J.; Gomwe, T.

    2017-03-01

    The Uitkomst intrusion is a tubular mafic-ultramafic layered body that hosts one of South Africa's largest Ni-Cu-Cr-PGE deposits, Nkomati. The sulphide ore occurs in the form of massive lenses in the immediate quartzitic footwall and as disseminations within peridotite. The chromite ore forms an up to ˜10-m-thick layer in the lower portion of the intrusion. Uitkomst has generally been interpreted as a magma conduit, possibly related to the Bushveld event. Here, we present a new high-precision U-Pb zircon date of 2057.64 ± 0.69 Ma that overlaps with the age of the Merensky Reef of the Bushveld Complex and thus demonstrates a coeval relationship between the intrusions. Based on incompatible trace elements as well as O- and Nd isotope data (ɛNd -4.5 to -6.2), we show that the Uitkomst parent magmas were contaminated with up to 20% Archean upper crust prior to emplacement, and with up to 15% dolomitic country rock during emplacement. Ore formation at Nkomati was critically aided by substantial devolatisation and removal of dolomitic floor rocks leading to hydrodynamic concentration of sulphide and chromite during slumping of crystal mushes into the trough-like centre of the subsiding intrusion and its footwall.

  13. QED effects in Cu-like Pb recombination resonances near threshold.

    PubMed

    Lindroth, E; Danared, H; Glans, P; Pesić, Z; Tokman, M; Vikor, G; Schuch, R

    2001-05-28

    In an electron-ion recombination study with Pb53+ dielectronic recombination resonances are found for as low as approximately 10(-3)-10(-4) eV relative energy. The resonances have been calculated by relativistic many-body perturbation theory and through comparison with experiment the Pb53+(4p(1/2)-4s(1/2)) energy splitting of approximately 118 eV is determined with an accuracy comparable to the position of the first few resonances, i.e., approximately 10(-3) eV. Such a precision provides a test of QED in a many-body environment at a level which can still not be reached in calculations.

  14. Using isotopic dilution to assess chemical extraction of labile Ni, Cu, Zn, Cd and Pb in soils.

    PubMed

    Garforth, J M; Bailey, E H; Tye, A M; Young, S D; Lofts, S

    2016-07-01

    Chemical extractants used to measure labile soil metal must ideally select for and solubilise the labile fraction, with minimal solubilisation of non-labile metal. We assessed four extractants (0.43 M HNO3, 0.43 M CH3COOH, 0.05 M Na2H2EDTA and 1 M CaCl2) against these requirements. For soils contaminated by contrasting sources, we compared isotopically exchangeable Ni, Cu, Zn, Cd and Pb (EValue, mg kg(-1)), with the concentrations of metal solubilised by the chemical extractants (MExt, mg kg(-1)). Crucially, we also determined isotopically exchangeable metal in the soil-extractant systems (EExt, mg kg(-1)). Thus 'EExt - EValue' quantifies the concentration of mobilised non-labile metal, while 'EExt - MExt' represents adsorbed labile metal in the presence of the extractant. Extraction with CaCl2 consistently underestimated EValue for Ni, Cu, Zn and Pb, while providing a reasonable estimate of EValue for Cd. In contrast, extraction with HNO3 both consistently mobilised non-labile metal and overestimated the EValue. Extraction with CH3COOH appeared to provide a good estimate of EValue for Cd; however, this was the net outcome of incomplete solubilisation of labile metal, and concurrent mobilisation of non-labile metal by the extractant (MExtEValue). The Na2H2EDTA extractant mobilised some non-labile metal in three of the four soils, but consistently solubilised the entire labile fraction for all soil-metal combinations (MExt ≈ EExt). Comparison of EValue, MExt and EExt provides a rigorous means of assessing the underlying action of soil chemical extraction methods and could be used to refine long-standing soil extraction methodologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Preliminary studies of laser-induced breakdown spectrometry for the determination of Ba, Cd, Cr and Pb in toys

    NASA Astrophysics Data System (ADS)

    Godoi, Quienly; Santos, Dario, Jr.; Nunes, Lidiane C.; Leme, Flávio O.; Rufini, Iolanda A.; Agnelli, José A. M.; Trevizan, Lilian C.; Krug, Francisco J.

    2009-06-01

    The performance of laser-induced breakdown spectrometry (LIBS) for the determination of Ba, Cd, Cr and Pb in toys has been evaluated by using a Nd:YAG laser operating at 1064 nm and an Echelle spectrometer with intensified charge-coupled device detector. Samples were purchased in different cities of São Paulo State market and analyzed directly without sample preparation. Laser-induced breakdown spectrometry experimental conditions (number of pulses, delay time, integration time gate and pulse energy) were optimized by using a Doehlert design. Laser-induced breakdown spectrometry signals correlated reasonably well with inductively coupled plasma optical emission spectrometry (ICP OES) concentrations after microwave-assisted acid digestion of selected samples. Thermal analysis was used for polymer identification and scanning electron microscopy to visualize differences in crater geometry of different polymers employed for toy fabrication. Results indicate that laser-induced breakdown spectrometry can be proposed as a rapid screening method for investigation of potentially toxic elements in toys. The unique application of laser-induced breakdown spectrometry for identification of contaminants in successive layers of ink and polymer is also demonstrated.

  16. Study of the Cu, Mn, Pb and Zn dynamics in soil, plants and bee pollen from the region of Teresina (PI), Brazil.

    PubMed

    Silva, Aline S; Araújo, Sebastião B; Souza, Darcet C; Silva, Fábio A Santos e

    2012-12-01

    The purpose of this study is to characterize native bee plants regarding their capacity to extract and accumulate trace elements from the soil and its consequences to the sanity of the produced pollen. The trace elements Cu, Mn, Pb and Zn were analyzed in soil, plants and bee pollen from Teresina region (PI), Brazil, by flame atomic absorption spectrophotometer. Considering the studied plant species, Cu and Pb metals presented in the highest levels in the roots of B. platypetala with 47.35 and 32.71 μg.mL(-1) and H. suaveolens with 39.69 and 17.06 μg.mL(-1), respectively, while in the aerial parts Mn and Zn metals presented the highest levels in S. verticillata with 199.18 and 85.73 μg.mL(-1). In the pollen, the levels of Cu, Mn, Pb and Zn vary from 5.44 to 11.75 μg.mL(-1); 34.31 to 85.75 μg.mL(-1); 13.98 to 18.19 μg.mL(-1) and 50.19 to 90.35 μg.mL(-1), respectively. These results indicate that in the apicultural pasture the translocation (from soil to pollen) of Mn and Zn was more effective than in case of Cu and Pb, therefore, the bee pollen can be used as food supplement without causing risks to human health.

  17. CORRELATION OF THE PARTITIONING OF DISSOLVED ORGANIC MATTER FRACTIONS WITH THE DESORPTION OF CD, CU, NI, PB AND ZN FROM 18 DUTCH SOILS

    EPA Science Inventory

    Eighteen Dutch soils were extracted in aqueous solutions at varying pH. Extracts were analyzed for Cd, Cu, Ni, Pb and Zn by ICP-AES. Extract dissolved organic carbon (DOC) was also concentrated onto a macroreticular resin and fractionation into three operationally defined fract...

  18. Origin and fate of sulfide liquids in hotspot volcanism (La Réunion): Pb isotope constraints from residual Fe-Cu oxides

    NASA Astrophysics Data System (ADS)

    Vlastélic, I.; Gannoun, A.; Di Muro, A.; Gurioli, L.; Bachèlery, P.; Henot, J. M.

    2016-12-01

    Immiscible sulfide liquids in basaltic magmas play an important role in trace metal transport and the sulfur budget of volcanic eruptions. However, sulfides are transient phases, whose origin and fate are poorly constrained. We address these issues by analyzing sulfide destabilization products preserved in lavas from La Réunion Island. Iron oxide globules and coatings, typically 20-80 μm in size, were found to occur in vesicles of differentiated lavas from Piton des Neiges, and recent pumice samples from Piton de la Fournaise. Field and mineralogical evidence indicates that the iron oxides are syn-eruptive phases not resulting from hydrothermal processes. Samples were first studied by Scanning Electron Microscopy. The globules were separated, whereas the smaller spherules and coatings were concentrated by magnetic sorting and acid leaching, and samples were processed through wet chemistry. The Fe oxide phases comprise 49-74 wt.% Fe, 26-40 wt.% O, and up to 6 wt.% Cu, 811 ppm Ni, 140 ppm Bi, and 8.5 ppm Pb. Compared to the host lava, Cu, Ni, and Bi are enriched by a factor of 101-103. Systematic Pb isotope disequilibrium (between 500 ppm and 2.9% for 206Pb/204Pb) exists between Fe oxides and host rocks, with Fe oxides generally displaying less radiogenic ratios. Unradiogenic Pb is a typical signature of sulfide, which tends to concentrate Pb, but not its parent elements U and Th. Thus, both the chemical and isotopic compositions of the vesicle-hosted Fe oxides suggest that they are more or less direct products of the destabilization of immiscible sulfide liquids. Although Pb dominantly partitions into the gas phase during sulfide breakdown, the original Pb isotope signature of sulfide is preserved in the residual oxide. The composition estimated for the parent sulfides (206Pb/204Pb = 18.20-18.77, 207Pb/204Pb = 15.575, and 208Pb/204Pb = 38.2-38.8) precludes a genetic link with the La Réunion plume, and suggests a lithospheric or crustal origin. It is estimated

  19. Efficient perovskite solar cells based on low-temperature solution-processed (CH3NH3)PbI3 perovskite/CuInS2 planar heterojunctions

    PubMed Central

    2014-01-01

    In this work, the solution-processed CH3NH3PbI3 perovskite/copper indium disulfide (CuInS2) planar heterojunction solar cells with Al2O3 as a scaffold were fabricated at a temperature as low as 250°C for the first time, in which the indium tin oxide (ITO)-coated glass instead of the fluorine-doped tin oxide (FTO)-coated glass was used as the light-incidence electrode and the solution-processed CuInS2 layer was prepared to replace the commonly used TiO2 layer in previously reported perovskite-based solar cells. The influence of the thickness of the as-prepared CuInS2 film on the performance of the ITO/CuInS2(n)/Al2O3/(CH3NH3)PbI3/Ag cells was investigated. The ITO/CuInS2(2)/Al2O3/(CH3NH3)PbI3/Ag cell showed the best performance and achieved power conversion efficiency up to 5.30%. PMID:25278818

  20. Post-annealing treatment for Cu-TiO2 nanotubes and their use in photocatalytic methyl orange degradation and Pb(II) heavy metal ions removal

    NASA Astrophysics Data System (ADS)

    Sreekantan, Srimala; Mohd Zaki, Syazwani; Lai, Chin Wei; Tzu, Teoh Wah

    2014-07-01

    TiO2 nanotubes were synthesized via electrochemical anodization of Ti foil at 60 V for 1 h in a bath with electrolytes composed of ethylene glycol containing 5 wt.% of NH4F and 1 vol.% of H2O2. The incorporation of optimum Cu2+ ions (1.30 at.%) into TiO2 nanotubes were prepared by using wet impregnation method to improve their photocatalytic methyl orange degradation and Pb(II) heavy metal removal. The small Cu2+ ions were successfully diffused into lattice of TiO2 nanotubes by conducting post-annealing treatment at 400 °C for 4 h in argon atmosphere after wet impregnation. In this manner, optimum Cu2+ ions played a crucial role in suppressing the recombination of charge carriers by forming inter-band states (mismatch of the band energies) within the lattice of Cu-TiO2. The experimental results showed that a maximum of 80% methyl orange removal and 97.3% Pb(II) heavy metal removal at pH 11 under UV irradiation for 5 h. Besides, it was noticed that photocatalytic Pb(II) heavy metal removal was strong dependence on pH of the solution because of the amphoteric character of Cu-TiO2 in an aqueous medium.

  1. Efficient perovskite solar cells based on low-temperature solution-processed (CH3NH3)PbI3 perovskite/CuInS2 planar heterojunctions

    NASA Astrophysics Data System (ADS)

    Chen, Chong; Li, Chunxi; Li, Fumin; Wu, Fan; Tan, Furui; Zhai, Yong; Zhang, Weifeng

    2014-09-01

    In this work, the solution-processed CH3NH3PbI3 perovskite/copper indium disulfide (CuInS2) planar heterojunction solar cells with Al2O3 as a scaffold were fabricated at a temperature as low as 250°C for the first time, in which the indium tin oxide (ITO)-coated glass instead of the fluorine-doped tin oxide (FTO)-coated glass was used as the light-incidence electrode and the solution-processed CuInS2 layer was prepared to replace the commonly used TiO2 layer in previously reported perovskite-based solar cells. The influence of the thickness of the as-prepared CuInS2 film on the performance of the ITO/CuInS2( n)/Al2O3/(CH3NH3)PbI3/Ag cells was investigated. The ITO/CuInS2(2)/Al2O3/(CH3NH3)PbI3/Ag cell showed the best performance and achieved power conversion efficiency up to 5.30%.

  2. Efficient perovskite solar cells based on low-temperature solution-processed (CH3NH3)PbI3 perovskite/CuInS2 planar heterojunctions.

    PubMed

    Chen, Chong; Li, Chunxi; Li, Fumin; Wu, Fan; Tan, Furui; Zhai, Yong; Zhang, Weifeng

    2014-01-01

    In this work, the solution-processed CH3NH3PbI3 perovskite/copper indium disulfide (CuInS2) planar heterojunction solar cells with Al2O3 as a scaffold were fabricated at a temperature as low as 250°C for the first time, in which the indium tin oxide (ITO)-coated glass instead of the fluorine-doped tin oxide (FTO)-coated glass was used as the light-incidence electrode and the solution-processed CuInS2 layer was prepared to replace the commonly used TiO2 layer in previously reported perovskite-based solar cells. The influence of the thickness of the as-prepared CuInS2 film on the performance of the ITO/CuInS2(n)/Al2O3/(CH3NH3)PbI3/Ag cells was investigated. The ITO/CuInS2(2)/Al2O3/(CH3NH3)PbI3/Ag cell showed the best performance and achieved power conversion efficiency up to 5.30%.

  3. Physiological characterization of Chlamydomonas reinhardtii acclimated to chronic stress induced by Ag, Cd, Cr, Cu and Hg ions.

    PubMed

    Nowicka, Beatrycze; Pluciński, Bartosz; Kuczyńska, Paulina; Kruk, Jerzy

    2016-08-01

    Acclimation to heavy metal-induced stress is a complex phenomenon. Among the mechanisms of heavy metal toxicity, an important one is the ability to induce oxidative stress, so that the antioxidant response is crucial for providing tolerance to heavy metal ions. The effect of chronic stress induced by ions of five heavy metals, Ag, Cu, Cr (redox-active metals) Cd, Hg (nonredox-active metals) on the green microalga Chlamydomonas reinhardtii was examined at two levels - the biochemical (content of photosynthetic pigments and prenyllipid antioxidants, lipid peroxidation) and the physiological (growth rate, photosynthesis and respiration rates, induction of nonphotochemical quenching of chlorophyll fluorescence). The expression of the genes which encode the enzymes participating in the detoxification of reactive oxygen species (APX1, CAT1, FSD1, MSD1) was measured. The other gene measured was one required for plastoquinone and α-tocopherol biosynthesis (VTE3). The application of heavy metal ions partly inhibited growth and biosynthesis of chlorophyll. The growth inhibition was accompanied by enhanced lipid peroxidation. An increase in the content of prenyllipid antioxidants was observed in cultures exposed to Cr2O7(2-), Cd(2+) (α- and γ-tocopherol and plastoquinone) and Cu(2+) (only tocopherols). The induction of nonphotochemical quenching was enhanced in cultures exposed to Cu(2+), Cr2O7(2-) and Cd(2+), as compared to the control. Chronic heavy metal-induced stress led to changes in gene expression dependent on the type and concentration of heavy metal ions. The up-regulation of antioxidant enzymes was usually accompanied by the up-regulation of the VTE3 gene. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Specific features of magnetic order in a multiferroic compound CuCrO2 determined using NMR and NQR data for 63, 65Cu nuclei

    NASA Astrophysics Data System (ADS)

    Smol'nikov, A. G.; Ogloblichev, V. V.; Verkhovskii, S. V.; Mikhalev, K. N.; Yakubovskii, A. Yu.; Furukawa, Y.; Piskunov, Yu. V.; Sadykov, A. F.; Barilo, S. N.; Shiryaev, S. V.

    2017-02-01

    Results of studying the paramagnetic and ordered phases of a CuCrO2 single crystal using nuclear magnetic and nuclear quadrupole resonances on 63,65Cu nuclei are presented. The measurements have been carried out in wide ranges of temperature ( T = 4.2-300 K) and magnetic-field strength ( H = 0-94 kOe), with the magnetic fields being directed along a and c axes of the crystal. The components of the electric-field gradient tensor and the magnetic-shift tensor ( K a,c) have been determined. The temperature dependences K a( H || a) and K c( H || c) for the paramagnetic phase are described by the Curie-Weiss law and reproduce the behavior of the magnetic susceptibility (χa,c). The hyperfine field on a copper nucleus has been determined, which is equal to h hf a,c = 33 kOe/μB. Below the temperature T N = 23.6 K, nuclear magnetic resonance and nuclear quadrupole resonance spectra for 63,65Cu nuclei have been recorded typical of helical magnetic structures, which are incommensurable with the lattice period.

  5. Antisite Defects in Layered Multiferroic CuCr 0.9In 0.1P 2S 6

    DOE PAGES

    He, Qian; Belianinov, Alex; Dziaugys, Andrius; ...

    2015-10-06

    The CuCr 1-xIn xP 2S 6 system represents a large family of metal chalcogenophosphates that are unique and promising candidates for 2D materials with functionalities such as ferroelectricity. We carried out detailed microstructural and chemical characterization of these compounds using aberration-corrected STEM, in order to understand the origin of these different ordering phenomena. Quantitative STEM-HAADF imaging and analysis identified the stacking order of an 8-layer thin flake, which leads to the identification of anti-site In 3+(Cu +) doping. We believe that these findings will pave the way towards understanding the ferroic coupling phenomena in van der Waals lamellar compounds, asmore » well as the potential applications in 2-D electronics.« less

  6. Toward Three-Dimensional Chemical Imaging of Ternary Cu-Sn-Pb Alloys Using Femtosecond Laser Ablation/Ionization Mass Spectrometry.

    PubMed

    Grimaudo, Valentine; Moreno-García, Pavel; Riedo, Andreas; Meyer, Stefan; Tulej, Marek; Neuland, Maike B; Mohos, Miklós; Gütz, Christoph; Waldvogel, Siegfried R; Wurz, Peter; Broekmann, Peter

    2017-02-07

    Femtosecond laser ablation/ionization mass spectrometry (LIMS) has been applied to probe the spatial element composition of three ternary Cu-Sn-Pb model bronze alloys (lead bronzes: CuSn10Pb10, CuSn7Pb15, and CuSn5Pb20), which were recently identified as high-performance cathode materials in the context of electro-organic synthesis (dehalogenation, deoxygenation) of pharmaceutically relevant building blocks. The quantitative and spatially resolved element analysis of such cathode materials will help in understanding the observed profound differences in their electrochemical reactivity and stability. For that purpose, we developed a measurement procedure using the LIMS technique which allows analyzing the element composition of these ternary alloys in all three spatial dimensions. Their chemical composition was determined spotwise, by ablating material from various surface locations on a 4 × 4 raster array (50 μm pitch distance, ablation crater diameter of ∼20 μm). The element analyses show significant chemical inhomogeneities in all three ternary bronze alloys with profound local deviations from their nominal bulk compositions and indicate further differences in the nature and origin of these compositional inhomogeneities. In addition, the element analyses showed specific compositional correlations among the major elements (Cu, Sn, and Pb) in these alloys. On selected sample positions minor (Ni, Zn, Ag, and Sb) and trace elements (C, P, Fe, and As) were quantified. These results are in agreement with inductively coupled plasma collision/reaction interface mass spectrometry (ICP-CRI-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) reference measurements, thus proving the LIMS depth profiling technique as a powerful alternative methodology to conventional quantification techniques with the advantage, however, of a highly localized measurement capability.

  7. A computational assessment of the electronic, thermoelectric, and defect properties of bournonite (CuPbSbS 3) and related substitutions

    SciTech Connect

    Faghaninia, Alireza; Yu, Guodong; Aydemir, Umut; Wood, Max; Chen, Wei; Rignanese, Gian-Marco; Snyder, G. Jeffrey; Hautier, Geoffroy; Jain, Anubhav

    2017-02-08

    Bournonite (CuPbSbS3) is an earth-abundant mineral with potential thermoelectric applications. This material has a complex crystal structure (space group Pmn21 #31) and has previously been measured to exhibit a very low thermal conductivity (κ < 1 W m -1 K -1 at T ≥ 300 K). In this study, we employ high-throughput density functional theory calculations to investigate how the properties of the bournonite crystal structure change with elemental substitutions. Specifically, we compute the stability and electronic properties of 320 structures generated via substitutions {Na-K-Cu-Ag}{Si-Ge-Sn-Pb}{N-P-As-Sb-Bi}{O-S-Se-Te} in the ABCD3 formula. We perform two types of transport calculations: the BoltzTraP model, which has been extensively tested, and a newer AMSET model that we have developed and which incorporates scattering effects. We discuss the differences in the model results, finding qualitative agreement except in the case of degenerate bands. Based on our calculations, we identify p-type CuPbSbSe3 , CuSnSbSe3 and CuPbAsSe3 as potentially promising materials for further investigation. We additionally calculate the defect properties, finding that n-type behavior in bournonite and the selected materials is highly unlikely, and p-type behavior might be enhanced by employing Sb-poor synthesis conditions to prevent the formation of Sb Pb defects. Finally, we discuss the origins of various trends with chemical substitution, including the possible role of stereochemically active lone pair effects in stabilizing the bournonite structure and the effect of cation and anion selection on the calculated band gap.

  8. Simultaneous determination of speciation parameters of Cu, Pb, Cd and Zn in model solutions of Suwannee River fulvic acid by pseudopolarography.

    PubMed

    Chakraborty, Parthasarathi; Fasfous, Ismail I; Murimboh, John; Chakrabarti, Chuni L

    2007-05-01

    There is a growing awareness of the importance of quantitative determinations of speciation parameters of the trace metals Cu, Zn, Cd and Pb in aqueous samples containing chemically heterogeneous humic substances, especially when they are present together, interacting with one another and competing for specific binding sites of the humic substances. Such determinations require fundamental knowledge and understanding of these complex interactions, gained through basic laboratory-based studies of well-characterized humic substances in model solutions. Since the chemical heterogeneity of humic substances plays an important role in the thermodynamics (stability) and kinetics (lability) of trace metal competition for humic substances, a metal speciation technique such as pseudopolarography that can reveal the special, distinctive nature of metal complexation is required, and it was therefore used in this study. A comparison of the heterogeneity parameters (Gamma) for Zn(II), Cd(II), Pb(II) and Cu(II) complexes in model solutions of Suwannee River fulvic acid (SRFA) shows that GammaCd>GammaZn>GammaPb>GammaCu, suggesting that SRFA behaves as a relatively homogeneous complexant for Zn(II) and Cd(II), whereas it behaves as a relatively heterogeneous complexant for Pb(II) and an even more heterogeneous complexant for Cu(II) under the experimental conditions used. The order of values of log K* (from the differential equilibrium function, DEF) for the trace metals at pH 5.0 follow the sequence: log K*Cu>log K*Pb>log K*Zn>log K*Cd. These results are in good agreement with the literature values. The results of this work suggest the possibility of simultaneously determining several metals in a sample in a single experiment, and hence in a shorter time than required for multiple experiments.

  9. Selective removals of heavy metals (Pb(2+), Cu(2+), and Cd(2+)) from wastewater by gelation with alginate for effective metal recovery.

