Science.gov

Sample records for cr pb cu

  1. Half-metallic antiferromagnetism in double perovskite BiPbCrCuO{sub 6}

    SciTech Connect

    Weng, Ke-Chuan; Wang, Y. K.

    2015-05-07

    The electronic structure and magnetic properties of BiPbCrCuO{sub 6} double perovskite are investigated based on first-principles density functional calculations with generalized gradient approximation (GGA) and GGA incorporated with Coulomb correlation interaction U (GGA + U). The results suggest the half-metallic (HM) and antiferromagnetic (AFM) properties of BiPbCrCuO{sub 6} double perovskite. The HM-AFM property of the double perovskite is caused by the double-exchange mechanism between neighboring Cr{sup 5+}(t{sub 2g}{sup 1}↓) and Cu{sup 2+}(t{sub 2g}{sup 3}↑t{sub 2g}{sup 3}↓e{sub g}{sup 2}↑e{sub g}↓) via the intermediate O{sup 2−}(2s{sup 2}2p{sup 6}) ion.

  2. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments--a review.

    PubMed

    Kumpiene, Jurate; Lagerkvist, Anders; Maurice, Christian

    2008-01-01

    The spread of contaminants in soil can be hindered by the soil stabilization technique. Contaminant immobilizing amendments decrease trace element leaching and their bioavailability by inducing various sorption processes: adsorption to mineral surfaces, formation of stable complexes with organic ligands, surface precipitation and ion exchange. Precipitation as salts and co-precipitation can also contribute to reducing contaminant mobility. The technique can be used in in situ and ex situ applications to reclaim and re-vegetate industrially devastated areas and mine-spoils, improve soil quality and reduce contaminant mobility by stabilizing agents and a beneficial use of industrial by-products. This study is an overview of data published during the last five years on the immobilization of one metalloid, As, and four heavy metals, Cr, Cu, Pb and Zn, in soils. The most extensively studied amendments for As immobilization are Fe containing materials. The immobilization of As occurs through adsorption on Fe oxides by replacing the surface hydroxyl groups with the As ions, as well as by the formation of amorphous Fe(III) arsenates and/or insoluble secondary oxidation minerals. Cr stabilization mainly deals with Cr reduction from its toxic and mobile hexavalent form Cr(VI) to stable in natural environments Cr(III). The reduction is accelerated in soil by the presence of organic matter and divalent iron. Clays, carbonates, phosphates and Fe oxides were the common amendments tested for Cu immobilization. The suggested mechanisms of Cu retention were precipitation of Cu carbonates and oxy-hydroxides, ion exchange and formation of ternary cation-anion complexes on the surface of Fe and Al oxy-hydroxides. Most of the studies on Pb stabilization were performed using various phosphorus-containing amendments, which reduce the Pb mobility by ionic exchange and precipitation of pyromorphite-type minerals. Zn can be successfully immobilized in soil by phosphorus amendments and clays.

  3. Decrease and increase profile of Cu, Cr and Pb during stable phase of removal by duckweed (Lemna minor L.).

    PubMed

    Uçüncü, Esra; Tunca, Evren; Fikirdeşici, Seyda; Altindağ, Ahmet

    2013-01-01

    The present work details the decrease-increase profiles of Cu, Cr, and Pb by the aquatic plant Lemna minor. A mixture of these metals were utilized at different concentrations. Removal profiles of each metal was determined with water samples taken every 24 h for a 144 h period after the 48 h mark and was examined with correlation analysis. Removal profiles of Cr and Pb by L. minor from the mixture were observed to be highly similar with each other (r = 0.943). High proportion of Cr and Pb were removed compared to Cu and removal equations were defined with the aid of regression analysis.

  4. An experimental and thermodynamic equilibrium investigation of the Pb, Zn, Cr, Cu, Mn and Ni partitioning during sewage sludge incineration.

    PubMed

    Liu, Jingyong; Fu, Jiewen; Ning, Xun'an; Sun, Shuiyu; Wang, Yujie; Xie, Wuming; Huang, Shaosong; Zhong, Sheng

    2015-09-01

    The effects of different chlorides and operational conditions on the distribution and speciation of six heavy metals (Pb, Zn, Cr, Cu, Mn and Ni) during sludge incineration were investigated using a simulated laboratory tubular-furnace reactor. A thermodynamic equilibrium investigation using the FactSage software was performed to compare the experimental results. The results indicate that the volatility of the target metals was enhanced as the chlorine concentration increased. Inorganic-Cl influenced the volatilization of heavy metals in the order of Pb>Zn>Cr>Cu>Mn>Ni. However, the effects of organic-Cl on the volatility of Mn, Pb and Cu were greater than the effects on Zn, Cr and Ni. With increasing combustion temperature, the presence of organic-Cl (PVC) and inorganic-Cl (NaCl) improved the transfer of Pb and Zn from bottom ash to fly ash or fuse gas. However, the presence of chloride had no obvious influence on Mn, Cu and Ni. Increased retention time could increase the volatilization rate of heavy metals; however, this effect was insignificant. During the incineration process, Pb readily formed PbSiO4 and remained in the bottom ash. Different Pb compounds, primarily the volatile PbCl2, were found in the gas phase after the addition of NaCl; the dominant Pb compounds in the gas phase after the addition of PVC were PbCl2, Pb(ClO4)2 and PbCl2O4.

  5. Effects of heavy metals (Cd, Cu, Cr, Pb, Zn) on fish glutathione metabolism.

    PubMed

    Eroglu, A; Dogan, Z; Kanak, E G; Atli, G; Canli, M

    2015-03-01

    The glutathione metabolism contains crucial antioxidant molecules to defend the organisms against oxidants. Thus, the aim of this study was to investigate the response of the glutathione metabolism in the liver of freshwater fish Oreochromis niloticus exposed to metals (Cu, Cd, Cr, Pb, Zn) in different periods. Fish were exposed to metals (as 1 μg/mL) individually for 1, 7, and 14 days and subsequently antioxidant enzymes (glutathione peroxidase, GPX; glutathione reductase, GR and glutathione S-transferase, GST) and glutathione levels (total glutathione, tGSH; reduced glutathione, rGSH; oxidized glutathione, GSSG and GSH/GSSG ratios) in the liver were measured. There was no fish mortality during the experiments, except Cu exposure. The antioxidant enzymes responded differently to metal exposures depending on metal types and exposure durations. GPX activity increased only after Cd exposure, while GST activity increased following 7 days of all metal exposures. However, GR activity did not alter in most cases. Total GSH and GSH/GSSG levels generally decreased, especially after 7 days. Data showed that metal exposures significantly altered the response of antioxidant system parameters, particularly at day 7 and some recovery occurred after 14 days. This study suggests that the response of antioxidant system could help to predict metal toxicity in the aquatic environments and be useful as an "early warning tool" in natural monitoring studies.

  6. Effects of v- or Cr-DOPING on Phase Formation, Electric Properties and Superconductivity of the 3212-TYPE Phase Pb2Sr2(Ca0.5Y0.5)Cu3Oz

    NASA Astrophysics Data System (ADS)

    Chen, Z. Y.; Qian, Y. T.; Luo, H. M.; Qu, B.; Sheng, Z. Z.; Wang, L. M.

    The effects of vanadium or chromium on the formation, electric properties and superconductivity of Pb-3212 phase (Pb2Cu)Sr2(Ca0.5Y0.5)Cu2Oz are studied. The sites of V or Cr in PbO-CuOδ-PbO structure unit for Pb-3212 phase is also investigated. Compared with the effects of Cr-doping, V can totally substitute Ca to form a new compound Pb2Sr2(V0.5Y0.5)Cu3Oz, and V has relatively greater substitution amount in (Pb2-xMx)Sr2(Ca0.5Y0.5)Cu3Oz (M = Cr or V). Moreover, the resistivity and superconductivity of the above samples decrease with increasing V or Cr amount. Among them, the effects of V is greater, and its location (in Pb or Ca site) also affects greatly the superconductivity.

  7. A survey of Pb, Cu, Zn, Cd, Cr, As, and Se in earthworms and soil from diverse sites.

    PubMed

    Beyer, W N; Cromartie, E J

    1987-01-01

    Earthworms and soils were collected from 20 diverse sites in Maryland, Pennsylvania, and Virginia, and were analyzed for Pb, Cu, Zn, Cd, Cr, As, and Se. Correlation coefficients relating concentrations of the elements in earthworms to concentrations in soil were low (-0.20Pb (2100 ppm), Zn (1600 ppm), Cd (23 ppm) and Se (7.6 ppm) detected in earthworms were in the range reported to be toxic to animals fed diets containing these elements; however, even in the absence of any environmental contamination, some species of earthworms may contain high concentrations of Pb, Zn, and Se. Earthworms of the genus Eisenoides, for example, were exceptional in their ability to concentrate Pb. When earthworms are used as indicators of environmental contamination, it is important to identify the species, to report the soil characteristics, and to collect similar earthworms from very similar but uncontaminated soil. PMID:24253769

  8. A survey of Pb, Cu, Zn, Cd, Cr, As, and Se in earthworms and soil from diverse sites

    USGS Publications Warehouse

    Beyer, W.N.; Cromartie, E.J.

    1987-01-01

    Earthworms and soils were collected from 20 diverse sites in Maryland, Pennsylvania, and Virginia, and were analyzed for Pb, Cu, Zn, Cd, Cr, As, and Se. Correlation coefficients relating Iconcentrations of the elements in earthworms to concentrations in soil were low (-0.20Pb (2100 ppm), Zn (1600 ppm), Cd (23 ppm) and Se (7.6 ppm) detected in earthworms were in the range reported to be toxic to animals fed diets containing these elements; however, even in the absence of any environmental contamination, some species of earthworms may contain high concentrations of Pb, Zn, and Se. Earthworms of the genus Eisenoides, for example, were exceptional in their ability to concentrate Pb. When earthworms are used as indicators of environmental contamination, it is important to identify the species, to report the soil characteristics, and to collect similar earthworms from very similar but uncontaminated soil.

  9. The effect of model soil contamination with Cr, Cu, Ni, and Pb on the biological properties of soils in the dry steppe and semidesert regions of southern Russia

    NASA Astrophysics Data System (ADS)

    Kolesnikov, S. I.; Spivakova, N. A.; Kazeev, K. Sh.

    2011-09-01

    Model soil contamination with Cr, Cu, Ni, and Pb in the dry steppes and semideserts of southern Russia has worsened the biological soil properties. With respect to the degree of deterioration of the biological properties, the soils can be arranged in the following sequence: dark chestnut soils > chestnut soils > light chestnut soils > brown semidesert soils > sandy brown semidesert soils. The sequence of metal oxides according to the adverse effect on the biological soil properties is as follows: CrO3 > CuO ≥ PbO ≥ NiO.

  10. Geospatial Mapping of Pb, Cr, Cu, Zn, Cd, and Sb in Urban Soil, Cd. Juarez, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Amaya, M. A.; Grimida, S. E.; Elkekli, A. R.; Aldouri, R. K.; Benedict, B. A.; Pingitore, N. E., Jr.

    2015-12-01

    Population-based random stratified sampling of the city of Cd. Juarez, Chihuahua, Mexico provided 500 city blocks for study. We collected soil from the public space (where present) in front of each house on a selected block; equal measured small volumes of these were combined to produce a composite sample for analysis. Such composite samples (1) decrease, by an order of magnitude, laboratory processing and analysis costs, and (2) smooth the data to represent blocks as averages of individual houses. Retention of the unanalyzed samples of the individual houses permits their later analysis should the composites suggest further study of individual houses on an anomalous block. Elemental analysis of 10 mg pressed powders was performed on a Panalytical Epsilon5 EDS-XRF, via 8 secondary targets and 12 USGS and NIST multi-element rock standards. The mean and (range) of concentration for Pb was 43 (13-550) ppm; for Cr, 31 (1.8-76); for Cu, 22 (6-550); for Zn 84 (42-415) ppm; for Cd, 1.9 (0.1-6.2); and for Sb, 5.9 (2.7-29). The old urban core of Cd. Juarez was marked by high levels of Pb, Cr, Cu, and Zn, and, to a smaller degree, of Cd and Sb. This pattern mirrors that of contiguous El Paso, Texas, USA, directly across the narrow Rio Grande. Businesses, industrial facilities, transportation (both railroads and highways), traditional "downtown" shopping, and old residential districts cluster in this urban core. A Pb-Cu-Zn smelter, which operated for more than a century until 1999, is present in the US adjacent to the Rio Grande, about two km away from downtown Cd. Juarez. Thus the city has been subject to both traditional metal sources (e.g., leaded gasoline, highway debris) and smelter emissions. The poplation of Cd. Juarez has exploded in the last few decades to some 1.5 million inhabitants due both to natural growth and in-migration from rural districts for economic opportunity. Most of this growth has been accommodated by radial expansion of the city into the surrounding

  11. Heavy Metals (Cd, Cu, Cr, Pb and Zn) in Meretrix meretrix Roding, Water and Sediments from Estuaries in Sabah, North Borneo

    ERIC Educational Resources Information Center

    Abdullah, Mohd. Harun; Sidi, Jovita; Aris, Ahmad Zaharin

    2007-01-01

    Concentrations of heavy metals (Cd, Cu, Cr, Pb and Zn) in tissues of Meretrix meretrix Roding (M. meretrix R.), water and sediments from two estuaries were determined. One estuary is located in an urban area of Kota Kinabalu (Likas estuary) and the other in a rural district of Kota Belud (Kota Belud estuary), where both are in Sabah, North of…

  12. Optimization of Ultrasound-Assisted Extraction of Cr, Cu, Zn, Cd, and Pb from Sediment, Followed by FAAS and GFAAS Analysis.

    PubMed

    Mimura, Aparecida M S; Oliveira, Marcone A L; Ciminelli, Virginia S T; Silva, Julio C J

    2016-01-01

    An ultrasound method for simultaneous extraction of Cr, Cu, Zn, Cd, and Pb from sediment, and determination by flame atomic absorption spectrometry (FAAS) and graphite furnace atomic absorption spectrometry (GFAAS) was proposed. The experimental results obtained using analytical curves and the method of standard additions agreed at a confidence level of 95% for all the analytes, as determined by FAAS and GFAAS, indicating no significant matrix effects. Recoveries ranged from 80.1 to 93.7% (certified reference material) and from 89 to 107% (spike tests). The LOD and LOQ results from the method were consistent with the techniques used (FAAS and GFAAS), with high analytical throughput. The proposed method was then used to determine Cr, Cu, Zn, Cd, and Pb in river sediment samples from Rio Doce, Minas Gerais, Brazil. The results indicated levels below those permitted by Brazilian legislation for all the analytes, with the exception of Cr. PMID:26851077

  13. Fe(III) hydroxide nucleation and growth on quartz in the presence of Cu(II), Pb(II), and Cr(III): metal hydrolysis and adsorption.

    PubMed

    Dai, Chong; Hu, Yandi

    2015-01-01

    Fe(III) hydroxide nanoparticles are an essential carrier for aqueous heavy metals. Particularly, iron hydroxide precipitation on mineral surfaces can immobilize aqueous heavy metals. Here, we used grazing-incidence small-angle X-ray scattering (GISAXS) to quantify nucleation and growth of iron hydroxide on quartz in 0.1 mM Fe(NO3)3 solution in the presence of Na(+), Cu(2+), Pb(2+), or Cr(3+) at pH = 3.7 ± 0.1. In 30 min, the average radii of gyration (R(g)) of particles on quartz grew from around 2 to 6 nm in the presence of Na(+) and Cu(2+). Interestingly, the particle sizes remained 3.3 ± 0.3 nm in the presence of Pb(2+), and few particles formed in the presence of Cr(3+). Quartz crystal microbalance dissipation (QCM-D) measurements showed that only Cr(3+) adsorbed onto quartz, while Cu(2+) and Pb(2+) did not. Cr(3+) adsorption changed the surface charge of quartz from negative to positive, thus inhibiting the precipitation of positively charged iron hydroxide on quartz. Masses and compositions of the precipitates were also quantified. This study provided new insights on interactions among quartz, iron hydroxide, and metal ions. Such information is helpful not only for environmental remediation but also for the doping design of iron oxide catalysts. PMID:25496643

  14. Fe(III) hydroxide nucleation and growth on quartz in the presence of Cu(II), Pb(II), and Cr(III): metal hydrolysis and adsorption.

    PubMed

    Dai, Chong; Hu, Yandi

    2015-01-01

    Fe(III) hydroxide nanoparticles are an essential carrier for aqueous heavy metals. Particularly, iron hydroxide precipitation on mineral surfaces can immobilize aqueous heavy metals. Here, we used grazing-incidence small-angle X-ray scattering (GISAXS) to quantify nucleation and growth of iron hydroxide on quartz in 0.1 mM Fe(NO3)3 solution in the presence of Na(+), Cu(2+), Pb(2+), or Cr(3+) at pH = 3.7 ± 0.1. In 30 min, the average radii of gyration (R(g)) of particles on quartz grew from around 2 to 6 nm in the presence of Na(+) and Cu(2+). Interestingly, the particle sizes remained 3.3 ± 0.3 nm in the presence of Pb(2+), and few particles formed in the presence of Cr(3+). Quartz crystal microbalance dissipation (QCM-D) measurements showed that only Cr(3+) adsorbed onto quartz, while Cu(2+) and Pb(2+) did not. Cr(3+) adsorption changed the surface charge of quartz from negative to positive, thus inhibiting the precipitation of positively charged iron hydroxide on quartz. Masses and compositions of the precipitates were also quantified. This study provided new insights on interactions among quartz, iron hydroxide, and metal ions. Such information is helpful not only for environmental remediation but also for the doping design of iron oxide catalysts.

  15. [Determination of Cr, Cu, Zn, Pb and As in soil by field portable X-ray fluorescence spectrometry].

    PubMed

    Lu, An-xiang; Wang, Ji-hua; Pan, Li-gang; Han, Ping; Han, Ying

    2010-10-01

    Total concentrations of Cr, Cu, Zn, Pb and As were determined in soil samples from Beijing, Xinjiang, Heilongjiang, Yunnan, and Jiangsu provinces, using field portable X-ray fluorescence spectrometry (XRF). The relationship between XRF analysis results and the concentration of heavy metals in soils was established. The influence of soil particle size and humidity was also considered. Experiments showed that the particle size of soil affected XRF performance. While particle size decreased from 420 to 180 microm, the relative standard deviation (RSD) of XRF detect results reduced from 15.6% to 6.9%. Soil humidity mainly affected the counts of XRF measured. As the soil water content increased from 5% to 252, the analysis result's relative ratio of humid soil samples to oven dried soil samples decreased from 86% to 69%, according with the equation I = 100e(0.015c), where I means relative ratio, and c means water content (R2 = 0.83, n=30). A high degree of linearity was found for all the five heavy metals with the XRF measurement in the range of 0 to 1500 mg x kg(-1). But the linearity equation was not the same among these soils. The linearity equation established with Yunnan soil has a small slope because of higher Fe concentration in soil. The performance of instrument was assessed by comparing XRF analysis result with the standard sample reference, and the result showed that XRF is an effective tool for rapid, quantitative monitoring of soil metal contamination.

  16. Accumulation of Cr, Pb, Cu, Ni, Zn and Cd in soil following irrigation with treated urban effluent in Australia.

    PubMed

    Smith, C J; Hopmans, P; Cook, F J

    1996-01-01

    The effect of irrigation with secondary treated municipal effluent on the accumulation of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) was investigated by monitoring sites that had been irrigated with effluent for 4 and 17 years. At Wodonga, seven tree species were sprinkler irrigated with effluent at an average application rate of 1347 mm per annum from 1980 to 1984. The other site at Canberra was a large grass playing field (9 ha), half of which had been effluent irrigated since 1977. The non-effluent irrigated area served as the control area and provided reference 'background' concentration to assess the extent of contamination due to 17 years of effluent irrigation. Archived soil samples collected before the commencement of effluent irrigation were compared with those taken in 1984 at Wodonga to assess the extent of contamination. The concentration of labile metals was determined by extraction with EDTA because this method provides a quantitative measure of bioavailable metals. Irrigation with effluent did not increase the EDTA-extractable metals concentration at either site. Furthermore, the EDTA-extractable metal values were within the natural 'back-ground' range reported for Australian soils. These data suggest that it may take between 50 and 100 years for heavy metal levels (mainly Cd) in effluent-irrigated soil to reach the currently proposed threshold values for environmental concern. The potentially harmful effects of long-term accumulation of heavy metals on plant growth cannot be ignored and could affect the sustainability of land-based disposal of effluent. PMID:15093492

  17. Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, Typha angustifolia and Cyperus esculentus.

    PubMed

    Chandra, Ram; Yadav, Sangeeta

    2011-07-01

    A comparative bioaccumulation pattern and ultra structural changes were studied in Phragmites cummunis, Typha angustifolia and Cyperus esculentus in mixed metals solution of cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb) and zinc (Zn). P. cummunis was observed to be a shoot accumulator for Cr, Fe, Mn, Ni, Pb, and Zn. However, T. angustifolia was found to be a root accumulator for Cd, Cr, Cu, Fe, Ni and Pb. In addition, C. esculentus also accumulated most of the tested heavy metals in the roots, while Mn and Fe were translocated up to leaves. Further, the long term metal treatment showed maximum accumulation of all heavy metals in P. cummunis followed by T. angustifolia and C. esculentus. Among heavy metals, Fe was accumulated maximum, i.e., >1000 microg g(-1) by all three plants. Simultaneously, the adverse effects on biochemical parameters were noted earlier in C. esculentus than T. angustifolia and P. cummunis. Ultra structural observation showed the cellular changes in wetland plants after longer exposure. Results revealed that P. cummunis and T. angustifolia had more potential for tested metals than C. esculentus. This study established that these wetland plants could be used for heavy metals phytoremediation from metal containing industrial wastewater. PMID:21972504

  18. Concentrations of Mn, Fe, Cu, Zn, Cr, Cd, Pb, Ni in selected Nigerian tubers, legumes and cereals and estimates of the adult daily intakes.

    PubMed

    Akinyele, I O; Shokunbi, O S

    2015-04-15

    This study was designed to determine the levels of microminerals (manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), chromium (Cr)) and heavy metals (cadmium (Cd), lead (Pb) and nickel (Ni)) in some tubers, legumes and cereals obtained from the markets in Abeokuta city, South-West Nigeria. The food samples were digested by dry ashing procedure and their minerals were determined by atomic absorption spectrophotometer. The results show mean values of 1.67-32.00, 7.25-61.58, 1.59-10.56, 6.65-46.99, 0.02-0.58, <0.01-0.09, <0.08, and 0.06-0.14 mg/kg for Mn, Fe, Cu, Zn, Cr, Cd, Pb and Ni respectively. The levels of these metals in all the samples analysed were within the ranges reported for similar tubers, legumes and cereals from various parts of the world. The daily intakes of the metals through tubers, legumes and cereals were found to be lower than the provisional tolerable daily intakes proposed by Joint FAO/WHO Expert Committee on Food Additives.

  19. Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment.

    PubMed

    Song, Yue; Ammami, Mohamed-Tahar; Benamar, Ahmed; Mezazigh, Salim; Wang, Huaqing

    2016-06-01

    In recent years, electrokinetic (EK) remediation method has been widely considered to remove metal pollutants from contaminated dredged sediments. Chelating agents are used as electrolyte solutions to increase metal mobility. This study aims to investigate heavy metal (HM) (As, Cd, Cr, Cu, Ni, Pb and Zn) mobility by assessing the effect of different chelating agents (ethylenediaminetetraacetic acid (EDTA), ethylenediaminedisuccinic acid (EDDS), nitrilotriacetic acid (NTA) or citric acid (CA)) in enhancing EK remediation efficiency. The results show that, for the same concentration (0.1 mol L(-1)), EDTA is more suitable to enhance removal of Ni (52.8 %), Pb (60.1 %) and Zn (34.9 %). EDDS provides effectiveness to increase Cu removal efficiency (52 %), while EDTA and EDDS have a similar enhancement removal effect on As EK remediation (30.5∼31.3 %). CA is more suitable to enhance Cd removal (40.2 %). Similar Cr removal efficiency was provided by EK remediation tests (35.6∼43.5 %). In the migration of metal-chelate complexes being directed towards the anode, metals are accumulated in the middle sections of the sediment matrix for the tests performed with EDTA, NTA and CA. But, low accumulation of metal contamination in the sediment was observed in the test using EDDS. PMID:26782321

  20. Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb, and Zn in Swiss forest soils.

    PubMed

    Blaser, P; Zimmermann, S; Luster, J; Shotyk, W

    2000-04-17

    The aim of this study was to obtain an overview of trace element concentrations in Swiss forest soils and to critically assess the measured values with respect to anthropogenic input vs. lithogenic background. Twenty-three sites were selected which represent a broad range of natural forest sites, bedrock material and soil types of Switzerland. At each site, samples were collected from all genetic soil horizons down to a C or B/C horizon. Total concentrations of As, Cr, Cu, Ni, Pb, and Zn in all samples were determined by X-ray fluorescence spectrometry. There were distinct differences in the geological background values estimated from the concentrations measured in the samples from the lowest soil horizon. Background concentrations for Cr and Ni were lowest in granite and gneiss, whereas Pb and Zn were highest in limestone and marl. Enrichment or depletion of the trace elements was assessed using Zr as reference element. Within the same profile, the six trace elements showed completely different enrichment/depletion patterns with depth. The various natural processes and anthropogenic inputs that can lead to these patterns are critically discussed. Based on this critical assessment, pollution of the investigated forest soils was found to be most severe for Pb and Zn and to a somewhat lesser extent for As and Cu, whereas anthropogenic input of Cr and Ni seems to be less important. The data suggest that a critical evaluation of enrichment factors is a better tool to assess soil pollution with trace elements than the use of maximum allowable concentrations (MAC) for topsoil samples. The enrichment factors calculated as described here consider the effects of geological variation on metal abundances whereas the MAC does not. In order to obtain an estimate of soil solution concentrations, water extracts of the samples collected from a subset of 10 soil profiles were analyzed for the same trace elements. Solubility of all elements generally decreased with soil depth. An

  1. Atmospheric deposition of Pb, Cu, Ni, As, Sb, V, Cr, Co, Cd and Zn recorded in the Misten peat bog (Hautes-Fagnes, Belgium) during the Industrial Revolution

    NASA Astrophysics Data System (ADS)

    Allan, M.; Le Roux, G.; De Vleeschouwer, F.; Mattielli, N.; Fagel, N.

    2012-04-01

    A 40 cm peat core was studied from ombrotrophic bog in Western Europe (Misten bog, Hautes-Fagnes, Belgium). Trace metal and metalloid content (TM) and Pb isotopes were analysed by Q-ICP-MS and MC-ICP-MS, respectively. We focused our attention to a selected number of TM according to their specific enrichment (i.e. Pb, Cu, Ni, As, Sb, Cr, Co, V, Cd and Zn). Our aims were: 1) to investigate TM mobility; 2) to determine TM accumulation rates and 3) to link TM accumulation rates with established histories of anthropogenic atmospheric emission. According to 210Pb and 14C data the studied peat core section covered the last two centuries. The general agreement in TM concentration and flux profiles suggested that all TM (except Zn and Cd), were immobile in the Misten peat bog. The temporal increase of TM fluxes between the inception of the Industrial Revolution and the present vary by a factor of 5 to 50 according to TM. The maximum fluxes of TM were found between 1991 and 1995 AD. The coal consumption and metallurgical activities were the predominant source of pollution. The historical TM profiles in the Misten peat profile are in agreement with other European records, reflecting the influence of regional European pollution.

  2. Chemical fractionation of Cu, Zn, Cd, Cr, and Pb in sewage sludge amended soils at the end of 65-d sorghum-sudan grass growth.

    PubMed

    Sivapatham, Paramasivam; Lettimore, Jon M; Alva, Ashok K; Jayaraman, Kuppuswamy; Harper, Legia M

    2014-09-19

    Heavy metals are potentially toxic to human life and the environment. Metal toxicity depends on chemical associations in soil. Understanding the chemical association of trace elements in soils amended with biosolids is very important since it determines their availability within rhizosphere and mobility beyond the rhizosphere. A sequential extraction method was used to determine the various chemical associations [labile (exchangeable + sorbed), organic, carbonates, and sulfides] of Cu, Zn, Cd, Cr, and Pb at the end of sorghum-sudan grass growth (65d) in Candler fine sand (pH = 6.8) and in Ogeechee loamy sand (pH = 5.2) amended with wastewater treatment sludge (WWTS) obtained from two different sources at application rates of 0, 24.7, 49.4, 98.8, and 148.2 Mg ha(-1). Results of this study indicated that irrespective of the soil type, Cu, Cd, Cr, and Pb in the labile fractions (exchangeable + sorbed) were in the range of 0-3.0 mg kg(-1) and the amount for Zn was in the range of 0.2-6.6 mg kg(-1). Therefore, their availability to plants and mobility beyond rhizosphere would be substantially low unless further transformations occur from other fractions. Results also indicated that the presence of substantial amounts of trace elements studied were in sulfide (HNO3) fraction and in organic (NaOH) fraction irrespective of soil type with the exception of Pb which was mainly present as carbonate (Na2EDTA) fraction and the remaining Pb equally as sulfide (HNO3) and organic (NaOH) fractions. Furthermore, results indicated that Cd was mainly present as carbonate (Na2EDTA) fraction. Irrespective of soil type, source and rate of WWTS application, summation of quantities of various fractions of all the trace elements studied through sequential extraction procedure were 1 to 25 % lower than that of total recoverable quantities of these trace elements determined on acid digestion described by US EPA method 3050 B. It was further evident that growing sorghum sudan grass for 65-d

  3. Assessment of heavy metals/metalloid (As, Pb, Cd, Ni, Zn, Cr, Cu, Mn) concentrations in edible fish species tissue in the Pearl River Delta (PRD), China.

    PubMed

    Leung, H M; Leung, A O W; Wang, H S; Ma, K K; Liang, Y; Ho, K C; Cheung, K C; Tohidi, F; Yung, K K L

    2014-01-15

    The major aim of this study was to investigate heavy metal content of edible fish in the PRD. Eleven species of fish (consisting of 711 individuals) [catfish (Clarias fuscus), tilapia (Oreochromis mossambicus), grass carp (Ctenopharyngodon idellus), bighead carp (Aristichthys nobilis), mandarin fish (Siniperca kneri), snakehead (Channa asiatiea), black bass (Micropterus salmoides), mangrove snapper (Lutjanus griseus), star snapper (Lutjanu stellatus), snubnose pompano (Trachinotus blochii) and orange-spotted grouper (Epinephelus coioides)] were collected for the analyses of heavy metals. Overall concentrations (mg/kg, ww) in the fish muscles were: As (0.03-1.53), Pb (0.03-8.62), Cd (0.02-0.06), Ni (0.44-9.75), Zn (15.7-29.5), Cr (0.22-0.65), Cu (0.79-2.26), Mn (0.82-6.91). Significant level of Pb were found in tilapia at all locations. It is recommended that heavy metal concentrations in different fish species must be determined on a regular basis in the future so as to reduce human health risks from acute and chronic food intoxication. PMID:24239097

  4. Assessment of heavy metals/metalloid (As, Pb, Cd, Ni, Zn, Cr, Cu, Mn) concentrations in edible fish species tissue in the Pearl River Delta (PRD), China.

    PubMed

    Leung, H M; Leung, A O W; Wang, H S; Ma, K K; Liang, Y; Ho, K C; Cheung, K C; Tohidi, F; Yung, K K L

    2014-01-15

    The major aim of this study was to investigate heavy metal content of edible fish in the PRD. Eleven species of fish (consisting of 711 individuals) [catfish (Clarias fuscus), tilapia (Oreochromis mossambicus), grass carp (Ctenopharyngodon idellus), bighead carp (Aristichthys nobilis), mandarin fish (Siniperca kneri), snakehead (Channa asiatiea), black bass (Micropterus salmoides), mangrove snapper (Lutjanus griseus), star snapper (Lutjanu stellatus), snubnose pompano (Trachinotus blochii) and orange-spotted grouper (Epinephelus coioides)] were collected for the analyses of heavy metals. Overall concentrations (mg/kg, ww) in the fish muscles were: As (0.03-1.53), Pb (0.03-8.62), Cd (0.02-0.06), Ni (0.44-9.75), Zn (15.7-29.5), Cr (0.22-0.65), Cu (0.79-2.26), Mn (0.82-6.91). Significant level of Pb were found in tilapia at all locations. It is recommended that heavy metal concentrations in different fish species must be determined on a regular basis in the future so as to reduce human health risks from acute and chronic food intoxication.

  5. The Uptake Mechanism of Cd(II), Cr(VI), Cu(II), Pb(II), and Zn(II) by Mycelia and Fruiting Bodies of Galerina vittiformis

    PubMed Central

    Damodaran, Dilna; Balakrishnan, Raj Mohan; Shetty, Vidya K.

    2013-01-01

    Optimum concentrations of heavy metals like copper, cadmium, lead, chromium, and zinc in soil are essential in carrying out various cellular activities in minimum concentrations and hence help in sustaining all life forms, although higher concentration of these metals is lethal to most of the life forms. Galerina vittiformis, a macrofungus, was found to accumulate these heavy metals into its fleshy fruiting body in the order Pb(II) > Cd(II) > Cu(II) > Zn(II) > Cr(VI) from 50 mg/kg soil. It possesses various ranges of potential cellular mechanisms that may be involved in detoxification of heavy metals and thus increases its tolerance to heavy metal stress, mainly by producing organic acids and phytochelatins (PCs). These components help in repairing stress damaged proteins and compartmentalisation of metals to vacuoles. The stress tolerance mechanism can be deduced by various analytical tools like SEM-EDX, FTIR, and LC-MS. Production of two kinds of phytochelatins was observed in the organism in response to metal stress. PMID:24455671

  6. Investigation of heavy metal (Cu, Pb, Cd, and Cr) stabilization in river sediment by nano-zero-valent iron/activated carbon composite.

    PubMed

    Chen, Wei-fang; Zhang, Jinghui; Zhang, Xiaomao; Wang, Weiya; Li, Yuxiang

    2016-01-01

    Nano-zero-valent iron/activated carbon (nZVI/AC) composite was evaluated for its effectiveness in the stabilization of Cu, Pb, Cd, and Cr in dredged river sediment. Synthetic precipitation leaching procedure (SPLP) and toxicity characteristic leaching procedure (TCLP) were adopted to compare the effects of nZVI/AC dosage, particle size, time duration, and temperature on heavy metal leachability. The results show that leachability dropped considerably with the addition of nZVI/AC and powdered particles in the size of 0.075-0.18 mm was more effective in stabilization than granular ones. Stabilization effect was stable in long-term and robust against changes in temperature. Tessier sequential extraction revealed that heavy metals were associated with solid particle, inorganic or organic matters in sediment. The addition of nZVI/AC was able to convert relatively weakly bound heavy metals into more strongly bound species and thus reduce the bioavailability and toxicity. Also, the standard potential of heavy metals may decide the mechanism of stabilization process. PMID:26370818

  7. Cu-Cr Literature Review

    SciTech Connect

    Need, Ryan F.

    2012-08-09

    Cu-Cr alloys are part of a class of face-centered cubic (FCC)-body-centered cubic (BCC) composites that includes similar alloys, such as Cu-Nb and Cu-Ta. When heavily deformed, these FCC-BCC materials create 'in situ' composites with a characteristic structure-nanoscale BCC filaments in a ductile FCC matrix. The strength of these composites is vastly greater than predicted by the rule of mixtures, and has been shown to be inversely proportional to the filament spacing. Lower raw materials costs suggest that Cu-Cr alloys may offer more economical solution to high-strength, high-conductivity wire than either their Nb or Ta counterparts. However, Cr is also more brittle and soluble in Cu than Nb or Ta. These qualities necessitate thermal treatments to remove solute atoms from the Cu matrix, improve conductivity, and maintain the ductility of the Cr filaments. Through the use of different thermomechanical processing routes or the addition of select dopants, alloys with strength in excess of 1 GPa at 70% IACS have been achieved. To date, previous research on Cu-Cr alloys has focused on a relatively small number of alloy compositions and processing methods while the effects of dopants and ageing treatments have only been studied independently. Consequently, there remains considerable opportunity for the development and optimization of these alloys as a leading high-strength, high-conductivity material.

  8. Regional background concentrations of heavy metals (Cr, Co, Ni, Cu, Zn, Pb) in coastal sediments of the South Sea of Korea.

    PubMed

    Song, Yunho; Choi, Man Sik; Lee, Ji Youn; Jang, Dong Jun

    2014-06-01

    The background concentration (BC) of metals in coastal sediments may be a useful tool for assessing the extent of sediment contamination by human activities. This study presents an approach to establish BCs that are applicable at the regional scale, particularly for coastal areas with relatively tortuous coastlines and complex coastal geology and/or geomorphology like the South Sea of Korea. The approach is based on the sorption hypothesis for metal enrichment of coastal sediments and was verified using 33 core and 187 surface sediments. The concentrations of major and heavy metals, grain size parameters, organic carbon, and sedimentation rates were determined. Cs was selected as the most suitable geochemical normalizer to correct the grain-size effect. Non-contaminated samples from core sediments were selected according to the sedimentation rate, 32 types of profile pattern based on metal concentrations and metal/Cs ratios, and their variability in past sediments. Metal concentrations in the selected non-contaminated samples were well correlated with Cs, with a given Cs amounts in surface sediments corresponding to the lowest metal concentrations. This result supported the use of a procedure based on the sorption hypothesis, which was then used to synthesize all core samples and establish the regional BC of heavy metals in the coastal sediments. Linear regression equations between metal and Cs concentrations provided the following BCs of metals in coastal sediments in the South Sea of Korea: 70 (Cr), 13 (Co), 30 (Ni), 13 (Cu), 87 (Zn), and 23 (Pb)mg/kg at 8mg/kg of Cs (mean concentration of 393 sediments). PMID:24636889

  9. Evaluation of the Accumulation of Trace Metals (as, U, CR, CU, PB, Zn) on Iron-Manganese Coatings on in Situ Stream Pebbles and Emplaced Substrates

    NASA Astrophysics Data System (ADS)

    Turpin, M. M.; Blake, J.; Crossey, L. J.; Ali, A.; Hansson, L.

    2015-12-01

    Exposure to trace metals (As, U, Cr, Cu, Pb, Zn) has potential negative health effects on human populations and wildlife. Geothermal waters often have elevated concentrations of trace elements and understanding the geochemical cycling of these elements can be challenging. Previous studies have utilized in situ stream pebbles and glass or ceramic substrates with iron-manganese oxide coatings to understand contamination and or chemical cycling. This project's main focus is to develop an ideal tracing method using adsorption onto substrate surfaces and to define key parameters that are necessary for the phenomenon of adsorption between trace metals and these surface coatings to occur. Sampling locations include the Jemez River and Rio San Antonio in the Jemez mountains, northern New Mexico. Both streams have significant geothermal inputs. Pebbles and cobbles were gathered from the active stream channel and 6mm glass beads and 2 X1 in. ceramic plates were placed in streams for three weeks to allow for coating accumulation. Factors such as leachate type, water pH, substrate type, coating accumulation period and leach time were all considered in this experiment. It was found that of the three leachates (aqua regia, 10% aqua regia and hydroxylamine), hydroxylamine was the most effective at leaching coatings without dissolving substrates. Samples leached with aqua regia and 10% aqua regia were found to lose weight and mass over the following 5, 7, and 10 day measurements. Glass beads were determined to be more effective than in stream pebbles as an accumulation substrate: coatings were more easily controlled and monitored. Samples leached with hydroxylamine for 5 hours and 72 hours showed little difference in their leachate concentrations, suggesting that leach time has little impact on the concentration of leachate samples. This research aims to find the best method for trace metal accumulation in streams to aid in understanding geochemical cycling.

  10. Regional background concentrations of heavy metals (Cr, Co, Ni, Cu, Zn, Pb) in coastal sediments of the South Sea of Korea.

    PubMed

    Song, Yunho; Choi, Man Sik; Lee, Ji Youn; Jang, Dong Jun

    2014-06-01

    The background concentration (BC) of metals in coastal sediments may be a useful tool for assessing the extent of sediment contamination by human activities. This study presents an approach to establish BCs that are applicable at the regional scale, particularly for coastal areas with relatively tortuous coastlines and complex coastal geology and/or geomorphology like the South Sea of Korea. The approach is based on the sorption hypothesis for metal enrichment of coastal sediments and was verified using 33 core and 187 surface sediments. The concentrations of major and heavy metals, grain size parameters, organic carbon, and sedimentation rates were determined. Cs was selected as the most suitable geochemical normalizer to correct the grain-size effect. Non-contaminated samples from core sediments were selected according to the sedimentation rate, 32 types of profile pattern based on metal concentrations and metal/Cs ratios, and their variability in past sediments. Metal concentrations in the selected non-contaminated samples were well correlated with Cs, with a given Cs amounts in surface sediments corresponding to the lowest metal concentrations. This result supported the use of a procedure based on the sorption hypothesis, which was then used to synthesize all core samples and establish the regional BC of heavy metals in the coastal sediments. Linear regression equations between metal and Cs concentrations provided the following BCs of metals in coastal sediments in the South Sea of Korea: 70 (Cr), 13 (Co), 30 (Ni), 13 (Cu), 87 (Zn), and 23 (Pb)mg/kg at 8mg/kg of Cs (mean concentration of 393 sediments).

  11. Chemical speciation of Fe, Mn, Pb, Zn, Cd, Cu, Co, Ni and Cr in the suspended particulate matter off the Mejerda River Delta (Gulf of Tunis, Tunisia)

    NASA Astrophysics Data System (ADS)

    Helali, Mohamed Amine; Oueslati, Walid; Zaaboub, Noureddine; Added, Ayed; Aleya, Lotfi

    2016-06-01

    Fluxes of suspended particulate matter (SPM) and their associated metals were performed off the Mejerda River Delta during both the wet (March) and the dry (July) seasons in 2012, using sediment traps at study stations at depths of 10, 20 and 40 m. Fluxes nearest to the Mejerda outlet were more significant, especially during winter (36 g m-2 day-1), but dissipated further offshore, 24.5-6 g m-2 day-1 at the 20 m and 21.8-4.8 g m-2 day-1 at the 40 m stations. Many variations observed in seasonal and spatial metal fluxes are similar to those of SPM, in particular Pb and Zn, probably because they are associated with the mining activity characteristic of the Mejerda catchment. Chemical speciation reveals that most of the metals (20-100%) are bound to the residual fraction. The most toxic metals (Pb, Zn) are bound in part to the exchangeable fraction (20-50% for Pb and 5-15% for Zn) making them relatively bioavailable and therefore potentially toxic. While Cu and Cd fluxes are not always clearly established according to season, both metals are apparently sequestered deep in the sediment, bound especially to clays (40-80% for Cd and up to 100% for Cu).

  12. Chemometric evaluation of Cd, Co, Cr, Cu, Ni (inductively coupled plasma optical emission spectrometry) and Pb (graphite furnace atomic absorption spectrometry) concentrations in lipstick samples intended to be used by adults and children.

    PubMed

    Batista, Érica Ferreira; Augusto, Amanda dos Santos; Pereira-Filho, Edenir Rodrigues

    2016-04-01

    A method was developed for determining the concentrations of Cd, Co, Cr, Cu, Ni and Pb in lipstick samples intended to be used by adults and children using inductively coupled plasma optical emission spectrometry (ICP OES) and graphite furnace atomic absorption spectrometry (GF AAS) after treatment with dilute HNO3 and hot block. The combination of fractional factorial design and Desirability function was used to evaluate the ICP OES operational parameters and the regression models using Central Composite and Doehlert designs were calculated to stablish the best working condition for all analytes. Seventeen lipstick samples manufactured in different countries with different colors and brands were analyzed. Some samples contained high concentrations of toxic elements, such as Cr and Pb, which are carcinogenic and cause allergic and eczematous dermatitis. The maximum concentration detected was higher than the permissible safe limits for human use, and the samples containing these high metal concentrations were intended for use by children. Principal component analysis (PCA) was used as a chemometrics tool for exploratory analysis to observe the similarities between samples relative to the metal concentrations (a correlation between Cd and Pb was observed).

  13. Chemometric evaluation of Cd, Co, Cr, Cu, Ni (inductively coupled plasma optical emission spectrometry) and Pb (graphite furnace atomic absorption spectrometry) concentrations in lipstick samples intended to be used by adults and children.

    PubMed

    Batista, Érica Ferreira; Augusto, Amanda dos Santos; Pereira-Filho, Edenir Rodrigues

    2016-04-01

    A method was developed for determining the concentrations of Cd, Co, Cr, Cu, Ni and Pb in lipstick samples intended to be used by adults and children using inductively coupled plasma optical emission spectrometry (ICP OES) and graphite furnace atomic absorption spectrometry (GF AAS) after treatment with dilute HNO3 and hot block. The combination of fractional factorial design and Desirability function was used to evaluate the ICP OES operational parameters and the regression models using Central Composite and Doehlert designs were calculated to stablish the best working condition for all analytes. Seventeen lipstick samples manufactured in different countries with different colors and brands were analyzed. Some samples contained high concentrations of toxic elements, such as Cr and Pb, which are carcinogenic and cause allergic and eczematous dermatitis. The maximum concentration detected was higher than the permissible safe limits for human use, and the samples containing these high metal concentrations were intended for use by children. Principal component analysis (PCA) was used as a chemometrics tool for exploratory analysis to observe the similarities between samples relative to the metal concentrations (a correlation between Cd and Pb was observed). PMID:26838401

  14. Influence of the type of tree habitat on the character of co-occurrence of Fe, Mn, Zn, Cu, Pb, Ni, Cr and Co in the soil of the Tatra Mountain National Park.

    PubMed

    Kwapuliński, Jerzy; Paprotny, Łukasz; Paukszto, Andrzej; Kowol, Jolanta; Rochel, Robert; Nogaj, Ewa; Musielińska, Renata; Celiński, Rafał

    2013-01-01

    The objective of the research was to determine the effect of habitat type of selected species of trees on the nature of co-occurrence of Fe, Mn, Zn, Cu, Pb, Cd, Ni, Cr and Co. The presence of speciation forms of these metals was investigated, with reference to the species composition of tree stands in selected areas of the Tatra Mountain National Park (Chochołowska Valley, Strążyska Valley, Kościeliska Valley, as well as Mała Łąka Valley).Contents of selected metals in samples were determined by the flame ASA method, with an accuracy of 0.1 µg/g. In habitats dominated by maples, the Pb content in the Chochołowska Valley, unlike Kościeliska Valley covered with beeches, the Pb content in the form directly bioavailable, was twice as high. This was clearly proved in the case of Strążyska Valley where the soil in beech tree habitats contained larger quantities of exchangeable forms of Pb, than that in the Chochołowska Valley. The soil of the valleys, including the Mała Łąka Valley, showed peculiar characteristic averaging of the contents of selected speciation forms of metals in the soil. Content corresponding to 10 percentile and geometrical average may be regarded as benchmarks in future studies of the Tatra Mountain National Park, or other protected areas. PMID:24069853

  15. Concentration of Cu, Zn, Cr, Ni, Cd, and Pb in soil, sugarcane leaf and juice: residual effect of sewage sludge and organic compost application.

    PubMed

    Moretti, Sarah Mello Leite; Bertoncini, Edna Ivani; Vitti, André César; Alleoni, Luís Reynaldo Ferracciú; Abreu-Junior, Cassio Hamilton

    2016-03-01

    Many researchers have evaluated the effects of successive applications of sewage sludge (SS) on soil plant-systems, but most have not taken into account the residual effect of organic matter remaining from prior applications. Furthermore, few studies have been carried out to compare the effects of the agricultural use of SS and sewage sludge compost (SSC). Therefore, we evaluated the residual effect of SS and SSC on the heavy metal concentrations in soil and in sugarcane (Saccharum spp.) leaves and juice. The field experiment was established after the second harvesting of unburned sugarcane, when the organic materials were applied. The SS and SSC rates were (t ha(-1), dry base): 0, 12.5, 25, and 50; and 0, 21, 42, and 84, respectively. All element concentrations in the soil were below the standards established by São Paulo State environmental legislation. SS promoted small increases in Zn concentrations in soil and Cu concentrations in leaves. However, all heavy metals concentrations in the leaves were lower than the limits established for toxic elements and were in accordance with the limits established for micronutrients. There were reductions in the concentrations of Ni and Cu in soil and the concentration of Pb in juice, with increasing rates of SSC. The heavy metal concentrations were very low in the juice. Under humid tropical conditions and with short-term use, SS and SSC containing low heavy metal concentrations did not have negative effects on plants and soil.

  16. Concentration of Cu, Zn, Cr, Ni, Cd, and Pb in soil, sugarcane leaf and juice: residual effect of sewage sludge and organic compost application.

    PubMed

    Moretti, Sarah Mello Leite; Bertoncini, Edna Ivani; Vitti, André César; Alleoni, Luís Reynaldo Ferracciú; Abreu-Junior, Cassio Hamilton

    2016-03-01

    Many researchers have evaluated the effects of successive applications of sewage sludge (SS) on soil plant-systems, but most have not taken into account the residual effect of organic matter remaining from prior applications. Furthermore, few studies have been carried out to compare the effects of the agricultural use of SS and sewage sludge compost (SSC). Therefore, we evaluated the residual effect of SS and SSC on the heavy metal concentrations in soil and in sugarcane (Saccharum spp.) leaves and juice. The field experiment was established after the second harvesting of unburned sugarcane, when the organic materials were applied. The SS and SSC rates were (t ha(-1), dry base): 0, 12.5, 25, and 50; and 0, 21, 42, and 84, respectively. All element concentrations in the soil were below the standards established by São Paulo State environmental legislation. SS promoted small increases in Zn concentrations in soil and Cu concentrations in leaves. However, all heavy metals concentrations in the leaves were lower than the limits established for toxic elements and were in accordance with the limits established for micronutrients. There were reductions in the concentrations of Ni and Cu in soil and the concentration of Pb in juice, with increasing rates of SSC. The heavy metal concentrations were very low in the juice. Under humid tropical conditions and with short-term use, SS and SSC containing low heavy metal concentrations did not have negative effects on plants and soil. PMID:26879984

  17. The influence of metal speciation in combustion waste on the efficiency of Cu, Pb, Zn, Cd, Ni and Cr bioleaching in a mixed culture of sulfur-oxidizing and biosurfactant-producing bacteria.

    PubMed

    Karwowska, Ewa; Wojtkowska, Małgorzata; Andrzejewska, Dorota

    2015-12-15

    Metal leachability from ash and combustion slag is related to the physico-chemical properties, including their speciation in the waste. Metals speciation is an important factor that influences the efficiency of metal bioleaching from combustion wastes in a mixed culture of acidophilic and biosurfactant-producing bacteria. It was observed that individual metals tended to occur in different fractions, which reflects their susceptibility to bioleaching. Cr and Ni were readily removed from wastes when present with a high fraction bound to carbonates. Cd and Pb where not effectively bioleached when present in high amounts in a fraction bound to organic matter. The best bioleaching results were obtained for power plant slag, which had a high metal content in the exchangeable, bound to carbonates and bound to Fe and Mg oxides fractions- the metal recovery percentage for Zn, Cu and Ni from this waste exceeded 90%.

  18. Dendritic solidification of undercooled Cu-20%Pb hypomonotectic alloy

    SciTech Connect

    Dong, C.; Wei, B.

    1996-05-15

    The Cu-Pb monotectic system is the basis of an important category of wear-resistant materials especially bearing alloys. Its industrially interesting composition ranges from 10 to 50%Pb. In order to produce aligned composites or homogeneous dispersions, extensive research has been performed to investigate the solidification mechanism of Cu-Pb monotectic alloys under directional solidification or microgravity conditions. The preliminary nature of the current space experiments on Cu-Pb monotectic solidification excludes the possibility to draw any really definite conclusions about the influences of microgravity. In contrast, so far still little has been known about the undercooling behavior and rapid solidification kinetics of Cu-Pb monotectic alloys. The objective of the present work is to undercool bulk samples of Cu-Pb alloys to a significant extent and investigate their subsequent rapid solidification process. and this paper reports the related results obtained for Cu-20%Pb hypomonotectic alloy.

  19. Melting of Pb Charge Glass and Simultaneous Pb-Cr Charge Transfer in PbCrO3 as the Origin of Volume Collapse

    DOE PAGES

    Yu, Runze; Hojo, Hajime; Watanuki, Tetsu; Mizumaki, Masaichiro; Mizokawa, Takashi; Okada, Kengo; Kim, Hyunjeong; Machida, Akihiko; Sakaki, Kouji; Nakamura, Yumiko; et al

    2015-09-15

    A metal to insulator transition in integer or half integer charge systems can be regarded as crystallization of charges. The insulating state tends to have a glassy nature when randomness or geometrical frustration exists. In this paper, we report that the charge glass state is realized in a perovskite compound PbCrO3, which has been known for almost 50 years, without any obvious inhomogeneity or triangular arrangement in the charge system. PbCrO3 has a valence state of Pb2+0.5Pb4+0.5Cr3+O3 with Pb2+–Pb4+ correlation length of three lattice-spacings at ambient condition. A pressure induced melting of charge glass and simultaneous Pb–Cr charge transfer causesmore » an insulator to metal transition and ~10% volume collapse.« less

  20. Magnetic resonance in a Cu-Cr-S structure

    SciTech Connect

    Vorotynov, A. M. Abramova, G. M.; Pankrats, A. I.; Petrakovskii, G. A.; Zharkov, S. M.; Zeer, G. M.; Tugarinov, V. I.; Rautskii, M. V.; Sokolov, V. V.

    2013-11-15

    A layered Cu-Cr-S structure composed of single-crystal CuCrS{sub 2} layers and thin CuCr{sub 2}S{sub 4} plates embedded in them has been investigated by the magnetic resonance and scanning electron microscopy methods. The Curie temperature and saturation magnetization of the spinel phase of the investigated samples have been determined. The thickness of the CuCr{sub 2}S{sub 4} layers has been estimated. The dependence of the growncrystal topology on synthesis conditions has been established. An interpretation of the anomalous behavior of the magnetostatic oscillation intensity is offered.

  1. Reversion phenomena of Cu-Cr alloys

    NASA Technical Reports Server (NTRS)

    Nishikawa, S.; Nagata, K.; Kobayashi, S.

    1985-01-01

    Cu-Cr alloys which were given various aging and reversion treatments were investigated in terms of electrical resistivity and hardness. Transmission electron microscopy was one technique employed. Some results obtained are as follows: the increment of electrical resistivity after the reversion at a constant temperature decreases as the aging temperature rises. In a constant aging condition, the increment of electrical resistivity after the reversion increases, and the time required for a maximum reversion becomes shorter as the reversion temperature rises. The reversion phenomena can be repeated, but its amount decreases rapidly by repetition. At first, the amount of reversion increases with aging time and reaches its maximum, and then tends to decrease again. Hardness changes by the reversion are very small, but the hardness tends to soften slightly. Any changes in transmission electron micrographs by the reversion treatment cannot be detected.

  2. Evaluation of Ti-Cr-Cu alloys for dental applications

    NASA Astrophysics Data System (ADS)

    Koike, Marie; Okabe, Toru; Itoh, Masayuki; Okuno, Osamu; Kimura, Kohei; Takeda, Osamu; Okabe, Toru H.

    2005-12-01

    This study examined the characteristics of as-cast Ti-Cr(7 19%)-Cu(3 7%) (all percentages in this article are mass%) alloys to evaluate their suitability for dental applications; studies on the alloy structures and mechanical properties, grindability, and corrosion behavior were included in the investigation. The alloys were centrifugally cast and bench-cooled in investment molds. The x-ray diffractometry of the as-cast alloys bench-cooled in the molds indicated the following phases: α+β+ω in the 7% Cr and 7% Cr+3% Cu; β+ω in the 13%Cr; and β in the 13%Cr+3% Cu through the 19%Cr+3% Cu alloys. The strengths of the binary β Ti-Cr and ternary β Ti-Cr-Cu alloys with 13 and 19% Cr were approximately two times higher than those of CP Ti. The alloy ductility was dependent on the chemical composition and thus, the microstructure. The 7% Cr alloys were extremely brittle and hard due to the ω phase, but the ductility was restored in the 13 and 19% Cr alloys. The hardness (HV) of the cast 13 and 19% Cr alloys was approximately 300 350 compared with a value of 200 for CP Ti. The grindability of the cast alloys was examined using a rotating SiC wheel at speeds (circumferential) of 500 and 1250 m/min. At the higher speed, the grindability of the 13 and 19% Cr alloys increased with the Cu content. The grindability of the 13% Cr alloy with 7% Cu was similar to that of CP Ti. Evaluation of the corrosion behavior in an artificial saliva revealed that the alloys are like many other titanium alloys within the normal intraoral oxidation potential. The wear resistance testing of these alloys also showed favorable results.

  3. Melting of Pb Charge Glass and Simultaneous Pb-Cr Charge Transfer in PbCrO3 as the Origin of Volume Collapse

    SciTech Connect

    Yu, Runze; Hojo, Hajime; Watanuki, Tetsu; Mizumaki, Masaichiro; Mizokawa, Takashi; Okada, Kengo; Kim, Hyunjeong; Machida, Akihiko; Sakaki, Kouji; Nakamura, Yumiko; Agui, Akane; Mori, Daisuke; Inaguma, Yoshiyuki; Schlipf, Martin; Rushchanskii, Konstantin; Lezaic, Marjana; Matsuda, Masaaki; Ma, Jie; Calder, Stuart A.; Isobe, Masahiko; Ikuhara, Yuichi; Azuma, Masaki

    2015-09-15

    A metal to insulator transition in integer or half integer charge systems can be regarded as crystallization of charges. The insulating state tends to have a glassy nature when randomness or geometrical frustration exists. In this paper, we report that the charge glass state is realized in a perovskite compound PbCrO3, which has been known for almost 50 years, without any obvious inhomogeneity or triangular arrangement in the charge system. PbCrO3 has a valence state of Pb2+0.5Pb4+0.5Cr3+O3 with Pb2+Pb4+ correlation length of three lattice-spacings at ambient condition. A pressure induced melting of charge glass and simultaneous Pb–Cr charge transfer causes an insulator to metal transition and ~10% volume collapse.

  4. Mesoporous delafossite CuCrO2 and spinel CuCr2O4: synthesis and catalysis

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Shi, Yifeng; Chi, Miaofang; Park, Jung-Nam; Stucky, Galen D.; McFarland, Eric W.; Gao, Lian

    2013-08-01

    Delafossite CuCrO2 and spinel CuCr2O4 with mesoporous structures have been successfully synthesized using nanocasting methods based on a KIT-6 template. The functional activity of the mesoporous materials was evaluated in applications as heterogeneous catalysts. The activity for photocatalytic hydrogen production of the delafossite structures with different morphologies was characterized and the oxidation state changes associated with photocorrosion of Cu+ investigated using electron energy loss spectroscopy (EELS). Mg2+ doping was found to facilitate the casting of ordered structures for CuCrO2 and improves the photocorrosion resistance of delafossite structures. The mesoporous spinel CuCr2O4 nanostructures were found to be active for low temperature CO oxidation.

  5. Molecular Dynamics study of Pb overlayer on Cu(100)

    NASA Technical Reports Server (NTRS)

    Karimi, M.; Tibbits, P.; Ila, D.; Dalins, I.; Vidali, G.

    1991-01-01

    Isothermal-isobaric Molecular Dynamics (MD) simulation of a submonolayer Pb film in c(2x2) ordered structure adsorbed on a Cu(100) substrate showed retention of order to high T. The Embedded Atom Method (EAM) calculated the energy of atoms of overlayer and substrate. The time-averaged squared modulus of the two dimensional structure factor for the Pb overlayer measured the order of the overlayer. The results are for increasing T only, and require verification by simulated cooling.

  6. Hybrid inorganic/organic alumina adsorbents-functionalized-purpurogallin for removal and preconcentration of Cr(III), Fe(III), Cu(II), Cd(II) and Pb(II) from underground water.

    PubMed

    Mahmoud, Mohamed E; Hafez, Osama F; Osman, Maher M; Yakout, Amr A; Alrefaay, Ahmed

    2010-04-15

    Metal pollution is well recognized as one of the major environmental problems that must be imperatively addressed and solved. In this study, three types of alumina adsorbents (I-III) were physically immobilized with purporogallin as a chelating ion exchangers. These were found to exhibit strong capability and selectivity characters for a series of heavy metal ions. Surface modification of hybrid alumina was characterized and identified from the determination of surface coverage and infrared analysis. Hybrid alumina adsorbents were identified for their strong resistivity to acid leaching in pH>2-7 as well as their high thermal stability up to 350 degrees C. The ability of newly synthesized hybrid inorganic/organic alumina adsorbents (I-III) to bind and extract various metal ions was examined and evaluated in various buffer solutions (pH 1.0-7.0) via determination of the metal adsorption capacity values. These were identified as high as 420-560, 500-580 and 500-590 micromol g(-1) for alumina adsorbents (I), (II) and (III), respectively in the case of high concentration levels of Cr(III), Fe(III) and Cu(II). The influence of alumina matrices were highly characterized when low concentration levels (microg ml(-1) and ng ml(-1)) of metal ions were used. Hybrid alumina adsorbents were successfully applied for selective extraction, removal and preconcentration of various heavy metals from underground water samples with percentage recovery values of 92-100+/-1-3%. PMID:20031308

  7. Hybrid inorganic/organic alumina adsorbents-functionalized-purpurogallin for removal and preconcentration of Cr(III), Fe(III), Cu(II), Cd(II) and Pb(II) from underground water.

    PubMed

    Mahmoud, Mohamed E; Hafez, Osama F; Osman, Maher M; Yakout, Amr A; Alrefaay, Ahmed

    2010-04-15

    Metal pollution is well recognized as one of the major environmental problems that must be imperatively addressed and solved. In this study, three types of alumina adsorbents (I-III) were physically immobilized with purporogallin as a chelating ion exchangers. These were found to exhibit strong capability and selectivity characters for a series of heavy metal ions. Surface modification of hybrid alumina was characterized and identified from the determination of surface coverage and infrared analysis. Hybrid alumina adsorbents were identified for their strong resistivity to acid leaching in pH>2-7 as well as their high thermal stability up to 350 degrees C. The ability of newly synthesized hybrid inorganic/organic alumina adsorbents (I-III) to bind and extract various metal ions was examined and evaluated in various buffer solutions (pH 1.0-7.0) via determination of the metal adsorption capacity values. These were identified as high as 420-560, 500-580 and 500-590 micromol g(-1) for alumina adsorbents (I), (II) and (III), respectively in the case of high concentration levels of Cr(III), Fe(III) and Cu(II). The influence of alumina matrices were highly characterized when low concentration levels (microg ml(-1) and ng ml(-1)) of metal ions were used. Hybrid alumina adsorbents were successfully applied for selective extraction, removal and preconcentration of various heavy metals from underground water samples with percentage recovery values of 92-100+/-1-3%.

  8. Unusual Mott transition in multiferroic PbCrO3

    PubMed Central

    Wang, Shanmin; Zhu, Jinlong; Zhang, Yi; Yu, Xiaohui; Zhang, Jianzhong; Wang, Wendan; Bai, Ligang; Qian, Jiang; Yin, Liang; Sullivan, Neil S.; Jin, Changqing; He, Duanwei; Xu, Jian; Zhao, Yusheng

    2015-01-01

    The Mott insulator in correlated electron systems arises from classical Coulomb repulsion between carriers to provide a powerful force for electron localization. Turning such an insulator into a metal, the so-called Mott transition, is commonly achieved by “bandwidth” control or “band filling.” However, both mechanisms deviate from the original concept of Mott, which attributes such a transition to the screening of Coulomb potential and associated lattice contraction. Here, we report a pressure-induced isostructural Mott transition in cubic perovskite PbCrO3. At the transition pressure of ∼3 GPa, PbCrO3 exhibits significant collapse in both lattice volume and Coulomb potential. Concurrent with the collapse, it transforms from a hybrid multiferroic insulator to a metal. For the first time to our knowledge, these findings validate the scenario conceived by Mott. Close to the Mott criticality at ∼300 K, fluctuations of the lattice and charge give rise to elastic anomalies and Laudau critical behaviors resembling the classic liquid–gas transition. The anomalously large lattice volume and Coulomb potential in the low-pressure insulating phase are largely associated with the ferroelectric distortion, which is substantially suppressed at high pressures, leading to the first-order phase transition without symmetry breaking. PMID:26604314

  9. Unusual Mott transition in multiferroic PbCrO 3

    DOE PAGES

    Wang, Shanmin; Zhu, Jinlong; Zhang, Yi; Yu, Xiaohui; Zhang, Jianzhong; Wang, Wendan; Bai, Ligang; Qian, Jiang; Yin, Liang; Sullivan, Neil S.; et al

    2015-11-24

    The Mott insulator in correlated electron systems arises from classical Coulomb repulsion between carriers to provide a powerful force for electron localization. When turning such an insulator into a metal, the so-called Mott transition, is commonly achieved by "bandwidth" control or "band filling." However, both mechanisms deviate from the original concept of Mott, which attributes such a transition to the screening of Coulomb potential and associated lattice contraction. We report a pressure-induced isostructural Mott transition in cubic perovskite PbCrO3. At the transition pressure of similar to 3 GPa, PbCrO3 exhibits significant collapse in both lattice volume and Coulomb potential. Concurrentmore » with the collapse, it transforms from a hybrid multiferroic insulator to a metal. For the first time to our knowledge, these findings validate the scenario conceived by Mott. Close to the Mott criticality at similar to 300 K, fluctuations of the lattice and charge give rise to elastic anomalies and Laudau critical behaviors resembling the classic liquid-gas transition. Moreover, the anomalously large lattice volume and Coulomb potential in the low-pressure insulating phase are largely associated with the ferroelectric distortion, which is substantially suppressed at high pressures, leading to the first-order phase transition without symmetry breaking.« less

  10. Unusual Mott transition in multiferroic PbCrO3.

    PubMed

    Wang, Shanmin; Zhu, Jinlong; Zhang, Yi; Yu, Xiaohui; Zhang, Jianzhong; Wang, Wendan; Bai, Ligang; Qian, Jiang; Yin, Liang; Sullivan, Neil S; Jin, Changqing; He, Duanwei; Xu, Jian; Zhao, Yusheng

    2015-12-15

    The Mott insulator in correlated electron systems arises from classical Coulomb repulsion between carriers to provide a powerful force for electron localization. Turning such an insulator into a metal, the so-called Mott transition, is commonly achieved by "bandwidth" control or "band filling." However, both mechanisms deviate from the original concept of Mott, which attributes such a transition to the screening of Coulomb potential and associated lattice contraction. Here, we report a pressure-induced isostructural Mott transition in cubic perovskite PbCrO3. At the transition pressure of ∼3 GPa, PbCrO3 exhibits significant collapse in both lattice volume and Coulomb potential. Concurrent with the collapse, it transforms from a hybrid multiferroic insulator to a metal. For the first time to our knowledge, these findings validate the scenario conceived by Mott. Close to the Mott criticality at ∼300 K, fluctuations of the lattice and charge give rise to elastic anomalies and Laudau critical behaviors resembling the classic liquid-gas transition. The anomalously large lattice volume and Coulomb potential in the low-pressure insulating phase are largely associated with the ferroelectric distortion, which is substantially suppressed at high pressures, leading to the first-order phase transition without symmetry breaking. PMID:26604314

  11. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, Iver E.; Yost, Frederick G.; Smith, John F.; Miller, Chad M.; Terpstra, Robert L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217.degree. C. and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid "mushy" zone) relative to the eutectic melting temperature (e.g. up to 15.degree. C. above the eutectic melting temperature).

  12. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, I.E.; Yost, F.G.; Smith, J.F.; Miller, C.M.; Terpstra, R.L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217 C and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid ``mushy`` zone) relative to the eutectic melting temperature (e.g. up to 15 C above the eutectic melting temperature). 5 figs.

  13. Thermomechanical Processing and Roll Bonding of Tri-Layered Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn Composite

    NASA Astrophysics Data System (ADS)

    Kim, Hobyung; Kang, Gyeong Tae; Hong, Sun Ig

    2016-05-01

    Tri-layered Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn composite was processed by roll bonding and the effect of thermomechanical processing on the mechanical performance and electrical conductivity was studied. Roll-bonded composite exhibited the brief work hardening and subsequent rapid work softening because of the high stored deformation energy, leading to failure at the plastic strain of 8 to 10 pct. The mechanical instability of as-roll-bonded composites was abated by heat treatment (HT) at 723 K (450 °C) and the extended work hardening with enhanced ductility compared to that of the as-roll-bonded composites was observed after HT. The strength and electrical conductivity of clad composite is dependent on the precipitation strengthening of Cu-Cr and recovery softening of Cu-Ni-Zn during post-roll-bonding HT. The increase of roll-bonding temperature enhances the precipitation kinetics and it takes shorter time to reach maximum hardness in Cu-Cr layer during post-roll-bonding HT. The toughness of as-roll-bonded Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn clad composite at 773 K (500 °C) [42 MJ/mm3] is greater than those at 723 K (450 °C) [24 MJ/mm3] and 823 K (550 °C) [38 MJ/mm3]. The maximum toughness [100 MJ/mm3] with the electrical conductivity of 68 pct IACS was obtained in the Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn clad composite roll-bonded at 773 K (500 °C) and subsequently heat-treated at 723 K (450 °C).

  14. Study of Cu and Pb partitioning in mine tailings using the Tessier sequential extraction scheme

    SciTech Connect

    Andrei, Mariana Lucia; Senila, Marin; Hoaghia, Maria Alexandra; Levei, Erika-Andrea; Borodi, Gheorghe

    2015-12-23

    The Cu and Pb partitioning in nonferrous mine tailings was investigated using the Tessier sequential extraction scheme. The contents of Cu and Pb found in the five operationally defined fractions were determined by inductively coupled plasma optical emission spectrometry. The results showed different partitioning patterns for Cu and Pb in the studied tailings. The total Cu and Pb contents were higher in tailings from Brazesti than in those from Saliste, while the Cu contents in the first two fractions considered as mobile were comparable and the content of mobile Pb was the highest in Brazesti tailings. In the tailings from Saliste about 30% of Cu and 3% of Pb were found in exchangeable fraction, while in those from Brazesti no metals were found in the exchangeable fraction, but the percent of Cu and Pb found in the bound to carbonate fraction were high (20% and 26%, respectively). The highest Pb content was found in the residual fraction in Saliste tailings and in bound to Fe and Mn oxides fraction in Brazesti tailings, while the highest Cu content was found in the fraction bound to organic matter in Saliste tailings and in the residual fraction in Brazesti tailings. In case of tailings of Brazesti medium environmental risk was found both for Pb and Cu, while in case of Saliste tailings low risk for Pb and high risk for Cu were found.

  15. Study of Cu and Pb partitioning in mine tailings using the Tessier sequential extraction scheme

    NASA Astrophysics Data System (ADS)

    Andrei, Mariana Lucia; Senila, Marin; Hoaghia, Maria Alexandra; Borodi, Gheorghe; Levei, Erika-Andrea

    2015-12-01

    The Cu and Pb partitioning in nonferrous mine tailings was investigated using the Tessier sequential extraction scheme. The contents of Cu and Pb found in the five operationally defined fractions were determined by inductively coupled plasma optical emission spectrometry. The results showed different partitioning patterns for Cu and Pb in the studied tailings. The total Cu and Pb contents were higher in tailings from Brazesti than in those from Saliste, while the Cu contents in the first two fractions considered as mobile were comparable and the content of mobile Pb was the highest in Brazesti tailings. In the tailings from Saliste about 30% of Cu and 3% of Pb were found in exchangeable fraction, while in those from Brazesti no metals were found in the exchangeable fraction, but the percent of Cu and Pb found in the bound to carbonate fraction were high (20% and 26%, respectively). The highest Pb content was found in the residual fraction in Saliste tailings and in bound to Fe and Mn oxides fraction in Brazesti tailings, while the highest Cu content was found in the fraction bound to organic matter in Saliste tailings and in the residual fraction in Brazesti tailings. In case of tailings of Brazesti medium environmental risk was found both for Pb and Cu, while in case of Saliste tailings low risk for Pb and high risk for Cu were found.

  16. Magnetic resonance in a gallium-doped Cu-Cr-S structure

    NASA Astrophysics Data System (ADS)

    Vorotynov, A. M.; Pankrats, A. I.; Abramova, G. M.; Velikanov, D. A.; Bovina, A. F.; Sokolov, V. V.; Filatova, I. Yu.

    2016-04-01

    A layered Cu-Cr-S structure doped with Ga ions and consisting of single-crystal CuCrS2 layers, embedded with thin plates of spinel phases CuCr2S4 and CuGa x Cr2- x S4, has been studied using the magnetic resonance and magnetic susceptibility methods. The Curie temperature and the saturation magnetization of the spinel phases of the samples have been determined. The spinel phase layer thickness has been estimated.

  17. Substitution of chromium for univalent copper in superconducting Pb{sub 2}Sr{sub 2}(Ca, Y)Cu{sub 3}O{sub 8-{delta}}

    SciTech Connect

    Seshadri, R.; Maignan, A.; Hervieu, M.

    1996-11-15

    Following considerations of geometry and the similarity between chromate and carbonate groups in terms of size and charge, the authors have investigated the possibility of replacing the two-coordinate Cu{sup I} in superconducting lead cuprates of the general formula Pb{sub 2}Sr{sub 2}(Ca, Y)Cu{sub 3}O{sub 8} by Cr. A high-resolution electron microscopy study coupled with energy dispersive X-ray analysis on small crystals of the title phases suggests that between 10 and 15% of the Cu{sup 1} can be replaced by Cr. While from the present structural study using HRTEM and Rietveld refinement of X-ray powder data the authors are unable to precisely obtain the oxidation state and oxygen coordination of Cr, the authors suggest in analogy with Cr substitution in other similar cuprates that in the title phases Cu{sup I}O{sub 2} rods are partially replaced by tetrahedral CrO{sub 4}{sup 2-} groups. Infrared spectroscopy supports the presence of CrO{sub 4}{sup 2-} groups. The phases Pb{sub 1.75}Sr{sub 2}Ca{sub 0.2}Y{sub 0.8}Cu{sub 3}O{sub 8-{delta}} and Pb{sub 1.75}Sr{sub 2}Ca{sub 0.2}Y{sub 0.8}Cu{sub 2.85}Cr{sub 0.15}O{sub 8-{delta}} are superconducting as-prepared, but the substitution of Cr for Cu{sup I} results in a decrease of the T{sub C} as well as the superconducting volume fraction.

  18. Synthesis of BiPbSrCaCuO superconductor

    DOEpatents

    Hults, W.L.; Kubat-Martin, K.A.; Salazar, K.V.; Phillips, D.S.; Peterson, D.E.

    1994-04-05

    A process and a precursor composition for preparing a lead-doped bismuth-strontium-calcium-copper oxide superconductor of the formula Bi[sub a]Pb[sub b]Sr[sub c]Ca[sub d]Cu[sub e]O[sub f] wherein a is from about 1.7 to about 1.9, b is from about 0.3 to about 0.45, c is from about 1.6 to about 2.2, d is from about 1.6 to about 2.2, e is from about 2.97 to about 3.2 and f is 10[+-]z by reacting a mixture of Bi[sub 4]Sr[sub 3]Ca[sub 3]Cu[sub 4]O[sub 16[+-]z], an alkaline earth metal cuprate, e.g., Sr[sub 9]Ca[sub 5]Cu[sub 24]O[sub 41], and an alkaline earth metal plumbate, e.g., Ca[sub 2[minus]x]Sr[sub x]PbO[sub 4] wherein x is about 0.5, is disclosed.

  19. Synthesis of BiPbSrCaCuO superconductor

    DOEpatents

    Hults, William L.; Kubat-Martin, Kimberly A.; Salazar, Kenneth V.; Phillips, David S.; Peterson, Dean E.

    1994-01-01

    A process and a precursor composition for preparing a lead-doped bismuth-strontium-calcium-copper oxide superconductor of the formula Bi.sub.a Pb.sub.b Sr.sub.c Ca.sub.d Cu.sub.e O.sub.f wherein a is from about 1.7 to about 1.9, b is from about 0.3 to about 0.45, c is from about 1.6 to about 2.2, d is from about 1.6 to about 2.2, e is from about 2.97 to about 3.2 and f is 10.+-.z by reacting a mixture of Bi.sub.4 Sr.sub.3 Ca.sub.3 Cu.sub.4 O.sub.16.+-.z, an alkaline earth metal cuprate, e.g., Sr.sub.9 Ca.sub.5 Cu.sub.24 O.sub.41, and an alkaline earth metal plumbate, e.g., Ca.sub.2-x Sr.sub.x PbO.sub.4 wherein x is about 0.5, is disclosed.

  20. Synthesis, characterization and thermochemistry of synthetic Pb-As, Pb-Cu and Pb-Zn jarosites

    NASA Astrophysics Data System (ADS)

    Forray, Ferenc Lázár; Smith, A. M. L.; Navrotsky, A.; Wright, K.; Hudson-Edwards, K. A.; Dubbin, W. E.

    2014-02-01

    The enthalpy of formation from the elements of well characterized Pb-As, Pb-Cu, and Pb-Zn synthetic jarosites, corresponding to chemical formulas (H3O)0.68±0.03Pb0.32±0.002Fe2.86±0.14(SO4)1.69±0.08(AsO4)0.31±0.02(OH)5.59±0.28(H2O)0.41±0.02, (H3O)0.67±0.03Pb0.33±0.02Fe2.71±0.14Cu0.25±0.01(SO4)2±0.00(OH)5.96±0.30(H2O)0.04±0.002 and (H3O)0.57±0.03Pb0.43±0.02Fe2.70±0.14Zn0.21±0.01(SO4)2±0.00(OH)5.95±0.30(H2O)0.05±0.002, was measured by high temperature oxide melt solution calorimetry and gave ΔH°f = -3691.2 ± 8.6 kJ/mol, ΔH°f = -3653.6 ± 8.2 kJ/mol, and ΔH°f = -3669.4 ± 8.4 kJ/mol, respectively. Using estimated entropies, the standard Gibbs free energy of formation from elements at 298 K ΔG°f of the three compounds were calculated to be -3164.8 ± 9.1, -3131.4 ± 8.7, and -3153.6 ± 8.9 kJ/mol, respectively. Based on these free energies, their log Ksp values are -13.94 ± 1.89, -4.38 ± 1.81 and -3.75 ± 1.80, respectively. For this compounds, a log10{Pb2+}-pH diagram is presented. The diagram shows that the formation of Pb-As jarosite may decrease aqueous arsenic and lead concentrations to meet drinking water standards. The new thermodynamic data confirm that transformation of Pb-As jarosite to plumbojarosite is thermodynamically possible.

  1. Mechanical and Thermal Properties of Two Cu-Cr-Nb Alloys and NARloy-Z

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Michal, Gary M.

    1996-01-01

    A series of creep tests were conducted on Cu-8 Cr-4 Nb (Cu-8 at.% Cr-4 at.% Nb), Cu-4 Cr-2 Nb (Cu-4 at.% Cr-2 at% Nb), and NARloy-Z (Cu-3 wt.% Ag-0.5 wt.% Zr) samples to determine their creep properties. In addition, a limited number of low cycle fatigue and thermal conductivity tests were conducted. The Cu-Cr-Nb alloys showed a clear advantage in creep life and sustainable load over the currently used NARloy-Z. Increases in life at a given stress were between 100% and 250% greater for the Cu-Cr-Nb alloys depending on the stress and temperature. For a given life, the Cu-Cr-Nb alloys could support a stress between 60% and 160% greater than NARloy-Z. Low cycle fatigue lives of the Cu-8 Cr-4 Nb alloy were equivalent to NARloy-Z at room temperature. At elevated temperatures (538 C and 650 C), the fatigue lives were 50% to 200% longer than NARloy-Z samples tested at 538 C. The thermal conductivities of the Cu-Cr-Nb alloys remained high, but were lower than NARloy-Z and pure Cu. The Cu-Cr-Nb thermal conductivities were between 72% and 96% that of pure Cu with the Cu-4 Cr-2 Nb alloy having a significant advantage in thermal conductivity over Cu-8 Cr4 Nb. In comparison, stainless steels with equivalent strengths would have thermal conductivities less than 25% the thermal conductivity of pure Cu. The combined results indicate that the Cu-Cr-Nb alloys offer an attractive alternative to current high temperature Cu-based alloys such as NARloy-Z.

  2. High temperature coarsening of Cr2Nb precipitates in Cu-8 Cr-4 Nb alloy

    NASA Technical Reports Server (NTRS)

    Anderson, Kenneth Reed

    1996-01-01

    A new high-temperature-strength, high-conductivity Cu-Cr-Nb alloy with a CrNb ratio of 2:1 was developed to achieve improved performance and durability. The Cu-8 Cr4 Nb alloy studied has demonstrated remarkable thermal and microstructural stability after long exposures at temperatures up to 0.98 T(sub m). This stability was mainly attributed to the slow coarsening kinetics of the Cr2Nb precipitates present in the alloy. At all temperatures, the microstructure consists of a bimodal and sometimes trimodal distribution of strengthening Cr2Nb precipitates, depending on precipitation condition, i.e. from liquid or solid solution, and cooling rates. These precipitates remain in the same size range, i.e. large precipitates of approximately I pm, and small precipitates less dm 300 nm, and effectively pin the grain boundaries thus retaining a fine grain size of 2.7 micro-m after 100 h at 1323 K. (A relatively small number of Cr-rich and Nb-rich particles were also present.) This grain boundary pinning and sluggish coarsening of Cr2Nb particles explain the retention of good mechanical properties after prolonged holding at very high temperatures, e.g., 75% of the original hardness after aging for 100 h at 1273 K. Application of LSW-based coarsening models indicated that the coarsening kinetics of the large precipitates are most likely governed by grain boundary diffsion and, to a lesser extent, volume diffusion mechanisms.

  3. Thermal fatigue damage of Cu-Cr-Zr alloys

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arya; Mitra, R.; Chakraborty, A. K.; Rotti, C.; Ray, K. K.

