Sample records for cr pb cu

  1. Half-metallic antiferromagnetism in double perovskite BiPbCrCuO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weng, Ke-Chuan; Wang, Y. K., E-mail: kant@ntnu.edu.tw

    2015-05-07

    The electronic structure and magnetic properties of BiPbCrCuO{sub 6} double perovskite are investigated based on first-principles density functional calculations with generalized gradient approximation (GGA) and GGA incorporated with Coulomb correlation interaction U (GGA + U). The results suggest the half-metallic (HM) and antiferromagnetic (AFM) properties of BiPbCrCuO{sub 6} double perovskite. The HM-AFM property of the double perovskite is caused by the double-exchange mechanism between neighboring Cr{sup 5+}(t{sub 2g}{sup 1}↓) and Cu{sup 2+}(t{sub 2g}{sup 3}↑t{sub 2g}{sup 3}↓e{sub g}{sup 2}↑e{sub g}↓) via the intermediate O{sup 2−}(2s{sup 2}2p{sup 6}) ion.

  2. An experimental and thermodynamic equilibrium investigation of the Pb, Zn, Cr, Cu, Mn and Ni partitioning during sewage sludge incineration.

    PubMed

    Liu, Jingyong; Fu, Jiewen; Ning, Xun'an; Sun, Shuiyu; Wang, Yujie; Xie, Wuming; Huang, Shaosong; Zhong, Sheng

    2015-09-01

    The effects of different chlorides and operational conditions on the distribution and speciation of six heavy metals (Pb, Zn, Cr, Cu, Mn and Ni) during sludge incineration were investigated using a simulated laboratory tubular-furnace reactor. A thermodynamic equilibrium investigation using the FactSage software was performed to compare the experimental results. The results indicate that the volatility of the target metals was enhanced as the chlorine concentration increased. Inorganic-Cl influenced the volatilization of heavy metals in the order of Pb>Zn>Cr>Cu>Mn>Ni. However, the effects of organic-Cl on the volatility of Mn, Pb and Cu were greater than the effects on Zn, Cr and Ni. With increasing combustion temperature, the presence of organic-Cl (PVC) and inorganic-Cl (NaCl) improved the transfer of Pb and Zn from bottom ash to fly ash or fuse gas. However, the presence of chloride had no obvious influence on Mn, Cu and Ni. Increased retention time could increase the volatilization rate of heavy metals; however, this effect was insignificant. During the incineration process, Pb readily formed PbSiO4 and remained in the bottom ash. Different Pb compounds, primarily the volatile PbCl2, were found in the gas phase after the addition of NaCl; the dominant Pb compounds in the gas phase after the addition of PVC were PbCl2, Pb(ClO4)2 and PbCl2O4. Copyright © 2015. Published by Elsevier B.V.

  3. Determination of Cu, Cd, Pb and Cr in yogurt by slurry sampling electrothermal atomic absorption spectrometry: A case study for Brazilian yogurt.

    PubMed

    de Andrade, Camila Kulek; de Brito, Patrícia Micaella Klack; Dos Anjos, Vanessa Egéa; Quináia, Sueli Pércio

    2018-02-01

    A slurry sampling electrothermal atomic absorption spectrometric method is proposed for the determination of trace elements such as Cu, Cr, Cd and Pb in yogurt. The main factors affecting the slurry preparation were optimized: nature and concentration of acid solution and sonication time. The analytical method was validated in-house by calibration, linearity, limits of detection and quantification, precision and accuracy test obtaining satisfactory results in all cases. The proposed method was applied for the determination of Cd, Cr, Cu and Pb in some Brazilian yogurt samples. For these samples, the concentrations ranged from 2.5±0.2 to 12.4±0.2ngg -1 ; 34±3 to 899±7ngg -1 ; <8.3 to 12±1ngg -1 ; and <35.4 to 210±16ngg -1 for Cd, Cu, Cr and Pb, respectively. The daily intake of Cd, Cu, Cr and Pb via consumption of these samples was estimated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Adsorbent material based on passion-fruit wastes to remove lead (Pb), chromium (Cr) and copper (Cu) from metal-contaminated waters

    NASA Astrophysics Data System (ADS)

    Campos-Flores, Gaby; Castillo-Herrera, Alberto; Gurreonero-Fernández, Julio; Obeso-Obando, Aída; Díaz-Silva, Valeria; Vejarano, Ricardo

    2018-04-01

    The aim of the present work was to evaluate the feasibility of passion-fruit shell (PFS) biomass as adsorbent material to remove heavy metals from contaminated waters. Model mediums were used, which were composed of distilled water and the respective metal: lead (Pb), chromium (Cr) and copper (Cu), with a dose of 10g of dry PFSbiomass per liter of medium. The residual concentration of each metal was determined by Atomic Absorption Spectrophotometry (AAS). A good adsorption capacity was exhibited by this agro industrial waste, achieving removal levels of 96,93 and 82% for Pb, Cr and Cu, respectively. In addition, the results obtained showed an adequate fit to the Freundlich model (R2 > 0.91), on the basis of which, the following values of adsorption capacity (k: 1.7057, 0.6784, 0.3302) and adsorption intensity (n: 0.6869, 2.3474, 1.0499), for Pb, Cr and Cu respectively, were obtained. Our results suggest that Pb, Cr and Cu ions can be removed by more than 80% by using this agro industrial waste, which with a minimum treatment could be used as an adsorbent material in the treatment of metal-contaminated waters.

  5. Content of Cr, Cu, Pb, and Zn on Pacific white shrimp cultured in modern farm at BLUPPB, Karawang, West Java

    NASA Astrophysics Data System (ADS)

    Takarina, N. D.; Rahman, A.; Siswanting, T.; Pin, T. J.

    2018-03-01

    Heavy metal is one of the hazardous substances which often found in shrimp farm. Since this shrimp become mostly favorable food, it is necessary to determine the content of metal in this shrimps. This research was aimed to determine the content of Cr, Cu, Pb, and Zn on Pacific white shrimp cultured on the modern farm at BLUPPB, Karawang, West Java. Samples were taken from five farms. During transport, samples were kept in a more relaxed box. Farms used were designed using black plastic as the bottom layer to separate contact with soil. Heavy metal of Cr, Cu, Pb, and Zn on shrimp meat was analyzed using Atomic Absorption Spectrophotometry method. The content of Cr was ranged from 0.06 – 0.38 ppm and Pb were 0.02 – 0.05 ppm. The content of Cu was ranged from 1.89 – 15.25 ppm and Zn were 2.16 – 3.92 ppm. According to government rules and literature, those content were below a threshold which was 0.4 ppm for Cu, 0.5 ppm for Pb, 20 ppm for Cu and 0.2 ppm for Zn.

  6. Sorption of Cr(VI), Cu(II) and Pb(II) by growing and non-growing cells of a bacterial consortium.

    PubMed

    Sannasi, P; Kader, J; Ismail, B S; Salmijah, S

    2006-03-01

    This paper reports the sorption of three metallic ions, namely Cr(VI), Cu(II) and Pb(II) in aqueous solution by a consortium culture (CC) comprising an acclimatised mixed bacterial culture collected from point and non-point sources. Metal sorption capability of growing and non-growing cells at initial pH of between 3 and 8 in the 1-100mg/L concentration range were studied based on Q(max) and K(f) values of the Langmuir and linearised Freundlich isotherm models, respectively. Maximal metal loading was generally observed to be dependent on the initial pH. Growing cells displayed significant maximal loading (Q(max)) for Pb(II) (238.09 mg/g) and Cu(II) (178.87 mg/g) at pH 6 and at pH 7 for Cr(VI) (90.91 mg/g) compared to non-growing cells (p < 0.05). At the pH range of 6-8, growing cells showed higher loading capacity compared to non-growing cells i.e. 38-52% for Cr, 17-28% for Cu and 3-17% for Pb. At lower metal concentrations and at more acidic pH (3-4) however, non-growing cells had higher metal loading capacity than growing cells. The metal sorption capacity for both populations were as follows: Pb(II) > Cu(II) > Cr(VI).

  7. [Response of Nostoc flageliforme cell to Cu2+, Cr2+ and Pb2+ stress].

    PubMed

    Guo, Jinying; Shi, Mingke; Zhao, Yanli; Ren, Guoyan; Yi, Junpeng; Niu, Leilei; Li, Juan

    2013-06-04

    This study aimed to investigate the effects of Cu2+, Cr2+ and Pb2+ stress on Nostoc flagelliforme cell. The response of Nostoc flagelliforme cell was analyzed under the stress. The modified BG11 culture medium containing different heavy metal ions of 0, 0.1, 1.0, 10, 100 mg/L was used to cultivate Nostoc flagelliforme cell at 25 degrees C and light intensity of 80 micromol/(m x s). Electrolyte leakage, the activities of superoxide dismutase, the content of malondialdehyde, proline, soluble protein and trehalose were analyzed. Under 1 - 100 mg/L Cu2+, Cr2+ and Pb2+ stress, electrolyte leakage and malondialdehyde contents in Nostoc flagelliforme cell were higher than those in the control group during heavy metal ions stress. Meanwhile, superoxide dismutase activity increased slightly under 10 mg/L, but was lower afterwards. The contents of proline, soluble protein and trehalose increased under 10 mg/L heavy metal ions stress, while declined under extreme heavy metal ions stress (100 mg/L). Nostoc flagelliforme cell has resistance to low heavy metal ions stress, but is damaged badly under extreme heavy metal ions stress.

  8. Assessment of noise and heavy metals (Cr, Cu, Cd, Pb) in the ambience of the production line for recycling waste printed circuit boards.

    PubMed

    Xue, Mianqiang; Yang, Yichen; Ruan, Jujun; Xu, Zhenming

    2012-01-03

    The crush-pneumatic separation-corona electrostatic separation production line provides a feasible method for industrialization of waste printed circuit boards (PCBs) recycling. To determine the potential environmental contamination in the automatic line workshop, noise and heavy metals (Cr, Cu, Cd, Pb) in the ambience of the production line have been evaluated in this paper. The mean noise level in the workshop has been reduced from 96.4 to 79.3 dB since the engineering noise control measures were employed. Noise whose frequency ranged from 500 to 1000 Hz is controlled effectively. The mass concentrations of TSP and PM(10) in the workshop are 282.6 and 202.0 μg/m(3), respectively. Pb (1.40 μg/m(3)) and Cu (1.22 μg/m(3)) are the most enriched metals in TSP samples followed by Cr (0.17 μg/m(3)) and Cd (0.028 μg/m(3)). The concentrations of Cu, Pb, Cr, and Cd in PM(10) are 0.88, 0.56, 0.12, and 0.88 μg/m(3), respectively. Among the four metals, Cr and Pb are released into the ambience of the automatic line more easily in the crush and separation process. Health risk assessment shows that noncancerous effects might be possible for Pb (HI = 1.45), and noncancerous effects are unlikely for Cr, Cu, and Cd. The carcinogenic risks for Cr and Cd are 3.29 × 10(-8) and 1.61 × 10(-9), respectively. It indicates that carcinogenic risks on workers are relatively light in the workshop. These findings suggest that this technology is advanced from the perspective of environmental protection in the waste PCBs recycling industry.

  9. Study of the ambient air metallic elements Cr, Cu, Zn, Cd and Pb at HAF sampling sites.

    PubMed

    Fang, Guor-Cheng; Kuo, Yu-Chen; Zhuang, Yuan-Jie; Tsai, Kai-Hsiang; Huang, Wen-Chuan

    2017-08-01

    This study characterized diurnal variations in the compositions of total suspended particulates (TSP) and dry deposits of particulates from ambient air, and the metallic elements that are contained in them at harbor, airport and farmland (HAF) sampling sites from August, 2013 to July, 2014. Two-way ANOVA of the amounts of metallic elements in the TSP and dry deposits was carried out in all four seasons at the HAF sampling sites. The metallic elements Cr and Cu originated in local emission sources at the airport. Metallic elements Zn and Pb originated in local emission sources at the harbor. Finally, metallic element Cd originated in local emissions form farmland. The following results were also obtained. (1) The metallic composition of the TSP differed significantly from that of the dry deposits in all four seasons at the harbor and farmland sampling sites, but not at the airport sampling site. (2) High correlations coefficients were found between the amounts of metallic elements Cr and Cu in the TSP and those in the dry deposits at the airport sampling site. (3) Pb was present in the TSP and the dry deposits at the harbor sampling site.

  10. Yield strength of Cu and a CuPb alloy (1% Pb)

    NASA Astrophysics Data System (ADS)

    Buttler, W. T.; Gray, G. T.; Fensin, S. J.; Grover, M.; Prime, M. B.; Stevens, G. D.; Stone, J. B.; Turley, W. D.

    2017-01-01

    With PBX9501 we explosively loaded fully annealed OFHC-Cu and an OFHC-CuPb (extruded with 1% Pb that aggregates at the Cu grain boundaries) to study the effects of the 1% Pb on the elastic-plastic yield Y of Cu. The yield-stress Y was studied through observation of surface velocimetry and total ejected mass ρA from periodic surface perturbations machined onto the sample surfaces. The perturbation's wavelengths were λ ≈ 65 µm, and their amplitudes h were varied to determine the wavenumber (2π/λ) amplitude product kh at which ejecta production for the Cu and CuPb begins, which relates to Y. The Y of the two materials is apparently different.

  11. Importance of lithology in defining natural background concentrations of Cr, Cu, Ni, Pb and Zn in sedimentary soils, northeastern Brazil.

    PubMed

    Gloaguen, Thomas Vincent; Passe, José João

    2017-11-01

    The sedimentary basins of Recôncavo and Tucano, Bahia, represent the most important Brazilian Phanerozoic continental basin system, formed during fracturing of Gondwana. The northern basin of Tucano has a semiarid climate (Bsh) while the southern basin of Recôncavo has a tropical rainforest climate (Af). The aim of this study was to determine the distribution of trace metals in soils derived from various sedimentary rocks and climates. Soils were collected at 30 sites in 5 geological units at 0-20 cm and 60-80 cm deep under native vegetation. Physical and chemical attributes (particle size distribution, pH, Al, exchangeable bases, organic matter) were determined, as well as the pseudo-total concentrations (EPA 3050 b) and the total concentrations (X-ray fluorescence) of Cr, Cu, Ni, Pb and Zn. The concentrations of metals were overall correlated to soil texture, according to lithologic origin. Shales resulted in Vertisols 30.4 (Zn), 27.2 (Ni), 16.9 (Cu), 7.5 (Cr) and 2.5 (Pb) times more concentrated than Arenosols derived from the sandstones. High Cr and Ni values in clay soils from shales were attributed to diffuse contamination by erosion of mafic rocks of the Greenstone Belt River Itapicuru (from 3 km northwest of the study area) during the late Jurassic. Tropical rainforest climate resulted in a slight enrichment of Pb and Cr, and Ni had the higher mobility during soil formation (enrichment factor up to 6.01). In conclusion, the geological environment is a much more controlling factor than pedogenesis in the concentration of metals in sedimentary soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Evaluation of Cd, Cr, Cu, Ni, and Pb in selected cosmetic products from Jordanian, Sudanese, and Syrian markets.

    PubMed

    Massadeh, A M; El-Khateeb, M Y; Ibrahim, S M

    2017-08-01

    There is no sufficient data that evaluate heavy metal content in cosmetic products in Jordan as well as Sudan and Syria. This study aims to assess metal levels which include Cadmium (Cd), Chromium (Cr), Copper (Cu), Nickel (Ni), and Lead (Pb) in cosmetic products. These elements have draft limits because they are identified as potential impurities and are known to be toxic. This study aims to provide information to the population that may be beneficial to public health. Samples were collected from different brands obtained from markets in Jordan, Sudan, and Syria. Some of the selected cosmetic products were eyeliner, eye pencil, mascara, lipstick, powder, face cream, body cream, sun block, Vaseline, and the traditional eye cosmetic (kohl). The heavy metal content in these samples were determined by atomic absorption spectrometry (AAS). Based on analysis of variance analysis, a significant difference in heavy metal levels was found for samples obtained from Jordanian and Sudanese markets. The acid digestion method used in this study was based on procedures recommended by Nnorom et al. with some modifications as follows. (i) A weight of 2.0 g of cosmetic sample was dissolved in a mixture of 6 mL of high quality concentrated 69% nitric acid (HNO 3 ; Merck, Darmstadt, Germany) and 4 mL of concentrated 37% hydrochloric acid (Scharlau, Spain) in a porcelain crucible and heated on a hotplate to near dryness. (ii) An aliquot of 15 mL HNO 3 (1.00 M) was added to the digested sample and filtered through a Whatman No. 40 filter paper. (iii) The digested sample was transferred quantitatively into a 25 mL volumetric flask and then diluted with deionized water. (iv) Each digested sample was evaporated at 70 °C to about 1 mL and transferred into a polyethylene flask and diluted with 25 mL deionized water. (v) Blank was treated in the same procedure. In Jordan the concentration ranges of heavy metals in the collected samples were: Cd (0.03-0.10 μg/g), Cr (0.0-1.00

  13. Removal of Cu, Zn, Pb, and Cr from Yangtze Estuary Using the Phragmites australis Artificial Floating Wetlands

    PubMed Central

    Zhao, Feng; Yu, Gao; Song, Chao; Geng, Zhi

    2017-01-01

    Contamination of heavy metals would threaten the water and soil resources; phytoremediation can be potentially used to remediate metal contaminated sites. We constructed the Phragmites australis artificial floating wetlands outside the Qingcaosha Reservoir in the Yangtze Estuary. Water characteristic variables were measured in situ by using YSI Professional Pro Meter. Four heavy metals (copper, zinc, lead, and chromium) in both water and plant tissues were determined. Four heavy metals in estuary water were as follows: 0.03 mg/Kg, 0.016 mg/Kg, 0.0015 mg/Kg, and 0.004 mg/Kg. These heavy metals were largely retained in the belowground tissues of P. australis. The bioaccumulation (BAF) and translation factor (TF) value of four heavy metals were affected by the salinity, temperature, and dissolved oxygen. The highest BAF of each metal calculated was as follows: Cr (0.091 in winter) > Cu (0.054 in autumn) > Pb (0.016 in summer) > Zn (0.011 in summer). Highest root-rhizome TF values were recorded for four metals: 6.450 for Cu in autumn, 2.895 for Zn in summer, 7.031 for Pb in autumn, and 2.012 for Cr in autumn. This indicates that the P. australis AFW has potential to be used to protect the water of Qingcaosha Reservoir from heavy metal contamination. PMID:28717650

  14. Soil Cd, Cr, Cu, Ni, Pb and Zn sorption and retention models using SVM: Variable selection and competitive model.

    PubMed

    González Costa, J J; Reigosa, M J; Matías, J M; Covelo, E F

    2017-09-01

    The aim of this study was to model the sorption and retention of Cd, Cu, Ni, Pb and Zn in soils. To that extent, the sorption and retention of these metals were studied and the soil characterization was performed separately. Multiple stepwise regression was used to produce multivariate models with linear techniques and with support vector machines, all of which included 15 explanatory variables characterizing soils. When the R-squared values are represented, two different groups are noticed. Cr, Cu and Pb sorption and retention show a higher R-squared; the most explanatory variables being humified organic matter, Al oxides and, in some cases, cation-exchange capacity (CEC). The other group of metals (Cd, Ni and Zn) shows a lower R-squared, and clays are the most explanatory variables, including a percentage of vermiculite and slime. In some cases, quartz, plagioclase or hematite percentages also show some explanatory capacity. Support Vector Machine (SVM) regression shows that the different models are not as regular as in multiple regression in terms of number of variables, the regression for nickel adsorption being the one with the highest number of variables in its optimal model. On the other hand, there are cases where the most explanatory variables are the same for two metals, as it happens with Cd and Cr adsorption. A similar adsorption mechanism is thus postulated. These patterns of the introduction of variables in the model allow us to create explainability sequences. Those which are the most similar to the selectivity sequences obtained by Covelo (2005) are Mn oxides in multiple regression and change capacity in SVM. Among all the variables, the only one that is explanatory for all the metals after applying the maximum parsimony principle is the percentage of sand in the retention process. In the competitive model arising from the aforementioned sequences, the most intense competitiveness for the adsorption and retention of different metals appears between

  15. Heavy Metals (Cd, Cu, Cr, Pb and Zn) in Meretrix meretrix Roding, Water and Sediments from Estuaries in Sabah, North Borneo

    ERIC Educational Resources Information Center

    Abdullah, Mohd. Harun; Sidi, Jovita; Aris, Ahmad Zaharin

    2007-01-01

    Concentrations of heavy metals (Cd, Cu, Cr, Pb and Zn) in tissues of Meretrix meretrix Roding (M. meretrix R.), water and sediments from two estuaries were determined. One estuary is located in an urban area of Kota Kinabalu (Likas estuary) and the other in a rural district of Kota Belud (Kota Belud estuary), where both are in Sabah, North of…

  16. Geospatial Mapping of Pb, Cr, Cu, Zn, Cd, and Sb in Urban Soil, Cd. Juarez, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Amaya, M. A.; Grimida, S. E.; Elkekli, A. R.; Aldouri, R. K.; Benedict, B. A.; Pingitore, N. E., Jr.

    2015-12-01

    Population-based random stratified sampling of the city of Cd. Juarez, Chihuahua, Mexico provided 500 city blocks for study. We collected soil from the public space (where present) in front of each house on a selected block; equal measured small volumes of these were combined to produce a composite sample for analysis. Such composite samples (1) decrease, by an order of magnitude, laboratory processing and analysis costs, and (2) smooth the data to represent blocks as averages of individual houses. Retention of the unanalyzed samples of the individual houses permits their later analysis should the composites suggest further study of individual houses on an anomalous block. Elemental analysis of 10 mg pressed powders was performed on a Panalytical Epsilon5 EDS-XRF, via 8 secondary targets and 12 USGS and NIST multi-element rock standards. The mean and (range) of concentration for Pb was 43 (13-550) ppm; for Cr, 31 (1.8-76); for Cu, 22 (6-550); for Zn 84 (42-415) ppm; for Cd, 1.9 (0.1-6.2); and for Sb, 5.9 (2.7-29). The old urban core of Cd. Juarez was marked by high levels of Pb, Cr, Cu, and Zn, and, to a smaller degree, of Cd and Sb. This pattern mirrors that of contiguous El Paso, Texas, USA, directly across the narrow Rio Grande. Businesses, industrial facilities, transportation (both railroads and highways), traditional "downtown" shopping, and old residential districts cluster in this urban core. A Pb-Cu-Zn smelter, which operated for more than a century until 1999, is present in the US adjacent to the Rio Grande, about two km away from downtown Cd. Juarez. Thus the city has been subject to both traditional metal sources (e.g., leaded gasoline, highway debris) and smelter emissions. The poplation of Cd. Juarez has exploded in the last few decades to some 1.5 million inhabitants due both to natural growth and in-migration from rural districts for economic opportunity. Most of this growth has been accommodated by radial expansion of the city into the surrounding

  17. Accumulation of Cr, Cd, Pb, Cu, and Zn by plants in tanning sludge storage sites: opportunities for contamination bioindication and phytoremediation.

    PubMed

    Yuan, Yongqiang; Yu, Shen; Bañuelos, G S; He, Yunfeng

    2016-11-01

    Tanning sludge enriched with high concentrations of Cr and other metals has adverse effects on the environment. Plants growing in the metalliferous soils may have the ability to cope with high metal concentrations. This study focuses on potentials of using native plants for bioindication and/or phytoremediation of Cr-contaminated sites. In the study, we characterized plants and soils from six tanning sludge storage sites. Soil in these sites exhibited toxic levels of Cr (averaged 16,492 mg kg -1 ) and other metals (e.g., 48.3 mg Cu kg -1 , 2370 mg Zn kg -1 , 44.9 mg Pb kg -1 , and 0.59 mg Cd kg -1 ). Different metal tolerance and accumulation patterns were observed among the sampled plant species. Phragmites australis, Zephyranthes candida, Cynodon dactylon, and Alternanthera philoxeroides accumulated moderate-high concentrations of Cr and other metals, which could make them good bioindicators of heavy metal pollution. High Cr and other metal concentrations (e.g., Cd and Pb) were found in Chenopodium rubrum (372 mg Cr kg -1 ), Aster subulatus (310 mg Cr kg -1 ), and Brassica chinensis (300 mg Cr kg -1 ), being considered as metal accumulators. In addition, Nerium indicum and Z. candida were able to tolerate high concentrations of Cr and other metals, and they may be used as preferable pioneer species to grow or use for restoration in Cr-contaminated sites. This study can be useful for establishing guidelines to select the most suitable plant species to revegetate and remediate metals in tanning sludge-contaminated fields.

  18. Melting of Pb Charge Glass and Simultaneous Pb-Cr Charge Transfer in PbCrO 3 as the Origin of Volume Collapse

    DOE PAGES

    Yu, Runze; Hojo, Hajime; Watanuki, Tetsu; ...

    2015-09-15

    A metal to insulator transition in integer or half integer charge systems can be regarded as crystallization of charges. The insulating state tends to have a glassy nature when randomness or geometrical frustration exists. In this paper, we report that the charge glass state is realized in a perovskite compound PbCrO 3, which has been known for almost 50 years, without any obvious inhomogeneity or triangular arrangement in the charge system. PbCrO 3 has a valence state of Pb 2+ 0.5Pb 4+ 0.5Cr 3+O 3 with Pb 2+–Pb 4+ correlation length of three lattice-spacings at ambient condition. A pressure inducedmore » melting of charge glass and simultaneous Pb–Cr charge transfer causes an insulator to metal transition and ~10% volume collapse.« less

  19. Experimental Liquidus Studies of the Pb-Cu-Si-O System in Equilibrium with Metallic Pb-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Shevchenko, M.; Nicol, S.; Hayes, P. C.; Jak, E.

    2018-03-01

    Phase equilibria of the Pb-Cu-Si-O system have been investigated in the temperature range from 1073 K to 1673 K (800 °C to 1400 °C) for oxide liquid (slag) in equilibrium with solid Cu metal and/or liquid Pb-Cu alloy, and solid oxide phases: (a) quartz or tridymite (SiO2) and (b) cuprite (Cu2O). High-temperature equilibration on silica or copper substrates was performed, followed by quenching, and direct measurement of Pb, Cu, and Si concentrations in the liquid and solid phases using the electron probe X-ray microanalysis has been employed to accurately characterize the system in equilibrium with Cu or Pb-Cu metal. All results are projected onto the PbO-"CuO0.5"-SiO2 plane for presentation purposes. The present study is the first-ever systematic investigation of this system to describe the slag liquidus temperatures in the silica and cuprite primary phase fields.

  20. Environmentally safe sewage sludge disposal: the impact of liming on the behaviour of Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn.

    PubMed

    Scancar, J; Milacic, R; Strazar, M; Burica, O; Bukovec, P

    2001-02-01

    Dewatered sewage sludge containing relatively high total concentrations of Cr (945 micrograms ml-1), Cu (523 micrograms ml-1), Ni (1186 micrograms ml-1) and Zn (2950 micrograms ml-1) was treated with quicklime and sawdust for sludge disinfection and post-stabilisation. The mobility of the heavy metals in the sludge samples was assessed by applying a modified five-step Tessier sequential extraction procedure. Water was added as a first step for estimation of the proportion of the easily soluble metal fractions. To check the precision of the analytical work the concentrations of heavy metals in steps 1-6 of the extraction procedure were summed and compared to the total metal concentrations. The mass balance agreed within +/- 3% for Cd, Cu, Cr, and Zn and within +/- 5% for Ni, Pb, Fe and Mn. Data from the partitioning study indicate that in the lime-treated sludge at a pH of 12 the mobility of Cu and Ni notably increased with the solubilisation of these metals from their organic and/or carbonate and Fe and Mn oxide and hydroxide fractions, respectively. Liming slightly decreased the proportion of other heavy metals in the easily soluble fractions while its impact on the partitioning between other sludge phases was almost insignificant. Due to the increased solubility of Ni and Cu as well as potential Cr oxidation at high pH, liming cannot be recommended for sludge disinfection. Addition of sawdust did not change the heavy metal partitioning.

  1. Yield strength of Cu and an engineered material of Cu with 1% Pb

    NASA Astrophysics Data System (ADS)

    Buttler, William; Gray, George, III; Fensin, Saryu; Grover, Mike; Stevens, Gerald; Stone, Joseph; Turley, William

    2015-06-01

    To study the effects of engineered elastic-plastic yield on the mass-ejection from shocked materials we fielded explosively driven Cu and CuPb experiments. The Cu and CuPb experiments fielded fully annealed disks in contact with PBX 9501; the CuPb was extruded with 1% Pb that aggregates at the Cu grain boundaries. The elastic-plastic yield strength is explored as a difference of ejecta production of CuPb versus Cu, where the ejecta production of solid materials ties directly to the surface perturbation geometries of wavelengths (fixed at 65 μm) and amplitudes (which were varied). We observed that the Cu performs as expected, with ejecta turning on at the previously observed yield threshold, but the CuPb ejects mass in much larger quantities, at much lower wavenumber (k = 2 π/ λ) amplitude (h) products (kh), implying a reduced elastic-plastic yield stress of the engineered material, CuPb.

  2. Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment.

    PubMed

    Song, Yue; Ammami, Mohamed-Tahar; Benamar, Ahmed; Mezazigh, Salim; Wang, Huaqing

    2016-06-01

    In recent years, electrokinetic (EK) remediation method has been widely considered to remove metal pollutants from contaminated dredged sediments. Chelating agents are used as electrolyte solutions to increase metal mobility. This study aims to investigate heavy metal (HM) (As, Cd, Cr, Cu, Ni, Pb and Zn) mobility by assessing the effect of different chelating agents (ethylenediaminetetraacetic acid (EDTA), ethylenediaminedisuccinic acid (EDDS), nitrilotriacetic acid (NTA) or citric acid (CA)) in enhancing EK remediation efficiency. The results show that, for the same concentration (0.1 mol L(-1)), EDTA is more suitable to enhance removal of Ni (52.8 %), Pb (60.1 %) and Zn (34.9 %). EDDS provides effectiveness to increase Cu removal efficiency (52 %), while EDTA and EDDS have a similar enhancement removal effect on As EK remediation (30.5∼31.3 %). CA is more suitable to enhance Cd removal (40.2 %). Similar Cr removal efficiency was provided by EK remediation tests (35.6∼43.5 %). In the migration of metal-chelate complexes being directed towards the anode, metals are accumulated in the middle sections of the sediment matrix for the tests performed with EDTA, NTA and CA. But, low accumulation of metal contamination in the sediment was observed in the test using EDDS.

  3. Sugar beet factory lime affects the mobilization of Cd, Co, Cr, Cu, Mo, Ni, Pb, and Zn under dynamic redox conditions in a contaminated floodplain soil.

    PubMed

    Shaheen, Sabry M; Rinklebe, Jörg

    2017-01-15

    The impact of sugar beet factory lime (SBFL) on the release dynamics and mobilization of toxic metals (TMs) under dynamic redox conditions in floodplain soils has not been studied up to date. Therefore, the aim of this study was to verify the scientific hypothesis that SBFL is able to immobilize Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, and Zn under different redox potentials (E H ) in a contaminated floodplain soil. For this purpose, the non-treated contaminated soil (CS) and the same soil treated with SBFL (CS+SBFL) were flooded in the laboratory using a highly sophisticated automated biogeochemical microcosm apparatus. The experiment was conducted stepwise from reducing (-13 mV) to oxidizing (+519 mV) soil conditions. Soil pH decreased under oxic conditions in CS (from 6.9 to 4.0) and in CS+SBFL (from 7.5 to 4.4). The mobilization of Cu, Cr, Pb, and Fe were lower in CS+SBFL than in CS under both reducing/neutral and oxic/acidic conditions. Those results demonstrate that SBFL is able to decrease concentrations of these elements under a wide range of redox and pH conditions. The mobilization of Cd, Co, Mn, Mo, Ni, and Zn were higher in CS+SBFL than in CS under reducing/neutral conditions; however, these concentrations showed an opposite behavior under oxic/acidic conditions and were lower in CS+SBFL than in CS. We conclude that SBFL immobilized Cu, Cr, Pb, and Fe under dynamic redox conditions and immobilized Cd, Co, Mn, Mo, Ni, and Zn under oxic acidic conditions; however, the latter elements were mobilized under reducing neutral conditions in the studied soil. Therefore, the addition of SBFL to acid floodplain soils contaminated with TMs might be an important alternative for ameliorating these soils with view to a sustainable management of these soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Observations of a Cast Cu-Cr-Zr Alloy

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2006-01-01

    Prior work has demonstrated that Cu-Cr-Nb alloys have considerable advantages over the copper alloys currently used in regeneratively cooled rocket engine liners. Observations indicated that Zr and Nb have similar chemical properties and form very similar compounds. Glazov and Zakharov et al. reported the presence of Cr2Zr in Cu-Cr-Zr alloys with up to 3.5 wt% Cr and Zr though Zeng et al. calculated that Cr2Zr could not exist in a ternary Cu-Cr-Zr alloy. A cast Cu-6.15 wt% Cr-5.25 wt% Zr alloy was examined to determine if the microstructure developed would be similar to GRCop-84 (Cu-6.65 wt% Cr-5.85 wt% Nb). It was observed that the Cu-Cr-Zr system did not form any Cr2Zr even after a thermal exposure at 875 C for 176.5 h. Instead the alloy consisted of three phases: Cu, Cu5Zr, and Cr.

  5. Genotoxicity and cytotoxicity response to environmentally relevant complex metal mixture (Zn, Cu, Ni, Cr, Pb, Cd) accumulated in Atlantic salmon (Salmo salar). Part I: importance of exposure time and tissue dependence.

    PubMed

    Stankevičiūtė, Milda; Sauliutė, Gintarė; Svecevičius, Gintaras; Kazlauskienė, Nijolė; Baršienė, Janina

    2017-10-01

    Health impact of metal mixture at environment realistic concentrations are difficult to predict especially for long-term effects where cause-and-effect relationships may not be directly obvious. This study was aimed to evaluate metal mixture (Zn-0.1, Cu-0.01, Ni-0.01, Cr-0.01, Pb-0.005 and Cd-0.005 mg/L, respectively for 1, 2, 4, 7, 14 and 28 days at concentrations accepted for the inland waters in EU) genotoxicity (micronuclei, nuclear buds, nuclear buds on filament), cytotoxicity (8-shaped nuclei, fragmented-apoptotic erythrocytes), bioaccumulation, steady-state and the reference level of geno-cytotoxicity in hatchery-reared Atlantic salmon tissues. Metals accumulated mostly in gills and kidneys, to the lesser extent in the muscle. Uptake of metals from an entire mixture in the fish for 14 days is sufficient to reach steady-state Cr, Pb concentrations in all tissues; Zn, Cu-in kidneys and muscle, Ni-in liver, kidneys, muscle and Cd-in muscle. Treatment with metal mixture significantly increased summed genotoxicity levels at 7 days of exposure in peripheral blood and liver erythrocytes, at 14 days of exposure in gills and kidney erythrocytes. Significant elevation of cytotoxicity was detected after 2 and 14 days of exposure in gills erythrocytes and after 28 days-in peripheral blood erythrocytes. The amount of Cu, Cr, Pb and Cd accumulated in tissues was dependent upon duration of exposure; nuclear buds, 8-shaped nuclei frequencies also were dependent upon duration of exposure. This study indicates that metals at low levels when existing in mixture causes significant geno-cytotoxicity responses and metals bioaccumulation in salmon.

  6. Recyclable colorimetric sensor of Cr3 + and Pb2 + ions simultaneously using a zwitterionic amino acid modified gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Sang, Fuming; Li, Xin; Zhang, Zhizhou; Liu, Jia; Chen, Guofu

    2018-03-01

    In this work, a rapid, simple and sensitive colorimetric sensor for simultaneous (or respective) detection of Cr3 + and Pb2 + using tyrosine functionalized gold nanoparticles (AuNPsTyr) has been developed. Tyrosine, a natural and zwitterionic amino acid, could be as a reducing and capping agent to synthesise AuNPs and allow for the simultaneous and selective detection of Cr3 + and Pb2 +. Upon the addition of Cr3 + or Pb2 + (a combination of them), the color of AuNPsTyr solution changes from red to blue grey and the characteristic surface plasmon resonance (SPR) band is red-shifted to 580 nm due to the aggregation of AuNPs. Interestingly, the aggregated AuNPsTyr can be regnerated and recycled by removing Pb2 + and Cr3 +. Even after 3 rounds, AuNPsTyr show almost the same A580 nm / A520 nm value for the assays of Pb2 + and Cr3 +, indicating the good recyclability of the colorimetric sensor. The responding time (within 1 min) and sensitivity of the colorimetric sensor are largely improved after the addition of 0.1 M NaCl. Moreover, the AuNPsTyr aggregated by Cr3 + or Pb2 + (a combination of them) show excellent selectivity compared to other metal ions (Cr3 +, Pb2 +, Fe2 +,Cu2 +,Zn2 +,Cr6 +,Ni2 +,Co2 +,Hg2 +,Mn2 +,Mg2 +,Ca2 +,Cd2 +). More importantly, the developed sensor manifests good stability at room temperature for 3 months, which has been successfully used to determine Cr3 + and Pb2 + in the real water samples with a high sensitivity.

  7. Historical perspective of heavy metals contamination (Cd, Cr, Cu, Hg, Pb, Zn) in the Seine River basin (France) following a DPSIR approach (1950-2005).

    PubMed

    Meybeck, Michel; Lestel, Laurence; Bonté, Philippe; Moilleron, Régis; Colin, Jean Louis; Rousselot, Olivier; Hervé, Daniel; de Pontevès, Claire; Grosbois, Cécile; Thévenot, Daniel R

    2007-04-01

    The Driver-Pressures-State-Impact-Response approach is applied to heavy metals in the Seine River catchment (65,000 km(2); 14 million people of which 10 million are aggregated within Paris megacity; 30% of French industrial and agricultural production). The contamination pattern at river mouth is established on the particulate material at different time scales: 1930-2000 for floodplain cores, 1980-2003 for suspended particulate matter (SPM) and bed-sediments, 1994-2003 for atmospheric fallout and annual flood deposits. The Seine has been among the most contaminated catchments with maximum contents recorded at 130 mg kg(-1) for Cd, 24 for Hg, 558 for Pb, 1620 for Zn, 347 for Cu, 275 for Cr and 150 for Ni. Today, the average levels for Cd (1.8 mg kg(-1)), Hg (1.08), Pb (108), Zn (370), Cu (99), Cr (123) and Ni (31) are much lower but still in the upper 90% of the global scale distribution (Cr and Ni excepted) and well above the natural background values determined on pre-historical deposits. All metal contents have decreased at least since 1955/65, well before metal emission regulations that started in the mid 1970's and the metal monitoring in the catchment that started in the early 1980's. In the last 20 y, major criteria changes for the management of contaminated particulates (treated urban sludge, agricultural soils, dredged sediments) have occurred. In the mid 1990's, there was a complete shift in the contamination assessment scales, from sediment management and water usage criteria to the good ecological state, now required by the 2000 European Directive. When comparing excess metal outputs, associated to river SPM, to the average metal demand within the catchment from 1950 to 2000, the leakage ratios decrease exponentially from 1950 to 2000 for Cd, Cr, Cu, Pb and Zn, meanwhile, a general increase of the demand is observed: the rate of recycling and/or treatment of metals within the anthroposphere has been improved ten-fold. Hg environmental trajectory is very

  8. Monitoring of Cr, Cu, Pb, V and Zn in polluted soils by laser induced breakdown spectroscopy (LIBS).

    PubMed

    Dell'Aglio, Marcella; Gaudiuso, Rosalba; Senesi, Giorgio S; De Giacomo, Alessandro; Zaccone, Claudio; Miano, Teodoro M; De Pascale, Olga

    2011-05-01

    Laser Induced Breakdown Spectroscopy (LIBS) is a fast and multi-elemental analytical technique particularly suitable for the qualitative and quantitative analysis of heavy metals in solid samples, including environmental ones. Although LIBS is often recognised in the literature as a well-established analytical technique, results about quantitative analysis of elements in chemically complex matrices such as soils are quite contrasting. In this work, soil samples of various origins have been analyzed by LIBS and data compared to those obtained by Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). The emission intensities of one selected line for each of the five analytes (i.e., Cr, Cu, Pb, V, and Zn) were normalized to the background signal, and plotted as a function of the concentration values previously determined by ICP-OES. Data showed a good linearity for all calibration lines drawn, and the correlation between ICP-OES and LIBS was confirmed by the satisfactory agreement obtained between the corresponding values. Consequently, LIBS method can be used at least for metal monitoring in soils. In this respect, a simple method for the estimation of the soil pollution degree by heavy metals, based on the determination of an anthropogenic index, was proposed and determined for Cr and Zn.

  9. Deuterium transport in Cu, CuCrZr, and Cu/Be

    NASA Astrophysics Data System (ADS)

    Anderl, R. A.; Hankins, M. R.; Longhurst, G. R.; Pawelko, R. J.

    This paper presents the results of deuterium implantation/permeation experiments and TMAP4 simulations for a CuCrZr alloy, for OFHC-Cu and for a Cu/Be bi-layered structure at temperatures from 700 to 800 K. Experiments used a mass-analyzed, 3-keV D 3+ ion beam with particle flux densities of 5 × 10 19 to 7 × 10 19 D/m 2 s. Effective diffusivities and surface molecular recombination coefficients were derived giving Arrhenius pre-exponentials and activation energies for each material: CuCrZr alloy, (2.0 × 10 -2 m 2/s, 1.2 eV) for diffusivity and (2.9 × x10 -14 m 4/s, 1.92 eV) for surface molecular recombination coefficients; OFHC Cu, (2.1 × 10 -6 m 2/s, 0.52 eV) for diffusivity and (9.1 × 10 -18 m 4/s, 0.99 eV) for surface molecular recombination coefficients. TMAP4 simulation of permeation data measured for a Cu/Be bi-layer sample was achieved using a four-layer structure (Cu/BeO interface/Be/BeO back surface) and recommended values for diffusivity and solubility in Be, BeO and Cu.

  10. Crystal structure, Raman scattering and magnetic properties of CuCr2-xZrxSe4 and CuCr2-xSnxSe4 selenospinels

    NASA Astrophysics Data System (ADS)

    Pinto, C.; Galdámez, A.; Barahona, P.; Moris, S.; Peña, O.

    2018-06-01

    Selenospinels, CuCr2-xMxSe4 (M = Zr and Sn), were synthesized via conventional solid-state reactions. The crystal structure of CuCr1.5Sn0.5Se4, CuCr1.7Sn0.3Se4, CuCr1.5Zr0.5Se4, and CuCr1.8Zr0.2Se4 were determined using single-crystal X-ray diffraction. All the phases crystallized in a cubic spinel-type structure. The chemical compositions of the single-crystals were examined using energy-dispersive X-ray analysis (EDS). Powder X-ray diffraction patterns of CuCr1.3Sn0.7Se4 and CuCr1.7Sn0.3Se4 were consistent with phases belonging to the Fd 3 bar m Space group. An analysis of the vibrational properties on the single-crystals was performed using Raman scattering measurements. The magnetic properties showed a spin glass behavior with increasing Sn content and ferromagnetic order for CuCr1.7Sn0.3Se4.

  11. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17%Cr and Cu-17%Cr-5%Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu- 17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 +/- 9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu-17%Cr- 5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR- 5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  12. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17%Cr and Cu-17%Cr-5%Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu- 17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 9.5 kJ mol-1. In contrast, the oxidation kinetics for the Cu-17%Cr- 5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR- 5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  13. Seebeck Coefficient of Cation-Substituted Disulfides CuCr1-x Fe x S2 and Cu1-x Fe x CrS2

    NASA Astrophysics Data System (ADS)

    Korotaev, Evgeniy V.; Syrokvashin, Mikhail M.; Filatova, Irina Yu.; Pelmenev, Konstantin G.; Zvereva, Valentina V.; Peregudova, Natalya N.

    2018-03-01

    The effect of cation substitution on the Seebeck coefficient of CuCr1-x Fe x S2 (x = 0 to 0.30) and Cu1-x Fe x CrS2 (x = 0 to 0.03) in the temperature range of 100 K to 450 K has been investigated. Increasing iron concentration led to a metal-insulator transition which suppressed the thermoelectric power. However, for low iron concentration (x < 0.03), the Seebeck coefficient of CuCr1-x Fe x S2 and Cu1-x Fe x CrS2 exceeded the values for the undoped copper-chromium disulfide matrix CuCrS2 at temperature below 300 K.

  14. Mechanical Properties of Cu-Cr-Nb Alloys

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    1997-01-01

    The chemical compositions of the alloys are listed. The alloying levels were near the values for stochiometric Cr2Nb. A slight excess of Cr was chosen for increased hydrogen embrittlement resistance. The microstructures of all Cu-Cr-Nb alloys were very similar. Two typical transmission electron microscope (TEM) micrographs are presented. The images show the presence of large mount of Cr2Nb precipitates in a nearly pure Cu matrix. The interactions between dislocations and precipitates are currently under investigations, but as the images demonstrates, the extremely fine (less then 15 nm) Cr2Nb are the primary strengtheners for the alloy.

  15. Selective Detection of NO2 Using Cr-Doped CuO Nanorods

    PubMed Central

    Kim, Kang-Min; Jeong, Hyun-Mook; Kim, Hae-Ryong; Choi, Kwon-Il; Kim, Hyo-Joong; Lee, Jong-Heun

    2012-01-01

    CuO nanosheets, Cr-doped CuO nanosheets, and Cr-doped CuO nanorods were prepared by heating a slurry containing Cu-hydroxide/Cr-hydroxide. Their responses to 100 ppm NO2, C2H5OH, NH3, trimethylamine, C3H8, and CO were measured. For 2.2 at% Cr-doped CuO nanorods, the response (Ra/Rg, Ra: resistance in air, Rg: resistance in gas) to 100 ppm NO2 was 134.2 at 250 °C, which was significantly higher than that of pure CuO nano-sheets (Ra/Rg = 7.5) and 0.76 at% Cr-doped CuO nanosheets (Ra/Rg = 19.9). In addition, the sensitivity for NO2 was also markedly enhanced by Cr doping. Highly sensitive and selective detection of NO2 in 2.2 at% Cr-doped CuO nanorods is explained in relation to Cr-doping induced changes in donor density, morphology, and catalytic effects. PMID:22969384

  16. Heavy metal (Cd, Cr, Cu, Hg, Pb, Zn) concentrations in seven fish species in relation to fish size and location along the Yangtze River.

    PubMed

    Yi, Yu-Jun; Zhang, Shang-Hong

    2012-11-01

    The objective of this paper is to assess the regulation of the accumulation of heavy metals in the aquatic environment and different fish species. Water and fish samples were collected from upper to lower reaches of the Yangtze River. The heavy metal (Cd, Cr, Cu, Hg, Pb, Zn) concentrations in the muscle tissue of seven fishes were measured. Additionally, the relationships between heavy metal concentrations in fish tissue and fish size (length and weight), condition factor, water layer distribution, and trophic level were investigated. Metal concentrations (milligrams per kilogram wet weight) were found to be distributed differently among different fish species. The highest concentrations of Cu (1.22 mg/kg) and Zn (7.55 mg/kg) were measured in Pelteobagrus fulvidraco, the highest concentrations of Cd (0.115 mg/kg) and Hg (0.0304 mg/kg) were measured in Silurus asotus, and the highest concentrations of Pb (0.811 mg/kg) and Cr (0.239 mg/kg) were measured in Carassius auratus and Cyprinus carpio. A positive relationship was found between fish size and metal level in most cases. The variance of the relationships may be the result of differences in habitat, swimming behavior, and metabolic activity. In this study, fishes living in the lower water layer and river bottom had higher metals concentrations than in upper and middle layers. Benthic carnivorous and euryphagous fish had higher metals concentrations than phytoplankton and herbivorous fish. Generally, fish caught from the lower reach had higher metals concentrations than those from the upper reach. Cadmium and lead concentrations in several fishes exceeded the permissible food consumption limits, this should be considered to be an important warning signal.

  17. Geographical and pedological drivers of distribution and risks to soil fauna of seven metals (Cd, Cu, Cr, Ni, Pb, V and Zn) in British soils.

    PubMed

    Spurgeon, David J; Rowland, Philip; Ainsworth, Gillian; Rothery, Peter; Long, Sara; Black, Helaina I J

    2008-05-01

    Concentrations of seven metals were measured in over 1000 samples as part of an integrated survey. Sixteen metal pairs were significantly positively correlated. Cluster analysis identified two clusters. Metals from the largest (Cr, Cu, Ni, V, Zn), but not the smallest (Cd, Pb) cluster were significantly negatively correlated with spatial location and soil pH and organic matter content. Cd and Pb were not correlated with these parameters, due possibly to the masking effect of recent extensive release. Analysis of trends with soil properties in different habitats indicated that general trends may not necessarily be applicable to all areas. A risk assessment indicated that Zn poses the most widespread direct risk to soil fauna and Cd the least. Any risks associated with high metal concentrations are, however, likely to be greatest in habitats such as arable and horticultural, improved grassland and built up areas where soil metal concentrations are more frequently elevated.

  18. Ultrathin Cr added Ru film as a seedless Cu diffusion barrier for advanced Cu interconnects

    NASA Astrophysics Data System (ADS)

    Hsu, Kuo-Chung; Perng, Dung-Ching; Yeh, Jia-Bin; Wang, Yi-Chun

    2012-07-01

    A 5 nm thick Cr added Ru film has been extensively investigated as a seedless Cu diffusion barrier. High-resolution transmission electron microscopy micrograph, X-ray diffraction (XRD) pattern and Fourier transform-electron diffraction pattern reveal that a Cr contained Ru (RuCr) film has a glassy microstructure and is an amorphous-like film. XRD patterns and sheet resistance data show that the RuCr film is stable up to 650 °C, which is approximately a 200 °C improvement in thermal stability as compared to that of the pure Ru film. X-ray photoelectron spectroscopy depth profiles show that the RuCr film can successfully block Cu diffusion, even after a 30-min 650 °C annealing. The leakage current of the Cu/5 nm RuCr/porous SiOCH/Si stacked structure is about two orders of magnitude lower than that of a pristine Ru sample for electric field below 1 MV/cm. The RuCr film can be a promising Cu diffusion barrier for advanced Cu metallization.

  19. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu-17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9+/-9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu-17%Cr-5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR-5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  20. The General Isothermal Oxidation Behavior of Cu-8Cr-4Nb

    NASA Technical Reports Server (NTRS)

    Thomas-Ogbuji, L. U.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Oxidation kinetics of Cu-8Cr-4Nb was investigated by TGA (thermogravimetric) exposures between 500 and 900-C (at 25-50 C intervals) and the oxide scale morphologies examined by microscopy and micro-analysis. Because Cu-8Cr-4Nb is comprised of fine Cr2Nb precipitates in a Cu matrix, the results were interpreted by comparison with the behavior of copper (OFHC) and 'NARloy-Z' (a rival candidate material for thrust cell liner applications in advanced rocket engines) under the same conditions. While NARloy-Z and Cu exhibited identical oxidation behavior, Cu-8Cr-4Nb differed markedly in several respects: below approx. 700 C its oxidation rates were significantly lower than those of Cu; At higher temperatures its oxidation rates fell into two categories: an initial rate exceeding that of Cu, and a terminal rate comparable to that of Cu. Differences in oxide morphologies paralleled the kinetic differences at higher temperature: While NARloy-Z and Cu produced a uniform oxide scale of Cu2O inner layer and CuO outer layer, the inner (Cu2O) layer on Cu-8Cr-4Nb was stratified, with a highly porous/spongy inner stratum (responsible for the fast initial kinetics) and a dense/blocky outer stratum (corresponding to the slow terminal kinetics). Single and spinel oxides of Nb and Cr were found at the interface between the oxide scale and Cu-8Cr-4Nb substrate and it appears that these oxides were responsible for its suppressed oxidation rates at the intermediate temperatures. No difference was found between Cu-8Cr-4Nb oxidation in air and in oxygen at 1.0 atm.

  1. Mechanical and Thermal Properties of Two Cu-Cr-Nb Alloys and NARloy-Z

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Michal, Gary M.

    1996-01-01

    A series of creep tests were conducted on Cu-8 Cr-4 Nb (Cu-8 at.% Cr-4 at.% Nb), Cu-4 Cr-2 Nb (Cu-4 at.% Cr-2 at% Nb), and NARloy-Z (Cu-3 wt.% Ag-0.5 wt.% Zr) samples to determine their creep properties. In addition, a limited number of low cycle fatigue and thermal conductivity tests were conducted. The Cu-Cr-Nb alloys showed a clear advantage in creep life and sustainable load over the currently used NARloy-Z. Increases in life at a given stress were between 100% and 250% greater for the Cu-Cr-Nb alloys depending on the stress and temperature. For a given life, the Cu-Cr-Nb alloys could support a stress between 60% and 160% greater than NARloy-Z. Low cycle fatigue lives of the Cu-8 Cr-4 Nb alloy were equivalent to NARloy-Z at room temperature. At elevated temperatures (538 C and 650 C), the fatigue lives were 50% to 200% longer than NARloy-Z samples tested at 538 C. The thermal conductivities of the Cu-Cr-Nb alloys remained high, but were lower than NARloy-Z and pure Cu. The Cu-Cr-Nb thermal conductivities were between 72% and 96% that of pure Cu with the Cu-4 Cr-2 Nb alloy having a significant advantage in thermal conductivity over Cu-8 Cr4 Nb. In comparison, stainless steels with equivalent strengths would have thermal conductivities less than 25% the thermal conductivity of pure Cu. The combined results indicate that the Cu-Cr-Nb alloys offer an attractive alternative to current high temperature Cu-based alloys such as NARloy-Z.

  2. Heavy metals pollution and pb isotopic signatures in surface sediments collected from Bohai Bay, North China.

    PubMed

    Gao, Bo; Lu, Jin; Hao, Hong; Yin, Shuhua; Yu, Xiao; Wang, Qiwen; Sun, Ke

    2014-01-01

    To investigate the characteristics and potential sources of heavy metals pollution, surface sediments collected from Bohai Bay, North China, were analyzed for the selected metals (Cd, Cr, Cu, Ni, Pb, and Zn). The Geoaccumulation Index was used to assess the level of heavy metal pollution. Pb isotopic compositions in sediments were also measured to effectively identify the potential Pb sources. The results showed that the average concentrations of Cd, Cr, Cu, Ni, Pb, and Zn were 0.15, 79.73, 28.70, 36.56, 25.63, and 72.83 mg/kg, respectively. The mean concentrations of the studied metals were slightly higher than the background values. However, the heavy metals concentrations in surface sediments in Bohai Bay were below the other important bays or estuaries in China. The assessment by Geoaccumulation Index indicated that Cr, Zn, and Cd were classified as "the unpolluted" level, while Ni, Cu, and Pb were ranked as "unpolluted to moderately polluted" level. The order of pollution level of heavy metals was: Pb > Ni > Cu > Cr > Zn > Cd. The Pb isotopic ratios in surface sediments varied from 1.159 to 1.185 for (206)Pb/(207)Pb and from 2.456 to 2.482 for (208)Pb/(207)Pb. Compared with Pb isotopic radios in other sources, Pb contaminations in the surface sediments of Bohai Bay may be controlled by the mix process of coal combustion, aerosol particles deposition, and natural sources.

  3. Chemometric evaluation of Cd, Co, Cr, Cu, Ni (inductively coupled plasma optical emission spectrometry) and Pb (graphite furnace atomic absorption spectrometry) concentrations in lipstick samples intended to be used by adults and children.

    PubMed

    Batista, Érica Ferreira; Augusto, Amanda dos Santos; Pereira-Filho, Edenir Rodrigues

    2016-04-01

    A method was developed for determining the concentrations of Cd, Co, Cr, Cu, Ni and Pb in lipstick samples intended to be used by adults and children using inductively coupled plasma optical emission spectrometry (ICP OES) and graphite furnace atomic absorption spectrometry (GF AAS) after treatment with dilute HNO3 and hot block. The combination of fractional factorial design and Desirability function was used to evaluate the ICP OES operational parameters and the regression models using Central Composite and Doehlert designs were calculated to stablish the best working condition for all analytes. Seventeen lipstick samples manufactured in different countries with different colors and brands were analyzed. Some samples contained high concentrations of toxic elements, such as Cr and Pb, which are carcinogenic and cause allergic and eczematous dermatitis. The maximum concentration detected was higher than the permissible safe limits for human use, and the samples containing these high metal concentrations were intended for use by children. Principal component analysis (PCA) was used as a chemometrics tool for exploratory analysis to observe the similarities between samples relative to the metal concentrations (a correlation between Cd and Pb was observed). Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Distribution of Cd, Pb, Zn and Cu and their chemical speciations in soils from a peri-smelter area in northeast China

    NASA Astrophysics Data System (ADS)

    Du, Ping; Xue, Nandong; Liu, Li; Li, Fasheng

    2008-07-01

    An exploratory study on soil contamination of heavy metals was carried out surrounding Huludao zinc smelter in Liaoning province, China. The distribution of total heavy metals and their chemical speciations were investigated. The correlations between heavy metal speciations and soil pH values in corresponding sites were also analyzed. In general, Cd, Zn, Pb, Cu and As presented a significant contamination in the area near the smelter, comparied with Environmental Quality Standards for Soils in China. The geoaccumulation index showed the degree of contamination: Cd > Zn > Pb > Cu > As. There was no obvious pollution of Cr and Ni in the studied area. The speciation analysis showed that the dominant fraction of Cd and Zn was the acid soluble fraction, and the second was the residual fraction. Pb was mostly associated with the residual fraction, which constituted more than 50% of total concentration in all samples. Cu in residual fraction accounted for a high percentage (40-80%) of total concentration, and the proportion of Cu in the oxidizable fraction is higher than that of other metals. The distribution pattern of Pb and Zn was obviously affected by soil pH. It seemed that Pb and Zn content in acid solution fraction increased with increasing soil pH values, while Cd content in acid soluble fraction accounted for more proportion in neutral and alkaline groups than acidic one. The fraction distribution patterns of Cu in three pH groups were very similar and independent of soil pH values. And the residual fraction of Cu took a predominant part (50%) of the total content.

  5. Phytoextraction of Pb and Cu contaminated soil with maize and microencapsulated EDTA.

    PubMed

    Xie, Zhiyi; Wu, Longhua; Chen, Nengchang; Liu, Chengshuai; Zheng, Yuji; Xu, Shengguang; Li, Fangbai; Xu, Yanling

    2012-09-01

    Chelate-assisted phytoextraction using agricultural crops has been widely investigated as a remediation technique for soils contaminated with low mobility potentially toxic elements. Here, we report the use of a controlled-release microencapsulated EDTA (Cap-EDTA) by emulsion solvent evaporation to phytoremediate soil contaminated with Pb and Cu. Incubation experiments were carried out to assess the effect of Cap- and non-microencapsulated EDTA (Ncap-EDTA) on the mobility of soil metals. Results showed EDTA effectively increased the mobility of Pb and Cu in the soil solution and Cap-EDTA application provided lower and more constant water-soluble concentrations of Pb and Cu in comparison with. Phytotoxicity may be alleviated and plant uptake of Pb and Cu may be increased after the incorporation of Cap-EDTA. In addition phytoextraction efficiencies of maize after Cap- and Ncap-EDTA application were tested in a pot experiment. Maize shoot concentrations of Pb and Cu were lower with Cap-EDTA application than with Ncap-EDTA. However, shoot dry weight was significantly higher with Cap-EDTA application. Consequently, the Pb and Cu phytoextraction potential of maize significantly increased with Cap-EDTA application compared with the control and Ncap-EDTA application.

  6. Low-field spin dynamics of Cr7Ni and Cr7Ni-Cu -Cr 7Ni molecular rings as detected by μ SR

    NASA Astrophysics Data System (ADS)

    Sanna, S.; Arosio, P.; Bordonali, L.; Adelnia, F.; Mariani, M.; Garlatti, E.; Baines, C.; Amato, A.; Sabareesh, K. P. V.; Timco, G.; Winpenny, R. E. P.; Blundell, S. J.; Lascialfari, A.

    2017-11-01

    Muon spin rotation measurements were used to investigate the spin dynamics of heterometallic Cr7Ni and Cr7Ni -Cu-Cr7Ni molecular clusters. In Cr7Ni the magnetic ions are arranged in a quasiplanar ring and interact via an antiferromagnetic exchange coupling constant J , while Cr7Ni -Cu-Cr7Ni is composed of two Cr7Ni linked by a bridging moiety containing one Cu ion, that induces an inter-ring ferromagnetic interaction J'≪J . The longitudinal muon relaxation rate λ collected at low magnetic fields μ0H <0.15 Tesla, shows that the two systems present differences in spin dynamics vs temperature. While both samples exhibit a main peak in the muon relaxation rate vs temperature, at T ˜10 K for Cr7Ni and T ˜8 K for Cr7Ni -Cu-Cr7Ni , the two compounds have distinct additional features: Cr7Ni shows a shoulder in λ (T ) for T <8 K, while Cr7Ni -Cu-Cr7Ni shows a flattening of λ (T ) for T <2 K down to temperatures as low as T =20 mK. The main peak of both systems is explained by a Bloembergen-Purcell-Pound (BPP)-like heuristic fitting model that takes into account of a distribution of electronic spin characteristic times for T >5 K, while the shoulder presented by Cr7Ni can be reproduced by a BPP function that incorporates a single electronic characteristic time theoretically predicted to dominate for T <5 K. The flattening of λ (T ) in Cr7Ni -Cu-Cr7Ni occurring at very low temperature can be tentatively attributed to field-dependent quantum effects and/or to an inelastic term in the spectral density of the electronic spin fluctuations.

  7. Orientation dependence of heterogeneous nucleation at the Cu-Pb solid-liquid interface.

    PubMed

    Palafox-Hernandez, J Pablo; Laird, Brian B

    2016-12-07

    In this work, we examine the effect of surface structure on the heterogeneous nucleation of Pb crystals from the melt at a Cu substrate using molecular-dynamics (MD) simulation. In a previous work [Palafox-Hernandez et al., Acta Mater. 59, 3137 (2011)] studying the Cu/Pb solid-liquid interface with MD simulation, we observed that the structure of the Cu(111) and Cu(100) interfaces was significantly different at 625 K, just above the Pb melting temperature (618 K for the model). The Cu(100) interface exhibited significant surface alloying in the crystal plane in contact with the melt. In contrast, no surface alloying was seen at the Cu(111) interface; however, a prefreezing layer of crystalline Pb, 2-3 atomic planes thick and slightly compressed relative to bulk Pb crystal, was observed to form at the interface. We observe that at the Cu(111) interface the prefreezing layer is no longer present at 750 K, but surface alloying in the Cu(100) interface persists. In a series of undercooling MD simulations, heterogeneous nucleation of fcc Pb is observed at the Cu(111) interface within the simulation time (5 ns) at 592 K-a 26 K undercooling. Nucleation and growth at Cu(111) proceeded layerwise with a nearly planar critical nucleus. Quantitative analysis yielded heterogeneous nucleation barriers that are more than two orders of magnitude smaller than the predicted homogeneous nucleation barriers from classical nucleation theory. Nucleation was considerably more difficult on the Cu(100) surface-alloyed substrate. An undercooling of approximately 170 K was necessary to observe nucleation at this interface within the simulation time. From qualitative observation, the critical nucleus showed a contact angle with the Cu(100) surface of over 90°, indicating poor wetting of the Cu(100) surface by the nucleating phase, which according to classical heterogeneous nucleation theory provides an explanation of the large undercooling necessary to nucleate on the Cu(100) surface

  8. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al. Part 2; Scale Microstructures

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. Details of the oxidation kinetics of these alloys were discussed in Part I. This paper analyzes the microstructures of the scale and its composition in an attempt to elucidate the oxidation mechanisms in these alloys. The scales formed on Cu-17%Cr specimens oxidized between 773 and 973 K consisted of external CuO and subsurface Cu2O layers. The total thickness of these scales varied from about 10 m at 773 K to about 450 m at 973 K. In contrast, thin scales formed on Cu-17%Cr-5%Al alloys oxidized between 773 and 1173 K. The exact nature of these scales could not be determined by x-ray diffraction but energy dispersive spectroscopy analyses were used to construct a scale composition map. Phenomenological oxidation mechanisms are proposed for the two alloys.

  9. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al Part II: Scale Microstructures

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. Details of the oxidation kinetics of these alloys were discussed in Part I. This paper analyzes the microstructures of the scale and its composition in an attempt to elucidate the oxidation mechanisms in these alloys. The scales formed on Cu-17%Cr specimens oxidized between 773 and 973 K consisted of external CuO and subsurface Cu2O layers. The total thickness of these scales varied from about 10 m at 773 K to about 450 m at 973 K. In contrast, thin scales formed on Cu-17%Cr-5%Al alloys oxidized between 773 and 1173 K. The exact nature of these scales could not be determined by x-ray diffraction but energy dispersive spectroscopy analyses were used to construct a scale composition map. Phenomenological oxidation mechanisms are proposed for the two alloys.

  10. Activities in Cu2S-FeS-PbS melts at 1200 °C

    NASA Astrophysics Data System (ADS)

    Eriç, H.; Timuçin, M.

    1981-09-01

    The dew-point method was used to determine the vapor pressures of PbS over liquid sulfides of the system Cu2S-FeS-PbS at 1200 °C. From the PbS activity data, activities of Cu2S and FeS were evaluated both in binary and ternary melts by Gibbs-Duhem calculations. The systems Cu2S-PbS and Cu2S-FeS exhibit negative departures from ideal behavior, while the FeS-PbS melts are ideal solutions at 1200 °C.

  11. Using precipitated Cr on the surface of Cu-Cr alloy powders as catalyst synthesizing CNTs/Cu composite powders by water-assisted CVD

    NASA Astrophysics Data System (ADS)

    Zhou, Honglei; Liu, Ping; Chen, Xiaohong; Bi, Liming; Zhang, Ke; Liu, Xinkuan; Li, Wei; Ma, Fengcang

    2018-02-01

    Given that the conventional catalyst is easily soluble in the matrix to result in the poor performance of the CNTs/Cu composite materials, the Cr nano-particles precipitated on the surface of Cu-Cr particles are first used as catalysts to prepare the CNTs/Cu composite powders by means of water-assisted chemical vapor deposition in situ synthesis. The results show that the morphological difference of the precipitated Cr nano-particle is obvious with the change of solution and aging treatment, and the morphology, length and diameter of the synthetic CNTs are also different. The catalyst of Cr nano-particle has the best morphology and the synthesized CNTs had a good wettability with Cu particles when the Cu-Cr composite powders was solution-treated at 1023 K for 60 min and then was aged at 723 K for 120 min. The length, diameter, yield and purity of the synthesized CNTs can be also affected by the moisture content in the reaction gas. It is the most suitable for the growth of CNTs when the moisture content is 0.4%, and the high purity and defect-free CNTs with the smooth pipe wall, a diameter of 20 ˜ 30 nm and a length of up to 1800 nm can be obtained. The yield of CNTs with the moisture content of 0.4% reached to 138%, which was increased by 119% to compare with that without moisture. In this paper, a feasible technology was offered for the preparation of high performance CNTs/Cu composites.

  12. Biosorption of Cu2+ and Pb2+ using sophora alopecuroides residue

    NASA Astrophysics Data System (ADS)

    Feng, N.; Fan, W.; Zhu, M.; Zhang, Y.

    2016-08-01

    Sophora alopecuroides residue (SAP), a kind of traditional Chinese herbal medicine residue, was developed in an alternative biosorbent for the removal Cu2+ and Pb2+ in simulated wastewater. The morphology and surface texture of SAP were characterized by scanning electron microscopy, which showed a loose and porous structure. The biosorption experiments of Cu2+ and Pb2+ onto SAP were investigated by using batch techniques. High biosorption percentage appeared at pH values of 4.5-6.0. The experimental data followed the second-order kinetic model well. Equilibrium fit with the Langmuir isotherm model well. The maximum biosorption capacity of an adsorbent at 25 °C was respectively 60.6 mg/g Cu2+ and 128.1 mg/g Pb2+. The findings of the present study show that SAP is an attractive and effective biosorbent for Cu2+ and Pb2+.

  13. CuCrZr alloy microstructure and mechanical properties after hot isostatic pressing bonding cycles

    NASA Astrophysics Data System (ADS)

    Frayssines, P.-E.; Gentzbittel, J.-M.; Guilloud, A.; Bucci, P.; Soreau, T.; Francois, N.; Primaux, F.; Heikkinen, S.; Zacchia, F.; Eaton, R.; Barabash, V.; Mitteau, R.

    2014-04-01

    ITER first wall (FW) panels are a layered structure made of the three following materials: 316L(N) austenitic stainless steel, CuCrZr alloy and beryllium. Two hot isostatic pressing (HIP) cycles are included in the reference fabrication route to bond these materials together for the normal heat flux design supplied by the European Union (EU). This reference fabrication route ensures sufficiently good mechanical properties for the materials and joints, which fulfil the ITER mechanical specifications, but often results in a coarse grain size for the CuCrZr alloy, which is not favourable, especially, for the thermal creep properties of the FW panels. To limit the abnormal grain growth of CuCrZr and make the ITER FW fabrication route more reliable, a study began in 2010 in the EU in the frame of an ITER task agreement. Two material fabrication approaches have been investigated. The first one was dedicated to the fabrication of solid CuCrZr alloy in close collaboration with an industrial copper alloys manufacturer. The second approach investigated was the manufacturing of CuCrZr alloy using the powder metallurgy (PM) route and HIP consolidation. This paper presents the main mechanical and microstructural results associated with the two CuCrZr approaches mentioned above. The mechanical properties of solid CuCrZr, PM CuCrZr and joints (solid CuCrZr/solid CuCrZr and solid CuCrZr/316L(N) and PM CuCrZr/316L(N)) are also presented.

  14. Pb isotopic constraints on the formation of the Dikulushi Cu-Pb-Zn-Ag mineralisation, Kundelungu Plateau (Democratic Republic of Congo)

    NASA Astrophysics Data System (ADS)

    Haest, Maarten; Schneider, Jens; Cloquet, Christophe; Latruwe, Kris; Vanhaecke, Frank; Muchez, Philippe

    2010-04-01

    Base metal-Ag mineralisation at Dikulushi and in other deposits on the Kundelungu Plateau (Democratic Republic of Congo) developed during two episodes. Subeconomic Cu-Pb-Zn-Fe polysulphide ores were generated during the Lufilian Orogeny (c. 520 Ma ago) in a set of E-W- and NE-SW-oriented faults. Their lead has a relatively unradiogenic and internally inhomogeneous isotopic composition (206Pb/204Pb = 18.07-18.49), most likely generated by mixing of Pb from isotopically heterogeneous clastic sources. These sulphides were remobilised and enriched after the Lufilian Orogeny, along reactivated and newly formed NE-SW-oriented faults into a chalcocite-dominated Cu-Ag mineralisation of high economic interest. The chalcocite samples contain only trace amounts of lead and show mostly radiogenic Pb isotope signatures that fall along a linear trend in the 207Pb/204Pb vs. 206Pb/204Pb diagram (206Pb/204Pb = 18.66-23.65; 207Pb/204Pb = 15.72-16.02). These anomalous characteristics reflect a two-stage evolution involving admixture of both radiogenic lead and uranium during a young fluid event possibly c. 100 Ma ago. The Pb isotope systematics of local host rocks to mineralisation also indicate some comparable young disturbance of their U-Th-Pb systems, related to the same event. They could have provided Pb with sufficiently radiogenic compositions that was added to less radiogenic Pb remobilised from precursor Cu-Pb-Zn-Fe polysulphides, whereas the U most likely originated from external sources. Local metal sources are also suggested by the 208Pb/204Pb-206Pb/204Pb systematics of combined ore and rock lead, which indicate a pronounced and diversified lithological control of the immediate host rocks on the chalcocite-dominated Cu-Ag ores. The Pb isotope systematics of polysulphide mineralisation on the Kundelungu Plateau clearly record a diachronous evolution.

  15. Creep Testing of High-Temperature Cu-8 Cr-4 Nb Alloy Completed

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A Cu-8 at.% Cr-4 at.% Nb (Cu-8 Cr-4 Nb) alloy is under development for high-temperature, high heatflux applications, such as actively cooled, hypersonic vehicle heat exchangers and rocket engine combustion chambers. Cu-8 Cr-4 Nb offers a superior combination of strength and conductivity. It has also shown exceptional low-cycle fatigue properties. Following preliminary testing to determine the best processing route, a more detailed testing program was initiated to determine the creep lives and creep rates of Cu-8 Cr-4 Nb alloy specimens produced by extrusion. Testing was conducted at the NASA Lewis Research Center with constant-load vacuum creep units. Considering expected operating temperatures and mission lives, we developed a test matrix to accurately determine the creep properties of Cu-8 Cr-4 Nb between 500 and 800 C. Six bars of Cu-8 Cr-4 Nb were extruded. From these bars, 54 creep samples were machined and tested. The figure on the left shows the steady-state, or second-stage, creep rates for the samples. Comparison data for NARloy-Z (Cu-3 wt % Ag-0.5 wt % Zr), the alloy currently used in combustion chamber liners, were not unavailable. Therefore the steady-state creep rates for Cu at similar temperatures are presented. As expected, in comparison to pure Cu, the creep rates for Cu-8 Cr-4 Nb are much lower. The lives of the samples are presented in the figure on the right. As shown, Cu-8 Cr-4 Nb at 800 C is comparable to NARloy-Z at 648 C. At equivalent temperatures, Cu-8 Cr-4 Nb enjoys a 20 to 50 percent advantage in stress for a given life and 1 to 3 orders of magnitude greater life at a given stress. The improved properties allow for design tradeoffs and improvements in new and existing heat exchangers such as the next generation of combustion chamber liners. Average creep rates for Cu-8 Cr-4 Nb and pure Cu are shown. Average creep lives for Cu-8 Cr- 4 Nb and NARloy-Z are also shown. Currently, two companies are interested in the commercial usage of the Cu

  16. Mechanical properties of Cr-Cu coatings produced by electroplating

    NASA Astrophysics Data System (ADS)

    Riyadi, Tri Widodo Besar; Sarjito, Masyrukan, Riswan, Ricky Ary

    2017-06-01

    Hard chromium coatings has long been considered as the most used electrodeposited coating in several industrial applications such as in petrochemistry, oil and gas industries. When hard coatings used in fastener components, the sliding contact during fastening operation produces high tensile stresses on the surface which can generate microcracks. For component used in high oxidation and corrosion environment, deep cracks cannot be tolerated. In this work, a laminated structure of Cr-Cu coating was prepared using electroplating on carbon steel substrates. Two baths of chrome and copper electrolyte solutions were prepared to deposit Cr as the first layer and Cu as the second layer. The effect of current voltages on the thickness, hardness and specific wear rate of the Cu layer was investigated. The results show that an increase of the current voltages increased the thickness and hardness of the Cu layer, but reduced the specific wear rate. This study showed that the use of Cu can be a potential candidate as a laminated structure Cr-Cu for chromium plating.