    PubMed

    Wang, Fei; Lu, Xingwen; Li, Xiao-yan

    2016-05-05

    A novel method that uses the aqueous sodium alginate solution for direct gelation with metal ions is developed for effective removal and recovery of heavy metals from industrial wastewater. The experimental study was conducted on Pb(2+), Cu(2+), and Cd(2+) as the model heavy metals. The results show that gels can be formed rapidly between the metals and alginate in less than 10 min and the gelation rates fit well with the pseudo second-order kinetic model. The optimum dosing ratio of alginate to the metal ions was found to be between 2:1 and 3:1 for removing Pb(2+) and around 4:1 for removing Cu(2+) and Cd(2+) from wastewater, and the metal removal efficiency by gelation increased as the solution pH increased. Alginate exhibited a higher gelation affinity toward Pb(2+) than Cu(2+) and Cd(2+), which allowed a selective removal of Pb(2+) from the wastewater in the presence of Cu(2+) and Cd(2+) ions. Chemical analysis of the gels suggests that the gelation mainly occurred between the metal ions and the -COO(-) and -OH groups on alginate. By simple calcination of the metal-laden gels at 700 °C for 1 h, the heavy metals can be well recovered as valuable resources. The metals obtained after the thermal treatment are in the form of PbO, CuO, and CdO nanopowders with crystal sizes of around 150, 50, and 100 nm, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A computational assessment of the electronic, thermoelectric, and defect properties of bournonite (CuPbSbS 3) and related substitutions

    DOE PAGES

    Faghaninia, Alireza; Yu, Guodong; Aydemir, Umut; ...

    2017-02-08

    Bournonite (CuPbSbS 3) is an earth-abundant mineral with potential thermoelectric applications. This material has a complex crystal structure (space group Pmn2 1 #31) and has previously been measured to exhibit a very low thermal conductivity (κ < 1 W m -1 K -1 at T ≥ 300 K). In this study, we employ high-throughput density functional theory calculations to investigate how the properties of the bournonite crystal structure change with elemental substitutions. Specifically, we compute the stability and electronic properties of 320 structures generated via substitutions {Na-K-Cu-Ag}{Si-Ge-Sn-Pb}{N-P-As-Sb-Bi}{O-S-Se-Te} in the ABCD 3 formula. We perform two types of transport calculations: themore » BoltzTraP model, which has been extensively tested, and a newer AMSET model that we have developed and which incorporates scattering effects. We discuss the differences in the model results, finding qualitative agreement except in the case of degenerate bands. Based on our calculations, we identify p-type CuPbSbSe 3 , CuSnSbSe 3 and CuPbAsSe 3 as potentially promising materials for further investigation. We additionally calculate the defect properties, finding that n-type behavior in bournonite and the selected materials is highly unlikely, and p-type behavior might be enhanced by employing Sb-poor synthesis conditions to prevent the formation of Sb Pb defects. Finally, we discuss the origins of various trends with chemical substitution, including the possible role of stereochemically active lone pair effects in stabilizing the bournonite structure and the effect of cation and anion selection on the calculated band gap.« less

  11. Transport, fate and speciation of heavy metals (Pb, Zn, Cu, Cd) in mine drainage: geochemical modeling and anodic stripping voltammetric analysis.

    PubMed

    Yun, S T; Jung, H B; So, C S

    2001-07-01

    The maximum concentrations (ppb) of heavy metals in the mine drainage (pH: down to 3.3) of Chonam-ri creek in the abandoned Kwangyang gold-silver mine, South Korea, are 22600 Zn, 2810 Cu, 182 Cd, and 109 Pb. A small, limestone-infused retention pond, about 440 meters downstream from the waste dump, plays an important role in the removal of heavy metals: the factors of reduction for Zn, Cu, Cd, and Pb are 12, 24, 14, and 14, respectively. This is due to the pH increase (up to >5.4) accompanying adsorption onto and/or coprecipitation with Fe- and Al-hydroxides (goethite and gibbsite). From the waste dump to the pond, heavy metal concentrations also progressively decrease due to pH increase. Geochemical modeling (using the computer code WATEQ4F) predicts that free aqueous metal ions are dominant (mostly >70% for Cu and Zn, and >60% for Pb and Cd) in samples collected upstream from the pond, whereas complexing with sulfate, carbonate and hydroxyl ions becomes important in the samples collected downstream. The comparison between the concentrations of electrochemically labile species (determined by Anodic Stripping Voltammetry) and the result of computer modeling shows that Cd and Zn are present predominantly as labile inorganic species throughout the whole range of the creek. However, Cu and Pb in the samples collected downstream from the pond largely form electrochemically inert species (possibly, metal-organic complexes). The above results indicate that the retention pond is effective in reducing the toxicity of heavy metals, especially Cu and Pb.

  12. Pb-Sr-Nd isotopes in surficial materials at the Pebble Porphyry Cu-Au-Mo Deposit, Southwestern Alaska: can the mineralizing fingerprint be detected through cover?

    USGS Publications Warehouse

    Ayuso, Robert A.; Kelley, Karen D.; Eppinger, Robert G.; Forni, Francesca

    2013-01-01

    The Cretaceous Pebble porphyry Cu-Au-Mo deposit is covered by tundra and glacigenic sediments. Pb-Sr-Nd measurements were done on sediments and soils to establish baseline conditions prior to the onset of mining operations and contribute to the development of exploration methods for concealed base metal deposits of this type. Pebble rocks have a moderate range for 206Pb/204Pb = 18.574 to 18.874, 207Pb/204Pb = 15.484 to 15.526, and 208,Pb/204Pb = 38.053 to 38.266. Mineralized granodiorite shows a modest spread in 87Sr/86Sr (0.704354–0.707621) and 143Nd/144Nd (0.512639–0.512750). Age-corrected (89 Ma) values for the granodiorite yield relatively unradiogenic Pb (e.g., 207Pb/204Pb 87Sr/86Sr, and positive values of ɛNd (1.00–4.52) that attest to a major contribution of mantle-derived source rocks. Pond sediments and soils have similar Pb isotope signatures and 87Sr/86Sr and 143Nd/144Nd values that resemble the mineralized granodiorites. Glacial events have obscured the recognition of isotope signatures of mineralized rocks in the sediments and soils. Baseline radiogenic isotope compositions, prior to the onset of mining operations, reflect natural erosion, transport and deposition of heterogeneous till sheets that included debris from barren rocks, mineralized granodiorite and sulfides from the Pebble deposit, and other country rocks that pre- and postdate the mineralization events. Isotopic variations suggest that natural weathering of the deposit is generally reflected in these surficial materials. The isotope data provide geochemical constraints to glimpse through the extensive cover and together with other geochemical observations provide a vector to concealed mineralized rocks genetically linked with the Pebble deposit.

  13. Equilibrium, kinetic, and thermodynamic biosorption of Pb(II), Cr(III), and Cd(II) ions by dead anaerobic biomass from synthetic wastewater.

    PubMed

    Sulaymon, Abbas Hamid; Ebrahim, Shahlaa Esmail; Mohammed-Ridha, Mohanad Jasim

    2013-01-01

    Heavy metals are toxic pollutants released into the environment as a result of different industrial activities. Biosorption of heavy metals from aqueous solutions is a new technology for the treatment of industrial wastewater. The aim of the present research is to highlight the basic biosorption theory to heavy metal removal. Heterogeneous cultures mostly dried anaerobic bacteria, yeast (fungi), and protozoa were used as low-cost material to remove metallic cations Pb(II), Cr(III), and Cd(II) from synthetic wastewater. Competitive biosorption of these metals was studied. The main biosorption mechanisms were complexation and physical adsorption onto natural active functional groups. It is observed that biosorption of these metals was a surface process. The main functional groups involved in these processes were hydroxyl (-OH) and carboxylic groups (C=O) with 37, 52, and 31 and 21, 14, and 34 % removal of Pb(II), Cr(III), and Cd(II), respectively. Langmuir was the best model for a single system. While extended Langmuir was the best model for binary and ternary metal systems. The maximum uptake capacities were 54.92, 34.78, and 29.99 mg/g and pore diffusion coefficients were 7.23, 3.15, and 2.76 × 10(-11) m(2)/s for Pb(II), Cr(III), and Cd(II), respectively. Optimum pH was found to be 4. Pseudo-second-order was the best model to predict the kinetic process. Biosorption process was exothermic and physical in nature. Pb(II) offers the strongest component that is able to displace Cr(III) and Cd(II) from their sites, while Cd(II) ions are the weakest adsorbed component.

  14. Photovoltaic applications of Cu(Sb,Bi)SM (M = Ag, Pb, Pt)

    NASA Astrophysics Data System (ADS)

    Tablero, C.

    2017-04-01

    Ternary Cu-(Sb,Bi)-S compounds are great absorbents of the solar radiation with a variety of applications including optoelectronic and photovoltaic applications. The analyses of several quaternary semiconductors derived from Cu-(Sb,Bi)-S materials is carried out using first-principles density-functional theory with orbital-dependent one-electron potentials. These analyses focus on the optoelectronic properties and the potential for solar cells. The optical properties are obtained from first-principles calculations, and split into inter- and intra-shell-species contributions in order to quantify the optical transitions responsible for the absorption. The absorption coefficients are then used as criteria to evaluate the efficiencies of these materials under several sunlight concentrations. The results indicate high energy photovoltaic conversion efficiency because of the large intra shell s-p absorption of the S and Sb or Bi atomic species.

  15. Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition

    DOE PAGES

    An, Zhinan; Jia, Haoling; Wu, Yueying; ...

    2015-05-04

    The concept of high configurational entropy requires that the high-entropy alloys (HEAs) yield single-phase solid solutions. However, phase separations are quite common in bulk HEAs. A five-element alloy, CrCoCuFeNi, was deposited via radio frequency magnetron sputtering and confirmed to be a single-phase solid solution through the high-energy synchrotron X-ray diffraction, energy-dispersive spectroscopy, wavelength-dispersive spectroscopy, and transmission electron microscopy. The formation of the solid-solution phase is presumed to be due to the high cooling rate of the sputter-deposition process.

  16. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil.

    PubMed

    Yang, Xing; Liu, Jingjing; McGrouther, Kim; Huang, Huagang; Lu, Kouping; Guo, Xi; He, Lizhi; Lin, Xiaoming; Che, Lei; Ye, Zhengqian; Wang, Hailong

    2016-01-01

    Biochar is a carbon-rich solid material derived from the pyrolysis of agricultural and forest residual biomass. Previous studies have shown that biochar is suitable as an adsorbent for soil contaminants such as heavy metals and consequently reduces their bioavailability. However, the long-term effect of different biochars on metal extractability or soil health has not been assessed. Therefore, a 1-year incubation experiment was carried out to investigate the effect of biochar produced from bamboo and rice straw (at temperatures ≥500 °C) on the heavy metal (cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn)) extractability and enzyme activity (urease, catalase, and acid phosphatase) in a contaminated sandy loam paddy soil. Three rates (0, 1, and 5%) and two mesh sizes (<0.25 and <1 mm) of biochar applications were investigated. After incubation, the physicochemical properties, extractable heavy metals, available phosphorus, and enzyme activity of soil samples were analyzed. The results demonstrated that rice straw biochar significantly (P < 0.05) increased the pH, electrical conductivity, and cation exchange capacity of the soil, especially at the 5% application rate. Both bamboo and rice straw biochar significantly (P < 0.05) decreased the concentration of CaCl2-extractable heavy metals as biochar application rate increased. The heavy metal extractability was significantly (P < 0.01) correlated with pH, water-soluble organic carbon, and available phosphorus in soil. The 5% application rate of fine rice straw biochar resulted in the greatest reductions of extractable Cu and Zn, 97.3 and 62.2%, respectively. Both bamboo and rice straw biochar were more effective at decreasing extractable Cu and Pb than removing extractable Cd and Zn from the soil. Urease activity increased by 143 and 107% after the addition of 5% coarse and fine rice straw biochars, respectively. Both bamboo and rice straw biochars significantly (P < 0.05) increased catalase

  17. Evaluation of the effects of the metals Cd, Cr, Pb and their mixture on the filtration and oxygen consumption rates in catarina scallop, Argopecten ventricosus juveniles.

    PubMed

    Sobrino-Figueroa, Alma S; Cáceres-Martinez, Carlos

    2014-01-01

    In this work, we evaluated the effect of sublethal concentrations ( LC25, LC10 and LC5) of cadmium, chromium, lead, and their mixture on the filtration rate and oxygen consumption rate of Catarina scallop, Argopecten ventricosus (Sowerby, 1842), juveniles, in order to evaluate the use of these biomarkers as a reliable tool in environmental monitoring studies, because these metals have been found at high levels in water and sediments in the Mexican Pacific systems. An inverse dose-response relationship was observed when metal concentration and exposure time increased, the filtration rate and oxygen consumption rate reduced. The physiological responses evaluated in this study were sufficiently sensitive to detect alterations in the organisms at 0.014 mg l(-1) Cd, 0.311 mg l(-1) Cr, 0.125 mg l(-1) Pb and 0.05 mg l(-1) Cd + Cr + Pb at 24 and 72 hrs. Cd showed the most drastic effect. The Catarina scallop juveniles were more sensitive to Cd, Cr and Pb as compared to other bivalves. The biomarkers evaluated are a reliable tool to carry out environmental monitoring studies.

  18. CuCr2O4 Spinel Ceramic Pigments Synthesized by Sol-Gel Self-Combustion Method for Solar Absorber Coatings

    NASA Astrophysics Data System (ADS)

    Ma, Pengjun; Geng, Qingfen; Gao, Xianghu; Yang, Shengrong; Liu, Gang

    2016-07-01

    A series of CuCr2O4 spinel ceramic pigments have been successfully synthesized via a facile and cost-effective sol-gel self-combustion method. The reaction mechanism was systematically studied using the corresponding characterization technologies. The results suggested that CuCr2O4 spinel ceramic pigments could be obtained at annealing temperature of 600 °C for 1 h, and the size, morphology, and crystallinity of CuCr2O4 spinel were greatly influenced by the annealing temperature. The as-burnt powder and CuCr2O4 spinel ceramic pigment were then employed to fabricate thickness sensitive spectrally selective (TSSS) paint coatings by a convenient spray-coating technique. The results revealed that spectral selectivity of TSSS paint coatings based on CuCr2O4 spinel ceramic pigments was much better than that of paint coatings based on the as-burnt powders. Furthermore, the effect of surface features of TSSS paint coatings on its optical property and hydrophobicity was investigated in detailed.

  19. Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings. Part 2; Specific Heat Capacity

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2017-01-01

    Part I of the paper discussed the temperature dependencies of the electrical resistivities, thermal conductivities, thermal diffusivities and total hemispherical emissivities of several vacuum plasma sprayed (VPS) and cold sprayed copper alloy monolithic coatings, VPS NiAl, VPS NiCrAlY, extruded GRCop-84 and as-cast Cu-17(wt.%)Cr-5%Al. Part II discusses the temperature dependencies of the constant pressure specific heat capacities, CP, of these coatings. The data were empirically were regression-fitted with the equation: CP = AT4 + BT3 + CT2 + DT +E where T is the absolute temperature and A, B, C, D and E are regression constants. The temperature dependencies of the molar enthalpy, molar entropy and Gibbs molar free energy determined from experimental values of molar specific heat capacity are reported. Calculated values of CP using the Neumann-Kopp (NK) rule were in poor agreement with experimental data. Instead, a modification of the Neumann-Kopp rule was found to predict values closer to the experimental data with an absolute deviation less than 6.5%. The specific molar heat capacities for all the alloys did not agree with the Dulong-Petit law, and CP is greater than 3R, where R is the universal gas constant, were measured for all the alloys except NiAl for which CP is less than 3R at all temperatures.

  20. Thermophysical Properties of Cold- and Vacuum Plasma-Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings II: Specific Heat Capacity

    NASA Astrophysics Data System (ADS)

    Raj, S. V.

    2017-11-01

    Part I of the paper discussed the temperature dependencies of the electrical resistivities, thermal conductivities, thermal diffusivities and total hemispherical emissivities of several vacuum plasma-sprayed (VPS) and cold-sprayed (CS) copper alloy monolithic coatings, VPS NiAl, VPS NiCrAlY, extruded GRCop-84 and as-cast Cu-17(wt.%)Cr-5%Al. Part II discusses the temperature dependencies of the constant-pressure specific heat capacities, C P, of these coatings. The data were empirically regression-fitted with the equation: \\varvec{C}_{P} = {AT}^{4} + {BT}^{3} + {CT}^{2} + DT + \\varvec{E}where T is the absolute temperature and A, B, C, D and E are regression constants. The temperature dependencies of the molar enthalpy, molar entropy and Gibbs molar free energy determined from experimental values of molar specific heat capacity are reported. Calculated values of C P using the Neumann-Kopp (NK) rule were in poor agreement with experimental data. Instead, a modification of the NK rule was found to predict values closer to the experimental data with an absolute deviation less than 6.5%. The specific molar heat capacities for all the alloys did not agree with the Dulong-Petit law, and C P > 3 R, where R is the universal gas constant, were measured for all the alloys except NiAl for which C P < 3 R at all temperatures.

  1. Intrinsically low thermal conductivity from a quasi-one-dimensional crystal structure and enhanced electrical conductivity network via Pb doping in SbCrSe 3

    SciTech Connect

    Yang, Dingfeng; Yao, Wei; Yan, Yanci

    2017-06-09

    The development of new routes for the production of thermoelectric materials with low-cost and high-performance characteristics has been one of the long-term strategies for saving and harvesting thermal energy. We report a new approach for improving thermoelectric properties by employing the intrinsically low thermal conductivity of a quasi-one-dimensional (quasi-1D) crystal structure and optimizing the power factor with aliovalent ion doping. As an example, we demonstrated that SbCrSe 3, in which two parallel chains of CrSe 6 octahedra are linked by antimony atoms, possesses a quasi-1D property that resulted in an ultra-low thermal conductivity of 0.56 W m -1 K -1more » at 900 K. After maximizing the power factor by Pb doping, the peak ZT value of the optimized Pb-doped sample reached 0.46 at 900 K, which is an enhancement of 24 times that of the parent SbCrSe 3 structure. The mechanisms that lead to low thermal conductivity derive from anharmonic phonons with the presence of the lone-pair electrons of Sb atoms and weak bonds between the CrSe 6 double chains. Our results shed new light on the design of new and high-performance thermoelectric materials.« less

  2. Intrinsically low thermal conductivity from a quasi-one-dimensional crystal structure and enhanced electrical conductivity network via Pb doping in SbCrSe3

    SciTech Connect

    Yang, Dingfeng; Yao, Wei; Yan, Yanci; Qiu, Wujie; Guo, Lijie; Lu, Xu; Uher, Ctirad; Han, Xiaodong; Wang, Guoyu; Yang, Tao; Zhou, Xiaoyuan

    2017-06-09

    The development of new routes for the production of thermoelectric materials with low-cost and high-performance characteristics has been one of the long-term strategies for saving and harvesting thermal energy. We report a new approach for improving thermoelectric properties by employing the intrinsically low thermal conductivity of a quasi-one-dimensional (quasi-1D) crystal structure and optimizing the power factor with aliovalent ion doping. As an example, we demonstrated that SbCrSe3, in which two parallel chains of CrSe6 octahedra are linked by antimony atoms, possesses a quasi-1D property that resulted in an ultra-low thermal conductivity of 0.56 W m-1 K-1 at 900 K. After maximizing the power factor by Pb doping, the peak ZT value of the optimized Pb-doped sample reached 0.46 at 900 K, which is an enhancement of 24 times that of the parent SbCrSe3 structure. The mechanisms that lead to low thermal conductivity derive from anharmonic phonons with the presence of the lone-pair electrons of Sb atoms and weak bonds between the CrSe6 double chains. Our results shed new light on the design of new and high-performance thermoelectric materials.

  3. Multi-scale analysis of the occurrence of Pb, Cr and Mn in the NIST standards: Urban dust (SRM 1649a) and indoor dust (SRM 2584)

    NASA Astrophysics Data System (ADS)

    Jiang, Mingyu; Nakamatsu, Yuki; Jensen, Keld A.; Utsunomiya, Satoshi

    2014-01-01

    Adverse health effects of ambient particulate matters are closely related to the speciation of the constituting organic matters and toxic metals. To determine multi-parameters of the metal speciation in urban and indoor dusts, we have performed systematic bulk- to nano-scale (“multi-scale”) analysis on the speciation of Pb, Mn, and Cr in two National Institute of Standards and Technology (NIST) standard reference materials (SRMs): urban dust (SRM 1649a) and indoor dust (SRM 2584), utilizing X-ray absorption near-edge structure, powder X-ray diffraction analysis, electron microprobe analysis, scanning electron microscopy, and transmission electron microscopy. Major crystalline phases are quartz, gypsum, kaolinite, and muscovite in SRM 1649a, while quartz, gypsum, calcite, and possibly muscovite (or chabazite) in SRM 2584. A number of Pb sulfate nanoparticles (50-200 nm) occur in SRM 1649a, whereas micron-sized Pb carbonate is present containing various concentrations of Zn and Ti in the complex texture in SRM 2584. Relatively soluble Mn(II) sulfate is the bulk-averaged Mn speciation in SRM 1649a, although discrete Mn sulfate particles are not characterized by individual particle analysis, implying the diluted Mn distribution within other sulfate. In SRM 2584, Mn speciation includes a mixture of oxides and carbonates, and trace Mn in chromite. Chromite (FeCr2O4) is the major Cr speciation in SRM1694a, while unidentified Cr(III) phases with minor chromite and Pb chromate are present in SRM 2584, among which the Pb chromate is composed of Cr(VI). A significant number of the metal-bearing particles are distributed to the submicron-size fraction in the urban dust, SRM 1649a, suggesting that these metal nanoparticles can potentially penetrate into the deep respiratory system. This study demonstrates that multi-scale analysis combining nano and bulk analytical techniques is a powerful approach to investigate the multi-parameters of metal-bearing nanoparticles in

  4. Effects of phosphorus amendments and plant growth on the mobility of Pb, Cu, and Zn in a multi-metal-contaminated soil.

    PubMed

    Fang, Yueying; Cao, Xinde; Zhao, Ling

    2012-06-01

    Phosphorus amendments have been widely and successfully used in immobilization of one single metal (e.g., Pb) in contaminated soils. However, application of P amendments in the immobilization of multiple metals and particularly investigations about the effects of planting on the stability of the initially P-induced immobilized metals in the contaminated soils are far limited. This study was conducted to determine the effects of phosphate rock tailing (PR), triple superphosphate fertilizer (TSP), and their combination (P+T) on mobility of Pb, Cu, and Zn in a multimetal-contaminated soil. Chinese cabbage (Brassica rapa subsp. chinensis) (metal-sensitive) and Chinese kale (Brassica alboglabra Bailey) (metal-resistant) were introduced to examine the effects of planting on leaching of Pb, Cu, and Zn in the P-amended soils. All three P treatments greatly reduced CaCl(2)-extractable Pb and Zn by 55.2-73.1% and 14.3-33.6%, respectively. The PR treatment decreased CaCl(2)-extractable Cu by 27.8%, while the TSP and P+T treatments increased it by 47.2% and 44.4%, respectively. All three P treatments were effective in reducing simulated rainwater leachable Pb, with dissolved and total leachable Pb decrease by 15.6-81.9% and 16.3-64.5%, respectively. The PR treatment reduced the total leachable Zn by 16.8%, while TSP and P+T treatments increased Zn leaching by 92.7% and 78.9%, respectively. However, total Cu leaching were elevated by 17.8-178% in all P treatments. Planting promoted the leaching of Pb and Cu by 98.7-127% and 23.5-170%, respectively, especially in the colloid fraction, whereas the leachable Zn was reduced by 95.3-96.5% due to planting. The P treatments reduced the uptake of Pb, Cu, and Zn in the aboveground parts of Chinese cabbage by up to 65.1%, 34.3%, and 9.59%, respectively. Though P treatments were effective in reducing Zn concentrations in the aboveground parts of the metal-resistant Chinese kale by 22.4-28.9%, they had little effect on Pb and Cu uptake

  5. Factors affecting the partitioning of Cu, Zn and Pb in boulder coatings and stream sediments in the vicinity of a polymetallic sulfide deposit

    USGS Publications Warehouse

    Filipek, L.H.; Chao, T.T.; Carpenter, R.H.