    2013-11-01

    The primary aim of this investigation is to examine thermal fatigue damage (TFD) in Cu-Cr-Zr alloys used in High Heat Flux components of Tokamak and its subsystems. Thermal fatigue experiments have been carried out between 290 °C and 30 °C, which is analogous to the condition of service application on two Cu-Cr-Zr alloys having different aging treatments. The extents of TFD have been examined by standard measurements of electrical conductivity, lattice strain, residual stress and dynamic elastic modulus, supplemented by characterizations of microstructure and determination of hardness and tensile properties. The results lead to infer that the relative amounts of damage are different in the two alloys which are further dependent on their aging conditions; the reasons for the observed difference have been explained. The operative mechanisms of TFD are revealed to be as formation and subsequent coalescence of microvoids, and/or initiation and growth of microcracks.

  4. Concentrations of Pb, Zn, and Cu in Taraxacum spp. in relation to urban pollution

    SciTech Connect

    Cook, C.M.; Lanaras, T.; Sgardelis, S.P.; Pantis, J.D. )

    1994-08-01

    The combustion of petroleum fuel and exhaust emissions are major sources of atmospheric pollution in cities which result in the deposition of toxic substances, particularly heavy metals, in the surface layers of soils. Lead in particular enters the environment from the use of tetraethyl lead as an antiknock agent for petrol engines constituting 21% of fine particles emitted from cars burning leaded petrol. Antiwear protectants incorporated in lubricants often contain Cd, Cr, Cu, Hg, Ni, Pb and/or Zn which are also released into the environment by inefficient engines and irresponsible dumping of engine oils. Zn from tyre wear and Cu from diesel engines also add considerably to the environmental metal burden. Lowering of the permitted lead content of petrol and the growing use of unleaded fuel are expected to lead to reductions in the environmental lead burden, however, until unleaded fuel becomes universally accepted lead contamination, particularly of roadside soils and vegetation is a major cause for concern. A direct relationship between car exhaust, the Pb content of needles of Abies alba and reduced growth has been observed and can extend hundreds of metres from major highways. Lead tolerance has been observed in higher plants growing mine waste soils and to a lesser extent on lead-contaminated roadside soils. Automobiles which are responsible for line sources of pollution emissions in rural and suburban areas have a more far-reaching impact on roadside vegetation, already under considerable stress, in urban areas. Information on heavy metal effects on vegetation in urban environments however, are scarce. Modeling and multivariate analysis of a few of the factors involved have provided only limited data related to plant performance in these complex environments. Therefore in this study, the extent of heavy metal pollution by Pb, Zn, Cu and Cd in soils and in dandelion plants in the city of Thessaloniki has been examined. 20 refs., 2 figs., 3 tabs.

  5. Availability of heavy metals (Cd, Pb, And Cr) in agriculture from commercial fertilizers.

    PubMed

    Nacke, H; Gonçalves, A C; Schwantes, D; Nava, I A; Strey, L; Coelho, G F

    2013-05-01

    The purpose of this study was to investigate the availability of the heavy metals cadmium (Cd), lead (Pb), and chromium (Cr) to soil and maize plants fertilized with different sources and doses of zinc (Zn) in a Rhodic Eutrudox soil. For that purpose, concentrations of Cd, Pb, and Cr were evaluated in leaf tissue and grains of maize plants and in 0-20 and 20-40 cm soil layers after fertilization with four doses of Zn from eight different sources of fertilizer. There was no accumulation of Cd, Pb, and Cr in maize grain and Cd and Cr in leaf tissue of the plants; nevertheless, there was accumulation of Pb in leaf tissue, showing its availability throughout different sources of Zn and consequent uptake by plants. Regarding the soil, it was observed that fertilizer from the different sources made Cd, Pb, and Cr available at increasing amounts proportional to increased Zn doses. Under experimental conditions, fertilization with Zn increased concentrations of heavy metals Cd, Pb and Cr in soil, further highlighting the importance of conducting more studies related to the application of mineral fertilizers for micronutrient supply and the availability of heavy metals. PMID:23361451

  6. Availability of heavy metals (Cd, Pb, And Cr) in agriculture from commercial fertilizers.

    PubMed

    Nacke, H; Gonçalves, A C; Schwantes, D; Nava, I A; Strey, L; Coelho, G F

    2013-05-01

    The purpose of this study was to investigate the availability of the heavy metals cadmium (Cd), lead (Pb), and chromium (Cr) to soil and maize plants fertilized with different sources and doses of zinc (Zn) in a Rhodic Eutrudox soil. For that purpose, concentrations of Cd, Pb, and Cr were evaluated in leaf tissue and grains of maize plants and in 0-20 and 20-40 cm soil layers after fertilization with four doses of Zn from eight different sources of fertilizer. There was no accumulation of Cd, Pb, and Cr in maize grain and Cd and Cr in leaf tissue of the plants; nevertheless, there was accumulation of Pb in leaf tissue, showing its availability throughout different sources of Zn and consequent uptake by plants. Regarding the soil, it was observed that fertilizer from the different sources made Cd, Pb, and Cr available at increasing amounts proportional to increased Zn doses. Under experimental conditions, fertilization with Zn increased concentrations of heavy metals Cd, Pb and Cr in soil, further highlighting the importance of conducting more studies related to the application of mineral fertilizers for micronutrient supply and the availability of heavy metals.

  7. Preparation and Performance of Cu-Cr Contact Materials for Vacuum Switches with Low Contact Pressure

    NASA Astrophysics Data System (ADS)

    Chang, Yanli; Zheng, Wei; Zhou, Zhiming; Zhai, Yuxiang; Wang, Yaping

    2016-11-01

    Insufficient anti-welding properties limit the application of Cu-Cr contact material in vacuum switches with low contact pressure. The CuCr-W-C alloys that are prepared are for decreasing welding tendencies and keeping the voltage withstand by addition of W and C elements. It is found that the average welding force of CuCr-W-C alloys is reduced more than 50% compared with that of the Cu50 Cr50 alloy. Especially for CuCrW3.0C0.3 and CuCrW1.0C0.5, the welding forces reduce to only 10% of Cu50Cr50. Arc erosion areas of CuCr-W-C alloys are enlarged by five times more than that of the Cu50Cr50 alloy in the same arcing conditions. The results of type tests were qualified. The results suggested that the CuCrW2.0C1.0 alloy could be used in vacuum switches with low contact pressure to replace the W-Cu type contacts.

  8. Preparation and Performance of Cu-Cr Contact Materials for Vacuum Switches with Low Contact Pressure

    NASA Astrophysics Data System (ADS)

    Chang, Yanli; Zheng, Wei; Zhou, Zhiming; Zhai, Yuxiang; Wang, Yaping

    2016-07-01

    Insufficient anti-welding properties limit the application of Cu-Cr contact material in vacuum switches with low contact pressure. The CuCr-W-C alloys that are prepared are for decreasing welding tendencies and keeping the voltage withstand by addition of W and C elements. It is found that the average welding force of CuCr-W-C alloys is reduced more than 50% compared with that of the Cu50 Cr50 alloy. Especially for CuCrW3.0C0.3 and CuCrW1.0C0.5, the welding forces reduce to only 10% of Cu50Cr50. Arc erosion areas of CuCr-W-C alloys are enlarged by five times more than that of the Cu50Cr50 alloy in the same arcing conditions. The results of type tests were qualified. The results suggested that the CuCrW2.0C1.0 alloy could be used in vacuum switches with low contact pressure to replace the W-Cu type contacts.

  9. Effect of mechanical activation on thermal and electrical conductivity of sintered Cu, Cr, and Cu/Cr composite powders

    NASA Astrophysics Data System (ADS)

    Rogachev, A. S.; Kuskov, K. V.; Moskovskikh, D. O.; Usenko, A. A.; Orlov, A. O.; Shkodich, N. F.; Alymov, M. I.; Mukasyan, A. S.

    2016-06-01

    The results of measurement of electric resistivity and thermal conductivity of materials obtained by spark plasma sintering from powders of Cu, Cr, and their mixtures in the range of 300-600 K are presented. It is shown that the grinding of powders in planetary mills results in a reasonably substantial change in the electric and thermal properties of materials: to increasing electric resistivity and decreasing thermal conductivity and temperature coefficients of electric resistivity. The possible causes of these effects are considered.

  10. An embedded atom method interatomic potential for the Cu-Pb system

    NASA Astrophysics Data System (ADS)

    Hoyt, J. J.; Garvin, J. W.; Webb, E. B., III; Asta, Mark

    2003-05-01

    A simple procedure is used to formulate a Cu-Pb pair interaction function within the embedded atom (EAM) method framework. Embedding, density and pair functions for pure Cu and pure Pb are taken from previously published EAM studies. Optimization of the Cu-Pb potential was achieved by comparing with experiment the computed heats of mixing for Cu-Pb liquid alloys and the equilibrium phase diagram, the latter being determined via a thermodynamic integration technique. The topology of the temperature-composition phase diagram computed with this EAM potential is consistent with experiment and features a liquid-liquid miscibility gap, low solubility of Pb in solid Cu and a monotectic reaction at approximately 1012 K.

  11. Fabrication and calibration of integrated Cu-Cr thermocouple gauge

    NASA Astrophysics Data System (ADS)

    Kuo, T. C.; Flattery, J.; Ghosh, P. K.; Kornreich, P. G.

    1988-10-01

    We report here the design, fabrication, and testing of an integrated thermocouple gauge. The gauge uses a thin-film Cr heater and a thin-film Cu-Cr differential thermocouple on a 5-×3-mm glass substrate. The thermocouple measures the difference between the heater and the substrate temperature. Calibration of the thin-film Cu-Cr thermocouple gauge was done by using a standard K-type thermocouple as reference. At a constant difference temperature the measured power input to the heater is a function of the surrounding vapor pressure. The thermocouple gauge was calibrated using a McLeod gauge with He, Ar, N2, H2O, and CO2 gases. Our measurements show that the range of the gauge can possibly be extended to the μTorr range. This gauge uses a standard thin-film processing technique for fabrication resulting in a lower cost of production. Also, small size makes this gauge versatile and unique in comparison to many commercial gauges.

  12. CuCrZr alloy microstructure and mechanical properties after hot isostatic pressing bonding cycles

    NASA Astrophysics Data System (ADS)

    Frayssines, P.-E.; Gentzbittel, J.-M.; Guilloud, A.; Bucci, P.; Soreau, T.; Francois, N.; Primaux, F.; Heikkinen, S.; Zacchia, F.; Eaton, R.; Barabash, V.; Mitteau, R.

    2014-04-01

    ITER first wall (FW) panels are a layered structure made of the three following materials: 316L(N) austenitic stainless steel, CuCrZr alloy and beryllium. Two hot isostatic pressing (HIP) cycles are included in the reference fabrication route to bond these materials together for the normal heat flux design supplied by the European Union (EU). This reference fabrication route ensures sufficiently good mechanical properties for the materials and joints, which fulfil the ITER mechanical specifications, but often results in a coarse grain size for the CuCrZr alloy, which is not favourable, especially, for the thermal creep properties of the FW panels. To limit the abnormal grain growth of CuCrZr and make the ITER FW fabrication route more reliable, a study began in 2010 in the EU in the frame of an ITER task agreement. Two material fabrication approaches have been investigated. The first one was dedicated to the fabrication of solid CuCrZr alloy in close collaboration with an industrial copper alloys manufacturer. The second approach investigated was the manufacturing of CuCrZr alloy using the powder metallurgy (PM) route and HIP consolidation. This paper presents the main mechanical and microstructural results associated with the two CuCrZr approaches mentioned above. The mechanical properties of solid CuCrZr, PM CuCrZr and joints (solid CuCrZr/solid CuCrZr and solid CuCrZr/316L(N) and PM CuCrZr/316L(N)) are also presented.

  13. Simultaneous Incorporation of Cr, Zn, Cd, and Pb in the Goethite Structure

    SciTech Connect

    Kaur, Navdeep; Gräfe, Markus; Singh, Balwant; Kennedy, Brendan

    2009-10-21

    In order to improve our understanding of how the goethite crystal structure is affected by the incorporation of metals (and by variations in the amount of the incorporation), and to review any possible synergistic and antagonistic effects of co-metals, the present investigation focused on the incorporation of multiple (di-, tri-, and tetra-) metals, i.e. Cr, Zn, Cd, and Pb, in the goethite crystallographic structure. A series of single- and multi-metal M-Cr/Zn/Cd/Pb-substituted goethites with M/(M+Fe) molar ratios = 0.10 were prepared. The general sequence of metal entry in single-metal substituted goethites was Zn = Cr > Cd > Pb and in multi-metal-substituted goethites was Zn > Cr {ge} Cd > Pb. Simultaneous incorporation of Cr, Zn, Cd, and Pb up to 10.5 mole % was achieved in goethite. Synchrotron X-ray diffraction and extended X-ray absorption fine structure (EXAFS) techniques were employed to assess the structural characteristics of the synthesis products. Rietveld refinement of XRD data showed small changes in unit-cell parameters and Fe/M-Fe/M distances due to M substitution(s). A typical goethite-like crystalline structure remained intact, however. The unit-cell parameters were mutually, linearly correlated, though Fe/M-Fe/M distances were not, indicating that complex changes occurred at the local scale. In single-metal substituted goethites, incorporation of Cr reduced the unit-cell volume by 0.13% while that of Zn, Cd, and Pb increased it by 1.09, 3.58, and 0.56%, respectively. The changes in multi-metal-substituted goethites appeared to be the complex combination of that of the individually incorporated metals. The X-ray absorption near edge structure study of Pb-substituted goethites showed that the majority of associated Pb was Pb{sup 2+}, while Pb{sup 4+} was preferred over Pb{sup 2+} in the bulk structure. Measurements by EXAFS at the Fe K-edge indicated that the Fe polyhedra contracted in the presence of Cd{sup 2+} and Pb{sup 2+}, providing room for

  14. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17%Cr and Cu-17%Cr-5%Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu- 17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 +/- 9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu-17%Cr- 5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR- 5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  15. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu-17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9+/-9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu-17%Cr-5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR-5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  16. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17%Cr and Cu-17%Cr-5%Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu- 17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 9.5 kJ mol-1. In contrast, the oxidation kinetics for the Cu-17%Cr- 5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR- 5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  17. Stabilization of As-, Pb-, and Cu-contaminated soil using calcined oyster shells and steel slag.

    PubMed

    Moon, Deok Hyun; Wazne, Mahmoud; Cheong, Kyung Hoon; Chang, Yoon-Young; Baek, Kitae; Ok, Yong Sik; Park, Jeong-Hun

    2015-07-01

    In this study, As-, Pb-, and Cu-contaminated soil was stabilized using calcined oyster shells (COS) and steel slag (SS). The As-contaminated soil was obtained from a timber mill site where chromate copper arsenate (CCA) was used as a preservative. On the other hand, Pb- and Cu-contaminated soil was obtained from a firing range. These two soils were thoroughly mixed to represent As-, Pb-, and Cu-contaminated soil. Calcined oyster shells were obtained by treating waste oyster shells at a high temperature using the calcination process. The effectiveness of stabilization was evaluated by 1-N HCl extraction for As and 0.1-N HCl extraction for Pb and Cu. The treatment results showed that As, Pb, and Cu leachability were significantly reduced upon the combination treatment of COS and SS. The sole treatment of SS (10 wt%) did not show effective stabilization. However, the combination treatment of COS and SS showed a significant reduction in As, Pb, and Cu leachability. The best stabilization results were obtained from the combination treatment of 15 wt% COS and 10 wt% SS. The SEM-EDX results suggested that the effective stabilization of As was most probably achieved by the formation of Ca-As and Fe-As precipitates. In the case of Pb and Cu, stabilization was most probably associated with the formation of pozzolanic reaction products such as CSHs and CAHs. PMID:26013737

  18. Stabilization of As-, Pb-, and Cu-contaminated soil using calcined oyster shells and steel slag.

    PubMed

    Moon, Deok Hyun; Wazne, Mahmoud; Cheong, Kyung Hoon; Chang, Yoon-Young; Baek, Kitae; Ok, Yong Sik; Park, Jeong-Hun

    2015-07-01

    In this study, As-, Pb-, and Cu-contaminated soil was stabilized using calcined oyster shells (COS) and steel slag (SS). The As-contaminated soil was obtained from a timber mill site where chromate copper arsenate (CCA) was used as a preservative. On the other hand, Pb- and Cu-contaminated soil was obtained from a firing range. These two soils were thoroughly mixed to represent As-, Pb-, and Cu-contaminated soil. Calcined oyster shells were obtained by treating waste oyster shells at a high temperature using the calcination process. The effectiveness of stabilization was evaluated by 1-N HCl extraction for As and 0.1-N HCl extraction for Pb and Cu. The treatment results showed that As, Pb, and Cu leachability were significantly reduced upon the combination treatment of COS and SS. The sole treatment of SS (10 wt%) did not show effective stabilization. However, the combination treatment of COS and SS showed a significant reduction in As, Pb, and Cu leachability. The best stabilization results were obtained from the combination treatment of 15 wt% COS and 10 wt% SS. The SEM-EDX results suggested that the effective stabilization of As was most probably achieved by the formation of Ca-As and Fe-As precipitates. In the case of Pb and Cu, stabilization was most probably associated with the formation of pozzolanic reaction products such as CSHs and CAHs.

  19. Understanding the redox behaviour of PbCrO4 and its application in selective hydrogen combustion.

    PubMed

    Gómez-Quero, Santiago; Hernández-Mejía, Carlos; Hendrikx, Ruud; Rothenberg, Gadi

    2012-10-21

    The performance of PbCrO(4) during reduction/oxidation cycles has been studied over the temperature range 673-873 K. During thermal treatment in an inert atmosphere, PbCrO(4) is stable up to 773 K. At higher temperatures, it decomposes rapidly and irreversibly to Pb(2)(CrO(4))O. Moreover, the redox cycling of Pb(2)(CrO(4))O is also irreversible at 873 K when the reduction semi-reaction is prolonged beyond 3 min. Taking a standard 2 min cyclic treatment, we demonstrate that the surface reduction/oxidation of Pb(2)(CrO(4))O is exothermic between 773-873 K. In contrast, the redox cycling of PbCrO(4) is endothermic at 673 K. These findings demonstrate for the first time the potential of Pb(2)(CrO(4))O as a solid oxygen reservoir for the oxidative dehydrogenation of alkanes; especially at T ≥ 773 K, where H(2) oxidation by Pb(2)(CrO(4))O is exothermic. Preliminary kinetic studies suggest that Pb(2)(CrO(4))O reduction and oxidation both proceed through a "3D diffusion of the reacting front" mechanism. Our results open up opportunities for developing energy-efficient oxidative dehydrogenation routes to commercially important olefins. PMID:22930207

  20. Pb isotopic constraints on the formation of the Dikulushi Cu-Pb-Zn-Ag mineralisation, Kundelungu Plateau (Democratic Republic of Congo)

    NASA Astrophysics Data System (ADS)

    Haest, Maarten; Schneider, Jens; Cloquet, Christophe; Latruwe, Kris; Vanhaecke, Frank; Muchez, Philippe

    2010-04-01

    Base metal-Ag mineralisation at Dikulushi and in other deposits on the Kundelungu Plateau (Democratic Republic of Congo) developed during two episodes. Subeconomic Cu-Pb-Zn-Fe polysulphide ores were generated during the Lufilian Orogeny (c. 520 Ma ago) in a set of E-W- and NE-SW-oriented faults. Their lead has a relatively unradiogenic and internally inhomogeneous isotopic composition (206Pb/204Pb = 18.07-18.49), most likely generated by mixing of Pb from isotopically heterogeneous clastic sources. These sulphides were remobilised and enriched after the Lufilian Orogeny, along reactivated and newly formed NE-SW-oriented faults into a chalcocite-dominated Cu-Ag mineralisation of high economic interest. The chalcocite samples contain only trace amounts of lead and show mostly radiogenic Pb isotope signatures that fall along a linear trend in the 207Pb/204Pb vs. 206Pb/204Pb diagram (206Pb/204Pb = 18.66-23.65; 207Pb/204Pb = 15.72-16.02). These anomalous characteristics reflect a two-stage evolution involving admixture of both radiogenic lead and uranium during a young fluid event possibly c. 100 Ma ago. The Pb isotope systematics of local host rocks to mineralisation also indicate some comparable young disturbance of their U-Th-Pb systems, related to the same event. They could have provided Pb with sufficiently radiogenic compositions that was added to less radiogenic Pb remobilised from precursor Cu-Pb-Zn-Fe polysulphides, whereas the U most likely originated from external sources. Local metal sources are also suggested by the 208Pb/204Pb-206Pb/204Pb systematics of combined ore and rock lead, which indicate a pronounced and diversified lithological control of the immediate host rocks on the chalcocite-dominated Cu-Ag ores. The Pb isotope systematics of polysulphide mineralisation on the Kundelungu Plateau clearly record a diachronous evolution.

  1. Cu(Cu0.44Cr4.56)Ge2O12: a close-packed oxide with CuO4 tetrahedra.

    PubMed

    Redhammer, Günther J; Roth, Georg; Amthauer, Georg

    2007-04-01

    The structure of copper(I,II) pentachromium(III) germanate, Cu(Cu(0.44)Cr(4.56))Ge(2)O(12), contains one Cu position (m2m), one Ge position (m) and three Cr positions (2/m, m and 2). The close-packed structure is described in terms of slabs of edge-sharing Cr(3+)O(6) octahedra and isolated CuO(4) and GeO(4) tetrahedra. These slabs are aligned parallel to the bc plane and are separated from each other by GeO(4) tetrahedra along a. The tetrahedral coordination observed for the Cu(+)/Cu(2+) ions represents an unusual feature of the structure. The Cr-O and Cu-O bond lengths are compared with literature data.

  2. The General Isothermal Oxidation Behavior of Cu-8Cr-4Nb

    NASA Technical Reports Server (NTRS)

    Thomas-Ogbuji, L. U.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Oxidation kinetics of Cu-8Cr-4Nb was investigated by TGA (thermogravimetric) exposures between 500 and 900-C (at 25-50 C intervals) and the oxide scale morphologies examined by microscopy and micro-analysis. Because Cu-8Cr-4Nb is comprised of fine Cr2Nb precipitates in a Cu matrix, the results were interpreted by comparison with the behavior of copper (OFHC) and 'NARloy-Z' (a rival candidate material for thrust cell liner applications in advanced rocket engines) under the same conditions. While NARloy-Z and Cu exhibited identical oxidation behavior, Cu-8Cr-4Nb differed markedly in several respects: below approx. 700 C its oxidation rates were significantly lower than those of Cu; At higher temperatures its oxidation rates fell into two categories: an initial rate exceeding that of Cu, and a terminal rate comparable to that of Cu. Differences in oxide morphologies paralleled the kinetic differences at higher temperature: While NARloy-Z and Cu produced a uniform oxide scale of Cu2O inner layer and CuO outer layer, the inner (Cu2O) layer on Cu-8Cr-4Nb was stratified, with a highly porous/spongy inner stratum (responsible for the fast initial kinetics) and a dense/blocky outer stratum (corresponding to the slow terminal kinetics). Single and spinel oxides of Nb and Cr were found at the interface between the oxide scale and Cu-8Cr-4Nb substrate and it appears that these oxides were responsible for its suppressed oxidation rates at the intermediate temperatures. No difference was found between Cu-8Cr-4Nb oxidation in air and in oxygen at 1.0 atm.

  3. Divalent Cu, Cd, and Pb Biosorption in Mixed Solvents

    PubMed Central

    Al-Qunaibit, M. H.

    2009-01-01

    Dead dried Chlorella vulgaris was studied in terms of its performance in binding divalent copper, cadmium, and lead ions from their aqueous or 50% v/v methanol, ethanol, and acetone solutions. The percentage uptake of cadmium ions exhibited a general decrease with decrease in dielectric constant values, while that of copper and lead ions showed a general decrease with increase in donor numbers. Uptake percentage becomes less sensitive to solvent properties the larger the atomic radius of the biosorbed ion, and uptake of copper was the most affected. FT-IR analyses revealed stability of the biomass in mixed solvents and a shift in vibrations of amide(I) and (II), carboxylate, glucose ring, and metal oxygen upon metal binding in all media. ΔνCOO values (59–69 cm−1) confirmed bidentate metal coordination to carboxylate ligands. The value of νasCOO increased slightly upon Cu, Cd, and Pb biosorption from aqueous solutions indicating lowering of symmetry, while a general decrease was noticed in mixed solvents pointing to the opposite. M–O stretching frequencies increased unexpectedly with increase in atomic mass as a result of solvent effect on the nature of binding sites. Lowering polarity of the solvent permits variations in metal-alga bonds strengths; the smaller the metal ion, the more affected. PMID:19688108

  4. Involvement of CTR1 and ATP7A in lead (Pb)-induced copper (Cu) accumulation in choroidal epithelial cells.

    PubMed

    Zheng, Gang; Zhang, Jieqiong; Xu, Yan; Shen, Xuefeng; Song, Han; Jing, Jinfei; Luo, Wenjing; Zheng, Wei; Chen, Jingyuan

    2014-02-10

    The blood-cerebrospinal fluid barrier (BCB) plays a key role in maintaining copper (Cu) homeostasis in the brain. Cumulative evidences indicate that lead (Pb) exposure alters cerebral Cu homeostasis, which may underlie the development of neurodegenerative diseases. This study investigated the roles of Cu transporter 1 (CTR1) and ATP7A, two Cu transporters, in Pb-induced Cu accumulation in the choroidal epithelial cells. Pb exposure resulted in increased intracellular (64)Cu retention, accompanying with up-regulated CTR1 level. Knockdown of CTR1 using siRNA before Pb exposure diminished the Pb-induced increase of (64)Cu uptake. The expression level of ATP7A was down-regulated following the Pb exposure. ATP7A siRNA knockdown, or PCMB treatment, inhibited the (64)Cu efflux from the cells, while the following additional incubation with Pb failed to further increase the intracellular (64)Cu retention. Cu exposure, or intracellular Cu accumulation following the tetracycline (Tet)-induced overexpression of CTR1, did not result in significant change in ATP7A expression. Taken together, these data indicate that CTR1 and ATP7A play important roles in Cu transport in choroidal epithelial cells, and the Pb-induced intracellular Cu accumulation appears to be mediated, at least in part, via the alteration of CTR1 and ATP7A expression levels following Pb exposure.

  5. Preparation of 110K (Bi, Pb)-Sr-Ca-Cu-O superconductor from glass precursor

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1989-01-01

    The Bi1.5Pb0.5Sr2Ca2Cu3O(x) glass, prepared by rapid quenching of the melt, showed T(sub g) of 383 C, crystallization temperature of approx. 446 C, melting temperature of approx. 855 C, and bulk density of 5.69 g/cu. cm. in air. The as-quenched glass was oxygen deficient. On heating in O2, it showed a slow, irreversible, and continuous weight gain starting at approx. 530 C. The influence of annealing conditions on the formation of various phases was investigated by XRD and electrical resistivity measurements. The 110K-T(sub c) phase did not form below 840 C. The amount of this phase increased with the sintering time at 840 C. A sample annealed at 840 C for 243 h in air and furnace cooled showed the highest T(sub c)(R=0) of 107.2K and transition width delta T(sub c)(10 to 90 percent) of approx. 2 K.

  6. Biosorption of Cu2+ and Pb2+ using sophora alopecuroides residue

    NASA Astrophysics Data System (ADS)

    Feng, N.; Fan, W.; Zhu, M.; Zhang, Y.

    2016-08-01

    Sophora alopecuroides residue (SAP), a kind of traditional Chinese herbal medicine residue, was developed in an alternative biosorbent for the removal Cu2+ and Pb2+ in simulated wastewater. The morphology and surface texture of SAP were characterized by scanning electron microscopy, which showed a loose and porous structure. The biosorption experiments of Cu2+ and Pb2+ onto SAP were investigated by using batch techniques. High biosorption percentage appeared at pH values of 4.5-6.0. The experimental data followed the second-order kinetic model well. Equilibrium fit with the Langmuir isotherm model well. The maximum biosorption capacity of an adsorbent at 25 °C was respectively 60.6 mg/g Cu2+ and 128.1 mg/g Pb2+. The findings of the present study show that SAP is an attractive and effective biosorbent for Cu2+ and Pb2+.

  7. Melting of Pb Nanocrystals Embedded in Al, Si, and Cu Matrices

    NASA Astrophysics Data System (ADS)

    Wang, Huan; Zhu, Hongzhi

    2015-12-01

    Dispersions of nanoscale Pb particles embedded in Si, Al, and Cu matrices have been synthesized by ion implantation and subsequent annealing. The melting transitions of the embedded Pb nanocrystals with epitaxial particle/matrix interfaces were investigated by means of in situ high-temperature X-ray diffraction. Due to different levels of lattice mismatch, the Pb nanoprecipitates experience a different elastic strain in different matrices. Further analysis on the lattice constants of the embedded Pb nanocrystals gives unambiguous evidence of the strain-related pressure effect, which is particle size and matrix dependent, on tuning of the melting behavior of the embedded Pb nanoparticles.

  8. Phase composition and structure of aluminum Al-Cu-Si-Sn-Pb alloys

    NASA Astrophysics Data System (ADS)

    Belov, N. A.; Stolyarova, O. O.; Murav'eva, T. I.; Zagorskii, D. L.

    2016-06-01

    The structure and phase composition of cast and heat treated Al-Cu-Si-Sn-Pb alloys containing 6 wt % Sn, 2 wt % Pb, 0-4 wt % Cu, 0-10 wt % Si have been studied using calculations and experimental methods. Polythermal and isothermal sections are reported, which indicate the existence of two liquid phases. It was found that the low-melting phase is inhomogeneous and consists of individual leadand tin-based particles.

  9. Selective Detection of NO2 Using Cr-Doped CuO Nanorods

    PubMed Central

    Kim, Kang-Min; Jeong, Hyun-Mook; Kim, Hae-Ryong; Choi, Kwon-Il; Kim, Hyo-Joong; Lee, Jong-Heun

    2012-01-01

    CuO nanosheets, Cr-doped CuO nanosheets, and Cr-doped CuO nanorods were prepared by heating a slurry containing Cu-hydroxide/Cr-hydroxide. Their responses to 100 ppm NO2, C2H5OH, NH3, trimethylamine, C3H8, and CO were measured. For 2.2 at% Cr-doped CuO nanorods, the response (Ra/Rg, Ra: resistance in air, Rg: resistance in gas) to 100 ppm NO2 was 134.2 at 250 °C, which was significantly higher than that of pure CuO nano-sheets (Ra/Rg = 7.5) and 0.76 at% Cr-doped CuO nanosheets (Ra/Rg = 19.9). In addition, the sensitivity for NO2 was also markedly enhanced by Cr doping. Highly sensitive and selective detection of NO2 in 2.2 at% Cr-doped CuO nanorods is explained in relation to Cr-doping induced changes in donor density, morphology, and catalytic effects. PMID:22969384

  10. Vacuum Plasma Spray of Cu-8Cr-4Nb for Advanced Liquid-Fuel Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Zimmerman, F.; Elam, S.; Ellis, D.; Miller, H.; McKechnie, T.; Hickman, R.

    2001-01-01

    Vacuum plasma spray (VPS) formed Cu-8Cr-4Nb alloy, with low oxygen, exhibits higher strength at room and elevated temperature than material formed by extrusion. The VPS formed material exhibits slightly lower ductility than the extruded material. VPS forming of Cu-8Cr-4Nb can be used to produce near net structures with mechanical properties comparable to current extruded material.

  11. Genesis of the Bangbule Pb-Zn-Cu polymetallic deposit in Tibet, western China: Evidence from zircon U-Pb geochronology and S-Pb isotopes

    NASA Astrophysics Data System (ADS)

    Kan, Tian; Zheng, Youye; Gao, Shunbao

    2016-04-01

    The Banbule Pb-Zn-Cu skarn deposit is located in the Longger-Gongbujiangda volcanic magma arc in the Gangdese-Nyainqentanglha Plate. It is the only lead-zinc polymetallic deposit discovered in the westernmost Nyainqentanglha metallogenic belt. The measured and indicated resources include 0.9 Mt of Pb+Zn (4.77% Pb and 4.74% Zn, respectively), 6499 t of Cu, and 178 t of Ag (18.75g/t Ag). The orebodies mainly occur as lenses, veins and irregular shapes in the contact zone between the quartz-porphyry and limestone of the Upper Permian Xiala Formation, or in the boundaries between limestone and sandstone. Pb-Zn-Cu mineralization in the Banbule deposit is closely associated with skarns. The ore minerals are dominated by galena, sphalerite, chalcopyrite, bornite, and magnetite, with subordinate pyrite, malachite, and azurite. The gangue minerals are mainly garnet, actinolite, diopside, quartz, and calcite. The ore-related quartz-porphyry displays LA-ICP-MS zircon U-Pb age of 77.31±0.74 Ma. The δ34S values of sulfides define a narrow range of -0.8 to 4.7‰ indicating a magmatic source for the ore-forming materials. Lead isotopic systematics yield 206Pb/204Pb of 18.698 to 18.752, 207Pb/204Pb of 15.696 to 15.760, and 208Pb/204Pb of 39.097 to 39.320. The data points are constrained around the growth curves of upper crust and orogenic belt according to the tectonic discrimination diagrams. The calculated Δβ - Δγ values plot within the magmatic field according to the discrimination diagram of Zhu et al. (1995). The S-Pb isotopic data suggest that Bangbule is a typical skarn deposit, and the Pb-Zn-Cu mineralization is genetically related to the quartz-porphyry in the mining district. The discovery of the Bangbule deposit indicates that there is metallogenic potential in the westernmost Nyainqentanglha belt, which is of great importance for the exploration work in this area.

  12. Genesis of the Bangbule Pb-Zn-Cu polymetallic deposit in Tibet, western China: Evidence from zircon U-Pb geochronology and S-Pb isotopes

    NASA Astrophysics Data System (ADS)

    Kan, Tian; Zheng, Youye; Gao, Shunbao

    2016-04-01

    The Banbule Pb-Zn-Cu skarn deposit is located in the Longger-Gongbujiangda volcanic magma arc in the Gangdese-Nyainqentanglha Plate. It is the only lead-zinc polymetallic deposit discovered in the westernmost Nyainqentanglha metallogenic belt. The measured and indicated resources include 0.9 Mt of Pb+Zn (4.77% Pb and 4.74% Zn, respectively), 6499 t of Cu, and 178 t of Ag (18.75g/t Ag). The orebodies mainly occur as lenses, veins and irregular shapes in the contact zone between the quartz-porphyry and limestone of the Upper Permian Xiala Formation, or in the boundaries between limestone and sandstone. Pb-Zn-Cu mineralization in the Banbule deposit is closely associated with skarns. The ore minerals are dominated by galena, sphalerite, chalcopyrite, bornite, and magnetite, with subordinate pyrite, malachite, and azurite. The gangue minerals are mainly garnet, actinolite, diopside, quartz, and calcite. The ore-related quartz-porphyry displays LA-ICP-MS zircon U-Pb age of 77.31±0.74 Ma. The δ34S values of sulfides define a narrow range of -0.8 to 4.7‰ indicating a magmatic source for the ore-forming materials. Lead isotopic systematics yield 206Pb/204Pb of 18.698 to 18.752, 207Pb/204Pb of 15.696 to 15.760, and 208Pb/204Pb of 39.097 to 39.320. The data points are constrained around the growth curves of upper crust and orogenic belt according to the tectonic discrimination diagrams. The calculated Δβ ‑ Δγ values plot within the magmatic field according to the discrimination diagram of Zhu et al. (1995). The S-Pb isotopic data suggest that Bangbule is a typical skarn deposit, and the Pb-Zn-Cu mineralization is genetically related to the quartz-porphyry in the mining district. The discovery of the Bangbule deposit indicates that there is metallogenic potential in the westernmost Nyainqentanglha belt, which is of great importance for the exploration work in this area.

  13. Synthesis of the Pb-based superconductor of the Pb3201 phase (Pb 2Cu)Sr 0.9La 1.1CuO 6+δ by the modified polymerized complex method

    NASA Astrophysics Data System (ADS)

    Kato, Masatsune; Sakuma, Atsushi; Noji, Takashi; Koike, Yoji

    1996-02-01

    We have succeeded in obtaining single-phase samples of the Pb3201 phase (Pb 2Cu)Sr 0.9La 1.1CuO 6+δ by the modified polymerized complex method. At the first step of the synthesis, a transparent gel is found to be obtained by increasing the molar ratio of citric acid to total metal ions up to 5 without controlling the pH of the solution and without ethylene glycol. Secondly, the precursor is prepared by calcining the transparent gel. Finally, highly homogeneous samples with the onset temperature of the superconducting transition, ∼ 37 K, are obtained by sintering the precursor and subsequently annealing it. Moreover, the Pb3201 phase is found to be stable only for x = 1.1 in (Pb 2Cu)Sr 2- xLa xCuO 6+δ.

  14. Engineering of electronic and optical properties of PbS thin films via Cu doping

    NASA Astrophysics Data System (ADS)

    Touati, Baligh; Gassoumi, Abdelaziz; Dobryden, Illia; Natile, Marta Maria; Vomiero, Alberto; Turki, Najoua Kamoun

    2016-09-01

    Copper-doped PbS polycrystalline thin films were deposited by chemical bath deposition by adding small amount of Cu (ysolution = [Cu2+]/[Pb2+]) between 0.5 and 2 at%. The composition, structure, morphology, optical and electrical properties of the films were investigated by means of X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS), atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray photoemission spectroscopy (XPS), UV-visible-near infrared (UV-Vis-NIR) spectrophotometry and Hall effect measurements. The XRD studies showed that the undoped films have PbS face centered cubic structure with (111) preferential orientation, while preferential orientation changes to (200) plane with increasing Cu doping concentration. The AFM and SEM measurements indicated that the film surfaces consisted of nanosized grains with pyramidal shape. Optical band gap was blue shifted from 0.72 eV to 1.69 eV with the increase in Cu doping concentration. The film obtained with the [Cu2+]/[Pb2+] ratio equal to 1.5 at% Cu showed the minimum resistivity of 0.16 Ω cm at room temperature and optimum value of optical band gap close to 1.5 eV. 1.5 at% Cu-doped PbS thin films exhibit the best optical and electrical properties, suitable for solar cells applications.

  15. Measurement of the 208Pb(52Cr, n)259Sg Excitation Function

    SciTech Connect

    Folden III, C.M.; Dragojevic, I.; Dullmann, Ch.E.; Eichler, R.; Garcia, M.A.; Gates, J.M.; Nelson, S.L.; Sudowe, R.; Gregorich, K.E.; Hoffman, D.C.; Nitsche, H.

    2010-03-19

    The excitation function for the 208Pb(52Cr, n)259Sg reaction has been measured using the Berkeley Gas-filled Separator at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. The maximum cross section of pb is observed at a center-of-target laboratory-frame energy of 253.0 MeV. In total, 25 decay chains originating from 259Sg were observed and the measured decay properties are in good agreement with previous reports. In addition, a partial excitation function for the 208Pb(52Cr, 2n)258Sg reaction was obtained, and an improved 258Sg half-life of ms was calculated by combining all available experimental data.

  16. Protection of Advanced Copper Alloys With Lean Cu-Cr Coatings

    NASA Technical Reports Server (NTRS)

    Greenbauer-Seng, L. (Technical Monitor); Thomas-Ogbuji, L.

    2003-01-01

    Advanced copper alloys are used as liners of rocket thrusters and nozzle ramps to ensure dissipation of the high thermal load generated during launch, and Cr-lean coatings are preferred for the protection of these liners from the aggressive ambient environment. It is shown that adequate protection can be achieved with thin Cu-Cr coatings containing as little as 17 percent Cr.

  17. Remediation of Pb/Cr co-contaminated soil using electrokinetic process and approaching electrode technique.

    PubMed

    Ng, Yee-Sern; Sen Gupta, Bhaskar; Hashim, Mohd Ali

    2016-01-01

    Electrokinetic process has emerged as an important tool for remediating heavy metal-contaminated soil. The process can concentrate heavy metals into smaller soil volume even in the absence of hydraulic flow. This makes it an attractive soil pre-treatment method before other remediation techniques are applied such that the chemical consumption in the latter stage can be reduced. The present study evaluates the feasibility of electrokinetic process in concentrating lead (Pb) and chromium (Cr) in a co-contaminated soil using different types of wetting agents, namely 0.01 M NaNO3, 0.1 M citric acid and 0.1 M EDTA. The data obtained showed that NaNO3 and citric acid resulted in poor Pb electromigration in this study. As for Cr migration, these agents were also found to give lower electromigration rate especially at low pH region as a result of Cr(VI) adsorption and possible reduction into Cr(III). In contrast, EDTA emerged as the best wetting agent in this study as it formed water-soluble anionic complexes with both Pb and Cr. This provided effective one-way electromigration towards the anode for both ions, and they were accumulated into smaller soil volume with an enrichment ratio of 1.55-1.82. A further study on the application of approaching cathode in EDTA test showed that soil alkalisation was achieved, but this did not provide significant enhancement on electromigration for Pb and Cr. Nevertheless, the power consumption for electrokinetic process was decreased by 22.5%.

  18. Remediation of Pb/Cr co-contaminated soil using electrokinetic process and approaching electrode technique.

    PubMed

    Ng, Yee-Sern; Sen Gupta, Bhaskar; Hashim, Mohd Ali

    2016-01-01

    Electrokinetic process has emerged as an important tool for remediating heavy metal-contaminated soil. The process can concentrate heavy metals into smaller soil volume even in the absence of hydraulic flow. This makes it an attractive soil pre-treatment method before other remediation techniques are applied such that the chemical consumption in the latter stage can be reduced. The present study evaluates the feasibility of electrokinetic process in concentrating lead (Pb) and chromium (Cr) in a co-contaminated soil using different types of wetting agents, namely 0.01 M NaNO3, 0.1 M citric acid and 0.1 M EDTA. The data obtained showed that NaNO3 and citric acid resulted in poor Pb electromigration in this study. As for Cr migration, these agents were also found to give lower electromigration rate especially at low pH region as a result of Cr(VI) adsorption and possible reduction into Cr(III). In contrast, EDTA emerged as the best wetting agent in this study as it formed water-soluble anionic complexes with both Pb and Cr. This provided effective one-way electromigration towards the anode for both ions, and they were accumulated into smaller soil volume with an enrichment ratio of 1.55-1.82. A further study on the application of approaching cathode in EDTA test showed that soil alkalisation was achieved, but this did not provide significant enhancement on electromigration for Pb and Cr. Nevertheless, the power consumption for electrokinetic process was decreased by 22.5%. PMID:26330317

  19. Lead chromate detected as a source of atmospheric Pb and Cr (VI) pollution

    PubMed Central

    Lee, Pyeong-Koo; Yu, Soonyoung; Chang, Hye Jung; Cho, Hye Young; Kang, Min-Ju; Chae, Byung-Gon

    2016-01-01

    Spherical black carbon aggregates were frequently observed in dust dry deposition in Daejeon, Korea. They were tens of micrometers in diameter and presented a mixture of black carbon and several mineral phases. Transmission electron microscopy (TEM) observations with energy-dispersive X-ray spectroscopy (EDS) and selected area diffraction pattern (SADP) analyses confirmed that the aggregates were compact and included significant amounts of lead chromate (PbCrO4). The compositions and morphologies of the nanosized lead chromate particles suggest that they probably originated from traffic paint used in roads and were combined as discrete minerals with black carbon. Based on Pb isotope analysis and air-mass backward trajectories, the dust in Daejeon received a considerable input of anthropogenic pollutants from heavily industrialized Chinese cities, which implies that long-range transported aerosols containing PbCrO4 were a possible source of the lead and hexavalent chromium levels in East Asia. Lead chromate should be considered to be a source of global atmospheric Pb and Cr(VI) pollution, especially given its toxicity. PMID:27779222

  20. Removal of Cd, Cr, and Pb from aqueous solution by unmodified and modified agricultural wastes.

    PubMed

    Mahmood-Ul-Hassan, Muhammad; Suthor, Vishandas; Rafique, Ejaz; Yasin, Muhammad

    2015-02-01

    The adsorption of cadmium (Cd), chromium (Cr), and lead (Pb), widely detected in wastewater, by unmodified and modified banana stalks, corn cob, and sunflower achene was explored. The three agricultural wastes were chemically modified with sodium hydroxide (NaOH), in combination with nitric acid (HNO3) and sulfuric acid (H2SO4), in order to improve their adsorptive binding capacity. The experiments were conducted as a function of contact time and initial metal ion concentrations. Of the three waste materials, corn cob had the highest adsorptive capacity for Pb than Cr and Cd. The NaOH-modified substrates had higher adsorptive capacity than the acid modified samples. The chemical treatment invariably increased the adsorption capacity between 10 and 100 %. The Langmuir maximum sorption capacity (q m) of Pb was highest (21-60 mg g(-1) of banana, 30-57 mg g(-1) of corn cob, and 23-28 mg g(-1) of sunflower achene) and that of Cd was least (4-7 mg g(-1) of banana, 14-20 mg g(-1) of corn cob, and 11-16 mg g(-1) of sunflower achene). The q m was in the order of Pb > Cr > Cd for all the three adsorbents. The results demonstrate that the agricultural waste materials used in this study could be used to remediate water polluted with heavy metals. PMID:25626568

  1. A new Cu-8 Cr-4 Nb alloy for high temperature applications

    NASA Technical Reports Server (NTRS)

    Ellis, D. L.; Michal, G. M.; Dreshfield, R. L.

    1995-01-01

    Various applications exist where a high conductivity alloy with good strength and creep resistance are required. NASA LeRC has developed a Cu-8 at. percent Cr-4 at. percent Nb (Cu-8 Cr-4 Nb) alloy for these applications. The alloy is designed for use up to 700 C and shows exceptional strength, low cycle fatigue (LCF) resistance, and creep resistance. Cu-8 Cr-4 Nb also has a thermal conductivity of at least 72 percent that of pure Cu. Furthermore, the microstructure and mechanical properties of the alloy are very stable. In addition to the original application in combustion chambers, Cu-8 Cr-4 Nb shows promise for welding electrodes, brazing fixtures, and other applications requiring high conductivity and strength at elevated temperatures.

  2. Band structure calculations of CuAlO2, CuGaO2, CuInO2, and CuCrO2 by screened exchange

    NASA Astrophysics Data System (ADS)

    Gillen, Roland; Robertson, John

    2011-07-01

    We report density functional theory band structure calculations on the transparent conducting oxides CuAlO2, CuGaO2, CuInO2, and CuCrO2. The use of the hybrid functional screened-exchange local density approximation (sX-LDA) leads to considerably improved electronic properties compared to standard LDA and generalized gradient approximation (GGA) approaches. We show that the resulting electronic band gaps compare well with experimental values and previous quasiparticle calculations, and show the correct trends with respect to the atomic number of the cation (Al, Ga, In). The resulting energetic depths of Cu d and O p levels and the valence-band widths are considerable improvements compared to LDA and GGA and are in good agreement with available x-ray photoelectron spectroscopy data. Lastly, we show the calculated imaginary part of the dielectric function for all four systems.

  3. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al. Part 2; Scale Microstructures

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. Details of the oxidation kinetics of these alloys were discussed in Part I. This paper analyzes the microstructures of the scale and its composition in an attempt to elucidate the oxidation mechanisms in these alloys. The scales formed on Cu-17%Cr specimens oxidized between 773 and 973 K consisted of external CuO and subsurface Cu2O layers. The total thickness of these scales varied from about 10 m at 773 K to about 450 m at 973 K. In contrast, thin scales formed on Cu-17%Cr-5%Al alloys oxidized between 773 and 1173 K. The exact nature of these scales could not be determined by x-ray diffraction but energy dispersive spectroscopy analyses were used to construct a scale composition map. Phenomenological oxidation mechanisms are proposed for the two alloys.

  4. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al Part II: Scale Microstructures

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. Details of the oxidation kinetics of these alloys were discussed in Part I. This paper analyzes the microstructures of the scale and its composition in an attempt to elucidate the oxidation mechanisms in these alloys. The scales formed on Cu-17%Cr specimens oxidized between 773 and 973 K consisted of external CuO and subsurface Cu2O layers. The total thickness of these scales varied from about 10 m at 773 K to about 450 m at 973 K. In contrast, thin scales formed on Cu-17%Cr-5%Al alloys oxidized between 773 and 1173 K. The exact nature of these scales could not be determined by x-ray diffraction but energy dispersive spectroscopy analyses were used to construct a scale composition map. Phenomenological oxidation mechanisms are proposed for the two alloys.

  5. Polyaniline nanofibers assembled on alginate microsphere for Cu2+ and Pb2+ uptake.

    PubMed

    Jiang, Nina; Xu, Yiting; Dai, Yuqiong; Luo, Weiang; Dai, Lizong

    2012-05-15

    Polyaniline (PANI) nanofibers were assembled on the micro- or millimeter-scale calcium alginate (CA) beads by "competitive adsorption-restricted polymerization" approach. The CA beads made the dimensional expansion of PANI nanofibers evident, which overcame the serious aggregation of PANI nanofibers and benefited the practical operation of PANI nanofibers. Batch adsorption results showed that the millimeter-scale CA beads decorated by PANI nanofibers had high affinity to Cu(2+) and Pb(2+) in aqueous solutions. The removal percentages of Cu(2+) and Pb(2+) in aqueous solutions by this PANI/CA composite with milli/nano hierarchical structure surpassed 90% in a wide pH range from 3 to 7. Sorption of the two kinds of ions to PANI/CA composite sorbent agreed well with the Freundlich adsorption model. The adsorption kinetic results of Cu(2+) and Pb(2+) showed that the adsorption reached equilibrium within 120min and 40min, respectively. And their adsorption rates could be described by pseudo-second-order kinetics. The desorption percentages of Pb(2+) and Cu(2+) from this PANI/CA composite are 62% and 75%, respectively. The Pb(2+) and Cu(2+) removal capacity of the sorbent could be further reinforced when the diameter of CA beads turned from millimeter to micrometer.

  6. (Tl, Pb, Cu)Sr 2(Tl, Pb, Cu) 2Cu 2O 8- δ: a nonsuperconducting Tl-1222 * cuprate with both heavy atom single and oxygen depleted double layer motifs

    NASA Astrophysics Data System (ADS)

    Otto, H. H.; Ringshandl, S.; Baltrusch, R.

    1998-05-01

    An account is given of the synthesis and structural investigation of a newly discovered tetragonal (Tl, Pb, Cu)Sr 2(Tl, Pb, Cu) 2Cu 2O 8- δ compound (Tl-1222 * phase) with both (Tl, Pb, Cu)O single and oxygen depleted (Tl, Pb, Cu) 2O x double layer motifs, space group I4/mmm, lattice parameters a=3.8405(2), c=29.2536(5) Å, and Dx=7.46 g cm -3. Micaceous and highly reflecting black single crystals of 1 mm×1 mm×3-5 μm size were obtained from a Tl 2O 3- and CuO-rich partial melt. The as-grown compound is nonsuperconducting. The very thin crystals are extremely liable to bend out of shape. Deterioration could not be observed within the period of a year under ambient conditions. The complex crystal structure has been solved using single crystals. We take note of the similarity of the unit cell dimensions to superconducting (Tl, Cu) 2Ba 2(Ca, Tl)Cu 2O 8 (Tl-2212 phase) with TlO double rocksalt layers, and compare crystal-chemical details of similar compounds. Apart from the possibility of obtaining superconducting properties by suitable doping, the mechanical properties of the new material are very attractive from the point of view of its use as highly scattering composite layers of an X-ray monochromator.

  7. Development of a new Pb-free solder: Sn-Ag-Cu

    SciTech Connect

    Miller, C.M.

    1995-02-10

    With the ever increasing awareness of the toxicity of Pb, significant pressure has been put on the electronics industry to get the Pb out of solder. This work pertains to the development and characterization of an alloy which is Pb-free, yet retains the proven positive qualities of current Sn-Pb solders while enhancing the shortcomings of Sn-Pb solder. The solder studied is the Sn-4.7Ag-1.7Cu wt% alloy. By utilizing a variety of experimental techniques the alloy was characterized. The alloy has a melting temperature of 217{degrees}C and exhibits eutectic melting behavior. The solder was examined by subjecting to different annealing schedules and examining the microstructural stability. The effect of cooling rate on the microstructure of the solder was also examined. Overall, this solder alloy shows great promise as a viable alternative to Pb-bearing solders and, as such, an application for a patent has been filed.

  8. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS.

    PubMed

    Luo, Chunling; Shen, Zhenguo; Li, Xiangdong

    2005-03-01

    Chemically enhanced phytoextraction has been proposed as an effective approach to removing heavy metals from contaminated soil through the use of high biomass plants. Using pot experiments, the effects of the application of EDTA, EDDS and citric acid on the uptake of Cu, Pb, Zn and Cd by corn (Zea mays L. cv. Nongda 108) and bean (Phaseolus vulgaris L. white bean) plants were studied. The results showed that EDDS was more effective than EDTA at increasing the concentration of Cu in corn and beans. The application of 5 mmol kg-1 soil EDDS to soil significantly increased concentrations of Cu in shoots, with maximum levels of 2060 and 5130 mg kg-1 DW in corn and beans, respectively, which were 45- and 135-fold higher than that in the corresponding control plants to which chelate had not been applied. Concentrations of Zn in shoots were also higher in the plants treated with EDDS than in those treated with EDTA. For Pb and Cd, EDDS was less effective than EDTA. The maximum Cu phytoextraction was found with the EDDS treatment. The application of EDTA and EDDS also significantly increased the shoot-to-root ratios of the concentrations of Cu, Pb, Zn and Cd in both plant species. The results of metal extraction with chelates showed that EDDS was more efficient at solubilizing Cu and Zn than EDTA, and that EDTA was better at solubilizing Pb and Cd than EDDS.

  9. On the structure and microstructure of 'PbCrO{sub 3}'

    SciTech Connect

    Arevalo-Lopez, Angel M.; Alario-Franco, Miguel A.

    2007-11-15

    The reliability factors of a Rietveld X-ray powder refinement of PbCrO{sub 3} could be improved by considering the lead ion in a multi-minimum potential displaced from its special position. These studies coupled to EDX analysis show a certain lead deficiency. Electron diffraction and high-resolution electron microscopy reveal that the microstructure of this material is a rather complex perovskite superstructure that presents a compositional modulation, within a microdomain distribution. The proposed supercell is {approx}a{sub p}x3a{sub p}x({approx}14-18)a{sub p}. - Graphical abstract: Model of the structure of PbCrO{sub 3} obtained by electron microscopy and diffraction.

  10. Determination of Cd, Cr and Pb in phosphate fertilizers by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Nunes, Lidiane Cristina; de Carvalho, Gabriel Gustinelli Arantes; Santos, Dario; Krug, Francisco José

    2014-07-01

    A validated method for quantitative determination of Cd, Cr, and Pb in phosphate fertilizers by laser-induced breakdown spectroscopy (LIBS) is presented. Laboratory samples were comminuted and homogenized by cryogenic or planetary ball milling, pressed into pellets and analyzed by LIBS. The experimental setup was designed by using a Q-switched Nd:YAG at 1064 nm with 10 Hz repetition rate, and the intensity signals from Cd II 214.441 nm, Cr II 267.716 nm and Pb II 220.353 nm emission lines were measured by using a spectrometer furnished with an intensified charge-coupled device. LIBS parameters (laser fluence, lens-to-sample distance, delay time, integration time gate, number of sites and number of laser pulses per site) were chosen after univariate experiments with a pellet of NIST SRM 695 (Trace Elements in Multi-Nutrient Fertilizer). Calibration and validation were carried out with 30 fertilizer samples from single superphosphate, triple superphosphate, monoammonium phosphate, and NPK mixtures. Good results were obtained by using 30 pulses of 50 J cm- 2 (750 μm spot size), 2.0 μs delay time and 5.0 μs integration time gate. No significant differences between Cd, Cr, and Pb mass fractions determined by the proposed LIBS method and by ICP OES after microwave-assisted acid digestion (AOAC 2006.03 Official Method) were found at 95% confidence level. The limits of detection of 1 mg kg- 1 Cd, 2 mg kg- 1 Cr and 15 mg kg- 1 Pb and the precision (coefficients of variation of results ranging from 2% to 15%) indicate that the proposed LIBS method can be recommended for the determination of these analytes in phosphate fertilizers.

  11. Distribution of Cd, Pb, Zn and Cu and their chemical speciations in soils from a peri-smelter area in northeast China

    NASA Astrophysics Data System (ADS)

    Du, Ping; Xue, Nandong; Liu, Li; Li, Fasheng

    2008-07-01

    An exploratory study on soil contamination of heavy metals was carried out surrounding Huludao zinc smelter in Liaoning province, China. The distribution of total heavy metals and their chemical speciations were investigated. The correlations between heavy metal speciations and soil pH values in corresponding sites were also analyzed. In general, Cd, Zn, Pb, Cu and As presented a significant contamination in the area near the smelter, comparied with Environmental Quality Standards for Soils in China. The geoaccumulation index showed the degree of contamination: Cd > Zn > Pb > Cu > As. There was no obvious pollution of Cr and Ni in the studied area. The speciation analysis showed that the dominant fraction of Cd and Zn was the acid soluble fraction, and the second was the residual fraction. Pb was mostly associated with the residual fraction, which constituted more than 50% of total concentration in all samples. Cu in residual fraction accounted for a high percentage (40-80%) of total concentration, and the proportion of Cu in the oxidizable fraction is higher than that of other metals. The distribution pattern of Pb and Zn was obviously affected by soil pH. It seemed that Pb and Zn content in acid solution fraction increased with increasing soil pH values, while Cd content in acid soluble fraction accounted for more proportion in neutral and alkaline groups than acidic one. The fraction distribution patterns of Cu in three pH groups were very similar and independent of soil pH values. And the residual fraction of Cu took a predominant part (50%) of the total content.

  12. Spectroscopy study of Zn, Cd, Pb and Cr ions immobilization on C-S-H phase.

    PubMed

    Żak, Renata; Deja, Jan

    2015-01-01

    Calcium silicate hydrates (C-S-H) have a large number of structural sites available for cations and anions to bind. The C-S-H phases are materials which have ability to toxic ions immobilization. Immobilization mechanisms for C-S-H include sorption, phase mixing, substitution and precipitation of insoluble compounds. This study presents the C-S-H (prepared with C/S ratios 1.0) phase as absorbent for immobilization of Zn, Cd, Pb and Cr ions. The C-S-H spectra before and after incorporation of heavy metals ions into the C-S-H structure were obtained. The effect of added heavy metals ions on the hydration phenomena was studied by means of X-ray diffractions analysis. FTIR spectra was measured. The microstructure and phase composition of C-S-H indicate that they can play an essential role in the immobilization of heavy metals. The properties of C-S-H in the presence of Zn, Cd, Pb and Cr cations were studied. The leaching ML test was used to evaluate the level of immobilization of heavy metals in C-S-H. The leached solutions are diluted and analyzed using atomic absorption spectrometry (AAS) and the activated solid particles are separated, washed, desiccated and analyzed by Fourier transform infrared (FTIR) spectroscopy. It was found that the degree of Cd, Zn, Pb and Cr cations immobilization was very high (exceeding 99.96%).

  13. Synthesis of highly phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor

    DOEpatents

    Dorris, S.E.; Poeppel, R.B.; Prorok, B.C.; Lanagan, M.T.; Maroni, V.A.

    1994-10-11

    An article and method of manufacture of (Bi,Pb)-Sr-Ca-Cu-O superconductor are disclosed. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi,Pb)-Sr-Ca-Cu-O superconductor. 5 figs.

  14. Synthesis of highly phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor

    DOEpatents

    Dorris, Stephen E.; Poeppel, Roger B.; Prorok, Barton C.; Lanagan, Michael T.; Maroni, Victor A.

    1994-01-01

    An article and method of manufacture of (Bi,Pb)-Sr-Ca-Cu-O superconductor. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi,Pb)-Sr-Ca-Cu-O superconductor.

  15. Accumulation and transport of Cd, Cu, and Pb in an estuarine salt marsh surface microlayer

    SciTech Connect

    Lion, L.W.; Leckie, J.O.

    1982-01-01

    Dissolved and particulate Cd, Cu, and Pb were measured in bulk solution and surface microlayer samples from an intertidal salt marsh in south San Francisco Bay. The phase distribution (dissolved vs. particulate) of metals was consistent with their calculated speciation in computer-simulated sea-salt matrices. Trace metal enrichment at the microlayer corresponded with physical events at the sample site. Advective exchange of Cd, Cu, and Pb between the estuary and marsh systems was dominated by transport of bulk suspended particulate metals, with an apparent net export from the marsh to the bay.

  16. Superconductivity in Pb-doped Bi-Ca-Sr-Cu-O system

    SciTech Connect

    Xia, J.S.; Fan, M.H.; He, Z.H.; Zhang, Q.R. ); Chen, J.; Chen, Z.Y.; Qian, Y.T. )

    1989-03-20

    A new superconducting transition near 100 {Kappa} was observed in the Pb-doped Bi-Ca-Sr-Cu-O samples. Compared with the 107 {Kappa} and 65 {Kappa} phases, the volume fraction of this superconducting phase is very small, but forms an effective connection between the grains of other two phases. It is suggested that the new phase plays an important role for T/sub c/ above 100 {Kappa} in the Bi/sub 2-chi/Pb/sub chi/Ca/sub 2/Sr/sub 2/Cu/sub 3/O/sub y/ system.

  17. Bioaccessibility of As, Cd, Cu, Ni, Pb, and Sb in toys and low-cost jewelry.

    PubMed

    Guney, Mert; Zagury, Gerald J

    2014-01-21

    Children can be exposed to toxic elements in toys and jewelry following ingestion. As, Cd, Cu, Ni, Pb, and Sb bioavailability was assessed (n = 24) via the in vitro gastrointestinal protocol (IVG), the physiologically based extraction test (PBET), and the European Toy Safety Standard protocol (EN 71-3), and health risks were characterized. Cd, Cu, Ni, and Pb were mobilized from 19 metallic toys and jewelry (MJ) and one crayon set. Bioaccessible Cd, Ni, or Pb exceeded EU migratable concentration limits in four to six MJ, depending on the protocol. Using two-phase (gastric + intestinal) IVG or PBET might be preferable over EN 71-3 since they better represent gastrointestinal physiology. Bioaccessible and total metal concentrations were different and not always correlated, indicating that bioaccessibility measurement may provide more accurate risk characterization. More information on impacts of multiple factors affecting metals mobilization from toys and jewelry is needed before recommending specific tests. Hazard index (HI) for Cd, Ni, or Pb were >1 for all six MJ exceeding the EU limits. For infants (6-12 mo old), 10 MJ had HI > 1 for Cd, Cu, Ni, or Pb (up to 75 for Cd and 43 for Pb). Research on prolonged exposure to MJ and comprehensive risk characterization for toys and jewelry exposure is recommended.

  18. Dynamics of Cd, Cu and Pb added to soil through different kinds of sewage sludge.

    PubMed

    Torri, S I; Lavado, R S

    2008-01-01

    A greenhouse experiment was set up to study the distribution of Cd, Cu and Pb in three typical soils of the Pampas Region amended with sewage sludge. A sequential extraction procedure was used to obtain four operationally defined geochemical species: exchangeable, bound to organic matter, bound to carbonates, and residual. Two kinds of sewage sludge were used: pure sewage sludge and sewage sludge containing 30% DM of its own incinerated ash, at rates equivalent to a field application of 150 t DM ha(-1). Pots were maintained at 80% of field capacity through daily irrigation with distilled water. Soil samples were obtained on days 1, 60, 270 and 360, and then air-dried and passed through a 2 mm sieve for analysis. Results showed that sludge application increased the less available forms of Cd, Cu and Pb. The inorganic forms became the most prevalent forms for Cu and Pb, whereas Cd was only found in the residual fraction. The concentrations of OM-Cu and INOR-Cu in the amended soil samples were closely correlated with soil pH, whereas the chemical behavior of Cd and Pb did not depend on soil physico-chemical characteristics.

  19. Characterization of transparent superconductivity Fe-doped CuCrO2 delafossite oxide

    NASA Astrophysics Data System (ADS)

    Taddee, Chutirat; Kamwanna, Teerasak; Amornkitbamrung, Vittaya

    2016-09-01

    Delafossite CuCr1-xFexO2 (0.0 ≤ x ≤ 0.15) semiconductors were synthesized using a self-combustion urea nitrate process. The effects of Fe concentration on its microstructural, optical, magnetic, and electrical properties were investigated. X-ray diffraction (XRD) analysis results revealed the delafossite structure in all the samples. The lattice spacing of CuCr1-xFexO2 slightly increased with increasing substitution of Fe at the Cr sites. The optical properties measured at room temperature using UV-visible spectroscopy showed a weak absorbability in the visible light and near IR regions. The corresponding direct optical band gap was about 3.61 eV, exhibiting transparency in the visible region. The magnetic hysteresis loop measurements showed that the Fe-doped CuCrO2 samples exhibited ferromagnetic behavior at room temperature. This indicated that the substitution of Fe3+ for Cr3+ produced a mixed effect on the magnetic properties of CuCrO2 delafossite oxide. The temperature dependent resistivity measurements clearly revealed the presence of superconductivity in the CuCr1-xFexO2 with a superconducting transition up to 118 K.

  20. The growth and characterization of Pb-doped Bi-Sr-Ca-Cu-O thin films

    SciTech Connect

    Tseng, M.R.; Chu, J.J.; Huang, Y.T.; Wu, P.T. ); Wang, W.N. )

    1990-03-01

    The growth and characterization of Bi-Pb-Sr-Ca-Cu-O films on single-crystal (001)MgO substrates by rf magnetron sputtering with a single target are reported. The comparison of different post-annealing conditions revealed that the film annealed under controlled Pb potential gave best superconducting properties with {ital T}{sub {ital c}0} above 105 K. The proper doping of Pb not only accelerated the formation of the high-{ital T}{sub {ital c}} phase, but also improved the connectivity of high-{ital T}{sub {ital c}} grains.

  1. Capability of diatomaceous earth to preconcentrate and store Pb and Cr: on-line determination by FI-FAAS.

    PubMed

    Cabañero, Isabel; Madrid, Yolanda; Cámara, Carmen

    2002-07-01

    The diatomaceous earth (DE) has an important ability to retain metals such as Cd, Cr, Mn and Pb, which can be used for their stabilization in the environment and for analytical purposes. In this paper a fast on-line preconcentration method for the determination of Cr and Pb in waters by flow injection flame atomic absorption spectrometry is described. Preconcentration was based on the retention of Cr and Pb on a DE immobilized in silica gel at pH 3.0 and subsequent elution with 200 microL of 3 mol L(-1) HCl. The preconcentration factors were 100 and 150 for Pb and Cr respectively, for 16 mL water sample volume. The detection limits under these conditions were 3 ng mL(-1) and 1 ng mL(-1) for Pb and Cr, respectively. The stability of Cr and Pb retained on silica gel-DE columns was established. Silica gel-DE microcolumns with the retained analytes were stored for 2 months at two different temperatures: 4 degrees C and room temperature. At regular time intervals, both metals were eluted and quantified. The results showed the potential of the procedure for sampling and storing water samples for subsequent metal determination, avoiding the problems associated with maintaining species integrity in aqueous solution, and the possibility to of decontaminating polluted spaces.

  2. Creep Testing of High-Temperature Cu-8 Cr-4 Nb Alloy Completed

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A Cu-8 at.% Cr-4 at.% Nb (Cu-8 Cr-4 Nb) alloy is under development for high-temperature, high heatflux applications, such as actively cooled, hypersonic vehicle heat exchangers and rocket engine combustion chambers. Cu-8 Cr-4 Nb offers a superior combination of strength and conductivity. It has also shown exceptional low-cycle fatigue properties. Following preliminary testing to determine the best processing route, a more detailed testing program was initiated to determine the creep lives and creep rates of Cu-8 Cr-4 Nb alloy specimens produced by extrusion. Testing was conducted at the NASA Lewis Research Center with constant-load vacuum creep units. Considering expected operating temperatures and mission lives, we developed a test matrix to accurately determine the creep properties of Cu-8 Cr-4 Nb between 500 and 800 C. Six bars of Cu-8 Cr-4 Nb were extruded. From these bars, 54 creep samples were machined and tested. The figure on the left shows the steady-state, or second-stage, creep rates for the samples. Comparison data for NARloy-Z (Cu-3 wt % Ag-0.5 wt % Zr), the alloy currently used in combustion chamber liners, were not unavailable. Therefore the steady-state creep rates for Cu at similar temperatures are presented. As expected, in comparison to pure Cu, the creep rates for Cu-8 Cr-4 Nb are much lower. The lives of the samples are presented in the figure on the right. As shown, Cu-8 Cr-4 Nb at 800 C is comparable to NARloy-Z at 648 C. At equivalent temperatures, Cu-8 Cr-4 Nb enjoys a 20 to 50 percent advantage in stress for a given life and 1 to 3 orders of magnitude greater life at a given stress. The improved properties allow for design tradeoffs and improvements in new and existing heat exchangers such as the next generation of combustion chamber liners. Average creep rates for Cu-8 Cr-4 Nb and pure Cu are shown. Average creep lives for Cu-8 Cr- 4 Nb and NARloy-Z are also shown. Currently, two companies are interested in the commercial usage of the Cu

  3. Sorption behavior of Cd, Cu, Pb, and Zn and their interactions in phytoremediated soil.

    PubMed

    Trakal, L; Komárek, M; Száková, J; Tlustos, P; Tejnecký, V; Drábek, O

    2012-09-01

    The aim of our study was to compare the sorption properties of a contaminated soil before and after two types of phytoremediation (natural phytoextraction vs. phytostabilization with dolomite limestone (DL) application). Soil from a pot experiment in controlled greenhouse conditions performed for two vegetation periods was used for the study. Lead, as the main contaminant in the studied soil, was easily desorbed by Cu, especially due to the increased affinity of Cu for soil organic matter; hence input of Cu to the studied soil can present another environmental risk in soils contaminated with other metals (such as Pb). In addition, the sorption behavior of chosen metals from single-element solutions differed from multielement solutions. The obtained results proved the different sorption behavior of metals in the single-element solution compared to the multi-element ones. Soil sorption behavior of Cd, Cu, and Zn decreased with the presence of the competitive metals; nevertheless, Pb sorption potential was not influenced by other competitive metals. Natural phytoextraction showed no significant effect on the sorption of Cd, Cu, Pb, and Zn onto the soil On the other hand, phytostabilization associated with DL application improved the soil sorption efficiency of all chosen metals, especially of Cu.

  4. Evaluation of Pb-17Li compatibility of ODS Fe-12Cr-5Al alloys

    NASA Astrophysics Data System (ADS)

    Unocic, Kinga A.; Hoelzer, David T.

    2016-10-01

    The Dual Coolant Lead Lithium (DCLL: eutectic Pb-17Li and He) blanket concept requires improved Pb-17Li compatibility with ferritic steels in order to demonstrate acceptable performance in fusion reactors. As an initial step, static Pb-17at.%Li (Pb-17Li) capsule experiments were conducted on new oxide dispersion strengthened (ODS) FeCrAl alloys ((1) Y2O3 (125Y), (2) Y2O3 + ZrO2 (125YZ), (3) Y2O3 + HfO2 (125YH), and (4) Y2O3 + TiO2 (125YT)) produced at ORNL via mechanical alloying (MA). Tests were conducted in static Pb-17Li for 1000 h at 700 °C. Alloys showed promising compatibility with Pb-17Li with small mass change after testing for 125YZ, 125YH and 125YT, while the 125Y alloy experienced the highest mass loss associated with some oxide spallation and subsequent alloy dissolution. X-ray diffraction methods identified the surface reaction product as LiAlO2 on all four alloys. A small decrease (∼1 at.%) in Al content beneath the oxide scale was observed in all four ODS alloys, which extended 60 μm beneath the oxide/metal interface. This indicates improvements in alloy dissolution by decreasing the amount of Al loss from the alloy. Scales formed on 125YZ, 125YH and 125YT were examined via scanning transmission electron microscopy (S/TEM) and revealed incorporation of Zr-, Hf-, and Ti-rich precipitates within the LiAlO2 product, respectively. This indicates an inward scale growth mechanism. Future work in flowing Pb-17Li is needed to further evaluate the effectiveness of this strategy in a test blanket module.

  5. Toxicity of seabird guano to sea urchin embryos and interaction with Cu and Pb.

    PubMed

    Rial, Diego; Santos-Echeandía, Juan; Álvarez-Salgado, Xosé Antón; Jordi, Antoni; Tovar-Sánchez, Antonio; Bellas, Juan

    2016-02-01

    Guano is an important source of marine-derived nutrients to seabird nesting areas. Seabirds usually present high levels of metals and other contaminants because the bioaccumulation processes and biotic depositions can increase the concentration of pollutants in the receiving environments. The objectives of this study were to investigate: the toxicity of seabird guano and the joint toxicity of guano, Cu and Pb by using the sea urchin embryo-larval bioassay. In a first experiment, aqueous extracts of guano were prepared at two loading rates (0.462 and 1.952 g L(-1)) and toxicity to sea-urchin embryos was tested. Toxicity was low and not dependent of the load of guano used (EC50 0.42 ± 0.03 g L(-1)). Trace metal concentrations were also low either in guano or in aqueous extracts of guano and the toxicity of extracts were apparently related to dissolved organic matter. In a second experiment, the toxicity of Cu-Pb mixtures in artificial seawater and in extracts of guano (at two loadings: 0.015 and 0.073 g L(-1)), was tested. According to individual fittings, Cu added to extracts of guano showed less toxicity than when dissolved in artificial seawater. The response surfaces obtained for mixtures of Cu and Pb in artificial seawater, and in 0.015 g L(-1) and 0.073 g L(-1) of guano, were better described by Independent Action model adapted to describe antagonism, than by the other proposed models. This implied accepting that EC50 for Cu and Pb increased with the load of guano and with a greater interaction for Cu than for Pb.

  6. Toxicity of seabird guano to sea urchin embryos and interaction with Cu and Pb.

    PubMed

    Rial, Diego; Santos-Echeandía, Juan; Álvarez-Salgado, Xosé Antón; Jordi, Antoni; Tovar-Sánchez, Antonio; Bellas, Juan

    2016-02-01

    Guano is an important source of marine-derived nutrients to seabird nesting areas. Seabirds usually present high levels of metals and other contaminants because the bioaccumulation processes and biotic depositions can increase the concentration of pollutants in the receiving environments. The objectives of this study were to investigate: the toxicity of seabird guano and the joint toxicity of guano, Cu and Pb by using the sea urchin embryo-larval bioassay. In a first experiment, aqueous extracts of guano were prepared at two loading rates (0.462 and 1.952 g L(-1)) and toxicity to sea-urchin embryos was tested. Toxicity was low and not dependent of the load of guano used (EC50 0.42 ± 0.03 g L(-1)). Trace metal concentrations were also low either in guano or in aqueous extracts of guano and the toxicity of extracts were apparently related to dissolved organic matter. In a second experiment, the toxicity of Cu-Pb mixtures in artificial seawater and in extracts of guano (at two loadings: 0.015 and 0.073 g L(-1)), was tested. According to individual fittings, Cu added to extracts of guano showed less toxicity than when dissolved in artificial seawater. The response surfaces obtained for mixtures of Cu and Pb in artificial seawater, and in 0.015 g L(-1) and 0.073 g L(-1) of guano, were better described by Independent Action model adapted to describe antagonism, than by the other proposed models. This implied accepting that EC50 for Cu and Pb increased with the load of guano and with a greater interaction for Cu than for Pb. PMID:26692516

  7. Mid-twentieth century increases in anthropogenic Pb, Cd and Cu in central Asia set in hemispheric perspective using Tien Shan ice core

    NASA Astrophysics Data System (ADS)

    Grigholm, B.; Mayewski, P. A.; Aizen, V.; Kreutz, K.; Wake, C. P.; Aizen, E.; Kang, S.; Maasch, K. A.; Handley, M. J.; Sneed, S. B.

    2016-04-01

    High-resolution major and trace element (Al, As, Ca, Cd, Co, Cr, Cu, Fe, Li, Mn, Na, Pb, S, Ti, and V) ice core records from Inilchek glacier (5120 m above sea level) on the northwestern margin of the Tibetan Plateau provide the first multi-decadal ice core record spanning the period 1908-1995 AD in central Tien Shan. The trace element records reveal pronounced temporal baseline trends and concentration maxima characteristic of post-1950 anthropogenic emissions. Examination of Pb, Cd and Cu concentrations, along with non-crustal calculation estimates (i.e. excess (ex) and enrichment factor (EF)), reveal that discernable anthropogenic inputs began during the 1950s and rapidly increased to the late-1970s and early 1980s, by factors up to of 5, 6 and 3, respectively, relative to a 1910-1950 means. Pb, Cd and Cu concentrations between the 1950s-1980s are reflective of large-scale Soviet industrial and agricultural development, including the growth of production and/or consumption of the non-ferrous metals, coal and phosphate fertilizers. NOAA HYSPLIT back-trajectory frequency analysis suggests pollutant sources originating primarily from southern Kazakhstan (e.g. Shymkent and Balkhash) and the Fergana Valley (located in Kazakhstan, Uzbekistan and Kyrgyzstan). Inilchek ice core Pb, Cd and Cu reveals declines during the 1980s concurrent with Soviet economic declines, however, due to the rapid industrial and agricultural growth of western China, Pb, Cd and Cu trends increase during the 1990s reflecting a transition from primarily central Asian sources to emission sources from western China (e.g. Xinjiang Province).

  8. Characterization and CO oxidation activity of Cu/Cr/Al{sub 2}O{sub 3} catalysts

    SciTech Connect

    Park, P.W.; Ledford, J.S.

    1998-03-01

    X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) have been used to characterize a series of Cu/Cr/Al{sub 2}O{sub 3} catalysts prepared by stepwise incipient wetness impregnation of first chromium followed by copper (designated CuCry). The copper loading was held constant at 8 wt% CuO, and chromium loadings were varied from 0 to 20 wt% Cr{sub 2}O{sub 3}. The information obtained from surface and bulk characterization has been correlated with the CO oxidation activity of the catalysts. XPS and XRD results of analogous Cry indicated that the Cr dispersion decreased and the concentration of Cr{sup 3+} species increased with increasing Cr content. The decrease in Cu dispersion of CuCry with increasing Cr content has been attributed to the formation of large crystalline CuO and CuCr{sub 2}O{sub 4}. Copper addition decreased the Cr dispersion by reacting selectively with a dispersed Cr{sup 3+} species to form CuCr{sub 2}O{sub 4} species. However, the Cu addition did not affect the Cr oxidation state distribution compared to that of Cry. For low Cr loading CuCry catalysts (Cr/Al {le} 0.027), the CO oxidation activity increased with increasing Cr content due to the formation of crystalline CuO on the Cr-modified alumina. This has been attributed to the inhibition of Cu ion diffusion into alumina lattice vacancies by highly dispersed chromium species. The CuCry catalyst of Cr/Al = 0.054 showed the highest CO oxidation activity due to the formation of CuCr{sub 2}O{sub 4} which was more active than the CuO phase. For Cr-rich catalysts (Cr/Al {ge} 0.080), the decrease in CO oxidation activity has been ascribed to the encapsulation of the active site with Cr{sub 2}O{sub 3} species.

  9. Study on structure and properties of CuZn40Pb alloy

    NASA Astrophysics Data System (ADS)

    Achiţei, D. C.; Minciună, M. G.; Vizureanu, P.; Sandu, A. V.; Cimpoeşu, R.; Istrate, B.

    2016-06-01

    The paper shows aspects about the behavior of Cu-Zn-Pb alloys a subjected to the temperatures variation and corrosion resistance in saline medium (sea water). The chemical composition was determined by spectral analysis on optical spectrometer, type Foundry Masters. The experiments are completed by a microstructure analysis made on scanning electronic microscope.

  10. Adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite from aqueous solution.

    PubMed

    Sari, Ahmet; Tuzen, Mustafa; Citak, Demirhan; Soylak, Mustafa

    2007-09-01

    The adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite (EP) from aqueous solution were investigated with respect to the changes in pH of solution, adsorbent dosage, contact time and temperature of solution. For the adsorption of both metal ions, the Langmuir isotherm model fitted to equilibrium data better than the Freundlich isotherm model. Using the Langmuir model equation, the monolayer adsorption capacity of EP was found to be 8.62 and 13.39 mg/g for Cu(II) and Pb(II) ions, respectively. Dubinin-Radushkevich (D-R) isotherm model was also applied to the equilibrium data and the mean free energies of adsorption were found as 10.82 kJ/mol for Cu(II) and 9.12 kJ/mol for Pb(II) indicating that the adsorption of both metal ions onto EP was taken place by chemical ion-exchange. Thermodynamic functions, the change of free energy (DeltaG degrees ), enthalpy (DeltaH degrees ) and entropy (DeltaS degrees ) of adsorption were also calculated for each metal ions. These parameters showed that the adsorption of Cu(II) and Pb(II) ions onto EP was feasible, spontaneous and exothermic at 20-50 degrees C. Experimental data were also evaluated in terms of kinetic characteristics of adsorption and it was found that adsorption process for both metal ions followed well pseudo-second-order kinetics.