  17. Glomus mosseae enhances root growth and Cu and Pb acquisition of upland rice (Oryza sativa L.) in contaminated soils.

    PubMed

    Lin, Aijun; Zhang, Xuhong; Yang, Xiaojin

    2014-12-01

    A pot culture experiment was carried out to investigate the roles of Glomus mosseae in Cu and Pb acquisition by upland rice (Oryza sativa L.) and the interactions between Cu and Pb. The soil was treated with three Cu levels (0, 100 and 200 mg kg(-1)) and three Pb levels (0, 300, and 600 mg kg(-1)). All treatments were designed with (+M) or without (-M) G. mosseae inoculation in a randomized block design. The addition of Cu and Pb significantly decreased root mycorrhizal colonization. Compared with -M, +M significantly increased root biomass in almost all treatments, and also significantly increased shoot biomass in the Pb(0)Cu(200), Pb(300)Cu(0), and all Pb(600) treatments. AM fungi enhanced plant Cu acquisition, but decreased plant Cu concentrations with all Cu plus Pb treatments, except for shoot in the Cu(200)Pb(600) treatment. Irrespective of Cu and Pb levels, +M plants had higher Pb uptakes than -M plants, but had lower root Pb and higher shoot Pb concentrations than those of -M plants. Another interpretation for the higher shoot Pb concentration in +M plants relied on Cu-Pb interactions. The study provided further evidences for the protective effects of AM fungi on upland rice against Cu and Pb contamination, and uncovered the phenomenon that Cu addition could promote Pb uptake and Pb partitioning to shoot. The possible mechanisms by which AM fungi can alleviate the toxicity induced by Cu and Pb are also discussed.

  18. Mid-twentieth century increases in anthropogenic Pb, Cd and Cu in central Asia set in hemispheric perspective using Tien Shan ice core

    NASA Astrophysics Data System (ADS)

    Grigholm, B.; Mayewski, P. A.; Aizen, V.; Kreutz, K.; Wake, C. P.; Aizen, E.; Kang, S.; Maasch, K. A.; Handley, M. J.; Sneed, S. B.

    2016-04-01

    High-resolution major and trace element (Al, As, Ca, Cd, Co, Cr, Cu, Fe, Li, Mn, Na, Pb, S, Ti, and V) ice core records from Inilchek glacier (5120 m above sea level) on the northwestern margin of the Tibetan Plateau provide the first multi-decadal ice core record spanning the period 1908-1995 AD in central Tien Shan. The trace element records reveal pronounced temporal baseline trends and concentration maxima characteristic of post-1950 anthropogenic emissions. Examination of Pb, Cd and Cu concentrations, along with non-crustal calculation estimates (i.e. excess (ex) and enrichment factor (EF)), reveal that discernable anthropogenic inputs began during the 1950s and rapidly increased to the late-1970s and early 1980s, by factors up to of 5, 6 and 3, respectively, relative to a 1910-1950 means. Pb, Cd and Cu concentrations between the 1950s-1980s are reflective of large-scale Soviet industrial and agricultural development, including the growth of production and/or consumption of the non-ferrous metals, coal and phosphate fertilizers. NOAA HYSPLIT back-trajectory frequency analysis suggests pollutant sources originating primarily from southern Kazakhstan (e.g. Shymkent and Balkhash) and the Fergana Valley (located in Kazakhstan, Uzbekistan and Kyrgyzstan). Inilchek ice core Pb, Cd and Cu reveals declines during the 1980s concurrent with Soviet economic declines, however, due to the rapid industrial and agricultural growth of western China, Pb, Cd and Cu trends increase during the 1990s reflecting a transition from primarily central Asian sources to emission sources from western China (e.g. Xinjiang Province).

  19. Genesis of the Bangbule Pb-Zn-Cu polymetallic deposit in Tibet, western China: Evidence from zircon U-Pb geochronology and S-Pb isotopes

    NASA Astrophysics Data System (ADS)

    Kan, Tian; Zheng, Youye; Gao, Shunbao

    2016-04-01

    The Banbule Pb-Zn-Cu skarn deposit is located in the Longger-Gongbujiangda volcanic magma arc in the Gangdese-Nyainqentanglha Plate. It is the only lead-zinc polymetallic deposit discovered in the westernmost Nyainqentanglha metallogenic belt. The measured and indicated resources include 0.9 Mt of Pb+Zn (4.77% Pb and 4.74% Zn, respectively), 6499 t of Cu, and 178 t of Ag (18.75g/t Ag). The orebodies mainly occur as lenses, veins and irregular shapes in the contact zone between the quartz-porphyry and limestone of the Upper Permian Xiala Formation, or in the boundaries between limestone and sandstone. Pb-Zn-Cu mineralization in the Banbule deposit is closely associated with skarns. The ore minerals are dominated by galena, sphalerite, chalcopyrite, bornite, and magnetite, with subordinate pyrite, malachite, and azurite. The gangue minerals are mainly garnet, actinolite, diopside, quartz, and calcite. The ore-related quartz-porphyry displays LA-ICP-MS zircon U-Pb age of 77.31±0.74 Ma. The δ34S values of sulfides define a narrow range of -0.8 to 4.7‰ indicating a magmatic source for the ore-forming materials. Lead isotopic systematics yield 206Pb/204Pb of 18.698 to 18.752, 207Pb/204Pb of 15.696 to 15.760, and 208Pb/204Pb of 39.097 to 39.320. The data points are constrained around the growth curves of upper crust and orogenic belt according to the tectonic discrimination diagrams. The calculated Δβ - Δγ values plot within the magmatic field according to the discrimination diagram of Zhu et al. (1995). The S-Pb isotopic data suggest that Bangbule is a typical skarn deposit, and the Pb-Zn-Cu mineralization is genetically related to the quartz-porphyry in the mining district. The discovery of the Bangbule deposit indicates that there is metallogenic potential in the westernmost Nyainqentanglha belt, which is of great importance for the exploration work in this area.

  20. Photovoltaic properties of Cu-doped CH3NH3PbI3 with perovskite structure

    NASA Astrophysics Data System (ADS)

    Shirahata, Yasuhiro; Oku, Takeo

    2017-01-01

    Photovoltaic properties of copper (Cu)-doped perovskite (CH3NH3PbCuxI3+x) photovoltaic devices with different Cu content were investigated. The CH3NH3PbCuxI3+x films were polycrystalline with a tetragonal system, and their lattice constants and crystallite size varied with Cu doping. Compared to conversion efficiencies of non-doped CH3NH3PbI3 photovoltaic device, those of CH3NH3PbCuxI3+x photovoltaic devises increased. The improvement of photovoltaic properties was attributed to partial substitution of Cu at the Pb sites.

  1. Effect of different Zr contents on properties and microstructure of Cu-Cr-Zr alloys

    NASA Astrophysics Data System (ADS)

    Jinshui, Chen; Bin, Yang; Junfeng, Wang; Xiangpeng, Xiao; Huiming, Chen; Hang, Wang

    2018-02-01

    The crystallography and morphology of precipitate particles of Cu-Cr-Zr alloys with varying Zr contents were studied by transmission electron microscopy (TEM) after solution treatments at 950 °C for 1 h and aging treatments at 500 °C for different times ranged from 0.5 h to 24 h. The microhardness and electrical conductivity of Cu-Cr-Zr alloys after various aging process were tested. The results show that the microhardness and electrical conductivity rapidly increased at first, then the microhardness decreased slowly after reaching the peak, while the conductivity continues to increase. Nano-scaled precipitates exhibit two kinds of morphology (coffee bean and ellipse shaped). With increasing Zr content, the Zr-containing precipitation sequence of Cu-Cr-Zr alloys at peak-ageing is Heusler CrCu2Zr → Cu5Zr → Cu4Zr. The Heusler CrCu2Zr phase decomposed into fine and homogeneous Cr and Cu4Zr, resulting in improved alloy properties.

  2. Pollution of soils (Pb, Cd, Cr, Zn, Cu, Ni) along the ring road of Wrocław (Poland)

    NASA Astrophysics Data System (ADS)

    Hołtra, Anna; Zamorska-Wojdyła, Dorota

    2017-11-01

    The concentrations of metallic pollution in soils and plants along the ring road of Wrocław, Poland, have been determined. Environmental samples were collected from the surface layer of the profile within 2-3 m from the edge of the road. The analysis of metals (Pb, Cd, Cr, Zn, Cu and Ni) has been carried out through FAAS and GFAAS methods. The mineralizates of soils and plants were prepared in HNO3, 65% supra pure, using the Microwave Digestion System. The pH and conductivity of the soil solutions were measured to evaluate their active and exchangeable acidity and the salinity of the soils. The index of the enrichment of soils in metals (Wn) and the bioaccumulation coefficient (WB) have been determined. Also, histograms of the frequency of the occurrence of metals in the environmental samples and the Pearson's correlation coefficients were presented. The results of metal concentrations in soils were compared to the geochemical background in uncontaminated soils of Poland. The assessment of the results in the soils was also made relative to the standard, according to the Polish Ministry of Environment Regulation from September 1st, 2016. During the assessment of the bioaccumulation coefficients of metals in plants a reference was made to the content of undesirable substances in feed in agreement with the Polish Ministry of Agriculture and Rural Development Regulation from January 23rd, 2007.

  3. [Remediation of Cu-Pb-contaminated loess soil by leaching with chelating agent and biosurfactant].

    PubMed

    Liu, Xia; Wang, Jian-Tao; Zhang, Meng; Wang, Li; Yang, Ya-Ti

    2013-04-01

    Because of its strong chelation, solubilization characteristics, the chelating agents and biosurfactant are widely used in remediation of heavy metals and organic contaminated soils. Ethylenediamine tetraacetic acid (EDTA), citric acid (CIT) and dirhamnolipid (RL2) were selected as the eluent. Batch experiments and column experiments were conducted to investigate the leaching effect of the three kinds of eluent, as well as the mixture of biosurfactant and chelating agent for Cu, Pb contaminated loess soil. The results showed that the leaching efficiencies of different eluent on Cu, Pb contaminated loess soil followed the sequence of EDTA > CIT > RL2. At an eluent concentration of 0.02 mol x L(-1), the Cu leaching efficiency was 62.74% (EDTA), 52.28% (CIT) and 15.35% (RL2), respectively; the Pb leaching efficiency was 96.10% (EDTA), 23.08% (CIT) and 14.42% (RL2), respectively. When the concentration of RL2 was 100 CMC, it had synergistic effects on the other two kinds of chelating agent in Cu leaching, and when the concentration of RL2 was 200 CMC, it had antagonism effects. The effect of RL2 on EDTA in Pb leaching was similar to that in Cu leaching. Pb leaching by CIT was inhibited in the presence of RL2. EDTA and CIT could effectively remove Cu and Pb in exchangeable states, adsorption states, carbonate salts and organic bound forms; RL2 could effectively remove Cu and Pb in exchangeable and adsorbed states.

  4. Kinetic sorption modelling of Cu, Ni, Zn, Pb and Cr ions to pine bark and blast furnace slag by using batch experiments.

    PubMed

    Nehrenheim, E; Gustafsson, J P

    2008-04-01

    Storm water and landfill leachate can both contain significant amounts of toxic metals such as Zn, Cu, Pb, Cr and Ni. Pine bark and blast furnace slag are both residual waste products that have shown a large potential for metal removal from contaminated water. There are however many variables that must be optimized in order to achieve efficient metal retention. One of these variables is the time of which the solution is in contact with each unit of filter material. Metal sorption was studied in two laboratory experiments to improve the knowledge of the effects of contact time. The results showed that pine bark was generally more efficient than blast furnace slag when the metal concentrations were relatively small, whereas blast furnace slag sorbed most metals to a larger extent at increased metal loads. In addition, sorption to blast furnace slag was found to be faster than metal binding to pine bark. A pseudo-second-order kinetic model was able to describe the data well within 1000 s of reaction time.

  5. Preparation of W/CuCrZr mono-block test mock-up using vacuum brazing technique

    NASA Astrophysics Data System (ADS)

    Premjit Singh, K.; Khirwadkar, S.; Bhope, Kedar; Patel, Nikunj; Mokaria, Prakash

    2017-04-01

    Development of the joining for W/CuCrZr mono-block PFC test mock-up is an interesting area in Fusion R&D. W/Cu bimetallic material has been prepared using OFHC Copper casting approach on the radial surface of W mono-block tile surface. The W/Cu bimetallic material has been joined with CuCrZr tube (heat sink) material with the vacuum brazing route. Vacuum brazing of W/Cu-CuCrZr has been performed @ 970°C for 10 min using NiCuMn-37 filler material under deep vacuum environment (10-6 mbar). Graphite fixture was used for OFHC Copper casting and vacuum brazing experiments. The joint integrity of W/Cu-CuCrZr mono-block mock-up of W/Cu and Cu-CuCrZr interface has been checked using ultrasonic immersion technique. The result of the experimental work is presented in the paper.

  6. 53Cr NMR study of CuCrO2 multiferroic

    NASA Astrophysics Data System (ADS)

    Smol'nikov, A. G.; Ogloblichev, V. V.; Verkhovskii, S. V.; Mikhalev, K. N.; Yakubovskii, A. Yu.; Kumagai, K.; Furukawa, Y.; Sadykov, A. F.; Piskunov, Yu. V.; Gerashchenko, A. P.; Barilo, S. N.; Shiryaev, S. V.

    2015-11-01

    The magnetically ordered phase of the CuCrO2 single crystal has been studied by the nuclear magnetic resonance (NMR) method on 53Cr nuclei in the absence of an external magnetic field. The 53Cr NMR spectrum is observed in the frequency range νres = 61-66 MHz. The shape of the spectrum depends on the delay tdel between pulses in the pulse sequence τπ/2- t del-τπ- t del-echo. The spin-spin and spin-lattice relaxation times have been measured. Components of the electric field gradient, hyperfine fields, and the magnetic moment on chromium atoms have been estimated.

  7. Effect of HIP temperature on microstructure and low cycle fatigue strength of CuCrZr alloy

    NASA Astrophysics Data System (ADS)

    Nishi, Hiroshi; Enoeda, Mikio

    2011-10-01

    In order to investigate the effect of the HIP cycle temperatures on the metallurgic degradation and the mechanical properties of CuCrZr alloy, assessments of the microstructure, tensile test, Charpy impact test and low cycle fatigue test are performed for various heat treated CuCrZr alloys, which were solution-annealed followed by water-quenched and aged state of CuCrZr with simulated HIP cycle at temperatures of 980 and 1045 °C. Grain growth occurred on 1045 °C HIP CuCrZr, though slightly on 980 °C HIP CuCrZr. Metallurgic degradation such as voids was not found by optical and SEM observations. There were coarse precipitates in all the CuCrZr and the precipitates did not easily dissolve at 980 °C. The low cycle fatigue strength of 1045 °C HIP CuCrZr was lower than that of other CuCrZr because of the metallurgic degradation caused by the heat cycle, while that of other CuCrZr was corresponding to the best fit curve of ITER MPH.

  8. Stabilization of As-, Pb-, and Cu-contaminated soil using calcined oyster shells and steel slag.

    PubMed

    Moon, Deok Hyun; Wazne, Mahmoud; Cheong, Kyung Hoon; Chang, Yoon-Young; Baek, Kitae; Ok, Yong Sik; Park, Jeong-Hun

    2015-07-01

    In this study, As-, Pb-, and Cu-contaminated soil was stabilized using calcined oyster shells (COS) and steel slag (SS). The As-contaminated soil was obtained from a timber mill site where chromate copper arsenate (CCA) was used as a preservative. On the other hand, Pb- and Cu-contaminated soil was obtained from a firing range. These two soils were thoroughly mixed to represent As-, Pb-, and Cu-contaminated soil. Calcined oyster shells were obtained by treating waste oyster shells at a high temperature using the calcination process. The effectiveness of stabilization was evaluated by 1-N HCl extraction for As and 0.1-N HCl extraction for Pb and Cu. The treatment results showed that As, Pb, and Cu leachability were significantly reduced upon the combination treatment of COS and SS. The sole treatment of SS (10 wt%) did not show effective stabilization. However, the combination treatment of COS and SS showed a significant reduction in As, Pb, and Cu leachability. The best stabilization results were obtained from the combination treatment of 15 wt% COS and 10 wt% SS. The SEM-EDX results suggested that the effective stabilization of As was most probably achieved by the formation of Ca-As and Fe-As precipitates. In the case of Pb and Cu, stabilization was most probably associated with the formation of pozzolanic reaction products such as CSHs and CAHs.

  9. Synthesis of single-crystal perovskite PbCrO3 through a new reaction route at high pressure

    NASA Astrophysics Data System (ADS)

    Han, Yunxia; Wang, Shanmin; Liu, Yinjuan; Ma, Dejiang; He, Duanwei; Zhao, Yusheng

    2018-04-01

    As a new member in the family of Mott system, perovskite PbCrO3 has recently been uncovered to exhibit fantastic structural transition under pressure, coupled with magnetic, electronic, and ferromagnetic transitions, which provide many opportunities for understanding of correlated system. However, it is still challenging to synthesize high-quality single-crystal PbCrO3, leading to the limited exploration of this Mott compound. In this work, we formulate a new high-pressure reaction route for preparation of high-quality PbCrO3 crystals between PbCl2 and Na2CrO4 at high pressure of 5-10 GPa and at high temperature of 750-1500°C. Because of the formation of reaction byproduct NaCl, the final product can readily be separated by washing with water. The obtained sample is in the form of single crystal with crystallite size up to 200 μm. In addition, combined with X-ray diffraction measurement, a tentative pressure-temperature synthesis diagram of PbCrO3 is mapped out from the reaction between PbCl2 and Na2CrO4 and the reaction mechanism is also explored in detail.

  10. Deposition of Cu-doped PbS thin films with low resistivity using DC sputtering

    NASA Astrophysics Data System (ADS)

    Soetedjo, Hariyadi; Siswanto, Bambang; Aziz, Ihwanul; Sudjatmoko

    2018-03-01

    Investigation of the electrical resistivity of Cu-doped PbS thin films has been carried out. The films were prepared using a DC sputtering technique. The doping was achieved by introducing the Cu dopant plate material directly on the surface of the PbS sputtering target plate. SEM-EDX data shows the Cu concentration in the PbS film to be proportional to the Cu plate diameter. The XRD pattern indicates the film is in crystalline cubic form. The Hall effect measurement shows that Cu doping yields an increase in the carrier concentration to 3.55 × 1019 cm-3 and a significant decrease in electrical resistivity. The lowest resistivity obtained was 0.13 Ωcm for a Cu concentration of 18.5%. Preferential orientation of (1 1 1) and (2 0 0) occurs during deposition.

  11. Modelling the leaching of Pb, Cd, As, and Cr from cementitious waste using PHREEQC.

    PubMed

    Halim, Cheryl E; Short, Stephen A; Scott, Jason A; Amal, Rose; Low, Gary

    2005-10-17

    A leaching model was developed using the United States Geological Survey public domain PHREEQC geochemical package to simulate the leaching of Pb, Cd, As, and Cr from cementitious wastes. The model utilises both kinetic terms and equilibrium thermodynamics of key compounds and provides information on leachate and precipitate speciation. The model was able to predict the leaching of Pb, Cd, As, and Cr from cement in the presence of both simple (0.1 and 0.6M acetic acid) and complex municipal landfill leachates. Heavy metal complexation by the municipal landfill leachate was accounted for by the introduction of a monoprotic organic species into the model. The model indicated Pb and As were predominantly incorporated within the calcium silicate hydrate matrix while a greater portion of Cd was seen to exist as discrete particles in the cement pores and Cr (VI) existed mostly as free CrO4(2-) ions. Precipitation was found to be the dominant mechanism controlling heavy metal solubility with carbonate and silicate species governing the solubility of Pb and carbonate, silicate and hydroxide species governing the solubility of Cd. In the presence of acetic acid, at low pH values Pb and Cd acetate complexes were predominant whereas, at high pH values, hydroxide species dominated. At high pH values, the concentration of As in the leachate was governed by the solubility of Ca3(AsO4)2 with the presence of carbonate alkalinity competing with arsenate for Ca ions. In the presence of municipal landfill leachate, Pb and Cd organic complexes dominated the heavy metal species in solution. The reduction of As and Cr in municipal landfill leachate was crucial for determining aqueous speciation, with typical municipal landfill conditions providing the reduced forms of As and Cr.

  12. Reclamation of Cr-contaminated or Cu-contaminated agricultural soils using sunflower and chelants.

    PubMed

    Cicatelli, Angela; Guarino, Francesco; Castiglione, Stefano

    2017-04-01

    Chromium (Cr) and copper (Cu) are pollutants with a strong environmental impact. "Green biotechnology" as phytoremediation represents a sustainability opportunity for soil reclamation. In this study, we evaluated the possibility to reclaim agricultural soils located in the Solofrana valley, contaminated by Cr or Cu. Chromium contamination derives by repeated flooding events of Solofrana rivers containing Cr because of leather tanning plants, while Cu soil pollution was due to the use of Cu-rich pesticides in agriculture. Both metals showed a very low bioavailability. In order to perform an assisted phytoremediation of polluted fields, we carried out a preliminary ex situ experimentation testing for the first time sunflowers (cv. Pretor) and chelants (ethylenediaminetetraacetic acid (EDTA) and/or ethylene diamine disuccinate (EDDS)), useful when metal bioavailability is low. No symptoms of toxicity were observed in sunflowers grown on both soils, while biomass was improved when EDDS was added. Cr and Cu bioavailability was only slightly enhanced by chelants at the end of the treatments. Both Cr and Cu were mainly accumulated in the roots; moreover, Cu was also translocated to the aboveground organs in the presence of EDTA. The ex situ experimentation demonstrated that assisted phytoremediation is a very slow process not useful in the case of persistent pollution.

  13. Preparation of 110K (Bi, Pb)-Sr-Ca-Cu-O superconductor from glass precursor

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1989-01-01

    The Bi1.5Pb0.5Sr2Ca2Cu3O(x) glass, prepared by rapid quenching of the melt, showed T(sub g) of 383 C, crystallization temperature of approx. 446 C, melting temperature of approx. 855 C, and bulk density of 5.69 g/cu. cm. in air. The as-quenched glass was oxygen deficient. On heating in O2, it showed a slow, irreversible, and continuous weight gain starting at approx. 530 C. The influence of annealing conditions on the formation of various phases was investigated by XRD and electrical resistivity measurements. The 110K-T(sub c) phase did not form below 840 C. The amount of this phase increased with the sintering time at 840 C. A sample annealed at 840 C for 243 h in air and furnace cooled showed the highest T(sub c)(R=0) of 107.2K and transition width delta T(sub c)(10 to 90 percent) of approx. 2 K.

  14. Continuous biosorption of Pb/Cu and Pb/Cd in fixed-bed column using algae Gelidium and granulated agar extraction algal waste.

    PubMed

    Vilar, Vítor J P; Loureiro, José M; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Continuous metal ions biosorption from Pb/Cu and Pb/Cd solutions onto seaweed Gelidium sesquipedale and a composite material prepared from an industrial algal waste was performed in a packed bed column. A binary Langmuir equation describes well the equilibrium data and indicates a good adsorption capacity. In the sorption process, Cd and Cu break through the column faster than Pb due to its lower affinity for the biosorbent. An overshoot in the outlet Cd concentration was observed and explained by competitive adsorption between Pb and Cd, whereby the higher Pb affinity for the biosorbent displaces bound Cd ions. A small overshoot happens for Cu adsorption in the presence of Pb ions. Desorption using 0.1 M HNO3 as eluant, was 100% effective. A mass transfer model for the adsorption and desorption processes, considering an external and intraparticle film resistance, adequately simulates the column performance. A binary Langmuir equation was used to describe equilibrium for the saturation process and a mass action law for the desorption process. Elution process is defined as an ion exchange mechanism, between protons and metal ions.

  15. Thermoelectric Properties of Bi₂Te₃: CuI and the Effect of Its Doping with Pb Atoms.

    PubMed

    Han, Mi-Kyung; Jin, Yingshi; Lee, Da-Hee; Kim, Sung-Jin

    2017-10-26

    In order to understand the effect of Pb-CuI co-doping on the thermoelectric performance of Bi₂Te₃, n -type Bi₂Te₃ co-doped with x at % CuI and 1/2 x at % Pb ( x = 0, 0.01, 0.03, 0.05, 0.07, and 0.10) were prepared via high temperature solid state reaction and consolidated using spark plasma sintering. Electron and thermal transport properties, i.e., electrical conductivity, carrier concentration, Hall mobility, Seebeck coefficient, and thermal conductivity, of CuI-Pb co-doped Bi₂Te₃ were measured in the temperature range from 300 K to 523 K, and compared to corresponding x % of CuI-doped Bi₂Te₃ and undoped Bi₂Te₃. The addition of a small amount of Pb significantly decreased the carrier concentration, which could be attributed to the holes from Pb atoms, thus the CuI-Pb co-doped samples show a lower electrical conductivity and a higher Seebeck coefficient when compared to CuI-doped samples with similar x values. The incorporation of Pb into CuI-doped Bi₂Te₃ rarely changed the power factor because of the trade-off relationship between the electrical conductivity and the Seebeck coefficient. The total thermal conductivity(κ tot ) of co-doped samples (κ tot ~ 1.4 W/m∙K at 300 K) is slightly lower than that of 1% CuI-doped Bi₂Te₃ (κ tot ~ 1.5 W/m∙K at 300 K) and undoped Bi₂Te₃ (κ tot ~ 1.6 W/m∙K at 300 K) due to the alloy scattering. The 1% CuI-Pb co-doped Bi₂Te 3 sample shows the highest ZT value of 0.96 at 370 K. All data on electrical and thermal transport properties suggest that the thermoelectric properties of Bi₂Te 3 and its operating temperature can be controlled by co-doping.

  16. Grain Refinement and Mechanical Properties of Cu-Cr-Zr Alloys with Different Nano-Sized TiCp Addition.

    PubMed

    Zhang, Dongdong; Bai, Fang; Wang, Yong; Wang, Jinguo; Wang, Wenquan

    2017-08-08

    The TiC p /Cu master alloy was prepared via thermal explosion reaction. Afterwards, the nano-sized TiC p /Cu master alloy was dispersed by electromagnetic stirring casting into the melting Cu-Cr-Zr alloys to fabricate the nano-sized TiC p -reinforced Cu-Cr-Zr composites. Results show that nano-sized TiC p can effectively refine the grain size of Cu-Cr-Zr alloys. The morphologies of grain in Cu-Cr-Zr composites changed from dendritic grain to equiaxed crystal because of the addition and dispersion of nano-sized TiC p . The grain size decreased from 82 to 28 μm with the nano-sized TiC p content. Compared with Cu-Cr-Zr alloys, the ultimate compressive strength (σ UCS ) and yield strength (σ 0.2 ) of 4 wt% TiC p -reinforced Cu-Cr-Zr composites increased by 6.7% and 9.4%, respectively. The wear resistance of the nano-sized TiCp-reinforced Cu-Cr-Zr composites increased with the increasing nano-sized TiCp content. The wear loss of the nano-sized TiC p -reinforced Cu-Cr-Zr composites decreased with the increasing TiC p content under abrasive particles. The eletrical conductivity of Cu-Cr-Zr alloys, 2% and 4% nano-sized TiCp-reinforced Cu-Cr-Zr composites are 64.71% IACS, 56.77% IACS and 52.93% IACS, respectively.

  17. Characterization of CuCrZr and CuCrZr/SS joint strength for different blanket components manufacturing conditions

    NASA Astrophysics Data System (ADS)

    Gillia, Olivier; Briottet, Laurent; Chu, Isabelle; Lemoine, Patrick; Rigal, Emmanuel; Peacock, Alan

    2009-04-01

    This work describes studies on the strength of CuCrZr/SS joints for different manufacturing conditions foreseen for the fabrication of blanket components. In the meantime, as junction strength is expected to be strongly related to CuCrZr properties, investigation on the properties of the CuCrZr itself after the different manufacturing conditions is also presented. The initial manufacturing conditions retained were made of a HIP treatment combined with a fast cooling plus a subsequent ageing treatment. For security reasons, the HIP-quenching operation was not possible. A supplementary solutionning cycle with fast cooling has thus been inserted in the heat treatment process just after the HIP bonding treatment. The influence of solutionning temperature (1040 °C or 980 °C), the cooling rate after solutionning (70 °C/min to water quench), the ageing temperature (480 °C or 560 °C) and the HIP temperature (1040 °C or 980 °C) have been addressed. Test results show that the ageing temperature is very important for keeping high strength of material whereas elongation properties are not very sensible to the manufacturing conditions. 1040 °C HIP or solutionning temperature gives better strength properties, as well as a higher cooling rate after solutionning. Concerning samples with joints, it appears that CT test is more selective than other tests since tensile test does not give rupture at joint and KCU test eliminates a route without classifying other routes.

  18. Investigation of vacuum properties of CuCrZr alloy for high-heat-load absorber

    NASA Astrophysics Data System (ADS)

    Shueh, C.; Chan, C. K.; Chang, C. C.; Sheng, I. C.

    2017-01-01

    The Taiwan Photon Source (TPS) uses high-heat-load (HHL) absorbers to protect downstream ultrahigh-vacuum chambers from overheating. In this work, we propose to use the CuCrZr alloy (ASTM C18150) for the HHL absorber body and the ConFlat® flanges. We use the throughput method to measure the thermal outgassing rate and a helium leak detector to verify the vacuum seal between the CuCrZr alloy and stainless-steel flanges. The measured outgassing rate of the CuCrZr alloy was 5.8×10-10 Pa m/s after 72 h of pumping and decreased to 2.0 × 10-10 Pa m/s after 100 h of pumping. The leak rate through the vacuum seal between a CuCrZr flange and a stainless-steel flange was less than 1 × 10-10 Pa m3/s even after mounting and unmounting the flanges ten times and baking them at 250 °C. These results indicate that CuCrZr alloy is suitable for integrating HHL components with ConFlat® CuCrZr flanges for the absorption of the synchrotron radiation generated by the TPS.

  19. Lead chromate detected as a source of atmospheric Pb and Cr (VI) pollution.

    PubMed

    Lee, Pyeong-Koo; Yu, Soonyoung; Chang, Hye Jung; Cho, Hye Young; Kang, Min-Ju; Chae, Byung-Gon

    2016-10-25

    Spherical black carbon aggregates were frequently observed in dust dry deposition in Daejeon, Korea. They were tens of micrometers in diameter and presented a mixture of black carbon and several mineral phases. Transmission electron microscopy (TEM) observations with energy-dispersive X-ray spectroscopy (EDS) and selected area diffraction pattern (SADP) analyses confirmed that the aggregates were compact and included significant amounts of lead chromate (PbCrO 4 ). The compositions and morphologies of the nanosized lead chromate particles suggest that they probably originated from traffic paint used in roads and were combined as discrete minerals with black carbon. Based on Pb isotope analysis and air-mass backward trajectories, the dust in Daejeon received a considerable input of anthropogenic pollutants from heavily industrialized Chinese cities, which implies that long-range transported aerosols containing PbCrO 4 were a possible source of the lead and hexavalent chromium levels in East Asia. Lead chromate should be considered to be a source of global atmospheric Pb and Cr(VI) pollution, especially given its toxicity.

  20. Lead chromate detected as a source of atmospheric Pb and Cr (VI) pollution

    NASA Astrophysics Data System (ADS)

    Lee, Pyeong-Koo; Yu, Soonyoung; Chang, Hye Jung; Cho, Hye Young; Kang, Min-Ju; Chae, Byung-Gon

    2016-10-01

    Spherical black carbon aggregates were frequently observed in dust dry deposition in Daejeon, Korea. They were tens of micrometers in diameter and presented a mixture of black carbon and several mineral phases. Transmission electron microscopy (TEM) observations with energy-dispersive X-ray spectroscopy (EDS) and selected area diffraction pattern (SADP) analyses confirmed that the aggregates were compact and included significant amounts of lead chromate (PbCrO4). The compositions and morphologies of the nanosized lead chromate particles suggest that they probably originated from traffic paint used in roads and were combined as discrete minerals with black carbon. Based on Pb isotope analysis and air-mass backward trajectories, the dust in Daejeon received a considerable input of anthropogenic pollutants from heavily industrialized Chinese cities, which implies that long-range transported aerosols containing PbCrO4 were a possible source of the lead and hexavalent chromium levels in East Asia. Lead chromate should be considered to be a source of global atmospheric Pb and Cr(VI) pollution, especially given its toxicity.

  1. Lead chromate detected as a source of atmospheric Pb and Cr (VI) pollution

    PubMed Central

    Lee, Pyeong-Koo; Yu, Soonyoung; Chang, Hye Jung; Cho, Hye Young; Kang, Min-Ju; Chae, Byung-Gon

    2016-01-01

    Spherical black carbon aggregates were frequently observed in dust dry deposition in Daejeon, Korea. They were tens of micrometers in diameter and presented a mixture of black carbon and several mineral phases. Transmission electron microscopy (TEM) observations with energy-dispersive X-ray spectroscopy (EDS) and selected area diffraction pattern (SADP) analyses confirmed that the aggregates were compact and included significant amounts of lead chromate (PbCrO4). The compositions and morphologies of the nanosized lead chromate particles suggest that they probably originated from traffic paint used in roads and were combined as discrete minerals with black carbon. Based on Pb isotope analysis and air-mass backward trajectories, the dust in Daejeon received a considerable input of anthropogenic pollutants from heavily industrialized Chinese cities, which implies that long-range transported aerosols containing PbCrO4 were a possible source of the lead and hexavalent chromium levels in East Asia. Lead chromate should be considered to be a source of global atmospheric Pb and Cr(VI) pollution, especially given its toxicity. PMID:27779222

  2. Synthesis of BiPbSrCaCuO superconductor

    DOEpatents

    Hults, W.L.; Kubat-Martin, K.A.; Salazar, K.V.; Phillips, D.S.; Peterson, D.E.

    1994-04-05

    A process and a precursor composition for preparing a lead-doped bismuth-strontium-calcium-copper oxide superconductor of the formula Bi[sub a]Pb[sub b]Sr[sub c]Ca[sub d]Cu[sub e]O[sub f] wherein a is from about 1.7 to about 1.9, b is from about 0.3 to about 0.45, c is from about 1.6 to about 2.2, d is from about 1.6 to about 2.2, e is from about 2.97 to about 3.2 and f is 10[+-]z by reacting a mixture of Bi[sub 4]Sr[sub 3]Ca[sub 3]Cu[sub 4]O[sub 16[+-]z], an alkaline earth metal cuprate, e.g., Sr[sub 9]Ca[sub 5]Cu[sub 24]O[sub 41], and an alkaline earth metal plumbate, e.g., Ca[sub 2[minus]x]Sr[sub x]PbO[sub 4] wherein x is about 0.5, is disclosed.

  3. Synthesis of BiPbSrCaCuO superconductor

    DOEpatents

    Hults, William L.; Kubat-Martin, Kimberly A.; Salazar, Kenneth V.; Phillips, David S.; Peterson, Dean E.

    1994-01-01

    A process and a precursor composition for preparing a lead-doped bismuth-strontium-calcium-copper oxide superconductor of the formula Bi.sub.a Pb.sub.b Sr.sub.c Ca.sub.d Cu.sub.e O.sub.f wherein a is from about 1.7 to about 1.9, b is from about 0.3 to about 0.45, c is from about 1.6 to about 2.2, d is from about 1.6 to about 2.2, e is from about 2.97 to about 3.2 and f is 10.+-.z by reacting a mixture of Bi.sub.4 Sr.sub.3 Ca.sub.3 Cu.sub.4 O.sub.16.+-.z, an alkaline earth metal cuprate, e.g., Sr.sub.9 Ca.sub.5 Cu.sub.24 O.sub.41, and an alkaline earth metal plumbate, e.g., Ca.sub.2-x Sr.sub.x PbO.sub.4 wherein x is about 0.5, is disclosed.

  4. Effects of Thermal and Mechanical Processing on Microstructures and Desired Properties of Particle-Strengthened Cu-Cr-Nb Alloys

    NASA Technical Reports Server (NTRS)

    Anderson, Kenneth Reed

    2000-01-01

    Ternary Cu-Cr-Nb alloys, particularly Cu-8 Cr-4 Nb (in at.%), have demonstrated good thermal stability as well as high strength and conductivity at elevated temperatures. The initial powder material has a bimodal size distribution of Cr2Nb precipitates. Primary Cr2Nb precipitates are approx. 1 micron, and secondary Cr2Nb particles are 30-200 nm. The particle coarsening was analyzed and found to follow LSW-type behavior, This study provides a detailed examination of the stability and strengthening effects of Cr2Nb particles. This investigation also revealed that the primary particles provide direct grain boundary pinning and indirect grain boundary strengthening but virtually no Orowan strengthening. The secondary particles found within grains do provide Orowan strengthening. For extruded material, grain bound-ary strengthening (Hall-Petch effect) accounts for two-thirds of the strength with Orowan effects contributing the remainder. The proven advantages of Cu-Cr-Nb were the motivation to improve these attributes via microstructural refinement. Mechanical milling (MM) of Cu- 4 Cr-2 Nb and Cu-8 Cr-2 Nb produced an increase in hot pressed Vickers hardness of 122% and 96%, respectively. The increase in hardness was more due to Cu grain-size refinement than to Cr,,Nb refinement. This study also demonstrated enhanced stability of MM Cu-4 Cr-2 Nb. Hot pressed 4 h milled Cu-4 Cr-2 Nb experienced only a 22% drop in hardness when annealed at 1273 K for 50 h versus a 30% drop for extruded Cu-8 Cr-4 Nb. The goal of improving the strength and stability of Cu-4 Cr-2 Nb to better than such properties for as- extruded Cu-8 Cr-4 Nb has been met. In addition, a figure-of-merit (FOM) coupling hardness and thermal conductivity was maximized for the case of 4 h milled Cu-4 Cr-2 Nb material. Overall, Cu-Cr-Nb alloys not only possess high strength, conductivity and thermal stability but also can be further developed to improve strength and stability.

  5. Investigation of the nanostructure and wear properties of physical vapor deposited CrCuN nanocomposite coatings

    NASA Astrophysics Data System (ADS)

    Baker, M. A.; Kench, P. J.; Tsotsos, C.; Gibson, P. N.; Leyland, A.; Matthews, A.

    2005-05-01

    This article presents results on CrCuN nanocomposite coatings grown by physical vapor deposition. The immiscibility of Cr (containing a supersaturation of nitrogen) and Cu offers the potential of depositing a predominantly metallic (and therefore tough) nanocomposite, composed of small Cr(N) metallic and/or β-Cr2N ceramic grains interdispersed in a (minority) Cu matrix. A range of CrCuN compositions have been deposited using a hot-filament enhanced unbalanced magnetron sputtering system. The stoichiometry and nanostructure have been studied by x-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy, and x-ray diffraction. Hardness, wear resistance, and impact resistance have been determined by nanoindentation, reciprocating-sliding, and ball-on-plate high-cycle impact. Evolution of the nanostructure as a function of composition and correlations of the nanostructure and mechanical properties of the CrCuN coatings are discussed. A nanostructure comprised of 1-3 nm α-Cr(N) and β-Cr2N grains separated by intergranular regions of Cu gives rise to a coating with significantly enhanced resistance to impact wear.

  6. Transport properties of high-performance all-Heusler Co2CrSi/Cu2CrAl/Co2CrSi giant magnetoresistance device

    NASA Astrophysics Data System (ADS)

    Bai, Z. Q.; Lu, Y. H.; Shen, L.; Ko, V.; Han, G. C.; Feng, Y. P.

    2012-05-01

    Transport properties of giant magnetoresistance (MR) junction consisting of trilayer Co2CrSi/Cu2CrAl/Co2CrSi Heusler alloys (L21) are studied using first-principles approach based on density functional theory and the non-equilibrium Green's function method. Highly conductive channels are found in almost the entire k-plane when the magnetizations of the electrodes are parallel, while they are completely blocked in the antiparallel configuration, which leads to a high magnetoresistance ratio (the pessimistic MR ratio is nearly 100%). Furthermore, the calculated I-V curve shows that the device behaves as a good spin valve with a considerable disparity in currents under the parallel and antiparallel magnetic configurations of the electrodes. The Co2CrSi/Cu2CrAl/Co2CrSi junction could be useful for high-performance all-metallic current-perpendicular-to-plane giant magnetoresistance reading head for the next generation high density magnetic storage.

  7. The effect of intermetallic compound morphology on Cu diffusion in Sn-Ag and Sn-Pb solder bump on the Ni/Cu Under-bump metallization

    NASA Astrophysics Data System (ADS)

    Jang, Guh-Yaw; Duh, Jenq-Gong

    2005-01-01

    The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1-x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1-x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1-y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1-y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016-1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.

  8. Fast and direct analysis of Cr, Cd and Pb in brown sugar by GF AAS.

    PubMed

    Dos Santos, Jeferson M; Quináia, Sueli P; Felsner, Maria L

    2018-09-15

    A simple and fast analytical method for the determination of Cr, Pb and Cd in brown sugar by GF AAS using slurry sampling was developed and in house validated for the first time. Analytical curves were prepared by external standardization for Cr, and by matrix simulation for Pb and Cd and they were linear. Low limits of quantification for Cr (32.8 ng g -1 ), Pb (49.3 ng g -1 ) and Cd (4.5 ng g -1 ) were found. Repeatability and intermediate precision estimates (<10% and <15%, respectively) and recovery rates (95-103%) demonstrated a good precision and accuracy. The levels in brown sugar samples ranged from <32.8 to 160 ng g -1 for Cr, from <49.3 to 211.0 ng g -1 for Pb and from <4.5 to 7.0 ng g -1 for Cd and they may be assigned to anthropogenic activities and the adoption of inadequate practices of production and processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Assessment of Cr, Ni and Pb Pollution in Rural Agricultural Soils of Tonalite-Trondjhemite Series in Central India.

    PubMed

    Shukla, Kriti; Kumar, Bijendra; Agrawal, Rahul; Priyanka, Kumari; Venkatesh, Madavi; Anshumali

    2017-06-01

    Chromium (Cr), nickel (Ni) and lead (Pb) contamination was investigated in wheat cultivated rain-fed and irrigated rural agricultural soils (n = 31) of Tonalite-Trondjhemite Series in Central India. The soil sampling was carried out by using stratified random sampling method. The mean concentrations of Cr, Ni and Pb were 54.8, 38.1 and 68.9 mg/kg, respectively. The average values of enrichment factor (EF), geoaccumulation index (I geo ) and contamination factor (CF) followed the order as: Pb > Ni > Cr. Distribution patterns of soil parent material and weathering processes govern mineral enrichments, irrespective of rainfed or irrigated agricultural practices. Principal component analysis (PCA) showed strong loading of Cr and Ni (PC1) and Pb and clay (PC3). The strong loading on Cr and Ni indicates soils are originating from basic and volcanic rocks in the study area. The strong loading of Pb and clay indicates Pb is strongly adsorbed on clay minerals and Fe-oxides. The cancer risk (CR) index showed negligible carcinogenic risk to the residing population. However, hazard index (HI) values for children exceed the safe limit (HI > 1) for Cr and Pb. Spatial distribution of pollution load index suggest highest pollution in the northeastern part of the district. The study revealed that geogenically enriched soils of the area are suitable for agricultural activities under present conditions.

  10. Unusual inhomogeneous microstructures in charge glass state of PbCrO3

    NASA Astrophysics Data System (ADS)

    Kurushima, Kosuke; Tsukasaki, Hirofumi; Ogata, Takahiro; Sakai, Yuki; Azuma, Masaki; Ishii, Yui; Mori, Shigeo

    2018-05-01

    We investigated the microstructures and local structures of perovskite PbCrO3, which shows a metal-to-insulator transition and a 9.8% volume collapse, by electron diffraction, high-resolution transmission electron microscopy (TEM), and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). It is revealed that the charge glass state is characterized by the unique coexistence of the crystalline state with a cubic symmetry on average and the noncrystalline state. HAADF-STEM observation at atomic resolution revealed that Pb ions were displaced from the ideal A site position of the cubic perovskite structure, which gives rise to characteristic diffuse scatterings around the fundamental Bragg reflections. These structural inhomogeneities are crucial to the understanding of the unique physical properties in the charge glass state of PbCrO3.

  11. Optoelectronic properties of candidate photovoltaic Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nhalil, Hariharan; Han, Dan; Du, Mao-Hua

    High temperature synthesis and optical band gaps are reported for three candidate photovoltaic earth-abundant Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 semiconductors. The reported synthesis method is found to be more advantageous for KAg 2SbS 4 compared to the literature reported synthesis utilizing supercritical ammonia as a reaction medium, which produces a mixture of chalcogenide products. Based on optical diffuse reflectance data, Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 have band gaps in the 1.6–1.8 eV range, and are shown to be stable in ambient air for a period of 6 weeks, making themmore » attractive candidates for solar cell applications. Density functional theory (DFT) calculations indicate indirect band gaps for Cu 2PbSiS 4 and KAg 2SbS 4, and a nearly direct band gap for Ag 2PbGeS 4 with the calculated difference between indirect and direct gaps of only 30 meV. The p-type semiconducting behavior of Cu 2PbSiS 4, Ag 2PbGeS 4 is also verified by the transport measurments. The 3D connectivity of the polyanionic networks in these compounds results in dispersive valence and conduction bands, which is especially noticeable for KAg 2SbS 4. This fact is in part attributed to the presence of formally pentavalent SbV in this compound leading to empty Sb 5s orbitals in the conduction band. Finally, we discuss the potential of Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 for photovoltaic applications based on synthesis, stability, band gap and electronic structure considerations.« less

  12. Optoelectronic properties of candidate photovoltaic Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 semiconductors

    DOE PAGES

    Nhalil, Hariharan; Han, Dan; Du, Mao-Hua; ...

    2018-03-01

    High temperature synthesis and optical band gaps are reported for three candidate photovoltaic earth-abundant Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 semiconductors. The reported synthesis method is found to be more advantageous for KAg 2SbS 4 compared to the literature reported synthesis utilizing supercritical ammonia as a reaction medium, which produces a mixture of chalcogenide products. Based on optical diffuse reflectance data, Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 have band gaps in the 1.6–1.8 eV range, and are shown to be stable in ambient air for a period of 6 weeks, making themmore » attractive candidates for solar cell applications. Density functional theory (DFT) calculations indicate indirect band gaps for Cu 2PbSiS 4 and KAg 2SbS 4, and a nearly direct band gap for Ag 2PbGeS 4 with the calculated difference between indirect and direct gaps of only 30 meV. The p-type semiconducting behavior of Cu 2PbSiS 4, Ag 2PbGeS 4 is also verified by the transport measurments. The 3D connectivity of the polyanionic networks in these compounds results in dispersive valence and conduction bands, which is especially noticeable for KAg 2SbS 4. This fact is in part attributed to the presence of formally pentavalent SbV in this compound leading to empty Sb 5s orbitals in the conduction band. Finally, we discuss the potential of Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 for photovoltaic applications based on synthesis, stability, band gap and electronic structure considerations.« less

  13. Biosorption of Pb2+ and Cu2+ in aqueous solutions using agricultural wastes

    NASA Astrophysics Data System (ADS)

    Nieva, Aileen D.; Doma, Bonifacio T.; Chao, Huan-Ping; Siang Leng, Lai

    2017-11-01

    This study aimed to determine and compare the adsorptive capacity of Pb2+ and Cu2+ in simulated wastewater onto three agricultural wastes The adsorption capacities of Pb2+ onto the agricultural wastes can be arranged as Litchi chinensis (4.30 mg of sorbate per g of sorbent (mg g-1), 85.68% adsorption) > Bambusa vulgaris (3.83 mg g-1, 76.19% adsorption) > Annona squamosa (2.70 mg g-1, 53.66% adsorption) while the adsorption capacities of Cu2+ onto the same agricultural wastes can be arranged in the order: Bambusa vulgaris (3.86 mg g-1, 77.17% adsorption) > Annona squamosal (3.58 mg g-1, 71.58% adsorption) > Litchi chinensis (3.42 mg g-1, 68.32% adsorption). The biosorbents had relatively higher adsorptive capacities with Cu2+ as compared to that of Pb2+ except for Litchi chinensis. Although the results show lower adsorptive capacity as compared to a number of treated agricultural wastes showing 80% up to almost 100% adsorption of Pb2+ and Cu2+, the results show that Annona squamosa, Bamubusa vulgaris, and Litchi chinensis are potential biosorbents and promote sustainable treatment process.

  14. Remediation of Pb/Cr co-contaminated soil using electrokinetic process and approaching electrode technique.

    PubMed

    Ng, Yee-Sern; Sen Gupta, Bhaskar; Hashim, Mohd Ali

    2016-01-01

    Electrokinetic process has emerged as an important tool for remediating heavy metal-contaminated soil. The process can concentrate heavy metals into smaller soil volume even in the absence of hydraulic flow. This makes it an attractive soil pre-treatment method before other remediation techniques are applied such that the chemical consumption in the latter stage can be reduced. The present study evaluates the feasibility of electrokinetic process in concentrating lead (Pb) and chromium (Cr) in a co-contaminated soil using different types of wetting agents, namely 0.01 M NaNO3, 0.1 M citric acid and 0.1 M EDTA. The data obtained showed that NaNO3 and citric acid resulted in poor Pb electromigration in this study. As for Cr migration, these agents were also found to give lower electromigration rate especially at low pH region as a result of Cr(VI) adsorption and possible reduction into Cr(III). In contrast, EDTA emerged as the best wetting agent in this study as it formed water-soluble anionic complexes with both Pb and Cr. This provided effective one-way electromigration towards the anode for both ions, and they were accumulated into smaller soil volume with an enrichment ratio of 1.55-1.82. A further study on the application of approaching cathode in EDTA test showed that soil alkalisation was achieved, but this did not provide significant enhancement on electromigration for Pb and Cr. Nevertheless, the power consumption for electrokinetic process was decreased by 22.5%.

  15. The mutual influence of speciation and combination of Cu and Pb on the photodegradation of dimethyl o-phthalate.

    PubMed

    Jiang, Xinshu; Wang, Zhe; Zhang, Yiyue; Wang, Fei; Zhu, Mijia; Yao, Jun

    2016-12-01

    Specific industrial application of dimethyl o-phthalate (DMP) in ore flotation has led to DMP-heavy metals combined pollution, which causes the abiotic degradation of DMP in the environment more complex. This study focused on the effect of Cu and Pb on photodegradation of DMP. The major mechanism of inhibiting effect of Cu and Pb on degradation of DMP involved their speciation and combination. It was found that the Cu (5 mg/L, I = 95.4%) and Pb (5 mg/L, I = 100%) could inhibit the photodegradation of DMP. The main species that inhibit the DMP degradation were Cu(OH) + and Pb(OH) + , respectively. The intensity of the UV-Vis absorbance of DMP was obviously related to the concentration of Cu 2+ (R 2  = 0.8655) or Pb 2+ (R 2  = 0.9019) ions. Fluorescence quenching effect of Cu 2+ (R 2  > 0.9946), Pb 2+ (R 2  > 0.6879) on DMP is strongly correlated with the concentration of ions. And the equilibrium membrane dialysis experiment has also verified the combination of DMP and Cu, Pb. These results are useful to understand the effect mechanism of metal species on the photodegradation of organic chemicals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Effect of Cu(II), Cd(II) and Zn(II) on Pb(II) biosorption by algae Gelidium-derived materials.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Biosorption of Pb(II), Cu(II), Cd(II) and Zn(II) from binary metal solutions onto the algae Gelidium sesquipedale, an algal industrial waste and a waste-based composite material was investigated at pH 5.3, in a batch system. Binary Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II) solutions have been tested. For the same equilibrium concentrations of both metal ions (1 mmol l(-1)), approximately 66, 85 and 86% of the total uptake capacity of the biosorbents is taken by lead ions in the systems Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II), respectively. Two-metal results were fitted to a discrete and a continuous model, showing the inhibition of the primary metal biosorption by the co-cation. The model parameters suggest that Cd(II) and Zn(II) have the same decreasing effect on the Pb(II) uptake capacity. The uptake of Pb(II) was highly sensitive to the presence of Cu(II). From the discrete model it was possible to obtain the Langmuir affinity constant for Pb(II) biosorption. The presence of the co-cations decreases the apparent affinity of Pb(II). The experimental results were successfully fitted by the continuous model, at different pH values, for each biosorbent. The following sequence for the equilibrium affinity constants was found: Pb>Cu>Cd approximately Zn.

  17. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, Iver E.; Yost, Frederick G.; Smith, John F.; Miller, Chad M.; Terpstra, Robert L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217.degree. C. and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid "mushy" zone) relative to the eutectic melting temperature (e.g. up to 15.degree. C. above the eutectic melting temperature).

  18. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, I.E.; Yost, F.G.; Smith, J.F.; Miller, C.M.; Terpstra, R.L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217 C and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid ``mushy`` zone) relative to the eutectic melting temperature (e.g. up to 15 C above the eutectic melting temperature). 5 figs.

  19. Microstructural Evolution and Tensile Properties of SnAgCu Mixed with Sn-Pb Solder Alloys (Preprint)

    DTIC Science & Technology

    2009-03-01

    AFRL-RX-WP-TP-2009-4132 MICROSTRUCTURAL EVOLUTION AND TENSILE PROPERTIES OF SnAgCu MIXED WITH Sn-Pb SOLDER ALLOYS (PREPRINT...PROPERTIES OF SnAgCu MIXED WITH Sn-Pb SOLDER ALLOYS (PREPRINT) 5a. CONTRACT NUMBER FA8650-04-C-5704 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...ANSI Std. Z39-18 Microstructural evolution and tensile properties of SnAgCu mixed with Sn-Pb solder alloys Fengjiang Wang,1 Matthew O’Keefe,1,2 and

  20. Constitutive Behavior of Mixed Sn-Pb/Sn-3.0Ag-0.5Cu Solder Alloys

    NASA Astrophysics Data System (ADS)

    Tucker, J. P.; Chan, D. K.; Subbarayan, G.; Handwerker, C. A.

    2012-03-01

    During the transition from Pb-containing solders to Pb-free solders, joints composed of a mixture of Sn-Pb and Sn-Ag-Cu often result from either mixed assemblies or rework. Comprehensive characterization of the mechanical behavior of these mixed solder alloys resulting in a deformationally complete constitutive description is necessary to predict failure of mixed alloy solder joints. Three alloys with 1 wt.%, 5 wt.%, and 20 wt.% Pb were selected so as to represent reasonable ranges of Pb contamination expected from different 63Sn-37Pb components mixed with Sn-3.0Ag-0.5Cu. Creep and displacement-controlled tests were performed on specially designed assemblies at temperatures of 25°C, 75°C, and 125°C using a double lap shear test setup that ensures a nearly homogeneous state of plastic strain at the joint interface. The observed changes in creep and tensile behavior with Pb additions were related to phase equilibria and microstructure differences observed through differential scanning calorimetric and scanning electron microscopic cross-sectional analysis. As Pb content increased, the steady-state creep strain rates increased, and primary creep decreased. Even 1 wt.% Pb addition was sufficient to induce substantially large creep strains relative to the Sn-3.0Ag-0.5Cu alloy. We describe rate-dependent constitutive models for Pb-contaminated Sn-Ag-Cu solder alloys, ranging from the traditional time-hardening creep model to the viscoplastic Anand model. We illustrate the utility of these constitutive models by examining the inelastic response of a chip-scale package (CSP) under thermomechanical loading through finite-element analysis. The models predict that, as Pb content increases, total inelastic dissipation decreases.

  1. Cyclic Oxidation Behavior of CuCrAl Cold-Sprayed Coatings for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, Sai; Karthikeyan, J.

    2009-01-01

    The next generation of reusable launch vehicles is likely to use GRCop-84 [Cu-8(at.%)Cr-4%Nb] copper alloy combustion liners. The application of protective coatings on GRCop-84 liners can minimize or eliminate many of the environmental problems experienced by uncoated liners and significantly extend their operational lives and lower operational cost. A newly developed Cu- 23 (wt.%) Cr-5% Al (CuCrAl) coating, shown to resist hydrogen attack and oxidation in an as-cast form, is currently being considered as a protective coating for GRCop-84. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique, where the CuCrAl was procured as gas-atomized powders. Cyclic oxidation tests were conducted between 773 and 1,073 K to characterize the coated substrates.

  2. Antifriction coating of Cu-Fe-Al-Pb system for plain bearings

    NASA Astrophysics Data System (ADS)

    Kotenkov, Pavel; Kontsevoi, Yurii; Mejlakh, Anna; Pastukhov, Eduard; Shubin, Alexey; Goyda, Eduard; Sipatov, Ivan

    2017-09-01

    Aluminium, copper and their compounds are used in common as basis for antifriction coatings of plain bearings. Antifriction testing of plain bearings (based on Al and Cu) made by leading automotive manufacturers from Germany, Japan, USA, United Kingdom and Russia were carried out to make judicious selection of basis for development of new antifriction material. Testing was carried out using friction machine. It was defined that materials based on Cu provide better durability and robustness of plain bearings in comparison with Al based ones. The new antifriction composite coatings based on copper were developed taking into account the requirements specified for plain bearings of internal-combustion engine. Pilot samples of plain bearings with antifriction coatings of Cu-Fe-Al-Pb system were produced. The antifriction composite having Cu-5Fe-5Al5Fe2-10Pb (mass %) composition has demonstrated low friction factor and high wear-resistance. Metallographic analysis of pilot samples was carried out by means of optical and scanning electron microscopy.

  3. Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem.

    PubMed

    Iskandar, Nur Liyana; Zainudin, Nur Ain Izzati Mohd; Tan, Soon Guan

    2011-01-01

    Filamentous fungi are able to accumulate significant amount of metals from their environment. The potential of fungal biomass as agents for biosorption of heavy metals from contaminated sediments is currently receiving attention. In the present study, a total of 41 isolates of filamentous fungi obtained from the sediment of the Langat River, Selangor, Malaysia were screened for their tolerance and uptake capability of copper (Cu) and lead (Pb). The isolates were identified as Aspergillus niger, A. fumigatus, Trichoderma asperellum, Penicillium simplicissimum and P. janthinellum. A. niger and P. simplicissimum, were able to survive at 1000 mg/L of Cu(II) concentration on Potato Dextrose Agar (PDA) while for Pb, only A. niger survived at 5000 mg/L concentration. The results showed that A. niger, P. simplicissimum and T. asperellum have a better uptake capacity for Pb compared to Cu and the findings indicated promising biosorption of Cu and Pb by these filamentous fungi from aqueous solution. The present study was also determined the maximum removal of Cu(II) and Pb(II) that was performed by A. niger. The metal removal which occurred at Cu(II) 200 mg/L was (20.910 +/- 0.581) mg/g and at 250 mg/L of Pb(II) was (54.046 +/- 0.328) mg/g.

  4. Protection of Advanced Copper Alloys With Lean Cu-Cr Coatings

    NASA Technical Reports Server (NTRS)

    Greenbauer-Seng, L. (Technical Monitor); Thomas-Ogbuji, L.

    2003-01-01

    Advanced copper alloys are used as liners of rocket thrusters and nozzle ramps to ensure dissipation of the high thermal load generated during launch, and Cr-lean coatings are preferred for the protection of these liners from the aggressive ambient environment. It is shown that adequate protection can be achieved with thin Cu-Cr coatings containing as little as 17 percent Cr.

  5. Microstructure and Mechanical Properties of Vacuum Plasma Sprayed Cu-8Cr-4Nb

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Ellis, David; McKechnie, Timothy; Hickman, Robert

    1997-01-01

    This paper compares the tensile properties of Cu-8Cr-4Nb material produced by VPS to material previously produced by extrusion. The microstructure of the VPS material is also presented. The combustion chamber liner of rocket motors represents an extreme materials application. The liner hot wall is exposed to a 2760 C (5000 F) flame while the cold side is exposed to cryogenic hydrogen liquid. Materials for use in the combustion chamber liner require a combination of high temperature strength, creep resistance, and low cycle fatigue resistance along with high thermal conductivity. The hot side is also subject to localized cycles between reducing and oxidizing environments that degrade the liner by a process called blanching. A new Cu-8 at.% Cr-4 at% Nb (Cu-8Cr-4Nb) alloy has been developed at NASA Lewis Research Center as a replacement for the currently used alloy, NARloy-z (Cu-3 wt.% Ag-0.5 wt.% Zr). The alloy is strengthened by a fine dispersion of Cr2Nb particles. The alloy has better mechanical properties than NARloy-Z while retaining most of the thermal conductivity of pure copper. The alloy has been successfully consolidated by extrusion and hot isostatic pressing (HIPing). However, vacuum plasma spraying (VPS) offers several advantages over prior consolidation methods. VPS can produce a near net shape piece with the profile of the liner. In addition, oxidation resistant and thermal barrier coatings can be incorporated as an integral part of the liner hot wall during the VPS deposition. The low oxygen VPS Cu-8Cr-4Nb exhibits a higher strength than Cu-8Cr-4Nb produced by extrusion at elevated temperatures and a comparable strength at room temperature. Moduli and ductility were not significantly different. However, the ability to produce parts to near-net shape and maintain the good elevated temperature tensile properties of the extruded Cu-8Cr-4Nb makes VPS an attractive processing method for fabricating rocket engine combustion liners.

  6. Immobilization of Pb and Cu in polluted soil by superphosphate, multi-walled carbon nanotube, rice straw and its derived biochar.

    PubMed

    Rizwan, Muhammad Shahid; Imtiaz, Muhammad; Huang, Guoyong; Chhajro, Muhammad Afzal; Liu, Yonghong; Fu, Qingling; Zhu, Jun; Ashraf, Muhammad; Zafar, Mohsin; Bashir, Saqib; Hu, Hongqing

    2016-08-01

    Lead (Pb) and copper (Cu) contamination in croplands pose severe health hazards and environmental concerns throughout soil-food chain transfer. In the present study, BCR, TCLP, CaCl2, and SBET techniques were employed to evaluate the simultaneous effectiveness of rice straw (RS) and its derived biochar (BC), multiwall carbon nanotube (MWCNT), and single superphosphate (SSP) to immobilize the Pb and Cu in co-contaminated soil. The BCR sequential extraction results suggested that with increasing BC and SSP amount, the acid-soluble fractions decreased while oxidizable and residual proportions of Pb and Cu were increased significantly. Compared to SSP, the application of BC amendment substantially modified partitioning of Cu from easily exchangeable phase to less bioavailable residual bound fraction. The immobilized Pb and Cu were mainly transformed to reducible forms. The TCLP and CaCl2-extracted Pb and Cu were reduced significantly by the addition of BC compared to RS and MWCNT, whereas the bio-accessibility of Pb significantly reduced with RS addition. SSP showed better results for Pb immobilization while marginal for Cu in co-contaminated soil. Overall, the addition of BC offered the best results and could be effective in both Pb and Cu immobilization thereby reducing their mobility and bioavailability in the co-contaminated soil.

  7. Low-temperature thermoelectric properties of Pb doped Cu2SnSe3

    NASA Astrophysics Data System (ADS)

    Prasad K, Shyam; Rao, Ashok; Gahtori, Bhasker; Bathula, Sivaiah; Dhar, Ajay; Chang, Chia-Chi; Kuo, Yung-Kang

    2017-09-01

    A series of Cu2Sn1-xPbxSe3 (0 ≤ x ≤ 0.04) compounds was prepared by solid state synthesis technique. The electrical resistivity (ρ) decreased with increase in Pb content up to x = 0.01, thereafter it increased with further increase in x (till x = 0.03). However, the lowest value of electrical resistivity is observed for Cu2Sn0.96Pb0.04Se3. Analysis of electrical resistivity of all the samples suggests that small poloron hoping model is operative in the high temperature regime while variable range hopping is effective in the low temperature regime. The positive Seebeck coefficient (S) for pristine and doped samples in the entire temperature range indicates that the majority charge carriers are holes. The electronic thermal conductivity (κe) of the Cu2Sn1-xPbxSe3 compounds was estimated by the Wiedemann-Franz law and found that the contribution from κe is less than 1% of the total thermal conductivity (κ). The highest ZT 0.013 was achieved at 400 K for the sample Cu2Sn0.98Pb0.02Se3, about 30% enhancement as compared to the pristine sample.

  8. Enhancement strategies for Cu(II), Cr(III) and Cr(VI) remediation by a variety of seaweed species.

    PubMed

    Murphy, V; Hughes, H; McLoughlin, P

    2009-07-15

    Various chemical treatments have been applied to six brown, red and green seaweed species with a view to enhancing their metal removal for Cu(II), Cr(III) and Cr(VI). Treatment with acetone resulted in the greatest enhancement for both cationic and anionic species with relatively low mass losses (15-35%), indicating its low risk to biomass operational stability. Cation binding was increased by 69%, while the total Cr removal was augmented by 15%. Cr(VI) binding was shown to be an adsorption-coupled reduction, whereby Cr(VI) was bound to the biomass surface at pH 2 and subsequently reduced to Cr(III). Acetone treatment also resulted in biomasses that were capable of converting up to 83% of Cr(VI) in solution to Cr(III). Blocking of carboxyl and amino functionalities had significant negative effects both on total Cr removal as well as percentage conversion of Cr(VI) to Cr(III). Results therefore indicated the significant role played by these moieties in metal binding to these seaweeds. Potentiometric titrations displayed agreement between the degree of esterification and the decrease in Cu(II) removal for Ulva spp. and Polysiphonia lanosa. FTIR analysis identified changes in biomass functionality and availability after chemical modification, the results of which were in agreement with metal removal studies. In conclusion, these biosorbents represent suitable candidates to replace conventional removal technologies for metal bearing wastewaters, in particular for the detoxification of hazardous Cr(VI) waste streams.

  9. Toxicity of seabird guano to sea urchin embryos and interaction with Cu and Pb.

    PubMed

    Rial, Diego; Santos-Echeandía, Juan; Álvarez-Salgado, Xosé Antón; Jordi, Antoni; Tovar-Sánchez, Antonio; Bellas, Juan

    2016-02-01

    Guano is an important source of marine-derived nutrients to seabird nesting areas. Seabirds usually present high levels of metals and other contaminants because the bioaccumulation processes and biotic depositions can increase the concentration of pollutants in the receiving environments. The objectives of this study were to investigate: the toxicity of seabird guano and the joint toxicity of guano, Cu and Pb by using the sea urchin embryo-larval bioassay. In a first experiment, aqueous extracts of guano were prepared at two loading rates (0.462 and 1.952 g L(-1)) and toxicity to sea-urchin embryos was tested. Toxicity was low and not dependent of the load of guano used (EC50 0.42 ± 0.03 g L(-1)). Trace metal concentrations were also low either in guano or in aqueous extracts of guano and the toxicity of extracts were apparently related to dissolved organic matter. In a second experiment, the toxicity of Cu-Pb mixtures in artificial seawater and in extracts of guano (at two loadings: 0.015 and 0.073 g L(-1)), was tested. According to individual fittings, Cu added to extracts of guano showed less toxicity than when dissolved in artificial seawater. The response surfaces obtained for mixtures of Cu and Pb in artificial seawater, and in 0.015 g L(-1) and 0.073 g L(-1) of guano, were better described by Independent Action model adapted to describe antagonism, than by the other proposed models. This implied accepting that EC50 for Cu and Pb increased with the load of guano and with a greater interaction for Cu than for Pb. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Thermoelectric transport properties of PbTe-based composites incorporated with Cu2Se nano-inclusions

    NASA Astrophysics Data System (ADS)

    Guo, Haifeng; Xin, Hongxing; Qin, Xiaoying; Jian, Zhang; Li, Di; Li, Yuanyue; Li, Cong

    2016-02-01

    Thermoelectric transport properties of Lead telluride (PbTe)-based composites incorporated with Cuprous selenide (Cu2Se) nano-inclusions were investigated from 300 K to 800 K. Here, except for the transition from p-type to n-type conduction that occurs in pristine PbTe at ~530 K due to the difference of mobility between thermally electron and hole at high temperature, another transition from p-type to n-type conduction at 300 K with an increasing proportion of Cu2Se could be due to the donor levels introduced by defects and unsaturated bonds at the interfaces. Moreover, by incorporating a small proportion (5 vol.%) of Cu2Se nanoparticles into the PbTe matrix to form nano-composites, both a reduction (~55%) in lattice thermal conductivity and an enhanced electrical conductivity compared with that of pristine PbTe are obtained, which allows the thermoelectric power factor to reach a larger value (~11.2 μW cm-1 K-2). Consequently, a maximum value ZT  =  0.91 is obtained at 760 K in the PbTe-5 vol.% Cu2Se sample.

  11. Succulent species differ substantially in their tolerance and phytoextraction potential when grown in the presence of Cd, Cr, Cu, Mn, Ni, Pb, and Zn.

    PubMed

    Zhang, Chengjun; Sale, Peter W G; Clark, Gary J; Liu, Wuxing; Doronila, Augustine I; Kolev, Spas D; Tang, Caixian

    2015-12-01

    Plants for the phytoextraction of heavy metals should have the ability to accumulate high concentrations of such metals and exhibit multiple tolerance traits to cope with adverse conditions such as coexistence of multiple heavy metals, high salinity, and drought which are the characteristics of many contaminated soils. This study compared 14 succulent species for their phytoextraction potential of Cd, Cr, Cu, Mn, Ni, Pb, and Zn. There were species variations in metal tolerance and accumulation. Among the 14 succulent species, an Australian native halophyte Carpobrotus rossii exhibited the highest relative growth rate (20.6-26.6 mg plant(-1) day(-1)) and highest tolerance index (78-93%), whilst Sedum "Autumn Joy" had the lowest relative growth rate (8.3-13.6 mg plant(-1) day(-1)), and Crassula multicava showed the lowest tolerance indices (<50%). Carpobrotus rossii and Crassula helmsii showed higher potential for phytoextraction of these heavy metals than other species. These findings suggest that Carpobrotus rossii is a promising candidate for phytoextraction of multiple heavy metals, and the aquatic or semiterrestrial Crassula helmsii is suitable for phytoextraction of Cd and Zn from polluted waters or wetlands.

  12. High temperature coarsening of Cr2Nb precipitates in Cu-8 Cr-4 Nb alloy

    NASA Technical Reports Server (NTRS)

    Anderson, Kenneth Reed

    1996-01-01

    A new high-temperature-strength, high-conductivity Cu-Cr-Nb alloy with a CrNb ratio of 2:1 was developed to achieve improved performance and durability. The Cu-8 Cr4 Nb alloy studied has demonstrated remarkable thermal and microstructural stability after long exposures at temperatures up to 0.98 T(sub m). This stability was mainly attributed to the slow coarsening kinetics of the Cr2Nb precipitates present in the alloy. At all temperatures, the microstructure consists of a bimodal and sometimes trimodal distribution of strengthening Cr2Nb precipitates, depending on precipitation condition, i.e. from liquid or solid solution, and cooling rates. These precipitates remain in the same size range, i.e. large precipitates of approximately I pm, and small precipitates less dm 300 nm, and effectively pin the grain boundaries thus retaining a fine grain size of 2.7 micro-m after 100 h at 1323 K. (A relatively small number of Cr-rich and Nb-rich particles were also present.) This grain boundary pinning and sluggish coarsening of Cr2Nb particles explain the retention of good mechanical properties after prolonged holding at very high temperatures, e.g., 75% of the original hardness after aging for 100 h at 1273 K. Application of LSW-based coarsening models indicated that the coarsening kinetics of the large precipitates are most likely governed by grain boundary diffsion and, to a lesser extent, volume diffusion mechanisms.

  13. Dynamics of Cd, Cu and Pb added to soil through different kinds of sewage sludge.

    PubMed

    Torri, S I; Lavado, R S

    2008-01-01

    A greenhouse experiment was set up to study the distribution of Cd, Cu and Pb in three typical soils of the Pampas Region amended with sewage sludge. A sequential extraction procedure was used to obtain four operationally defined geochemical species: exchangeable, bound to organic matter, bound to carbonates, and residual. Two kinds of sewage sludge were used: pure sewage sludge and sewage sludge containing 30% DM of its own incinerated ash, at rates equivalent to a field application of 150 t DM ha(-1). Pots were maintained at 80% of field capacity through daily irrigation with distilled water. Soil samples were obtained on days 1, 60, 270 and 360, and then air-dried and passed through a 2 mm sieve for analysis. Results showed that sludge application increased the less available forms of Cd, Cu and Pb. The inorganic forms became the most prevalent forms for Cu and Pb, whereas Cd was only found in the residual fraction. The concentrations of OM-Cu and INOR-Cu in the amended soil samples were closely correlated with soil pH, whereas the chemical behavior of Cd and Pb did not depend on soil physico-chemical characteristics.

  14. Effects of Additives on Electrochemical Growth of Cu Film on Co/SiO2/Si Substrate by Alternating Underpotential Deposition of Pb and Surface-Limited Redox Replacement by Cu

    NASA Astrophysics Data System (ADS)

    Fang, J. S.; Lin, L. Y.; Wu, C. L.; Cheng, Y. L.; Chen, G. S.

    2017-11-01

    The effects of additives to an acidic electrolyte for electrochemical deposition of copper film to prevent corrosion of the Co/SiO2/Si substrate have been investigated. A sacrificial Pb layer was formed by underpotential deposition (UPD), then a Cu layer was prepared using surface-limited redox replacement (SLRR) to exchange the UPD-Pb layer in an acidic copper electrolyte with trisodium citrate, sodium perchlorate, and ethylenediamine as additives. The additives significantly affected the replacement of UPD-Pb by Cu and prevented galvanic corrosion of the Co/SiO2/Si substrate in the acidic Cu electrolyte. The results showed that both sodium perchlorate and ethylenediamine reduced the corrosion of the Co substrate and resulted in Cu film with low electrical resistivity. However, residual Pb was present in the Cu film when using trisodium citrate, as the citrate ions slowed copper displacement. The proposed sequential UPD-Pb and SLRR-Cu growth method may enable electrochemical deposition for fabrication of Cu interconnects on Co substrate from acidic Cu electrolyte.

  15. Synthesis of highly phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor

    DOEpatents

    Dorris, S.E.; Poeppel, R.B.; Prorok, B.C.; Lanagan, M.T.; Maroni, V.A.

    1994-10-11

    An article and method of manufacture of (Bi,Pb)-Sr-Ca-Cu-O superconductor are disclosed. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi,Pb)-Sr-Ca-Cu-O superconductor. 5 figs.