    1981-01-01

    A sequential extraction scheme is utilized to determine the geochemical partitioning of Cu, Zn and Pb among hydrous Mn- and Fe-oxides, organics and residual crystalline silicates and oxides in the minus-80-mesh ( Fe-oxides > Mn-oxides; Zn, Mn-oxides {reversed tilde equals} organics > Fe-oxides; Pb, Fe-oxides > organics > Mn-oxides. In the sediments, organics are the most efficient scavengers of all three ore metals. These results emphasize the importance of organics as sinks for the ore metals, even in environments with high concentrations of Mn- and Fe-oxides. Of the ore metals, Zn appears to be the most mobile, and is partitioned most strongly into the coatings. However, anomaly contrast for hydromorphic Zn, normalized to the MnFe-oxide or organic content, is similar in sediments and coatings. Cu shows the highest anomaly on the boulder coatings, probably due to precipitation of a secondary Cu mineral. In contrast, detrital Pb in the pan concentrates shows a better anomaly than any hydromorphic Pb component. ?? 1981.

  6. Evaluation of cations and chelating agents as extracellular extractants for Cu, Pb, V and Zn in the sequential elution technique applied to the terrestrial moss Pseudoscleropodium purum.

    PubMed

    Pérez-Llamazares, Alicia; Galbán-Malagón, Cristóbal J; Aboal, Jesús R; Angel Fernández, J; Carballeira, Alejo

    2010-05-01

    Three experiments were carried out to select the best extractant for use in the sequential elution technique, to enable extraction of Cu, Pb, V and Zn from the extracellular fraction of the terrestrial moss Pseudoscleropodium purum. The optimal concentrations of the extractants tested (CoCl(2), NiCl(2), Pb(NO(3))(2), SrCl(2), dimercaprol, EDTA, penicillamine) were determined on the basis of the maximum extraction of Zn achieved without any alteration of the plasma membrane. The capacity of these agents (at the optimal concentrations established) to extract the extracellular fractions of Cu, Pb, V and Zn was then evaluated. Extraction with 10mM EDTA is recommended for all 4 elements considered. As a second option, the use of 50mM penicillamine is recommended to extract Cu, 30 mM dimercaprol to extract Pb and V and 20 mM NiCl(2) to extract Zn. It was also concluded that these results cannot be extrapolated to other cryptogams, and that separate assays are required. Copyright 2009 Elsevier Inc. All rights reserved.

  7. Studies of a molecular hourglass: synthesis and magnetic characterisation of a cyclic dodecanuclear {Cr10Cu2} complex.

    PubMed

    Shanmugam, Muralidharan; Engelhardt, Larry P; Larsen, Finn K; Luban, Marshall; McInnes, Eric J L; Muryn, Christopher A; Overgaard, Jacob; Rentschler, Eva; Timco, Grigore A; Winpenny, Richard E P

    2006-11-06

    The synthesis, structure, EPR, and magnetic studies of two dodecanuclear heterometallic cyclic clusters are reported. The compounds have the general formula [R(2)NH(2)](2)[Cr(10)Cu(2)F(14)(O(2)CCMe(3))(22)] (R=Me, 1 or iPr, 2). Both structures contain an array of metal centers which describe an approximate "hourglass", with an ammonium cation in the center of each half of the figure. The chromium sites are all six-coordinate, with the two copper sites five-coordinate. The majority of metal-metal edges are bridged by a single fluoride and two pivalate ligands, while two Cr--Cu edges are bridged by a single fluoride and a single pivalate. Magnetic studies show that 1 and 2 exhibit similar (but not identical) behavior, which can be attributed to ten antiferromagnetic and two ferromagnetic exchange interactions around the ring which gives an S=0 ground state. Quantum Monte Carlo calculations have been used to quantify the exchange interactions by successfully simulating the susceptibility for the full temperature range and thus clarifying the distinction between 1 and 2. EPR spectroscopy shows signals due to excited states, and a variable-temperature study has provided an estimate of the energy gap between the first excited state (S=1) and second excited state (S=2) for 1 that is consistent with the value obtained using the QMC method.

  8. Application of EDTA-functionalized bamboo activated carbon (BAC) for Pb(II) and Cu(II) removal from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lv, Dan; Liu, Yu; Zhou, Jiasheng; Yang, Kunlun; Lou, Zimo; Baig, Shams Ali; Xu, Xinhua

    2018-01-01

    In this study, a novel bamboo activated carbon (BAC) with ethylene diamine tetraacetic acid (EDTA) functionality was prepared by direct grafting in the presence of tetraethyl orthosilicate (TEOS) as a crosslinking agent. The BAC@SiO2-EDTA was characterized by SEM, TEM, TGA, FTIR, XPS and its adsorption property for removal of Pb(II) and Cu(II) under various experimental conditions was also investigated. The characterization results reflected that EDTA was successfully assembled on the surface of the BAC and average pore size increased from 4.10 to 4.83 nm as BAC grafted with EDTA. Adsorption data fitted very well in Langmuir isotherm model and pseudo-second-order kinetic model. As compared with the raw BAC, the maximum adsorption capacities of BAC@SiO2-EDTA for the Pb(II) and Cu(II) increased from 45.45 to 123.45 mg g-1 and from 6.85 to 42.19 mg g-1, since the existence of EDTA on modified BAC promoted the formation of chemical complex. The removal of heavy metal ions mainly depended on the complexation with EDTA and the electrostatic attractions with negatively charged surface of BAC@SiO2-EDTA. The adsorption of Pb(II)/Cu(II) on the BAC@SiO2-EDTA was pH dependent and pH 5-6 was considered an optimum. However, lower temperature favored the adsorption and the maximum adsorption was recorded at 20 °C. In addition, BAC@SiO2-EDTA had an excellent reusability with about 40% decline in the adsorption capacity for Pb(II) after fifth reuse. Insignificant influences of co-existing cations and natural organic matter (NOM) were found on the adsorption of Pb(II) and Cu(II). All the results demonstrate that BAC@SiO2-EDTA is a potential adsorbent for metal ions in wastewater.

  9. Determination of Cu, As, Hg and Pb in vegetable oils by electrothermal vaporization inductively coupled plasma mass spectrometry with palladium nanoparticles as modifier.

    PubMed

    Hsu, Wan-Hsuan; Jiang, Shiuh-Jen; Sahayam, A C

    2013-12-15

    The determination of Cu, As, Hg and Pb in vegetable oils by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) was investigated. The oils were injected in the form of emulsions containing 5% m/v vegetable oil, 1.5% v/v Triton X-100 and 50 μg mL(-1) ascorbic acid. Palladium nanoparticles (Pd-NPs) were used as modifier. The interference of (40)Ar(35)Cl(+) at arsenic mass m/z 75 was reduced significantly using dynamic reaction cell (DRC). Standard addition and isotope dilution methods were used for the quantifications. The method reported has been applied to the determination of Cu, As, Hg and Pb in selected vegetable oil samples purchased from a local market. The analytical results obtained were in good agreement with those of digested samples analyzed by pneumatic nebulization ICP-MS with 95% confidence according to Student t-test (except for Cu). Precision between sample replicates was better than 10% with the ETV-ICP-MS method. The detection limits obtained from standard addition curves were 0.4, 0.5, 1.1 and 0.4 ng g(-1) for Cu, As, Hg and Pb, respectively, in the original oil samples. © 2013 Elsevier B.V. All rights reserved.

  10. Simultaneous determination of Cd(II), Cu(II), Pb(II), and Zn(II) in citrus essential oils by derivative potentiometric stripping analysis.

    PubMed

    La Pera, Lara; Saitta, Marcello; Di Bella, Giuseppa; Dugo, Giacomo

    2003-02-26

    Citrus essential oils are widely used in the food, cosmetics, and pharmaceutical industries, so the determination of heavy metals content is of great importance to guarantee their quality. The present work deals with the quantification of Cd(II), Cu(II), Pb(II), and Zn(II) in different varieties of citrus essential oils, using derivative potentiometric stripping analysis. Two different metals extraction procedures, involving concentrated hydrochloric acid treatment and acid-alcoholic dissolution, are tested on lemon, mandarin, sweet orange, and bergamot essential oils, and they give very similar results. Cd(II), Cu(II), Pb(II), and Zn(II) recovery tests spanned from 95 to 100.50%, providing evidence that metals quantification remained unaffected by the cleanup steps of the two procedures. The repeatability of the hydrochloric acid extraction method, applied on different varieties of essential oils, is >95.00% for Cd(II), Cu(II), Pb(II), and Zn(II), whereas the repeatability of the acid-alcoholic dissolution method is >93.00% for Cu and Cd only in lemon oil. Detection limits obtained for the four analytes, using both procedures, ranged from 0.10 to 0.98 ng g(-)(1) in lemon, mandarin, sweet orange, and bergamot essential oils.

  11. Leaching potential of heavy metals (Cd, Ni, Pb, Cu and Zn) from acidic sandy soil amended with dolomite phosphate rock (DPR) fertilizers.

    PubMed

    Chen, G C; He, Z L; Stoffella, P J; Yang, X E; Yu, S; Yang, J Y; Calvert, D V

    2006-01-01

    There is an increasing concern on heavy metal leaching from the soils amended with sewage sludge. A column study was conducted to examine the extent of leaching of five important heavy metals (Cd, Ni, Pb, Cu and Zn) from an acidic sandy soil amended with different dolomite phosphate rock (DPR) fertilizers (an application rate of 1% fertilizers) developed from DPR and N-Viro (consisting of biosolids and fly ash) at 0%, 10%, 20%, 30%, 40%, 50% and 100% DPR. Ten leaching events were carried out with each event done at an interval of 7 days and with total leaching volume of 1183mm, which is equivalent to the mean annual rainfall of this region during the period of 2001-2003. Leachate was collected after each leaching event and analyzed for heavy metals. The maximum leachate concentrations of Cd, Ni, Pb, Cu and Zn were all below drinking water quality guidance limits set by Florida Department of Environmental Protection and World Health Organization, suggesting that the application of DPR fertilizers may not pose a threat to water quality by leaching. Most of leachate concentrations of Cd, Ni and Pb were below their detection limits and there were no significant differences between the control and the treatments with different DPR fertilizers. By contrast, there were higher leachate concentrations of Cu and Zn (ranging from 0.7 to 37.1mug Cu/l and 5.1 to 205.6mug Zn/l for all treatments) due to their higher contents in both the soil and different DPR fertilizers compared with Cd, Ni and Pb. The leachate concentrations of Cu and Zn for each treatment decreased with increasing leaching events. The differences in leachate concentrations of Cu and Zn between the control and the treatments with different DPR fertilizers containing N-Viro were significant, especially in the first several leaching events and, moreover, they increased with increasing proportion of N-Viro in the DPR fertilizers. There were similar trends in total losses of Cu and Zn after ten leaching events

  12. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil.

    PubMed

    Lu, Kouping; Yang, Xing; Gielen, Gerty; Bolan, Nanthi; Ok, Yong Sik; Niazi, Nabeel Khan; Xu, Song; Yuan, Guodong; Chen, Xin; Zhang, Xiaokai; Liu, Dan; Song, Zhaoliang; Liu, Xingyuan; Wang, Hailong

    2017-01-15

    Biochar has emerged as an efficient tool to affect bioavailability of heavy metals in contaminated soils. Although partially understood, a carefully designed incubation experiment was performed to examine the effect of biochar on mobility and redistribution of Cd, Cu, Pb and Zn in a sandy loam soil collected from the surroundings of a copper smelter. Bamboo and rice straw biochars with different mesh sizes (<0.25 mm and <1 mm), were applied at three rates (0, 1, and 5% w/w). Heavy metal concentrations in pore water were determined after extraction with 0.01 M CaCl 2 . Phytoavailable metals were extracted using DTPA/TEA (pH 7.3). The European Union Bureau of Reference (EUBCR) sequential extraction procedure was adopted to determine metal partitioning and redistribution of heavy metals. Results showed that CaCl 2 -and DTPA-extractable Cd, Cu, Pb and Zn concentrations were significantly (p < 0.05) lower in the bamboo and rice straw biochar treated soils, especially at 5% application rate, than those in the unamended soil. Soil pH values were significantly correlated with CaCl 2 -extractable metal concentrations (p < 0.01). The EUBCR sequential extraction procedure revealed that the acid extractable fractions of Cd, Cu, Pb and Zn decreased significantly (p < 0.05) with biochar addition. Rice straw biochar was more effective than bamboo biochar in decreasing the acid extractable metal fractions, and the effect was more pronounced with increasing biochar application rate. The effect of biochar particle size on extractable metal concentrations was not consistent. The 5% rice straw biochar treatment reduced the DTPA-extractable metal concentrations in the order of Cd < Cu < Pb < Zn, and reduced the acid extractable pool of Cd, Cu, Pb and Zn by 11, 17, 34 and 6%, respectively, compared to the control. In the same 5% rice straw biochar treatments, the organic bound fraction increased by 37, 58, 68 and 18% for Cd, Cu, Pb and Zn, respectively, compared to the

  13. Chemical separation and mass spectrometry of Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial materials using thermal ionization mass spectrometry.

    PubMed

    Yamakawa, Akane; Yamashita, Katsuyuki; Makishima, Akio; Nakamura, Eizo

    2009-12-01

    A sequential chemical separation technique for Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial silicate rocks was developed for precise and accurate determination of elemental concentration by the isotope dilution method (ID). The technique uses a combination of cation-anion exchange chromatography and Eichrom nickel specific resin. The method was tested using a variety of matrixes including bulk meteorite (Allende), terrestrial peridotite (JP-1), and basalt (JB-1b). Concentrations of each element was determined by thermal ionization mass spectrometry (TIMS) using W filaments and a Si-B-Al type activator for Cr, Fe, Ni, and Zn and a Re filament and silicic acid-H3PO4 activator for Cu. The method can be used to precisely determine the concentrations of these elements in very small silicate samples, including meteorites, geochemical reference samples, and mineral standards for microprobe analysis. Furthermore, the Cr mass spectrometry procedure developed in this study can be extended to determine the isotopic ratios of 53Cr/52Cr and 54Cr/52Cr with precision of approximately 0.05epsilon and approximately 0.10epsilon (1epsilon = 0.01%), respectively, enabling cosmochemical applications such as high precision Mn-Cr chronology and investigation of nucleosynthetic isotopic anomalies in meteorites.

  14. Accumulation of Pb and Cu heavy metals in sea water, sediment, and leaf and root tissue of Enhalus sp. in the seagrass bed of Banten Bay

    NASA Astrophysics Data System (ADS)

    Fauziah, Faiza; Choesin, Devi N.

    2014-03-01

    Banten Bay in Indonesia is a coastal area which has been highly affected by human activity. Previous studies have reported the presence of lead (Pb) and copper (Cu) heavy metals in the seawater of this area. This study was conducted to measure the accumulation of Pb and Cu in seawater, sediment, leaf tissue, and root tissue of the seagrass species Enhalus sp. Sampling was conducted at two observation stations in Banten Bay: Station 1 (St.1) was located closer to the coastline and to industrial plants as source of pollution, while Station 2 (St.2) was located farther away offshore. At each station, three sampling points were established by random sampling. Field sampling was conducted at two different dates, i.e., on 29 May 2012 and 30 June 2012. Samples were processed by wet ashing using concentrated HNO3 acid and measured using Atomic Absorption Spectrometry (AAS). Accumulation of Pb was only detected in sediment samples in St.1, while Cu was detected in all samples. Average concentrations of Cu in May were as follows: sediment St.1 = 0.731 ppm, sediment St.2 = 0.383 ppm, seawater St.1 = 0.163 ppm, seawater St.2 = 0.174 ppm, leaf St.1 = 0.102 ppm, leaf St.2 = 0.132 ppm, root St.1= 0.139 ppm, and root St.2 = 0.075 ppm. Average measurements of Cu in June were: sediment St.1 = 0.260 ppm, leaf St.1 = 0.335 ppm, leaf St.2 = 0.301 ppm, root St.1= 0.047 ppm, and root St.2 = 0.060 ppm. In June, Cu was undetected in St.2 sediment and seawater at both stations. In May, Cu concentration in seawater exceeded the maximum allowable threshold for water as determined by the Ministry of the Environment. Spatial and temporal variation in Pb and Cu accumulation were most probably affected by distance from source and physical conditions of the environment (e.g., water current and mixing).

  15. Accumulation of Pb and Cu heavy metals in sea water, sediment, and leaf and root tissue of Enhalus sp. in the seagrass bed of Banten Bay

    SciTech Connect

    Fauziah, Faiza, E-mail: faiza.fauziah@gmail.com; Choesin, Devi N., E-mail: faiza.fauziah@gmail.com

    2014-03-24

    Banten Bay in Indonesia is a coastal area which has been highly affected by human activity. Previous studies have reported the presence of lead (Pb) and copper (Cu) heavy metals in the seawater of this area. This study was conducted to measure the accumulation of Pb and Cu in seawater, sediment, leaf tissue, and root tissue of the seagrass species Enhalus sp. Sampling was conducted at two observation stations in Banten Bay: Station 1 (St.1) was located closer to the coastline and to industrial plants as source of pollution, while Station 2 (St.2) was located farther away offshore. At eachmore » station, three sampling points were established by random sampling. Field sampling was conducted at two different dates, i.e., on 29 May 2012 and 30 June 2012. Samples were processed by wet ashing using concentrated HNO{sub 3} acid and measured using Atomic Absorption Spectrometry (AAS). Accumulation of Pb was only detected in sediment samples in St.1, while Cu was detected in all samples. Average concentrations of Cu in May were as follows: sediment St.1 = 0.731 ppm, sediment St.2 = 0.383 ppm, seawater St.1 = 0.163 ppm, seawater St.2 = 0.174 ppm, leaf St.1 = 0.102 ppm, leaf St.2 = 0.132 ppm, root St.1= 0.139 ppm, and root St.2 = 0.075 ppm. Average measurements of Cu in June were: sediment St.1 = 0.260 ppm, leaf St.1 = 0.335 ppm, leaf St.2 = 0.301 ppm, root St.1= 0.047 ppm, and root St.2 = 0.060 ppm. In June, Cu was undetected in St.2 sediment and seawater at both stations. In May, Cu concentration in seawater exceeded the maximum allowable threshold for water as determined by the Ministry of the Environment. Spatial and temporal variation in Pb and Cu accumulation were most probably affected by distance from source and physical conditions of the environment (e.g., water current and mixing)« less

  16. Laser-produced spectra and QED effects for Fe-, Co-, Cu-, and Zn-like ions of Au, Pb, Bi, Th, and U

    NASA Technical Reports Server (NTRS)

    Seely, J. F.; Ekberg, J. O.; Brown, C. M.; Feldman, U.; Behring, W. E.

    1986-01-01

    Spectra of very highly charged ions of Au, Pb, Bi, Th, and U have been observed in laser-produced plasmas generated by the OMEGA laser. Line identifications in the region 9-110 A were made for ions in the Fe, Co, Cu, and Zn isoelectronic sequences. Comparison of the measured wavelengths of the Cu-like ions with values calculated with and without QED corrections shows that the inclusion of QED corrections greatly improves the accuracy of the calculated 4s-4p wavelengths. However, significant differences between the observed and calculated values remain.

  17. The study of electronic nematicity in an overdoped (Bi, Pb)2Sr2CuO6+δsuperconductor using scanning tunneling spectroscopy.

    PubMed

    Zheng, Yuan; Fei, Ying; Bu, Kunliang; Zhang, Wenhao; Ding, Ying; Zhou, Xingjiang; Hoffman, Jennifer E; Yin, Yi

    2017-08-14

    The pseudogap (PG) state and its related intra-unit-cell symmetry breaking remain the focus in the research of cuprate superconductors. Although the nematicity has been studied in Bi 2 Sr 2 CaCu 2 O 8+δ , especially underdoped samples, its behavior in other cuprates and different doping regions is still unclear. Here we apply a scanning tunneling microscope to explore an overdoped (Bi, Pb) 2 Sr 2 CuO 6+δ with a large Fermi surface (FS). The establishment of a nematic order and its real-space distribution is visualized as the energy scale approaches the PG.

  18. Thermal immobilization of Cr, Cu and Zn of galvanizing wastes in the presence of clay and fly ash.

    PubMed

    Singh, I B; Chaturvedi, K; Yegneswaran, A H

    2007-07-01

    In the present investigation thermal treatment of galvanizing waste with clay and fly ash has been carried out to immobilize Cr, Zn, Cu and other metals of the waste at temperature range 850 degrees C to 950 degrees C. Leaching of the metals from the waste and solidified product was analyzed using toxic characteristic leaching procedure (TCLP). Results indicated that the composition of waste and clay treatment temperature are the key factors in determining the stability of solidified product. After heating at 950 degrees C, the solidified specimens of 10% waste with clay have shown comparatively a high compressive strength and less water absorption. However, a decrease in compressive strength and increase in water absorption were noticed after addition of 15% of waste with clay. The leachability of all the metals present in the waste was found to reduce considerably with the increase of treatment temperature. In the case of Cr and Zn, their leachabilty was found at unacceptable levels from the treated product obtained after heating at 850 degrees C However, their leachability was reduced significantly within an acceptable level after treatment at 950 degrees C. The thermal treatment has shown an increase of re-oxidation trend of Cr (III) to Cr (VI) up to 900 degrees C of heating and this trend became almost zero after heating at 950 degrees C. Addition of fly ash did not show any improvement in strength, durability and leachability of metals from the thermally treated product. X-ray diffraction (XRD) analysis of the product confirmed the presence of mixed phases of oxides of toxic metals.

  19. Imaging of Current Sharing in (BiPb)_2Sr_2Ca_2Cu_3Ox Composite Conductors.

    NASA Astrophysics Data System (ADS)

    Peterson, Ted B.; Welp, U.; Crabtree, G. W.; Vasanthamohan, N.; Singh, J. P.; Lanagan, M. T.; Vlasko-Vlasov, V. K.; Nikitenko, V. I.

    1997-03-01

    Using a high-resolution magneto-optical imaging technique, we study the flow of transport currents around cracks in mono-filament (BiPb)_2Sr_2Ca_2Cu_3Ox composite conductors. Shunting through the Ag clad is directly observed. The current in the silver decays exponentially with distance from the crack (as expected in a one dimentional resistor model). At 77K, the decay length, λ, is approximately 0.04 cm, implying an interface resistivity of 1.5 10-7Ωcm^2. This decay length is found to increase with increasing temperature. For crack densities higher than 26/cm, a portion of the current resides in the clad. ^This work is supported by the U.S. DOE, BES-Materials Science (TBP,UW,GWC) and EERE (NV,JPS,MTL) under contract #W-31-109-ENG-38, and the Russian foundation of Fundamental Studies Grant Potok(VKV,VIN) ^Permanent Address: Institute for Solid State Physics, 142432 Chernogolovka, Moscow district, Russia

  20. Ag Nanoparticles Drop-Casting Modification of Screen-Printed Electrodes for the Simultaneous Voltammetric Determination of Cu(II) and Pb(II)

    PubMed Central

    Pérez-Ràfols, Clara; Bastos-Arrieta, Julio; Serrano, Núria; Díaz-Cruz, José Manuel; Ariño, Cristina; de Pablo, Joan; Esteban, Miquel

    2017-01-01

    A new silver nanoparticle modified screen-printed electrode was developed and applied to the simultaneous determination of Pb(II) and Cu(II). Two different types of silver nanoparticles with different shapes and sizes, Ag nanoseeds and Ag nanoprisms, were microscopically characterized and three different carbon substrates, graphite, graphene and carbon nanofibers, were tested. The best analytical performance was achieved for the combination of Ag nanoseeds with a carbon nanofiber modified screen-printed electrode. The resulting sensor allowed the simultaneous determination of Pb(II) and Cu(II) at trace levels and its applicability to natural samples was successfully tested with a groundwater certified reference material, presenting high reproducibility and trueness. PMID:28635631

  1. Rapid formation of the 110 K phase in Bi-Pb-Sr-Ca-Cu-O through freeze-drying powder processing

    SciTech Connect

    Song, K.H.; Liu, H.K.; Dou, S.X.