  11. Bioaccessibility of Ba, Cu, Pb, and Zn in urban garden and orchard soils.

    PubMed

    Cai, Meifang; McBride, Murray B; Li, Kaiming

    2016-01-01

    Exposure of young children to toxic metals in urban environments is largely due to soil and dust ingestion. Soil particle size distribution and concentrations of toxic metals in different particle sizes are important risk factors in addition to bioaccessibility of these metals in the particles. Analysis of particle size distribution and metals concentrations for 13 soils, 12 sampled from urban gardens and 1 from orchard found that fine particles (<105 μm) comprised from 22 to 66% by weight of the tested soils, with Ba, Cu, Pb and Zn generally at higher concentrations in the finer particles. However, metal bioaccessibility was generally lower in finer particles, a trend most pronounced for Ba and Pb. Gastric was higher than gastrointestinal bioaccessibility for all metals except Cu. The lower bioaccessibility of Pb in urban garden soils compared to orchard soil is attributable to the higher organic matter content of the garden soils. PMID:26477581

  12. Microstructure and Mechanical Properties of Vacuum Plasma Sprayed Cu-8Cr-4Nb

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Ellis, David; McKechnie, Timothy; Hickman, Robert

    1997-01-01

    This paper compares the tensile properties of Cu-8Cr-4Nb material produced by VPS to material previously produced by extrusion. The microstructure of the VPS material is also presented. The combustion chamber liner of rocket motors represents an extreme materials application. The liner hot wall is exposed to a 2760 C (5000 F) flame while the cold side is exposed to cryogenic hydrogen liquid. Materials for use in the combustion chamber liner require a combination of high temperature strength, creep resistance, and low cycle fatigue resistance along with high thermal conductivity. The hot side is also subject to localized cycles between reducing and oxidizing environments that degrade the liner by a process called blanching. A new Cu-8 at.% Cr-4 at% Nb (Cu-8Cr-4Nb) alloy has been developed at NASA Lewis Research Center as a replacement for the currently used alloy, NARloy-z (Cu-3 wt.% Ag-0.5 wt.% Zr). The alloy is strengthened by a fine dispersion of Cr2Nb particles. The alloy has better mechanical properties than NARloy-Z while retaining most of the thermal conductivity of pure copper. The alloy has been successfully consolidated by extrusion and hot isostatic pressing (HIPing). However, vacuum plasma spraying (VPS) offers several advantages over prior consolidation methods. VPS can produce a near net shape piece with the profile of the liner. In addition, oxidation resistant and thermal barrier coatings can be incorporated as an integral part of the liner hot wall during the VPS deposition. The low oxygen VPS Cu-8Cr-4Nb exhibits a higher strength than Cu-8Cr-4Nb produced by extrusion at elevated temperatures and a comparable strength at room temperature. Moduli and ductility were not significantly different. However, the ability to produce parts to near-net shape and maintain the good elevated temperature tensile properties of the extruded Cu-8Cr-4Nb makes VPS an attractive processing method for fabricating rocket engine combustion liners.

  13. Structural and magnetic characterization of the complete delafossite solid solution (CuAlO₂)₁-x(CuCrO₂)x.

    PubMed

    Barton, Phillip T; Seshadri, Ram; Knöller, Andrea; Rosseinsky, Matthew J

    2012-01-11

    We have prepared the complete delafossite solid solution series between diamagnetic CuAlO(2) and the t(2g)(3)frustrated antiferromagnet CuCrO(2). The evolution with composition x in CuAl(1-x)Cr(x)O(2) of the crystal structure and magnetic properties has been studied and is reported here. The room-temperature unit cell parameters follow the Végard law and increase with x as expected. The μ(eff) is equal to the Cr(3+) spin-only S = 3/2 value throughout the entire solid solution. Θ(CW) is negative, indicating that the dominant interactions are antiferromagnetic, and its magnitude increases with Cr substitution. For dilute Cr compositions, the nearest-neighbor exchange coupling constant J(BB) was estimated by mean-field theory to be 3.0 meV. Despite the sizable Θ(CW), long-range antiferromagnetic order does not develop until x is almost 1, and is preceded by glassy behavior. The data presented here, and those on dilute Al substitution from Okuda et al, suggest that the reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as chemical disorder and dilution of the magnetic exchange. For all samples, the 5 K isothermal magnetization does not saturate in fields up to 5 T and minimal hysteresis is observed. The presence of antiferromagnetic interactions is clearly evident in the sub-Brillouin behavior with a reduced magnetization per Cr atom. An inspection of the scaled Curie plot reveals that significant short-range antiferromagnetic interactions occur in CuCrO(2) above its Néel temperature, consistent with its magnetic frustration. Uncompensated short-range behavior is present in the Al-substituted samples and is likely a result of chemical disorder. PMID:22133702

  14. Comparison of serum Concentration of Se, Pb, Mg, Cu, Zn, between MS patients and healthy controls

    PubMed Central

    Alizadeh, Anahita; Mehrpour, Omid; Nikkhah, Karim; Bayat, Golnaz; Espandani, Mahsa; Golzari, Alireza; Jarahi, Lida; Foroughipour, Mohsen

    2016-01-01

    Introduction Multiple Sclerosis (MS) is defined as one of the inflammatory autoimmune disorders and is common. Its exact etiology is unclear. There are some evidences on the role of environmental factors in susceptible genetics. The aim of this study is to evaluate the possible role of Selenium, Zinc, Copper, Lead and Magnesium metals in Multiple Sclerosis patients. Methods In the present analytical cross-sectional study, 56 individuals including 26 patients and 30 healthy controls were enrolled in the evaluation. The serum level of Se, Zn, Cu, Pb were quantified in graphite furnace conditions and flame conditions by utilizing an atomic absorption Perkin Elmer spectrophotometer 3030. The serum levels of Mg were measured by auto analyzer 1500 BT. The mean level of minerals (Zn, Pb, Cu, Mg, Se) in serum samples were compared in both cases and controls. The mean level of minerals (Zn, Pb, Cu, Mg, Se) in serum samples were compared in both cases and controls by using independent-samples t-test for normal distribution and Mann-Whitney U test as a non-parametric test. All statistical analyses were carried out using SPSS 11.0. Results As well as the Zn, Cu, and Se, there was no significant difference between MS patients and healthy individuals in Pb concentrations (p-value = 0.11, 0.14, 0.32, 0.20 respectively) but the level of Mg was significantly different (p= 0.001). Conclusion All serum concentrations of Zn, Pb, Se, Cu in both groups were in normal ranges and there was no difference in MS patients compared with the healthy group who were matched in genetics. Blood level of Mg was significantly lower in MS patients. But it should be noted that even with the low level of serum magnesium in MS patients, this value is still in the normal range. PMID:27757186

  15. Distribution of Cd, Ni, Cr and Pb in sewage sludge amended soils

    NASA Astrophysics Data System (ADS)

    Sanfeliu, Teófilo

    2010-05-01

    Restoration of degraded soils with organic wastes could be a feasible practice to minimise erosion in the Mediterranean area. Today the use of sewage sludge to improve the nutrient contents of a soil is a common practice. Contamination of soils by potentially toxic elements (e.g. Cd, Ni, Cr, Pb) from amendments of sewage sludge is subject to strict controls within the European Community in relation to total permissible metal concentrations, soil properties and intended use. This study is aimed at ascertaining the chemical partitioning of Cd, Ni, Cr and Pb in agricultural soils repeatedly amended with sludge. Five surface soils (0-15 cm) that were polluted as a result of agricultural activities were used in this experiment. The sewage sludge amended soils were selected for diversity of physicochemical properties, especially pH and carbonate content. The soils are classified as non-calcareous and calcareous soils. The distribution of chemical forms of Cd, Ni, Cr and Pb in five sewage sludge amended soils was studied using a sequential extraction procedure that fractionates the metal into soluble-exchangeable, specifically sorbed-carbonate bound, oxidizable, reducible and residual forms. With regard to the mineralogical composition of the soil clay fraction, the mineralogical association found was: illite, kaolinite and chlorite. This paper provides quantitative evidence regarding the form of the association of metals and indirectly of their bioavailability. It can help to explain the process by which metals are eliminated from sewage sludge and also indicate the impact of the use of sludge on agricultural soils, as amendments. Data obtained showed different metal distribution trend among the fractions in sludge-amended soils. Comparison of distribution pattern of metals in sludge-applied soils shows that there is possible redistribution of metals among the different phases. Detailed knowledge of the soil at the application site, especially pH, CEC, buffering capacity

  16. Cu-Cr-O Functionalized ETS-2 Nanoparticles for Hot Gas Desulfurization.

    PubMed

    Yazdanbakhsh, Farzad; Alizadehgiashi, Molen; Bläsing, Marc; Müller, Michael; Sawada, James A; Kuznicki, Steven M

    2016-01-01

    Engelhard Titanium Silicate-2 (ETS-2), a sodium nanotitanate, was surface functionalized by ion exchanging the solid with copper and chromium ions. The ability of this bi-metallic adsorbent to remove H2S at elevated temperatures was assessed using a dynamic breakthrough system and contrasted against an analogous mixed metal oxide, Cu-Cr-O. Unlike Cu-Cr-O, the H2S capacity for Cu-Cr-ETS-2 remains unchanged from 350 °C up to 950 °C. Using ETS-2 as a support for the metals increased the adsorbents surface area and improved its sulfur capacity from 35 mg H₂S/g for Cu-Cr-O to 61 mg H₂S/g adsorbent for CuCr-ETS-2. The consistent presence of Cu₉S₅ on the sulfided adsorbents suggests that chromium effectively stabilizes the copper against reduction to metallic copper up to temperatures as high as 950 °C.

  17. Effect of hydrogen exposure on a Cu-8 Cr-4 Nb alloy

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Misra, Ajay K.; Dreshfield, Robert L.

    1993-01-01

    The advanced regeneratively cooled rocket thrust chamber may require new materials to achieve long life and improved performance. Current materials such as NARloy-Z (Cu-3 wt. percent Ag-0.5 wt. percent Zr), while highly conductive, do not have sufficient high temperature strength and creep resistance to meet the projected needs of advanced rocket motors. A Cu-8 at. percent Cr-4 at. percent Nb (Cu-8 Cr-4 Nb) alloy has been identified as a promising material for this application. However, hydrogen embrittlement is a concern given the presence of high pressure, high temperature hydrogen in regeneratively cooled rocket motors. Thermodynamic analysis of the reaction between Cr-rich Cr2Nb and H2 showed that there is a possibility of reaction at temperatures up to 323 K in a 35 MPa H2 environment. Above 323 K the pressure necessary to achieve reaction rapidly increased beyond the range experienced in rocket motors. Tensile specimens exposed in 34.5 MPa H2 at room temperatures and during cycling to 705 C did not show any degradation of properties. No evidence of reaction was observed for Cr2Nb precipitate observed on the fracture surfaces. Based on these results the Cu-8 Cr-4 Nb alloy was judged to be sufficiently stable for use in rocket motors.

  18. Ti3CrCu4: A possible 2-D ferromagnetic spin fluctuating system

    NASA Astrophysics Data System (ADS)

    Dhar, S. K.; Provino, A.; Manfrinetti, P.; Kulkarni, R.; Goyal, Neeraj; Paudyal, D.

    2016-05-01

    Ti3CrCu4 is a new ternary compound which crystallizes in the tetragonal Ti3Pd5 structure type. The Cr atoms form square nets in the a-b plane (a = 3.124 Å) which are separated by an unusually large distance c = 11.228 Å along the tetragonal axis, thus forming a -2-D Cr-sublattice. The paramagnetic susceptibility is characterized by a low effective moment, μeff = 1.1 μB, a low paramagnetic Curie temperature θP (below 7 K) and a temperature independent χ0 = 6.7 x 10-4 emu/mol. The magnetization at 1.8 K increases rapidly with field nearly saturating to 0.2 μB/f.u. The zero field heat capacity C/T shows an upturn below 7 K (˜190 mJ/mol K2 at ˜0.1K) which is suppressed in applied magnetic fields and interpreted as suggesting the presence of spin fluctuations. The resistivity at low temperatures shows non-Fermi liquid behavior. Overall, the experimental data thus reveal an unusual magnetic state in Ti3CrCu4, which likely has its origin in the layered nature of the Cr sub-lattice and ferromagnetic spin fluctuations. Density functional theoretical calculations reveal a sharp Cr density of states peak just above the Fermi level, indicating the propensity of Ti3CrCu4 to become magnetic.

  19. Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area, China.

    PubMed

    Yanqun, Zu; Yuan, Li; Schvartz, Christian; Langlade, Laurent; Fan, Liu

    2004-06-01

    A field survey of higher terrestrial plants growing on Lanping lead-zinc mine, China were conducted to identify species accumulating exceptionally large concentrations of Pb, Cd, Cu and Zn of 20 samples of 17 plant species. Concentrations of Pb and Zn in soil and in plant were higher than that of Cu and Cd. Significant difference was observed among the average concentrations of four heavy metals in plants (except Cd and Cu) and in soil (except Pb and Zn) (P<0.05). For the enrichment coefficient of the four heavy metals in plant, the order of average was PbCu (P<0.05). The enrichment coefficients were higher than 1 in Llex plyneura and Rhododendron annae in Paomaping for Pb, Salix cathayana, L. plyneura and R. annae in Paomaping for Cd, and R. annae in Paomaping for Zn, respectively. Concentrations and enrichment coefficient of Pb, Cd and Zn of Rhododendron were higher than that of Gramimeae. Enrichment coefficient of Pb, Cd and Zn were bush>tree>herbaceous, and herbaceous grew in soil with the highest concentrations of four heavy metals. In different areas, the concentrations of Pb, Cd, Cu and Zn in plants and soils and enrichment coefficient were different. Plants in Paomaping had more accumulating ability to Pb, Cd and Zn, and plants in Jinfeng River had more accumulating ability to Cu. Six plant species, i.e. S. cathayana, Lithocarpus dealbatus, L. plyneura, Fargesia dura, Arundinella yunnanensis and R. annae in Paomaping, had high accumulation capacity. R. annae in Paomaping had hyperaccumulating capacity to Pb, Cd and Zn, L. plyneura to Pb and Cd, and S. cathayana to Cd, respectively. PMID:15031017

  20. Recrystallization Behavior of CoCrCuFeNi High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Park, Nokeun; Watanabe, Ikuto; Terada, Daisuke; Yokoyama, Yoshihiko; Liaw, Peter K.; Tsuji, Nobuhiro

    2015-04-01

    We investigated the recrystallization behavior of a cold-rolled CoCrCuFeNi high-entropy alloy (HEA). Two different face-centered cubic phases having different chemical compositions and lattice constants in the as-cast specimen have different chemical compositions: One phase was the Cu-lean matrix and the other was the Cu-rich second phase. The second phase remained even after a heat treatment at 1373 K (1100 °C) and Cu enriched more in the Cu-rich second phase. The calculated mixing enthalpies of both Cu-lean and Cu-rich phases in the as-cast and heat-treated specimens explained that Cu partitioning during the heat treatment decreased the mixing enthalpy in both phases. In the specimens 90 pct cold rolled and annealed at 923 K, 973 K, and 1073 K (650 °C, 700 °C, and 800 °C), recrystallization proceeded with increasing the annealing temperature, and ultrafine recrystallized grains with grain sizes around 1 μm could be obtained. The microhardness tended to decrease with increasing the fraction recrystallized, but it was found that the microhardness values of partially recrystallized specimens were much higher than those expected by a simple rule of mixture between the initial and cold-rolled specimens. The reason for the higher hardness was discussed based on the ultrafine grain size, sluggish diffusion expected in HEAs, and two-phase structure in the CoCrCuFeNi alloy.

  1. Biosorption of Cr (VI), Cr (III), Pb (II) and Cd (II) from aqueous solutions by Sargassum wightii and Caulerpa racemosa algal biomass

    NASA Astrophysics Data System (ADS)

    Tamilselvan, Narayanaswamy; Saurav, Kumar; Kannabiran, Krishnan

    2012-03-01

    Heavy metal pollution is one of the most important environmental problems today. Biosorption is an innovative technology that employs biological materials to accumulate heavy metals from waste water through metabolic process or physicochemical pathways of uptake. Even though several physical and chemical methods are available for removal of heavy metals, currently many biological materials such as bacteria, algae, yeasts and fungi have been widely used due to their good performance, low cost and large quantity of availability. The aim of the present study is to explore the biosorption of toxic heavy metals, Cr(VI), Cr(III), Pb(II) and Cd(II) by algal biomass obtained from algae Sargassum wightii (brown) and Caulerpa racemosa (green). Biosorption of algal biomass was found to be biomass concentration- and pH-dependent, while the maximal biosorption was found at pH 5.0 and with the metal concentration of 100 mg L-1. S. wightii showed the maximal metal biosorption at the biomass concentration of 25 g L-1, followed by C. racemosa with the maximal biosorption at 30 g L-1. S. wightii showed 78% biosorption of Cr(VI), Cr(III), Pb(II) and Cd(II) ions. C. racemosa exhibited 85% biosorption of Cd(II) and Cr(VI), and 50% biosorption of Cr(III) and Pb(II). The results of our study suggest that seaweed biomass can be used efficiently for biosorption of heavy metals.

  2. Valorization of biosorbent obtained from a forestry waste: Competitive adsorption, desorption and transport of Cd, Cu, Ni, Pb and Zn.

    PubMed

    Cutillas-Barreiro, Laura; Paradelo, Remigio; Igrexas-Soto, Alba; Núñez-Delgado, Avelino; Fernández-Sanjurjo, María José; Álvarez-Rodriguez, Esperanza; Garrote, Gil; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2016-09-01

    Bark from Pinus pinaster is one of the most abundant forestry wastes in Europe, and among the proposed technologies for its reutilization, the removal of heavy metals from wastewater has been gaining increasing attention. In this work, we have studied the performance of pine bark for heavy metal biosorption on competitive systems. Pb, Cu, Ni, Zn and Cd sorption and desorption at equilibrium were studied in batch experiments, whereas transport was studied in column experiments. Batch experiments were performed adding simultaneously different concentrations (0.08-3.15mM) of two or more metals in solution to pine bark samples. Column experiments were performed with 10mM solutions of two metals or a 5mM solution of the five metals. In general, the results under competitive conditions were different to those obtained in monoelemental experiments. The multi-metal batch experiments showed the adsorption sequence Pb≈Cu>Cd>Zn>Ni for lower metal doses, Pb>Cu>Cd>Zn>Ni for intermediate doses, and Pb>Cu>Cd≈Zn≈Ni for high metal doses. Desorption followed the sequence PbPbCu and Pb suffered the highest retention, with high capacity to displace Cd, Ni and Zn from adsorption sites on pine bark. The transport experiments produced comparable results to those obtained in the batch experiments, with pine bark retention capacity following the sequence Pb>Cu>Zn>Cd>Ni. The presence of a second metal affected the transport of all the elements studied except Pb, and confirmed the strong influence of Pb and Cu on the retention of the other metals. These results can help to appropriately design decontamination systems using this forestry waste.

  3. Valorization of biosorbent obtained from a forestry waste: Competitive adsorption, desorption and transport of Cd, Cu, Ni, Pb and Zn.

    PubMed

    Cutillas-Barreiro, Laura; Paradelo, Remigio; Igrexas-Soto, Alba; Núñez-Delgado, Avelino; Fernández-Sanjurjo, María José; Álvarez-Rodriguez, Esperanza; Garrote, Gil; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2016-09-01

    Bark from Pinus pinaster is one of the most abundant forestry wastes in Europe, and among the proposed technologies for its reutilization, the removal of heavy metals from wastewater has been gaining increasing attention. In this work, we have studied the performance of pine bark for heavy metal biosorption on competitive systems. Pb, Cu, Ni, Zn and Cd sorption and desorption at equilibrium were studied in batch experiments, whereas transport was studied in column experiments. Batch experiments were performed adding simultaneously different concentrations (0.08-3.15mM) of two or more metals in solution to pine bark samples. Column experiments were performed with 10mM solutions of two metals or a 5mM solution of the five metals. In general, the results under competitive conditions were different to those obtained in monoelemental experiments. The multi-metal batch experiments showed the adsorption sequence Pb≈Cu>Cd>Zn>Ni for lower metal doses, Pb>Cu>Cd>Zn>Ni for intermediate doses, and Pb>Cu>Cd≈Zn≈Ni for high metal doses. Desorption followed the sequence PbPbCu and Pb suffered the highest retention, with high capacity to displace Cd, Ni and Zn from adsorption sites on pine bark. The transport experiments produced comparable results to those obtained in the batch experiments, with pine bark retention capacity following the sequence Pb>Cu>Zn>Cd>Ni. The presence of a second metal affected the transport of all the elements studied except Pb, and confirmed the strong influence of Pb and Cu on the retention of the other metals. These results can help to appropriately design decontamination systems using this forestry waste. PMID:27232204

  4. Immobilization of Cu, Pb and Zn in mine-contaminated soils using reactive materials.

    PubMed

    Navarro, Andrés; Cardellach, Esteve; Corbella, Mercé

    2011-02-28

    Immobilization processes were used to chemically stabilize soil contaminated with Cu, Pb and Zn from mine tailings and industrial impoundments. We examined the effectiveness of ordinary Portland cement (OPC), phosphoric acid and MgO at immobilizing Cu, Pb and Zn in soil contaminated by either mine tailings or industrial and mine wastes. The effectiveness was evaluated using column leaching experiments and geochemical modelling, in which we assessed possible mechanisms for metal immobilization using PHREEQC and Medusa numerical codes. Experimental results showed that Cu was mobilized in all the experiments, whereas Pb immobilization with H(3)PO(4) may have been related to the precipitation of chloropyromorphite. Thus, the Pb concentrations of leachates of pure mining and industrial contaminated soils (32-410 μg/l and 430-1000 μg/l, respectively) were reduced to 1-60 and 3-360 μg/l, respectively, in the phosphoric acid experiment. The mobilization of Pb at high alkaline conditions, when Pb(OH)(4)(-) is the most stable species, may be the main obstacle to the use of OPC and MgO in the immobilization of this metal. In the mining- and industry-contaminated soil, Zn was retained by OPC but removed by MgO. The experiments with OPC showed the Zn decrease in the leachates of mining soil from 226-1960 μg/l to 92-121 μg/l. In the industrial contaminated soil, the Zn decrease in the leachates was most elevated, showing >2500 μg/l in the leachates of contaminated soil and 76-173 μg/l in the OPC experiment. Finally, when H(3)PO(4) was added, Zn was mobilized.

  5. Immobilization of Cu, Pb and Zn in mine-contaminated soils using reactive materials.

    PubMed

    Navarro, Andrés; Cardellach, Esteve; Corbella, Mercé

    2011-02-28

    Immobilization processes were used to chemically stabilize soil contaminated with Cu, Pb and Zn from mine tailings and industrial impoundments. We examined the effectiveness of ordinary Portland cement (OPC), phosphoric acid and MgO at immobilizing Cu, Pb and Zn in soil contaminated by either mine tailings or industrial and mine wastes. The effectiveness was evaluated using column leaching experiments and geochemical modelling, in which we assessed possible mechanisms for metal immobilization using PHREEQC and Medusa numerical codes. Experimental results showed that Cu was mobilized in all the experiments, whereas Pb immobilization with H(3)PO(4) may have been related to the precipitation of chloropyromorphite. Thus, the Pb concentrations of leachates of pure mining and industrial contaminated soils (32-410 μg/l and 430-1000 μg/l, respectively) were reduced to 1-60 and 3-360 μg/l, respectively, in the phosphoric acid experiment. The mobilization of Pb at high alkaline conditions, when Pb(OH)(4)(-) is the most stable species, may be the main obstacle to the use of OPC and MgO in the immobilization of this metal. In the mining- and industry-contaminated soil, Zn was retained by OPC but removed by MgO. The experiments with OPC showed the Zn decrease in the leachates of mining soil from 226-1960 μg/l to 92-121 μg/l. In the industrial contaminated soil, the Zn decrease in the leachates was most elevated, showing >2500 μg/l in the leachates of contaminated soil and 76-173 μg/l in the OPC experiment. Finally, when H(3)PO(4) was added, Zn was mobilized. PMID:21190796

  6. Unusual Mott transition in multiferroic PbCrO 3

    SciTech Connect

    Wang, Shanmin; Zhu, Jinlong; Zhang, Yi; Yu, Xiaohui; Zhang, Jianzhong; Wang, Wendan; Bai, Ligang; Qian, Jiang; Yin, Liang; Sullivan, Neil S.; Jin, Changqing; He, Duanwei; Xu, Jian; Zhao, Yusheng

    2015-11-24

    The Mott insulator in correlated electron systems arises from classical Coulomb repulsion between carriers to provide a powerful force for electron localization. When turning such an insulator into a metal, the so-called Mott transition, is commonly achieved by "bandwidth" control or "band filling." However, both mechanisms deviate from the original concept of Mott, which attributes such a transition to the screening of Coulomb potential and associated lattice contraction. We report a pressure-induced isostructural Mott transition in cubic perovskite PbCrO3. At the transition pressure of similar to 3 GPa, PbCrO3 exhibits significant collapse in both lattice volume and Coulomb potential. Concurrent with the collapse, it transforms from a hybrid multiferroic insulator to a metal. For the first time to our knowledge, these findings validate the scenario conceived by Mott. Close to the Mott criticality at similar to 300 K, fluctuations of the lattice and charge give rise to elastic anomalies and Laudau critical behaviors resembling the classic liquid-gas transition. Moreover, the anomalously large lattice volume and Coulomb potential in the low-pressure insulating phase are largely associated with the ferroelectric distortion, which is substantially suppressed at high pressures, leading to the first-order phase transition without symmetry breaking.

  7. Sorption of Cu and Pb to kaolinite-fulvic acid colloids: Assessment of sorbent interactions

    NASA Astrophysics Data System (ADS)

    Heidmann, Ilona; Christl, Iso; Kretzschmar, Ruben

    2005-04-01

    The sorption of Cu(II) and Pb(II) to kaolinite-fulvic acid colloids was investigated by potentiometric titrations. To assess the possible interactions between kaolinite and fulvic acid during metal sorption, experimental sorption isotherms were compared with predictions based on a linear additivity model (LAM). Suspensions of 5 g L -1 kaolinite and 0.03 g L -1 fulvic acid in 0.01 M NaNO 3 were titrated with Cu and Pb solutions, respectively. The suspension pH was kept constant at pH 4, 6, or 8. The free ion activities of Cu 2+ and Pb 2+ were monitored in the titration vessel using ion selective electrodes. Total dissolved concentrations of metals (by ICP-MS) and fulvic acid (by UV-absorption) were determined in samples taken after each titration step. The amounts of metals sorbed to the solid phase, comprised of kaolinite plus surface-bound fulvic acid, were calculated by difference. Compared to pure kaolinite, addition of fulvic acid to the clay strongly increased metal sorption to the solid phase. This effect was more pronounced at pH 4 and 6 than at pH 8, because more fulvic acid was sorbed to the kaolinite surface under acidic conditions. Addition of Pb enhanced the sorption of fulvic acid onto kaolinite at pH 6 and 8, but not at pH 4. Addition of Cu had no effect on the sorption of fulvic acid onto kaolinite. In the LAM, metal sorption to the kaolinite surface was predicted by a two-site, 1-pK basic Stern model and metal sorption to the fulvic acid was calculated with the NICA-Donnan model, respectively. The LAM provided good predictions of Cu sorption to the kaolinite-fulvic acid colloids over the entire range in pH and free Cu 2+ ion activity (10 -12 to 10 -5). The sorption of Pb was slightly underestimated by the LAM under most conditions. A fractionation of the fulvic acid during sorption to kaolinite was observed, but this could not explain the observed deviations of the LAM predictions from the experimental Pb sorption isotherms.

  8. Transparent ferrimagnetic semiconducting CuCr2O4 thin films by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Tripathi, T. S.; Yadav, C. S.; Karppinen, M.

    2016-04-01

    We report the magnetic and optical properties of CuCr2O4 thin films fabricated by atomic layer deposition (ALD) from Cu(thd)2, Cr(acac)3, and ozone; we deposit 200 nm thick films and anneal them at 700 °C in oxygen atmosphere to crystallize the spinel phase. A ferrimagnetic transition at 140 K and a direct bandgap of 1.36 eV are determined for the films from magnetic and UV-vis spectrophotometric measurements. Electrical transport measurements confirm the p-type semiconducting behavior of the films. As the ALD technique allows the deposition of conformal pin-hole-free coatings on complex 3D surfaces, our CuCr2O4 films are interesting material candidates for various frontier applications.

  9. Effects of heating rates and alloying elements (Sn, Cu and Cr) on the α → α + β phase transformation of Zr-Sn-Nb-Fe-(Cu, Cr) alloys

    NASA Astrophysics Data System (ADS)

    Qiu, R. S.; Luan, B. F.; Chai, L. J.; Zhang, X. Y.; Liu, Q.

    2014-10-01

    In this investigation, differential scanning calorimetry (DSC) and metallographic experiments supplemented by back-scattered electron imaging (BSEI) and electron back-scattered diffraction (EBSD) techniques were performed to study the effects of heating rates and alloying elements on the α → α + β phase transformation of Zr-Sn-Nb-Fe-(Cu, Cr) alloys. Results show that the α → α + β phase transformation peaks shift to higher temperature with increasing heating rates, indicating that the reactions are thermally activated and kinetically controlled processes. The α → α + β phase transformation temperature (Tα→α+β) are affected by the solid solubility limit as well as the diffusivities of various elements in these alloys. For the zirconium alloys with low Nb contents, the Tα→α+β increases with an increase of Sn content. The addition of Cu in zirconium alloys decrease the Tα→α+β, while the addition of Cr increase it.

  10. Effects of Thermal and Mechanical Processing on Microstructures and Desired Properties of Particle-Strengthened Cu-Cr-Nb Alloys

    NASA Technical Reports Server (NTRS)

    Anderson, Kenneth Reed

    2000-01-01

    Ternary Cu-Cr-Nb alloys, particularly Cu-8 Cr-4 Nb (in at.%), have demonstrated good thermal stability as well as high strength and conductivity at elevated temperatures. The initial powder material has a bimodal size distribution of Cr2Nb precipitates. Primary Cr2Nb precipitates are approx. 1 micron, and secondary Cr2Nb particles are 30-200 nm. The particle coarsening was analyzed and found to follow LSW-type behavior, This study provides a detailed examination of the stability and strengthening effects of Cr2Nb particles. This investigation also revealed that the primary particles provide direct grain boundary pinning and indirect grain boundary strengthening but virtually no Orowan strengthening. The secondary particles found within grains do provide Orowan strengthening. For extruded material, grain bound-ary strengthening (Hall-Petch effect) accounts for two-thirds of the strength with Orowan effects contributing the remainder. The proven advantages of Cu-Cr-Nb were the motivation to improve these attributes via microstructural refinement. Mechanical milling (MM) of Cu- 4 Cr-2 Nb and Cu-8 Cr-2 Nb produced an increase in hot pressed Vickers hardness of 122% and 96%, respectively. The increase in hardness was more due to Cu grain-size refinement than to Cr,,Nb refinement. This study also demonstrated enhanced stability of MM Cu-4 Cr-2 Nb. Hot pressed 4 h milled Cu-4 Cr-2 Nb experienced only a 22% drop in hardness when annealed at 1273 K for 50 h versus a 30% drop for extruded Cu-8 Cr-4 Nb. The goal of improving the strength and stability of Cu-4 Cr-2 Nb to better than such properties for as- extruded Cu-8 Cr-4 Nb has been met. In addition, a figure-of-merit (FOM) coupling hardness and thermal conductivity was maximized for the case of 4 h milled Cu-4 Cr-2 Nb material. Overall, Cu-Cr-Nb alloys not only possess high strength, conductivity and thermal stability but also can be further developed to improve strength and stability.

  11. New type of Schottky diode-based Cu-Al-Mn-Cr shape memory material films

    NASA Astrophysics Data System (ADS)

    Aksu Canbay, C.; Dere, A.; Mensah-Darkwa, Kwadwo; Al-Ghamdi, Ahmed; Karagoz Genç, Z.; Gupta, R. K.; Yakuphanoglu, F.

    2016-07-01

    Cr-doped CuAlMn shape memory alloys were produced by arc melting method. The effects of Cr content on microstructure and transformation parameters of were investigated. The alloys were characterized by X-ray analysis, optical microscope observations and differential scanning calorimetry measurements. The grain size of the alloys was decreased by the addition of Cr into CuAlMn alloy system. The martensite transformation temperature was shifted both the lower temperature and higher temperature with the addition of chromium. This change was explained on the basis of the change in the thermodynamics such as enthalpy, entropy and activation energy values. The obtained results indicate that the phase transformation temperatures of the CuAlMn alloy system can be controlled by addition of Cr. We fabricated a Schottky barrier diode and observed that ideality factor and barrier height increase with increasing temperature. The diodes exhibited a thermal sensor behavior. This indicates that Schottky diode-based Cu-Al-Mn-Cr shape memory material films can be used as a sensor in high-temperature measurement applications.

  12. Flux Pinning by Cr Nanoparticles in Cu_{0.5}Tl_{0.5}Ba2Ca2Cu3O_{10-δ } Superconductor

    NASA Astrophysics Data System (ADS)

    Waqee-ur-Rehman, M.; Mumtaz, M.; Qasim, Irfan; Nadeem, K.

    2016-09-01

    Increase in flux pinning strength of Cu_{0.5}Tl_{0.5}Ba2Ca2Cu3O_{10-δ }(CuTl-1223) superconductor has been observed after addition of Cr nanoparticles. We have thoroughly investigated the infield response of Cr nanoparticles-added CuTl-1223 superconductor in an external applied magnetic field in the range of 0-7 T. Solid-state reaction technique has been employed to synthesize (Cr)x-CuTl-1223; x = 0-1.00 wt% nanoparticle-superconductor composites. The flux pinning mechanism has been analyzed on the basis of thermally activated flux flow model in the presence of a small current (10 μ A). The increase in activation energy and decrease in transition width of CuTl-1223 superconducting phase show the enhancement in its flux pinning strength upon the addition of Cr nanoparticles.

  13. Uptake and accumulation of potentially toxic metals (Zn, Cu and Pb) in soils and plants of Durgapur industrial belt.

    PubMed

    Kisku, Ganesh Chandra; Pandey, Poonam; Negi, Mahendra Pratap Singh; Misra, Virendra

    2011-11-01

    Uptake and accumulation of metals in crops may cause possible health risks through food chain. A field survey was conducted to investigate the accumulation of potentially toxic metals contamination in soil and plants irrigated with complexed industrial effluents. Concentration of Zn, Cu and Pb was 205-255,101-130,118-177 microg g(-1) in rhizosphere soils and 116-223, 57-102 and 63-95 microg g(-1) d. wt. in root and 95-186, 44-75 and 27-58 microg g(-1) d. wt. in shoot, respectively. The trend in Cu and Pb was in the order: soil > root > shoot > seed while in Zn it was soil > root > seed > shoot. Roots accumulated a larger fraction of soil Cu (70%) > Zn (67%) > Pb (54%). Bioaccumulation coefficient of soil to root ranged from 51-98 for Zn, 54-85 for Cu and 43-63 for Pb.Analysis of variance showed marginal change in bioaccumulation coefficient, noticed between plants (p > 0.05) while it varied significantly (p < 0.01) between tissues and metals. It increased from root to seed/fruit (root > shoot > seed/fruit) while decreased between metals from Zn to Pb (Zn > Cu > Pb). Out of the three, two Cu and Pb accumulated to phyotoxic levels while Zn was within threshold limit of phytotoxicity. PMID:22471223

  14. Accelerated formation of 110 K high T sub c phase in the Ca- and Cu-rich Bi-Pb-Sr-Ca-Cu-O system

    SciTech Connect

    Huang, Y.T.; Liu, R.G.; Lu, S.W.; Wu, P.T. ); Wang, W.N. )

    1990-02-19

    The crystal structure and superconducting properties of the Bi-Pb-Sr-Ca-Cu-O system with Ca- and Cu-rich nominal composition were investigated. A nearly single-phased 110 K high {ital T}{sub {ital c}} superconductor can be obtained with 852 {degree}C/20 h sintering from the starting composition of Bi{sub 1.7}Pb{sub 0.4}Sr{sub 1.6}Ca{sub 2.4}Cu{sub 3.6}O{sub {ital y}}. X-ray diffraction patterns, resistivity measurement, diamagnetic susceptibility results, and scanning electron micrographs all indicate that the Ca- and Cu-rich nominal composition would result in better superconducting properties than those of Ca:Sr=1:1 Bi-Pb-Sr-Ca-Cu-O compounds in a much shorter sintering time.

  15. Possible Mesozoic age of Ellenville Zn-Pb-Cu(Ag) deposit, Shawangunk Mountains, New York

    USGS Publications Warehouse

    Friedman, J.D.; Conrad, J.E.; McKee, E.H.; Mutschler, F.E.; Zartman, R.E.

    1994-01-01

    Ore textures, epithermal open-space filling of Permian structures of the Alleghanian orogeny, and largely postorogenic mineralization of the Ellenville, New York, composite Zn-Pb-Cu(Ag) vein system, provide permissive evidence for post-Permian mineralization. Isochron ages determined by 40Ar/39Ar laser-fusion techniques for K-bearing liquid inclusions in main-stage quartz from the Ellenville deposit additionally suggest a Mesozoic time of mineralization, associated with extensional formation of the Newark basin. The best 40Ar/39Ar total-fusion age range is 165 ?? 30 to 193 ?? 35 Ma. The Mesozoic 40Ar/39Ar age agrees with that of many other dated northern Appalachian Zn-Pb-Cu(Ag) deposits with near-matching lead isotope ratios, and adds new evidence of Jurassic tectonism and mineralization as an overprint to Late Paleozoic tectonism at least as far north as Ellenville (lat. 41??43???N). ?? 1994 Springer-Verlag.

  16. Geopolymers for immobilization of Cr(6+), Cd(2+), and Pb(2+).

    PubMed

    Zhang, Jianguo; Provis, John L; Feng, Dingwu; van Deventer, Jannie S J

    2008-09-15

    Alkali activation of fly ash by sodium silicate solutions, forming geopolymeric binders, provides a potential means of treating wastes containing heavy metals. Here, the effects on geopolymer structure of contamination of geopolymers by Cr(VI), Cd(II) and Pb(II) in the forms of various nitrate and chromate salts are investigated. The addition of soluble salts results in a high extent of dispersal of contaminant ions throughout the geopolymer matrix, however very little change in geopolymer structure is observed when these materials are compared to their uncontaminated counterparts. Successful immobilization of these species will rely on chemical binding either into the geopolymer gel or into other low-solubility (silicate or aluminosilicate) phases. In the case of Pb, the results of this work tentatively support a previous identification of Pb(3)SiO(5) as a potential candidate phase for hosting Pb(II) within the geopolymer structure, although the data are not entirely conclusive. The addition of relatively low levels of heavy metal salts is seen to have little effect on the compressive strength of the geopolymeric material, and in some cases actually gives an increase in strength. Sparingly soluble salts may undergo some chemical conversion due to the highly alkaline conditions prevalent during geopolymerization, and in general are trapped in the geopolymer matrix by a simple physical encapsulation mechanism. Lead is in general very effectively immobilized in geopolymers, as is cadmium in all except the most acidic leaching environments. Hexavalent chromium is problematic, whether added as a highly soluble salt or in sparingly soluble form.

  17. The effect of intermetallic compound morphology on Cu diffusion in Sn-Ag and Sn-Pb solder bump on the Ni/Cu Under-bump metallization

    NASA Astrophysics Data System (ADS)

    Jang, Guh-Yaw; Duh, Jenq-Gong

    2005-01-01

    The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1-x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1-x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1-y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1-y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016-1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.

  18. Accumulation of as, pb, and cu associated with the recent sedimentary processes in the colorado delta, South of the United States-Mexico boundary.

    PubMed

    Daesslé, L W; Lugo-Ibarra, K C; Tobschall, H J; Melo, M; Gutiérrez-Galindo, E A; García-Hernández, J; Alvarez, L G

    2009-05-01

    Sediment cores from the Colorado River (CR) remnant delta were used to assess the changing sedimentation and pollutant deposition processes in response to extensive human manipulation of the river. The cores are formed of alternating layers of clays and silts, with isolated sandy horizons. The clayey units are interpreted as periods of flood flows into this low gradient and meandering estuary after dam construction in the United States. The geochemistry of these sediments is particular because of the association of MnO with CaO rather than with the Fe(2)O(3)-rich clays. Past pollution of the CR delta by As, and probably also Pb and Cu, is recorded in some cores. Enrichment factors (EFs) >1 for these elements and their statistical association suggest anthropogenic inputs. The most likely sources for these element enrichments (especially As) are the arsenate-based pesticides used intensively in the area during the first half of the 20th century. The transport of these elements from the nearby agricultural lands into the present river reaches appears to have been driven in part by flooding events of the CR. Flushing by river and tide flows appear to be responsible of a lower pollutant deposition in the CR compared to the adjacent Hardy River (HR). Arsenic in the buried clay units of the HR has concentrations above the probable toxic effect level (PEL) for dwelling organisms, with maximum concentrations of 30 microg g(-1). Excess (210)Pb activities ((210)Pb(xs)) indicate that fluxes of this unsupported atmospheric isotope were not constant in this estuarine environment. However, the presence of (210)Pb(xs) does indicate that these sediments accumulated during the last ~100 years. Aproximate sediment ages were estimated from the correlation of historic flooding events with the interpretation of the stratigraphic record. They are in fair agreement with the reported onset of DDT metabolites at the bottom of one core. PMID:18797954

  19. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils.

    PubMed

    Huang, Guoyong; Su, Xiaojuan; Rizwan, Muhammad Shahid; Zhu, Yifei; Hu, Hongqing

    2016-08-01

    Soil contamination with toxic metals has increasingly become a global concern over the past few decades. Phosphate and carbonate compounds are good passivation materials for Pb immobilization, while the effect of phosphate and carbonate on the immobilization of multiple heavy metals (Pb, Cu, and Cd) in contaminated soils was seldom investigated. In this study, bone meal (BM), phosphate rock (PR), oxalic acid-activated phosphate rock (APR), super phosphate (SP), and calcium carbonate (CC) were added to the contaminated soils to evaluate the effect of phosphate materials and calcium carbonate on the immobilization of Pb, Cu, and Cd. The results showed that the pH of the treated soils increased 1.3-2.7, except SP which decreased 0.5 at most. Compared to the control treatment, all phosphates and calcium carbonate added to the polluted soils increased the fraction of residual metals, and the application of APR, PR, BM, and CC significantly reduced exchangeable and carbonate-bound fraction metals. PR and APR were the most effective for the immobilization of Pb, Cu, and Cd in the soils among these materials. Moreover, the concentrations of all metals in the toxicity characteristic leaching procedure (TCLP) leachate decreased with increasing amounts of amendments, and the concentrations of Pb in the TCLP leachate for soils treated with PR and APR were below the nonhazardous regulatory limit of 5 mg L(-1) (US Environmental Protection Agency). Based on our results, phosphate rock and oxalic acid-activated phosphate rock are effective in the immobilization of multiple metals by reducing their mobility in the co-contaminated soils. PMID:27197655

  20. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils.

    PubMed

    Huang, Guoyong; Su, Xiaojuan; Rizwan, Muhammad Shahid; Zhu, Yifei; Hu, Hongqing

    2016-08-01

    Soil contamination with toxic metals has increasingly become a global concern over the past few decades. Phosphate and carbonate compounds are good passivation materials for Pb immobilization, while the effect of phosphate and carbonate on the immobilization of multiple heavy metals (Pb, Cu, and Cd) in contaminated soils was seldom investigated. In this study, bone meal (BM), phosphate rock (PR), oxalic acid-activated phosphate rock (APR), super phosphate (SP), and calcium carbonate (CC) were added to the contaminated soils to evaluate the effect of phosphate materials and calcium carbonate on the immobilization of Pb, Cu, and Cd. The results showed that the pH of the treated soils increased 1.3-2.7, except SP which decreased 0.5 at most. Compared to the control treatment, all phosphates and calcium carbonate added to the polluted soils increased the fraction of residual metals, and the application of APR, PR, BM, and CC significantly reduced exchangeable and carbonate-bound fraction metals. PR and APR were the most effective for the immobilization of Pb, Cu, and Cd in the soils among these materials. Moreover, the concentrations of all metals in the toxicity characteristic leaching procedure (TCLP) leachate decreased with increasing amounts of amendments, and the concentrations of Pb in the TCLP leachate for soils treated with PR and APR were below the nonhazardous regulatory limit of 5 mg L(-1) (US Environmental Protection Agency). Based on our results, phosphate rock and oxalic acid-activated phosphate rock are effective in the immobilization of multiple metals by reducing their mobility in the co-contaminated soils.

  1. Leaching potential of pervious concrete and immobilization of Cu, Pb and Zn using pervious concrete.

    PubMed

    Solpuker, U; Sheets, J; Kim, Y; Schwartz, F W

    2014-06-01

    This paper investigates the leaching potential of pervious concrete and its capacity for immobilizing Cu, Pb and Zn, which are common contaminants in urban runoff. Batch experiments showed that the leachability of Cu, Pb and Zn increased when pH<8. According to PHREEQC equilibrium modeling, the leaching of major ions and trace metals was mainly controlled by the dissolution/precipitation and surface complexation reactions, respectively. A 1-D reactive transport experiment was undertaken to better understand how pervious concrete might function to attenuate contaminant migration. A porous concrete block was sprayed with low pH water (pH=4.3±0.1) for 190 h. The effluent was highly alkaline (pH~10 to 12). In the first 50 h, specific conductance and trace-metal were high but declined towards steady state values. PHREEQC modeling showed that mixing of interstitial alkaline matrix waters with capillary pore water was required in order to produce the observed water chemistry. The interstitial pore solutions seem responsible for the high pH values and relatively high concentrations of trace metals and major cations in the early stages of the experiment. Finally, pervious concrete was sprayed with a synthetic contaminated urban runoff (10 ppb Cu, Pb and Zn) with a pH of 4.3±0.1 for 135 h. It was found that Pb immobilization was greater than either Cu or Zn. Zn is the most mobile among three and also has the highest variation in the observed degree of immobilization.

  2. EDTA and citric acid mediated phytoextraction of Zn, Cu, Pb and Cd through marigold (Tagetes erecta).

    PubMed

    Sinhal, V K; Srivastava, Alok; Singh, V P

    2010-05-01

    Phytoextraction is an emerging cost-effective solution for remediation of contaminated soils which involves the removal of toxins, especially heavy metals and metalloids, by the roots of the plants with subsequent transport to aerial plant organs. The aim of the present investigation is to study the effects of EDTA and citric acid on accumulation potential of marigold (Tagetes erecta) to Zn, Cu, Pb, and Cd and also to evaluate the impacts of these chelators (EDTA and citric acid) in combination with all the four heavy metals on the growth of marigold. The plants were grown in pots and treated with Zn (7.3 mg l(-1)), Cu (7.5 mg I(-1)), Pb (3.7 mg l(-1)) and Cd (0.2 mg l(-1)) alone and in combination with different doses of EDTA i.e., 10, 20 and 30 mg l(-1). All the three doses of EDTA i.e., 10, 20 and 30 mg l(-1) significantly increased the accumulation of Zn, Cu, Pb and Cd by roots, stems and leaves as compared to control treatments. The 30 mg l(-1) concentration of citric acid showed reduced accumulation of these metals by root, stem and leaves as compared to lower doses i.e., 10 and 20 mg l(-1). Among the four heavy metals, Zn accumulated in the great amount (526.34 mg kg(-1) DW) followed by Cu (443.14 mg kg(-1) DW), Pb (393.16 mg kg(-1) DW) and Cd (333.62 mg kg(-1) DW) in leaves with 30 mg l(-1) EDTA treatment. The highest concentration of EDTA and citric acid (30 mg l(-1)) caused significant reduction in growth of marigold in terms of plant height, fresh weight of plant, total chlorophyll, carbohydrate content and protein content. Thus EDTA and citric acid efficiently increased the phytoextractability of marigold which can be used to remediate the soil contaminated with these metals.

  3. Pb, Cu and Cd distribution in five estuary systems of Marche, central Italy.

    PubMed

    Annibaldi, Anna; Illuminati, Silvia; Truzzi, Cristina; Libani, Giulia; Scarponi, Giuseppe

    2015-07-15

    Heavy metals are subjected to monitoring in estuarine and marine water by the European Union Water Framework Directive, which requires water body health to be achieved by 2021. This is the first survey of heavy metals content in five estuaries of Marche, a region in central Italy. Results showed that total Pb and Cu concentrations decreased by 70-80%, from 1000-2000 to 100-200 ng L(-1) (Pb) and from 2000-3000 to 500-1000 ng L(-1) (Cu) from river to sea. Cd was consistently 20-40 ng L(-1). Dissolved Pb and Cu concentrations declined by 50% and 70% respectively passing from oligohaline to euhaline water, from 150 to 70 ng L(-1) and from 2000-1000 to 600-400 ng L(-1). Cd decreased slightly from ∼20 to ∼10 ng L(-1). Although such concentrations are in the range allowed by the Water Framework Directive, they far exceed (up to 10×) the ground content ceiling set for 2021.

  4. Competitive sorption of Cd, Cu, Mn, Ni, Pb and Zn in polluted and unpolluted calcareous soils.

    PubMed

    Jalali, Mohsen; Moradi, Fahimeh

    2013-11-01

    The objectives of this study were to investigate competitive sorption behaviour of heavy metals (Cd, Cu, Mn, Ni, Pb and Zn) under different management practices and identify soil characteristics that can be correlated with the retention and mobility of heavy metals using 65 calcareous soil samples. The lowest sorption was found for Mn and Ni in competition with the other metals, indicating the high mobility of these two cations. The Freundlich equation adequately described heavy metals adsorption. On the basis of Freundlich distribution coefficient, the selectivity sequence of the metal adsorption was Cu > Pb > Cd > Zn > Ni > Mn. The mean value of the joint distribution coefficient (K dΣsp) was 182.1, 364.1, 414.7, 250.1, 277.7, 459.9 and 344.8 l kg(-1) for garden, garlic, pasture, potato, vegetables, wheat and polluted soils, respectively. The lowest observed K dΣsp in garden soil samples was due to the lower cation exchange capacity and lower carbonate content. The results of the geochemical modelling under low and high metal addition indicated that Cd, Ni, Mn and Zn were mainly retained via adsorption, while Pb and Cu were retained via adsorption and precipitation. Stepwise forward regression analysis showed that clay, organic matter and CaCO3 were the most important soil properties influencing competitive adsorption of Cd, Mn, Ni and Zn. The results in this study point to a relatively easy way to estimate distribution coefficient values. PMID:23677680

  5. Determination of Zn, Pb, Cu, and Hg in soils of Ekpan, Nigeria

    SciTech Connect

    Omgbu, J.A.; Kokogho, M.A. )

    1993-01-01

    The concentrations of zinc, lead, copper, and mercury in solids in Ekpan were determined in order to assess the impact of petroleum-refining activities. Twenty soil samples were collected 100 m apart (10 topsoils 0 to 15 cm and 10 bottom soils 15 to 30 cm). Sample solutions prepared were analyzed using the atomic absorption spectrophotometry technique. Results show that top-soil samples contain as much as 7.13 to 13.10 [mu]g/g Zn, 55.13 to 65.50 [mu]g/g Pb, 3.47 to 5.27 [mu]g/g Cu, and 4.00 to 6.50 [mu]g.g Hg. Bottom soil samples contain as much as 7.17 to 13.77 [mu]g/g Zn, 54.97 to 63.23 [mu]g/g Pb, 3.57 to 6.50 [mu]/g Cu, and 4.57 to 6.63 [mu]g/g Hg. The levels reported had an abundance ratio in the order Pb > Zn > Hg > Cu in the soil samples. It is recommended that appropriate measures be put in place by the companies to treat waste effluent before discharging them to the immediate environment. 8 refs., 2 tabs.

  6. Pore water profiles and early diagenesis of Mn, Cu, and Pb in sediments from large lakes

    SciTech Connect

    McKee, J.D.; Wilson, T.P.; Long, D.T.; Owen, R.M.

    1989-01-01

    Mn, Cu, and Pb were measured in pore waters at a site in the Caribou sub-basin Lake Superior. The pore water profiles show evidence for the post-depositional mobility of the metals, consistent with interpretations made from sediment concentration profiles. The pore water and sediment concentration profiles of Mn appear to be diagenetically linked. Diagenetic modeling results indicate that the measured profiles are not in a steady-state relationship. The cause of the non-steady-state conditions is unclear but may be related to recent changes in sedimentation rates and in Mn/sup 2 +/ oxidation rates. Flux estimates for Cu and Pb show that these metals could be diffusing from the sediment to overlying water. The decomposition or organic matter is suggested as a source for the metals. A significant amount of Cu and Pb brought to the sediment surface during sedimentation appears to be recycled to the pore waters. This suggests that concentration profiles of these metals in the sediment may not be reliable indicators of the timing and amounts of anthropogenic metal input to Lake Superior.

  7. Pb, Cu and Cd distribution in five estuary systems of Marche, central Italy.

    PubMed

    Annibaldi, Anna; Illuminati, Silvia; Truzzi, Cristina; Libani, Giulia; Scarponi, Giuseppe

    2015-07-15

    Heavy metals are subjected to monitoring in estuarine and marine water by the European Union Water Framework Directive, which requires water body health to be achieved by 2021. This is the first survey of heavy metals content in five estuaries of Marche, a region in central Italy. Results showed that total Pb and Cu concentrations decreased by 70-80%, from 1000-2000 to 100-200 ng L(-1) (Pb) and from 2000-3000 to 500-1000 ng L(-1) (Cu) from river to sea. Cd was consistently 20-40 ng L(-1). Dissolved Pb and Cu concentrations declined by 50% and 70% respectively passing from oligohaline to euhaline water, from 150 to 70 ng L(-1) and from 2000-1000 to 600-400 ng L(-1). Cd decreased slightly from ∼20 to ∼10 ng L(-1). Although such concentrations are in the range allowed by the Water Framework Directive, they far exceed (up to 10×) the ground content ceiling set for 2021. PMID:25960271

  8. Revisiting the properties of delafossite CuCrO{sub 2}: A single crystal study

    SciTech Connect

    Poienar, Maria; Hardy, Vincent; Kundys, Bohdan; Singh, Kiran; Maignan, Antoine; Damay, Francoise; Martin, Christine

    2012-01-15

    Platelet-like single-crystals of delafossite CuCrO{sub 2} have been successfully grown and characterised by X-ray diffraction and pole figures, scanning electron and atomic force microscopy. Transport measurements reveal that the resistivity is highly anisotropic, with a ratio of about 35 at 300 K between the in- and out-of-plane directions, reflecting the layered crystal structure. The magnetization and specific heat data show that CuCrO{sub 2} undergoes a unique antiferromagnetic transition at T{sub N}=24.0 K, in contrast to a recent report on CuCrO{sub 2} single-crystals showing the existence of two magnetic transitions, T{sub N1}=24.2 K and T{sub N2}=23.6 K, depending on the orientation of the applied magnetic field along and perpendicular to c, respectively. - Graphical abstract: 3R-CuCrO{sub 2} platelet-like single crystals have been successfully grown by the flux method. As revealed by {chi}(T) and C(T) measurements, their properties are characterised by a unique antiferromagnetic transition at T{sub N}=24 K. Interestingly, despite a very small magnetic anisotropy, a large one is evidenced by the resistivity ratio, {rho}{sub c}/{rho}{sub ab}{approx}35, at 300 K. This suggests an easier charge hopping in the [CrO{sub 2}] planes rather than along (Cr-O-Cu) pathways, i.e. along c axis. Highlights: Black-Right-Pointing-Pointer R-CuCrO{sub 2} plate-like single crystals have been synthesised by the flux method. Black-Right-Pointing-Pointer Growth takes place layer-by-layer and some growth defects have been observed. Black-Right-Pointing-Pointer CuCrO{sub 2} single crystals exhibit a unique antiferromagnetic transition at T{sub N}=24 K. Black-Right-Pointing-Pointer Transport measurements reveal that the resistivity is highly anisotropic.

  9. Vacuum Plasma Spray of CuCrNb Alloy for Advanced Liquid - Fuel Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank

    2000-01-01

    The copper-8 atomic percent chromium-4 atomic percent niobium (CuCrNb) alloy was developed by Glenn Research Center (formally Lewis Research Center) as an improved alloy for combustion chamber liners. In comparison to NARloy-Z, the baseline (as in Space Shuttle Main Engine) alloy for such liners, CuCrNb demonstrates mechanical and thermophysical properties equivalent to NARloy-Z, but at temperatures 100 C to 150 C (180 F to 270 F) higher. Anticipated materials related benefits include decreasing the thrust cell liner weight 5% to 20%, increasing the service life at least two fold over current combustion chamber design, and increasing the safety margins available to designers. By adding an oxidation and thermal barrier coating to the liner, the combustion chamber can operate at even higher temperatures. For all these benefits, however, this alloy cannot be formed using conventional casting and forging methods because of the levels of chromium and niobium, which exceed their solubility limit in copper. Until recently, the only forming process that maintains the required microstructure of CrNb intermetallics is powder metallurgy formation of a billet from powder stock, followed by extrusion. This severely limits its usefulness in structural applications, particularly the complex shapes required for combustion chamber liners. Vacuum plasma spray (VPS) has been demonstrated as a method to form structural articles including small combustion chambers from the CuCrNb alloy. In addition, an oxidation and thermal barrier layer can be formed integrally on the hot wall of the liner that improve performance and extend service life. This paper discusses the metallurgy and thermomechanical properties of VPS formed CuCrNb versus the baseline powder metallurgy process, and the manufacturing of small combustion chamber liners at Marshall Space Flight Center using the VPS process. The benefits to advanced propulsion initiatives of using VPS to fabricate combustion chamber liners

  10. Production and processing of Cu-Cr-Nb alloys

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Michal, Gary M.; Orth, Norman W.

    1990-01-01

    A new Cu-based alloy possessing high strength, high conductivity, and good stability at elevated temperatures was recently produced. This paper details the melting of the master alloys, production of rapidly solidified ribbon, and processing of the ribbon to sheet by hot pressing and hot rolling.

  11. Study on the phase evolution of (Pb,Cu)Sr2(Y,Ca)Cu2Oz (z 7)

    NASA Astrophysics Data System (ADS)

    Maeda, T.; Taniwaki, M.

    2006-09-01

    The formation process of (Pb(1+x )/2Cu(1-x )/2)Sr2(Y1-x Cax )Cu2Oz is investigated by means of X-ray diffractometory (XRD), thermal analysis and scanning electron microscopy for nominal compositions of x = 00.5. It is shown by XRD measurement that nearly single-phase samples are obtained at x = 00.4 by firing at 1000 °C in air for only 1 h. In the heating step, the existence of partial melting state slightly below the firing temperature is clearly observed in the results of differential thermal analysis. It is concluded that this causes the extremely rapid formation of this compound.

  12. Grain growth behavior of Pb-Cu-Te cable sheathing alloys

    SciTech Connect

    Sahay, S.S.; Guruswamy, S.; Goodwin, F.

    1995-04-01

    Lead alloys are extensively used as sheathing material for power and telecommunication cables. Excellent extrusion properties, high ductility, extremely low recrystallization temperature, good fatigue and creep resistance, make these alloys ideal for cable sheathing application. Though the thickness of the lead sheath is only a few hundred {mu}m, it is a critical component of the cable. The lead layer in the cable is often the limiting factor both during the cable production and during its service phase. Up to several hundred miles of long single piece cables may be required for underground and underwater cables. Cracking in the lead sheath during the cable sheathing extrusion limits the production of such long cables while cracking of the lead sheath due to repeated vibration, creep and recrystallization limits the service life of these cables. The purpose of the present research is to increase the duration of cable extrusion time without compromising sheath integrity by minimizing deleterious precipitate formation and growth. Concentrations of Cu and Te in the commercial alloy are too small to contribute to precipitation strengthening. Therefore their positive influence on mechanical strength should mainly result from the influence of Cu and Te in solution on interdiffusivity and grain boundary mobility. The formation of large precipitates observed in Pb-Cu-Te alloys can be minimized and extrusion times increased without negatively affecting mechanical properties if the solute content is reduced to near solid solubility levels. In order to examine the effect of lowering solute content on microstructural stability and mechanical properties, compressive stress-strain behavior of a Pb-50 wt ppm Cu-100 wt ppm Te alloy with solute contents close to the solubility limits and a Pb-400 wt ppm Cu-400 wt ppm Te alloy was examined at room temperature. The grain growth kinetics in these alloys were studied in a temperature range of 100 to 225 C.

  13. Cu-Zn powders as potential Cr(VI) adsorbents for drinking water.

    PubMed

    Kaprara, E; Seridou, P; Tsiamili, V; Mitrakas, M; Vourlias, G; Tsiaoussis, I; Kaimakamis, G; Pavlidou, E; Andritsos, N; Simeonidis, K

    2013-11-15

    This work examines the possibility of applying CuZn alloys as a reducing medium for the efficient removal of hexavalent chromium from drinking water. In an effort to develop a route for producing powders of CuZn alloys under mild conditions and investigate the optimum composition for such application, a series of alloys in the form of powders were prepared, by a sequence of Cu and Zn ball-milling and low temperature annealing. Batch Cr(VI) removal tests, performed to evaluate and compare the efficiency of the products under typical natural water parameters (pH 7 and natural-like water), indicated that the best performing material have a composition around 50 wt% Cu. The dominant reduction mechanisms are both the corrosion of the alloy surface and the electron transfer to the solution. The behavior of granulated CuZn media was tested in rapid-scale column tests using the commercial KDF which verified the high potential of CuZn alloys in Cr(VI) removal. Nevertheless, Cu and Zn leaching problems should be also considered.

  14. Thermoelectric Properties of CuAgSe doped with Co, Cr

    NASA Astrophysics Data System (ADS)

    Czajka, Peter; Yao, Mengliang; Opeil, Cyril

    Thermoelectric materials represent one way that reliable cooling below the boiling point of nitrogen can be realized. Current materials do not exhibit sufficiently high efficiencies at cryogenic temperatures, but significant progress is being made. One material that has generated significant interest recently is CuAgSe. It has been demonstrated (Ishiwata et al., Nature Mater. 2013) that doping CuAgSe with 10% Ni at the Cu sites increases the material's thermoelectric figure of merit (ZT) at 100 K from 0.02 to 0.10. This is intriguing not just because of the dramatic effect that the Ni doping produces, but also because CuAgSe is a semimetal and semimetals are not usually able to exhibit the kind of asymmetric carrier activation necessary for strong thermoelectric performance. In order to further investigate the unusual nature of thermoelectricity in CuAgSe and its strong dependence on chemical composition, we have synthesized and measured the thermoelectric properties of a series of CuAgSe samples doped with Co and Cr. Temperature-dependent magnetic and thermoelectric transport properties of CuAgSe as a function of Co and Cr doping will be discussed. This work is supported by the Department of Defense, AFOSR, MURI Program Contract # FA9550-10-1-0533 and the Trustees of Boston College.

  15. Influence of IMC in the Semisolid Behaviour of an Eutectic Sn-Pb/Cu Slurry

    SciTech Connect

    Merizalde, Carlos; Cabrera, Jose-Maria; Prado, Jose-Manuel

    2007-04-07

    A mixture of a liquid Sn-Pb alloy reinforced with solid Cu particles has been found to show thixotropic and pseudoplastic behaviour. The presence of an intermetallic compound (IMC) between the Cu particles and the molten matrix has some very important consequences in the rheological behaviour of the slurry. The semisolid material is obtained mixing a sufficient amount of Cu particles with a liquid eutectic Sn-Pb alloy by mechanical stirring at a given temperature and time. The intermetallic compound is formed from the reaction of solid Cu and liquid Sn. This reaction results in some displacement in the phase diagram, affecting the liquid alloy composition, moving the liquidus temperature and therefore altering the balance of %wt solid- %wt liquid necessary to obtain the best thixotropic behaviour. In this work a model of the solid fraction of the slurry taking into account the IMC growth rate is presented. This model is also used to predict the processing window under which the material keeps the thixotropic behaviour.

  16. Influence of IMC in the Semisolid Behaviour of an Eutectic Sn-Pb/Cu Slurry

    NASA Astrophysics Data System (ADS)

    Merizalde, Carlos; Cabrera, José-María; Prado, José-Manuel

    2007-04-01

    A mixture of a liquid Sn-Pb alloy reinforced with solid Cu particles has been found to show thixotropic and pseudoplastic behaviour. The presence of an intermetallic compound (IMC) between the Cu particles and the molten matrix has some very important consequences in the rheological behaviour of the slurry. The semisolid material is obtained mixing a sufficient amount of Cu particles with a liquid eutectic Sn-Pb alloy by mechanical stirring at a given temperature and time. The intermetallic compound is formed from the reaction of solid Cu and liquid Sn. This reaction results in some displacement in the phase diagram, affecting the liquid alloy composition, moving the liquidus temperature and therefore altering the balance of %wt solid- %wt liquid necessary to obtain the best thixotropic behaviour. In this work a model of the solid fraction of the slurry taking into account the IMC growth rate is presented. This model is also used to predict the processing window under which the material keeps the thixotropic behaviour.

  17. Electrokinetic Treatment of Cr-, Cu-, and Zn-Contaminated Sediment: Cathode Modification

    PubMed Central

    Rajić, Ljiljana; Dalmacija, Božo; Perović, Svetlana Ugarčina; Krčmar, Dejan; Rončević, Srđan; Tomašević, Dragana

    2013-01-01

    Abstract Enhanced electrokinetic (EK) removal of Cr, Cu, and Zn from sediment by using original and modified integrated ion exchange (IIX™) cathodes was investigated. IIX cathode design and EK device process modifications were made to improve performance: separation of IIX cathode components (IIXS), combination of modified IIX cathode with pulsed electric field (IIXSP), and separation of IIX cathode components with addition of an anion exchange resin compartment (IIXA). After using the IIXSP, overall Cr, Cu, and Zn removal efficacies were significantly improved compared with the other treatments investigated. No improvements in overall Cr, Cu, and Zn removal efficacies were achieved by utilization of IIXA. Nevertheless, significant removal efficacies occurred at the anode region since distribution of the alkaline front was prevented. However, metal accumulation in the cathode region occurred. This was a consequence of metal cation complexation with Cl− released from the anion exchange resin that changed the direction of metal migration. Enhancing EK remediation of Cr-, Cu-, and Zn-contaminated sediment can be achieved by using a modified IIX cathode. PMID:24381480

  18. Electrokinetic Treatment of Cr-, Cu-, and Zn-Contaminated Sediment: Cathode Modification.

    PubMed

    Rajić, Ljiljana; Dalmacija, Božo; Perović, Svetlana Ugarčina; Krčmar, Dejan; Rončević, Srđan; Tomašević, Dragana

    2013-12-01

    Enhanced electrokinetic (EK) removal of Cr, Cu, and Zn from sediment by using original and modified integrated ion exchange (IIX™) cathodes was investigated. IIX cathode design and EK device process modifications were made to improve performance: separation of IIX cathode components (IIXS), combination of modified IIX cathode with pulsed electric field (IIXSP), and separation of IIX cathode components with addition of an anion exchange resin compartment (IIXA). After using the IIXSP, overall Cr, Cu, and Zn removal efficacies were significantly improved compared with the other treatments investigated. No improvements in overall Cr, Cu, and Zn removal efficacies were achieved by utilization of IIXA. Nevertheless, significant removal efficacies occurred at the anode region since distribution of the alkaline front was prevented. However, metal accumulation in the cathode region occurred. This was a consequence of metal cation complexation with Cl(-) released from the anion exchange resin that changed the direction of metal migration. Enhancing EK remediation of Cr-, Cu-, and Zn-contaminated sediment can be achieved by using a modified IIX cathode. PMID:24381480

  19. A systematic study of superconductivity in BiPb(Sn)-Sb Sr-Ca-Cu-O systems

    NASA Technical Reports Server (NTRS)

    Akbar, Sheikh A.; Botelho, M. J.; Wong, M. S.; Alauddin, M.

    1990-01-01

    Superconducting transition above 160 K has been reported in the Bi-Pb-Sb-Sr-Ca-Cu-O system. Results of a systematic study emphasizing the correlations between the type and amount of dopant, and superconducting transition is presented. The effect of Sn (instead of Pb) substitution is also highlighted.

  20. Processing Bi-Pb-Sr-Ca-Cu-O superconductors from amorphous state

    NASA Technical Reports Server (NTRS)

    Chiang, C. K.; Freiman, S. W.; Wong-Ng, W.; Hwang, N. M.; Shapiro, A. J.; Hill, M. D.; Cook, L. P.; Shull, R. D.; Swartzendruber, L. J.; Bennett, L. H.

    1990-01-01

    Researchers produced superconducting ceramics of the Bi-Pb-Sr-Ca-Cu-O system started from a glass. To form the glass, the mixed oxide powder was melted at 1200 C in air. The liquid was quenched rapidly by pouring it onto an aluminum plate and rapidly pressing with another plate. The quenched compound was in the form of black amorphous solid, whose x-ray powder pattern has no crystalline peaks. After heat treatment at high temperatures, the glass crystallized into a superconductor. The crystalline phases in the superconductor identified using x-ray diffraction patterns. These phases were that associated with the superconducting phases of T(sub c) = 80 K (Bi2Ca1Sr2Cu2Ox) and of T(sub c) = 110 K (Bi2Ca2Sr2Cu3Ox). The dc resistivity and the ac susceptibility of these superconductors were studied.

  1. Adhesion promotion of Cu on C by Cr intermediate layers investigated by the SIMS method.

    PubMed

    Mayerhofer, Karl E; Neubauer, Erich; Eisenmenger-Sittner, Christoph; Hutter, Herbert

    2002-10-01

    Copper-carbon composites are candidate materials for heat sinks for high speed/high-performance electronic components. They combine high thermal conductivity with low density and a tailorable coefficient of thermal expansion (CTE). Because of the low wettability of carbon by copper, a thin layer of chromium can be deposited to promote both the adhesion and the thermal contact of copper with the carbon fibers. Therefore, in a first step layers of Cr and Cu were deposited by magnetron sputtering on plane vitreous carbon substrates (Sigradur G), which serve as a model for carbon fibers. From pull-off-adhesion measurements an interlayer thickness of Cr in the range of 2-10 nm was found to provide the optimal adhesion for 1 micro m thick copper overlayers. To model the later serial fabrication of the composite that involves a hot pressing step following the deposition, the C/Cr/Cu samples were heat treated at 800 degrees C under vacuum for 1 h. Adhesion on the heat-treated samples was superior in comparison to the untreated ones. To obtain information about the adhesion mechanism secondary ion mass spectrometry (SIMS) investigations were done on the depth distribution of the main elements copper, chromium, and carbon. Two samples, one as deposited and one subjected to heat treatment after deposition, were compared in this investigation. We found that heat treatment mainly modifies the distribution of Cr in the C/Cr/Cu system. PMID:12397477

  2. Spectral analysis of Cu(2+): B(2)O(3)--ZnO--PbO glasses.

    PubMed

    Lakshminarayana, G; Buddhudu, S

    2005-11-01

    A new series of heavy metal oxide (PbO) based zinc borate glasses in the chemical composition of (95-x)B(2)O(3)-5ZnO-xPbO (x=10, 15, 20, 25, 30, 35, 40, 45 and 50 mol%) have been prepared to verify their UV filtering performance. Both direct and indirect optical band gaps (E(opt)) have been evaluated for these glasses. For a reference glass of 45B(2)O(3)-5ZnO-50PbO, refractive indices at different wavelengths are measured and found the results satisfactorily correlated with the theoretical data upon the computation of Cauchy's constants of A=1.766029949, B=159531.024 nm(2) and C=-1.078 x 10(10) nm(4). Measurements concerning X-ray diffraction (XRD), FT-IR, differential scanning colorimeter (DSC) profiles have been carried out for this glass. The FT-IR profile has revealed that the glass has both BO(3) and BO(4) units. From DSC thermogram, glass transition temperature (T(g)), crystallization temperature (T(c)) and melting temperature (T(m)) have been located and from them, other related parameters of the glass have also been calculated. Visible absorption spectra of 45B(2)O(3)-5ZnO-(50-x)PbO-xCuO (x=0. 1, 0.2, 0.5 and 1.0 mol%) have revealed two absorption bands at around 400 nm ((2)B(1g)-->(2)E(g)) and 780 nm ((2)B(1g)-->(2)B(2g)) of Cu(2+) ions, respectively. Emission bands at 422 and 512 nm are found for the 1 mol % CuO doped glass with excitations at 306 and 332 nm.

  3. Continuous biosorption of Pb/Cu and Pb/Cd in fixed-bed column using algae Gelidium and granulated agar extraction algal waste.

    PubMed

    Vilar, Vítor J P; Loureiro, José M; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Continuous metal ions biosorption from Pb/Cu and Pb/Cd solutions onto seaweed Gelidium sesquipedale and a composite material prepared from an industrial algal waste was performed in a packed bed column. A binary Langmuir equation describes well the equilibrium data and indicates a good adsorption capacity. In the sorption process, Cd and Cu break through the column faster than Pb due to its lower affinity for the biosorbent. An overshoot in the outlet Cd concentration was observed and explained by competitive adsorption between Pb and Cd, whereby the higher Pb affinity for the biosorbent displaces bound Cd ions. A small overshoot happens for Cu adsorption in the presence of Pb ions. Desorption using 0.1 M HNO3 as eluant, was 100% effective. A mass transfer model for the adsorption and desorption processes, considering an external and intraparticle film resistance, adequately simulates the column performance. A binary Langmuir equation was used to describe equilibrium for the saturation process and a mass action law for the desorption process. Elution process is defined as an ion exchange mechanism, between protons and metal ions. PMID:18162305

  4. Competitive Adsorption of Cd(II), Cr(VI), and Pb(II) onto Nanomaghemite: A Spectroscopic and Modeling Approach.

    PubMed

    Komárek, Michael; Koretsky, Carla M; Stephen, Krishna J; Alessi, Daniel S; Chrastný, Vladislav

    2015-11-01

    A combined modeling and spectroscopic approach is used to describe Cd(II), Cr(VI), and Pb(II) adsorption onto nanomaghemite and nanomaghemite coated quartz. A pseudo-second order kinetic model fitted the adsorption data well. The sorption capacity of nanomaghemite was evaluated using a Langmuir isotherm model, and a diffuse double layer surface complexation model (DLM) was developed to describe metal adsorption. Adsorption mechanisms were assessed using X-ray photoelectron spectroscopy and X-ray absorption spectroscopy. Pb(II) adsorption occurs mainly via formation of inner-sphere complexes, whereas Cr(VI) likely adsorbs mainly as outer-sphere complexes and Cd(II) as a mixture of inner- and outer-sphere complexes. The simple DLM describes well the pH-dependence of single adsorption edges. However, it fails to adequately capture metal adsorption behavior over broad ranges of ionic strength or metal-loading on the sorbents. For systems with equimolar concentrations of Pb(II), Cd(II), and Cr(VI). Pb(II) adsorption was reasonably well predicted by the DLM, but predictions were poorer for Cr(VI) and Cd(II). This study demonstrates that a simple DLM can describe well the adsorption of the studied metals in mixed sorbate-sorbent systems, but only under narrow ranges of ionic strength or metal loading. The results also highlight the sorption potential of nanomaghemite for metals in complex systems. PMID:26457556

  5. First principles study of transition metal (TM=Pb, Cu) oxides/sulfides

    NASA Astrophysics Data System (ADS)

    Caudle, Sean; Tao, Meng; Peng, Xihong

    2012-10-01

    Earth-abundant transition meal oxides/sulfides have inspired special research attention recently due to their potential applications in solar cells. A clear understanding of the fundamental properties of these materials, especially the electronic properties and their tunability via chemical doping, are critically important towards the applications. In this presentation, we report first principles density-functional theory (DFT) study on the electronic structures of Pb and Cu oxides/sulfides and their oxysulfides compositions. The band structure and bandgap can be systematically tuned by increasing S component in the metal oxides. For example, the DFT predicted bandgap for PbO is 1.72 eV. While the bandgaps for PbO0.937 S0.063, PbO0.875S0.125, and PbO0.75S0.25 are 1.64 eV, 1.43 eV, and 0.79 eV, respectively. For Cu2O, the standard DFT seriously underestimates the bandgap to be 0.49 eV, compared to the experimental value of 2.17 eV. Two methods, DFT+U and hybrid functional (HSE06), were implemented to overcome this problem. Our results showed that DFT+U method fails and the bandgap doesn't further open up by providing a U potential. The hybrid functional predicts the bandgap to be 2.00 eV, which is in a good agreement with the experimental value.

  6. Measurement of the {sup 208}Pb({sup 52}Cr,n){sup 259}Sg excitation function

    SciTech Connect

    Folden III, C. M.; Dragojevic, I.; Garcia, M. A.; Gates, J. M.; Nelson, S. L.; Hoffman, D. C.; Nitsche, H.; Duellmann, Ch. E.; Sudowe, R.; Gregorich, K. E.; Eichler, R.

    2009-02-15

    The excitation function for the {sup 208}Pb({sup 52}Cr,n){sup 259}Sg reaction has been measured using the Berkeley Gas-filled Separator at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. The maximum cross section of 320{sub -100}{sup +110} pb is observed at a center-of-target laboratory-frame energy of 253.0 MeV. In total, 25 decay chains originating from {sup 259}Sg were observed and the measured decay properties are in good agreement with previous reports. In addition, a partial excitation function for the {sup 208}Pb({sup 52}Cr,2n){sup 258}Sg reaction was obtained, and an improved {sup 258}Sg half-life of 2.6{sub -0.4}{sup +0.6} ms was calculated by combining all available experimental data.

  7. Direct detection of Pb in urine and Cd, Pb, Cu, and Ag in natural waters using electrochemical sensors immobilized with DMSA functionalized magnetic nanoparticles

    SciTech Connect

    Yantasee, Wassana; Hongsirikarn, Kitiya; Warner, Cynthia L.; Choi, Daiwon; Sangvanich, Thanapon; Toloczko, Mychailo B.; Warner, Marvin G.; Fryxell, Glen E.; Addleman, Raymond S.; Timchalk, Chuck

    2008-03-01

    Urine is universally recognized as one of the best non-invasive matrices for biomonitoring exposure to a broad range of xenobiotics including toxic metals. For direct, simple, and field-deployable monitoring of urinary Pb, electrochemical sensors employing superparamagnetic iron oxide (Fe3O4) nanoparticles with a surface functionalization of dimercaptosuccinic acid (DMSA) has been developed. The metal detection involves rapid collection of dispersed metal-bound nanoparticles from a sample solution at a magnetic or electromagnetic electrode, followed by the stripping voltammetry of the metal in acidic medium. The sensors were evaluated as a function of solution pH, the binding affinity of Pb to DMSA-Fe3O4, the ratio of nanoparticles per sample volume, preconcentration time, and Pb concentrations. The effect of binding competitions between the DMSA-Fe3O4 and urine constituents for Pb on the sensor responses was studied. After 90s of preconcentration in samples containing 25 vol.% of rat urine and 0.1 g/L of DMSA-Fe3O4, the sensor could detect background level of Pb (< 1 ppb) and yielded linear responses from 0 to 50 ppb of Pb, excellent reproducibility (%R.S.D of 5.3 for seven measurements of 30 ppb Pb), and Pb concentrations comparable to those measured by ICP-MS. The sensor could also simultaneously detect background levels (< 1 ppb) of Cd, Pb, Cu, and Ag in river and seawater.

  8. Cd, Ni, Cr and Pb distribution in biosolid pellets used as soil amendment

    NASA Astrophysics Data System (ADS)

    Jordán, Manuel M.; Rincón-Mora, Beatriz; Belén Almendro-Candel, María; Navarro Pedreño, Jose; Gómez Lucas, Ignacio; Bech, Jaume; Roca, Nuria; Pardo, Francisco

    2016-04-01

    The application of biosolids to a soil is a method that offers important benefits (Navarro et al. 2003). The transport and application costs are quite low (mostly if they are dehydrated biosolids or pellets) if soils are located near a wastewater treatment plant. It is possible to recycle nutrients (N, P, and K) and organic matter by improving the physical and chemical characteristics of the soil and by reducing the fertilizer costs. However, the use of biosolids may also has several problems, such as the presence of quantities of metals that could be toxic for plants or could contaminate ground-waters after being leached. Heavy metals are one of the most serious environmental pollutants because of its high toxicity, abundance and easy accumulation by plant (Soriano-Disla et al. 2014; Rosen and Chen 2014). Contamination of soils by potentially toxic elements (e.g. Cd, Ni, Cr, Pb) from amendments of biosolids is subject to rigorous controls within the European Union. The present study was designed to examine the partition of selected heavy metals in biosolid pellets, and also to relate the distribution patterns of these metals. Samples were collected from the treatment of urban wastewater at the drying grounds of a wastewater processing plant. The samples correspond to biosolids with humidities below 20% and are representative of the three horizons within the pile: the isolation surface (H1), the mesophilous area (H2), and the thermophilous area (H3). Biosolid aggregates were placed in a pellet press and then compacted. Total content of metals was determined following microwave digestion and analysed by ICP/MS. Triplicate samples were weighed in polycarbonate centrifuge tubes and sequentially extracted. The distribution of chemical forms of Cd, Ni, Cr, and Pb in the biosolids was studied using a sequential extraction procedure that fractionates the metal into soluble-exchangeable, specifically sorbed-carbonate bound, oxidizable, reducible, and residual forms. The

  9. Physiological responses and detoxific mechanisms to Pb, Zn, Cu and Cd in young seedlings of Paulownia fortunei.

    PubMed

    Wang, Jiang; Li, Weihua; Zhang, Chongbang; Ke, Shisheng

    2010-01-01

    Paulownia fortunei has been successfully used in the phytoremediation of many Pb/Zn mine tailings. However, seed germination and young seedlings of P. fortunei rarely occurred in these mine tailings. The physiological responses and detoxific mechanisms of P. fortunei young seedling to Pb, Zn, Cu and Cd stress were investigated. The germinated rate, shoot length, chlorophyll and carotenoid contents in leaves of young seedlings had a great reduction under Zn and Cu treatments, but had little decrease under Pb and Cd treatments. The production rate of O2*-, H2O2 and malondialdehyde (MDA) contents significantly increased in response to added Zn and Cu indicating great oxidative stress for young seedlings, but they had no significant change to added Pb and Cd. Young seedlings had effective detoxific mechanism to Pb and Cd, as antioxidant enzymes activities, phytochelatins (PCs-SH) and proline contents increased with increasing rates of added Pb and Cd. However, young seedlings had un-effective detoxific mechanisms to Zn and Cu stress. Results revealed the heavy metals (such as Cu) that present at low concentrations in mine tailings may be major constraint for the survival of young seedlings. PMID:21462710

  10. Physical, Optical and Electron paramagnetic resonance studies of PbBr2-PbO-B2O3 glasses containing Cu2+ ions

    NASA Astrophysics Data System (ADS)

    Sekhar, K. Chandra; Hameed, Abdul; Chary, M. Narasimha; Shareefuddin, Md

    2016-09-01

    The glasses with the composition PbBr2-PbO-B2O3 glasses containing Cu2+ ions were prepared by melt quenching technique. X-ray diffractograms revealed the amorphous nature of the glasses. Density and molar volume were determined. Density is found to decrease while the molar volume increases with increase of PbBr2 content. The optical absorption spectra exhibited a broad band corresponding to the d- d transition of Cu2+ ion. From optical absorption spectra Eopt and Urbach energies were determined. Electron Paramagnetic Resonance (EPR) studies were carried out by introducing Cu2+ as the spin probe. Glasses containing transition metal(TM) ions such as Cu2+ give the information about the structure and the site symmetry around the TM ions. EPR spectra of all the glass samples were recorded at X-band frequencies. From the EPR spectra spin-Hamiltonian parameters were evaluated. It was observed that g∥ >g±>ge (2.0023) and A∥>A±. From this values it is concluded that the ground state of Cu2+ is dx2-y2 (2B1g) and the site symmetry around Cu2+ ion is tetragonally distorted octahedral. From the EPR and Optical data bonding coefficients were evaluated. The in plane o-bonding(α2) is moderately ionic while out of plane 7t-bonding(β2) and in plane 7t-bonding(β1 2) are ionic nature

  11. Enrichment and exposure assessment of As, Cr and Pb of the soils in the vicinity of Stawell, Victoria, Australia.

    PubMed

    Noble, Ryan R P; Hough, Robert M; Watkins, Ronald T

    2010-06-01

    Stawell Gold Mine in NW Victoria, Australia, mines ores that contain large concentrations of As and significant quantities of the metals Pb and Cr. The aim of this research was to understand the dispersion, enrichment and probable exposure of these potentially hazardous elements around the mine site. Fifty-five surface soil samples were collected near the mine (<15 km) and analysed by ICP-MS/OES following bioavailable and four-acid extractions. Soils near the mine show greater concentrations of As, Cr and Pb than those near a regionally determined background. This is attributed to the combination of a natural geochemical halo around mineralization and anthropogenic dispersion due to mining and urbanization. Total As concentrations were between 16 and 946 mg kg(-1) near the mine in a regional background of 1-16 mg kg(-1). Total Cr concentrations were between 18 and 740 mg kg(-1) near the mine in a regional background of 26-143 mg kg(-1). Total Pb concentrations were between 12 and 430 mg kg(-1) near the mine in a regional background of 9-23 mg kg(-1). Dispersion of contaminant elements from the present ore processing is <500 m. The most enriched soils occur close to the town and are unrelated to present mining practices. The bioavailable As, Cr and Pb, soil ingestion rates and Risk Reference Doses were used to estimate health risks. An average toddler (12 kg) would need to consume at least 1.5 g, and most likely 12 g, of soil per day to show some symptoms of As toxicity. The maximum measured bioavailable As would pose a risk at average ingestion rates of 200 mg per day. Individuals with soil-eating disorders would exceed the safe daily consumption limits for As, and potentially Cr and Pb. Small children are not typically exposed to soil everyday, very few have soil eating disorders, and, therefore, the health risk from the soils around the mine is minimal.