  16. Synthesis of highly phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor

    DOEpatents

    Dorris, Stephen E.; Poeppel, Roger B.; Prorok, Barton C.; Lanagan, Michael T.; Maroni, Victor A.

    1994-01-01

    An article and method of manufacture of (Bi,Pb)-Sr-Ca-Cu-O superconductor. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi,Pb)-Sr-Ca-Cu-O superconductor.

  17. Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers

    NASA Astrophysics Data System (ADS)

    He, Junyong; Li, Yulian; Wang, Chengming; Zhang, Kaisheng; Lin, Dongyue; Kong, Lingtao; Liu, Jinhuai

    2017-12-01

    Removing heavy metals from aqueous solutions has drawn more and more attentions these years because of their serious global health challenge to human society. To develop an adsorbent with low-cost and high-efficiency for removal of heavy metals (HMs), β-cyclodextrin (β-CD) polymers crosslinked with rigid aromatic groups were prepared and used for lead (Pb), copper (Cu) and cadmium (Cd) removal for the first time. The negatively charged β-CD polymers with large BET surface area were suitable to be used in HMs adsorption. The adsorption process completed in 5 min was well fit by Freundlich isotherm model and pseudo-second-order model. The intraparticle diffusion model was also appropriate to describe the adsorption of Pb, Cu and Cd on β-CD polymer. The maximum of adsorption capacities at 25 °C for Pb, Cu and Cd were 196.42, 164.43 and 136.43 mg/g when the initial concentration was 200 mg/L. The HMs adsorption process on the surface of β-CD polymer was an endothermic and spontaneous process. Both of the electrostatic interaction and distribution of Pb, Cu and Cd species influenced the adsorption process at different pH values. The order of removal efficiencies in multi-component adsorption for the three metal ions were Pb > Cu > Cd. The adsorption mechanisms were H+ ions on hydroxyl groups exchanged with heavy metal ions and electrostatic interactions. This study indicated that β-CD polymers could be developed into effective adsorbents for rapid removal of heavy metals.

  18. Facile fabrication of CuO-Pb2O3 nanophotocatalyst for efficient degradation of Rose Bengal dye under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Kamaraj, Eswaran; Somasundaram, Sivaraman; Balasubramani, Kavitha; Eswaran, Muthu Prema; Muthuramalingam, Rajarajan; Park, Sanghyuk

    2018-03-01

    A p-type CuO/n-type Pb2O3 heterojunction photocatalyst was prepared by a simple wet chemical process and the photocatalytic ability was evaluated for the degradation of Rose Bengal (RB) under visible light irradiation. Synthesized nanocatalysts were characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDS), Brunauer-Emmett-Teller (BET) surface area analysis, and X-ray photoelectron spectroscopy (XPS). The p-n heterojunction of CuO-Pb2O3 nanostructures can promote the light absorption capability of photocatalyst and charge separation of electron-hole pairs. Photodegradation assays showed that the addition of CuO effectively enhanced the photocatalytic activity of CuO-Pb2O3 under visible light irradiation (λmax > 420 nm). Compared with pure Pb2O3 and CuO, the CuO-Pb2O3 exhibited significantly enhanced photocatalytic degradation activity. The reaction rate constant of CuO-Pb2O3 is 0.092 min-1, which is much higher than those of CuO (0.073 min-1) and Pb2O3 (0.045 min-1).

  19. Charge disproportionation and the pressure-induced insulator–metal transition in cubic perovskite PbCrO3

    PubMed Central

    Cheng, Jinguang; Kweon, K. E.; Larregola, S. A.; Ding, Yang; Shirako, Y.; Marshall, L. G.; Li, Z.-Y.; Li, X.; dos Santos, António M.; Suchomel, M. R.; Matsubayashi, K.; Uwatoko, Y.; Hwang, G. S.; Goodenough, John B.; Zhou, J.-S.

    2015-01-01

    The perovskite PbCrO3 is an antiferromagnetic insulator. However, the fundamental interactions leading to the insulating state in this single-valent perovskite are unclear. Moreover, the origin of the unprecedented volume drop observed at a modest pressure of P = 1.6 GPa remains an outstanding problem. We report a variety of in situ pressure measurements including electron transport properties, X-ray absorption spectrum, and crystal structure study by X-ray and neutron diffraction. These studies reveal key information leading to the elucidation of the physics behind the insulating state and the pressure-induced transition. We argue that a charge disproportionation 3Cr4+ → 2Cr3+ + Cr6+ in association with the 6s-p hybridization on the Pb2+ is responsible for the insulating ground state of PbCrO3 at ambient pressure and the charge disproportionation phase is suppressed under pressure to give rise to a metallic phase at high pressure. The model is well supported by density function theory plus the correlation energy U (DFT+U) calculations. PMID:25624483

  20. Charge disproportionation and the pressure-induced insulator–metal transition in cubic perovskite PbCrO 3

    DOE PAGES

    Cheng, Jinguang; Kweon, K. E.; Larregola, S. A.; ...

    2015-01-26

    The perovskite PbCrO 3 is an antiferromagnetic insulator. But, the fundamental interactions leading to the insulating state in this single-valent perovskite are unclear. Moreover, the origin of the unprecedented volume drop observed at a modest pressure of P = 1.6 GPa remains an outstanding problem. Our report shows a variety of in situ pressure measurements including electron transport properties, X-ray absorption spectrum, and crystal structure study by X-ray and neutron diffraction. These studies reveal key information leading to the elucidation of the physics behind the insulating state and the pressure-induced transition. Furthermore, we argue that a charge disproportionation 3Cr 4+more » → 2Cr 3+ + Cr 6+ in association with the 6s-p hybridization on the Pb 2+ is responsible for the insulating ground state of PbCrO 3 at ambient pressure and the charge disproportionation phase is suppressed under pressure to give rise to a metallic phase at high pressure. The model is well supported by density function theory plus the correlation energy U (DFT + U) calculations.« less

  1. Thermoelectric Properties of Bi2Te3: CuI and the Effect of Its Doping with Pb Atoms

    PubMed Central

    Han, Mi-Kyung; Lee, Da-Hee; Kim, Sung-Jin

    2017-01-01

    In order to understand the effect of Pb-CuI co-doping on the thermoelectric performance of Bi2Te3, n-type Bi2Te3 co-doped with x at % CuI and 1/2x at % Pb (x = 0, 0.01, 0.03, 0.05, 0.07, and 0.10) were prepared via high temperature solid state reaction and consolidated using spark plasma sintering. Electron and thermal transport properties, i.e., electrical conductivity, carrier concentration, Hall mobility, Seebeck coefficient, and thermal conductivity, of CuI-Pb co-doped Bi2Te3 were measured in the temperature range from 300 K to 523 K, and compared to corresponding x% of CuI-doped Bi2Te3 and undoped Bi2Te3. The addition of a small amount of Pb significantly decreased the carrier concentration, which could be attributed to the holes from Pb atoms, thus the CuI-Pb co-doped samples show a lower electrical conductivity and a higher Seebeck coefficient when compared to CuI-doped samples with similar x values. The incorporation of Pb into CuI-doped Bi2Te3 rarely changed the power factor because of the trade-off relationship between the electrical conductivity and the Seebeck coefficient. The total thermal conductivity(κtot) of co-doped samples (κtot ~ 1.4 W/m∙K at 300 K) is slightly lower than that of 1% CuI-doped Bi2Te3 (κtot ~ 1.5 W/m∙K at 300 K) and undoped Bi2Te3 (κtot ~ 1.6 W/m∙K at 300 K) due to the alloy scattering. The 1% CuI-Pb co-doped Bi2Te3 sample shows the highest ZT value of 0.96 at 370 K. All data on electrical and thermal transport properties suggest that the thermoelectric properties of Bi2Te3 and its operating temperature can be controlled by co-doping. PMID:29072613

  2. Biosorption of Cr (VI), Cr (III), Pb (II) and Cd (II) from aqueous solutions by Sargassum wightii and Caulerpa racemosa algal biomass

    NASA Astrophysics Data System (ADS)

    Tamilselvan, Narayanaswamy; Saurav, Kumar; Kannabiran, Krishnan

    2012-03-01

    Heavy metal pollution is one of the most important environmental problems today. Biosorption is an innovative technology that employs biological materials to accumulate heavy metals from waste water through metabolic process or physicochemical pathways of uptake. Even though several physical and chemical methods are available for removal of heavy metals, currently many biological materials such as bacteria, algae, yeasts and fungi have been widely used due to their good performance, low cost and large quantity of availability. The aim of the present study is to explore the biosorption of toxic heavy metals, Cr(VI), Cr(III), Pb(II) and Cd(II) by algal biomass obtained from algae Sargassum wightii (brown) and Caulerpa racemosa (green). Biosorption of algal biomass was found to be biomass concentration- and pH-dependent, while the maximal biosorption was found at pH 5.0 and with the metal concentration of 100 mg L-1. S. wightii showed the maximal metal biosorption at the biomass concentration of 25 g L-1, followed by C. racemosa with the maximal biosorption at 30 g L-1. S. wightii showed 78% biosorption of Cr(VI), Cr(III), Pb(II) and Cd(II) ions. C. racemosa exhibited 85% biosorption of Cd(II) and Cr(VI), and 50% biosorption of Cr(III) and Pb(II). The results of our study suggest that seaweed biomass can be used efficiently for biosorption of heavy metals.

  3. Environmental behaviors and potential ecological risks of heavy metals (Cd, Cr, Cu, Pb, and Zn) in multimedia in an oilfield in China.

    PubMed

    Hu, Yan; Wang, Dazhou; Li, Yu

    2016-07-01

    The environmental behaviors of five heavy metals (Cd, Cr, Cu, Pb, and Zn) in a Chinese oilfield were investigated using a steady-state multimedia aquivalence (SMA) model. The modeling results showed good agreement with the actual measured values, with average residual errors of 0.69, 0.83, 0.35, 0.16, and 0.54 logarithmic units for air, water, soil, sediment, and vegetation compartments, respectively. Model results indicated that most heavy metals were buried in sediment, and that transfers between adjacent compartments were mainly deposition from the water to the sediment compartment (48.59 %) and from the air to the soil compartment (47.74 %) via atmospheric dry/wet deposition. Sediment and soil were the dominant sinks, accounting for 68.80 and 25.26 % of all the heavy metals in the multimedia system, respectively. The potential ecological risks from the five heavy metals in the sediment and soil compartments were assessed by the potential ecological risk index (PERI). The assessment results demonstrate that the heavy metals presented low levels of ecological risk in the sediment compartment, and that Cd was the most significant contributor to the integrated potential ecological risk in the oilfield. The SMA model provided useful simulations of the transport and fate of heavy metals and is a useful tool for ecological risk assessment and contaminated site management.

  4. Site-selective XAFS spectroscopy tuned to surface active sites of Cu/ZnO and Cr/SiO2 catalysts.

    PubMed

    Izumi, Y; Nagamori, H; Kiyotaki, F; Minato, T

    2001-03-01

    XAFS (X-ray absorption fine structure) spectra were measured by using the fluorescence spectrometer for the emitted X-ray from sample. The chemical shifts between Cu0 and Cu1 and between CrIII and CrVI were evaluated. Tuning the fluorescence spectrometer to each energy, the Cu0 and CuI site-selective XANES for Cu/ZnO catalyst were measured. The first one was similar to the XANES of Cu metal and the second one was the 5 : 5 average of XANES for CuI sites + Cu metal. The population ratio of copper site of the Cu/ZnO catalyst was found to be Cu metal: Cu2O : CuI atomically dispersed on surface = 70(+/-23) : 22(+/-14) : 8(+/-5). Site-selective XANES for CrIII site of Cr/SiO2 catalyst was also studied.

  5. Primary Phase Field of the Pb-Doped 2223 High-Tc Superconductor in the (Bi, Pb)-Sr-Ca-Cu-O System

    PubMed Central

    Wong-Ng, W.; Cook, L. P.; Kearsley, A.; Greenwood, W.

    1999-01-01

    Both liquidus and subsolidus phase equilibrium data are of central importance for applications of high temperature superconductors in the (Bi, Pb)-Sr-Ca-Cu-O system, including material synthesis, melt processing and single crystal growth. The subsolidus equilibria of the 110 K high-Tc Pb-doped 2223 ([Bi, Pb], Sr, Ca, Cu) phase and the location of the primary phase field (crystallization field) have been determined in this study. For the quantitative determination of liquidus data, a wicking technique was developed to capture the melt for quantitative microchemical analysis. A total of 29 five-phase volumes that include the 2223 phase as a component was obtained. The initial melt compositions of these volumes range from a mole fraction of 7.3 % to 28.0 % for Bi, 11.3 % to 27.8 % for Sr, 1.2 % to 19.4 % for Pb, 9.8 % to 30.8 % for Ca, and 17.1 % to 47.0 % for Cu. Based on these data, the crystallization field for the 2223 phase was constructed using the convex hull technique. A section of this “volume” was obtained by holding two components of the composition at the median value, allowing projection on the other three axes to show the extent of the field.

  6. Structural and magnetic characterization of the complete delafossite solid solution (CuAlO₂)₁-x(CuCrO₂)x.

    PubMed

    Barton, Phillip T; Seshadri, Ram; Knöller, Andrea; Rosseinsky, Matthew J

    2012-01-11

    We have prepared the complete delafossite solid solution series between diamagnetic CuAlO(2) and the t(2g)(3)frustrated antiferromagnet CuCrO(2). The evolution with composition x in CuAl(1-x)Cr(x)O(2) of the crystal structure and magnetic properties has been studied and is reported here. The room-temperature unit cell parameters follow the Végard law and increase with x as expected. The μ(eff) is equal to the Cr(3+) spin-only S = 3/2 value throughout the entire solid solution. Θ(CW) is negative, indicating that the dominant interactions are antiferromagnetic, and its magnitude increases with Cr substitution. For dilute Cr compositions, the nearest-neighbor exchange coupling constant J(BB) was estimated by mean-field theory to be 3.0 meV. Despite the sizable Θ(CW), long-range antiferromagnetic order does not develop until x is almost 1, and is preceded by glassy behavior. The data presented here, and those on dilute Al substitution from Okuda et al, suggest that the reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as chemical disorder and dilution of the magnetic exchange. For all samples, the 5 K isothermal magnetization does not saturate in fields up to 5 T and minimal hysteresis is observed. The presence of antiferromagnetic interactions is clearly evident in the sub-Brillouin behavior with a reduced magnetization per Cr atom. An inspection of the scaled Curie plot reveals that significant short-range antiferromagnetic interactions occur in CuCrO(2) above its Néel temperature, consistent with its magnetic frustration. Uncompensated short-range behavior is present in the Al-substituted samples and is likely a result of chemical disorder.

  7. Behaviors of heavy metals (Cd, Cu, Ni, Pb and Zn) in soil amended with composts.

    PubMed

    Gusiatin, Zygmunt Mariusz; Kulikowska, Dorota

    2016-09-01

    This study investigated how amendment with sewage sludge compost of different maturation times (3, 6, 12 months) affected metal (Cd, Cu, Ni, Pb, Zn) bioavailability, fractionation and redistribution in highly contaminated sandy clay soil. Metal transformations during long-term soil stabilization (35 months) were determined. In the contaminated soil, Cd, Ni and Zn were predominately in the exchangeable and reducible fractions, Pb in the reducible fraction and Cu in the reducible, exchangeable and oxidizable fractions. All composts decreased the bioavailability of Cd, Ni and Zn for up to 24 months, which indicates that cyclic amendment with compost is necessary. The bioavailability of Pb and Cu was not affected by compost amendment. Based on the reduced partition index (IR), metal stability in amended soil after 35 months of stabilization was in the following order: Cu > Ni = Pb > Zn > Cd. All composts were more effective in decreasing Cd, Ni and Zn bioavailability than in redistributing the metals, and increasing Cu redistribution more than that of Pb. Thus, sewage sludge compost of as little as 3 months maturation can be used for cyclic amendment of multi-metal-contaminated soil.

  8. Sorption of Cu and Pb to kaolinite-fulvic acid colloids: Assessment of sorbent interactions

    NASA Astrophysics Data System (ADS)

    Heidmann, Ilona; Christl, Iso; Kretzschmar, Ruben

    2005-04-01

    The sorption of Cu(II) and Pb(II) to kaolinite-fulvic acid colloids was investigated by potentiometric titrations. To assess the possible interactions between kaolinite and fulvic acid during metal sorption, experimental sorption isotherms were compared with predictions based on a linear additivity model (LAM). Suspensions of 5 g L -1 kaolinite and 0.03 g L -1 fulvic acid in 0.01 M NaNO 3 were titrated with Cu and Pb solutions, respectively. The suspension pH was kept constant at pH 4, 6, or 8. The free ion activities of Cu 2+ and Pb 2+ were monitored in the titration vessel using ion selective electrodes. Total dissolved concentrations of metals (by ICP-MS) and fulvic acid (by UV-absorption) were determined in samples taken after each titration step. The amounts of metals sorbed to the solid phase, comprised of kaolinite plus surface-bound fulvic acid, were calculated by difference. Compared to pure kaolinite, addition of fulvic acid to the clay strongly increased metal sorption to the solid phase. This effect was more pronounced at pH 4 and 6 than at pH 8, because more fulvic acid was sorbed to the kaolinite surface under acidic conditions. Addition of Pb enhanced the sorption of fulvic acid onto kaolinite at pH 6 and 8, but not at pH 4. Addition of Cu had no effect on the sorption of fulvic acid onto kaolinite. In the LAM, metal sorption to the kaolinite surface was predicted by a two-site, 1-pK basic Stern model and metal sorption to the fulvic acid was calculated with the NICA-Donnan model, respectively. The LAM provided good predictions of Cu sorption to the kaolinite-fulvic acid colloids over the entire range in pH and free Cu 2+ ion activity (10 -12 to 10 -5). The sorption of Pb was slightly underestimated by the LAM under most conditions. A fractionation of the fulvic acid during sorption to kaolinite was observed, but this could not explain the observed deviations of the LAM predictions from the experimental Pb sorption isotherms.

  9. Investigations of Cu, Pb and Zn partitioning by sequential extraction in harbour sediments after electrodialytic remediation.

    PubMed

    Kirkelund, Gunvor M; Ottosen, Lisbeth M; Villumsen, Arne

    2010-05-01

    Electrodialytic remediation was used to remove Cu, Zn and Pb from three different contaminated harbour sediments. Electrodialytic experiments lasting 2 and 4 weeks were performed and 48-86% Cu, 74-90% Zn and 62-88% Pb were removed from the different sediments and the removal increased with longer remediation time. A three step sequential extraction scheme (BCR), with an extra residual step, was used to evaluate the heavy metal distribution in the sediments before and after electrodialytic remediation. Cu was mainly associated with the oxidisable phase of the sediment, both before and after remediation. Zn and Pb were found in the exchangeable and reducible phases before remediation. Zn was still found in the exchangeable and reducible phases after remediation, whereas most Pb was removed from these phases during electrodialytic remediation. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Overview spectra and axial distribution of spectral line intensities in a high-current vacuum arc with CuCr electrodes

    NASA Astrophysics Data System (ADS)

    Lisnyak, M.; Pipa, A. V.; Gorchakov, S.; Iseni, S.; Franke, St.; Khapour, A.; Methling, R.; Weltmann, K.-D.

    2015-09-01

    Spectroscopic investigations of free-burning vacuum arcs in diffuse mode with CuCr electrodes are presented. The experimental conditions of the investigated arc correspond to the typical system for vacuum circuit breakers. Spectra of six species Cu I, Cu II, Cu III, Cr I, Cr II, and Cr III have been analyzed in the wavelength range 350-810 nm. The axial intensity distributions were found to be strongly dependent on the ionization stage of radiating species. Emission distributions of Cr II and Cu II can be distinguished as well as the distributions of Cr III and Cu III. Information on the axial distribution was used to identify the spectra and for identification of overlapping spectral lines. The overview spectra and some spectral windows recorded with high resolution are presented. Analysis of axial distributions of emitted light, which originates from different ionization states, is presented and discussed.

  11. Bioaccessibility of As, Cd, Cu, Ni, Pb, and Sb in toys and low-cost jewelry.

    PubMed

    Guney, Mert; Zagury, Gerald J

    2014-01-21

    Children can be exposed to toxic elements in toys and jewelry following ingestion. As, Cd, Cu, Ni, Pb, and Sb bioavailability was assessed (n = 24) via the in vitro gastrointestinal protocol (IVG), the physiologically based extraction test (PBET), and the European Toy Safety Standard protocol (EN 71-3), and health risks were characterized. Cd, Cu, Ni, and Pb were mobilized from 19 metallic toys and jewelry (MJ) and one crayon set. Bioaccessible Cd, Ni, or Pb exceeded EU migratable concentration limits in four to six MJ, depending on the protocol. Using two-phase (gastric + intestinal) IVG or PBET might be preferable over EN 71-3 since they better represent gastrointestinal physiology. Bioaccessible and total metal concentrations were different and not always correlated, indicating that bioaccessibility measurement may provide more accurate risk characterization. More information on impacts of multiple factors affecting metals mobilization from toys and jewelry is needed before recommending specific tests. Hazard index (HI) for Cd, Ni, or Pb were >1 for all six MJ exceeding the EU limits. For infants (6-12 mo old), 10 MJ had HI > 1 for Cd, Cu, Ni, or Pb (up to 75 for Cd and 43 for Pb). Research on prolonged exposure to MJ and comprehensive risk characterization for toys and jewelry exposure is recommended.

  12. Simultaneous removal of Cu(II) and Cr(VI) by Mg-Al-Cl layered double hydroxide and mechanism insight.

    PubMed

    Yue, Xianyang; Liu, Weizhen; Chen, Zuliang; Lin, Zhang

    2017-03-01

    Mg-Al-Cl layered double hydroxide (Cl-LDH) was prepared to simultaneously remove Cu(II) and Cr(VI) from aqueous solution. The coexisting Cu(II) (20mg/L) and Cr(VI) (40mg/L) were completely removed within 30min by Cl-LDH in a dosage of 2.0g/L; the removal rate of Cu(II) was accelerated in the presence of Cr(VI). Moreover, compared with the adsorption of single Cu(II) or Cr(VI), the adsorption capacities of Cl-LDH for Cu(II) and Cr(VI) can be improved by 81.05% and 49.56%, respectively, in the case of coexisting Cu(II) (200mg/L) and Cr(VI) (400mg/L). The affecting factors (such as solution initial pH, adsorbent dosage, and contact time) have been systematically investigated. Besides, the changes of pH values and the concentrations of Mg 2+ and Al 3+ in relevant solutions were monitored. To get the underlying mechanism, the Cl-LDH samples before and after adsorption were thoroughly characterized by X-ray powder diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. On the basis of these analyses, a possible mechanism was proposed. The coadsorption process involves anion exchange of Cr(VI) with Cl - in Cl-LDH interlayer, isomorphic substitution of Mg 2+ with Cu 2+ , formation of Cu 2 Cl(OH) 3 precipitation, and the adsorption of Cr(VI) by Cu 2 Cl(OH) 3 . This work provides a new insight into simultaneous removal of heavy metal cations and anions from wastewater by Cl-LDH. Copyright © 2016. Published by Elsevier B.V.

  13. Multiferroicity of CuCrO2 tested by electron spin resonance

    NASA Astrophysics Data System (ADS)

    Gotovko, S. K.; Soldatov, T. A.; Svistov, L. E.; Zhou, H. D.

    2018-03-01

    We have carried out the electron spin resonance (ESR) study of the multiferroic triangular antiferromagnet CuCrO2 in the presence of an electric field. The shift of ESR spectra by the electric field was observed; the value of the shift exceeds that in materials with linear magnetoelectric coupling. It was shown that the low-frequency dynamics of magnetically ordered CuCrO2 is defined by joint oscillations of the spin plane and electric polarization. The results demonstrate an agreement with theoretical expectations of a phenomenological model [V. I. Marchenko, J. Exp. Theor. Phys. 119, 1084 (2014), 10.1134/S1063776114120073].

  14. Overview spectra and axial distribution of spectral line intensities in a high-current vacuum arc with CuCr electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisnyak, M.; Pipa, A. V.; Gorchakov, S., E-mail: gorchakov@inp-greifswald.de, E-mail: weltmann@inp-greifswald.de

    2015-09-28

    Spectroscopic investigations of free-burning vacuum arcs in diffuse mode with CuCr electrodes are presented. The experimental conditions of the investigated arc correspond to the typical system for vacuum circuit breakers. Spectra of six species Cu I, Cu II, Cu III, Cr I, Cr II, and Cr III have been analyzed in the wavelength range 350–810 nm. The axial intensity distributions were found to be strongly dependent on the ionization stage of radiating species. Emission distributions of Cr II and Cu II can be distinguished as well as the distributions of Cr III and Cu III. Information on the axial distribution wasmore » used to identify the spectra and for identification of overlapping spectral lines. The overview spectra and some spectral windows recorded with high resolution are presented. Analysis of axial distributions of emitted light, which originates from different ionization states, is presented and discussed.« less

  15. Pb, Cu and Cd distribution in five estuary systems of Marche, central Italy.

    PubMed

    Annibaldi, Anna; Illuminati, Silvia; Truzzi, Cristina; Libani, Giulia; Scarponi, Giuseppe

    2015-07-15

    Heavy metals are subjected to monitoring in estuarine and marine water by the European Union Water Framework Directive, which requires water body health to be achieved by 2021. This is the first survey of heavy metals content in five estuaries of Marche, a region in central Italy. Results showed that total Pb and Cu concentrations decreased by 70-80%, from 1000-2000 to 100-200 ng L(-1) (Pb) and from 2000-3000 to 500-1000 ng L(-1) (Cu) from river to sea. Cd was consistently 20-40 ng L(-1). Dissolved Pb and Cu concentrations declined by 50% and 70% respectively passing from oligohaline to euhaline water, from 150 to 70 ng L(-1) and from 2000-1000 to 600-400 ng L(-1). Cd decreased slightly from ∼20 to ∼10 ng L(-1). Although such concentrations are in the range allowed by the Water Framework Directive, they far exceed (up to 10×) the ground content ceiling set for 2021. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Characterization of Cold Sprayed CuCrAl Coated GRCop-84 Substrates for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, S . V.; Barrett, C. A.; Lerch, B. A.; Karthikeyan, J.; Ghosn, L. J.; Haynes, J.

    2005-01-01

    An advanced Cu-8(at.%)Cr-4%Nb alloy developed at NASA's Glenn Research Center, and designated as GRCop-84, is currently being considered for use as combustor liners and nozzles in NASA's future generations of reusable launch vehicles (RLVs). Despite the fact that this alloy has superior mechanical and oxidation properties compared to many commercially available copper alloys, it is felt that its high temperature and environmental resistance capabilities can be further enhanced with the development and use of suitable coatings. Several coatings and processes are currently being evaluated for their suitability and future down selection. A newly developed CuCrAl has shown excellent oxidation resistance compared to current generation Cu-Cr coating alloys. Cold spray technology for depositing the CuCrAl coating on a GRCop-84 substrate is currently being developed under NASA's Next Generation Launch Technology (NGLT) Propulsion Research and Technology (PR&T) project. The microstructures, mechanical and thermophysical properties of overlay coated GRCop-84 substrates are discussed.

  17. Thermophysical Properties of Sn-Ag-Cu Based Pb-Free Solders

    NASA Astrophysics Data System (ADS)

    Kim, Sok Won; Lee, Jaeran; Jeon, Bo-Min; Jung, Eun; Lee, Sang Hyun; Kang, Kweon Ho; Lim, Kwon Taek

    2009-06-01

    Lead-tin (Pb-Sn) alloys are the dominant solders used for electronic packaging because of their low cost and superior properties required for interconnecting electronic components. However, increasing environmental and health concerns over the toxicity of lead, combined with global legislation to limit the use of Pb in manufactured products, have led to extensive research and development studies of lead-free solders. The Sn-Ag-Cu ternary eutectic alloy is considered to be one of the promising alternatives. Except for thermal properties, much research on several properties of Sn-Ag-Cu alloy has been performed. In this study, five Sn-xAg-0.5Cu alloys with variations of Ag content x of 1.0 mass%, 2.5 mass%, 3.0 mass%, 3.5 mass%, and 4.0 mass% were prepared, and their thermal diffusivity and specific heat were measured from room temperature to 150 °C, and the thermal conductivity was calculated using the measured thermal diffusivity, specific heat, and density values. Also, the linear thermal expansion was measured from room temperature to 170 °C. The results show that Sn-3.5Ag-0.5Cu is the best candidate because it has a maximum thermal conductivity and a low thermal expansion, which are the ideal conditions to be a proper packaging alloy for effective cooling and thermostability.

  18. Effects of phosphorus fertilizer and lime on the As, Cr, Pb, and V content of soils and plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodroad, L.L.; Caldwell, A.C.

    1979-10-01

    The occurrence in fertilizer material of small quantities of chemical elements not essential to plants suggests that the soil may become contaminated with these elements due to the use of fertilizers. Two experimental sites: a Nicollet clay loam fertilized with 0, 1111, 2222, 4444, and 8888 kg/ha of concentrated superphosphate (CSP) and 20.2 metric tons of lime, and a Port Byron silt loam fertilized for 19 years with 99, 73, 82, and 352 kg/ha annually of CSP, calcium metaphosphate, phosphoric acid, and southern rock phosphate, respectively, were sampled to determine if significant amounts of arsenic (As), chromium (Cr), lead (Pb),more » or vanadium (V) had been added from the use of these fertilizer materials. There was no indication of increased As, Cr, Pb, or V from the addition of P fertilizers to either the Nicollet or Port Byron soils. The addition of lime increased the Cr content of the Nicollet soil by approximately 3 ppM, but there was no increase in As, Pb, or V. There was no increase in As, Cr, Pb, or V from addition of CSP in soil samples from below the Ap horizon to a depth of 47.5 cm. Soil samples from a representative Nicollet soil suggest that higher As, Cr, Pb, and V concentrations in the A and B horizons are due to leaching of CaCO/sub 3/ into the C horizon. Corn (Zea mays L.) plant growth and grain yields were similar for all CSP and lime treatments. The results of this study indicate that the use of P fertilizers at the rates presently applied would not add substantially to the natural levels of As, Cr, Pb, and V in the soil.« less

  19. Distributions and pollution assessment of heavy metals Pb, Cd and Cr in the water system of Kendari Bay, Indonesia

    NASA Astrophysics Data System (ADS)

    Armid, A.; Shinjo, R.; Ruslan, R.; Fahmiati

    2017-02-01

    The concentrations of heavy metals Pb, Cd and Cr in the coastal waters of Kendari Bay were analyzed to assess their pollution status. Water samples from 32 sampling points were analyzed for dissolved heavy metals concentrations by using inductively coupled plasma mass spectrometry (ICP-MS). The RSD(%) of each metal was accounted to analyze the diversity of the heavy metals among 32 sampling points. The results demonstrate that the dissolved heavy metal Pb had the highest concentrations (0.009 to 0.549 μg/L, average = 0.210 μg/L) followed by Cr (0.085 to 0.386 μg/L, average = 0.149 μg/L), and Cd (0.001 to 0.015 μg/L, average = 0.008 μg/L). Based on the the RSD values (Pb = 87.8%, Cd = 45.2% and Cr = 41.3%), it is suggested that the antropogenic activities controls the high diversity of concentrations for heavy metal Pb relative to those of Cd and Cr. Comparing the data with the mean oceanic concentrations, only the concentrations of Pb exceed the mean oceanic level (210 folds). Therefore, the water system of Kendari Bay is severely polluted with heavy metal Pb. More management and treatment should be introduced to protect the marine environment in the study area, especially from Pb pollution.

  20. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings.

    PubMed

    Huang, Longbin; Li, Xiaofang; Nguyen, Tuan A H

    2015-01-01

    Elevated inorganic phosphate (Pi) concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu)-lead (Pb)-zinc (Zn) mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7), the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5), EHM-TD (fresh Cu-stream, high magnetite content) and local soil (weathered shale and schist), respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed), oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2), ankerite (Ca(Fe Mg)(CO3)2 and siderite (FeCO3), as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,Fe)S, ZnS, (Zn,Cd)S)) may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal.

  1. Influence of bioenergy waste biochar on proton- and ligand-promoted release of Pb and Cu in a shooting range soil.

    PubMed

    Kumarathilaka, Prasanna; Ahmad, Mahtab; Herath, Indika; Mahatantila, Kushani; Athapattu, B C L; Rinklebe, Jörg; Ok, Yong Sik; Usman, Adel; Al-Wabel, Mohammad I; Abduljabbar, Adel; Vithanage, Meththika

    2018-06-01

    Presence of organic and inorganic acids influences the release rates of trace metals (TMs) bound in contaminated soil systems. This study aimed to investigate the influence of bioenergy waste biochar, derived from Gliricidia sepium (GBC), on the proton and ligand-induced bioavailability of Pb and Cu in a shooting range soil (17,066mg Pb and 1134mg Cu per kg soil) in the presence of inorganic (sulfuric, nitric, and hydrochloric) and organic acids (acetic, citric, and oxalic). Release rates of Pb and Cu in the shooting range soil were determined under different acid concentrations (0.05, 0.1, 0.5, 1, 5, and 10mM) and in the presence/absence of GBC (10% by weight of soil). The dissolution rates of Pb and Cu increased with increasing acid concentrations. Lead was preferentially released (2.79×10 -13 to 8.86×10 -13 molm -2 s -1 ) than Cu (1.07×10 -13 to 1.02×10 -13 molm -2 s -1 ) which could be due to the excessive Pb concentrations in soil. However, the addition of GBC to soil reduced Pb and Cu dissolution rates to a greater extent of 10.0 to 99.5% and 15.6 to 99.5%, respectively, under various acid concentrations. The increased pH in the medium and different adsorption mechanisms, including electrostatic attractions, surface diffusion, ion exchange, precipitation, and complexation could immobilize Pb and Cu released by the proton and ligands in GBC amended soil. Overall, GBC could be utilized as an effective soil amendment to immobilize Pb and Cu in shooting range soil even under the influence of soil acidity. Copyright © 2017. Published by Elsevier B.V.

  2. The utilization of modified BCR three-step sequential extraction procedure for the fractionation of Cd, Cr, Cu, Ni, Pb and Zn in soil reference materials of different origins.

    PubMed

    Zemberyová, Mária; Barteková, Jana; Hagarová, Ingrid

    2006-12-15

    A modified three-step sequential extraction procedure for the fractionation of heavy metals, proposed by the Commission of the European Communities Bureau of Reference (BCR) has been applied to the Slovak reference materials of soils (soil orthic luvisols, soil rendzina and soil eutric cambisol), which represent pedologically different types of soils in Slovakia. Analyses were carried out by flame or electrothermal atomic absorption spectrometry (FAAS or ETAAS). The fractions extracted were: exchangeable (extraction step 1), reducible-iron/manganese oxides (extraction step 2), oxidizable-organic matter and sulfides (extraction step 3). The sum of the element contents in the three fractions plus aqua-regia extractable content of the residue was compared to the aqua-regia extractable content of the elements in the origin soils. The accuracy obtained by comparing the determined contents of the elements with certified values, using BCR CRM 701, certified for the extractable contents (mass fractions) of Cd, Cr, Cu, Ni, Pb and Zn in sediment following a modified BCR-three step sequential extraction procedure, was found to be satisfactory.

  3. Determination of Cd, Cr and Pb in phosphate fertilizers by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Nunes, Lidiane Cristina; de Carvalho, Gabriel Gustinelli Arantes; Santos, Dario; Krug, Francisco José

    2014-07-01

    A validated method for quantitative determination of Cd, Cr, and Pb in phosphate fertilizers by laser-induced breakdown spectroscopy (LIBS) is presented. Laboratory samples were comminuted and homogenized by cryogenic or planetary ball milling, pressed into pellets and analyzed by LIBS. The experimental setup was designed by using a Q-switched Nd:YAG at 1064 nm with 10 Hz repetition rate, and the intensity signals from Cd II 214.441 nm, Cr II 267.716 nm and Pb II 220.353 nm emission lines were measured by using a spectrometer furnished with an intensified charge-coupled device. LIBS parameters (laser fluence, lens-to-sample distance, delay time, integration time gate, number of sites and number of laser pulses per site) were chosen after univariate experiments with a pellet of NIST SRM 695 (Trace Elements in Multi-Nutrient Fertilizer). Calibration and validation were carried out with 30 fertilizer samples from single superphosphate, triple superphosphate, monoammonium phosphate, and NPK mixtures. Good results were obtained by using 30 pulses of 50 J cm- 2 (750 μm spot size), 2.0 μs delay time and 5.0 μs integration time gate. No significant differences between Cd, Cr, and Pb mass fractions determined by the proposed LIBS method and by ICP OES after microwave-assisted acid digestion (AOAC 2006.03 Official Method) were found at 95% confidence level. The limits of detection of 1 mg kg- 1 Cd, 2 mg kg- 1 Cr and 15 mg kg- 1 Pb and the precision (coefficients of variation of results ranging from 2% to 15%) indicate that the proposed LIBS method can be recommended for the determination of these analytes in phosphate fertilizers.

  4. Ti 3CrCu 4: A possible 2-D ferromagnetic spin fluctuating system

    DOE PAGES

    Dhar, S. K.; Provino, A.; Manfrinetti, P.; ...

    2016-03-09

    Ti 3CrCu 4 is a new ternary compound which crystallizes in the tetragonal Ti 3Pd 5 structure type. The Cr atoms form square nets in the a-b plane (a = 3.124 Å) which are separated by an unusually large distance c = 11.228 Å along the tetragonal axis, thus forming a -2-D Cr-sublattice. The paramagnetic susceptibility is characterized by a low effective moment, μ eff = 1.1 μ B, a low paramagnetic Curie temperature θ P (below 7 K) and a temperature independent χ0 = 6.7 x 10 –4 emu/mol. The magnetization at 1.8 K increases rapidly with field nearlymore » saturating to 0.2 μ B/f.u. The zero field heat capacity C/T shows an upturn below 7 K (~190 mJ/mol K 2 at ~0.1K) which is suppressed in applied magnetic fields and interpreted as suggesting the presence of spin fluctuations. The resistivity at low temperatures shows non-Fermi liquid behavior. Overall, the experimental data thus reveal an unusual magnetic state in Ti 3CrCu 4, which likely has its origin in the layered nature of the Cr sub-lattice and ferromagnetic spin fluctuations. Here, density functional theoretical calculations reveal a sharp Cr density of states peak just above the Fermi level, indicating the propensity of Ti 3CrCu 4 to become magnetic.« less

  5. Modelling equilibrium adsorption of single, binary, and ternary combinations of Cu, Pb, and Zn onto granular activated carbon.

    PubMed

    Loganathan, Paripurnanda; Shim, Wang Geun; Sounthararajah, Danious Pratheep; Kalaruban, Mahatheva; Nur, Tanjina; Vigneswaran, Saravanamuthu

    2018-03-30

    Elevated concentrations of heavy metals in water can be toxic to humans, animals, and aquatic organisms. A study was conducted on the removal of Cu, Pb, and Zn by a commonly used water treatment adsorbent, granular activated carbon (GAC), from three single, three binary (Cu-Pb, Cu-Zn, Pb-Zn), and one ternary (Cu-Pb-Zn) combination of metals. It also investigated seven mathematical models on their suitability to predict the metals adsorption capacities. Adsorption of Cu, Pb, and Zn increased with pH with an abrupt increase in adsorption at around pH 5.5, 4.5, and 6.0, respectively. At all pHs tested (2.5-7.0), the adsorption capacity followed the order Pb > Cu > Zn. The Langmuir and Sips models fitted better than the Freundlich model to the data in the single-metal system at pH 5. The Langmuir maximum adsorption capacities of Pb, Cu, and Zn (mmol/g) obtained from the model's fits were 0.142, 0.094, and 0.058, respectively. The adsorption capacities (mmol/g) for these metals at 0.01 mmol/L equilibrium liquid concentration were 0.130, 0.085, and 0.040, respectively. Ideal Adsorbed Solution (IAS)-Langmuir and IAS-Sips models fitted well to the binary and ternary metals adsorption data, whereas the Extended Langmuir and Extended Sips models' fits to the data were poor. The selectivity of adsorption followed the same order as the metals' capacities and affinities of adsorption in the single-metal systems.

  6. Unusual Mott transition in multiferroic PbCrO 3

    DOE PAGES

    Wang, Shanmin; Zhu, Jinlong; Zhang, Yi; ...

    2015-11-24

    The Mott insulator in correlated electron systems arises from classical Coulomb repulsion between carriers to provide a powerful force for electron localization. When turning such an insulator into a metal, the so-called Mott transition, is commonly achieved by "bandwidth" control or "band filling." However, both mechanisms deviate from the original concept of Mott, which attributes such a transition to the screening of Coulomb potential and associated lattice contraction. We report a pressure-induced isostructural Mott transition in cubic perovskite PbCrO3. At the transition pressure of similar to 3 GPa, PbCrO3 exhibits significant collapse in both lattice volume and Coulomb potential. Concurrentmore » with the collapse, it transforms from a hybrid multiferroic insulator to a metal. For the first time to our knowledge, these findings validate the scenario conceived by Mott. Close to the Mott criticality at similar to 300 K, fluctuations of the lattice and charge give rise to elastic anomalies and Laudau critical behaviors resembling the classic liquid-gas transition. Moreover, the anomalously large lattice volume and Coulomb potential in the low-pressure insulating phase are largely associated with the ferroelectric distortion, which is substantially suppressed at high pressures, leading to the first-order phase transition without symmetry breaking.« less

  7. Unusual Mott transition in multiferroic PbCrO3

    PubMed Central

    Wang, Shanmin; Zhu, Jinlong; Zhang, Yi; Yu, Xiaohui; Zhang, Jianzhong; Wang, Wendan; Bai, Ligang; Qian, Jiang; Yin, Liang; Sullivan, Neil S.; Jin, Changqing; He, Duanwei; Xu, Jian; Zhao, Yusheng

    2015-01-01

    The Mott insulator in correlated electron systems arises from classical Coulomb repulsion between carriers to provide a powerful force for electron localization. Turning such an insulator into a metal, the so-called Mott transition, is commonly achieved by “bandwidth” control or “band filling.” However, both mechanisms deviate from the original concept of Mott, which attributes such a transition to the screening of Coulomb potential and associated lattice contraction. Here, we report a pressure-induced isostructural Mott transition in cubic perovskite PbCrO3. At the transition pressure of ∼3 GPa, PbCrO3 exhibits significant collapse in both lattice volume and Coulomb potential. Concurrent with the collapse, it transforms from a hybrid multiferroic insulator to a metal. For the first time to our knowledge, these findings validate the scenario conceived by Mott. Close to the Mott criticality at ∼300 K, fluctuations of the lattice and charge give rise to elastic anomalies and Laudau critical behaviors resembling the classic liquid–gas transition. The anomalously large lattice volume and Coulomb potential in the low-pressure insulating phase are largely associated with the ferroelectric distortion, which is substantially suppressed at high pressures, leading to the first-order phase transition without symmetry breaking. PMID:26604314

  8. Accumulation of as, pb, and cu associated with the recent sedimentary processes in the colorado delta, South of the United States-Mexico boundary.

    PubMed

    Daesslé, L W; Lugo-Ibarra, K C; Tobschall, H J; Melo, M; Gutiérrez-Galindo, E A; García-Hernández, J; Alvarez, L G

    2009-05-01

    Sediment cores from the Colorado River (CR) remnant delta were used to assess the changing sedimentation and pollutant deposition processes in response to extensive human manipulation of the river. The cores are formed of alternating layers of clays and silts, with isolated sandy horizons. The clayey units are interpreted as periods of flood flows into this low gradient and meandering estuary after dam construction in the United States. The geochemistry of these sediments is particular because of the association of MnO with CaO rather than with the Fe(2)O(3)-rich clays. Past pollution of the CR delta by As, and probably also Pb and Cu, is recorded in some cores. Enrichment factors (EFs) >1 for these elements and their statistical association suggest anthropogenic inputs. The most likely sources for these element enrichments (especially As) are the arsenate-based pesticides used intensively in the area during the first half of the 20th century. The transport of these elements from the nearby agricultural lands into the present river reaches appears to have been driven in part by flooding events of the CR. Flushing by river and tide flows appear to be responsible of a lower pollutant deposition in the CR compared to the adjacent Hardy River (HR). Arsenic in the buried clay units of the HR has concentrations above the probable toxic effect level (PEL) for dwelling organisms, with maximum concentrations of 30 microg g(-1). Excess (210)Pb activities ((210)Pb(xs)) indicate that fluxes of this unsupported atmospheric isotope were not constant in this estuarine environment. However, the presence of (210)Pb(xs) does indicate that these sediments accumulated during the last ~100 years. Aproximate sediment ages were estimated from the correlation of historic flooding events with the interpretation of the stratigraphic record. They are in fair agreement with the reported onset of DDT metabolites at the bottom of one core.

  9. Chemical behavior of Cu, Zn, Cd, and Pb in a eutrophic reservoir: speciation and complexation capacity.

    PubMed

    Tonietto, Alessandra Emanuele; Lombardi, Ana Teresa; Choueri, Rodrigo Brasil; Vieira, Armando Augusto Henriques

    2015-10-01

    This research aimed at evaluating cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) speciation in water samples as well as determining water quality parameters (alkalinity, chlorophyll a, chloride, conductivity, dissolved organic carbon, dissolved oxygen, inorganic carbon, nitrate, pH, total suspended solids, and water temperature) in a eutrophic reservoir. This was performed through calculation of free metal ions using the chemical equilibrium software MINEQL+ 4.61, determination of labile, dissolved, and total metal concentrations via differential pulse anodic stripping voltammetry, and determination of complexed metal by the difference between the total concentration of dissolved and labile metal. Additionally, ligand complexation capacities (CC), such as the strength of the association of metals-ligands (logK'ML) and ligand concentrations (C L) were calculated via Ruzic's linearization method. Water samples were taken in winter and summer, and the results showed that for total and dissolved metals, Zn > Cu > Pb > Cd concentration. In general, higher concentrations of Cu and Zn remained complexed with the dissolved fraction, while Pb was mostly complexed with particulate materials. Chemical equilibrium modeling (MINEQL+) showed that Zn(2+) and Cd(2+) dominated the labile species, while Cu and Pb were complexed with carbonates. Zinc was a unique metal for which a direct relation between dissolved species with labile and complexed forms was obtained. The CC for ligands indicated a higher C L for Cu, followed by Pb, Zn, and Cd in decreasing amounts. Nevertheless, the strength of the association of all metals and their respective ligands was similar. Factor analysis with principal component analysis as the extraction procedure confirmed seasonal effects on water quality parameters and metal speciation. Total, dissolved, and complexed Cu and total, dissolved, complexed, and labile Pb species were all higher in winter, whereas in summer, Zn was mostly present in the

  10. Growth of nucleation sites on Pb-doped Bi2Sr2Ca1Cu2O8 + delta

    NASA Astrophysics Data System (ADS)

    Finnemore, D. K.; Xu, Ming; Kouzoudis, D.; Bloomer, T.; Kramer, M. J.; McKernan, Stuart; Balachandran, U.; Haldar, Pradeep

    1996-01-01

    In the growth of Bi2Sr2Ca2Cu3O10+δ from mixed powders of Pb-doped Bi2Sr2Ca1Cu2O8+δ and other oxides, it has been discovered that a dense array of hillocks or mesas grow at the interface between a Ag overlay and Pb-doped Bi2Sr2Ca1Cu2O8+δ grains during the ramp up to the reaction temperature. As viewed in an environmental scanning electron microscope, the Ag coated grains develop a texture that looks like ``chicken pox'' growing on the grains at about 700 °C. These hillocks are about 100 nm across and are spaced at about 500 to 1000 nm. If there is no Ag, this texture does not develop. Preliminary measurements indicate that the hillocks are a recrystallization of (Bi,Pb)2Sr2Ca1Cu2O8+δ, and are definitely not a Pb rich phase.

  11. Influence of Cu Content on the Microstructure and Mechanical Properties of Cr-Cu-N Coatings

    PubMed Central

    Ding, Ji Cheng; Zhang, Teng Fei; Wan, Zhi Xin; Mei, Hai Juan; Kang, Myung Chang

    2018-01-01

    The Cr-Cu-N coatings with various Cu contents (0–25.18 (±0.17) at.%) were deposited on Si wafer and stainless steel (SUS 304) substrates in reactive Ar+N2 gas mixture by a hybrid coating system combining pulsed DC and RF magnetron sputtering techniques. The influence of Cu content on the coating composition, microstructure, and mechanical properties was investigated. The microstructure of the coatings was significantly altered by the introduction of Cu. The deposited coatings exhibit solid solution structure with different compositions in all of the samples. Addition of Cu is intensively favored for preferred orientation growth along (200) direction by restricting in (111) direction. With increasing Cu content, the surface and cross-sectional morphology of coatings were changed from triangle cone-shaped, columnar feature to broccoli-like and compact glassy microstructure, respectively. The mechanical properties including the residual stress, nanohardness, and toughness of the coatings were explored on the basis of Cu content. The highest hardness was obtained at the Cu content of 1.49 (±0.10) at.%. PMID:29552269

  12. Influence of Cu Content on the Microstructure and Mechanical Properties of Cr-Cu-N Coatings.

    PubMed

    Ding, Ji Cheng; Zhang, Teng Fei; Wan, Zhi Xin; Mei, Hai Juan; Kang, Myung Chang; Wang, Qi Min; Kim, Kwang Ho

    2018-01-01

    The Cr-Cu-N coatings with various Cu contents (0-25.18 (±0.17) at.%) were deposited on Si wafer and stainless steel (SUS 304) substrates in reactive Ar+N 2 gas mixture by a hybrid coating system combining pulsed DC and RF magnetron sputtering techniques. The influence of Cu content on the coating composition, microstructure, and mechanical properties was investigated. The microstructure of the coatings was significantly altered by the introduction of Cu. The deposited coatings exhibit solid solution structure with different compositions in all of the samples. Addition of Cu is intensively favored for preferred orientation growth along (200) direction by restricting in (111) direction. With increasing Cu content, the surface and cross-sectional morphology of coatings were changed from triangle cone-shaped, columnar feature to broccoli-like and compact glassy microstructure, respectively. The mechanical properties including the residual stress, nanohardness, and toughness of the coatings were explored on the basis of Cu content. The highest hardness was obtained at the Cu content of 1.49 (±0.10) at.%.

  13. Manufacturing and High Heat Flux Testing of Brazed Flat-Type W/CuCrZr Plasma Facing Components

    NASA Astrophysics Data System (ADS)

    Lian, Youyun; Liu, Xiang; Feng, Fan; Chen, Lei; Cheng, Zhengkui; Wang, Jin; Chen, Jiming

    2016-02-01

    Water-cooled flat-type W/CuCrZr plasma facing components with an interlayer of oxygen-free copper (OFC) have been developed by using vacuum brazing route. The OFC layer for the accommodation of thermal stresses was cast onto the surface of W at a temperature range of 1150 °C-1200 °C in a vacuum furnace. The W/OFC cast tiles were vacuum brazed to a CuCrZr heat sink at 940 °C using the silver-free filler material CuMnSiCr. The microstructure, bonding strength, and high heat flux properties of the brazed W/CuCrZr joint samples were investigated. The W/Cu joint exhibits an average tensile strength of 134 MPa, which is about the same strength as pure annealed copper. High heat flux tests were performed in the electron beam facility EMS-60. Experimental results indicated that the brazed W/CuCrZr mock-up experienced screening tests of up to 15 MW/m2 and cyclic tests of 9 MW/m2 for 1000 cycles without visible damage. supported by National Natural Science Foundation of China (No. 11205049) and the National Magnetic Confinement Fusion Science Program of China (No. 2011GB110004)

  14. The influence of metal speciation in combustion waste on the efficiency of Cu, Pb, Zn, Cd, Ni and Cr bioleaching in a mixed culture of sulfur-oxidizing and biosurfactant-producing bacteria.

    PubMed

    Karwowska, Ewa; Wojtkowska, Małgorzata; Andrzejewska, Dorota

    2015-12-15

    Metal leachability from ash and combustion slag is related to the physico-chemical properties, including their speciation in the waste. Metals speciation is an important factor that influences the efficiency of metal bioleaching from combustion wastes in a mixed culture of acidophilic and biosurfactant-producing bacteria. It was observed that individual metals tended to occur in different fractions, which reflects their susceptibility to bioleaching. Cr and Ni were readily removed from wastes when present with a high fraction bound to carbonates. Cd and Pb where not effectively bioleached when present in high amounts in a fraction bound to organic matter. The best bioleaching results were obtained for power plant slag, which had a high metal content in the exchangeable, bound to carbonates and bound to Fe and Mg oxides fractions- the metal recovery percentage for Zn, Cu and Ni from this waste exceeded 90%. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Preliminary assessment of metal-porcelain bonding strength of CoCrW alloy after 3wt.% Cu addition.

    PubMed

    Lu, Yanjin; Zhao, Chaoqian; Ren, Ling; Guo, Sai; Gan, Yiliang; Yang, Chunguang; Wu, Songquan; Lin, Junjie; Huang, Tingting; Yang, Ke; Lin, Jinxin

    2016-06-01

    In this work, a novel Cu-bearing CoCrW alloy fabricated by selective laser melting for dental application has been studied. For its successful application, the bonding strength of metal-porcelain is essential to be systematically investigated. Therefore, the aim of this study was to evaluate the metal-porcelain bonding strength of CoCrWCu alloy by three-point bending test, meanwhile the Ni-free CoCrW alloy was used as control. The oxygen content was investigated by an elemental analyzer; X-ray photoelectron spectroscopy (XPS) was used to analyze the surface chemical composition of CoCrW based alloy after preoxidation treatment; the fracture mode was investigated by X-ray energy spectrum analysis (EDS) and scanning electron microscope (SEM). Result from the oxygen content analysis showed that the content of oxygen dramatically increased after the Cu addition. And the XPS suggested that Co-oxidation, Cr2O3, CrO2, WO3, Cu2O and CuO existed on the preoxidated surface of the CoCrWCu alloy; the three-point bending test showed that the bonding strength of the CoCrWCu alloy was 43.32 MPa, which was lower than that of the CoCrW group of 47.65 MPa. However, the average metal-porcelain bonding strength is significantly higher than the minimum value in the ISO 9693 standard. Results from the SEM images and EDS indicated that the fracture mode of CoCrWCu-porcelain was mixed between cohesive and adhesive. Based on the results obtained in this study, it can be indicated that the Cu-bearing CoCrW alloy fabricated by the selective laser melting is a promising candidate for use in dental application. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Microstructures, optical and photovoltaic properties of CH3NH3PbI3(1‑x)Cl x perovskite films with CuSCN additive

    NASA Astrophysics Data System (ADS)

    Shirahata, Yasuhiro; Oku, Takeo

    2018-05-01

    Microstructures, optical and photovoltaic properties of CH3NH3PbI3(1‑x)Cl x perovskite films with copper(I) thiocyanate (CuSCN) additive were investigated. The CuSCN-added CH3NH3PbI3(1‑x)Cl x films were prepared by a hot air blow-assisted spin-coating method. Current density–voltage characteristics of the photovoltaic device using the CuSCN-added CH3NH3PbI3(1‑x)Cl x light-absorbing layer showed increases in short-circuit current density, open-circuit voltage, which resulted in increase in the conversion efficiency. Microstructure analysis showed that the crystal structure of the CuSCN-added CH3NH3PbI3(1‑x)Cl x was a pseudocubic system. From these results, partial substitutions of Pb2+ and anions (I‑ and Cl‑) by Cu ions (Cu+ and Cu2+) and SCN‑, respectively, are considered to occur in the CuSCN-added CH3NH3PbI3(1‑x)Cl x films. Based on the obtained results, reaction mechanisms of the CH3NH3PbI3(1‑x)Cl x films with and without CuSCN additive were discussed.

  17. Feasibility of constructed wetland planted with Leersia hexandra Swartz for removing Cr, Cu and Ni from electroplating wastewater.

    PubMed

    You, Shao-Hong; Zhang, Xue-Hong; Liu, Jie; Zhu, Yi-Nian; Gu, Chen

    2014-01-01

    As a low-cost treatment technology for effluent, the constructed wetlands can be applied to remove the heavy metals from wastewater. Leersia hexandra Swartz is a metal-accumulating hygrophyte with great potential to remove heavy metal from water. In this study, two pilot-scale constructed wetlands planted with L. hexandra (CWL) were set up in greenhouse to treat electroplating wastewater containing Cr, Cu and Ni. The treatment performance of CWL under different hydraulic loading rates (HLR) and initial metal concentrations were also evaluated. The results showed that CWL significantly reduced the concentrations of Cr, Cu and Ni in wastewater by 84.4%, 97.1% and 94.3%, respectively. High HLR decreased the removal efficiencies of Cr, Cu and Ni; however, the heavy metal concentrations in effluent met Emission Standard of Pollutants for Electroplating in China (ESPE) at HLR less than 0.3 m3/m2 d. For the influent of 5 mg/L Cr, 10 mg/L Cu and 8 mg/L Ni, effluent concentrations were below maximum allowable concentrations in ESPE, indicating that the removal of Cr, Cu and Ni by CWL was feasible at considerably high influent metal concentrations. Mass balance showed that the primary sink for the retention of contaminants within the constructed wetland system was the sediment, which accounted for 59.5%, 83.5%, and 73.9% of the Cr, Cu and Ni, respectively. The data from the pilot wetlands support the view that CWL could be used to successfully remove Cr, Cu and Ni from electroplating wastewater.

  18. 1D chain formation by coadsorption of Pb and Bi on Cu(001): Determination using low energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Kabiruzzaman, Md; Ahmed, Rezwan; Nakagawa, Takeshi; Mizuno, Seigi

    2017-10-01

    Coadsorption of two heavy metals, Pb and Bi, on Cu(001) at room temperature has been studied using low energy electron diffraction (LEED). c(4 × 4), c(2 × 2), and c(9√{ 2}×√{ 2}) phases are obtained at different coverages; here, we have determined the best-fit structure of c(4 × 4) phase. This structure can be described as a 1D substitutional chain arrangement of Pb and Bi atoms between the Cu rows along the [110] direction. The unit cell in the two-dimensional (2D) surface consists of one Bi atom, two Pb atoms, and four Cu atoms with one vacancy at the center. The optimal structure parameters demonstrate that Bi atoms are located at fourfold-hollow sites and that Pb atoms are laterally displaced by 0.78 Å from the fourfold-hollow site toward the vacancy. The reasons for the formation of the c(4 × 4) structure upon deposition of Pb and Bi on Cu(001) are discussed in comparison with a similar structure formed by the individual adsorption of Pb on the same substrate.

  19. Determination of Cd, Cr, Pb and Ni contents among Parkinson's disease individuals: a case-control study.

    PubMed

    Gupta, Vineeta; Ansari, Nasreen Ghazi; Garg, Ravindra Kumar; Khattri, Sanjay

    2017-09-01

    Various uses of metals in industries, including the domestic sphere, agriculture, medicine and technology, have led to their wide distribution in the environment. These result in raising concerns over their potential effects on human health and the environment. Because of their high degree of toxicity, Cd, Cr and Pb are some of the priority metals that are of public health significance. The levels of Cd, Cr, Pb and Ni were measured in Parkinson's disease (PD) patients. Blood samples were collected from 40 patients and 40 healthy controls, and stored at -80 °C until assayed. Atomic absorption spectrophotometry was used to determine the levels of metals. The level of Pb was significantly decreased in patients than in controls. However, the difference in the level of Ni between patients and controls failed to reach significance. Cr was not detectable in patients, but it was measurable in 12 controls (controls = 0.056-2.397 µg/ml). Similarly, Cd was not detectable in patients, but it was measurable in all the controls (controls = 0.004-1.268 µg/ml). Pb was the only metal that was found in all study participants (PD = 0.012-2.758 µg/ml and controls = 0.779-9.840 µg/ml). Ni could be measured only in six patients and in all the controls (PD = 0.154-0.754 µg/ml and controls = 0.034-1.691 µg/ml). Patients exhibited significantly decreased levels of Pb than in controls. However, Cd, Cr and Ni were too low to be measured among the patients. This indicates that these metals might play a probable role in PD.

  20. Effect of dissolved organic matter (DOM) of contrasting origins on Cu and Pb speciation and toxicity to Paracentrotus lividus larvae.

    PubMed

    Sánchez-Marín, Paula; Santos-Echeandía, Juan; Nieto-Cid, Mar; Alvarez-Salgado, Xosé Antón; Beiras, Ricardo

    2010-01-31

    Water samples of contrasting origin, including natural seawater, two sediment elutriates and sewage-influenced seawater, were collected and obtained to examine the effect of the dissolved organic matter (DOM) present on metal bioavailability. The carbon content (DOC) and the optical properties (absorbance and fluorescence) of the coloured DOM fraction (CDOM) of these materials were determined. Cu and Pb complexation properties were measured by anodic stripping voltammetry (ASV) and the effect of DOM on Cu and Pb bioavailability was studied by means of the Paracentrotus lividus embryo-larval bioassay. Sediment elutriates and sewage-influenced water (1) were enriched 1.4-1.7 times in DOC; (2) absorbed and reemitted more light; and (3) presented higher Cu complexation capacities (L(Cu)) than the natural seawater used for their preparation. L(Cu) varied from 0.08 microM in natural seawater to 0.3 and 0.5 microM in sediment elutriates and sewage-influenced water, respectively. Differences in DOC, CDOM and Cu complexation capacities were reflected in Cu toxicity. DOM enriched samples presented a Cu EC(50) of 0.64 microM, significantly higher than the Cu EC(50) of natural and artificial seawater, which was 0.38 microM. The protecting effect of DOM on Cu toxicity greatly disappeared when the samples were irradiated with high intensity UV-light. Cu toxicity could be successfully predicted considering ASV-labile Cu concentrations in the samples. Pb complexation by DOM was only detected in the DOM-enriched samples and caused little effect on Pb EC(50). This effect was contrary for both elutriates: one elutriate reduced Pb toxicity in comparison with the control artificial seawater, while the other increased it. UV irradiation of the samples caused a marked increase in Pb toxicity, which correlated with the remaining DOC concentration. DOM parameters were related to Cu speciation and toxicity: good correlations were found between DOC and Cu EC(50), while L(Cu) correlated

  1. Tolerance and hyperaccumulation of a mixture of heavy metals (Cu, Pb, Hg, and Zn) by four aquatic macrophytes.

    PubMed

    Romero-Hernández, Jorge Alberto; Amaya-Chávez, Araceli; Balderas-Hernández, Patricia; Roa-Morales, Gabriela; González-Rivas, Nelly; Balderas-Plata, Miguel Ángel

    2017-03-04

    In the present investigation, four macrophytes, namely Typha latifolia (L.), Lemna minor (L.), Eichhornia crassipes (Mart.) Solms-Laubach, and Myriophyllum aquaticum (Vell.) Verdc, were evaluated for their heavy metal (Cu, Pb, Hg, and Zn) hyperaccumulation potential under laboratory conditions. Tolerance analyses were performed for 7 days of exposure at five different treatments of the metals mixture (Cu +2 , Hg +2 , Pb +2 , and Zn +2 ). The production of chlorophyll and carotenoids was determined at the end of each treatment. L. minor revealed to be sensitive, because it did not survive in all the tested concentrations after 72 hours of exposure. E. crassipes and M. aquaticum displayed the highest tolerance to the metals mixture. For the most tolerant species of aquatic macrophytes, The removal kinetics of E. crassipes and M. aquaticum was carried out, using the following mixture of metals: Cu (0.5 mg/L) and Hg, Pb, and Zn 0.25 mg/L. The obtained results revealed that E. crassipes can remove 99.80% of Cu, 97.88% of Pb, 99.53% of Hg, and 94.37% of Zn. M. aquaticum withdraws 95.2% of Cu, 94.28% of Pb, 99.19% of Hg, and 91.91% of Zn. The obtained results suggest that these two species of macrophytes could be used for the phytoremediation of this mixture of heavy metals from the polluted water bodies.

  2. Stabilization of Pb²⁺ and Cu²⁺ contaminated firing range soil using calcined oyster shells and waste cow bones.

    PubMed

    Moon, Deok Hyun; Cheong, Kyung Hoon; Khim, Jeehyeong; Wazne, Mahmoud; Hyun, Seunghun; Park, Jeong-Hun; Chang, Yoon-Young; Ok, Yong Sik

    2013-05-01

    Pb(2+) and Cu(2+) contamination at army firing ranges poses serious environmental and health risks to nearby communities necessitating an immediate and prompt remedial action. In this study, a novel mixture of calcined oyster shells (COSs) and waste cow bones (WCBs) was utilized to immobilize Pb(2+) and Cu(2+) in army firing range soils. The effectiveness of the treatment was evaluated based on the Korean Standard leaching test. The treatment results showed that Pb(2+) and Cu(2+) immobilization in the army firing range soil was effective in significantly reducing Pb(2+) and Cu(2+) leachability upon the combined treatment with COS and WCB. A drastic reduction in Pb(2+) (99%) and Cu(2+) leachability (95%) was obtained as compared to the control sample, upon treatment with 5 wt.% COS and 5 wt.% WCB. The combination treatment of COS and WCB was more effective for Pb immobilization, than the treatment with COS or WCB alone. The 5 wt.% COS alone treatment resulted in 95% reduction in Cu(2+) leachability. The SEM-EDX results suggested that Pb(2+) and Cu(2+) immobilization was most probably associated with the formation of ettringite, pozzolanic reaction products and pyromorphite-like phases at the same time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Precipitation strengthened high strength, high conductivity Cu-Cr-Nb alloys produced by chill block melt spinning. Final Report Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Michal, Gary M.

    1989-01-01

    A series of Cu-based alloys containing 2 to 10 a/o Cr and 1 to 5 a/o Nb were produced by chill block melt spinning (CBMS). The melt spun ribbons were consolidated and hot rolled to sheet to produce a supersaturated Cu-Cr-Nb solid solution from which the high melting point intermetallic compound Cr2Nb could be precipitated to strengthen the Cu matrix. The results show that the materials possess electrical conductivities in excess of 90 percent that of pure Cu at 200 C and above. The strengths of the Cu-Cr-Nb alloys were much greater than Cu, Cu-0.6 Cr, NARloy-A, and NARloy-Z in the as-melt spun condition. The strengths of the consolidated materials were less than Cu-Cr and Cu-Cr-Zr below 500 C and 600 C respectively, but were significantly better above these temperatures. The strengths of the consolidated materials were greater than NARloy-Z, at all temperatures. The GLIDCOP possessed similar strength levels up to 750 C when the strength of the Cu-Cr-Nb alloys begins to degrade. The long term stability of the Cu-Cr-Nb alloys was measured by the microhardness of aged samples and the growth of precipitates. The microhardness measurements indicate that the alloys overage rapidly, but do not suffer much loss in strength between 10 and 100 hours which confirms the results of the electrical resistivity measurements taken during the aging of the alloys at 500 C. The loss in strength from peak strength levels is significant, but the strength remains exceptionally good. Transmission electron microscopy (TEM) of the as-melt spun samples revealed that Cr2Nb precipitates formed in the liquid Cu during the chill block melt spinning, indicating a very strong driving force for the formation of the precipitates. The TEM of the aged and consolidated materials indicates that the precipitates coarsen considerably, but remain in the submicron range.

  4. Structural and magnetic characterization of the complete delafossite solid solution (CuAlO2)1-x(CuCrO2)x

    NASA Astrophysics Data System (ADS)

    Barton, Phillip; Seshadri, Ram; Knöller, Andrea; Rosseinsky, Matthew

    2012-02-01

    We have prepared the complete delafossite solid solution between diamagnetic CuAlO2 and the t2g^3 frustrated antiferromagnet CuCrO2. The crystal structure and magnetism were studied with powder x-ray diffraction and magnetometry. The unit cell parameters follow the V'egard law and μeff is equal to the Cr^3+ spin-only S = 3/2 value. θCW is negative and its magnitude increases with Cr substitution. For dilute Cr compositions, JBB was estimated by mean-field theory to be 3.0,eV. Despite the sizable θCW, long-range antiferromagnetic order does not develop until x is almost 1, and is preceeded by glassy behavior. For all samples, the 5,isothermal magnetization is sub-Brillouin and does not saturate in fields up to 5,. A scaled inverse susceptibility plot reveals that significant short-range antiferromagnetic interactions occur in CuCrO2 above its N'eel temperature. Additionally, the Al-substituted samples exhibit uncompensated short-range behavior and x = 0.75 shows glassy characteristics. It is suggested that reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as do chemical disorder and dilution of magnetic exchange.

  5. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings

    PubMed Central

    Huang, Longbin; Li, Xiaofang; Nguyen, Tuan A. H.

    2015-01-01

    Elevated inorganic phosphate (Pi) concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu)-lead (Pb)-zinc (Zn) mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7), the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5), EHM-TD (fresh Cu-stream, high magnetite content) and local soil (weathered shale and schist), respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed), oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2), ankerite (Ca(Fe Mg)(CO3)2 and siderite (FeCO3), as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,Fe)S, ZnS, (Zn,Cd)S)) may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal. PMID

  6. Improved performance of CdSe/CdS co-sensitized solar cells adopting efficient CuS counter electrode modified by PbS film using SILAR method

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolong; Lin, Yu; Wu, Jihuai; Fang, Biaopeng; Zeng, Jiali

    2018-04-01

    In this paper, CuS film was deposited onto fluorine-doped tin oxide (FTO) substrate using a facile chemical bath deposition method, and then modified by PbS using simple successive ionic layer absorption and reaction (SILAR) method with different cycles. These CuS/PbS films were utilized as counter electrodes (CEs) for CdSe/CdS co-sensitized solar cells. Field-emission scanning electron microscopy equipped with an energy-dispersive X-ray spectrometer was used to characterize the CuS/PbS films. The results show that CuS/PbS (10 cycles) CE exhibits an improved power conversion efficiency of 5.54% under the illumination of one sun (100 mW cm-2), which is higher than the CuS/PbS (0 cycles), CuS/PbS (5 cycles), and CuS/PbS (15 cycles) CEs. This enhancement is mainly attributed to good catalytic activity and lower charge-transfer and series resistances, which have been proved by electrochemical impedance spectroscopy, and Tafel polarization measurements.

  7. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils.

    PubMed

    Lamb, Dane T; Ming, Hui; Megharaj, Mallavarapu; Naidu, Ravi

    2009-11-15

    We investigated the pore-water content and speciation of copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb) in a range of uncontaminated and long-term contaminated soils in order to establish their potential bioaccessibility to soil biota, plants and humans. Among the samples, soil pH (0.01 M CaCl(2)) ranged from 4.9 to 8.2. The total metal content of the uncontaminated soils ranged from 3.8 to 93.8 mg Cu kg(-1), 10.3 to 95 mg kg(-1) Zn, 0.1 to 1.8 mg Cd kg(-1) and 5.2 to 183 mg kg(-1) Pb, while metal content in the contaminated soils ranged from 104 to 6841 mg Cu kg(-1), 312 to 39,000 mg kg(-1) Zn, 6 to 302 mg Cd kg(-1) and 609 to 12,000 mg kg(-1) Pb. Our analysis of pore-water found the Cu concentrations to be much higher in contaminated soils than in uncontaminated soils, with the distribution coefficients (K(d)) correlating significantly with the log of dissolved organic carbon concentrations. Despite the high total metal content of the contaminated soil, Zn, Cd and Pb were not generally found at elevated levels in the pore-water with the exception of a single contaminated soil. A long period of ageing and soil weathering may have led to a substantial reduction in heavy metal concentrations in the pore-water of contaminated soils. On the other hand, Pb bioaccessibility was found to be comparatively high in Pb contaminated soils, where it tended to exceed the total Pb values by more than 80%. We conclude that, despite the extensive ageing of some contaminated soils, the bioaccessibility of Pb remains relatively high.

  8. Geologic cross sections showing the concentrations of As, Cd, Co, Cu, Cr, Fe, Mo, Ni, Pb, and Zn in acid-insoluble residues of Paleozoic rocks within the Doniphan/Eleven Point Ranger District of the Mark Twain National Forest, Missouri, USA

    USGS Publications Warehouse

    Lee, Lopaka; Goldhaber, Martin B.

    2002-01-01

    This report is a product of a U.S. Geological Survey investigation that is focused on characterizing the potential environmental impacts of lead-zinc mining within the Doniphan/Eleven Point ranger district of the Mark Twain national forest. The elemental concentrations of iron (Fe), arsenic (As), cadmium (Cd), cobalt (Co), copper (Cu), chromium (Cr), nickel (Ni), lead (Pb), and zinc (Zn) in acidinsoluble residues are shown for boreholes along two geologic cross sections within Doniphan/Elevan Point ranger district (Figure 1). The purpose of this report is to characterize, in a general sense, the distribution of economically and environmentally important elements within the rocks and aquifers of the Doniphan/Eleven Point ranger district

  9. Superconductivity above 100 K in Bi(Pb)-Ca-Sr-Cu-O films made by thermal decomposition of metal carboxylates

    NASA Astrophysics Data System (ADS)

    Klee, M.; de Vries, J. W. C.; Brand, W.

    1988-11-01

    Superconducting layers in the Bi(Pb)-Ca-Sr-Cu-O system are prepared by thermal decomposition of metal carboxylates. The films are deposited on MgO single crystal and ceramic substrates using a spin-coating and dip-coating process. The Bi-Ca-Sr-Cu-O films consist mainly of the low- Tc phase ( c-axis=3.073 nm), whereas partial substitution of Bi by Pb favours the formation of the high- Tc phase ( c-axis=3.707 nm). Films deposited on MgO (100) are strong c-axis preferentially oriented grown. While the Bi-Ca-Sr-Cu-O films show a step in the resistance versus temperature curve ( Tcf⋍80 K) due to the presence of the low- Tc and the high- Tc phase, the Bi(Pb)-Ca-Sr-Cu-O films have an onset at 110 K and are superconducting at 104 K. The temperature dependence of the critical current indicates that in the Bi-Ca-Sr-Cu-O system weak links of superconductor-isolator-superconductor type are present, while in the Bi(Pb)-Ca-Sr-Cu-O samples the contact is formed by normal-metal barriers. Using magnetic fields up to 5 T, the anisotropy of the resistive transition of the high- Tc phase was studied. In Bi(Pb)-Ca-Sr-Cu-O films the anisotropy ratio is about 18, and the corresponding coherence lengths are ξ ab(0)⋍3.6 nm and ξ c(0)⋍0.2 nm. These values are nearly the same as in the low- Tc phase.

  10. Creep and Oxidation Behavior of Modified CF8C-Plus with W, Cu, Ni, and Cr

    NASA Astrophysics Data System (ADS)

    Unocic, Kinga A.; Dryepondt, Sebastien; Yamamoto, Yukinori; Maziasz, Philip J.