    1990-06-01

    This paper reports three techniques for processing Bi-Pb-Sr-Ca-Cu-O (BPSCCO) powders investigated: dry-mixing, sol-gel formation, and freeze-drying. It was found that sintering for 120 h at 850{degrees}C is required to form nearly single-phase (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10{minus}{ital y}} by dry-mixing, whereas sintering for 30 h at 840{degrees}C was sufficient to form the 110 K (2223) phase when freeze-drying was used. The sol-gel route was found to be intermediate in efficiency between these two techniques. Freeze-drying provided highly reactive, intimately mixed, and carbon-free precursors. The presence of carbonates in the uncalcined powders was the major cause of phase segregation andmore » sluggishness of the 110 K phase formation.« less

  2. Preparation of composite aerogels based on sodium alginate, and its application in removal of Pb2+and Cu2+from water.

    PubMed

    Huang, Yaoge; Wang, Zhuqing

    2018-02-01

    A novel Ethylenediamine-Modified Calcium Alginate Aerogel (ECAA) was synthesized by freeze-drying method, and used to remove Pb2+ and Cu2+ from aqueous solutions. The prepared adsorbent was characterized by using the FTIR spectra, SEM analysis and XPS analysis. The effects of the pH, initial metal ion concentration, adsorption kinetics, and isotherms had been studied systematically. Moreover, the ECAA can be regenerated by simple acid treatment and used repeatedly. It is interesting to note that almost no Ca2+ can be detected after the first cycle that confirmed the adsorption process involves ion exchange.The XPS spectra analyses further indicated that Pb2+ and Cu2+ were adsorbed via the chelation of -CO-NH, -NH2 and -OH. The results from these studies indicated the aerogel is a promising adsorbent to separate and recover the heavy metal ions from contaminated water. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Ag Nanoparticles Drop-Casting Modification of Screen-Printed Electrodes for the Simultaneous Voltammetric Determination of Cu(II) and Pb(II).

    PubMed

    Pérez-Ràfols, Clara; Bastos-Arrieta, Julio; Serrano, Núria; Díaz-Cruz, José Manuel; Ariño, Cristina; de Pablo, Joan; Esteban, Miquel

    2017-06-21

    A new silver nanoparticle modified screen-printed electrode was developed and applied to the simultaneous determination of Pb(II) and Cu(II). Two different types of silver nanoparticles with different shapes and sizes, Ag nanoseeds and Ag nanoprisms, were microscopically characterized and three different carbon substrates, graphite, graphene and carbon nanofibers, were tested. The best analytical performance was achieved for the combination of Ag nanoseeds with a carbon nanofiber modified screen-printed electrode. The resulting sensor allowed the simultaneous determination of Pb(II) and Cu(II) at trace levels and its applicability to natural samples was successfully tested with a groundwater certified reference material, presenting high reproducibility and trueness.

  4. Sub-cellular partitioning of Zn, Cu, Cd and Pb in the digestive gland of native Octopus vulgaris exposed to different metal concentrations (Portugal).

    PubMed

    Raimundo, J; Vale, C; Duarte, R; Moura, I

    2008-02-15

    Concentrations of Zn, Cu, Cd and Pb and their sub-cellular distributions were determined in composite samples of digestive glands of the common octopus, Octopus vulgaris caught from two areas of the Portuguese coast characterised by contrasting metal contamination. Minor contents of Zn (1%), Cu (2%), Cd (6%) and Pb (7%) were found in the insoluble fraction, consisting of nuclei, mitochondria, lysosomes and microsome operationally separated from the whole digestive gland through a sequential centrifugation. A tendency for linear relationships between metal concentrations in nuclei, mitochondria, lysosomes and whole digestive gland was observed. These relationships suggest that despite low metal content organelles responded to the increasing accumulated metals, which means that detoxifying mechanism in cytosol was incomplete. Poorer correlations between microsome and whole digestive gland did not point to metal toxicity in the analysed compartments. However, the high accumulated Cd indicated that O. vulgaris is an important vehicle of this element to its predators in the coastal environment.

  5. Manufacture of thick VPS W coatings on relatively large CuZrCr substrate and its steady high heat load performance

    NASA Astrophysics Data System (ADS)

    Deng, Chunming; Liu, Min; Yang, Zhenxiao; Deng, Changguang; Zhou, Kesong; Kuang, Ziqi; Zhang, Jifu

    2014-12-01

    W material is considered as one of potential Plasma Facing Materials (PFMs) for its high melting point, excellent stability at elevated temperature, good thermal conductivity, excellent anti-plasma sputtering and low Tritium retention. Functionally graded W/Cu coating was applied on CuCrZr substrate (250 mm × 120 mm × 30 mm) with compositionally gradient W/Cu as bond coat (0.4-0.6 mm) and 1.5 mm thick W coating as top coat via Vacuum Plasma Spraying (VPS) for continuous deposition of 5 h. Microstructure, chemical composition, porosity and adhesive strength for as sprayed thick W coating on the CuCrZr substrate were characterized by means of SEM, ICP-MS, Mercury Intrusion Porosimeter and tensile strength tester. The steady high heat load (HHL) performance for W/Cu functional gradient coating was evaluated by high energy electron beam. The results showed that thick VPS W coated CuCrZr substrate can withstand the steady high heat load at the electron beam power density of 9 MW/m2 for 1000 cycles.

  6. Competitive solvation and complexation of Cu(I), Cu(II), Pb(II), Zn(II), and Ag(I) in aqueous ethanol, acetonitrile, and dimethylsulfoxide solutions containing chloride ion with applications to hydrometallurgy

    NASA Astrophysics Data System (ADS)

    Senanayake, G.; Muir, D. M.

    1990-06-01

    The changes in reduction potential and single ion activity of Cu(I), Cu(II), Pb(II), Zn(II), and Ag(I) have been measured in a range of aqueous ethanol (EtOH), acetonitrile (AN), and dimethylsulfoxide (DMSO) compositions containing excess chloride ion. The results are compared with changes in such solutions in the absence of chloride ion and with the changes in strong brines and rationalized in terms of the various competitive ion-solvent and ion-chloride interactions. Organic solvents are shown to generally enhance chloride ion activity and promote complex ion formation. But AN is a stronger ligand for Cu(I) and DMSO is a stronger ligand for Cu(II) and Zn(II) than is Cl- or the other solvents. The decrease in metal ion activity in mixed aqueous solvents containing Cl- is greater than that in concentrated aqueous chloride salt solutions, according to the strength of the chloro- or solvo-complex. These fundamental changes lead to applications in the extraction of metal ion complexes and promote the dissolution of AgCl, PbCl2, and CuCl in aqueous DMSO containing Cl-.

  7. U-Pb (zircon) and geochemical constraints on the age, origin, and evolution of Paleozoic arc magmas in the Oyu Tolgoi porphyry Cu-Au district, southern Mongolia

    USGS Publications Warehouse

    Wainwright, A.J.; Tosdal, R.M.; Wooden, J.L.; Mazdab, F.K.; Friedman, R.M.

    2011-01-01

    Uranium-Pb (zircon) ages are linked with geochemical data for porphyry intrusions associated with giant porphyry Cu-Au systems at Oyu Tolgoi to place those rocks within the petrochemical framework of Devonian and Carboniferous rocks of southern Mongolia. In this part of the Gurvansayhan terrane within the Central Asian Orogenic Belt, the transition from Devonian tholeiitic marine rocks to unconformably overlying Carboniferous calc-alkaline subaerial to shallow marine volcanic rocks reflects volcanic arc thickening and maturation. Radiogenic Nd and Pb isotopic compositions (??Nd(t) range from +3.1 to +7.5 and 206Pb/204Pb values for feldspars range from 17.97 to 18.72), as well as low high-field strength element (HFSE) contents of most rocks (mafic rocks typically have <1.5% TiO2) are consistent with magma derivation from depleted mantle in an intra-oceanic volcanic arc. The Late Devonian and Carboniferous felsic rocks are dominantly medium- to high-K calc-alkaline and characterized by a decrease in Sr/Y ratios through time, with the Carboniferous rocks being more felsic than those of Devonian age. Porphyry Cu-Au related intrusions were emplaced in the Late Devonian during the transition from tholeiitic to calc-alkaline arc magmatism. Uranium-Pb (zircon) geochronology indicates that the Late Devonian pre- to syn-mineral quartz monzodiorite intrusions associated with the porphyry Cu-Au deposits are ~372Ma, whereas granodiorite intrusions that post-date major shortening and are associated with less well-developed porphyry Cu-Au mineralization are ~366Ma. Trace element geochemistry of zircons in the Late Devonian intrusions associated with the porphyry Cu-Au systems contain distinct Th/U and Yb/Gd ratios, as well as Hf and Y concentrations that reflect mixing of magma of distinct compositions. These characteristics are missing in the unmineralized Carboniferous intrusions. High Sr/Y and evidence for magma mixing in syn- to late-mineral intrusions distinguish the Late

  8. Leaching of Cu, Cd, Pb, and phosphorus and their availability in the phosphate-amended contaminated soils under simulated acid rain.

    PubMed

    Cui, Hongbiao; Zhang, Shiwen; Li, Ruyan; Yi, Qitao; Zheng, Xuebo; Hu, Youbiao; Zhou, Jing

    2017-09-01

    Phosphate amendments have been used to immobilize heavy metal-contaminated soils. However, phosphate amendments contain large amounts of phosphorus, which could leach out to potentially contaminate groundwater and surface water. A laboratory column leaching experiment was designed to study the effects of simulated acid rain (SAR) on the potential release of copper (Cu), lead (Pb), cadmium (Cd), and phosphorus (P), and their availability after immobilizing with hydroxyapatite (HAP) and potassium dihydrogen phosphate (PDP). The application of HAP and PDP enhanced the leachate electrical conductivity, total organic carbon, and pH. Higher P was found in the PDP- (>4.29 mg L -1 ) and HAP-treated (>1.69 mg L -1 ) columns than that in untreated (<0.2 mg L -1 ) columns, and they were both over the class V limit (0.4 mg L -1 ) mandated by the Chinese National Quality Standards for Surface Waters (GB 3838-2002). PDP application decreased the leachate Cu, Pb, and Cd effectively; however, HAP addition increased leachate Cu and Pb. HAP and PDP applications decreased the soil CaCl 2 -extractable and exchangeable fraction of Cu, Pb, and Cd, and increased resin P. However, eluviations transformed the heavy metals from inactive to active fractions and reduced soil labile P. These findings showed that HAP and PDP had a potential risk of excessive P-induced eutrophication. Meanwhile, more attention should be paid to the leaching loss of multiple metals because phosphate amendments might promote the leaching of some metals while immobilizing others.

  9. Simultaneous determination of Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ by using second-derivative spectrophotometry method.

    PubMed

    Han, Yanyan; Li, Yan; Si, Wei; Wei, Dong; Yao, Zhenxing; Zheng, Xianpeng; Du, Bin; Wei, Qin

    2011-09-01

    A new method of simultaneous determination of Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ is proposed here by using the second-derivative spectrophotometry method. In pH=10.35 Borax-NaOH buffer, using meso-tetra (3-methoxyl-4-hydroxylphenyl) porphyrin ([T-(3-MO-4-HP)P]) as chromomeric reagent, micelle solution was formed after Tween-80 surfactant was added into the solution containing Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ ions. The original absorption spectrum of the above complexes was obtained after heating in the boiling water for 25 min. The second-derivative absorption peaks of five metal-porphyrin complexes can be separated from the original absorption spectrum by using chemometric tool. In this way, Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ ions can be determined simultaneously. Under the optimal conditions, the linear ranges of the calibration curve were 0-0.60, 0-0.60, 0-0.40, 0-0.80 and 0-0.48 μg mL(-1) for Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+, respectively. The molar absorptivity of these color systems were 1.38×10(5), 1.01×10(5), 3.24×10(5), 1.07×10(5) and 1.29×10(5)Lmol(-1)cm(-1). The method developed in this paper has advantages in selectivity, sensitivity, operation and can effectively resolve spectra overlapping problem. This method has been applied to determine the real samples with satisfactory results. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  10. Effect of pH of Sulfate Solution on Electrochemical Behavior of Pb-Free Solder Candidates of SnZn and SnZnCu Systems

    NASA Astrophysics Data System (ADS)

    Grobelny, M.; Sobczak, N.

    2012-05-01

    The corrosion resistance of the next generation solders is one of the key factors responsible for reliability of solder joints. The paper focuses on the comparative studies of corrosion behavior of Pb-free solder candidates of binary Sn-Zn and ternary Sn-Zn-Cu systems. The accelerated corrosion tests were made by means of voltammetric measurements carried out in the sulfate solution. The effect of its pH on the electrochemical behavior of selected alloys was identified.

  11. Simultaneous determination of Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+ by using second-derivative spectrophotometry method

    NASA Astrophysics Data System (ADS)

    Han, Yanyan; Li, Yan; Si, Wei; Wei, Dong; Yao, Zhenxing; Zheng, Xianpeng; Du, Bin; Wei, Qin

    2011-09-01

    A new method of simultaneous determination of Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+ is proposed here by using the second-derivative spectrophotometry method. In pH = 10.35 Borax-NaOH buffer, using meso-tetra (3-methoxyl-4-hydroxylphenyl) porphyrin ([T-(3-MO-4-HP)P]) as chromomeric reagent, micelle solution was formed after Tween-80 surfactant was added into the solution containing Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+ ions. The original absorption spectrum of the above complexes was obtained after heating in the boiling water for 25 min. The second-derivative absorption peaks of five metal-porphyrin complexes can be separated from the original absorption spectrum by using chemometric tool. In this way, Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+ ions can be determined simultaneously. Under the optimal conditions, the linear ranges of the calibration curve were 0-0.60, 0-0.60, 0-0.40, 0-0.80 and 0-0.48 μg mL -1 for Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+, respectively. The molar absorptivity of these color systems were 1.38 × 10 5, 1.01 × 10 5, 3.24 × 10 5, 1.07 × 10 5 and 1.29 × 10 5 L mol -1 cm -1. The method developed in this paper has advantages in selectivity, sensitivity, operation and can effectively resolve spectra overlapping problem. This method has been applied to determine the real samples with satisfactory results.

  12. Comparison in waterborne Cu, Ni and Pb bioaccumulation kinetics between different gammarid species and populations: Natural variability and influence of metal exposure history.

    PubMed

    Urien, N; Farfarana, A; Uher, E; Fechner, L C; Chaumot, A; Geffard, O; Lebrun, J D

    2017-12-01

    Kinetic parameters (uptake from solution and elimination rate constants) of Cu, Ni and Pb bioaccumulation were determined from two Gammarus pulex and three Gammarus fossrum wild populations collected from reference sites throughout France in order to assess the inter-species and the natural inter-population variability of metal bioaccumulation kinetics in that sentinel organism. For that, each population was independently exposed for seven days to either 2.5μgL -1 Cu (39.3nM), 40μgL -1 Ni (681nM) or 10μgL -1 Pb (48.3nM) in laboratory controlled conditions, and then placed in unexposed microcosms for a 7-day depuration period. In the same way, the possible influence of metal exposure history on subsequent metal bioaccumulation kinetics was addressed by collecting wild gammarids from three populations inhabiting stations contaminated either by Cd, Pb or both Pb and Ni (named pre-exposed thereafter). In these pre-exposed organisms, assessment of any changes in metal bioaccumulation kinetics was achieved by comparison with the natural variability of kinetic parameters defined from reference populations. Results showed that in all studied populations (reference and pre-exposed) no significant Cu bioaccumulation was observed at the exposure concentration of 2.5μgL -1 . Concerning the reference populations, no significant differences in Ni and Pb bioaccumulation kinetics between the two species (G. pulex and G. fossarum) was observed allowing us to consider all the five reference populations to determine the inter-population natural variability, which was found to be relatively low (kinetic parameters determined for each population remained within a factor of 2 of the minimum and maximum values). Organisms from the population exhibiting a Pb exposure history presented reduced Ni uptake and elimination rate constants, whereas no influence on Ni kinetic parameters was observed in organisms from the population exhibiting an exposure history to both Ni and Pb. Furthermore

  13. Mechanism of Cu(II), Cd(II) and Pb(II) ions sorption from aqueous solutions by macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)

    NASA Astrophysics Data System (ADS)

    Nastasović, Aleksandra B.; Ekmeščić, Bojana M.; Sandić, Zvjezdana P.; Ranđelović, Danijela V.; Mozetič, Miran; Vesel, Alenka; Onjia, Antonije E.

    2016-11-01

    The mechanism of Cu(II), Cd(II) and Pb(II) ions sorption from aqueous solutions by macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (PGME) functionalized by reaction of the pendant epoxy groups with diethylene triamine (PGME-deta) was studied using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analysis. Atomic force microscopy (AFM) and scanning energy-dispersive X-ray spectroscopy (SEM-EDX) were used for the determination of surface morphology of the copolymer particles. The sorption behavior of heavy metals Cu(II), Cd(II) and Pb(II) ions sorption was investigated in batch static experiments under non-competitive conditions at room temperature (298 K). The obtained results were fitted to pseudo-first order, pseudo-second order and intraparticle diffusion kinetic model. The kinetics studies showed that Cu(II), Cd(II) and Pb(II) sorption obeys the pseudo-second-order model under all investigated operating conditions with evident influence of pore diffusion.

  14. The study of adsorption characteristics Cu2+ and Pb2+ ions onto PHEMA and P(MMA-HEMA) surfaces from aqueous single solution.

    PubMed

    Moradi, O; Aghaie, M; Zare, K; Monajjemi, M; Aghaie, H

    2009-10-30

    The adsorption characteristics of Cu2+ and Pb2+ ions onto poly2-hydroxyethyl methacrylate (PHEMA) and copolymer 2-hydroxyethyl methacrylate with monomer methyl methacrylate P(MMA-HEMA) adsorbent surfaces from aqueous single solution were investigated with respect to the changes in the pH of solution, adsorbent composition (changes in the weight percentage of MMA copolymerized with HEMA monomer), contact time and the temperature in the individual aqueous solutions. The linear correlation coefficients of Langmuir and Freundlich isotherms were obtained. The results revealed that the Langmuir isotherm fitted the experimental results better than the Freundlich isotherm. Using the Langmuir model equation, the monolayer adsorption capacity of PHEMA surface was found to be 0.840 and 3.037 mg/g for Cu2+ and Pb2+ ions and adsorption capacity of (PMMA-HEMA) was found to be 31.153 and 31.447 mg/g for Cu2+ and Pb2+ ions, respectively. Changes in the standard Gibbs free energy (DeltaG(0)), standard enthalpy (DeltaH(0)) and standard entropy (DeltaS(0)) show that the adsorption of mentioned ions onto PHEMA and P(MMA-HEMA) are spontaneous and exothermic at 293-323 K.

  15. New quaternized cellulose based on hydroxyethyl cellulose (HEC) grafted EDTA: Synthesis, characterization and application for Pb (II) and Cu (II) removal.

    PubMed

    Jilal, Issam; El Barkany, Soufian; Bahari, Zahra; Sundman, Ola; El Idrissi, Abderahmane; Abou-Salama, Mohamed; Romane, Abderrahmane; Zannagui, Chahid; Amhamdi, Hassan

    2018-01-15

    In this paper, new quaternized cellulose derivative based on Ethylenediaminetetraacetic acid (EDTA) and hydroxyethyl cellulose (HEC) is successfully prepared in homogeneous medium. The resulted product is characterized using spectroscopy techniques (FTIR, 1H NMR and 13C NMR). At the supramolecular level, the x-ray patterns show that a high hydrogen bond density occurs by grafting EDTA on the HEC fibers. The new adsorbent (HEC-EDTA) shows a high adsorption capacity of heavy metals (Pb (II) and Cu (II)) from aqueous metals solutions. The adsorption of the both metal ions follows the pseudo-second-order kinetic model, while the adsorption isotherms are well described by the Langmuir model. The qm values are determined for Pb (II) and Cu (II), respectively. For each metal, the equilibrium adsorption time is found to be 30min. Moreover, the HEC-EDTA adsorption capacity is strongly dependent on the pH value; and the adsorption is favorable for pH values ​​between 4 and 6. Moreover, the results show a high affinity toward Cu (II) than Pb (II). Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Geochemical behavior, environmental availability, and reconstruction of historical trends of Cu, Pb, and Zn in sediment cores of the Cananéia-Iguape coastal system, Southeastern Brazil.

    PubMed

    Tramonte, Keila Modesto; Figueira, Rubens Cesar Lopes; Majer, Alessandra Pereira; de Lima Ferreira, Paulo Alves; Batista, Miriam Fernanda; Ribeiro, Andreza Portella; de Mahiques, Michel Michaelovitch

    2018-02-01

    The Cananéia-Iguape system is located in a coastal region of southeastern Brazil, recognized by UNESCO as an Atlantic Forest Biosphere Reserve. This system has suffered substantial environmental impacts due to the opening of an artificial channel and by past intensive mining activities. In this paper was performed the sequential chemical extraction of Cu, Pb, and Zn, on previously described sediment cores, and the statistical treatment of the data, allowing to estimate the remobilization geochemical behavior, the available content and the trend of accumulation between 1926 and 2008. The maximum available level (sum of all mobile fraction) were, in mgkg -1 , 18.74 for Cu, 177.55 for Pb and 123.03 for Zn. Considering its environmental availability, Pb remains a concern in the system. It was possible to recognize the anthropic contribution of Pb, being the mining activities considered the only potential source of this metal in the region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of Cr, Fe, Cu, Zn and Se in cereals

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Yi; Jiang, Shiuh-Jen; Sahayam, A. C.

    2014-11-01

    Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry (USS-ETV-ICP-MS) has been applied to determine Cr, Fe, Cu, Zn and Se in several cereal samples. Thioacetamide was used as the modifier to enhance the ion signals. The background ions at the masses of interest were reduced in intensity significantly by using 1.0 mL min- 1 methane (CH4) as reaction cell gas in the dynamic reaction cell (DRC). Since the sensitivities of Cr, Fe, Cu, Zn and Se in different matrices were quite different, standard addition and isotope dilution methods were used for the determination of Cr, Fe, Cu, Zn and Se in these cereal samples. The method detection limits estimated from standard addition curves were about 1, 10, 4, 12 and 2 ng g- 1 for Cr, Fe, Cu, Zn and Se, respectively, in original cereal samples. This procedure has been applied to the determination of Cr, Fe, Cu, Zn and Se whose concentrations are in μg g- 1 (except Cr and Se) in standard reference materials (SRM) of National institute of standards and technology (NIST), NIST SRM 1568a Rice Flour and NIST SRM 1567a Wheat Flour and two cereal samples purchased from a local market. The analysis results of reference materials agreed with certified values at 95% confidence level according to Student's T-test. The results for the real world cereal samples were also found to be in good agreement with the pneumatic nebulization DRC ICP-MS results of the sample solutions.