  12. Preparation, Processing and Tunneling in YBa2Cu3O7-δ-Pb Native-Barrier Structures

    NASA Astrophysics Data System (ADS)

    Frangi, Francesca; Dwir, Benjamin; James, Jonathan H.; Gauzzi, Andrea; Pavuna, Davor

    1993-06-01

    We have developed a procedure for the preparation of small (40× 40 μm2) window-type YBa2Cu3O7-δ-Pb junctions with YSZ insulator and native tunnel barrier. We present the patterning technique of the two electrodes based on photolithography and wet etching. The nature of the barrier is found to be semiconducting. The tunneling measurements show gap-like feature of YBa2Cu3O7-δ at 8.5 meV and some additional features related to Pb and YBa2Cu3O7-δ phonon spectra.

  13. Tunneling characteristics of YBa 2Cu 3O 7-δ-Pb window-type Josephson junctions

    NASA Astrophysics Data System (ADS)

    Frangi, F.; Dwir, B.; Pavuna, D.

    1992-02-01

    We present the results of tunneling measurements done on window-type, native-barrier YBa 2Cu 3O 7-δ-Pb junctions. We show features in the I-V curves which are related to the gap of YBa 2Cu 3O 7-δ, as well as to the Pb and YBa 2Cu 3O 7-δ phonon spectra. The nature of barrier in these structures is found to be semi-conducting. We can also see the asymmetry in the tunneling curves.

  14. Effect of dissolved organic matter (DOM) of contrasting origins on Cu and Pb speciation and toxicity to Paracentrotus lividus larvae.

    PubMed

    Sánchez-Marín, Paula; Santos-Echeandía, Juan; Nieto-Cid, Mar; Alvarez-Salgado, Xosé Antón; Beiras, Ricardo

    2010-01-31

    Water samples of contrasting origin, including natural seawater, two sediment elutriates and sewage-influenced seawater, were collected and obtained to examine the effect of the dissolved organic matter (DOM) present on metal bioavailability. The carbon content (DOC) and the optical properties (absorbance and fluorescence) of the coloured DOM fraction (CDOM) of these materials were determined. Cu and Pb complexation properties were measured by anodic stripping voltammetry (ASV) and the effect of DOM on Cu and Pb bioavailability was studied by means of the Paracentrotus lividus embryo-larval bioassay. Sediment elutriates and sewage-influenced water (1) were enriched 1.4-1.7 times in DOC; (2) absorbed and reemitted more light; and (3) presented higher Cu complexation capacities (L(Cu)) than the natural seawater used for their preparation. L(Cu) varied from 0.08 microM in natural seawater to 0.3 and 0.5 microM in sediment elutriates and sewage-influenced water, respectively. Differences in DOC, CDOM and Cu complexation capacities were reflected in Cu toxicity. DOM enriched samples presented a Cu EC(50) of 0.64 microM, significantly higher than the Cu EC(50) of natural and artificial seawater, which was 0.38 microM. The protecting effect of DOM on Cu toxicity greatly disappeared when the samples were irradiated with high intensity UV-light. Cu toxicity could be successfully predicted considering ASV-labile Cu concentrations in the samples. Pb complexation by DOM was only detected in the DOM-enriched samples and caused little effect on Pb EC(50). This effect was contrary for both elutriates: one elutriate reduced Pb toxicity in comparison with the control artificial seawater, while the other increased it. UV irradiation of the samples caused a marked increase in Pb toxicity, which correlated with the remaining DOC concentration. DOM parameters were related to Cu speciation and toxicity: good correlations were found between DOC and Cu EC(50), while L(Cu) correlated

  15. Multiple site study of recent atmospheric metal (Pb, Zn and Cu) deposition in the NW Iberian Peninsula using peat cores.

    PubMed

    Olid, Carolina; Garcia-Orellana, Jordi; Martínez-Cortizas, Antonio; Masqué, Pere; Peiteado-Varela, Eva; Sanchez-Cabeza, Joan-Albert

    2010-10-15

    In order to estimate atmospheric metal deposition in Southern Europe since the beginning of the Industrial Period (~1850 AD), concentration profiles of Pb, Zn and Cu were determined in four (210)Pb-dated peat cores from ombrotrophic bogs in Serra do Xistral (Galicia, NW Iberian Peninsula). Maximum metal concentrations varied by a factor of 1.8 for Pb and Zn (70 to 128μgg(-1) and 128 to 231μgg(-1), respectively) and 3.5 for Cu (11 to 37μgg(-1)). The cumulative metal inventories of each core varied by a factor of 3 for all analysed metals (132 to 329μgcm(-2) for Pb, 198 to 625μgcm(-2) for Zn and 22 to 69μgcm(-2) for Cu), suggesting differences in net accumulation rates among peatlands. Although results suggest that mean deposition rates vary within the studied area, the enhanced (210)Pb accumulation and the interpretation of the inventory ratios ((210)Pb/Pb, Zn/Pb and Cu/Pb) in two bogs indicated that either a record perturbation or post-depositional redistribution effects must be considered. After correction, Pb, Zn and Cu profiles showed increasing concentrations and atmospheric fluxes since the mid-XX(th) century to maximum values in the second half of the XX(th) century. For Pb, maximum fluxes were observed in 1955-1962 and ranged from 16 to 22mgm(-2)yr(-1) (mean of 18±1mgm(-2)yr(-1)), two orders of magnitude higher than in the pre-industrial period. Peaks in Pb fluxes in Serra do Xistral before the period of maximum consumption of leaded petrol in Europe (1970s-1980s) suggest the dominance of local pollutant sources in the area (i.e. coal mining and burning). More recent peaks were observed for Zn and Cu, with fluxes ranging from 32 to 52mgm(-2)yr(-1) in 1989-1996, and from 4 to 9mgm(-2)yr(-1) in 1994-2001, respectively. Our results underline the importance of multi-core studies to assess both the integrity and reliability of peat records, and the degree of homogeneity in bog accumulation. We show the usefulness of using the excess (210)Pb inventory to

  16. Reduced Carrier Recombination in PbS - CuInS2 Quantum Dot Solar Cells

    PubMed Central

    Sun, Zhenhua; Sitbon, Gary; Pons, Thomas; Bakulin, Artem A.; Chen, Zhuoying

    2015-01-01

    Energy loss due to carrier recombination is among the major factors limiting the performance of TiO2/PbS colloidal quantum dot (QD) heterojunction solar cells. In this work, enhanced photocurrent is achieved by incorporating another type of hole-transporting QDs, Zn-doped CuInS2 (Zn-CIS) QDs into the PbS QD matrix. Binary QD solar cells exhibit a reduced charge recombination associated with the spatial charge separation between these two types of QDs. A ~30% increase in short-circuit current density and a ~20% increase in power conversion efficiency are observed in binary QD solar cells compared to cells built from PbS QDs only. In agreement with the charge transfer process identified through ultrafast pump/probe spectroscopy between these two QD components, transient photovoltage characteristics of single-component and binary QDs solar cells reveal longer carrier recombination time constants associated with the incorporation of Zn-CIS QDs. This work presents a straightforward, solution-processed method based on the incorporation of another QDs in the PbS QD matrix to control the carrier dynamics in colloidal QD materials and enhance solar cell performance. PMID:26024021

  17. Preparation and thermoelectric properties of ternary superionic conductor CuCrS{sub 2}

    SciTech Connect

    Chen Yuexing; Zhang Boping; Ge Zhenhua; Shang Pengpeng

    2012-02-15

    Transition metal chalcogenide CuCrS{sub 2} powder was synthesized by mechanical alloying (MA) and then consolidated by spark plasma sintering (SPS) technique at 673-1073 K. The phase structure, microstructure and thermoelectric properties of samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and Seebeck coefficient/electrical conductivity measuring system, respectively. All the bulks indicated a single phase CuCrS{sub 2}, while the high relative density over 90% were attained for the samples sintered at 873-1073 K. The electrical conductivity of bulk samples displayed a typical characteristic of semiconductor. With increasing measuring temperature, the conductive behaviour of bulk samples sintered over 973 K showed a semiconductor transformation from n-type to p-type due to the changes of main carrier type. The sample obtained by applying SPS at 873 K got the highest power factor 83.2 {mu}W m{sup -1} K{sup -2}, and the largest ZT value 0.11 at 673 K. - Graphical abstract: The samples sintered above 873 K, both of the Seebeck coefficient and electrical conductivity exhibit an increase tendency with increasing temperature, which is due to the mechanism of mix-conduction for CuCrS{sub 2}. Highlights: Black-Right-Pointing-Pointer Single phase CuCrS{sub 2} powder was synthesized by ball-milling at 425 rpm for 40 h. Black-Right-Pointing-Pointer Dense CuCrS{sub 2} bulks were fabricated using SPS techniques at sintering temperature 873-1073 K. Black-Right-Pointing-Pointer Seebeck coefficient of CuCrS{sub 2} samples sintered over 973 K change the signs. Black-Right-Pointing-Pointer Highest power factor reached 83.2 {mu}W m{sup -1} K{sup -2} at 673 K for the sample sintered at 873 K. Black-Right-Pointing-Pointer ZT value was 0.11 at 673 K for the sample sintered at 873 K.

  18. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings

    PubMed Central

    Huang, Longbin; Li, Xiaofang; Nguyen, Tuan A. H.

    2015-01-01

    Elevated inorganic phosphate (Pi) concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu)-lead (Pb)-zinc (Zn) mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7), the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5), EHM-TD (fresh Cu-stream, high magnetite content) and local soil (weathered shale and schist), respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed), oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2), ankerite (Ca(Fe Mg)(CO3)2 and siderite (FeCO3), as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,Fe)S, ZnS, (Zn,Cd)S)) may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal. PMID

  19. Variation of photon interaction parameters with energy for some Cu-Pb alloys

    SciTech Connect

    Singh, Tejbir Kaur, Sarpreet; Kaur, Parminder; Kaur, Harvinder; Singh, Parjit S.

    2015-08-28

    Various photon interaction parameters (mass attenuation coefficients, effective atomic numbers and effective electron numbers) have been computed for different compositions of Cu-Pb alloys in the wide energy regime of 1 keV to 100 GeV. The mass attenuation coefficients have been computed using mixture rule with the help of WinXCom (mass attenuation coefficient database for elements). The variation of mass attenuation coefficients, effective atomic numbers and electron density has been analysed and discussed in terms of dominance of different photon interaction processes viz. Compton scattering, photoelectric effect and pair production.

  20. Variation of photon interaction parameters with energy for some Cu-Pb alloys

    NASA Astrophysics Data System (ADS)

    Singh, Tejbir; Kaur, Sarpreet; Kaur, Parminder; Kaur, Harvinder; Singh, Parjit S.

    2015-08-01

    Various photon interaction parameters (mass attenuation coefficients, effective atomic numbers and effective electron numbers) have been computed for different compositions of Cu-Pb alloys in the wide energy regime of 1 keV to 100 GeV. The mass attenuation coefficients have been computed using mixture rule with the help of WinXCom (mass attenuation coefficient database for elements). The variation of mass attenuation coefficients, effective atomic numbers and electron density has been analysed and discussed in terms of dominance of different photon interaction processes viz. Compton scattering, photoelectric effect and pair production.

  1. Enhanced magnetism of Cu{sub n} clusters capped with N and endohedrally doped with Cr

    SciTech Connect

    Datta, Soumendu; Banerjee, Radhashyam; Mookerjee, Abhijit

    2015-01-14

    The focus of our work is on the production of highly magnetic materials out of Cu clusters. We have studied the relative effects of N-capping as well as N mono-doping on the structural stability and electronic properties of the small Cu clusters using first principles density functional theory based electronic structure calculations. We find that the N-capped clusters are more promising in producing giant magnetic moments, such as 14 μ{sub B} for the Cu{sub 6}N{sub 6} cluster and 29 μ{sub B} for the icosahedral Cu{sub 13}N{sub 12} cluster. This is accompanied by a substantial enhancement in their stability. We suggest that these giant magnetic moments of the capped Cu{sub n} clusters have relevance to the observed room temperature ferromagnetism of Cu doped GaN. For cage-like hollow Cu-clusters, an endohedral Cr-doping together with the N-capping appears as the most promising means to produce stable giant magnetic moments in the copper clusters.

  2. Processing Bi-Pb-Sr-Ca-Cu-O superconductors from amorphous state

    NASA Technical Reports Server (NTRS)

    Chiang, C. K.; Wong-Ng, W.; Cook, L. P.; Freiman, S. W.; Hwang, N. M.; Vaudin, M.; Hill, M. D.; Shull, R. D.; Shapiro, A. J.; Swartzendruber, L. J.

    1991-01-01

    The bismuth based high T sub c superconductors can be processed via an amorphous Bi-Pb-Sr-Ca-Cu oxide. The amorphous oxides were prepared by melting the constituent powders in an alumina crucible at 1200 C in air followed by pouring the liquid onto an aluminum plate, and rapidly pressing with a second plate. In the amorphous state, no crystalline phase was identified in the powder x ray diffraction pattern of the quenched materials. After heat treatment at high temperature the amorphous materials crystallized into a glass ceramic containing a large fraction of the Bi2Sr2Ca2Cu3O(x) phase T sub c = 110 K. The processing method, crystallization, and results of dc electrical resistivity and ac magnetic susceptibility measurements are discussed.

  3. Effect of Cr on Microstructure and Properties of a Series of AlTiCr x FeCoNiCu High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Li, Anmin; Ma, Ding; Zheng, Qifeng

    2014-04-01

    A series of AlTiCr x FeCoNiCu ( x: molar ratio, x = 0.5, 1.0, 1.5, 2.0, 2.5) high-entropy alloys (HEAs) were prepared by vacuum arc furnace. These alloys consist of α-phase, β-phase, and γ-phase. These phases are solid solutions. The structure of α-phase and γ-phase is face-centered cubic structure and that of β-phase is body-centered cubic (BCC) structure. There are four typical cast organizations in these alloys such as petal organization (α-phase), chrysanthemum organization (α-phase + β-phase), dendrite (β-phase), and inter-dendrite (γ-phase). The solidification mode of these alloys is affected by Chromium. If γ-phase is not considered, AlTiCr0.5FeCoNiCu and AlTiCrFeCoNiCu belong to hypoeutectic alloys; AlTiCr1.5FeCoNiCu, AlTiCr2.0FeCoNiCu, and AlTiCr2.5FeCoNiCu belong to hypereutectic alloys. The cast organizations of these alloys consist of pro-eutectic phase and eutectic structure (α + β). Compact eutectic structure and a certain amount of fine β-phase with uniform distribution are useful to improve the microhardness of the HEAs. More γ-phase and the microstructure with similar volume ratio values of α-phase and β-phase improve the compressive strength and toughness of these alloys. The compressive fracture of the series of AlTiCr x FeCoNiCu HEAs shows brittle characteristics, suggesting that these HEAs are brittle materials.

  4. Heavy metal content (Cd, Ni, Cr and Pb) in soil amendment with a low polluted biosolid

    NASA Astrophysics Data System (ADS)

    Gomez Lucas, Ignacio; Lag Brotons, Alfonso; Navarro-Pedreño, Jose; Belén Almendro-Candel, Maria; Jordán, Manuel M.; Bech, Jaume; Roca, Nuria

    2016-04-01

    The progressively higher water quality standards in Europe has led to the generation of large quantities of sewage sludge derived from wastewater treatment (Fytili and Zabaniotou 2008). Composting is an effective method to minimize these risks, as pathogens are biodegraded and heavy metals are stabilized as a result of organic matter transformations (Barker and Bryson 2002; Noble and Roberts 2004). Most of the studies about sewage sludge pollution are centred in medium and high polluted wastes. However, the aim of this study was to assess the effects on soil heavy metal content of a low polluted sewage sludge compost in order to identify an optimal application rate based in heavy metal concentration under a period of cultivation of a Mediterranean horticultural plant (Cynara carducnculus). The experiment was done between January to June: rainfall was 71 mm, the volume of water supplied every week was 10.5 mm, mean air temperatures was 14.2, 20.4 (maximum), and 9.2◦C (minimum). The soil was a clay-loam anthrosol (WRB 2006). The experimental plot (60 m2) was divided into five subplots with five treatments corresponding to 0, 2, 4, 6, and 8 kg compost/m2. Three top-soil (first 20 cm) samples from each treatment were taken (January, April and June) and these parameters were analysed: pH, electrical conductivity, organic matter and total content of heavy metals (microwave acid digestion followed by AAS-spectrometry determination). The results show that sewage sludge compost treatments increase the organic matter content and salinity (electrical conductivity of the soils) and diminish the pH. Cd and Ni total content in top-soil was affected and both slightly reduce their concentration. Pb and Cr show minor changes. In general, the application of this low polluted compost may affect the mobility of Cd and Ni due to the pH modification and the water added by irrigation along time but Pb and Cr remain their content in the top-soil. References Barker, A.V., and G.M. Bryson

  5. Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria.

    PubMed

    Braud, Armelle; Jézéquel, Karine; Bazot, Stéphane; Lebeau, Thierry

    2009-01-01

    Bioaugmentation-assisted phytoextraction may enhance the phytoextraction efficiency thanks to larger metal mobilization by microbial metabolites. Green fluorescent protein-tagged cells of Pseudomonas aeruginosa, Pseudomonas fluorescens or Ralstonia metallidurans, able to produce siderophores, were inoculated in an agricultural soil containing Cr (488 mg kg(-1)) and Pb (382 mg kg(-1)) and maize was cultivated. Bacteria were inoculated as free or immobilized cells in Ca-alginate beads, with skim milk in the aim at improving both the bacterial survival and the in situ siderophore production. Skim milk addition increased inoculated Pseudomonads concentration in soil. Soil inoculation with free cells of R. metallidurans supplied with skim milk increased Cr accumulation in maize shoots by a factor of 5.2 and inoculation with immobilized P. aeruginosa cells supplied with skim milk increased Cr and Pb uptake by maize shoots by a factor of 5.4 and 3.8, respectively. However total metal taken up by the whole plant decreases almost always with bioaugmentation. Translocation factor also increased with P. aeruginosa or R. metallidurans by a factor of 6 up to 7. Inoculated bacteria concentration in soil was correlated with metals in the exchangeable fraction. Cr and Pb concentrations in the exchangeable fraction were correlated with metal contents in shoots or roots. Our results suggest that bioaugmentation-assisted phytoextraction is a relevant method in the aim at increasing the phytoextraction rate which usually limits the use of phytoremediation technologies.

  6. Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria.

    PubMed

    Braud, Armelle; Jézéquel, Karine; Bazot, Stéphane; Lebeau, Thierry

    2009-01-01

    Bioaugmentation-assisted phytoextraction may enhance the phytoextraction efficiency thanks to larger metal mobilization by microbial metabolites. Green fluorescent protein-tagged cells of Pseudomonas aeruginosa, Pseudomonas fluorescens or Ralstonia metallidurans, able to produce siderophores, were inoculated in an agricultural soil containing Cr (488 mg kg(-1)) and Pb (382 mg kg(-1)) and maize was cultivated. Bacteria were inoculated as free or immobilized cells in Ca-alginate beads, with skim milk in the aim at improving both the bacterial survival and the in situ siderophore production. Skim milk addition increased inoculated Pseudomonads concentration in soil. Soil inoculation with free cells of R. metallidurans supplied with skim milk increased Cr accumulation in maize shoots by a factor of 5.2 and inoculation with immobilized P. aeruginosa cells supplied with skim milk increased Cr and Pb uptake by maize shoots by a factor of 5.4 and 3.8, respectively. However total metal taken up by the whole plant decreases almost always with bioaugmentation. Translocation factor also increased with P. aeruginosa or R. metallidurans by a factor of 6 up to 7. Inoculated bacteria concentration in soil was correlated with metals in the exchangeable fraction. Cr and Pb concentrations in the exchangeable fraction were correlated with metal contents in shoots or roots. Our results suggest that bioaugmentation-assisted phytoextraction is a relevant method in the aim at increasing the phytoextraction rate which usually limits the use of phytoremediation technologies. PMID:18945474

  7. Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants.

    PubMed

    Aboughalma, Hanssan; Bi, Ran; Schlaak, Michael

    2008-07-01

    The use of a combination of electrokinetic remediation and phytoremediation to decontaminate soil polluted with heavy metals has been demonstrated in a laboratory-scale experiment. Potato tubers were planted in plastic vessels filled with Zn, Pb, Cu and Cd contaminated soil and grown in a greenhouse. Three of these vessels were treated with direct current electric field (DC), three with alternative current (AC) and three remained untreated as control vessels. The soil pH varied from anode to cathode with a minimum of pH 3 near the anode and a maximum of pH 8 near the cathode in the DC treated soil profile. There was an accumulation of Zn, Cu and Cd at about 12 cm distance from anode when soil pH was 5 in the DC treated soil profile. There was no significant metal redistribution and pH variation between anode and cathode in the AC soil profile. The biomass production of the plants was 72% higher under AC treatment and 27% lower under DC treatment compared to the control. Metal accumulation was generally higher in the plant roots treated with electrical fields than the control. The overall metal uptake in plant shoots was lower under DC treatment compared to AC treatment and control, although there was a higher accumulation of Zn and Cu in the plant roots treated with electrical fields. The Zn uptake in plant shoots under AC treatment was higher compared to the control and DC treatment. Zn and Cu accumulation in the plant roots under AC and DC treatment was similar, and both were higher comparing to control. Cd content in plant roots under all three treatments was found to be higher than that in the soil. The Pb accumulation in the roots and the uptake into the shoots was lower compared to its content in the soil. PMID:18569305

  8. Interaction of Cu(2+), Pb (2+), Zn (2+) with trypsin: what is the key factor of their toxicity?

    PubMed

    Zhang, Tong; Zhang, Hao; Liu, Guiliang; Gao, Canzhu; Liu, Rutao

    2014-11-01

    Heavy metals possess great endangerment to environment even human health because of their indissolubility and bioaccumulation. The toxicity of heavy metal ions (Cu(2+), Pb(2+), Zn(2+)) to trypsin was investigated by fluorescence, synchronous fluorescence, UV-vis absorption, circular dichroism (CD) spectroscopy, isothermal titration calorimetry (ITC), and enzyme activity assay. The experimental results showed that toxic effect of heavy metal ions was due to their own characteristic, rather than the electric charges of the ion. Zn(2+) could not show the obvious toxicity to trypsin, while the structure and function of trypsin was damaged when the enzyme explored to Cu(2+) and Pb(2+). From the spectra results, we found that Cu(2+) would bind with trypsin, which lead to the fluorescence quenched and hydrophobicity increased. Pb(2+) could also change the structure and reduce the activity of trypsin in high concentration. In vitro measurement, the toxicity order of heavy metal ions to trypsin is: Cu(2+) > Pb(2+) > Zn(2+). In addition, isothermal titration calorimetry analysis proved that the interactions between Cu(2+), Pb(2+), Zn(2+) and trypsin were all spontaneous and exothermic, which indicated the adverse effect of these heavy metal ions to trypsin. PMID:25323557

  9. Superconducting behavior in the Bi-In-Sr-Ca-Cu-Pb-O system

    NASA Astrophysics Data System (ADS)

    Okada, M.; Homma, M.; Murakami, T.; Matsuoka, D.; Cross, K.

    1990-09-01

    The superconducting behavior of the nominal composition of (Bi/1-x/In/x/)2Sr2Ca2Cu3Pb/0.6/O/y/ was studied. It was found that the samples with x equal to or less than 0.90 fired at 850 C for 50 h in air showed zero resistance above 60 K. The sample with x = 0.25 showed the highest zero resistance transition temperature of 92 K and an onset temperature of 110 K. It was found that the grains with the composition of Bi2Sr2Ca2Cu3O/y/ for the sample with x = 0.25 contained 9 percent In for the amount of Bi. The surface of the sample with x = 0.90, which showed zero resistance above 60 K, was covered with Bi2Sr2Ca1Cu2O/y/ because the In oxide is volatile from its surface over 850 C. The addition of In to the system has no effect on the critical temperatures, but is effective in increasing the volume fraction of the Bi2Sr2Ca2Cu3O10 compound.

  10. Quasi-one-dimensional antiferromagnetism and multiferroicity in CuCrO4

    NASA Astrophysics Data System (ADS)

    Kremer, Reinhard K.; Law, J. M.; Reuvekamp, P.; Glaum, R.; Lee, C.; Kang, J.; Whangbo, M.-H.

    2012-02-01

    The bulk magnetic properties of the new quasi-one-dimensional Heisenberg antiferromagnet, CuCrO4, were characterized by magnetic susceptibility, heat capacity, optical spectroscopy, EPR and dielectric capacitance measurements and density functional evaluations of the intra- and interchain spin exchange interactions. We found type-II multiferroicity below the N'eel temperature of 8.2(5) K, arising from competing antiferromagnetic nearest-neighbor (Jnn) and next-nearest-neighbor (Jnnn) intra-chain spin exchange interactions. Experimental and theoretical results indicate that the ratio Jnn/Jnnn is close to 2, putting CuCrO4 in the vicinity of the Majumdar-Ghosh point. First low-temperature neutron powder diffraction data are consistent with a canted magnetic structure below ˜8 K.

  11. Quasi-one-dimensional antiferromagnetism and multiferroicity in CuCrO4

    NASA Astrophysics Data System (ADS)

    Law, J. M.; Reuvekamp, P.; Glaum, R.; Lee, C.; Kang, J.; Whangbo, M.-H.; Kremer, R. K.

    2011-07-01

    The bulk magnetic properties of the new quasi-one-dimensional Heisenberg antiferromagnet, CuCrO4, were characterized by magnetic susceptibility, heat capacity, optical spectroscopy, electron paramagnetic resonance and dielectric capacitance measurements, and density functional evaluations of the intrachain and interchain spin-exchange interactions. We found type-II multiferroicity below the Néel temperature of 8.2(5) K, arising from competing antiferromagnetic nearest-neighbor (Jnn) and next-nearest-neighbor (Jnnn) intrachain spin-exchange interactions. Experimental and theoretical results indicate that the ratio Jnn/Jnnn is close to 2, putting CuCrO4 in the vicinity of the Majumdar-Ghosh point.

  12. Enhanced Magnetization of CuCr2O4 Thin Films by Substrate-Induced Strain

    SciTech Connect

    Iwata, Jodi M.; Chopdekar, Rajesh V.; Wong, Franklin; Nelson-Cheeseman, Brittany B.; Arenholz, Elke; Suzuki, Yuri

    2008-09-17

    We report the synthesis of epitaxial spinel CuCr{sub 2}O{sub 4} thin films that display enhanced magnetization in excess of 200% of the bulk values when grown on single-crystal (110) MgAl{sub 2}O{sub 4} substrates. Bulk CuCr{sub 2}O{sub 4} is a ferrimagnetic insulator with a net magnetic moment of 0.5 {micro}{sub B} due to its distorted tetragonal unit cell (c/a= 1.29) and frustrated triangular moment configuration. We show that through epitaxial growth and substrate-induced strain, it is possible to tune the magnetic functionality of our films by reducing the tetragonal distortion of the unit cell which effectively decreases the frustration of the magnetic moments allowing for an overall greater net moment.

  13. Magnetic properties of delafossite oxide: CuCr1-xTixO2

    NASA Astrophysics Data System (ADS)

    Majee, M. K.; Bhobe, P. A.; Nigam, A. K.

    2016-05-01

    In order to increase the possibility for technological applications of CuCrO2, there have been attempts to introduce ferromagnetic (FM) order by doping at B-site. With this aim, we present here study of polycrystalline CuCr1-xTixO2 with x=0.0, 0.05, 0.1. The samples have been prepared using solid state synthesis method and characterized for its crystal structure and magnetic properties. All the samples crystallize in the 2H delafossite structure with R-3m space group. Ti substitution causes the expansion of unit cell with increase in both the lattice constants. Antiferromagnetic ordering temperature is seen to decrease with increasing Ti. Ferromagnetic-like signature is obtained in one of the compositions at low applied magnetic field of 100 Oe.

  14. Creep of Uncoated and Cu-Cr Coated NARloy-Z

    NASA Technical Reports Server (NTRS)

    Walter, R. J.; Chiang, K. T.

    1998-01-01

    Stress rupture creep tests were performed on uncoated and Cu-30vol%Cr coated NARloy-Z copper alloy specimens exposed to air at 482 C to 704 C. The results showed that creep failure in air of unprotected NARloy-Z was precipitated by brittle intergranular surface cracking produced by strain assisted grain boundary oxidation (SAGBO) which in turn caused early onset of tertiary creep. For the protected specimens, the Cu-Cr coating remained adherent throughout the tests and was effective in slowing down the rate of oxygen absorption, particularly at the higher temperatures, by formation of a continuous chromium oxide scale. As the result of reducing oxygen ingress, the coating prevented SAGBO initiated early creep failure, extended creep deformation and increased the creep rupture life of NARloy-Z over the entire 482 C to 704 C test temperature range.

  15. Hot Deformation and Dynamic Recrystallization Behavior of the Cu-Cr-Zr-Y Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Huili, Sun; Volinsky, Alex A.; Tian, Baohong; Chai, Zhe; Liu, Ping; Liu, Yong

    2016-03-01

    To study the workability and to optimize the hot deformation processing parameters of the Cu-Cr-Zr-Y alloy, the strain hardening effect and dynamic softening behavior of the Cu-Cr-Zr-Y alloy were investigated. The flow stress increases with the strain rate and stress decreases with deformation temperature. The critical conditions, including the critical strain and stress for the occurrence of dynamic recrystallization, were determined based on the alloy strain hardening rate. The critical stress related to the onset of dynamic recrystallization decreases with temperature. The evolution of DRX microstructure strongly depends on the deformation temperature and the strain rate. Dynamic recrystallization appears at high temperatures and low strain rates. The addition of Y can refine the grain and effectively accelerate dynamic recrystallization. Dislocation generation and multiplication are the main hot deformation mechanisms for the alloy. The deformation temperature increase and the strain rate decrease can promote dynamic recrystallization of the alloy.

  16. Structure and optoelectronic properties of spray deposited Mg doped p-CuCrO2 semiconductor oxide thin films

    NASA Astrophysics Data System (ADS)

    Rastogi, A. C.; Lim, S. H.; Desu, S. B.

    2008-07-01

    Transparent p-type Mg doped CuCrO2 wide-band-gap oxide semiconductor thin films were deposited over quartz substrates by chemical spray technique using metallo-organic precursors. Crystalline single phase CuCrO2 delafossite structure was dominant in ≥700 °C argon ambient annealed films but the as-deposited films contained spinel CuCr2O4 mixed phases. X-ray photoelectron Cr 2p spectra show spin-orbit splitting energy ˜9.8 eV consistent with Cr3+ valance state and Cr 2p3/2 resolved peaks show mixed valence state on Cr4+/Cr6+ confirming CuCr0.93Mg0.07O2 compound phase in spray deposited films. The effect of substrate temperature and film thickness on optical, electrical conductivity, and thermoelectric coefficient was investigated. Highly transparent ≥80% CuCr0.93Mg0.07O2 films with direct and indirect optical band gaps of 3.08 and 2.58 eV for 155 nm and 3.14 and 2.79 for 305 nm thin films, respectively, were obtained. Photoluminescence emission bands at 532 and 484 nm interpreted to arise from 3d94s1 and 3d10 Cu+ intraband transitions confirm mixing of Cu 3d, 4s, and 4p with O 2p orbitals necessary for realizing p-type CuCrO2 films. Electrical conductivity of CuCr0.93Mg0.07O2 films ranged 0.6-1 S cm-1 exhibiting activation energies ˜0.11 eV in 300-420 °K and ˜0.23 eV in ≥420 °K regions ascribed to activated conduction and grain boundary trap assisted conduction, respectively. Transparent p-(CuCr1-xMgxO2)/n-(ZnO) heterojunction diodes showing rectifying current-voltage characteristics were fabricated.

  17. Monolithic Cu-Cr-Nb Alloys for High Temperature, High Heat Flux Applications

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Locci, Ivan E.; Michal, Gary M.; Humphrey, Derek M.

    1999-01-01

    Work during the prior four years of this grant has resulted in significant advances in the development of Cu-8 Cr4 Nb and related Cu-Cr-Nb alloys. The alloys are nearing commercial use in the Reusable Launch Vehicle (RLV) where they are candidate materials for the thrust cell liners of the aerospike engines being developed by Rocketdyne. During the fifth and final year of the grant, it is proposed to complete development of the design level database of mechanical and thermophysical properties and transfer it to NASA Glenn Research Center and Rocketdyne. The database development work will be divided into three main areas: Thermophysical Database Augmentation, Mechanical Testing and Metallography and Fractography. In addition to the database development, work will continue that is focussed on the production of alternatives to the powder metallurgy alloys currently used. Exploration of alternative alloys will be aimed at both the development of lower cost materials and higher performance materials. A key element of this effort will be the use of Thermo-Calc software to survey the solubility behavior of a wide range of alloying elements in a copper matrix. The ultimate goals would be to define suitable alloy compositions and processing routes to produce thin sheets of the material at either a lower cost, or, with improved mechanical and thermal properties compared to the current Cu-Cr-Nb powder metallurgy alloys.

  18. Analyzing spotless mode of current transfer to cathodes of Cr, Gd, and Pb vapour arcs

    NASA Astrophysics Data System (ADS)

    Benilova, Larissa; Benilov, Mikhail

    2015-09-01

    Diffuse mode of current transfer occurs on cathodes of vacuum arcs if the average cathode surface temperature is high enough, which can be achieved by placing the (evaporating) cathode into a thermally insulated crucible. It is shown that in the case of Cr or Pb cathodes the usual mechanism of current transfer to arc cathodes cannot sustain current densities of the order of 105 -106 Am-2 observed in the experiment, the reason being that the electrical power deposited into electron gas in the near-cathode space-charge sheath is too low. It is hypothesized that the electrical power is supplied to the electron gas primarily in the bulk plasma, rather than in the sheath, and a high level of electron energy at the sheath edge is sustained by electron heat conduction from the bulk plasma. Estimates of the current of ions diffusing to the sheath edge from the quasi-neutral plasma gave values comparable to the experimental current density, which supports the above hypothesis. On the contrary, the spotless attachment of vacuum arcs to Gd cathodes may be interpreted as a manifestation of the usual arc cathode mechanism. Results given for Gd cathodes by a model of near-cathode layers in vacuum arcs conform to available experimental information. Work supported by FCT of Portugal through the projects PTDC/FIS-PLA/2708/2012 and Pest-OE/UID/FIS/50010/2013.

  19. Pollution of montane soil with Cu, Zn, As, Sb, Pb, and nitrate in Kanto, Japan.

    PubMed

    Takamatsu, Takejiro; Watanabe, Mirai; Koshikawa, Masami K; Murata, Tomoyoshi; Yamamura, Shigeki; Hayashi, Seiji

    2010-03-15

    Soil cores and rainwater were sampled under canopies of Cryptomeria japonica in four montane areas along an atmospheric depositional gradient in Kanto, Japan. Soil cores (30cm in depth) were divided into 2-cm or 4-cm segments for analysis. Vertical distributions of elemental enrichment ratios in soils were calculated as follows: (X/Al)(i)/(X/Al)(BG) (where the numerator and denominator are concentration ratios of element-X and Al in the i- and bottom segments of soil cores, respectively). The upper 14-cm soil layer showed higher levels of Cu, Zn, As, Sb, and Pb than the lower (14-30cm) soil layer. In the four areas, the average enrichment ratios in the upper 6-cm soil layer were as follows: Pb (4.93)>or=Sb (4.06)>or=As (3.04)>Zn (1.71)>or=Cu (1.56). Exogenous elements (kg/ha) accumulated in the upper 14-cm soil layer were as follows: Zn (26.0)>Pb (12.4)>Cu (4.48)>or=As (3.43)>or=Sb (0.49). These rank orders were consistent with those of elements in anthropogenic aerosols and polluted (roadside) air, respectively, indicating that air pollutants probably caused enrichment of these elements in the soil surface layer. Approximately half of the total concentrations of As, Sb, and Pb in the upper 14-cm soil layer were derived from exogenous (anthropogenic) sources. Sb showed the highest enrichment factor in anthropogenic aerosols, and shows similar deposition behavior to NO(3)(-), which is a typical acidic air pollutant. There was a strong correlation between Sb and NO(3)(-) concentrations in rainfall (e.g., in the throughfall under C. japonica: [NO(3)(-)]=21.1 [dissolved Sb], r=0.938, p<0.0001, n=182). Using this correlation, total (cumulative) inputs of NO(3)(-) were estimated from the accumulated amounts of exogenous Sb in soils, i.e., 16.7t/ha at Mt. Kinsyo (most polluted), 8.6t/ha at Mt. Tsukuba (moderately polluted), and 5.8t/ha at the Taga mountain system (least polluted). There are no visible ecological effects of these accumulated elements in the Kanto region at

  20. Electrical conductivity and superconductivity in (Bi-Pb)-Sr-Ca-Cu-O glass ceramics during the first minutes of crystallization

    NASA Astrophysics Data System (ADS)

    Gazda, M.; Kusz, B.; Chudinov, S.; Stizza, S.; Natali, R.

    2003-05-01

    (Bi 0.8Pb 0.2) 4Sr 3Ca 3Cu 4O x glass ceramic samples were obtained by annealing at temperatures between 700 and 870 °C for a short time. The measurements of the temperature dependence of resistivity in annealed samples were carried out with the conventional four-terminal method in a temperature range from 3 to 300 K. The dynamic changes of resistivity during the process of annealing were also monitored in some of the studied annealing temperatures. Low temperature resistivity measurements show that during the growth of crystalline phases a gradual change of conduction mechanism occurs. Some samples were superconducting with transition temperatures characteristic for (Bi 0.8Pb 0.2) 2Sr 2CuO x and (Bi 0.8Pb 0.2) 2Sr 2CaCu 2O x materials.

  1. Fabrication of a high-performance Pb-PtCu/CNT catalyst for methanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Huang, Yiyin; Cai, Jindi; Zheng, Shiying; Guo, Yonglang

    2012-07-01

    This work presents a general strategy to fabricate a new type of hierarchically structured trimetallic nano-catalyst. Cu nanoparticles are partially displaced by Pt4+ and then further decorated by Pb (II) species on the carbon nanotube surface. The X-ray photoelectron spectroscopy and cyclic voltammograms data demonstrate that Cu is inside the particles while Pb (II) species are outside. The novel Pb-PtCu/CNT catalyst exhibits superior stability and CO poisoning tolerance during potential cycling. Methanol oxidation peak current of this novel catalyst (94.4 mA cm-2) is almost two times higher than that of the commercial PtRu/C (50 mA cm-2).

  2. Stabilization of Pb and Cu in contaminated soils using (nano)oxides - a preliminary study

    NASA Astrophysics Data System (ADS)

    Komárek, Michael; Michálková, Zuzana; Vaněk, Aleš

    2013-04-01

    Chemical stabilization techniques (the application of various stabilizing amendments, which by chemical means reduces contaminant mobility, bioavailability and bioaccessibility) have shown to be possible less destructive alternatives to conventional remediation options. Most stabilization techniques aim at rendering less available the metal(loid) fractions that can pose significant environmental and/or toxicological risks and protecting the functionality of the soil environment. Nano-particulate oxides (particle size of 1-100 nm) are important scavengers of contaminants in soils and due to their reactive and relatively large specific surface area, engineered oxide nanoparticles are promising materials for the remediation of soils contaminated with inorganic pollutants. However, studies assessing the efficiency of these amendments in contaminated soils are still rather scarce. Therefore, the aim of this work is to evaluate the stabilization efficiency of four (nano)oxides (maghemite, magnetite, gibbsite and amorphous Mn oxide (AMO)) in two soils contaminated with Cu (400 mg/kg; pH 3.6) and Pb (1500 mg/kg; pH 5.5), respectively, using chemical extraction methods (CaCl2, EDTA and the BCR sequential extraction) and direct sampling of soil solution using rhizons. The results suggest that the application of the oxides did not influence the pH of the soils, with the only exception of the AMO, which increased the pH and resulted into the formation of MnCO3 on the oxide surface (data from SEM and XRD). Additionally, the high reactivity of the oxides led to increased DOC concentrations originating from the dissolved soil organic matter, especially in the case of the AMO. The AMO was also the most efficient stabilizing amendment for Cu (most significant decrease in Cu in soil solution, in the exchangeable fraction and CaCl2/EDTA extracts), promoted by the pH increase. Despite their lower particle size, maghemite, magnetite and gibbsite were less efficient; although partial

  3. Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces

    DOE PAGES

    Wang, Yingge; Michel, F. Marc; Choi, Yongseong; Eng, Peter J.; Levard, Clement; Siebner, Hagar; Gu, Baohua; Bargar, John R.; Brown, Gordon E.

    2016-05-09

    Here, mineral surfaces are often coated by natural organic matter (NOM), which has a major influence on metal-ion sorption and sequestration because of the abundance of binding sites in such coatings and the changes they cause in local nanoscale environments. The effects of NOM coatings on mineral surfaces are, however, still poorly understood at the molecular level due to the complexity of these systems. In this study, we have applied long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy to measure the partitioning of naturally present Cu(II) (0.0226%), Zn(II) (0.009%), and Pb(II) ( 0.0004%) between Elliott Soil Humic Acid (ESHA) coatings andmore » three model single-crystal metal-oxide substrates: α-Al2O3 (0 0 0 1), α-Al2O3 (1 1 0 2), and α-Fe2O3 (0 0 0 1). The competitive sorption effects among these metal ions for binding sites in the ESHA coatings and on the metal-oxide surfaces were investigated as a function of reaction time, calcium content, and solution pH. Pb(II) ions present in the ESHA coatings were found to redistribute to reactive α-Al2O3 (1 1 0 2) and α-Fe2O3 (0 0 0 1) surfaces after 3 h of reaction (pH = 6.0, [Ca(II)] = 2 mM). Pb(II) partitioning onto these reactive metal-oxide surfaces increased with increasing reaction time (up to 7 d). In addition, the partitioning of Cu(II) and Zn(II) from the ESHA coating to the α-Fe2O3 (0 0 0 1) substrate increased slightly with reaction time (2.4% and 3.7% for Cu(II) and Zn(II), respectively, after 3 h and 6.4% and 7.7% for Cu(II) and Zn(II), respectively, after 72 h of reaction time).« less

  4. Primary Phase Field of the Pb-Doped 2223 High-Tc Superconductor in the (Bi, Pb)-Sr-Ca-Cu-O System

    PubMed Central

    Wong-Ng, W.; Cook, L. P.; Kearsley, A.; Greenwood, W.

    1999-01-01

    Both liquidus and subsolidus phase equilibrium data are of central importance for applications of high temperature superconductors in the (Bi, Pb)-Sr-Ca-Cu-O system, including material synthesis, melt processing and single crystal growth. The subsolidus equilibria of the 110 K high-Tc Pb-doped 2223 ([Bi, Pb], Sr, Ca, Cu) phase and the location of the primary phase field (crystallization field) have been determined in this study. For the quantitative determination of liquidus data, a wicking technique was developed to capture the melt for quantitative microchemical analysis. A total of 29 five-phase volumes that include the 2223 phase as a component was obtained. The initial melt compositions of these volumes range from a mole fraction of 7.3 % to 28.0 % for Bi, 11.3 % to 27.8 % for Sr, 1.2 % to 19.4 % for Pb, 9.8 % to 30.8 % for Ca, and 17.1 % to 47.0 % for Cu. Based on these data, the crystallization field for the 2223 phase was constructed using the convex hull technique. A section of this “volume” was obtained by holding two components of the composition at the median value, allowing projection on the other three axes to show the extent of the field.

  5. Cu-Zn-Pb multi isotopic characterization of a small watershed (Loire river basin, France)

    NASA Astrophysics Data System (ADS)

    Desaulty, A. M.; Millot, R.; Perret, S.; Bourrain, X.

    2015-12-01

    Combating metal pollution in surface water is a major environmental, public health and economic issue. Knowledge of the behavior of metals, such as copper (Cu), zinc (Zn) and lead (Pb) in sediments and dissolved load, is a key factor to improve the management of rivers. Recent advances in mass spectrometry related to the development of MC-ICPMS allow to analyze the isotopic composition of these elements, and previous studies show the effectiveness of isotopic analyses to determine the anthropogenic sources of pollution in environment. The goal of this study is to use the Cu-Zn-Pb multi-isotopic signature to track the pollutions in surface water, and to understand the complex processes causing the metals mobilization and transport in environment. More particularly we investigate the mechanisms of distribution between the dissolved load and particulate load, known to play an important role in the transport of metals through river systems. As case study, we chose a small watershed, poorly urbanized in the Loire river basin. Its spring is in a pristine area, while it is only impacted some kilometers further by the releases rich in metals coming from a hospital water treatment plant. First a sampling of these liquid effluents as well as dissolved load and sediment from upstream to downstream was realized and their concentrations and isotopic data were determined. Then to simulate a lot of potential natural and anthropogenic modifications of environmental conditions, we made sequential extraction protocol using various reagents on the sediments. Isotopic analyzes were performed also on the various extracting solutions. Isotopic ratios were measured using a Neptune MC-ICPMS at the BRGM, after a protocol of purification for Zn and Cu. The results showed that, these isotopic systematics reveal important informations about the mechanists of mobilization and transport of metals through river systems. However experiments performed under laboratory conditions will be necessary

  6. Preliminary assessment of metal-porcelain bonding strength of CoCrW alloy after 3wt.% Cu addition.

    PubMed

    Lu, Yanjin; Zhao, Chaoqian; Ren, Ling; Guo, Sai; Gan, Yiliang; Yang, Chunguang; Wu, Songquan; Lin, Junjie; Huang, Tingting; Yang, Ke; Lin, Jinxin

    2016-06-01

    In this work, a novel Cu-bearing CoCrW alloy fabricated by selective laser melting for dental application has been studied. For its successful application, the bonding strength of metal-porcelain is essential to be systematically investigated. Therefore, the aim of this study was to evaluate the metal-porcelain bonding strength of CoCrWCu alloy by three-point bending test, meanwhile the Ni-free CoCrW alloy was used as control. The oxygen content was investigated by an elemental analyzer; X-ray photoelectron spectroscopy (XPS) was used to analyze the surface chemical composition of CoCrW based alloy after preoxidation treatment; the fracture mode was investigated by X-ray energy spectrum analysis (EDS) and scanning electron microscope (SEM). Result from the oxygen content analysis showed that the content of oxygen dramatically increased after the Cu addition. And the XPS suggested that Co-oxidation, Cr2O3, CrO2, WO3, Cu2O and CuO existed on the preoxidated surface of the CoCrWCu alloy; the three-point bending test showed that the bonding strength of the CoCrWCu alloy was 43.32 MPa, which was lower than that of the CoCrW group of 47.65 MPa. However, the average metal-porcelain bonding strength is significantly higher than the minimum value in the ISO 9693 standard. Results from the SEM images and EDS indicated that the fracture mode of CoCrWCu-porcelain was mixed between cohesive and adhesive. Based on the results obtained in this study, it can be indicated that the Cu-bearing CoCrW alloy fabricated by the selective laser melting is a promising candidate for use in dental application. PMID:27040193

  7. Atrazine immobilization on sludge derived biochar and the interactive influence of coexisting Pb(II) or Cr(VI) ions.

    PubMed

    Zhang, Weihua; Zheng, Juan; Zheng, Pingping; Qiu, Rongliang

    2015-09-01

    Sludge derived biochars (SDBCs) may have the potential to simultaneously remove heavy metals and organic contaminants in relation to their various active sorption sites for both metal ions and organic compounds. SDBCs have been proven to provide a considerable capacity for immobilizing Pb(II) and Cr(VI) ions in solution, and in this study their ability to sorb atrazine, in addition to their corresponding interactive influences with coexisting metal ions, is extensively investigated. The results indicate that all atrazine adsorption isotherms fit well with the Freundlich equation, and the greatest value of 16.8 mg g(-1) sorption capacity occurred with SDBCs pyrolyzed at 400°C for 2h. The slow sorption kinetics fit well with the Lagergren's 2nd order reaction, and depend upon the initial atrazine concentration, indicating the significance of a site-specific process. The ionic strength-dependence of the atrazine adsorption behavior further consolidates the involvement of the mechanism of the H-bond with hydroxyl groups on SDBC. However, when Pb(II)/Cr(VI) metal ions coexist in solution, they substantially suppress atrazine adsorption, probably because the inner complex between the hydroxyl groups on SDBCs and Pb(II)/Cr(III) ions intrude the weak H-bond with atrazine. As a result, metal adsorption was found to be unaffected by the coexisting atrazine. Therefore, although SDBC is applicable for atrazine removal/immobilization in most of environmentally relevant conditions, a two-step process may be required if heavy metal ions coexist.

  8. Experimental determination of nonequilibrium transport parameters reflecting the competitive sorption between Cu and Pb in slag-sand column.

    PubMed

    Chung, Jaeshik; Kim, Young-Jin; Lee, Gwanghun; Nam, Kyoungphile

    2016-07-01

    Competitive sorption and resulting nonequilibrium transport of Cu and Pb were investigated using slag as a primary sorbent. A series of estimation models were applied based on the equilibrium, and nonequilibrium sorption respectively, and finally calibrated by incorporating the experimentally determined batch kinetic data. When applied individually, the behavior of metals in slag-sand column were well predicted by both equilibrium and nonequilibrium models in CXTFIT code. However, coexisting Cu and Pb exhibited competition for sorption sites, generating an irregular breakthrough curves such as overshoot (higher concentration in effluent than the feed concentration) of Cu and corresponding earlier peak of Pb followed by gradual re-rising. Although two-site nonequilibrium model further considers coupled hydrochemical process, desorption of the Cu from competition made the model prediction inaccurate. However, the parameter estimation could be improved by incorporating the experimentally determined mass transfer rate, ωexp from batch kinetics. Based on the calibrated model, the fraction of instantaneous retardation, βexp of Pb decreased from 0.41 in the single system to 0.30 in the binary system, indicating the shift from equilibrium to nonequilibrium state, where which of Cu increased from 0.39 to 0.94, representing the shift towards equilibrium. The modified results were also compared with five-step sequential extraction data, confirming that the shift of particular metal fractions from the competition triggered the nonequilibrium transport. PMID:27060642

  9. Nano-structured CuO-Cu2O Complex Thin Film for Application in CH3NH3PbI3 Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Chen, Lung-Chieh; Chen, Cheng-Chiang; Liang, Kai-Chieh; Chang, Sheng Hsiung; Tseng, Zhong-Liang; Yeh, Shih-Chieh; Chen, Chin-Ti; Wu, Wen-Ti; Wu, Chun-Guey

    2016-09-01

    Nano-structured CuO-Cu2O complex thin film-based perovskite solar cells were fabricated on an indium tin oxide (ITO)-coated glass and studied. Copper (Cu) thin films with a purity of 99.995 % were deposited on an ITO-coated glass by magnetron reactive sputtering. To optimize the properties of the nano-structured CuO-Cu2O complex thin films, the deposited Cu thin films were thermally oxidized at various temperatures from 300 to 400 °C. A CH3NH3PbI3 perovskite absorber was fabricated on top of CuO-Cu2O complex thin film by a one-step spin-coating process with a toluene washing treatment. Following optimization, the maximum power conversion efficiency (PCE) exceeded 8.1 %. Therefore, the low-cost, solution-processed, stable nano-structured CuO-Cu2O complex thin film can be used as an alternative hole transport layer (HTL) in industrially produced perovskite solar cells.

  10. Nano-structured CuO-Cu2O Complex Thin Film for Application in CH3NH3PbI3 Perovskite Solar Cells.

    PubMed

    Chen, Lung-Chieh; Chen, Cheng-Chiang; Liang, Kai-Chieh; Chang, Sheng Hsiung; Tseng, Zhong-Liang; Yeh, Shih-Chieh; Chen, Chin-Ti; Wu, Wen-Ti; Wu, Chun-Guey

    2016-12-01

    Nano-structured CuO-Cu2O complex thin film-based perovskite solar cells were fabricated on an indium tin oxide (ITO)-coated glass and studied. Copper (Cu) thin films with a purity of 99.995 % were deposited on an ITO-coated glass by magnetron reactive sputtering. To optimize the properties of the nano-structured CuO-Cu2O complex thin films, the deposited Cu thin films were thermally oxidized at various temperatures from 300 to 400 °C. A CH3NH3PbI3 perovskite absorber was fabricated on top of CuO-Cu2O complex thin film by a one-step spin-coating process with a toluene washing treatment. Following optimization, the maximum power conversion efficiency (PCE) exceeded 8.1 %. Therefore, the low-cost, solution-processed, stable nano-structured CuO-Cu2O complex thin film can be used as an alternative hole transport layer (HTL) in industrially produced perovskite solar cells. PMID:27637894

  11. Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Yingge; Michel, F. Marc; Choi, Yongseong; Eng, Peter J.; Levard, Clement; Siebner, Hagar; Gu, Baohua; Bargar, John R.; Brown, Gordon E.

    2016-09-01

    Mineral surfaces are often coated by natural organic matter (NOM), which has a major influence on metal-ion sorption and sequestration because of the abundance of binding sites in such coatings and the changes they cause in local nanoscale environments. The effects of NOM coatings on mineral surfaces are, however, still poorly understood at the molecular level due to the complexity of these systems. In this study, we have applied long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy to measure the partitioning of naturally present Cu(II) (0.0226%), Zn(II) (0.009%), and Pb(II) (∼0.0004%) between Elliott Soil Humic Acid (ESHA) coatings and three model single-crystal metal-oxide substrates: α-Al2O3 (0 0 0 1), α-Al2O3 (1 -1 0 2), and α-Fe2O3 (0 0 0 1). The competitive sorption effects among these metal ions for binding sites in the ESHA coatings and on the metal-oxide surfaces were investigated as a function of reaction time, calcium content, and solution pH. Pb(II) ions present in the ESHA coatings were found to redistribute to reactive α-Al2O3 (1 -1 0 2) and α-Fe2O3 (0 0 0 1) surfaces after 3 h of reaction (pH = 6.0, [Ca(II)] = 2 mM). Pb(II) partitioning onto these reactive metal-oxide surfaces increased with increasing reaction time (up to 7 d). In addition, the partitioning of Cu(II) and Zn(II) from the ESHA coating to the α-Fe2O3 (0 0 0 1) substrate increased slightly with reaction time (2.4% and 3.7% for Cu(II) and Zn(II), respectively, after 3 h and 6.4% and 7.7% for Cu(II) and Zn(II), respectively, after 72 h of reaction time). However, no changes in the partitioning of Cu(II) and Zn(II) onto the α-Al2O3 (1 -1 0 2) surface were observed with increasing reaction time, suggesting that these ions strongly complex with functional groups in the ESHA coatings. Similar results were obtained for Cu(II) and Zn(II) on the ESHA-coated α-Al2O3 (1 -1 0 2) surfaces in samples without the addition of calcium. However, the amounts of Pb

  12. The band structure-matched and highly spin-polarized Co{sub 2}CrZ/Cu{sub 2}CrAl Heusler alloys interface

    SciTech Connect

    Ko, V.; Han, G.; Qiu, J.; Feng, Y. P.

    2009-11-16

    Here we present a lattice- and band-matched nonmagnetic L21 Heusler alloy spacer for Co{sub 2}CrZ Heusler alloys where Z=Si or Al. By first principle calculations, we find that the band structure matching is almost perfectly satisfied when they are interfaced with Cu{sub 2}CrAl. Despite the loss of half-metallicity due to interface states, our calculations show that the spin polarization at these band-matched (001) interfaces is higher than 80%. These lattice-matched Co{sub 2}CrZ/Cu{sub 2}CrAl interfaces with excellent band matching and enhanced spin scattering asymmetry are promising for all-metallic current-perpendicular-to-plane giant magnetoresistance device applications.

  13. Evaluation of tungsten coatings on CuCrZr and W/Cu FGM under high heat flux and HT-7 limiter plasma irradiation

    NASA Astrophysics Data System (ADS)

    Chong, F. L.; Chen, J. L.; Li, J. G.

    2007-06-01

    VPS-W coatings on CuCrZr with W/Cu interlayer and powder metallurgic W/Cu functionally graded material (FGM) were tested under high heat flux with active cooling and plasma irradiation in the HT-7 device. Results showed that after 10 MW/m2 thermal shock experiment, exfoliation and crack appeared, however, the interface was not damaged except a few pores. VPS-W can withstand 150 cycles for 100s pulses under 6 MW/m2. After plasma irradiation, tungsten carbide and tungsten oxide were observed by XPS analysis. Bubbles were observed on the surface of W/Cu FGM. These indicated that VPS-W coatings on CuCrZr with W/Cu interlayer have good thermal performance, and W/Cu interlayer was a better alternative compliant layer which can realize reliable W/CuCrZr joint, and the pore microstructure of VPS-W coating is helpful to inhibit the bubble formation.

  14. Sorption by kaolinite of Cd 2+, Pb 2+ and Cu 2+ from landfill leachate-contaminated groundwater

    NASA Astrophysics Data System (ADS)

    Holm, Thomas R.; Zhu, Xiao-Feng

    1994-08-01

    Sorption of Cd 2+, Pb 2+ and Cu 2+ to kaolinite from landfill leachate-contaminated groundwater, artificial groundwater (same major-ion concentrations as groundwater) and NaNO 3 (same ionic strenght as the groundwater) was studied. Complexation of Cu 2+ and Cd 2+ by dissolved organic matter (DOM) in the groundwater was also studied. There was less sorption of all three metals from groundwater than from NaNO 3 for large pH ranges. Sorption of Cd 2+ and Pb 2+ seemed to be due to a combination of ion exchange and surface complexation. This hypothesis was suppored by agreement between an ion exchange/surface complexation model and the sorption data. There was less Cu 2+ sorption from groundwater than from the NaNO 3 for pH-values > 5, but Cu 2+ sorption from artificial groundwater was the same as from NaNO 3. Sorption of Cu 2+ was apparently by surface complexation only. For fixed pH and variable total Cu, there was less Cu 2+ sorption from groundwater than from NaNO 3, which is consistent with the formation of nonsorbing soluble complexes with DOM. A soluble complexation/surface complexation model reproduced the trends in the data, which supports the hypothesis of nonsorbing Cu complex formation.

  15. Fate of Cu, Cr, and As during combustion of impregnated wood with and without peat additive

    SciTech Connect

    Karin Lundholm; Dan Bostroem; Anders Nordin; Andrei Shchukarev

    2007-09-15

    The EU Directive on incineration of waste regulates the harmful emissions of particles and twelve toxic elements, including copper, chromium, and arsenic. Using a 15 kW pellets-fueled grate burner, experiments were performed to determine the fate of copper, chromium, and arsenic during combustion of chromate copper arsenate (CCA) preservative wood. The fate and speciation of copper, chromium, and arsenic were determined from analysis of the flue gas particles and the bottom ash using SEM-EDS, XRD, XPS, and ICP-AES. Chemical equilibrium model calculations were performed to interpret the experimental findings. The results revealed that about 5% copper, 15% chromium, and 60% arsenic were volatilized during combustion of pure CCA-wood, which is lower than predicted volatilization from the individual arsenic, chromium, and copper oxides. This is explained by the formation of more stable refractory complex oxide phases for which the stability trends and patterns are presented. When co-combusted with peat, an additional stabilization of these phases was obtained and thus a small but noteworthy decrease in volatilization of all three elements was observed. The major identified phases for all fuels were CuCrO{sub 2}(s), (Fe,Mg,Cu)(Cr,Fe,Al)O{sub 4}(s), Cr{sub 2}O{sub 3}(s), and Ca{sub 3}(AsO{sub 4}){sub 2}(s). Arsenic was also identified in the fine particles as KH{sub 2}AsO{sub 4}(s) and As{sub 2}O{sub 3}). A strong indication of hexavalent chromium in the form of K{sub 2}CrO{sub 4} or as a solid solution between K{sub 3}Na(CrO{sub 4}){sub 2} and K{sub 3}Na(SO{sub 4}){sub 2} was found in the fine particles. Good qualitative agreement was observed between experimental data and chemical equilibrium model calculations. 38 refs., 6 figs., 2 tabs.

  16. Heavy metals pollution and pb isotopic signatures in surface sediments collected from Bohai Bay, North China.

    PubMed

    Gao, Bo; Lu, Jin; Hao, Hong; Yin, Shuhua; Yu, Xiao; Wang, Qiwen; Sun, Ke

    2014-01-01

    To investigate the characteristics and potential sources of heavy metals pollution, surface sediments collected from Bohai Bay, North China, were analyzed for the selected metals (Cd, Cr, Cu, Ni, Pb, and Zn). The Geoaccumulation Index was used to assess the level of heavy metal pollution. Pb isotopic compositions in sediments were also measured to effectively identify the potential Pb sources. The results showed that the average concentrations of Cd, Cr, Cu, Ni, Pb, and Zn were 0.15, 79.73, 28.70, 36.56, 25.63, and 72.83 mg/kg, respectively. The mean concentrations of the studied metals were slightly higher than the background values. However, the heavy metals concentrations in surface sediments in Bohai Bay were below the other important bays or estuaries in China. The assessment by Geoaccumulation Index indicated that Cr, Zn, and Cd were classified as "the unpolluted" level, while Ni, Cu, and Pb were ranked as "unpolluted to moderately polluted" level. The order of pollution level of heavy metals was: Pb > Ni > Cu > Cr > Zn > Cd. The Pb isotopic ratios in surface sediments varied from 1.159 to 1.185 for (206)Pb/(207)Pb and from 2.456 to 2.482 for (208)Pb/(207)Pb. Compared with Pb isotopic radios in other sources, Pb contaminations in the surface sediments of Bohai Bay may be controlled by the mix process of coal combustion, aerosol particles deposition, and natural sources.

  17. Immobilization of Pb and Cu in polluted soil by superphosphate, multi-walled carbon nanotube, rice straw and its derived biochar.

    PubMed

    Rizwan, Muhammad Shahid; Imtiaz, Muhammad; Huang, Guoyong; Chhajro, Muhammad Afzal; Liu, Yonghong; Fu, Qingling; Zhu, Jun; Ashraf, Muhammad; Zafar, Mohsin; Bashir, Saqib; Hu, Hongqing

    2016-08-01

    Lead (Pb) and copper (Cu) contamination in croplands pose severe health hazards and environmental concerns throughout soil-food chain transfer. In the present study, BCR, TCLP, CaCl2, and SBET techniques were employed to evaluate the simultaneous effectiveness of rice straw (RS) and its derived biochar (BC), multiwall carbon nanotube (MWCNT), and single superphosphate (SSP) to immobilize the Pb and Cu in co-contaminated soil. The BCR sequential extraction results suggested that with increasing BC and SSP amount, the acid-soluble fractions decreased while oxidizable and residual proportions of Pb and Cu were increased significantly. Compared to SSP, the application of BC amendment substantially modified partitioning of Cu from easily exchangeable phase to less bioavailable residual bound fraction. The immobilized Pb and Cu were mainly transformed to reducible forms. The TCLP and CaCl2-extracted Pb and Cu were reduced significantly by the addition of BC compared to RS and MWCNT, whereas the bio-accessibility of Pb significantly reduced with RS addition. SSP showed better results for Pb immobilization while marginal for Cu in co-contaminated soil. Overall, the addition of BC offered the best results and could be effective in both Pb and Cu immobilization thereby reducing their mobility and bioavailability in the co-contaminated soil. PMID:27121017

  18. Microstructural refinement and strengthening of Cu-4 Cr-2 Nb alloy by mechanical milling

    SciTech Connect

    Anderson, K.R.; Groza, J.R.; Ulmer, D.G.

    1997-07-15

    Lately, a variety of dispersion strengthened (DS) copper alloys that provide a good combination of thermal/electrical conductivity and mechanical strength have been developed. Strengthening is usually achieved by the introduction of a ceramic, refractory metal or intermetallic secondary phase. Cu-Cr-Nb is one such DS alloy in which strengthening is provided by Cr{sub 2}Nb intermetallic particles. Mechanical milling of as-atomized Cu-4 Cr-2 Nb alloy powders substantially increases the mechanical strength (hardness) of the starting material. This is achieved through a drastic grain size, as well as large precipitate size refinement. A more uniform precipitate distribution is also attained. Whether milling is performed with steel or WC vial and balls the hardness saturates at approximately 100 HRB after about 4 hr milling. However, this benefit of MM was offset by an equally severe decrease in electrical conductivity. This decrease is attributed to impurities/contamination from the milling media introduced into the milled powder, primarily, Fe and C, or, WC and Co.

  19. Manufacturing and High Heat Flux Testing of Brazed Flat-Type W/CuCrZr Plasma Facing Components

    NASA Astrophysics Data System (ADS)

    Lian, Youyun; Liu, Xiang; Feng, Fan; Chen, Lei; Cheng, Zhengkui; Wang, Jin; Chen, Jiming

    2016-02-01

    Water-cooled flat-type W/CuCrZr plasma facing components with an interlayer of oxygen-free copper (OFC) have been developed by using vacuum brazing route. The OFC layer for the accommodation of thermal stresses was cast onto the surface of W at a temperature range of 1150 °C-1200 °C in a vacuum furnace. The W/OFC cast tiles were vacuum brazed to a CuCrZr heat sink at 940 °C using the silver-free filler material CuMnSiCr. The microstructure, bonding strength, and high heat flux properties of the brazed W/CuCrZr joint samples were investigated. The W/Cu joint exhibits an average tensile strength of 134 MPa, which is about the same strength as pure annealed copper. High heat flux tests were performed in the electron beam facility EMS-60. Experimental results indicated that the brazed W/CuCrZr mock-up experienced screening tests of up to 15 MW/m2 and cyclic tests of 9 MW/m2 for 1000 cycles without visible damage. supported by National Natural Science Foundation of China (No. 11205049) and the National Magnetic Confinement Fusion Science Program of China (No. 2011GB110004)

  20. Mono-component versus binary isotherm models for Cu(II) and Pb(II) sorption from binary metal solution by the green alga Pithophora oedogonia.

    PubMed

    Kumar, Dhananjay; Singh, Alpana; Gaur, J P

    2008-11-01

    The sorption of Cu(II) and Pb(II) by Pithophora markedly decreased as the concentration of the secondary metal ion, Cu(II) or Pb(II), increased in the binary metal solution. However, the test alga showed a greater affinity to sorb Cu(II) than Pb(II) from the binary metal solution. Mono-component Freundlich, Langmuir, Redlich-Peterson and Sips isotherms successfully predicted the sorption of Cu(II) and Pb(II) from both single and binary metal solutions. None of the tested binary sorption isotherms could realistically predict Cu(II) and Pb(II) sorption capacity and affinity of the test alga for the binary metal solutions of varying composition, which mono-component isotherms could very well accomplish. Hence, mono-component isotherm modeling at different concentrations of the secondary metal ion seems to be a better option than binary isotherms for metal sorption from binary metal solution.

  1. Immobilisation of Cu, Pb and Zn in Scrap Metal Yard Soil Using Selected Waste Materials.

    PubMed

    Kamari, A; Putra, W P; Yusoff, S N M; Ishak, C F; Hashim, N; Mohamed, A; Isa, I M; Bakar, S A

    2015-12-01

    Immobilisation of heavy metals in a 30-year old active scrap metal yard soil using three waste materials, namely coconut tree sawdust (CTS), sugarcane bagasse (SB) and eggshell (ES) was investigated. The contaminated soil was amended with amendments at application rates of 0 %, 1 % and 3 % (w/w). The effects of amendments on metal accumulation in water spinach (Ipomoea aquatica) and soil metal bioavailability were studied in a pot experiment. All amendments increased biomass yield and reduced metal accumulation in the plant shoots. The bioconcentration factor and translocation factor values of the metals were in the order of Zn > Cu > Pb. The addition of ES, an alternative source of calcium carbonate (CaCO3), has significantly increased soil pH and resulted in marked reduction in soil metal bioavailability. Therefore, CTS, SB and ES are promising low-cost immobilising agents to restore metal contaminated land. PMID:26395356

  2. Structure and age of the Cerro de Pasco Cu-Zn-Pb-Ag deposit, Peru

    NASA Astrophysics Data System (ADS)

    Cheney, E. S.

    1991-04-01

    The world-famous Cu-Zn-Pb-Ag deposit at Cerro de Pasco, Peru, consists of texturally massive pyrite, texturally massive sphalerite-galena-pyrite, and veins containing pyrite and enargite. Historically the deposit has been considered to be the hydrothermal product of the adjacent Miocene volcanic and intrusive complex (locally known as the “Vent”). However, both the texturally massive sulfides of the deposit and the pre-Miocene strata are cut by the Longitudinal fault, one of the largest faults in the district, but the Vent is not. Imbrication by the Longitudinal fault zone (duplex structures) has thickened the deposit so that it is amenable to open-pit mining. Dikes and pyrite-enargite veins pass from the Vent into the massive sulfides; fragments of massive pyrite occur in the Vent. Thus, no matter what their origin, the texturally massive sulfides are older and, therefore, genetically unrelated to the Vent.

  3. Fabrication and characterization of (Bi,Pb)-Sr-Ca-Cu-O (2223) bars

    SciTech Connect

    Chudzik, M.P.; Polzin, B.J.; Thayer, R.; Picciolo, J.J.; Fisher, B.L.; Lanagan, M.T.

    1996-08-01

    Bulk bars for current lead applications were fabricated from (Bi,Pb)- Sr-Ca-Cu-O (Bi-2223) for low thermal conductivity and high critical current. Bars measuring 17.8 cm in length were made by uniaxially pressing Bi-2223 powder of controlled (1.7/0.34)223 and (1.8/0.4)223 phase composition. The bulk bars were densified by subjecting them to a schedule of alternate liquid-phase sintering and cold isostatic pressing. Liquid phase sintering temperatures were optimized from differential thermal analysis and microstructure morphology. Phase purity and microstructure were evaluated by x-ray diffraction and scanning electron microscopy. Low-resistance silver contacts were applied to the bars by hot-pressing at 820{degrees}C and 3 MPa. Critical current densities {approx} 1000 A/cm{sup 3} (critical currents of 750 A at 77 K in self-field conditions) were achieved.

  4. Immobilisation of Cu, Pb and Zn in Scrap Metal Yard Soil Using Selected Waste Materials.

    PubMed

    Kamari, A; Putra, W P; Yusoff, S N M; Ishak, C F; Hashim, N; Mohamed, A; Isa, I M; Bakar, S A

    2015-12-01

    Immobilisation of heavy metals in a 30-year old active scrap metal yard soil using three waste materials, namely coconut tree sawdust (CTS), sugarcane bagasse (SB) and eggshell (ES) was investigated. The contaminated soil was amended with amendments at application rates of 0 %, 1 % and 3 % (w/w). The effects of amendments on metal accumulation in water spinach (Ipomoea aquatica) and soil metal bioavailability were studied in a pot experiment. All amendments increased biomass yield and reduced metal accumulation in the plant shoots. The bioconcentration factor and translocation factor values of the metals were in the order of Zn > Cu > Pb. The addition of ES, an alternative source of calcium carbonate (CaCO3), has significantly increased soil pH and resulted in marked reduction in soil metal bioavailability. Therefore, CTS, SB and ES are promising low-cost immobilising agents to restore metal contaminated land.

  5. Trace level determination of u, zn, cd, pb and cu in drinking water samples.

    PubMed

    Kumar, Mukesh; Singh, Surinder; Mahajan, Rakesh Kumar

    2006-01-01

    The concentration of uranium has been assessed in drinking water samples collected from different locations in Bathinda district, Punjab, India. The water samples are taken from hand pumps and tube wells. Uranium is determined using fission track technique. Uranium concentration in the water samples varies from 2.23+/- 0.05 to 87.05+/- 0.29 microg/L. These values are compared with safe limit values recommended for drinking water. The uranium concentration in almost all drinking water samples is found to be more than the safe limit. Analysis of some heavy metals viz. Zn, Cd, Pb and Cu in water is made. The concentration of sodium, potassium, calcium, magnesium, chlorine and total hardness along with the pH value and conductivity of the water samples are measured. Some of the samples show stunningly high values of these parameters.

  6. Microwave Absorption Study on (Bi, Pb)-Sr-Ca-Cu-O Granular Superconductors

    NASA Astrophysics Data System (ADS)

    Jurga, W.; Piekara-Sady, L.; Gazda, M.

    2008-07-01

    (Bi, Pb)-Sr-Ca-Cu-O is considered as a system of 2201, 2212 and 2223 superconductors embedded in the insulating matrix. The size of the grains depends on the time of recrystallization. These types of ceramics exhibit a two-step transition to superconducting state. Because electrical properties depend among other on the Josephson coupling between grains, the magnetically modulated microwave absorption study was undertaken. Magnetically modulated microwave absorption signal was observed to arise just as temperature had been lowered below T1. The shape of this signal was studied to recognize the second temperature T2. Some strong oscillations appear on magnetically modulated microwave absorption at lower temperatures, which might be related to local percolation breakdown in superconducting network.

  7. Spatial and temporal variations in inhalable CuZnPb aerosols within the Mexico City pollution plume.

    PubMed

    Moreno, T; Querol, X; Pey, J; Minguillón, M C; Pérez, N; Alastuey, A; Bernabé, R M; Blanco, S; Cárdenas, B; Eichinger, W; Salcido, A; Gibbons, W

    2008-03-01

    We report on the CuPbZn content of PM10 and PM2.5 samples collected from three sites (urban T0, suburban T1 and rural T2) during the Mexico City MILAGRO campaign of March 2006. Daytime city centre concentrations of summation operator CuZnPb(PM10) were much higher (T0 > 450 ng m(-3)) than at the suburban site (T1 < 200 ng m(-3)). Rural site (T2) summation operator CuZnPb(PM10) concentrations exceeded 50 ng m(-3) when influenced by the megacity plume but dropped to 10 ng m(-3) during clean northerly winds. Nocturnal metal concentrations more than doubled at T0, as pollutants became trapped in the nightly inversion layer, but decreased at the rural site. Transient spikes in concentrations of different metals, e.g. a "copper event" at T0 (CuPM10 281 ng m(-3)) and "zinc event" at T1 (ZnPM10 1481 ng m(-3)) on the night of March 7-8, demonstrate how industrial pollution sources produce localised chemical inhomogeneities in the city atmosphere. Most metal aerosols are <2.5 microm and SEM study demonstrates the dominance of Fe, Ti, Ba, Cu, Pb and Zn (and lesser Sn, Mo, Sb, W, Ni, V, As, Bi) in metalliferous particles that have shapes including spherical condensates, efflorescent CuZnClS particles, cindery Zn, and Cu wire. Metal aerosol concentrations do not change in concert with PM10 mass, which is more influenced by wind resuspension than industrial emissions. Metalliferous particles can induce cell damage, and PM composition is probably more important than PM mass, with respect to negative health effects, so that better monitoring and control of industrial emissions would likely produce significant improvements in air quality.

  8. Pb(II), Cr(VI) and atrazine sorption behavior on sludge-derived biochar: role of humic acids.

    PubMed

    Zhou, Fengsa; Wang, Hong; Fang, Sheng'en; Zhang, Weihua; Qiu, Rongliang

    2015-10-01

    Pyrolyzing municipal wastewater treatment sludge into biochar can be a promising sludge disposal approach, especially as the produced sludge-derived biochar (SDBC) is found to be an excellent sorbent for heavy metals and atrazine. The aim of this study was to investigate how and why the coexisting humic acids influence the sorption capacity, kinetic, and binding of these contaminants on SDBC surface. Results showed humic acids enhanced Pb(II)/Cr(VI) sorption binding, and increased the corresponding Pb(II) Langmuir sorption capacity at pH 5.0 from 197 to 233 μmol g(-1), and from 688 to 738 μmol g(-1) for Cr(VI) at pH 2.0. It can be mainly attributed to the sorbed humic acids, whose active functional groups can offer the additional sites to form stronger inner-sphere complexes with Pb(2+), and supply more reducing agent to facilitate the transformation of Cr(VI) to Cr(III). However, humic acids reduced the atrazine adsorption Freundlich constant from 1.085 to 0.616 μmol g(-1). The pore blockage, confirmed by the decreased BET-specific surface area, as well as the more hydrophilic surface with more sorbed water molecules may be the main reasons for that suppression. Therefore, the coexisting humic acids may affect heavy metal stabilization or pesticide immobilization during SDBC application to contaminated water or soils, and its role thus should be considered especially when organic residues are also added significantly to increase the humic acid content there. PMID:26062468

  9. Pb(II), Cr(VI) and atrazine sorption behavior on sludge-derived biochar: role of humic acids.

    PubMed

    Zhou, Fengsa; Wang, Hong; Fang, Sheng'en; Zhang, Weihua; Qiu, Rongliang

    2015-10-01

    Pyrolyzing municipal wastewater treatment sludge into biochar can be a promising sludge disposal approach, especially as the produced sludge-derived biochar (SDBC) is found to be an excellent sorbent for heavy metals and atrazine. The aim of this study was to investigate how and why the coexisting humic acids influence the sorption capacity, kinetic, and binding of these contaminants on SDBC surface. Results showed humic acids enhanced Pb(II)/Cr(VI) sorption binding, and increased the corresponding Pb(II) Langmuir sorption capacity at pH 5.0 from 197 to 233 μmol g(-1), and from 688 to 738 μmol g(-1) for Cr(VI) at pH 2.0. It can be mainly attributed to the sorbed humic acids, whose active functional groups can offer the additional sites to form stronger inner-sphere complexes with Pb(2+), and supply more reducing agent to facilitate the transformation of Cr(VI) to Cr(III). However, humic acids reduced the atrazine adsorption Freundlich constant from 1.085 to 0.616 μmol g(-1). The pore blockage, confirmed by the decreased BET-specific surface area, as well as the more hydrophilic surface with more sorbed water molecules may be the main reasons for that suppression. Therefore, the coexisting humic acids may affect heavy metal stabilization or pesticide immobilization during SDBC application to contaminated water or soils, and its role thus should be considered especially when organic residues are also added significantly to increase the humic acid content there.

  10. Feasibility of constructed wetland planted with Leersia hexandra Swartz for removing Cr, Cu and Ni from electroplating wastewater.

    PubMed

    You, Shao-Hong; Zhang, Xue-Hong; Liu, Jie; Zhu, Yi-Nian; Gu, Chen

    2014-01-01

    As a low-cost treatment technology for effluent, the constructed wetlands can be applied to remove the heavy metals from wastewater. Leersia hexandra Swartz is a metal-accumulating hygrophyte with great potential to remove heavy metal from water. In this study, two pilot-scale constructed wetlands planted with L. hexandra (CWL) were set up in greenhouse to treat electroplating wastewater containing Cr, Cu and Ni. The treatment performance of CWL under different hydraulic loading rates (HLR) and initial metal concentrations were also evaluated. The results showed that CWL significantly reduced the concentrations of Cr, Cu and Ni in wastewater by 84.4%, 97.1% and 94.3%, respectively. High HLR decreased the removal efficiencies of Cr, Cu and Ni; however, the heavy metal concentrations in effluent met Emission Standard of Pollutants for Electroplating in China (ESPE) at HLR less than 0.3 m3/m2 d. For the influent of 5 mg/L Cr, 10 mg/L Cu and 8 mg/L Ni, effluent concentrations were below maximum allowable concentrations in ESPE, indicating that the removal of Cr, Cu and Ni by CWL was feasible at considerably high influent metal concentrations. Mass balance showed that the primary sink for the retention of contaminants within the constructed wetland system was the sediment, which accounted for 59.5%, 83.5%, and 73.9% of the Cr, Cu and Ni, respectively. The data from the pilot wetlands support the view that CWL could be used to successfully remove Cr, Cu and Ni from electroplating wastewater.