    2016-04-01

    The microstructures of modified CF8C-Plus (Fe-19Cr-12Ni-0.4W-3.8Mn-0.2Mo-0.6Nb-0.5Si-0.9C) with W and Cu (CF8CPWCu) and CF8CPWCu enhanced with 21Cr + 15Ni or 22Cr + 17.5Ni were characterized in the as-cast condition and after creep testing. When imaged at lower magnifications, the as-cast microstructure was similar among all three alloys as they all contained a Nb-rich interdendritic phase and Mn-based inclusions. Transmission electron microscopy (TEM) analysis showed the presence of nanoscale Cu-rich nanoprecipitates distributed uniformly throughout the matrix of CF8CPWCu, whereas in CF8CPWCu22/17, Cu precipitates were found primarily at the grain boundaries. The presence of these nanoscale Cu-rich particles, in addition to W-rich Cr23C6, nanoscale Nb carbides, and Z-phase (Nb2Cr2N2), improved the creep strength of the CF8CPWCu steel. Modification of CF8CPWCu with Cr and Ni contents slightly decreased the creep strength but significantly improved the oxidation behavior at 1073 K (800 °C). In particular, the addition of 22Cr and 17.5Ni strongly enhanced the oxidation resistance of the stainless steel resulting in a 100 degrees or greater temperature improvement, and this composition provided the best balance between improving both mechanical properties and oxidation resistance.

  11. Creep and oxidation behavior of modified CF8C-plus with W, Cu, Ni, and Cr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unocic, Kinga A.; Dryepondt, Sebastien N.; Yamamoto, Yukinori

    Here, the microstructures of modified CF8C-Plus (Fe-19Cr-12Ni-0.4W-3.8Mn-0.2Mo-0.6Nb-0.5Si-0.9C) with W and Cu (CF8CPWCu) and CF8CPWCu enhanced with 21Cr + 15Ni or 22Cr + 17.5Ni were characterized in the as-cast condition and after creep testing. When imaged at lower magnifications, the as-cast microstructure was similar among all three alloys as they all contained a Nb-rich interdendritic phase and Mn-based inclusions. Transmission electron microscopy (TEM) analysis showed the presence of nanoscale Cu-rich nanoprecipitates distributed uniformly throughout the matrix of CF8CPWCu, whereas in CF8CPWCu22/17, Cu precipitates were found primarily at the grain boundaries. The presence of these nanoscale Cu-rich particles, in addition to W-richmore » Cr 23C 6, nanoscale Nb carbides, and Z-phase (Nb 2Cr 2N 2), improved the creep strength of the CF8CPWCu steel. Modification of CF8CPWCu with Cr and Ni contents slightly decreased the creep strength but significantly improved the oxidation behavior at 1073 K (800 °C). In particular, the addition of 22Cr and 17.5Ni strongly enhanced the oxidation resistance of the stainless steel resulting in a 100 degrees or greater temperature improvement, and this composition provided the best balance between improving both mechanical properties and oxidation resistance.« less

  12. Creep and oxidation behavior of modified CF8C-plus with W, Cu, Ni, and Cr

    DOE PAGES

    Unocic, Kinga A.; Dryepondt, Sebastien N.; Yamamoto, Yukinori; ...

    2016-02-01

    Here, the microstructures of modified CF8C-Plus (Fe-19Cr-12Ni-0.4W-3.8Mn-0.2Mo-0.6Nb-0.5Si-0.9C) with W and Cu (CF8CPWCu) and CF8CPWCu enhanced with 21Cr + 15Ni or 22Cr + 17.5Ni were characterized in the as-cast condition and after creep testing. When imaged at lower magnifications, the as-cast microstructure was similar among all three alloys as they all contained a Nb-rich interdendritic phase and Mn-based inclusions. Transmission electron microscopy (TEM) analysis showed the presence of nanoscale Cu-rich nanoprecipitates distributed uniformly throughout the matrix of CF8CPWCu, whereas in CF8CPWCu22/17, Cu precipitates were found primarily at the grain boundaries. The presence of these nanoscale Cu-rich particles, in addition to W-richmore » Cr 23C 6, nanoscale Nb carbides, and Z-phase (Nb 2Cr 2N 2), improved the creep strength of the CF8CPWCu steel. Modification of CF8CPWCu with Cr and Ni contents slightly decreased the creep strength but significantly improved the oxidation behavior at 1073 K (800 °C). In particular, the addition of 22Cr and 17.5Ni strongly enhanced the oxidation resistance of the stainless steel resulting in a 100 degrees or greater temperature improvement, and this composition provided the best balance between improving both mechanical properties and oxidation resistance.« less

  13. [Cd, Cu, Zn and Pb contents and forms in soils and rapeseeds around Wuhu Plant].

    PubMed

    Wang, Xingming; Liu, Dengyi; Tu, Junfang; Li, Zheng; Wang, Youbao

    2005-10-01

    The study showed that around Wuhu Plant, soil Cd, Zn and Pb mainly existed in Fe-Mn oxide form, and Cu in residual form, with the percentage of 31.81%, 39.83%, 53.79%, and 46.24%, respectively. Soil exchangeable Cd and Pb had a higher proportion (23.47% and 16.32%) than soil exchangeable Cu and Zn (3.14% and 0.54%). The correlations between soil heavy metals and their forms, as well as their transformation to available form were different. Different heavy metals had different accumulation trends in rapeseed and its hull. Cu easily accumulated in hull, while Cd, Zn and Pb had a higher accumulation in seed. The accumulation rate of heavy metals in rapeseed and hull was also different, being the highest for Cd. There was a significantly negative correlation (P < 0.05) between the accumulation rate of heavy metals and their contents in soil. In rapeseed, Cd, Cu and Pb were mainly in sodium hydroxide form, with the percentage of 32.50%, 22.94% and 34.69%, respectively, while Zn was mainly in EDTA form, with a percentage of 45.97. The existed forms of heavy metals in rapeseed probably affected their toxicity, but the toxicity to human food could not be inferred from this research, and needed to be studied further. There was a weak relation between heavy metals contents and their existed forms in rapeseed.

  14. Structural and magnetic characterization of the complete delafossite solid solution (CuAlO2)1-x(CuCrO2)x

    NASA Astrophysics Data System (ADS)

    Barton, Phillip T.; Seshadri, Ram; Knöller, Andrea; Rosseinsky, Matthew J.

    2012-01-01

    We have prepared the complete delafossite solid solution series between diamagnetic CuAlO2 and the t2g3frustrated antiferromagnet CuCrO2. The evolution with composition x in CuAl1-xCrxO2 of the crystal structure and magnetic properties has been studied and is reported here. The room-temperature unit cell parameters follow the Végard law and increase with x as expected. The μeff is equal to the Cr3+ spin-only S = 3/2 value throughout the entire solid solution. ΘCW is negative, indicating that the dominant interactions are antiferromagnetic, and its magnitude increases with Cr substitution. For dilute Cr compositions, the nearest-neighbor exchange coupling constant JBB was estimated by mean-field theory to be 3.0 meV. Despite the sizable ΘCW, long-range antiferromagnetic order does not develop until x is almost 1, and is preceded by glassy behavior. The data presented here, and those on dilute Al substitution from Okuda et al, suggest that the reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as chemical disorder and dilution of the magnetic exchange. For all samples, the 5 K isothermal magnetization does not saturate in fields up to 5 T and minimal hysteresis is observed. The presence of antiferromagnetic interactions is clearly evident in the sub-Brillouin behavior with a reduced magnetization per Cr atom. An inspection of the scaled Curie plot reveals that significant short-range antiferromagnetic interactions occur in CuCrO2 above its Néel temperature, consistent with its magnetic frustration. Uncompensated short-range behavior is present in the Al-substituted samples and is likely a result of chemical disorder.

  15. Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Yingge; Michel, F. Marc; Choi, Yongseong; Eng, Peter J.; Levard, Clement; Siebner, Hagar; Gu, Baohua; Bargar, John R.; Brown, Gordon E.

    2016-09-01

    Mineral surfaces are often coated by natural organic matter (NOM), which has a major influence on metal-ion sorption and sequestration because of the abundance of binding sites in such coatings and the changes they cause in local nanoscale environments. The effects of NOM coatings on mineral surfaces are, however, still poorly understood at the molecular level due to the complexity of these systems. In this study, we have applied long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy to measure the partitioning of naturally present Cu(II) (0.0226%), Zn(II) (0.009%), and Pb(II) (∼0.0004%) between Elliott Soil Humic Acid (ESHA) coatings and three model single-crystal metal-oxide substrates: α-Al2O3 (0 0 0 1), α-Al2O3 (1 -1 0 2), and α-Fe2O3 (0 0 0 1). The competitive sorption effects among these metal ions for binding sites in the ESHA coatings and on the metal-oxide surfaces were investigated as a function of reaction time, calcium content, and solution pH. Pb(II) ions present in the ESHA coatings were found to redistribute to reactive α-Al2O3 (1 -1 0 2) and α-Fe2O3 (0 0 0 1) surfaces after 3 h of reaction (pH = 6.0, [Ca(II)] = 2 mM). Pb(II) partitioning onto these reactive metal-oxide surfaces increased with increasing reaction time (up to 7 d). In addition, the partitioning of Cu(II) and Zn(II) from the ESHA coating to the α-Fe2O3 (0 0 0 1) substrate increased slightly with reaction time (2.4% and 3.7% for Cu(II) and Zn(II), respectively, after 3 h and 6.4% and 7.7% for Cu(II) and Zn(II), respectively, after 72 h of reaction time). However, no changes in the partitioning of Cu(II) and Zn(II) onto the α-Al2O3 (1 -1 0 2) surface were observed with increasing reaction time, suggesting that these ions strongly complex with functional groups in the ESHA coatings. Similar results were obtained for Cu(II) and Zn(II) on the ESHA-coated α-Al2O3 (1 -1 0 2) surfaces in samples without the addition of calcium. However, the amounts of Pb

  16. Sequential electrokinetic treatment and oxalic acid extraction for the removal of Cu, Cr and As from wood.

    PubMed

    Isosaari, Pirjo; Marjavaara, Pieti; Lehmus, Eila

    2010-10-15

    Removal of Cu, Cr and As from utility poles treated with chromated copper arsenate (CCA) was investigated using different one- to three-step combinations of oxalic acid extraction and electrokinetic treatment. The experiments were carried out at room temperature, using 0.8% oxalic acid and 30 V (200 V/m) of direct current (DC) or alternating current in combination (DC/AC). Six-hour extraction removed only 15%, 11% and 28% and 7-day electrokinetic treatment 57%, 0% and 17% of Cu, Cr and As from wood chips, respectively. The best combination for all the metals was a three-step process consisting of pre-extraction, electrokinetics and post-extraction steps, yielding removals of 67% for Cu, 64% for Cr and 81% for As. Oxalic acid extraction prior to electrokinetic treatment was deleterious to further removal of Cu, but it was necessary for Cr and As removal. Chemical equilibrium modelling was used to explain the differences in the behaviour of Cu, Cr and As. Due to the dissimilar nature of these metals, it appeared that even more process sequences and/or stricter control of the process conditions would be needed to obtain the >99% removals required for safe recycling of the purified wood material. 2010 Elsevier B.V. All rights reserved.

  17. Vacuum Plasma Spray of CuCrNb Alloy for Advanced Liquid - Fuel Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank

    2000-01-01

    The copper-8 atomic percent chromium-4 atomic percent niobium (CuCrNb) alloy was developed by Glenn Research Center (formally Lewis Research Center) as an improved alloy for combustion chamber liners. In comparison to NARloy-Z, the baseline (as in Space Shuttle Main Engine) alloy for such liners, CuCrNb demonstrates mechanical and thermophysical properties equivalent to NARloy-Z, but at temperatures 100 C to 150 C (180 F to 270 F) higher. Anticipated materials related benefits include decreasing the thrust cell liner weight 5% to 20%, increasing the service life at least two fold over current combustion chamber design, and increasing the safety margins available to designers. By adding an oxidation and thermal barrier coating to the liner, the combustion chamber can operate at even higher temperatures. For all these benefits, however, this alloy cannot be formed using conventional casting and forging methods because of the levels of chromium and niobium, which exceed their solubility limit in copper. Until recently, the only forming process that maintains the required microstructure of CrNb intermetallics is powder metallurgy formation of a billet from powder stock, followed by extrusion. This severely limits its usefulness in structural applications, particularly the complex shapes required for combustion chamber liners. Vacuum plasma spray (VPS) has been demonstrated as a method to form structural articles including small combustion chambers from the CuCrNb alloy. In addition, an oxidation and thermal barrier layer can be formed integrally on the hot wall of the liner that improve performance and extend service life. This paper discusses the metallurgy and thermomechanical properties of VPS formed CuCrNb versus the baseline powder metallurgy process, and the manufacturing of small combustion chamber liners at Marshall Space Flight Center using the VPS process. The benefits to advanced propulsion initiatives of using VPS to fabricate combustion chamber liners

  18. Oxidation studies of Fe10CrAl-RE alloys exposed to Pb at 550 °C for 10,000 h

    NASA Astrophysics Data System (ADS)

    Ejenstam, Jesper; Halvarsson, Mats; Weidow, Jonathan; Jönsson, Bo; Szakalos, Peter

    2013-11-01

    Five experimental FeCrAl-RE alloys have been exposed up to 10,000 h in stagnant liquid Pb at 550 °C. The test matrix consisted of three 10 wt.% Cr alloys, with an Al content ranging from 4 to 8 wt.% (10Cr-4Al, 10Cr-6Al and 10Cr-8Al), one alloy without additions of reactive elements (RE) (10Cr-6Al), and one reference alloy with 21 wt.% Cr and 5 wt.% Al (21Cr-5Al). The evaluation showed a clear difference in oxidation properties, and it was possible to divide the alloys into two distinct groups. A critical Al concentration in the interval of 4-6 wt.% at the given RE content was required to form a thin protective oxide. However, the absence of RE addition in one of the two 10Cr-6Al alloys resulted in a significant reduction in oxidation resistance, comparable with 10Cr-4Al. None of the alloys were severely corroded, however Pb penetrated to a relatively large extent into the porous oxide of the low performing alloys. A 100 nm thick oxide scale, partly consisting of alumina (Al2O3), was observed for the high performing 10Cr-6Al alloy. The Fe10CrAl-RE alloys showed overall very good corrosion resistance and are hence a promising new alloy category for liquid Pb applications.

  19. Effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the phytoremediation potential of Catharanthus roseus (L.) in Cu and Pb-contaminated soils.

    PubMed

    Khan, Waheed Ullah; Ahmad, Sajid Rashid; Yasin, Nasim Ahmad; Ali, Aamir; Ahmad, Aqeel

    2017-06-03

    The remediation of heavy metal-contaminated soils has become a critical issue due to toxic effects of these metals on living organisms. The current research was conducted to study the effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the growth and phytoremediation potential of Catharanthus roseus in Cu- and Pb-contaminated soils. The bacterial strains exhibited significantly higher level of water-extractable Pb and Cu in Pb, Cu, and Cu+Pb-contaminated. The P. fluorescens RB4 inoculated plants, produced 102%, 48%, and 45% higher fresh weight (FW) in soils contaminated with Cu, Pb, and both elements, respectively, as compared to un-inoculated control plants. Similarly, B. subtilis 189 inoculated plants produced 108%, 43%, and 114% more FW in the presence of Cu, Pb, and both elements. The plants co-cultivated with both bacteria exhibited 121%, 102%, and 177% higher FW, in Cu, Pb, and both elements contaminated soils, as compared to respective un-inoculated control. Co-cultivation of P. fluorescens RB4, B. subtilis 189, and P. fluorescens RB4 + B. subtilis 189 resulted in higher accumulation of Cu and Pb in shoots of the C. roseus grown in contaminated soils as compared to un-inoculated control. Bacterial treatments also improved the translocation and metal bioconcentration factors. The growth and phytoextraction capability of C. roseus was improved by inoculation of P. fluorescens RB4 and B. subtilis 189.

  20. Comparison of serum Concentration of Se, Pb, Mg, Cu, Zn, between MS patients and healthy controls

    PubMed Central

    Alizadeh, Anahita; Mehrpour, Omid; Nikkhah, Karim; Bayat, Golnaz; Espandani, Mahsa; Golzari, Alireza; Jarahi, Lida; Foroughipour, Mohsen

    2016-01-01

    Introduction Multiple Sclerosis (MS) is defined as one of the inflammatory autoimmune disorders and is common. Its exact etiology is unclear. There are some evidences on the role of environmental factors in susceptible genetics. The aim of this study is to evaluate the possible role of Selenium, Zinc, Copper, Lead and Magnesium metals in Multiple Sclerosis patients. Methods In the present analytical cross-sectional study, 56 individuals including 26 patients and 30 healthy controls were enrolled in the evaluation. The serum level of Se, Zn, Cu, Pb were quantified in graphite furnace conditions and flame conditions by utilizing an atomic absorption Perkin Elmer spectrophotometer 3030. The serum levels of Mg were measured by auto analyzer 1500 BT. The mean level of minerals (Zn, Pb, Cu, Mg, Se) in serum samples were compared in both cases and controls. The mean level of minerals (Zn, Pb, Cu, Mg, Se) in serum samples were compared in both cases and controls by using independent-samples t-test for normal distribution and Mann-Whitney U test as a non-parametric test. All statistical analyses were carried out using SPSS 11.0. Results As well as the Zn, Cu, and Se, there was no significant difference between MS patients and healthy individuals in Pb concentrations (p-value = 0.11, 0.14, 0.32, 0.20 respectively) but the level of Mg was significantly different (p= 0.001). Conclusion All serum concentrations of Zn, Pb, Se, Cu in both groups were in normal ranges and there was no difference in MS patients compared with the healthy group who were matched in genetics. Blood level of Mg was significantly lower in MS patients. But it should be noted that even with the low level of serum magnesium in MS patients, this value is still in the normal range. PMID:27757186

  1. Catalytic role of Cu(II) in the reduction of Cr(VI) by citric acid under an irradiation of simulated solar light.

    PubMed

    Li, Ying; Chen, Cheng; Zhang, Jing; Lan, Yeqing

    2015-05-01

    The catalytic role of Cu(II) in the reduction of Cr(VI) by citric acid with simulated solar light was investigated. The results demonstrated that Cu(II) could significantly accelerate Cr(VI) reduction and the reaction obeyed to pseudo zero-order kinetics with respect to Cr(VI). The removal of Cr(VI) was related to the initial concentrations of Cu(II), citric acid, and the types of organic acids. The optimal removal of Cr(VI) was achieved at pH 4, and the rates of Cu(II) photocatalytic reduction of Cr(VI) by organic acids were in the order: tartaric acid (two α-OH groups, two -COOH groups)>citric acid (one α-OH group, three -COOH groups)>malic acid (one α-OH group, two -COOH groups)>lactic acid (one α-OH group, one -COOH group)≫succinic acid (two -COOH groups), suggesting that the number of α-OH was the key factor for the reaction, followed by the number of -COOH. The formation of Cu(II)-citric acid complex could generate Cu(I) and radicals through a pathway of metal-ligand-electron transfer, promoting the reduction of Cr(VI). This study is helpful to fully understanding the conversion of Cr(VI) in the existence of both organic acids and Cu(II) with solar light in aquatic environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Characterization of Cold Sprayed CuCrAl-Coated and Uncoated GRCop-84 Substrates for Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Karthikeyan, J.; Lerch, B. A.; Barrett, C.; Garlich, R.

    2007-01-01

    A newly developed Cu-23(wt.%)Cr-5%Al (CuCrAl) alloy is currently being considered as a protective coating for GRCop-84 (Cu-8(at.%)Cr-4%Nb). The coating was deposited on GRCop-84 substrates by the cold spray deposition technique. Cyclic oxidation tests conducted in air on both coated and uncoated substrates between 773 and 1073 K revealed that the coating remained intact and protected the substrate up to 1073 K. No significant weight loss of the coated specimens were observed at 773 and 873 K even after a cumulative cyclic time of 500 h. In contrast, the uncoated substrate lost as much as 80% of its original weight under similar test conditions. Low cycle fatigue tests revealed that the fatigue lives of thinly coated GRCop-84 specimens were similar to the uncoated specimens within the limits of experimental scatter. It is concluded that the cold sprayed CuCrAl coating is suitable for protecting GRCop-84 substrates.

  3. Electron transport in all-Heusler Co2CrSi/Cu2CrAl/Co2CrSi device, based on ab-initio NEGF calculations

    NASA Astrophysics Data System (ADS)

    Mikaeilzadeh, L.; Pirgholi, M.; Tavana, A.

    2018-05-01

    Based on the ab-initio non-equilibrium Green's function (NEGF) formalism based on the density functional theory (DFT), we have studied the electron transport in the all-Heusler device Co2CrSi/Cu2CrAl/Co2CrSi. Results show that the calculated transmission spectra is very sensitive to the structural parameters and the interface. Also, we obtain a range for the thickness of the spacer layer for which the MR effect is optimum. Calculations also show a perfect GMR effect in this device.

  4. Immobilization of Rose Waste Biomass for Uptake of Pb(II) from Aqueous Solutions

    PubMed Central

    Ansari, Tariq Mahmood; Hanif, Muhammad Asif; Mahmood, Abida; Ijaz, Uzma; Khan, Muhammad Aslam; Nadeem, Raziya; Ali, Muhammad

    2011-01-01

    Rosa centifolia and Rosa gruss an teplitz distillation waste biomass was immobilized using sodium alginate for Pb(II) uptake from aqueous solutions under varied experimental conditions. The maximum Pb(II) adsorption occurred at pH 5. Immobilized rose waste biomasses were modified physically and chemically to enhance Pb(II) removal. The Langmuir sorption isotherm and pseudo-second-order kinetic models fitted well to the adsorption data of Pb(II) by immobilized Rosa centifolia and Rosa gruss an teplitz. The adsorbed metal is recovered by treating immobilized biomass with different chemical reagents (H2SO4, HCl and H3PO4) and maximum Pb(II) recovered when treated with sulphuric acid (95.67%). The presence of cometals Na, Ca(II), Al(III), Cr(III), Cr(VI), and Cu(II), reduced Pb(II) adsorption on Rosa centifolia and Rosa gruss an teplitz waste biomass. It can be concluded from the results of the present study that rose waste can be effectively used for the uptake of Pb(II) from aqueous streams. PMID:21350666

  5. Mono-component versus binary isotherm models for Cu(II) and Pb(II) sorption from binary metal solution by the green alga Pithophora oedogonia.

    PubMed

    Kumar, Dhananjay; Singh, Alpana; Gaur, J P

    2008-11-01

    The sorption of Cu(II) and Pb(II) by Pithophora markedly decreased as the concentration of the secondary metal ion, Cu(II) or Pb(II), increased in the binary metal solution. However, the test alga showed a greater affinity to sorb Cu(II) than Pb(II) from the binary metal solution. Mono-component Freundlich, Langmuir, Redlich-Peterson and Sips isotherms successfully predicted the sorption of Cu(II) and Pb(II) from both single and binary metal solutions. None of the tested binary sorption isotherms could realistically predict Cu(II) and Pb(II) sorption capacity and affinity of the test alga for the binary metal solutions of varying composition, which mono-component isotherms could very well accomplish. Hence, mono-component isotherm modeling at different concentrations of the secondary metal ion seems to be a better option than binary isotherms for metal sorption from binary metal solution.

  6. Enhanced thermoelectric performance of Pb doped Cu2SnSe3 synthesized employing spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Shyam Prasad, K.; Rao, Ashok; Tyagi, Kriti; Singh Chauhan, Nagendra; Gahtori, Bhasker; Bathula, Sivaiah; Dhar, Ajay

    2017-05-01

    We report an enhancement in the thermoelectric performance of Cu2SnSe3 alloy on Pb doping, owing to a sharp increase in its power factor. The powder XRD pattern of all samples of Cu2Sn1-xPbxSe3 (0≤x≤0.03), prepared using solid state reaction, exhibited a cubic structure with a space group of F 4 ̅ 3 m . The results show that temperature dependent electrical resistivity, ρ(T) increases with increasing temperature thereby demonstrating that the samples display heavily doped semiconducting nature, which could be satisfactorily described by small polaron hopping model in the whole temperature range of measurement for all the samples. Both the resistivity and the Seebeck coefficient are reduced with 2 vol% Pb doping. The thermal conductivity of all the samples reduces with increasing temperature. Despite a decrease in Seebeck coefficient the power factor shows an increase on Pb doping, owing to a sharp surge in the electrical conductivity which results in an enhanced ZTmax 0.64 at 700 K for an optimized composition of Cu2Sn0.98Pb0.02Se3, which is nearly twice the value of the corresponding undoped counterpart.

  7. Insights into the simultaneous removal of Cr6+ and Pb2+ by a novel sewage sludge-derived biochar immobilized nanoscale zero valent iron: Coexistence effect and mechanism.

    PubMed

    Diao, Zeng-Hui; Du, Jian-Jun; Jiang, Dan; Kong, Ling-Jun; Huo, Wen-Yi; Liu, Cui-Mei; Wu, Qi-Hang; Xu, Xiang-Rong

    2018-06-13

    Cr 6+ and Pb 2+ are both highly toxic pollutants and commonly co-exist in some industrial effluents and contaminated waters. In this study, simultaneous removal of Cr 6+ and Pb 2+ by a novel sewage sludge-derived biochar immobilized nanoscale zero-valent iron (SSB-nZVI) was systematically investigated. It was well demonstrated that a porous structure was successfully formed on the SSB-nZVI when the starch was used as an additive. A synergistic effect on the adsorption and reduction over the SSB-nZVI was achieved, resulting in nearly 90 and 82% of Cr 6+ and Pb 2+ removal within 30 min, respectively. Cr 6+ was reduced prior to Pb 2+ . A low pH could accelerate the corrosion of nZVI as well as phosphate leaching. When Malachite green was added as a coexisting organic pollutant, its effective removal was found due to the formation of a Fenton-like system. The SSB-nZVI could be run consecutively three times with a relatively satisfactory performance. Most of Cr 6+ was converted into Cr 2 O 3 and Cr(OH) 3 on the SSB-nZVI surface, whereas most of Pb 2+ species existed as Pb(OH) 2 (or PbO). A possible reaction mechanism on the SSB-nZVI involved the adsorption, reduction and precipitation of both Cr 6+ and Pb 2+ over the particles. Present study sheds light on the insight of the fate and transport of Cr 6+ and Pb 2+ in aquatic environment, as well provides helpful guide for the remediation of coexistence of pollutants in real applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Chemical nature of the barrier in Pb/YBa2Cu3O(7-x) tunneling structures

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Foote, M. C.; Hunt, B. D.; Bajuk, L.

    1991-01-01

    Several reports of reproducible tunneling measurements on YBa2Cu3O(7-x) thin films or single crystals with a Pb counterelectrode have recently appeared. The nature of the tunnel barrier, formed by air exposure, in these structures has been unknown. In the present work, the chemical nature of the tunnel barrier is studied with X-ray photoelectron spectroscopy (XPS). Laser-ablated films grown on LaAlO3 which have been chemically etched and heated in air are found to form nonsuperconducting surface Ba species, evident in an increase of the high binding energy Ba 3d and O 1s signals. A deposited Pb film about 10 A thick is found to be oxidized, and Cu(+2) is partially reduced to Cu(+1). The tunneling barrier thus appears to consist of species resulting from a combination of the air exposure and a reaction between the superconductor and the deposited Pb counterelectrode.

  9. Band structure calculations of CuAlO2, CuGaO2, CuInO2, and CuCrO2 by screened exchange

    NASA Astrophysics Data System (ADS)

    Gillen, Roland; Robertson, John

    2011-07-01

    We report density functional theory band structure calculations on the transparent conducting oxides CuAlO2, CuGaO2, CuInO2, and CuCrO2. The use of the hybrid functional screened-exchange local density approximation (sX-LDA) leads to considerably improved electronic properties compared to standard LDA and generalized gradient approximation (GGA) approaches. We show that the resulting electronic band gaps compare well with experimental values and previous quasiparticle calculations, and show the correct trends with respect to the atomic number of the cation (Al, Ga, In). The resulting energetic depths of Cu d and O p levels and the valence-band widths are considerable improvements compared to LDA and GGA and are in good agreement with available x-ray photoelectron spectroscopy data. Lastly, we show the calculated imaginary part of the dielectric function for all four systems.

  10. Synthesis of Nano-Crystalline Cu-Cr Alloy by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Sheibani, S.; Heshmati-Manesh, S.; Ataie, A.

    In this paper, the influence of toluene as the process control agent (PCA) and pre-milling on the extension of solid solubility of 7 wt.% Cr in Cu by mechanical alloying in a high energy ball mill was investigated. The structural evolution and microstructure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques, respectively. The solid solution formation at different conditions was analyzed by copper lattice parameter change during the milling process. It was found that both the presence of PCA and pre-milling of Cr powder lead to faster dissolution of Cr. The mean crystallite size was also calculated and showed to be about 10 nm after 80 hours of milling.

  11. Leaching potential of pervious concrete and immobilization of Cu, Pb and Zn using pervious concrete.

    PubMed

    Solpuker, U; Sheets, J; Kim, Y; Schwartz, F W

    2014-06-01

    This paper investigates the leaching potential of pervious concrete and its capacity for immobilizing Cu, Pb and Zn, which are common contaminants in urban runoff. Batch experiments showed that the leachability of Cu, Pb and Zn increased when pH<8. According to PHREEQC equilibrium modeling, the leaching of major ions and trace metals was mainly controlled by the dissolution/precipitation and surface complexation reactions, respectively. A 1-D reactive transport experiment was undertaken to better understand how pervious concrete might function to attenuate contaminant migration. A porous concrete block was sprayed with low pH water (pH=4.3±0.1) for 190 h. The effluent was highly alkaline (pH~10 to 12). In the first 50 h, specific conductance and trace-metal were high but declined towards steady state values. PHREEQC modeling showed that mixing of interstitial alkaline matrix waters with capillary pore water was required in order to produce the observed water chemistry. The interstitial pore solutions seem responsible for the high pH values and relatively high concentrations of trace metals and major cations in the early stages of the experiment. Finally, pervious concrete was sprayed with a synthetic contaminated urban runoff (10 ppb Cu, Pb and Zn) with a pH of 4.3±0.1 for 135 h. It was found that Pb immobilization was greater than either Cu or Zn. Zn is the most mobile among three and also has the highest variation in the observed degree of immobilization. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Do Cd, Cu, Ni, Pb, and Zn biomagnify in aquatic ecosystems?

    PubMed

    Cardwell, Rick D; Deforest, David K; Brix, Kevin V; Adams, William J

    2013-01-01

    In this review, we sought to assess from a study of the literature whether five in organic metals (viz., cadmium, copper, lead, nickel, and zinc) bio magnify in aquatic food webs. We also examined whether accumulated metals were toxic to consumers/predators and whether the essential metals (Cu and Zn and possibly Ni) behaved differently from non-essential ones (Cd and Pb). Biomagnification potential was indexed by the magnitude of single and multiple trophic transfers in food chains. In this analysis, we used three lines of evidence-laboratory empirical, biokinetic modeling, and field studies-to make assessments. Trophic transfer factors, calculatedfrom lab studies, field studies, and biokinetic modeling, were generally congruent.Results indicated that Cd, Cu, Pb, and Zn generally do not biomagnify in food chains consisting of primary producers, macro invertebrate consumers, and fish occupying TL 3 and higher. However, bio magnification of Zn (TTFs of 1-2) is possible for circumstances in which dietary Zn concentrations are below those required for metabolism. Cd, Cu, Ni, and Zn may biomagnify in specific marine food chains consisting of bivalves, herbivorous gastropods, and barnacles at TL2 and carnivorous gastropods at TL3. There was an inverse relationship between TTF and exposure concentration for Cd, Cu, Pb, and Zn, a finding that is consistent with previous reviews of bioconcentration factors and bioaccumulation factors for metals. Our analysis also failed to demonstrate a relationship between the magnitude of TTFsand dietary toxicity to consumer organisms. Consequently, we conclude that TTFs for the metals examined are not an inherently useful predictor of potential hazard(i.e., toxic potential) to aquatic organisms. This review identified several uncertainties or data gaps, such as the relatively limited data available for nickel, reliance upon highly structured food chains in laboratory studies compared to the unstructured food webs found in nature, and

  13. Could incommensurability in sulfosalts be more common than thought? The case of meneghinite, CuPb13Sb7S24.

    PubMed

    Bindi, Luca; Petříček, Václav; Biagioni, Cristian; Plášil, Jakub; Moëlo, Yves

    2017-06-01

    The structure of meneghinite (CuPb 13 Sb 7 S 24 ), from the Bottino mine in the Apuan Alps (Italy), has been solved and refined as an incommensurate structure in four-dimensional superspace. The structure is orthorhombic, superspace group Pnma(0β0)00s, cell parameters a = 24.0549 (3), b = 4.1291 (6), c = 11.3361 (16) Å, modulation vector q = 0.5433 (4)b*. The structure was refined from 6604 reflections to a final R = 0.0479. The model includes modulation of both atomic positions and displacement parameters, as well as occupational waves. The driving forces stabilizing the modulated structure of meneghinite are linked to the occupation modulation of Cu and some of the Pb atoms. As a consequence of the Cu/[] and Pb/Sb modulations, three- to sevenfold coordinations of the M cations (Pb/Sb) occur in different parts of the structure. The almost bimodal distribution of the occupation of Cu/[] and Pb/Sb at M5 conforms with the coupled substitution Sb 3+ + [] → Pb 2+ + Cu + , thus corroborating the hypothesis deduced previously for the incorporation of copper in the meneghinite structure. The very small departure (∼0.54 versus 0.50) from the commensurate value of the modulation raises the question of whether other sulfosalts considered superstructures have been properly described, and, in this light, if incommensurate modulation in sulfosalts could be much more common than thought.

  14. Thermopower of thermoelectric materials with resonant levels: PbTe:Tl versus PbTe:Na and Cu1 -xNix

    NASA Astrophysics Data System (ADS)

    Wiendlocha, Bartlomiej

    2018-05-01

    Electronic transport properties of thermoelectric materials containing resonant levels are discussed by analyzing the two best known examples: copper-nickel metallic alloy (Cu-Ni, constantan) and thallium-doped lead telluride (PbTe:Tl). As a contrasting example of a material with a nonresonant impurity, sodium-doped PbTe is considered. Theoretical calculations of the electronic structure, Bloch spectral functions, and energy-dependent electrical conductivity at T =0 K are done using the Korringa-Kohn-Rostoker method with the coherent potential approximation and the Kubo-Greenwood formalism. The effect of a resonance on the residual resistivity and electronic lifetimes in PbTe is analyzed. By using the full Fermi integrals, room-temperature thermopower is calculated, confirming its increase in PbTe:Tl versus PbTe:Na, due to the presence of the resonant level. In addition, our calculations support the self-compensation model, in which the experimentally observed reduction of carrier concentration in PbTe:Tl against the nominal one is explained by the presence of n -type Te vacancies.

  15. Assessment of Ni, Cu, Zn and Pb levels in beach and dune sands from Havana resorts, Cuba.

    PubMed

    Díaz Rizo, Oscar; Buzón González, Fran; Arado López, Juana O

    2015-11-15

    Concentrations of nickel (Ni), copper (Cu), zinc (Zn) and lead (Pb) in beach and dune sands from thirteen Havana (Cuba) resorts were estimated by X-ray fluorescence analysis. Determined mean metal contents (in mg·kg(-1)) in beach sand samples were 28±12 for Ni, 35±12 for Cu, 31±11 for Zn and 6.0±1.8 for Pb, while for dune sands were 30±15, 38±22, 37±15 and 6.8±2.9, respectively. Metal-to-iron normalization shows moderately severe and severe enrichment by Cu. The comparison with sediment quality guidelines shows that dune sands from various resorts must be considered as heavily polluted by Cu and Ni. Almost in every resort, the Ni and Cu contents exceed their corresponding TEL values and, in some resorts, the Ni PEL value. The comparison with a Havana topsoil study indicates the possible Ni and Cu natural origin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Removal of Cu(II) and Pb(II) from Aqueous Solutions Using Nanoporous Materials

    NASA Astrophysics Data System (ADS)

    Dutta, Debajani; Roy, Sushanta Kumar; Das, Bodhaditya; Talukdar, Anup K.

    2018-05-01

    The present work deals with the adsorption of Cu2+ and Pb2+ on zeolites (ZSM-5, mordenite) and mesoporous materials (MCM-48, MCM-41). The characterization of the synthesized samples was performed by means of XRD, SEM, and thermogravimetric analysis. The batch method was employed to study the influence of adsorbent nature, contact time, initial metal ion concentration, and adsorbent load. The adsorption on MCM-48 follows a pseudo-second-order kinetic model. This material was found to be more effective for the removal of lead in a batch process as compared to the other adsorbents and the removal efficiency of the materials for Pb(II) followed the order MCM-48 > mordenite > ZSM-5 > MCM-41 and that for Cu(II) followed the order ZSM-5 > mordenite > MCM-41 > MCM-48.

  17. Novel Preparation of Nano-Composite CuO-Cr2O3 Using Ctab-Template Method and Efficient for Hydrogenation of Biomass-Derived Furfural

    NASA Astrophysics Data System (ADS)

    Yan, Kai; Wu, Xu; An, Xia; Xie, Xianmei

    2013-02-01

    A simple route to fabricate nano-composite oxides CuO-Cr2O3 using hexadecyltrimethylammonium bromide (CTAB)-templated Cu-Cr hydrotalcite as the precursor is presented. This novel method is based on CTAB-templating effect for mesostructure directing and using the cheap metal nitrate, followed by removal of CTAB. It was indicated that the nano-composite CuO-Cr2O3 was formed during the removal of CTAB. X-ray diffraction (XRD) and transitional electronic microscopy (TEM) revealed nice nano-composite oxides CuO-Cr2O3 were formed with high crystallinity. N2 adsorption and desorption indicated that a high surface area of 170.5 m2/g with a pore size of 2.7 nm of the nano-composite CuO-Cr2O3 was facilely resulted. The as-synthesized nano-composite oxides CuO-Cr2O3 display good catalytic activities for hydrogenation of furfural to furfuryl alcohol, whereas 86% selectivity was achieved at 75% conversion of furfural.

  18. Synthesis of poly(aminopropyl/methyl)silsesquioxane particles as effective Cu(II) and Pb(II) adsorbents.

    PubMed

    Lu, Xin; Yin, Qiangfeng; Xin, Zhong; Li, Yang; Han, Ting

    2011-11-30

    Poly(aminopropyl/methyl)silsesquioxane (PAMSQ) particles have been synthesized by a one-step hydrolytic co-condensation process using 3-aminopropyltriethoxysilane (APTES) and methyltrimethoxysilane (MTMS) as precursors in the presence of base catalyst in aqueous medium. The amino functionalities of the particles could be controlled by adjusting the organosilanes feed ratio. The compositions of the amino-functionalized polysilsesquioxanes were confirmed by FT-IR spectroscopy, solid-state (29)Si NMR spectroscopy, and elemental analysis. The strong adsorbability of Cu(II) and Pb(II) ions onto PAMSQ particles was systematically examined. The effect of adsorption time, initial metal ions concentration and pH of solutions was studied to optimize the metal ions adsorbability of PAMSQ particles. The kinetic studies indicated that the adsorption process well fits the pseudo-second-order kinetics. Adsorption phenomena appeared to follow Langmuir isotherm. The PAMSQ particles demonstrate the highest Cu(II) and Pb(II) adsorption capacity of 2.29 mmol/g and 1.31 mmol/g at an initial metal ions concentration of 20mM, respectively. The PAMSQ particles demonstrate a promising application in the removal of Cu(II) and Pb(II) ions from aqueous solutions. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Efficiency of several leaching reagents on removal of Cu, Pb, Cd, and Zn from highly contaminated paddy soil.

    PubMed

    Gao, Ruili; Zhu, Pengfei; Guo, Guangguang; Hu, Hongqing; Zhu, Jun; Fu, Qingling

    2016-11-01

    The efficiency of five different single leaching reagents (tartaric acid (TA), citric acid (CA), CaCl 2 , FeCl 3 , EDTA) and two different composite leaching reagents (CA + FeCl 3 , CA + EDTA) on removing Cu, Pb, Zn, and Cd from contaminated paddy soil in Hunan Province (in China) was studied. The results indicated that the efficiencies of CA, FeCl 3 , and EDTA on extracting Cu, Pb, Cd, and Zn from soil were greater than that of TA and CaCl 2 , and their extraction efficiencies were EDTA ≥ FeCl 3 > CA. The efficiencies of CA + FeCl 3 on extracting Cu, Pb, Cd, and Zn were higher than that of single CA or FeCl 3 . The 25 mmol L -1 CA + 20 mmol L -1 FeCl 3 was a promising composite leaching reagent for paddy soil, and it could remove Cu (57.6 %), Pb (59.3 %), Cd (84.8 %), and Zn (28.0 %), respectively. With the same amount of leaching reagent, the efficiency of continuous leaching by several times was higher than that by once. In addition, the easily reducible and oxidizable fractions of heavy metals showed significant decrease during the process of leaching.

  20. Synthesis of AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7) alloy powders by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maulik, Ornov; Kumar, Vinod, E-mail: vkt.meta@mnit.ac.in; Adjunct Faculty, Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017

    2015-12-15

    Novel AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7 mol) high-entropy alloys (HEAs) were synthesized by mechanical alloying. The effect of Mg content on the phase evolution of HEAs was investigated using X-Ray diffractometry (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) pattern analysis. The particle morphology and composition of HEAs were investigated by scanning electron microscopy (SEM). Thermodynamic parameters were calculated and analyzed to explain the formation of a solid solution. XRD analysis revealed BCC as major phase and FCC as a minor phase in as-milled AlFeCuCr and AlFeCuCrMg{sub 0.5} HEAs. Also, XRD analysis of as-milledmore » AlFeCuCrMg, AlFeCuCrMg{sub 1.7} confirmed the formation of two BCC phases (BCC 1 and BCC 2). TEM–SAED analysis of AlFeCuCrMg{sub x} HEAs concurred with XRD results. Microstructural features and mechanism for solid solution formation have been conferred in detail. Phase formation of the present HEAs has been correlated with calculated thermodynamic parameters. Differential thermal analysis (TGA-DTA) of these alloys confirmed that there is no substantial phase change up to 500 °C. - Highlights: • Novel AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7) HEAs were prepared by mechanical alloying. • Phase evolution and lattice parameter were studied by X-Ray Diffraction. • Crystallite size and lattice microstrain calculated failed to obey the Williamson–Hall method. • Criterions for formation of simple solid solution were compared to the thermodynamic parameters of the present HEAs. • Increase in the Mg concentration in AlMg{sub x}FeCuCr (x = 0, 0.5, 1, 1.7) HEAs supports the formation of BCC phase.« less

  1. Crystal Growth of the S =1/2 Antiferromagnet K2PbCu(NO2)6 Elpasolite

    NASA Astrophysics Data System (ADS)

    Dong, Lianyang; Besara, Tiglet; Siegrist, Theo

    The elpasolite K2PbCu(NO2)6is known for its two structural transitions at 281 K and 273 K. Single crystals of K2PbCu(NO2)6 have been grown in aqueous solution, but the rapid nucleation rate and convective transport renders it difficult to obtain large high quality single crystals. We developed a gel method to grow K2PbCu(NO2)6 Elpasolite with sizes up to 5x5x5 mm3, suitable for neutron diffraction measurements. Susceptibility measurements clearly show that the Jahn-Teller distortions at 286K and 273K with associated orbital ordering produce a linear chain Heisenberg antiferromagnetic system. The intrachain interaction strength has been derived from a Bonner-Fisher analysis that yielded a value of 5.4K. This work was supported by the National Science Foundation, under award DMR-1534818. A portion of this work has been performed at the National High Magnetic Field Laboratory, which is supported by the National Science Foundation Cooperative Agreement.

  2. CuMn1.8O4 protective coatings on metallic interconnects for prevention of Cr-poisoning in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Sun, Zhihao; Wang, Ruofan; Nikiforov, Alexey Y.; Gopalan, Srikanth; Pal, Uday B.; Basu, Soumendra N.

    2018-02-01

    Cr-poisoning of the cathodes due to the presence of metallic interconnects is detrimental to the performance of intermediate temperature solid oxide fuel cell stacks. Applying a protective coating on the interconnect is an effective solution to preventing Cr-poisoning. In this study, the application of a protective CuMn1.8O4 spinel coating is explored. Dense coatings are deposited on both metallic flat plates and meshes by electrophoretic deposition followed by thermal densification steps. The coating is found to be a mixture of Mn3O4 and cubic spinel phases at room temperature but is a pure cubic spinel phase between 750 °C and 850 °C. A reaction layer between the Cr2O3 scale at the coating/interconnect interface and CuMn1.8O4 coating is found to be a mixture of (Cu,Mn,Cr)3-xO4 cubic spinel phases with Cr-rich precipitates believed to be Cr2O3, indicating that the coating layer acts as a Cr getter. Solubility experiments show that 1 mol of the CuMn1.8O4 phase can getter at least 1.83 mol of Cr2O3 at 800 °C. Electrochemical testing of cells in the presence of coated interconnects show that the CuMn1.8O4 coating getters Cr effectively for 12 days at 800 °C, leading to no performance loss of the cell due to Cr-poisoning.

  3. Effects of Cr/Zn Substitutions on Dielectric Properties of CaCu{sub 3}Ti{sub 4}O{sub 12}(CCTO) Ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajmi, R.; Yahya, A. K.; Deni, M. S. M.

    2010-07-07

    Effects of Zn and Cr substitutions on dielectric properties of CaCu{sub 3-x}Zn{sub x}Ti{sub 4-y}Cr{sub y}O{sub 12} ceramics are reported. Dielectric measurements at room temperature for un-substituted CaCu{sub 3-x}Zn{sub x}Ti{sub 4-y}Cr{sub y}O{sub 12}(x = 0, y = 0) between 10{sup 2}-10{sup 6} Hz showed dielectric constant of 2.7x10{sup 4} at 10{sup 2} Hz. Substitution of Zn for Cu in CaCu{sub 3-x}Zn{sub xTi{sub 4{sub -{sub yCr{sub yO{sub 1{sub 2}}}}}}}(y = 0, x = 0.10, 0.50)caused dielectric constant to drop with increasing x. Cr substitution at Ti-site in CaCu{sub 3-x}Zn{sub xTi{sub 4{sub -{sub yCr{sub yO{sub 1{sub 2}}}}}}}(x = 0, x = 0,) alsomore » caused decrease in dielectric constant. However, at x = 0.50, the dielectric constant at low frequency was enhanced compared to the un-substituted sample. Our results indicate that Cu and Ti sites play an important role in the formation of Internal Barrier Layer Capacitance (IBLC) in CCTO.« less

  4. Monolithic Cu-Cr-Nb Alloys for High Temperature, High Heat Flux Applications

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Locci, Ivan E.; Michal, Gary M.; Humphrey, Derek M.

    1999-01-01

    Work during the prior four years of this grant has resulted in significant advances in the development of Cu-8 Cr4 Nb and related Cu-Cr-Nb alloys. The alloys are nearing commercial use in the Reusable Launch Vehicle (RLV) where they are candidate materials for the thrust cell liners of the aerospike engines being developed by Rocketdyne. During the fifth and final year of the grant, it is proposed to complete development of the design level database of mechanical and thermophysical properties and transfer it to NASA Glenn Research Center and Rocketdyne. The database development work will be divided into three main areas: Thermophysical Database Augmentation, Mechanical Testing and Metallography and Fractography. In addition to the database development, work will continue that is focussed on the production of alternatives to the powder metallurgy alloys currently used. Exploration of alternative alloys will be aimed at both the development of lower cost materials and higher performance materials. A key element of this effort will be the use of Thermo-Calc software to survey the solubility behavior of a wide range of alloying elements in a copper matrix. The ultimate goals would be to define suitable alloy compositions and processing routes to produce thin sheets of the material at either a lower cost, or, with improved mechanical and thermal properties compared to the current Cu-Cr-Nb powder metallurgy alloys.

  5. Biological diversity of Salix taxa in Cu, Pb and Zn phytoextraction from soil.

    PubMed

    Mleczek, Mirosław; Rutkowski, Paweł; Goliński, Piotr; Kaczmarek, Zygmunt; Szentner, Kinga; Waliszewska, Bogusława; Stolarski, Mariusz; Szczukowski, Stefan

    2017-02-01

    The aim of the study was to estimate the efficiency of copper (Cu), lead (Pb) and zinc (Zn) phytoextraction by 145 Salix taxa cultivated in an area affected by industrial activity. Survivability and biomass of plants were also analyzed. The highest Cu, Pb and Zn content in shoots was 33.38 ± 2.91 (S. purpurea × viminalis 8), 24.64 ± 1.97 (S. fragilis 1) and 58.99 ± 4.30 (S. eriocephala 7) mg kg -1 dry weight, respectively. In the case of unwashed leaves, the highest content of these metals was 135.06 ± 8.14 (S. purpurea 26), 67.98 ± 5.27 (S. purpurea 45) and 142.56 ± 12.69 (S. alba × triandra 2) mg kg -1 dw, while in washed leaves it was 106.02 ± 11.12 (S. purpurea 45), 55.06 ± 5.75 (S. purpurea 45) and 122.87 ± 12.33 (S. alba × triandra 2) mg kg -1 dw, respectively. The differences between the highest and lowest values for Cu, Pb and Zn were 545%, 20500% and 535% in shoots; 2692%, 2560% and 7500% in unwashed leaves; and 3286%, 2221% and 6950% in washed leaves, respectively. S. acutifolia was able to effectively accumulate all three metals jointly, producing shoots that were well developed in both length and diameter when compared with the other tested willows-an ability that would suggest its high suitability for practical application.

  6. Thermal stability of Cu-Cr-Zr alloy processed by equal-channel angular pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abib, Khadidja

    Thermal stability of a Cu-Cr-Zr alloy processed by equal-channel angular pressing up to16 passes was investigated using isochronal annealing ranging from 250 to 850 °C for 1 h. The microstructure, crystallographic texture and micro hardness of samples were characterized through electron back scatter diffraction and Vickers micro hardness measurements. The recrystallized grain size was stable between 250 °C and 500 °C then increased quickly. The achieved mean grain size, after 1, 4 and 16 ECAP passes, was around 5.5 μm. A discontinuous mode of recrystallization was found to occur and a Particle Simulated Nucleation mechanism was evidenced. The evolution ofmore » the high angle grain boundary fraction increased notably after annealing above 550 °C. The crystallographic texture after isochronal annealing was similar to that of ECAP simple shear, no change of the texture during annealing was observed but only slight intensity variations. Micro hardness of all Cu–Cr–Zr samples showed a hardening with two peaks at 400 and 500 °C associated with precipitation of Cu cluster and Cu{sub 5}Zr phase respectively, followed by a subsequent softening upon increasing the annealing temperature due to recrystallization. - Highlight: •The Cu-1Cr-0.1Zr alloy shows a very good thermal stability up to 550 °C after ECAP. •A discontinuous recrystallization was found to occur and PSN mechanism was evidenced. •The annealing texture was found weak and some new components appear. •Hardening is attributed to the Cr clustering followed by the Cu{sub 51}Zr{sub 14} precipitation. •Softening is a result of recrystallization and grain growth progressing.« less

  7. Accelerating hydrodynamic description of pseudorapidity density and the initial energy density in p +p , Cu + Cu, Au + Au, and Pb + Pb collisions at energies available at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Ze-Fang, Jiang; Chun-Bin, Yang; Csanád, Máté; Csörgő, Tamás

    2018-06-01

    A known class of analytic, exact, accelerating solutions of prefect relativistic hydrodynamics with longitudinal acceleration is utilized to describe results on the pseudorapidity distributions for different collision systems. These results include d N /d η measured in p +p , Cu+Cu, Au+Au, and Pb+Pb collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider, in a broad centrality range. Going beyond the traditional Bjorken model, from the accelerating hydrodynamic description we determine the initial energy density and other thermodynamic quantities in those collisions.

  8. Temporal and spatial variation characteristics of atmospheric emissions of Cd, Cr, and Pb from coal in China

    NASA Astrophysics Data System (ADS)

    Tian, Hezhong; Cheng, Ke; Wang, Yan; Zhao, Dan; Lu, Long; Jia, Wenxiao; Hao, Jiming

    2012-04-01

    Multiple-year inventory of atmospheric emissions of cadmium (Cd), chromium (Cr), and lead (Pb) from coal burning in China have been established for the period 1980-2008 by using best available emission factors and annual activity data which are specified by different sub-categories of combustion facilities, coal types, and air pollution control devices. Our results show that the total emissions of Cd, Cr, and Pb have rapidly increased from 31.14 t, 1019.07 t, and 2671.73 t in 1980 to 261.52 t, 8593.35 t, and 12 561.77 t in 2008, respectively. The industrial sector ranks as the leading source, contributing ˜88.3%, ˜86.7%, and ˜81.8% of the total Cd, Cr, and Pb emissions, respectively. Remarkably uneven spatial allocation features are observed. The emissions are primarily concentrated in the provinces of the northern and eastern region of China owing to the dramatic difference in coal use by the industrial and power sectors. Monthly temporal emission profiles for different sectors are established by using indexes such as monthly thermal electricity generation, monthly gross industrial output values and monthly average ambient temperature. For the power plants, there are two peaks during cold and hot season while for the industrial sector, emissions are most substantial in the summer and autumn season. Further, uncertainties in the bottom-up inventories are quantified by Monte Carlo simulation, and the overall uncertainties are demonstrated as -16% to 45% for Cd, -13% to 20% for Cr, and -21% to 48% for Pb, respectively. To better understand the emissions of these metals and to adopt effective measures to prevent poisoning, more specific data collection and analysis are necessary.

  9. Tartrazine modified activated carbon for the removal of Pb(II), Cd(II) and Cr(III).

    PubMed

    Monser, Lotfi; Adhoum, Nafaâ

    2009-01-15

    A two in one attempt for the removal of tartrazine and metal ions on activated carbon has been developed. The method was based on the modification of activated carbon with tartrazine then its application for the removal of Pb(II), Cd(II) and Cr(III) ions at different pH values. Tartrazine adsorption data were modelled using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacities qm were 121.3, 67 and 56.7mgg(-1) at initial pH values of 1.0, 6.0 and 10, respectively. The adsorption of tartrazine onto activated carbon followed second-order kinetic model. The equilibrium time was found to be 240min at pH 1.0 and 120min at pH 10 for 500mgL(-1) tartrazine concentration. A maximum removal of 85% was obtained after 1h of contact time. The presence of tartrazine as modifier enhances attractive electrostatic interactions between metal ions and carbon surface. The adsorption capacity for Pb(II), Cd(II) and Cr(III) ions has been improved with respect to non-modified carbon reaching a maximum of 140%. The adsorption capacity was found to be a pH dependent for both modified and non-modified carbon with a greater adsorption at higher pH values except for Cr(III). The enhancement percent of Pb(II), Cd(II) and Cr(III) at different pH values was varied from 28% to 140% with respect to non-modified carbon. The amount of metal ions adsorbed using static regime was 11-40% higher than that with dynamic mode. The difference between adsorption capacities could be attributed to the applied flow rate.

  10. Enhanced texture evolution and piezoelectric properties in CuO-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 grain-oriented ceramics

    NASA Astrophysics Data System (ADS)

    Chang, Yunfei; Watson, Beecher; Fanton, Mark; Meyer, Richard J.; Messing, Gary L.

    2017-12-01

    In this work, both crystallographic texture and doping engineering strategies were integrated to develop relaxor-PbTiO3 (PT) based ternary ferroelectric ceramics with enhanced texture evolution and superior electromechanical properties. CuO-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) piezoelectric ceramics with [001]c texture fraction ≥97% were synthesized by templated grain growth. The addition of CuO significantly promotes densification and oriented grain growth in the templated ceramics, leading to full texture development at dramatically reduced times and temperatures. Moreover, the CuO dopant remarkably enhances the piezoelectric properties of the textured ceramics while maintaining high phase transition temperatures and large coercive fields. Doping 0.125 wt. % CuO yields the electromechanical properties of d33 = 927 pC/N, d33* = 1510 pm/V, g33 = 43.2 × 10-3 Vm/N, Kp = 0.87, Ec=8.8 kV/cm, and tan δ = 1.3%, which are the best values reported so far in PIN-PMN-PT based ceramics. The high piezoelectric coefficient is mainly from the reversible piezoelectric response, with the irreversible contribution being on the order of 13.1%. We believe that this work not only facilitates closing the performance gap between ceramics and single crystals but also can expand relaxor-PT based piezoelectric application fields.

  11. Bioavailability of Pb, Zn, Cu, Cd, Ni and Cr in the sediments of the Tessa River: A mining area in the North-West Tunisia

    NASA Astrophysics Data System (ADS)

    Sebei, Abdelaziz; Helali, Mohamed Amine; Oueslati, Walid; Abdelmalek-Babbou, Chiraz; Chaabani, Fredj

    2018-01-01

    Tessa River is seen as one of the important rivers in Tunisia. Its catchment is known for its agricultural and mining activities, especially the Bougrine and Fedj Lahdhoum mines. Eighteen (18) surface sediments and five (5) water samples were collected from the Tessa River, near these two mining sites. Sediments are essentially sandy (>80%), the most important mineral is quartz (20-73%), then calcite (41%) and dolomites (4%). Heavy metal contents are relatively high near the mining sites, 356 μg g-1 for Pb, 3000 μg g-1 for Zn, and 5 μg g-1 for Cd. These values are lower downstream due to watercourse dilution effects. Other heavy metals: Cu, Ni and Cr, are low, and values are relatively constant in all the studied samples, even near the mining sites. The metals originate from natural sources and not from mining activities. This trend is confirmed by the enrichment factor (EF) where EFNi, EFCu and EFCr are lower or equal to 1, unlike EFPb, EFZn or EFCd where values are much higher (>20). Chemical speciation of these metals does not show any spatial variation. Except for cadmium which is bound to the residual fraction and in the carbonates; all other heavy metals are bound to the five sediment chemical fractions: the residual fraction (>52%), followed by the oxyhydroxides fraction (21%) and carbonates (16%), and finally bound to the organic matter and to the exchangeable fraction (<10%). The bioavailable fraction of the studied heavy metals exceeds 45%, which present risk of toxicity.

  12. Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces

    DOE PAGES

    Wang, Yingge; Michel, F. Marc; Choi, Yongseong; ...

    2016-05-09

    Here, mineral surfaces are often coated by natural organic matter (NOM), which has a major influence on metal-ion sorption and sequestration because of the abundance of binding sites in such coatings and the changes they cause in local nanoscale environments. The effects of NOM coatings on mineral surfaces are, however, still poorly understood at the molecular level due to the complexity of these systems. In this study, we have applied long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy to measure the partitioning of naturally present Cu(II) (0.0226%), Zn(II) (0.009%), and Pb(II) ( 0.0004%) between Elliott Soil Humic Acid (ESHA) coatings andmore » three model single-crystal metal-oxide substrates: α-Al 2O 3 (0 0 0 1), α-Al 2O 3 (1 1 0 2), and α-Fe 2O 3 (0 0 0 1). The competitive sorption effects among these metal ions for binding sites in the ESHA coatings and on the metal-oxide surfaces were investigated as a function of reaction time, calcium content, and solution pH. Pb(II) ions present in the ESHA coatings were found to redistribute to reactive α-Al 2O 3 (1 1 0 2) and α-Fe 2O 3 (0 0 0 1) surfaces after 3 h of reaction (pH = 6.0, [Ca(II)] = 2 mM). Pb(II) partitioning onto these reactive metal-oxide surfaces increased with increasing reaction time (up to 7 d). In addition, the partitioning of Cu(II) and Zn(II) from the ESHA coating to the α-Fe 2O 3 (0 0 0 1) substrate increased slightly with reaction time (2.4% and 3.7% for Cu(II) and Zn(II), respectively, after 3 h and 6.4% and 7.7% for Cu(II) and Zn(II), respectively, after 72 h of reaction time).« less

  13. Aided phytoextraction of Cu, Pb, Zn, and As in copper-contaminated soils with tobacco and sunflower in crop rotation: Mobility and phytoavailability assessment.

    PubMed

    Hattab-Hambli, Nour; Motelica-Heino, Mikael; Mench, Michel

    2016-02-01

    Copper-contaminated soils were managed with aided phytoextraction in 31 field plots at a former wood preservation site, using a single incorporation of compost (OM) and dolomitic limestone (DL) followed by a crop rotation with tobacco and sunflower. Six amended plots, with increasing total soil Cu, and one unamended plot were selected together with a control uncontaminated plot. The mobility and phytoavailability of Cu, Zn, Cr and As were investigated after 2 and 3 years in soil samples collected in these eight plots. Total Cu, Zn, Cr and As concentrations were determined in the soil pore water (SPW) and available soil Cu and Zn fractions by DGT. The Cu, Zn, Cr and As phytoavailability was characterized by growing dwarf beans on potted soils and determining the biomass of their plant parts and their foliar ionome. Total Cu concentrations in the SPW increased with total soil Cu. Total Cu, Zn, Cr and As concentrations in the SPW decreased in year 3 as compared to year 2, likely due to annual shoot removals by the plants and the lixiviation. Available soil Cu and Zn fractions also declined in year 3. The Cu, Zn, Cr and As phytoavailability, assessed by their concentration and mineral mass in the primary leaves of beans, was reduced in year 3. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils.

    PubMed

    Huang, Guoyong; Su, Xiaojuan; Rizwan, Muhammad Shahid; Zhu, Yifei; Hu, Hongqing

    2016-08-01

    Soil contamination with toxic metals has increasingly become a global concern over the past few decades. Phosphate and carbonate compounds are good passivation materials for Pb immobilization, while the effect of phosphate and carbonate on the immobilization of multiple heavy metals (Pb, Cu, and Cd) in contaminated soils was seldom investigated. In this study, bone meal (BM), phosphate rock (PR), oxalic acid-activated phosphate rock (APR), super phosphate (SP), and calcium carbonate (CC) were added to the contaminated soils to evaluate the effect of phosphate materials and calcium carbonate on the immobilization of Pb, Cu, and Cd. The results showed that the pH of the treated soils increased 1.3-2.7, except SP which decreased 0.5 at most. Compared to the control treatment, all phosphates and calcium carbonate added to the polluted soils increased the fraction of residual metals, and the application of APR, PR, BM, and CC significantly reduced exchangeable and carbonate-bound fraction metals. PR and APR were the most effective for the immobilization of Pb, Cu, and Cd in the soils among these materials. Moreover, the concentrations of all metals in the toxicity characteristic leaching procedure (TCLP) leachate decreased with increasing amounts of amendments, and the concentrations of Pb in the TCLP leachate for soils treated with PR and APR were below the nonhazardous regulatory limit of 5 mg L(-1) (US Environmental Protection Agency). Based on our results, phosphate rock and oxalic acid-activated phosphate rock are effective in the immobilization of multiple metals by reducing their mobility in the co-contaminated soils.

  15. Pb(II), Cr(VI) and atrazine sorption behavior on sludge-derived biochar: role of humic acids.

    PubMed

    Zhou, Fengsa; Wang, Hong; Fang, Sheng'en; Zhang, Weihua; Qiu, Rongliang

    2015-10-01

    Pyrolyzing municipal wastewater treatment sludge into biochar can be a promising sludge disposal approach, especially as the produced sludge-derived biochar (SDBC) is found to be an excellent sorbent for heavy metals and atrazine. The aim of this study was to investigate how and why the coexisting humic acids influence the sorption capacity, kinetic, and binding of these contaminants on SDBC surface. Results showed humic acids enhanced Pb(II)/Cr(VI) sorption binding, and increased the corresponding Pb(II) Langmuir sorption capacity at pH 5.0 from 197 to 233 μmol g(-1), and from 688 to 738 μmol g(-1) for Cr(VI) at pH 2.0. It can be mainly attributed to the sorbed humic acids, whose active functional groups can offer the additional sites to form stronger inner-sphere complexes with Pb(2+), and supply more reducing agent to facilitate the transformation of Cr(VI) to Cr(III). However, humic acids reduced the atrazine adsorption Freundlich constant from 1.085 to 0.616 μmol g(-1). The pore blockage, confirmed by the decreased BET-specific surface area, as well as the more hydrophilic surface with more sorbed water molecules may be the main reasons for that suppression. Therefore, the coexisting humic acids may affect heavy metal stabilization or pesticide immobilization during SDBC application to contaminated water or soils, and its role thus should be considered especially when organic residues are also added significantly to increase the humic acid content there.

  16. Spectral analysis of Cu 2+: B 2O 3-ZnO-PbO glasses

    NASA Astrophysics Data System (ADS)

    Lakshminarayana, G.; Buddhudu, S.

    2005-11-01

    A new series of heavy metal oxide (PbO) based zinc borate glasses in the chemical composition of (95 - x)B 2O 3-5ZnO- xPbO ( x = 10, 15, 20, 25, 30, 35, 40, 45 and 50 mol%) have been prepared to verify their UV filtering performance. Both direct and indirect optical band gaps ( Eopt) have been evaluated for these glasses. For a reference glass of 45B 2O 3-5ZnO-50PbO, refractive indices at different wavelengths are measured and found the results satisfactorily correlated with the theoretical data upon the computation of Cauchy's constants of A = 1.766029949, B = 159531.024 nm 2 and C = -1.078 × 10 10 nm 4. Measurements concerning X-ray diffraction (XRD), FT-IR, differential scanning colorimeter (DSC) profiles have been carried out for this glass. The FT-IR profile has revealed that the glass has both BO 3 and BO 4 units. From DSC thermogram, glass transition temperature ( Tg), crystallization temperature ( Tc) and melting temperature ( Tm) have been located and from them, other related parameters of the glass have also been calculated. Visible absorption spectra of 45B 2O 3-5ZnO-(50 - x)PbO- xCuO ( x = 0. 1, 0.2, 0.5 and 1.0 mol%) have revealed two absorption bands at around 400 nm ( 2B 1g → 2E g) and 780 nm ( 2B 1g → 2B 2g) of Cu 2+ ions, respectively. Emission bands at 422 and 512 nm are found for the 1 mol% CuO doped glass with excitations at 306 and 332 nm.

  17. Effect of Post Treatment For Cu-Cr Source/Drain Electrodes on a-IGZO TFTs.

    PubMed

    Hu, Shiben; Fang, Zhiqiang; Ning, Honglong; Tao, Ruiqiang; Liu, Xianzhe; Zeng, Yong; Yao, Rihui; Huang, Fuxiang; Li, Zhengcao; Xu, Miao; Wang, Lei; Lan, Linfeng; Peng, Junbiao

    2016-07-27

    We report a high-performance amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) thin-film transistor (TFT) with new copper-chromium (Cu-Cr) alloy source/drain electrodes. The TFT shows a high mobility of 39.4 cm 2 ·V - 1 ·s - 1 a turn-on voltage of -0.8 V and a low subthreshold swing of 0.47 V/decade. Cu diffusion is suppressed because pre-annealing can protect a-IGZO from damage during the electrode sputtering and reduce the copper diffusion paths by making film denser. Due to the interaction of Cr with a-IGZO, the carrier concentration of a-IGZO, which is responsible for high mobility, rises.

  18. Luminescence, magnetic and vibrational properties of novel heterometallic niccolites [(CH3)2NH2][CrIIIMII(HCOO)6] (MII=Zn, Ni, Cu) and [(CH3)2NH2][AlIIIZnII(HCOO)6]:Cr3+

    NASA Astrophysics Data System (ADS)

    Mączka, Mirosław; Pietraszko, Adam; Pikul, Adam; Hermanowicz, Krzysztof

    2016-01-01

    We report synthesis of three novel heterometallic MOFs, [(CH3)2NH2][CrIIIMII(HCOO)6] with M=Zn (DMCrZn), Ni (DMCrNi) and Cu (DMCrCu), crystallizing in the niccolite type structure. We also successfully synthesized [(CH3)2NH2][AlCu(HCOO)6] (DMAlCu) and [(CH3)2NH2][AlZn(HCOO)6] doped with 5.8 mol% of Cr3+ (DMAlZn: Cr). X-ray diffraction shows that DMCrZn, DMCrNi and DMAlZn: Cr3+ crystallize in the trigonal structure (space group P 3 bar1c) while DMCrCu and DMAlCu crystallize in the monoclinic structure (space group C2/c). Magnetic investigation of the chromium-based niccolites reveals no magnetic order in DMCrZn and ferromagnetic order in DMCrNi and DMCrCu below 23 and 11 K, respectively. Optical studies show that DMCrZn and DMAlZn: Cr samples exhibit efficient emission typical for chromium ions located at sites of strong crystal field with the Dq/B values 2.62 and 2.67, respectively. We also discuss role of geometrical parameters in stability of the perovskite and niccolite structures.

  19. Residents health risk of Pb, Cd and Cu exposure to street dust based on different particle sizes around zinc smelting plant, Northeast of China.

    PubMed

    Zhou, Qiuhong; Zheng, Na; Liu, Jingshuang; Wang, Yang; Sun, Chongyu; Liu, Qiang; Wang, Heng; Zhang, Jingjing

    2015-04-01

    The residents health risk of Pb, Cd and Cu exposure to street dust with different particle sizes (<100 and <63 μm) near Huludao Zinc Plant (HZP) was investigated in this study. The average concentrations of Pb, Cd and Cu in the <100-μm and <63-μm dust were 1,559, 178.5, 917.9 and 2,099, 198.4, 1,038 mg kg(-1), respectively. It showed that smaller particles tended to contain higher element concentrations. Metals in dust around HZP decreased gradually from the zinc smelter to west and east directions. There was significantly positive correlation among Pb, Cd and Cu in street dust with different particle sizes. The contents of Pb, Cd and Cu in dust increased with decreasing pH or increasing organic matter. Non-carcinogenic health risk assessment showed that the health index (HI) for children and adult exposed to <63-μm particles were higher than exposed to <100-μm particles, which indicated that smaller particles tend to have higher non-carcinogenic health risk. Non-carcinogenic risk of Pb was the highest in both particle sizes, followed by Cd and Cu. HI for Pb and Cd in both particle sizes for children had exceeded the acceptable value, indicated that children living around HZP were experiencing the non-carcinogenic health risk from Pb and Cd exposure to street dust.

  20. Assessment of waste oyster shells and coal mine drainage sludge for the stabilization of As-, Pb-, and Cu-contaminated soil.

    PubMed

    Moon, Deok Hyun; Cheong, Kyung Hoon; Koutsospyros, Agamemnon; Chang, Yoon-Young; Hyun, Seunghun; Ok, Yong Sik; Park, Jeong-Hun

    2016-02-01

    A novel treatment mix was designed for the simultaneous immobilization of As, Cu, and Pb in contaminated soils using natural (waste oyster shells (WOS)) and industrial (coal mine drainage sludge (CMDS)) waste materials. The treatments were conducted using the standard U.S. sieve size no. 20 (0.85 mm) calcined oyster shells (COS) and CMDS materials with a curing time of 1 and 28 days. The As immobilization treatments were evaluated using the 1-N HCl extraction fluid, whereas the Pb and Cu immobilization treatments were evaluated using the 0.1-N HCl extraction fluid based on the Korean leaching standards. The treatment results showed that the immobilization of As, Cu, and Pb was best achieved using a combination mix of 10 wt% COS and 10 wt% CMDS. This treatment mix was highly effective leading to superior leachability reductions for all three target contaminants (>93 % for As and >99 % for Cu and Pb) for a curing period of 28 days. The X-ray absorption near-edge structure (XANES) results showed that As was present in the form of As(V) in the control sample and that no changes in As speciation were observed following the COS-CMDS treatments. The scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX) sample treated with 10 wt% COS and 10 wt% CMDS indicated that As immobilization may be associated with the formation of Ca-As and Fe-As precipitates while Pb and Cu immobilization was most probably linked to calcium silicate hydrates (CSHs) and calcium aluminum hydrates (CAHs).

  1. Influence of Cu-Cr substitution on structural, morphological, electrical and magnetic properties of magnesium ferrite

    NASA Astrophysics Data System (ADS)

    Yonatan Mulushoa, S.; Murali, N.; Tulu Wegayehu, M.; Margarette, S. J.; Samatha, K.

    2018-03-01

    Cu-Cr substituted magnesium ferrite materials (Mg1 - xCuxCrxFe21 - xO4 with x = 0.0-0.7) have been synthesized by the solid state reaction method. XRD analysis revealed the prepared samples are cubic spinel with single phase face centered cubic. A significant decrease of ∼41.15 nm in particle size is noted in response to the increase in Cu-Cr substitution level. The room temperature resistivity increases gradually from 0.553 × 105 Ω cm (x = 0.0) to 0.105 × 108 Ω cm (x = 0.7). Temperature dependent DC-electrical resistivity of all the samples, exhibits semiconductor like behavior. Cu-Cr doped materials can be suitable to limit the eddy current losses. VSM result shows pure and doped magnesium ferrite particles show soft ferrimagnetic nature at room temperature. The saturation magnetization of the samples decreases initially from 34.5214 emu/g for x = 0.0 to 18.98 emu/g (x = 0.7). Saturation magnetization, remanence and coercivity are decreased with doping, which may be due to the increase in grain size.

  2. Enrichment and exposure assessment of As, Cr and Pb of the soils in the vicinity of Stawell, Victoria, Australia.

    PubMed

    Noble, Ryan R P; Hough, Robert M; Watkins, Ronald T

    2010-06-01

    Stawell Gold Mine in NW Victoria, Australia, mines ores that contain large concentrations of As and significant quantities of the metals Pb and Cr. The aim of this research was to understand the dispersion, enrichment and probable exposure of these potentially hazardous elements around the mine site. Fifty-five surface soil samples were collected near the mine (<15 km) and analysed by ICP-MS/OES following bioavailable and four-acid extractions. Soils near the mine show greater concentrations of As, Cr and Pb than those near a regionally determined background. This is attributed to the combination of a natural geochemical halo around mineralization and anthropogenic dispersion due to mining and urbanization. Total As concentrations were between 16 and 946 mg kg(-1) near the mine in a regional background of 1-16 mg kg(-1). Total Cr concentrations were between 18 and 740 mg kg(-1) near the mine in a regional background of 26-143 mg kg(-1). Total Pb concentrations were between 12 and 430 mg kg(-1) near the mine in a regional background of 9-23 mg kg(-1). Dispersion of contaminant elements from the present ore processing is <500 m. The most enriched soils occur close to the town and are unrelated to present mining practices. The bioavailable As, Cr and Pb, soil ingestion rates and Risk Reference Doses were used to estimate health risks. An average toddler (12 kg) would need to consume at least 1.5 g, and most likely 12 g, of soil per day to show some symptoms of As toxicity. The maximum measured bioavailable As would pose a risk at average ingestion rates of 200 mg per day. Individuals with soil-eating disorders would exceed the safe daily consumption limits for As, and potentially Cr and Pb. Small children are not typically exposed to soil everyday, very few have soil eating disorders, and, therefore, the health risk from the soils around the mine is minimal.