  18. Crystal structure, atomic ordering and charge localization in Pb 2Sr 2Y 1-xCa xCu 3O 8+δ ( x=0, δ=1.47)

    NASA Astrophysics Data System (ADS)

    Marezio, M.; Santoro, A.; Capponi, J. J.; Hewat, E. A.; Cava, R. J.; Beech, F.

    1990-08-01

    Neutron, X-ray and electron diffraction measurements have been carried out on Pb 2Sr 2Y 1- xCa xCu 3O 8+δ samples. The oxygen incorporated in the structure during the oxidation is located on the (Cu) planes sandwiched between the two (PbO) layers. A theoretical composition of δ=2 is possible, although in practice only a stoichiometry corresponding to δ=1.9 has been achieved so far. The extra oxygen present for δ620 forms ordered structures in which the Cu cations of the (CuO δ) planes have square planar coordination in Pb 2Sr 2YCu 3O 9, either square planar, pyramidal, and octahedral, or only pyramidal coordination in Pb 2Sr 2YCu 3O 9.5, and exclusively octahedral coordination in Pb 2Sr 2YCu 3O 10. In the range of composition 0≤ δ≤1, mixtures of two phases are obtained, one with δ=0 stoichiometry and the other with δ=1, and whose relative quantities depend on the total amount of oxygen incorporated by the sample. The positive charges induced in Pb 2Sr 2YCu 3O 8+δ by oxygen incorporation oxidize the Cu 1+ cations to 2+ and some of the Pb 2+ cations to 4+. An order between Pb 2+ and Pb 4+ is established and this localization hinders the charge transfer to the conducting (CuO 2) planes and, for this reason, no superconductivity is present in oxidized samples. The cation valences are estimated from the co-ordination numbers and from the bond length-bond strength relationship. Pb 2Sr 2YCu 3O 8 becomes superconducting at ≈ 80 K when some of the trivalent Y cations are replaced by divalent Ca. In this case the extra positive charges oxidize the Cu 2+ cations in the CuO 2 planes instead of Pb 2+ to 4+ and Cu 1+ to 2+, as does the incorporation of oxygen. This different behavior can be explained as a concentration effect which changes the oxidation/reduction potentials. When heat treated at 500°C in O 2, Pb 2Sr 2Y 0.5Ca 0.5Cu 3O 8 behaves similarly to the undoped compound. The oxygen uptake suppresses the superconducting transition which is re-established by

  19. Effects of Multi-metal (Cu, Zn, Cd, Cr, and Mn) Mixtures on the Reproduction of Freshwater Rotifer Brachionus calyciflorus.

    PubMed

    Xu, Xiao-Ping; Xi, Yi-Long; Huang, Lin; Xiang, Xian-Ling

    2015-12-01

    In the field, organisms are usually exposed to mixtures of various metals. However, the effects of multi-metal mixtures on growth and reproduction of rotifers remain unknown. In the present study, effects of multi-metal mixtures (Cu, Zn, Cd, Cr, and Mn) on reproduction of the freshwater rotifer Brachionus calyciflorus were assessed by determining various endpoints, including the ratio of ovigerous females to nonovigerous females, the ratio of mictic to amictic females, the mictic rate, the fertilization rate, the population growth rate, and the resting eggs production. The results demonstrated that reproduction of rotifers was significantly affected by all multi-metal mixtures assessed. Moreover, the ratio of mictic to amictic females was the most sensitive endpoint and might be suitable to evaluate effects of multi-metal mixtures to rotifers.

  20. Plasticity performance of Al 0.5 CoCrCuFeNi high-entropy alloys under nanoindentation

    SciTech Connect

    Yu, Li-ping; Chen, Shu-ying; Ren, Jing-li; Ren, Yang; Yang, Fu-qian; Dahmen, Karin A.; Liaw, Peter K.

    2017-04-01

    The statistical and dynamic behaviors of the displacement-load curves of a high-entropy alloy, Al0.5 CoCrCuFeNi, were analyzed for the nanoindentation performed at two temperatures. Critical behavior of serrations at room temperature and chaotic flows at 200 °C were detected. These results are attributed to the interaction among a large number of slip bands. For the nanoindentation at room temperature, recurrent partial events between slip bands introduce a hierarchy of length scales, leading to a critical state. For the nanoindentation at 200 °C, there is no spatial interference between two slip bands, which is corresponding to the evolution of separated trajectory of chaotic behavior

  1. High Strength, Utilizable Ductility and Electrical Conductivity in Cold Rolled Sheets of Cu-Cr-Zr-Ti Alloy

    NASA Astrophysics Data System (ADS)

    Chenna Krishna, S.; Karthick, N. K.; Sudarshan Rao, G.; Jha, Abhay K.; Pant, Bhanu; Cherian, Roy M.

    2017-12-01

    The microstructure and properties of Cu-0.5Cr-0.03Zr-0.04Ti (wt.%) alloy subjected to cold rolling and aging were investigated using hardness and electrical conductivity measurement, tensile testing, and transmission electron microscopy. Plates subjected to 85% reduction in thickness showed significant improvement in the strength compared to solution treated and aged condition. By proper selection of aging temperature, ductility could be significantly improved without reduction in the strength. Aging of the cold rolled sheet at 420 °C for 1 h yielded an ultimate tensile strength and yield strength of 540 and 460 MPa, respectively. On the other hand, total and uniform elongation was 16 and 12%, respectively, with an electrical conductivity of 65 %IACS. The combination of properties achieved after cold rolling and aging is attributed to the higher dislocation density, ultrafine grains and nano-sized chromium precipitates.

  2. The release of As, Cr and Cu from contaminated soil stabilized with APC residues under landfill conditions.

    PubMed

    Travar, I; Kihl, A; Kumpiene, J

    2015-03-15

    The aim of this study was to investigate the stability of As, Cr and Cu in contaminated soil treated with air pollution control residues under landfill conditions. The influence of landfill gas and temperature on the release of trace elements from stabilized soil was simulated using a diffusion test. The air pollution control residues immobilized As through the precipitation of Ca-As minerals (calcium arsenate (Ca5H2(AsO4)3 × 5H2O), weilite (CaAsO4) and johnbaumite (Ca5(AsO4)3(OH)), incorporation of As into ettringite (Ca6Al2(SO4)3(OH)12 × 26H2O) and adsorption by calcite (CaCO3). The air pollution control residues generally showed a high resistance to pH reduction, indicating high buffer capacity and stability of immobilized As in a landfill over time. Generation of heat in a landfill might increase the release of trace elements. The release of As from stabilized soil was diffusion-controlled at 60 °C, while surface wash-off, dissolution, and depletion prevailed at 20 °C. The air pollution control residues from the incineration of municipal solid waste immobilized Cr, indicating its stability in a landfill. The treatment of soil with air pollution control residues was not effective in immobilization of Cu. Contaminated soils treated with air pollution control residues will probably have a low impact on overall leachate quality from a landfill. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. [Simultaneous determination of the total content of As, Ba, Cd, Cr, Hg, Pb, Se, Sb in paint coating on toys by ICP-AES].

    PubMed

    Liu, Chong-hua; Zhong, Zhi-guang; Li, Bing-zhong; Huang, Li-na; Yi, Le-zhou

    2002-10-01

    ICP-AES was used for the simultaneous determination of the total content of As, Ba, Cd, Cr, Hg, Pb, Se, Sb in paint coating on toys. Digestion procedures of these materials with different acid mixtures have been developed. The sample was dissvolved in the acid mixture of nitric acid, tartaric acid, and a little phosphoric acid. The matrix elements effect was studied and the preferable experimental conditions were investigated. The recovery rates of this procedure were between 99% and 109%. The RSD was within 1.5%. The proposed method was simple, rapid and can be used in daily inspection of toys.

  4. Geological, fluid inclusion and isotopic studies of the Baiyangping Pb-Zn-Cu-Ag polymetallic deposit, Lanping basin, Yunnan province, China

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Hu; Hou, Zeng-Qian; Song, Yu-Cai; Zhang, Hong-Rui

    2015-11-01

    Baiyangping Pb-Zn-Cu-Ag deposit is located in Lanping basin, northwestern Yunnan province. The deposit is composed of a few ore veins and can be divided into several ore blocks. The ore bodies are primarily hosted in Mesozoic carbonate, sandstone and siltstone along the north-south-striking, NWW-striking and NE-SW-striking fault zones. There are breccia, massive, vein like and disseminated ores. The main ore minerals are sphalerite, galena, gratonite, jordanite, tetrahedrite series minerals, chalcocite, chalcopyrite, realgar, orpiment, bournonite, cobalt-bearing arsenopyrite, argentite, kongsbergite, cobaltine, siegenite. The sizes of fluid inclusions in Baiyangping deposit are generally less than 10 μm and have the shape of round, oval, irregular, etc. The ore-forming fluid system is Ca2+-Na+-K+-Mg2+-Cl--F--NO3- brine system. The freezing temperature of fluid inclusions in mineral deposits ranges from -26.4 to -0.2 °C, average -14.6 °C; the homogenization temperature is concentrated in 120-180 °C, and the salinity is between 0.35 and 24.73 wt% (NaCleq), average 16.9 wt% (NaCleq). δ13CPDB and δ18OSMOW values of hydrothermal calcite range from -4.16‰ to 3‰ and -2.5‰ to 20.4‰, respectively. δ34S values of sulfide minerals range from -10.2‰ to 11.2‰, average 5.6‰. The sulfide samples yield 206Pb/204Pb values of 18.609-18.818, 207Pb/204Pb of 15.548-15.842 and 208Pb/204Pb = 38.514-39.556. C-O-S-Pb isotope compositions of the Baiyangping deposit indicate a homogeneous carbon source, and the carbon in hydrothermal calcite is derived from the dissolution of carbonate rock strata, the ore-forming fluid belongs to basin brine fluid system, which is mixed with the precipitate water, sulfur in sulfides and sulfosalts is derived from thermal chemical sulfate reduction, and the thermal decomposition of sulfur-bearing organic matter. The metal mineralization material is from sedimentary strata and basement. The late Pb-Zn polymetallic mineralization event

  5. Enhanced performance of p-type dye-sensitized solar cells based on ultrasmall Mg-doped CuCrO2 nanocrystals.

    PubMed

    Xiong, Dehua; Zhang, Wenjun; Zeng, Xianwei; Xu, Zhen; Chen, Wei; Cui, Jin; Wang, Mingkui; Sun, Licheng; Cheng, Yi-Bing

    2013-08-01

    Herein, we present ultrasmall delafossite-type Mg-doped CuCrO2 nanocrystals prepared by using hydrothermal synthesis and their first application as photocathodes in efficient p-type dye-sensitized solar cells. The short-circuit current density (Jsc ) is notably increased by approximately 27% owing to the decreased crystallite size and the enhanced optical transmittance associated with Mg doping of the CuCrO2 nanocrystalline sample. An open-circuit voltage (Voc ) of 201 mV, Jsc of 1.51 mA cm(-2) , fill factor of 0.449, and overall photoconversion efficiency of 0.132% have been achieved with the CuCr0.9 Mg 0.1 O2 dye photocathode sensitized with the P1 dye under optimized conditions. This efficiency is nearly three times higher than that of the NiO-based reference device, which is attributed to the largely improved Voc and Jsc . The augmentation of Voc and Jsc can be attributed to the lower valance band position and the faster hole diffusion coefficient of CuCr0.9 Mg 0.1 O2 compared to those of the NiO reference, respectively, which leads to a higher hole collection efficiency. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Deformation mechanisms to ameliorate the mechanical properties of novel TRIP/TWIP Co-Cr-Mo-(Cu) ultrafine eutectic alloys

    NASA Astrophysics Data System (ADS)

    Kim, J. T.; Hong, S. H.; Park, H. J.; Kim, Y. S.; Suh, J. Y.; Lee, J. K.; Park, J. M.; Maity, T.; Eckert, J.; Kim, K. B.

    2017-01-01

    In the present study, the microstructural evolution and the modulation of the mechanical properties have been investigated for a Co-Cr-Mo (CCM) ternary eutectic alloy by addition of a small amount of copper (0.5 and 1 at.%). The microstructural observations reveal a distinct dissimilarity in the eutectic structure such as a broken lamellar structure and a well-aligned lamellar structure and an increasing volume fraction of Co lamellae as increasing amount of copper addition. This microstructural evolution leads to improved plasticity from 1% to 10% without the typical tradeoff between the overall strength and compressive plasticity. Moreover, investigation of the fractured samples indicates that the CCMCu alloy exhibits higher plastic deformability and combinatorial mechanisms for improved plastic behavior. The improved plasticity of CCMCu alloys originates from several deformation mechanisms; i) slip, ii) deformation twinning, iii) strain-induced transformation and iv) shear banding. These results reveal that the mechanical properties of eutectic alloys in the Co-Cr-Mo system can be ameliorated by micro-alloying such as Cu addition.

  7. Toxicity and critical body residues of Cd, Cu and Cr in the aquatic oligochaete Tubifex tubifex (Müller) based on lethal and sublethal effects.

    PubMed

    Méndez-Fernández, Leire; Martínez-Madrid, Maite; Rodriguez, Pilar

    2013-12-01

    The aim of the present study was to estimate critical body residues (CBRs) of three metals [cadmium (Cd), copper (Cu), chromium (Cr)] in the aquatic oligochaete Tubifex tubifex based on lethal (LBR) and sublethal effects (CBR), and to discuss the relevance of the exposure to sediment for deriving CBR. Toxicity parameters (LC50, EC50, LBR50 and CBR50) were estimated for each metal by means of data on survival and on several sublethal variables measured in short-term (4 days), water-only exposures and in long-term, chronic (14 and 28 days) exposures using metal-spiked sediment. Sublethal endpoints included autotomy in short-term exposure, as well as reproduction and growth in chronic bioassays. LBR50 and CBR50 were 3-6 times higher in sediment than in water-only exposure to Cd and about 2-11 times higher for Cu, depending on the measured endpoint; however, for Cr these parameters varied only by a factor of 1.2. Cu and Cr LBR50 and CBR50 values in 96 h water-only exposure were very similar (survival 2.39 μmol Cu g(-1) dw, 2.73 μmol Cr g(-1) dw; autotomy 0.53 μmol Cu g(-1) dw, 0.78 μmol Cr g(-1) dw). However, in metal-spiked sediments, 28 d CBR50 values for autotomy, reproduction and growth ranged 6.76-29.54 μmol g(-1) dw for Cd, 3.88-6.23 μmol g(-1) dw for Cu, 0.65 μmol g(-1) dw for Cr (calculated only on total number of young). Exposure conditions (time and presence/absence of sediment) seem to be influential in deriving metal CBR values of Cd and Cu, while appear to be irrelevant for Cr. Thus, CBR approach for metals is complex and tissue residue-toxicity relationship is not directly applicable so far.

  8. Pb-Bi-Ag-Cu-(Hg) chemistry of galena and some associated sulfosalts. A review and some new data from Colorado California and Pennsylvania

    USGS Publications Warehouse

    Foord, Eugene E.; Shawe, Daniel R.

    1989-01-01

    Galena, associated with Pb-Bi-Ag sulfosalts and simple sulfides, contains varied amounts of Ag and Bi in the Dandy vein system, Idarado mine, Ouray, Colorado; the Jackass mine, Darwin District, California; and the Leadville district, Colorado. Silver- and bismuth-bearing galena associated with minor amounts of pyrite, chalcopyrite and sphalerite occur at the Pequea mine, Lancaster County, Pennsylvania. Ag and Bi contents in the Dandy suite of galena range from about 1.4 to 3.4 and 2.5 to 6.5 wt.% respectively, and are comparable or lower in galena from the other localities. Exsolved matildite is present in galena from the Dandy, Jackass and Leadville localities. The presence in significant amounts of both Ag and Bi in a Pb-rich sulfide system is necessary for formation of PbSss (galena solid-solution). If Ag (especially) and Bi (to a lesser extent) are absent, the galena formed will be essentially pure PbS. Some minor Sb may substitute for Bi. Compositional data for all of the galena samples are in agreement with a previously proposed linear relationship between a and Ag-Bi(Sb) content. Matildite and seven additional Pb-Bi-Ag-Cu sulfosalts have been identified from the Dandy vein system, based on electron-microprobe analyses and some X-ray powder-diffraction data.

  9. The transport behavior of As, Cu, Pb, and Zn during electrokinetic remediation of a contaminated soil using electrolyte conditioning

    SciTech Connect

    Yang, Jung-Seok; Kwon, Man Jae; Choi, Jaeyoung

    2014-12-01

    Electrokinetic remediation (also known as electrokinetics) is a promising technology for removing metals from fine-grained soils. However, few studies have been conducted regarding the transport behavior of multi-metals during electrokinetics. We investigated the transport of As, Cu, Pb, and Zn from soils during electrokinetics, the metal fractionation before and after electrokinetics, the relationships between metal transport and fractionation, and the effects of electrolyte conditioning. The main transport mechanisms of the metals were electroosmosis and electromigration during the first two weeks and electromigration during the following weeks. The direction of electroosmotic flow was from the anode to the cathode, and themore » metals in the dissolved and reducible-oxides fractions were transported to the anode or cathode by electromigration according to the chemical speciation of the metal ions in the pore water. Moreover, a portion of the metals that were initially in the residual fraction transitioned to the reducible and soluble fractions during electrokinetic treatment. However, this alteration was slow and resulted in decreasing metal removal rates as the electrokinetic treatment progressed. In addition, the use of NaOH, H3PO4, and Na2SO4 as electrolytes resulted in conditions that favored the precipitation of metal hydroxides, phosphates, and sulfates in the soil. These results demonstrated that metal removal was affected by the initial metal fractionation, metal speciation in the pore solution, and the physical–chemical parameters of the electrolytes, such as pH and electrolyte composition. Therefore, the treatment time, use of chemicals, and energy consumption could be reduced by optimizing pretreatment and by choosing appropriate electrolytes for the target metals.« less

  10. Distribution of Cd, Pb and Cu between dissolved fraction, inorganic particulate and phytoplankton in seawater of Terra Nova Bay (Ross Sea, Antarctica) during austral summer 2011-12.

    PubMed

    Illuminati, S; Annibaldi, A; Romagnoli, T; Libani, G; Antonucci, M; Scarponi, G; Totti, C; Truzzi, C

    2017-10-01

    During the austral summer 2011-2012, the metal quotas of Cd, Pb and Cu in the phytoplankton of Terra Nova Bay (TNB, Antarctica) were measured for the first time. Evolution of all the three metal distributions between dissolved and particulate fractions during the season was also evaluated. Metal concentrations were mainly affected by the dynamic of the pack ice melting and phytoplankton activity. In mid-December when TNB area was covered by a thick pack ice layer and phytoplankton activity was very low, all the three metals were present mainly in their dissolved species. When the pack ice started to melt and the water column characteristics became ideal (i.e. moderate stratification, ice free area), the phytoplankton bloom occurred. Cd showed a nutrient-type behaviour with dissolved and particulate fractions mainly influenced by phytoplankton activity. Cd quota showed a mean value of 0.12 ± 0.07 nmol L -1 (30-100% of the total particulate). Also Cu showed a nutrient-type behaviour, with its quota in phytoplankton varying between 0.08 and 2.1 nmol L -1 (20-100% of the total particulate). Pb features the typical distribution of a scavenged element with very low algal content (0.03 ± 0.02 nmol L -1 , representing 20-50% of the total particulate). The vertical distribution of this element was influenced by several factors (e.g. pack ice melting, atmospheric inputs), the phytoplankton activity affecting Pb behaviour only partially. Metal:C ratios provide valuable information on the biological requirements for Cd, Pb and Cu, leading us to better understand their biogeochemical cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Epitaxial growth and properties of YBa2Cu3O(x)-Pb(Zr(0.6)Ti(0.4))O3-YBa2Cu3O(x) trilayer structure by laser ablation

    NASA Astrophysics Data System (ADS)

    Boikov, Iu. A.; Esaian, S. K.; Ivanov, Z. G.; Brorsson, G.; Claeson, T.; Lee, J.; Safari, A.

    1992-08-01

    YBa2Cu3O(x)Pb(Zr(0.6)Ti(0.4))O3-YBa2Cu3O(x) multilayer structure has been grown on SrTiO3 and Al2O3 substrates using laser ablation. The deposition conditions for the growth of trilayers and their properties are studied in this investigation. Scanning electron microscope images and X-ray diffraction analyses indicate that all the constituent films in the trilayer grow epitaxially on SrTiO3 and were highly oriented on Al2O3. Transport measurements on these multilayers show that top YBa2Cu3O(x) films have good superconducting properties.

  12. Osteoclastic differentiation and resorption is modulated by bioactive metal ions Co2+, Cu2+ and Cr3+ incorporated into calcium phosphate bone cements

    PubMed Central

    Bernhardt, Anne; Schamel, Martha; Gbureck, Uwe; Gelinsky, Michael

    2017-01-01

    Biologically active metal ions in low doses have the potential to accelerate bone defect healing. For successful remodelling the interaction of bone graft materials with both bone-forming osteoblasts and bone resorbing osteoclasts is crucial. In the present study brushite forming calcium phosphate cements (CPC) were doped with Co2+, Cu2+ and Cr3+ and the influence of these materials on osteoclast differentiation and activity was examined. Human osteoclasts were differentiated from human peripheral blood mononuclear cells (PBMC) both on the surface and in indirect contact to the materials on dentin discs. Release of calcium, phosphate and bioactive metal ions was determined using ICP-MS both in the presence and absence of the cells. While Co2+ and Cu2+ showed a burst release, Cr3+ was released steadily at very low concentrations (below 1 μM) and both calcium and phosphate release of the cements was considerably changed in the Cr3+ modified samples. Direct cultivation of PBMC/osteoclasts on Co2+ cements showed lower attached cell number compared to the reference but high activity of osteoclast specific enzymes tartrate resistant acid phosphatase (TRAP), carbonic anhydrase II (CAII) and cathepsin K (CTSK) and significantly increased gene expression of vitronectin receptor. Indirect cultivation with diluted Co2+ cement extracts revealed highest resorbed area compared to all other modifications and the reference. Cu2+ cements had cytotoxic effect on PBMC/osteoclasts during direct cultivation, while indirect cultivation with diluted extracts from Cu2+ cements did not provoke cytotoxic effects but a strictly inhibited resorption. Cr3+ doped cements did not show cytotoxic effects at all. Gene expression and enzyme activity of CTSK was significantly increased in direct culture. Indirect cultivation with Cr3+ doped cements revealed significantly higher resorbed area compared to the reference. In conclusion Cr3+ doped calcium phosphate cements are an innovative cement

  13. Coexistence of Cu, Fe, Pb, and Zn oxides and chlorides as a determinant of chlorinated aromatics generation in municipal solid waste incinerator fly ash.

    PubMed

    Fujimori, Takashi; Tanino, Yuta; Takaoka, Masaki

    2014-01-01

    We investigated chemical determinants of the generation of chlorinated aromatic compounds (aromatic-Cls), such as polychlorinated biphenyls (PCBs) and chlorobenzenes (CBzs), in fly ash from municipal solid waste incineration. The influences of the following on aromatic-Cls formation in model fly ash (MFA) were systematically examined quantitatively and statistically: (i) inorganic chlorides (KCl, NaCl, CaCl2), (ii) base materials (SiO2, Al2O3, CaCO3), (iii) metal oxides (CuO, Fe2O3, PbO, ZnO), (iv) metal chlorides (CuCl2, FeCl3, PbCl2, ZnCl2), and (v) "coexisting multi-models." On the basis of aromatic-Cls concentrations, the ∑CBzs/∑PCBs ratio, and the similarity between distribution patterns, MFAs were categorized into six groups. The results and analysis indicated that the formation of aromatic-Cls depended strongly on the "coexistence condition", namely multimodels composed of not only metal chlorides, but also of metal oxides. The precise replication of metal chloride to oxide ratios, such as the precise ratios of Cu-, Fe-, Pb-, and Zn-chlorides and oxides, may be an essential factor in changing the thermochemical formation patterns of aromatic-Cls. Although CuCl2 acted as a promoter of aromatic-Cls generation, statistical analyses implied that FeCl3 also largely influenced the generation of aromatic-Cls under mixture conditions. Various additional components of fly ash were also comprehensively analyzed.