  11. Effect of the ITER FW Manufacturing Process on the Microstructure and Properties of a CuCrZr Alloy

    NASA Astrophysics Data System (ADS)

    Liu, Danhua; Wang, Pinghuai; Song, Yi; Li, Qian; Chen, Jiming

    2015-10-01

    The first wall (FW) is one of the core components in ITER. As the heat sink material, the CuCrZr alloy shall be properly jointed with beryllium and stainless steel. At present, the grains of CuCrZr are prone to coarsen seriously in the thermal cycle process of FW manufacturing, which has become a critical issue for ITER parties. To investigate the mirostructure and mechanical properties of the optimized CuCrZr alloy in the first wall fabricating thermal cycle, simulative experiments have been done in this study. The alloy ingot was forged and hot rolled into plates, and then solid solution annealed, cold rolled and aged for strengthening. Several heat treatments were done to the CuCrZr samples, and the changes of microstructure, micro-hardness and tensile strength were investigated. The results indicated that the original elongated grains had changed into equiaxed ones, and the vickers hardness had declined to about 60 after experiencing the process of CuCrZr/316L(N) bi-metallic plate manufacturing, either by hot isostatic pressing at a higher temperature or by explosion welding followed by solution annealing. Joining Be/CuCrZr by hot isostatic pressing acts as an aging process for CuCrZr, so after the simulated heat treatment, the hardness of the alloy increased to about 110 HV and the tensile yield strength at 250°C rose to about 170 MPa. Meanwhile, the average grain size was controlled below 200 μm. supported by the International Nuclear Thermonuclear Experimental Reactor (ITER) Specific Program of China (No. 2014GB126000)

  12. Characterization and adsorption performance of Pb(II) on CuO nanorods synthesized by the hydrothermal method

    SciTech Connect

    Arfaoui, Lobna; Kouass, Salah; Dhaouadi, Hassouna; Jebali, Raouf; Touati, Fathi

    2015-10-15

    Highlights: • The nanorods of CuO were synthesized by a hydrothermal route without any surfactant. • X-ray diffraction showed monoclinic structure with space group C{sub 2/c}. • The nanorods show relatively high adsorption capacity for the removal of Pb(II). • The adsorption kinetics could be fitted well by the pseudo-second-order model. • The equilibrium data can be fitted well using the Langmuir isotherm model - Abstract: Copper oxide (CuO) nanorods were synthesized by hydrothermal method. The detailed structural, compositional and optical characterization of this material was also evaluated with XRD, FT-IR, EDS, and UV–vis spectroscopy, which confirmed that the obtained nanorods are well-crystallized CuO and possess good optical properties. SEM and TEM studies revealed that the as-synthesized CuO nanorods are uniform with an average diameter of 17 nm. The adsorption activity of the CuO nanostructures was studied. The adsorption results showed that the CuO nanorods are an effective and efficient adsorbent for the removal of Pb(II) ions. The influence of various operational parameters such as the pH of the solution, the contact time and the initial concentrations were also studied and the results were discussed. The estimated maximum lead ion adsorption capacity of the CuO nanorods was found to be 188.67 mg g{sup −1} at an optimum pH of 6.

  13. Ultrasonic spray-pyrolyzed CuCrO2 thin films

    NASA Astrophysics Data System (ADS)

    Sánchez-Alarcón, R. I.; Oropeza-Rosario, G.; Gutierrez-Villalobos, A.; Muro-López, M. A.; Martínez-Martínez, R.; Zaleta-Alejandre, E.; Falcony, C.; Alarcón-Flores, G.; Fragoso, R.; Hernández-Silva, O.; Perez-Cappe, E.; Mosqueda Laffita, Yodalgis; Aguilar-Frutis, M.

    2016-05-01

    In this paper the optical, structural and electrical properties of CuCrO2 thin films deposited by ultrasonic spray pyrolysis at temperatures from 400 to 600 °C in steps of 50 °C are presented. Copper and chromium acetylacetonates were chosen as sources of Cu and Cr, respectively, and N,N-dimethylformamide was used as the solvent. X-ray results confirmed that the films as deposited showed the CuCrO2 phase without any post-deposition thermal annealing. The surface morphology was observed to be mirror like, and as the films were deposited at different temperatures, they gradually revealed the presence of small crystallites. The best film’s optical percentage transmission (in the visible region), about 58%, was obtained in films deposited at 450 °C, and the highest band gap energy (3.17 eV) was measured in films deposited at 400 °C. The electrical properties of the films were obtained by the Hall effect. A hole concentration in the range 1019-1021 cm-3, conductivity as high as 35 S cm-1, and mobility lower than 1 cm2 V-1 s-1 were obtained in the films. p-type conductivity was confirmed using the hot point probe arrangement, and the Seebeck coefficient was estimated. The hole conductivity is thought to be due to excess oxygen in the films. Finally, the minimum energy required to transfer carriers from acceptor level to the valence band in the films was estimated by impedance spectroscopy.

  14. μSR study on CuCr1-xMgxO2

    NASA Astrophysics Data System (ADS)

    Ikedo, Yutaka; Sugiyama, Jun; Nozaki, Hiroshi; Mukai, Kazuhiko; Russo, Peter L.; Andreica, Daniel; Amato, Alex; Ono, Yasuhiro; Kajitani, Tsuyoshi

    2009-04-01

    In order to clarify the magnetic nature of a delafossite-type oxide, CuCr1-xMgxO2 ( x=0 and 0.03), we have performed zero field (ZF-) and weak transversal field (wTF-) μ+SR measurements in the temperature range between 1.8 and 50 K using polycrystalline samples. The wTF- μ+SR measurements suggested that both samples undergo a magnetic transition at Tm=26 K, clarifying that Tm is not altered by the Cr substitution with Mg. The ZF- μ+SR measurements indicated the existence of a clear muon-spin precession ( ∼50 MHz at T→0 K) signal for the x=0 sample below Tm, indicating a long-range antiferromagnetic order state, whereas the absence of long-range order for the x=0.03 sample even at 1.8 K.

  15. Concentrations of Cu and Pb in the offshore and intertidal sediments of the west coast of Peninsular Malaysia.

    PubMed

    Yap, C K; Ismail, A; Tan, S G; Omar, H

    2002-12-01

    Malaysia is now a developing country and on her way towards being an industrialised one by the year 2020. Most of her industries and urban areas are located on the west coast of Peninsular Malaysia. In addition, the offshore area of the west coast is now one of the busiest shipping lanes in the world. These two phenomena make the intertidal and offshore areas of the west coast of Peninsular Malaysia interesting for scientific studies. Therefore, this study focused on both the offshore and intertidal sediments of the west coast of Peninsular Malaysia. Sampling for sediment samples were done from the northern to the southern ends of the peninsula and these sediment samples were analysed for Cu and Pb. It was found that total Cu concentrations ranged from 0.25 to 13.8 and 0.40 to 315 microg/g dry weight (dw) for offshore and intertidal sediments, respectively. For Pb, it ranged from 3.59 to 25.4 and 0.96 to 69.8 microg/g dw for the offshore and intertidal sediments, respectively. The ranges of Cu and Pb found from the west coast of Peninsular Malaysia were low in comparison to regional data. However, some intertidal areas were identified as receiving anthropogenic Cu and Pb. Geochemical studies revealed that the 'nonresistant' fraction for Pb contributed about 70.0% to 75.0% and 54.0% of the total Pb concentration in the offshore and intertidal sediments, respectively. As for Cu, the 'nonresistant' fraction contributed about 46.2% to 60.4% and 46.3% of the total Cu concentration in the offshore and intertidal sediments, respectively. The 'nonresistant' fraction contained mostly of anthropogenic metals besides natural origins. These 'nonresistant' percentages indicated that both the offshore and intertidal areas could have received anthropogenic-derived metals, which could be influenced by physico-chemical properties of the sediments. Although the present data indicated that contamination due to Cu and Pb in the west coast of Peninsular Malaysia especially in the

  16. Structure and superconductivity in Cr-substituted HgBa{sub 2}CuO{sub 4+8}.

    SciTech Connect

    Chmaissem, O.; Jorgensen, J. D.; Hinks, D. G.; Storey, B. G.; Dabrowski, B.; Zhang, H.; Marks, L. D.; Materials Science Divsion - Science Technology Center for Superconductivity; Northwestern Univ.; Northern Illinois Univ.

    1997-05-15

    Chromium-substituted Hg{sub 1-x}Ba{sub 2}CuO{sub 4+{delta}} compounds have been synthesized. Cr can be incorporated into the structure with a solubility limit around x {approx} 0.27. Cr substitutes at the Hg site and is tetrahedrally coordinated to four oxygen atoms. Two of these are apical oxygen atoms that have moved to new positions (O2') and two are in the Hg/Cr plane (O3) at a (x x 0) site. Additional oxygen atoms (O4) in the Hg/Cr plane at (1/2 1/2 0) affect the carrier concentration, as for HgBa{sub 2}CuO{sub 4+{delta}}. In the as-synthesized samples, {Tc} decreases with increasing Cr content. Attempts to adjust the carrier concentration by post annealing in oxygen at low temperature destroy superconductivity because the samples are metastable under ambient conditions.

  17. Effect of pH on corrosion behavior of CuCrZr in solution without and with NaCl

    NASA Astrophysics Data System (ADS)

    Kwok, C. T.; Wong, P. K.; Man, H. C.; Cheng, F. T.

    2009-10-01

    CuCrZr is a high copper alloy widely used as electrical and thermal conducting material, especially in heat exchangers in nuclear reactors. In this respect, the physical and fatigue properties of CuCrZr have been extensively studied. The electrochemical behavior of CuCrZr, on the other hand, has not been adequately investigated. In the present study, the effect of pH on the corrosion behavior of CuCrZr in aqueous solutions without and with chloride (0.6 M NaCl) was studied. The pH of the solutions is found to exert significant influence on the corrosion behavior of CuCrZr. In acidic solutions without chloride, the corrosion of CuCrZr is ascribed to active dissolution with soluble products. In neutral and alkaline solutions without NaCl, the presence of oxides on the surface of CuCrZr leads to a noble shift in corrosion potential and passivation results in increased corrosion resistance. In chloride solutions at various pH values, the chloride ions influence the formation of the surface layers and the anodic dissolution process during polarization. At high pH, CuCrZr shows significant passivity and high corrosion resistance due to the growth of Cu 2O/Cu(OH) film which hinders further dissolution whereas at low pH the corrosion resistance is lowered due to active dissolution of Cu.

  18. Overview spectra and axial distribution of spectral line intensities in a high-current vacuum arc with CuCr electrodes

    SciTech Connect

    Lisnyak, M.; Pipa, A. V.; Gorchakov, S. E-mail: weltmann@inp-greifswald.de; Iseni, S.; Franke, St.; Khapour, A.; Methling, R.; Weltmann, K.-D. E-mail: weltmann@inp-greifswald.de

    2015-09-28

    Spectroscopic investigations of free-burning vacuum arcs in diffuse mode with CuCr electrodes are presented. The experimental conditions of the investigated arc correspond to the typical system for vacuum circuit breakers. Spectra of six species Cu I, Cu II, Cu III, Cr I, Cr II, and Cr III have been analyzed in the wavelength range 350–810 nm. The axial intensity distributions were found to be strongly dependent on the ionization stage of radiating species. Emission distributions of Cr II and Cu II can be distinguished as well as the distributions of Cr III and Cu III. Information on the axial distribution was used to identify the spectra and for identification of overlapping spectral lines. The overview spectra and some spectral windows recorded with high resolution are presented. Analysis of axial distributions of emitted light, which originates from different ionization states, is presented and discussed.

  19. Biomonitoring of Cd, Cr, Hg and Pb in the Baluarte River basin associated to a mining area (NW Mexico).

    PubMed

    Ruelas-Inzunza, J; Green-Ruiz, C; Zavala-Nevárez, M; Soto-Jiménez, M

    2011-08-15

    With the purpose of knowing seasonal variations of Cd, Cr, Hg and Pb in a river basin with past and present mining activities, elemental concentrations were measured in six fish species and four crustacean species in Baluarte River, from some of the mining sites to the mouth of the river in the Pacific Ocean between May 2005 and March 2006. In fish, highest levels of Cd (0.06 μg g ⁻¹ dry weight) and Cr (0.01 μg g⁻¹) were detected during the dry season in Gobiesox fluviatilis and Agonostomus monticola, respectively; the highest levels of Hg (0.56 μg g⁻¹) were detected during the dry season in Guavina guavina and Mugil curema. In relation to Pb, the highest level (1.65 μg g⁻¹) was detected in A. monticola during the dry season. In crustaceans, highest levels of Cd (0.05 μg g⁻¹) occurred in Macrobrachium occidentale during both seasons; highest concentration of Cr (0.09 μg g⁻¹) was also detected in M. occidentale during the dry season. With respect to Hg, highest level (0.20 μg g⁻¹) was detected during the rainy season in Macrobrachium americanum; for Pb, the highest concentration (2.4 μg g⁻¹) corresponded to Macrobrachium digueti collected in the dry season. Considering average concentrations of trace metals in surficial sediments from all sites, Cd (p<0.025), Cr (p<0.10) and Hg (p<0.15) were significantly higher during the rainy season. Biota sediment accumulation factors above unity were detected mostly in the case of Hg in fish during both seasons. On the basis of the metal levels in fish and crustacean and the provisional tolerable weekly intake of studied elements, people can eat up to 13.99, 0.79 and 2.34 kg of fish in relation to Cd, Hg and Pb, respectively; regarding crustaceans, maximum amounts were 11.33, 2.49 and 2.68 kg of prawns relative to levels of Cd, Hg and Pb, respectively.

  20. Effect of magnetic field on thermo emf of Pd + Cr + Os/Cu + Fe thermocouple

    SciTech Connect

    Gololobov, E.M.; Petrashko, V.V.; Semenenko, Yu.A.

    1987-06-01

    The effect of a magnetic field with a strength of up to 46.5 kOe on the thermoemf of a thermocouple of Pd + 0.5 at.% Cr + 0.5 at.% Os/Cu + 0.15 at.% Fe in the temperature range of 4.2-85/sup 0/K is studied. The maximum error of the thermocouple due to the magnetic field for a cold-junction (in same field) temperature of 4.2/sup 0/K is less than or equal to 0.38/sup 0/K over the entire temperature range.

  1. Spin correlated dielectric memory and rejuvenation in multiferroic CuCrS{sub 2}

    SciTech Connect

    Karmakar, A.; Dey, K.; Majumdar, S.; Giri, S.; Chatterjee, S.

    2014-02-03

    We report a rare consequence of memory effect in dielectric response (ϵ) and magnetic field induced rejuvenation in a relaxor-type multiferroic chalcogenide, CuCrS{sub 2}. Despite reasonably high conductivity, we are able to detect significant spontaneous polarization using an improvised technique verifying ferroelectric (FE) order. Concomitant appearance of both FE and antiferromagnetic orders authenticates multiferroicity. A smeared out FE transition and strong frequency dependence of the broadened peak in ϵ obeying Dynamical scaling law signify relaxor properties. We discuss the role of geometrical frustration in the antiferromagnetically coupled layered triangular lattice and metal ligand hybridization for these unusual properties.

  2. Morphology of Precipitates in Cu-Cr-Ti Alloys: Spherical or Cubic?

    NASA Astrophysics Data System (ADS)

    Zhang, Jianbo; Liu, Yao; Cai, Wei; Wang, Hang

    2016-10-01

    Morphology of precipitates in the Cu-Cr-Ti alloys has been investigated using scanning electron microscope and transmission electron microscope in the present work. It has been found that there exist precipitates with two different morphology—spherical and cubic. Misfits between matrix and different precipitates have been determined using high resolution transmission electron microscope images. Interfacial energy and elastic strain energy have been calculated quantitatively. Tendency of morphology of precipitates has been explained by comparing the interfacial energy and elastic strain energy.

  3. Nanostructured Cu-Cr alloy with high strength and electrical conductivity

    SciTech Connect

    Islamgaliev, R. K. Nesterov, K. M.; Bourgon, J.; Champion, Y.; Valiev, R. Z.

    2014-05-21

    The influence of nanostructuring by high pressure torsion (HPT) on strength and electrical conductivity in the Cu-Cr alloy has been investigated. Microstructure of HPT samples was studied by transmission electron microscopy with special attention on precipitation of small chromium particles after various treatments. Effect of dynamic precipitation leading to enhancement of strength and electrical conductivity was observed. It is shown that nanostructuring leads to combination of high ultimate tensile strength of 790–840 MPa, enhanced electrical conductivity of 81%–85% IACS and thermal stability up to 500 °C. The contributions of grain refinement and precipitation to enhanced properties of nanostructured alloy are discussed.

  4. Rapid solidification and dendrite growth of ternary Fe-Sn-Ge and Cu-Pb-Ge monotectic alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Xuehua; Ruan, Ying; Wang, Weili; Wei, Bingbo

    2007-08-01

    The phase separation and dendrite growth characteristics of ternary Fe-43.9%Sn-10%Ge and Cu-35.5%Pb-5%Ge monotectic alloys were studied systematically by the glass fluxing method under substantial undercooling conditions. The maximum undercoolings obtained in this work are 245 and 257 K, respectively, for these two alloys. All of the solidified samples exhibit serious macrosegregation, indicating that the homogenous alloy melt is separated into two liquid phases prior to rapid solidification. The solidification structures consist of four phases including α-Fe, (Sn), FeSn and FeSn2 in Fe-43.9%Sn-10%Ge ternary alloy, whereas only (Cu) and (Pb) solid solution phases in Cu-35.5%Pb-5%Ge alloy under different undercoolings. In the process of rapid monotectic solidification, α-Fe and (Cu) phases grow in a dendritic mode, and the transition “dendrite→monotectic cell” happens when alloy undercoolings become sufficiently large. The dendrite growth velocities of α-Fe and (Cu) phases are found to increase with undercooling according to an exponential relation.

  5. Oxidation Behavior of GRCop-84 (Cu-8Cr-4Nb) at Intermediate and High Temperatures

    NASA Technical Reports Server (NTRS)

    Thomas-Ogbuji, Linus U.; Humphrey, Donald L.; Greenbauer-Seng, Leslie (Technical Monitor)

    2000-01-01

    The oxidation behavior of GRCop-84 (Cu-8 at %Cr-4 at %Nb) has been investigated in air and in oxygen, for durations of 0.5 to 50 hours and temperatures ranging from 500 to 900 C. For comparison, data was also obtained for the oxidation of Cu and NARloy-Z (Cu-3 wt% Ag-0.5 wt% Zr) under the same conditions. Arrhenius plots of those data showed that all three materials had similar oxidation rates at high temperatures (> 750 C). However, at intermediate temperatures (500 to 750 C) GRCop exhibited significantly higher oxidation resistance than Cu and NARloy-Z. The oxidation kinetics of GRCop-84 exhibited a sharp and discontinuous jump between the two regimes. Also, in the high temperature regime GRCop-84 oxidation rate was found to change from a high initial value to a significantly smaller terminal value at each temperature, with progress of oxidation; the two different oxidation rates were found to correlate with a porous intial oxide and a dense final oxide, respectively.

  6. Energetic igniters realized by integrating Al/CuO reactive multilayer films with Cr films

    NASA Astrophysics Data System (ADS)

    Zhu, Peng; Shen, Ruiqi; Ye, Yinghua; Zhou, Xiang; Hu, Yan

    2011-10-01

    This paper deals with the energetic igniters realized by integrating Al/CuO reactive multilayer films (RMFs) with Cr Films, which could be used in micro-ignition system. The as-deposited Al/CuO RMFs has been characterized with varied analytical techniques. Results show that distinct Al/CuO RMFs is sputter deposited in a layered geometry, and the Al/CuO RMFs gives a heat of reaction equal to 2760 J/g. The structure of igniter is similar to a capacitor, which may place an electric field across the igniter and allow the instantaneous large-current to drift through the igniter. Firing characteristics of the igniter were accomplished using constant voltage firing set. The experiment shows that the ignition delay time and total released energy of the igniter discharged in 40 V are 0.7 ms and 482.34 mJ, respectively. In addition, the explosion temperature could keep an approximately constant value of 3500 °C for 1.4 ms.

  7. Preparation of 110K (Bi, Pb)-Sr-Ca-Cu-O superconductor from glass precursor

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1990-01-01

    The Bi1.5Pb0.5Sr2Ca2Cu3O(x) glass, prepared by rapid quenching of the melt, showed T(sub g) of 383 C, crystallization temperature of approx. 446 C, melting temperature of approx. 855 C, and bulk density of 5.69 g/cu. cm. in air. The as-quenched glass was oxygen deficient. On heating in O2, it showed a slow, irreversible, and continuous weight gain starting at approx. 530 C. The influence of annealing conditions on the formation of various phases was investigated by XRD and electrical resistivity measurements. The 110K-T(sub c) phase did not form below 840 C. The amount of this phase increased with the sintering time at 840 C. A sample annealed at 840 C for 243 h in air and furnace cooled showed the highest T(sub c) (R=0) of 107.2 K and transition width delta T(sub c) (10 to 90 percent) of approx. 2 K.

  8. Modification of pineapple peel fibre with succinic anhydride for Cu2+, Cd2+ and Pb2+ removal from aqueous solutions.

    PubMed

    Hu, Xiuyi; Zhao, Mouming; Song, Guosheng; Huang, Huihua

    2011-01-01

    Research on chemical modification of pineapple peel fibre with succinic anhydride was carried out to create a novel adsorbent for Cu2+, Cd2+ and Pb2+ removal from aqueous solution. After pretreatment with iso-propyl alcohol and NaOH, pineapple peel fibre was modified via reaction with succinic anhydride for introduction of carboxylic functional groups. The modified pineapple peel fibre was characterized with Fourier transform infrared (FTIR) spectroscopy and evaluated for its adsorptive ability for Cu2+, Cd2+ and Pb2+ from synthetic metal solutions. The FTIR analysis proved the introduction of carboxylic functional groups in the backbone of the modified pineapple peel fibre. The modified pineapple peel fibre showed higher adsorptive capacity for Cu2+, Cd2+ and Pb2+ compared with raw pineapple peel and pineapple peel fibre pretreated with iso-propyl alcohol. The adsorption of Cu2+, Cd2+ and Pb2+ on the modified pineapple peel fibre depended on solution pH value, adsorption time and initial metal concentration. The maximum adsorption capacities of the modified fibre were observed at pH 5.4 for Cu2+ (27.68 +/- 0.83 mg g(-1) or 0.44 mmol g(-1)), at pH 7.5 for Cd2+ (34.18 +/- 1.02 mg g(-1) or 0.30 mmol g(-1)) and at pH 5.6 for Pb2+ (70.29 +/- 2.11 mg g(-1) or 0.34 mmol g(-1)) respectively. The adsorption followed the pseudo-second-order kinetics model and the experimental data coincided well with the Langmuir model.

  9. Spatial distribution of gut juice extractable Cu, Pb and Zn in sediments from the Pearl River Estuary, Southern China.

    PubMed

    Wang, Fei; Wang, Wen-Xiong; Huang, Xiao-Ping

    2012-06-01

    In this study, we compared the spatial distribution of total metals (Cu, Pb, and Zn) and bioaccessible metals, which were quantified by incubating sediments with the digestive fluid of sipunculans Sipunculus nudus, in natural sediments of the Pearl River Estuary (PRE). The spatial distribution of bioaccessible metal was not the same as that of total metals in PRE sediments, which were mainly controlled by fine-grained size, total organic carbon (TOC) and Fe. Geochemical factors were important in interpreting this different spatial variation. The similar spatial variations of bioaccessible Cu and total Cu were related to TOC in PRE sediments. Differently from the total Zn, a higher bioaccessible Zn was detected near the West Channel of PRE because of a lower TOC. However, the distribution of bioaccessible Pb was not significantly related to any sediment geochemistry. This study provides a more accurate view of metal pollution in the PRE natural sediments.

  10. Geochemical and Sr-Pb-Nd isotopic characteristics of the Shakhtama porphyry Mo-Cu system (Eastern Transbaikalia, Russia)

    NASA Astrophysics Data System (ADS)

    Berzina, A. P.; Berzina, A. N.; Gimon, V. O.

    2014-01-01

    The Shakhtama Mo-Cu porphyry deposit is located within the eastern segment of the Central Asian Orogenic Belt, bordering the southern margin of the Mongol-Okhotsk suture zone. The deposit includes rocks of two magmatic complexes: the precursor plutonic (J2) and ore-bearing porphyry (J3) complexes. The plutonic complex was emplaced at the final stages of the collisional regime in the region; the formation of the porphyry complex may have overlapped with a transition to extension. The Shakhtama rocks are predominantly metaluminous, I-type high K calc-alkaline to shoshonitic in composition, with relatively high Mg#, Ni, Cr and V. They are characterized by crustal-like ISr (0.70741-0.70782), relatively radiogenic Pb isotopic compositions, ɛNd(T) values close to CHUR (-2.7 to +2.1) and Nd model ages from 0.8 to 1.2 Ga. Both complexes are composed of rocks with K-adakitic features and rocks without adakite trace element signatures. The regional geological setting together with geochemical and isotopic data indicate that both juvenile and old continental crust contributed to their origin. High-Mg# K-adakitic Shakhtama magmas were most likely generated by partial melting of thickened lower crust during delamination and interaction with mantle material, while magmas lacking adakite-like signatures were probably generated at shallower levels of lower crust. The derivation of melts, related to the formation of plutonic and porphyry complexes involved variable amounts of old Precambrian lower crust and juvenile Phanerozoic crust. Isotopic data imply stronger contribution of juvenile mantle-derived material to the fertile magmas of the porphyry complex. Juvenile crust is proposed as an important source of fluids and metals for the Shakhtama ore-magmatic system.

  11. Cu-Cr-Nb-Zr Alloy for Rocket Engines and Other High-Heat- Flux Applications

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2013-01-01

    Rocket-engine main combustion chamber liners are used to contain the burning of fuel and oxidizer and provide a stream of high-velocity gas for propulsion. The liners in engines such as the Space Shuttle Main Engine are regeneratively cooled by flowing fuel, e.g., cryogenic hydrogen, through cooling channels in the back side of the liner. The heat gained by the liner from the flame and compression of the gas in the throat section is transferred to the fuel by the liner. As a result, the liner must either have a very high thermal conductivity or a very high operating temperature. In addition to the large heat flux (>10 MW/sq m), the liners experience a very large thermal gradient, typically more than 500 C over 1 mm. The gradient produces thermally induced stresses and strains that cause low cycle fatigue (LCF). Typically, a liner will experience a strain differential in excess of 1% between the cooling channel and the hot wall. Each time the engine is fired, the liner undergoes an LCF cycle. The number of cycles can be as few as one for an expendable booster engine, to as many as several thousand for a reusable launch vehicle or reaction control system. Finally, the liners undergo creep and a form of mechanical degradation called thermal ratcheting that results in the bowing out of the cooling channel into the combustion chamber, and eventual failure of the liner. GRCop-84, a Cu-Cr-Nb alloy, is generally recognized as the best liner material available at the time of this reporting. The alloy consists of 14% Cr2Nb precipitates in a pure copper matrix. Through experimental work, it has been established that the Zr will not participate in the formation of Laves phase precipitates with Cr and Nb, but will instead react with Cu to form the desired Cu-Zr compounds. It is believed that significant improvements in the mechanical properties of GRCop-84 will be realized by adding Zr. The innovation is a Cu-Cr-Nb-Zr alloy covering the composition range of 0.8 to 8.1 weight

  12. Control of p-type conduction in Mg doped monophase CuCrO2 thin layers

    NASA Astrophysics Data System (ADS)

    Chikoidze, E.; Boshta, M.; Gomaa, M.; Tchelidze, T.; Daraselia, D.; Japaridze, D.; Shengelaya, A.; Dumont, Y.; Neumann-Spallart, M.

    2016-05-01

    This work aims to clarify the origin of hole conduction in undoped and Mg-doped CuCrO2 oxide in order to have the possibility of controlling it by corresponding growth parameters. A chemical spray pyrolysis procedure for the deposition of p-type semiconductor thin films is described. The as-deposited films were amorphous. The formation of highly crystalline CuCrO2 and Mg-doped CuCrO2 films with a single phase delafossite structure was realized by annealing between 600 °C and 960 °C in a nitrogen atmosphere. The carrier concentration and the point defects of the samples are calculated by using the developed Kroger method of quasi-chemical reactions. p-type conductivity was predicted and observed in the undoped and Mg doped CuCrO2 sample, and with n ~ 1018 cm‑3 carrier concentrations for 4%Mg doping. The electrical resistivity for a 4% Mg doped sample was 1.4 Ω·cm with a Seebeck coefficient of  +130 μV K‑1 at 40 °C. By electroparamagnetic resonance spectroscopy Cr3+ and Cu2+ related defects were studied.

  13. Control of p-type conduction in Mg doped monophase CuCrO2 thin layers

    NASA Astrophysics Data System (ADS)

    Chikoidze, E.; Boshta, M.; Gomaa, M.; Tchelidze, T.; Daraselia, D.; Japaridze, D.; Shengelaya, A.; Dumont, Y.; Neumann-Spallart, M.

    2016-05-01

    This work aims to clarify the origin of hole conduction in undoped and Mg-doped CuCrO2 oxide in order to have the possibility of controlling it by corresponding growth parameters. A chemical spray pyrolysis procedure for the deposition of p-type semiconductor thin films is described. The as-deposited films were amorphous. The formation of highly crystalline CuCrO2 and Mg-doped CuCrO2 films with a single phase delafossite structure was realized by annealing between 600 °C and 960 °C in a nitrogen atmosphere. The carrier concentration and the point defects of the samples are calculated by using the developed Kroger method of quasi-chemical reactions. p-type conductivity was predicted and observed in the undoped and Mg doped CuCrO2 sample, and with n ~ 1018 cm-3 carrier concentrations for 4%Mg doping. The electrical resistivity for a 4% Mg doped sample was 1.4 Ω·cm with a Seebeck coefficient of  +130 μV K-1 at 40 °C. By electroparamagnetic resonance spectroscopy Cr3+ and Cu2+ related defects were studied.

  14. Effect of Heat Treatment on the Microstructure and Properties of Deformation-Processed Cu-7Cr In Situ Composites

    NASA Astrophysics Data System (ADS)

    Liu, Keming; Jiang, Zhengyi; Zhou, Haitao; Lu, Deping; Atrens, Andrej; Yang, Yanling

    2015-11-01

    The effect of heat treatment on the microstructure, electrical conductivity, and tensile strength of deformation-processed Cu-7Cr in situ composites produced by thermo-mechanical processing was investigated. The Cr fibers in the Cu-7Cr in situ composite underwent coarsening, break-up, and spheroidization after exposure to elevated temperatures. The conductivity and tensile strength of the in situ composite first increased with increasing isochronal heat treatment temperature, reached a peak value, and decreased at higher temperatures. The isothermal heat treatment temperature was determined to be 625 °C. The Z ( Z is an optimization parameter to evaluate the service performance of deformation-processed Cu-based in situ composites) value of the deformation-processed Cu-7Cr in situ composite, at η = 7 ( η is a cumulative cold deformation strain) after the heat treatment at 625 °C for 1 h, reached the peak value of 3.46 × 107 MPa2 % International Annealed Copper Standard (IACS). The isochronal heat treatment time was determined to be 1 h. The following combination of conductivity and tensile strength of the deformation-processed Cu-7Cr in situ composite with a cumulative cold deformation strain of eight after isochronal aging treatments for 1 h could be attained respectively as (i) 76.0% IACS and 889 MPa; (ii) 76.8% IACS and 876 MPa; or (iii) 77.5% IACS and 779 MPa.

  15. Comparative modular analysis of two complex sulfosalt structures: sterryite, Cu(Ag,Cu)3Pb19(Sb,As)22(As-As)S56, and parasterryite, Ag4Pb20(Sb,As)24S58.

    PubMed

    Moëlo, Yves; Guillot-Deudon, Catherine; Evain, Michel; Orlandi, Paolo; Biagioni, Cristian

    2012-10-01

    The crystal structures of two very close, but distinct complex minerals of the lead sulfosalt group have been solved: sterryite, Cu(Ag,Cu)(3)Pb(19)(Sb,As)(22)(As-As)S(56), and parasterryite, Ag(4)Pb(20)(Sb,As)(24)S(58). They are analyzed and compared according to modular analysis. The fundamental building block is a complex column centred on a Pb(6)S(12) triangular prismatic core, with two additional long and short arms. The main chemical and topological differences relate to the short arm, which induces a relative a/4 shift (~2 Å along the elongation parameter) of the constitutive rod layers, as illustrated by distinct cell settings within the same space group (P2(1)/n and P2(1)/c, respectively). Selection of the shortest (i.e. strongest) (Sb,As)-S bonds permitted to enhance the polymeric organization of (Sb,As) atoms with triangular pyramidal coordination. These two quasi-homeotypic structures are expanded derivatives of owyheeite, Ag(3)Pb(10)Sb(11)S(28). The hierarchy of organization levels from zero- to three-dimensional entities is subordinated to building operators, which appear as the driving force for the construction of such complex structures. Minor cations (Ag, Cu) or the As-As pair in sterryite secure the final locking, which favours the formation of one or the other compound. PMID:22992793

  16. Pure CuCr2O4 nanoparticles: Synthesis, characterization and their morphological and size effects on the catalytic thermal decomposition of ammonium perchlorate

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Ghorban; Abazari, Reza; Gavi, Azam

    2014-11-01

    In the present paper a pure phase of the copper chromite spinel nanoparticles (CuCr2O4 SNPs) were synthesized via the sol-gel route using citric acid as a complexing agent. Then, the CuCr2O4 SNPs has been characterized by field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). In the next step, with the addition of Cu-Cr-O nanoparticles (NPs), the effects of different parameters such as Cu-Cr-O particle size and the Cu/Cr molar ratios on the thermal behavior of Cu-Cr-O NPs + AP (ammonium perchlorate) mixtures were investigated. As such, the catalytic effect of the Cu-Cr-O NPs for thermal decomposition of AP was evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA/DSC results showed that the samples with different morphologies exhibited different catalytic activity in different stages of thermal decomposition of AP. Also, in the presence of Cu-Cr-O nanocatalysts, all of the exothermic peaks of AP shifted to a lower temperature, indicating the thermal decomposition of AP was enhanced. Moreover, the heat released (ΔH) in the presence of Cu-Cr-O nanocatalysts was increased to 1490 J g-1.

  17. A new phase in the Sr sbnd Pb sbnd Cu oxide system: The crystal structure of Sr 5- xPb 3+ xCu yO 12-δ

    NASA Astrophysics Data System (ADS)

    Kim, J. S.; Tang, X. X.; Manthiram, A.; Swinnea, J. S.; Steinfink, H.

    1990-03-01

    A single crystal with compositions Sr 4.79Pb 3.21Cu 0.66O 11.12 was grown from a reaction mixture of nominal composition 2 Pb:1 Sr:1 Cu that was fired at 860°C in air. Mr = 1304.6,hexagonal, P¯62 m, a = 10.072(3)Å, c = 3.542(3)Å, V = 311.2(4)Å 3, Z = 1, Dx = 6.96 g cm -3, λ = 0.71069A˚, μ = 645 cm -1, F(000) = 553.34,room temperature, R = 0.040for 323 unique reflections5σ( Fo).The Pb atoms are in octahedral coordination; the octahedra form a chain parallel to cby edge-sharing. Sr is coordinated by nine oxygen atoms that form a capped trigonal prism. The trigonal prisms form a chain parallel to cby face-sharing. TheSr/Pbsite is surrounded by seven oxygen ions. The polyhedron can be described as a tricapped trigonal prism with one edge of the prism missing. The octahedra and trigonal prisms articulate by corner sharing into a three-dimensional framework. Two crystallographically independent Cu atoms are disordered and occupy tetrahedral interstices. One oxygen site is partially occupied. The presence of Pb 2+ on the Pb site distorts the octahedron by lengthening two bonds to 2.44(3)A˚; the average of the other four bond lengths is 2.137(19)A˚. The Sr sbnd O bond lengths to the six apices of the prism are 2.632(14) and 2.935(3)A˚to the three capping atoms. The disorderedSr/Pb atom site has four oxygen neighbors at 2.544(17)A˚, two at 2.621(5)A˚, and one at 2.42(2)A˚. The compound is an electrical insulator.

  18. Assessment of Ni, Cu, Zn and Pb levels in beach and dune sands from Havana resorts, Cuba.

    PubMed

    Díaz Rizo, Oscar; Buzón González, Fran; Arado López, Juana O

    2015-11-15

    Concentrations of nickel (Ni), copper (Cu), zinc (Zn) and lead (Pb) in beach and dune sands from thirteen Havana (Cuba) resorts were estimated by X-ray fluorescence analysis. Determined mean metal contents (in mg·kg(-1)) in beach sand samples were 28±12 for Ni, 35±12 for Cu, 31±11 for Zn and 6.0±1.8 for Pb, while for dune sands were 30±15, 38±22, 37±15 and 6.8±2.9, respectively. Metal-to-iron normalization shows moderately severe and severe enrichment by Cu. The comparison with sediment quality guidelines shows that dune sands from various resorts must be considered as heavily polluted by Cu and Ni. Almost in every resort, the Ni and Cu contents exceed their corresponding TEL values and, in some resorts, the Ni PEL value. The comparison with a Havana topsoil study indicates the possible Ni and Cu natural origin.

  19. Dynamic recrystallization behavior and processing map of the Cu-Cr-Zr-Nd alloy.

    PubMed

    Zhang, Yi; Sun, Huili; Volinsky, Alex A; Tian, Baohong; Song, Kexing; Chai, Zhe; Liu, Ping; Liu, Yong

    2016-01-01

    Hot deformation behavior of the Cu-Cr-Zr-Nd alloy was studied by hot compressive tests in the temperature range of 650-950 °C and the strain rate range of 0.001-10 s(-1) using Gleeble-1500D thermo-mechanical simulator. The results showed that the flow stress is strongly dependent on the deformation temperature and the strain rate. With the increase of temperature or the decrease of strain rate, the flow stress significantly decreases. Hot activation energy of the alloy is about 404.84 kJ/mol and the constitutive equation of the alloy based on the hyperbolic-sine equation was established. Based on the dynamic material model, the processing map was established to optimize the deformation parameters. The optimal processing parameters for the Cu-Cr-Zr-Nd alloy hot working are in the temperature range of 900-950 °C and strain rate range of 0.1-1 s(-1). A full dynamic recrystallization structure with fine and homogeneous grain size can be obtained at optimal processing conditions. The microstructure of specimens deformed at different conditions was analyzed and connected with the processing map. The surface fracture was observed to identify instability conditions. PMID:27347462

  20. Hot Deformation Characteristics and Processing Maps of the Cu-Cr-Zr-Ag Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Chai, Zhe; Volinsky, Alex A.; Sun, Huili; Tian, Baohong; Liu, Ping; Liu, Yong

    2016-03-01

    The hot deformation behavior of the Cu-Cr-Zr-Ag alloy has been investigated by hot compressive tests in the 650-950 °C temperature and 0.001-10 s-1 strain rate ranges using Gleeble-1500D thermo-mechanical simulator. The microstructure evolution of the alloy during deformation was characterized using optical and transmission electron microscopy. The flow stress decreases with the deformation temperature and increases with the strain rate. The apparent activation energy for hot deformation of the alloy was 343.23 kJ/mol. The constitutive equation of the alloy based on the hyperbolic-sine equation was established to characterize the flow stress as a function of the strain rate and the deformation temperature. The processing maps were established based on the dynamic material model. The optimal processing parameters for hot deformation of the Cu-Cr-Zr-Ag alloy are 900-950 °C and 0.001-0.1 s-1 strain rate. The evolution of DRX microstructure strongly depends on the deformation temperature and the strain rate.

  1. Dynamic recrystallization behavior and processing map of the Cu-Cr-Zr-Nd alloy.

    PubMed

    Zhang, Yi; Sun, Huili; Volinsky, Alex A; Tian, Baohong; Song, Kexing; Chai, Zhe; Liu, Ping; Liu, Yong

    2016-01-01

    Hot deformation behavior of the Cu-Cr-Zr-Nd alloy was studied by hot compressive tests in the temperature range of 650-950 °C and the strain rate range of 0.001-10 s(-1) using Gleeble-1500D thermo-mechanical simulator. The results showed that the flow stress is strongly dependent on the deformation temperature and the strain rate. With the increase of temperature or the decrease of strain rate, the flow stress significantly decreases. Hot activation energy of the alloy is about 404.84 kJ/mol and the constitutive equation of the alloy based on the hyperbolic-sine equation was established. Based on the dynamic material model, the processing map was established to optimize the deformation parameters. The optimal processing parameters for the Cu-Cr-Zr-Nd alloy hot working are in the temperature range of 900-950 °C and strain rate range of 0.1-1 s(-1). A full dynamic recrystallization structure with fine and homogeneous grain size can be obtained at optimal processing conditions. The microstructure of specimens deformed at different conditions was analyzed and connected with the processing map. The surface fracture was observed to identify instability conditions.

  2. Stabilization of Pb²⁺ and Cu²⁺ contaminated firing range soil using calcined oyster shells and waste cow bones.

    PubMed

    Moon, Deok Hyun; Cheong, Kyung Hoon; Khim, Jeehyeong; Wazne, Mahmoud; Hyun, Seunghun; Park, Jeong-Hun; Chang, Yoon-Young; Ok, Yong Sik

    2013-05-01

    Pb(2+) and Cu(2+) contamination at army firing ranges poses serious environmental and health risks to nearby communities necessitating an immediate and prompt remedial action. In this study, a novel mixture of calcined oyster shells (COSs) and waste cow bones (WCBs) was utilized to immobilize Pb(2+) and Cu(2+) in army firing range soils. The effectiveness of the treatment was evaluated based on the Korean Standard leaching test. The treatment results showed that Pb(2+) and Cu(2+) immobilization in the army firing range soil was effective in significantly reducing Pb(2+) and Cu(2+) leachability upon the combined treatment with COS and WCB. A drastic reduction in Pb(2+) (99%) and Cu(2+) leachability (95%) was obtained as compared to the control sample, upon treatment with 5 wt.% COS and 5 wt.% WCB. The combination treatment of COS and WCB was more effective for Pb immobilization, than the treatment with COS or WCB alone. The 5 wt.% COS alone treatment resulted in 95% reduction in Cu(2+) leachability. The SEM-EDX results suggested that Pb(2+) and Cu(2+) immobilization was most probably associated with the formation of ettringite, pozzolanic reaction products and pyromorphite-like phases at the same time.

  3. Bournonite PbCuSbS3 : Stereochemically Active Lone-Pair Electrons that Induce Low Thermal Conductivity.

    PubMed

    Dong, Yongkwan; Khabibullin, Artem R; Wei, Kaya; Salvador, James R; Nolas, George S; Woods, Lilia M

    2015-10-26

    An understanding of the structural features and bonding of a particular material, and the properties these features impart on its physical characteristics, is essential in the search for new systems that are of technological interest. For several relevant applications, the design or discovery of low thermal conductivity materials is of great importance. We report on the synthesis, crystal structure, thermal conductivity, and electronic-structure calculations of one such material, PbCuSbS3 . Our analysis is presented in terms of a comparative study with Sb2 S3 , from which PbCuSbS3 can be derived through cation substitution. The measured low thermal conductivity of PbCuSbS3 is explained by the distortive environment of the Pb and Sb atoms from the stereochemically active lone-pair s(2) electrons and their pronounced repulsive interaction. Our investigation suggests a general approach for the design of materials for phase-change-memory, thermal-barrier, thermal-rectification and thermoelectric applications, as well as other functions for which low thermal conductivity is purposefully sought. PMID:26330172

  4. Influence of growth direction on the microstructure of unidirectionally solidified Cu Pb monotectic alloy using zone-melt technique

    NASA Astrophysics Data System (ADS)

    Aoi, Ichiro; Ishino, Makoto; Yoshida, Makoto; Fukunaga, Hideharu; Nakae, Hideo

    2001-02-01

    The influence of growth direction on the monotectic structure of the Cu-Pb alloy is studied. In order to examine the influence under a 1 g environment, both the upward (opposite to the direction of gravity) and downward (the direction of gravity) unidirectional solidifications (UDS) are carried out. In the case of the upward UDS, a banded structure, which consists of Pb-rich and Cu-rich layers, is observed. The L 2 droplets pile up in front of the solid/liquid interface. On the other hand, in the downward UDS, the irregularly shaped L 2 phase uniformly disperses in the specimen and no banded structure is found. The gravity macrosegregation of the L 2 liquid is observed at the bottom of the molten alloy in the downward solidified specimen. This is caused by the difference in the density between the L 1 and L 2 phases. Furthermore, a mechanism for the formation of a banded structure is suggested. This mechanism suggests that the coalesced L 2 phase covers the solid/liquid interface by producing a Pb-rich layer that permits an increase in the undercooling of the L 1/L 2 interface compared to the monotectic temperature. As nucleation of the α-Cu phase occurs on the Pb-rich layer, the coexisting three phases are then restored. The temperature at the growth front is also returned to the monotectic temperature. The repetition mentioned above will result in the banded structure found in the upward UDS.

  5. Studies of biosorption of Pb2+, Cd2+ and Cu2+ from aqueous solutions using Adansonia digitata root powders.

    PubMed

    Ekere, N R; Agwogie, A B; Ihedioha, J N

    2016-01-01

    The potentials of Adansonia digitata root powders (ADRP) for adsorption of Pb(2+), Cd(2+) and Cu(2+) from aqueous solutions was investigated. Physico-chemical analysis of the adsorbent (ADRP) shows that hydroxyl, carbonyl and amino groups were predominant on the surface of the adsorbent. Scanning Electron Microscope (SEM) image revealed its high porosity and irregular pores in the adsorbent while the Energy Dispersive X-ray Spectrum showed the major element with 53.0% Nitrogen, 23.8% carbon, 9.1% calcium, 7.5% potassium and 6.6% magnesium present. The found optimal conditions were: initial concentration of the metal ions = 0.5 mg/L, pH = 5, contact time = 90 min, adsorbent dose = 0.4 g and particle size = 32 µm. Freundlich isotherm showed good fit for the adsorption of Pb(2+), Cd(2+) and Cu(2+). Dubinin-Radushkevich isotherm revealed that the adsorption processes were physisorption Cd(II) and Cu(II) but chemisorption with respect to Pb(II) ions. The kinetics and thermodynamic studies showed that Pseudo-second order and chemisorptions provided the best fit to the experimental data of Pb (II) ions only. Batch desorption result show that desorption in the acidic media for the metal ions were more rapid and over 90% of the metal ions were recovered from the biomass. PMID:26267780

  6. Bournonite PbCuSbS3 : Stereochemically Active Lone-Pair Electrons that Induce Low Thermal Conductivity.

    PubMed

    Dong, Yongkwan; Khabibullin, Artem R; Wei, Kaya; Salvador, James R; Nolas, George S; Woods, Lilia M

    2015-10-26

    An understanding of the structural features and bonding of a particular material, and the properties these features impart on its physical characteristics, is essential in the search for new systems that are of technological interest. For several relevant applications, the design or discovery of low thermal conductivity materials is of great importance. We report on the synthesis, crystal structure, thermal conductivity, and electronic-structure calculations of one such material, PbCuSbS3 . Our analysis is presented in terms of a comparative study with Sb2 S3 , from which PbCuSbS3 can be derived through cation substitution. The measured low thermal conductivity of PbCuSbS3 is explained by the distortive environment of the Pb and Sb atoms from the stereochemically active lone-pair s(2) electrons and their pronounced repulsive interaction. Our investigation suggests a general approach for the design of materials for phase-change-memory, thermal-barrier, thermal-rectification and thermoelectric applications, as well as other functions for which low thermal conductivity is purposefully sought.

  7. Sorption properties of an amorphous hydroxo titanate towards Pb(2+), Ni(2+), and Cu(2+) ions in aqueous solution.

    PubMed

    Volpe, Angela; Pagano, Michele; Pastore, Carlo; Cuocci, Corrado; Milella, Antonella

    2016-11-01

    Titanates may be selectively used as inorganic adsorbents for heavy metal ions owing to their stability and fast adsorption kinetics. Nevertheless, the synthesis of such materials usually requires extreme reaction conditions. In this work, a new titanium-based material was rapidly synthesized under mild laboratory conditions. The obtained amorphous hydroxo titanate was tested for heavy metal sorption through kinetic and equilibrium batch tests, which indicated that the new material had high adsorption rates and adsorption capacities towards Cu(2+), Ni(2+) and Pb(2) ions. Adsorption kinetics were pseudo-second order, and equilibrium data fitted the Langmuir isotherm model. The calculated maximum adsorption capacities of Cu(2+), Ni(2+) and Pb(2+) in deionized water were around 1 mmol g(-1), and they decreased for Cu(2+) and Ni(2+) in the presence of Na(+), Ca(2+) and Mg(2+) ions, whereas the alkali metal ions did not influence Pb(2+) uptake. The efficiency of adsorption and recovery of lead ions were evaluated through column dynamic tests, by feeding the column with groundwater and tap water spiked with Pb(2+). The high performance of the hydroxo titanate over several cycles of retention and elution suggested that the product is potentially useful for the solid phase extraction of lead at trace levels in natural water samples, with potential use in metal pre-concentration for analytical applications. PMID:27419851

  8. Direct catalytic oxyamination of benzene to aniline over Cu(II) nanoclusters supported on CuCr2O4 spinel nanoparticles via simultaneous activation of C-H and N-H bonds.

    PubMed

    Acharyya, Shankha S; Ghosh, Shilpi; Bal, Rajaram

    2014-11-11

    We report the facile synthesis of a highly efficient, reusable catalyst comprising Cu(II) nanoclusters supported on CuCr2O4 spinel nanoparticles for the oxyamination of benzene to aniline (H2O2 + NH3) under mild aqueous reaction conditions. The synergy between the Cu(II) nanoclusters and CuCr2O4 spinel nanoparticles plays the most vital role towards its high catalytic activity.

  9. Low voltage tunneling magnetoresistance in CuCrO{sub 2}-based semiconductor heterojunctions at room temperature

    SciTech Connect

    Li, X. R.; Han, M. J.; Shan, C.; Hu, Z. G. Zhu, Z. Q.; Chu, J. H.; Wu, J. D.

    2014-12-14

    CuCrO{sub 2}-based heterojunction diodes with rectifying characteristics have been fabricated by combining p-type Mg-doped CuCrO{sub 2} and n-type Al-doped ZnO. It was found that the current for the heterojunction in low bias voltage region is dominated by the trap-assisted tunneling mechanism. Positive magnetoresistance (MR) effect for the heterojunction can be observed at room temperature due to the tunneling-induced antiparallel spin polarization near the heterostructure interface. The MR effect becomes enhanced with the magnetic field, and shows the maximum at a bias voltage around 0.5 V. The phenomena indicate that the CuCrO{sub 2}-based heterojunction is a promising candidate for low-power semiconductor spintronic devices.

  10. [Heavy metal contamination and Pb isotopic composition in natural soils around a Pb/Zn mining and smelting area].

    PubMed

    Sun, Rui; Shu, Fan; Hao, Wei; Li, Li; Sun, Wei-Ling

    2011-04-01

    The heavy metal (Pb, Zn, Cr, Cu, Cd, and Hg) concentrations in the A horizon and C horizon soils, collected around the Pb/Zn mining and smelting area of Shuikoushan in Hunan, China, were investigated, and the Pb isotopic compositions were also determined to identify the potential origin of Pb in the A horizon soil. Compared with C horizon soils, the A horizon soils exhibit elevated heavy metal concentrations, especially in the vicinity of the mining and smelting area. This reveals that the surface soil was contaminated to some degree. The contents of Pb, Zn, Cr, Cu, Cd, and Hg in soils are up to 3966.88, 2086.25, 135.31, 185.63, 56.15, and 16.434 mg/kg, respectively. The potential risks caused by different metals are in the order of Cd > Hg > Pb > Cu > Zn = Cr. Much higher potential ecological risk was observed for the central area (Shuikoushan Pb/Zn mining and smelting area) than for the surrounding area. About 34%, 33%, 11%, and 22% of the sampling sites demonstrate low, moderate, considerable, and very high potential ecological risk in the central area, while about 68%, 16%, 10%, and 6% of the sampling sites show low, moderate, considerable, and very high potential ecological risk in the surrounding area, respectively. Compared with the Pb isotopic compositions in the C horizon soils (206Pb/207Pb 1.168-1.246, 208 Pb/206 Pb 2.014-2.130), the Pb in the A horizon soils has lower 206 Pb/207Pb ratios (1.166-1.226) and higher 208Pb/206Pb ratios (2.043-2. 135). The Pb in the A horizon soils predominantly derives from two-component mixing resources. One is the parent materials of C horizon, and the other is the atmospheric deposition of the smelting flue gas dust.

  11. Pb solubility of the high-temperature superconducting phase Bi2Sr2Ca2Cu3O(10+d)

    NASA Technical Reports Server (NTRS)

    Kaesche, Stefanie; Majewski, Peter; Aldinger, Fritz

    1995-01-01

    For the nominal composition of Bi(2.27-x)Pb(x)Sr2 Ca2 Cu3 O(10+d) lead content was varied from x = 0.05 to 0.45. The compositions were examined between 830 and 890 C which is supposed to be the temperature range over which the so-called 2223 phase (Bi2Sr2Ca2Cu3O(10+d)) is stable. Only compositions between x = 0.18 to 0.36 could be synthesized in a single phase state. For x is greater than 0.36 a lead containing phase with a stoichiometry of Pb4(Sr,Ca)5CuO(d) is formed, for x is less than 0.18 mainly Bi2Sr2CaCu2O(10+d) and cuprates are the equilibrium phases. The temperature range for the 2223 phase was found to be 830 to 890 C but the 2223 phase has extremely varying cation ratios over this temperature range. Former single phase 2223 samples turn to multi phase samples when annealed at slightly higher or lower temperatures. A decrease in the Pb solubility with increasing temperature was found for the 2223 phase.

  12. Rapid and nondestructive measurement of labile Mn, Cu, Zn, Pb and As in DGT by using field portable-XRF.

    PubMed

    Chen, Zheng; Williams, Paul N; Zhang, Hao

    2013-09-01

    The technique of diffusive gradients in thin films (DGT) is often employed to quantify labile metals in situ; however, it is a challenge to perform the measurements in-field. This study evaluated the capability of field-portable X-ray fluorescence (FP-XRF) to swiftly generate elemental speciation information with DGT. Biologically available metal ions in environmental samples passively preconcentrate in the thin films of DGT devices, providing an ideal and uniform matrix for XRF nondestructive detection. Strong correlation coefficients (r > 0.992 for Mn, Cu, Zn, Pb and As) were obtained for all elements during calibration. The limits of quantitation (LOQ) for the investigated elements of FP-XRF on DGT devices are 2.74 for Mn, 4.89 for Cu, 2.89 for Zn, 2.55 for Pb, and 0.48 for As (unit: μg cm(-2)). When Pb and As co-existed in the solution trials, As did not interfere with Pb detection when using Chelex-DGT. However, there was a significant enhancement of the Pb reading attributed to As when ferrihydrite binding gels were tested, consistent with Fe-oxyhydroxide surfaces absorbing large quantities of As. This study demonstrates the value of the FP-XRF technique to rapidly and nondestructively detect the metals accumulated in DGT devices, providing a new and simple diagnostic tool for on-site environmental monitoring of labile metals/metalloids.

  13. Residual Stresses in Thermal Barrier Coatings for a Cu-8Cr-4Nb Substrate System

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Raj, Sai V.

    2002-01-01

    Analytical calculations were conducted to determine the thermal stresses developed in a coated copper-based alloy, Cu-8%(at.%)Cr-4%Nb (designated as GRCop-84), after plasma spraying and during heat-up in a simulated rocket engine environment. Finite element analyses were conducted for two coating systems consisting of a metallic top coat, a pure copper bond coat and the GRCop-84. The through thickness temperature variations were determined as a function of coating thickness for two metallic coatings, a Ni-17%(wt%)Cr-6%Al-0.5%Y alloy and a Ni-50%(at.%)Al alloy. The residual stresses after low-pressure plasma spraying of the NiCrAlY and NiAl coatings on GRCop-84 substrate were also evaluated. These analyses took into consideration a 50.8 mm copper bond coat and the effects of an interface coating roughness. The through the thickness thermal stresses developed in coated liners were also calculated after 15 minutes of exposure in a rocket environment with and without an interfacial roughness.

  14. A sulphur isotopic study of the Bleikvassli Zn-Pb-Cu deposit, Nordland, northern Norway

    NASA Astrophysics Data System (ADS)

    Skauli, H.; Boyce, A. J.; Fallick, A. E.

    1992-09-01

    The Bleikvassli Zn-Pb-Cu deposit occurs in the Uppermost Allochthon in the Caledonides of northern Norway. The orebody is enclosed in amphibolite-facies schists and gneisses, underlain by amphibolites, and it has been classified as a sediment-hosted massive sulphide (SEDEX) deposit. The stratiform ore is dominantly pyritic, with a basal layer of pyrrhotitic ore. Sulphide veins occur in the footwall. The orebody generally has a limited range of δ34S, from 0.3 to 4.5% (x = 2.4 ± 1.2‰, 1 σ, n = 26). The lowest δ34S values (0.3 2.3‰) were found in sulphide veins in the footwall and vent proximal stratiform ore. More distal pyritic Zn-Pb ore has heavier average δ34S values (up to 4.5‰). The ore sulphides were deposited from a hydrothermal solution with δ34S about 2‰ perhaps with the incorporation of a minor portion of sulphide from the ambient seawater. The hydrothermal solution probably acquired most of its sulphide from the underlying mixed lithology; notably basaltic rocks. Sulphide produced by thermochemical reduction of seawater in the deep conduit system may also have been incorporated. Bacteriogenic sulphide is not likely as a major source of ore sulphur in the massive ore. Sulphide incorporated in distal pyrite, which have δ34S from -12 to-10‰, could have formed either by oxidation of the hydrothermal sulphide, or by bacterial reduction of seawater sulphate in the depositional environment. Exchange of sulphur isotopes probably took place only on a localized scale during Caledonian metamorphism, the bulk sulphur isotopic composition of the ore being preserved in a hand specimen scale.

  15. Bioaccessibility of Cd, Cu, Fe, Mn, Pb, and Zn in hazelnut and walnut kernels investigated by an enzymolysis approach.

    PubMed

    Arpadjan, Sonja; Momchilova, Svetlana; Venelinov, Tony; Blagoeva, Elitsa; Nikolova, Magdalena

    2013-06-26

    Bioaccessibility of four essential (Fe, Cu, Mn, Zn) and two toxic (Cd, Pb) elements in kernels of four walnut and four hazelnut cultivars was investigated using sequential enzymolysis approach and atomic absorption spectrometry. It was found that the assimilable part of elements was not dependent on nut cultivar. The bioaccessible fraction of Cu, Mn, and Zn was definitely higher for hazelnuts (62% Cu, 39% Mn, 58% Zn) than for walnuts (14% Cu, 21% Mn, 15% Zn). Bioaccessible Fe was 20-24% from its total content for both nut types. Solubility in the simulated intestinal juice is affected by both formation of stable soluble complexes and back sorption of dissolved elements on nut solid residues. Lead shows strong insolubility due to the high sorption affinity of lead ions to the insoluble fraction of nuts. Thus, walnuts and hazelnuts could act as effective biosorbents for lead detoxication.

  16. Effect of sintering on the relative density of Cr-coated diamond/Cu composites prepared by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Cui, Wei; Xu, Hui; Chen, Jian-hao; Ren, Shu-bin; He, Xin-bo; Qu, Xuan-hui

    2016-06-01

    Cr-coated diamond/Cu composites were prepared by spark plasma sintering. The effects of sintering pressure, sintering temperature, sintering duration, and Cu powder particle size on the relative density and thermal conductivity of the composites were investigated in this paper. The influence of these parameters on the properties and microstructures of the composites was also discussed. The results show that the relative density of Cr-coated diamond/Cu reaches ~100% when the composite is gradually compressed to 30 MPa during the heating process. The densification temperature increases from 880 to 915°C when the diamond content is increased from 45vol% to 60vol%. The densification temperature does not increase further when the content reaches 65vol%. Cu powder particles in larger size are beneficial for increasing the relative density of the composite.

  17. Optical properties of undoped and Mg doped CuCrO{sub 2} powders synthesized by sol-gel route

    SciTech Connect

    Srinivasan, Radhakrishnan; Bolloju, Satish

    2014-01-28

    In this work, CuCrO{sub 2} was synthesized by sol-gel method using citric acid as a gelling agent. The different parameters like ratio of citric acid to metal ions, calcination temperature, and duration were studied. A green colored powder with particle size around 300 nm was formed at the calcination temperature of 800 °C for four hours duration. The increase in temperature has a profound impact on crystallite size and in turn effected the optical properties. Band gap of the obtained CuCrO{sub 2} has varied from 2.3 to 1.7 eV by increasing the temperature from 800 °C to 900 °C. Doping studies were performed by introducing Mg{sup 2+} ion to substitute Cr{sup 3+} in CuCrO{sub 2}. X-ray powder diffraction and SEM studies on 2% Mg doped samples indicated a clear formation of side phases. According to the X-ray powder patterns, the reflections from side phases were increasing with the increase in doping concentrations of Mg from 2 to 5%. The side phases were found to be MgCr{sub 2}O{sub 4} spinel and CuO. The band gap has decreased for doped samples in comparison to undoped one. In this paper, sol-gel synthesis and characterization by Xray powder diffraction, SEM studies and UV-Vis-Diffuse Reflectance spectra are presented.

  18. Structural and magnetic characterization of the complete delafossite solid solution (CuAlO2)1-x(CuCrO2)x

    NASA Astrophysics Data System (ADS)

    Barton, Phillip; Seshadri, Ram; Knöller, Andrea; Rosseinsky, Matthew

    2012-02-01

    We have prepared the complete delafossite solid solution between diamagnetic CuAlO2 and the t2g^3 frustrated antiferromagnet CuCrO2. The crystal structure and magnetism were studied with powder x-ray diffraction and magnetometry. The unit cell parameters follow the V'egard law and μeff is equal to the Cr^3+ spin-only S = 3/2 value. θCW is negative and its magnitude increases with Cr substitution. For dilute Cr compositions, JBB was estimated by mean-field theory to be 3.0,eV. Despite the sizable θCW, long-range antiferromagnetic order does not develop until x is almost 1, and is preceeded by glassy behavior. For all samples, the 5,isothermal magnetization is sub-Brillouin and does not saturate in fields up to 5,. A scaled inverse susceptibility plot reveals that significant short-range antiferromagnetic interactions occur in CuCrO2 above its N'eel temperature. Additionally, the Al-substituted samples exhibit uncompensated short-range behavior and x = 0.75 shows glassy characteristics. It is suggested that reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as do chemical disorder and dilution of magnetic exchange.

  19. Evaluation of vermicompost as bioadsorbent substrate of Pb, Ni, V and Cr for waste waters remediation using Total Reflection X-ray Fluorescence

    NASA Astrophysics Data System (ADS)

    Urdaneta, Cynthia; Parra, Lué-Merú Marcó; Matute, Saida; Garaboto, Mayantino Angel; Barros, Hayden; Vázquez, Cristina

    2008-12-01

    The use of vermicompost as adsorbent substrate for removing Pb, Ni, V and Cr from waste waters is proposed. In this work, after a preliminary physical and chemical characterization of the vermicompost, the optimal parameters for the heavy metal adsorption were obtained. A synthetic multielemental solution of Pb, Cr and Ni and a solution of NH 4VO 3 for vanadium were evaluated. The optimized parameters were pH, vermicompost mass to volume ratio, agitation time and particle size of the adsorbent. A batch system was employed for the assays. The elements were determined in the supernatant solution after filtration of the substrate. An optimal pH of 4.5 was found for ion removal. The agitation time slightly influences the adsorption of Pb and Cr, but it has a high influence on the Ni and V adsorption. The highest adsorption and removal of the metals was observed for a vermicompost mass of 2 g per 500 mL using a particle size between 75 to 841 µm for Pb, Cr and Ni, and 841 till 1192 µm for V. The mean removal percentage for each element is around 95% for Pb. Ni and Cr in the multielemental synthetic sample, demonstrating a high removal capacity of the substrate. For V it was found a removal efficiency of 50%.

  20. [Concentration of Hg, Pb, Cd, Cr and As in liver Carcharhinus limbatus (Carcharhiniformes: Carcharhinidae) captured in Veracruz, Mexico].

    PubMed

    Mendoza-Díaz, Fernando; Serrano, Arturo; Cuervo-López, Liliana; López-Jiménez, Alejandra; Galindo, José A; Basañez-Muñoz, Agustin

    2013-06-01

    Pollution by heavy metals in marine ecosystems in the Gulf of Mexico is one of the hardest conservation issues to solve. Sharks as top predators are bioindicators of the marine ecosystem health, since they tend to bioaccumulate and biomagnify contaminants; they also represent a food source for local consumption. Thus, the objective of this study was to study the possible presence of heavy metals and a metalloid in livers of Carcharhinus limbatus. For this, a total of 19 shark livers were taken from animals captured nearby Tamihua, Veracruz, Mexico from December 2007 to April 2008. 12 out of the 19 captured sharks were males, one was an adult female, three were juvenile males, and three juvenile females. Four heavy metals (Hg, Pb, Cd, and Cr) and one metaloid (As) were analyzed in shark livers using an atomic absorption spectrophotometry with flame and hydride generator. Our results showed that the maximum concentrations found were: Hg = 0.69 mg/kg, Cd = 0.43 mg/kg, As = 27.37 mg/kg, Cr = 0.70 mg/kg. The minimum concentrations found were: As = 14.91 mg/kg, Cr = 0.35 mg/kg. The Pb could not be determined because the samples did not have the spectrophotometer minimum detectable amount (0.1 mg/kg). None of the 19 samples analyzed showed above the permissible limits established by Mexican and American laws. There was a correlation between shark size and Cr and As concentration (Pearson test). The concentration of Cr and As was observed to be higher in bigger animals. There was not a significant difference in heavy metals concentration between juveniles and adults; however, there was a difference between males and females. A higher Cr concentration was found in females when compared to males. None of the samples exceed the maximum limit established by the laws of Mexico and the United States of America. Much longer studies are needed with C. limbatus and other species caught in the region, in order to determine the degree of contaminants exposure in aquatic ecosystems

  1. Co-adsorption of Cu and Pb on the Si(1 1 1)-(7 × 7) surface: interface formation

    NASA Astrophysics Data System (ADS)

    Shukrinov, Pavel; Mutombo, Pingo; Cháb, Vladimír.; Prince, K. C.

    2003-06-01

    The adsorption of Cu and Pb atoms on a Si(1 1 1)-7 × 7 surface was studied by means of scanning tunnelling microscopy (STM). After deposition of ⩽0.1 monolayer (ML) of copper on the Pb √3×√3 mosaic phase and a subsequent annealing up to ˜373 K, new objects of a hexagonal shape appear on a surface. They are scattered over the surface and localised next to the mosaic phase islands. The difference between atomically resolved images of filled and empty states suggests strong covalent bonding within a hexagon. Increasing the concentration of Cu atoms leads to an increasing number of hexagons and their agglomeration. Annealing of this surface at a higher temperature (>470 K) leads to the transformation of these hexagonal-like objects and their agglomeration into the pseudo-"5 × 5" structure, commonly observed for the Cu/Si(1 1 1)system. The absence of hexagons at very low Cu concentration demonstrates the presence of a long-range, attractive interaction among Cu atoms and their strong diffusion just above room temperature (RT).

  2. Superconducting Bi1.5Pb0.5Sr2Ca2Cu3O(x) ceramics by rapid melt quenching and glass crystallization

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1989-01-01

    A glass of nominal Bi(1.5)Pb(0.5)Sr2Ca2Cu3O(x) composition, prepared by rapid quenching of the melt, showed a glass transition temperature of 383 C, crystallization temperature of 446 C, melting temperature of 855 C, and bulk density of 5.69 g/cu cm in air. The activation energy for crystallization of the glass was estimated to be 292kJ/mol from non-isothermal DSC. On heating in oxygen, the glass showed a slow and continuous weight gain starting at approximately 530 C which reached a plateau at approximately 820 C. The weight gained during heating was retained on cooling to ambient conditions indicating an irreversible oxidation step. The influence of annealing conditions on the formation of various phases in the glass has been investigated. The Bi(2)Sr(2)Ca(0)Cu(1)O(6) phase crystallized out first followed by formation of other phases at higher temperatures. The high-T(sub c) phase, isostructural with Bi(2)Sr(2)Ca(2)Cu(3)O(10) was not detected below 840 C, but its fraction increased with the annealing time at 840 C. A sample annealed at 840 C for 243h in air and furnace cooled showed the highest T(sub c)(R=0) of 107.2K and a narrow transition width, delta T(sub c)(10 to 90 percent), of approximately 2 K. The high T(sub c) phase does not seem to crystallize out directly from the glass but is rather produced at high temperature by reaction between the phases formed at lower temperatures. The kinetics of 110K phase formation was sluggish. It appears that the presence of lead helps in the formation and/or stabilization of the 110 K phase.

  3. Aided phytoextraction of Cu, Pb, Zn, and As in copper-contaminated soils with tobacco and sunflower in crop rotation: Mobility and phytoavailability assessment.

    PubMed

    Hattab-Hambli, Nour; Motelica-Heino, Mikael; Mench, Michel

    2016-02-01

    Copper-contaminated soils were managed with aided phytoextraction in 31 field plots at a former wood preservation site, using a single incorporation of compost (OM) and dolomitic limestone (DL) followed by a crop rotation with tobacco and sunflower. Six amended plots, with increasing total soil Cu, and one unamended plot were selected together with a control uncontaminated plot. The mobility and phytoavailability of Cu, Zn, Cr and As were investigated after 2 and 3 years in soil samples collected in these eight plots. Total Cu, Zn, Cr and As concentrations were determined in the soil pore water (SPW) and available soil Cu and Zn fractions by DGT. The Cu, Zn, Cr and As phytoavailability was characterized by growing dwarf beans on potted soils and determining the biomass of their plant parts and their foliar ionome. Total Cu concentrations in the SPW increased with total soil Cu. Total Cu, Zn, Cr and As concentrations in the SPW decreased in year 3 as compared to year 2, likely due to annual shoot removals by the plants and the lixiviation. Available soil Cu and Zn fractions also declined in year 3. The Cu, Zn, Cr and As phytoavailability, assessed by their concentration and mineral mass in the primary leaves of beans, was reduced in year 3. PMID:26706463

  4. Aided phytoextraction of Cu, Pb, Zn, and As in copper-contaminated soils with tobacco and sunflower in crop rotation: Mobility and phytoavailability assessment.

    PubMed

    Hattab-Hambli, Nour; Motelica-Heino, Mikael; Mench, Michel

    2016-02-01

    Copper-contaminated soils were managed with aided phytoextraction in 31 field plots at a former wood preservation site, using a single incorporation of compost (OM) and dolomitic limestone (DL) followed by a crop rotation with tobacco and sunflower. Six amended plots, with increasing total soil Cu, and one unamended plot were selected together with a control uncontaminated plot. The mobility and phytoavailability of Cu, Zn, Cr and As were investigated after 2 and 3 years in soil samples collected in these eight plots. Total Cu, Zn, Cr and As concentrations were determined in the soil pore water (SPW) and available soil Cu and Zn fractions by DGT. The Cu, Zn, Cr and As phytoavailability was characterized by growing dwarf beans on potted soils and determining the biomass of their plant parts and their foliar ionome. Total Cu concentrations in the SPW increased with total soil Cu. Total Cu, Zn, Cr and As concentrations in the SPW decreased in year 3 as compared to year 2, likely due to annual shoot removals by the plants and the lixiviation. Available soil Cu and Zn fractions also declined in year 3. The Cu, Zn, Cr and As phytoavailability, assessed by their concentration and mineral mass in the primary leaves of beans, was reduced in year 3.

  5. Structural and magnetic characterization of the complete delafossite solid solution (CuAlO2)1-x(CuCrO2)x

    NASA Astrophysics Data System (ADS)

    Barton, Phillip T.; Seshadri, Ram; Knöller, Andrea; Rosseinsky, Matthew J.

    2012-01-01

    We have prepared the complete delafossite solid solution series between diamagnetic CuAlO2 and the t2g3frustrated antiferromagnet CuCrO2. The evolution with composition x in CuAl1-xCrxO2 of the crystal structure and magnetic properties has been studied and is reported here. The room-temperature unit cell parameters follow the Végard law and increase with x as expected. The μeff is equal to the Cr3+ spin-only S = 3/2 value throughout the entire solid solution. ΘCW is negative, indicating that the dominant interactions are antiferromagnetic, and its magnitude increases with Cr substitution. For dilute Cr compositions, the nearest-neighbor exchange coupling constant JBB was estimated by mean-field theory to be 3.0 meV. Despite the sizable ΘCW, long-range antiferromagnetic order does not develop until x is almost 1, and is preceded by glassy behavior. The data presented here, and those on dilute Al substitution from Okuda et al, suggest that the reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as chemical disorder and dilution of the magnetic exchange. For all samples, the 5 K isothermal magnetization does not saturate in fields up to 5 T and minimal hysteresis is observed. The presence of antiferromagnetic interactions is clearly evident in the sub-Brillouin behavior with a reduced magnetization per Cr atom. An inspection of the scaled Curie plot reveals that significant short-range antiferromagnetic interactions occur in CuCrO2 above its Néel temperature, consistent with its magnetic frustration. Uncompensated short-range behavior is present in the Al-substituted samples and is likely a result of chemical disorder.

  6. Sources and transport of As, Cu, Cd and Pb in the environmental compartments of Deception Island, Antarctica.

    PubMed

    Mão de Ferro, André; Mota, Ana Maria; Canário, João

    2013-12-15

    Sources and transport processes of As, Cu, Cd and Pb were studied in different environmental compartments of Deception Island, an active volcano in the South Shetland Islands, Antarctica. Element concentrations in fresh water samples are consistent with the lowest values reported elsewhere in Antarctica. Interestingly, higher concentration values of As were found in samples collected in or near spring water courses and its transport may be related with processes of lixiviation in underground waters. While in saline waters Cu and Pb had important punctual sources, concentration values for Cd were consistently high pointing to the existence of a natural and diffuse source possibly related with the hydrothermal activity. The high Si/Al ratio, low carbon content, and a non-significant anthropogenic heavy metal input may explain the surprisingly homogeneous heavy metal content found in sediment samples.

  7. [Effects of fly ash on the exchangeable heavy metals (Cu, Zn, Pb) during sewage sludge composting and land utilization].

    PubMed

    Sheng, Jun; Lu, Wen-Jing; Wang, Hong-Tao

    2007-06-01

    A series of composting test using fly ash as stabilizing agent were investigated to study the variation of the exchangeable heavy metals during composting and land utilization. A whole procedure of adsorption and desorption of stabilized heavy metals were analyzed. The result shows that the exchangeable Cu increases while the exchangeable Zn and Pb decrease during composting. Fly ash has significant stabilizing effect on Zn and Pb as evidenced by a decline of 62.47% and 92.61% respectively in the trails with flay ash as stabilizing agent. However there is no obvious change with exchangeable Cu. Although there is a big difference on the activities of heavy metals in different soil types tested, it seems to be ineluctable that addition of sewage sludge composting products cause enrichment of heavy metal in soil.

  8. Characterization of Bi sbnd Pb sbnd Sb sbnd Ca sbnd Sr sbnd Cu sbnd O superconductor sintered in controlled atmosphere

    NASA Astrophysics Data System (ADS)

    Wang, W. N.; Koo, H. S.; Liu, R. S.; Wu, P. T.

    1989-12-01

    (Bi 1.6Pb 0.4-xSb xCa 2Sr 2Cu 3 superconductors were prepared by sintering under the reduced oxygen partial pressure. Tc,zero above 105 K can be achieved bu much shorter heat treatment compared with the conventional preparation under ambient atmosphere. DTA study indicated that a significant decrease of reation temperature in forming the superconducting phase was observed under reduced oxygen partial pressure. A densor material with better superconducting properties was obtained due to this effect. Tc,zero of 108 K in (Bi 1.6Pb 0.4-xSb x)Ca 2Sr 2Cu 3O y superconductors with x ≤ 0.1 can be prepared by sinterting for 24 hours under 1/13 O 2 and 12/13 Ar.

  9. Sources and transport of As, Cu, Cd and Pb in the environmental compartments of Deception Island, Antarctica.

    PubMed

    Mão de Ferro, André; Mota, Ana Maria; Canário, João

    2013-12-15

    Sources and transport processes of As, Cu, Cd and Pb were studied in different environmental compartments of Deception Island, an active volcano in the South Shetland Islands, Antarctica. Element concentrations in fresh water samples are consistent with the lowest values reported elsewhere in Antarctica. Interestingly, higher concentration values of As were found in samples collected in or near spring water courses and its transport may be related with processes of lixiviation in underground waters. While in saline waters Cu and Pb had important punctual sources, concentration values for Cd were consistently high pointing to the existence of a natural and diffuse source possibly related with the hydrothermal activity. The high Si/Al ratio, low carbon content, and a non-significant anthropogenic heavy metal input may explain the surprisingly homogeneous heavy metal content found in sediment samples. PMID:24135470

  10. Critical currents and magnetization in c -axis textured Bi-Pb-Sr-Ca-Cu-O superconductors

    SciTech Connect

    Jin, S.; van Dover, R.B.; Tiefel, T.H.; Graebner, J.E. ); Spencer, N.D. )

    1991-02-25

    Transport critical currents and magnetization behavior in {ital c}-axis textured Bi-Pb-Sr-Ca-Cu-O superconductor ribbons have been studied. The highly oriented layer structure was achieved by a combination processing of spray coating on silver foil, cold rolling, and partial melting. Transport {ital J}{sub {ital c}} values as high as 2.3{times}10{sup 5} A/cm{sup 2} at 4.2 K, {ital H}=8 T ({ital H}{perpendicular}{ital ab}) have been obtained. The high {ital J}{sub {ital c}} at {ital H}{ge}5 T is maintained to temperatures near 20 K but it vanishes completely at or above {similar to}30 K, thus showing the limitation in useful, high-field operating temperatures for the Bi-system superconductors. A comparison of {ital J}{sub {ital c}} (transport) and {ital J}{sub {ital c}} (magnetization) indicates that the size scale of the circulating supercurrent loop in the Bean model nearly corresponds to the whole sample dimension rather than the orders-of-magnitude-smaller grain size. This demonstrates that the {ital a}-{ital b} grain boundaries in the melt-processed ribbons are not weakly coupled. The time decay of magnetization has also been studied.

  11. Synthesis and characterization of 110 K superconducting phase in Bi(Pb)-Sr-Ca-Cu-oxide

    NASA Astrophysics Data System (ADS)

    Chen, Y. L.; Stevens, R.; Lo, W.; Zhen, Y. S.

    1990-12-01

    The temperatures and sequence of formation of superconducting phases within the composition Bi(1.6)Pb(0.4)Sr2Ca2Cu4O(x) were determined using simultaneous DTA and TGA, XRD, and SEM. A single phase high-Tc ceramic was obtained by a solid state reaction using predetermined firing conditions, although a TEM study showed a small amount of glass phase in the grain boundary tripoint regions. The unit cell of the high-Tc phase was refined as a = 0.5413 nm, b = 0.5414 nm, c = 3.715 nm. The melting temperature of the high-Tc phase is in the region of 852-862 C. The effect of lead was believed to lower the temperature of formation of the high-Tc phase. Lead was also found to evaporate from the matrix during and after high-Tc phase formation, whereas bismuth was found to be stable in both the low-Tc phase and high-Tc phase compounds.

  12. Influence of gravity level and interfacial energies on dispersion-forming tendencies in hypermonotectic Cu-Pb-Al alloys

    NASA Technical Reports Server (NTRS)

    Andrews, J. B.; Curreri, P. A.; Sandlin, A. C.

    1988-01-01

    Results on the nondirectional solidification of several hypermonotectic Cu-Pb-Al alloys were obtained aboard NASA's KC-135 zero-gravity aircraft in order to determine the influence of interfacial energies and gravity levels on dispersion-forming tendencies. The Al content was systematially varied in the alloys. The dispersion-forming ability is correlated with gravity level during solidification, the interfacial energy between the immiscible phases, and the tendency for the minority immiscible phase to wet the walls of the crucible.

  13. Direct determination of Cu, Mn, Pb, and Zn in beer by thermospray flame furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Nascentes, Clésia C.; Kamogawa, Marcos Y.; Fernandes, Kelly G.; Arruda, Marco A. Z.; Nogueira, Ana Rita A.; Nóbrega, Joaquim A.

    2005-06-01

    In this work, thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was employed for Cu, Mn, Pb, and Zn determination in beer without any sample digestion. The system was optimized and calibration was based on the analyte addition technique. A sample volume of 300 μl was introduced into the hot Ni tube at a flow-rate of 0.4 ml min -1 using 0.14 mol l -1 nitric acid solution or air as carrier. Different Brazilian beers were directly analyzed after ultrasonic degasification. Results were compared with those obtained by graphite furnace atomic absorption spectrometry (GFAAS). The detection limits obtained for Cu, Mn, Pb, and Zn in aqueous solution were 2.2, 18, 1.6, and 0.9 μg l -1, respectively. The relative standard deviations varied from 2.7% to 7.3% ( n=8) for solutions containing the analytes in the 25-50 μg l -1 range. The concentration ranges obtained for analytes in beer samples were: Cu: 38.0-155 μg l -1; Mn: 110-348 μg l -1, Pb: 13.0-32.9 μg l -1, and Zn: 52.7-226 μg l -1. Results obtained by TS-FF-AAS and GFAAS were in agreement at a 95% confidence level. The proposed method is fast and simple, since sample digestion is not required and sensitivity can be improved without using expensive devices. The TS-FF-AAS presented suitable sensitivity for determination of Cu, Mn, Pb, and Zn in the quality control of a brewery.