  3. Mass change calculations of hydrothermal alterations within the volcanogenic metasediments hosted Cu-Pb (-Zn) mineralization at Halilar area, NW Turkey

    NASA Astrophysics Data System (ADS)

    Kiran Yildirim, Demet; Abdelnasser, Amr; Doner, Zeynep; Kumral, Mustafa

    2016-04-01

    The Halilar Cu-Pb (-Zn) mineralization that is formed in the volcanogenic metasediments of Bagcagiz Formation at Balikesir province, NW Turkey, represents locally vein-type deposit as well as restricted to fault gouge zone directed NE-SW along with the lower boundary of Bagcagiz Formation and Duztarla granitic intrusion in the study area. Furthermore, This granite is traversed by numerous mineralized sheeted vein systems, which locally transgress into the surrounding metasediments. Therefore, this mineralization closely associated with intense hydrothermal alteration within brecciation, and quartz stockwork veining. The ore mineral assemblage includes chalcopyrite, galena, and some sphalerite with covellite and goethite formed during three phases of mineralization (pre-ore, main ore, and supergene) within an abundant gangue of quartz and calcite. The geologic and field relationships, petrographic and mineralogical studies reveal two alteration zones occurred with the Cu-Pb (-Zn) mineralization along the contact between the Bagcagiz Formation and Duztarla granite; pervasive phyllic alteration (quartz, sericite, and pyrite), and selective propylitic alteration (albite, calcite, epidote, sericite and/or chlorite). This work, by using the mass balance calculations, reports the mass/volume changes (gain and loss) of the chemical components of the hydrothermal alteration zones associated with Halilar Cu-Pb (-Zn) mineralization at Balikesir area (Turkey). It revealed that the phyllic alteration has enrichments of Si, Fe, K, Ba, and LOI with depletion of Mg, Ca, and Na reflect sericitization of alkali feldspar and destruction of ferromagnesian minerals. This zone has high Cu and Pb with Zn contents represents the main mineralized zone. On the other hand, the propylitic zone is characterized by addition of Ca, Na, K, Ti, P, and Ba with LOI and Cu (lower content) referring to the replacement of plagioclase and ferromagnesian minerals by albite, calcite, epidote, and sericite

  4. Removal of Pb(II), Cd(II), Cu(II), and Zn(II) by hematite nanoparticles: effect of sorbent concentration, pH, temperature, and exhaustion.

    PubMed

    Shipley, Heather J; Engates, Karen E; Grover, Valerie A

    2013-03-01

    Nanoparticles offer the potential to improve environmental treatment technologies due to their unique properties. Adsorption of metal ions (Pb(II), Cd(II), Cu(II), Zn(II)) to nanohematite was examined as a function of sorbent concentration, pH, temperature, and exhaustion. Adsorption experiments were conducted with 0.05, 0.1, and 0.5 g/L nanoparticles in a pH 8 solution and in spiked San Antonio tap water. The adsorption data showed the ability of nanohematite to remove Pb, Cd, Cu, and Zn species from solution with adsorption increasing as the nanoparticle concentration increased. At 0.5 g/L nanohematite, 100 % Pb species adsorbed, 94 % Cd species adsorbed, 89 % Cu species adsorbed and 100 % Zn species adsorbed. Adsorption kinetics for all metals tested was described by a pseudo second-order rate equation with lead having the fastest rate of adsorption. The effect of temperature on adsorption showed that Pb(II), Cu(II), and Cd(II) underwent an endothermic reaction, while Zn(II) underwent an exothermic reaction. The nanoparticles were able to simultaneously remove multiple metals species (Zn, Cd, Pb, and Cu) from both a pH 8 solution and spiked San Antonio tap water. Exhaustion experiments showed that at pH 8, exhaustion did not occur for the nanoparticles but adsorption does decrease for Cd, Cu, and Zn species but not Pb species. The strong adsorption coupled with the ability to simultaneously remove multiple metal ions offers a potential remediation method for the removal of metals from water.

  5. Visible light CrO4(2-) reduction using the new CuAlO2/CdS hetero-system.

    PubMed

    Brahimi, R; Bessekhouad, Y; Nasrallah, N; Trari, M

    2012-06-15

    In this study, 64% of hexavalent chromium Cr(VI) reduction from the initial concentration (10(-4) M) is reported under visible light using the (CuAlO(2)/CdS) hetero-system. In this new hetero-system, low doped CuAlO(2) delafossite, synthesized by sol-gel works as an electrons reservoir with a wide space charge region (440 nm). In this case, the electron transfer to chromate is mediated via the hexagonal CdS variety, whose conduction band level is at -1.08 V with respect to the saturated calomel electrode which is more negative than the CrO(4)(2-)/Cr(3+) level. This high reduction rate is achieved under optimized pH and CuAlO(2) percentage. Moreover, salicylic acid gives the best performance among hole scavengers and CuAlO(2) approaches 100% photostability at pH 7.5. The photo-catalytic process follows a pseudo first order kinetic with a half life of 2h. The reaction products are identified by UV-visible spectrophotometry and linear voltametry at a platinum rotating electrode. The results reveal the presence of Cr(3+) after irradiation. Copyright © 2012. Published by Elsevier B.V.

  6. The interaction of Ag with Bi-Pb-Sr-Ca-Cu-O superconductor

    NASA Astrophysics Data System (ADS)

    Dou, S. X.; Song, K. H.; Liu, H. K.; Sorrell, C. C.; Apperley, M. H.; Gouch, A. J.; Savvides, N.; Hensley, D. W.

    1989-10-01

    Bi-Pb-Sr-Ca-Cu-O superconductor compounds have been doped with up to 30 wt% Ag, sintered under variable oxygen partial pressure, and characterised in terms of the electrical and crystallographic behaviour. In contrast to previous reports that claim that Ag is the only metal non-poisoning to the superconductivity of Bi-Sr-Ca-Cu-O (BSCCO), it has been found that Ag additions to Bi-Pb-Sr-Ca-Cu-O depress Tc and Jc drastically and cause a large decrease in lattice parameters when samples are treated in air or pure oxygen. However, the lattice parameters, Tc and Jc remain unaffected by Ag additions when samples are heat treated in 0.030-0.067 atm oxygen. It is clear that the Ag reacts with and destabilises the superconducting phase when the samples are treated in air or pure oxygen while, when the samples are heat treated in low oxygen partial pressures, the Ag remains as an isolated inert metal phase that improves the weak links between the grains. This discovery clearly shows the feasibility of Ag-clad superconductor wire. For Ag-clad superconductor tape of 0.1 mm 2 cross sectional area heat treated in air, Jc was measured to be 54 A/cm 2. The same specimen sintered in 0.067 atm oxygen showed that the Jc increased to 2078 A/cm 2.

  7. Line length dependence of threshold current density and driving force in eutectic SnPb and SnAgCu solder electromigration

    NASA Astrophysics Data System (ADS)

    Yoon, Min-Seung; Ko, Min-Ku; Kim, Bit-Na; Kim, Byung-Joon; Park, Yong-Bae; Joo, Young-Chang

    2008-04-01

    The relationship between the threshold current density and the critical line length in eutectic SnPb and SnAgCu electromigrations were examined using solder lines with the various lengths ranging from 100to1000μm. When the electron wind-force was balanced by the back-stress gradient force, the net flux of electromigration is zero, at which the current density and line length are defined as the threshold current density and the critical length, respectively. It was found that in SnAgCu electromigration, the 1/L dependence on the threshold current density showed good agreement, whereas the threshold current densities of the eutectic SnPb deviated from the 1/L dependence. The balance between the electron wind-force and the back-stress gradient force was the main factor determining the threshold product of SnAgCu electromigration. On the other hand, in the case of eutectic SnPb, the chemical driving force is contributed as a back-flux force in addition to the back-stress gradient force. The existence of the chemical driving force was caused by the nonequilibrium Pb concentration inside the Pb-rich phases between the cathode and anode during the electromigration procedure.

  8. Soldering-induced Cu diffusion and intermetallic compound formation between Ni/Cu under bump metallization and SnPb flip-chip solder bumps

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Sheng; Jang, Guh-Yaw; Duh, Jenq-Gong

    2004-04-01

    Nickel-based under bump metallization (UBM) has been widely used as a diffusion barrier to prevent the rapid reaction between the Cu conductor and Sn-based solders. In this study, joints with and without solder after heat treatments were employed to evaluate the diffusion behavior of Cu in the 63Sn-37Pb/Ni/Cu/Ti/Si3N4/Si multilayer structure. The atomic flux of Cu diffused through Ni was evaluated from the concentration profiles of Cu in solder joints. During reflow, the atomic flux of Cu was on the order of 1015-1016 atoms/cm2s. However, in the assembly without solder, no Cu was detected on the surface of Ni even after ten cycles of reflow. The diffusion behavior of Cu during heat treatments was studied, and the soldering-process-induced Cu diffusion through Ni metallization was characterized. In addition, the effect of Cu content in the solder near the solder/intermetallic compound (IMC) interface on interfacial reactions between the solder and the Ni/Cu UBM was also discussed. It is evident that the (Cu,Ni)6Sn5 IMC might form as the concentration of Cu in the Sn-Cu-Ni alloy exceeds 0.6 wt.%.

  9. Compatibility of an FeCrAl alloy with flowing Pb-Li in a thermal convection loop

    NASA Astrophysics Data System (ADS)

    Pawel, Steven J.; Unocic, Kinga A.

    2017-08-01

    A mono-metallic thermal convection loop (TCL) fabricated from alloy APMT (Fe21Cr5Al3Mo) tubing and filled with 0.025 m long tensile specimens of the same alloy was operated continuously for 1000 h with commercially pure Pb-17 at.%Li (Pb-Li) at a peak temperature of 550 ± 1.5 °C and a temperature gradient of ∼116 °C. The resulting Pb-Li flow rate was ∼0.0067 m/s. A 1050 °C pre-oxidation treatment (to form an external alumina scale) given to most specimens exposed within the TCL decreased total mass loss by a factor of 3-30 compared to adjacent specimens that were not pre-oxidized. However, all specimens exposed above 500 °C lost mass suggesting that the alumina scale was not entirely stable in flowing Pb-Li at these temperatures. Post-exposure room temperature tensile tests indicated that the mechanical properties of APMT were substantially influenced by extended exposures in the range of 435-490 °C, which caused an increase in yield strength (∼65%) and a corresponding decrease in ductility associated with α‧ embrittlement. Specimens annealed in argon at the same temperature exhibited identical changes without exposure to Pb-Li. Scanning transmission electron microscopy revealed Cr-clusters within the microstructure in specimens exposed in the low temperature regions (<490 °C) of the TCL, indicating the formation of α‧ consistent with the mechanism of α‧ embrittlement.

  10. The Effect of Powder Ball Milling on the Microstructure and Mechanical Properties of Sintered Fe-Cr-Mo-Mn-(Cu) Steel

    NASA Astrophysics Data System (ADS)

    Kulecki, P.; Lichańska, E.

    2017-12-01

    The effect of ball milling powder mixtures of Höganäs pre-alloyed iron Astaloy CrM, low-carbon ferromanganese Elkem, elemental electrolytic Cu and C-UF graphite on the sintered structure and mechanical properties was evaluated. The mixing was conducted using Turbula mixer for 30 minutes and CDI-EM60 frequency inverter for 1 and 2 hours. Milling was performed on 150 g mixtures with (in weight %) CrM + 1% Mn, CrM + 2% Mn, CrM + 1% Mn + 1% Cu and CrM + 2% Mn + 1% Cu, all with 0.6%C. The green compacts were single pressed at 660 MPa according to PN-EN ISO 2740. Sintering was carried out in a laboratory horizontal furnace Carbolite STF 15/450 at 1250°C for 60 minutes in 5%H2 - 95%N2 atmosphere with a heating rate of 75°C/min, followed by sintering hardening at 60°C/min cooling rate. All the steels were characterized by martensitic structures. Mechanical testing revealed that steels based on milled powders have slightly higher mechanical properties compared to those only mixed and sintered. The best combination of mechanical properties, for ball milled CrM + 1% Mn + 1% Cu was UTS 1046 MPa, TRS 1336 MPa and A 1.94%.

  11. Effect of Post Treatment For Cu-Cr Source/Drain Electrodes on a-IGZO TFTs

    PubMed Central

    Hu, Shiben; Fang, Zhiqiang; Ning, Honglong; Tao, Ruiqiang; Liu, Xianzhe; Zeng, Yong; Yao, Rihui; Huang, Fuxiang; Li, Zhengcao; Xu, Miao; Wang, Lei; Lan, Linfeng; Peng, Junbiao

    2016-01-01

    We report a high-performance amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) thin-film transistor (TFT) with new copper-chromium (Cu-Cr) alloy source/drain electrodes. The TFT shows a high mobility of 39.4 cm2·V−1·s−1 a turn-on voltage of −0.8 V and a low subthreshold swing of 0.47 V/decade. Cu diffusion is suppressed because pre-annealing can protect a-IGZO from damage during the electrode sputtering and reduce the copper diffusion paths by making film denser. Due to the interaction of Cr with a-IGZO, the carrier concentration of a-IGZO, which is responsible for high mobility, rises. PMID:28773743

  12. Effects of spin entropy and lattice strain from mixed-trivalent Fe3+/Cr3+ on the electronic, thermoelectric and optical properties of delafossite CuFe1-x Cr x O2 (x  =  0.25, 0.5, 0.75)

    NASA Astrophysics Data System (ADS)

    Ruttanapun, Chesta; Maensiri, Santi

    2015-12-01

    Mixed-trivalent Fe3+/Cr3+ content CuFe1-x Cr x O2 (x  =  0.25, 0.5, and 0.75) compounds were synthesized to investigate the effects of spin entropy, and lattice strain on their electronic, thermoelectric and optical properties. The XPS results showed the existence of mixed Cu1+/Cu2+, Fe3+/Fe4+ and Cr2+/Cr3+ ion states in the structures. The mixed Fe3+/Cr3+ions caused a strong correlation to occur between the spin and the orbitals of the carriers in the octahedral layer of the sample, affecting the carrier degeneracy Seebeck coefficient behaviour, and the Cu2+ and Fe4+ ions caused an effect of enhancing the electric conductivity. These effects meant that CuFe0.75Cr0.25O2 had the highest electrical conductivity, an enhanced Seebeck coefficient compared to that of CuFeO2-based compounds, and the highest thermopower value. The lowest thermal conductivity was that of CuFe0.5Cr0.5O2, which was a result of the mismatched atomic radii of the mixed trivalent Fe3+(0.645 Å)/Cr3+(0.615 Å), which caused the lattice strain to occur in the structure and thus affected the point defect scattering of the phonon thermal conductivity. The lowest total thermal conductivity was that of CuFe0.5Cr0.5O2, because it had the maximum lattice strain. Overall, the effect of the mixed trivalent elements caused CuFe0.75Cr0.25O2 to have the highest value of the dimensionless figure of merit ZT, with a value that was four times that of CuFeO2-based compounds and six times that of CuCrO2-based compounds. With regard to optical properties, the lattice strain causes the indirect optical gap to increase with increasing x content, but has no effect on the direct optical gap. These results verified that the mixed-trivalent Fe3+/Cr3+ content of CuFe1-x Cr x O2 (x  =  0.25, 0.5, and 0.75) affected the electronic, thermoelectric and optical properties of the structure by causing spin entropy and lattice strain to occur.

  13. A computational assessment of the electronic, thermoelectric, and defect properties of bournonite (CuPbSbS 3) and related substitutions

    DOE PAGES

    Faghaninia, Alireza; Yu, Guodong; Aydemir, Umut; ...

    2017-02-08

    Bournonite (CuPbSbS 3) is an earth-abundant mineral with potential thermoelectric applications. This material has a complex crystal structure (space group Pmn2 1 #31) and has previously been measured to exhibit a very low thermal conductivity (κ < 1 W m -1 K -1 at T ≥ 300 K). In this study, we employ high-throughput density functional theory calculations to investigate how the properties of the bournonite crystal structure change with elemental substitutions. Specifically, we compute the stability and electronic properties of 320 structures generated via substitutions {Na-K-Cu-Ag}{Si-Ge-Sn-Pb}{N-P-As-Sb-Bi}{O-S-Se-Te} in the ABCD 3 formula. We perform two types of transport calculations: themore » BoltzTraP model, which has been extensively tested, and a newer AMSET model that we have developed and which incorporates scattering effects. We discuss the differences in the model results, finding qualitative agreement except in the case of degenerate bands. Based on our calculations, we identify p-type CuPbSbSe 3 , CuSnSbSe 3 and CuPbAsSe 3 as potentially promising materials for further investigation. We additionally calculate the defect properties, finding that n-type behavior in bournonite and the selected materials is highly unlikely, and p-type behavior might be enhanced by employing Sb-poor synthesis conditions to prevent the formation of Sb Pb defects. Finally, we discuss the origins of various trends with chemical substitution, including the possible role of stereochemically active lone pair effects in stabilizing the bournonite structure and the effect of cation and anion selection on the calculated band gap.« less

  14. Dynamic adsorption of mixtures of Rhodamine B, Pb (II), Cu (II) and Zn(II) ions on composites chitosan-silica-polyethylene glycol membrane

    NASA Astrophysics Data System (ADS)

    Mahatmanti, F. W.; Rengga, W. D. P.; Kusumastuti, E.; Nuryono

    2018-04-01

    The adsorption of a solution mixture of Rhodamine B, Pb (II), Cu (II) and Zn(II) was studied using dynamic methods employing chitosan-silica-polyethylene glycol (Ch/Si/P) composite membrane as an adsorptive membrane. The composite Ch/Si/P membrane was prepared by mixing a chitosan-based membrane with silica isolated from rice husk ash (ASP) and polyethylene glycol (PEG) as a plasticizer. The resultant composite membrane was a stronger and more flexible membrane than the original chitosan-based membrane as indicated by the maximum percentage of elongation (20.5 %) and minimum Young’s Modulus (80.5 MPa). The composite membrane also showed increased mechanical and hydrophilic properties compared to the chitosan membranes. The membrane was used as adsorption membrane for Pb (II), Cu (II), Cd (II) ions and Rhodamine B dyes in a dynamic system where the permeation and selectivity were determined. The permeation of the components was observed to be in the following order: Rhodamine B > Cd (II) > Pb (II) > Cu (II) whereas the selectivity was shown to decrease the order of Cu (II) > Pb (II) > Cd (II) > Rhodamine B.

  15. Statistical Analysis of Main and Interaction Effects on Cu(II) and Cr(VI) Decontamination by Nitrogen-Doped Magnetic Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Hu, Xinjiang; Wang, Hui; Liu, Yunguo

    2016-10-01

    A nitrogen-doped magnetic graphene oxide (NMGO) was synthesized and applied as an adsorbent to remove Cu(II) and Cr(VI) ions from aqueous solutions. The individual and combined effects of various factors (A: pH, B: temperature, C: initial concentration of metal ions, D: CaCl2, and E: humic acid [HA]) on the adsorption were analyzed by a 25-1 fractional factorial design (FFD). The results from this study indicated that the NMGO had higher adsorption capacities for Cu(II) ions than for Cr(VI) ions under most conditions, and the five selected variables affected the two adsorption processes to different extents. A, AC, and C were the very important factors and interactions for Cu(II) adsorption. For Cr(VI) adsorption, A, B, C, AB, and BC were found to be very important influencing variables. The solution pH (A) was the most important influencing factor for removal of both the ions. The main effects of A-E on the removal of Cu(II) were positive. For Cr(VI) adsorption, the main effects of A and D were negative, while B, C, and E were observed to have positive effects. The maximum adsorption capacities for Cu(II) and Cr(VI) ions over NMGO were 146.365 and 72.978 mg/g, respectively, under optimal process conditions.

  16. In situ field application of electrokinetic remediation for an As-, Cu-, and Pb-contaminated rice paddy site using parallel electrode configuration.

    PubMed

    Jeon, Eun-Ki; Jung, Ji-Min; Ryu, So-Ri; Baek, Kitae

    2015-10-01

    The applicability of an in situ electrokinetic process with a parallel electrode configuration was evaluated to treat an As-, Cu-, and Pb-contaminated paddy rice field in full scale (width, 17 m; length, 12.2 m; depth, 1.6 m). A constant voltage of 100 V was supplied and electrodes were spaced 2 m apart. Most As, Cu, and Pb were bound to Fe oxide and the major clay minerals in the test site were kaolinite and muscovite. The electrokinetic system removed 48.7, 48.9, and 54.5 % of As, Cu, and Pb, respectively, from the soil during 24 weeks. The removal of metals in the first layer (0-0.4 m) was higher than that in the other three layers because it was not influenced by groundwater fluctuation. Fractionation analysis showed that As and Pb bound to amorphous Fe and Al oxides decreased mainly, and energy consumption was 1.2 kWh/m(3). The standard deviation of metal concentration in the soil was much higher compared to the hexagonal electrode configuration because of a smaller electrical active area; however, the electrode configuration removed similar amounts of metals compared to the hexagonal system. From these results, it was concluded that the electrokinetic process could be effective at remediating As-, Cu-, and Pb-contaminated paddy rice field in situ.

  17. Timing of porphyry (Cu-Mo) and base metal (Zn-Pb-Ag-Cu) mineralisation in a magmatic-hydrothermal system—Morococha district, Peru

    NASA Astrophysics Data System (ADS)

    Catchpole, Honza; Kouzmanov, Kalin; Bendezú, Aldo; Ovtcharova, Maria; Spikings, Richard; Stein, Holly; Fontboté, Lluís

    2015-12-01

    The Morococha district in central Peru is characterised by economically important Cordilleran polymetallic (Zn-Pb-Ag-Cu) vein and replacement bodies and the large Toromocho porphyry Cu-Mo deposit in its centre. U-Pb, Re-Os, and 40Ar/39Ar geochronology data for various porphyry-related hydrothermal mineralisation styles record a 3.5-Ma multi-stage history of magmatic-hydrothermal activity in the district. In the late Miocene, three individual magmatic-hydrothermal centres were active: the Codiciada, Toromocho, and Ticlio centres, each separated in time and space. The Codiciada centre is the oldest magmatic-hydrothermal system in the district and consists of a composite porphyry stock associated with anhydrous skarn and quartz-molybdenite veins. The hydrothermal events are recorded by a titanite U-Pb age at 9.3 ± 0.2 Ma and a molybdenite Re-Os age at 9.26 ± 0.03 Ma. These ages are indistinguishable from zircon U-Pb ages for porphyry intrusions of the composite stock and indicate a time span of 0.2 Ma for magmatic-hydrothermal activity. The small Ticlio magmatic-hydrothermal centre in the west of the district has a maximum duration of 0.3 Ma, ranging from porphyry emplacement to porphyry mineralisation at 8.04 ± 0.14 Ma (40Ar/39Ar muscovite cooling age). The Toromocho magmatic-hydrothermal centre has a minimum of five recorded porphyry intrusions that span a total of 1.3 Ma and is responsible for the formation of the giant Toromocho Cu-Mo deposit. At least two hydrothermal pulses are identified. Post-dating a first pulse of molybdenite mineralisation, wide-spread hydrous skarn covers an area of over 6 km2 and is recorded by five 40Ar/39Ar cooling ages at 7.2-6.8 Ma. These ages mark the end of the slowly cooling and long-lived Toromocho magmatic-hydrothermal centre soon after last magmatic activity at 7.26 ± 0.02 Ma. District-wide (50 km2) Cordilleran base metal vein and replacement bodies post-date the youngest recorded porphyry mineralisation event at Toromocho

  18. A -cation control of magnetoelectric quadrupole order in A (TiO)Cu 4(PO4)4(A =Ba ,Sr, and Pb)

    NASA Astrophysics Data System (ADS)

    Kimura, K.; Toyoda, M.; Babkevich, P.; Yamauchi, K.; Sera, M.; Nassif, V.; Rønnow, H. M.; Kimura, T.

    2018-04-01

    Ferroic magnetic quadrupole order exhibiting macroscopic magnetoelectric activity is discovered in the novel compound A (TiO ) Cu4(PO4)4 with A = Pb, which is in contrast with antiferroic quadrupole order observed in the isostructural compounds with A = Ba and Sr. Unlike the famous lone-pair stereochemical activity which often triggers ferroelectricity as in PbTiO3, the Pb2 + cation in Pb (TiO ) Cu4(PO4)4 is stereochemically inactive but dramatically alters specific magnetic interactions and consequently switches the quadrupole order from antiferroic to ferroic. Our first-principles calculations uncover a positive correlation between the degree of A -O bond covalency and a stability of the ferroic quadrupole order.

  19. Counter-current acid leaching process for the removal of Cu, Pb, Sb and Zn from shooting range soil.

    PubMed

    Lafond, Stéphanie; Blais, Jean-François; Mercier, Guy; Martel, Richard

    2013-01-01

    This research explores the performance of a counter-current leaching process (CCLP) for Cu, Pb, Sb and Zn extraction in a polluted shooting range soil. The initial metal concentrations in the soil were 1790 mg Cu/kg, 48,300 mg Pb/kg, 840 mg Sb/kg and 368 mg Zn/kg. The leaching process consisted of five one-hour acid leaching steps, which used 1 M H2SO4 + 4 M NaCl (20 degrees C, soil suspension = 100 g/L) followed by two water rinsing steps. Ten counter-current remediation cycles were completed and the average metal removal yields were 98.3 +/- 0.3% of Cu, 99.5 +/- 0.1% of Pb, 75.5 +/- 5.1% of Sb and 29.1 +/- 27.2% of Zn. The quality of metal leaching did not deteriorate throughout the 10 remediation cycles completed for this study. The CCLP reduced acid and salt use by approximately 68% and reduced water consumption by approximately 60%, exceeding reductions achieved by a standard acid leaching process.

  20. Application of EDTA-functionalized bamboo activated carbon (BAC) for Pb(II) and Cu(II) removal from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lv, Dan; Liu, Yu; Zhou, Jiasheng; Yang, Kunlun; Lou, Zimo; Baig, Shams Ali; Xu, Xinhua

    2018-01-01

    In this study, a novel bamboo activated carbon (BAC) with ethylene diamine tetraacetic acid (EDTA) functionality was prepared by direct grafting in the presence of tetraethyl orthosilicate (TEOS) as a crosslinking agent. The BAC@SiO2-EDTA was characterized by SEM, TEM, TGA, FTIR, XPS and its adsorption property for removal of Pb(II) and Cu(II) under various experimental conditions was also investigated. The characterization results reflected that EDTA was successfully assembled on the surface of the BAC and average pore size increased from 4.10 to 4.83 nm as BAC grafted with EDTA. Adsorption data fitted very well in Langmuir isotherm model and pseudo-second-order kinetic model. As compared with the raw BAC, the maximum adsorption capacities of BAC@SiO2-EDTA for the Pb(II) and Cu(II) increased from 45.45 to 123.45 mg g-1 and from 6.85 to 42.19 mg g-1, since the existence of EDTA on modified BAC promoted the formation of chemical complex. The removal of heavy metal ions mainly depended on the complexation with EDTA and the electrostatic attractions with negatively charged surface of BAC@SiO2-EDTA. The adsorption of Pb(II)/Cu(II) on the BAC@SiO2-EDTA was pH dependent and pH 5-6 was considered an optimum. However, lower temperature favored the adsorption and the maximum adsorption was recorded at 20 °C. In addition, BAC@SiO2-EDTA had an excellent reusability with about 40% decline in the adsorption capacity for Pb(II) after fifth reuse. Insignificant influences of co-existing cations and natural organic matter (NOM) were found on the adsorption of Pb(II) and Cu(II). All the results demonstrate that BAC@SiO2-EDTA is a potential adsorbent for metal ions in wastewater.

  1. Pb solubility of the high-temperature superconducting phase Bi2Sr2Ca2Cu3O(10+d)

    NASA Technical Reports Server (NTRS)

    Kaesche, Stefanie; Majewski, Peter; Aldinger, Fritz

    1995-01-01

    For the nominal composition of Bi(2.27-x)Pb(x)Sr2 Ca2 Cu3 O(10+d) lead content was varied from x = 0.05 to 0.45. The compositions were examined between 830 and 890 C which is supposed to be the temperature range over which the so-called 2223 phase (Bi2Sr2Ca2Cu3O(10+d)) is stable. Only compositions between x = 0.18 to 0.36 could be synthesized in a single phase state. For x is greater than 0.36 a lead containing phase with a stoichiometry of Pb4(Sr,Ca)5CuO(d) is formed, for x is less than 0.18 mainly Bi2Sr2CaCu2O(10+d) and cuprates are the equilibrium phases. The temperature range for the 2223 phase was found to be 830 to 890 C but the 2223 phase has extremely varying cation ratios over this temperature range. Former single phase 2223 samples turn to multi phase samples when annealed at slightly higher or lower temperatures. A decrease in the Pb solubility with increasing temperature was found for the 2223 phase.

  2. A century long sedimentary record of anthropogenic lead (Pb), Pb isotopes and other trace metals in Singapore.

    PubMed

    Chen, Mengli; Boyle, Edward A; Switzer, Adam D; Gouramanis, Chris

    2016-06-01

    Reconstructing the history of metal deposition in Singapore lake sediments contributes to understanding the anthropogenic and natural metal deposition in the data-sparse Southeast Asia. To this end, we present a sedimentary record of Pb, Pb isotopes and eleven other metals (Ag, As, Ba, Cd, Co, Cr, Cu, Ni, Tl, U and Zn) from a well-dated sediment core collected near the depocenter of MacRitchie Reservoir in central Singapore. Before the 1900s, the sedimentary Pb concentration was less than 2 mg/kg for both soil and sediment, with a corresponding (206)Pb/(207)Pb of ∼1.20. The Pb concentration increased to 55 mg/kg in the 1990s, and correspondingly the (206)Pb/(207)Pb decreased to less than 1.14. The (206)Pb/(207)Pb in the core top sediment is concordant with the (206)Pb/(207)Pb signal of aerosols in Singapore and other Southeast Asian cities, suggesting that Pb in the reservoir sediment was mainly from atmospheric deposition. Using the Pb concentration in the topmost layer of sediment, the estimated atmospheric Pb flux in Singapore today is ∼1.6 × 10(-2) g/m(2) yr. The concentrations of eleven other metals preserved in the sediment were also determined. A principal component analysis showed that most of the metals exhibit an increasing trend towards 1990s with a local concentration peak in the mid-20(th) century. Copyright © 2016. Published by Elsevier Ltd.

  3. Possible Mesozoic age of Ellenville Zn-Pb-Cu(Ag) deposit, Shawangunk Mountains, New York

    USGS Publications Warehouse

    Friedman, J.D.; Conrad, J.E.; McKee, E.H.; Mutschler, F.E.; Zartman, R.E.

    1994-01-01

    Ore textures, epithermal open-space filling of Permian structures of the Alleghanian orogeny, and largely postorogenic mineralization of the Ellenville, New York, composite Zn-Pb-Cu(Ag) vein system, provide permissive evidence for post-Permian mineralization. Isochron ages determined by 40Ar/39Ar laser-fusion techniques for K-bearing liquid inclusions in main-stage quartz from the Ellenville deposit additionally suggest a Mesozoic time of mineralization, associated with extensional formation of the Newark basin. The best 40Ar/39Ar total-fusion age range is 165 ?? 30 to 193 ?? 35 Ma. The Mesozoic 40Ar/39Ar age agrees with that of many other dated northern Appalachian Zn-Pb-Cu(Ag) deposits with near-matching lead isotope ratios, and adds new evidence of Jurassic tectonism and mineralization as an overprint to Late Paleozoic tectonism at least as far north as Ellenville (lat. 41??43???N). ?? 1994 Springer-Verlag.

  4. Effect of Cr, Ti, V, and Zr Micro-additions on Microstructure and Mechanical Properties of the Al-Si-Cu-Mg Cast Alloy

    NASA Astrophysics Data System (ADS)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2016-05-01

    Uniaxial static and cyclic tests were used to assess the role of Cr, Ti, V, and Zr additions on properties of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in as-cast and T6 heat-treated conditions. The microstructure of the as-cast alloy consisted of α-Al, eutectic Si, and Cu-, Mg-, and Fe-rich phases Al2.1Cu, Al8.5Si2.4Cu, Al5.2CuMg4Si5.1, and Al14Si7.1FeMg3.3. In addition, the micro-sized Cr/Zr/Ti/V-rich phases Al10.7SiTi3.6, Al6.7Si1.2TiZr1.8, Al21.4Si3.4Ti4.7VZr1.8, Al18.5Si7.3Cr2.6V, Al7.9Si8.5Cr6.8V4.1Ti, Al6.3Si23.2FeCr9.2V1.6Ti1.3, Al92.2Si16.7Fe7.6Cr8.3V1.8, and Al8.2Si30.1Fe1.6Cr18.8V3.3Ti2.9Zr were present. During solution treatment, Cu-rich phases were completely dissolved, while the eutectic silicon, Fe-, and Cr/Zr/Ti/V-rich intermetallics experienced only partial dissolution. Micro-additions of Cr, Zr, Ti, and V positively affected the alloy strength. The modified alloy in the T6 temper during uniaxial tensile tests exhibited yield strength of 289 MPa and ultimate tensile strength of 342 MPa, being significantly higher than that for the Al-Si-Cu-Mg base. Besides, the cyclic yield stress of the modified alloy in the T6 state increased by 23 pct over that of the base alloy. The fatigue life of the modified alloy was substantially longer than that of the base alloy tested using the same parameters. The role of Cr, Ti, V, and Zr containing phases in controlling the alloy fracture during static and cyclic loading is discussed.

  5. Determination of Cd, Cr, Hg and Pb in plastics from waste electrical and electronic equipment by inductively coupled plasma mass spectrometry with collision-reaction interface technology.

    PubMed

    Santos, Mirian C; Nóbrega, Joaquim A; Cadore, Solange

    2011-06-15

    A procedure based on the use of a quadrupole inductively coupled plasma-mass spectrometer equipped with a collision-reaction interface (CRI) for control of spectral overlap interferences was developed for simultaneous determination of Cd, Cr, Hg, and Pb in plastics from waste electrical and electronic equipment (WEEE). The injection of H(2) and He (80 and 60 mL min(-1), respectively) into the sampled plasma, colliding and reacting with potentially interfering polyatomic ions, allows interference-free determination of chromium via its isotopes (52)Cr and (53)Cr that are freed from overlap due to the occurrence of (40)Ar(12)C(+), (40)Ar(12)C(1)H(+), (36)S(16)O(+) or (1)H(36)S(16)O(+). Cadmium, Hg and Pb were directly determined via their isotopes (110)Cd, (111)Cd, (112)Cd, (199)Hg, (200)Hg, (201)Hg, (202)Hg, (206)Pb, (207)Pb, and (208)Pb, without using CRI. The CRI can be quickly activated or deactivated before each analyte measurement. Limits of detection for (52)Cr were 0.04 or 0.14 μg L(-1) with He or H(2) injected in CRI. Cadmium and Pb have LODs between 0.02 and 0.08 μg L(-1) and Hg had 0.93-0.98 μg L(-1), without using CRI. Analyte concentrations for samples varied from 16 to 43, 1 to 11, 4 to 12, and 5 to 13 mg kg(-1) for Cr, Cd, Hg and Pb, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Compatibility of an FeCrAl alloy with flowing Pb-Li in a thermal convection loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawel, Steven J.; Unocic, Kinga A.

    A mono-metallic thermal convection loop (TCL) fabricated from alloy APMT (Fe21Cr5Al3Mo) tubing and filled with 0.025 m long tensile specimens of the same alloy was operated continuously for 1000 h with commercially pure Pb-17 at.%Li (Pb-Li) at a peak temperature of 550 ± 1.5 °C and a temperature gradient of ~116 °C. The resulting Pb-Li flow rate was ~0.0067 m/s. A 1050 °C pre-oxidation treatment (to form an external alumina scale) given to most specimens exposed within the TCL decreased total mass loss by a factor of 3–30 compared to adjacent specimens that were not pre-oxidized. However, all specimens exposedmore » above 500 °C lost mass suggesting that the alumina scale was not entirely stable in flowing Pb-Li at these temperatures. Post-exposure room temperature tensile tests indicated that the mechanical properties of APMT were substantially influenced by extended exposures in the range of 435–490 °C, which caused an increase in yield strength (~65%) and a corresponding decrease in ductility associated with α' embrittlement. Specimens annealed in argon at the same temperature exhibited identical changes without exposure to Pb-Li. In conclusion, scanning transmission electron microscopy revealed Cr-clusters within the microstructure in specimens exposed in the low temperature regions (<490 °C) of the TCL, indicating the formation of α' consistent with the mechanism of α' embrittlement.« less

  7. Compatibility of an FeCrAl alloy with flowing Pb-Li in a thermal convection loop

    DOE PAGES

    Pawel, Steven J.; Unocic, Kinga A.

    2017-08-01

    A mono-metallic thermal convection loop (TCL) fabricated from alloy APMT (Fe21Cr5Al3Mo) tubing and filled with 0.025 m long tensile specimens of the same alloy was operated continuously for 1000 h with commercially pure Pb-17 at.%Li (Pb-Li) at a peak temperature of 550 ± 1.5 °C and a temperature gradient of ~116 °C. The resulting Pb-Li flow rate was ~0.0067 m/s. A 1050 °C pre-oxidation treatment (to form an external alumina scale) given to most specimens exposed within the TCL decreased total mass loss by a factor of 3–30 compared to adjacent specimens that were not pre-oxidized. However, all specimens exposedmore » above 500 °C lost mass suggesting that the alumina scale was not entirely stable in flowing Pb-Li at these temperatures. Post-exposure room temperature tensile tests indicated that the mechanical properties of APMT were substantially influenced by extended exposures in the range of 435–490 °C, which caused an increase in yield strength (~65%) and a corresponding decrease in ductility associated with α' embrittlement. Specimens annealed in argon at the same temperature exhibited identical changes without exposure to Pb-Li. In conclusion, scanning transmission electron microscopy revealed Cr-clusters within the microstructure in specimens exposed in the low temperature regions (<490 °C) of the TCL, indicating the formation of α' consistent with the mechanism of α' embrittlement.« less

  8. Metal accumulation strategies in plants spontaneously inhabiting Zn-Pb waste deposits.

    PubMed

    Wójcik, Małgorzata; Sugier, Piotr; Siebielec, Grzegorz

    2014-07-15

    Metal (Zn, Pb, Cd, Cu, Ni, Cr) accumulation in shoots of 38 plant species spontaneously colonizing three Zn-Pb waste deposits in southern Poland was studied in order to find out if the age of the waste (30-130 years) or its type (slag or flotation residues) influence metal content in plants and to identify species potentially suitable for biomonitoring and phytoremediation. The total metal concentrations in the waste upper layers ranged from 7300 to 171,790 mg kg(-1) for Zn, from 1390 to 22,265 mg kg(-1) for Pb, and from 66 to 1,464 mg kg(-1) for Cd, whereas CaCl2-extracted fractions accounted for 0.034-0.11 %, 0.005-0.03 %, and 0.28-0.62 % of total Zn, Pb and Cd concentrations, respectively. The concentrations of Cu, Ni, and Cr in substrates and in plants were low and ranged within the background values. Metal accumulation in plant shoots was poorly correlated with both total and CaCl2-extracted forms of metals in the substrate and was highly variable among species and also specimens of the same species. The highest mean concentrations of Zn, Pb and Cd were found in Anthyllis vulneraria L. (901.5 mg kg(-1)), Echium vulgare L. (116.92 mg kg(-1)), and Hieracium piloselloides Vill. (26.86 mg kg(-1)), respectively. Besides Reseda lutea L., no species appeared to be a good indicator of polymetallic environment pollution based on chemical analysis of shoots; however, metal accumulation in the whole plant communities of a particular contaminated area might be an accurate tool for assessment of metal transfer to vegetation irrespective of the type or age of the waste. All the species studied developed a metal exclusion strategy, thus exhibiting potential for phytostabilization of metalliferous wastelands. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of Cr, Cd and Pb in plastics.

    PubMed

    Li, Po-Chien; Jiang, Shiuh-Jen

    2006-07-01

    Ultrasonic slurry sampling electrothermal vaporization dynamic reaction cell inductively coupled plasma mass spectrometry (USS-ETV-DRC-ICP-MS) for the determination of Cr, Cd and Pb in several plastic samples, using NH4NO3 as the modifier, is described. The influences of the instrumental operating conditions and the slurry preparation technique on the ion signals are investigated. A reduction in the intensity of the background at signals corresponding to chromium masses (arising from matrix elements) was achieved by using NH3 as the reaction cell gas in the DRC. The method was applied to determine Cr, Cd and Pb in two polystyrene (PS) samples and a polyvinyl chloride (PVC) sample using two different calibration methods, namely standard addition and isotope dilution. The results were in good agreement with those for digested samples analyzed by ultrasonic nebulization DRC-ICP-MS. The precision between sample replicates was better than 17% with the USS-ETV-DRC-ICP-MS method. The method detection limits, estimated from standard addition curves, were about 6-9, 1-2 and 8-11 ng g(-1) for Cr, Cd and Pb, respectively, in the original plastic samples.

  10. Phytoextraction of Pb, Cr, Ni, and Zn using the aquatic plant Limnobium laevigatum and its potential use in the treatment of wastewater.

    PubMed

    Arán, Daniela Silvina; Harguinteguy, Carlos Alfredo; Fernandez-Cirelli, Alicia; Pignata, María Luisa

    2017-08-01

    In order to study the bioaccumulation of Pb, Cr, Ni, and Zn and the stress response, the floating aquatic plant Limnobium laevigatum was exposed to increasing concentrations of a mixture of these metals for 28 days, and its potential use in the treatment of wastewater was evaluated. The metal concentrations of the treatment 1 (T1) were Pb 1 μg L -1 , Cr 4 μg L -1 , Ni 25 μg L -1 , and Zn 30 μg L -1 ; of treatment 2 (T2) were Pb 70 μg L -1 , Cr 70 μg L -1 , Ni 70 μg L -1 , and Zn 70 μg L -1 ; and of treatment 3 (T3) were Pb 1000 μg L -1 , Cr 1000 μg L -1 , Ni 500 μg L -1 , and Zn 100 μg L -1 , and there was also a control group (without added metal). The accumulation of Pb, Cr, Ni, and Zn in roots was higher than in leaves of L. laevigatum, and the bioconcentration factor revealed that the concentrations of Ni and Zn in the leaf and root exceeded by over a thousand times the concentrations of those in the culture medium (2000 in leaf and 6800 in root for Ni; 3300 in leaf and 11,500 in root for Zn). Thus, this species can be considered as a hyperaccumulator of these metals. In general, the changes observed in the morphological and physiological parameters and the formation of products of lipid peroxidation of membranes during the exposure to moderate concentrations (T2) of the mixture of metals did not cause harmful effects to the survival of the species within the first 14 days of exposure. Taking into account the accumulation capacity and tolerance to heavy metals, L. laevigatum is suitable for phytoremediation in aquatic environments contaminated with moderated concentrations of Cr, Ni, Pb, and Zn in the early stages of exposure.

  11. Assessment of Pb, Cd, Cr and Ag leaching from electronics waste using four extraction methods.

    PubMed

    Keith, Ashley; Keesling, Kara; Fitzwater, Kendra K; Pichtel, John; Houy, Denise

    2008-12-01

    Heavy metals present in electronic components may leach upon disposal and therefore pose significant environmental hazards. The potential leaching of Pb, Cd, Cr and Ag from PC cathode ray tubes, printed circuit boards (PCBs), PC mice, TV remote controls, and mobile phones was assessed. After controlled crushing, each component was extracted using the Toxicity Characteristic Leaching Procedure (TCLP), EPA Method 1312 (SPLP), NEN 7371 (Dutch Environmental Agency), and DIN S4 (Germany). The TCLP consistently leached the greatest amounts of Pb from all components. The SPLP, NEN 7371 and DIN S4 extracted relatively small amounts of metals compared with the TCLP and were not considered effective as leaching tests for e-waste. The smallest size fraction (< 2 mm) of CRT glass and PCBs leached significantly (p < 0.05) highest Pb via the TCLP. A modified TCLP removed 50.9% more extractable Pb compared with the conventional procedure.

  12. Thermophysical properties of Cu-In-Sn liquid Pb-free alloys: viscosity and surface tension

    NASA Astrophysics Data System (ADS)

    Dogan, Ali; Arslan, Hüseyin

    2018-01-01

    The viscosity of a few Cu-In-Sn liquid alloys has been investigated by a number of geometric (Muggianu, Kohler, Toop) and physical thermodynamic models (Kozlov-Romanov-Petrov, Budai-Benko-Kaptay, Schick et al.) and GSM for the cross section (z/y = 1/3) in Pb-free liquid alloy Cux-Iny-Snz at 1073 K. Moreover, the surface tensions of the same liquid alloys have been investigated by a number of geometric models and the Butler model for the cross section Cux-Iny-Snz (z/(y + z) = 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1) at the same temperature. The best agreement of the surface tensions was obtained in the Kohler model for xCu = 10 at % and the Butler model for xCu = 20 at % and xCu = 30 at.%, respectively. The best agreement among chosen geometric and physical models and experiment for these selected sections Cu80In15Sn5, Cu75In15Sn10, Cu55In7Sn38, Cu33In50Sn17 and Cu26In55Sn19 at 1073 K was obtained for the Budai-Benkö-Kaptay model.

  13. Cu-Cr-Nb-Zr Alloy for Rocket Engines and Other High-Heat- Flux Applications

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2013-01-01

    Rocket-engine main combustion chamber liners are used to contain the burning of fuel and oxidizer and provide a stream of high-velocity gas for propulsion. The liners in engines such as the Space Shuttle Main Engine are regeneratively cooled by flowing fuel, e.g., cryogenic hydrogen, through cooling channels in the back side of the liner. The heat gained by the liner from the flame and compression of the gas in the throat section is transferred to the fuel by the liner. As a result, the liner must either have a very high thermal conductivity or a very high operating temperature. In addition to the large heat flux (>10 MW/sq m), the liners experience a very large thermal gradient, typically more than 500 C over 1 mm. The gradient produces thermally induced stresses and strains that cause low cycle fatigue (LCF). Typically, a liner will experience a strain differential in excess of 1% between the cooling channel and the hot wall. Each time the engine is fired, the liner undergoes an LCF cycle. The number of cycles can be as few as one for an expendable booster engine, to as many as several thousand for a reusable launch vehicle or reaction control system. Finally, the liners undergo creep and a form of mechanical degradation called thermal ratcheting that results in the bowing out of the cooling channel into the combustion chamber, and eventual failure of the liner. GRCop-84, a Cu-Cr-Nb alloy, is generally recognized as the best liner material available at the time of this reporting. The alloy consists of 14% Cr2Nb precipitates in a pure copper matrix. Through experimental work, it has been established that the Zr will not participate in the formation of Laves phase precipitates with Cr and Nb, but will instead react with Cu to form the desired Cu-Zr compounds. It is believed that significant improvements in the mechanical properties of GRCop-84 will be realized by adding Zr. The innovation is a Cu-Cr-Nb-Zr alloy covering the composition range of 0.8 to 8.1 weight

  14. Contents and leachability of heavy metals (Pb, Cu, Sb, Zn, As) in soil at the Pantex firing range, Amarillo, Texas.

    PubMed

    Basunia, S; Landsberger, S

    2001-10-01

    Pantex firing range soil samples were analyzed for Pb, Cu, Sb, Zn, and As. One hundred ninety-seven samples were collected from the firing range and vicinity area. There was a lack of knowledge about the distribution of Pb in the firing range, so a random sampling with proportional allocation was chosen. Concentration levels of Pb and Cu in the firing range were found to be in the range of 11-4675 and 13-359 mg/kg, respectively. Concentration levels of Sb were found to be in the range of 1-517 mg/kg. However, the Zn and As concentration levels were close to average soil background levels. The Sn concentration level was expected to be higher in the Pantex firing range soil samples. However, it was found to be below the neutron activation analysis (NAA) detection limit of 75 mg/kg. Enrichment factor analysis showed that Pb and Sb were highly enriched in the firing range with average magnitudes of 55 and 90, respectively. Cu was enriched approximately 6 times more than the usual soil concentration levels. Toxicity characteristic leaching procedure (TCLP) was carried out on size-fractionated homogeneous soil samples. The concentration levels of Pb in leachates were found to be approximately 12 times higher than the U.S. Environmental Protection Agency (EPA) regulatory concentration level of 5 mg/L. Sequential extraction (SE) was also performed to characterize Pb and other trace elements into five different fractions. The highest Pb fraction was found with organic matter in the soil.

  15. Role of metal mixtures (Ca, Cu and Pb) on Cd bioaccumulation and phytochelatin production by Chlamydomonas reinhardtii.

    PubMed

    Abboud, Pauline; Wilkinson, Kevin J

    2013-08-01

    The goal of the study was to determine whether metal uptake and biological effects could be predicted by free ion concentrations when organisms were exposed to Cd and a second metal. Bioaccumulation and algal phytochelatin (PC) concentrations were determined for Chlamydomonas reinhardtii following a 6-h exposure. Bioaccumulation results, after six hours of exposure, showed that Cd uptake decreased in the presence of relatively high concentrations of Ca, Cu and Pb, however, Cd bioaccumulation increased in the presence of ca. equimolar concentrations of Cu. A good correlation was observed between the production of PCs and the amount of metals bioaccumulated for the binary mixtures of Cd-Pb and Cd-Cu, but not the Cd-Ca mixture. Overall, the results suggested that, in the case of mixtures, bioaccumulated metal rather than free ion concentrations would be a better predictor of biological effect. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Reversion phenomena of Cu-Cr alloys

    NASA Technical Reports Server (NTRS)

    Nishikawa, S.; Nagata, K.; Kobayashi, S.

    1985-01-01

    Cu-Cr alloys which were given various aging and reversion treatments were investigated in terms of electrical resistivity and hardness. Transmission electron microscopy was one technique employed. Some results obtained are as follows: the increment of electrical resistivity after the reversion at a constant temperature decreases as the aging temperature rises. In a constant aging condition, the increment of electrical resistivity after the reversion increases, and the time required for a maximum reversion becomes shorter as the reversion temperature rises. The reversion phenomena can be repeated, but its amount decreases rapidly by repetition. At first, the amount of reversion increases with aging time and reaches its maximum, and then tends to decrease again. Hardness changes by the reversion are very small, but the hardness tends to soften slightly. Any changes in transmission electron micrographs by the reversion treatment cannot be detected.

  17. Heavy metals in water, sediments, plants and fish of Kali Nadi U. P. (India)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajmal, M.; Uddin, R.; Khan, A.U.

    1988-01-01

    The distribution of heavy metals viz., Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn in the water, sediments, plants and fish samples collected from the Kali Nadi (India) have been determined. The studies have shown that there was considerable variation in the concentration of heavy metals from one sampling station to the other which may be due to the variation in the quality of industrial and sewage wastes being added to the river at different places. The orders of the concentration of heavy metals in water, sediments, plants (Eicchornia crassipes) and fish (Heteropnuestes fossilis) were Fe > Znmore » > Cu > Mn > Cr > Ni > Pb > Co > Cd; Fe > Zn > Mn > Ni > Cr > Co > Cu > Pb > Cd; Fe > Mn > Zn > Cu > Ni > Co > Pb > Cr > Cd and Fe > Zn > Mn > Ni > Pb >Co > Cr > Cu > Cd, respectively.« less

  18. Ultratrace Determination of Cr(VI) and Pb(II) by Microsample Injection System Flame Atomic Spectroscopy in Drinking Water and Treated and Untreated Industrial Effluents

    PubMed Central

    Baig, Jameel Ahmed; Kazi, Tasneem Gul; Elci, Latif; Afridi, Hassan Imran; Khan, Muhammad Irfan; Naseer, Hafiz Muhammad

    2013-01-01

    Simple and robust analytical procedures were developed for hexavalent chromium (Cr(VI)) and lead (Pb(II)) by dispersive liquid-liquid microextraction (DLLME) using microsample injection system coupled with flame atomic absorption spectrophotometry (MIS-FAAS). For the current study, ammonium pyrrolidine dithiocarbamate (APDC), carbon tetrachloride, and ethanol were used as chelating agent, extraction solvent, and disperser solvent, respectively. The effective variables of developed method have been optimized and studied in detail. The limit of detection of Cr(VI) and Pb(II) were 0.037 and 0.054 µg/L, respectively. The enrichment factors in both cases were 400 with 40 mL of initial volumes. The relative standard deviations (RSDs, n = 6) were <4%. The applicability and the accuracy of DLLME were estimated by the analysis of Cr(VI) and Pb(II) in industrial effluent wastewater by standard addition method (recoveries >96%). The proposed method was successfully applied to the determination of Cr(VI) and Pb(II) at ultratrace levels in natural drinking water and industrial effluents wastewater of Denizli. Moreover, the proposed method was compared with the literature reported method. PMID:24163779

  19. Valorization of a treated soil via amendments: fractionation and oral bioaccessibility of Cu, Ni, Pb, and Zn.

    PubMed

    Zagury, Gerald J; Rincon Bello, Jhony A; Guney, Mert

    2016-04-01

    The present study aims to transform a treated soil (TS) into a more desirable resource by modifying physico-chemical properties via amendments while reducing toxic metals' mobility and oral bioaccessibility. A hydrocarbon-contaminated soil submitted to treatment (TS) but still containing elevated concentrations of Cu, Ni, Pb, and Zn has been amended with compost, sand, and Al2(SO4)3 to render it usable for horticulture. Characterization and sequential extraction were performed for TS and four amended mixtures (AM1-4). P and K availability and metal bioaccessibility were investigated in TS and AM2. Amendment improved soil properties for all mixtures and yielded a usable product (AM2 20 % TS, 49 % compost, 30 % sand, 1 % Al2(SO4)3) satisfying regulatory requirements except for Pb content. In particular, AM2 had improved organic matter (OM) and cation exchange capacity (CEC), highly increased P and K availability, and reduced total metal concentrations. Furthermore, amendment decreased metal mobile fraction likely to be plant-available (in mg kg(-1), assumed as soluble/exchangeable + carbonates fractions). For AM2, estimated Pb bioavailability decreased from 1.50 × 10(3) mg kg(-1) (TS) to 238 mg kg(-1) (52.4 % (TS) to 34.2 %). Bioaccessible concentrations of Cu, Ni, and Zn (mg kg(-1)) were lower in AM2 than in TS, but there was no significant decrease for Pb. The results suggest that amendment improved soil by modifying its chemistry, resulting in lower metal mobile fraction (in %, for Cu and Zn) and bioaccessibility (in %, for Cu only). Amending soils having residual metal contamination can be an efficient valorization method, indicating potential for reducing treatment cost and environmental burden by rendering disposal/additional treatment unnecessary. Further studies including plant bioavailability are recommended to confirm results.

  20. Selective removals of heavy metals (Pb(2+), Cu(2+), and Cd(2+)) from wastewater by gelation with alginate for effective metal recovery.

    PubMed

    Wang, Fei; Lu, Xingwen; Li, Xiao-yan

    2016-05-05

    A novel method that uses the aqueous sodium alginate solution for direct gelation with metal ions is developed for effective removal and recovery of heavy metals from industrial wastewater. The experimental study was conducted on Pb(2+), Cu(2+), and Cd(2+) as the model heavy metals. The results show that gels can be formed rapidly between the metals and alginate in less than 10 min and the gelation rates fit well with the pseudo second-order kinetic model. The optimum dosing ratio of alginate to the metal ions was found to be between 2:1 and 3:1 for removing Pb(2+) and around 4:1 for removing Cu(2+) and Cd(2+) from wastewater, and the metal removal efficiency by gelation increased as the solution pH increased. Alginate exhibited a higher gelation affinity toward Pb(2+) than Cu(2+) and Cd(2+), which allowed a selective removal of Pb(2+) from the wastewater in the presence of Cu(2+) and Cd(2+) ions. Chemical analysis of the gels suggests that the gelation mainly occurred between the metal ions and the -COO(-) and -OH groups on alginate. By simple calcination of the metal-laden gels at 700 °C for 1 h, the heavy metals can be well recovered as valuable resources. The metals obtained after the thermal treatment are in the form of PbO, CuO, and CdO nanopowders with crystal sizes of around 150, 50, and 100 nm, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Electronic, Magnetic, and Redox Properties of [MFe(3)S(4)] Clusters (M = Cd, Cu, Cr) in Pyrococcus furiosus Ferredoxin.

    PubMed

    Staples, Christopher R.; Dhawan, Ish K.; Finnegan, Michael G.; Dwinell, Derek A.; Zhou, Zhi Hao; Huang, Heshu; Verhagen, Marc F. J. M.; Adams, Michael W. W.; Johnson, Michael K.

    1997-12-03

    The ground- and excited-state properties of heterometallic [CuFe(3)S(4)](2+,+), [CdFe(3)S(4)](2+,+), and [CrFe(3)S(4)](2+,+) cubane clusters assembled in Pyrococcus furiosus ferredoxin have been investigated by the combination of EPR and variable-temperature/variable-field magnetic circular dichroism (MCD) studies. The results indicate Cd(2+) incorporation into [Fe(3)S(4)](0,-) cluster fragments to yield S = 2 [CdFe(3)S(4)](2+) and S = (5)/(2) [CdFe(3)S(4)](+) clusters and Cu(+) incorporation into [Fe(3)S(4)](+,0) cluster fragments to yield S = (1)/(2) [CuFe(3)S(4)](2+) and S = 2 [CuFe(3)S(4)](+) clusters. This is the first report of the preparation of cubane type [CrFe(3)S(4)](2+,+) clusters, and the combination of EPR and MCD results indicates S = 0 and S = (3)/(2) ground states for the oxidized and reduced forms, respectively. Midpoint potentials for the [CdFe(3)S(4)](2+,+), [CrFe(3)S(4)](2+,+), and [CuFe(3)S(4)](2+,+) couples, E(m) = -470 +/- 15, -440 +/- 10, and +190 +/- 10 mV (vs NHE), respectively, were determined by EPR-monitored redox titrations or direct electrochemistry at a glassy carbon electrode. The trends in redox potential, ground-state spin, and electron delocalization of [MFe(3)S(4)](2+,+) clusters in P. furiosus ferredoxin are discussed as a function of heterometal (M = Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Tl).

  2. SP70-alpha-benzoin oxime chelating resin for preconcentration-separation of Pb(II), Cd(II), Co(II) and Cr(III) in environmental samples.

    PubMed

    Narin, Ibrahim; Surme, Yavuz; Bercin, Erdogan; Soylak, Mustafa

    2007-06-25

    In the presented work, alpha-benzoin oxime immobilized SP70 chelating resin was synthesized for separation and preconcentration of Pb(II), Cd(II), Co(II) and Cr(III). The optimization procedure for analytical parameters including pH, eluent type, flow rate, etc. was examined in order to gain quantitative recoveries of analyte ions. The effects of foreign ions on the recoveries of studied metal ions were also investigated. The detection limits (3sigma) were found to be 16.0, 4.2, 1.3, 2.4microgL(-1) for Pb, Cd, Co and Cr, respectively. The preconcentration factor was 75 for Pb, 100 for Cd, Co and Cr. The optimized method was validated with certified reference materials and successfully applied to the waters, crops and pharmaceutical samples with good results (recoveries greater than 95%, R.S.D. lower than 10%).

  3. Measurement of the mass attenuation coefficients and electron densities for BiPbSrCaCuO superconductor at different energies

    NASA Astrophysics Data System (ADS)

    Çevik, U.; Baltaş, H.

    2007-03-01

    The mass attenuation coefficients for Bi, Pb, Sr, Ca, Cu metals, Bi2O3, PbO, SrCO3, CaO, CuO compounds and solid-state forms of Bi1.7Pb0.3Sr2Ca2Cu3O10 superconductor were determined at 57.5, 65.2, 77.1, 87.3, 94.6, 122 and 136 keV energies. The samples were irradiated using a 57Co point source emitted 122 and 136 keV γ-ray energies. The X-ray energies were obtained using secondary targets such as Ta, Bi2O3 and (CH3COO)2UO22H2O. The γ- and X-rays were counted by a Si(Li) detector with a resolution of 0.16 keV at 5.9 keV. The effect of absorption edges on electron density, effective atomic numbers and their variation with photon energy in composite superconductor samples was discussed. Obtained values were compared with theoretical values.

  4. Thermoelectric and Transport Properties of Delafossite CuCrO2:Mg Thin Films Prepared by RF Magnetron Sputtering

    PubMed Central

    Sinnarasa, Inthuga; Thimont, Yohann; Presmanes, Lionel; Barnabé, Antoine; Tailhades, Philippe

    2017-01-01

    P-type Mg doped CuCrO2 thin films have been deposited on fused silica substrates by Radio-Frequency (RF) magnetron sputtering. The as-deposited CuCrO2:Mg thin films have been annealed at different temperatures (from 450 to 650 °C) under primary vacuum to obtain the delafossite phase. The annealed samples exhibit 3R delafossite structure. Electrical conductivity σ and Seebeck coefficient S of all annealed films have been measured from 40 to 220 °C. The optimized properties have been obtained for CuCrO2:Mg thin film annealed at 550 °C. At a measurement temperature of 40 °C, this sample exhibited the highest electrical conductivity of 0.60 S·cm−1 with a Seebeck coefficient of +329 µV·K−1. The calculated power factor (PF = σS²) was 6 µW·m−1·K−2 at 40 °C and due to the constant Seebeck coefficient and the increasing electrical conductivity with measurement temperature, it reached 38 µW·m−1·K−2 at 220 °C. Moreover, according to measurement of the Seebeck coefficient and electrical conductivity in temperature, we confirmed that CuCrO2:Mg exhibits hopping conduction and degenerates semiconductor behavior. Carrier concentration, Fermi level, and hole effective mass have been discussed. PMID:28654011

  5. [Heavy metal concentration in Nanjing urban soils and their affecting factors].

    PubMed

    Lu, Ying; Gong, Zitong; Zhang, Ganlin; Zhang, Bo

    2004-01-01

    The concentration and source of heavy metals in Nanjing urban soils and their relationships with soil properties were studied. The results indicated that the soils in Nanjing urban were not obviously polluted by Fe, Ni, Co and V, but polluted by Mn, Cr, Cu, Zn, and Pb to a certain extent. The heavy metals were irregularly distributed in soil profiles. Fe, Ni, Co, and V were originated from soil materials, but Cu, Zn, Pb, and Cr were anthropogenic input. Probably, Mn had different origins in different soils. There were positive correlations among Fe, Cr, Ni, Co, and V concentration, and among Cu, Zn, Pb, and Cr concentration. The Fe, Co, V, and Ni concentration were positively correlated with soil clay content and CEC, and the Cu, Zn and Pb concentration were negatively correlated with clay content. There were positive correlations between Cu, Zn, Pb and Cr concentration and organic C content, and between Pb concentration and soil pH.

  6. Simulation of cathode spot crater formation and development on CuCr alloy in vacuum arc

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Zhang, Xiao; Wang, Yuan; Yang, Ze; Jia, Shenli

    2018-04-01

    The two-dimensional (2D) rotary axisymmetric model is used to describe the formation and development of a cathode spot on a copper-chromium alloy (CuCr) in a vacuum arc. The model includes hydrodynamic equations and the heat transfer equation. Parameters used in this model come from experiments and other researchers' work. The influence of parameters is analyzed, and the simulation results are compared with pure metal simulation results. In simulation, the depth of the cathode crater is from 0.5 μm to 1.1 μm, the radius of the cathode crater is from 1.6 μm to 2.6 μm, the maximum velocity of the droplet is from 200 m/s to 600 m/s, and the maximum temperature is from 3500 K to 5000 K which is located in the area with a radius of 0.5-1.5 μm. The simulation results show that a smooth cathode surface is advantageous for reducing ablation, the ablation on the CuCr alloy is smaller than that on the pure metal cathode electrode, and the cathode spot appears on the chromium grain only on CuCr. The simulation results are in good agreement with the experiment.

  7. Mechanical characterization and modeling of brazed tungsten and Cu-Cr-Zr alloy using stress relief interlayers

    NASA Astrophysics Data System (ADS)

    Qu, Dandan; Zhou, Zhangjian; Yum, Youngjin; Aktaa, Jarir

    2014-12-01

    A rapidly solidified foil-type Ti-Zr based amorphous filler with a melting temperature of 850 °C was used to braze tungsten to Cu-Cr-Zr alloy for water cooled divertors and plasma facing components application. Brazed joints of dissimilar materials suffer from a mismatch in coefficients of thermal expansion. In order to release the residual stress caused by the mismatch, brazed joints of tungsten and Cu-Cr-Zr alloy using different interlayers were studied. The shear strength tests of brazed W/Cu joints show that the average strength of the joint with a W70Cu30 composite plate interlayer reached 119.8 MPa, and the average strength of the joint with oxygen free high conductivity copper (OFHC Cu)/Mo multi-interlayers reached 140.8 MPa, while the joint without interlayer was only 16.6 MPa. Finite element method (FEM) has been performed to investigate the stress distribution and effect of stress relief interlayers. FEM results show that the maximum von Mises stress occurs in the tungsten/filler interface and that the filler suffers the peak residual stresses and becomes the weakest zone. And the use of OFHC Cu/Mo multi-interlayers can reduce the residual stress significantly, which agrees with the mechanical experiment data.

  8. Processing Bi-Pb-Sr-Ca-Cu-O superconductors from amorphous state

    NASA Technical Reports Server (NTRS)

    Chiang, C. K.; Wong-Ng, W.; Cook, L. P.; Freiman, S. W.; Hwang, N. M.; Vaudin, M.; Hill, M. D.; Shull, R. D.; Shapiro, A. J.; Swartzendruber, L. J.

    1991-01-01

    The bismuth based high T sub c superconductors can be processed via an amorphous Bi-Pb-Sr-Ca-Cu oxide. The amorphous oxides were prepared by melting the constituent powders in an alumina crucible at 1200 C in air followed by pouring the liquid onto an aluminum plate, and rapidly pressing with a second plate. In the amorphous state, no crystalline phase was identified in the powder x ray diffraction pattern of the quenched materials. After heat treatment at high temperature the amorphous materials crystallized into a glass ceramic containing a large fraction of the Bi2Sr2Ca2Cu3O(x) phase T sub c = 110 K. The processing method, crystallization, and results of dc electrical resistivity and ac magnetic susceptibility measurements are discussed.

  9. Relation of pH and other soil variables to concentrations of Pb, Cu, Zn, Cd, and Se in earthworms

    USGS Publications Warehouse

    Beyer, W.N.; Hensler, G.L.; Moore, J.

    1987-01-01

    Various soil treatments (clay, composted peat, superphosphate, sulfur, calcium carbonate, calcium chloride, zinc chloride, selenous acid) were added to experimental field plots to test the effect of different soil variables on the concentrations of 5 elements in earthworms (Pb, Cu, Zn, Cd, Se). Concentrations of the 5 elements were related to 9 soil variables (soil Pb, soil Cu, soil Zn, pH, organic matter, P, K, Mg, and Ca) with linear multiple regression. Lead concentrations in earthworms were positively correlated with soil Pb and soil organic matter, and negatively correlated with soil pH and soil Mg, with an R2 of 64%. Se concentrations were higher in earthworms from plots amended with Se, and Zn concentrations were higher in earthworms from plots amended with Zn. However, none of the other soil variables had important effects on the concentrations of Cu, Zn, Cd and Se in earthworms. Although some significant statistical relations were demonstrated, the values of r2 of all relations (> 20%) were so low that they had little predictive value.

  10. Influences of traffic on Pb, Cu and Zn concentrations in roadside soils of an urban park in Dublin, Ireland.

    PubMed

    Dao, Ligang; Morrison, Liam; Zhang, Hongxuan; Zhang, Chaosheng

    2014-06-01

    Soils in the vicinity of roads are recipients of contaminants from traffic emissions. In order to obtain a better understanding of the impacts of traffic on soils, a total of 225 surface soil samples were collected from an urban park (Phoenix Park, Dublin, Ireland) in a grid system. Metal (Pb, Cu and Zn) concentrations were determined using a portable X-ray fluorescence analyzer. Strong spatial variations for the concentrations of Pb, Cu and Zn were observed. The spatial distribution maps created using geographical information system techniques revealed elevated metal concentrations close to the main traffic route in the park. The relationships between the accumulation of Pb, Cu and Zn in the roadside soils and the distance from the road were well fitted with an exponential model. Elevated metal concentrations from traffic pollution extended to a distance of approximately 40 m from the roadside. The results of this study provide useful information for the management of urban parks particularly in relation to policies aimed at reducing the impact of traffic related pollution on soils.

  11. Adsorption behavior of hydrotalcite-like modified bentonite for Pb2+, Cu2+and methyl orange removal from water

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Peng, Jingdong; Xiao, Huan; Peng, Huanjun; Bu, Lingli; Pan, Ziyu; He, Yan; Chen, Fang; Wang, Xiang; Li, Shiyu

    2017-10-01

    Hydrotalcite-like compound (HTlc) which contained lanthanum cation was prepared successfully. The title compound was characterized by thermogravimetry analysis, element analysis, X-ray fluorescence, Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, as well as specific surface area. The study sought to investigate the adsorption of heavy metals and dye (Pb2+, Cu2+ and methyl orange) in aqueous solution on Ben-HTlc. For optimization of adsorption behavior of the three elements, the pH value, contact time, adsorbate concentration were optimized. As for Pb2+, Cu2+ and methyl orange (MO), the single-component adsorption generally reached the maximum quantity in first 20 min and their respective adsorption capacities were 384.6 mg g-1, 156.3 mg g-1 and 333.3 mg g-1 (pH = 6.5 ± 0.1), the adsorption affinities were in the following sequence Pb2+ > MO > Cu2+. The repeated adsorption and regeneration studies showed the promising application of Ben-HTlc. The breakthrough experimental consequence had shown that the synthesized Ben-HTlc could efficiently remove heavy metals and dye from water, suggesting the potential utilization of Ben-HTlc in pollutants removal.

  12. Porous cellulosic adsorbent for the removal of Cd (II), Pb(II) and Cu(II) ions from aqueous media

    NASA Astrophysics Data System (ADS)

    Barsbay, Murat; Kavaklı, Pınar Akkaş; Tilki, Serhad; Kavaklı, Cengiz; Güven, Olgun

    2018-01-01

    The main objective of this work is to prepare a renewable cellulosic adsorbent by γ-initiated grafting of poly(glycidyl methacrylate) (PGMA) from cellulose substrate and subsequent modification of PGMA with chelating species, iminodiacetic acid (IDA), for Cd (II), Pb(II) and Cu(II) removal from aqueous media. Modification of PGMA grafted cellulose with IDA in aqueous solution under mild conditions has proceeded efficiently to yield a natural-based and effective porous adsorbent with well-defined properties as provided by the controlled polymerization technique, namely RAFT, applied during the radiation-induced graft copolymerization step and with sufficient degree of IDA immobilization as confirmed by XPS, FTIR, contact angle measurements and elemental analysis. In order to examine the Cd (II), Pb(II) and Cu(II) removing performance of the resulting adsorbent, batch experiments were carried out by ICP-MS. The adsorption capacities were determined as 53.4 mg Cd(II)/g polymer, 52.0 mg Pb(II)/g polymer and 69.6 mg Cu(II)/g polymer at initial feed concentration of 250 ppm, showing the promising potential of the natural-based adsorbent to steadily and efficiently chemisorb toxic metal ions.

  13. Distribution of trace metals (Cu, Pb, Ni, Zn) between particulate, colloidal and truly dissolved fractions in wastewater treatment.

    PubMed

    Hargreaves, Andrew J; Vale, Peter; Whelan, Jonathan; Constantino, Carlos; Dotro, Gabriela; Campo, Pablo; Cartmell, Elise

    2017-05-01

    The distribution of Cu, Pb, Ni and Zn between particulate, colloidal and truly dissolved size fractions in wastewater from a trickling filter treatment plant was investigated. Samples of influent, primary effluent, humus effluent, final effluent and sludge holding tank returns were collected and separated into particulate (i.e. > 0.45 μm), colloidal (i.e. 1 kDa to 0.45 μm), and truly dissolved (i.e. < 1 kDa) fractions using membrane filters. In the influent, substantial proportions of Cu (60%), Pb (67%), and Zn (32%) were present in the particulate fraction which was removed in conjunction with suspended particles at the works in subsequent treatment stages. In final effluent, sizeable proportions of Cu (52%), Pb (32%), Ni (44%) and Zn (68%) were found within the colloidal size fraction. Calculated ratios of soluble metal to organic carbon suggest the metal to be adsorbed to or complexed with non-humic macromolecules typically found within the colloidal size range. These findings suggest that technologies capable of removing particles within the colloidal fraction have good potential to enhance metals removal from wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effect of alkaline material on phytotoxicity and bioavailability of Cu, Cd, Pb and Zn in stabilized sewage sludge.

    PubMed

    Zhang, Hongling; Ma, Guofeng; Sun, Lina; Li, Huiying

    2017-07-16

    The availability and phytotoxicity of heavy metals in sewage sludge is the key restrictive factor that limits sludge application. In this study, municipal sewage sludge was stabilized by alkaline slag or coal fly ash, then the leaching characteristic and fraction distributions of Cu, Cd, Pb and Zn were studied, and their effects on seed germination, root length, and plant accumulating were compared. The results showed that mixed sewage sludge with alkaline slag and coal fly ash decreased the percentage of available heavy metals in sewage sludge. The percentage of exchangeable Cu, Pb, Zn and Cd in stabilized sewage sludge (S1-S4) was 1.50-8.67 times lower than that in SS-only treatment. Leachate Cd, Cu, Pb and Zn from stabilized SS was much lower than the limit threshold. The addition of alkaline materials to SS reduced the inhibitory effect on seed germination and root growth. Pearson's correlation analysis indicated that there was a significant negative correlation between pH and available heavy metals, while a significant positive correlation between the percentage of exchangeable fraction of heavy metals, the leaching potential, tissue concentration and accumulation of heavy metal and toxicity for seed germination was observed.