  14. SHRIMP U-Pb ages of xenotime and monazite from the Spar Lake red bed-associated Cu-Ag deposit, western Montana: Implications for ore genesis

    USGS Publications Warehouse

    Aleinikoff, John N.; Hayes, Timothy S.; Evans, Karl V.; Mazdab, Frank K.; Pillers, Renee M.; Fanning, C. Mark

    2012-01-01

    Xenotime occurs as epitaxial overgrowths on detrital zircons in the Mesoproterozoic Revett Formation (Belt Supergroup) at the Spar Lake red bed-associated Cu-Ag deposit, western Montana. The deposit formed during diagenesis of Revett strata, where oxidizing metal-bearing hydrothermal fluids encountered a reducing zone. Samples for geochronology were collected from several mineral zones. Xenotime overgrowths (1–30 μm wide) were found in polished thin sections from five ore and near-ore zones (chalcocite-chlorite, bornite-calcite, galena-calcite, chalcopyrite-ankerite, and pyrite-calcite), but not in more distant zones across the region. Thirty-two in situ SHRIMP U-Pb analyses on xenotime overgrowths yield a weighted average of 207Pb/206Pb ages of 1409 ± 8 Ma, interpreted as the time of mineralization. This age is about 40 to 60 m.y. after deposition of the Revett Formation. Six other xenotime overgrowths formed during a younger event at 1304 ± 19 Ma. Several isolated grains of xenotime have 207Pb/206Pb ages in the range of 1.67 to 1.51 Ga, and thus are considered detrital in origin. Trace element data can distinguish Spar Lake xenotimes of different origins. Based on in situ SHRIMP analysis, detrital xenotime has heavy rare earth elements-enriched patterns similar to those of igneous xenotime, whereas xenotime overgrowths of inferred hydrothermal origin have hump-shaped (i.e., middle rare earth elements-enriched) patterns. The two ages of hydrothermal xenotime can be distinguished by slightly different rare earth elements patterns. In addition, 1409 Ma xenotime overgrowths have higher Eu and Gd contents than the 1304 Ma overgrowths. Most xenotime overgrowths from the Spar Lake deposit have elevated As concentrations, further suggesting a genetic relationship between the xenotime formation and Cu-Ag mineralization.

  15. Importance of exposure dynamics of metal-based nano-ZnO, -Cu and -Pb governing the metabolic potential of soil bacterial communities.

    PubMed

    Zhai, Yujia; Hunting, Ellard R; Wouterse, Marja; Peijnenburg, Willie J G M; Vijver, Martina G

    2017-11-01

    Metal-based engineered nanomaterials (ENMs) are known to affect bacterial processes and metabolic activities. While testing their negative effects on biological components, studies traditionally rely on initial exposure concentrations and thereby do not take into consideration the dynamic behavior of ENMs that ultimately determines exposure and toxicity (e.g. ion release). Moreover, functional responses of soil microbial communities to ENMs exposure can be caused by both the particulate forms and the ionic forms, yet their relative contributions remain poorly understood. Therefore, we investigated the dynamic changes of exposure concentrations of three different types of ENMs (nano-ZnO, -Cu and -Pb) and submicron particles (SMPs) in relation to their impact on the capacity of soil bacterial communities to utilize carbon substrates. The different ENMs were chosen to differ in dissolution potential. The dynamic exposures of ENMs were considered using a time weighted average (TWA) approach. The joint toxicity of the particulate forms and the ionic forms of ENMs was evaluated using a response addition model. Our results showed that the effect concentrations of spherical nano-ZnO, -Cu and SMPs, and Pb-based perovskites expressed as TWA were lower than expressed as initial concentrations. Both particulate forms and ionic forms of spherical 18nm, 43nm nano-ZnO and 50nm, 100nm nano-Cu contribute to the overall response at the EC 50 levels. The particulate forms for 150nm, 200nm and 900nm ZnO SMPs and rod-shaped 78nm nano-Cu mainly affected the soil microbial metabolic potential, while the Cu ions released from spherical 25nm nano-Cu, 500nm Cu SMPs and Pb ions released from perovskites mainly described the effects to bacterial communities. Our results indicate that the dynamic exposure of ENMs and relative contributions of particles and ions require consideration in order to pursue a naturally realistic assessment of environmental risks of metal-based ENMs. Copyright

  16. The effects of increased freshwater salinity in the biodisponibility of metals (Cr, Pb) and effects on antioxidant systems of Oreochromis niloticus.

    PubMed

    Baysoy, E; Atli, G; Gürler, C Ö; Dogan, Z; Eroglu, A; Kocalar, K; Canli, M

    2012-10-01

    Anthropogenic activities can increase the salinity of freshwaters and this may cause stress for fish and affect metal bioavailability. Oxidative stress biomarkers are of great interest due to their responses to environmental stressors which provide valuable data for biological monitoring of aquatic pollution. Thus, the individual and combined effects of salinity and metals (Cr, Pb) were investigated in the liver of freshwater fish Oreochromis niloticus in the present study. Fish were exposed to salinity (2 and 8 ppt) alone and salinity+metal (1 μg/mL Pb and Cr) combination exposures for 0, 1, 7 and 14 days and subsequently antioxidant enzymes (superoxide dismutase, SOD; glutathione peroxidase, GPX; glutathione reductase, GR and glutathione S-transferase, GST) activities and glutathione (GSH) levels in the liver were measured. Data showed that all the parameters varied in relation to metal species, exposure durations and salinity levels. Profound alterations on the measured parameters were detected at the lower salinity compared to the higher one. Salinity increase effectively stimulated the antioxidant parameters. The effects of salinity and metals on the measured parameters increased as the exposure duration prolonged. SOD was the most affected antioxidant parameter from both salinity and metals. Because metal and salinity stresses affect fish antioxidant system, this work suggests that the chemistry of freshwaters should be taken into account in natural monitoring for metal contamination in the field. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Mobility and phytoavailability of Cu, Cr, Zn, and As in a contaminated soil at a wood preservation site after 4 years of aided phytostabilization.

    PubMed

    Hattab, Nour; Motelica-Heino, Mikael; Bourrat, Xavier; Mench, Michel

    2014-09-01

    The remediation of copper-contaminated soils by aided phytostabilisation in 16 field plots at a wood preservation site was investigated. The mobility and bioavailability of four potentially toxic trace elements (PTTE), i.e., Cu, Zn, Cr, and As, were investigated in these soils 4 years after the incorporation of compost (OM, 5 % w/w) and dolomite limestone (DL, 0.2 % w/w), singly and in combination (OMDL), and the transplantation of mycorrhizal poplar and willows. Topsoil samples were collected in all field plots and potted in the laboratory. Total PTTE concentrations were determined in soil pore water (SPW) collected by Rhizon soil moisture samplers. Soil exposure intensity was assessed by Chelex100-DGT (diffusive gradient in thin films) probes. The PTTE phytoavailability was characterized by growing dwarf beans on potted soils and analyzing their foliar PTTE concentrations. OM and DL, singly and in combination (OMDL), were effective to decrease foliar Cu, Cr, Zn, and As concentrations of beans, the lowest values being numerically for the OM plants. The soil treatments did not reduce the Cu and Zn mineral masses of the bean primary leaves, but those of Cr and As decreased for the OM and DL plants. The Cu concentration in SPW was increased in the OM soil and remained unchanged in the DL and OMDL soils. The available Cu measured by DGT used to assess the soil exposure intensity correlated with the foliar Cu concentration. The Zn concentrations in SPW were reduced in the DL soil. All amendments increased As in the SPW. Based on DGT data, Cu availability was reduced in both OM and OMDL soils, while DL was the most effective to decrease soil Zn availability.

  18. Children's health risk assessment based on the content of toxic metals Pb, Cd, Cu and Zn in urban soil samples of Podgorica, Montenegro.

    PubMed

    Mugoša, Boban; Djurović, Dijana; Pirnat, Aleksandra; Bulat, Zorica; Barjaktarović-Labović, Snežana

    2015-09-01

    Due to their low tolerance to pollutants and hand-to-mouth pathways the health risk is very high in children's population. The aim of this study was to evaluate risk to children's health based on the content of heavy metals in urban soil samples from Podgorica, Montenegro. This study included the investigation of several toxic metals such as Pb, Cd, Cu and Zn in soil samples from public parks and playgrounds. Sampling was conducted in a period October-November, 2012. Based on cluster analysis, soil samples were divided into two groups related to similarity of metal content at examinated locations: the group I--near by recreational or residential areas of the city, and the group II--near traffic roads. Concentration of toxic metals, in urban soil samples were determined by a graphite furnace atomic absorption spectrometry (Pb and Cd) and by inductively coupled plasma optical emission spectrometry technique after microwave digestion. Due to exposure to urban soil, non-cancerogenic index hazardous index (HI) for children was estimated using 95th percentile values of total metal concentration. The value of the total (ingestion, dermal and inhalation) HI is calculated for maximum, minimum and the average concentration of metals for children. Mean concentrations of Pb, Cd, Cu and Zn in the surface layer of the studied urban soils were 85.91 mg/kg, 2.8 mg/kg and 52.9 mg/kg and 112.5 mg/kg, respectively. Samples from group II showed higher metal content compared to group I. Urbanization and traffic are the main sources of pollution of the urban soils of Podgorica. Most of the samples (93.5%) had a high Pb content, 12.9% of the samples had a higher content of Cd, while Cu and Zn were within the limits prescribed by national legislation. At one location the level of security for lead is HI = 0.8 and very closed to maximum acceptable value of 1. It is probably the result of intensive traffic near by. All metals investigated showed relatively higher concentrations at sites

  19. SWASV speciation of Cd, Pb and Cu for the determination of seawater contamination in the area of the Nicole shipwreck (Ancona coast, Central Adriatic Sea).

    PubMed

    Annibaldi, Anna; Illuminati, Silvia; Truzzi, Cristina; Scarponi, Giuseppe

    2011-12-01

    The study reports for the first time on the heavy metal contamination of the waters surrounding a shipwreck lying on the sea floor. Square wave anodic stripping voltammetry has been used for a survey of the total and dissolved Cd, Pb and Cu contents of the seawater at the site of the sinking of the Nicole M/V (Coastal Adriatic Sea, Italy). Results show that the hulk has a considerable impact as regards all three metals in the bottom water, especially for the particulate fraction concentrations, which increased by factors of ≈ 9 (Cd), ≈ 3 (Pb) and ≈ 5 (Cu). The contaminated plume extended downstream for about 2 miles. Much lower contamination was observed for dissolved bottom concentrations; nevertheless Pb (0.56 ± 0.03 nmol/L) is higher than the Italian legal limits established for 2015 and Cd (0.23 ± 0.03 nmol/L) is very close the limit of Cd will be exceeded if the hulk is not removed. Copyright © 2011. Published by Elsevier Ltd.

  20. Impacts of coagulation-flocculation treatment on the size distribution and bioavailability of trace metals (Cu, Pb, Ni, Zn) in municipal wastewater.

    PubMed

    Hargreaves, Andrew J; Vale, Peter; Whelan, Jonathan; Alibardi, Luca; Constantino, Carlos; Dotro, Gabriela; Cartmell, Elise; Campo, Pablo

    2018-01-01

    This study investigated the impact of coagulation-flocculation treatment on metal form and bioavailability in municipal wastewater. Real humus effluent samples were separated into particulate, colloidal and truly dissolved fractions before and after treatment with either ferric chloride (FeCl3) or the biopolymer Floculan. Results revealed that both reagents effectively (≥48%) eliminated Cu, Pb and Zn from the particulate fraction and removed Cu and Zn from the colloidal fraction in conjunction with colloidal organic carbon (COC). Although organics in the truly dissolved fraction were resistant to removal, Floculan reduced Cu in this fraction by 72% owing to the complexation of free Cu ions to phenol and amino groups along the polymeric chains, revealing an additional removal pathway. In fact, COC removed in the CF process by Floculan was replaced with truly dissolved compounds, input as a result of this reagents organic composition. Floculan, therefore, reduced the soluble concentration of Cu and Zn without changing the DOC concentration, thus reducing the bioavailability of these metals in treated effluent. FeCl3 did not reduce the bioavailability of target metals, thus did not deliver any environmental benefit. This work provides important information for the selection and development of high performance coagulants to improve metal removal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Efficient CH3NH3PbI3 perovskite/fullerene planar heterojunction hybrid solar cells with oxidized Ni/Au/Cu transparent electrode

    NASA Astrophysics Data System (ADS)

    Lai, Wei-Chih; Lin, Kun-Wei; Guo, Tzung-Fang; Chen, Peter; Liao, Yuan-Yu

    2018-02-01

    We demonstrated the performance of inverted CH3NH3PbI3 perovskite-based solar cells (SCs) with a thermally oxidized nickel/gold/copper (Ni/Au/Cu) trilayer transparent electrode. Oxidized Ni/Au/Cu is a high transparent layer and has less resistance than the oxidized Ni/Au layer. Like the oxidized Ni/Au layer, oxidized Ni and Cu in oxidized Ni/Au/Cu could perform as a hole transport layer of the perovskite-based SCs. It leads to improved perovskite SC performance on an open circuit voltage of 1.01 V, a short circuit current density of 14.36 mA/cm2, a fill factor of 76.7%, and a power conversion efficiency (η%) of 11.1%. The η% of perovskite SCs with oxidized Ni (10 nm)/Au (6 nm)/Cu (1 nm) improved by approximately 10% compared with that of perovskite SCs with oxidized Ni/Au.

  2. The influence of cooling rate and Fe/Cr content on the evolution of Fe-rich compounds in a secondary Al-Si-Cu diecasting alloy

    NASA Astrophysics Data System (ADS)

    Fabrizi, A.; Timelli, G.

    2016-03-01

    This study investigates the morphological evolution of primary α-Al(Fe,Mn,Cr)Si phase in a secondary Al-Si-Cu alloy with respect to the initial Fe and Cr contents as well as to the cooling rate. The solidification experiments have been designed in order to cover a wide range of cooling rates, and the Fe and Cr contents have been varied over two levels. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes occurring at different experimental conditions. The morphological evolution of the α-Fe phase has been also analysed by observing deep etched samples. By changing the cooling rate, α-Al15(Fe,Mn,Cr)3Si2 dodecahedron crystals, as well as Chinese- script, branched structures and dendrites form, while primary coarse β-Al5(Fe,Mn)Si needles appear in the alloy with the highest Fe content at low cooling rates.

  3. Oxidation behavior and area specific resistance of La, Cu and B alloyed Fe-22Cr ferritic steels for solid oxide fuel cell interconnects

    NASA Astrophysics Data System (ADS)

    Swaminathan, Srinivasan; Ko, Yoon Seok; Lee, Young-Su; Kim, Dong-Ik

    2017-11-01

    Two Fe-22 wt% Cr ferritic stainless steels containing varying concentrations of La (0.14 or 0.52 wt%), Cu (0.17 or 1.74 wt%) and B (48 or 109 ppm) are investigated with respect to oxidation behavior and high temperature area specific resistance (ASR) of the surface oxide scales. To determine the oxidation resistance of developed steels, continuous isothermal oxidation is carried out at 800 °C in air, for 2000 h, and their thermally grown oxide scale is characterized using dynamic SIMS, SEM/EDX, XRD and GI-XRD techniques. To assess their electrical performance, the ASR measurement by four-point probe method is conducted at 800 °C in air, for 400 h. In higher La content steel, the La-oxides at the scale/alloy interface promotes the oxygen transport which resulted in sub-surface oxidation of Mn, Cr, Ti and Al. Moreover, the inward growth of oxides contributes to increase of Fe-Cr alloy protrusions within the scale, which reduced the ASR. In contrast, sub-surface oxidation is reduced in high Cu-alloyed steel by segregated Cu at the scale/alloy interface. Thus, addition of Cu is effective to oxidation resistance and also to better electrical performance. However, no obvious impact of B on the scale sequence and/or ASR is observed.

  4. Heavy metal (Pb, Zn, Cd, Fe, and Cu) contents of plant foliage near the Anvil Range lead/zinc mine, Faro, Yukon Territory.

    PubMed

    Pugh, Rachel E; Dick, David G; Fredeen, Arthur L

    2002-07-01

    Mining and processing of lead (Pb)/zinc (Zn) ore at the Anvil Range mine occurred near the town of Faro in the Yukon Territory, Canada, for approximately 30 years, beginning in 1968. A study was undertaken to examine whether the mining activities had left a detectable "footprint" on the environment in the way of heavy metal phytoaccumulation. Foliage of three native plant species was sampled: bog blueberry (Vaccinium uliginosum), Labrador tea (Ledum groenlandicum), and willow (Salix sp.), at approximately 0.25, 2.5, 12, 30, and 200 (control) km distant from the mill (ore-processing facility at the mine). Foliage samples were oven-dried, wet- or dry-ashed, and analyzed for metal content using ICP-AES. In addition to Pb and Zn, the primary ore constituents, copper (Cu), iron (Fe), and cadmium (Cd), were also assayed. As expected, foliar Pb and Zn concentrations were elevated in plants at the sites closest to the mill, i.e., 0.25 and 2.5 km from the mine facility. Copper and Fe, both essential nutrients for plants, were also elevated in foliage at the sites closest to the mill, but not to a level that would be of concern. Foliar Cd levels were highest in Salix relative to the other species but were not affected by proximity to the mill. Results suggest that Ledum may be the best indicator of high environmental concentrations of Pb, while Salix may be the best indicator of elevated Zn and Cd.

  5. Accumulation and spatial distribution of Cd, Cr, and Pb in mulberry from municipal solid waste compost following application of EDTA and (NH4)2SO4.

    PubMed

    Zhao, Shulan; Shang, Xiaojuan; Duo, Lian

    2013-02-01

    Municipal solid waste compost can be used to cropland as soil amendment to supply nutrients and improve soil physical properties. But long-term application of municipal solid waste (MSW) compost may result in accumulation of toxic metals in amended soil. Phytoremediation, especially phytoextraction, is a novel, cost-effective, and environmentally friendly approach that uses metal-accumulating plants to concentrate and remove metals from contaminated soils. Ethylenediaminetetraacetate (EDTA) was applied to metal-contaminated soil to increase the mobility and phytoavailability of metals in soil, thereby increasing the amount of toxic metals accumulated in the upper parts of phytoextracting plants. The objectives of this study were (1) to investigate the accumulation and spatial distribution of toxic metals (Cd, Cr, and Pb) in mulberry from MSW compost with the application of EDTA and (NH(4))(2)SO(4), (2) to examine the effectiveness of EDTA and (NH(4))(2)SO(4) applied together on toxic metals (Cd, Cr, and Pb) removal by mulberry under field conditions, and (3) to evaluate the potential of mulberry for phytoextraction of toxic metals from MSW compost. The tested plant-mulberry had been grown in MSW compost field for 4 years. EDTA solution at five rates (0, 50, 100, 50 mmol L(-1) + 1 g L(-1) (NH(4))(2)SO(4), and 100 mmol L(-1) + 1 g L(-1) (NH(4))(2)SO(4)) was added into mulberry root medium in September 2009. Twenty days later, the plants were harvested and separated into six parts according to plant height. Cd, Cr, and Pb contents in plant samples and MSW compost were analyzed using an atomic absorption spectrophotometer. In the same treatment, Cd, Cr, and Pb concentrations in mulberry shoot were all higher than those in root, and Cd and Pb concentrations in shoot increased from lower to upper parts, reaching the highest in leaves. Significant increases were found in toxic metal concentration in different parts of mulberry with increasing EDTA concentration

  6. Determination of As, Cd, Cu, Hg and Pb in biological samples by modern electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Sardans, Jordi; Montes, Fernando; Peñuelas, Josep

    2010-02-01

    this technique that reaches figures of merit equivalent to Inductively coupled plasma mass spectrometry (ICP-MS). Herein is presented an overview of recent advances and applications of (ETAAS) for the determination of As, Cd, Cu, Hg and Pb in biological samples drawn from studies over the last decade.

  7. Removal of Cu, Pb and Zn by foam fractionation and a soil washing process from contaminated industrial soils using soapberry-derived saponin: a comparative effectiveness assessment.

    PubMed

    Maity, Jyoti Prakash; Huang, Yuh Ming; Hsu, Chun-Mei; Wu, Ching-I; Chen, Chien-Cheng; Li, Chun-Yi; Jean, Jiin-Shuh; Chang, Young-Fo; Chen, Chen-Yen

    2013-08-01

    The feasibility of using the eco-friendly biodegradable surfactant saponin (a plant-based surfactant) from soapberry and surfactin from Bacillus subtilis (BBK006) for the removal of heavy metals from contaminated industrial soil (6511mgkg(-1) copper, 4955mgkg(-1) lead, and 15090mgkg(-1) zinc) by foam fractionation and a soil flushing process was evaluated under variation of fundamental factors (surfactant concentration, pH, temperature and time). The results of latter process showed that 1-2% Pb, 16-17% Cu and 21-24% Zn was removed by surfactin after 48h, whereas the removal of Pb, Cu and Zn was increased from 40% to 47%, 30% to 36% and 16% to 18% in presence of saponin with an increase from 24 to 72h at room temperature by the soil washing process at pH 4. In the foam fractionation process, the metal removal efficiencies were increased with increases in the saponin concentration (0.075-0.15gL(-1)) and time (24-72h), whereas the efficiency was decreased with increasing pH (4-10) and temperature (>40°C). The removal efficiencies of Pb, Cu and Zn were increased significantly from 57% to 98%, 85% to 95% and 55% to 56% with an increase in the flow rate from 0.2 to 1.0Lmin(-1) at 0.15gL(-1) saponin (pH 4 and 30°C). The present investigation indicated that the foam fractionation process is more efficient for the removal of heavy metal from contaminated industrial soil in comparison to the soil washing process. The plant-based eco-friendly biodegradable biosurfactant saponin can be used for environmental cleanup and pollution management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Simultaneous removal of aqueous Zn2+, Cu2+, Cd2+, and Pb2+ by zeolites synthesized from low-calcium and high-calcium fly ash.

    PubMed

    Ji, X D; Ma, Y Y; Peng, S H; Gong, Y Y; Zhang, F

    2017-10-01

    In this study, zeolites were synthesized from low-calcium (LCZ) and high-calcium (HCZ) fly ash, respectively. Subsequently, the zeolites were tested for their removal effectiveness for four aqueous cations, namely, Zn2+, Cu2+, Cd2+, and Pb2+, as a function of contact time, pH value, adsorbent dosage, and initial concentration of heavy metals. Both zeolites were characterized by X-ray diffraction, X-ray fluorescence spectrometry, scanning electron microscopy, specific surface area, and cation exchange capacity. The results show that HCZ mainly consists of an unnamed zeolite (Na6[AlSiO4]6·4H2O), whereas LCZ mainly consists of faujasite-type zeolite. The optimum sorption conditions were pH = 6.0; adsorbent dosage = 1.0 g·L-1; temperature = 25 °C; contact time = 100 min; and initial heavy metal concentration = 100 mg·L-1. The sorption kinetics of the four aqueous cations on both LCZ and HCZ followed the pseudo-second-order kinetic model, and the sorption isotherm data fitted well with the Langmuir isotherm model. For LCZ, the maximum adsorption capacities of Zn2+, Cu2+, Cd2+, and Pb2+ were 155.76, 197.86, 123.76, and 186.22 mg·g-1, respectively. For HCZ, the values were 154.08, 183.15, 118.91, and 191.94 mg·g-1, respectively. The zeolites were regenerated by NaCl solution (1 mol·L-1) and showed high removal efficiency. In conclusion, zeolites produced by fly ash are promising materials for removing Zn2+, Cu2+, Cd2+, and Pb2+ from wastewater.