  14. Valorization of a treated soil via amendments: fractionation and oral bioaccessibility of Cu, Ni, Pb, and Zn.

    PubMed

    Zagury, Gerald J; Rincon Bello, Jhony A; Guney, Mert

    2016-04-01

    The present study aims to transform a treated soil (TS) into a more desirable resource by modifying physico-chemical properties via amendments while reducing toxic metals' mobility and oral bioaccessibility. A hydrocarbon-contaminated soil submitted to treatment (TS) but still containing elevated concentrations of Cu, Ni, Pb, and Zn has been amended with compost, sand, and Al2(SO4)3 to render it usable for horticulture. Characterization and sequential extraction were performed for TS and four amended mixtures (AM1-4). P and K availability and metal bioaccessibility were investigated in TS and AM2. Amendment improved soil properties for all mixtures and yielded a usable product (AM2 20 % TS, 49 % compost, 30 % sand, 1 % Al2(SO4)3) satisfying regulatory requirements except for Pb content. In particular, AM2 had improved organic matter (OM) and cation exchange capacity (CEC), highly increased P and K availability, and reduced total metal concentrations. Furthermore, amendment decreased metal mobile fraction likely to be plant-available (in mg kg(-1), assumed as soluble/exchangeable + carbonates fractions). For AM2, estimated Pb bioavailability decreased from 1.50 × 10(3) mg kg(-1) (TS) to 238 mg kg(-1) (52.4 % (TS) to 34.2 %). Bioaccessible concentrations of Cu, Ni, and Zn (mg kg(-1)) were lower in AM2 than in TS, but there was no significant decrease for Pb. The results suggest that amendment improved soil by modifying its chemistry, resulting in lower metal mobile fraction (in %, for Cu and Zn) and bioaccessibility (in %, for Cu only). Amending soils having residual metal contamination can be an efficient valorization method, indicating potential for reducing treatment cost and environmental burden by rendering disposal/additional treatment unnecessary. Further studies including plant bioavailability are recommended to confirm results. PMID:26969154

  15. Valorization of a treated soil via amendments: fractionation and oral bioaccessibility of Cu, Ni, Pb, and Zn.

    PubMed

    Zagury, Gerald J; Rincon Bello, Jhony A; Guney, Mert

    2016-04-01

    The present study aims to transform a treated soil (TS) into a more desirable resource by modifying physico-chemical properties via amendments while reducing toxic metals' mobility and oral bioaccessibility. A hydrocarbon-contaminated soil submitted to treatment (TS) but still containing elevated concentrations of Cu, Ni, Pb, and Zn has been amended with compost, sand, and Al2(SO4)3 to render it usable for horticulture. Characterization and sequential extraction were performed for TS and four amended mixtures (AM1-4). P and K availability and metal bioaccessibility were investigated in TS and AM2. Amendment improved soil properties for all mixtures and yielded a usable product (AM2 20 % TS, 49 % compost, 30 % sand, 1 % Al2(SO4)3) satisfying regulatory requirements except for Pb content. In particular, AM2 had improved organic matter (OM) and cation exchange capacity (CEC), highly increased P and K availability, and reduced total metal concentrations. Furthermore, amendment decreased metal mobile fraction likely to be plant-available (in mg kg(-1), assumed as soluble/exchangeable + carbonates fractions). For AM2, estimated Pb bioavailability decreased from 1.50 × 10(3) mg kg(-1) (TS) to 238 mg kg(-1) (52.4 % (TS) to 34.2 %). Bioaccessible concentrations of Cu, Ni, and Zn (mg kg(-1)) were lower in AM2 than in TS, but there was no significant decrease for Pb. The results suggest that amendment improved soil by modifying its chemistry, resulting in lower metal mobile fraction (in %, for Cu and Zn) and bioaccessibility (in %, for Cu only). Amending soils having residual metal contamination can be an efficient valorization method, indicating potential for reducing treatment cost and environmental burden by rendering disposal/additional treatment unnecessary. Further studies including plant bioavailability are recommended to confirm results.

  16. Effect of neutron irradiation on Tc of Pb-doped BiSrCaCuO superconductor

    NASA Astrophysics Data System (ADS)

    Herr, Young-Hoi; Lee, Kwang-Hee; Kim, Chan-Joong; Lee, Hee-Gyoun; Kim, Chun-Taik

    1989-09-01

    A Pb-doped BiSrCaCuO superconductor was irradiated in a TRIGA MARK III reactor up to a neutron fluence of 7.6 x 10 to the 17th n/sq cm. The measured superconducting transition temperature (Tc) after irradiation was decreased to 92.5 K from nonirradiated data of 102 K. The fractional decrease of the Tc was compared with results for other superconducting materials. Some recovery of irradiation-induced Tc decrease was observed.

  17. High pressure synthesis and properties of Bi{sub 0.5}Pb{sub 0.5}CrO{sub 3}: A novel Cr{sup 4+}/Cr{sup 3+} perovskite

    SciTech Connect

    Pirrotta, Ivan; Schmidt, Rainer; Morán, Emilio; and others

    2015-05-15

    We have synthesized a new Bi{sub 0.5}Pb{sub 0.}5CrO{sub 3} perovskite phase by means of a high pressure reaction at 70 kbar and 1000 °C. The distorted orthorhombic perovskite structure can be indexed in the space group Pnma with lattice parameters a=5.4768 (1) Å, b=7.7450 (2) Å, and c=5.4574 (1) Å at room temperature, but undergoes a structural phase transition and enters into a P2{sub 1}/m monoclinic distorted perovskite phase below 150 K with a=5.4173 (2), b=7.7286 (4) and c=5.4930 (3). The structural transition is coincident with the onset of magnetic interactions. At lower temperatures a weak ferromagnetic structure is evident related to antiferromagnetic Cr-spin canting and a spin-glass transition is observed at ≈40 K. The semiconducting-type electrical resistivity is relatively low, associated with Cr{sup 3+}/Cr{sup 4+} electron hopping, and shows considerable magneto-resistance (up to 15%). Due to the low resistivity the dielectric permittivity ε{sub r} could be determined only below T<80 K to be ≈300 and did not show any strong temperature-dependence. Ferroelectricity was not detected in the T-range investigated and no magnetocapacitance effects were observed. - Graphical abstract: A new Bi{sub 0.5}Pb{sub 0.}5CrO{sub 3} perovskite phase has been synthesized under high pressure (70 kbar) and high temperature (1000 °C) conditions. The room temperature structure is orthorhombic and can be indexed in the space group Pnma but below 150 K undergoes a structural phase transition and enters into a P2{sub 1}/m monoclinic distorted perovskite phase. The structural transition is coincident with the onset of magnetic interactions. Mott variable-range hopping charge transport and magnetoresistance effects are evident. - Highlights: • A new Bi{sub 0.5}Pb{sub 0.}5CrO{sub 3} perovskite has been synthesized under HP/HT conditions. • An orthorhombic-to monoclinic phase transition takes place at 150 K. • The structural transition is coincident with the onset

  18. Creep and Oxidation Behavior of Modified CF8C-Plus with W, Cu, Ni, and Cr

    NASA Astrophysics Data System (ADS)

    Unocic, Kinga A.; Dryepondt, Sebastien; Yamamoto, Yukinori; Maziasz, Philip J.

    2016-04-01

    The microstructures of modified CF8C-Plus (Fe-19Cr-12Ni-0.4W-3.8Mn-0.2Mo-0.6Nb-0.5Si-0.9C) with W and Cu (CF8CPWCu) and CF8CPWCu enhanced with 21Cr + 15Ni or 22Cr + 17.5Ni were characterized in the as-cast condition and after creep testing. When imaged at lower magnifications, the as-cast microstructure was similar among all three alloys as they all contained a Nb-rich interdendritic phase and Mn-based inclusions. Transmission electron microscopy (TEM) analysis showed the presence of nanoscale Cu-rich nanoprecipitates distributed uniformly throughout the matrix of CF8CPWCu, whereas in CF8CPWCu22/17, Cu precipitates were found primarily at the grain boundaries. The presence of these nanoscale Cu-rich particles, in addition to W-rich Cr23C6, nanoscale Nb carbides, and Z-phase (Nb2Cr2N2), improved the creep strength of the CF8CPWCu steel. Modification of CF8CPWCu with Cr and Ni contents slightly decreased the creep strength but significantly improved the oxidation behavior at 1073 K (800 °C). In particular, the addition of 22Cr and 17.5Ni strongly enhanced the oxidation resistance of the stainless steel resulting in a 100 degrees or greater temperature improvement, and this composition provided the best balance between improving both mechanical properties and oxidation resistance.

  19. Creep and oxidation behavior of modified CF8C-plus with W, Cu, Ni, and Cr

    DOE PAGES

    Unocic, Kinga A.; Dryepondt, Sebastien N.; Yamamoto, Yukinori; Maziasz, Philip J.

    2016-02-01

    Here, the microstructures of modified CF8C-Plus (Fe-19Cr-12Ni-0.4W-3.8Mn-0.2Mo-0.6Nb-0.5Si-0.9C) with W and Cu (CF8CPWCu) and CF8CPWCu enhanced with 21Cr + 15Ni or 22Cr + 17.5Ni were characterized in the as-cast condition and after creep testing. When imaged at lower magnifications, the as-cast microstructure was similar among all three alloys as they all contained a Nb-rich interdendritic phase and Mn-based inclusions. Transmission electron microscopy (TEM) analysis showed the presence of nanoscale Cu-rich nanoprecipitates distributed uniformly throughout the matrix of CF8CPWCu, whereas in CF8CPWCu22/17, Cu precipitates were found primarily at the grain boundaries. The presence of these nanoscale Cu-rich particles, in addition to W-richmore » Cr23C6, nanoscale Nb carbides, and Z-phase (Nb2Cr2N2), improved the creep strength of the CF8CPWCu steel. Modification of CF8CPWCu with Cr and Ni contents slightly decreased the creep strength but significantly improved the oxidation behavior at 1073 K (800 °C). In particular, the addition of 22Cr and 17.5Ni strongly enhanced the oxidation resistance of the stainless steel resulting in a 100 degrees or greater temperature improvement, and this composition provided the best balance between improving both mechanical properties and oxidation resistance.« less

  20. Aging effects on the microstructure, surface characteristics and wettability of Cu pretinned with Sn-Pb solders

    SciTech Connect

    Linch, H.S.

    1993-11-01

    This study investigates effects of aging in air and argon at 170 C on Cu coupons which were pretinned with 75Sn-25Pb, 8Sn-92Pb, and 5Sn-95Pb solders. Coatings were applied using electroplating or hot dipping techniques. The coating thickness was controlled between 3 to 3{mu}m and the specimens were aged for 0 hours, 2 hours, 24 hours and 2 weeks. Wetting balance tests were used to evaluate the wettability of the test specimens. Microstructural development was evaluated using X-ray diffraction, energy dispersive X-ray and Auger spectroscopy, as well as optical and scanning electron microscopy. The wetting behavior of the test specimens is interpreted with respect to observed microstructural changes and as a function of aging time, solder composition, and processing conditions.

  1. Properties and features of structure formation CuCr-contact alloys in electron beam cladding

    SciTech Connect

    Durakov, Vasiliy G.; Dampilon, Bair V. E-mail: gnusov@rambler.ru; Gnyusov, Sergey F. E-mail: gnusov@rambler.ru

    2014-11-14

    The microstructure and properties of the contact CuCr alloy produced by electron-beam cladding have been investigated. The effect of the electron beam cladding parameters and preheating temperature of the base metal on the structure and the properties of the coatings has been determined. The bimodal structure of the cladding coating has been established. The short circuit currents tests have been carried out according to the Weil-Dobke synthetic circuit simulating procedure developed for vacuum circuit breakers (VCB) test in real electric circuits. Test results have shown that the electron beam cladding (EBC) contact material has better breaking capacity than that of commercially fabricated sintered contact material. The application of the technology of electron beam cladding for production of contact material would significantly improve specific characteristics and reliability of vacuum switching equipment.

  2. Energy levels and radiative rates for Cr-like Cu VI and Zn VII

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Bogdanovich, P.; Keenan, F. P.; Kisielius, R.

    2016-09-01

    Energy levels and radiative rates (A-values) for transitions in Cr-like Cu VI and Zn VII are reported. These data are determined in the quasi-relativistic approach (QR), by employing a very large configuration interaction (CI) expansion which is highly important for these ions. No radiative rates are available in the literature to compare with our results, but our calculated energies are in close agreement with those compiled by NIST and other available theoretical data, for a majority of the levels. The A-values (and resultant lifetimes) are listed for all significantly contributing E1, E2 and M1 radiative transitions among the energetically lowest 322 levels of each ion.

  3. Energy levels and radiative rates for Cr-like Cu VI and Zn VII

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Bogdanovich, P.; Keenan, F. P.; Kisielius, R.

    2016-09-01

    Energy levels and radiative rates (A-values) for transitions in Cr-like Cu VI and Zn VII are reported. These data are determined in the quasi-relativistic approach (QR), by employing a very large configuration interaction (CI) expansion which is highly important for these ions. No radiative rates are available in the literature to compare with our results, but our calculated energies are in close agreement with those compiled by NIST and other available theoretical data, for a majority of the levels. The A-values (and resultant lifetimes) are listed for all significantly contributing E1, E2 and M1 radiative transitions among the energetically lowest 322 levels of each ion.

  4. Influences of traffic on Pb, Cu and Zn concentrations in roadside soils of an urban park in Dublin, Ireland.

    PubMed

    Dao, Ligang; Morrison, Liam; Zhang, Hongxuan; Zhang, Chaosheng

    2014-06-01

    Soils in the vicinity of roads are recipients of contaminants from traffic emissions. In order to obtain a better understanding of the impacts of traffic on soils, a total of 225 surface soil samples were collected from an urban park (Phoenix Park, Dublin, Ireland) in a grid system. Metal (Pb, Cu and Zn) concentrations were determined using a portable X-ray fluorescence analyzer. Strong spatial variations for the concentrations of Pb, Cu and Zn were observed. The spatial distribution maps created using geographical information system techniques revealed elevated metal concentrations close to the main traffic route in the park. The relationships between the accumulation of Pb, Cu and Zn in the roadside soils and the distance from the road were well fitted with an exponential model. Elevated metal concentrations from traffic pollution extended to a distance of approximately 40 m from the roadside. The results of this study provide useful information for the management of urban parks particularly in relation to policies aimed at reducing the impact of traffic related pollution on soils.

  5. Relation of pH and other soil variables to concentrations of Pb, Cu, Zn, Cd, and Se in earthworms

    USGS Publications Warehouse

    Beyer, W.N.; Hensler, G.L.; Moore, J.

    1987-01-01

    Various soil treatments (clay, composted peat, superphosphate, sulfur, calcium carbonate, calcium chloride, zinc chloride, selenous acid) were added to experimental field plots to test the effect of different soil variables on the concentrations of 5 elements in earthworms (Pb, Cu, Zn, Cd, Se). Concentrations of the 5 elements were related to 9 soil variables (soil Pb, soil Cu, soil Zn, pH, organic matter, P, K, Mg, and Ca) with linear multiple regression. Lead concentrations in earthworms were positively correlated with soil Pb and soil organic matter, and negatively correlated with soil pH and soil Mg, with an R2 of 64%. Se concentrations were higher in earthworms from plots amended with Se, and Zn concentrations were higher in earthworms from plots amended with Zn. However, none of the other soil variables had important effects on the concentrations of Cu, Zn, Cd and Se in earthworms. Although some significant statistical relations were demonstrated, the values of r2 of all relations (> 20%) were so low that they had little predictive value.

  6. Geochemical partitioning of Pb, Zn, Cu, Fe, and Mn across the sediment-water interface in large lakes

    SciTech Connect

    McKee, J.D.; Wilson, T.P.; Long, D.T.; Owen, R.M.

    1989-01-01

    The early diagenetic remobilization of Mn, Fe, Zn, Cu, and Pb was evaluated by studying the geochemical partitioning of the metals among hydromorphic phases in interfacial sediment and in the sediment column, at a site in the Caribou sub-basin, Lake Superior. The sediment was collected with a vacuum/filtration system developed for the submersible Johnson Sea-Link II and the sediment column by gravity coring. The results show that: (1) Pb, Cu, and Zn exhibit sediment profiles in which their concentrations decrease with depth for total metal and some of the hydromorphic phases; (2) Mn and Fe profiles are the result of early diagenesis; (3) each of the metals is uniquely partitioned among the phases and the partitioning changes from the sediment to the sediment column and with depth; and (4) the concentrations of Zn, Cu, and Pb in the sediment are higher than those in the sediment column and, in some instances, appear to be an exponential extrapolations of the latter. The results are interpreted to indicate that the metals are remobilized during early diagenesis and that the sediment may be chemically unique compared to the sediment column, perhaps being similar to interfacial sediments identified in deep marine environments. In addition, it appears that studying the metal concentrations in the individual hydromorphic phases of the sediment is more useful in identifying diagenetic processes than is examination of either total hydromorphic or total metal concentrations of the sediment.

  7. Synthesis of poly(aminopropyl/methyl)silsesquioxane particles as effective Cu(II) and Pb(II) adsorbents.

    PubMed

    Lu, Xin; Yin, Qiangfeng; Xin, Zhong; Li, Yang; Han, Ting

    2011-11-30

    Poly(aminopropyl/methyl)silsesquioxane (PAMSQ) particles have been synthesized by a one-step hydrolytic co-condensation process using 3-aminopropyltriethoxysilane (APTES) and methyltrimethoxysilane (MTMS) as precursors in the presence of base catalyst in aqueous medium. The amino functionalities of the particles could be controlled by adjusting the organosilanes feed ratio. The compositions of the amino-functionalized polysilsesquioxanes were confirmed by FT-IR spectroscopy, solid-state (29)Si NMR spectroscopy, and elemental analysis. The strong adsorbability of Cu(II) and Pb(II) ions onto PAMSQ particles was systematically examined. The effect of adsorption time, initial metal ions concentration and pH of solutions was studied to optimize the metal ions adsorbability of PAMSQ particles. The kinetic studies indicated that the adsorption process well fits the pseudo-second-order kinetics. Adsorption phenomena appeared to follow Langmuir isotherm. The PAMSQ particles demonstrate the highest Cu(II) and Pb(II) adsorption capacity of 2.29 mmol/g and 1.31 mmol/g at an initial metal ions concentration of 20mM, respectively. The PAMSQ particles demonstrate a promising application in the removal of Cu(II) and Pb(II) ions from aqueous solutions. PMID:21945683

  8. Manufacture of (Bi,Pb)2Sr2Ca2Cu3O10-based tapes with a composite sheath

    NASA Astrophysics Data System (ADS)

    Grivel, J.-C.; Abrahamsen, A. B.; Andersen, N. H.; Saksl, K.

    2008-02-01

    (Bi,Pb)2Sr2Ca2Cu3O10-based single-filament tapes were prepared using a pure Ag protective sheath in contact with the ceramic core and an external sheath consisting of Ni. The influence of the composite sheath geometry on the (Bi,Pb)2Sr2Ca2Cu3O10 phase formation kinetics was studied by in-situ synchrotron x-ray diffraction in a 8.5% O2 - 91.5% N2 gas mixture and was found to depend strongly on the sheath architecture as a consequence of differences in the oxygen supply between the ceramic core and the outer atmosphere. Owing to the efficient protection of the pure Ag layer against Ni diffusion, the critical temperature of the (Bi,Pb)2Sr2Ca2Cu3O10 phase is unaffected. Critical current densities as high as 35 kA/cm2 (77K, self field) were obtained in a single heat treatment when a slow cooling rate was used. The ceramic density was significantly improved in comparison with that of tapes prepared using only pure Ag as sheath material and heat treated once. This effect can be attributed to the higher mechanical strength of the composite sheath at elevated temperatures, which prevents the development of an otherwise significant porosity during the growth of the superconducting crystallites.

  9. Effect of heavy metals (Cu, Pb, and As) on the ultrastructure of Sargassum pallidum in Daya Bay, China.

    PubMed

    Miao, Li; Yan, Wen; Zhong, Lifeng; Xu, Weihai

    2014-01-01

    Concentrations of Cu, Pb, and As were determined in seawater, surface sediment, Sargassum pallidum collected from the Daya Bay, China. The influence of metal contamination on the marine alga was investigated at chemical and ultrastructural level. Mean concentrations of Cu (19.44 mg kg(-1)) and Pb (33.99 mg kg(-1)) were found to be high in sediment, whereas concentration of As (122.29 mg kg(-1)) in S. pallidum was higher than that in water and sediment. The ultrastructure of S. pallidum cells was anomalous and aberrant. Energy-dispersive x-ray spectroscopic analysis revealed that the nanometal particles in the form of comparatively high-electron density substance diffused in the cell structures constituted by Cu, Pb, As, etc. There is a remarkable similarity or correspondence in the anomalous elements between the geochemistry and the botanic cell, and the heavy metals have potential hazardous effect on the ocean ecology system in Daya Bay.

  10. Sr-Nd-Pb-Hf isotope systematics of the Hugo Dummett Cu-Au porphyry deposit (Oyu Tolgoi, Mongolia)

    NASA Astrophysics Data System (ADS)

    Dolgopolova, A.; Seltmann, R.; Armstrong, R.; Belousova, E.; Pankhurst, R. J.; Kavalieris, I.

    2013-04-01

    Major and trace element geochemistry including Sr-Nd-Pb-Hf isotopic data are presented for a representative sample suite of Late Devonian to Early Carboniferous plutonic and volcanic rocks from the Hugo Dummett deposit of the giant Oyu Tolgoi porphyry Cu-Au district in South Gobi, Mongolia. Sr and Nd isotopes (whole-rock) show restricted ranges of initial compositions, with positive ɛNdt mainly between + 3.4 and + 7.4 and (87Sr/86Sr)t predominantly between 0.7037 and 0.7045 reflecting magma generation from a relatively uniform juvenile lithophile-element depleted source. Previously dated zircons from the plutonic rocks exhibit a sample-averaged range of ɛHft values of + 11.6 to + 14.5. Depleted-mantle model ages of 420-830 (Nd) and 320-730 Ma (zircon Hf) limit the involvement of pre-Neoproterozoic crust in the petrogenesis of the intermediate to felsic calc-alkaline magmas to, at most, a minor role. Pb isotopes (whole-rock) show a narrow range of unradiogenic initial compositions: 206Pb/204Pb 17.40-17.94, 207Pb/204Pb 15.43-15.49 and 208Pb/204Pb 37.25-37.64, in agreement with Sr-Nd-Hf isotopes indicating the dominance of a mantle component. All four isotopic systems suggest that the magmas from which the large Oyu Tolgoi porphyry system was generated originated predominantly from juvenile material within the subduction-related setting of the Gurvansayhan terrane.

  11. Multi-metal interactions between Cd, Cu, Ni, Pb and Zn in water flea Daphnia magna, a stable isotope experiment.

    PubMed

    Komjarova, I; Blust, R

    2008-11-11

    Metal interaction effects were investigated in Daphnia magna during a simultaneous exposure to essential (Cu, Ni and Zn) and non-essential (Cd and Pb) metals at environmentally relevant concentrations using a stable isotope technique. The metals were applied in the following concentration ranges: 0.0125-0.2 microM for (106)Cd, 0.025-0.25 microM for (65)Cu and (204)Pb, 0.1-1.25 microM for (62)Ni and (67)Zn. Cadmium and copper exhibited a suppressing effect on the uptake rates of all other metals present in the mixture with the exception to lead at all studied concentrations. The effect was already pronounced at low Cd and Cu concentrations and reached a maximum at the higher concentrations. Nickel and zinc showed weaker interactions with cadmium and between each other, while having no effect on copper and lead uptake. There was a high degree of correlation between Cd, Ni and Zn uptake rates indicating that these metals share in part common uptake or interaction pathways. Moreover, a significant correlation between Zn and Cu uptake processes suggests that more than one mechanism is involved in Zn accumulation since Cu is known to interact with Na uptake sites. The uptake of lead was marked by a high initial rate, but the uptake process reached saturation within 24 h. Cd applied at a concentration of 0.2 microM was the only metal which affected the lead uptake process by stimulation of the Pb uptake. Added to the medium at a concentration of 0.25 microM, lead in turn, increased copper uptake. Current work illustrates that metal interactions are significant and occur at low environmentally realistic concentrations affecting bioavailability of both toxic and essential metals.

  12. Determination of Cd, Cr, Hg and Pb in plastics from waste electrical and electronic equipment by inductively coupled plasma mass spectrometry with collision-reaction interface technology.

    PubMed

    Santos, Mirian C; Nóbrega, Joaquim A; Cadore, Solange

    2011-06-15

    A procedure based on the use of a quadrupole inductively coupled plasma-mass spectrometer equipped with a collision-reaction interface (CRI) for control of spectral overlap interferences was developed for simultaneous determination of Cd, Cr, Hg, and Pb in plastics from waste electrical and electronic equipment (WEEE). The injection of H(2) and He (80 and 60 mL min(-1), respectively) into the sampled plasma, colliding and reacting with potentially interfering polyatomic ions, allows interference-free determination of chromium via its isotopes (52)Cr and (53)Cr that are freed from overlap due to the occurrence of (40)Ar(12)C(+), (40)Ar(12)C(1)H(+), (36)S(16)O(+) or (1)H(36)S(16)O(+). Cadmium, Hg and Pb were directly determined via their isotopes (110)Cd, (111)Cd, (112)Cd, (199)Hg, (200)Hg, (201)Hg, (202)Hg, (206)Pb, (207)Pb, and (208)Pb, without using CRI. The CRI can be quickly activated or deactivated before each analyte measurement. Limits of detection for (52)Cr were 0.04 or 0.14 μg L(-1) with He or H(2) injected in CRI. Cadmium and Pb have LODs between 0.02 and 0.08 μg L(-1) and Hg had 0.93-0.98 μg L(-1), without using CRI. Analyte concentrations for samples varied from 16 to 43, 1 to 11, 4 to 12, and 5 to 13 mg kg(-1) for Cr, Cd, Hg and Pb, respectively.

  13. Characterization of bacterial communities exposed to Cr(III) and Pb(II) in submerged fixed-bed biofilms for groundwater treatment.

    PubMed

    Vílchez, R; Gómez-Silván, C; Purswani, J; González-López, J; Rodelas, B

    2011-06-01

    Two pilot-scale submerged-bed microbial biofilms were set up for the removal of Cr(III) and Pb(II) from groundwater, and the biological activities and structure of the bacterial communities developed in the presence of the heavy metals were analyzed. Artesian groundwater was polluted with Cr(III) or Pb(II) (15 mg/l) and amended with sucrose (250 mg/l) as carbon source. While Pb(II) was over 99% removed from groundwater during long-term operation (130 days), the efficiency of the removal of Cr(III) significantly decreased in time (95-73% after 60 days). Cr(III)-amended biofilms displayed significant lower sucrose consumption, ATP cell contents and alkaline phosphatase activity, compared to biofilms formed in the presence of Pb(II), while analysis of exopolymers demonstrated significant differences in their composition (content of carbohydrates and acetyl groups) in response to each heavy metal. According to transmission electron microscopy (TEM) and electron-dispersive X-ray analysis (EDX), Cr(III) bioaccumulated in the exopolymeric matrix without entering bacterial cells, while Pb(II) was detected both extra and intracellularly, associated to P and Si. Temperature-gradient gel electrophoresis (TGGE) profiling based on partial amplification of 16S rRNA genes was used to analyze the differences in the structure of the biofilm bacterial communities developed under exposure to each heavy metal. Prevalent populations in the biofilms were further identified by reamplification and sequencing of isolated TGGE bands. 75% of the sequences in the Pb(II) biofilter were evolutively close to the Rhodobacterales, while in the Cr(III) biofilter 43% of the sequences were found affiliated to the Rhizobiales and Sphingomonadales, and 57% to Betaproteobacteria.

  14. Influence of pyrolytic and non-pyrolytic rice and castor straws on the immobilization of Pb and Cu in contaminated soil.

    PubMed

    Rizwan, Muhammad Shahid; Imtiaz, Muhammad; Chhajro, Muhammad Afzal; Huang, Guoyong; Fu, Qingling; Zhu, Jun; Aziz, Omar; Hu, Hongqing

    2016-11-01

    Soil contamination with heavy metals has become a global environmental health concern. In the present study, European Community Bureau of Reference (BCR) sequential extraction and toxicity characteristic leaching procedure (TCLP) techniques were used to evaluate the Pb and Cu subsequent transformations, immobilizing impact of pyrolytic and non-pyrolytic rice and castor straws and their efficiency to reduce the metals mobility and leachability in the polluted soil. Obtained results highlight the potential of biochar over non-pyrolytic residues to enhance the immobilization of Pb and Cu in the soil. Castor leaves-derived biochar (CLB), castor stem-derived biochar (CSB), and rice straw-derived biochar (RSB) prominently decreased the mobility (acid-soluble fraction) of Pb 49.8%, 31.1%, and 31.9%, respectively, while Cu decreased 15.8%, 11.5%, and 12%, respectively, as compare to control. Sequential extraction showed that biochar treatments prominently modified the proportioning of Pb and Cu from acid soluble to a less bioavailable fraction and increased the geochemical stability in the polluted soil as compared to relative feedstocks as well as the controlled soil. Additionally, the soil pH increased markedly after the addition of biochar. Compared with control, the TCLP-extractable Pb and Cu were reduced to 29.2-41.4% and 5.7-22.8% from the soil respectively by the application of CLB. The immobilization and reduction in leachability of Pb and Cu were correlated with the soil pH. The biochar effect on the Pb immobilization was much better as compared to Cu in co-contaminated soil. Overall addition of CLB offered the best results and could be effective in both Pb and Cu immobilization thereby reducing their mobility and bioavailability in the co-contaminated soil. PMID:26934087

  15. Characterization of Cold Sprayed CuCrAl-Coated and Uncoated GRCop-84 Substrates for Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Karthikeyan, J.; Lerch, B. A.; Barrett, C.; Garlich, R.

    2007-01-01

    A newly developed Cu-23(wt.%)Cr-5%Al (CuCrAl) alloy is currently being considered as a protective coating for GRCop-84 (Cu-8(at.%)Cr-4%Nb). The coating was deposited on GRCop-84 substrates by the cold spray deposition technique. Cyclic oxidation tests conducted in air on both coated and uncoated substrates between 773 and 1073 K revealed that the coating remained intact and protected the substrate up to 1073 K. No significant weight loss of the coated specimens were observed at 773 and 873 K even after a cumulative cyclic time of 500 h. In contrast, the uncoated substrate lost as much as 80% of its original weight under similar test conditions. Low cycle fatigue tests revealed that the fatigue lives of thinly coated GRCop-84 specimens were similar to the uncoated specimens within the limits of experimental scatter. It is concluded that the cold sprayed CuCrAl coating is suitable for protecting GRCop-84 substrates.

  16. Tunable Magnetic Properties in CuCr2- x Fe x O4 Ceramics by Doping of Fe

    NASA Astrophysics Data System (ADS)

    Zhu, C. M.; Wang, L. G.; Bao, D. L. G. C.; Luo, H.; Tian, Z. M.; Yuan, S. L.

    2016-08-01

    CuCr2- x Fe x O4 ceramics have been successfully synthesized using the sol-gel method for the first time. With pure formation, material structure has been characterized by x-ray diffraction. The samples have been identified as having the spinel structure with formulae CuCr2- x Fe x O4. Micrographs obtained by scanning electron microscopy show the dense microstructure of the samples. The stoichiometric ratio of the ceramics has been measured through energy dispersive spectra. Magnetic properties of CuCr2- x Fe x O4 ceramics have been discussed. Temperature dependence of magnetization presents the gradually increasing irreversible temperature as the content of Fe element increases from x = 0 to 1. Coercive field ( H C), remanent magnetization ( M r), and saturation magnetization ( M S) respectively display the monotonous variation phenomena with increasing content of Fe. The increasing M r, M S and the decreasing H C can be attributed to the change of magnetic exchange interaction because of the doped Fe. It also proves that the magnetic properties of CuCr2- x Fe x O4 ceramics can be effectively tuned by the doping content of Fe.

  17. Oxidation of diesel soot on binary oxide CuCr(Co)-based monoliths.

    PubMed

    Soloviev, Sergiy O; Kapran, Andriy Y; Kurylets, Yaroslava P

    2015-02-01

    Binary oxide systems (CuCr2O4, CuCo2O4), deposited onto cordierite monoliths of honeycomb structure with a second support (finely dispersed Al2O3), were prepared as filters for catalytic combustion of diesel soot using internal combustion engine's gas exhausts (O2, NOx, H2O, CO2) and O3 as oxidizing agents. It is shown that the second support increases soot capacity of aforementioned filters, and causes dispersion of the particles of spinel phases as active components enhancing thereby catalyst activity and selectivity of soot combustion to CO2. Oxidants used can be arranged with reference to decreasing their activity in a following series: O3≫NO2>H2O>NO>O2>CO2. Ozone proved to be the most efficient oxidizing agent: the diesel soot combustion by O3 occurs intensively (in the presence of copper chromite based catalyst) even at closing to ambient temperatures. Results obtained give a basis for the conclusion that using a catalytic coating on soot filters in the form of aforementioned binary oxide systems and ozone as the initiator of the oxidation processes is a promising approach in solving the problem of comprehensive purification of automotive exhaust gases at relatively low temperatures, known as the "cold start" problem. PMID:25662252

  18. A new mercury-based superconductor: (Hg, Cr)Sr 2CuO y

    NASA Astrophysics Data System (ADS)

    Shimoyama, J.; Hahakura, S.; Kitazawa, K.; Yamafuji, K.; Kishio, K.

    1994-04-01

    A new mercury-based cuprate superconductor, (Hg 1- xCr x)Sr 2CuO y (0⩽ x⩽0.8), having Tc of 58 K ( x=0.3 has been synthesized. While a chromium-free sample ( x=0) was multi-phased and the superconducting volume fraction was less than 1%, samples for x=0.3 and 0.4 were of nearly single phase and their superconducting shielding volume fraction reached 100% of perfect diamagnetism. X-ray diffraction analysis revealed that its crystal symmetry was tetragonal with lattice parameters a0=3.840-3.854 Å and c0=8.639-8.705 Å which slightly varied with x. The observed c0 value, corresponding to the interlayer distance of superconducting CuO 2 planes, was found to be the shortest among all the known mercury-based “12( n-1) n” superconductors. Compared to the barium-containing compounds, the present barium-free materials have been found to be insensitive to the ambient air atmosphere during the synthesis and also to be quite stable after storage in air.

  19. Residents health risk of Pb, Cd and Cu exposure to street dust based on different particle sizes around zinc smelting plant, Northeast of China.

    PubMed

    Zhou, Qiuhong; Zheng, Na; Liu, Jingshuang; Wang, Yang; Sun, Chongyu; Liu, Qiang; Wang, Heng; Zhang, Jingjing

    2015-04-01

    The residents health risk of Pb, Cd and Cu exposure to street dust with different particle sizes (<100 and <63 μm) near Huludao Zinc Plant (HZP) was investigated in this study. The average concentrations of Pb, Cd and Cu in the <100-μm and <63-μm dust were 1,559, 178.5, 917.9 and 2,099, 198.4, 1,038 mg kg(-1), respectively. It showed that smaller particles tended to contain higher element concentrations. Metals in dust around HZP decreased gradually from the zinc smelter to west and east directions. There was significantly positive correlation among Pb, Cd and Cu in street dust with different particle sizes. The contents of Pb, Cd and Cu in dust increased with decreasing pH or increasing organic matter. Non-carcinogenic health risk assessment showed that the health index (HI) for children and adult exposed to <63-μm particles were higher than exposed to <100-μm particles, which indicated that smaller particles tend to have higher non-carcinogenic health risk. Non-carcinogenic risk of Pb was the highest in both particle sizes, followed by Cd and Cu. HI for Pb and Cd in both particle sizes for children had exceeded the acceptable value, indicated that children living around HZP were experiencing the non-carcinogenic health risk from Pb and Cd exposure to street dust.

  20. Removal of As, Cd, Cu, Ni, Pb, and Zn from a highly contaminated industrial soil using surfactant enhanced soil washing

    NASA Astrophysics Data System (ADS)

    Torres, Luis G.; Lopez, Rosario B.; Beltran, Margarita

    Surfactant enhanced soil washing (SESW) was applied to an industrial contaminated soil. A preliminary characterization of the soil regarding the alkaline-earth metals, Na, K, Ca and Mg took values of 2866, 2036, 2783 and 4149 mg/kg. The heavy metals As, Cd, Cu, Pb, Ni and Zn, had values of 4019, 14, 35582, 70, 2603, and 261 mg/kg, respectively. When using different surfactants, high removal of Cu, Ni and Zn were found, and medium removals for Pb, As and Cd. In the case of these three metals, tap water removed more than the surfactant solutions, except for the case of As. There were surfactants with average removals (this is, the removal for all the metals studied) of 67.1% (Tween 80), 64.9% (Surfacpol 14104) and 61.2% (Emulgin W600). There were exceptional removals using Texapon N-40 (83.2%, 82.8% and 86.6% for Cu, Ni and Zn), Tween 80 (85.9, 85.4 and 81.5 for Cd, Zn and Cu), Polafix CAPB (79%, 83.2% and 49.7% for Ni, Zn and As). The worst results were obtained with POLAFIX LO with a global removal of 45%, well below of the average removal with tap water (50.2%).All removal efficiencies are reported for a one step washing using 0.5% surfactant solutions, except for the case of mezquite gum, where a 0.1% solution was employed.

  1. Alleviation of Cu and Pb rhizotoxicities in cowpea (Vigna unguiculata) as related to ion activities at root-cell plasma membrane surface.

    PubMed

    Kopittke, Peter M; Kinraide, Thomas B; Wang, Peng; Blamey, F Pax C; Reichman, Suzie M; Menzies, Neal W

    2011-06-01

    Cations, such as Ca and Mg, are generally thought to alleviate toxicities of trace metals through site-specific competition (as incorporated in the biotic ligand model, BLM). Short-term experiments were conducted with cowpea (Vigna unguiculata L. Walp.) seedlings in simple nutrient solutions to examine the alleviation of Cu and Pb toxicities by Al, Ca, H, Mg, and Na. For Cu, the cations depolarized the plasma membrane (PM) and reduced the negativity of ψ(0)(o) (electrical potential at the outer surface of the PM) and thereby decreased {Cu(2+)}(0)(o) (activity of Cu(2+) at the outer surface of the PM). For Pb, root elongation was generally better correlated to the activity of Pb(2+) in the bulk solution than to {Pb(2+)}(0)(o). However, we propose that the addition of cations resulted in a decrease in {Pb(2+)}(0)(o) but a simultaneous increase in the rate of Pb uptake (due to an increase in the negativity of E(m,surf), the difference in potential between the inner and outer surfaces of the PM) thus offsetting the decrease in {Pb(2+)}(0)(o). In addition, Ca was found to alleviate Pb toxicity through a specific effect. Although our data do not preclude site-specific competition (as incorporated in the BLM), we suggest that electrostatic effects have an important role.

  2. Pb-DOPING Effects in Hg1-xPbxBa2Ca2Cu3O8+δ

    NASA Astrophysics Data System (ADS)

    Xue, Y. Y.; Huang, Z. J.; Qiu, X. D.; Beauvais, L.; Zhang, X. N.; Sun, Y. Y.; Meng, R.; Chu, C. W.

    Samples with a nominal composition of Hg1-xPbxBa2Ca2Cu3O8+δ (x~0.1, 0.2, and 0.3) have been synthesized and characterized. The Pb-doping promotes the formation of the three CuO2-layer compound Hg1-xPbxBa2Ca2Cu3O8+δ, and reduces the release of Hg vapor at the synthesis temperature. The intergrain electric coupling is also significantly enhanced by the doping, resulting in lower normal-state resistivity and higher intergrain critical current density. The carrier concentration of the as-synthesized samples increases with the increase of x, ranging from underdoped (x~0) to overdoped (x≥0.2).

  3. β-Cyclodextrin assisted solubilization of Cu and Cr complexes of flavonoids in aqueous medium: A DNA-interaction study

    NASA Astrophysics Data System (ADS)

    Jabeen, Erum; Janjua, Naveed Kausar; Hameed, Shahid

    2014-07-01

    Cu and Cr complexes of three flavonoids (morin, quercetin and 6-hydroxyflavone) were synthesized and included in beta-cyclodextrin (βCD) with the objective of improving their pharmacokinetic profiles. Then binding with ds.DNA was studied to monitor their interactive tendencies at physiological conditions. The binding constants and other thermodynamic data from UV-vis spectroscopy and cyclic voltammetry revealed Cr-flavonoid-βCD to interact with ds.DNA at pH-7.4 through electrostatic mode of binding while Cu-flavonoid-βCD can intercalate into DNA. The strong binding propensity of Cu-flavonoid-βCD with ds.DNA encourages their application as anticancerous agent.

  4. Catalytic role of Cu(II) in the reduction of Cr(VI) by citric acid under an irradiation of simulated solar light.

    PubMed

    Li, Ying; Chen, Cheng; Zhang, Jing; Lan, Yeqing

    2015-05-01

    The catalytic role of Cu(II) in the reduction of Cr(VI) by citric acid with simulated solar light was investigated. The results demonstrated that Cu(II) could significantly accelerate Cr(VI) reduction and the reaction obeyed to pseudo zero-order kinetics with respect to Cr(VI). The removal of Cr(VI) was related to the initial concentrations of Cu(II), citric acid, and the types of organic acids. The optimal removal of Cr(VI) was achieved at pH 4, and the rates of Cu(II) photocatalytic reduction of Cr(VI) by organic acids were in the order: tartaric acid (two α-OH groups, two -COOH groups)>citric acid (one α-OH group, three -COOH groups)>malic acid (one α-OH group, two -COOH groups)>lactic acid (one α-OH group, one -COOH group)≫succinic acid (two -COOH groups), suggesting that the number of α-OH was the key factor for the reaction, followed by the number of -COOH. The formation of Cu(II)-citric acid complex could generate Cu(I) and radicals through a pathway of metal-ligand-electron transfer, promoting the reduction of Cr(VI). This study is helpful to fully understanding the conversion of Cr(VI) in the existence of both organic acids and Cu(II) with solar light in aquatic environments.

  5. Electronic, Magnetic, and Redox Properties of [MFe(3)S(4)] Clusters (M = Cd, Cu, Cr) in Pyrococcus furiosus Ferredoxin.

    PubMed

    Staples, Christopher R.; Dhawan, Ish K.; Finnegan, Michael G.; Dwinell, Derek A.; Zhou, Zhi Hao; Huang, Heshu; Verhagen, Marc F. J. M.; Adams, Michael W. W.; Johnson, Michael K.

    1997-12-01

    The ground- and excited-state properties of heterometallic [CuFe(3)S(4)](2+,+), [CdFe(3)S(4)](2+,+), and [CrFe(3)S(4)](2+,+) cubane clusters assembled in Pyrococcus furiosus ferredoxin have been investigated by the combination of EPR and variable-temperature/variable-field magnetic circular dichroism (MCD) studies. The results indicate Cd(2+) incorporation into [Fe(3)S(4)](0,-) cluster fragments to yield S = 2 [CdFe(3)S(4)](2+) and S = (5)/(2) [CdFe(3)S(4)](+) clusters and Cu(+) incorporation into [Fe(3)S(4)](+,0) cluster fragments to yield S = (1)/(2) [CuFe(3)S(4)](2+) and S = 2 [CuFe(3)S(4)](+) clusters. This is the first report of the preparation of cubane type [CrFe(3)S(4)](2+,+) clusters, and the combination of EPR and MCD results indicates S = 0 and S = (3)/(2) ground states for the oxidized and reduced forms, respectively. Midpoint potentials for the [CdFe(3)S(4)](2+,+), [CrFe(3)S(4)](2+,+), and [CuFe(3)S(4)](2+,+) couples, E(m) = -470 +/- 15, -440 +/- 10, and +190 +/- 10 mV (vs NHE), respectively, were determined by EPR-monitored redox titrations or direct electrochemistry at a glassy carbon electrode. The trends in redox potential, ground-state spin, and electron delocalization of [MFe(3)S(4)](2+,+) clusters in P. furiosus ferredoxin are discussed as a function of heterometal (M = Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Tl).

  6. Origin of epithermal Ag-Au-Cu-Pb-Zn mineralization in Guanajuato, Mexico

    NASA Astrophysics Data System (ADS)

    Mango, Helen; Arehart, Greg; Oreskes, Naomi; Zantop, Half

    2014-01-01

    The Guanajuato epithermal district is one of the largest silver producers in Mexico. Mineralization occurs along three main vein systems trending dominantly northwest-southeast: the central Veta Madre, the La Luz system to the northwest, and the Sierra system to the east. Mineralization consists dominantly of silver sulfides and sulfosalts, base metal sulfides (mostly chalcopyrite, galena, sphalerite, and pyrite), and electrum. There is a broad zonation of metal distribution, with up to 10 % Cu+Pb+Zn in the deeper mines along the northern and central portions of the Veta Madre. Ore occurs in banded veins and breccias and as stockworks, with gangue composed dominantly of quartz and calcite. Host rocks are Mesozoic sedimentary and intrusive igneous rocks and Tertiary volcanic rocks. Most fluid inclusion homogenization temperatures are between 200 and 300 °C, with salinities below 4 wt.% NaCl equivalent. Fluid temperature and salinity decreased with time, from 290 to 240 °C and from 2.5 to 1.1 wt.% NaCl equivalent. Relatively constant fluid inclusion liquid-to-vapor ratios and a trend of decreasing salinity with decreasing temperature and with increasing time suggest dilution of the hydrothermal solutions. However, evidence of boiling (such as quartz and calcite textures and the presence of adularia) is noted along the Veta Madre, particularly at higher elevations. Fluid inclusion and mineralogical evidence for boiling of metal-bearing solutions is found in gold-rich portions of the eastern Sierra system; this part of the system is interpreted as the least eroded part of the district. Oxygen, carbon, and sulfur isotope analysis of host rocks, ore, and gangue minerals and fluid inclusion contents indicate a hydrothermal fluid, with an initial magmatic component that mixed over time with infiltrating meteoric water and underwent exchange with host rocks. Mineral deposition was a result of decreasing activities of sulfur and oxygen, decreasing temperature, increasing p

  7. Manganiferous pyroxenes and pyroxenoids from three Pb-Zn-Cu skarn deposits

    NASA Astrophysics Data System (ADS)

    Abrecht, Jürgen

    1985-05-01

    Samples from the Pb-Zn-Cu skarns of M. Ci-villina (Italy), Valle del Temperino (Italy), and Empire Mine (New Mexico, USA) have been analysed for their pyroxenes and pyroxenoids. The samples were collected immediately adjacent to the marble-skarn replacement front. All contain manganiferous pyroxenoids and manganeserich Ca-pyroxenes. The pyroxenes from each deposit form distinct groups of compositions within the diopside-hedenbergite-johannsenite triangle, with no apparent miscibility gap. Diopside contents usually are below 15 mole percent. Fibrous bustamite occurs as monomineralic zones in the Empire and in the Temperino deposit. Although rhodonite may be a primary phase in some samples from the Empire Mine, it is commonly of secondary origin in the Empire Mine and in the Civillina deposit. Its formation from manganiferous clinopyroxenes is either due to increasing Mn activity in the hydrothermal skarn solution or to higher X(CO2) in the vapour phase. When rhodonite is formed within clinopyroxenes as submicroscopic lamellae that eventually replace the whole host crystal, resulting compositions lie in the miscibility gap between rhodonite and bustamite. Textural relations indicate the replacement reaction: johannsenite + CO2 = rhodonite + calcite + quartz. Equilibrium temperatures for this reaction have been calculated by using estimated thermochemical data for johannsenite, giving a T(eq)=385° C for X(CO2)=0.1 at P(tot)= 1 kbar. Taking into consideration the reduced activity of Mn in rhodonite and of Ca in calcite, both buffered by the johannsenite, the temperature is increased for about 15° C at X(CO2)=0.01. At lower temperatures, where johannsenite is stable, the X(CO2) is confined to values below 0.01. Despite the mineralogical similarities of the three deposits differences in the development of the manganiferous skarns can be depicted.

  8. Effect of Pb doping on the structure of HgBa 2CuO 4+δ single crystals

    NASA Astrophysics Data System (ADS)

    Schwer, H.; Kopnin, E.; Molinski, R.; Jun, J.; Meijer, G. I.; Conder, K.; Rossel, C.; Karpinski, J.

    1997-02-01

    X-ray structure analyses were performed with HgBa 2CuO 4+δ and Hg 1- xPb xBa 2CuO 4+δ single crystals. The onset of the superconducting transition of the crystals ranges from 78-92 K. Hg-1201 crystallizes with space group P4/mmm and has lattice pafameters a = 3.8907(2) Å and c = 9.556(1) Å. The structure was refined to R = 0.023 (wR2 = 0.036) in the ideal 1201 type with an excess oxygen content of 6(2)% and an occupancy of 97% at the Hg site. Pb-doping decreases the lattice parameters to a = 3.8836(2) Å and c = 9.553(1) Å, and the refinement converged at R = 0.042 (wR2 = 0.088). Pb atoms are shifted by 0.5 Å to (0.14, 0, 0) and the excess oxygen atom O(3) by 0.45 Å to (0.38, {1}/{2}, 0). It has not a well defined position in the lattice, but is distributed randomly in a ring-like configuration around the ( {1}/{2}, {1}/{2}, 0) site, supporting a Pb clustering model. Rather high anisotropic temperature factors U11 and U22 of Hg and apical O(1) atoms are observed, which are also present in higher members of the Hg(Pb)-12( n - 1) n series. They are discussed in terms of corrugated OHgO bonds. Comparison with other structure refinements of 1201 shows a correlation of the transition temperature with the position of the Ba atom, which seems to be a good indicator for the hole doping evel in 1201.

  9. Effect of Pb, Cd, Hg, As, and Cr on germination and root growth of Sinapis alba seeds

    SciTech Connect

    Fargasova, A. )

    1994-03-01

    Heavy metals have been widely recognized as highly toxic and dangerous. Plants, algae and bacteria respond to heavy metal toxicity by inducing different enzymes, creating ion influx/efflux for ionic balance and synthesizing small peptides. These peptides bind metal ions and reduce toxicity. Metals come from the natural weathering processes of the earth's crust, industrial discharge, pest or disease control agents applied to plants, urban run-off, mining, soil erosion, sewage effluents, air pollution fallout and other sources. Plants can be affected directly by air pollutants, as well as indirectly through the contamination of soil and water. At the same time, plant is a member of the food chain and may create a risk for man and animals through contamination of food supplies. In recent years a considerable progress has been made in the assay of trace elements in environmental plant samples. For higher plants, the accumulation of metals, especially cadmium, was tested when plants grew on sewage sludge-amended soils or in soils of cadmium residues from phosphate fertilizers. No reports were accessible to us on the direct effect of tested metals (Pb, Hg, Cr, As, Cd) on seed germination and root growth. The paucity of literature initiated our present work. In this study, an attempt has been made to investigate the acute toxicity of five metals (Cr[sup 6+], Cd[sup 2+], Hg[sup 2+], Pb[sup 2+], As[sup 5+]) which are widely spread in the environment and are widely recognized as highly toxic and dangerous. As the testing subject, mustard seeds (Sinapis alba) were used and their germination and root growth were observed. 12 refs., 1 tab.

  10. Formation of the 110-K superconducting phase in Pb-doped Bi-Sr-Ca-Cu-O thin films

    SciTech Connect

    Kula, W.; Sobolewski, R.; Gorecka, J.; Lewandowski, S.J. )

    1991-09-15

    Investigation of the 110-K Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub {ital x}} phase formation in superconducting thin films of Bi-based cuprates is reported. The films were dc magnetron sputtered from single Bi(Pb)-Sr-Ca-Cu-O targets of various stoichiometries, and subsequently annealed in air at high temperatures. The influence of the initial Pb content, annealing conditions, as well as the substrate material on the growth of the 110-K phase was investigated. We found that the films, fully superconducting above 100 K could be reproducibly fabricated on various dielectric substrates from Pb-rich targets by optimizing annealing conditions for each initial Pb/Bi ratio. Heavy Pb doping considerably accelerated formation of the 110-K phase, reducing the film annealing time to less than 1 h. Films containing, according to the x-ray measurement, more than 90% of the 110-K phase were obtained on MgO substrates, after sputtering from the Bi{sub 2}Pb{sub 2.5}Sr{sub 2}Ca{sub 2.15}Cu{sub 3.3}O{sub {ital x}} target and annealing in air for 1 h at 870 {degree}C. The films were {ital c}-axis oriented, with 4.5-K-wide superconducting transition, and zero resistivity at 106 K. Their critical current density was 2 {times} 10{sup 2} A/cm{sup 2} at 90 K, and above 10{sup 4} A/cm{sup 2} below 60 K. The growth of the 110-K phase on epitaxial substrates, such as CaNdAlO{sub 4} and SrTiO{sub 3}, was considerably deteriorated, and the presence of the 80- and 10-K phases was detected. Nevertheless, the best films deposited on these substrates were fully superconducting at 104 K and exhibited critical current densities above 2 {times} 10{sup 5} A/cm{sup 2} below 60 K{minus}one order of magnitude greater than the films deposited on MgO.

  11. Potential hyperaccumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, northeast China

    NASA Astrophysics Data System (ADS)

    Cui, Shuang; Zhou, Qixing; Chao, Lei

    2007-01-01

    The absorption and accumulation of Pb, Zn, Cu and Cd in some endurant weed plant species that survived in an old smeltery in Liaoning, China, were systematically investigated. Potential hyperaccumulative characteristics of these species were also discussed. The results showed that metal accumulation in plants differed with species, tissues and metals. Endurant weed plants growing in this contaminated site exhibited high metal adaptability. Both the metal exclusion and detoxification tolerance strategies were involved in the species studied. Seven species for Pb and four species for Cd were satisfied for the concentration time level standard for hyperaccumulator. Considering translocation factor (TF) values, one species for Pb, seven species for Zn, two species for Cu and five species for Cd possessed the characteristic of hyperaccumulator. Particularly, Abutilon theophrasti Medic, exhibited strong accumulative ability to four heavy metals. Although enrichment coefficients of all samples were lesser than 1 and the absolute concentrations didn’t reach the standard, species mentioned above were primarily believed to be potential hyperaccumulators.

  12. Cyclic Oxidation Behavior of Cold Sprayed CuCrAl-Coated and Uncoated GRCop-84 Substrates for Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Barrett, C.; Karthikeyan, J.; Garlick, R.

    2006-01-01

    A newly developed Cu-23 (wt %) Cr-5%Al (CuCrAl) alloy shown to resist hydridation and oxidation in an as-cast form is currently being considered as a protective coating for GRCop-84, which is an advanced copper alloy containing 8 (at.%) Cr and 4 (at.%) Nb. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique. Cyclic oxidation tests conducted in air on both coated and uncoated substrates between 773 and 1073 K revealed that the coating remained intact and protected the substrate up to 1073 K. No significant weight loss of the coated specimens were observed at 773 and 873 K even after a cumulative cyclic time of 500 h. About a 10 percent weight loss observed at 973 and 1073 K was attributed to the excessive oxidation of the uncoated sides. In contrast, the uncoated substrate lost as much as 80 percent of its original weight under similar test conditions. It is concluded that the cold sprayed CuCrAl coating is suitable for protecting GRCop-84 substrates.

  13. Ultratrace Determination of Cr(VI) and Pb(II) by Microsample Injection System Flame Atomic Spectroscopy in Drinking Water and Treated and Untreated Industrial Effluents

    PubMed Central

    Baig, Jameel Ahmed; Kazi, Tasneem Gul; Elci, Latif; Afridi, Hassan Imran; Khan, Muhammad Irfan; Naseer, Hafiz Muhammad

    2013-01-01

    Simple and robust analytical procedures were developed for hexavalent chromium (Cr(VI)) and lead (Pb(II)) by dispersive liquid-liquid microextraction (DLLME) using microsample injection system coupled with flame atomic absorption spectrophotometry (MIS-FAAS). For the current study, ammonium pyrrolidine dithiocarbamate (APDC), carbon tetrachloride, and ethanol were used as chelating agent, extraction solvent, and disperser solvent, respectively. The effective variables of developed method have been optimized and studied in detail. The limit of detection of Cr(VI) and Pb(II) were 0.037 and 0.054 µg/L, respectively. The enrichment factors in both cases were 400 with 40 mL of initial volumes. The relative standard deviations (RSDs, n = 6) were <4%. The applicability and the accuracy of DLLME were estimated by the analysis of Cr(VI) and Pb(II) in industrial effluent wastewater by standard addition method (recoveries >96%). The proposed method was successfully applied to the determination of Cr(VI) and Pb(II) at ultratrace levels in natural drinking water and industrial effluents wastewater of Denizli. Moreover, the proposed method was compared with the literature reported method. PMID:24163779

  14. Geological, fluid inclusion and isotopic studies of the Yinshan Cu-Au-Pb-Zn-Ag deposit, South China: Implications for ore genesis and exploration

    NASA Astrophysics Data System (ADS)

    Wang, Guo-Guang; Ni, Pei; Wang, Ru-Cheng; Zhao, Kui-Dong; Chen, Hui; Ding, Jun-Ying; Zhao, Chao; Cai, Yi-Tao

    2013-09-01

    The Yinshan Cu-Au-Pb-Zn-Ag deposit is located in Dexing, South China. Ore bodies are primarily hosted in low-grade phyllite of the Neoproterozoic Shuangqiaoshan Group along EW- and NNW-striking fault zones. Pb-Zn-Ag mineralization is dictated by Jurassic rhyolitic quartz porphyries (ca. 172 Ma), whereas Cu-Au mineralization is associated with Jurassic dacite porphyries (ca. 170 Ma). The main ore minerals are pyrite, chalcopyrite, galena, sphalerite, tetrahedrite-tennatite, gold, silver, and silver sulphosalt, and the principal gangue minerals are quartz, sericite, calcite, and chlorite. Two-phase liquid-rich (type I), two-phase vapor-rich (type II), and halite-bearing (type III) fluid inclusions can be observed in the hydrothermal quartz-sulfides veins. Type I inclusions are widespread and have homogenization temperatures of 187-303 °C and salinities of 4.2-9.5 wt.% NaCl equivalent in the Pb-Zn-Ag mineralization, and homogenization temperatures of 196-362 °C and salinities of 3.5-9.9 wt.% NaCl equivalent in the Cu-Au mineralization. The pervasive occurrence of type I fluid inclusions with low-moderate temperatures and salinities implies that the mineralizing fluids formed in epithermal environments. The type II and coexisting type III inclusions, from deeper levels below the Cu-Au ore bodies, share similar homogenization temperatures of 317-448 °C and contrasting salinities of 0.2-4.2 and 30.9-36.8 wt.% NaCl equivalent, respectively, which indicates that boiling processes occurred. The sulfur isotopic compositions of sulfides (δ34S = -1.7‰ to +3.2‰) suggest a homogeneous magmatic sulfur source. The lead isotopes of sulfides (206Pb/204Pb = 18.01-18.07; 207Pb/204Pb = 15.55-15.57; and 208Pb/204Pb = 38.03-38.12) are consistent with those of volcanic-subvolcanic rocks (206Pb/204Pb = 18.03-18.10; 207Pb/204Pb = 15.56-15.57; and 208Pb/204Pb = 38.02-38.21), indicating a magmatic origin for lead in the ore. The oxygen and hydrogen isotope compositions (δ18O = +7.8

  15. Testing WHAM-FTOX with laboratory toxicity data for mixtures of metals (Cu, Zn, Cd, Ag, Pb).

    PubMed

    Tipping, Edward; Lofts, Stephen

    2015-04-01

    The Windermere humic aqueous model using the toxicity function (WHAM-FTOX ) describes cation toxicity to aquatic organisms in terms of 1) accumulation by the organism of metabolically active protons and metals at reversible binding sites, and 2) differing toxic potencies of the bound cations. Cation accumulation (νi , in mol g(-1) ) is estimated through calculations with the WHAM chemical speciation model by assuming that organism binding sites can be represented by those of humic acid. Toxicity coefficients (αi ) are combined with νi to obtain the variable FTOX (= Σ αi νi ) which, between lower and upper thresholds (FTOX,LT , FTOX,UT ), is linearly related to toxic effect. Values of αi , FTOX,LT , and FTOX,LT are obtained by fitting toxicity data. Reasonable fits (72% of variance in toxic effect explained overall) were obtained for 4 large metal mixture acute toxicity experiments involving daphnids (Cu, Zn, Cd), lettuce (Cu, Zn, Ag), and trout (Zn, Cd, Pb). Strong nonadditive effects, most apparent in results for tests involving Cd, could be explained approximately by purely chemical competition for metal accumulation. Tentative interpretation of parameter values obtained from these and other experimental data suggests the following order of bound cation toxicity: H < Al < (Cu Zn Pb UO2 ) < (Cd Ag). Another trend is a strong increase in Cd toxicity relative to that of Zn as organism complexity increases (from bacteria to fish).

  16. Determination of some heavy metals (Fe, Cu, Zn and Pb) in blood by total reflection X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Bounakhla, M.; Doukkali, A.; Lalaoui, K.; Aguenaou, H.; Mokhtar, N.; Attrassi, B.

    2003-05-01

    The main purpose of this study is the interaction between nutrition (micronutrients heavy metals: Fe, Zn, Cu) and toxic heavy metals such as Pb in blood of children living in Gharb region of Morocco. This region receives all pollution carried by the Sebou river coming mainly from industrial activities. A rapid and simple analytical procedure was used for the determination of Fe, Cu and Zn trace amounts in blood by total-reflection X-ray fluorescence technique. This method is an energy dispersive XRF technique in a special geometry of primary beam, sample and detector. The sample is deposited on a plane polished surface of a suitable reflector material. It is presented as a few drops (25 μl) from a solution of blood digested in a mixture of HNO3 and H2O2 using a microwaves accelerated reaction system. The accuracy of measurements has been investigated by using certified materials. The concentration of Cu was found to be normal in all samples (\\cong1 ppm) which ruled out any interaction between this element and the others. On the other hand, amounts of Fe and Zn are very variables, suggesting an interaction between Fe and Zn. However, amounts of Pb in blood are inferior to 50 ppb, suggesting that no interaction exist with this metal and micronutrients.

  17. Timing of porphyry (Cu-Mo) and base metal (Zn-Pb-Ag-Cu) mineralisation in a magmatic-hydrothermal system—Morococha district, Peru

    NASA Astrophysics Data System (ADS)

    Catchpole, Honza; Kouzmanov, Kalin; Bendezú, Aldo; Ovtcharova, Maria; Spikings, Richard; Stein, Holly; Fontboté, Lluís

    2015-12-01

    The Morococha district in central Peru is characterised by economically important Cordilleran polymetallic (Zn-Pb-Ag-Cu) vein and replacement bodies and the large Toromocho porphyry Cu-Mo deposit in its centre. U-Pb, Re-Os, and 40Ar/39Ar geochronology data for various porphyry-related hydrothermal mineralisation styles record a 3.5-Ma multi-stage history of magmatic-hydrothermal activity in the district. In the late Miocene, three individual magmatic-hydrothermal centres were active: the Codiciada, Toromocho, and Ticlio centres, each separated in time and space. The Codiciada centre is the oldest magmatic-hydrothermal system in the district and consists of a composite porphyry stock associated with anhydrous skarn and quartz-molybdenite veins. The hydrothermal events are recorded by a titanite U-Pb age at 9.3 ± 0.2 Ma and a molybdenite Re-Os age at 9.26 ± 0.03 Ma. These ages are indistinguishable from zircon U-Pb ages for porphyry intrusions of the composite stock and indicate a time span of 0.2 Ma for magmatic-hydrothermal activity. The small Ticlio magmatic-hydrothermal centre in the west of the district has a maximum duration of 0.3 Ma, ranging from porphyry emplacement to porphyry mineralisation at 8.04 ± 0.14 Ma (40Ar/39Ar muscovite cooling age). The Toromocho magmatic-hydrothermal centre has a minimum of five recorded porphyry intrusions that span a total of 1.3 Ma and is responsible for the formation of the giant Toromocho Cu-Mo deposit. At least two hydrothermal pulses are identified. Post-dating a first pulse of molybdenite mineralisation, wide-spread hydrous skarn covers an area of over 6 km2 and is recorded by five 40Ar/39Ar cooling ages at 7.2-6.8 Ma. These ages mark the end of the slowly cooling and long-lived Toromocho magmatic-hydrothermal centre soon after last magmatic activity at 7.26 ± 0.02 Ma. District-wide (50 km2) Cordilleran base metal vein and replacement bodies post-date the youngest recorded porphyry mineralisation event at Toromocho

  18. Superconductivity and chemical composition of the high-Tc phase (Tc = 111 K) in the Sb-Pb-Bi-Sr-Ca-Cu-O system

    NASA Astrophysics Data System (ADS)

    Kijima, Naota; Gronsky, Ronald; McKernan, Steffen K.; Endo, Hozumi; Oguri, Yasuo

    1991-01-01

    A superconducting phase with a critical temperature of 111 K in the Sb-Pb-Bi-Sr-Ca-Cu-O system has been synthesized by means of a long firing period. Its crystal structure is similar to the high-Tc phase (107 K) in the Pb-Bi-Sr-Ca-Cu-O system, and its average chemical composition is 4.3, 2.6, 19.2, 21.4, 15.8 and 36.9 percent for Sb, Pb, Bi, Sr, Ca, and Cu, respectively. The summation of the Sb concentration and the Ca concentration is approximately the same for all the samples of this phase, implying that Sb substitutes for Ca, and oxygen atoms are introduced to compensate the oxygen deficiency in the central Cu-O layer sandwiched by the two Ca layers in the crystal structure of the high-Tc phase.

  19. Structure cristalline d'une ménéghinite naturelle pauvre en cuivre, Cu0,58Pb12,72(Sb7,04Bi0,24)S24Crystal structure of a Cu-poor natural meneghinite, Cu0.58Pb12.72(Sb7.04Bi0.24)S24

    NASA Astrophysics Data System (ADS)

    Moëlo, Yves; Palvadeau, Pierre; Meisser, Nicolas; Meerschaut, Alain

    Cu-poor meneghinite from La Lauzière Massif (Savoy, France) has the composition (electron microprobe) (in wt%): Pb 59.50, Sb 20.33, Bi 1.19, Cu 0.87, Ag 0.05, Fe 0.03, S 17.62, Se 0.05, Total 99.64. Its crystal structure (X-ray on a single crystal) was solved with R1=0.0506, wR2=0.1026, with an orthorhombic symmetry, space group Pnma, and a=24.080(5) Å, b=4.1276(8) Å, c=11.369(2) Å, V=1130.0(4) Å 3, Z=4. Relatively to the model of Euler and Hellner (1960), this structure shows a significantly lower site occupancy factor for the tetrahedral Cu site (0.146 against 0.25). Among the five other metallic sites, Bi appears in the one with predominant Sb. Developed structural formula: Cu 0.15Pb 2(Pb 0.53Sb 0.47)(Pb 0.46Sb 0.54)(Sb 0.75Pb 0.19Bi 0.06)S 6; the reduced one: Cu 0.58Pb 12.72(Sb 7.04Bi 0.24)S 24. The formation of such a Cu-poor variety seems to be related to specific paragenetic conditions (absence of coexisting galena), or to crystallochemical constraints (minor Bi). To cite this article: Y. Moëlo et al., C. R. Geoscience 334 (2002) 529-536.

  20. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films

    NASA Astrophysics Data System (ADS)

    Soare, V.; Burada, M.; Constantin, I.; Mitrică, D.; Bădiliţă, V.; Caragea, A.; Târcolea, M.

    2015-12-01

    Al-Cr-Fe-Mn-Ni and Al-Cr-Cu-Fe-Mn-Ni high entropy alloy thin films were prepared by potentiostatic electrodeposition and the microstructure of the deposits was investigated. The thin films were co-deposited in an electrolyte based on a DMF (N,N-dimethylformamide)-CH3CN (acetonitrile) organic compound. The energy dispersive spectrometry investigation (EDS) indicated that all the five respectively six elements were successfully co-deposited. The scanning electron microscopy (SEM) analysis revealed that the film consists of compact and uniform particles with particle sizes of 500 nm to 4 μm. The X-ray diffractometry (XRD) patterns indicated that the as-deposited thin films were amorphous. Body-centered-cubic (BCC) structures were identified by XRD after the films were annealed at various temperatures under inert Ar atmosphere. The alloys adhesion on the substrate was determined by the scratch-testing method, with higher values obtained for the Al-Cr-Cu-Fe-Mn-Ni alloy.

  1. High field magnetotransport and point contact Andreev reflection measurements on CuCr{sub 2}Se{sub 4} and CuCr{sub 2}Se{sub 3}Br—Degenerate magnetic semiconductor single crystals

    SciTech Connect

    Borisov, K. Coey, J. M. D.; Stamenov, P.; Alaria, J.

    2014-05-07

    Single crystals of the metallically degenerate fully magnetic semiconductors CuCr{sub 2}Se{sub 4} and CuCr{sub 2}Se{sub 3}Br have been prepared by the Chemical Vapour Transport method, using either Se or Br as transport agents. The high-quality, millimetre-sized, octahedrally faceted, needle- and platelet-shaped crystals are characterised by means of high field magnetotransport (μ{sub 0}H≤ 14 T) and Point Contact Andreev Reflection. The relatively high spin polarisation observed |P|>0.56, together with the relatively low minority carrier effective mass of 0.25 m{sub e}, and long scattering time  10{sup −13} s, could poise these materials for integration in low- and close-to-room temperature minority injection bipolar heterojunction transistor demonstrations.

  2. Crystallographic Study of Mixture CeBa1.8Pb0.2Cu3Oy in the Range of 860 deg. C to 940 deg. C

    SciTech Connect

    Stergiou, A.; Yilmaz, S.; Stergiou, C.

    2007-04-23

    A powder mixture with chemical formula CeBa1.8Pb0.2Cu3Oy was prepared. The mixture was heated in free atmosphere, at temperatures 860 deg. C to 940 deg. C, for 24 to 72h. The samples were measured by X-Ray powder diffraction with CuKa radiation. Each sample was characterized with the help of the PDF and refined, using the Rietveld's ''Powder Profile Analysis''. The first sample (860 deg. C) was identified with the phases: Ba2CeBiO6, CuO and BaCuO2, while all the remaining samples (870 deg. C-940 deg. C) with the phases Ba2CePbO6, CuO and CeO2. The phases Ba2CeBiO6 and Ba2CePbO6 are the main phases with analogous chemical types, but different symmetry. The phase CuO is common in all the samples, while from the remaining phases the BaCuO2 appears only in the first sample and the CeO2 in all, except the first one. The quantity 0.2 of Pb is distributed in the Ba positions, substituting a part of these. The percentages of phases are about 82%, 10% and 8% for the first sample and for all the remaining about 85%, 8% and 7%, respectively with above serious.

  3. [Cr(III)8M(II)6](12+) Coordination Cubes (M(II)=Cu, Co).

    PubMed

    Sanz, Sergio; O'Connor, Helen M; Pineda, Eufemio Moreno; Pedersen, Kasper S; Nichol, Gary S; Mønsted, Ole; Weihe, Høgni; Piligkos, Stergios; McInnes, Eric J L; Lusby, Paul J; Brechin, Euan K

    2015-06-01

    [Cr(III)8M(II)6](12+) (M(II) =Cu, Co) coordination cubes were constructed from a simple [Cr(III) L3 ] metalloligand and a "naked" M(II) salt. The flexibility in the design proffers the potential to tune the physical properties, as all the constituent parts of the cage can be changed without structural alteration. Computational techniques (known in theoretical nuclear physics as statistical spectroscopy) in tandem with EPR spectroscopy are used to interpret the magnetic behavior.

  4. Spatially resolved quantitative magnetic order measurement in spinel CuCr{sub 2}S{sub 4} nanocrystals

    SciTech Connect

    Negi, D. S.; Loukya, B.; Datta, R.; Ramasamy, K.; Gupta, A.

    2015-05-04

    We have utilized spatially resolved high resolution electron energy loss spectroscopy to quantify the relative percentage of ferromagnetic order in the core and the surface regions of CuCr{sub 2}S{sub 4} nanoparticles with nanocube and nanocluster morphology. The organic capping layer is found to play a significant role in restoring magnetic order at the surface. The technique is based on recording the fine features of the Cr L{sub 3} absorption edge and matching them with the theoretical spectra. The nanoscale probing technique we have developed is quite versatile and can be extended to understand magnetic ordering in a number of nanodimensional magnetic materials.

  5. Ore geology and fluid inclusion geochemistry of the Tiemurt Pb-Zn-Cu deposit, Altay, Xinjiang, China: A case study of orogenic-type Pb-Zn systems

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Zheng, Yi; Chen, YanJing

    2012-04-01

    The Tiemurt Pb-Zn-Cu deposit is hosted in a Devonian volcanic-sedimentary basin of the Altay orogenic belt, and is thus interpreted to have formed by sea-floor hydrothermal exhalation in previous studies. Our investigation discovered that the deposit is not stratiform or stratabound, but structure-controlled instead. The hydrothermal ore-forming process can be divided into the early, middle and late stage, represented by pyrite-quartz, polymetallic sulfide-quartz and carbonate-quartz veinlets, respectively. The early-stage veins and contained minerals are structurally deformed and brecciated, suggesting a compressional or transpressional tectonic regime. The middle-stage veinlets intrude and infill the fissures of the early-stage assemblages, and show no deformation, suggesting a tensional shear setting. The late-stage veinlets mostly infill open-space fissures that crosscut veins and replacements formed in the earlier stages. Four types of fluid inclusions (FIs), including aqueous (type W), carbonic-aqueous (type C), pure carbonic (type PC) and solid-bearing (type S), are identified at the Tiemurt deposit. The early-stage minerals contain the C- and W-type primary FIs that are totally homogenized at temperatures of 330-390 °C with low salinities of 0.8-11.9 wt.% NaCl eqv.; whilst the late-stage quartz or calcite contains only the W-type FIs with homogenization temperatures of 118-205 °C, and salinities of 1.4-3.4 wt.% NaCl eqv. This indicates that the ore fluid system evolved from CO2-rich, probably metamorphic to CO2-poor, meteoric fluids; and that a significant CO2-escape must have occurred. All the four types of FIs can be only observed in the middle-stage minerals, and even in a microscopic domain of a crystal, representing an association trapped from a boiling fluid system. These FIs homogenize at temperatures ranging from 270 to 330 °C, with two salinity clusters of 1.9-14.5 and 37.4-42.4 wt.% NaCl eqv., respectively. This implies that metal precipitation

  6. Toxic effects of heavy metals (Cd, Cr and Pb) on seed germination and growth and DPPH-scavenging activity in Brassica rapa var. turnip.

    PubMed

    Siddiqui, Maryam Mehmood; Abbasi, Bilal Haider; Ahmad, Nisar; Ali, Mohammad; Mahmood, Tariq

    2014-04-01

    Toxicity of heavy metal is a wide spread environmental problem affecting all life forms including plants. In the present study the toxic effects of heavy metals, cadmium (Cd), chromium (Cr) and lead (Pb) on seed germination rate (%), germination index (G-index) and growth (mm) of Brassica rapa var. turnip have been investigated. The seeds were soaked either in distilled water (control) or in aqueous solutions of Cd, Cr and Pb (1 g/l, 2.5 g/l and 5 g/l) at 4°C in dark for 24 hours. Prior to inoculation onto MS0 medium, the soaked seeds were either washed with sterile distilled water or inoculated without washing on solidified MS0 medium at 25 ± 2°C with 16/8-hour photoperiod in a growth chamber to germinate in vitro. Such stress conditions revealed that by increasing the concentration of heavy metals, the germination rate (%), G-index value and growth (mm) decreased significantly, suggesting their toxic effect on B. rapa var. turnip. This study further revealed that experiment with seed washing resulted in less toxicity of selected heavy metals on germination and growth of B. rapa var. turnip, as compared to experiment without washing. However, the resulting toxicity order of the selected heavy metals remained the same (Cd > Cr > Pb). Significant decrease has been observed in seed viability and germination potential and finally heavy metals completely ceased further growth and development of plants. The 2, 2-diphenyl-1-picrylhydrazyl (DPPH)-scavenging activity revealed that significantly higher activity was observed in control plants without heavy metals treatment. Furthermore, the Cd-treated plants showed decreased antioxidant activity. Cr and Pb were less toxic as compared to Cd (control > Pb > Cr > Cd). This study revealed that selected heavy metals not only affected plant development but also disturbed plant metabolic pathways.

  7. Structural and electrical properties of delafossite CuMO2 (M=Al, Cr, Y) semiconductors and their exploitation for ozone detection

    NASA Astrophysics Data System (ADS)

    Deng, Zanhong; Fang, Xiaodong; Li, Da; Tao, Ruhua; Dong, Weiwei; Wang, Tao; Zhou, Shu; Meng, Gang; Zhu, Xuebin

    2009-07-01

    Single phase polycrystalline pellets of CuMO2 (M = Al, Cr, Y) semiconductors with delafossite structure were prepared by sol-gel method and solid state reaction, respectively. The XRD results shows that structure can be indexed as 3R-CuAlO2 (JCPDF No. 35-1401), 3R-CuCrO2 (JCPDF No. 89-6744) and 2H-CuYO2 (JCPDF No. 76-1422), respectively. The conductivities of CuMO2 are thermally activated in the measured temperature range with the activation energy EA about 0.24eV, 0.34eV and 0.25eV, respectively. The conductivities of CuMO2 decrease monotonously with the increase of radius of M cation. This phenomenon coincides with the previous theoretical studies that the hole conduction path of CuMO2 was predominantly in the Cu-ions layers, and the Cu-Cu spacing (or α-axis length) was governed by the M cation size, which modifies the wave function overlap between Cu-ions and results in decrease of the conductivities. The room temperature ozone sensing properties of CuMO2 (M = Al, Cr, Y) polycrystalline pellets were studied. Ozone-purified air-ozone circles were used to measure the ozone gas sensing properties of all the specimens, which are similar to the practical measurement environments. The relative humidity of the environment was controlled around 60 RH% +/- 5 RH%. The temperature was controlled around 300K +/- 0.5K. Except for CuYO2 pellets, CuAlO2 and CuCrO2 pellets show reversible responds to ozone gas at room temperature. The room temperature ozone sensing properties of CuCrO2 film prepared by pulsed laser deposition was also studied. The response time of CuCrO2 film is about 3.5 min to 90% of the final value and the recovery time is about 2 min to 10% of the steady state signal under ozone concentration of 600 ppm. Though the performance is not yet sufficiently high for practical use, the delafossites CuMO2 (M = Al and Cr), as parent compounds of room temperature ozone sensing materials, are recommendable for further studies on the improvement of ozone sensing

  8. Directional solidification of Cu- Pb and Bi- Ga monotectic alloys under normal gravity and during parabolic flight

    NASA Astrophysics Data System (ADS)

    Dhindaw, B. K.; Stefanescu, D. M.; Singh, A. K.; Curreri, P. A.

    1988-11-01

    Cu-Pb and Bi-Ga monotectic alloys of nominal hypermonotectic compositions were directionally solidified under various furnace translation rates, temperature gradients, and gravity levels. Gravity was varied by solidifying the alloys under ground conditions and in the furnace aboard NASA KC-135 aircraft, flying on parabolic trajectories. High translation rates, high gradients, high gravity levels, and higher density and lower thermal conductivity of the L2 phase favored the formation of fiber composite structure, while the opposite conditions resulted in structures consisting of L2 droplets in α matrix. A modified particle engulfment theory as originally enunciated by Ulhmann et al. is proposed to explain these observations.

  9. Properties of Bi(Pb)-Sr-Ca-Cu-O superconducting tapes prepared by the doctor-blade process

    SciTech Connect

    Yanagisawa, E.; Morimoto, T.; Dietderich, D. R.; Kumakura, H.; Togano, K.; Maeda, H.

    1989-06-19

    Improved superconducting and mechanical properties were obtained forBi(Pb)-Sr-Ca-Cu-O tapes, prepared by the combined process of doctor-bladecasting, cold rolling, and sintering. The tape has an oriented microstructurewith the high /ital T//sub /ital c// plate-like grains having their /ital c/ axesperpendicular to the rolling surface. The tape is flexible and can be bentwithout any degradation of /ital J//sub /ital c// to just before fracture (strainlarger than /similar to/0.12%).

  10. Directional solidification of Cu-Pb and Bi-Ga monotectic alloys under normal gravity and during parabolic flight

    NASA Technical Reports Server (NTRS)

    Dhindaw, B. K.; Stefanescu, D. M.; Singh, A. K.; Curreri, P. A.

    1988-01-01

    Cu-Pb and Bi-Ga monotectic alloys of nominal hypermonotectic compositions were directionally solidified under various furnace translation rates, temperature gradients, and gravity levels. Gravity was varied by solidifying the alloys under ground conditions and in the furnace aboard NASA KC-135 aircraft, flying on parabolic trajectories. High translation rates, high gradients, high gravity levels, and higher density and lower thermal conductivity of the L2 phase favored the formation of fiber composite structure, while the opposite conditions resulted in structures consisting of L2 droplets in alpha matrix. A modified particle engulfment theory as originally enunciated by Ulhmann et al. (1964) is proposed to explain these observations.

  11. Bioacumulation and ultrastructural effects of Cd, Cu, Pb and Zn in the moss Scorpiurum circinatum (Brid.) Fleisch. & Loeske.