  15. Desorption dynamics of deuterium in CuCrZr alloy

    NASA Astrophysics Data System (ADS)

    Thi Nguyen, Lan Anh; Lee, Sanghwa; Noh, S. J.; Lee, S. K.; Park, M. C.; Shu, Wataru; Pitcher, Spencer; Torcy, David; Guillermain, David; Kim, Jaeyong

    2017-12-01

    Desorption behavior of deuterium (D2) in CuCrZr alloy was investigated considering sample thickness, loading and baking temperature of deuterium followed by the ITER scopes. Cylindrical specimens of 1, 3, 5 mm thick with 4 mm diameter were exposed to deuterium at a pressure of 25 bar at 120, 240 and 350 °C for 24 h, then baked at 800 °C in a vacuum chamber maintained at a pressure lower than 10-7 Torr. Deuterium desorption characteristics such as desorption rate and amount of deuterium in the sample were estimated by analyzing the desorption peaks monitored with a residual gas analyzer (RGA), and the trapping energy of deuterium was calculated using thermal desorption spectroscopy (TDS). Secondary ion mass spectroscopy (SIMS) results showed that deuterium atoms embedded in the sample at a depth of less than 15 μm and desorbed as low as 400 °C. All absorbed deuterium atoms in the specimen were completely retrieved by dynamic pumping at 800 °C in 15 min. The desorption rate of deuterium per unit area was inversely proportional to the increment of the thickness of the sample, and was proportional to the loading temperature. Based on the assumption that a uniform distribution of interstitial sites for deuterium follows the Femi-Dirac statistics, the result of TDS demonstrated that the CuCrZr alloy has two types of trapping energies, which were estimated to be 62 and 79 kJ/mol.

  16. Continuous flow operation with appropriately adjusting composites in influent for recovery of Cr(VI), Cu(II) and Cd(II) in self-driven MFC-MEC system.

    PubMed

    Li, Ming; Pan, Yuzhen; Huang, Liping; Zhang, Yong; Yang, Jinhui

    2017-03-01

    A self-driven microbial fuel cell (MFC) - microbial electrolysis cell (MEC) system, where electricity generated from MFCs is in situ utilized for powering MECs, has been previously reported for recovering Cr(VI), Cu(II) and Cd(II) with individual metals fed in different units of the system in batch operation. Here it was advanced with treating synthetic mixed metals' solution at appropriately adjusting composites in fed-batch and continuous flow operations for complete separation of Cr(VI), Cu(II) and Cd(II) from each other. Under an optimal condition of hydraulic residence time of 4 h, matching of two serially connected MFCs with one MEC, and fed with a composite of either 5 mg L -1 Cr(VI), 1 mg L -1 Cu(II) and 5 mg L -1 Cd(II), or 1 mg L -1 Cr(VI), 5 mg L -1 Cu(II) and 5 mg L -1 Cd(II), the self-driven MFC-MEC system can completely and sequentially recover Cu(II), Cr(VI) and Cd(II) from mixed metals. This study provides a true sustainable and zero-energy-consumed approach of using bioelectrochemical systems for completely recovering and separating Cr(VI), Cu(II) and Cd(II) from each other or from wastes or contaminated sites.

  17. Soil heavy metal pollution and risk assessment associated with the Zn-Pb mining region in Yunnan, Southwest China.

    PubMed

    Cheng, Xianfeng; Danek, Tomas; Drozdova, Jarmila; Huang, Qianrui; Qi, Wufu; Zou, Liling; Yang, Shuran; Zhao, Xinliang; Xiang, Yungang

    2018-03-07

    The environmental assessment and identification of sources of heavy metals in Zn-Pb ore deposits are important steps for the effective prevention of subsequent contamination and for the development of corrective measures. The concentrations of eight heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in soils from 40 sampling points around the Jinding Zn-Pb mine in Yunnan, China, were analyzed. An environmental quality assessment of the obtained data was performed using five different contamination and pollution indexes. Statistical analyses were performed to identify the relations among the heavy metals and the pH in soils and possible sources of pollution. The concentrations of As, Cd, Pb, and Zn were extremely high, and 23, 95, 25, and 35% of the samples, respectively, exceeded the heavy metal limits set in the Chinese Environmental Quality Standard for Soils (GB15618-1995, grade III). According to the contamination and pollution indexes, environmental risks in the area are high or extremely high. The highest risk is represented by Cd contamination, the median concentration of which exceeds the GB15618-1995 limit. Based on the combination of statistical analyses and geostatistical mapping, we identified three groups of heavy metals that originate from different sources. The main sources of As, Cd, Pb, Zn, and Cu are mining activities, airborne particulates from smelters, and the weathering of tailings. The main sources of Hg are dust fallout and gaseous emissions from smelters and tailing dams. Cr and Ni originate from lithogenic sources.

  18. Fluctuation conductivity in the superconducting compound Bi1.7Pb0.3Sr2Ca2Cu3Oy

    NASA Astrophysics Data System (ADS)

    Aliev, V. M.; Ragimov, J. A.; Selim-zade, R. I.; Damirova, S. Z.; Tairov, B. A.

    2017-12-01

    A study of how the partial substitution of Bi with Pb impacts the mechanism of excess conductivity in a Bi-Sr-Ca-Cu-O system. It is found that such a substitution leads to an increase in the critical temperature of the Bi1.7Pb0.3Sr2Ca2Cu3Oy(B2) sample, in comparison to Bi2Sr2CaCu2Ox (B1) [Tc (B2) = 100.09 K and Tc (B1) = 90.5 K, respectively]. At the same time, the resistivity ρ of the sample B2 in the normal phase decreases by almost 1.5 times in comparison to B1. The mechanism responsible for the generation of excess conductivity in cuprate HTSCs Bi2Sr2CaCu2Ox and Bi1.7Pb0.3Sr2Ca2Cu3Oy is examined using the local pair model with consideration of the Aslamazov-Larkin theory, near Tc. The temperature T0 of the transition from the 2D fluctuation region to the 3D (i.e., the temperature of the 2D-3D crossover), is also determined. The coherence length ξc(0) along the c axis of fluctuation Cooper pairs is calculated. It is shown that the partial substitution of Bi with Pb in the Bi-Sr-Ca-Cu-O system leads to a decrease in ξc(0) by a factor of 1.3 (4.205 and 3.254 Å, respectively), and that there is a narrowing of both the region of pseudogap existence and the region of superconducting fluctuations near Tc. The temperature dependence of the pseudogap Δ*(T) and the value Δ*(Tc) are determined, and the temperatures Tm, which correspond to the maximum of the pseudogap as a function of temperature in these materials, are estimated. The pseudogap maxima in samples B1 and B2 are found to be 61.06 and 38.18 meV, respectively.

  19. Cyclic Oxidation Behavior of Cold Sprayed CuCrAl-Coated and Uncoated GRCop-84 Substrates for Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Barrett, C.; Karthikeyan, J.; Garlick, R.

    2006-01-01

    A newly developed Cu-23 (wt %) Cr-5%Al (CuCrAl) alloy shown to resist hydridation and oxidation in an as-cast form is currently being considered as a protective coating for GRCop-84, which is an advanced copper alloy containing 8 (at.%) Cr and 4 (at.%) Nb. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique. Cyclic oxidation tests conducted in air on both coated and uncoated substrates between 773 and 1073 K revealed that the coating remained intact and protected the substrate up to 1073 K. No significant weight loss of the coated specimens were observed at 773 and 873 K even after a cumulative cyclic time of 500 h. About a 10 percent weight loss observed at 973 and 1073 K was attributed to the excessive oxidation of the uncoated sides. In contrast, the uncoated substrate lost as much as 80 percent of its original weight under similar test conditions. It is concluded that the cold sprayed CuCrAl coating is suitable for protecting GRCop-84 substrates.

  20. Crystallographic Study of Mixture CeBa1.8Pb0.2Cu3Oy in the Range of 860°C to 940 °C

    NASA Astrophysics Data System (ADS)

    Stergiou, A.; Yilmaz, S.; Stergiou, C.

    2007-04-01

    A powder mixture with chemical formula CeBa1.8Pb0.2Cu3Oy was prepared. The mixture was heated in free atmosphere, at temperatures 860°C to 940°C, for 24 to 72h. The samples were measured by X-Ray powder diffraction with CuKa radiation. Each sample was characterized with the help of the PDF and refined, using the Rietveld's ``Powder Profile Analysis''. The first sample (860°C) was identified with the phases: Ba2CeBiO6, CuO and BaCuO2, while all the remaining samples (870°C-940°C) with the phases Ba2CePbO6, CuO and CeO2. The phases Ba2CeBiO6 and Ba2CePbO6 are the main phases with analogous chemical types, but different symmetry. The phase CuO is common in all the samples, while from the remaining phases the BaCuO2 appears only in the first sample and the CeO2 in all, except the first one. The quantity 0.2 of Pb is distributed in the Ba positions, substituting a part of these. The percentages of phases are about 82%, 10% and 8% for the first sample and for all the remaining about 85%, 8% and 7%, respectively with above serious.

  1. Formation of the 110-K superconducting phase in Pb-doped Bi-Sr-Ca-Cu-O thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kula, W.; Sobolewski, R.; Gorecka, J.

    1991-09-15

    Investigation of the 110-K Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub {ital x}} phase formation in superconducting thin films of Bi-based cuprates is reported. The films were dc magnetron sputtered from single Bi(Pb)-Sr-Ca-Cu-O targets of various stoichiometries, and subsequently annealed in air at high temperatures. The influence of the initial Pb content, annealing conditions, as well as the substrate material on the growth of the 110-K phase was investigated. We found that the films, fully superconducting above 100 K could be reproducibly fabricated on various dielectric substrates from Pb-rich targets by optimizing annealing conditions for each initial Pb/Bi ratio. Heavy Pb dopingmore » considerably accelerated formation of the 110-K phase, reducing the film annealing time to less than 1 h. Films containing, according to the x-ray measurement, more than 90% of the 110-K phase were obtained on MgO substrates, after sputtering from the Bi{sub 2}Pb{sub 2.5}Sr{sub 2}Ca{sub 2.15}Cu{sub 3.3}O{sub {ital x}} target and annealing in air for 1 h at 870 {degree}C. The films were {ital c}-axis oriented, with 4.5-K-wide superconducting transition, and zero resistivity at 106 K. Their critical current density was 2 {times} 10{sup 2} A/cm{sup 2} at 90 K, and above 10{sup 4} A/cm{sup 2} below 60 K. The growth of the 110-K phase on epitaxial substrates, such as CaNdAlO{sub 4} and SrTiO{sub 3}, was considerably deteriorated, and the presence of the 80- and 10-K phases was detected. Nevertheless, the best films deposited on these substrates were fully superconducting at 104 K and exhibited critical current densities above 2 {times} 10{sup 5} A/cm{sup 2} below 60 K{minus}one order of magnitude greater than the films deposited on MgO.« less

  2. Spectrophotometric Determination of Cr(III) and Pb(II) Using Their Complexes with 5,11,17,23-Tetra[(2-ethyl acetoethoxyphenyl)(azo)phenyl]calix[4]arene

    PubMed Central

    Van Tan, Le; Quang Hieu, Tran; Van Cuong, Nguyen

    2015-01-01

    New complexes of 5,11,17,23-tetra[(2-ethyl acetoethoxyphenyl)(azo)phenyl]calix[4]arene (TEAC) with Pb(II) and Cr(III) were prepared in basic solution with a mixture of MeOH and H2O as solvent. The ratio of TEAC and metal ion in complexes was found to be 1 : 1 under investigated condition. The complex formation constants (based on Benesi-Hildebrand method) for TEAC-Pb(II) and TEAC-Cr(III) were 4.03 × 104 and 1.2 × 104, respectively. Additionally, the molar extinction coefficients were 5 × 104 and 1.42 × 104 for TEAC-Pb(II) and TEAC-Cr(III), respectively. The H-Point Standard Addition Method (HPSAM) has been applied for simultaneous determination of complexes formation of Cr(III)/Pb(II) and TEAC with concentration from 2 : 1 to 1 : 20 (w/w). The proposed method was successfully utilized to invest lead and chromium contents in plating wastewater samples. The results for several analyzed samples were found to be in satisfied agreement with those acquired by using the inductively coupled plasma mass spectrometry (ICP-MS) technique. PMID:25984379

  3. Factors affecting the partitioning of Cu, Zn and Pb in boulder coatings and stream sediments in the vicinity of a polymetallic sulfide deposit

    USGS Publications Warehouse

    Filipek, L.H.; Chao, T.T.; Carpenter, R.H.

    1981-01-01

    A sequential extraction scheme is utilized to determine the geochemical partitioning of Cu, Zn and Pb among hydrous Mn- and Fe-oxides, organics and residual crystalline silicates and oxides in the minus-80-mesh ( Fe-oxides > Mn-oxides; Zn, Mn-oxides {reversed tilde equals} organics > Fe-oxides; Pb, Fe-oxides > organics > Mn-oxides. In the sediments, organics are the most efficient scavengers of all three ore metals. These results emphasize the importance of organics as sinks for the ore metals, even in environments with high concentrations of Mn- and Fe-oxides. Of the ore metals, Zn appears to be the most mobile, and is partitioned most strongly into the coatings. However, anomaly contrast for hydromorphic Zn, normalized to the MnFe-oxide or organic content, is similar in sediments and coatings. Cu shows the highest anomaly on the boulder coatings, probably due to precipitation of a secondary Cu mineral. In contrast, detrital Pb in the pan concentrates shows a better anomaly than any hydromorphic Pb component. ?? 1981.

  4. First principles investigation of half-metallicity and spin gapless semiconductor in CH3NH3Cr x Pb1- x I3 mixed perovskites

    NASA Astrophysics Data System (ADS)

    Huang, H. M.; Zhu, Z. W.; Zhang, C. K.; He, Z. D.; Luo, S. J.

    2018-04-01

    The structural, electronic and magnetic properties of organic-inorganic hybrid mixed perovskites CH3NH3Cr x Pb1- x I3 ( x = 0.25, 0.50, 0.75, 1.00) in cubic, tetragonal and orthorhombic phases have been investigated by first-principles calculation. The results indicate that the tetragonal CH3NH3Cr0.75Pb0.25I3 is a spin gapless semiconductor with Curie temperature of 663 K estimated using mean field approximation. All other CH3NH3Cr x Pb1- x I3 mixed perovskites are half-metallic ferromagnets together with 100% spin polarization, and their total magnetic moment are 4.00, 8.00, 12.00 and 16.00 µB per unit cell for x = 0.25, 0.50, 0.75 and 1.00, respectively. The effect of <100>, <110> and <111> orientation of organic cation CH3NH3 + on the electronic properties of CH3NH3Cr0.50Pb0.50I3 was investigated. The results show that the CH3NH3 + in different orientations have a slight effect on the lattice constants, the energy gap in minority-spin states, half-metallic gap, local magnetic moment, and Curie temperature.

  5. Characteristics of Heavy Metals and Pb Isotopic Composition in Sediments Collected from the Tributaries in Three Gorges Reservoir, China

    PubMed Central

    Gao, Bo; Zhou, Huaidong; Huang, Yong; Wang, Yuchun; Gao, Jijun; Liu, Xiaobo

    2014-01-01

    The concentrations, distribution, accumulation, and potential ecological risk of heavy metals (Cr, Cu, Zn, Ni, As, Pb, Cd, and Hg) in sediments from the Three Gorges Reservoir (TGR) tributaries were determined and studied. Pb isotopic compositions in sediments were also measured to effectively identify the potential Pb sources. The results showed that the average concentrations of heavy metals in sediment of TGR tributaries were higher than the local background values of soils and sediments in China. The assessment by Geoaccumulation Index indicated that Cu, Ni, and Hg were at the “slightly polluted” level and Cd was ranked as the “moderately polluted” level in tributary sediments of TGR. The assessment by Potential Ecological Risk Index showed that Hg and Cd were the predominant elements in tributary sediments in TGR. The Pb isotopic ratios in sediments varied from 1.171 to 1.202 for 206Pb/207Pb and from 2.459 to 2.482 for 208Pb/207Pb in TGR. All Pb isotopic ratios in sediments were similar to those from coal combustion, lead ores (the mining activities and smelting process), and cement material, indicating that these anthropogenic inputs may be the main sources for Pb pollution in sediments of TGR tributaries. PMID:24624045

  6. Melting and Vaporization of the 1223 Phase in the System (Tl-Pb-Ba-Sr-Ca-Cu-O)

    PubMed Central

    Cook, L. P.; Wong-Ng, W.; Paranthaman, P.

    1996-01-01

    The melting and vaporization of the 1223 [(Tl,Pb):(Ba,Sr):Ca:Cu] oxide phase in the system (Tl-Pb-Ba-Sr-Ca-Cu-O) have been investigated using a combination of dynamic methods (differential thermal analysis, thermogravimetry, effusion) and post-quenching characterization techniques (powder x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectrometry). Vaporization rates, thermal events, and melt compositions were followed as a function of thallia loss from a 1223 stoichiometry. Melting and vaporization equilibria of the 1223 phase are complex, with as many as seven phases participating simultaneously. At a total pressure of 0.1 MPa the 1223 phase was found to melt completely at (980 ± 5) °C in oxygen, at a thallia partial pressure (pTl2O) of (4.6 ± 0.5) kPa, where the quoted uncertainties are standard uncertainties, i.e., 1 estimated standard deviation. The melting reaction involves five other solids and a liquid, nominally as follows: 1223→1212+(Ca,Sr)2CuO3+(Sr,Ca)CuO2+BaPbO3+(Ca,Sr)O+Liquid Stoichiometries of the participating phases have been determined from microchemical analysis, and substantial elemental substitution on the 1212 and 1223 crystallographic sites is indicated. The 1223 phase occurs in equilibrium with liquids from its melting point down to at least 935 °C. The composition of the lowest melting liquid detected for the bulk compositions of this study has been measured using microchemical analysis. Applications to the processing of superconducting wires and tapes are discussed. PMID:27805086

  7. Hot Deformation and Dynamic Recrystallization Behavior of the Cu-Cr-Zr-Y Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Huili, Sun; Volinsky, Alex A.; Tian, Baohong; Chai, Zhe; Liu, Ping; Liu, Yong

    2016-03-01

    To study the workability and to optimize the hot deformation processing parameters of the Cu-Cr-Zr-Y alloy, the strain hardening effect and dynamic softening behavior of the Cu-Cr-Zr-Y alloy were investigated. The flow stress increases with the strain rate and stress decreases with deformation temperature. The critical conditions, including the critical strain and stress for the occurrence of dynamic recrystallization, were determined based on the alloy strain hardening rate. The critical stress related to the onset of dynamic recrystallization decreases with temperature. The evolution of DRX microstructure strongly depends on the deformation temperature and the strain rate. Dynamic recrystallization appears at high temperatures and low strain rates. The addition of Y can refine the grain and effectively accelerate dynamic recrystallization. Dislocation generation and multiplication are the main hot deformation mechanisms for the alloy. The deformation temperature increase and the strain rate decrease can promote dynamic recrystallization of the alloy.

  8. Sorption properties of an amorphous hydroxo titanate towards Pb(2+), Ni(2+), and Cu(2+) ions in aqueous solution.

    PubMed

    Volpe, Angela; Pagano, Michele; Pastore, Carlo; Cuocci, Corrado; Milella, Antonella

    2016-11-09

    Titanates may be selectively used as inorganic adsorbents for heavy metal ions owing to their stability and fast adsorption kinetics. Nevertheless, the synthesis of such materials usually requires extreme reaction conditions. In this work, a new titanium-based material was rapidly synthesized under mild laboratory conditions. The obtained amorphous hydroxo titanate was tested for heavy metal sorption through kinetic and equilibrium batch tests, which indicated that the new material had high adsorption rates and adsorption capacities towards Cu(2+), Ni(2+) and Pb(2) ions. Adsorption kinetics were pseudo-second order, and equilibrium data fitted the Langmuir isotherm model. The calculated maximum adsorption capacities of Cu(2+), Ni(2+) and Pb(2+) in deionized water were around 1 mmol g(-1), and they decreased for Cu(2+) and Ni(2+) in the presence of Na(+), Ca(2+) and Mg(2+) ions, whereas the alkali metal ions did not influence Pb(2+) uptake. The efficiency of adsorption and recovery of lead ions were evaluated through column dynamic tests, by feeding the column with groundwater and tap water spiked with Pb(2+). The high performance of the hydroxo titanate over several cycles of retention and elution suggested that the product is potentially useful for the solid phase extraction of lead at trace levels in natural water samples, with potential use in metal pre-concentration for analytical applications.

  9. Cd, Cu, Pb and Zn in clams and sediments from an impacted estuary by the oil industry in the southwestern Gulf of Mexico: concentrations and bioaccumulation factors.

    PubMed

    Ruelas-Inzunza, J; Spanopoulos-Zarco, P; Páez-Osuna, F

    2009-12-01

    With the objective of estimating the temporal variation and bioavailability of Cd, Cu, Pb and Zn in Coatzacoalcos estuary, the biota-sediment accumulation factors (BSAF) were calculated. For this purpose, surficial sediments and clams from 14 selected sites were collected during three climatic seasons. In surficial sediments, highest levels of Cd and Cu were measured during the rainy season near to the industrial area of Minatitlan, while highest concentrations of Pb and Zn were registered during the windy season in sediments collected near to the industrial area of Coatzacoalcos. Considering all the sampling seasons and bivalve species, average metal concentrations followed the order Zn > Cu > Cd > Pb. BSAF ranged from 0.01 (Pb) in Corbicula fluminea during the hot season to 25.1 (Cd) in Polymesoda caroliniana during the windy season. BSAF of Cd, Cu and Zn were higher during the windy season; in the case of Pb, the dry season was the time when such figure was more elevated. It can be stated that Polymesoda caroliniana is a net accumulator of Cd and Zn and a weak accumulator of Pb for the studied estuary.

  10. Competitive adsorption of Pb2+, Cu2+, and Cd2+ ions on microporous titanosilicate ETS-10.

    PubMed

    Lv, Lu; Hor, Mei Peng; Su, Fabing; Zhao, X S

    2005-07-01

    In the present study, the competitive adsorption characteristics of binary and ternary heavy metal ions Pb2+, Cu2+, and Cd2+ on microporous titanosilicate ETS-10 were investigated in batch systems. Pure microporous titanosilicate ETS-10 was synthesized with P25 as the Ti source and characterized by the techniques of X-ray diffraction (XRD), field emission-scanning electron microscope (FESEM), nitrogen adsorption, and zeta-potential. Equilibrium and kinetic adsorption data showed that ETS-10 displays a high selectivity toward one metal in a two-component or a three-component system with an affinity order of Pb2+ > Cd2+ > Cu2+. The equilibrium behaviors of heavy metals species with stronger affinity toward ETS-10 can be described by the Langmuir equation while the adsorption kinetics of the metals can be well fitted to a pseudo-second-order (PSO) model.

  11. [Spatial variability and evaluation of soil heavy metal contamination in the urban-transect of Shanghai].

    PubMed

    Liu, Yun-Long; Zhang, Li-Jia; Han, Xiao-Fei; Zhuang, Teng-Fei; Shi, Zhen-Xiang; Lu, Xiao-Zhe

    2012-02-01

    Soil heavy metal concentrations along the typical urban-transect in Shanghai were analyzed to indicate the effect of urbanization and industrialization on soil environment quality. Spatial variation structure and distribution of 5 heavy metals (Cu, Cr, Mn, Pb and Zn) in the top soil of urban-transect were analyzed. The single pollution index and the composite pollution index were used to evaluate the soil heavy metal pollution. The results showed that the average concentrations of the Cu, Pb, Zn, Cr, Mn were 27.80, 28.86, 99.36, 87.72, 556.97 mg x kg(-1), respectively. Cu, Cr, Mn, Pb and Zn were medium in variability, Mn was distributed lognormally, while Cu, Cr, Pb and Zn were distributed normally. The results of semivariance analysis showed that Mn was fit for the exponential model, Cr, Pb, Cu and Zn were fit for the linear model. The spatial distribution maps of heavy metal content of the topsoil in this city-transect were produced by means of the universal kriging interpolation. Cu was spatially distributed in ribbon, Cr and Mn were distributed in island, while the spatial distribution of Pb and Zn showed the mixed characteristic of ribbon and island. With the result of soil pollution evaluation, it showed that the pollution of Cr, Zn and Pb was relatively severe. Cr, Zn, Pb, Mn and Cu were significantly correlated, and heavy metal co-contamination existed in soil. Difference of soil heavy metals pollution along "Urban-suburban-rural" was obvious, the special variation of heavy metal concentrations in the soil closely related to the degree of industrialization and urbanization of the city.

  12. Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of Cr, Fe, Cu, Zn and Se in cereals

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Yi; Jiang, Shiuh-Jen; Sahayam, A. C.

    2014-11-01

    Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry (USS-ETV-ICP-MS) has been applied to determine Cr, Fe, Cu, Zn and Se in several cereal samples. Thioacetamide was used as the modifier to enhance the ion signals. The background ions at the masses of interest were reduced in intensity significantly by using 1.0 mL min- 1 methane (CH4) as reaction cell gas in the dynamic reaction cell (DRC). Since the sensitivities of Cr, Fe, Cu, Zn and Se in different matrices were quite different, standard addition and isotope dilution methods were used for the determination of Cr, Fe, Cu, Zn and Se in these cereal samples. The method detection limits estimated from standard addition curves were about 1, 10, 4, 12 and 2 ng g- 1 for Cr, Fe, Cu, Zn and Se, respectively, in original cereal samples. This procedure has been applied to the determination of Cr, Fe, Cu, Zn and Se whose concentrations are in μg g- 1 (except Cr and Se) in standard reference materials (SRM) of National institute of standards and technology (NIST), NIST SRM 1568a Rice Flour and NIST SRM 1567a Wheat Flour and two cereal samples purchased from a local market. The analysis results of reference materials agreed with certified values at 95% confidence level according to Student's T-test. The results for the real world cereal samples were also found to be in good agreement with the pneumatic nebulization DRC ICP-MS results of the sample solutions.

  13. Bi-Sr-Ca-Cu-O and Pb-Bi-Sr-Ca-Cu-O superconductor films via an electrodeposition process

    NASA Astrophysics Data System (ADS)

    Maxfield, M.; Eckhardt, H.; Iqbal, Z.; Reidinger, F.; Baughman, R. H.

    1989-05-01

    A novel electrochemical process has been developed for the formation of superconducting films. Using this process, superconducting films of Bi2Sr2Ca1Cu2O8 and (Pb,Bi)2Sr2Ca1Cu2O8 have been formed. The process consists of simultaneously depositing the metallic constituents of the superconductor from a single electrolyte, and thermally oxidizing the resulting precursors film to form the superconducting phase. Application of -4 to -5 V vs Ag/Ag(+) to a conductive cathode substrate which is immersed in an electrolyte containing salts of all of the metals reduces the metal cations, causing then to deposit on the cathode as a metallic film precursor. Precursor films having desired stoichiometries were obtained by regulating the electrolyte bath composition.

  14. Ion-imprinted nanoparticles for the concurrent estimation of Pb(II) and Cu(II) ions over a two channel surface plasmon resonance-based fiber optic platform

    NASA Astrophysics Data System (ADS)

    Shrivastav, Anand Mohan; Gupta, Banshi D.

    2018-01-01

    We report the design, fabrication, and characterization of an optical fiber sensor based on the surface plasmon resonance (SPR) technique for the simultaneous determination of lead (Pb) and copper (Cu) metal ions in aqueous samples. Two cascade channels over a single optical fiber are fabricated by removing cladding from two well-separated regions of the fiber. SPR working as a transducing mechanism for the sensor is realized by coating thin films of copper and silver over unclad cores of channel I and channel II, respectively. Ion-imprinted nanoparticles for both ions are separately synthesized and coated over the metal-coated unclad cores of the fiber as the recognition layers for sensor fabrication. A first channel having layer of Pb(II) ion-imprinted nanoparticles detects Pb(II) ions and a second channel having layer of Cu(II) ion-imprinted nanoparticles are used for the detection of Cu(II) ions. Both channels are characterized using the wavelength interrogation method. The sensor operates in the range between 0 to 1000 μg/L and 0 to 1000 mg/L for Pb(II) and Cu(II) ions, respectively. These ranges cover water resources and the human body for these ions. The sensitivities of channel I and channel II are found to be 8.19×104 nm/(μg/L) and 4.07×105 nm/(mg/L) near the lowest concentration of Pb(II) and Cu(II) ions, respectively. The sensor can detect concentrations of Pb(II) and Cu(II) ions as low as 4.06 × 10-12 g/L and 8.18 × 10-10 g/L, respectively, which are the least among the reported values in the literature. Further, the probe is simple, cost effective, highly selective, and applicable for online monitoring and remote sensing.

  15. Distribution and mobility of lead (Pb), copper (Cu), zinc (Zn), and antimony (Sb) from ammunition residues on shooting ranges for small arms located on mires.

    PubMed

    Mariussen, Espen; Johnsen, Ida Vaa; Strømseng, Arnljot Einride

    2017-04-01

    An environmental survey was performed on shooting ranges for small arms located on minerotrophic mires. The highest mean concentrations of Pb (13 g/kg), Cu (5.2 g/kg), Zn (1.1 g/kg), and Sb (0.83 g/kg) in the top soil were from a range located on a poor minerotrophic and acidic mire. This range had also the highest concentrations of Pb, Cu, Zn, and Sb in discharge water (0.18 mg/L Pb, 0.42 mg/L Cu, 0.63 mg/L Zn, and 65 μg/L Sb) and subsurface soil water (2.5 mg/L Pb, 0.9 mg/L Cu, 1.6 mg/L Zn, and 0.15 mg/L Sb). No clear differences in the discharge of ammunition residues between the mires were observed based on the characteristics of the mires. In surface water with high pH (pH ~7), there was a trend with high concentrations of Sb and lower relative concentrations of Cu and Pb. The relatively low concentrations of ammunition residues both in the soil and soil water, 20 cm below the top soil, indicates limited vertical migration in the soil. Channels in the mires, made by plant roots or soil layer of less decomposed materials, may increase the rate of transport of contaminated surface water into deeper soil layers and ground water. A large portion of both Cu and Sb were associated to the oxidizable components in the peat, which may imply that these elements form inner-sphere complexes with organic matter. The largest portion of Pb and Zn were associated with the exchangeable and pH-sensitive components in the peat, which may imply that these elements form outer-sphere complexes with the peat.

  16. Semiconducting-metallic transition of singlecrystalline ferromagnetic Hf-doped CuCr2Se4 spinels

    NASA Astrophysics Data System (ADS)

    Maciążek, E.; Malicka, E.; Gągor, A.; Stokłosa, Z.; Groń, T.; Sawicki, B.; Duda, H.; Gudwański, A.

    2017-09-01

    Chalcogenide spinels show a variety of physical properties and are very good candidates for electronic and high-frequency applications. We report the measurements of magnetic susceptibility, magnetic isotherm, electrical conductivity, thermoelectric power and calculations of the superexchange and double-exchange integrals made for singlecrystalline Cu[CrxHfy]Se4 spinels. The results showed a ferromagnetic order of magnetic moments below the Curie temperatures of 390 K and, an increase in the splitting of the zero-field cooled and field cooled susceptibilities with increasing Hf-content below the room temperature suggesting a slight spin-frustration and a rapid transition from semiconducting to metallic state at room temperature. A quantitative evaluation of the exchange Hamiltonian showed that the total hopping integral rapidly decreased and the bandwidth of the 3d t2g band due to Cr3+ and Cr4+ ions strongly narrowed from 0.76 eV for y = 0 to 0.28 eV for y = 0.14. The narrowing of this band appears to be responsible for semiconducting properties of the Hf-doped CuCr2Se4 spinels below the room temperature.

  17. Competitive adsorption of Pb(II), Cu(II), and Zn(II) ions onto hydroxyapatite-biochar nanocomposite in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Ying; Liu, Yu-Xue; Lu, Hao-Hao; Yang, Rui-Qin; Yang, Sheng-Mao

    2018-05-01

    A hydroxyapatite-biochar nanocomposite (HAP-BC) was successfully fabricated and its physicochemical properties characterized. The analyses showed that HAP nanoparticles were successfully loaded on the biochar surface. The adsorption of Pb(II), Cu(II), and Zn(II) by HAP-BC was systematically studied in single and ternary metal systems. The results demonstrated that pH affects the adsorption of heavy metals onto HAP-BC. Regarding the adsorption kinetics, the pseudo-second-order model showed the best fit for all three heavy metal ions on HAP-BC. In both single and ternary metal ion systems, the adsorption isotherm of Pb(II) by HAP-BC followed Langmuir model, while those of Cu(II) and Zn(II) fitted well with Freundlich model. The maximum adsorption capacity for each tested metal by HAP-BC was higher than that of pristine rice straw biochar (especially for Pb(II)) or those of other reported adsorbents. Therefore, HAP-BC could explore as a new material for future application in heavy metal removal.

  18. Potential hyperaccumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, northeast China

    NASA Astrophysics Data System (ADS)

    Cui, Shuang; Zhou, Qixing; Chao, Lei

    2007-01-01

    The absorption and accumulation of Pb, Zn, Cu and Cd in some endurant weed plant species that survived in an old smeltery in Liaoning, China, were systematically investigated. Potential hyperaccumulative characteristics of these species were also discussed. The results showed that metal accumulation in plants differed with species, tissues and metals. Endurant weed plants growing in this contaminated site exhibited high metal adaptability. Both the metal exclusion and detoxification tolerance strategies were involved in the species studied. Seven species for Pb and four species for Cd were satisfied for the concentration time level standard for hyperaccumulator. Considering translocation factor (TF) values, one species for Pb, seven species for Zn, two species for Cu and five species for Cd possessed the characteristic of hyperaccumulator. Particularly, Abutilon theophrasti Medic, exhibited strong accumulative ability to four heavy metals. Although enrichment coefficients of all samples were lesser than 1 and the absolute concentrations didn’t reach the standard, species mentioned above were primarily believed to be potential hyperaccumulators.

  19. Heavy metals in the soils and plants from a typical restored coal-mining area of Huainan coalfield, China.

    PubMed

    Niu, Siping; Gao, Liangmin; Zhao, Junjie

    2017-09-03

    This study was conducted to pursue the heavy metals in the soil and plants of a typical restored coal-mining area, China. The average concentrations of Cu, Zn, Cr, Ni, and Pb in soil were 26.4, 76.1, 188.6, 34.3, and 50.2 mg kg -1 , respectively, implying a significant accumulation of Cr, Ni, and Pb compared with the background values. Contamination factor indicates that the soil underwent none to medium pollution by Cu and Zn, medium to strong by Cr, none to strong by Pb, and medium pollution by Ni while the pollution load index means that the soil was subjected to intermediate contamination. Based on the critical threshold values to protect the plants, the investigated metals were unable to affect the plants. One-way ANOVA analysis shows that Cu, Zn, and Pb in plants varied with plant tissues. Cu-Cr, Cu-Ni, Zn-Ni, Zn-Pb, Cr-Ni, and Ni-Pb pairs had significant positive correlation both in soil and in plants due to the similar soil characteristics and plant physiologies. Correspondence analysis indicates that Pb was more likely to be accumulative in stems and leaves. In addition, the levels of Cu and Cr in plant followed an order of roots > stems > leaves; Zn and Ni leaves ≥ stems > roots; and Pb followed stems ≥ leaves > roots. Generally, this study suggests that the plants like Ligustrum lucidum Aiton and Weigela hortensis, which are capable of accumulating Cr, Ni, and Pb, should be the predominant species in the studied area.

  20. Biomonitoring of Cd, Cr, Hg and Pb in the Baluarte River basin associated to a mining area (NW Mexico).

    PubMed

    Ruelas-Inzunza, J; Green-Ruiz, C; Zavala-Nevárez, M; Soto-Jiménez, M

    2011-08-15

    With the purpose of knowing seasonal variations of Cd, Cr, Hg and Pb in a river basin with past and present mining activities, elemental concentrations were measured in six fish species and four crustacean species in Baluarte River, from some of the mining sites to the mouth of the river in the Pacific Ocean between May 2005 and March 2006. In fish, highest levels of Cd (0.06 μg g ⁻¹ dry weight) and Cr (0.01 μg g⁻¹) were detected during the dry season in Gobiesox fluviatilis and Agonostomus monticola, respectively; the highest levels of Hg (0.56 μg g⁻¹) were detected during the dry season in Guavina guavina and Mugil curema. In relation to Pb, the highest level (1.65 μg g⁻¹) was detected in A. monticola during the dry season. In crustaceans, highest levels of Cd (0.05 μg g⁻¹) occurred in Macrobrachium occidentale during both seasons; highest concentration of Cr (0.09 μg g⁻¹) was also detected in M. occidentale during the dry season. With respect to Hg, highest level (0.20 μg g⁻¹) was detected during the rainy season in Macrobrachium americanum; for Pb, the highest concentration (2.4 μg g⁻¹) corresponded to Macrobrachium digueti collected in the dry season. Considering average concentrations of trace metals in surficial sediments from all sites, Cd (p<0.025), Cr (p<0.10) and Hg (p<0.15) were significantly higher during the rainy season. Biota sediment accumulation factors above unity were detected mostly in the case of Hg in fish during both seasons. On the basis of the metal levels in fish and crustacean and the provisional tolerable weekly intake of studied elements, people can eat up to 13.99, 0.79 and 2.34 kg of fish in relation to Cd, Hg and Pb, respectively; regarding crustaceans, maximum amounts were 11.33, 2.49 and 2.68 kg of prawns relative to levels of Cd, Hg and Pb, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Correlation between bulk- and surface chemistry of Cr-tanned leather and the release of Cr(III) and Cr(VI).

    PubMed

    Hedberg, Yolanda S; Lidén, Carola; Odnevall Wallinder, Inger

    2014-09-15

    About 1-3% of the adult general population in Europe is allergic to chromium (Cr). The assessment of the potential release of Cr(III) and Cr(VI) from leather is hence important from a human health and environmental risk perspective. The Cr(VI) content in leather was recently restricted in the European Union. The aim of this study was to assess possible correlations between the bulk and surface chemistry of leather, released Cr(III) and Cr(VI), and capacities of co-released leather specific species to reduce and complex released Cr. Four differently tanned leathers were characterized by scanning electron microscopy with energy dispersive spectroscopy, X-ray photoelectron spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and the diphenylcarbazide colorimetric method. Their characteristics were compared with results on Cr(III) and Cr(VI) release into artificial sweat (ASW, pH<6.5) and phosphate buffer (PB, pH 7.5-8.0), measured by means of spectrophotometry and atomic absorption spectroscopy. Co-released leather-specific species were shown to reduce Cr(VI), both in ASW and in PB. Their reduction capacities correlated with findings of the surface content of Cr and of released Cr. Leather samples without this capacity, and with less aromatic surface groups visible by ATR-FTIR, revealed Cr(VI) both at the surface and in solution (PB). Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Lattice dynamics and thermal transport in multiferroic CuCrO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, Dipanshu; Niedziela, Jennifer L.; May, Andrew F.

    Inelastic neutron and x-ray scattering measurements of phonons and spin waves in CuCrO 2 were performed over a wide range of temperature, and complemented with first-principles simulations. The phonon dispersions and density of states are well reproduced by our density functional cal- culations, and reveal a strong anisotropy of Cu vibrations, with large amplitudes of low-frequency in-plane motions. In addition, we find that spin fluctuations persist above 300 K, far above the N eel temperature for long-range antiferromagnetic order, TN. Modeling of the thermal conductivity, based on our phonon measurements and simulations, reveals a significant anisotropy and indicates that themore » spin fluctuations above TN constitute a strong source of phonon scattering.« less

  3. Lattice dynamics and thermal transport in multiferroic CuCrO 2

    DOE PAGES

    Bansal, Dipanshu; Niedziela, Jennifer L.; May, Andrew F.; ...

    2017-02-09

    Inelastic neutron and x-ray scattering measurements of phonons and spin waves in CuCrO 2 were performed over a wide range of temperature, and complemented with first-principles simulations. The phonon dispersions and density of states are well reproduced by our density functional cal- culations, and reveal a strong anisotropy of Cu vibrations, with large amplitudes of low-frequency in-plane motions. In addition, we find that spin fluctuations persist above 300 K, far above the N eel temperature for long-range antiferromagnetic order, TN. Modeling of the thermal conductivity, based on our phonon measurements and simulations, reveals a significant anisotropy and indicates that themore » spin fluctuations above TN constitute a strong source of phonon scattering.« less

  4. Simultaneous determination of Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+ by using second-derivative spectrophotometry method

    NASA Astrophysics Data System (ADS)

    Han, Yanyan; Li, Yan; Si, Wei; Wei, Dong; Yao, Zhenxing; Zheng, Xianpeng; Du, Bin; Wei, Qin

    2011-09-01

    A new method of simultaneous determination of Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+ is proposed here by using the second-derivative spectrophotometry method. In pH = 10.35 Borax-NaOH buffer, using meso-tetra (3-methoxyl-4-hydroxylphenyl) porphyrin ([T-(3-MO-4-HP)P]) as chromomeric reagent, micelle solution was formed after Tween-80 surfactant was added into the solution containing Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+ ions. The original absorption spectrum of the above complexes was obtained after heating in the boiling water for 25 min. The second-derivative absorption peaks of five metal-porphyrin complexes can be separated from the original absorption spectrum by using chemometric tool. In this way, Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+ ions can be determined simultaneously. Under the optimal conditions, the linear ranges of the calibration curve were 0-0.60, 0-0.60, 0-0.40, 0-0.80 and 0-0.48 μg mL -1 for Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+, respectively. The molar absorptivity of these color systems were 1.38 × 10 5, 1.01 × 10 5, 3.24 × 10 5, 1.07 × 10 5 and 1.29 × 10 5 L mol -1 cm -1. The method developed in this paper has advantages in selectivity, sensitivity, operation and can effectively resolve spectra overlapping problem. This method has been applied to determine the real samples with satisfactory results.

  5. Leaching of Cu, Cd, Pb, and phosphorus and their availability in the phosphate-amended contaminated soils under simulated acid rain.

    PubMed

    Cui, Hongbiao; Zhang, Shiwen; Li, Ruyan; Yi, Qitao; Zheng, Xuebo; Hu, Youbiao; Zhou, Jing

    2017-09-01

    Phosphate amendments have been used to immobilize heavy metal-contaminated soils. However, phosphate amendments contain large amounts of phosphorus, which could leach out to potentially contaminate groundwater and surface water. A laboratory column leaching experiment was designed to study the effects of simulated acid rain (SAR) on the potential release of copper (Cu), lead (Pb), cadmium (Cd), and phosphorus (P), and their availability after immobilizing with hydroxyapatite (HAP) and potassium dihydrogen phosphate (PDP). The application of HAP and PDP enhanced the leachate electrical conductivity, total organic carbon, and pH. Higher P was found in the PDP- (>4.29 mg L -1 ) and HAP-treated (>1.69 mg L -1 ) columns than that in untreated (<0.2 mg L -1 ) columns, and they were both over the class V limit (0.4 mg L -1 ) mandated by the Chinese National Quality Standards for Surface Waters (GB 3838-2002). PDP application decreased the leachate Cu, Pb, and Cd effectively; however, HAP addition increased leachate Cu and Pb. HAP and PDP applications decreased the soil CaCl 2 -extractable and exchangeable fraction of Cu, Pb, and Cd, and increased resin P. However, eluviations transformed the heavy metals from inactive to active fractions and reduced soil labile P. These findings showed that HAP and PDP had a potential risk of excessive P-induced eutrophication. Meanwhile, more attention should be paid to the leaching loss of multiple metals because phosphate amendments might promote the leaching of some metals while immobilizing others.

  6. Evaluation of the Accumulation of Trace Metals (as, U, CR, CU, PB, Zn) on Iron-Manganese Coatings on in Situ Stream Pebbles and Emplaced Substrates

    NASA Astrophysics Data System (ADS)

    Turpin, M. M.; Blake, J.; Crossey, L. J.; Ali, A.; Hansson, L.

    2015-12-01

    Exposure to trace metals (As, U, Cr, Cu, Pb, Zn) has potential negative health effects on human populations and wildlife. Geothermal waters often have elevated concentrations of trace elements and understanding the geochemical cycling of these elements can be challenging. Previous studies have utilized in situ stream pebbles and glass or ceramic substrates with iron-manganese oxide coatings to understand contamination and or chemical cycling. This project's main focus is to develop an ideal tracing method using adsorption onto substrate surfaces and to define key parameters that are necessary for the phenomenon of adsorption between trace metals and these surface coatings to occur. Sampling locations include the Jemez River and Rio San Antonio in the Jemez mountains, northern New Mexico. Both streams have significant geothermal inputs. Pebbles and cobbles were gathered from the active stream channel and 6mm glass beads and 2 X1 in. ceramic plates were placed in streams for three weeks to allow for coating accumulation. Factors such as leachate type, water pH, substrate type, coating accumulation period and leach time were all considered in this experiment. It was found that of the three leachates (aqua regia, 10% aqua regia and hydroxylamine), hydroxylamine was the most effective at leaching coatings without dissolving substrates. Samples leached with aqua regia and 10% aqua regia were found to lose weight and mass over the following 5, 7, and 10 day measurements. Glass beads were determined to be more effective than in stream pebbles as an accumulation substrate: coatings were more easily controlled and monitored. Samples leached with hydroxylamine for 5 hours and 72 hours showed little difference in their leachate concentrations, suggesting that leach time has little impact on the concentration of leachate samples. This research aims to find the best method for trace metal accumulation in streams to aid in understanding geochemical cycling.

  7. Investigation into nanoscratching mechanical response of AlCrCuFeNi high-entropy alloys using atomic simulations

    NASA Astrophysics Data System (ADS)

    Wang, Zining; Li, Jia; Fang, QiHong; Liu, Bin; Zhang, Liangchi

    2017-09-01

    The mechanical behaviors and deformation mechanisms of scratched AlCrCuFeNi high entropy alloys (HEAs) have been studied by molecular dynamics (MD) simulations, in terms of the scratching forces, atomic strain, atomic displacement, microstructural evolution and dislocation density. The results show that the larger tangential and normal forces and higher friction coefficient take place in AlCrCuFeNi HEA due to its outstanding strength and hardness, and high adhesion and fracture toughness over the pure metal materials. Moreover, the stacking fault energy (SFE) in HEA increases the probability to initiate dislocation and twinning, which is conducive to the formation of complex deformation modes. Compared to the single element metal workpieces, the segregation potency of solutes into twinning boundary (TB) is raised due to the decreasing segregation energy of TB, resulting in the stronger solute effects on improving twinning properties for HEA workpiece. The higher dislocation density and the more activated slipping planes lead to the outstanding plasticity of AlCrCuFeNi HEA. The solute atoms as barriers to hinder the motion of dislocation and the severe lattice distortion to suppress the free slipping of dislocation are significantly stronger obstacles to strengthen HEA. The excellent comprehensive scratching properties of the bulk AlCrCuFeNi HEAs are associated with the combined effects of multiple strengthening mechanisms, such as dislocation strengthening, deformation twinning strengthening as well as solute strengthening. This work provides a basis for further understanding and tailoring SFE in mechanical properties and deformation mechanism of HEAs, which maybe facilitate the design and preparation of new HEAs with high performance.

  8. Study of the Cu, Mn, Pb and Zn dynamics in soil, plants and bee pollen from the region of Teresina (PI), Brazil.

    PubMed

    Silva, Aline S; Araújo, Sebastião B; Souza, Darcet C; Silva, Fábio A Santos e

    2012-12-01

    The purpose of this study is to characterize native bee plants regarding their capacity to extract and accumulate trace elements from the soil and its consequences to the sanity of the produced pollen. The trace elements Cu, Mn, Pb and Zn were analyzed in soil, plants and bee pollen from Teresina region (PI), Brazil, by flame atomic absorption spectrophotometer. Considering the studied plant species, Cu and Pb metals presented in the highest levels in the roots of B. platypetala with 47.35 and 32.71 μg.mL(-1) and H. suaveolens with 39.69 and 17.06 μg.mL(-1), respectively, while in the aerial parts Mn and Zn metals presented the highest levels in S. verticillata with 199.18 and 85.73 μg.mL(-1). In the pollen, the levels of Cu, Mn, Pb and Zn vary from 5.44 to 11.75 μg.mL(-1); 34.31 to 85.75 μg.mL(-1); 13.98 to 18.19 μg.mL(-1) and 50.19 to 90.35 μg.mL(-1), respectively. These results indicate that in the apicultural pasture the translocation (from soil to pollen) of Mn and Zn was more effective than in case of Cu and Pb, therefore, the bee pollen can be used as food supplement without causing risks to human health.

  9. Immobilization of Cu, Zn, Cd and Pb in mine drainage stream sediment using Chinese loess.

    PubMed

    Zang, Fei; Wang, Shengli; Nan, Zhongren; Ma, Jianmin; Li, Yepu; Zhang, Qian; Chen, Yazhou

    2017-08-01

    The in situ immobilization of metal-contaminated sediment, using various amendments, has attracted great attention owing to their cost-effectiveness. The present study investigated the effectiveness of Chinese loess on Cu, Zn, Cd and Pb stabilization by decreasing their bioavailability in contaminated sediment. The loess was mixed with the sediment in doses of 0, 0.5, 1, 2, 5, 10 and 20 kg. Approximately 70 d after loess application, the effectiveness was evaluated using the Tessier sequential extraction procedure and single extractants, including ethylenediaminetetraacetic acid disodium salt (EDTA-2Na), diethylenetriaminepentaacetic acid (DTPA), calcium chloride (CaCl 2 ) and hydrochloric acid (HCl). The results indicated that the loess can effectively transform Cu from the carbonate fraction into the residual fraction when the loess dose was ≥5 kg. However, loess had little effect on Zn, Cd and Pb immobilization. Correlation analysis showed that these four extractants can provide a good indication of the toxicity of Cu, Zn, Cd and Pb in the amended sediment. Additionally, the organic matter content in the amended sediment decreased by 1.4% for CK, 1.6% for L0.5, 1.7% for L1, 1.5% for L2, 1.5% for L5, 1.9% for L10 and 1.9% for L20 (CK: untreated sediment; L0.5 to L20 represent loess doses of 0.5, 1, 2, 5, 10 and 20 kg, respectively) compared to the initial organic matter content in the unamended sediment, which may increase the atmospheric carbon dioxide owing to the degradation of organic matter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Soil Microbial Community Responses to Additions of Organic Carbon Substrates and Heavy Metals (Pb and Cr)

    PubMed Central

    Nakatsu, Cindy H.; Carmosini, Nadia; Baldwin, Brett; Beasley, Federico; Kourtev, Peter; Konopka, Allan

    2005-01-01

    Microcosm experiments were conducted with soils contaminated with heavy metals (Pb and Cr) and aromatic hydrocarbons to determine the effects of each upon microbial community structure and function. Organic substrates were added as a driving force for change in the microbial community. Glucose represented an energy source used by a broad variety of bacteria, whereas fewer soil species were expected to use xylene. The metal amendments were chosen to inhibit the acute rate of organic mineralization by either 50% or 90%, and lower mineralization rates persisted over the entire 31-day incubation period. Significant biomass increases were abolished when metals were added in addition to organic carbon. The addition of organic carbon alone had the most significant impact on community composition and led to the proliferation of a few dominant phylotypes, as detected by PCR-denaturing gradient gel electrophoresis of bacterial 16S rRNA genes. However, the community-wide effects of heavy metal addition differed between the two carbon sources. For glucose, either Pb or Cr produced large changes and replacement with new phylotypes. In contrast, many phylotypes selected by xylene treatment were retained when either metal was added. Members of the Actinomycetales were very prevalent in microcosms with xylene and Cr(VI); gene copy numbers of biphenyl dioxygenase and phenol hydroxylase (but not other oxygenases) were elevated in these microcosms, as determined by real-time PCR. Much lower metal concentrations were needed to inhibit the catabolism of xylene than of glucose. Cr(VI) appeared to be reduced during the 31-day incubations, but in the case of glucose there was substantial microbial activity when much of the Cr(VI) remained. In the case of xylene, this was less clear. PMID:16332740

  11. Order-disorder effects on the elastic properties of CuMPt6 (M=Cr and Co) compounds

    NASA Astrophysics Data System (ADS)

    Huang, Shuo; Li, Rui-Zi; Qi, San-Tao; Chen, Bao; Shen, Jiang

    2014-04-01

    The elastic properties of CuMPt6 (M=Cr and Co) in disordered face-centered cubic (fcc) structure and ordered Cu3Au-type structure are studied with lattice inversion embedded-atom method. The calculated lattice constant and Debye temperature agree quite well with the comparable experimental data. The obtained formation enthalpy demonstrates that the Cu3Au-type structure is energetically more favorable. Numerical estimates of the elastic constants, bulk/shear modulus, Young's modulus, Poisson's ratio, elastic anisotropy, and Debye temperature for both compounds are performed, and the results suggest that the disordered fcc structure is much softer than the ordered Cu3Au-type structure.

  12. Heavy metals and health risk assessment of arable soils and food crops around Pb-Zn mining localities in Enyigba, southeastern Nigeria

    NASA Astrophysics Data System (ADS)

    Obiora, Smart C.; Chukwu, Anthony; Davies, Theophilus C.

    2016-04-01

    This study determined the heavy metals concentration in arable soils and associated food crops around the Pb-Zn mines in Enyigba, Nigeria, and metal transfer factors were calculated. Air-dried samples of the soils and food crops were analyzed for 8 known nutritional and toxic heavy metals by Inductively Coupled Plasma - Mass Spectrometer (ICP-MS) method. Eighty seven percent of all the 20 sampled soils contain Pb in excess of the maximum allowable concentration (MAC) set by Canadian Environmental Quality Guideline (CCME) and European Union (EU) Standard, while Zn in thirty-one percent of the samples exceeded the CCME for MAC of 200 mg/kg. All the food crops, with the exception of yam tuber, contain Pb which exceeded the 0.43 mg/kg and 0.3 mg/kg MAC standards of EU and WHO/FAO respectively, with the leafy vegetables accumulating more Pb than the tubers. The metal transfer factors in the tubers and the leafy vegetables were in the order: Mo > Cu > Zn > Mn > As > Cd > Cr > Ni > Pb and Cd > Cu > Zn > Mn > Mo > As > Ni > Pb > Cr, respectively. Risk assessment studies revealed no health risk in surrounding populations for most of the heavy metals. However, Pb had a high health risk index (HRI) of 1.1 and 1.3, in adults and children, respectively for cassava tuber; Pb had HRI > 1 in lemon grass while Mn also had HRI > 1 in all the leafy vegetables for both adult and children. This high level of HRI for Pb and Mn is an indication that consumers of the food crops contaminated by these metals are at risk of health problems such as Alzheimers' disease and Manganism, associated with excessive intake of these metals. Further systematic monitoring of heavy metal fluxes in cultivable soils around the area of these mines is recommended.

  13. Mobility of Pb, Cu, and Zn in the phosphorus-amended contaminated soils under simulated landfill and rainfall conditions.

    PubMed

    Cao, Xinde; Liang, Yuan; Zhao, Ling; Le, Huangying

    2013-09-01

    Phosphorus-bearing materials have been widely applied in immobilization of heavy metals in contaminated soils. However, the study on the stability of the initially P-induced immobilized metals in the contaminated soils is far limited. This work was conducted to evaluate the mobility of Pb, Cu, and Zn in two contrasting contaminated soils amended with phosphate rock tailing (PR) and triple superphosphate fertilizer (TSP), and their combination (P + T) under simulated landfill and rainfall conditions. The main objective was to determine the stability of heavy metals in the P-treated contaminated soils in response to the changing environment conditions. The soils were amended with the P-bearing materials at a 2:1 molar ratio of P to metals. After equilibrated for 2 weeks, the soils were evaluated with the leaching procedures. The batch-based toxicity characteristic leaching procedure (TCLP) was conducted to determine the leachability of heavy metals from both untreated and P-treated soils under simulated landfill condition. The column-based synthetic precipitation leaching procedure (SPLP) were undertaken to measure the downward migration of metals from untreated and P-treated soils under simulated rainfall condition. Leachability of Pb, Cu, and Zn in the TCLP extract followed the order of Zn > Cu > Pb in both soils, with the organic-C- and clay-poor soil showing higher metal leachability than the organic-C- and clay-rich soil. All three P treatments reduced leachability of Pb, Cu, and Zn by up to 89.2, 24.4, and 34.3 %, respectively, compared to the untreated soil, and TSP revealed more effectiveness followed by P + T and then PR. The column experiments showed that Zn had the highest downward migration upon 10 pore volumes of SPLP leaching, followed by Pb and then Cu in both soils. However, migration of Pb and Zn to subsoil and leachate were inhibited in the P-treated soil, while Cu in the leachate was enhanced by P treatment in the organic

  14. The geochemical cycling of trace elements in a biogenic meromictic lake

    NASA Astrophysics Data System (ADS)

    Balistrieri, Laurie S.; Murray, James W.; Paul, Barbara

    1994-10-01

    The geochemical processes affecting the behavior and speciation of As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn in Hall Lake, Washington, USA, are assessed by examining dissolved and acid soluble particulate profiles of the elements and utilizing results from thermodynamic calculations. The water column of this meromictic lake is highly stratified and contains distinctive oxic, suboxic, and anoxic layers. Changes in the redox state of the water column with depth affect the distribution of all the elements studied. Most noticeable are increases in dissolved Co, Cr, Fe, Mn, Ni, Pb, and Zn concentrations across the oxic-suboxic boundary, increases in dissolved As, Co, Cr, Fe, Mn, and V concentrations with depth in the anoxic layer, significant decreases in dissolved Cu, Ni, Pb, and Zn concentrations in the anoxic region below the sulfide maximum, and large increases in acid soluble particulate concentrations of As, Cr, Cu, Fe, Mo, Ni, Pb, V, and Zn in the anoxic zone below the sulfide maximum. Thermodynamic calculations for the anoxic region indicate that all redox sensitive elements exist in their reduced forms, the primary dissolved forms of Cu, Ni, Pb, and Zn are metal sulfide solution complexes, and solid sulfide phases of Cu, Fe, Mo, and Pb are supersaturated. Calculations using a vertical diffusion and reaction model indicate that the oxidation rate constant for Mn(II) in Hall Lake is estimated to be 0.006 d -1 and is at the lower end of the range of microbial oxidation rates observed in other natural systems. The main geochemical processes influencing the distribution and speciation of trace elements in Hall Lake appear to be transformations of dissolved elements between their oxidation states (As, Cr, Cu, Fe, Mn, V), cocycling of trace elements with Mn and Fe (As, Co, Cr, Cu, Mo, Ni, Pb, V, Zn), formation of soluble metal sulfide complexes (Co, Cu, Ni, Pb, Zn), sorption (As, Co, Cr, Ni, V), and precipitation (Cu, Fe, Mn, Mo, Pb, Zn).

  15. The geochemical cycling of trace elements in a biogenic meromictic lake

    USGS Publications Warehouse

    Balistrieri, L.S.; Murray, J.W.; Paul, B.

    1994-01-01

    The geochemical processes affecting the behavior and speciation of As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn in Hall Lake, Washington, USA, are assessed by examining dissolved and acid soluble particulate profiles of the elements and utilizing results from thermodynamic calculations. The water column of this meromictic lake is highly stratified and contains distinctive oxic, suboxic, and anoxic layers. Changes in the redox state of the water column with depth affect the distribution of all the elements studied. Most noticeable are increases in dissolved Co, Cr, Fe, Mn, Ni, Pb, and Zn concentrations across the oxic-suboxic boundary, increases in dissolved As, Co, Cr, Fe, Mn, and V concentrations with depth in the anoxic layer, significant decreases in dissolved Cu, Ni, Pb, and Zn concentrations in the anoxic region below the sulfide maximum, and large increases in acid soluble particulate concentrations of As, Cr, Cu, Fe, Mo, Ni, Pb, V, and Zn in the anoxic zone below the sulfide maximum. Thermodynamic calculations for the anoxic region indicate that all redox sensitive elements exist in their reduced forms, the primary dissolved forms of Cu, Ni, Pb, and Zn are metal sulfide solution complexes, and solid sulfide phases of Cu, Fe, Mo, and Pb are supersaturated. Calculations using a vertical diffusion and reaction model indicate that the oxidation rate constant for Mn(II) in Hall Lake is estimated to be 0.006 d-1 and is at the lower end of the range of microbial oxidation rates observed in other natural systems. The main geochemical processes influencing the distribution and speciation of trace elements in Hall Lake appear to be transformations of dissolved elements between their oxidation states (As, Cr, Cu, Fe, Mn, V), cocycling of trace elements with Mn and Fe (As, Co, Cr, Cu, Mo, Ni, Pb, V, Zn), formation of soluble metal sulfide complexes (Co, Cu, Ni, Pb, Zn), sorption (As, Co, Cr, Ni, V), and precipitation (Cu, Fe, Mn, Mo, Pb, Zn). ?? 1994.

  16. Lattice dynamics and thermal transport in multiferroic CuCrO2

    NASA Astrophysics Data System (ADS)

    Bansal, Dipanshu; Niedziela, Jennifer L.; May, Andrew F.; Said, Ayman; Ehlers, Georg; Abernathy, Douglas L.; Huq, Ashfia; Kirkham, Melanie; Zhou, Haidong; Delaire, Olivier

    2017-02-01

    Inelastic neutron and x-ray scattering measurements of phonons and spin waves were performed in the delafossite compound CuCrO2 over a wide range of temperature, and complemented with first-principles lattice dynamics simulations. The phonon dispersions and density of states are well reproduced by our density functional calculations, and reveal a strong anisotropy of Cu vibrations, which exhibit low-frequency modes of large amplitude parallel to the basal plane of the layered delafossite structure. The low frequency in-plane modes also show a systematic temperature dependence of neutron and x-ray scattering intensities. In addition, we find that spin fluctuations persist above 300 K, far above the Néel temperature for long-range antiferromagnetic order, TN≃24 K . Our modeling of the thermal conductivity, based on our phonon measurements and simulations, reveals a significant anisotropy and indicates that spin fluctuations above TN constitute an important source of phonon scattering, considerably suppressing the thermal conductivity compared to that of the isostructural but nonmagnetic compound CuAlO2.

  17. Microstructure and Shear Strength in Brazing Joint of Mo-Cu Composite with 304 Stainless Steel by Ni-Cr-P Filler Metal

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Wang, Jiteng; Li, Yajiang; Zheng, Deshuang

    2015-07-01

    The brazing of Mo-Cu composite and 304 stainless steel was carried out in vacuum with Ni-Cr-P filler metal at 980 °C for 20 min. Microstructure in Mo-Cu/304 stainless steel joint was investigated by field-emission scanning electron microscope (FE-SEM) with energy dispersive spectrometer (EDS) and shear strength was measured by shearing test. The results indicate that shear strength of the Mo-Cu/304 stainless steel joint is about 155 MPa. There forms eutectic structure of γ-Ni solid solution with Ni3P in the braze seam. Ni-Cu(Mo) and Ni-Fe solid solution are at the interface beside Mo-Cu composite and 304 stainless steel, respectively. Shear fracture exhibits mixed ductile-brittle fracture feature with trans-granular fracture, ductile dimples and tearing edges. Fracture originates from the interface between brazing seam and Mo-Cu composite and it propagates to the braze seam due to the formation of brittle Ni5P2 and Cr3P precipitation.

  18. Pecan nutshell as biosorbent to remove Cu(II), Mn(II) and Pb(II) from aqueous solutions.

    PubMed

    Vaghetti, Julio C P; Lima, Eder C; Royer, Betina; da Cunha, Bruna M; Cardoso, Natali F; Brasil, Jorge L; Dias, Silvio L P

    2009-02-15

    In the present study we reported for the first time the feasibility of pecan nutshell (PNS, Carya illinoensis) as an alternative biosorbent to remove Cu(II), Mn(II) and Pb(II) metallic ions from aqueous solutions. The ability of PNS to remove the metallic ions was investigated by using batch biosorption procedure. The effects such as, pH, biosorbent dosage on the adsorption capacities of PNS were studied. Four kinetic models were tested, being the adsorption kinetics better fitted to fractionary-order kinetic model. Besides that, the kinetic data were also fitted to intra-particle diffusion model, presenting three linear regions, indicating that the kinetics of adsorption should follow multiple sorption rates. The equilibrium data were fitted to Langmuir, Freundlich, Sips and Redlich-Peterson isotherm models. Taking into account a statistical error function, the data were best fitted to Sips isotherm model. The maximum biosorption capacities of PNS were 1.35, 1.78 and 0.946mmolg(-1) for Cu(II), Mn(II) and Pb(II), respectively.

  19. Lead (Pb2+) and copper (Cu2+) remediation from water using superparamagnetic maghemite (γ-Fe2O3) nanoparticles synthesized by Flame Spray Pyrolysis (FSP).

    PubMed

    Rajput, Shalini; Singh, Lok P; Pittman, Charles U; Mohan, Dinesh

    2017-04-15

    Superparamagnetic maghemite (γ-Fe 2 O 3 ) nanoparticles of controllable morphology were successfully synthesized using a flame spray pyrolysis (FSP) technique. Their physico-chemical properties, size, morphology, and surface chemistries were determined using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), selected area electron diffraction patterns (SAED), SEM-EDX, scanning electron microscopy (SEM), and pH ZPC (6.3). Elemental contents before and after adsorption were identified using energy dispersive X-ray fluorescence (ED-XRF), energy dispersive X-ray analysis (EDX) and elemental mapping. Surface area (S BET 79.35m 2 /g) and size distribution analyses were conducted using a surface area analyzer and dynamic light scattering (DLS), respectively. The magnetic moment (44.5 at 300K and 50.16 at 2K) was determined using a physical properties measurement system (PPMS). The first adsorption study using γ-Fe 2 O 3 nanoparticles synthesized by FSP to successfully remediate Pb 2+ and Cu 2+ from water is reported. Batch adsorption studies were carried out. An optimum pH of 5.0 was studied for Pb 2+ and Cu 2+ removal. Pb 2+ and Cu 2+ removal mechanisms by these maghemite nanoparticles were presented. The adsorption of Pb 2+ and Cu 2+ was highly pH-dependent. The metal ion uptake was mainly governed by electrostatic attractions. Sorption kinetic data followed the pseudo-second-order model. The Freundlich, Langmuir, Redlich-Peterson, Radke and Sips adsorption isotherm models were applied to interpret equilibrium data. The Freundlich and Langmuir isotherm equations best fit the respective equilibrium data for Pb 2+ and Cu 2+ . The maximum Langmuir adsorption capacities of these maghemite nanoparticles were 68.9mg/g at 45°C for Pb 2+ and 34.0mg/g at 25 °C for Cu 2+ . Thus, these maghemite nanoparticles made by FSP were readily prepared, characterized and showed promise for remediating heavy metal ions from

  20. A novel route for electrosynthesis of CuCr(2)O(4) nanocomposite with p-type conductive polymer as a high performance material for electrochemical supercapacitors.

    PubMed

    Shayeh, Javad Shabani; Sadeghinia, Mohammad; Siadat, Seyed Omid Ranaei; Ehsani, Ali; Rezaei, Mehran; Omidi, Meisam

    2017-06-15

    In this work, supercapacitive performance of polypyrrole copper chromate nano particles (Ppy/CuCr 2 O 4 NPs) was studied. CuCr 2 O 4 NPs with the average size of 20nm were synthesized simply by hydrothermal method and the composite electrodes were then electropolymerized on the surface of glassy carbon electrode. Common surface analysis techniques such as scanning electron microscopy (SEM), transmission electron microscopy(TEM) and Fourier transform infrared (FTIR) were used to study the morphology and structure of the composite. Furthermore, for electrochemical evaluation of composite electrodes, techniques including cyclic voltammetry (CV), galvanostatic charge discharge (CD) and impedance spectroscopy (EIS) were used. Using cyclic voltammetry, the specific capacitance values of Ppy and Ppy/CuCr 2 O 4 NPs were calculated to be 109 and 508 F g -1 , respectively. Results show that using CuCr 2 O 4 NPs in the structure of polymeric films led to increased specific capacitance of composite electrodes more than four times that of poly pyrrole. Increasing the conductivity and stability of composite electrodes through continuous cycles are the other advantages of using CuCr 2 O 4 NPs as active materials in a polymeric structure. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The potential of Lemna gibba L. and Lemna minor L. to remove Cu, Pb, Zn, and As in gallery water in a mining area in Keban, Turkey.

    PubMed

    Sasmaz, Merve; Arslan Topal, Emine Işıl; Obek, Erdal; Sasmaz, Ahmet

    2015-11-01

    This study was designed to investigate removal efficiencies of Cu, Pb, Zn, and As in gallery water in a mining area in Keban, Turkey by Lemna gibba L. and Lemna minor L. These plants were placed in the gallery water of Keban Pb-Zn ore deposits and adapted individually fed to the reactors. During the study period (8 days), the plant and water samples were collected daily and the temperature, pH, and electric conductivity of the gallery water were measured daily. The plants were washed, dried, and burned at 300 °C for 24 h in a drying oven. These ash and water samples were analyzed by ICP-MS to determine the amounts of Cu, Pb, Zn, and As. The Cu, Pb, Zn and As concentrations in the gallery water of the study area detected 67, 7.5, 7230, and 96 μg L(-1), respectively. According to the results, the obtained efficiencies in L. minor L. and L. gibba L. are: 87% at day 2 and 36% at day 3 for Cu; 1259% at day 2 and 1015% at day 2 for Pb; 628% at day 3 and 382% at day 3 for Zn; and 7070% at day 3 and 19,709% at day 2 for As, respectively. The present study revealed that both L. minor L. and L. gibba L. had very high potential to remove Cu, Pb, Zn, and As in gallery water contaminated by different ores. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  2. Development of CVD-W coatings on CuCrZr and graphite substrates with a PVD intermediate layer

    NASA Astrophysics Data System (ADS)

    Song, Jiupeng; Lian, Youyun; Lv, Yanwei; Liu, Junyong; Yu, Yang; Liu, Xiang; Yan, Binyou; Chen, Zhigang; Zhuang, Zhigang; Zhao, Ximeng; Qi, Yang

    2014-12-01

    In order to apply tungsten (W) coatings by chemical vapor deposition (CVD) for repairing or updating the plasma facing components (PFCs) of the first wall and divertor in existing or future tokomaks, where CuCrZr or graphite is the substrate material, an intermediate layer by physical vapor deposition (PVD) has been used to accommodate the interface stress due to the mismatch of thermal expansion or act as a diffusion barrier between the CVD-W coating and the substrate. The prepared CuCrZr/PVD-Cu/CVD-W sample with active cooling has passed thermal fatigue tests by electron beam with an absorbed power of 2.2 MW/m2, 50 s on/50 s off, for 100 cycles. Another graphite/PVD-Si/CVD-W sample without active cooling underwent thermal fatigue testing with an absorbed power density of 4.62 MW/m2, 5 s on/25 s off, for 200 cycles, and no catastrophic failure was found.

  3. Spectrophotometric and electrochemical study for metal ion binding of azocalix[4]arene bearing p-ethylester group

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hyun

    2017-05-01

    The complexation behavior of diazophenylcalix[4]arene bearing para-ethylester group (p-EAC) for alkali, alkaline earth, various heavy and transition metal ions (Li+, Na+, K+, Rb+, Cs+, Mg2 +, Ca2 +, Sr2 +, Ba2 +, Cr3 +, Fe2 +, Co2 +, Ni2 +, Cu2 +, Zn2 +, Pb2 +) was investigated by spectrophotometric and electrochemical methods in CH3CN. p-EAC exhibits decreased absorbance at 353 nm in the presence of Cr3 +, Fe2 +, Pb2 +, and Cu2 +. The spectra of p-EAC showed bathochromic shift in absorption maximum on the addition of Cr3 +, Fe2 +, or Pb2 + with decreasing order of absorbance (Cr3 + > Fe2 + > Pb2 +), and on the other hand, hypsochromic shift on the addition of Cu2 +. This leads to the selective coloration from light green to orange and colorless for Cr3 + and Cu2 + that can be detected by the naked eye, respectively. In electrochemistry experiments, p-EAC also showed two different types of voltammetric changes toward Cr3 +, Fe2 +, or Pb2 +, and toward Cu2 +, whereas no significant changes occurred in the presence of the other metal ions. Nonlinear fitting curve procedure was used to determine a logarithmic value of 5.20, 4.92, 3.54 and 4.80 for the stability constants of the complex of p-EAC with Cr3 +, Fe2 +, Pb2 +, and Cu2 +, respectively.

  4. Evaluation of Pb-17Li compatibility of ODS Fe-12Cr-5Al alloys

    NASA Astrophysics Data System (ADS)

    Unocic, Kinga A.; Hoelzer, David T.

    2016-10-01

    The Dual Coolant Lead Lithium (DCLL: eutectic Pb-17Li and He) blanket concept requires improved Pb-17Li compatibility with ferritic steels in order to demonstrate acceptable performance in fusion reactors. As an initial step, static Pb-17at.%Li (Pb-17Li) capsule experiments were conducted on new oxide dispersion strengthened (ODS) FeCrAl alloys ((1) Y2O3 (125Y), (2) Y2O3 + ZrO2 (125YZ), (3) Y2O3 + HfO2 (125YH), and (4) Y2O3 + TiO2 (125YT)) produced at ORNL via mechanical alloying (MA). Tests were conducted in static Pb-17Li for 1000 h at 700 °C. Alloys showed promising compatibility with Pb-17Li with small mass change after testing for 125YZ, 125YH and 125YT, while the 125Y alloy experienced the highest mass loss associated with some oxide spallation and subsequent alloy dissolution. X-ray diffraction methods identified the surface reaction product as LiAlO2 on all four alloys. A small decrease (∼1 at.%) in Al content beneath the oxide scale was observed in all four ODS alloys, which extended 60 μm beneath the oxide/metal interface. This indicates improvements in alloy dissolution by decreasing the amount of Al loss from the alloy. Scales formed on 125YZ, 125YH and 125YT were examined via scanning transmission electron microscopy (S/TEM) and revealed incorporation of Zr-, Hf-, and Ti-rich precipitates within the LiAlO2 product, respectively. This indicates an inward scale growth mechanism. Future work in flowing Pb-17Li is needed to further evaluate the effectiveness of this strategy in a test blanket module.

  5. Assessment of heavy metal contamination in Hediste diversicolor (O.F. Müller, 1776), Mugil cephalus (Linnaeus, 1758), and surface sediments of Bafa Lake (Eastern Aegean).