  9. Nonequilibrium leaching behavior of metallic elements (Cu, Zn, As, Cd, and Pb) from soils collected from long-term abandoned mine sites.

    PubMed

    Kim, Juhee; Hyun, Seunghun

    2015-09-01

    Leaching of metallic elements (Cu, Zn, As, Cd, and Pb) from two mine-impacted soils (DY and BS) was evaluated by batch decant-refill and seepage flow experiments. During eight consecutive leaching steps, aqueous As concentrations remained relatively constant (approx. 1.6 and 0.1 mg L(-)(1) for DY and BS, respectively), while Cu (0.01-3.2 mg L(-1)), Zn (0.2-42 mg L(-1)), and Cd (0.004-0.3 mg L(-1)) were quickly reduced. The reduction of Pb concentration (0.007-0.02 mg L(-1) and 0.2-0.9 mg L(-1) for DY and BS, respectively) was much lesser. This pattern was well-explained by the biphasic leaching model by allocating a large fast leaching fraction (ffast>0.2) for Cu, Zn, and Cd while a negligible ffast for As and Pb (<0.001). For all elements in column effluents, mass export through first-flush and steady-state concentration were elevated under slow seepage, with the greatest impact observed for As. Element export was enhanced after flow interruption, especially under fast seepage. A transient drop in As export in slow seepage was likely due to sorption back to soil phase during the quiescent period. The ratio of Fe(2+)/Fe(3+) and SO4(2-) concentration, related to the dissolution of sulfide minerals, were also seepage rate-dependent. The results of batch and column studies imply that the leachate concentration will be enhanced by initial seepage and will be perturbed after quiescent wetting period. The conversion from kinetically leachable pool to readily leachable pool is likely responsible for nonequilibrium metal leaching from the long-term abandoned mine soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Multiple response optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry with sample injection as detergent emulsion

    NASA Astrophysics Data System (ADS)

    Brum, Daniel M.; Lima, Claudio F.; Robaina, Nicolle F.; Fonseca, Teresa Cristina O.; Cassella, Ricardo J.

    2011-05-01

    The present paper reports the optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry (GF AAS) employing a strategy based on the injection of the samples as detergent emulsions. The method was optimized in relation to the experimental conditions for the emulsion formation and taking into account that the three analytes (Cu, Fe and Pb) should be measured in the same emulsion. The optimization was performed in a multivariate way by employing a three-variable Doehlert design and a multiple response strategy. For this purpose, the individual responses of the three analytes were combined, yielding a global response that was employed as a dependent variable. The three factors related to the optimization process were: the concentration of HNO 3, the concentration of the emulsifier agent (Triton X-100 or Triton X-114) in aqueous solution used to emulsify the sample and the volume of solution. At optimum conditions, it was possible to obtain satisfactory results with an emulsion formed by mixing 4 mL of the samples with 1 mL of a 4.7% w/v Triton X-100 solution prepared in 10% v/v HNO 3 medium. The resulting emulsion was stable for 250 min, at least, and provided enough sensitivity to determine the three analytes in the five samples tested. A recovery test was performed to evaluate the accuracy of the optimized procedure and recovery rates, in the range of 88-105%; 94-118% and 95-120%, were verified for Cu, Fe and Pb, respectively.

  11. Biochar prepared from castor oil cake at different temperatures: A voltammetric study applied for Pb(2+), Cd(2+) and Cu(2+) ions preconcentration.

    PubMed

    Kalinke, Cristiane; Mangrich, Antonio Sálvio; Marcolino-Junior, Luiz H; Bergamini, Márcio F

    2016-11-15

    Biochar is a carbonaceous material similar produced by pyrolysis of biomass under oxygen-limited conditions. Pyrolysis temperature is an important parameter that can alters biochar characteristics (e.g. surface area, pore size distribution and surface functional groups) and affects it efficacy for adsorption of several probes. In this work, biochar samples have been prepared from castor oil cake using different temperatures of pyrolysis (200-600°C). For the first time, a voltammetric procedure based on carbon paste modified electrode (CPME) was used to investigate the effect of temperature of pyrolysis on the adsorptive characteristics of biochar for Pb(II), Cd(II) and Cu(II) ions. Besides the electrochemical techniques, several characterizations have been performed to evaluate the physicochemical properties of biochar in function of the increase of the pyrolysis temperature. Results suggest that biochar pyrolized at 400°C (BC400) showed a better potential for ions adsorption. The CPME modified with BC400 showed better relative current signal with adsorption affinity: Pb(II)>Cd(II)>Cu(II). Kinetic studies revealed that the pseudo-second order model describes more accurately the adsorption process suggesting that the surface reactions control the adsorption rate. Values found for amount adsorbed were 15.94±0.09; 4.29±0.13 and 2.38±0.39μgg(-1) for Pb(II), Cd(II) and Cu(II) ions, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Bi-sulphotellurides associated with Pb - Bi - (Sb ± Ag, Cu, Fe) sulphosalts: an example from the Stan Terg deposit in Kosovo

    NASA Astrophysics Data System (ADS)

    Kołodziejczyk, Joanna; Pršek, Jaroslav; Voudouris, Panagiotis Ch.; Melfos, Vasilios

    2017-08-01

    New mineralogical and mineral-chemical data from the Stan Terg deposit, Kosovo, revealed the presence of abundant Bi-sulphotellurides associated with Bi- and Sb-sulphosalts and galena in pyrite-pyrrhotite-rich skarn-free ore bodies (ores without skarn minerals). The Bi-bearing association comprises Bi-sulphotellurides (joséite-A, joséite-B, unnamed phase A with a chemical formula close to (Bi,Pb)2(TeS)2, unnamed phase B with a chemical composition close to (Bi,Pb)2.5Te1.5S1.5), ikunolite, cosalite, Sb-lillianite, members of the kobellite series and Bi-jamesonite. Compositional trends of the Bi-sulphotellurides suggest lattice-scale incorporation of Bi-(Pb)-rich module and/or admixture with submicroscopic PbS layers in modulated structures, or complicated Bi-Te substitution. Cosalite is characterized by high Sb (max. 3.94 apfu), and low Cu and Ag (up to 0.72 apfu of Cu+Ag). Jamesonite from this mineralization has elevated Bi content, from 0.85 to 2.30 apfu. The negligible content of Au and Ag in the Bi-sulphotellurides, the low content of Ag in Bi-sulphosalts, together with the lack of Au-Ag bearing phases in the mineralization, indicate either ore deposition from fluid(s) depleted in precious metals, or physico-chemical conditions of ore formation preventing Au and Ag precipitation at the deposit site. The temperature of initial mineralization may have exceeded 400 °C as suggested by the lamellar exsolution textures observed in lillianite, which indicate breakdown textures from decomposition of high-temperature initial crystals. Non-stoichiometric phases among the Bi-sulphosalts and sulphotellurides studied at Stan Terg reflect modulated growth processes in a metasomatic environment.

  13. Assessment of Cu, Pb, and Zn contamination in sediment of north western Peninsular Malaysia by using sediment quality values and different geochemical indices.

    PubMed

    Yap, C K; Pang, B H

    2011-12-01

    Surface sediments were collected from the north western aquatic area (13 intertidal sites and 5 river drainages) of Peninsular Malaysia, which were suspected to have received different anthropogenic sources. These sites included town areas, ports, fishing village, industrial areas, highway sides, jetties and some relatively unpolluted sites. The present study revealed that 4.79-32.91 μg/g dry weight for Cu, 15.85-61.56 μg/g dry weight for Pb, and 33.6-317.4 μg/g dry weight for Zn based on 13 intertidal surface sediments while those based on 5 river drainage surface sediments were 10.24-119.6 μg/g dry weight for Cu, 26.7-125.7 μg/g dry weight for Pb and 88.7-484.1 μg/g dry weight for Zn. In general, the metal levels in the drainage sediments are higher than in the intertidal sediments, suggesting dilution factor in the intertidal sediment and direct effluent from point sources in the drainage sediment. In particular, the total concentrations of Cu, Pb, and Zn for the sampling site at Kuala Kurau Town exceeded the Effect Range Median values for Cu, Pb, and Zn for assessments of sediment quality values for freshwater sediment as proposed by MacDonald et al. (Arch Environ Contam Toxicol 39:20-31, 2000), thus adverse biological effects would be observed above this level. Assessment using enrichment factor (using Fe as a normalizer) and geoaccumulation index showed that the three metals at Kuala Kurau Town and Juru Industry drainage were evidenced as having more enrichment and mostly due to non-natural sources. However, caution should be exercised that the interpretation can only become valid when the ratios, indices, and sediment quality values are combined. This is due to the fact that not all the established indices are applicable and, to a certain extent, some of them should be further revised and improved to suit a different metal for Malaysian sediment. Undoubtedly, sites near drainages at Kuala Kurau Town and Juru River Basin need greater attention to

  14. Measurement of the mass attenuation coefficient from 81 keV to 1333 keV for elemental materials Al, Cu and Pb

    SciTech Connect

    Gjorgieva, Slavica, E-mail: slavicagjorgieva89@gmail.com; Institute of Physics, Faculty of Natural Sciences and Mathematics, Ss Cyril and Methodius University, POB 162, 1000 Skopje; Barandovski, Lambe, E-mail: lambe@pmf.ukim.mk

    2016-03-25

    The mass attenuation coefficients (μ/ρ) for 3 high purity elemental materials Al, Cu and Pb were measured in the γ-ray energy range from 81 keV up to 1333 keV using {sup 22}Na, {sup 60}Co {sup 133}Ba and {sup 133}Cs as sources of gamma radiation. Well shielded detector (NaI (Tl) semiconductor detector) was used to measure the intensity of the transmitted beam. The measurements were made under condition of good geometry, assuring that any photon absorbed or deflected appreciably does not reach the detector. The measured values are compared with the theoretical ones obtained by Seltzer (1993).

  15. Ages and sources of components of Zn-Pb, Cu, precious metal, and platinum group element deposits in the goodsprings district, Clark County, Nevada

    USGS Publications Warehouse

    Vikre, Peter G.; Browne, Quentin J.; Fleck, Robert J.; Hofstra, Albert H.; Wooden, Joseph L.

    2011-01-01

    The Goodsprings district, Clark County, Nevada, includes zinc-dominant carbonate replacement deposits of probable late Paleozoic age, and lead-dominant carbonate replacement deposits, copper ± precious metal-platinum group element (PGE) deposits, and gold ± silver deposits that are spatially associated with Late Triassic porphyritic intrusions. The district encompasses ~500 km2 although the distribution of all deposits has been laterally condensed by late Mesozoic crustal contraction. Zinc, Pb, and Cu production from about 90 deposits was ~160,000 metric tons (t) (Zn > Pb >> Cu), 2.1 million ounces (Moz) Ag, 0.09 Moz Au, and small amounts of PGEs—Co, V, Hg, Sb, Ni, Mo, Mn, Ir, and U—were also recovered.Zinc-dominant carbonate replacement deposits (Zn > Pb; Ag ± Cu) resemble Mississippi Valley Type (MVT) Zn-Pb deposits in that they occur in karst and fault breccias in Mississippian limestone where the southern margin of the regional late Paleozoic foreland basin adjoins Proterozoic crystalline rocks of the craton. They consist of calcite, dolomite, sphalerite, and galena with variably positive S isotope compositions (δ34S values range from 2.5–13‰), and highly radiogenic Pb isotope compositions (206Pb/204Pb >19), typical of MVT deposits above crystalline Precambrian basement. These deposits may have formed when southward flow of saline fluids, derived from basinal and older sedimentary rocks, encountered thinner strata and pinch-outs against the craton, forcing fluid mixing and mineral precipitation in karst and fault breccias. Lead-dominant carbonate replacement deposits (Pb > Zn, Ag ± Cu ± Au) occur among other deposit types, often near porphyritic intrusions. They generally contain higher concentrations of precious metals than zinc-dominant deposits and relatively abundant iron oxides after pyrite. They share characteristics with copper ± precious metal-PGE and gold ± silver deposits including fine-grained quartz replacement of carbonate minerals

  16. Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings. Part 1; Electrical and Thermal Conductivity, Thermal Diffusivity, and Total Hemispherical Emissivity

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2017-01-01

    This two-part paper reports the thermophysical properties of several cold and vacuum plasma sprayed monolithic Cu and Ni-based alloy coatings. Part I presents the electrical and thermal conductivity, thermal diffusivity, and total hemispherical emissivity data while Part II reports the specific heat capacity data for these coatings. Metallic copper alloys, stoichiometric NiAl and NiCrAlY coatings were fabricated by either the cold sprayed or the vacuum plasma spray deposition processes for thermal property measurements between 77 and 1223 K. The temperature dependencies of the thermal conductivities, thermal diffusivities, electrical conductivities and total hemispherical emissivities of these cold and vacuum sprayed monolithic coatings are reported in this paper. The electrical and thermal conductivity data correlate reasonably well for Cu-8%Cr-1%Al, Cu-23%Cr-5%Al and NiAl in accordance with the Wiedemann-Franz (WF) law although a better fit is obtained using the Smith-Palmer relationship. The Lorentz numbers determined from the WF law are close to the theoretical value.

  17. Thermophysical Properties of Cold- and Vacuum Plasma-Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings I: Electrical and Thermal Conductivity, Thermal Diffusivity, and Total Hemispherical Emissivity

    NASA Astrophysics Data System (ADS)

    Raj, S. V.

    2017-11-01

    This two-part paper reports the thermophysical properties of several cold- and vacuum plasma-sprayed monolithic Cu- and Ni-based alloy coatings. Part I presents the electrical and thermal conductivity, thermal diffusivity, and total hemispherical emissivity data, while Part II reports the specific heat capacity data for these coatings. Metallic copper alloys and stoichiometric NiAl and NiCrAlY coatings were fabricated by either the cold spray or the vacuum plasma spray deposition processes for thermal property measurements between 77 and 1223 K. The temperature dependencies of the thermal conductivities, thermal diffusivities, electrical conductivities, and total hemispherical emissivities of these cold- and vacuum-sprayed monolithic coatings are reported in this paper. The electrical and thermal conductivity data correlate reasonably well for Cu-8%Cr-1%Al, Cu-23%Cr-5%Al, and NiAl in accordance with the Wiedemann-Franz (WF) law although a better fit is obtained using the Smith-Palmer relationship. The Lorentz numbers determined from the WF law are close to the theoretical value.

  18. Mineral potential tracts for polymetallic Pb-Zn-Cu vein deposits (phase V, deliverable 71): Chapter I in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Beaudoin, Georges

    2015-01-01

    In Mauritania, mineral occurrences of the polymetallic Pb-Zn-Cu vein deposit type are found near the Florence-El Khdar shear zone in northeast Mauritania. The deposits visited were deemed representative of other similar occurrences and consist of quartz veins with trace sulfides. The low sulfide and Pb-Zn-Cu content in the quartz veins is unlike producing polymetallic Pb-Zn-Cu vein deposits, such that the veins are not considered to belong to this deposit type. Mineral potential tracts for polymetallic Pb-ZnCu veins are highly speculative considering the lack of known mineralization belonging to this deposit type. Mineral potential tracts for polymetallic Pb-Zn-Cu veins are associated with and surround major shear zones in the Rgueïbat Shield and zones of complex faulting in the southern Mauritanides, at the exclusion of the imbricated thrust faults that are not considered favorable for this deposit type. No skarn and replacement deposits have been documented in Mauritania and the low mineral potential is indicated by lack of causative Mesozoic and Cenozoic mafic to felsic stocks.

  19. Negative magnetization and zero-field cooled exchange bias effect in Co0.8Cu0.2Cr2O4 ceramics

    NASA Astrophysics Data System (ADS)

    Wang, L. G.; Zhu, C. M.; Tian, Z. M.; Luo, H.; Bao, D. L. G. C.; Yuan, S. L.

    2015-10-01

    The negative magnetization and zero-field cooled exchange bias (ZFC EB) effect are observed in Co0.8Cu0.2Cr2O4 polycrystalline ceramics. 20% Cu substitution for Co in CoCr2O4 leads to the evident magnetization reversal at the compensation temperature (Tcomp ˜ 50 K) with applied magnetic field of 500 Oe. Besides, Tcomp decreases monotonously with increasing applied field, and the negative magnetization finally disappears when the field increases to 9000 Oe. Different temperature dependence of sublattice magnetization at different crystallographic sites is proved to induce the magnetization reversal. In addition, ZFC EB effect can be tuned by measuring temperature and presents the maximum of exchange bias field (HEB) with ˜2300 Oe at 50 K. This unconventional EB effect can be attributed to the coupling interaction between the two sublattices.

  20. Effect of deep cryogenic treatment on the microstructure and wear performance of Cr-Mn-Cu white cast iron grinding media

    NASA Astrophysics Data System (ADS)

    Vidyarthi, M. K.; Ghose, A. K.; Chakrabarty, I.

    2013-12-01

    The phase transformation and grinding wear behavior of Cr-Mn-Cu white cast irons subjected to destabilization treatment followed by air cooling or deep cryogenic treatment were studied as a part of the development program of substitute alloys for existing costly wear resistant alloys. The microstructural evolution during heat treatment and the consequent improvement in grinding wear performance were evaluated with optical and scanning electron microscopy, X-ray diffraction analysis, bulk hardness, impact toughness and corrosion rate measurements, laboratory ball mill grinding wear test etc. The deep cryogenic treatment has a significant effect in minimizing the retained austenite content and converts it to martensite embedded with fine M7C3 alloy carbides. The cumulative wear losses in cryotreated alloys are lesser than those with conventionally destabilized alloys followed by air cooling both in wet and dry grinding conditions. The cryotreated Cr-Mn-Cu irons exhibit comparable wear performance to high chromium irons.

  1. Mo5PB2: a new superconductor in the Cr5B3 structure type with Tc = 9.2 K

    NASA Astrophysics Data System (ADS)

    McGuire, Michael; Parker, David

    Superconductivity has been reported recently in several ternary silicide-borides adopting the tetragonal Cr5B3 structure type, including Nb5Si3-xBx, Mo5SiB2, and W5SiB2, with critical temperatures ranging from 5.8-7.8 K. Here we report superconductivity with Tc exceeding 9 K in the phosphorus-containing analogue Mo5PB2. We have synthesized polycrystalline samples of the compound, made measurements of electrical resistivity, magnetic susceptibility, and heat capacity, and performed first principles electronic structure calculations. The highest Tc values occur in slightly phosphorus rich samples, with composition near Mo5P1.1B1.9. Together with the measured properties, the calculations suggest the superconductivity in these materials may be multi-band. Research sponsored by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  2. Enhanced texture evolution and piezoelectric properties in CuO-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 grain-oriented ceramics

    NASA Astrophysics Data System (ADS)

    Chang, Yunfei; Watson, Beecher; Fanton, Mark; Meyer, Richard J.; Messing, Gary L.

    2017-12-01

    In this work, both crystallographic texture and doping engineering strategies were integrated to develop relaxor-PbTiO3 (PT) based ternary ferroelectric ceramics with enhanced texture evolution and superior electromechanical properties. CuO-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) piezoelectric ceramics with [001]c texture fraction ≥97% were synthesized by templated grain growth. The addition of CuO significantly promotes densification and oriented grain growth in the templated ceramics, leading to full texture development at dramatically reduced times and temperatures. Moreover, the CuO dopant remarkably enhances the piezoelectric properties of the textured ceramics while maintaining high phase transition temperatures and large coercive fields. Doping 0.125 wt. % CuO yields the electromechanical properties of d33 = 927 pC/N, d33* = 1510 pm/V, g33 = 43.2 × 10-3 Vm/N, Kp = 0.87, Ec=8.8 kV/cm, and tan δ = 1.3%, which are the best values reported so far in PIN-PMN-PT based ceramics. The high piezoelectric coefficient is mainly from the reversible piezoelectric response, with the irreversible contribution being on the order of 13.1%. We believe that this work not only facilitates closing the performance gap between ceramics and single crystals but also can expand relaxor-PT based piezoelectric application fields.

  3. Contamination of potentially toxic elements in streams and water sediments in the area of abandoned Pb-Zn-Cu deposits (Hrubý Jesenník, Czech Republic)

    NASA Astrophysics Data System (ADS)

    Lichnovský, J.; Kupka, J.; Štěrbová, V.; Andráš, P.; Midula, P.

    2017-10-01

    The deposits, located in Nová Ves and Zlaté Hory were well known and important sources of metal ore in Jesenniky region in the past. Especially the one in Nová Ves, which is recently the most important hydrothermal deposit of venous type in the whole area. The mining activity, aimed on lead and zinc minerals was practically permanent here from the middle-age to 1959. On the other hand, the site in Zlaté Hory is the most important ore deposit in Czech Silesia. The non-venous types of polymetallic, copper and gold deposits, evolved in the complex of metamorphic devon rocks are located on south and south-west directions of the area. Long and permanent mining industry caused remarkable changes in the local environment, creating mine heaps and depressions. The probability, that dump material contains potentially toxic substances that could be possibly leaked into surrounded environment is high. This contribution presents the part of complex study results, aimed on evaluating of potential environmental impacts in above mentioned locations. It aims on contamination, caused by potentially toxic heavy metals (Pb, Zn, Cu, Ni, Fe, Mn, Co, Cd, Cr and As) at the sites, exposed to mining activity in the past. The study focus on the contamination of these sites and evaluate them as potential risk for surrounded environment.

  4. Separation of Cu2+, Cd2+ and Cr3+ in a Mixture Solution Using a Novel Carrier Poly(Methyl Thiazoleethyl Eugenoxy Acetate) with BLM (Bulk Liquid Membrane)

    NASA Astrophysics Data System (ADS)

    Djunaidi, M. C.; Khabibi; Ulumudin, I.

    2017-02-01

    The separation process using a novel carrier polyeugenol has active groups N and S has been done with the technique BLM. Polyeugenol has groups active N and S was synthesized from eugenol which is then polymerized into polyeugenol. This polymeric compounds was then acidified become acidic poly (eugenoksi acetate). After the acid formed, then the synthesis was continued by add 4-methyl-5-tiazoleetanol to form esters poly (methyl thiazole eugenoxy ethyl acetate) (PMTEEA). The result of the synthesis was analyzed by FTIR and 1H NMR. This polyester product synthesis was applied as a carrier for separating metal ions Cu2+, Cd2+ and Cr3+ with variations in feed phase pH = 5 and pH = 7 in the membrane of chloroform using techniques BLM. Receiving phase after 24 hours was analyzed by AAS. In variations of feed pH = 5 ions was obtained 66.21% Cd2+, 28.83% Cu2+ and 10.92% of Cr3+, at pH = 7 was obtained 70.77% Cd2+, 30.14% Cu2+, and 3.72% of Cr3+.

  5. The competition between magnetocrystalline and shape anisotropy on the magnetic and magneto-transport properties of crystallographically aligned CuCr2Se4 thin films

    NASA Astrophysics Data System (ADS)

    Edelman, I.; Esters, M.; Johnson, D. C.; Yurkin, G.; Tarasov, A.; Rautsky, M.; Volochaev, M.; Lyashchenko, S.; Ivantsov, R.; Petrov, D.; Solovyov, L. A.