    PubMed

    Basile, A; Sorbo, S; Pisani, T; Paoli, L; Munzi, S; Loppi, S

    2012-07-01

    This paper tested if culturing the moss Scorpiurum circinatum (Brid.) Fleisch. & Loeske with metal solutions (Cd, Cu, Pb and Zn) for 30 days causes metal bioaccumulation and ultrastructural changes. The results showed that despite the high heavy metal concentrations in treatment solutions, treated samples did not show severe ultrastructural changes and cells were still alive and generally well preserved. Bioaccumulation highlighted that moss cells survived to heavy metal toxicity by immobilizing most toxic ions extracellularly, likely in binding sites of the cell wall, which is the main site of metal detoxification. PMID:22516710

  12. Low temperature spin dynamics in Cr7Ni-Cu-Cr7Ni coupled molecular rings

    SciTech Connect

    Bordonali, L; Furukawa, Y; Mariani, M; Sabareesh, K P; Garlatti, E; Carretta, S; Lascialfari, A; Timco, G; Winpenny, R E; Borsa, F

    2014-05-07

    Proton Nuclear Magnetic Resonance (NMR) relaxation measurements have been performed down to very low temperature (50 mK) to determine the effect of coupling two Cr7 Ni molecular rings via a Cu2+ ion. No difference in the spin dynamics was found from nuclear spin lattice relaxation down to 1.5 K. At lower temperature, the 1H-NMR line broadens dramatically indicating spin freezing. From the plot of the line width vs. magnetization, it is found that the freezing temperature is higher (260 mK) in the coupled ring with respect to the single Cr7 Ni ring (140 mK).

  13. The Property Research on High-entropy Alloy AlxFeCoNiCuCr Coating by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Ye, Xiaoyang; Ma, Mingxing; Cao, Yangxiaolu; Liu, Wenjin; Ye, Xiaohui; Gu, Yu

    High-entropy alloys have been found to have novel microstructures and unique properties. The main method of manufacturing is vacuum arc remelting. As in situ cladding laser cladding has capability of achieving a controllable dilution ratio, fabricating highentropy alloy by laser cladding is of great significance and potential for extensive use. In this study, a novel AlxFeCoNiCuCr high-entropy alloy system was manufactured as the thin layer of the substrate by laser cladding; also high temperature hardness, abrasion performance, corrosion nature of the AlxFeCoNiCuCr high-entropy alloy were tested under the different ratio of aluminum. This study shows higher aluminum clad exhibit higher hardness, better abrasion resistance and corrosion resistance.

  14. Effects of Electron Beam Welding on Microstructure, Microhardness, and Electrical Conductivity of Cu-Cr-Zr Alloy Plates

    NASA Astrophysics Data System (ADS)

    Kanigalpula, P. K. C.; Chatterjee, Arya; Pratihar, D. K.; Jha, M. N.; Derose, J.

    2015-12-01

    In this study, the effects of electron beam welding on the microstructure, microhardness, and electrical conductivity of precipitation-hardened Cu-0.804%Cr-0.063%Zr (wt.%) alloy plates were investigated. Experiments were carried out following a central composite design of experiments. Five welding schedules yielding the higher hardness were chosen and then were subjected to standard metallographic and various microscopy techniques to reveal the type, morphology, and distribution of the precipitates and to obtain the sub-structural information from the weld zone. X-ray diffraction studies revealed predominant formation of intermetallic phases in the welded zones of some of the samples, which could have resulted in higher hardness and better electrical conductivity compared to those of other ones. Microhardness values in the fusion zone and heat-affected zone were found to be less than that of the parent material. The mechanism of damage in Cu-Cr-Zr plates due to welding was also explained.

  15. Inherent room temperature ferromagnetism and dopant dependent Raman studies of PbSe, Pb{sub 1−x}Cu{sub x}Se, and Pb{sub 1−x}Ni{sub x}Se

    SciTech Connect

    Gayner, Chhatrasal; Kar, Kamal K.

    2015-03-14

    Polycrystalline lead selenide (PbSe) doped with copper (Cu) and nickel (Ni) was prepared to understand its magnetic behaviour and Raman activity. The processing conditions, influence of dopants (magnetically active and non-active) and their respective compositions on the magnetic properties and Raman active mode were studied. A surprising/anomalous room temperature ferromagnetism (hysteresis loop) is noticed in bulk diamagnetic PbSe, which is found to be natural or inherent characteristic of material, and depends on the crystallite size, dopant, and developed strain due to dopant/defects. The magnetic susceptibility (−1.71 × 10{sup −4} emu/mol Oe) and saturated magnetic susceptibility (−2.74 × 10{sup −4} emu/mol Oe) are found to be higher than the earlier reported value (diamagnetic: −1.0 × 10{sup −4} emu/mol Oe) in bulk PbSe. With increase of Cu concentration (2% to 10%) in PbSe, the saturated magnetic susceptibility decreases from −1.22 × 10{sup −4} to −0.85 × 10{sup −4} emu/mol Oe. Whereas for Ni dopant, the saturated magnetic susceptibility increases to −2.96 × 10{sup −4} emu/mol Oe at 2% Ni doped PbSe. But it further decreases with dopant concentration. In these doped PbSe, the shifting of longitudinal (LO) phonon mode was also studied by the Raman spectroscopy. The shifting of LO mode is found to be dopant dependent, and the frequency shift of LO mode is associated with the induced strain that created by the dopants and vacancies. This asymmetry in LO phonon mode (peak shift and shape) may be due to the intraband electronic transition of dopants. The variation in magnetic susceptibility and Raman shifts are sensitive to crystallite size, nature of dopant, concentration of dopants, and induced strain due to dopants.

  16. Composite superconducting wires obtained by high-rate tinning in molten Bi-Pb-Sr-Ca-Cu-O system

    NASA Technical Reports Server (NTRS)

    Grozav, A. D.; Konopko, L. A.; Leporda, N. I.

    1990-01-01

    The preparation of high-T(sub c) superconducting long composite wires by short-time tinning of the metal wires in a molten Bi-Pb-Sr-Ca-Cu-O compound is discussed. The application of this method to the high-T(sub c) materials is tested, possibly for the first time. The initial materials used for this experiment were ceramic samples with nominal composition Bi(1.5)Pb(0.5)Sr2Ca2Cu3O(x) and T(sub c) = 80 K prepared by the ordinary solid-state reaction, and industrial copper wires from 100 to 400 microns in diameter and from 0.5 to 1 m long. The continuously moving wires were let through a small molten zone (approximately 100 cubic mm). The Bi-based high-T(sub c) ceramics in a molten state is a viscous liquid and it has a strongly pronounced ability to spread on metal wire surfaces. The maximum draw rate of the Cu-wire, at which a dense covering is still possible, corresponds to the time of direct contact of wire surfaces and liquid ceramics for less than 0.1 s. A high-rate draw of the wire permits a decrease in the reaction of the oxide melt and Cu-wire. This method of manufacture led to the fabrication of wire with a copper core in a dense covering with uniform thickness of about h approximately equal to 5 to 50 microns. Composite wires with h approximately equal to 10 microns (h/d approximately equal to 0.1) sustained bending on a 15 mm radius frame without cracking during flexing.

  17. Anthropogenic impacts in North Poland over the last 1300 years--a record of Pb, Zn, Cu, Ni and S in an ombrotrophic peat bog.

    PubMed

    De Vleeschouwer, François; Fagel, Nathalie; Cheburkin, Andriy; Pazdur, Anna; Sikorski, Jaroslaw; Mattielli, Nadine; Renson, Virginie; Fialkiewicz, Barbara; Piotrowska, Natalia; Le Roux, Gaël

    2009-10-15

    Lead pollution history over Northern Poland was reconstructed for the last ca. 1300 years using the elemental and Pb isotope geochemistry of a dated Polish peat bog. The data show that Polish Pb-Zn ores and coal were the main sources of Pb, other heavy metals and S over Northern Poland up until the industrial revolution. After review of the potential mobility of each element, most of the historical interpretation was based on Pb and Pb isotopes, the other chemical elements (Zn, Cu, Ni, S) being considered secondary indicators of pollution. During the last century, leaded gasoline also contributed to anthropogenic Pb pollution over Poland. Coal and Pb-Zn ores, however, remained important sources of pollution in Eastern European countries during the last 50 years, as demonstrated by a high (206)Pb/(207)Pb ratio (1.153) relative to that of Western Europe (ca. 1.10). The Pb data for the last century were also in good agreement with modelled Pb inventories over Poland and the Baltic region. PMID:19683332

  18. In situ electrokinetic remediation of As-, Cu-, and Pb-contaminated paddy soil using hexagonal electrode configuration: a full scale study.

    PubMed

    Jeon, Eun-Ki; Jung, Ji-Min; Kim, Woo-Seung; Ko, Sung-Hwan; Baek, Kitae

    2015-01-01

    We investigated the in situ applicability of the electrokinetic process with a hexagonal electrode configuration in order to remediate arsenic (As)-, copper (Cu)-, and lead (Pb)-contaminated paddy rice field soil at a field scale (width 17 m, length 12.2 m, and depth 1.6 m). An iron electrode was used in order to prevent the severe acidification of the soil near the anode. We selected ethylenediaminetetraacetic acid (EDTA) as a pursing electrolyte to enhance the extraction of Cu and Pb. The system removed 44.4% of the As, 40.3% of the Cu, and 46.6% of the Pb after 24 weeks of operation. Fractionation analysis showed that the As bound to amorphous ion (Fe) and aluminum (Al) oxyhydroxides was changed into a form of As specifically bound. In the case of Cu and Pb, the fraction bound to Fe-Mn oxyhydroxide primarily decreased. The EDTA formed negatively charged complexes with Cu and Pb, and those complexes were transported toward the anode. The energy consumption was very low compared to that on a small scale because there was less energy consumption due to Joule heating. These results show that the in situ electrokinetic process could be applied in order to remediate paddy rice fields contaminated with multiple metals. PMID:25103944

  19. A novel 4-(2-pyridylazo) resorcinol functionalised magnetic nanosorbent for selective extraction of Cu(II) and Pb(II) ions from food and water samples.

    PubMed

    Asgharinezhad, Ali Akbar; Ebrahimzadeh, Homeira; Rezvani, Mehdi; Shekari, Nafiseh; Loni, Masood

    2014-01-01

    This paper describes a novel sorbent based on 4-(2-pyridylazo) resorcinol functionalised magnetic nanoparticles and its application for the extraction and pre-concentration of trace amounts of Cu(II) and Pb(II) ions. The nanosorbent was characterised by Fourier transform infrared spectroscopy, X-ray powder diffraction, thermal analysis, elemental analysis and scanning electron microscopy. The effects of various parameters such as pH, sorption time, sorbent dosage, elution time, volume and concentration of eluent were investigated. Following the sorption and elution of analytes, Cu(II) and Pb(II) ions were quantified by flame atomic absorption spectrometry. The limits of detection were 0.07 and 0.7 μg l(-1) for Cu(II) and Pb(II), respectively. The relative standard deviations of the method were less than 7%. The sorption capacity of this new sorbent were 92 and 78 mg g(-1) for Cu(II) and Pb(II), respectively. Finally this nanosorbent was applied to the rapid extraction of trace quantities of Cu(II) and Pb(II) ions in different real samples and satisfactory results were obtained. PMID:24827373

  20. Salinity increases the mobility of Cd, Cu, Mn, and Pb in the sediments of Yangtze Estuary: relative role of sediments' properties and metal speciation.

    PubMed

    Zhao, Shou; Feng, Chenghong; Wang, Dongxin; Liu, Yanzhen; Shen, Zhenyao

    2013-05-01

    Batch leaching experiments, Freudlich isotherm, correlation analysis (CA) and principal component analysis (PCA) were undertaken to explore the mechanisms that govern the release of sediment-associated metals (i.e. Cd, Cu, Mn and Pb) under the salinity stress in the Yangtze River Estuary. Special attention has been paid to the role of sediments' physico-chemical properties and metal chemical speciation. The increase of salinity promoted the metal mobility which followed the order: Cd>Mn>Cu>Pb. Sediments properties (e.g., particle component and organic carbon) governed the mobility of Cd; metal chemical speciation controlled the release of Mn, while the mobility of Cu and Pb were simultaneously affected by the two factors. Different metal release mechanisms caused by salinity changes might be explained by: the chloro-complexation for Cd, the encouragement of acidity changes for Mn, and the high affinity to Fe-Mn oxides, organic substances and specific sorption sites in the sediments for Cu and Pb. Under salinity effect, Cd and Mn exhibited higher ecological risk and mobility, while Cu and Pb seemed to be more conservative.

  1. Comparative toxicity of lead (Pb2+), copper (Cu2+), and mixtures of lead and copper to zebrafish embryos on a microfluidic chip

    PubMed Central

    Li, Yinbao; Yang, Xiujuan; Zhang, Beibei; Pan, Jianbin; Li, Xinchun; Yang, Fan; Sun, Duanping

    2015-01-01

    Investigations were conducted to determine acute effects of Pb2+ and Cu2+ presented individually and collectively on zebrafish embryos. Aquatic safety testing requires a cheap, fast, and highly efficient platform for real-time evaluation of single and mixture of metal toxicity. In this study, we have developed a microfluidic system for phenotype-based evaluation of toxic effects of Pb2+ and Cu2+ using zebrafish (Danio rerio) embryos. The microfluidic chip is composed of a disc-shaped concentration gradient generator and 24 culture chambers, which can generate one blank solution, seven mixture concentrations, and eight single concentrations for each metal solution, thus enabling the assessment of zebrafish embryos. To test the accuracy of this new chip platform, we have examined the toxicity and teratogenicity of Pb2+ and Cu2+ on embryos. The individual and combined impact of Pb2+ and Cu2+ on zebrafish embryonic development was quantitatively assessed by recording a series of physiological indicators, such as spontaneous motion at 22 hours post fertilization (hpf), mortality at 24 hpf, heartbeat and body length at 96 hpf, etc. It was found that Pb2+ or Cu2+ could induce deformity and cardiovascular toxicity in zebrafish embryos and the mixture could induce more severe toxicity. This chip is a multiplexed testing apparatus that allows for the examination of toxicity and teratogenicity for substances and it also can be used as a potentially cost-effective and rapid aquatic safety assessment tool. PMID:25825620

  2. A novel 4-(2-pyridylazo) resorcinol functionalised magnetic nanosorbent for selective extraction of Cu(II) and Pb(II) ions from food and water samples.

    PubMed

    Asgharinezhad, Ali Akbar; Ebrahimzadeh, Homeira; Rezvani, Mehdi; Shekari, Nafiseh; Loni, Masood

    2014-01-01

    This paper describes a novel sorbent based on 4-(2-pyridylazo) resorcinol functionalised magnetic nanoparticles and its application for the extraction and pre-concentration of trace amounts of Cu(II) and Pb(II) ions. The nanosorbent was characterised by Fourier transform infrared spectroscopy, X-ray powder diffraction, thermal analysis, elemental analysis and scanning electron microscopy. The effects of various parameters such as pH, sorption time, sorbent dosage, elution time, volume and concentration of eluent were investigated. Following the sorption and elution of analytes, Cu(II) and Pb(II) ions were quantified by flame atomic absorption spectrometry. The limits of detection were 0.07 and 0.7 μg l(-1) for Cu(II) and Pb(II), respectively. The relative standard deviations of the method were less than 7%. The sorption capacity of this new sorbent were 92 and 78 mg g(-1) for Cu(II) and Pb(II), respectively. Finally this nanosorbent was applied to the rapid extraction of trace quantities of Cu(II) and Pb(II) ions in different real samples and satisfactory results were obtained.

  3. Selective removals of heavy metals (Pb(2+), Cu(2+), and Cd(2+)) from wastewater by gelation with alginate for effective metal recovery.

    PubMed

    Wang, Fei; Lu, Xingwen; Li, Xiao-yan

    2016-05-01

    A novel method that uses the aqueous sodium alginate solution for direct gelation with metal ions is developed for effective removal and recovery of heavy metals from industrial wastewater. The experimental study was conducted on Pb(2+), Cu(2+), and Cd(2+) as the model heavy metals. The results show that gels can be formed rapidly between the metals and alginate in less than 10 min and the gelation rates fit well with the pseudo second-order kinetic model. The optimum dosing ratio of alginate to the metal ions was found to be between 2:1 and 3:1 for removing Pb(2+) and around 4:1 for removing Cu(2+) and Cd(2+) from wastewater, and the metal removal efficiency by gelation increased as the solution pH increased. Alginate exhibited a higher gelation affinity toward Pb(2+) than Cu(2+) and Cd(2+), which allowed a selective removal of Pb(2+) from the wastewater in the presence of Cu(2+) and Cd(2+) ions. Chemical analysis of the gels suggests that the gelation mainly occurred between the metal ions and the -COO(-) and -OH groups on alginate. By simple calcination of the metal-laden gels at 700 °C for 1 h, the heavy metals can be well recovered as valuable resources. The metals obtained after the thermal treatment are in the form of PbO, CuO, and CdO nanopowders with crystal sizes of around 150, 50, and 100 nm, respectively.

  4. Simultaneous extraction of Cr(VI) and Cu(II) from humic acid with new synthesized EDTA derivatives.

    PubMed

    Zhang, Tao; Wu, Ying-Xin; Huang, Xiong-Fei; Liu, Jun-Min; Xia, Bing; Zhang, Wei-Hua; Qiu, Rong-Liang

    2012-07-01

    Soil washing is one of the few permanent treatment alternatives for removing metal contaminants. Ethylenediaminetetraacetic acid and its salts (EDTA) is very effective at removing cationic metals and has been utilized globally. However it is ineffective for anionic metal contaminants or metals bound to soil organic matter. The simultaneous removal of cationic and anionic metal contaminants by soil washing is difficult due to differences in their properties. The present study evaluated the potential of a washing process using two synthesized EDTA-derivatives, C(6)HEDTA (2,2'-((2-((carboxymethyl)(2-(hexanoyloxy)ethyl)amino)ethyl)azanediyl)diacetic acid) and C(12)HEDTA (2,2'-((2-((carboxymethyl) (2-(dodecanoyloxy)ethyl)amino)ethyl)azanediyl)diacetic acid), which consist of a hydrophilic polycarboxylic moiety and a hydrophobic moiety with a monoalkyl ester group. A series of equilibrium batch experiments at room temperature were conducted to investigate the efficacy of C(6)HEDTA and C(12)HEDTA as extractants for both oxyanion Cr(VI) and cationic Cu(II). Results showed that either C(6)HEDTA or C(12)HEDTA can extract both Cr(VI) and Cu(II) from humic acid simultaneously. However, C(6)HEDTA was less effective for Cr(VI) probably because it has no surface activities to increase solubility of humic acid, like C(12)HEDTA. Extraction of Cr(VI) was mainly attributed to the decreased surface tension and enhanced solubility of organic matter. Extraction of Cu(II) was attributed to both the Cu(II) chelation and enhanced solubility of humic acid. It was demonstrated that the hydrophilic polycarboxylic moiety of C(12)HEDTA chelates cations while the monoalkyl ester group produces surface active properties that enhance the solubility of humic acid.

  5. Competitive sorption of Pb(II), Cu(II) and Ni(II) on carbonaceous nanofibers: A spectroscopic and modeling approach.

    PubMed

    Ding, Congcong; Cheng, Wencai; Wang, Xiangxue; Wu, Zhen-Yu; Sun, Yubing; Chen, Changlun; Wang, Xiangke; Yu, Shu-Hong

    2016-08-01

    The competitive sorption of Pb(II), Cu(II) and Ni(II) on the uniform carbonaceous nanofibers (CNFs) was investigated in binary/ternary-metal systems. The pH-dependent sorption of Pb(II), Cu(II) and Ni(II) on CNFs was independent of ionic strength, indicating that inner-sphere surface complexation dominated sorption Pb(II), Cu(II) and Ni(II) on CNFs. The maximum sorption capacities of Pb(II), Cu(II) and Ni(II) on CNFs in single-metal systems at a pH 5.5±0.2 and 25±1°C were 3.84 (795.65mg/g), 3.21 (204.00mg/g) and 2.67 (156.70mg/g)mmol/g, respectively. In equimolar binary/ternary-metal systems, Pb(II) exhibited greater inhibition of the sorption of Cu(II) and Ni(II), demonstrating the stronger affinity of CNFs for Pb(II). The competitive sorption of heavy metals in ternary-metal systems was predicted quite well by surface complexation modeling derived from single-metal data. According to FTIR, XPS and EXAFS analyses, Pb(II), Cu(II) and Ni(II) were specifically adsorbed on CNFs via covalent bonding. These observations should provide an essential start in simultaneous removal of multiple heavy metals from aquatic environments by CNFs, and open the doorways for the application of CNFs. PMID:27108273

  6. Mobility of Pb, Cu, and Zn in the phosphorus-amended contaminated soils under simulated landfill and rainfall conditions.

    PubMed

    Cao, Xinde; Liang, Yuan; Zhao, Ling; Le, Huangying

    2013-09-01

    Phosphorus-bearing materials have been widely applied in immobilization of heavy metals in contaminated soils. However, the study on the stability of the initially P-induced immobilized metals in the contaminated soils is far limited. This work was conducted to evaluate the mobility of Pb, Cu, and Zn in two contrasting contaminated soils amended with phosphate rock tailing (PR) and triple superphosphate fertilizer (TSP), and their combination (P + T) under simulated landfill and rainfall conditions. The main objective was to determine the stability of heavy metals in the P-treated contaminated soils in response to the changing environment conditions. The soils were amended with the P-bearing materials at a 2:1 molar ratio of P to metals. After equilibrated for 2 weeks, the soils were evaluated with the leaching procedures. The batch-based toxicity characteristic leaching procedure (TCLP) was conducted to determine the leachability of heavy metals from both untreated and P-treated soils under simulated landfill condition. The column-based synthetic precipitation leaching procedure (SPLP) were undertaken to measure the downward migration of metals from untreated and P-treated soils under simulated rainfall condition. Leachability of Pb, Cu, and Zn in the TCLP extract followed the order of Zn > Cu > Pb in both soils, with the organic-C- and clay-poor soil showing higher metal leachability than the organic-C- and clay-rich soil. All three P treatments reduced leachability of Pb, Cu, and Zn by up to 89.2, 24.4, and 34.3 %, respectively, compared to the untreated soil, and TSP revealed more effectiveness followed by P + T and then PR. The column experiments showed that Zn had the highest downward migration upon 10 pore volumes of SPLP leaching, followed by Pb and then Cu in both soils. However, migration of Pb and Zn to subsoil and leachate were inhibited in the P-treated soil, while Cu in the leachate was enhanced by P treatment in the organic

  7. Optoelectronic properties of delafossite structure CuCr0.93Mg0.07O2 sputter deposited coatings

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Arab Pour Yazdi, Mohammad; Sanchette, Frederic; Billard, Alain

    2016-05-01

    CuCr0.93Mg0.07O2 thin films with improved optoelectronic properties were deposited by reactive magnetron sputtering on fused quartz substrates. The influence of annealing temperature under vacuum on optoelectronic properties of the films was investigated. The amorphous films annealed under vacuum at temperatures higher than 923 K are single-phased delafossite structure, while impurity phases like CuCr2O4 that affect the optoelectronic properties of the films are detected below 873 K. c-axis orientation is observed for CuCr0.93Mg0.07O2 layers and the annealing temperature window in which the films are single-phased delafossite is much larger with Mg doping (923 K  →  1073 K) than that for undoped films (~953 K). The optical and electrical behaviours of the films are enhanced by Mg substitution and their direct band gap energy of about 3.12-3.14 eV is measured. The film possesses the optimum properties after annealing under vacuum at about 1023 K its average transmittance in the visible region can reach 54.23% while the film’s conductivity is about 0.27 S cm-1.

  8. Effect of Aluminum Content on Plasma-Nitrided Al x CoCrCuFeNi High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Tang, Wei-Yeh; Yeh, Jien-Wei

    2009-06-01

    High-entropy alloys (HEAs) Al x CoCrCuFeNi with different aluminum contents ( x = 0 to 1.8) were plasma nitrided at 525 °C for 45 hours with an aim to develop wear-resistant structural parts. The nitrided layer comprises a well-nitrided dendrite phase and an un-nitrided Cu-rich interdendrite phase. Surface hardening is a result of the formation of various nitrides in the nitrided dendrite: CrN, Fe4N, and AlN. With increasing aluminum content, the hardness of the nitrided layer increases due to the increased amount of hard AlN phase and the increased volume fraction of bcc phase being harder than the fcc one. The nitrided layer thickness shows an apparent decrease with the increasing aluminum content of the alloy. The present alloy system provides a wide range of substrate hardness from Hv 170 to 560 before nitriding, which even becomes harder by around Hv 30 after nitriding. For Al0.5CoCrCuFeNi alloy having the highest surface hardness of Hv 1300, a layer thickness of 23 μm, and a substrate hardness of Hv 300, an adhesive wear test confirms its superior wear resistance as being 17 times that of the un-nitrided samples.

  9. Optoelectronic properties of delafossite structure CuCr0.93Mg0.07O2 sputter deposited coatings

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Arab Pour Yazdi, Mohammad; Sanchette, Frederic; Billard, Alain

    2016-05-01

    CuCr0.93Mg0.07O2 thin films with improved optoelectronic properties were deposited by reactive magnetron sputtering on fused quartz substrates. The influence of annealing temperature under vacuum on optoelectronic properties of the films was investigated. The amorphous films annealed under vacuum at temperatures higher than 923 K are single-phased delafossite structure, while impurity phases like CuCr2O4 that affect the optoelectronic properties of the films are detected below 873 K. c-axis orientation is observed for CuCr0.93Mg0.07O2 layers and the annealing temperature window in which the films are single-phased delafossite is much larger with Mg doping (923 K  →  1073 K) than that for undoped films (~953 K). The optical and electrical behaviours of the films are enhanced by Mg substitution and their direct band gap energy of about 3.12–3.14 eV is measured. The film possesses the optimum properties after annealing under vacuum at about 1023 K its average transmittance in the visible region can reach 54.23% while the film’s conductivity is about 0.27 S cm‑1.

  10. Precipitation strengthened high strength, high conductivity Cu-Cr-Nb alloys produced by chill block melt spinning. Final Report Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Michal, Gary M.

    1989-01-01

    A series of Cu-based alloys containing 2 to 10 a/o Cr and 1 to 5 a/o Nb were produced by chill block melt spinning (CBMS). The melt spun ribbons were consolidated and hot rolled to sheet to produce a supersaturated Cu-Cr-Nb solid solution from which the high melting point intermetallic compound Cr2Nb could be precipitated to strengthen the Cu matrix. The results show that the materials possess electrical conductivities in excess of 90 percent that of pure Cu at 200 C and above. The strengths of the Cu-Cr-Nb alloys were much greater than Cu, Cu-0.6 Cr, NARloy-A, and NARloy-Z in the as-melt spun condition. The strengths of the consolidated materials were less than Cu-Cr and Cu-Cr-Zr below 500 C and 600 C respectively, but were significantly better above these temperatures. The strengths of the consolidated materials were greater than NARloy-Z, at all temperatures. The GLIDCOP possessed similar strength levels up to 750 C when the strength of the Cu-Cr-Nb alloys begins to degrade. The long term stability of the Cu-Cr-Nb alloys was measured by the microhardness of aged samples and the growth of precipitates. The microhardness measurements indicate that the alloys overage rapidly, but do not suffer much loss in strength between 10 and 100 hours which confirms the results of the electrical resistivity measurements taken during the aging of the alloys at 500 C. The loss in strength from peak strength levels is significant, but the strength remains exceptionally good. Transmission electron microscopy (TEM) of the as-melt spun samples revealed that Cr2Nb precipitates formed in the liquid Cu during the chill block melt spinning, indicating a very strong driving force for the formation of the precipitates. The TEM of the aged and consolidated materials indicates that the precipitates coarsen considerably, but remain in the submicron range.

  11. Enriching and Separating Primary Copper Impurity from Pb-3 Mass Pct Cu Melt by Super-Gravity Technology

    NASA Astrophysics Data System (ADS)

    Yang, Yuhou; Song, Bo; Song, Gaoyang; Yang, Zhanbing; Xin, Wenbin

    2016-10-01

    In this study, super-gravity technology was introduced in the lead bullion-refining process to investigate the enriching and separating laws of copper impurity from Pb-3 mass pct Cu melt. With the gravity coefficient G = 700 at the cooling rate of ν = 5 K min-1, the entire copper phase gathers at the upper area of the sample, and it is hard to find any copper particles at the bottom area of the sample. The floatation movement of copper phase was greatly intensified by super gravity and the mass pct of copper in tailing lead is up to 8.631 pct, while that in the refined lead is only 0.113 pct. The refining rate of lead bullion reached up to 94.27 pct. Copper-phase impurity can be separated effectively from Pb-3 mass pct Cu melt by filtration method in super-gravity field, and the separation efficiency increased with the increasing gravity coefficient in the range of G ≥ 10. After filtration at 613 K (340 °C) with gravity coefficient G = 100 for 10 minutes, the refined lead, with just 0.157 mass pct copper impurity, was separated to the bottom of the crucible, and the copper dross containing only 23.56 mass pct residual lead was intercepted by the carbon fiber felt, leading to the separation efficiency up to 96.18 pct (meaning a great reduction in metal loss).

  12. Partitioning of Pb, Cd, and Cu in natural and disturbed salt marshes of eastern San Francisco Bay

    SciTech Connect

    Alai, M.; Fegan, N. . Dept. of Geological Sciences)

    1993-04-01

    Sediment from different marsh systems along eastern San Francisco Bay was analyzed to determine how metals are partitioned in different environments influenced by human activity. Human influences in the marshes may have altered the geochemical processes controlling the metal partitioning. The three marsh systems analyzed include a natural marsh (San Francisco Wildlife Refuge), a natural marsh influenced by landfill leachate (Triangle Marsh), and a disturbed marsh constructed of artificial fill (Hayward Landing). The trace metal concentrations were compared in: easily exchangeable, weakly acid soluble, reducible, and oxidizable fractions representing the sediment phases of: clays, carbonates, Mn or Fe oxyhydroxides, and sulfides or organic material, respectively. The sediment fractions were analyzed for Pb, Cd, and Cu. In all three marshes, the pattern of metal partitioning with depth is similar; however, there are some inconsistencies. The Pb, Cd, and Cu in the reducible fraction typically decrease with depth while the metals in the oxidizable fraction generally increase or remain approximately constant with depth. This data suggests that the partitioning of metals in all three environments is initially controlled by sorption of metals onto Mn or Fe oxyhydroxides at the surface and shifts to organic or sulfides as the sediments is buried and the environment becomes more reducing.

  13. Evaluation of Adsorption Capacity of Montmorillonite and Aluminium-pillared Clay for Pb2+, Cu2+ and Zn2.

    PubMed

    Humelnicu, Doina; Ignat, Maria; Suchea, Mirela

    2015-01-01

    Adsorption capacity of the two adsorbents was investigated as a function of contact time between adsorbent and heavy metal ions solutions, the initial heavy metals concentration of the synthetic wastewater, pH value, temperature and adsorbent mass. Preliminary experiments at different pH values between 2.0 and 7.0 were performed, and were observed that maximum adsorption occurs at pH 5 for copper (q(max) = 92.59 mg · g(–1)), 6.0 for lead (qmax = 97.08 mg · g(–1)) and 6.5 for zinc ions (q(max) = 73.52 mg · g(–1)), respectively. The sorption capacity of studied adsorbents for Pb(2+), Cu(2+) and Zn(2+) was calculated using Langmuir and Freundlich models. Thermodynamic parameters – enthalpy change (ΔH(0)), entropychange (ΔS(0)) and free energy (ΔG(0)) – were calculated for predicting the nature of adsorption. Scanning electron micrograph(SEM) revealed changes in the surface morphology of the adsorbent as a result of heavy metal ions adsorption.EDS characterization confirmed qualitatively the presence of adsorbed species in the samples. On the basis of the obtained results the adsorption it was proposed an ordered adsorption: Pb(2+), Cu(2+) and Zn(2+), on the sorbents we investigated. PMID:26680724

  14. Microstructure and electrical properties of pure 110K phase in the BiPbSrCaCuO system

    NASA Astrophysics Data System (ADS)

    Holguin, E.; Berger, H.; Lévy, F.; Dwir, B.; Pavuna, D.; Burri, G.

    1991-01-01

    The temperature dependence of the d.c. resistivity and a.c. magnetic susceptibility was investigated in bulk ceramics of the BiPbSrCaCuO system with 2212 - free (2223) phase. The temperature domain needed to synthesize this phase was small and, according to the actual temperature used, the superconducting properties of the samples were strongly modified. The corresponding X-ray diffraction lines of the 110K phase can be indexed in the pseudo-orthorhombic unit cell with parameters 5.40x5.41x37Å 3. SEM microprobe study revealed the presence of several non-superconducting phases and a composition 2.1:0.1:2:2:3 for the cation ratio Bi:Pb:Sr:Ca:Cu of the 110K phase. Electrical measurements (d.c. resistivity and a.c. susceptibility) confirmed the existence of a 2212 - free (2223) phase. A low temperature "tail" in the d.c. electrical resistivity marks the low value of critical current in the samples.

  15. The spatial and temporal trends of Cd, Cu, Hg, Pb and Zn in Seine River floodplain deposits (1994-2000)

    USGS Publications Warehouse

    Grosbois, C.; Meybeck, Michel; Horowitz, A.; Ficht, A.

    2006-01-01

    Fresh floodplain deposits (FD), from 11 key stations, covering the Seine mainstem and its major tributaries (Yonne, Marne and Oise Rivers), were sampled from 1994 to 2000. Background levels for Cd, Cu, Hg, Pb, and Zn were established using prehistoric FD and actual bed sediments collected in small forested sub-basins in the most upstream part of the basin. Throughout the Seine River Basin, FD contain elevated concentrations of Cd, Cu, Hg, Pb and Zn compared to local background values (by factors > twofold). In the Seine River Basin, trace element concentrations display substantial downstream increases as a result of increasing population densities, particularly from Greater Paris (10 million inhabitants), and reach their maxima at the river mouth (Poses). These elevated levels make the Seine one of the most heavily impacted rivers in the world. On the other hand, floodplain-associated trace element levels have declined over the past 7 years. This mirrors results from contemporaneous suspended sediment surveys at the river mouth for the 1984-1999 period. Most of these temporal declines appear to reflect reductions in industrial and domestic solid wastes discharged from the main Parisian sewage plant (Seine Aval). ?? 2005 Elsevier B.V. All rights reserved.

  16. Enriching and Separating Primary Copper Impurity from Pb-3 Mass Pct Cu Melt by Super-Gravity Technology

    NASA Astrophysics Data System (ADS)

    Yang, Yuhou; Song, Bo; Song, Gaoyang; Yang, Zhanbing; Xin, Wenbin

    2016-08-01

    In this study, super-gravity technology was introduced in the lead bullion-refining process to investigate the enriching and separating laws of copper impurity from Pb-3 mass pct Cu melt. With the gravity coefficient G = 700 at the cooling rate of ν = 5 K min-1, the entire copper phase gathers at the upper area of the sample, and it is hard to find any copper particles at the bottom area of the sample. The floatation movement of copper phase was greatly intensified by super gravity and the mass pct of copper in tailing lead is up to 8.631 pct, while that in the refined lead is only 0.113 pct. The refining rate of lead bullion reached up to 94.27 pct. Copper-phase impurity can be separated effectively from Pb-3 mass pct Cu melt by filtration method in super-gravity field, and the separation efficiency increased with the increasing gravity coefficient in the range of G ≥ 10. After filtration at 613 K (340 °C) with gravity coefficient G = 100 for 10 minutes, the refined lead, with just 0.157 mass pct copper impurity, was separated to the bottom of the crucible, and the copper dross containing only 23.56 mass pct residual lead was intercepted by the carbon fiber felt, leading to the separation efficiency up to 96.18 pct (meaning a great reduction in metal loss).

  17. The function of digestive enzymes on Cu, Zn, and Pb release from soil in in vitro digestion tests.

    PubMed

    Li, Yi; Demisie, Walelign; Zhang, Ming-kui

    2013-07-01

    The bioaccessibility of soil heavy metals is the solubility of soil heavy metals in synthetic human digestive juice, which is usually determined using in vitro digestion test. To reveal the effects of digestive enzymes on soil heavy metals bioaccessibility, three representative in vitro digestion tests, Simple Bioaccessibility Extraction Test (SBET), Physiologically Based Extraction Test (PBET), and Simple Gastrointestinal Extraction Test (SGET), were chosen. The bioaccessibility of soil Cu, Zn, and Pb in each method were respectively evaluated with and without digestive enzymes, and the differences were compared. The results showed that the effects of digestive enzymes varied with different methods and elements. Because of digestive enzymes addition, the environmental change from acid gastric phase to neutral intestinal phase of PBET did not result in apparently decrease of the bioaccessibility of soil Cu. However, the solubility of soil Zn and Pb were pH-dependent. For SGET, when digestive enzymes were added, its results reflected more variations resulting from soil and element types. The impacts of digestive enzymes on heavy metal dissolution are mostly seen in the intestinal phase. Therefore, digestive enzyme addition is indispensable to the gastrointestinal digestion methods (PBET and SGET), while the pepsin addition is not important for the methods only comprised of gastric digestion (SBET).

  18. Assessment of bioavailability and potential toxicity of Cu, Zn and Pb, a case study in Jurujuba Sound, Rio de Janeiro, Brazil.

    PubMed

    Abuchacra, P F F; Aguiar, V M C; Abuchacra, R C; Baptista Neto, J A; Oliveira, A S

    2015-11-15

    Potential toxicity of sedimentary Cu, Zn and Pb were evaluated based on their fractionation at the inner part of Jurujuba, a small sound at the eastern margin of Guanabara Bay, Rio de Janeiro. Biogeochemical composition revealed an environment extremely enriched with anthropic organic matter and characterized as a detrital heterotrophic system. The fractionation analysis showed that Pb exhibited more affinity with the residual fraction followed by the amorphous Fe/Mn fraction. Cu and Zn were more expressive in the amorphous Fe/Mn fraction followed by the organic one and crystalline Fe/Mn fraction, respectively. According to Igeo index, sediments proved to be highly polluted by Zn and Cu and moderated polluted by Pb. Despite the actual contamination of Jurujuba sediments, the mobility of these elements seems to be limited since the most excessive concentrations were found in the less available fractions, depending on extreme physico-chemical variations to be released.

  19. Detection of anthropogenic Cu, Pb and Zn in continental shelf sediments off Sydney, Australia--a new approach using normalization with cobalt.

    PubMed

    Matthai, C; Birch, G

    2001-11-01

    Concentrations of Co, Cu, Pb and Zn were determined in 107 surficial sediment samples from the continental margin adjacent to Sydney, Australia. The spatial distributions of trace metals in the sediments and the mud content are similar and increase with greater distance from the coast. In contrast, normalization of the concentrations of Cu, Pb and Zn in the total sediment with Co enables a coastal anthropogenic source to be identified. The spatial distribution of Co-normalized concentrations of Cu, Pb and Zn in total sediment is similar to the distribution of these trace metals in the fine fraction of sediment (<62.5 microm), indicating that Co may be used as a normalizing element for determining contaminant sources in the marine environment near Sydney.

  20. Novel Preparation of Nano-Composite CuO-Cr2O3 Using Ctab-Template Method and Efficient for Hydrogenation of Biomass-Derived Furfural

    NASA Astrophysics Data System (ADS)

    Yan, Kai; Wu, Xu; An, Xia; Xie, Xianmei

    2013-02-01

    A simple route to fabricate nano-composite oxides CuO-Cr2O3 using hexadecyltrimethylammonium bromide (CTAB)-templated Cu-Cr hydrotalcite as the precursor is presented. This novel method is based on CTAB-templating effect for mesostructure directing and using the cheap metal nitrate, followed by removal of CTAB. It was indicated that the nano-composite CuO-Cr2O3 was formed during the removal of CTAB. X-ray diffraction (XRD) and transitional electronic microscopy (TEM) revealed nice nano-composite oxides CuO-Cr2O3 were formed with high crystallinity. N2 adsorption and desorption indicated that a high surface area of 170.5 m2/g with a pore size of 2.7 nm of the nano-composite CuO-Cr2O3 was facilely resulted. The as-synthesized nano-composite oxides CuO-Cr2O3 display good catalytic activities for hydrogenation of furfural to furfuryl alcohol, whereas 86% selectivity was achieved at 75% conversion of furfural.

  1. Effects of Cr/Zn Substitutions on Dielectric Properties of CaCu{sub 3}Ti{sub 4}O{sub 12}(CCTO) Ceramics

    SciTech Connect

    Rajmi, R.; Yahya, A. K.; Deni, M. S. M.

    2010-07-07

    Effects of Zn and Cr substitutions on dielectric properties of CaCu{sub 3-x}Zn{sub x}Ti{sub 4-y}Cr{sub y}O{sub 12} ceramics are reported. Dielectric measurements at room temperature for un-substituted CaCu{sub 3-x}Zn{sub x}Ti{sub 4-y}Cr{sub y}O{sub 12}(x = 0, y = 0) between 10{sup 2}-10{sup 6} Hz showed dielectric constant of 2.7x10{sup 4} at 10{sup 2} Hz. Substitution of Zn for Cu in CaCu{sub 3-x}Zn{sub xTi{sub 4{sub -{sub yCr{sub yO{sub 1{sub 2}}}}}}}(y = 0, x = 0.10, 0.50)caused dielectric constant to drop with increasing x. Cr substitution at Ti-site in CaCu{sub 3-x}Zn{sub xTi{sub 4{sub -{sub yCr{sub yO{sub 1{sub 2}}}}}}}(x = 0, x = 0,) also caused decrease in dielectric constant. However, at x = 0.50, the dielectric constant at low frequency was enhanced compared to the un-substituted sample. Our results indicate that Cu and Ti sites play an important role in the formation of Internal Barrier Layer Capacitance (IBLC) in CCTO.

  2. Reactivity of no-clean pastes and fluxes for the surface mount technology process—part I: Corrosion behavior of Cu, Sn, and Pb

    NASA Astrophysics Data System (ADS)

    Cavallotti, P. L.; Zangari, G.; Sirtori, V.

    1995-04-01

    No-clean fluxes allow simplifications in the surface mount technology process, but introduce reliability problems for electronic assemblies during their service life. An electrochemical method is devised to study the anodic reactivity of Sn, Pb, eutectic Sn-Pb solder alloy and Cu in aqueous solutions containing no-clean paste residues obtained during a reflow process. The potential corrosion risk of residues from two different pastes is evaluated, and the corrosion behavior of the different metals assessed. Cu corrodes faster than Sn, Pb, and the solder alloy in presence of the residues, but corrosion starts at higher overvoltages. Pb corrodes at low overvoltage; Sn is prone to oxidation and passivation. The solder alloy has an intermediate behavior between those of the pure metals.

  3. Superconductivity in Ru-BASED Cuprate Ru(Sr1.5Ca0.5)PbCu2O8 Prepared by Sol-Gel Route

    NASA Astrophysics Data System (ADS)

    Yeoh, L. M.; Ahmad, M.; Abd-Shukor, R.

    Pb containing ruthenium-based superconducting cuprates Ru(Sr1.5Ca0.5)PbCu2O8 (Ru-1212 type) have been successfully synthesized through the sol-gel route. The optimum annealing temperature for the ruthenium-based cuprate superconductor was found to be 890°C. The crystal structure determined by X-ray powder diffraction method showed a single Ru-1212 type phase with tetragonal symmetry with lattice parameters a = b = 3.920 Å, and c = 11.76 Å. The Ru(Sr1.5Ca0.5)PbCu2O8 material showed onset temperature, Tc-onset at 35 K and zero resistant temperature, Tc-zero at 20 K. Pb together with the partial substitution of Sr with Ca lowered the formation temperature of the Ru-1212 type phase.

  4. Higher alcohol and oxygenate synthesis over Cs/Cu/ZnO/M sub 2 O sub 3 (M = Al, Cr) catalysts

    SciTech Connect

    Nunan, J.G.; Herman, R.G.; Klier, K. )

    1989-03-01

    Surface doping of Cu/ZnO/M{sub 2}O{sub 3} (M = Al, Cr) catalysts prepared from hydrotalcite precursors with cesium (Cs/Cu/ZnO/M{sub 2}O{sub 3}) significantly enhanced to the alcohol synthesis rate under higher alcohol synthesis conditions. With respect to the unsupported Cs/Cu/ZnO catalyst, the product selectivity of the Cs/Cu/ZnO/Al{sub 2}O{sub 3} catalyst was shifted toward methanol, while the Cs/Cu/ZnO/Cr{sub 2}O{sub 3} catalyst maintained a high selectivity toward C{sub 2}{sup +} alcohols. The presence of cesium in the Cu/ZnO/M{sub 2}O{sub 3} catalysts inhibited the synthesis of dimethyl ether. Comparison of the product distributions obtained over the Cs/Cu/ZnO/M{sub 2}O{sub 3} catalysts with those observed over the Cs/Cu/ZnO catalysts indicates that the function of the Cs/Cu/ZnO/Cr{sub 2}O{sub 3} catalyst is similar to that of the Cs/Cu/ZnO in that higher alcohols are synthesized by a stepwise carbon chain growth via a unique aldol coupling with oxygen retention reversal mechanism. The Al{sub 2}O{sub 3}-based catalysts undergo complex structural changes that probably cause occlusion of the Cs dopant, thus resulting in low selectivity to higher alcohols while retaining high activity toward methanol. 23 refs.

  5. Removal of Pb(II), Cd(II), Cu(II), and Zn(II) by hematite nanoparticles: effect of sorbent concentration, pH, temperature, and exhaustion.

    PubMed

    Shipley, Heather J; Engates, Karen E; Grover, Valerie A

    2013-03-01

    Nanoparticles offer the potential to improve environmental treatment technologies due to their unique properties. Adsorption of metal ions (Pb(II), Cd(II), Cu(II), Zn(II)) to nanohematite was examined as a function of sorbent concentration, pH, temperature, and exhaustion. Adsorption experiments were conducted with 0.05, 0.1, and 0.5 g/L nanoparticles in a pH 8 solution and in spiked San Antonio tap water. The adsorption data showed the ability of nanohematite to remove Pb, Cd, Cu, and Zn species from solution with adsorption increasing as the nanoparticle concentration increased. At 0.5 g/L nanohematite, 100 % Pb species adsorbed, 94 % Cd species adsorbed, 89 % Cu species adsorbed and 100 % Zn species adsorbed. Adsorption kinetics for all metals tested was described by a pseudo second-order rate equation with lead having the fastest rate of adsorption. The effect of temperature on adsorption showed that Pb(II), Cu(II), and Cd(II) underwent an endothermic reaction, while Zn(II) underwent an exothermic reaction. The nanoparticles were able to simultaneously remove multiple metals species (Zn, Cd, Pb, and Cu) from both a pH 8 solution and spiked San Antonio tap water. Exhaustion experiments showed that at pH 8, exhaustion did not occur for the nanoparticles but adsorption does decrease for Cd, Cu, and Zn species but not Pb species. The strong adsorption coupled with the ability to simultaneously remove multiple metal ions offers a potential remediation method for the removal of metals from water.

  6. The exposition of a calcareous Mediterranean soil to toxic concentrations of Cr, Cd and Pb produces changes in the microbiota mainly related to differential metal bioavailability.

    PubMed

    Caliz, Joan; Montserrat, Genoveva; Martí, Esther; Sierra, Jordi; Cruañas, Robert; Garau, M Antonia; Triadó-Margarit, Xavier; Vila, Xavier

    2012-10-01

    The involvement of the bacterial community of an agricultural Mediterranean calcareous soil in relation to several heavy metals has been studied in microcosms under controlled laboratory conditions. Soil samples were artificially polluted with Cr(VI), Cd(II) and Pb(II) at concentrations ranging from 0.1 to 5000 mg kg(-1) and incubated along 28 d. The lowest concentrations with significant effects in soil respirometry were 10 mg kg(-1) Cr and 1000 mg kg(-1) Cd and Pb. However, only treatments showing more than 40% inhibition of respirometric activity led to significant changes in bacterial composition, as indicated by PCR-DGGE analyses. Presumable Cr- and Cd-resistant bacteria were detected in polluted microcosms, but development of the microbiota was severely impaired at the highest amendments of both metals. Results also showed that bioavailability is an important factor determining the impact of the heavy metals assayed, and even an inverted potential toxicity ranking could be achieved if their soluble fraction is considered instead of the total concentration. Moreover, multiresistant bacteria were isolated from Cr-polluted soil microcosms, some of them showing the capacity to reduce Cr(VI) concentrations between 26% and 84% of the initial value. Potentially useful strains for bioremediation were related to Arthrobacter crystallopoietes, Stenotrophomonas maltophilia and several species of Bacillus.

  7. Evaluation of the distribution patterns of Pb, Cu and Cd from MSWI fly ash during thermal treatment by sequential extraction procedure.

    PubMed

    Chou, Jing-Dong; Wey, Ming-Yen; Chang, Shih-Hsien

    2009-03-15

    Municipal solid waste incinerator (MSWI) fly ash was frequently classified as hazardous materials as the metals' concentration of toxicity characteristic leaching procedure (TCLP) exceeded regulations. Many studies have focused on reducing the concentration of TCLP using thermal treatment and increasing the application of thermally treated slag. However, the metal patterns in MSWI fly ash with or without thermal treatment have seldom been addressed. The main objective of this study was evaluation of the distribution patterns of Pb, Cu and Cd from MSWI fly ash during thermal treatment by sequential extraction procedure. The experimental parameters included the form of pretreatment, the proportion of bottom ash (bottom ash/fly ash, B/F=0, 0.1 and 1) and the retention time. The results indicated that (1) In comparison to raw fly ash, the distribution patterns of Pb, Cu and Cd become stable in thermally treated slag. (2) Washing pretreatment caused the Pb pattern to become stable, while the influence on Cu and Cd were not significant. (3) The distribution patterns of Pb, Cu, and Cd became more stable as the retention time increased. (4) Adding bottom ash could make the distribution patterns of Pb and Cd more stable. PMID:18614278

  8. In situ field application of electrokinetic remediation for an As-, Cu-, and Pb-contaminated rice paddy site using parallel electrode configuration.

    PubMed

    Jeon, Eun-Ki; Jung, Ji-Min; Ryu, So-Ri; Baek, Kitae

    2015-10-01

    The applicability of an in situ electrokinetic process with a parallel electrode configuration was evaluated to treat an As-, Cu-, and Pb-contaminated paddy rice field in full scale (width, 17 m; length, 12.2 m; depth, 1.6 m). A constant voltage of 100 V was supplied and electrodes were spaced 2 m apart. Most As, Cu, and Pb were bound to Fe oxide and the major clay minerals in the test site were kaolinite and muscovite. The electrokinetic system removed 48.7, 48.9, and 54.5 % of As, Cu, and Pb, respectively, from the soil during 24 weeks. The removal of metals in the first layer (0-0.4 m) was higher than that in the other three layers because it was not influenced by groundwater fluctuation. Fractionation analysis showed that As and Pb bound to amorphous Fe and Al oxides decreased mainly, and energy consumption was 1.2 kWh/m(3). The standard deviation of metal concentration in the soil was much higher compared to the hexagonal electrode configuration because of a smaller electrical active area; however, the electrode configuration removed similar amounts of metals compared to the hexagonal system. From these results, it was concluded that the electrokinetic process could be effective at remediating As-, Cu-, and Pb-contaminated paddy rice field in situ. PMID:26032450

  9. Multifunctional nanocomposites Fe3O4@SiO2-EDTA for Pb(II) and Cu(II) removal from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Fu, Ruiqi; Sun, Yue; Zhou, Xiaoxin; Baig, Shams Ali; Xu, Xinhua

    2016-04-01

    In this study, EDTA-functionalized Fe3O4 (Fe3O4@SiO2-EDTA) was prepared by silanization reaction between N-(trimethoxysilylpropyl) ethylenediamine triacetic acid (EDTA-silane) and hydroxyl groups for Pb(II) and Cu(II) removal from aqueous solutions. Fe3O4@SiO2-EDTA composites were characterized using SEM, TEM, EDX, FTIR, XPS, TGA and saturated magnetization techniques. Maximum Pb(II) adsorption capacity was found to be 114.94 mg g-1 with SiO2/EDTA molar ratio of 2.5:1. The adsorption rate was significantly fast and the equilibrium was reached within 10 min. The optimum pH was recorded to be 5.0. The maximum adsorption capacity of the studied heavy metal ions calculated by Langmuir model followed the order: Cu(II) (0.58 mmol g-1) > Pb(II) (0.55 mmol g-1) ≈ Ni(II) (0.55 mmol g-1) > Cd(II) (0.45 mmol g-1). Moreover, Pb(II) and Cu(II) adsorption capacities were not significantly affected by co-existing cations and NOM. These results suggested that this adsorbent can be considered as a promising adsorbent to remove Pb(II) and Cu(II) from wastewaters.

  10. In situ field application of electrokinetic remediation for an As-, Cu-, and Pb-contaminated rice paddy site using parallel electrode configuration.

    PubMed

    Jeon, Eun-Ki; Jung, Ji-Min; Ryu, So-Ri; Baek, Kitae

    2015-10-01

    The applicability of an in situ electrokinetic process with a parallel electrode configuration was evaluated to treat an As-, Cu-, and Pb-contaminated paddy rice field in full scale (width, 17 m; length, 12.2 m; depth, 1.6 m). A constant voltage of 100 V was supplied and electrodes were spaced 2 m apart. Most As, Cu, and Pb were bound to Fe oxide and the major clay minerals in the test site were kaolinite and muscovite. The electrokinetic system removed 48.7, 48.9, and 54.5 % of As, Cu, and Pb, respectively, from the soil during 24 weeks. The removal of metals in the first layer (0-0.4 m) was higher than that in the other three layers because it was not influenced by groundwater fluctuation. Fractionation analysis showed that As and Pb bound to amorphous Fe and Al oxides decreased mainly, and energy consumption was 1.2 kWh/m(3). The standard deviation of metal concentration in the soil was much higher compared to the hexagonal electrode configuration because of a smaller electrical active area; however, the electrode configuration removed similar amounts of metals compared to the hexagonal system. From these results, it was concluded that the electrokinetic process could be effective at remediating As-, Cu-, and Pb-contaminated paddy rice field in situ.

  11. Re-Os and U-Pb geochronology of the Laochang Pb-Zn-Ag and concealed porphyry Mo mineralization along the Changning-Menglian suture, SW China: implications for ore genesis and porphyry Cu-Mo exploration

    NASA Astrophysics Data System (ADS)

    Deng, Xiao-Dong; Li, Jian-Wei; Zhao, Xin-Fu; Wang, Hong-Qiang; Qi, Liang

    2016-02-01

    Numerous polymetallic volcanogenic massive sulfide (VMS), vein, and replacement deposits are distributed along the Changning-Menglian suture zone in Sanjiang Tethyan metallogenic province, SW China. Laochang is the largest Pb-Zn-Ag vein and replacement deposit in this area, with a proven reserve of 0.51 Mt Pb, 0.34 Mt Zn, and 1,737 t Ag. Its age and relationship to magmatic events and VMS deposits in the region, however, have long been debated. In this paper, we present pyrite Re-Os and titanite U-Pb ages aiming to provide significant insights into the timing and genesis of the Pb-Zn-Ag mineralization. Pyrite grains in textural equilibrium with galena, sphalerite, and chalcopyrite from stratabound Pb-Zn-Ag and Cu-bearing Pb-Zn-Ag orebodies have a Re-Os isochron age of 45.7 ± 3.1 Ma (2 σ, mean square weighted deviation (MSWD) = 0.45), whereas titanite grains intergrown with sulfide minerals yield a weighted mean 206Pb/238U age of 43.4 ± 1.2 Ma (2 σ, n = 8). A Mo-mineralized granitic porphyry intersected by recent drilling below the Laochang Pb-Zn-Ag ores yields a zircon U-Pb age of 44.4 ± 0.4 Ma (2 σ, n = 12). Within analytical uncertainties, the ages of the Pb-Zn-Ag deposit and the concealed Mo-mineralized porphyry are indistinguishable, indicating that they are products of a single magmatic hydrothermal system. The results show that Laochang Pb-Zn-Ag deposit is significantly younger than the host mafic volcanic rock (zircon U-Pb age of 320.8 ± 2.7 Ma; 2 σ, n = 12) and Silurian VMS deposits along the Changning-Menglian suture zone, arguing against its origin as a Carboniferous VMS deposit as many researchers claimed. The initial 187Os/188Os ratio (0.540 ± 0.012) obtained from the pyrite Re-Os isochron suggests that metals were likely derived from the granitic porphyry that formed from a hybrid magma due to mixing of crustal- and mantle-derived melts, rather than from the mafic volcanic host rocks as previously thought. Our results favor that the Laochang

  12. Superconductivity of Bi2Sr2Ca2Cu3Pb(x)O(y) (x = 0.2, 0.4, 0.6)

    NASA Astrophysics Data System (ADS)

    Mizuno, Masaaki; Endo, Hozumi; Tsuchiya, Jun; Kijima, Naoto; Sumiyama, Akihiko

    1988-07-01

    The addition of Pb to the superconducting Bi-Sr-Ca-Cu-O system is found to increase the volume fraction of the high-Tc phase (Tc greater than 100 K) determined by the ac susceptibility and the X-ray powder diffraction pattern. It also lowers the optimum firing temperature to produce the high-Tc phase. The peaks attributed to the high-Tc phase in the X-ray diffraction pattern become sharper, which indicates that the addition of Pb promotes crystallization. It is found by differential thermal analyses that Pb also acts as a flux.

  13. First U-Pb isotopic data on zircon from andesite of the Saf'yanovka Cu-bearing massive sulfide deposit (Middle Urals)

    NASA Astrophysics Data System (ADS)

    Ronkin, Yu. L.; Pritchin, M. E.; Soroka, E. I.; Gerdes, A.; Puchkov, V. N.; Busharina, S. V.

    2016-07-01

    New results of U-Pb LA ICP-MS dating of zircon from andesite samples cropping out on the western wall of the Saf'yanovka quarry (57°22'58.88″ N, 61°31'50.85″ E) in the synonymous Cu-Zn-bearing massive sulfide deposit of the Urals type are considered. The position of data points of the U-Pb systematics in the 207Pb/235U-206Pb/238U plot determines a cluster practically corresponding to the concordant U-Pb age: 422.8 ± 2.0 Ma. This date indicates for the first time the presence of Pridolian volcanogenic rocks in the East Urals megazone of the Middle Urals.

  14. Microstructure Evolution in a Cu-0.5Cr-0.2Zr Alloy Subjected to Equal Channel Angular Pressing, Rolling or Aging

    NASA Astrophysics Data System (ADS)

    Alexandrov, Igor V.; Sitdikov, Vil D.; Abramova, Marina M.; Sarkeeva, Elena A.; Wei, Kun Xia; Wei, Wei

    2016-10-01

    The evolution of microstructure in the Cu-0.5%Cr-0.2%Zr alloy subjected to thermomechanical treatment has been studied by means of the x-ray analysis. The workpieces have been subjected to 1, 2, 4 and 8 passes of equal channel angular pressing, plain cold rolling and aging treatment. The results of the XRD investigations reflect the evolution of the lattice parameter, the size of coherently scattering domains, the elastic microdistortions and the dislocation density in Cu matrix. The observed changes in the microstructure are explained by the competition between the developing defects and precipitation of the Cr phase particles from the Cu matrix.

  15. Microstructure Evolution in a Cu-0.5Cr-0.2Zr Alloy Subjected to Equal Channel Angular Pressing, Rolling or Aging

    NASA Astrophysics Data System (ADS)

    Alexandrov, Igor V.; Sitdikov, Vil D.; Abramova, Marina M.; Sarkeeva, Elena A.; Wei, Kun Xia; Wei, Wei

    2016-08-01

    The evolution of microstructure in the Cu-0.5%Cr-0.2%Zr alloy subjected to thermomechanical treatment has been studied by means of the x-ray analysis. The workpieces have been subjected to 1, 2, 4 and 8 passes of equal channel angular pressing, plain cold rolling and aging treatment. The results of the XRD investigations reflect the evolution of the lattice parameter, the size of coherently scattering domains, the elastic microdistortions and the dislocation density in Cu matrix. The observed changes in the microstructure are explained by the competition between the developing defects and precipitation of the Cr phase particles from the Cu matrix.

  16. Genotoxic Effects Induced by Cd(+2), Cr(+6), Cu(+2) in the Gill and Liver of Odontesthes bonariensis (Piscies, Atherinopsidae).

    PubMed

    Gasulla, J; Picco, S J; Carriquiriborde, P; Dulout, F N; Ronco, A E; de Luca, J C

    2016-05-01

    Genotoxic effects of Cd(+2), Cr(+6), and Cu(+2) on the gill and liver of the Argentinean Silverside (Odontesthes bonariensis) were studied using the comet assay and in relation with the metal tissue accumulation. Fish were exposed to three waterborne concentrations of each metal for 2 and 16 days. Genotoxicity was assessed by the single cell gel electrophoresis (comet assay). After 2 days, significant increase of the genetic damage index (GDI) was only observed in the gill of fish exposed to Cr(+6) and Cu(+2), and the LOECs were 2160 nM and 921.1 nM, respectively. The gill LOEC for Cd(+2) by 16 days was 9.4 nM. In the liver, LOECs were obtained only for Cd(+2) and Cr(+6) and were 9.4 and 2160 nM, respectively. The three metals were able to induce genotoxic effects at environmentally relevant concentrations and the gill was the most sensitive organ.

  17. Removal of Cu, Cr, Ni, Zn, and Cd from electroplating wastes and synthetic solutions by vermicompost of cattle manure.

    PubMed

    Jordão, Cláudio Pereira; Pereira, Madson de Godoi; Einloft, Rosilene; Santana, Marlete Bastos; Bellato, Carlos Roberto; de Mello, Jaime Wilson Vargas

    2002-01-01

    This study was undertaken to evaluate the retention of Cu, Cr, Ni, Zn, and Cd under laboratory conditions from synthetic solution and electroplating wastes by vermicompost. A glass column was loaded with vermicompost, and metal solutions were passed through it. Metal concentrations were then measured in the eluate in order to evaluate the amounts retained by the vermicompost. Measurements of pH, metal concentrations, moistness, organic matter and ash contents, and infrared and XRD spectroscopy were used for vermicompost characterisation. Vermicompost residues obtained from this process were used for plant nutrition in eroded soil collected from a talus near a highway. Metal retention (in g of metal/kg of vermicompost) from effluents ranged from 2 for Cr and Zn to 4 in the case of Ni. In synthetic solutions, the values for metal retention were 4 for Cd and Zn, 6 for Cu and Ni, and 9 for Cr. The results also showed that metal concentrations in the purified effluents were below the maximum values established for waste discharges into rivers by the Brazilian Environmental Standards. The relatively high available Cd concentration of the vermicompost residue resulted in plant damage. This effect was attributed to the presence of Cd in the synthetic solution passed through the vermicompost. The data obtained do not give a complete picture of using vermicompost in cultivated lands, but such values as are determined do show that it can be suitable to remove heavy metals from industrial effluents.

  18. Genotoxic Effects Induced by Cd(+2), Cr(+6), Cu(+2) in the Gill and Liver of Odontesthes bonariensis (Piscies, Atherinopsidae).

    PubMed

    Gasulla, J; Picco, S J; Carriquiriborde, P; Dulout, F N; Ronco, A E; de Luca, J C

    2016-05-01

    Genotoxic effects of Cd(+2), Cr(+6), and Cu(+2) on the gill and liver of the Argentinean Silverside (Odontesthes bonariensis) were studied using the comet assay and in relation with the metal tissue accumulation. Fish were exposed to three waterborne concentrations of each metal for 2 and 16 days. Genotoxicity was assessed by the single cell gel electrophoresis (comet assay). After 2 days, significant increase of the genetic damage index (GDI) was only observed in the gill of fish exposed to Cr(+6) and Cu(+2), and the LOECs were 2160 nM and 921.1 nM, respectively. The gill LOEC for Cd(+2) by 16 days was 9.4 nM. In the liver, LOECs were obtained only for Cd(+2) and Cr(+6) and were 9.4 and 2160 nM, respectively. The three metals were able to induce genotoxic effects at environmentally relevant concentrations and the gill was the most sensitive organ. PMID:27003804

  19. Impact of CrSiTi and NiSi on the Thermodynamics, Microstructure, and Properties of AlCoCuFe-Based High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Rong; Wang, Zhao-Qin; Lin, Tie-Song; He, Peng; Sekulic, Dusan P.

    2016-05-01

    Aiming to solve the problem of spontaneous combustion on titanium via electrospark deposition (ESD), two AlCoCuFe-based high-entropy alloys (HEAs), AlCoCuFe- x ( x = CrSiTi, NiSi), were produced by vacuum arc melting as electrodes in ESD process. The thermodynamic analysis of AlCoCuFe-based HEAs were carried out using the concept of mixing enthalpy matrix and a powerful thermodynamic calculation toolbox (HEA-Thermo-Calcu). The microstructure and mechanical properties of the two alloys were investigated. The AlCoCuFeCrSiTi alloy contains a body-centered cubic (BCC) phase and a face-centered cubic (FCC) phase. The AlCoCuFeNiSi alloy is composed of two BCC phases and an FCC phase. Addition of CrSiTi and NiSi to AlCoCuFe-based alloys makes the enthalpy of mixing to be sizably more negative than for the other AlCoCuFe-based HEAs. Notwithstanding the fact that the thermodynamic parameters do not agree with Yang's proposition, the two alloys form simple solid solutions. The electronegativity difference (Δ χ) favors a formation of the solid solution when Δχ ≤ 14.2. The hardness of AlCoCuFe- x ( x = CrSiTi, NiSi) alloys reaches 935 HV and 688 HV, respectively. The yield strength, fracture strength, and ultimate strain of AlCoCuFeNiSi are larger, i.e., 29, 30, and 45%, respectively, than those of the AlCoCuFeCrSiTi alloy.

  20. Evaluation of the effects of the metals Cd, Cr, Pb and their mixture on the filtration and oxygen consumption rates in catarina scallop, Argopecten ventricosus juveniles.

    PubMed

    Sobrino-Figueroa, Alma S; Cáceres-Martinez, Carlos

    2014-01-01

    In this work, we evaluated the effect of sublethal concentrations ( LC25, LC10 and LC5) of cadmium, chromium, lead, and their mixture on the filtration rate and oxygen consumption rate of Catarina scallop, Argopecten ventricosus (Sowerby, 1842), juveniles, in order to evaluate the use of these biomarkers as a reliable tool in environmental monitoring studies, because these metals have been found at high levels in water and sediments in the Mexican Pacific systems. An inverse dose-response relationship was observed when metal concentration and exposure time increased, the filtration rate and oxygen consumption rate reduced. The physiological responses evaluated in this study were sufficiently sensitive to detect alterations in the organisms at 0.014 mg l(-1) Cd, 0.311 mg l(-1) Cr, 0.125 mg l(-1) Pb and 0.05 mg l(-1) Cd + Cr + Pb at 24 and 72 hrs. Cd showed the most drastic effect. The Catarina scallop juveniles were more sensitive to Cd, Cr and Pb as compared to other bivalves. The biomarkers evaluated are a reliable tool to carry out environmental monitoring studies.

  1. A scheme of simultaneous cationic-anionic substitution in CuCrO2 for transparent and superior p-type transport

    NASA Astrophysics Data System (ADS)

    Mandal, Prasanta; Mazumder, Nilesh; Saha, Subhajit; Ghorai, Uttam Kumar; Roy, Rajarshi; Das, Gopes Chandra; Chattopadhyay, Kalyan Kumar

    2016-07-01

    Considering CuCrO2 to be a promising p-type transparent conducting oxide, unprecedented simultaneous cationic-anionic doping is carried out to achieve superior hole transport while maintaining its transparency. Magnesium and sulphur are doped at Cr and O-sites respectively by solid-state approach (CuCr1-x Mg x O1-y S y , x, y ranging 0-5 atomic %) with significant doping confirmed by Rietveld refinement. UV-Vis spectroscopy is observed to imply promising optical properties of engineered materials. DC conductivity of co-doped CuCr0.95Mg0.05O1.9S0.1 is observed to be twice as large compared to CuCr0.95Mg0.05O2 at 300 K, which is consistent with the lower frequency shift of the negative differential susceptance (-Δ B ) and the admittance peak, indicating higher ‘metallicity’ upon co-doping. Hole mobility of 16.26 cm2 V-1 s-1 at 300 K is observed for the co-doped CuCrO2. This strategy combines an established doping scheme at the cationic site with our newly developed anionic chalcogen doping, aiming to overcome a long-standing transport bottleneck in the field of semiconductor oxides.

  2. Depressing effect of 0.1 wt.% Cr addition into Sn-9Zn solder alloy on the intermetallic growth with Cu substrate during isothermal aging

    SciTech Connect

    Hu Jin; Hu Anmin; Li Ming; Mao Dali

    2010-03-15

    In this paper, the effect of 0.1 wt.% Cr addition into Sn-9Zn lead-free solder alloys on the growth of intermetallic compound (IMC) with Cu substrate during soldering and subsequent isothermal aging was investigated. During soldering, it was found that 0.1 wt.% Cr addition did not contribute to forming the IMC, which was verified as the same phase structure as the IMC for Sn-9Zn/Cu. However, during solid-state isothermal aging, the IMC growth was remarkably depressed by 0.1 wt.% Cr addition in the Sn-9Zn solder, and this effect tended to be more prominent at higher aging temperature. The activation energy for IMC growth was determined as 21.2 kJ mol{sup -1} and 42.9 kJ mol{sup -1} for Sn-9Zn/Cu and Sn-9Zn-Cr/Cu, respectively. The reduced diffusion coefficient was confirmed for the 0.1Cr-containing solder/Cu. Energy-dispersive X-ray mapping and point analysis also showed ZnCr phase existing in solder matrix, which can reduce diffusion rate of Zn atoms.

  3. The potential of Lemna gibba L. and Lemna minor L. to remove Cu, Pb, Zn, and As in gallery water in a mining area in Keban, Turkey.

    PubMed

    Sasmaz, Merve; Arslan Topal, Emine Işıl; Obek, Erdal; Sasmaz, Ahmet

    2015-11-01

    This study was designed to investigate removal efficiencies of Cu, Pb, Zn, and As in gallery water in a mining area in Keban, Turkey by Lemna gibba L. and Lemna minor L. These plants were placed in the gallery water of Keban Pb-Zn ore deposits and adapted individually fed to the reactors. During the study period (8 days), the plant and water samples were collected daily and the temperature, pH, and electric conductivity of the gallery water were measured daily. The plants were washed, dried, and burned at 300 °C for 24 h in a drying oven. These ash and water samples were analyzed by ICP-MS to determine the amounts of Cu, Pb, Zn, and As. The Cu, Pb, Zn and As concentrations in the gallery water of the study area detected 67, 7.5, 7230, and 96 μg L(-1), respectively. According to the results, the obtained efficiencies in L. minor L. and L. gibba L. are: 87% at day 2 and 36% at day 3 for Cu; 1259% at day 2 and 1015% at day 2 for Pb; 628% at day 3 and 382% at day 3 for Zn; and 7070% at day 3 and 19,709% at day 2 for As, respectively. The present study revealed that both L. minor L. and L. gibba L. had very high potential to remove Cu, Pb, Zn, and As in gallery water contaminated by different ores.

  4. The potential of Lemna gibba L. and Lemna minor L. to remove Cu, Pb, Zn, and As in gallery water in a mining area in Keban, Turkey.

    PubMed

    Sasmaz, Merve; Arslan Topal, Emine Işıl; Obek, Erdal; Sasmaz, Ahmet

    2015-11-01

    This study was designed to investigate removal efficiencies of Cu, Pb, Zn, and As in gallery water in a mining area in Keban, Turkey by Lemna gibba L. and Lemna minor L. These plants were placed in the gallery water of Keban Pb-Zn ore deposits and adapted individually fed to the reactors. During the study period (8 days), the plant and water samples were collected daily and the temperature, pH, and electric conductivity of the gallery water were measured daily. The plants were washed, dried, and burned at 300 °C for 24 h in a drying oven. These ash and water samples were analyzed by ICP-MS to determine the amounts of Cu, Pb, Zn, and As. The Cu, Pb, Zn and As concentrations in the gallery water of the study area detected 67, 7.5, 7230, and 96 μg L(-1), respectively. According to the results, the obtained efficiencies in L. minor L. and L. gibba L. are: 87% at day 2 and 36% at day 3 for Cu; 1259% at day 2 and 1015% at day 2 for Pb; 628% at day 3 and 382% at day 3 for Zn; and 7070% at day 3 and 19,709% at day 2 for As, respectively. The present study revealed that both L. minor L. and L. gibba L. had very high potential to remove Cu, Pb, Zn, and As in gallery water contaminated by different ores. PMID:26332457

  5. Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol.

    PubMed

    Jiang, Jun; Xu, Ren-kou; Jiang, Tian-yu; Li, Zhuo

    2012-08-30

    To develop new remediation methods for acidic soils polluted by heavy metals, the chemical fractions of Cu(II), Pb(II) and Cd(II) in an Ultisol with and without rice straw biochar were compared and the effect of biochar incorporation on the mobility and bioavailability of these metals was investigated. In light of the decreasing zeta potential and increasing CEC, the incorporation of biochar made the negative soil surface charge more negative. Additionally, the soil pH increased markedly after the addition of biochar. These changes in soil properties were advantageous for heavy metal immobilization in the bulk soil. The acid soluble Cu(II) and Pb(II) decreased by 19.7-100.0% and 18.8-77.0%, respectively, as the amount of biochar added increased. The descending range of acid soluble Cd(II) was 5.6-14.1%, which was much lower than that of Cu(II) and Pb(II). When 5.0 mmol/kg of these heavy metals was added, the reducible Pb(II) for treatments containing 3% and 5% biochar was 2.0 and 3.0 times higher than that of samples without biochar, while the reducible Cu(II) increased by 61.6% and 132.6% for the corresponding treatments, respectively. When 3% and 5% biochar was added, the oxidizable portion of Pb(II) increased by 1.18 and 1.94 times, respectively, while the oxidizable portion of Cu(II) increased by 8.13 and 7.16 times, respectively, primarily due to the high adsorption affinity of functional groups of biochar to Cu(II). The residual heavy metal contents were low and changed little with the incorporation of biochar. PMID:22704774

  6. Mass change calculations of hydrothermal alterations within the volcanogenic metasediments hosted Cu-Pb (-Zn) mineralization at Halilar area, NW Turkey

    NASA Astrophysics Data System (ADS)

    Kiran Yildirim, Demet; Abdelnasser, Amr; Doner, Zeynep; Kumral, Mustafa

    2016-04-01

    The Halilar Cu-Pb (-Zn) mineralization that is formed in the volcanogenic metasediments of Bagcagiz Formation at Balikesir province, NW Turkey, represents locally vein-type deposit as well as restricted to fault gouge zone directed NE-SW along with the lower boundary of Bagcagiz Formation and Duztarla granitic intrusion in the study area. Furthermore, This granite is traversed by numerous mineralized sheeted vein systems, which locally transgress into the surrounding metasediments. Therefore, this mineralization closely associated with intense hydrothermal alteration within brecciation, and quartz stockwork veining. The ore mineral assemblage includes chalcopyrite, galena, and some sphalerite with covellite and goethite formed during three phases of mineralization (pre-ore, main ore, and supergene) within an abundant gangue of quartz and calcite. The geologic and field relationships, petrographic and mineralogical studies reveal two alteration zones occurred with the Cu-Pb (-Zn) mineralization along the contact between the Bagcagiz Formation and Duztarla granite; pervasive phyllic alteration (quartz, sericite, and pyrite), and selective propylitic alteration (albite, calcite, epidote, sericite and/or chlorite). This work, by using the mass balance calculations, reports the mass/volume changes (gain and loss) of the chemical components of the hydrothermal alteration zones associated with Halilar Cu-Pb (-Zn) mineralization at Balikesir area (Turkey). It revealed that the phyllic alteration has enrichments of Si, Fe, K, Ba, and LOI with depletion of Mg, Ca, and Na reflect sericitization of alkali feldspar and destruction of ferromagnesian minerals. This zone has high Cu and Pb with Zn contents represents the main mineralized zone. On the other hand, the propylitic zone is characterized by addition of Ca, Na, K, Ti, P, and Ba with LOI and Cu (lower content) referring to the replacement of plagioclase and ferromagnesian minerals by albite, calcite, epidote, and sericite

  7. Development of thermally-sprayed Al-Cu-Fe-Cr quasicrystal coating

    NASA Astrophysics Data System (ADS)

    Setiamarga, Budi Hartono

    A class of quasicrystal alloys that has drawn a lot of attention is aluminum based quasicrystal alloys because they are hard, light weight, wear resistant, and have a non-stick property. Quasicrystalline materials in the form of coatings produced by thermal spray techniques have been developed to utilize their properties. The goal of this research has been to develop the knowledge necessary to produce good thermally sprayed Al-Cu-Fe-Cr quasicrystal coatings. Boron has been found to improve ductility, reduce porosity and increase hardness when added to other thermally sprayed powders, therefore, as part of this research, quasicrystal coatings containing boron will also be produced and evaluated. The first phase of this research utilized a fine QC-1 quasicrystal powder of Alsb{70.5}Cusb{10.1}Fesb{8.8}Crsb{10.6}. The addition of boron was done using mechanical mixing. The addition of boron in fused QC-1 powders shows that boron can reduce porosity and increase hardness. Due to difficulties with thermal spraying the fine QC-1 powder and evaporation of aluminum, a coarser QC-2 powder with similar composition to QC-1 powder was produced. QC-2 and boron modified QC-2 coatings have similar hardness and levels of porosity, around 11%, although boron modified QC-2 coatings proved to be more wear resistant than plain QC-2 coatings. Both coatings demonstrated a weak coating-substrate interface bonding. Laser heat treatment was used to reduce the porosity and strengthen the coating-substrate interface bonding. Laser treatment of QC-2 quasicrystal coatings resulted in harder and lower porosity coatings with better coating-substrate interface bonding. Unfortunately, hot-cracks in the coatings were also produced. Hot-cracks are undesireable because they decrease the coating's corrosion resistance. Thermal spraying using High Velocity Oxygen Fuel (HVOF) technique was done. It was used on QC-2 powder and QC-3 powder of composition Alsb{68.6}Cusb{10.8}Fesb{8.9}Crsb{9.7}Bsb{2.0}. This

  8. A century long sedimentary record of anthropogenic lead (Pb), Pb isotopes and other trace metals in Singapore.

    PubMed

    Chen, Mengli; Boyle, Edward A; Switzer, Adam D; Gouramanis, Chris

    2016-06-01

    Reconstructing the history of metal deposition in Singapore lake sediments contributes to understanding the anthropogenic and natural metal deposition in the data-sparse Southeast Asia. To this end, we present a sedimentary record of Pb, Pb isotopes and eleven other metals (Ag, As, Ba, Cd, Co, Cr, Cu, Ni, Tl, U and Zn) from a well-dated sediment core collected near the depocenter of MacRitchie Reservoir in central Singapore. Before the 1900s, the sedimentary Pb concentration was less than 2 mg/kg for both soil and sediment, with a corresponding (206)Pb/(207)Pb of ∼1.20. The Pb concentration increased to 55 mg/kg in the 1990s, and correspondingly the (206)Pb/(207)Pb decreased to less than 1.14. The (206)Pb/(207)Pb in the core top sediment is concordant with the (206)Pb/(207)Pb signal of aerosols in Singapore and other Southeast Asian cities, suggesting that Pb in the reservoir sediment was mainly from atmospheric deposition. Using the Pb concentration in the topmost layer of sediment, the estimated atmospheric Pb flux in Singapore today is ∼1.6 × 10(-2) g/m(2) yr. The concentrations of eleven other metals preserved in the sediment were also determined. A principal component analysis showed that most of the metals exhibit an increasing trend towards 1990s with a local concentration peak in the mid-20(th) century.

  9. A century long sedimentary record of anthropogenic lead (Pb), Pb isotopes and other trace metals in Singapore.

    PubMed

    Chen, Mengli; Boyle, Edward A; Switzer, Adam D; Gouramanis, Chris

    2016-06-01

    Reconstructing the history of metal deposition in Singapore lake sediments contributes to understanding the anthropogenic and natural metal deposition in the data-sparse Southeast Asia. To this end, we present a sedimentary record of Pb, Pb isotopes and eleven other metals (Ag, As, Ba, Cd, Co, Cr, Cu, Ni, Tl, U and Zn) from a well-dated sediment core collected near the depocenter of MacRitchie Reservoir in central Singapore. Before the 1900s, the sedimentary Pb concentration was less than 2 mg/kg for both soil and sediment, with a corresponding (206)Pb/(207)Pb of ∼1.20. The Pb concentration increased to 55 mg/kg in the 1990s, and correspondingly the (206)Pb/(207)Pb decreased to less than 1.14. The (206)Pb/(207)Pb in the core top sediment is concordant with the (206)Pb/(207)Pb signal of aerosols in Singapore and other Southeast Asian cities, suggesting that Pb in the reservoir sediment was mainly from atmospheric deposition. Using the Pb concentration in the topmost layer of sediment, the estimated atmospheric Pb flux in Singapore today is ∼1.6 × 10(-2) g/m(2) yr. The concentrations of eleven other metals preserved in the sediment were also determined. A principal component analysis showed that most of the metals exhibit an increasing trend towards 1990s with a local concentration peak in the mid-20(th) century. PMID:26967352

  10. Infrared study of the vibrational behavior of CrO 42- guest ions matrix-isolated in metal (II) sulfates (Me=Ca, Sr, Ba, Pb)

    NASA Astrophysics Data System (ADS)

    Stoilova, D.; Georgiev, M.; Marinova, D.

    2005-03-01

    Infrared spectra of matrix-isolated CrO 42- guest ions in host sulfate matrices - CaSO 4·2H 2O, SrSO 4, BaSO 4 and PbSO 4 are reported and discussed with respect to the Cr-O stretching and O-Cr-O bending modes. An adequate measure for the CrO 42- guest ion distortion is the site group splitting Δ νas and Δ νmax (the difference between the highest and the lowest wavenumbered components of the stretching and bending modes). When the smaller SO 42- ions are replaced by the larger CrO 42- ions the mean frequencies of the asymmetric stretching and bending modes ( ν and ν) as well as the frequencies of ν1 of the CrO 42- guest ions are shifted to higher wavenumbers as compared to those in the respective neat chromates due to the larger repulsion potential at the host lattice sites (smaller values of the unit-cell volumes of the neat sulfates than those of the neat chromates). The CrO 42- guest ions exhibit three bands corresponding to the ν3 modes as deduced from the site group analysis ( C2 site symmetry in CaSO 4·2H 2O and Cs site symmetry in SrSO 4, BaSO 4 and PbSO 4). However, the bending modes ν4 and ν2 of the CrO 42- guest ions in SrSO 4, BaSO 4 and PbSO 4 show an effectively higher local symmetry than the 'rigorous' crystallographic one (two bands for ν4 and one band for ν2 instead of a triplet and a doublet expected, respectively). Such different apparent site symmetries observed in various spectral regions may be attributed to the different influence of energetic and geometrical distortions of the polyatomic entities at particular site on various modes.