    PubMed

    Aydin-Onen, S; Kucuksezgin, F; Kocak, F; Açik, S

    2015-06-01

    In the present study, the bioaccumulation of six heavy metals (Cd, Cr, Cu, Hg, Pb, and Zn) in Hediste (Nereis) diversicolor (O.F. Müller, 1776) and also in the muscle and liver of Mugil cephalus (Linnaeus, 1758) collected from seven stations in the Bafa Lake was investigated. Sediment samples were also collected in each site to assess heavy metal levels and to provide additional information on pollution of the lake. The mean concentrations of heavy metals in sediment, H. diversicolor, and muscle and liver of the fish were found to be in the magnitude of Cr>Pb>Zn>Cu>Cd>Hg, Zn>Cu>Cr>Pb>Hg>Cd, Zn>Cu>Pb>Cr >Hg>Cd, and Cu>Zn>Cr>Cd>Pb>Hg, respectively. Hg, Cu, and Zn in H. diversicolor and Hg and Zn in muscle and also Hg, Cd, Cu, and Zn in liver of fish accumulated in a higher degree than in sediment. There was no clear relationship between metal concentrations in sediments, polychaetes, and fish, except Cr. According to international criteria and Turkish regulations, Pb and Zn values in edible muscle of the fish collected from stations S6 and S5 exceeded the food safety limits, respectively. The results of this study suggest that these sentinel species can be considered as good anthropogenic biological indicators for heavy metal pollution along the Bafa Lake.

  6. Solid Liquid Interdiffusion Bonding of (Pb, Sn)Te Thermoelectric Modules with Cu Electrodes Using a Thin-Film Sn Interlayer

    NASA Astrophysics Data System (ADS)

    Chuang, T. H.; Lin, H. J.; Chuang, C. H.; Yeh, W. T.; Hwang, J. D.; Chu, H. S.

    2014-12-01

    A (Pb, Sn)Te thermoelectric element plated with a Ni barrier layer and a Ag reaction layer has been joined with a Cu electrode coated with Ag and Sn thin films using a solid-liquid interdiffusion bonding method. This method allows the interfacial reaction between Ag and Sn such that Ag3Sn intermetallic compounds form at low temperature and are stable at high temperature. In this study, the bonding strength was about 6.6 MPa, and the specimens fractured along the interface between the (Pb, Sn)Te thermoelectric element and the Ni barrier layer. Pre-electroplating a film of Sn with a thickness of about 1 μm on the thermoelectric element and pre-heating at 250°C for 3 min ensures the adhesion between the thermoelectric material and the Ni barrier layer. The bonding strength is thus increased to a maximal value of 12.2 MPa, and most of the fractures occur inside the thermoelectric material. During the bonding process, not only the Ag3Sn intermetallics but also Cu6Sn5 forms at the Ag3Sn/Cu interface, which transforms into Cu3Sn with increases in the bonding temperature or bonding time.

  7. Simultaneous preconcentrations of Co(2+), Cr(6+), Hg(2+) and Pb(2+) ions by Bacillus altitudinis immobilized nanodiamond prior to their determinations in food samples by ICP-OES.

    PubMed

    Ozdemir, Sadin; Kilinc, Ersin; Celik, Kadir Serdar; Okumus, Veysi; Soylak, Mustafa

    2017-01-15

    A novel solid phase extraction method was developed for simultaneous preconcentration-separation of Co(2+), Cr(6+), Hg(2+) and Pb(2+) ions prior to their determinations in food samples by ICP-OES. Thermophilic Bacillus altitudinis immobilized nanodiamond was used as a new biosorbent. SEM and FT-IR analysis were studied to characterize the biosorbent. The optimum pH values of quantitative biosorption for Co(2+), Cr(6+), Hg(2+) and Pb(2+) were found to be 5.0, 6.0, 6.0 and 6.0, respectively. A flow rate of 3.0mLmin(-1) was selected as optimum for all metal ions. 5mL of 1mol/L HCl was used as eluent. Preconcentration factor was achieved as 80. LODs were calculated as 0.071, 0.023, 0.016 and 0.034ngmL(-1), respectively for Hg(2+), Co(2+), Cr(6+) and Pb(2+). The biosorption capacities were calculated for Co(2+), Cr(6+), Hg(2+) and Pb(2+) as 26.4, 30.4, 19.5, and 35.2mg/g, respectively. The developed method was successfully applied to food samples to determine analyte concentrations. Copyright © 2016. Published by Elsevier Ltd.

  8. Assessment of Trace Metals Concentration in Tree Barks as Indicator of Atmospheric Pollution within Ibadan City, South-West, Nigeria

    PubMed Central

    Ejidike, Ikechukwu P.; Onianwa, Percy C.

    2015-01-01

    Tree bark species were randomly collected from 65 sites having different anthropogenic activities, such as industrial, high traffic commercial, residential high and residential low traffic volume areas of Ibadan City, Nigeria. Levels of Cd, Cu, Pb, Zn, Co, and Cr of the dry-ashed bark samples were determined by AAS. The mean metal concentrations (mg kg−1) in samples from industrial zone were found as Pb: 3.67 ± 1.97, Cd: 0.10 ± 0.07, Zn: 30.96 ± 32.05, Cu: 7.29 ± 5.17, Co: 0.91 ± 0.58, and Cr: 2.61 ± 1.84. The trend of mean trace metal concentrations at high traffic commercial zone follows the order: Zn > Pb > Cu > Cr > Co > Cd. Residential high traffic and low traffic zones revealed the same trend as Cd < Co < Cr < Pb < Cu < Zn. Relatively strong positive correlation between the heavy metals at ρ < 0.05, such as Zn versus Cu (r = 0.79) and Co versus Cu (r = 0.77), was observed. The results of the study suggest that tree bark samples could potentially serve as bioindicators for Cu, Pb, Zn, Cr, and possibly Co and Cd. Furthermore, interspecies variation of heavy metal concentrations in plants barks is recommended. PMID:26605104

  9. Reduced Carrier Recombination in PbS - CuInS2 Quantum Dot Solar Cells

    PubMed Central

    Sun, Zhenhua; Sitbon, Gary; Pons, Thomas; Bakulin, Artem A.; Chen, Zhuoying

    2015-01-01

    Energy loss due to carrier recombination is among the major factors limiting the performance of TiO2/PbS colloidal quantum dot (QD) heterojunction solar cells. In this work, enhanced photocurrent is achieved by incorporating another type of hole-transporting QDs, Zn-doped CuInS2 (Zn-CIS) QDs into the PbS QD matrix. Binary QD solar cells exhibit a reduced charge recombination associated with the spatial charge separation between these two types of QDs. A ~30% increase in short-circuit current density and a ~20% increase in power conversion efficiency are observed in binary QD solar cells compared to cells built from PbS QDs only. In agreement with the charge transfer process identified through ultrafast pump/probe spectroscopy between these two QD components, transient photovoltage characteristics of single-component and binary QDs solar cells reveal longer carrier recombination time constants associated with the incorporation of Zn-CIS QDs. This work presents a straightforward, solution-processed method based on the incorporation of another QDs in the PbS QD matrix to control the carrier dynamics in colloidal QD materials and enhance solar cell performance. PMID:26024021

  10. Hidden transition in multiferroic and magnetodielectric CuCrO2 evidenced by ac-susceptibility

    NASA Astrophysics Data System (ADS)

    Shukla, Kaushak K.; Pal, Arkadeb; Singh, Abhishek; Singh, Rahul; Saha, J.; Sinha, A. K.; Ghosh, A. K.; Patnaik, S.; Awasthi, A. M.; Chatterjee, Sandip

    2017-04-01

    Ferroelectric polarization, magnetic-field dependence of the dielectric constant and ac and dc magnetizations of frustrated CuCrO2 have been measured. A new spin freezing transition below 32 K is observed which is thermally driven. The nature of the spin freezing is to be a single-ion process. Dilution by the replacements of Cr ions by magnetic Mn ions showed suppression of the spin freezing transition suggesting it to be fundamentally a single-ion freezing process. The observed freezing, which is seemingly associated to geometrical spin frustration, represents a novel form of magnetic glassy behavior.

  11. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil.

    PubMed

    Lu, Kouping; Yang, Xing; Gielen, Gerty; Bolan, Nanthi; Ok, Yong Sik; Niazi, Nabeel Khan; Xu, Song; Yuan, Guodong; Chen, Xin; Zhang, Xiaokai; Liu, Dan; Song, Zhaoliang; Liu, Xingyuan; Wang, Hailong

    2017-01-15

    Biochar has emerged as an efficient tool to affect bioavailability of heavy metals in contaminated soils. Although partially understood, a carefully designed incubation experiment was performed to examine the effect of biochar on mobility and redistribution of Cd, Cu, Pb and Zn in a sandy loam soil collected from the surroundings of a copper smelter. Bamboo and rice straw biochars with different mesh sizes (<0.25 mm and <1 mm), were applied at three rates (0, 1, and 5% w/w). Heavy metal concentrations in pore water were determined after extraction with 0.01 M CaCl 2 . Phytoavailable metals were extracted using DTPA/TEA (pH 7.3). The European Union Bureau of Reference (EUBCR) sequential extraction procedure was adopted to determine metal partitioning and redistribution of heavy metals. Results showed that CaCl 2 -and DTPA-extractable Cd, Cu, Pb and Zn concentrations were significantly (p < 0.05) lower in the bamboo and rice straw biochar treated soils, especially at 5% application rate, than those in the unamended soil. Soil pH values were significantly correlated with CaCl 2 -extractable metal concentrations (p < 0.01). The EUBCR sequential extraction procedure revealed that the acid extractable fractions of Cd, Cu, Pb and Zn decreased significantly (p < 0.05) with biochar addition. Rice straw biochar was more effective than bamboo biochar in decreasing the acid extractable metal fractions, and the effect was more pronounced with increasing biochar application rate. The effect of biochar particle size on extractable metal concentrations was not consistent. The 5% rice straw biochar treatment reduced the DTPA-extractable metal concentrations in the order of Cd < Cu < Pb < Zn, and reduced the acid extractable pool of Cd, Cu, Pb and Zn by 11, 17, 34 and 6%, respectively, compared to the control. In the same 5% rice straw biochar treatments, the organic bound fraction increased by 37, 58, 68 and 18% for Cd, Cu, Pb and Zn, respectively, compared to the

  12. Thermophysical Properties of Cold- and Vacuum Plasma-Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings I: Electrical and Thermal Conductivity, Thermal Diffusivity, and Total Hemispherical Emissivity

    NASA Astrophysics Data System (ADS)

    Raj, S. V.

    2017-11-01

    This two-part paper reports the thermophysical properties of several cold- and vacuum plasma-sprayed monolithic Cu- and Ni-based alloy coatings. Part I presents the electrical and thermal conductivity, thermal diffusivity, and total hemispherical emissivity data, while Part II reports the specific heat capacity data for these coatings. Metallic copper alloys and stoichiometric NiAl and NiCrAlY coatings were fabricated by either the cold spray or the vacuum plasma spray deposition processes for thermal property measurements between 77 and 1223 K. The temperature dependencies of the thermal conductivities, thermal diffusivities, electrical conductivities, and total hemispherical emissivities of these cold- and vacuum-sprayed monolithic coatings are reported in this paper. The electrical and thermal conductivity data correlate reasonably well for Cu-8%Cr-1%Al, Cu-23%Cr-5%Al, and NiAl in accordance with the Wiedemann-Franz (WF) law although a better fit is obtained using the Smith-Palmer relationship. The Lorentz numbers determined from the WF law are close to the theoretical value.

  13. High-density Bi-Pb-Sr-Ca-Cu-O superconductor prepared by rapid thermal melt processing

    NASA Astrophysics Data System (ADS)

    Moon, B. M.; Lalevic, B.; Kear, B. H.; McCandlish, L. E.; Safari, A.; Meskoob, M.

    1989-10-01

    A high quality, dense Bi-Pb-Sr-Ca-Cu-O superconductor has been successfully synthesized by rapid thermal melt processing. Conventionally sintered pellets were melted at 1200 °C, cooled rapidly, and then annealed. As-melted samples exhibited semiconductor behavior, which upon annealing became superconducting at 115 K [Tc(zero)=105 K]. A detailed study of various processing techniques has been carried out.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Y.M.; DiSante, C.J.; Lion, L.W.

    Toxic trace metals have been implicated as a potential cause of recent flamingo kills at Lake Nakuru, Kenya. Chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) have accumulated in the lake sediments as a result of unregulated discharges and because this alkaline lake has no natural outlet. Lesser flamingos (Phoeniconaias minor) at Lake Nakuru feed predominantly on the cyanobacterium Spirulina platensis, and because of their filter-feeding mechanism, they are susceptible to exposure to particle-bound metals. Trace metal adsorption isotherms to lake sediments and S. platensis were obtained under simulated lake conditions, and a mathematical model was developed to predictmore » metal exposure via filter feeding based on predicted trace metal phase distribution. Metal adsorption to suspended solids followed the trend Pb {much_gt} Zn > Cr > Cu, and isotherms were linear up to 60 {micro}g/L. Adsorption to S. platensis cells followed the trend Pb {much_gt} Zn > Cu > Cr and fit Langmuir isotherms for Cr, Cu and Zn and a linear isotherm for Pb. Predicted phase distributions indicated that Cr and Pb in Lake Nakuru are predominantly associated with suspended solids, whereas Cu and Zn are distributed more evenly between the dissolved phase and particulate phases of both S. platensis and suspended solids. Based on established flamingo feeding rates and particle size selection, predicted Cr and Pb exposure occurs predominantly through ingestion of suspended solids, whereas Cu and Zn exposure occurs through ingestion of both suspended solids and S. platensis. For the lake conditions at the time of sampling, predicted ingestion rates based on measured metal concentrations in lake suspended solids were 0.71, 6.2, 0.81, and 13 mg/kg-d for Cr, Cu, Pb, and Zn, respectively.« less

  15. The Environment Quality, Speciation and their Origins of Heavy Metals in Surficial Sediments in Central Bohai Sea, China

    NASA Astrophysics Data System (ADS)

    Liu, M.; Fan, D.; Han, Z.; Liao, Y.; Chen, B.; Yang, Z.

    2016-02-01

    The concentrations and speciations of heavy metals (Cu, Co, Ni, Zn, Pb, Cr and Cd) in surface and core sediments collected from the central Bohai Sea were analyzed by ICP-MS, to evaluate their distribution / fractionation, pollution status and sources. The results showed that Cd exhibited gradual increasing vertically, while others were stable or declined slightly in core sediments. Metals showed higher values in `central mud area of the Bohai Sea' and the coastal area of the Bohai Bay in surface sediments. Residual fractions were the dominant forms of Cu, Co, Ni, Zn and Cr in the surface sediments, while Cd and Pb had large proportions of the total concentration in the non-residual fractions. Both the contamination factors and the geo-accumulation index indicated that Cu, Co, Ni, Cr were not polluted, while Pb, Zn, Cd were in moderate contamination. The ecological risk assessment (by sepeciations) indicated that the sediments were unpolluted with respect to the heavy metals Co, Ni and Cr and unpolluted to moderately polluted with respect to Cu, Zn, Cd and Pb. Compared with sediment quality guidelines (SQGs), Cu, Zn, Cr, Pb, Cd were likely to produce occasional adverse biological effects, while Ni showed possible ecotoxicological risks. The combined levels of the metals have a 21% probability of being toxic. Elements Cr, Co and Ni were mainly natural origined and significantly affected by the composition of sediments. Cu, Zn, Pb and especially Cd may be influenced by human activities.

  16. Pollution distribution and health risk assessment of heavy metals in indoor dust in Anhui rural, China.

    PubMed

    Lin, Yuesheng; Fang, Fengman; Wang, Fei; Xu, Minglu

    2015-09-01

    Zn, Pb, Cu, Cr, V, Ni, Co, and As concentrations of indoor dust in Anhui rural were determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES). The degrees of metal pollution in indoor dust ranked as follows: Zn > Pb > Cr > Cu > V > Ni > Co > As, on average. The arithmetic means of Zn, Pb, Cu, Cr, V, Ni, Co, and As were 427.17, 348.73, 107.05, 113.68, 52.64, 38.93, 10.29, and 4.46 mg/kg, respectively. These were higher than background values of Anhui soil for Zn, Pb, Cu, Cr, and Ni, especially for Pb with the mean value of 13.21 times the background value. Heavy metal concentrations of indoor dust were different from different rural areas. House type (bungalows or storied house), sweeping frequency, and external environment around the house (such as the road grade) affected heavy metal concentrations in indoor dust. The results of factor analysis and correlation analysis indicated that Cu, Cr, Ni, Zn, and Co concentrations were mainly due to interior paint, metal objects, and building materials. Pb and As concentrations were due to vehicle emissions. V concentration was mainly of natural source. Average daily doses for the exposure pathway of the studied heavy metals decreased in children in the following order: hand-to-mouth ingestion > dermal contact > inhalation. The non-carcinogenic risks of heavy metals ranked as Pb > V > Cr > Cu > Zn > As > Co > Ni, and the carcinogenic risks of metals decreased in the order of Cr > Co > As > Ni. The non-carcinogenic hazard indexes and carcinogenic risks of metals in indoor dust were both lower than the safe values.

  17. Multi-scale analysis of the occurrence of Pb, Cr and Mn in the NIST standards: Urban dust (SRM 1649a) and indoor dust (SRM 2584)

    NASA Astrophysics Data System (ADS)

    Jiang, Mingyu; Nakamatsu, Yuki; Jensen, Keld A.; Utsunomiya, Satoshi

    2014-01-01

    Adverse health effects of ambient particulate matters are closely related to the speciation of the constituting organic matters and toxic metals. To determine multi-parameters of the metal speciation in urban and indoor dusts, we have performed systematic bulk- to nano-scale (“multi-scale”) analysis on the speciation of Pb, Mn, and Cr in two National Institute of Standards and Technology (NIST) standard reference materials (SRMs): urban dust (SRM 1649a) and indoor dust (SRM 2584), utilizing X-ray absorption near-edge structure, powder X-ray diffraction analysis, electron microprobe analysis, scanning electron microscopy, and transmission electron microscopy. Major crystalline phases are quartz, gypsum, kaolinite, and muscovite in SRM 1649a, while quartz, gypsum, calcite, and possibly muscovite (or chabazite) in SRM 2584. A number of Pb sulfate nanoparticles (50-200 nm) occur in SRM 1649a, whereas micron-sized Pb carbonate is present containing various concentrations of Zn and Ti in the complex texture in SRM 2584. Relatively soluble Mn(II) sulfate is the bulk-averaged Mn speciation in SRM 1649a, although discrete Mn sulfate particles are not characterized by individual particle analysis, implying the diluted Mn distribution within other sulfate. In SRM 2584, Mn speciation includes a mixture of oxides and carbonates, and trace Mn in chromite. Chromite (FeCr2O4) is the major Cr speciation in SRM1694a, while unidentified Cr(III) phases with minor chromite and Pb chromate are present in SRM 2584, among which the Pb chromate is composed of Cr(VI). A significant number of the metal-bearing particles are distributed to the submicron-size fraction in the urban dust, SRM 1649a, suggesting that these metal nanoparticles can potentially penetrate into the deep respiratory system. This study demonstrates that multi-scale analysis combining nano and bulk analytical techniques is a powerful approach to investigate the multi-parameters of metal-bearing nanoparticles in

  18. Radionuclides (40K, 232Th and 238U) and Heavy Metals (Cr, Ni, Cu, Zn, As and Pb) Distribution Assessment at Renggam Landfill, Simpang Renggam, Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Zaidi, E.; FahrulRazi, MJ; Azhar, ATS; Hazreek, ZAM; Shakila, A.; Norshuhaila, MS; Omeje, M.

    2017-08-01

    The assessment of radioactivity levels and the distribution of heavy metals in soil samples at CEP Farm landfill, Renggam in Johor State was to determine the activity concentrations of naturally occurring radionuclides and heavy metal concentrations of this landfill. The background radiation was monitored to estimate the exposure level. The activity concentrations of radionuclides in soil samples were determined using HPGe gamma ray spectroscopy whereas the heavy metal concentration was measured using X-RF analysis. The mean exposure rate at the landfill site was 36.2±2.4 μR hr-1 and the annual effective dose rate at the landfill site was 3.19 ± 0.22 mSv yr-1. However, residential area has lower mean exposure dose rate of about 16.33±0.72 μR hr-1 and has an annual effective dose rate of 1.43±0.06 mSv yr-1 compared to landfill sites. The mean activity concentration of 40K, 238U and 232Th at landfill site were 239.95±15.89 Bq kg-1, 20.90±2.49 Bq kg-1 and 40.61±4.59 Bq kg-1, respectively. For heavy metal compositions, Cr, Ni and Cu have mean concentration of 232±10 ppm, 23±2 ppm, and 46±19 ppm, respectively. Whereas, Zn has concentration of 64±9 ppm and concentration of 12±1 ppm and 71±2 ppm was estimated for As and Pb respectively. The higher activity concentration of 40K down the slope through leaching process whereas the higher activity level of 238U content at the landfill site may be attributed to the soil disruption to local equilibrium.

  19. [Effects of fly ash on the exchangeable heavy metals (Cu, Zn, Pb) during sewage sludge composting and land utilization].

    PubMed

    Sheng, Jun; Lu, Wen-Jing; Wang, Hong-Tao

    2007-06-01

    A series of composting test using fly ash as stabilizing agent were investigated to study the variation of the exchangeable heavy metals during composting and land utilization. A whole procedure of adsorption and desorption of stabilized heavy metals were analyzed. The result shows that the exchangeable Cu increases while the exchangeable Zn and Pb decrease during composting. Fly ash has significant stabilizing effect on Zn and Pb as evidenced by a decline of 62.47% and 92.61% respectively in the trails with flay ash as stabilizing agent. However there is no obvious change with exchangeable Cu. Although there is a big difference on the activities of heavy metals in different soil types tested, it seems to be ineluctable that addition of sewage sludge composting products cause enrichment of heavy metal in soil.

  20. Chemically modified activated carbon with 1-acylthiosemicarbazide for selective solid-phase extraction and preconcentration of trace Cu(II), Hg(II) and Pb(II) from water samples.

    PubMed

    Gao, Ru; Hu, Zheng; Chang, Xijun; He, Qun; Zhang, Lijun; Tu, Zhifeng; Shi, Jianping

    2009-12-15

    A new sorbent 1-acylthiosemicarbazide-modified activated carbon (AC-ATSC) was prepared as a solid-phase extractant and applied for removing of trace Cu(II), Hg(II) and Pb(II) prior to their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The separation/preconcentration conditions of analytes were investigated, including effects of pH, the shaking time, the sample flow rate and volume, the elution condition and the interfering ions. At pH 3, the maximum static adsorption capacity of Cu(II), Hg(II) and Pb(II) onto the AC-ATSC were 78.20, 67.80 and 48.56 mg g(-1), respectively. The adsorbed metal ions were quantitatively eluted by 3.0 mL of 2% CS(NH2)2 and 2.0 mol L(-1) HCl solution. Common coexisting ions did not interfere with the separation. According to the definition of IUPAC, the detection limits (3sigma) of this method for Cu(II), Hg(II) and Pb(II) were 0.20, 0.12 and 0.45 ng mL(-1), respectively. The relative standard deviation under optimum conditions is less than 4.0% (n=8). The prepared sorbent was applied for the preconcentration of trace Cu(II), Hg(II) and Pb(II) in certified and water samples with satisfactory results.

  1. Mineralogical and geochemical characterization of supergene Cu-Pb-Zn-V ores in the Oriental High Atlas, Morocco

    NASA Astrophysics Data System (ADS)

    Verhaert, Michèle; Bernard, Alain; Dekoninck, Augustin; Lafforgue, Ludovic; Saddiqi, Omar; Yans, Johan

    2017-10-01

    In the Moroccan High Atlas, two sulfide deposits hosted by Jurassic dolostones underwent significant weathering. In the Cu deposit of Jbel Klakh, several stages of supergene mineralization are distinguished: (1) the replacement of hypogene sulfides in the protolith (chalcopyrite) by secondary sulfides in the cementation zone (bornite, digenite, chalcocite, covellite), (2) the formation of oxidized minerals in the saprolite (malachite, azurite, brochantite) where the environment becomes more oxidizing and neutral, and (3) the precipitation of late carbonates (calcite) and iron (hydr-)oxides in the laterite. The precipitation of carbonates is related to the dissolution of dolomitic host rocks, which buffers the fluid acidity due to the oxidation of sulfides. In the Jbel Haouanit Pb-Zn deposit, the mineral assemblage is dominated by typical calamine minerals, Cu minerals (chalcocite, covellite, malachite), and a Cu-Pb-Zn vanadate (mottramite). Galena is successively weathered in anglesite and cerussite. Sphalerite is weathered in smithsonite, which is rapidly replaced by hydrozincite. Late iron (hydr-)oxides are mainly found at the top of both deposits (laterite). Both deposits are thus characterized by specific mineral zoning, from laterite to protolith, related to variations in the mineralogy and ore grades and probably caused by varying Eh-pH conditions.

  2. Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings. Part 1; Electrical and Thermal Conductivity, Thermal Diffusivity, and Total Hemispherical Emissivity

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2017-01-01

    This two-part paper reports the thermophysical properties of several cold and vacuum plasma sprayed monolithic Cu and Ni-based alloy coatings. Part I presents the electrical and thermal conductivity, thermal diffusivity, and total hemispherical emissivity data while Part II reports the specific heat capacity data for these coatings. Metallic copper alloys, stoichiometric NiAl and NiCrAlY coatings were fabricated by either the cold sprayed or the vacuum plasma spray deposition processes for thermal property measurements between 77 and 1223 K. The temperature dependencies of the thermal conductivities, thermal diffusivities, electrical conductivities and total hemispherical emissivities of these cold and vacuum sprayed monolithic coatings are reported in this paper. The electrical and thermal conductivity data correlate reasonably well for Cu-8%Cr-1%Al, Cu-23%Cr-5%Al and NiAl in accordance with the Wiedemann-Franz (WF) law although a better fit is obtained using the Smith-Palmer relationship. The Lorentz numbers determined from the WF law are close to the theoretical value.

  3. Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants.

    PubMed

    Aboughalma, Hanssan; Bi, Ran; Schlaak, Michael

    2008-07-01

    The use of a combination of electrokinetic remediation and phytoremediation to decontaminate soil polluted with heavy metals has been demonstrated in a laboratory-scale experiment. Potato tubers were planted in plastic vessels filled with Zn, Pb, Cu and Cd contaminated soil and grown in a greenhouse. Three of these vessels were treated with direct current electric field (DC), three with alternative current (AC) and three remained untreated as control vessels. The soil pH varied from anode to cathode with a minimum of pH 3 near the anode and a maximum of pH 8 near the cathode in the DC treated soil profile. There was an accumulation of Zn, Cu and Cd at about 12 cm distance from anode when soil pH was 5 in the DC treated soil profile. There was no significant metal redistribution and pH variation between anode and cathode in the AC soil profile. The biomass production of the plants was 72% higher under AC treatment and 27% lower under DC treatment compared to the control. Metal accumulation was generally higher in the plant roots treated with electrical fields than the control. The overall metal uptake in plant shoots was lower under DC treatment compared to AC treatment and control, although there was a higher accumulation of Zn and Cu in the plant roots treated with electrical fields. The Zn uptake in plant shoots under AC treatment was higher compared to the control and DC treatment. Zn and Cu accumulation in the plant roots under AC and DC treatment was similar, and both were higher comparing to control. Cd content in plant roots under all three treatments was found to be higher than that in the soil. The Pb accumulation in the roots and the uptake into the shoots was lower compared to its content in the soil.

  4. The growth of intermetallic compounds at Sn-Ag-Cu solder/Cu and Sn-Ag-Cu solder/Ni interfaces and the associated evolution of the solder microstructure

    NASA Astrophysics Data System (ADS)

    Zribi, A.; Clark, A.; Zavalij, L.; Borgesen, P.; Cotts, E. J.

    2001-09-01

    The evolution of intermetallics at and near SnAgCu/Cu and SnAgCu/Ni interfaces was examined, and compared to the behavior, near PbSn/metal and Sn/metal interfaces. Two different solder compositions were considered, Sn93.6Ag4.7Cu1.7 and Sn95.5Ag3.5Cu1.0 (Sn91.8Ag5.1 Cu3.1 and Sn94.35Ag3.8Cu1.85 in atomic percent). In both cases, phase formation and growth at interfaces with Cu were very similar to those commonly observed for eutectic SnPb solder. However, the evolution of intermetallics at SnAgCu/Ni interfaces proved much more complex. The presence of the Cu in the solder dramatically altered the phase selectivity at the solder/Ni interface and affected the growth kinetics of intermetallics. As long as sufficient Cu was available, it would combine with Ni and Sn to form (Cu,Ni)6)Sn5 which grew instead of the Ni3Sn4 usually observed in PbSn/Ni and Sn/Ni diffusion couples. This growing phase would, however, eventually consume essentially all of the available Cu in the solder. Because the mechanical properties of Sn-Ag-Cu alloys, depend upon the Cu content, this consumption can be expected to alter the mechanical properties of these Pb-free solderjoints. After depletion of the Cu from the solder, further annealing then gradually transformed the (Cu,Ni)6Sn5 phase into a (Ni,Cu)3Sn4 phase.

  5. Paleomagnetic dating of the Cu-Zn-Pb Kupferschiefer deposit at Sangerhausen, Germany

    NASA Astrophysics Data System (ADS)

    Symons, D. T.; Kawasaki, K.; Walther, S.; Borg, G.

    2010-12-01

    Paleomagnetic and rock magnetic results are reported for the Cu-Zn-Pb Kupferschiefer mineralization at Sangerhausen, Germany. The mineralization is richest in the ~0.5 m thick Upper Permian (258±2 Ma) Kupferschiefer black marly shale (9 sites) and dies out over ~0.2 m in the underlying Weisliegend sandstones (3 sites) and overlying Zechstein carbonates (2 sites). Paleomagnetic and rock magnetic analysis were made on 205 specimens from 15 sites on the margin of the Sangerhausen Syncline. Except for the one site from fault zone gypsum, stable characteristic remanent magnetization (ChRM) directions were isolated in pyrrhotite with minor magnetite for the 14 sites using alternating field and thermal step demagnetization. Rock magnetic measurements show that the Kupferschiefer shale marks a redox front between the oxidized Weissliegend sandstones and non-oxidized Zechstein carbonates. A negative paleomagnetic fold test indicates that the ChRM postdates Jurassic fault block tilting. The ChRM directions from the 14 sites give a Late Jurassic paleopole at 149±3 Ma on the European apparent polar wander path. The observed age is significantly younger than the 254±6 Ma primary age of the associated red beds near Lubin in Poland, based on re-interpretation of the 1987 paleopole of Jowett et al. Overall the paleomagnetic results at Sangerhausen favour a very late diagenetic or epigenetic Late Jurassic origin for the Cu-Pb-Zn mineralization in the Kupferschiefer rather than the commonly proposed Late Permian syngenetic to mid-Triassic diagenetic origin.

  6. Depuration Study of Heavy Metal Lead (Pb) and Copper (Cu) in Green Mussels Perna viridis through Continues-discontinues and Acid Extraction Methods

    NASA Astrophysics Data System (ADS)

    Budiawan; Bakri, Ridla; Cahaya Dani, Intan; Handayani, Sri; Ade Kurnia Putri, Rizki; Tamala, Riska

    2018-01-01

    Green mussel or Perna viridis is filter feeder, which is very susceptible to heavy metals. It takes an effort to release heavy metal contents on the green shell, one of method that can be used to release heavy metal from green shell is depuration proccess. In this research, the depuration process was conducted by continues method of depuration, discontinues method by using various kind of water and acid extraction. The optimum time of continues depuration method is 1.5 hours, with circulation speed 250 L/h and result of Pb metal content decreased is equal to 30.048% and 29.748% for Cu. In the discontinues method, the optimum result was reached at 100oC by using PAM water as the media at 3 h immersion period with decrease of Pb metal content 35.001% and Cu metal content 39.015%. In the acid extraction method, the optimum condition was achieved by 11% acetic acid solvent with decreasing of Pb and Cu levels are 88.224% and 76.298%. For the determination of protein content, the decrease of protein content obtained by treatment with 11% acetic acid extract showed decrease of protein content 36.656% with Kjeldahl method.

  7. Distribution, source identification and health risk assessment of soil heavy metals in urban areas of Isfahan province, Iran

    NASA Astrophysics Data System (ADS)

    Rastegari Mehr, Meisam; Keshavarzi, Behnam; Moore, Farid; Sharifi, Reza; Lahijanzadeh, Ahmadreza; Kermani, Maryam

    2017-08-01

    The present study examines some heavy metals (As, Cd, Co, Cr, Cu, Ni, Pb and Zn) contents in urban soils of 23 cities in Isfahan province, central Iran. For this purpose, 83 topsoil samples were collected and analyzed by ICP-MS. Results showed that the concentrations of As, Cd, Cu, Pb and Zn are higher than background values, while Co, Cr and Ni concentrations are close to the background. Compared with heavy metal concentrations in selected cities around the world, As, Cd, Cu, Pb and Zn concentrations in urban soils of Isfahan are relatively enriched. Moreover, natural background concentrations of Co, Cr and Ni in Isfahan province soil are high and the apparent enrichment relative to other major cities of the world is due to this high background contents. Calculated contamination factor (CF) confirmed that As, Cd, Cu, Pb and Zn are extremely enriched in the urban soils. Furthermore, pollution load index (PLI) and Geoaccumulation index (Igeo) highlighted that highly contaminated cities are mostly affected by pollution from traffic, industries and Shahkuh Pb-Zn mine. Based on hazard quotients (HQ), hazard index (HI) and cancer risk (CR) calculated in this study, human health risk (particularly for Pb and Cd) have reached alarming scales. Results from principle component analysis (PCA) and positive matrix factorization (PMF) introduces three sources for soils heavy metals including mine and industries (mainly for Pb, Zn, Cd and As); urban activities (particularly for Cu, Pb and Zn); and geogenic source (Ni, Co and Cr).

  8. Modeling the adsorption of metal ions (Cu 2+, Ni 2+, Pb 2+) onto ACCs using surface complexation models

    NASA Astrophysics Data System (ADS)

    Faur-Brasquet, Catherine; Reddad, Zacaria; Kadirvelu, Krishna; Le Cloirec, Pierre

    2002-08-01

    Activated carbon cloths (ACCs), whose efficiency has been demonstrated for microorganics adsorption from water, were here studied in the removal of metal ions from aqueous solution. Two ACCs are investigated, they are characterized in terms of porosity parameters (BET specific surface area, percentage of microporosity) and chemical characteristics (acidic surface groups, acidity constants, point of zero charge). A first part consists in the experimental study of three metal ions removal (Cu 2+, Ni 2+ and Pb 2+) in a batch reactor. Isotherms modeling by Freundlich and Brunauer-Emmett-Teller (BET) equations enables the following adsorption order: Cu 2+>Ni 2+>Pb 2+ to be determined for adsorption capacities on a molar basis. It may be related to adsorbates characteristics in terms of electronegativity and ionic radius. The influence of adsorbent's microporosity is also shown. Adsorption experiments carried out for pH values ranging from 2 to 10 demonstrate: (i) an adsorption occurring below the precipitation pH; (ii) the strong influence of pH, with a decrease of electrostatic repulsion due to the formation of less charged hydrolyzed species coupled with a decrease of activated carbon surface charge as pH increases. The second part focuses on the modeling of adsorption versus the pH experimental data by the diffuse layer model (DLM) using Fiteql software. The model is efficient to describe the system behavior in the pH range considered. Regarding complexation constants, they show the following affinity for ACC: Pb 2+>Cu 2+>Ni 2+. They are related to initial concentrations used for the three metal ions.

  9. Mineral potential tracts for polymetallic Pb-Zn-Cu vein deposits (phase V, deliverable 71): Chapter I in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Beaudoin, Georges

    2015-01-01

    In Mauritania, mineral occurrences of the polymetallic Pb-Zn-Cu vein deposit type are found near the Florence-El Khdar shear zone in northeast Mauritania. The deposits visited were deemed representative of other similar occurrences and consist of quartz veins with trace sulfides. The low sulfide and Pb-Zn-Cu content in the quartz veins is unlike producing polymetallic Pb-Zn-Cu vein deposits, such that the veins are not considered to belong to this deposit type. Mineral potential tracts for polymetallic Pb-ZnCu veins are highly speculative considering the lack of known mineralization belonging to this deposit type. Mineral potential tracts for polymetallic Pb-Zn-Cu veins are associated with and surround major shear zones in the Rgueïbat Shield and zones of complex faulting in the southern Mauritanides, at the exclusion of the imbricated thrust faults that are not considered favorable for this deposit type. No skarn and replacement deposits have been documented in Mauritania and the low mineral potential is indicated by lack of causative Mesozoic and Cenozoic mafic to felsic stocks.

  10. As, Cd, Cr, Ni and Pb pressurized liquid extraction with acetic acid from marine sediment and soil samples

    NASA Astrophysics Data System (ADS)

    Moreda-Piñeiro, Jorge; Alonso-Rodríguez, Elia; López-Mahía, Purificación; Muniategui-Lorenzo, Soledad; Prada-Rodríguez, Darío; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Adela; Bermejo-Barrera, Pilar

    2006-12-01

    Rapid leaching procedures by Pressurized Liquid Extraction (PLE) have been developed for As, Cd, Cr, Ni and Pb leaching from environmental matrices (marine sediment and soil samples). The Pressurized Liquid Extraction is completed after 16 min. The released elements by acetic acid Pressurized Liquid Extraction have been evaluated by inductively coupled plasma-optical emission spectrometry. The optimum multi-element leaching conditions when using 5.0 ml stainless steel extraction cells, were: acetic acid concentration 8.0 M, extraction temperature 100 °C, pressure 1500 psi, static time 5 min, flush solvent 60%, two extraction steps and 0.50 g of diatomaceous earth as dispersing agent (diatomaceous earth mass/sample mass ratio of 2). Results have showed that high acetic acid concentrations and high extraction temperatures increase the metal leaching efficiency. Limits of detection (between 0.12 and 0.5 μg g - 1 ) and repeatability of the over-all procedure (around 6.0%) were assessed. Finally, accuracy was studied by analyzing PACS-2 (marine sediment), GBW-07409 (soil), IRANT-12-1-07 (cambisol soil) and IRANT-12-1-08 (luvisol soil) certified reference materials (CRMs). These certified reference materials offer certified concentrations ranges between 2.9 and 26.2 μg g - 1 for As, from 0.068 to 2.85 μg g - 1 for Cd, between 26.4 and 90.7 μg g - 1 for Cr, from 9.3 to 40.0 μg g - 1 for Ni and between 16.3 and 183.0 μg g - 1 for Pb. Recoveries after analysis were between 95.7 and 105.1% for As, 96.2% for Cd, 95.2 and 100.6% for Cr, 95.7 and 103% for Ni and 94.2 and 105.5% for Pb.

  11. Structural, magnetic and transport properties of Pb{sub 2}Cr{sub 1+x}Mo{sub 1−x}O{sub 6} (−1≤x≤1/3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, H.F.; School of Mathematics and Physics, University of Science and Technology, Beijing 100083; Cao, L.P.

    Pb{sub 2}Cr{sub 1+x}Mo{sub 1-x}O{sub 6} (−1≤x≤1/3) samples were synthesized via a high pressure and high temperature route. X-ray diffraction results suggest the samples crystallize in a disordered double perovskite structure (Pm-3m). X-ray photoemission spectroscopy results confirm the presence of Mo{sup 4+} for x=−1 and Mo{sup 6+} for x=1/3. The measured magnetic and electrical properties exhibit systematic change with increasing x. - Highlights: • A series of Pb{sub 2}Cr{sub 1+x}Mo{sub 1−x}O{sub 6} samples were synthesized under high pressure. • Magnetic and electrical properties of the series samples were investigated. • Valence states of Cr and Mo were determined through the analysesmore » of XRD and XPS results. • Ground state of PbMoO{sub 3} were determined through the transport study and first-principles calculations.« less

  12. Pollution characteristics, source apportionment, and health risk of heavy metals in street dust of Suzhou, China.

    PubMed

    Lin, Manli; Gui, Herong; Wang, Yao; Peng, Weihua

    2017-01-01

    To analyze the pollution characteristics, source apportionment, and health risk of heavy metals (HMs) in street dust of Suzhou, China, 23 sampling sites were selected and periodically sampled for 12 months. A total of 276 samples were collected, and the concentrations of selected HMs (e.g., Cr, Cu, Fe, Mn, Pb, V, and Zn) were examined with an X-ray fluorescence spectrum analyzer. Results showed that the mean concentrations of Cr, Cu, Fe, Mn, Pb, V, and Zn in the street dust of Suzhou were 112.9, 27.5, 19941.3, 410.3, 45.2, 75.6, and 225.3 mg kg -1 , respectively. Cr, Cu, Pb, and Zn exceeded their background values in local natural soils by 1.3-3.6-fold, whereas Fe, Mn, and V were all within their background values. However, enrichment factor analysis revealed that Cr, Cu, Mn, Pb, V, and Zn, especially Cr, Cu, Pb, and Zn, were enriched in Suzhou street dust. The HMs showed no significant seasonal changes overall, but spatial distribution analysis implied that the high values of Cr, Cu, Mn, Pb, V, and Zn were mainly distributed in areas with frequent human activities. Results of multivariate techniques (e.g., Pearson correlation, hierarchical cluster, and principal components analyses) suggested that Pb and Zn had complicated sources; Cu and V mainly originated from traffic sources; Fe and Mn mainly came from natural sources; and Cr was dominantly related to industrial district. Health risk assessment revealed that a single heavy metal might not cause both non-cancer and carcinogenic risks to local residents. Nevertheless, the sum of the hazard index of all selected HMs for children slightly exceeded the safety value, thereby implying that the HMs from Suzhou street dust can possibly produce significant risk to children. Cr was the priority pollutant in the study area because of its high concentration, high enrichment, and high contribution to non-cancer risk values.

  13. Evaluating the potential of three Fe- and Mn-(nano)oxides for the stabilization of Cd, Cu and Pb in contaminated soils.

    PubMed

    Michálková, Zuzana; Komárek, Michael; Šillerová, Hana; Della Puppa, Loïc; Joussein, Emmanuel; Bordas, François; Vaněk, Aleš; Vaněk, Ondřej; Ettler, Vojtěch

    2014-12-15

    The potential of three Fe- and Mn-(nano)oxides for stabilizing Cd, Cu and Pb in contaminated soils was investigated using batch and column experiments, adsorption tests and tests of soil microbial activity. A novel synthetic amorphous Mn oxide (AMO), which was recently proposed as a stabilizing amendment, proved to be the most efficient in decreasing the mobility of the studied metals compared to nano-maghemite and nano-magnetite. Its application resulted in significant decreases of exchangeable metal fractions (92%, 92% and 93% decreases of Cd, Cu and Pb concentrations, respectively). The adsorption capacity of the AMO was an order of magnitude higher than those recorded for the other amendments. It was also the most efficient treatment for reducing Cu concentrations in the soil solution. No negative effects on soil microorganisms were recorded. On the other hand, the AMO was able to dissolve soil organic matter to some extent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Chemical separation and mass spectrometry of Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial materials using thermal ionization mass spectrometry.

    PubMed

    Yamakawa, Akane; Yamashita, Katsuyuki; Makishima, Akio; Nakamura, Eizo

    2009-12-01

    A sequential chemical separation technique for Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial silicate rocks was developed for precise and accurate determination of elemental concentration by the isotope dilution method (ID). The technique uses a combination of cation-anion exchange chromatography and Eichrom nickel specific resin. The method was tested using a variety of matrixes including bulk meteorite (Allende), terrestrial peridotite (JP-1), and basalt (JB-1b). Concentrations of each element was determined by thermal ionization mass spectrometry (TIMS) using W filaments and a Si-B-Al type activator for Cr, Fe, Ni, and Zn and a Re filament and silicic acid-H3PO4 activator for Cu. The method can be used to precisely determine the concentrations of these elements in very small silicate samples, including meteorites, geochemical reference samples, and mineral standards for microprobe analysis. Furthermore, the Cr mass spectrometry procedure developed in this study can be extended to determine the isotopic ratios of 53Cr/52Cr and 54Cr/52Cr with precision of approximately 0.05epsilon and approximately 0.10epsilon (1epsilon = 0.01%), respectively, enabling cosmochemical applications such as high precision Mn-Cr chronology and investigation of nucleosynthetic isotopic anomalies in meteorites.

  15. U-Pb (zircon) and geochemical constraints on the age, origin, and evolution of Paleozoic arc magmas in the Oyu Tolgoi porphyry Cu-Au district, southern Mongolia

    USGS Publications Warehouse

    Wainwright, A.J.; Tosdal, R.M.; Wooden, J.L.; Mazdab, F.K.; Friedman, R.M.

    2011-01-01

    Uranium-Pb (zircon) ages are linked with geochemical data for porphyry intrusions associated with giant porphyry Cu-Au systems at Oyu Tolgoi to place those rocks within the petrochemical framework of Devonian and Carboniferous rocks of southern Mongolia. In this part of the Gurvansayhan terrane within the Central Asian Orogenic Belt, the transition from Devonian tholeiitic marine rocks to unconformably overlying Carboniferous calc-alkaline subaerial to shallow marine volcanic rocks reflects volcanic arc thickening and maturation. Radiogenic Nd and Pb isotopic compositions (??Nd(t) range from +3.1 to +7.5 and 206Pb/204Pb values for feldspars range from 17.97 to 18.72), as well as low high-field strength element (HFSE) contents of most rocks (mafic rocks typically have <1.5% TiO2) are consistent with magma derivation from depleted mantle in an intra-oceanic volcanic arc. The Late Devonian and Carboniferous felsic rocks are dominantly medium- to high-K calc-alkaline and characterized by a decrease in Sr/Y ratios through time, with the Carboniferous rocks being more felsic than those of Devonian age. Porphyry Cu-Au related intrusions were emplaced in the Late Devonian during the transition from tholeiitic to calc-alkaline arc magmatism. Uranium-Pb (zircon) geochronology indicates that the Late Devonian pre- to syn-mineral quartz monzodiorite intrusions associated with the porphyry Cu-Au deposits are ~372Ma, whereas granodiorite intrusions that post-date major shortening and are associated with less well-developed porphyry Cu-Au mineralization are ~366Ma. Trace element geochemistry of zircons in the Late Devonian intrusions associated with the porphyry Cu-Au systems contain distinct Th/U and Yb/Gd ratios, as well as Hf and Y concentrations that reflect mixing of magma of distinct compositions. These characteristics are missing in the unmineralized Carboniferous intrusions. High Sr/Y and evidence for magma mixing in syn- to late-mineral intrusions distinguish the Late

  16. Pressure effects on the magnetoelectric properties of a multiferroic triangular-lattice antiferromagnet CuCrO2

    NASA Astrophysics Data System (ADS)

    Aoyama, Takuya; Miyake, Atsushi; Kagayama, Tomoko; Shimizu, Katsuya; Kimura, Tsuyoshi

    2013-03-01

    Effects of high pressure exceeding 10 GPa on spin-driven ferroelectricity were investigated for a multiferroic, triangular-lattice antiferromagnet (TLA), CuCrO2. For this purpose, we developed a system which enables us to measure ferroelectric polarization under a pressure of 10 GPa by using a diamond anvil cell. We found that the magnetic transition temperature accompanying the ferroelectric one in CuCrO2 was remarkably enhanced by applying pressure. The result is simply explained by considering the pressure-induced enhancement of inter- and/or intralayer magnetic interaction due to the compression of the lattice. In addition, the coercive electric field for the polarization reversal was also increased with increasing pressure, while the amplitude of the ferroelectric polarization was steeply suppressed at around 8 GPa. A possible origin of the observed pressure effects on the ferroelectric property in the multiferroic TLA is discussed in terms of a ferroelectric-antiferroelectric transition and structural domain rearrangement by uniaxial stress.

  17. Accumulation of Pb and Cu heavy metals in sea water, sediment, and leaf and root tissue of Enhalus sp. in the seagrass bed of Banten Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fauziah, Faiza, E-mail: faiza.fauziah@gmail.com; Choesin, Devi N., E-mail: faiza.fauziah@gmail.com

    2014-03-24

    Banten Bay in Indonesia is a coastal area which has been highly affected by human activity. Previous studies have reported the presence of lead (Pb) and copper (Cu) heavy metals in the seawater of this area. This study was conducted to measure the accumulation of Pb and Cu in seawater, sediment, leaf tissue, and root tissue of the seagrass species Enhalus sp. Sampling was conducted at two observation stations in Banten Bay: Station 1 (St.1) was located closer to the coastline and to industrial plants as source of pollution, while Station 2 (St.2) was located farther away offshore. At eachmore » station, three sampling points were established by random sampling. Field sampling was conducted at two different dates, i.e., on 29 May 2012 and 30 June 2012. Samples were processed by wet ashing using concentrated HNO{sub 3} acid and measured using Atomic Absorption Spectrometry (AAS). Accumulation of Pb was only detected in sediment samples in St.1, while Cu was detected in all samples. Average concentrations of Cu in May were as follows: sediment St.1 = 0.731 ppm, sediment St.2 = 0.383 ppm, seawater St.1 = 0.163 ppm, seawater St.2 = 0.174 ppm, leaf St.1 = 0.102 ppm, leaf St.2 = 0.132 ppm, root St.1= 0.139 ppm, and root St.2 = 0.075 ppm. Average measurements of Cu in June were: sediment St.1 = 0.260 ppm, leaf St.1 = 0.335 ppm, leaf St.2 = 0.301 ppm, root St.1= 0.047 ppm, and root St.2 = 0.060 ppm. In June, Cu was undetected in St.2 sediment and seawater at both stations. In May, Cu concentration in seawater exceeded the maximum allowable threshold for water as determined by the Ministry of the Environment. Spatial and temporal variation in Pb and Cu accumulation were most probably affected by distance from source and physical conditions of the environment (e.g., water current and mixing)« less

  18. Evaluation of the effects of the metals Cd, Cr, Pb and their mixture on the filtration and oxygen consumption rates in catarina scallop, Argopecten ventricosus juveniles.

    PubMed

    Sobrino-Figueroa, Alma S; Cáceres-Martinez, Carlos

    2014-01-01

    In this work, we evaluated the effect of sublethal concentrations ( LC25, LC10 and LC5) of cadmium, chromium, lead, and their mixture on the filtration rate and oxygen consumption rate of Catarina scallop, Argopecten ventricosus (Sowerby, 1842), juveniles, in order to evaluate the use of these biomarkers as a reliable tool in environmental monitoring studies, because these metals have been found at high levels in water and sediments in the Mexican Pacific systems. An inverse dose-response relationship was observed when metal concentration and exposure time increased, the filtration rate and oxygen consumption rate reduced. The physiological responses evaluated in this study were sufficiently sensitive to detect alterations in the organisms at 0.014 mg l(-1) Cd, 0.311 mg l(-1) Cr, 0.125 mg l(-1) Pb and 0.05 mg l(-1) Cd + Cr + Pb at 24 and 72 hrs. Cd showed the most drastic effect. The Catarina scallop juveniles were more sensitive to Cd, Cr and Pb as compared to other bivalves. The biomarkers evaluated are a reliable tool to carry out environmental monitoring studies.

  19. Differential Metal Tolerance and Accumulation Patterns of Cd, Cu, Pb and Zn in the Liverwort Marchantia polymorpha L.

    PubMed

    Ares, Ángela; Itouga, Misao; Kato, Yukari; Sakakibara, Hitoshi

    2018-03-01

    In this study, we investigated the bioaccumulation, tissue distribution and physiological responses to different metal concentration (0.2 and 2 mM) and time of exposure of 1, 2 and 3 weeks with cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) using the model liverwort Marchantia polymorpha. Our data showed, on one hand, a significant enrichment and tissue translocation of Cu, Zn, and specially Cd, reaching concentrations of 1800 µg g - 1 in 3 weeks. On the other hand, Pb exhibited the lowest concentration values (50 µg g - 1 ), and 90% of the total concentration in the rhizoids. We could observe a positive correlation between tissue concentration, metal translocation and an enhanced toxic response. The results obtained in this study might contribute not only in the application of this species in environmental studies with heavy metals but also as a starting point to study the evolution of metal tolerance in land plants.

  20. Tribological Properties of AlCrCuFeNi2 High-Entropy Alloy in Different Conditions

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Ma, Shengguo; Gao, Michael C.; Zhang, Chuan; Zhang, Teng; Yang, Huijun; Wang, Zhihua; Qiao, Junwei

    2016-07-01

    In order to understand the environmental effect on the mechanical behavior of high-entropy alloys, the tribological properties of AlCrCuFeNi2 are studied systematically in dry, simulated rainwater, and deionized water conditions against the Si3N4 ceramic ball at a series of different normal loads. The present study shows that both the friction and wear rate in simulated rainwater are the lowest. The simulated rainwater plays a significant role in the tribological behavior with the effect of forming passive film, lubricating, cooling, cleaning, and corrosion. The wear mechanism in simulated rainwater is mainly adhesive wear accompanied by abrasive wear as well as corrosive wear. In contrast, those in dry condition and deionized water are abrasive wear, adhesive wear, and surface plastic deformation. Oxidation contributes to the wear behavior in dry condition but is prevented in liquid condition. In addition, the phase diagram of Al x CrCuFeNi2 is predicted using CALPHAD modeling, which is in good agreement with the literature report and the present study.

  1. Cd, Ni, Cr and Pb distribution in biosolid pellets used as soil amendment

    NASA Astrophysics Data System (ADS)

    Jordán, Manuel M.; Rincón-Mora, Beatriz; Belén Almendro-Candel, María; Navarro Pedreño, Jose; Gómez Lucas, Ignacio; Bech, Jaume; Roca, Nuria; Pardo, Francisco

    2016-04-01

    The application of biosolids to a soil is a method that offers important benefits (Navarro et al. 2003). The transport and application costs are quite low (mostly if they are dehydrated biosolids or pellets) if soils are located near a wastewater treatment plant. It is possible to recycle nutrients (N, P, and K) and organic matter by improving the physical and chemical characteristics of the soil and by reducing the fertilizer costs. However, the use of biosolids may also has several problems, such as the presence of quantities of metals that could be toxic for plants or could contaminate ground-waters after being leached. Heavy metals are one of the most serious environmental pollutants because of its high toxicity, abundance and easy accumulation by plant (Soriano-Disla et al. 2014; Rosen and Chen 2014). Contamination of soils by potentially toxic elements (e.g. Cd, Ni, Cr, Pb) from amendments of biosolids is subject to rigorous controls within the European Union. The present study was designed to examine the partition of selected heavy metals in biosolid pellets, and also to relate the distribution patterns of these metals. Samples were collected from the treatment of urban wastewater at the drying grounds of a wastewater processing plant. The samples correspond to biosolids with humidities below 20% and are representative of the three horizons within the pile: the isolation surface (H1), the mesophilous area (H2), and the thermophilous area (H3). Biosolid aggregates were placed in a pellet press and then compacted. Total content of metals was determined following microwave digestion and analysed by ICP/MS. Triplicate samples were weighed in polycarbonate centrifuge tubes and sequentially extracted. The distribution of chemical forms of Cd, Ni, Cr, and Pb in the biosolids was studied using a sequential extraction procedure that fractionates the metal into soluble-exchangeable, specifically sorbed-carbonate bound, oxidizable, reducible, and residual forms. The

  2. Electrochemical Study of Carbon Nanotubes/Nanohybrids for Determination of Metal Species Cu2+ and Pb2+ in Water Samples

    PubMed Central

    Oliveira Silva, Andréa Claudia; de Oliveira, Luis Carlos Ferreira; Vieira Delfino, Angladis; Meneghetti, Mario Roberto

    2016-01-01

    The use of nanomaterials, such as nanoparticles and nanotubes, for electrochemical detection of metal species has been investigated as a way of modifying electrodes by electrochemical stripping analysis. The present study develops a new methodology based on a comparative study of nanoparticles and nanotubes with differential pulse anodic stripping voltammetry (DPASV) and examines the simultaneous determination of copper and lead. The glassy carbon electrode modified by gold nanoparticles demonstrated increased sensitivity and decreased detection limits, among other improvements in analytical performance data. Under optimized conditions (deposition potential −0.8 V versus Ag/AgCl; deposition time, 300 s; resting time, 10 s; pulse amplitude, 50 mV; and voltage step height, 4 mV), the detection limits were 0.2279 and 0.3321 ppb, respectively, for determination of Pb2+ and Cu2+. The effects of cations and anions on the simultaneous determination of metal ions do not exhibit significant interference, thereby demonstrating the selectivity of the electrode for simultaneous determination of Pb2+ and Cu2+. The same method was also used to determine Cu2+ in water samples. PMID:27882263

  3. Stabilization of Cd-, Pb-, Cu- and Zn-contaminated calcareous agricultural soil using red mud: a field experiment.

    PubMed

    Wang, Yangyang; Li, Fangfang; Song, Jian; Xiao, Ruiyang; Luo, Lin; Yang, Zhihui; Chai, Liyuan

    2018-04-12

    Red mud (RM) was used to remediate heavy metal-contaminated soils. Experiments with two different dosages of RM added to soils were carried out in this study. It was found that soil pH increased 0.3 and 0.5 unit with the dosage of 3 and 5% (wt%), respectively. At the dosage of 5%, the highest stabilization efficiencies for Cd, Pb, Cu and Zn reached 67.95, 64.21, 43.73 and 63.73%, respectively. The addition of RM obviously transferred Cd from the exchangeable fraction to the residual fraction. Meanwhile, in comparison with the control (no RM added), it reduced 24.38, 49.20, 19.42 and 8.89% of Cd, Pb, Cu and Zn in wheat grains at the RM addition dosage of 5%, respectively. At the same time, the yield of wheat grains increased 17.81 and 24.66% at the RM addition dosage of 3 and 5%, respectively. Finally, the addition of RM did not change the soil bacterial community. These results indicate that RM has a great potential in stabilizing heavy metals in calcareous agricultural soils.

  4. Sorption properties of the activated carbon-zeolite composite prepared from coal fly ash for Ni(2+), Cu(2+), Cd(2+) and Pb(2+).

    PubMed

    Jha, Vinay Kumar; Matsuda, Motohide; Miyake, Michihiro

    2008-12-15

    Composite materials of activated carbon and zeolite have been prepared successfully by activating coal fly ash (CFA) by fusion with NaOH at 750 degrees C in N(2) followed by hydrothermal treatments under various conditions. Uptake experiments for Ni(2+), Cu(2+), Cd(2+) and Pb(2+) were performed with the materials thus obtained from CFA. Of the various composite materials, that were obtained by hydrothermal treatment with NaOH solution (ca. 4M) at 80 degrees C (a composite of activated carbon and zeolite X/faujasite) proved to be the most suitable for the uptake of toxic metal ions. The relative selectivity of the present sorbents for the various ions was Pb(2+)>Cu(2+)>Cd(2+)>Ni(2+), with equilibrium uptake capacities of 2.65, 1.72, 1.44 and 1.20mmol/g, respectively. The sorption isotherm was a good fit to the Langmuir isotherm and the sorption is thought to progress mainly by ion exchange with Na(+). The overall reaction is pseudo-second order with rate constants of 0.14, 0.17, 0.21 and 0.20Lg/mmol min for the uptake of Pb(2+), Cu(2+), Cd(2+) and Ni(2+), respectively.

  5. Modulation of Defects in Semiconductors by Facile and Controllable Reduction: The Case of p-type CuCrO2 Nanoparticles.

    PubMed

    Jiang, Tengfei; Li, Xueyan; Bujoli-Doeuff, Martine; Gautron, Eric; Cario, Laurent; Jobic, Stéphane; Gautier, Romain

    2016-08-01

    Optical and electrical characteristics of solid materials are well-known to be intimately related to the presence of intrinsic or extrinsic defects. Hence, the control of defects in semiconductors is of great importance to achieve specific properties, for example, transparency and conductivity. Herein, a facile and controllable reduction method for modulating the defects is proposed and used for the case of p-type delafossite CuCrO2 nanoparticles. The optical absorption in the infrared region of the CuCrO2 material can then be fine-tuned via the continuous reduction of nonstoichiometric Cu(II), naturally stabilized in small amounts. This reduction modifies the concentration of positive charge carriers in the material, and thus the conductive and reflective properties, as well as the flat band potential. Indeed, this controllable reduction methodology provides a novel strategy to modulate the (opto-) electronic characteristics of semiconductors.

  6. Superconducting Bi1.5Pb0.5Sr2Ca2Cu3O(x) ceramics by rapid melt quenching and glass crystallization

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1989-01-01

    A glass of nominal Bi(1.5)Pb(0.5)Sr2Ca2Cu3O(x) composition, prepared by rapid quenching of the melt, showed a glass transition temperature of 383 C, crystallization temperature of 446 C, melting temperature of 855 C, and bulk density of 5.69 g/cu cm in air. The activation energy for crystallization of the glass was estimated to be 292kJ/mol from non-isothermal DSC. On heating in oxygen, the glass showed a slow and continuous weight gain starting at approximately 530 C which reached a plateau at approximately 820 C. The weight gained during heating was retained on cooling to ambient conditions indicating an irreversible oxidation step. The influence of annealing conditions on the formation of various phases in the glass has been investigated. The Bi(2)Sr(2)Ca(0)Cu(1)O(6) phase crystallized out first followed by formation of other phases at higher temperatures. The high-T(sub c) phase, isostructural with Bi(2)Sr(2)Ca(2)Cu(3)O(10) was not detected below 840 C, but its fraction increased with the annealing time at 840 C. A sample annealed at 840 C for 243h in air and furnace cooled showed the highest T(sub c)(R=0) of 107.2K and a narrow transition width, delta T(sub c)(10 to 90 percent), of approximately 2 K. The high T(sub c) phase does not seem to crystallize out directly from the glass but is rather produced at high temperature by reaction between the phases formed at lower temperatures. The kinetics of 110K phase formation was sluggish. It appears that the presence of lead helps in the formation and/or stabilization of the 110 K phase.

  7. Compatibility between Co-Metallized PbTe Thermoelectric Legs and an Ag-Cu-In Brazing Alloy.

    PubMed

    Ben-Ayoun, Dana; Sadia, Yatir; Gelbstein, Yaniv

    2018-01-10

    In thermoelectric (TE) generators, maximizing the efficiency of conversion of direct heat to electricity requires the reduction of any thermal and electrical contact resistances between the TE legs and the metallic contacts. This requirement is especially challenging in the development of intermediate to high-temperature TE generators. PbTe-based TE materials are known to be highly efficient up to temperatures of around 500 °C; however, only a few practical TE generators based on these materials are currently commercially available. One reason for that is the insufficient bonding techniques between the TE legs and the hot-side metallic contacts. The current research is focused on the interaction between cobalt-metallized n -type 9.104 × 10 -3 mol % PbI₂-doped PbTe TE legs and the Ag 0.32 Cu 0.43 In 0.25 brazing alloy, which is free of volatile species. Clear and fine interfaces without any noticeable formation of adverse brittle intermetallic compounds were observed following prolonged thermal treatment testing. Moreover, a reasonable electrical contact resistance of ~2.25 mΩmm² was observed upon brazing at 600 °C, highlighting the potential of such contacts while developing practical PbTe-based TE generators.

  8. Chromium as Resonant Donor Impurity in PbTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, M.D.; Levin, Evgenii; Jaworski, C.M.

    2012-01-25

    We synthesize and perform structural, thermoelectric, magnetic, and 125Te NMR characterization measurements on chromium-doped PbTe. 125Te NMR and magnetic measurements show that Pb1−xCrxTe is a solid solution up to x = 0.4 at.% and forms an n-type dilute paramagnetic semiconductor. The Cr level is resonant and pins the Fermi level about 100 meV into the conduction band at liquid nitrogen temperatures and below, but it moves into the gap as the temperature increases to 300 K. 125Te NMR spectra exhibit a Knight shift that correlates well with Hall effect measurements and resolve peaks of Te near Cr. Magnetic behavior indicatesmore » that Cr exists mainly as Cr2+. No departure from the Pisarenko relation for PbTe is observed. Secondary Cr2Te3 and Cr3+δTe4 phases are present in samples with x > 0.4%.« less

  9. Antisite defects in layered multiferroic CuCr0.9In0.1P2S6

    NASA Astrophysics Data System (ADS)

    He, Qian; Belianinov, Alex; Dziaugys, Andrius; Maksymovych, Petro; Vysochanskii, Yulian; Kalinin, Sergei V.; Borisevich, Albina Y.

    2015-11-01

    The CuCr1-xInxP2S6 system represents a large family of metal chalcogenophosphates that are unique and promising candidates for 2D materials with functionalities such as ferroelectricity. In this work, we carried out detailed microstructural and chemical characterization of these compounds using aberration-corrected STEM, in order to understand the origin of these different ordering phenomena. Quantitative STEM-HAADF imaging and analysis identified the stacking order of an 8-layer thin flake, which leads to the identification of anti-site In3+(Cu+) doping. We believe that these findings will pave the way towards understanding the ferroic coupling phenomena in van der Waals lamellar compounds, as well as their potential applications in 2-D electronics.The CuCr1-xInxP2S6 system represents a large family of metal chalcogenophosphates that are unique and promising candidates for 2D materials with functionalities such as ferroelectricity. In this work, we carried out detailed microstructural and chemical characterization of these compounds using aberration-corrected STEM, in order to understand the origin of these different ordering phenomena. Quantitative STEM-HAADF imaging and analysis identified the stacking order of an 8-layer thin flake, which leads to the identification of anti-site In3+(Cu+) doping. We believe that these findings will pave the way towards understanding the ferroic coupling phenomena in van der Waals lamellar compounds, as well as their potential applications in 2-D electronics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04779j

  10. Composite superconducting wires obtained by high-rate tinning in molten Bi-Pb-Sr-Ca-Cu-O system

    NASA Technical Reports Server (NTRS)

    Grozav, A. D.; Konopko, L. A.; Leporda, N. I.

    1990-01-01

    The preparation of high-T(sub c) superconducting long composite wires by short-time tinning of the metal wires in a molten Bi-Pb-Sr-Ca-Cu-O compound is discussed. The application of this method to the high-T(sub c) materials is tested, possibly for the first time. The initial materials used for this experiment were ceramic samples with nominal composition Bi(1.5)Pb(0.5)Sr2Ca2Cu3O(x) and T(sub c) = 80 K prepared by the ordinary solid-state reaction, and industrial copper wires from 100 to 400 microns in diameter and from 0.5 to 1 m long. The continuously moving wires were let through a small molten zone (approximately 100 cubic mm). The Bi-based high-T(sub c) ceramics in a molten state is a viscous liquid and it has a strongly pronounced ability to spread on metal wire surfaces. The maximum draw rate of the Cu-wire, at which a dense covering is still possible, corresponds to the time of direct contact of wire surfaces and liquid ceramics for less than 0.1 s. A high-rate draw of the wire permits a decrease in the reaction of the oxide melt and Cu-wire. This method of manufacture led to the fabrication of wire with a copper core in a dense covering with uniform thickness of about h approximately equal to 5 to 50 microns. Composite wires with h approximately equal to 10 microns (h/d approximately equal to 0.1) sustained bending on a 15 mm radius frame without cracking during flexing.

  11. Pb solubility of the high-temperature superconducting phase Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+d}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaesche, S.; Majewski, P.; Aldinger, F.

    1994-12-31

    For the nominal composition of Bi{sub 2.27x}Pb{sub x}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+d} the lead content was varied from x=0.05 to 0.45. The compositions were examined between 830{degrees}C and 890{degrees}C which is supposed to be the temperature range over which the so-called 2223 phase (Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+d}) is stable. Only compositions between x=0.18 to 0.36 could be synthesized in a single phase state. For x>0.36 a lead containing phase with a stoichiometry of Pb{sub 4}(Sr,Ca){sub 5}CuO{sub d} is formed, for x<0.18 mainly Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+d} and cuprates are the equilibrium phases. The temperature range for themore » 2223 phase was found to be 830{degrees}C to 890{degrees}C but the 2223 phase has extremely varying cation ratios over this temperature range. Former single phase 2223 samples turn to multi phase samples when annealed at slightly higher or lower temperatures. A decrease in the Pb solubility with increasing temperature was found for the 2223 phase.« less

  12. The Transfiguration continental red-bed Cu-Pb-Zn-Ag deposit, Quebec Appalachians, Canada

    NASA Astrophysics Data System (ADS)

    Cabral, Alexandre Raphael; Beaudoin, Georges; Taylor, Bruce E.

    2009-04-01

    The Transfiguration Cu-Pb-Zn-Ag deposit, enclosed within reduced grey sandstone, is associated with continental red beds of the Lower Silurian Robitaille Formation in the Quebec Appalachians, Canada. The Robitaille Formation rests unconformably on foliated Cambro-Ordovician rocks. The unconformity is locally cut by barite veins. The basal unit of the Robitaille Formation comprises green wacke and pebble conglomerate, which locally contain calcite nodules. The latter have microstructures characteristic of alpha-type calcretes, such as “floating” fabrics, calcite-filled fractures (crystallaria) and circumgranular cracks. Massive, grey sandstone overlies the basal green wacke and pebble conglomerate unit, which is overlain, in turn, by red, fine-grained sandstone. Mineralisation occurred underneath the red sandstone unit, chiefly in the grey sandstone unit, as disseminated and veinlet sulphides. Chalcopyrite, the most abundant Cu sulphide, replaced early pyrite. Calcrete, disseminated carbonate and vein carbonate have stable isotope ratios varying from -7.5‰ to -1.1‰ δ13C and from 14.7‰ to 21.3‰ δ18O. The negative δ13C values indicate the oxidation of organic matter in a continental environment. Sulphur isotope ratios for pyrite, chalcopyrite and galena vary from -19‰ to 25‰ δ34S, as measured on mineral concentrates by a conventional SO2 technique. Laser-assisted microanalyses (by fluorination) of S isotopes in pyrite show an analogous range in δ34S values, from -21‰ to 25‰. Negative and positive δ34S values are compatible with bacterial sulphate reduction (BSR) in systems open and closed with respect to sulphate. We interpret similarly high δ34S values for sulphide concentrates (25.1‰) and for vein barite (26.2‰) to result from rapid and complete thermochemical reduction of pore-water sulphate. Two early to late diagenetic stages of mineralisation best explain the origin of the Transfiguration deposit. The first stage was characterised

  13. Magneto-structural correlation in Co0.8Cu0.2Cr2O4 cubic spinel

    NASA Astrophysics Data System (ADS)

    Kumar, Ram; Rayaprol, S.; Siruguri, V.; Xiao, Y.; Ji, W.; Pal, D.

    2018-05-01

    Neutron and X-ray diffraction, magnetic susceptibility, and specific heat measurements have been used to investigate the magneto-structural phase transitions in 20% Cu substituted multiferroic CoCr2O4 spinel. The Jahn-Teller active Cu2+ ion in the tetrahedral A-site of the spinel configuration induces the Jahn-Teller distortion slightly above the Néel temperature. In this compound, we observe a Jahn-Teller distortion of the crystal structure at 90 K. It was further observed that the high temperature cubic (Fd 3 ‾ m) structure coexists with the low temperature orthorhombic (Fddd) structure till the lowest temperature of measurement.

  14. [Concentration of Hg, Pb, Cd, Cr and As in liver Carcharhinus limbatus (Carcharhiniformes: Carcharhinidae) captured in Veracruz, Mexico].

    PubMed

    Mendoza-Díaz, Fernando; Serrano, Arturo; Cuervo-López, Liliana; López-Jiménez, Alejandra; Galindo, José A; Basañez-Muñoz, Agustin

    2013-06-01

    Pollution by heavy metals in marine ecosystems in the Gulf of Mexico is one of the hardest conservation issues to solve. Sharks as top predators are bioindicators of the marine ecosystem health, since they tend to bioaccumulate and biomagnify contaminants; they also represent a food source for local consumption. Thus, the objective of this study was to study the possible presence of heavy metals and a metalloid in livers of Carcharhinus limbatus. For this, a total of 19 shark livers were taken from animals captured nearby Tamihua, Veracruz, Mexico from December 2007 to April 2008. 12 out of the 19 captured sharks were males, one was an adult female, three were juvenile males, and three juvenile females. Four heavy metals (Hg, Pb, Cd, and Cr) and one metaloid (As) were analyzed in shark livers using an atomic absorption spectrophotometry with flame and hydride generator. Our results showed that the maximum concentrations found were: Hg = 0.69 mg/kg, Cd = 0.43 mg/kg, As = 27.37 mg/kg, Cr = 0.70 mg/kg. The minimum concentrations found were: As = 14.91 mg/kg, Cr = 0.35 mg/kg. The Pb could not be determined because the samples did not have the spectrophotometer minimum detectable amount (0.1 mg/kg). None of the 19 samples analyzed showed above the permissible limits established by Mexican and American laws. There was a correlation between shark size and Cr and As concentration (Pearson test). The concentration of Cr and As was observed to be higher in bigger animals. There was not a significant difference in heavy metals concentration between juveniles and adults; however, there was a difference between males and females. A higher Cr concentration was found in females when compared to males. None of the samples exceed the maximum limit established by the laws of Mexico and the United States of America. Much longer studies are needed with C. limbatus and other species caught in the region, in order to determine the degree of contaminants exposure in aquatic ecosystems

  15. Origin and fate of sulfide liquids in hotspot volcanism (La Réunion): Pb isotope constraints from residual Fe-Cu oxides

    NASA Astrophysics Data System (ADS)

    Vlastélic, I.; Gannoun, A.; Di Muro, A.; Gurioli, L.; Bachèlery, P.; Henot, J. M.