    2017-12-01

    Crystallographically aligned nanocrystalline films of the ferromagnetic spinel CuCr2Se4 were successfully synthesized and their structure and alignment were confirmed by X-ray diffraction and high-resolution transmission electron microscopy. The average size of the crystallites is about 200-250 nm, and their (1 1 1) crystal planes are parallel to the film plane. A good match of the film's electronic structure to that of bulk CuCr2Se4 is confirmed by transverse Kerr effect measurements. Four easy 〈1 1 1〉 axes are present in the films. One of these axes is oriented perpendicular and three others are oriented at an angle of 19.5° relative to the film plane. The magnetic properties of the films are determined by a competition between the out-of-plane magnetocrystalline anisotropy and the in-plane shape anisotropy. Magnetic measurements show that the dominating type of anisotropy switches from shape to magnetocrystalline anisotropy near 160 K, which leads to a switch of the effective easy axis from inside the film plane at room temperature to perpendicular to the film plane as the temperature decreases. At last, a moderately large, negative value of the low-temperature magnetoresistance was observed for the first time in CuCr2Se4 films.

  6. Influence of moisture content and temperature on degree of carbonation and the effect on Cu and Cr leaching from incineration bottom ash.

    PubMed

    Lin, Wenlin Yvonne; Heng, Kim Soon; Sun, Xiaolong; Wang, Jing-Yuan

    2015-09-01

    This study investigated the influence of moisture content and temperature on the degree of carbonation of municipal solid waste (MSW) incineration bottom ash (IBA) from two different incineration plants in Singapore. The initial rate of carbonation was affected by the nominal moisture content used. Carbonation temperature seemed to play a part in changing the actual moisture content of IBA during carbonation, which in turn affected the degree of carbonation. Results showed that 2h of carbonation was sufficient for the samples to reach a relatively high degree of carbonation that was close to the degree of carbonation observed after 1week of carbonation. Both Cu and Cr leaching also showed significant reduction after only 2h of carbonation. Therefore, the optimum moisture content and temperature were selected based on 2h of carbonation. The optimum moisture content was 15% for both incineration plants while the optimum temperature was different for the two incineration plants, at 35°C and 50°C. The effect on Cu and Cr leaching from IBA after accelerated carbonation was evaluated as a function of carbonation time. Correlation coefficient, Pearson's R, was used to determine the dominant leaching mechanism. The reduction in Cu leaching was found to be contributed by both formation of carbonate mineral and reduction of DOC leaching. On the other hand, Cr leaching seemed to be dominantly controlled by pH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Accumulation of nonessential trace elements (Ag, As, Cd, Cr, Hg and Pb) in Atlantic horseshoe crab (Limulus polyphemus) early life stages.

    PubMed

    Bakker, Aaron K; Dutton, Jessica; Sclafani, Matthew; Santangelo, Nicholas

    2017-10-15

    During early development, benthic organisms can accumulate nonessential trace elements through aqueous and particulate sources. This study investigated the accumulation of Ag, As, Cd, Cr, Hg and Pb in Atlantic horseshoe crab (Limulus polyphemus) pre-spawned eggs, embryos, and developing larvae collected from 5 sites on Long Island, NY and compared these concentrations to that found in sediment, pore water, and overlying water. All investigated elements were detected in embryos and larvae at all sites. Arsenic was found at the highest concentration in each life stage across all 5 sites, followed by Ag, whereas Cd, Hg and Pb concentrations varied between sites. Chromium was not detected in pre-spawned eggs, but was present in embryos and larvae at all sites, however, along with Hg, significantly increased from embryo to larvae at most sites. We conclude that observed accumulation patterns are likely a result of abiotic factors, differences in uptake pathways between life stages and the rate of excretion. Future laboratory studies are required to understand the factors influencing the aqueous and dietary uptake of nonessential trace elements in the early life stages of Atlantic horseshoe crabs. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Differences in the mobility of Cd, Cu, Pb and Zn during composting of two types of household bio-waste collected in four seasons.

    PubMed

    Hanc, Ales; Szakova, Jirina; Ochecova, Pavla

    2014-09-01

    The objective of this study was to evaluate the mobility of Cd, Cu, Pb and Zn during 3 different compost aeration rates of household bio-waste, originating in urban settlement (U-bio-waste) and family house buildings (F-bio-waste). The first two weeks, when the thermophilic composting phase became, the highest decline of exchangeable content was recorded. After 12 weeks of composting, lower exchangeable content was found in the case of U-bio-waste composts than F-bio-waste composts, despite higher loss of fresh mass. The order of fractions in both final composts was as follows: residual>oxidizable>reducible>exchangeable. The exchangeable portion of total content in final composts decreased in this order: Zn (17%), Cd (11%), Pb (4%) and Cu (3%). Regarding the low exchangeable content of heavy metals and high-quality organic matter, these types of composts could be used not only as fertilizer, but for remediation of metals contaminated land. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Removal of Pb2+, Hg2+, and Cu2+ by Chain-Like Fe3O4@SiO2@Chitosan Magnetic Nanoparticles.

    PubMed

    Shi, Haowei; Yang, Junya; Zhu, Lizhong; Yang, Yuxiang; Yuan, Hongming; Yang, Yubing; Liu, Xiangnong

    2016-02-01

    In this paper, the chain-like core-shell structure Fe3O4@SiO2@Chitosan composite nanoparticles were synthesized by a two-step coating and following crosslinking glutaraldehyde on chitosan shell. The composite particles showed nearly monodisperse 105 sized particles with a core diameter of 80 nm and chitosan shell thickness of 12 nm. The synthesis conditions of the product were studied, and the morphology and properties of the composite nanoparticles were characterized by IR, XRD, TEM, SEM, EDS and VSM. The adsorption properties of Hg2+, Pb2+ or Cu2+ ions on Fe3O4, Fe3O4@SiO2 and the composite particles were in detail studied using the colorimetric method based on forming colored mercuric dithizone, rhodamine-Pb2+ complex and DDTC-Cu(2+) complex. The results showed, adsorption isotherm, kinetics and separation coefficient of heavy metal ions on these three magnetic nanoparticles were concerned with pH, metal ions' electronic configuration, silica coating and chitosan shell respectively. In addition, the recycle efficiency was also studied. The findings demonstrated that Fe3O4@SiO2@Chitosan composite nanoparticles have great application value in the adsorption and separation of heavy metal ions.

  10. Comprehensive risk assessment and source identification of selected heavy metals (Cu, Cd, Pb, Zn, Hg, As) in tidal saltmarsh sediments of Shuangtai Estuary, China.

    PubMed

    Liu, Chang-Fa; Li, Bing; Wang, Yi-Ting; Liu, Yuan; Cai, Heng-Jiang; Wei, Hai-Feng; Wu, Jia-Wen; Li, Jin

    2017-10-06

    Heavy metals do not degrade and can remain in the environment for a long time. In this study, we analyzed the effects of Cu, Cd, Pb, Zn, Hg, and As, on environmental quality, pollutant enrichment, ecological hazard, and source identification of elements in sediments using data collected from samples taken from Shuangtai tidal wetland. The comprehensive pollution indices were used to assess environmental quality; fuzzy similarity analysis and geoaccumulation index were used to analyze pollution accumulation; correlation matrix, principal component analysis, and clustering analysis were used to analyze pollution source; environmental risk index and ecological risk index were used to assess ecological risk. The results showed that the environmental quality was either clean or almost clean. Pollutant enrichment analysis showed that the four sub-regions had similar pollution-causing metals to the background values of the soil element of the Liao River Plain, which were ranked according to their similarity. Source identification showed that all the elements were correlated. Ecological hazard analysis showed that the environmental risk index in the study area was less than zero, posing a low ecological risk. Ecological risk of the six elements was as follows: As > Cd > Hg > Cu > Pb > Zn.

  11. A two-step leaching method designed based on chemical fraction distribution of the heavy metals for selective leaching of Cd, Zn, Cu, and Pb from metallurgical sludge.

    PubMed

    Wang, Fen; Yu, Junxia; Xiong, Wanli; Xu, Yuanlai; Chi, Ru-An

    2018-01-01

    For selective leaching and highly effective recovery of heavy metals from a metallurgical sludge, a two-step leaching method was designed based on the distribution analysis of the chemical fractions of the loaded heavy metal. Hydrochloric acid (HCl) was used as a leaching agent in the first step to leach the relatively labile heavy metals and then ethylenediamine tetraacetic acid (EDTA) was applied to leach the residual metals according to their different fractional distribution. Using the two-step leaching method, 82.89% of Cd, 55.73% of Zn, 10.85% of Cu, and 0.25% of Pb were leached in the first step by 0.7 M HCl at a contact time of 240 min, and the leaching efficiencies for Cd, Zn, Cu, and Pb were elevated up to 99.76, 91.41, 71.85, and 94.06%, by subsequent treatment with 0.2 M EDTA at 480 min, respectively. Furthermore, HCl leaching induced fractional redistribution, which might increase the mobility of the remaining metals and then facilitate the following metal removal by EDTA. The facilitation was further confirmed by the comparison to the one-step leaching method with single HCl or single EDTA, respectively. These results suggested that the designed two-step leaching method by HCl and EDTA could be used for selective leaching and effective recovery of heavy metals from the metallurgical sludge or heavy metal-contaminated solid media.

  12. A rapid method for the determination of Pb, Cu and Sn in dried tomato sauces with solid sampling electrothermal atomic absorption spectrometry.

    PubMed

    Baysal, Asli; Ozcan, Mustafa; Akman, Suleyman

    2011-06-01

    In this work, lead, copper and tin were determined in tomato sauces by solid sampling graphite furnace atomic absorption spectrometry (SS-GFAAS) and the results were compared with those obtained after sample digestion. The tomato sauce samples were dried at 90 °C for 12 h and directly introduced into the graphite furnace by means of solid auto sampler. Alternatively the dried samples were digested with concentrated HNO(3) (65%) and pipetted into the graphite furnace. After the optimization of the experimental parameters, the average lead, copper and tin concentrations found by the solid sampling and digestion methods in 10 different kinds of tomato sauce samples were not significantly different at 95% confidence level. For solid sampling technique, the limits of detection (LOD) for Cu, Sn and Pb were 10.4, 3.2 and 0.4 ng/g, respectively. Whereas for digestion method, for Cu, Sn and Pb were 6.7, 2.7 and 0.3 ng/g, respectively. The proposed solid sampling technique was fast, simple, the risks of contamination and analyte loss were low. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Simultaneous preconcentrations of Co(2+), Cr(6+), Hg(2+) and Pb(2+) ions by Bacillus altitudinis immobilized nanodiamond prior to their determinations in food samples by ICP-OES.

    PubMed

    Ozdemir, Sadin; Kilinc, Ersin; Celik, Kadir Serdar; Okumus, Veysi; Soylak, Mustafa

    2017-01-15

    A novel solid phase extraction method was developed for simultaneous preconcentration-separation of Co(2+), Cr(6+), Hg(2+) and Pb(2+) ions prior to their determinations in food samples by ICP-OES. Thermophilic Bacillus altitudinis immobilized nanodiamond was used as a new biosorbent. SEM and FT-IR analysis were studied to characterize the biosorbent. The optimum pH values of quantitative biosorption for Co(2+), Cr(6+), Hg(2+) and Pb(2+) were found to be 5.0, 6.0, 6.0 and 6.0, respectively. A flow rate of 3.0mLmin(-1) was selected as optimum for all metal ions. 5mL of 1mol/L HCl was used as eluent. Preconcentration factor was achieved as 80. LODs were calculated as 0.071, 0.023, 0.016 and 0.034ngmL(-1), respectively for Hg(2+), Co(2+), Cr(6+) and Pb(2+). The biosorption capacities were calculated for Co(2+), Cr(6+), Hg(2+) and Pb(2+) as 26.4, 30.4, 19.5, and 35.2mg/g, respectively. The developed method was successfully applied to food samples to determine analyte concentrations. Copyright © 2016. Published by Elsevier Ltd.

  14. Different binding modes of Cu and Pb vs. Cd, Ni, and Zn with the trihydroxamate siderophore desferrioxamine B at seawater ionic strength

    SciTech Connect

    Schijf, Johan; Christenson, Emily A.; Potter, Kailee J.

    2015-07-01

    The solution speciation in seawater of divalent trace metals (Cd, Cu, Ni, Pb, Zn) is dominated by strong, ostensibly metal-specific organic ligands that may play important roles in microbial metal acquisition and/or detoxification processes. We compare the effective stabilities of these metal-organic complexes to the stabilities of their complexes with a model siderophore, desferrioxamine B (DFOB). While metal-DFOB complexation has been studied in various dilute but often moderately coordinating media, for the purpose of this investigation we measured the stability constants in a non-coordinating background electrolyte at seawater ionic strength (0.7 M NaClO4). Potentiometric titrations of single metals (M) weremore » performed in the presence of ligand (L) at different M:L molar ratios, whereupon the stability constants of multiple complexes were simultaneously determined by non-linear regression of the titration curves with FITEQL, using the optimal binding mode for each metal. Cadmium, Ni, and Zn, like trivalent Fe, sequentially form a bi-, tetra-, and hexadentate complex with DFOB as pH increases, consistent with their coordination number of 6 and regular octahedral geometry. Copper has a Jahn-Teller-distorted square-bipyramidal geometry whereas the geometry of Pb is cryptic, involving a range of bond lengths. Supported by a thermodynamic argument, our data suggest that this impedes binding of the third hydroxamate group and that the hexadentate Cu-DFOB and Pb-DFOB complex identified in earlier reports may instead be a deprotonated tetradentate complex. Absence of the hexadentate complex promotes the formation of a dinuclear (bidentate-tetradentate) complex, M2HL2+, albeit not for Pb in 0.7 M NaCl, evidently due to extensive complexation with chloride. Stabilities of the hexadentate Ni-DFOB, Zn-DFOB, and the tetradentate Pb-DFOB complex are nearly equal, yet about 2 orders of magnitude higher and 4 orders of magnitude lower than those of the hexadentate Cd

  15. An experimental investigation of ionic transport properties in CuI-Ag{sub 2}WO{sub 4} and CuI-Ag{sub 2}CrO{sub 4} mixed systems

    SciTech Connect

    Suthanthiraraj, S. Austin; Premchand, Y. Daniel

    2004-11-01

    The phenomenon of ionic transport in the case of two different mixed systems (CuI){sub (1-x)}-(Ag{sub 2}WO{sub 4}){sub x}(0.15=CuI){sub (1-y)}-(Ag{sub 2}CrO{sub 4}){sub y}(0.15=CuI){sub 0.45}-(Ag{sub 2}WO{sub 4}){sub 0.55} and 1.1x10{sup -4}Scm{sup -1} in the case of (CuI){submore » 0.55}-(Ag{sub 2}CrO{sub 4}){sub 0.45} at room temperature has been discussed in terms of the observed characteristics.« less

  16. Subgrain Rotation Behavior in Sn3.0Ag0.5Cu-Sn37Pb Solder Joints During Thermal Shock

    NASA Astrophysics Data System (ADS)

    Han, Jing; Tan, Shihai; Guo, Fu

    2018-01-01

    Ball grid array (BGA) samples were soldered on a printed circuit board with Sn37Pb solder paste to investigate the recrystallization induced by subgrain rotation during thermal shock. The composition of the solder balls was Sn3.0Ag0.5Cu-Sn37Pb, which comprised mixed solder joints. The BGA component was cross-sectioned before thermal shock. The microstructure and grain orientations were obtained by a scanning electron microscope equipped with an electron back-scattered diffraction system. Two mixed solder joints at corners of the BGA component were selected as the subjects. The results showed that recrystallization occurred at the corner of the solder joints after 200 thermal shock cycles. The recrystallized subgrains had various new grain orientations. The newly generated grain orientations were closely related to the initial grain orientations, which indicated that different subgrain rotation behaviors could occur in one mixed solder joint with the same initial grain orientation. When the misorientation angles were very small, the rotation axes were about Sn [100], [010] and [001], as shown by analyzing the misorientation angles and subgrain rotation axes, while the subgrain rotation behavior with large misorientation angles in the solder joints was much more complicated. As Pb was contained in the solder joints and the stress was concentrated on the corner of the mixed solder joints, concaves and cracks were formed. When the adjacent recrystallized subgrains were separated, and the process of the continuous recrystallization was limited.

  17. Adsorption/desorption of Cd(II), Cu(II) and Pb(II) using chemically modified orange peel: Equilibrium and kinetic studies

    NASA Astrophysics Data System (ADS)

    Lasheen, Mohamed R.; Ammar, Nabila S.; Ibrahim, Hanan S.

    2012-02-01

    Waste materials from industries such as food processing may act as cost effective and efficient biosorbents to remove toxic contaminants from wastewater. This study aimed to establish an optimized condition and closed loop application of processed orange peel for metals removal. A comparative study of the adsorption capacity of the chemically modified orange peel was performed against environmentally problematic metal ions, namely, Cd 2+, Cu 2+ and Pb 2+, from aqueous solutions. Chemically modified orange peel (MOP) showed a significantly higher metal uptake capacity compared to original orange peel (OP). Fourier Transform Infrared (FTIR) Spectra of peel showed that the carboxylic group peak shifted from 1637 to 1644 cm -1 after Pb (II) ions binding, indicated the involvement of carboxyl groups in Pb(II) ions binding. The metals uptake by MOP was rapid and the equilibrium time was 30 min at constant temperature and pH. Sorption kinetics followed a second-order model. The mechanism of metal sorption by MOP gave good fits for Freundlich and Langmuir models. Desorption of metals and regeneration of the biosorbent was attained simultaneously by acid elution. Even after four cycles of adsorption-elution, the adsorption capacity was regained completely and adsorption efficiency of metal was maintained at around 90%.

  18. A century long sedimentary record of anthropogenic lead (Pb), Pb isotopes and other trace metals in Singapore.

    PubMed

    Chen, Mengli; Boyle, Edward A; Switzer, Adam D; Gouramanis, Chris

    2016-06-01

    Reconstructing the history of metal deposition in Singapore lake sediments contributes to understanding the anthropogenic and natural metal deposition in the data-sparse Southeast Asia. To this end, we present a sedimentary record of Pb, Pb isotopes and eleven other metals (Ag, As, Ba, Cd, Co, Cr, Cu, Ni, Tl, U and Zn) from a well-dated sediment core collected near the depocenter of MacRitchie Reservoir in central Singapore. Before the 1900s, the sedimentary Pb concentration was less than 2 mg/kg for both soil and sediment, with a corresponding (206)Pb/(207)Pb of ∼1.20. The Pb concentration increased to 55 mg/kg in the 1990s, and correspondingly the (206)Pb/(207)Pb decreased to less than 1.14. The (206)Pb/(207)Pb in the core top sediment is concordant with the (206)Pb/(207)Pb signal of aerosols in Singapore and other Southeast Asian cities, suggesting that Pb in the reservoir sediment was mainly from atmospheric deposition. Using the Pb concentration in the topmost layer of sediment, the estimated atmospheric Pb flux in Singapore today is ∼1.6 × 10(-2) g/m(2) yr. The concentrations of eleven other metals preserved in the sediment were also determined. A principal component analysis showed that most of the metals exhibit an increasing trend towards 1990s with a local concentration peak in the mid-20(th) century. Copyright © 2016. Published by Elsevier Ltd.

  19. Experimental investigations and phase-field simulations of triple-phase-separation kinetics within liquid ternary Co-Cu-Pb immiscible alloys.

    PubMed

    Wu, Y H; Wang, W L; Yan, N; Wei, B

    2017-05-01

    The phase-separation kinetics and microstructure evolution mechanisms of liquid ternary Co_{43}Cu_{40}Pb_{17} immiscible alloys are investigated by both the drop tube technique and phase-field method. Two successive phase separations take place during droplet falling and lead to the formation of a three-phase three-layer core-shell structure composed of a Co-rich core, a Cu-rich middle layer, and a Pb-rich shell. The Pb-rich shell becomes more and more conspicuous as droplet diameter decreases. Meanwhile, the Co-rich core center gradually moves away from the core-shell center. Theoretical analyses show that a larger temperature gradient inside a smaller alloy droplet induces the accelerated growth of the surface segregation shell during triple-phase separation. The residual Stokes motion and the asymmetric Marangoni convection result in the appearance of an eccentric Co-rich core and the core deviation degree is closely related to the droplet size and initial velocity. A three-dimensional phase-field model of ternary immiscible alloys, which considers the successive phase separations under the combined effects of Marangoni convection and surface segregation, is proposed to explore the formation mechanisms of three-phase core-shell structures. The simulated core-shell morphologies are consistent with the experimental observations, which verifies the model's validity in reproducing the core-shell dynamic evolution. Numerical results reveal that the development of three-phase three-layer core-shell structures can be attributed to the primary and then secondary phase separations dominated simultaneously by Marangoni convection and surface segregation. Furthermore, the effects of droplet temperature gradient on the growth kinetics of the surface segregation shell are analyzed in the light of phase-field theory.

  20. Bioaccessibility of As, Cu, Pb, and Zn in mine waste, urban soil, and road dust in the historical mining village of Kaňk, Czech Republic.

    PubMed

    Drahota, Petr; Raus, Karel; Rychlíková, Eva; Rohovec, Jan

    2017-06-15

    Historical mining activities in the village of Kaňk (in the northern part of the Kutná Hora ore district, Czech Republic) produced large amounts of mine wastes which contain significant amounts of metal(loid) contaminants such as As, Cu, Pb, and Zn. Given the proximity of residential communities to these mining residues, we investigated samples of mine waste (n = 5), urban soil (n = 6), and road dust (n = 5) with a special focus on the solid speciation of As, Cu, Pb, and Zn using a combination of methods (XRD, SEM/EDS, oxalate extractions), as well as on in vitro bioaccessibility in simulated gastric and lung fluids to assess the potential exposure risks for humans. Bulk chemical analyses indicated that As is the most important contaminant in the mine wastes (~1.15 wt%), urban soils (~2900 mg/kg) and road dusts (~440 mg/kg). Bioaccessible fractions of As were quite low (4-13%) in both the simulated gastric and lung fluids, while the bioaccessibility of metals ranged between <0.01% (Pb) and 68% (Zn). The bioaccessibilities of the metal(loid)s were dependent on the mineralogy and different adsorption properties of the metal(loid)s. Based on our results, a potential health risk, especially for children, was recognized from the ingestion of mine waste materials and highly contaminated urban soil. Based on the risk assessment, arsenic was found to be the element posing the greatest risk.

  1. Assessment of oxidative stress and bioaccumulation of the metals Cu, Fe, Zn, Pb, Cd in the polychaete Perinereis gualpensis from estuaries of central Chile.

    PubMed

    Gaete, Hernán; Álvarez, Manuel; Lobos, Gabriela; Soto, Eulogio; Jara-Gutiérrez, Carlos

    2017-11-01

    The estuaries of the Aconcagua and Maipo Rivers of central Chile are receptors of residues that contain metals from anthropic activities including agriculture, mining and smelters, which have different levels in the two basins. This study postulates that the exposition to metals is different in the two estuaries and that their sediments contain bioavailable chemical agents that produce oxidative stress. The aim of the study was to evaluate the effect of estuarine sediments on the polychaete Perinereis gualpensis using oxidative stress biomarkers and to determine the metal concentrations in sediments and their accumulation in P. gualpensis. Sediments and organisms were collected in December 2015 and January 2016 in the estuaries. The Catapilco estuary was used as control, since its basin has little anthropic activity. The metal concentrations of Fe Cu, Pb, Zn and Cd were determined in tissues of the organisms and in sediments. The granulometry, conductivity, redox potential, pH and organic matter in sediments were determined, as well as catalase activity and lipid peroxidation. The results show that the concentrations of metals in sediments were higher in the estuary of the Aconcagua River: Cu: 48 ± 2μgg-1; Fe: 154 ± 19mgg-1, Pb: 20 ± 3μgg-1 and Zn: 143 ± 20μgg-1. In tissues, Pb and Fe were higher in the estuary of the Maipo River, while Cd was detected only in the Catapilco River mouth. Catalase activity was greater in the estuary of the Aconcagua River and lipid peroxidation in the estuary of the Catapilco River. Significant regressions were found between biomarkers of oxidative stress and metal concentrations in tissues of P. gualpensis. In conclusion, the sediments of the studied estuaries contain bioavailable chemical agents th