  11. Determination of Cu, Zn and Pb in scalp hair from a selected population in Penang using the XRF method

    NASA Astrophysics Data System (ADS)

    Aldroobi, Khalid Saleh Ali; Shukri, A.; Munem, Eid Mahmoud Eid Abdel; Bauk, Sabar; Marashdeh, Mohammad Wasef; Amin, Yahye Abbas

    2012-06-01

    The state of Penang encompasses an industrial region with a potential for the existence of a variety of industrial pollutants. Such pollutants would certainly have a possible impact effect on the environment and the people. The determination of trace elements levels in hair which is well known as a method for environmental exposure monitoring, evaluation of heavy metal poisoning, assessment of nutrient levels and disease diagnoses, is chosen here as the method to determine the possible exposure to possible pollutants in the form of unwanted trace elements. The natural levels of trace elements in hair are hence monitored first as reference values for the assessment of the possible human contamination levels. In this work the concentrations of Cu, Zn and Pb in human scalp hair of 50 residents of Penang were determined using XRF. The results of this study were compared with the results obtained in other cities where such measurements have also been carried out.

  12. Impact of the earthworm Lumbricus terrestris (L.) on As, Cu, Pb and Zn mobility and speciation in contaminated soils.

    PubMed

    Sizmur, Tom; Palumbo-Roe, Barbara; Watts, Michael J; Hodson, Mark E

    2011-03-01

    To assess the risks that contaminated soils pose to the environment properly a greater understanding of how soil biota influence the mobility of metal(loid)s in soils is required. Lumbricus terrestris L. were incubated in three soils contaminated with As, Cu, Pb and Zn. The concentration and speciation of metal(loid)s in pore waters and the mobility and partitioning in casts were compared with earthworm-free soil. Generally the concentrations of water extractable metal(loid)s in earthworm casts were greater than in earthworm-free soil. The impact of the earthworms on concentration and speciation in pore waters was soil and metal specific and could be explained either by earthworm induced changes in soil pH or soluble organic carbon. The mobilisation of metal(loid)s in the environment by earthworm activity may allow for leaching or uptake into biota. PMID:21185630

  13. Linking heavy metal bioavailability (Cd, Cu, Zn and Pb) in Scots pine needles to soil properties in reclaimed mine areas.

    PubMed

    Pietrzykowski, Marcin; Socha, Jarosław; van Doorn, Natalie S

    2014-02-01

    This work deals with bioaccumulation of Zn, Pb, Cu and Cd in foliage of Scots pine, grown on mine soils. Regression models were used to describe relationships between pine elements bioavailability and biological (dehydrogenase activity) and physico-chemical properties of mine soils developed at different parental rocks. Concentration of trace elements in post-mine ecosystems did not differ from data for Scots pine on natural sites. We conclude that, in this part of Europe in afforested areas affected by hard coal, sand, lignite and sulphur mining, there is no risk of trace element concentrations in mine soils. An exception was in the case of Cd in soils on sand quarry and hard coal spoil heap located in the Upper Silesia region, which was more due to industrial pressure and pollutant deposition than the original Cd concentration in parental rocks.

  14. Multiple origin of the `Kniest feeder zone' of the stratiform Zn-Pb-Cu ore deposit of Rammelsberg, Germany

    NASA Astrophysics Data System (ADS)

    Muchez, Philippe; Stassen, Peter

    2006-05-01

    The Zn-Pb-Cu ore deposit of Rammelsberg is characterized by a complex fluid flow history. The main phase of ore deposition occurred during the Middle Devonian in the Rhenohercynian basin. The Kniest zone underlying the stratiform ore is interpreted as the feeder zone, along which hydrothermal fluids migrated upward and were expelled on the sea floor. Mineralizing brines possibly had a minimum temperature of 130°C, and salinity ranged between 4.9 and 10.3 eq. wt.% NaCl. The ore and its host rock became folded during the Variscan orogeny, and low salinity fluids (1.0 to 2.3 eq. wt.% NaCl) were mobilized during this tectonic period. Remobilization of the ore took place during the Mesozoic by a high salinity (17.3 to 20.2 eq. wt.% NaCl) H2O-NaCl-CaCl2 fluid.

  15. Experimental and Numerical Investigation on the Phase Separation Affected by Cooling Rates and Marangoni Convection in Cu-Cr Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Fei; von Klinski-Wetzel, Katharina; Mukherjee, Rajdip; Nestler, Britta; Heilmaier, Martin

    2015-04-01

    In this work, we study the microstructures upon rapid solidification from the melt which occurs in Cu-Cr electrical contacts after switching operations. As the local cooling rates are difficult to be determined experimentally, we numerically compute the mean radius of Cr-particles from phase separation as a function of the cooling rate by utilizing a convective Cahn-Hilliard model. Based on the computationally derived correlation and on the metallographically observed microstructure, we are able to extract back the local cooling rates during heat treatment. We further examine the effect of Marangoni convection on the phase separation structure in a particularly composed simulation study. We obtain the cooling rate for a given particle size affected by the solutal Marangoni convection.

  16. Multi-scale analysis of the occurrence of Pb, Cr and Mn in the NIST standards: Urban dust (SRM 1649a) and indoor dust (SRM 2584)

    NASA Astrophysics Data System (ADS)

    Jiang, Mingyu; Nakamatsu, Yuki; Jensen, Keld A.; Utsunomiya, Satoshi

    2014-01-01

    Adverse health effects of ambient particulate matters are closely related to the speciation of the constituting organic matters and toxic metals. To determine multi-parameters of the metal speciation in urban and indoor dusts, we have performed systematic bulk- to nano-scale (“multi-scale”) analysis on the speciation of Pb, Mn, and Cr in two National Institute of Standards and Technology (NIST) standard reference materials (SRMs): urban dust (SRM 1649a) and indoor dust (SRM 2584), utilizing X-ray absorption near-edge structure, powder X-ray diffraction analysis, electron microprobe analysis, scanning electron microscopy, and transmission electron microscopy. Major crystalline phases are quartz, gypsum, kaolinite, and muscovite in SRM 1649a, while quartz, gypsum, calcite, and possibly muscovite (or chabazite) in SRM 2584. A number of Pb sulfate nanoparticles (50-200 nm) occur in SRM 1649a, whereas micron-sized Pb carbonate is present containing various concentrations of Zn and Ti in the complex texture in SRM 2584. Relatively soluble Mn(II) sulfate is the bulk-averaged Mn speciation in SRM 1649a, although discrete Mn sulfate particles are not characterized by individual particle analysis, implying the diluted Mn distribution within other sulfate. In SRM 2584, Mn speciation includes a mixture of oxides and carbonates, and trace Mn in chromite. Chromite (FeCr2O4) is the major Cr speciation in SRM1694a, while unidentified Cr(III) phases with minor chromite and Pb chromate are present in SRM 2584, among which the Pb chromate is composed of Cr(VI). A significant number of the metal-bearing particles are distributed to the submicron-size fraction in the urban dust, SRM 1649a, suggesting that these metal nanoparticles can potentially penetrate into the deep respiratory system. This study demonstrates that multi-scale analysis combining nano and bulk analytical techniques is a powerful approach to investigate the multi-parameters of metal-bearing nanoparticles in

  17. Antisite Defects in Layered Multiferroic CuCr0.9In0.1P2S6

    DOE PAGES

    He, Qian; Belianinov, Alex; Dziaugys, Andrius; Maksymovych, Petro; Vysochanskii, Yulian; Kalinin, Sergei V.; Borisevich, Albina Y.

    2015-10-06

    The CuCr1-xInxP2S6 system represents a large family of metal chalcogenophosphates that are unique and promising candidates for 2D materials with functionalities such as ferroelectricity. We carried out detailed microstructural and chemical characterization of these compounds using aberration-corrected STEM, in order to understand the origin of these different ordering phenomena. Quantitative STEM-HAADF imaging and analysis identified the stacking order of an 8-layer thin flake, which leads to the identification of anti-site In3+(Cu+) doping. We believe that these findings will pave the way towards understanding the ferroic coupling phenomena in van der Waals lamellar compounds, as well as the potential applications inmore » 2-D electronics.« less

  18. Solubilities of Al, Pb, Cu, and Zn in rain sampled in the marine environment over the North Atlantic Ocean and Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Lim, B.; Jickells, T. D.; Colin, J. L.; Losno, R.

    1994-09-01

    Chemical processes controlling the dissolved and particulate phase distribution of crustal (Al) and noncrustal metals (Pb, Cu, and Zn) appear to differ in marine precipitation sampled over the North Atlantic Ocean and Mediterranean Sea. Dissolved Al appears to be in equilibrium with a trivalent Al salt at rainwater pH < 5.1, whereas dissolved Pb, Cu, and Zn concentrations are probably controlled by adsorption/desorption processes in which rainwater particulates provide surface-active sorption sites. In both processes, rainwater pH is a critical parameter. Results suggest that in marine precipitation with pH < 5, > 80% of the total Pb, Cu, and Zn concentrations are delivered to the surface oceans in the dissolved form. For a corresponding pH range, Al solubility varies from <5% to >60%. Over the wider observed pH range (of 3.5 to 6.9), the solubilities of Pb, Cu, Zn, and Al are highly variable. The use of mean trace metal solubilities for the assessment of dissolved atmospheric trace metal wet deposition fluxes, and their effects on surface ocean biogeochemistry should be constrained by taking into account rainwater pH in future estimates in global models.

  19. CORRELATION OF THE PARTITIONING OF DISSOLVED ORGANIC MATTER FRACTIONS WITH THE DESORPTION OF CD, CU, NI, PB AND ZN FROM 18 DUTCH SOILS

    EPA Science Inventory

    Eighteen Dutch soils were extracted in aqueous solutions at varying pH. Extracts were analyzed for Cd, Cu, Ni, Pb and Zn by ICP-AES. Extract dissolved organic carbon (DOC) was also concentrated onto a macroreticular resin and fractionation into three operationally defined fract...

  20. Silurian U-Pb zircon age (LA-ICP-MS) of granitoids from the Zelenodol Cu-porphyry deposit, Southern Urals

    NASA Astrophysics Data System (ADS)

    Grabezhev, A. I.; Ronkin, Yu. L.; Puchkov, V. N.; Shardakova, G. Yu.; Azovskova, O. B.; Gerdes, A.

    2016-01-01

    The Zelenodol porphyry Cu-(Au, Mo) deposit located about 65 km SSW of the city of Chelyabinsk is confined to the western part of the West Uralian Volcanogenic Megazone. The concordant U-Pb age of zircons from ore-bearing island-arc diorite porphyryis 418.3 Â ± 2.9 Ma.

  1. Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition

    SciTech Connect

    An, Zhinan; Jia, Haoling; Wu, Yueying; Rack, Philip D.; Patchen, Allan D.; Liu, Yuzi; Ren, Yang; Li, Nan; Liaw, Peter K.

    2015-05-04

    The concept of high configurational entropy requires that the high-entropy alloys (HEAs) yield single-phase solid solutions. However, phase separations are quite common in bulk HEAs. A five-element alloy, CrCoCuFeNi, was deposited via radio frequency magnetron sputtering and confirmed to be a single-phase solid solution through the high-energy synchrotron X-ray diffraction, energy-dispersive spectroscopy, wavelength-dispersive spectroscopy, and transmission electron microscopy. The formation of the solid-solution phase is presumed to be due to the high cooling rate of the sputter-deposition process.

  2. Magnetism and superconductivity in MxFe1+yTe1-zSez (M = Cr, Mn, Co, Ni, Cu, and Zn) single crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Z. T.; Yang, Z. R.; Li, L.; Zhang, C. J.; Pi, L.; Tan, S.; Zhang, Y. H.

    2011-04-01

    High-quality single crystals with nominal composition M0.05Fe0.95Te0.8Se0.2 (M = Cr, Mn, Co, Ni, Cu, and Zn) have been grown, through which the doping effect on magnetism and superconductivity is studied. Elementary analysis reveals that Cu, Co, and Ni, with smaller ionic radii for valence state 2+, can substitute effectively for Fe with doping levels near 5%. In contrast, the solid solution of Cr, Mn, and Zn in the host system is low. Magnetic and electronic investigations show that the substitution of Co, Ni, or Cu for Fe leads to the formation of spin-glass state and suppression of superconductivity. The superconductivity is partly suppressed by Co doping, while completely destroyed by Ni and Cu doping. Compared with Cu- and Ni-doped samples, the Co-doped sample has the smallest lattice constant, indicating that the superconductivity might be also modulated by the changes of microstructure.

  3. Interaction between M/CuO (M = Ti, V, Cr, Mn) as studied by X-ray Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chourasia, Anil; Stahl, Jacob

    2014-03-01

    The technique of x-ray photoelectron spectroscopy has been utilized to investigate the chemical reactivity between metal M (where M is Ti, V, Cr, or Mn) and copper oxide at the M/CuO interface. Thin films of copper (about 20 nm) were deposited on silicon substrates by the e-beam method. Such samples were oxidized in an oxygen environment in a quartz tube furnace at 400°C. The formation of CuO was checked by the XPS spectral data. Thin films of the metal M were then deposited on these CuO sample. The M 2p, oxygen 1s and copper 2p regions were investigated by XPS. The magnesium anode (energy = 1253.6 eV) has been used for this purpose. The metal 2p peaks shift to the high binding energy side while the satellites associated with the copper core level peaks disappear. The shifting of the metal 2p peaks is associated with the formation of the oxide. The disappearance of the satellites in the copper 2p region is associated with the reduction of copper oxide to elemental copper. The spectral data show chemical reactivity at the M/CuO interface. Supported by Organized Reseach, TAMU-Commerce.

  4. Factors affecting distribution and mobility of trace elements (Cu, Pb, Zn) in a perennial grapevine (Vitis vinifera L.) in the Champagne region of France.

    PubMed

    Chopin, E I B; Marin, B; Mkoungafoko, R; Rigaux, A; Hopgood, M J; Delannoy, E; Cancès, B; Laurain, M

    2008-12-01

    Soil and Vitis vinifera L. (coarse and fine roots, leaves, berries) concentration and geochemical partitioning of Cu, Pb and Zn were determined in a contaminated calcareous Champagne plot to assess their mobility and transfer. Accumulation ratios in roots remained low (0.1-0.4 for Cu and Zn, <0.05 for Pb). Differences between elements resulted from vegetation uptake strategy and soil partitioning. Copper, significantly associated with the oxidisable fraction (27.8%), and Zn with the acid soluble fraction (33.3%), could be mobilised by rhizosphere acidification and oxidisation, unlike Pb, essentially contained in the reducible fraction (72.4%). Roots should not be considered as a whole since the more reactive fine roots showed higher accumulation ratios than coarse ones. More sensitive response of fine roots, lack of correlation between chemical extraction results and vegetation concentrations, and very limited translocation to aerial parts showed that fine root concentrations should be used when assessing bioavailability.

  5. Flame atomic absorption spectrometric determination of Pb, Cd, and Cu in Pinus nigra L. and Eriobotrya japonica leaves used as biomonitors in environmental pollution.

    PubMed

    Kaya, Gokce; Ozcan, Cemile; Yaman, Mehmet

    2010-02-01

    The assessment of trace metal pollution in Gaziantep city-Turkey has been studied using plant leaves of Pinus nigra L. and Eriobotrya japonica as biomonitor. The concentrations up to 3,056 mg Pb kg(-1) in the needles of Pinus nigra L., and 367 ng Cd g(-1) in the leaves of Eriobotrya japonica were determined. The observed Cu concentrations were in range of 1.6-7.1 mg kg(-1). The Pb, Cd, and Cu levels in soils were determined to be in the range of 17-602, 0.142-0.656, and 12-38 mg kg(-1), respectively. It was concluded that Pinus nigra L. can be considered as both biomonitor of atmospheric Pb pollution and hyperaccumulator plant.

  6. Synthesis of high-T(c) superconducting Bi-Pb-Sr-Ca-Cu-O ceramics prepared by an ultrastructure processing via the oxalate route

    NASA Astrophysics Data System (ADS)

    Chen, F. H.; Tseng, T. Y.; Koo, H. S.

    1990-07-01

    Fourier-transform IR (FTIR) spectroscopy has been used to monitor sol-gel reaction mechanisms involved in the generation of the high-T(c) superconductor in the Pb-doped Bi-Sr-Ca-Cu-O system during the 840 C pyrolyzation and oxidation of an oxalate precursor. XRD and FTIR were then used to analyze the specimens after firing, in order to identify their various phases. The results obtained imply a Bi2Sr2CaCu2O(8+delta), or phase 2212, formation mechanism via the Bi2Sr2CuO(6+delta)-Ca2CuO3-CuO reaction at 800 C.

  7. Efficient perovskite solar cells based on low-temperature solution-processed (CH3NH3)PbI3 perovskite/CuInS2 planar heterojunctions

    PubMed Central

    2014-01-01

    In this work, the solution-processed CH3NH3PbI3 perovskite/copper indium disulfide (CuInS2) planar heterojunction solar cells with Al2O3 as a scaffold were fabricated at a temperature as low as 250°C for the first time, in which the indium tin oxide (ITO)-coated glass instead of the fluorine-doped tin oxide (FTO)-coated glass was used as the light-incidence electrode and the solution-processed CuInS2 layer was prepared to replace the commonly used TiO2 layer in previously reported perovskite-based solar cells. The influence of the thickness of the as-prepared CuInS2 film on the performance of the ITO/CuInS2(n)/Al2O3/(CH3NH3)PbI3/Ag cells was investigated. The ITO/CuInS2(2)/Al2O3/(CH3NH3)PbI3/Ag cell showed the best performance and achieved power conversion efficiency up to 5.30%. PMID:25278818

  8. Efficient perovskite solar cells based on low-temperature solution-processed (CH3NH3)PbI3 perovskite/CuInS2 planar heterojunctions.

    PubMed

    Chen, Chong; Li, Chunxi; Li, Fumin; Wu, Fan; Tan, Furui; Zhai, Yong; Zhang, Weifeng

    2014-01-01

    In this work, the solution-processed CH3NH3PbI3 perovskite/copper indium disulfide (CuInS2) planar heterojunction solar cells with Al2O3 as a scaffold were fabricated at a temperature as low as 250°C for the first time, in which the indium tin oxide (ITO)-coated glass instead of the fluorine-doped tin oxide (FTO)-coated glass was used as the light-incidence electrode and the solution-processed CuInS2 layer was prepared to replace the commonly used TiO2 layer in previously reported perovskite-based solar cells. The influence of the thickness of the as-prepared CuInS2 film on the performance of the ITO/CuInS2(n)/Al2O3/(CH3NH3)PbI3/Ag cells was investigated. The ITO/CuInS2(2)/Al2O3/(CH3NH3)PbI3/Ag cell showed the best performance and achieved power conversion efficiency up to 5.30%. PMID:25278818

  9. Efficient perovskite solar cells based on low-temperature solution-processed (CH3NH3)PbI3 perovskite/CuInS2 planar heterojunctions

    NASA Astrophysics Data System (ADS)

    Chen, Chong; Li, Chunxi; Li, Fumin; Wu, Fan; Tan, Furui; Zhai, Yong; Zhang, Weifeng

    2014-09-01

    In this work, the solution-processed CH3NH3PbI3 perovskite/copper indium disulfide (CuInS2) planar heterojunction solar cells with Al2O3 as a scaffold were fabricated at a temperature as low as 250°C for the first time, in which the indium tin oxide (ITO)-coated glass instead of the fluorine-doped tin oxide (FTO)-coated glass was used as the light-incidence electrode and the solution-processed CuInS2 layer was prepared to replace the commonly used TiO2 layer in previously reported perovskite-based solar cells. The influence of the thickness of the as-prepared CuInS2 film on the performance of the ITO/CuInS2( n)/Al2O3/(CH3NH3)PbI3/Ag cells was investigated. The ITO/CuInS2(2)/Al2O3/(CH3NH3)PbI3/Ag cell showed the best performance and achieved power conversion efficiency up to 5.30%.

  10. Pb-Sr-Nd isotopes in surficial materials at the Pebble Porphyry Cu-Au-Mo Deposit, Southwestern Alaska: can the mineralizing fingerprint be detected through cover?

    USGS Publications Warehouse

    Ayuso, Robert A.; Kelley, Karen D.; Eppinger, Robert G.; Forni, Francesca

    2013-01-01

    The Cretaceous Pebble porphyry Cu-Au-Mo deposit is covered by tundra and glacigenic sediments. Pb-Sr-Nd measurements were done on sediments and soils to establish baseline conditions prior to the onset of mining operations and contribute to the development of exploration methods for concealed base metal deposits of this type. Pebble rocks have a moderate range for 206Pb/204Pb = 18.574 to 18.874, 207Pb/204Pb = 15.484 to 15.526, and 208,Pb/204Pb = 38.053 to 38.266. Mineralized granodiorite shows a modest spread in 87Sr/86Sr (0.704354–0.707621) and 143Nd/144Nd (0.512639–0.512750). Age-corrected (89 Ma) values for the granodiorite yield relatively unradiogenic Pb (e.g., 207Pb/204Pb 87Sr/86Sr, and positive values of ɛNd (1.00–4.52) that attest to a major contribution of mantle-derived source rocks. Pond sediments and soils have similar Pb isotope signatures and 87Sr/86Sr and 143Nd/144Nd values that resemble the mineralized granodiorites. Glacial events have obscured the recognition of isotope signatures of mineralized rocks in the sediments and soils. Baseline radiogenic isotope compositions, prior to the onset of mining operations, reflect natural erosion, transport and deposition of heterogeneous till sheets that included debris from barren rocks, mineralized granodiorite and sulfides from the Pebble deposit, and other country rocks that pre- and postdate the mineralization events. Isotopic variations suggest that natural weathering of the deposit is generally reflected in these surficial materials. The isotope data provide geochemical constraints to glimpse through the extensive cover and together with other geochemical observations provide a vector to concealed mineralized rocks genetically linked with the Pebble deposit.

  11. Statistical Analysis of Main and Interaction Effects on Cu(II) and Cr(VI) Decontamination by Nitrogen–Doped Magnetic Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Hu, Xinjiang; Wang, Hui; Liu, Yunguo

    2016-10-01

    A nitrogen–doped magnetic graphene oxide (NMGO) was synthesized and applied as an adsorbent to remove Cu(II) and Cr(VI) ions from aqueous solutions. The individual and combined effects of various factors (A: pH, B: temperature, C: initial concentration of metal ions, D: CaCl2, and E: humic acid [HA]) on the adsorption were analyzed by a 25‑1 fractional factorial design (FFD). The results from this study indicated that the NMGO had higher adsorption capacities for Cu(II) ions than for Cr(VI) ions under most conditions, and the five selected variables affected the two adsorption processes to different extents. A, AC, and C were the very important factors and interactions for Cu(II) adsorption. For Cr(VI) adsorption, A, B, C, AB, and BC were found to be very important influencing variables. The solution pH (A) was the most important influencing factor for removal of both the ions. The main effects of A–E on the removal of Cu(II) were positive. For Cr(VI) adsorption, the main effects of A and D were negative, while B, C, and E were observed to have positive effects. The maximum adsorption capacities for Cu(II) and Cr(VI) ions over NMGO were 146.365 and 72.978 mg/g, respectively, under optimal process conditions.

  12. Statistical Analysis of Main and Interaction Effects on Cu(II) and Cr(VI) Decontamination by Nitrogen–Doped Magnetic Graphene Oxide

    PubMed Central

    Hu, Xinjiang; Wang, Hui; Liu, Yunguo

    2016-01-01

    A nitrogen–doped magnetic graphene oxide (NMGO) was synthesized and applied as an adsorbent to remove Cu(II) and Cr(VI) ions from aqueous solutions. The individual and combined effects of various factors (A: pH, B: temperature, C: initial concentration of metal ions, D: CaCl2, and E: humic acid [HA]) on the adsorption were analyzed by a 25−1 fractional factorial design (FFD). The results from this study indicated that the NMGO had higher adsorption capacities for Cu(II) ions than for Cr(VI) ions under most conditions, and the five selected variables affected the two adsorption processes to different extents. A, AC, and C were the very important factors and interactions for Cu(II) adsorption. For Cr(VI) adsorption, A, B, C, AB, and BC were found to be very important influencing variables. The solution pH (A) was the most important influencing factor for removal of both the ions. The main effects of A–E on the removal of Cu(II) were positive. For Cr(VI) adsorption, the main effects of A and D were negative, while B, C, and E were observed to have positive effects. The maximum adsorption capacities for Cu(II) and Cr(VI) ions over NMGO were 146.365 and 72.978 mg/g, respectively, under optimal process conditions. PMID:27694891

  13. CuCr2O4 Spinel Ceramic Pigments Synthesized by Sol-Gel Self-Combustion Method for Solar Absorber Coatings

    NASA Astrophysics Data System (ADS)

    Ma, Pengjun; Geng, Qingfen; Gao, Xianghu; Yang, Shengrong; Liu, Gang

    2016-07-01

    A series of CuCr2O4 spinel ceramic pigments have been successfully synthesized via a facile and cost-effective sol-gel self-combustion method. The reaction mechanism was systematically studied using the corresponding characterization technologies. The results suggested that CuCr2O4 spinel ceramic pigments could be obtained at annealing temperature of 600 °C for 1 h, and the size, morphology, and crystallinity of CuCr2O4 spinel were greatly influenced by the annealing temperature. The as-burnt powder and CuCr2O4 spinel ceramic pigment were then employed to fabricate thickness sensitive spectrally selective (TSSS) paint coatings by a convenient spray-coating technique. The results revealed that spectral selectivity of TSSS paint coatings based on CuCr2O4 spinel ceramic pigments was much better than that of paint coatings based on the as-burnt powders. Furthermore, the effect of surface features of TSSS paint coatings on its optical property and hydrophobicity was investigated in detailed.

  14. Hydrogen interstitial defects in acceptor-type CuO-doped PbTiO3—Uptake and dissolution of water vapor and formation of ( CuTi ″ - (OH ) O • ) ' defect complexes

    NASA Astrophysics Data System (ADS)

    Jakes, Peter; Kungl, Hans; Schierholz, Roland; Granwehr, Josef; Eichel, Rüdiger-A.

    2016-09-01

    The defect structure of CuO-doped PbTiO3 has been analyzed using the Hyperfine Sublevel Correlation Experiment to identify hydrogen interstitials. The formation of ( CuTi ″ - (OH ) O • ) ' defect complexes has been observed, which exist in addition to the ( CuTi ″ - VO • • ) × complexes. On this basis, modified reorientation characteristics are proposed due to a change in hopping mechanism from an oxygen-vacancy mediated migration mechanism to a proton hopping process. Furthermore, mobile hydrogen interstitials are generated that increase conductivity in terms of a "Grotthuss"-type charge-transport mechanism.

  15. Assessment of waste oyster shells and coal mine drainage sludge for the stabilization of As-, Pb-, and Cu-contaminated soil.

    PubMed

    Moon, Deok Hyun; Cheong, Kyung Hoon; Koutsospyros, Agamemnon; Chang, Yoon-Young; Hyun, Seunghun; Ok, Yong Sik; Park, Jeong-Hun

    2016-02-01

    A novel treatment mix was designed for the simultaneous immobilization of As, Cu, and Pb in contaminated soils using natural (waste oyster shells (WOS)) and industrial (coal mine drainage sludge (CMDS)) waste materials. The treatments were conducted using the standard U.S. sieve size no. 20 (0.85 mm) calcined oyster shells (COS) and CMDS materials with a curing time of 1 and 28 days. The As immobilization treatments were evaluated using the 1-N HCl extraction fluid, whereas the Pb and Cu immobilization treatments were evaluated using the 0.1-N HCl extraction fluid based on the Korean leaching standards. The treatment results showed that the immobilization of As, Cu, and Pb was best achieved using a combination mix of 10 wt% COS and 10 wt% CMDS. This treatment mix was highly effective leading to superior leachability reductions for all three target contaminants (>93 % for As and >99 % for Cu and Pb) for a curing period of 28 days. The X-ray absorption near-edge structure (XANES) results showed that As was present in the form of As(V) in the control sample and that no changes in As speciation were observed following the COS-CMDS treatments. The scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX) sample treated with 10 wt% COS and 10 wt% CMDS indicated that As immobilization may be associated with the formation of Ca-As and Fe-As precipitates while Pb and Cu immobilization was most probably linked to calcium silicate hydrates (CSHs) and calcium aluminum hydrates (CAHs). PMID:26411449

  16. Assessment of waste oyster shells and coal mine drainage sludge for the stabilization of As-, Pb-, and Cu-contaminated soil.

    PubMed

    Moon, Deok Hyun; Cheong, Kyung Hoon; Koutsospyros, Agamemnon; Chang, Yoon-Young; Hyun, Seunghun; Ok, Yong Sik; Park, Jeong-Hun

    2016-02-01

    A novel treatment mix was designed for the simultaneous immobilization of As, Cu, and Pb in contaminated soils using natural (waste oyster shells (WOS)) and industrial (coal mine drainage sludge (CMDS)) waste materials. The treatments were conducted using the standard U.S. sieve size no. 20 (0.85 mm) calcined oyster shells (COS) and CMDS materials with a curing time of 1 and 28 days. The As immobilization treatments were evaluated using the 1-N HCl extraction fluid, whereas the Pb and Cu immobilization treatments were evaluated using the 0.1-N HCl extraction fluid based on the Korean leaching standards. The treatment results showed that the immobilization of As, Cu, and Pb was best achieved using a combination mix of 10 wt% COS and 10 wt% CMDS. This treatment mix was highly effective leading to superior leachability reductions for all three target contaminants (>93 % for As and >99 % for Cu and Pb) for a curing period of 28 days. The X-ray absorption near-edge structure (XANES) results showed that As was present in the form of As(V) in the control sample and that no changes in As speciation were observed following the COS-CMDS treatments. The scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX) sample treated with 10 wt% COS and 10 wt% CMDS indicated that As immobilization may be associated with the formation of Ca-As and Fe-As precipitates while Pb and Cu immobilization was most probably linked to calcium silicate hydrates (CSHs) and calcium aluminum hydrates (CAHs).

  17. Magnetic properties of CuFe{sub 1−x}Cr{sub x}O{sub 2} nanoparticles surrounded by amorphous SiO{sub 2}

    SciTech Connect

    Mori, K.; Hachisu, M.; Yamazaki, T.; Ichiyanagi, Y.

    2015-05-07

    CuFe{sub 1−x}Cr{sub x}O{sub 2} (0 ≤ x ≤ 1.0) nanoparticles surrounded by amorphous SiO{sub 2} with an average diameter of 30–50 nm were synthesized using a wet chemical method. The annealing temperatures were controlled to yield various sizes of single-phase CuFe{sub 1−x}Cr{sub x}O{sub 2} nanoparticles. CuFeO{sub 2} bulk crystal is known to have a multiferroic delafossite structure with two Néel temperatures of 11 and 14 K; however, the transition temperature shifted higher as the Cr–ion doping level increased. In addition, the lattice constants decreased in accordance with increased Cr-ion doping, which was confirmed by X-ray diffraction measurements. The magnetization curves showed weak ferromagnetic behavior and no coercivity was observed. Hence, frustration in the triangular lattice of the delafossite structure can be released by Cr–ion doping and higher magnetization can be expected. A fine structure analysis through X-ray absorption fine structure measurements was also conducted. It was found that the structure of the Cu ion is similar to that of Cu{sub 2}O, and the c axis of the CuFe{sub 1−x}Cr{sub x}O{sub 2} should be shortened by the Cr–ion doping.

  18. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil.

    PubMed

    Yang, Xing; Liu, Jingjing; McGrouther, Kim; Huang, Huagang; Lu, Kouping; Guo, Xi; He, Lizhi; Lin, Xiaoming; Che, Lei; Ye, Zhengqian; Wang, Hailong

    2016-01-01

    Biochar is a carbon-rich solid material derived from the pyrolysis of agricultural and forest residual biomass. Previous studies have shown that biochar is suitable as an adsorbent for soil contaminants such as heavy metals and consequently reduces their bioavailability. However, the long-term effect of different biochars on metal extractability or soil health has not been assessed. Therefore, a 1-year incubation experiment was carried out to investigate the effect of biochar produced from bamboo and rice straw (at temperatures ≥500 °C) on the heavy metal (cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn)) extractability and enzyme activity (urease, catalase, and acid phosphatase) in a contaminated sandy loam paddy soil. Three rates (0, 1, and 5%) and two mesh sizes (<0.25 and <1 mm) of biochar applications were investigated. After incubation, the physicochemical properties, extractable heavy metals, available phosphorus, and enzyme activity of soil samples were analyzed. The results demonstrated that rice straw biochar significantly (P < 0.05) increased the pH, electrical conductivity, and cation exchange capacity of the soil, especially at the 5% application rate. Both bamboo and rice straw biochar significantly (P < 0.05) decreased the concentration of CaCl2-extractable heavy metals as biochar application rate increased. The heavy metal extractability was significantly (P < 0.01) correlated with pH, water-soluble organic carbon, and available phosphorus in soil. The 5% application rate of fine rice straw biochar resulted in the greatest reductions of extractable Cu and Zn, 97.3 and 62.2%, respectively. Both bamboo and rice straw biochar were more effective at decreasing extractable Cu and Pb than removing extractable Cd and Zn from the soil. Urease activity increased by 143 and 107% after the addition of 5% coarse and fine rice straw biochars, respectively. Both bamboo and rice straw biochars significantly (P < 0.05) increased catalase

  19. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil.

    PubMed

    Yang, Xing; Liu, Jingjing; McGrouther, Kim; Huang, Huagang; Lu, Kouping; Guo, Xi; He, Lizhi; Lin, Xiaoming; Che, Lei; Ye, Zhengqian; Wang, Hailong

    2016-01-01

    Biochar is a carbon-rich solid material derived from the pyrolysis of agricultural and forest residual biomass. Previous studies have shown that biochar is suitable as an adsorbent for soil contaminants such as heavy metals and consequently reduces their bioavailability. However, the long-term effect of different biochars on metal extractability or soil health has not been assessed. Therefore, a 1-year incubation experiment was carried out to investigate the effect of biochar produced from bamboo and rice straw (at temperatures ≥500 °C) on the heavy metal (cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn)) extractability and enzyme activity (urease, catalase, and acid phosphatase) in a contaminated sandy loam paddy soil. Three rates (0, 1, and 5%) and two mesh sizes (<0.25 and <1 mm) of biochar applications were investigated. After incubation, the physicochemical properties, extractable heavy metals, available phosphorus, and enzyme activity of soil samples were analyzed. The results demonstrated that rice straw biochar significantly (P < 0.05) increased the pH, electrical conductivity, and cation exchange capacity of the soil, especially at the 5% application rate. Both bamboo and rice straw biochar significantly (P < 0.05) decreased the concentration of CaCl2-extractable heavy metals as biochar application rate increased. The heavy metal extractability was significantly (P < 0.01) correlated with pH, water-soluble organic carbon, and available phosphorus in soil. The 5% application rate of fine rice straw biochar resulted in the greatest reductions of extractable Cu and Zn, 97.3 and 62.2%, respectively. Both bamboo and rice straw biochar were more effective at decreasing extractable Cu and Pb than removing extractable Cd and Zn from the soil. Urease activity increased by 143 and 107% after the addition of 5% coarse and fine rice straw biochars, respectively. Both bamboo and rice straw biochars significantly (P < 0.05) increased catalase

  20. Tribological Properties of AlCrCuFeNi2 High-Entropy Alloy in Different Conditions

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Ma, Shengguo; Gao, Michael C.; Zhang, Chuan; Zhang, Teng; Yang, Huijun; Wang, Zhihua; Qiao, Junwei

    2016-07-01

    In order to understand the environmental effect on the mechanical behavior of high-entropy alloys, the tribological properties of AlCrCuFeNi2 are studied systematically in dry, simulated rainwater, and deionized water conditions against the Si3N4 ceramic ball at a series of different normal loads. The present study shows that both the friction and wear rate in simulated rainwater are the lowest. The simulated rainwater plays a significant role in the tribological behavior with the effect of forming passive film, lubricating, cooling, cleaning, and corrosion. The wear mechanism in simulated rainwater is mainly adhesive wear accompanied by abrasive wear as well as corrosive wear. In contrast, those in dry condition and deionized water are abrasive wear, adhesive wear, and surface plastic deformation. Oxidation contributes to the wear behavior in dry condition but is prevented in liquid condition. In addition, the phase diagram of Al x CrCuFeNi2 is predicted using CALPHAD modeling, which is in good agreement with the literature report and the present study.

  1. Multiferroic CuCrO₂ under high pressure: In situ X-ray diffraction and Raman spectroscopic studies

    SciTech Connect

    Garg, Alka B. Mishra, A. K.; Pandey, K. K.; Sharma, Surinder M.

    2014-10-07

    The compression behavior of delafossite compound CuCrO₂ has been investigated by in situ x-ray diffraction (XRD) and Raman spectroscopic measurements up to 23.2 and 34 GPa, respectively. X-ray diffraction data show the stability of ambient rhombohedral structure up to ~23 GPa. Material shows large anisotropy in axial compression with c-axis compressibility, κ{sub c} = 1.26 × 10⁻³(1) GPa⁻¹ and a-axis compressibility, κ{sub a} = 8.90 × 10⁻³(6) GPa⁻¹. Our XRD data show an irreversible broadening of diffraction peaks. Pressure volume data when fitted to 3rd order Birch-Murnaghan equation of state give the value of bulk modulus, B₀ = 156.7(2.8) GPa with its pressure derivative, B₀{sup ’} as 5.3(0.5). All the observed vibrational modes in Raman measurements show hardening with pressure. Appearance of a new mode at ~24 GPa indicates the structural phase transition in the compound. Our XRD and Raman results indicate that CuCrO{sub 2} may be transforming to an ordered rocksalt type structure under compression.

  2. Sediment fractionation of Cu, Ni, Zn, Cr, Mn, and Fe in one experimental and three natural marshes

    SciTech Connect

    Lindau, C.W.; Hossner, L.R.

    1982-07-01

    Dredged sediments from the Gulf Intracoastal Waterway near Galveston, Tex., were used as a substrate material in the construction of an experimental intertidal salt marsh. Selected substrate properties were compared with those of established marshes. Clay mineralogical properties of the experimental marsh were compared with those of three nearby natural marshes. A sequential chemical extraction procedure was used to obtain data on the partitioning of micronutrients and heavy metals among selected marsh substrate fractions. Clay minerals found in the sediments of the experimental marsh were equivalent to those identified in the natural marshes. Total elemental substrate concentrations of Cu, Ni, Cr, Zn, Mn, and Fe averaged 7.9, 8.6, 25.5, 25.2, 123, and 12,200 ..mu..g/g, respectively, over the four marsh sites. Copper, nickel, zinc, and chromium displayed only minor variations in substrate partitioning between the experimental and natural marsh samples. Micronutrients and heavy metal concentrations in the exchangeable and water-soluble fraction were low compared with other fractions. Approximately 30% of the total substrate Cu, Ni, and Zn was associated with the organic matter fraction. Metals fixed within the lattice structures of clay and silicate minerals ranged from 20% Mn for experimental marsh samples to 90% Cr for one of the natural marshes. Major differences in Mn and Fe substrate partitioning were observed when the experimental marsh samples were compared with those of the natural marshes.

  3. Influence cobalt on microstructural and hardness property of Al-Zn-Mg-Cu-Fe-Cr-Ni P/ M alloys

    NASA Astrophysics Data System (ADS)

    Naeem, Haider T.; Mohammad, Kahtan S.; Hussin, Kamarudin; Rahmat, Azim; Bashirom, Nurhuda

    2015-05-01

    In this study, influence cobalt additives on the microstructural and hardness properties of an Al-Zn-Mg-Cu-Fe-Cr-Ni PM alloy undergone the retrogression and re-aging treatment were carried out. Green compacts pressed at 370 MPa were then sintered at temperature 650°C in argon atmosphere for two hours. The sintered compacts subjected to a homogenizing treated at 470°C for 1.5 hours then aged at 120°C for 24 hours and retrogressed at 180°C for 30 minutes, and then re-aged at 120°C for 24 hours. Microstructural results of the Al-Zn-Mg-Cu-Fe-Cr-Ni-Co alloys introduced an intermetallics compound in the matrix of alloy, identified as the Al5Co2, Al70Co20Ni10 and Al4Ni3 phases besides to the MgZn2 and Mg2Zn11 phases which produced of the precipitation hardening during heat treatment. These compounds with precipitates provided strengthening of dispersion that led to improved Vickers's hardness and dinsifications properties of the alloy. The highest Vickers hardness of aluminum alloy containing cobalt was gotten after applying the retrogression and re-aging treatment.

  4. Palaeoproterozoic porphyry Cu-Au, intrusion-hosted Au and ultramafic Cu-Ni deposits in the Fennoscandian Shield: Temporal constraints using U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Bejgarn, Therese; Söderlund, Ulf; Weihed, Pär; Årebäck, Hans; Ernst, Richard E.

    2013-08-01

    The Skellefte district, northern Sweden, is known for the occurrence of 1.89 Ga Palaeoproterozoic volcanogenic massive sulphide (VMS) deposits. The deposits are hosted by the older part of a volcanosedimentary succession, which was intruded at 1.88-1.86 Ga by multiple phases of the syn-volcanic, early orogenic Jörn intrusive complex (JIC). The oldest phase of the JIC hosts different styles of mineralisation, among them porphyry Cu-Mo-Au, intrusion-related Au, and mafic-hosted Fe and Cu-Ni deposits. To discriminate between the different intrusive and ore related events, U-Pb ages of zircons have been obtained for nine intrusive phases and from Na-Ca alteration spatially related to mineralisation, while U-Pb ages of baddeleyite (ZrO2) have been used to constrain intrusive ages of three mineralised and barren mafic-ultramafic intrusive rocks. The two main JIC intrusive phases of a granodioritic-tonalitic composition in the southern study area intruded at 1887 ± 3 Ma and 1886 ± 3 Ma, respectively, and were succeeded by the intrusion of layered mafic-ultramafic intrusive rocks in the northern and southern study area at 1879 ± 1 Ma and 1884 ± 2 Ma, respectively. Emplacement of porphyry dykes took place at ca. 1877 Ma in the southern, western and northern JIC. The dykes are spatially and temporally associated with formation of porphyry style mineralisation, alteration and Au-mineralisation, as inferred from 1879 ± 5 Ma zircons in adjacent Na-Ca alteration zones. High SiO2 and Al2O3 contents together with high Sr/Y ratios, mingling structures, mafic xenoliths and hornblende phenocrysts in the porphyry dykes suggest that the magma originated from hydrated partial melts, possibly from the base of the crust at a mature stage of subduction. Local extension resulted in intrusion of mafic-ultramafic rocks around 1.88 Ga prior to and after, the porphyry dykes and associated mineralisation, approximately 10 Ma after the formation of the spatially related 1.89 Ga VMS deposits

  5. Effect of Cr, Ti, V, and Zr Micro-additions on Microstructure and Mechanical Properties of the Al-Si-Cu-Mg Cast Alloy

    NASA Astrophysics Data System (ADS)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2016-05-01

    Uniaxial static and cyclic tests were used to assess the role of Cr, Ti, V, and Zr additions on properties of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in as-cast and T6 heat-treated conditions. The microstructure of the as-cast alloy consisted of α-Al, eutectic Si, and Cu-, Mg-, and Fe-rich phases Al2.1Cu, Al8.5Si2.4Cu, Al5.2CuMg4Si5.1, and Al14Si7.1FeMg3.3. In addition, the micro-sized Cr/Zr/Ti/V-rich phases Al10.7SiTi3.6, Al6.7Si1.2TiZr1.8, Al21.4Si3.4Ti4.7VZr1.8, Al18.5Si7.3Cr2.6V, Al7.9Si8.5Cr6.8V4.1Ti, Al6.3Si23.2FeCr9.2V1.6Ti1.3, Al92.2Si16.7Fe7.6Cr8.3V1.8, and Al8.2Si30.1Fe1.6Cr18.8V3.3Ti2.9Zr were present. During solution treatment, Cu-rich phases were completely dissolved, while the eutectic silicon, Fe-, and Cr/Zr/Ti/V-rich intermetallics experienced only partial dissolution. Micro-additions of Cr, Zr, Ti, and V positively affected the alloy strength. The modified alloy in the T6 temper during uniaxial tensile tests exhibited yield strength of 289 MPa and ultimate tensile strength of 342 MPa, being significantly higher than that for the Al-Si-Cu-Mg base. Besides, the cyclic yield stress of the modified alloy in the T6 state increased by 23 pct over that of the base alloy. The fatigue life of the modified alloy was substantially longer than that of the base alloy tested using the same parameters. The role of Cr, Ti, V, and Zr containing phases in controlling the alloy fracture during static and cyclic loading is discussed.

  6. Historical trends (1998-2012) of nickel (Ni), copper (Cu) and chromium (Cr) concentrations in marine sediments at four locations in the Northern Adriatic Sea.

    PubMed

    Traven, Luka; Furlan, Nikolina; Cenov, Arijana

    2015-09-15

    Historical trends (1998-2012) nickel (Ni), copper (Cu) and chromium (Cr) concentrations in marine sediments were assessed at four locations in the Northern Adriatic Sea (Croatia) in the proximity of an oil refinery. Ecological risks were characterized by benchmarking the dataset against Sediment Quality Guidelines (SQG). A significant number of samples had Ni values above ERL with no exceedance of the ERL values for Cu and Cr. Weak positive historical trends were found for only for Cu. At all sites there were statistically significant correlations between Ni and Cr indicating a common origin of these heavy metals in the investigated marine sediments. There were statistically significant differences between the sites under the direct influence of the oil refinery compared to the control site indicating the possibility that the oil refinery is contributing to the concentration of these heavy metals in the marine sediments.

  7. Historical trends (1998-2012) of nickel (Ni), copper (Cu) and chromium (Cr) concentrations in marine sediments at four locations in the Northern Adriatic Sea.

    PubMed

    Traven, Luka; Furlan, Nikolina; Cenov, Arijana

    2015-09-15

    Historical trends (1998-2012) nickel (Ni), copper (Cu) and chromium (Cr) concentrations in marine sediments were assessed at four locations in the Northern Adriatic Sea (Croatia) in the proximity of an oil refinery. Ecological risks were characterized by benchmarking the dataset against Sediment Quality Guidelines (SQG). A significant number of samples had Ni values above ERL with no exceedance of the ERL values for Cu and Cr. Weak positive historical trends were found for only for Cu. At all sites there were statistically significant correlations between Ni and Cr indicating a common origin of these heavy metals in the investigated marine sediments. There were statistically significant differences between the sites under the direct influence of the oil refinery compared to the control site indicating the possibility that the oil refinery is contributing to the concentration of these heavy metals in the marine sediments. PMID:26146134

  8. Development of a CuNiCrAl Bond Coat for Thermal Barrier Coatings in Rocket Combustion Chambers

    NASA Astrophysics Data System (ADS)

    Fiedler, Torben; Rösler, Joachim; Bäker, Martin

    2015-12-01

    The lifetime of rocket combustion chambers can be increased by applying thermal barrier coatings. The standard coating systems usually used in gas turbines or aero engines will fail at the bond coat/substrate interface due to the chemical difference as well as the different thermal expansion between the copper liner and the applied NiCrAlY bond coat. A new bond coat alloy for rocket engine applications was designed previously with a chemical composition and coefficient of thermal expansion more similar to the copper substrate. Since a comparable material has not been applied by thermal spraying before, coating tests have to be carried out. In this work, the new Ni-30%Cu-6%Al-5%Cr bond coat alloy is applied via high velocity oxygen fuel spraying. In a first step, the influence of different coating parameters on, e.g., porosity, amount of unmolten particles, and coating roughness is investigated and a suitable parameter set for further studies is chosen. In a second step, copper substrates are coated with the chosen parameters to test the feasibility of the process. The high-temperature behavior and adhesion is tested with laser cycling experiments. The new coatings showed good adhesion even at temperatures beyond the maximum test temperatures of the NiCrAlY bond coat in previous studies.

  9. Factors affecting the partitioning of Cu, Zn and Pb in boulder coatings and stream sediments in the vicinity of a polymetallic sulfide deposit

    USGS Publications Warehouse

    Filipek, L.H.; Chao, T.T.; Carpenter, R.H.

    1981-01-01

    A sequential extraction scheme is utilized to determine the geochemical partitioning of Cu, Zn and Pb among hydrous Mn- and Fe-oxides, organics and residual crystalline silicates and oxides in the minus-80-mesh ( Fe-oxides > Mn-oxides; Zn, Mn-oxides {reversed tilde equals} organics > Fe-oxides; Pb, Fe-oxides > organics > Mn-oxides. In the sediments, organics are the most efficient scavengers of all three ore metals. These results emphasize the importance of organics as sinks for the ore metals, even in environments with high concentrations of Mn- and Fe-oxides. Of the ore metals, Zn appears to be the most mobile, and is partitioned most strongly into the coatings. However, anomaly contrast for hydromorphic Zn, normalized to the MnFe-oxide or organic content, is similar in sediments and coatings. Cu shows the highest anomaly on the boulder coatings, probably due to precipitation of a secondary Cu mineral. In contrast, detrital Pb in the pan concentrates shows a better anomaly than any hydromorphic Pb component. ?? 1981.

  10. In-situ stabilization of Pb, Zn, Cu, Cd and Ni in the multi-contaminated sediments with ferrihydrite and apatite composite additives.

    PubMed

    Qian, Guangren; Chen, Wei; Lim, Teik Thye; Chui, Pengcheong

    2009-10-30

    Three additives were evaluated for their effectiveness in the attenuation of Pb2+, Zn2+, Cu2+, Cd2+, Ni2+ in contaminated sediments. Apatite, ferrihydrite and their composite were applied to the sediments. For the remediation, BCR, SEM/AVS and TCLP were adopted as the evaluating method and comparison of their results were used for the first time to test in-situ stabilization effect. The results showed that after 5 months composite treatment, more than 70% Pb2+, 40% Zn2+, 90% Cu2+, 50% Cd2+ and 80% Ni2+ was immobilized in oxidizable and residual phases, respectively. Compared to untreated sediment, Pb2+, Zn2+, Cu2+, Cd2+ in residual fraction increased 20%, 10%, 10%, 10% with composite treatment after 5 months, respectively. SigmaSEM/AVS ratio declined from 12.6 to 9.3, in addition, composite treatments reduced the leaching of Pb2+ and Zn2+ from 10.6 mg L(-1) and 42.5 mg L(-1) to 5.4 mg L(-1) and 24.1 mg L(-1) in the sediment by TCLP evaluation. Meanwhile, apatite and ferrihydrite composite additives lowered the bioavailability and toxicity of sediments as well. Ferrihydrite had a positive effect in controlling the bioavailability and toxicity of heavy metals because it effectively retarded the oxidation of AVS in sediment. PMID:19564075

  11. Ages and sources of components of Zn-Pb, Cu, precious metal, and platinum group element deposits in the goodsprings district, clark county, Nevada

    USGS Publications Warehouse

    Vikre, P.; Browne, Q.J.; Fleck, R.; Hofstra, A.; Wooden, J.

    2011-01-01

    The Goodsprings district, Clark County, Nevada, includes zinc-dominant carbonate replacement deposits of probable late Paleozoic age, and lead-dominant carbonate replacement deposits, copper ?? precious metal-platinum group element (PGE) deposits, and gold ?? silver deposits that are spatially associated with Late Triassic porphyritic intrusions. The district encompasses ??500 km2 although the distribution of all deposits has been laterally condensed by late Mesozoic crustal contraction. Zinc, Pb, and Cu production from about 90 deposits was ??160,000 metric tons (t) (Zn > Pb >> Cu), 2.1 million ounces (Moz) Ag, 0.09 Moz Au, and small amounts of PGEs-Co, V, Hg, Sb, Ni, Mo, Mn, Ir, and U-were also recovered. Zinc-dominant carbonate replacement deposits (Zn > Pb; Ag ?? Cu) resemble Mississippi Valley Type (MVT) Zn-Pb deposits in that they occur in karst and fault breccias in Mississippian limestone where the southern margin of the regional late Paleozoic foreland basin adjoins Proterozoic crystalline rocks of the craton. They consist of calcite, dolomite, sphalerite, and galena with variably positive S isotope compositions (??34S values range from 2.5-13%), and highly radiogenic Pb isotope compositions (206Pb/204Pb >19), typical of MVT deposits above crystalline Precambrian basement. These deposits may have formed when southward flow of saline fluids, derived from basinal and older sedimentary rocks, encountered thinner strata and pinch-outs against the craton, forcing fluid mixing and mineral precipitation in karst and fault breccias. Lead-dominant carbonate replacement deposits (Pb > Zn, Ag ?? Cu ?? Au) occur among other deposit types, often near porphyritic intrusions. They generally contain higher concentrations of precious metals than zinc-dominant deposits and relatively abundant iron oxides after pyrite. They share characteristics with copper ?? precious metal- PGE and gold ?? silver deposits including fine-grained quartz replacement of carbonate minerals in

  12. Magnetic and crystallographic properties of ZrM2-δZn20+δ (M=Cr-Cu)

    NASA Astrophysics Data System (ADS)

    Svanidze, E.; , M. Kindy, II; Georgen, C.; Fulfer, B. W.; Lapidus, S. H.; Chan, J. Y.; Morosan, E.

    2016-10-01

    Single crystals of the cubic Laves ternaries ZrM2-δZn20+δ (M=Mn, Fe, Co, Ni and Cu, 0 ≤ δ ≤ 1) have been synthesized using a self-flux method. The magnetic properties of these compounds were compared with structurally similar cubic binaries ZrM2 (M=Mn, Fe, Co, Ni and Cu). A transition from local to itinerant moment magnetism was observed for M=Fe and M=Mn, while all other ternaries exhibit weakly para- or diamagnetic behavior. The local-to-itinerant crossover can be explained by a nearly two-fold increase of the M- M bond length dM-M in ZrM2-δZn20+δ compounds, as compared with the ZrM2 binaries. Additionally, we report two new compounds in this series ZrCrZn21 and ZrCu2Zn20. Analysis of crystallographic and magnetic trends in these materials will aid in understanding of magnetism in general and 3 d intermetallics in particular.

  13. Chemical separation and mass spectrometry of Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial materials using thermal ionization mass spectrometry.

    PubMed

    Yamakawa, Akane; Yamashita, Katsuyuki; Makishima, Akio; Nakamura, Eizo

    2009-12-01

    A sequential chemical separation technique for Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial silicate rocks was developed for precise and accurate determination of elemental concentration by the isotope dilution method (ID). The technique uses a combination of cation-anion exchange chromatography and Eichrom nickel specific resin. The method was tested using a variety of matrixes including bulk meteorite (Allende), terrestrial peridotite (JP-1), and basalt (JB-1b). Concentrations of each element was determined by thermal ionization mass spectrometry (TIMS) using W filaments and a Si-B-Al type activator for Cr, Fe, Ni, and Zn and a Re filament and silicic acid-H3PO4 activator for Cu. The method can be used to precisely determine the concentrations of these elements in very small silicate samples, including meteorites, geochemical reference samples, and mineral standards for microprobe analysis. Furthermore, the Cr mass spectrometry procedure developed in this study can be extended to determine the isotopic ratios of 53Cr/52Cr and 54Cr/52Cr with precision of approximately 0.05epsilon and approximately 0.10epsilon (1epsilon = 0.01%), respectively, enabling cosmochemical applications such as high precision Mn-Cr chronology and investigation of nucleosynthetic isotopic anomalies in meteorites. PMID:19886654

  14. Chemical separation and mass spectrometry of Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial materials using thermal ionization mass spectrometry.

    PubMed

    Yamakawa, Akane; Yamashita, Katsuyuki; Makishima, Akio; Nakamura, Eizo

    2009-12-01

    A sequential chemical separation technique for Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial silicate rocks was developed for precise and accurate determination of elemental concentration by the isotope dilution method (ID). The technique uses a combination of cation-anion exchange chromatography and Eichrom nickel specific resin. The method was tested using a variety of matrixes including bulk meteorite (Allende), terrestrial peridotite (JP-1), and basalt (JB-1b). Concentrations of each element was determined by thermal ionization mass spectrometry (TIMS) using W filaments and a Si-B-Al type activator for Cr, Fe, Ni, and Zn and a Re filament and silicic acid-H3PO4 activator for Cu. The method can be used to precisely determine the concentrations of these elements in very small silicate samples, including meteorites, geochemical reference samples, and mineral standards for microprobe analysis. Furthermore, the Cr mass spectrometry procedure developed in this study can be extended to determine the isotopic ratios of 53Cr/52Cr and 54Cr/52Cr with precision of approximately 0.05epsilon and approximately 0.10epsilon (1epsilon = 0.01%), respectively, enabling cosmochemical applications such as high precision Mn-Cr chronology and investigation of nucleosynthetic isotopic anomalies in meteorites.

  15. Health risk of Hg, Pb, Cd, Zn, and Cu to the inhabitants around Huludao Zinc Plant in China via consumption of vegetables.

    PubMed

    Zheng, Na; Wang, Qichao; Zheng, Dongmei

    2007-09-20

    Huludao Zinc Plant in Huludao City, China is the largest zinc smelting plant in Asia. Heavy metals have contaminated its neighboring environment seriously. We collected 20 vegetables and the corresponding soil samples from eight sampling plots near Huludao Zinc Plant to investigate health risk of Hg, Pb, Cd, Zn, and Cu to the inhabitants around Huludao Zinc Plant in China via consumption of vegetables. Transfer factor (TF) values of Hg, Pb, Cd, Zn, and Cu from soil to vegetable and the target hazard quotients (THQs) to the possible health risks to local population through the food chain transfer were calculated accordingly. TF values of heavy metals from soil to vegetable decrease in the order of Cd>Zn>Cu>Pb>Hg. These TF values of leaves are higher than other tissues. Daily intakes of Hg, Pb, Cd, Zn, and Cu through the consumption of vegetables are 1.322, 574.3, 301.4, 5263, and 292.5 microg, respectively, for adults, and 1.029, 446.8, 234.5, 4095, and 227.6 microg, respectively, for children around Huludao Zinc Plant. This would lead to potential health risk, especially for children, since Cd or Pb individual THQ is high than 1. The total metal THQs (TTHQs) due to consumption of vegetables for adult and child are 5.79-9.90, 7.6-13.0, respectively. Comparing TTHQs in the sampling plots of different distances to Huludao Zinc Plant, it indicate that the health risks to inhabitants close to Huludao Zinc Plant (<500 m) is the highest, and at >1000 m distance is relatively higher than in 500-1000 m distance. However, the inhabitants who lived in 500-1000 m distance to Huludao Zinc Plant is also experiencing the adverse health risk due to TTHQ being higher than 1.

  16. Effect of 5. 3-GeV Pb-ion irradiation on irreversible magnetization in Y-Ba-Cu-O crystals

    SciTech Connect

    Konczykowski, M.; Rullier-Albenque, F. ); Yacoby, E.R.; Shaulov, A.; Yeshurun, Y. ); Lejay, P. )

    1991-10-01

    We report a dramatic change in the irreversibility line of Y-Ba-Cu-O crystals after irradiation with Pb ions. Near the transition temperature, following irradiation, the irreversibility temperature increases and the curvature of the irreversibility line changes sign. These changes are accompanied by a strong enhancement of critical current density and a decrease in flux creep rate. Pb irradiation induces damage in the form of amorphous tracks which penetrate throughout the thickness of the sample. We maintain that these defects are most efficient in terms of flux trapping and are responsible for the observed changes in irreversible magnetic features in the irradiated sample.

  17. Formation of superconducting Bi sub 2-y Pb sub y Sr sub 2 Ca sub 2 Cu sub 3 O sub x from coprecipitated oxalates

    SciTech Connect

    Bernhard, K.; Gritzner, G.; Wang, Xianzhong; Baeuerle, D. )

    1990-06-01

    The conditions for the coprecipitation of Bi{sup 3+}, Pb{sup 2+}, Ca{sup 2+} as oxalates are reported. These oxalates were used as precursors for the formation of Bi{sub 2-y}Pb{sub y}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} superconducting ceramics. The behavior of the oxalates upon heat treatment was studied by thermogravimetry. Both the oxalates and the superconducting oxides were analyzed and characterized by atomic absorption spectroscopy and by X-ray diffraction.

  18. Texture analysis of monofilamentary, Ag-sheathed (Pb,Bi) 2Sr 2Ca 2Cu 3O x tapes by electron backscatter diffraction (EBSD)

    NASA Astrophysics Data System (ADS)

    Koblischka-Veneva, A.; Koblischka, M. R.; Qu, T.; Han, Z.; Mücklich, F.

    2008-02-01

    Using automated orientation imaging, the grain orientations and texture of monofilamentary, Ag-sheathed (Pb,Bi) 2Sr 2Ca 2Cu 3O x (Bi-2223) tape is analysed in detail by means of electron backscatter diffraction (EBSD). The achieved high image quality of the Kikuchi patterns enables multi-phase scans including Bi-2223, Bi 2Sr 2CaCu 2O x, Bi 2Sr 2CuO x, (Sr,Ca) 14Cu 24O 41 and Ag to be performed. Two areas are selected for the EBSD analysis, one close to the silver sheath, the other located in the center of the sample. The grain orientation maps are presented for each phase separately allowing a new insight into the microtexture of Ag-sheathed Bi-2223 tapes. Furthermore, the EBSD analysis provides the possibility for a misorientation angle analysis within each individual phase.

  19. Modeling removal of Cd, Cu, Pb, and Zn in acidic groundwater during neutralization by ambient surface waters and groundwaters

    USGS Publications Warehouse

    Paulson, A.J.; Balistrieri, L.

    1999-01-01

    Removal of Pb, Cu, Zn, and Cd during neutralization of acid rock drainage is examined using model simulations of field conditions and laboratory experiments involving mixing of natural drainage and surface waters or groundwaters. The simulations consider sorption onto hydrous Fe and Al oxides and particulate organic carbon, mineral precipitation, and organic and inorganic solution complexation of metals for two physical systems where newly formed oxides and particulate organic matter are either transported or retained along the chemical pathway. The calculations indicate that metal removal is a strong function of the physical system. Relative to direct discharge of ARD into streams, lower metal removals are observed where ARD enters streamwaters during the latter stages of neutralization by ambient groundwater after most of the Fe has precipitated and been retained in the soils. The mixing experiments, which represent the field simulations, also demonstrated the importance of dissolved metal to particle Fe ratios in controlling dissolved metal removal along the chemical pathway. Finally, model calculations indicate that hydrous Fe oxides and particulate organic carbon are more important than hydrous Al oxides in removing metals and that both inorganic and organic complexation must be considered when modeling metal removal from aquatic systems that are impacted by sulfide oxidation.Removal of Pb, Cu, Zn, and Cd during neutralization of acid rock drainage is examined using model simulations of field conditions and laboratory experiments involving mixing of natural drainage and surface waters or groundwaters. The simulations consider sorption onto hydrous Fe and Al oxides and particulate organic carbon, mineral precipitation, and organic and inorganic solution complexation of metals for two physical systems where newly formed oxides and particulate organic matter are either transported or retained along the chemical pathway. The calculations indicate that metal

  20. Manufacture of thick VPS W coatings on relatively large CuZrCr substrate and its steady high heat load performance

    NASA Astrophysics Data System (ADS)

    Deng, Chunming; Liu, Min; Yang, Zhenxiao; Deng, Changguang; Zhou, Kesong; Kuang, Ziqi; Zhang, Jifu

    2014-12-01

    W material is considered as one of potential Plasma Facing Materials (PFMs) for its high melting point, excellent stability at elevated temperature, good thermal conductivity, excellent anti-plasma sputtering and low Tritium retention. Functionally graded W/Cu coating was applied on CuCrZr substrate (250 mm × 120 mm × 30 mm) with compositionally gradient W/Cu as bond coat (0.4-0.6 mm) and 1.5 mm thick W coating as top coat via Vacuum Plasma Spraying (VPS) for continuous deposition of 5 h. Microstructure, chemical composition, porosity and adhesive strength for as sprayed thick W coating on the CuCrZr substrate were characterized by means of SEM, ICP-MS, Mercury Intrusion Porosimeter and tensile strength tester. The steady high heat load (HHL) performance for W/Cu functional gradient coating was evaluated by high energy electron beam. The results showed that thick VPS W coated CuCrZr substrate can withstand the steady high heat load at the electron beam power density of 9 MW/m2 for 1000 cycles.

  1. Accumulation of Pb and Cu heavy metals in sea water, sediment, and leaf and root tissue of Enhalus sp. in the seagrass bed of Banten Bay

    SciTech Connect

    Fauziah, Faiza Choesin, Devi N.

    2014-03-24

    Banten Bay in Indonesia is a coastal area which has been highly affected by human activity. Previous studies have reported the presence of lead (Pb) and copper (Cu) heavy metals in the seawater of this area. This study was conducted to measure the accumulation of Pb and Cu in seawater, sediment, leaf tissue, and root tissue of the seagrass species Enhalus sp. Sampling was conducted at two observation stations in Banten Bay: Station 1 (St.1) was located closer to the coastline and to industrial plants as source of pollution, while Station 2 (St.2) was located farther away offshore. At each station, three sampling points were established by random sampling. Field sampling was conducted at two different dates, i.e., on 29 May 2012 and 30 June 2012. Samples were processed by wet ashing using concentrated HNO{sub 3} acid and measured using Atomic Absorption Spectrometry (AAS). Accumulation of Pb was only detected in sediment samples in St.1, while Cu was detected in all samples. Average concentrations of Cu in May were as follows: sediment St.1 = 0.731 ppm, sediment St.2 = 0.383 ppm, seawater St.1 = 0.163 ppm, seawater St.2 = 0.174 ppm, leaf St.1 = 0.102 ppm, leaf St.2 = 0.132 ppm, root St.1= 0.139 ppm, and root St.2 = 0.075 ppm. Average measurements of Cu in June were: sediment St.1 = 0.260 ppm, leaf St.1 = 0.335 ppm, leaf St.2 = 0.301 ppm, root St.1= 0.047 ppm, and root St.2 = 0.060 ppm. In June, Cu was undetected in St.2 sediment and seawater at both stations. In May, Cu concentration in seawater exceeded the maximum allowable threshold for water as determined by the Ministry of the Environment. Spatial and temporal variation in Pb and Cu accumulation were most probably affected by distance from source and physical conditions of the environment (e.g., water current and mixing)

  2. Accumulation of Pb and Cu heavy metals in sea water, sediment, and leaf and root tissue of Enhalus sp. in the seagrass bed of Banten Bay

    NASA Astrophysics Data System (ADS)

    Fauziah, Faiza; Choesin, Devi N.

    2014-03-01

    Banten Bay in Indonesia is a coastal area which has been highly affected by human activity. Previous studies have reported the presence of lead (Pb) and copper (Cu) heavy metals in the seawater of this area. This study was conducted to measure the accumulation of Pb and Cu in seawater, sediment, leaf tissue, and root tissue of the seagrass species Enhalus sp. Sampling was conducted at two observation stations in Banten Bay: Station 1 (St.1) was located closer to the coastline and to industrial plants as source of pollution, while Station 2 (St.2) was located farther away offshore. At each station, three sampling points were established by random sampling. Field sampling was conducted at two different dates, i.e., on 29 May 2012 and 30 June 2012. Samples were processed by wet ashing using concentrated HNO3 acid and measured using Atomic Absorption Spectrometry (AAS). Accumulation of Pb was only detected in sediment samples in St.1, while Cu was detected in all samples. Average concentrations of Cu in May were as follows: sediment St.1 = 0.731 ppm, sediment St.2 = 0.383 ppm, seawater St.1 = 0.163 ppm, seawater St.2 = 0.174 ppm, leaf St.1 = 0.102 ppm, leaf St.2 = 0.132 ppm, root St.1= 0.139 ppm, and root St.2 = 0.075 ppm. Average measurements of Cu in June were: sediment St.1 = 0.260 ppm, leaf St.1 = 0.335 ppm, leaf St.2 = 0.301 ppm, root St.1= 0.047 ppm, and root St.2 = 0.060 ppm. In June, Cu was undetected in St.2 sediment and seawater at both stations. In May, Cu concentration in seawater exceeded the maximum allowable threshold for water as determined by the Ministry of the Environment. Spatial and temporal variation in Pb and Cu accumulation were most probably affected by distance from source and physical conditions of the environment (e.g., water current and mixing).

  3. Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of Cr, Fe, Cu, Zn and Se in cereals

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Yi; Jiang, Shiuh-Jen; Sahayam, A. C.

    2014-11-01

    Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry (USS-ETV-ICP-MS) has been applied to determine Cr, Fe, Cu, Zn and Se in several cereal samples. Thioacetamide was used as the modifier to enhance the ion signals. The background ions at the masses of interest were reduced in intensity significantly by using 1.0 mL min- 1 methane (CH4) as reaction cell gas in the dynamic reaction cell (DRC). Since the sensitivities of Cr, Fe, Cu, Zn and Se in different matrices were quite different, standard addition and isotope dilution methods were used for the determination of Cr, Fe, Cu, Zn and Se in these cereal samples. The method detection limits estimated from standard addition curves were about 1, 10, 4, 12 and 2 ng g- 1 for Cr, Fe, Cu, Zn and Se, respectively, in original cereal samples. This procedure has been applied to the determination of Cr, Fe, Cu, Zn and Se whose concentrations are in μg g- 1 (except Cr and Se) in standard reference materials (SRM) of National institute of standards and technology (NIST), NIST SRM 1568a Rice Flour and NIST SRM 1567a Wheat Flour and two cereal samples purchased from a local market. The analysis results of reference materials agreed with certified values at 95% confidence level according to Student's T-test. The results for the real world cereal samples were also found to be in good agreement with the pneumatic nebulization DRC ICP-MS results of the sample solutions.

  4. [Effect of Cr (VI) anions on the Cu (II) adsorption behavior of two kinds of clay minerals in single and binary solution].

    PubMed

    Liu, Juan-Juan; Liang, Dong-Li; Wu, Xiao-Long; Qu, Guang-Zhou; Qian, Xun

    2014-01-01

    The adsorption of Cu (II) on kaolinite and montmorillonite was investigated through batch adsorption experiment. Several adsorption models were employed to describe the adsorption of Cu (II) on the two clay minerals in single Cu (II) and Cu(II)-Cr (VI) binary solutions, and the impact of solution with various pH values on the adsorption of Cu (II) on the two target mineral clays was investigated in order to explain the environmental chemical behavior of heavy metals in soil and to provide theoretical basis in remediation of multi-element contaminated soil. The results indicated that the adsorption process of Cu (II) on kaolinite and montmorillonite in both single and binary solutions was fast at the beginning and then slowed down. Adsorption equilibrium was observed within 120 min. In both single and binary solutions, pseudo-second-order model (R2 > 0.983) showed the highest agreement with the adsorption of Cu (II) on the two mineral clays, followed by the intra-particle diffusion model and pseudo-first-order model. Both Intra-particle diffusion model and Boyd model illustrated that the film diffusion process was the rate-limiting step, which mainly occurred at the edge and surface of mineral clays. Copper adsorption on kaolinite was well fitted with the Freundlich equation (R2 > 0.971), which could be attributed to the heterogeneity of kaolinite surface with adsorption sites that have different energies of adsorption. Langmuir equation was best fitted with the isotherm for montmorillonite (R2 > 0.983), which indicated that the adsorption was on a single molecular layer or chemisorptions. In both single and binary solutions, the adsorption of Cu (II ) on the two clay minerals first increased and then decreased with the rising of pH values. The maximum adsorption amount was found at pH = 5.0, and was in the order of Qmon. > Qkao. and Q(Single-Cu) > Q(Cu-Cr binary). Cr (VI) in the solution reduced the adsorption of Cu (II), and the minimal influence of Cr (VI) on Cu

  5. [Effect of Cr (VI) anions on the Cu (II) adsorption behavior of two kinds of clay minerals in single and binary solution].

    PubMed

    Liu, Juan-Juan; Liang, Dong-Li; Wu, Xiao-Long; Qu, Guang-Zhou; Qian, Xun

    2014-01-01

    The adsorption of Cu (II) on kaolinite and montmorillonite was investigated through batch adsorption experiment. Several adsorption models were employed to describe the adsorption of Cu (II) on the two clay minerals in single Cu (II) and Cu(II)-Cr (VI) binary solutions, and the impact of solution with various pH values on the adsorption of Cu (II) on the two target mineral clays was investigated in order to explain the environmental chemical behavior of heavy metals in soil and to provide theoretical basis in remediation of multi-element contaminated soil. The results indicated that the adsorption process of Cu (II) on kaolinite and montmorillonite in both single and binary solutions was fast at the beginning and then slowed down. Adsorption equilibrium was observed within 120 min. In both single and binary solutions, pseudo-second-order model (R2 > 0.983) showed the highest agreement with the adsorption of Cu (II) on the two mineral clays, followed by the intra-particle diffusion model and pseudo-first-order model. Both Intra-particle diffusion model and Boyd model illustrated that the film diffusion process was the rate-limiting step, which mainly occurred at the edge and surface of mineral clays. Copper adsorption on kaolinite was well fitted with the Freundlich equation (R2 > 0.971), which could be attributed to the heterogeneity of kaolinite surface with adsorption sites that have different energies of adsorption. Langmuir equation was best fitted with the isotherm for montmorillonite (R2 > 0.983), which indicated that the adsorption was on a single molecular layer or chemisorptions. In both single and binary solutions, the adsorption of Cu (II ) on the two clay minerals first increased and then decreased with the rising of pH values. The maximum adsorption amount was found at pH = 5.0, and was in the order of Qmon. > Qkao. and Q(Single-Cu) > Q(Cu-Cr binary). Cr (VI) in the solution reduced the adsorption of Cu (II), and the minimal influence of Cr (VI) on Cu

  6. Distribution and speciation of metals (Cu, Zn, Cd, and Pb) in agricultural and non-agricultural soils near a stream upriver from the Pearl River, China.

    PubMed

    Yang, Silin; Zhou, Dequn; Yu, Huayong; Wei, Rong; Pan, Bo

    2013-06-01

    The distribution and chemical speciation of typical metals (Cu, Zn, Cd and Pb) in agricultural and non-agricultural soils were investigated in the area of Nanpan River, upstream of the Pearl River. The investigated four metals showed higher concentrations in agricultural soils than in non-agricultural soils, and the site located in factory district contained metals much higher than the other sampling sites. These observations suggested that human activities, such as water irrigation, fertilizer and pesticide applications might have a major impact on the distribution of metals. Metal speciation analysis presented that Cu, Zn and Cd were dominated by the residual fraction, while Pb was dominated by the reducible fraction. Because of the low mobility of the metals in the investigated area, no remarkable difference could be observed between upstream and downstream separated by the factory site. PMID:23466733

  7. Atomic absorption spectrophotometric determination of microgram levels of Co, Ni, Cu, Pb, and Zn in soil and sediment extracts containing large amounts of Mn and Fe

    USGS Publications Warehouse

    Chao, T.T.; Sanzolone, R.F.

    1973-01-01

    An atomic absorption spectrophotometric method has been developed for the determination of seven metal ions in the hydroxylamine extract of soils and sediments. Mn, Fe, and Zn are directly determined in the aqueous extract upon dilution. Co, Ni, Cu, and Pb in a separate aliquot of the extract are chelated with APDC (ammonium pyrrolidine dithiocarbamate) and extracted into MIBK (methyl isobutyl ketone) before determination. Data are presented to show the quantitative recovery of microgram levels of Co, Ni, Cu, and Pb by APDC-MIBK chelation-extraction from synthetic solutions containing as much as 2,000 ug/ml (micrograms per milliliter) Mn or 50 ug/ml Fe. Recovery of known amounts of the metal ions from sample solutions is equally satisfactory. Reproducible results are obtained by replicate analyses of two sediment samples for the seven metals.

  8. Distribution and speciation of metals (Cu, Zn, Cd, and Pb) in agricultural and non-agricultural soils near a stream upriver from the Pearl River, China.

    PubMed

    Yang, Silin; Zhou, Dequn; Yu, Huayong; Wei, Rong; Pan, Bo

    2013-06-01

    The distribution and chemical speciation of typical metals (Cu, Zn, Cd and Pb) in agricultural and non-agricultural soils were investigated in the area of Nanpan River, upstream of the Pearl River. The investigated four metals showed higher concentrations in agricultural soils than in non-agricultural soils, and the site located in factory district contained metals much higher than the other sampling sites. These observations suggested that human activities, such as water irrigation, fertilizer and pesticide applications might have a major impact on the distribution of metals. Metal speciation analysis presented that Cu, Zn and Cd were dominated by the residual fraction, while Pb was dominated by the reducible fraction. Because of the low mobility of the metals in the investigated area, no remarkable difference could be observed between upstream and downstream separated by the factory site.

  9. Influence of calcium content on the preparation of the high Tc (110 K class) Bi-Pb-Sr-Ca-Cu-O thin film

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Keizou; Shimojima, Hiromasa; Yamagishi, Chitake

    1991-03-01

    The Bi-Pb-Sr-Ca-Cu-O thin films with various Ca/Sr ratios were prepared by RF magnetron sputtering using multitargets of Bi(0.5)Pb(0.5)O(x), and SrCu(0.75)O(x). The high-Tc (2223) phase was obtained by firing these films. The film with the highest Ca/Sr ratio (Ca/Sr greater than 1.0) produced the largest amount of 2223 phase on firing at 850 C. The highest Ca/Sr ratio ( = 1.17) film contained 91 percent volume ratio of 2223 phase compared with the low Tc phase (2212 phase) after 15 h firing. However, the 2223 phase decreased with increasing long-term firing (65 h).

  10. Recycled chitosan nanofibril as an effective Cu(II), Pb(II) and Cd(II) ionic chelating agent: adsorption and desorption performance.

    PubMed

    Liu, Dagang; Li, Zehui; Zhu, Yi; Li, Zhenxuan; Kumar, Rakesh

    2014-10-13

    Mechanically disassembled chitosan nanofibrils were prepared and used as metal ion chelating agents. Structure and morphology of nanofibrils were investigated and ionic adsorption or desorption performance were validated to establish related fitting models. In single metal ion solution, the saturated adsorption capacities of Cu(II), Pb(II), Cd(II), Zn(II), and Ni(II) were 168.66, 118.00 and 60.85, 143.67, and 63.32 mg/g, respectively. In ternary metal ion solution, Cu(II) was more competitive to be adsorbed than Pb(II) and Cd(II) and its removal could arrive at 60%. Ions adsorbed by nanofibrils could be released by EDTA and the recovery could keep above 70% after 3 sorption-desorption cycles. Hence, renewable and recyclable nanofibrillar chitosan exhibited a great promising application in metal treatments attributed to its high adsorption capacity and chelation efficiency.

  11. Determination of contamination levels of Pb, Cd, Cu, Ni, and Mn caused by former lead mining gallery.

    PubMed

    Bakırdere, Sezgin; Bölücek, Cemal; Yaman, Mehmet

    2016-03-01

    In the present study, levels of metal contamination caused by former lead mining area were figured out. For this purpose, Pb, Cd, Cu, Ni, and Mn were determined not only in sediment samples taken from different places of the mining area but also in some plants taken around the mining place. In the digestion of plant samples, dry ashing procedure was applied. Flame atomic absorption spectrophotometer (FAAS) was used in the determination of analytes of interest. All the parameters in digestion and detection procedures were optimized to obtain efficient digestion and high sensitivities for analytes. Standard addition and direct calibration methods were applied to find whether there was any matrix interference to affect the determination of analytes. Mn concentration was found to be the highest for each sample analyzed. Lead concentration was found to be between 41 and 249 mg/kg in soil/sediment samples and between 2.2 and 1003 mg/kg in plant samples. The highest contamination levels for all of the analytes with the exception of Cd were found in current sediment sample.

  12. Alginate and Algal-Based Beads for the Sorption of Metal Cations: Cu(II) and Pb(II)

    PubMed Central

    Wang, Shengye; Vincent, Thierry; Faur, Catherine; Guibal, Eric

    2016-01-01

    Alginate and algal-biomass (Laminaria digitata) beads were prepared by homogeneous Ca ionotropic gelation. In addition, glutaraldehyde-crosslinked poly (ethyleneimine) (PEI) was incorporated into algal beads. The three sorbents were characterized by scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX): the sorption occurs in the whole mass of the sorbents. Sorption experiments were conducted to evaluate the impact of pH, sorption isotherms, and uptake kinetics. A special attention was paid to the effect of drying (air-drying vs. freeze-drying) on the mass transfer properties. For alginate, freeze drying is required for maintaining the porosity of the hydrogel, while for algal-based sorbents the swelling of the material minimizes the impact of the drying procedure. The maximum sorption capacities observed from experiments were 415, 296 and 218 mg Pb g−1 and 112, 77 and 67 mg Cu g−1 for alginate, algal and algal/PEI beads respectively. Though the sorption capacities of algal-beads decreased slightly (compared to alginate beads), the greener and cheaper one-pot synthesis of algal beads makes this sorbent more competitive for environmental applications. PEI in algal beads decreases the sorption properties in the case of the sorption of metal cations under selected experimental conditions. PMID:27598128

  13. Determination of contamination levels of Pb, Cd, Cu, Ni, and Mn caused by former lead mining gallery.

    PubMed

    Bakırdere, Sezgin; Bölücek, Cemal; Yaman, Mehmet

    2016-03-01

    In the present study, levels of metal contamination caused by former lead mining area were figured out. For this purpose, Pb, Cd, Cu, Ni, and Mn were determined not only in sediment samples taken from different places of the mining area but also in some plants taken around the mining place. In the digestion of plant samples, dry ashing procedure was applied. Flame atomic absorption spectrophotometer (FAAS) was used in the determination of analytes of interest. All the parameters in digestion and detection procedures were optimized to obtain efficient digestion and high sensitivities for analytes. Standard addition and direct calibration methods were applied t