    2016-12-01

    Immiscible sulfide liquids in basaltic magmas play an important role in trace metal transport and the sulfur budget of volcanic eruptions. However, sulfides are transient phases, whose origin and fate are poorly constrained. We address these issues by analyzing sulfide destabilization products preserved in lavas from La Réunion Island. Iron oxide globules and coatings, typically 20-80 μm in size, were found to occur in vesicles of differentiated lavas from Piton des Neiges, and recent pumice samples from Piton de la Fournaise. Field and mineralogical evidence indicates that the iron oxides are syn-eruptive phases not resulting from hydrothermal processes. Samples were first studied by Scanning Electron Microscopy. The globules were separated, whereas the smaller spherules and coatings were concentrated by magnetic sorting and acid leaching, and samples were processed through wet chemistry. The Fe oxide phases comprise 49-74 wt.% Fe, 26-40 wt.% O, and up to 6 wt.% Cu, 811 ppm Ni, 140 ppm Bi, and 8.5 ppm Pb. Compared to the host lava, Cu, Ni, and Bi are enriched by a factor of 101-103. Systematic Pb isotope disequilibrium (between 500 ppm and 2.9% for 206Pb/204Pb) exists between Fe oxides and host rocks, with Fe oxides generally displaying less radiogenic ratios. Unradiogenic Pb is a typical signature of sulfide, which tends to concentrate Pb, but not its parent elements U and Th. Thus, both the chemical and isotopic compositions of the vesicle-hosted Fe oxides suggest that they are more or less direct products of the destabilization of immiscible sulfide liquids. Although Pb dominantly partitions into the gas phase during sulfide breakdown, the original Pb isotope signature of sulfide is preserved in the residual oxide. The composition estimated for the parent sulfides (206Pb/204Pb = 18.20-18.77, 207Pb/204Pb = 15.575, and 208Pb/204Pb = 38.2-38.8) precludes a genetic link with the La Réunion plume, and suggests a lithospheric or crustal origin. It is estimated

  16. Ecological and human health risks from metal(loid)s in peri-urban soil in Nanjing, China.

    PubMed

    Ding, Zhuhong; Hu, Xin

    2014-06-01

    In order to investigate the ecological and human health risks of metal(loid)s (Cu, Pb, Zn, Ni, Cd, Mn, Cr, and As) in peri-urban soils, 43 surface soil samples were collected from the peri-urban area around Nanjing, a megacity in China. The average contents were 1.19, 67.8, 37.6, 105, 167, 44.6, 722, and 50.8 mg kg(-1) for Cd, Cr, Ni, Pb, Zn, Cu, Mn, and As, respectively. A significant positive correlation was found between Cu, Pb, Zn, Cd, Mn, and As (p < 0.01), and Cr had a significant positive correlation with Ni (p < 0.01). Geoaccumulation indices indicate the presence of Cd and As contamination in all of the peri-urban soil samples. Potential ecological risk indices show that the metal(loid)s in the soil could result in higher ecological risks. Cd is the main contributor to the risk, followed by As. The levels of Cu, Pb, Zn, Cd, Mn, and As in stomach and intestinal phases show a positive linear correlation with their total contents. Mn, Zn, Ni, Cd, and Pb in stomach phase showed higher bioaccessibility, while in intestinal phase, Cu, Cr, and As had the higher bioaccessibility. The carcinogenic risk in children and adults posed by As, Pb, and Cr via ingestion was deemed acceptable. The non-carcinogenic risks posed by these metal(loid)s via ingestion to children are higher than to adults and mainly result from As.

  17. Oxidation Behavior of GRCop-84 (Cu-8Cr-4Nb) at Intermediate and High Temperatures

    NASA Technical Reports Server (NTRS)

    Thomas-Ogbuji, Linus U.; Humphrey, Donald L.; Greenbauer-Seng, Leslie (Technical Monitor)

    2000-01-01

    The oxidation behavior of GRCop-84 (Cu-8 at %Cr-4 at %Nb) has been investigated in air and in oxygen, for durations of 0.5 to 50 hours and temperatures ranging from 500 to 900 C. For comparison, data was also obtained for the oxidation of Cu and NARloy-Z (Cu-3 wt% Ag-0.5 wt% Zr) under the same conditions. Arrhenius plots of those data showed that all three materials had similar oxidation rates at high temperatures (> 750 C). However, at intermediate temperatures (500 to 750 C) GRCop exhibited significantly higher oxidation resistance than Cu and NARloy-Z. The oxidation kinetics of GRCop-84 exhibited a sharp and discontinuous jump between the two regimes. Also, in the high temperature regime GRCop-84 oxidation rate was found to change from a high initial value to a significantly smaller terminal value at each temperature, with progress of oxidation; the two different oxidation rates were found to correlate with a porous intial oxide and a dense final oxide, respectively.

  18. Efficient Carbon-Based CsPbBr3 Inorganic Perovskite Solar Cells by Using Cu-Phthalocyanine as Hole Transport Material

    NASA Astrophysics Data System (ADS)

    Liu, Zhiyong; Sun, Bo; Liu, Xingyue; Han, Jinghui; Ye, Haibo; Shi, Tielin; Tang, Zirong; Liao, Guanglan

    2018-06-01

    Metal halide perovskite solar cells (PSCs) have attracted extensive research interest for next-generation solution-processed photovoltaic devices because of their high solar-to-electric power conversion efficiency (PCE) and low fabrication cost. Although the world's best PSC successfully achieves a considerable PCE of over 20% within a very limited timeframe after intensive efforts, the stability, high cost, and up-scaling of PSCs still remain issues. Recently, inorganic perovskite material, CsPbBr3, is emerging as a promising photo-sensitizer with excellent durability and thermal stability, but the efficiency is still embarrassing. In this work, we intend to address these issues by exploiting CsPbBr3 as light absorber, accompanied by using Cu-phthalocyanine (CuPc) as hole transport material (HTM) and carbon as counter electrode. The optimal device acquires a decent PCE of 6.21%, over 60% higher than those of the HTM-free devices. The systematic characterization and analysis reveal a more effective charge transfer process and a suppressed charge recombination in PSCs after introducing CuPc as hole transfer layer. More importantly, our devices exhibit an outstanding durability and a promising thermal stability, making it rather meaningful in future fabrication and application of PSCs.[Figure not available: see fulltext.

  19. Strongly reduced Ehrlich-Schwoebel barriers at the Cu (111) stepped surface with In and Pb surfactants

    NASA Astrophysics Data System (ADS)

    Hao, Jialei; Zhang, Lixin

    2018-01-01

    A surfactant can modify the properties of the surface and induce different mode of epitaxy growth. The atomistic mechanism is not fully understood yet. In this first-principles study, taking Cu homoepitaxy along (111) direction as an example, we show that the distribution of the surfactant atoms on the surface is the key. For In and Pb, they prefer to locate at the step edges and remain isolated. Once the growth is started, the distribution can be further modified by Cu adatoms. The uniquely decorated step edges have much lowered Ehrlich-Schwoebel (ES) barriers than that of the clean edges, thus the two dimensional growth on Cu (111) surface is promoted significantly. On the other hand, for Rh, Ir, and Au, these atoms are not favored at the step edges. The ES barriers can't be affected and these metals are not surfactants. The result is very helpful for searching of the optimal surfactants in metal homoepitaxy.

  20. Determination of some heavy metals (Fe, Cu, Zn and Pb) in blood by total reflection X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Bounakhla, M.; Doukkali, A.; Lalaoui, K.; Aguenaou, H.; Mokhtar, N.; Attrassi, B.

    2003-05-01

    The main purpose of this study is the interaction between nutrition (micronutrients heavy metals: Fe, Zn, Cu) and toxic heavy metals such as Pb in blood of children living in Gharb region of Morocco. This region receives all pollution carried by the Sebou river coming mainly from industrial activities. A rapid and simple analytical procedure was used for the determination of Fe, Cu and Zn trace amounts in blood by total-reflection X-ray fluorescence technique. This method is an energy dispersive XRF technique in a special geometry of primary beam, sample and detector. The sample is deposited on a plane polished surface of a suitable reflector material. It is presented as a few drops (25 μl) from a solution of blood digested in a mixture of HNO3 and H2O2 using a microwaves accelerated reaction system. The accuracy of measurements has been investigated by using certified materials. The concentration of Cu was found to be normal in all samples (\\cong1 ppm) which ruled out any interaction between this element and the others. On the other hand, amounts of Fe and Zn are very variables, suggesting an interaction between Fe and Zn. However, amounts of Pb in blood are inferior to 50 ppb, suggesting that no interaction exist with this metal and micronutrients.

  1. U Pb ages of angrites

    NASA Astrophysics Data System (ADS)

    Amelin, Yuri

    2008-01-01

    Precise U-Pb ages, determined with double spike ( 202Pb- 205Pb) thermal ionization m1ass spectrometry, are reported for angrites Angra dos Reis (AdoR), Lewis Cliff 86010 (LEW), and D'Orbigny. Nineteen of 23 acid-washed pyroxene fractions from these meteorites and whole rock fractions from D'Orbigny contain between 0.5 and 1.3 pg of total common Pb, indistinguishable from analytical blank. Measured 206Pb/ 204Pb ratios in these fractions are between 6300 and 14,100 for AdoR, 1160-4500 for LEW, and 608-8500 for D'Orbigny. Blank-corrected 206Pb/ 204Pb ratios for all three meteorites vary from 2160 to over 100,000. These fractions yielded precise and reproducible 207Pb ∗/ 206Pb ∗ dates with the average values of 4557.65 ± 0.13 Ma for AdoR, 4558.55 ± 0.15 Ma for LEW, and 4564.42 ± 0.12 Ma for D'Orbigny. Pb-Pb isochrons including data with slightly elevated common Pb, and U-Pb upper concordia intercepts, yield similar dates. The implications of these new Pb-isotopic ages of angrites are threefold. First, they demonstrate that AdoR and LEW are not coeval, and the group of "slowly cooled" angrites is therefore genetically diverse. Second, the new age of LEW suggests an upward revision of 53Mn- 53Cr "absolute" ages by 0.7 Ma. Third, a precise age of D'Orbigny allows consistent linking of the 53Mn- 53Cr and 26Al- 26Mg extinct nuclide chronometers to the absolute lime scale.

  2. The impact of sublethal concentrations of Cu, Pb and Cd on honey bee redox status, superoxide dismutase and catalase in laboratory conditions.

    PubMed

    Nikolić, Tatjana V; Kojić, Danijela; Orčić, Snežana; Batinić, Darko; Vukašinović, Elvira; Blagojević, Duško P; Purać, Jelena

    2016-12-01

    In this study, laboratory bioassays were performed to investigate the impact of sublethal concentrations of Cu (CuCl 2 : 1000, 100, 10 mg L -1 ), Pb (PbCl 2 : 10, 1, 0.1 mg L -1 ) and Cd (CdCl 2 : 0.1, 0.01, 0.001 mg L -1 ) on honey bee redox status and the activity of the main antioxidative enzymes and their gene expression. Our results show that exposure to these metals led to significant changes of gene expression, the levels of enzyme activity and redox status, but the effects are metal and dose dependent. In general, exposure of 48 h to given concentrations of Cu, Cd and Pb did not change the activity of antioxidative enzymes and the level of lipid peroxidation, with the exception of decreased activity of catalase at the lowest concentration of cadmium. Only lead produced increases in glutathione and thiol groups. Expression of genes for catalase and superoxide dismutase changed with exposure to cadmium and copper, whilst lead induced only expression of superoxide dismutase genes. The results from this study provide basic data for future research regarding the impacts of metal pollution on Apis mellifera and will be an important step towards a comprehensive risk assessment of the environmental stressors on honey bees. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Comparison of GRCop-84 to Other Cu Alloys with High Thermal Conductivities

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Ellis, David L.; Loewenthal, William S.

    2007-01-01

    The mechanical properties of six highly conductive copper alloys, GRCop-84, AMZIRC, GlidCop Al-15, Cu-1Cr-0.1Zr, Cu-0.9Cr, and NARloy-Z were compared. Tests were done on as-received hard drawn material, and after a heat treatment designed to simulate a brazing operation at 935 C. In the as-received condition AMZIRC, GlidCop Al-15, Cu- 1Cr-0.1Zr and Cu-0.9Cr had excellent strengths at temperatures below 500 C. However, the brazing heat treatment substantially decreased the mechanical properties of AMZIRC, Cu-1Cr-0.1Zr, Cu-0.9Cr, and NARloy-Z. The properties of GlidCop Al-15 and GRCop-84 were not significantly affected by the heat treatment. Thus there appear to be advantages to GRCop-84 over AMZIRC, Cu-1Cr-0.1Zr, Cu-0.9Cr, and NARloy-Z if use or processing temperatures greater than 500 C are expected. Ductility was lowest in GlidCop Al-15 and Cu-0.9Cr; reduction in area was particularly low in GlidCop Al-15 above 500 C, and as- received Cu-0.9Cr was brittle between 500 and 650 C. Tensile creep tests were done at 500 and 650 C; the creep properties of GRCop-84 were superior to those of brazed AMZIRC, Cu-1Cr- 0.1Zr, Cu-0.9Cr, and NARloy-Z. In the brazed condition, GRCop-84 was superior to the other alloys due to its greater strength and creep resistance (compared to AMZIRC, Cu-1Cr-0.1Zr, Cu-0.9Cr, and NARloy-Z) and ductility (compared to GlidCop Al-15).

  4. Magnetic zeolite NaA: synthesis, characterization based on metakaolin and its application for the removal of Cu2+, Pb2+.

    PubMed

    Liu, Haibo; Peng, Shuchuan; Shu, Lin; Chen, Tianhu; Bao, Teng; Frost, Ray L

    2013-06-01

    The optimum parameters for synthesis of zeolite NaA based on metakaolin were investigated according to results of cation exchange capacity and static water adsorption of all synthesis products and selected X-ray diffraction (XRD). Magnetic zeolite NaA was synthesized by adding Fe3O4 in the precursor of zeolite. Zeolite NaA and magnetic zeolite NaA were characterized with scanning electron microscopy (SEM) and XRD. Magnetic zeolite NaA with different Fe3O4 loadings was prepared and used for removal of heavy metals (Cu(2+), Pb(2+)). The results show the optimum parameters for synthesis zeolite NaA are SiO2/Al2O3=2.3, Na2O/SiO2=1.4, H2O/Na2O=50, crystallization time 8h, crystallization temperature 95 °C. The addition of Fe3O4 makes the NaA zeolite with good magnetic susceptibility and good magnetic stability regardless of the Fe3O4 loading, confirming the considerable separation efficiency. Additionally, Fe3O4 loading had a little effect on removal of heavy metal by magnetic zeolite, however, the adsorption capacity still reaches 2.3 mmol g(-1) for Cu(2+), Pb(2+) with a removal efficiency of over 95% in spite of 4.7% Fe3O4 loading. This indicates magnetic zeolite can be used to remove metal heavy at least Cu(2+), Pb(2+) from water with metallic contaminants and can be separated easily after a magnetic process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. 210Po Activity and concentrations of selected trace elements (As, Cd, Cu, Hg, Pb, Zn) in the muscle tissue of tunas Thunnus albacares and Katsuwonus pelamis from the Eastern Pacific Ocean.

    PubMed

    Ruelas-Inzunza, Jorge; Soto-Jiménez, Martín Federico; Ruiz-Fernández, Ana Carolina; Bojórquez-Leyva, Humberto; Pérez-Bernal, Hascibe; Páez-Osuna, Federico

    2012-12-01

    Daily mineral intake (DMI) of Cu and Zn, percentage weekly intake (PWI) of As, Cd, Hg, Pb, and doses of (210)Po were estimated by using their elemental concentration in muscle of two tuna species and the average tuna consumption in Mexico. Skipjack tuna Katsuwonus pelamis had significantly (p < 0.05) higher levels of As (1.38 μg g(-1) dw) and Cu (1.85 μg g(-1) dw) than yellowfin tuna Thunnus albacares, whereas Pb concentrations (0.18 μg g(-1) dw) were significantly (p < 0.05) higher in T. albacares. The sequence of elemental concentrations in both species was Zn > Cu > As > Hg > Pb > Cd. In T. albacares, concentrations of Cd and Pb in muscle tissue were positively correlated (p < 0.05) with weight of specimens, while Cu was negatively correlated. DMI values were below 10 %. PWI figures (<2 %) are not potentially harmful to human health. (210)Po concentration in T. albacares and K. pelamis accounts for 13.5 to 89.7 % of the median individual annual dose (7.1 μSv) from consumption of marine fish and shellfish for the world population.

  6. Osteoclastic differentiation and resorption is modulated by bioactive metal ions Co2+, Cu2+ and Cr3+ incorporated into calcium phosphate bone cements

    PubMed Central

    Bernhardt, Anne; Schamel, Martha; Gbureck, Uwe; Gelinsky, Michael

    2017-01-01

    Biologically active metal ions in low doses have the potential to accelerate bone defect healing. For successful remodelling the interaction of bone graft materials with both bone-forming osteoblasts and bone resorbing osteoclasts is crucial. In the present study brushite forming calcium phosphate cements (CPC) were doped with Co2+, Cu2+ and Cr3+ and the influence of these materials on osteoclast differentiation and activity was examined. Human osteoclasts were differentiated from human peripheral blood mononuclear cells (PBMC) both on the surface and in indirect contact to the materials on dentin discs. Release of calcium, phosphate and bioactive metal ions was determined using ICP-MS both in the presence and absence of the cells. While Co2+ and Cu2+ showed a burst release, Cr3+ was released steadily at very low concentrations (below 1 μM) and both calcium and phosphate release of the cements was considerably changed in the Cr3+ modified samples. Direct cultivation of PBMC/osteoclasts on Co2+ cements showed lower attached cell number compared to the reference but high activity of osteoclast specific enzymes tartrate resistant acid phosphatase (TRAP), carbonic anhydrase II (CAII) and cathepsin K (CTSK) and significantly increased gene expression of vitronectin receptor. Indirect cultivation with diluted Co2+ cement extracts revealed highest resorbed area compared to all other modifications and the reference. Cu2+ cements had cytotoxic effect on PBMC/osteoclasts during direct cultivation, while indirect cultivation with diluted extracts from Cu2+ cements did not provoke cytotoxic effects but a strictly inhibited resorption. Cr3+ doped cements did not show cytotoxic effects at all. Gene expression and enzyme activity of CTSK was significantly increased in direct culture. Indirect cultivation with Cr3+ doped cements revealed significantly higher resorbed area compared to the reference. In conclusion Cr3+ doped calcium phosphate cements are an innovative cement

  7. Osteoclastic differentiation and resorption is modulated by bioactive metal ions Co2+, Cu2+ and Cr3+ incorporated into calcium phosphate bone cements.

    PubMed

    Bernhardt, Anne; Schamel, Martha; Gbureck, Uwe; Gelinsky, Michael

    2017-01-01

    Biologically active metal ions in low doses have the potential to accelerate bone defect healing. For successful remodelling the interaction of bone graft materials with both bone-forming osteoblasts and bone resorbing osteoclasts is crucial. In the present study brushite forming calcium phosphate cements (CPC) were doped with Co2+, Cu2+ and Cr3+ and the influence of these materials on osteoclast differentiation and activity was examined. Human osteoclasts were differentiated from human peripheral blood mononuclear cells (PBMC) both on the surface and in indirect contact to the materials on dentin discs. Release of calcium, phosphate and bioactive metal ions was determined using ICP-MS both in the presence and absence of the cells. While Co2+ and Cu2+ showed a burst release, Cr3+ was released steadily at very low concentrations (below 1 μM) and both calcium and phosphate release of the cements was considerably changed in the Cr3+ modified samples. Direct cultivation of PBMC/osteoclasts on Co2+ cements showed lower attached cell number compared to the reference but high activity of osteoclast specific enzymes tartrate resistant acid phosphatase (TRAP), carbonic anhydrase II (CAII) and cathepsin K (CTSK) and significantly increased gene expression of vitronectin receptor. Indirect cultivation with diluted Co2+ cement extracts revealed highest resorbed area compared to all other modifications and the reference. Cu2+ cements had cytotoxic effect on PBMC/osteoclasts during direct cultivation, while indirect cultivation with diluted extracts from Cu2+ cements did not provoke cytotoxic effects but a strictly inhibited resorption. Cr3+ doped cements did not show cytotoxic effects at all. Gene expression and enzyme activity of CTSK was significantly increased in direct culture. Indirect cultivation with Cr3+ doped cements revealed significantly higher resorbed area compared to the reference. In conclusion Cr3+ doped calcium phosphate cements are an innovative cement

  8. AC losses in (Bi,Pb) 2Sr 2Ca 2Cu 3O x tapes

    NASA Astrophysics Data System (ADS)

    D'Anna, G.; Indenbom, M. V.; André, M.-O.; Benoit, W.; Grivel, J.-C.; Hensel, B.; Flükiger, R.

    1994-05-01

    A double peak structure is observed in the AC losses of (Bi,Pb) 2Sr 2Ca 2Cu 3O x silver-sheathed tapes using a torsion-pendulum oscillator. The low-temperature peak is associated to the intragrain flux expulsion, while the high-temperature peak results from a macroscopic current path around the whole sample due to a well-coupled fraction of the grains. The flux pinning by the dislocations forming small-angle grain boundaries is suggested to control the transport current.

  9. Raman spectroscopy of the multianion mineral gartrellite-PbCu(Fe3+,Cu)(AsO4)2(OH,H2O)2

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei; Palmer, Sara J.

    2012-04-01

    The multianion mineral gartrellite PbCu(Fe3+,Cu)(AsO4)2(OH,H2O)2 has been studied by a combination of Raman and infrared spectroscopy. The vibrational spectra of two gartrellite samples from Durango and Ashburton Downs were compared. Gartrellite is one of the tsumcorite mineral group based upon arsenate and sulphate anions. Crystal symmetry is either triclinic in the case of an ordered occupation of two cationic sites, triclinic due to ordering of the H bonds in the case of species with 2 water molecules per formula unit, or monoclinic in the other cases. Characteristic Raman spectra of the minerals enable the assignment of the bands to specific vibrational modes. These spectra are related to the structure of gartrellite. The position of the hydroxyl and water stretching vibrations are related to the strength of the hydrogen bond formed between the OH unit and the AsO4 anion.

  10. Electron spin resonance in Cu1-xFexCr2Se4 nanoparticles synthesized with the thermal decomposition method

    NASA Astrophysics Data System (ADS)

    Edelman, I. S.; Zharkov, S. M.; Pankrats, A. I.; Vorotynov, A. M.; Tugarinov, V. I.; Ivantsov, R. D.; Petrov, D. A.; Velikanov, D. A.; Lin, Chun-Rong; Chen, Chin-Chang; Tseng, Yaw-Teng; Hsu, Hua-Shu

    2017-08-01

    In this paper, we present a study of the electron spin resonance (ESR) of nanoparticles (NPs) of Cu1-xFexCr2Se4 chalcogenides with x = 0, 0.2, and 0.4. NPs were synthesized via the thermal decomposition of metal chloride salts and selenium powder in a high-temperature organic solvent. According to the XRD and HRTEM data, the NPs were single crystalline nearly hexagonal plates with the structure close to CuCr2Se4 (Fd-3m, a = 10.337 Å). For x = 0 and 0.2, the NPs tend to form long stacks consisting of the plates ;face to face; attached to each other due to the magnetostatic interparticle interaction. Only separate NPs were observed in the case of x = 0.4. Peculiarities were revealed in the ESR temperature behavior for the NPs with x = 0 and 0.2 consistent with the features in the temperature dependences of the NPs magnetization. The non-monotonous dependence of the resonance field Hres on the temperature with a kink near 130 K and the energy gap in the resonance spectrum depending on the type of nanoparticle compacting are the distinct peculiarities. One of the main factors is discussed in order to explain the peculiarities: the coexistence of two types of anisotropy in the Cu1-xFexCr2Se4 NPs, in-plain shape anisotropy and magnetocrystalline anisotropy with four easy axes, which increases strongly with the temperature decrease.

  11. Coexistence of Cu, Fe, Pb, and Zn oxides and chlorides as a determinant of chlorinated aromatics generation in municipal solid waste incinerator fly ash.

    PubMed

    Fujimori, Takashi; Tanino, Yuta; Takaoka, Masaki

    2014-01-01

    We investigated chemical determinants of the generation of chlorinated aromatic compounds (aromatic-Cls), such as polychlorinated biphenyls (PCBs) and chlorobenzenes (CBzs), in fly ash from municipal solid waste incineration. The influences of the following on aromatic-Cls formation in model fly ash (MFA) were systematically examined quantitatively and statistically: (i) inorganic chlorides (KCl, NaCl, CaCl2), (ii) base materials (SiO2, Al2O3, CaCO3), (iii) metal oxides (CuO, Fe2O3, PbO, ZnO), (iv) metal chlorides (CuCl2, FeCl3, PbCl2, ZnCl2), and (v) "coexisting multi-models." On the basis of aromatic-Cls concentrations, the ∑CBzs/∑PCBs ratio, and the similarity between distribution patterns, MFAs were categorized into six groups. The results and analysis indicated that the formation of aromatic-Cls depended strongly on the "coexistence condition", namely multimodels composed of not only metal chlorides, but also of metal oxides. The precise replication of metal chloride to oxide ratios, such as the precise ratios of Cu-, Fe-, Pb-, and Zn-chlorides and oxides, may be an essential factor in changing the thermochemical formation patterns of aromatic-Cls. Although CuCl2 acted as a promoter of aromatic-Cls generation, statistical analyses implied that FeCl3 also largely influenced the generation of aromatic-Cls under mixture conditions. Various additional components of fly ash were also comprehensively analyzed.

  12. Epitaxial growth and properties of YBa2Cu3O(x)-Pb(Zr(0.6)Ti(0.4))O3-YBa2Cu3O(x) trilayer structure by laser ablation

    NASA Astrophysics Data System (ADS)

    Boikov, Iu. A.; Esaian, S. K.; Ivanov, Z. G.; Brorsson, G.; Claeson, T.; Lee, J.; Safari, A.

    1992-08-01

    YBa2Cu3O(x)Pb(Zr(0.6)Ti(0.4))O3-YBa2Cu3O(x) multilayer structure has been grown on SrTiO3 and Al2O3 substrates using laser ablation. The deposition conditions for the growth of trilayers and their properties are studied in this investigation. Scanning electron microscope images and X-ray diffraction analyses indicate that all the constituent films in the trilayer grow epitaxially on SrTiO3 and were highly oriented on Al2O3. Transport measurements on these multilayers show that top YBa2Cu3O(x) films have good superconducting properties.

  13. Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia.

    PubMed

    Muhammad, Dawood; Chen, Fei; Zhao, Jing; Zhang, Guoping; Wu, Feibo

    2009-08-01

    A pot experiment was conducted to study the performance of EDTA and citric acid (CA) addition in improving phytoextraction of Cd, Cu, Pb, and Cr from artificially contaminated soil by T. angustifolia. T. angustifolia showed the remarkable resistance to heavy metal toxicity with no visual toxic symptom including chlorosis and necrosis when exposed to metal stress. EDTA-addition significantly reduced plant height and biomass, compared with the control, and stunted plant growth, while 2.5 and 5 mM CA addition induced significant increases in root dry weight. EDTA, and 5 and 10 mM CA significantly increased shoot Cd, Pb, and Cr concentrations compared with the control, with EDTA being more effective. At final harvest, the highest shoot Cd, Cr, and Pb concentrations were recorded in the treatment of 5 mM EDTA addition, while maximal root Pb concentration was found at the 2.5 mM CA treatment. However, shoot Cd accumulation in the 10 mM CA treatment was 36.9% higher than that in 2.5 mM EDTA, and similar with that in 10 mM EDTA. Shoot Pb accumulation was lower in 10 mM CA than that in EDTA treatments. Further, root Cd, Cu, and Pb accumulation of CA treatments and shoot Cr accumulation in 5 or 10 mM CA treatments were markedly higher than that of control and EDTA treatments. The results also showed that EDTA dramatically increased the dissolution of Cu, Cr, Pb, and Cd in soil, while CA addition had less effect on water-soluble Cu, Cr, and Cd, and no effect on Pb levels. It is suggested that CA can be a good chelator candidate for T. angustifolia used for environmentally safe phytoextraction of Cd and Cr in soils.

  14. Preparation of 110K (Bi, Pb)-Sr-Ca-Cu-O superconductor from glass precursor

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1990-01-01

    The Bi1.5Pb0.5Sr2Ca2Cu3O(x) glass, prepared by rapid quenching of the melt, showed T(sub g) of 383 C, crystallization temperature of approx. 446 C, melting temperature of approx. 855 C, and bulk density of 5.69 g/cu. cm. in air. The as-quenched glass was oxygen deficient. On heating in O2, it showed a slow, irreversible, and continuous weight gain starting at approx. 530 C. The influence of annealing conditions on the formation of various phases was investigated by XRD and electrical resistivity measurements. The 110K-T(sub c) phase did not form below 840 C. The amount of this phase increased with the sintering time at 840 C. A sample annealed at 840 C for 243 h in air and furnace cooled showed the highest T(sub c) (R=0) of 107.2 K and transition width delta T(sub c) (10 to 90 percent) of approx. 2 K.

  15. Intrinsically low thermal conductivity from a quasi-one-dimensional crystal structure and enhanced electrical conductivity network via Pb doping in SbCrSe 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Dingfeng; Yao, Wei; Yan, Yanci

    The development of new routes for the production of thermoelectric materials with low-cost and high-performance characteristics has been one of the long-term strategies for saving and harvesting thermal energy. We report a new approach for improving thermoelectric properties by employing the intrinsically low thermal conductivity of a quasi-one-dimensional (quasi-1D) crystal structure and optimizing the power factor with aliovalent ion doping. As an example, we demonstrated that SbCrSe 3, in which two parallel chains of CrSe 6 octahedra are linked by antimony atoms, possesses a quasi-1D property that resulted in an ultra-low thermal conductivity of 0.56 W m -1 K -1more » at 900 K. After maximizing the power factor by Pb doping, the peak ZT value of the optimized Pb-doped sample reached 0.46 at 900 K, which is an enhancement of 24 times that of the parent SbCrSe 3 structure. The mechanisms that lead to low thermal conductivity derive from anharmonic phonons with the presence of the lone-pair electrons of Sb atoms and weak bonds between the CrSe 6 double chains. Our results shed new light on the design of new and high-performance thermoelectric materials.« less

  16. Intrinsically low thermal conductivity from a quasi-one-dimensional crystal structure and enhanced electrical conductivity network via Pb doping in SbCrSe 3

    DOE PAGES

    Yang, Dingfeng; Yao, Wei; Yan, Yanci; ...

    2017-06-09

    The development of new routes for the production of thermoelectric materials with low-cost and high-performance characteristics has been one of the long-term strategies for saving and harvesting thermal energy. We report a new approach for improving thermoelectric properties by employing the intrinsically low thermal conductivity of a quasi-one-dimensional (quasi-1D) crystal structure and optimizing the power factor with aliovalent ion doping. As an example, we demonstrated that SbCrSe 3, in which two parallel chains of CrSe 6 octahedra are linked by antimony atoms, possesses a quasi-1D property that resulted in an ultra-low thermal conductivity of 0.56 W m -1 K -1more » at 900 K. After maximizing the power factor by Pb doping, the peak ZT value of the optimized Pb-doped sample reached 0.46 at 900 K, which is an enhancement of 24 times that of the parent SbCrSe 3 structure. The mechanisms that lead to low thermal conductivity derive from anharmonic phonons with the presence of the lone-pair electrons of Sb atoms and weak bonds between the CrSe 6 double chains. Our results shed new light on the design of new and high-performance thermoelectric materials.« less

  17. Leaching of Metal Pollutants from Four Well Casings Used for Ground-Water Monitoring

    DTIC Science & Technology

    1989-09-01

    Atomic Spectroscopy, 4:126-128. 10 APPENDIX A : LEVELS OF CD, PB, CR, BA AND CU DETERMINED IN GROUND-WATER SOLUTIONS (MG/L). Time Pqle R:ph’itc (day1s...7 Conclusion ................................................... 9 Literature cited ................................................ 9 Appendix A ... Levels of Cd, Pb, Cr, Ba and Cu determined in ground-water solutions .................................................. 11 ILLUSTRATIONS Figure 1. Ground

  18. Comparison in waterborne Cu, Ni and Pb bioaccumulation kinetics between different gammarid species and populations: Natural variability and influence of metal exposure history.

    PubMed

    Urien, N; Farfarana, A; Uher, E; Fechner, L C; Chaumot, A; Geffard, O; Lebrun, J D

    2017-12-01

    Kinetic parameters (uptake from solution and elimination rate constants) of Cu, Ni and Pb bioaccumulation were determined from two Gammarus pulex and three Gammarus fossrum wild populations collected from reference sites throughout France in order to assess the inter-species and the natural inter-population variability of metal bioaccumulation kinetics in that sentinel organism. For that, each population was independently exposed for seven days to either 2.5μgL -1 Cu (39.3nM), 40μgL -1 Ni (681nM) or 10μgL -1 Pb (48.3nM) in laboratory controlled conditions, and then placed in unexposed microcosms for a 7-day depuration period. In the same way, the possible influence of metal exposure history on subsequent metal bioaccumulation kinetics was addressed by collecting wild gammarids from three populations inhabiting stations contaminated either by Cd, Pb or both Pb and Ni (named pre-exposed thereafter). In these pre-exposed organisms, assessment of any changes in metal bioaccumulation kinetics was achieved by comparison with the natural variability of kinetic parameters defined from reference populations. Results showed that in all studied populations (reference and pre-exposed) no significant Cu bioaccumulation was observed at the exposure concentration of 2.5μgL -1 . Concerning the reference populations, no significant differences in Ni and Pb bioaccumulation kinetics between the two species (G. pulex and G. fossarum) was observed allowing us to consider all the five reference populations to determine the inter-population natural variability, which was found to be relatively low (kinetic parameters determined for each population remained within a factor of 2 of the minimum and maximum values). Organisms from the population exhibiting a Pb exposure history presented reduced Ni uptake and elimination rate constants, whereas no influence on Ni kinetic parameters was observed in organisms from the population exhibiting an exposure history to both Ni and Pb. Furthermore

  19. Geochemical behavior, environmental availability, and reconstruction of historical trends of Cu, Pb, and Zn in sediment cores of the Cananéia-Iguape coastal system, Southeastern Brazil.

    PubMed

    Tramonte, Keila Modesto; Figueira, Rubens Cesar Lopes; Majer, Alessandra Pereira; de Lima Ferreira, Paulo Alves; Batista, Miriam Fernanda; Ribeiro, Andreza Portella; de Mahiques, Michel Michaelovitch

    2018-02-01

    The Cananéia-Iguape system is located in a coastal region of southeastern Brazil, recognized by UNESCO as an Atlantic Forest Biosphere Reserve. This system has suffered substantial environmental impacts due to the opening of an artificial channel and by past intensive mining activities. In this paper was performed the sequential chemical extraction of Cu, Pb, and Zn, on previously described sediment cores, and the statistical treatment of the data, allowing to estimate the remobilization geochemical behavior, the available content and the trend of accumulation between 1926 and 2008. The maximum available level (sum of all mobile fraction) were, in mgkg -1 , 18.74 for Cu, 177.55 for Pb and 123.03 for Zn. Considering its environmental availability, Pb remains a concern in the system. It was possible to recognize the anthropic contribution of Pb, being the mining activities considered the only potential source of this metal in the region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Oxidation behavior and area specific resistance of La, Cu and B alloyed Fe-22Cr ferritic steels for solid oxide fuel cell interconnects

    NASA Astrophysics Data System (ADS)

    Swaminathan, Srinivasan; Ko, Yoon Seok; Lee, Young-Su; Kim, Dong-Ik

    2017-11-01

    Two Fe-22 wt% Cr ferritic stainless steels containing varying concentrations of La (0.14 or 0.52 wt%), Cu (0.17 or 1.74 wt%) and B (48 or 109 ppm) are investigated with respect to oxidation behavior and high temperature area specific resistance (ASR) of the surface oxide scales. To determine the oxidation resistance of developed steels, continuous isothermal oxidation is carried out at 800 °C in air, for 2000 h, and their thermally grown oxide scale is characterized using dynamic SIMS, SEM/EDX, XRD and GI-XRD techniques. To assess their electrical performance, the ASR measurement by four-point probe method is conducted at 800 °C in air, for 400 h. In higher La content steel, the La-oxides at the scale/alloy interface promotes the oxygen transport which resulted in sub-surface oxidation of Mn, Cr, Ti and Al. Moreover, the inward growth of oxides contributes to increase of Fe-Cr alloy protrusions within the scale, which reduced the ASR. In contrast, sub-surface oxidation is reduced in high Cu-alloyed steel by segregated Cu at the scale/alloy interface. Thus, addition of Cu is effective to oxidation resistance and also to better electrical performance. However, no obvious impact of B on the scale sequence and/or ASR is observed.

  1. Comparison of GRCop-84 to Other High Thermal Conductive Cu Alloys

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Ellis, David L.; Loewenthal, William S.

    2007-01-01

    The mechanical properties of five copper alloys (GRCop-84, AMZIRC, GlidCop Al-15, Cu-1Cr-0.1Zr, Cu-0.9Cr) competing in high temperature, high heat flux applications such as rocket nozzles, were compared. Tensile, creep, thermal expansion, and compression tests are presented. Tests were done on as-received material, and on material which received a simulated brazing heat treatment at 935 C. The 935 C heat treatment weakened AMZIRC, Cu-1Cr-0.1Zr, and Cu-0.9Cr, and the strength of as-received AMZIRC dropped precipitously as test temperatures exceeded 500 C. The properties of GlidCop Al-15 and GRCop-84 were not significantly affected by the 935 C heat treatment. Thus GRCop-84 is better than AMZIRC, Cu-1Cr-0.1Zr, and Cu-0.9Cr at temperatures greater than 500 C. Ductility was lowest in GlidCop Al-15 and Cu-0.9Cr. The creep properties of GRCop-84 were superior to those of brazed AMZIRC, Cu-1Cr-0.1Zr, and Cu-0.9Cr. At equivalent rupture life and stress, GRCop-84 had a 150 C temperature advantage over brazed AMZIRC; for equivalent rupture life and temperature GRCop-84 was two times stronger. The advantages of GRCop-84 over GlidCop Al-15 associated with ease of processing were confirmed by GlidCop s marginal ductility. In the post brazed condition, GRCop-84 was found to be superior to the other alloys due to its greater strength and creep resistance (compared to AMZIRC, Cu-1Cr-0.1Zr, and Cu-0.9Cr) and ductility (compared to GlidCop Al-15)

  2. [Study on pollution evaluation of heavy metal in surface soil of the original site of Qingdao North Station].

    PubMed

    Zhu, Lei; Jia, Yong-gang; Pan, Yu-ying

    2013-09-01

    The determination of pollution extent and health risk assessment are the premise of heavy metal contaminated site remediation. The content of Cu, Cr, Pb, Cd, Zn, Ni in Qingdao North Station was detected, and the correlation of the 6 kinds of heavy metal content was analyzed. The pollution extent in excess of background values was characterized by anthropogenic influence multiple, and the pollution of heavy metal in soil was evaluated using geoaccumulation index and a new method which connects geoaccumulation index with Nemero index. Finally, human health risk assessment was carried out with health risk assessment model for heavy metal content. The results showed that Qingdao North Station soil were polluted by heavy metals. Six heavy metal pollution levels were: Cd > Cu > Ni > Pb > Cr > Zn, and Cd had reached the severity pollution level, Cu and Ni followed by, Cr, Pb and Zn were in minor pollution level. The order of coefficient variation in all heavy metals was: Cd > Ni > Cr > Zn > Pb > Cu. Within the study area soil heavy metal distribution was different, but overall discrepancy was small. The order of non-cancer hazards of heavy metals in soil was Cr > Pb > Cu > Ni > Cd > Zn, and the order of carcinogen risks of heavy metals was Ni > Cd. The non-cancer hazard and carcinogen risks values of metals were both lower than that their threshold values. They were not the direct threats to human health.

  3. Source Evaluation and Trace Metal Contamination in Benthic Sediments from Equatorial Ecosystems Using Multivariate Statistical Techniques

    PubMed Central

    Benson, Nsikak U.; Asuquo, Francis E.; Williams, Akan B.; Essien, Joseph P.; Ekong, Cyril I.; Akpabio, Otobong; Olajire, Abaas A.

    2016-01-01

    Trace metals (Cd, Cr, Cu, Ni and Pb) concentrations in benthic sediments were analyzed through multi-step fractionation scheme to assess the levels and sources of contamination in estuarine, riverine and freshwater ecosystems in Niger Delta (Nigeria). The degree of contamination was assessed using the individual contamination factors (ICF) and global contamination factor (GCF). Multivariate statistical approaches including principal component analysis (PCA), cluster analysis and correlation test were employed to evaluate the interrelationships and associated sources of contamination. The spatial distribution of metal concentrations followed the pattern Pb>Cu>Cr>Cd>Ni. Ecological risk index by ICF showed significant potential mobility and bioavailability for Cu, Cu and Ni. The ICF contamination trend in the benthic sediments at all studied sites was Cu>Cr>Ni>Cd>Pb. The principal component and agglomerative clustering analyses indicate that trace metals contamination in the ecosystems was influenced by multiple pollution sources. PMID:27257934

  4. Structural and surface properties of CuO-ZnO-Cr{sub 2}O{sub 3} catalysts and their relationship with selectivity to higher alcohol synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campos-Martin, J.M.; Fierro, J.L.G.; Guerrero-Ruiz, A.

    1995-10-01

    A series of copper-zinc-chromium catalysts of different compositions and calcination temperatures has been prepared, characterized by several techniques (BET specific surface area, XRD, gravimetric TPR, TPD-CO, and XPS), and tested under high alcohol synthesis (HAS) conditions. CO hydrogenation was carried out at reaction temperatures of 523-598 K and 50 bar total pressure. The influence of catalyst composition, calcination temperature, and surface characteristics on the HAS selectivity was studied. The optimum HAS yields were found in the low Cr content region, but chromium was needed. Although chromium oxide does not seem to be involved in the catalytic site, its presence inmore » the catalyst composition is essential, owing to the larger specific surfaces and catalyst stability obtained at the highest reaction temperatures. For low Cr content composition, the temperature-programmed reduction (TPR) profiles were shifted to higher temperatures and simultaneously larger CO{sub 2} amounts were found in the temperature-programmed desorption profiles of adsorbed CO (TPD-CO). Photoelectron spectra (XPS) revealed that the oxidation state of copper is Cu{sup 2+} in the calcined catalysts and Cu{sup O} in the reduced ones; Cu{sup +} was only stabilized in a CuCr{sub 2}O{sub 4} spinel in the Cr-rich catalysts. These features derived from catalyst characterization are discussed in the framework of the catalytic behaviour for HAS synthesis. 53 refs., 7 figs., 4 tabs.« less

  5. Effects of Welding Parameters on Mechanical Properties in Electron Beam Welded CuCrZr Alloy Plates

    NASA Astrophysics Data System (ADS)

    Jaypuria, Sanjib; Doshi, Nirav; Pratihar, Dilip Kumar

    2018-03-01

    CuCrZr alloys are attractive structural materials for plasma-facing components (PFC) and heat sink element in the International Thermonuclear Experimental Reactor (ITER) fusion reactors. This material has gained so much attention because of its high thermal conductivity and fracture toughness, high resistance to radiation damage and stability at elevated temperatures. The objective of this work is to study the effects of electron beam welding parameters on the mechanical strength of the butt welded CuCrZr joint. Taguchi method is used as the design of experiments to optimize the input parameters, such as accelerating voltage, beam current, welding speed, oscillation amplitude and frequency. The joint strength and ductility are the desired responses, which are measured through ultimate tensile strength and percent elongation, respectively. Accelerating voltage and welding speed are found to have significant influence on the strength. A combination of low amplitude and high-frequency oscillation is suggested for the higher joint strength and ductility. There is a close agreement between Taguchi predicted results and experimental ones. Fractographic analysis of joint and weld zone analysis are carried out to study the failure behaviour and microstructural variation in the weld zone, respectively.

  6. Cu assisted stabilization and nucleation of L1 2 precipitates in Al 0.3 CuFeCrNi 2 fcc-based high entropy alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwalani, B.; Choudhuri, D.; Soni, V.

    2017-05-01

    A detailed investigation of precipitation of the ordered L12 (γ’) phase in a Al0.3CrCuFeNi2 high entropy alloy (HEA), more generally referred to as a complex concentrated alloy (CCA), reveals the role of copper (Cu) on stabilization and precipitation of the ordered L12 ( γ’) phase. Detailed characterization via coupling of scanning and transmission electron microscopy, and atom probe tomography revealed novel insights into Cu clustering within the face-centered cubic matrix of this HEA, leading to heterogeneous nucleation sites for the γ’ precipitates. The subsequent partitioning of Cu into the γ’ precipitates indicates their stabilization is due to Cu addition. Themore » γ’ order-disorder transition temperature was determined to be ~930 _C in this alloy, based on synchrotron diffraction experiments, involving in situ annealing. The growth and high temperature stability of the γ’ precipitates was also confirmed via systematic scanning electron microscopy investigations of samples annealed at temperatures in the range of 700-900 oC. The role of Cu revealed by this study can be employed in the design of precipitation strengthened HEAs, as well as in a more general sense applied to other types of superalloys, with the objective of potentially enhancing their mechanical properties at room and elevated temperatures« less

  7. Cr-rich rutile: A powerful tool for diamond exploration

    NASA Astrophysics Data System (ADS)

    Malkovets, V. G.; Rezvukhin, D. I.; Belousova, E. A.; Griffin, W. L.; Sharygin, I. S.; Tretiakova, I. G.; Gibsher, A. A.; O'Reilly, S. Y.; Kuzmin, D. V.; Litasov, K. D.; Logvinova, A. M.; Pokhilenko, N. P.; Sobolev, N. V.

    2016-11-01

    Mineralogical studies and U-Pb dating have been carried out on rutile included in peridotitic and eclogitic garnets from the Internatsionalnaya pipe, Mirny field, Siberian craton. We also describe a unique peridotitic paragenesis (rutile + forsterite + enstatite + Cr-diopside + Cr-pyrope) preserved in diamond from the Mir pipe, Mirny field. Compositions of rutile from the heavy mineral concentrates of the Internatsionalnaya pipe and rutile inclusions in crustal almandine-rich garnets from the Mayskaya pipe (Nakyn field), as well as from a range of different lithologies, are presented for comparison. Rutile from cratonic mantle peridotites shows characteristic enrichment in Cr, in contrast to lower-Cr rutile from crustal rocks and off-craton mantle. Rutile with Cr2O3 > 1.7 wt% is commonly derived from cratonic mantle, while rutiles with lower Cr2O3 may be both of cratonic and off-cratonic origin. New analytical developments and availability of standards have made rutile accessible to in situ U-Pb dating by laser ablation ICP-MS. A U-Pb age of 369 ± 10 Ma for 9 rutile grains in 6 garnets from the Internatsionalnaya pipe is consistent with the accepted eruption age of the pipe (360 Ma). The equilibrium temperatures of pyropes with rutile inclusions calculated using Ni-in-Gar thermometer range between 725 and 1030 °C, corresponding to a depth range of ca 100-165 km. At the time of entrainment in the kimberlite, garnets with Cr-rich rutile inclusions resided at temperatures well above the closure temperature for Pb in rutile, and thus U-Pb ages on mantle-derived rutile most likely record the emplacement age of the kimberlites. The synthesis of distinctive rutile compositions and U-Pb dating opens new perspectives for using rutile in diamond exploration in cratonic areas.

  8. Multi-component sorption of Pb(II), Cu(II) and Zn(II) onto low-cost mineral adsorbent.

    PubMed

    Prasad, Murari; Xu, Huan-yan; Saxena, Sona

    2008-06-15

    Multi-component sorption studies were carried out for attenuation of divalent heavy metal cations (Pb2+, Cu2+ and Zn2+) by a low-cost mineral adsorbent from the aqueous solution. Kinetic and equilibrium batch-type sorption experiments were conducted under variable conditions for multi-component using low-grade (<12%P2O5) phosphate rock. Percentage of multiple heavy metal species removal increases with decreasing initial metals concentration and particle size. The equilibrium data were well described to a lesser extent by Freundlich model but Langmuir model seemed to be more appropriate with the fixation capacity obtained at room temperature for Pb2+, Cu2+ and Zn2+ was 227.2, 769.2 and 666.6 micromol g(-1), respectively. Two simple kinetic models were tested to investigate the adsorption mechanism. Rate constants have been found nearly constant at all metal concentrations for first order. The comparison of adsorption capacity of low-grade phosphate rock decreases in multi-component system as compared to single component due to ionic interactions. X-ray powder diffraction (XRPD) technique was used to ascertain the formation of new metal phases followed by surface complexation. Used adsorbents have been converted into a value added product by utilizing innovative Zero-waste concept to solve the used adsorbents disposal problem and thus protecting the environment.

  9. Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: a biomonitoring approach for pollution assessment.

    PubMed

    Chakraborty, Sukalyan; Bhattacharya, Tanushree; Singh, Gurmeet; Maity, Jyoti Prakash

    2014-02-01

    Metal pollution in the marine coastline environment is an important topical issue in the context of ecological disturbance and climate change. Heavy metal contaminations (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in seawater and surficial sediments, as well as macroalgal diversity, were determined in six different locations along the coast of the Gulf of Kutch in India. The marine coastline environment was found to be enriched with Cd and Zn in comparison to other metals. Significant (p ≤ 0.05) inter-elemental positive-correlations were observed between Fe-Mn, Fe-Cu, Fe-Cr, Fe-Zn, Cr-Cu, Cu-Mn, and Cd-Zn, as well as negative-correlations between Cd-Pb, Ni-Pb, and Zn-Pb. Though genus specific macroalgal responses to heavy metal accumulation were significant, species specific response was insignificant (p ≤ 0.05). The relative abundance of metals in macroalgae followed the order of Fe>Zn>Mn>Cu>Cd>Cr>Ni>Pb. The high uptake of metals in green algae (Ulva lactuca and Enteromorpha intestinalis) and brown algae (Padina gymnospora and Dictyota bartayresiana) suggested that these algae may be used as potential biomonitors for heavy metal pollution. Three pollution indicators, Contamination Factor (CF), Enrichment Factor (EF) and Geochemical Index (Igeo) were calculated to determine the degree of metal pollution in the marine coastline and the contribution of anthropogenic influence. © 2013 Published by Elsevier Inc.

  10. Electronic transition and electrical transport properties of delafossite CuCr1-xMgxO2 (0 ≤ x ≤ 12%) films prepared by the sol-gel method: A composition dependence study

    NASA Astrophysics Data System (ADS)

    Han, M. J.; Duan, Z. H.; Zhang, J. Z.; Zhang, S.; Li, Y. W.; Hu, Z. G.; Chu, J. H.

    2013-10-01

    Highly transparent CuCr1-xMgxO2 (0 ≤ x ≤ 12%) films were prepared on (001) sapphire substrates by sol-gel method. The microstructure, phonon modes, optical band gap, and electrical transport properties have been systematically discussed. It was found that Mg-doping improved the crystal quality and enhanced the (00l) preferred orientation. The spectral transmittance of films approaches about 70%-75% in the visible-near-infrared wavelength region. With increasing Mg-composition, the optical band gap first declines and climbs up due to the band gap renormalization and Burstein-Moss effect. The direct and indirect band gaps of CuCr0.94Mg0.06O2 film are 3.00 and 2.56 eV, respectively. In addition, it shows a crossover from the thermal activation behavior to that of three-dimensional variable range hopping from temperature-dependent electrical conductivity. The crossover temperature decreases with increasing Mg-doping composition, which can be ascribed to the change of spin-charge coupling between the hole and the local spin at Cr site. It should be noted that the electrical conductivity of CuCr1-xMgxO2 films becomes larger with increasing x value. The highest electrical conductivity of 3.85 S cm-1 at room temperature for x = 12% is four-order magnitude larger than that (8.81 × 10-4 S cm-1) for pure CuCrO2 film. The high spectral transmittance and larger conductivity indicate that Mg-doped CuCrO2 films are promising for optoelectronic device applications.

  11. Pollution characteristics and source identification of trace metals in riparian soils of Miyun Reservoir, China.

    PubMed

    Han, Lanfang; Gao, Bo; Lu, Jin; Zhou, Yang; Xu, Dongyu; Gao, Li; Sun, Ke

    2017-10-01

    The South-to-North Water Diversion Project, one of China's largest water diversion projects, has aroused widespread concerns about its potential ecological impacts, especially the potential release of trace metals from shoreline soils into Miyun Reservoir (MYR). Here, riparian soil samples from three elevations and four types of land use were collected. Soil particle size distributions, contents and chemical fractionations of trace metals and lead (Pb) isotopic compositions were analyzed. Results showed that soil texture was basically similar in four types of land use, being mainly composed of sand, with minor portions of clay and silt, while recreational land contained more abundant chromium (Cr), copper (Cu), zinc (Zn) and cadmium (Cd), suggesting a possible anthropogenic source for this soil pollution. The potential ecological risk assessment revealed considerable contamination of recreational land, with Cd being the predominant contaminant. Chemical fractionations showed that Cu, arsenic (As), Pb and Cd had potential release risks. Additionally, the 206 Pb/ 207 Pb and 208 Pb/ 207 Pb values of soils were similar to those of coal combustion. By combining principal component analysis (PCA) with Pb isotopic results, coal combustion was identified as the major anthropogenic source of Zn, Cr, Cu, Cd and Pb. Moreover, isotope ratios of Pb fell in the scope of aerosols, indicating that atmospheric deposition may be the primary input pathway of anthropogenic Zn, Cr, Cu, Cd and Pb. Therefore, controlling coal combustion should be a priority to reduce effectively the introduction of additional Zn, Cu, Cd, and Pb to the area in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Mobility of Pb, Zn, Cu and As in disturbed forest soils affected by acid rain.

    PubMed

    Kochergina, Yulia V; Udatný, Martin; Penížek, Vít; Mihaljevič, Martin

    2017-10-18

    Early efforts at remediation of contaminated soils involve overturn or removal of the uppermost soil horizons. We find that such disruption is counterproductive, as it actually increases the mobility of the heavy metals involved. In our study, we sought to replicate in a controlled manner this commonly used remediation strategy and measure Pb, Zn, Cu and As concentrations in all soil horizons-both prior to and 1 year after disruption by trenching. BCR analyses (sequential leaching) indicate that Pb is affected to the greatest degree and is most highly mobile; however, Zn and As remain insoluble, thus partially ameliorating the detrimental effect. Differences in vegetation cover (i.e. spruce vs. beech forest) have little influence on overall element mobility patterns. The Krušné hory (Ore Mts., Czech Republic) study area is one of the more heavily contaminated areas in Central Europe, and thus the results reported here are applicable to areas affected by brown-coal-burning power plants.

  13. Spatial distributions, fractionation characteristics, and ecological risk assessment of trace elements in sediments of Chaohu Lake, a large eutrophic freshwater lake in eastern China.

    PubMed

    Wu, Lei; Liu, Guijian; Zhou, Chuncai; Liu, Rongqiong; Xi, Shanshan; Da, Chunnian; Liu, Fei

    2018-01-01

    The concentrations, spatial distribution, fractionation characteristics, and potential ecological risks of trace elements (Cu, Pb, Zn, Cr, Ni, and Co) in the surface sediment samples collected from 32 sites in Chaohu Lake were investigated. The improved BCR sequential extraction procedure was applied to analyze the chemical forms of trace elements in sediments. The enrichment factor (EF), sediment quality guidelines (SQGs), potential ecological risk index (PERI), and risk assessment code (RAC) were employed to evaluate the pollution levels and the potential ecological risks. The results found that the concentrations of Cu, Pb, Zn, Cr, Ni, and Co in the surface sediments were 78.59, 36.91, 161.84, 98.87, 38.92, and 10.09 mg kg -1 , respectively. The lower concentrations of Cu, Pb, Zn, Cr, and Ni were almost found in the middle part of the lake, while Co increased from the western toward the eastern parts of the lake. Cr, Ni, Co, and Zn predominantly existed in the residual fractions, with the average values of 76.35, 59.22, 45.60, and 44.30%, respectively. Cu and Pb were mainly combined with Fe/Mn oxides in reducible fraction, with the average values of 66.4 and 69.1%, respectively. The pollution levels were different among the selected elements. Cu had the highest potential ecological risk, while Cr had the lowest potential ecological risk.

  14. Chemical composition and some trace element contents in coals and coal ash from Tamnava-Zapadno Polje Coal Field, Serbia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vukasinovic-Pesic, V.; Rajakovic, L.J.

    2009-07-01

    The chemical compositions and trace element contents (Zn, Cu, Co, Cr, Ni, Pb, Cd, As, B, Hg, Sr, Se, Be, Ba, Mn, Th, V, U) in coal and coal ash samples from Tamnava-Zapadno Polje coal field in Serbia were studied. The coal from this field belongs to lignite. This high volatility coal has high moisture and low S contents, moderate ash yield, and high calorific value. The coal ash is abundant in alumosilicates. Many trace elements such as Ni > Cd > Cr > B > As > Cu > Co > Pb > V > Zn > Mn inmore » the coal and Ni > Cr > As > B > Cu > Co = Pb > V > Zn > Mn in the coal ash are enriched in comparison with Clarke concentrations.« less

  15. Bioaccessibility and size distribution of metals in road dust and roadside soils along a peri-urban transect.

    PubMed

    Padoan, Elio; Romè, Chiara; Ajmone-Marsan, Franco

    2017-12-01

    Road dust (RD), together with surface soils, is recognized as one of the main sinks of pollutants in urban environments. Over the last years, many studies have focused on total and bioaccessible concentrations while few have assessed the bioaccessibility of size-fractionated elements in RD. Therefore, the distribution and bioaccessibility of Fe, Mn, Cd, Cr, Cu, Ni, Pb, Sb and Zn in size fractions of RD and roadside soils (<2.5μm, 2.5-10μm and 10-200μm) have been studied using aqua regia extraction and the Simple Bioaccessibility Extraction Test. Concentrations of metals in soils are higher than legislative limits for Cu, Cr, Ni, Pb and Zn. Fine fractions appear enriched in Fe, Mn, Cu, Pb, Sb and Zn, and 2.5-10μm particles are the most enriched. In RD, Cu, Pb, Sb and Zn derive primarily from non-exhaust sources, while Zn is found in greater concentrations in the <2.5μm fraction, where it most likely has an industrial origin. Elemental distribution across soils is dependent on land use, with Zn, Ni, Cu and Pb being present in higher concentrations at traffic sites. In addition, Fe, Ni and Cr feature greater bioaccessibility in the two finer fractions, while anthropic metals (Cu, Pb, Sb and Zn) do not. In RD, only Zn has significantly higher bioaccessibility at traffic sites compared to background, and the finest particles are always the most bioaccessible; >90% of Pb, Zn and Cu is bioaccessible in the <2.5μm fraction, while for Mn, Ni, Sb, Fe and Cr, values vary from 76% to 5%. In the 2.5-10μm fraction, the values were 89% for Pb, 67% for Zn and 60% for Cu. These results make the evaluation of the bioaccessibility of size-fractionated particles appear to be a necessity for correct estimation of risk in urban areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. [Spatial distribution and pollution assessment of heavy metals in the tidal reach and its adjacent sea estuary of Daliaohe area, China ].

    PubMed

    Zhang, Lei; Qin, Yan-wen; Ma, Ying-qun; Zhao, Yan-min; Shi, Yao

    2014-09-01

    The aim of this article was to explore the pollution level of heavy metals in the tidal reach and its adjacent sea estuary of Daliaohe area. The contents and spatial distribution of As, Cd, Cr, Cu, Ph and Zn in surface water, suspended solids and surface sediments were analyzed respectively. The integrated pollution index and geoaccumulation index were used to evaluate the contamination degree of heavy metals in surface water and surface sediments respectively. The results indicated that the contents of heavy metals in surface water was in the order of Pb < Cu < Cd < Cr < As < Zn. The heavy metal contents in surface water increased from river to sea. Compared with the contents of heavy metals in surface water of the typical domestic estuary in China, the overall contents of heavy metals in surface water were at a higher level. The contents of heavy metals in suspended solids was in the order of Cd < Cu < As < Cr <Pb < Zn. Similar patterns of spatial distribution in suspended solids were observed for As, Cd, Cr,Cu and Pb, and the highest contents of Cr, Cu, Cd appeared at EM3 station. The contents of heavy metals in surface sediments was in the order of Cd <Cu < Pb < As < Cr < Zn. The highest contents of Cr, Cu, Cd and As in surface sediments also appeared at EM3 station. Temperature, pH, DO, EC and other factors affected the distribution of heavy metals in water, suspended solids and sediment. In particular, the effects of salinity and suspended solids matter were most significant. The integrated pollution index assessment showed that the water quality was good except individual stations. The geoaccumulation index assessment showed that As was the major pollution element in surface sediments.

  17. Effects of Oral Administration of CrCl3 on the Contents of Ca, Mg, Mn, Fe, Cu, and Zn in the Liver, Kidney, and Heart of Chicken.

    PubMed

    Liu, Yanhan; Zhao, Xiaona; Zhang, Xiao; Zhao, Xuejun; Liu, Yongxia; Liu, Jianzhu

    2016-06-01

    This study aimed to investigate the effects of oral administration of trivalent chromium on the contents of Ca, Mg, Mn, Fe, Cu, and Zn in the heart, liver, and kidney. Different levels of 1/8, 1/4, and 1/2 LD50 (LD50 = 5000 mg/kg body mass) CrCl3 milligrams per kilogram body mass daily were added into the water to establish the chronic poisoning model. Ca, Mg, Mn, Fe, Cu, and Zn were detected with the flame atomic absorption spectrometry in the organs exposed 14, 28, and 42 days to CrCl3, respectively. Results showed that Cr was accumulated in the heart, liver, and kidney significantly (P < 0.05) with extended time and dose. The contents of Ca and Fe increased, whereas those of Mg, Mn, Cu, and Zn decreased in the heart, liver, and kidney of each treated group, which had a dose- and time-dependent relationship, but the contents of Mg and Zn in the heart took on a fluctuated change. These particular observations were different from those in the control group. In conclusion, the oral administration of CrCl3 could change the contents of Ca, Mg, Mn, Fe, Cu, and Zn in the heart, liver, and kidney, which may cause disorders in the absorption and metabolism of the metal elements of chickens.

  18. Residual Stresses in Thermal Barrier Coatings for a Cu-8Cr-4Nb Substrate System

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Raj, Sai V.

    2002-01-01

    Analytical calculations were conducted to determine the thermal stresses developed in a coated copper-based alloy, Cu-8%(at.%)Cr-4%Nb (designated as GRCop-84), after plasma spraying and during heat-up in a simulated rocket engine environment. Finite element analyses were conducted for two coating systems consisting of a metallic top coat, a pure copper bond coat and the GRCop-84. The through thickness temperature variations were determined as a function of coating thickness for two metallic coatings, a Ni-17%(wt%)Cr-6%Al-0.5%Y alloy and a Ni-50%(at.%)Al alloy. The residual stresses after low-pressure plasma spraying of the NiCrAlY and NiAl coatings on GRCop-84 substrate were also evaluated. These analyses took into consideration a 50.8 mm copper bond coat and the effects of an interface coating roughness. The through the thickness thermal stresses developed in coated liners were also calculated after 15 minutes of exposure in a rocket environment with and without an interfacial roughness.

  19. Spin correlated dielectric memory and rejuvenation in multiferroic CuCrS{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karmakar, A.; Dey, K.; Majumdar, S.

    We report a rare consequence of memory effect in dielectric response (ϵ) and magnetic field induced rejuvenation in a relaxor-type multiferroic chalcogenide, CuCrS{sub 2}. Despite reasonably high conductivity, we are able to detect significant spontaneous polarization using an improvised technique verifying ferroelectric (FE) order. Concomitant appearance of both FE and antiferromagnetic orders authenticates multiferroicity. A smeared out FE transition and strong frequency dependence of the broadened peak in ϵ obeying Dynamical scaling law signify relaxor properties. We discuss the role of geometrical frustration in the antiferromagnetically coupled layered triangular lattice and metal ligand hybridization for these unusual properties.

  20. Investigation of Pb doping on electrical, structural and superconducting properties of YBa2-xPbxCu3O7-δ superconductors

    NASA Astrophysics Data System (ADS)

    Ezzatpour, S.; Sharifzadegan, L.; Sarvari, F.; Sedghi, H.

    2018-06-01

    In this study the high temperature superconductor YBa2-xPbxCu3O7-δ with doping x = ,0.05,0.1,0.15 were prepared by the standard solid-state reaction method. The effect of Pb substitution on Ba site of YBCO superconducting system, structural, electrical and superconducting properties of Y-based superconductor has been investigated. The measurements of dc resisitivity were performed on all samples with four-probe method using low frequency/lowAC current (4 mA) . The superconducting temperature, Tc, were determined from the resistivity versus temperature (R-T) curves. Results show that Pb doping reduced the cirtical temperature(Tc) and superconductivity properties of our samples. The maximum and the minimum Tc were observed for the samples with x = 0.15 and x = 0.1 respectively. The structure and phase purity of samples were examined by the X-ray powder diffraction technique (XRD) performed by means of D8 Advance Bruker diffractometer with Cu kα radiation. The grain morphology of surface of the samples was analyzed by sacanning electron microscopy (SEM). XRD patterns of polycrystalline materials of composition YBa2-xPbxCu3O7-δ revealed that all prepared samples are orthorhombic. All of the peaks of YBCO and YBa2-xPbxCu3O7-δ have been used for the estimation of volume fractions of the phases and ignored the void peaks.

  1. Different binding modes of Cu and Pb vs. Cd, Ni, and Zn with the trihydroxamate siderophore desferrioxamine B at seawater ionic strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schijf, Johan; Christenson, Emily A.; Potter, Kailee J.

    2015-07-01

    The solution speciation in seawater of divalent trace metals (Cd, Cu, Ni, Pb, Zn) is dominated by strong, ostensibly metal-specific organic ligands that may play important roles in microbial metal acquisition and/or detoxification processes. We compare the effective stabilities of these metal-organic complexes to the stabilities of their complexes with a model siderophore, desferrioxamine B (DFOB). While metal-DFOB complexation has been studied in various dilute but often moderately coordinating media, for the purpose of this investigation we measured the stability constants in a non-coordinating background electrolyte at seawater ionic strength (0.7 M NaClO4). Potentiometric titrations of single metals (M) weremore » performed in the presence of ligand (L) at different M:L molar ratios, whereupon the stability constants of multiple complexes were simultaneously determined by non-linear regression of the titration curves with FITEQL, using the optimal binding mode for each metal. Cadmium, Ni, and Zn, like trivalent Fe, sequentially form a bi-, tetra-, and hexadentate complex with DFOB as pH increases, consistent with their coordination number of 6 and regular octahedral geometry. Copper has a Jahn-Teller-distorted square-bipyramidal geometry whereas the geometry of Pb is cryptic, involving a range of bond lengths. Supported by a thermodynamic argument, our data suggest that this impedes binding of the third hydroxamate group and that the hexadentate Cu-DFOB and Pb-DFOB complex identified in earlier reports may instead be a deprotonated tetradentate complex. Absence of the hexadentate complex promotes the formation of a dinuclear (bidentate-tetradentate) complex, M2HL2+, albeit not for Pb in 0.7 M NaCl, evidently due to extensive complexation with chloride. Stabilities of the hexadentate Ni-DFOB, Zn-DFOB, and the tetradentate Pb-DFOB complex are nearly equal, yet about 2 orders of magnitude higher and 4 orders of magnitude lower than those of the hexadentate Cd

  2. Speciation, sources, and risk assessment of heavy metals in suburban vegetable garden soil in Xianyang City, Northwest China

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Tao, Wendong; Smardon, Richard C.; Xu, Xue; Lu, Xinwei

    2017-07-01

    Intensive anthropogenic activities can lead to soil heavy metal contamination resulting in potential risks to the environment and to human health. To reveal the concentrations, speciation, sources, pollution level, and ecological risk of heavy metals in vegetable garden soil, a total of 136 soil samples were collected from three vegetable production fields in the suburbs of Xianyang City, Northwest China. These samples were analyzed by inductively coupled plasma- atomic emission spectrometry and atomic fluorescence spectrometry. The results showed that the mean concentrations of Cd, Co, Cu, Mn, Pb, Zn, and Hg in vegetable garden soil were higher than the corresponding soil element background values of Shaanxi Province. The heavy metals studied in vegetable garden soil were primarily found in the residual fraction, averaging from 31.26% (Pb) to 90.23% (Cr). Considering the non-residual fractions, the mobility or potential risk was in the order of Pb (68.74%)>Co (60.54%)>Mn (59.28%) >Cd (53.54%) ≫Ni (23.36%) >Zn (22.73%)>Cu (14.93%)>V (11.81%)>Cr (9.78%). Cr, Mn, Ni, V, and As in the studied soil were related to soilforming parent materials, while Cu, Hg, Zn, Cd, Co, and Pb were associated with the application of plastic films, fertilizers, and pesticides, as well as traffic emissions and industrial fumes. Cr, Ni, V, and As presented low contamination levels, whereas Co, Cu, Mn, Pb, and Zn levels were moderate, and Cd and Hg were high. Ecological risk was low for Co, Cr, Cu, Mn, Pb, Zn, and As, with high risk observed for Cd and Hg. The overall pollution level and ecological risk of these heavy metals were high.

  3. Speciation, sources, and risk assessment of heavy metals in suburban vegetable garden soil in Xianyang City, Northwest China

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Tao, Wendong; Smardon, Richard C.; Xu, Xue; Lu, Xinwei

    2018-06-01

    Intensive anthropogenic activities can lead to soil heavy metal contamination resulting in potential risks to the environment and to human health. To reveal the concentrations, speciation, sources, pollution level, and ecological risk of heavy metals in vegetable garden soil, a total of 136 soil samples were collected from three vegetable production fields in the suburbs of Xianyang City, Northwest China. These samples were analyzed by inductively coupled plasma- atomic emission spectrometry and atomic fluorescence spectrometry. The results showed that the mean concentrations of Cd, Co, Cu, Mn, Pb, Zn, and Hg in vegetable garden soil were higher than the corresponding soil element background values of Shaanxi Province. The heavy metals studied in vegetable garden soil were primarily found in the residual fraction, averaging from 31.26% (Pb) to 90.23% (Cr). Considering the non-residual fractions, the mobility or potential risk was in the order of Pb (68.74%)>Co (60.54%)>Mn (59.28%) >Cd (53.54%) ≫Ni (23.36%) >Zn (22.73%)>Cu (14.93%)>V (11.81%)>Cr (9.78%). Cr, Mn, Ni, V, and As in the studied soil were related to soilforming parent materials, while Cu, Hg, Zn, Cd, Co, and Pb were associated with the application of plastic films, fertilizers, and pesticides, as well as traffic emissions and industrial fumes. Cr, Ni, V, and As presented low contamination levels, whereas Co, Cu, Mn, Pb, and Zn levels were moderate, and Cd and Hg were high. Ecological risk was low for Co, Cr, Cu, Mn, Pb, Zn, and As, with high risk observed for Cd and Hg. The overall pollution level and ecological risk of these heavy metals were high.

  4. Biochar prepared from castor oil cake at different temperatures: A voltammetric study applied for Pb(2+), Cd(2+) and Cu(2+) ions preconcentration.

    PubMed

    Kalinke, Cristiane; Mangrich, Antonio Sálvio; Marcolino-Junior, Luiz H; Bergamini, Márcio F

    2016-11-15

    Biochar is a carbonaceous material similar produced by pyrolysis of biomass under oxygen-limited conditions. Pyrolysis temperature is an important parameter that can alters biochar characteristics (e.g. surface area, pore size distribution and surface functional groups) and affects it efficacy for adsorption of several probes. In this work, biochar samples have been prepared from castor oil cake using different temperatures of pyrolysis (200-600°C). For the first time, a voltammetric procedure based on carbon paste modified electrode (CPME) was used to investigate the effect of temperature of pyrolysis on the adsorptive characteristics of biochar for Pb(II), Cd(II) and Cu(II) ions. Besides the electrochemical techniques, several characterizations have been performed to evaluate the physicochemical properties of biochar in function of the increase of the pyrolysis temperature. Results suggest that biochar pyrolized at 400°C (BC400) showed a better potential for ions adsorption. The CPME modified with BC400 showed better relative current signal with adsorption affinity: Pb(II)>Cd(II)>Cu(II). Kinetic studies revealed that the pseudo-second order model describes more accurately the adsorption process suggesting that the surface reactions control the adsorption rate. Values found for amount adsorbed were 15.94±0.09; 4.29±0.13 and 2.38±0.39μgg(-1) for Pb(II), Cd(II) and Cu(II) ions, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Heavy Metal Contamination and Ecological Risk Assessment of Swine Manure Irrigated Vegetable Soils in Jiangxi Province, China.

    PubMed

    Wang, Maolan; Liu, Ronghao; Lu, Xiuying; Zhu, Ziyi; Wang, Hailin; Jiang, Lei; Liu, Jingjing; Wu, Zhihua

    2018-05-01

    Heavy metal are often added to animal fodder and accumulate in the soils with swine manure. In this study, heavy metal (Cu, Pb, Cd, Zn, As and Cr) concentrations were determined in agricultural soils irrigated with swine manure in Jiangxi Province, China. Results showed that the average concentrations of Cu, Zn, As and Cr (32.8, 93.7, 21.3 and 75.8 mg/kg, respectively) were higher than the background values, while Pb and Cd (15.2 and 0.090 mg/kg, respectively) were lower than the background values. Contamination factors [Formula: see text] indicated that they were generally moderate for Cu, Zn, As and Cr and generally low for Pb and Cd. The contamination degree (C d ) was calculated to be 7.5-10.0 indicating a moderate degree of contamination. The geoaccumulation index (I geo ) indicated that the soils were unpolluted with Zn, Cd and Pb, while unpolluted to moderately pollute with Cr, Cu and As. The single ecological risk factor [Formula: see text] revealed that the six heavy metals all belonged to low ecological risk. The ecological risk indices suggested that all the sampling sites were at low risk level.

  6. Health risks associated with heavy metals in the drinking water of Swat, northern Pakistan.

    PubMed

    Lu, Yonglong; Khan, Hizbullah; Zakir, Shahida; Ihsanullah; Khan, Sardar; Khan, Akbar Ali; Wei, Luo; Wang, Tieyu

    2013-10-01

    The concentrations of heavy metals such as Cd, Cr, Cu, Mn, Ni, Pb and Zn were investigated in drinking water sources (surface and groundwater) collected from Swat valley, Khyber Pakhtunkhwa, Pakistan. The potential health risks of heavy metals to the local population and their possible source apportionment were also studied. Heavy metal concentrations were analysed using atomic absorption spectrometer and compared with permissible limits set by Pakistan Environmental Protection Agency and World Health Organization. The concentrations of Cd, Cr, Ni and Pb were higher than their respective permissible limits, while Cu, Mn and Zn concentrations were observed within their respective limits. Health risk indicators such as chronic daily intake (CDI) and health risk index (HRI) were calculated for adults and children separately. CDIs and HRIs of heavy metals were found in the order of Cr > Mn > Ni > Zn > Cd > Cu > Pb and Cd > Ni > Mn > Cr > Cu > Pb > Zn, respectively. HRIs of selected heavy metals in the drinking water were less than 1, indicating no health risk to the local people. Multivariate and univariate statistical analyses showed that geologic and anthropogenic activities were the possible sources of water contamination with heavy metals in the study area.

  7. Biosorption of heavy metals from industrial waste water by Geobacillus thermodenitrificans.

    PubMed

    Chatterjee, S K; Bhattacharjee, I; Chandra, G

    2010-03-15

    The metal binding capacity of the thermophilic bacteria Geobacillus thermodenitrificans isolated from Damodar river, India was assessed using synthetic metal solutions and industrial waste water. Biosorption preference of dead biomass of G. thermodenitrificans for the synthetic metal solutions was in the following order Fe(+3)>Cr(+3)>Co(+2)>Cu(+2)>Zn(+2)>Cd(+2)>Ag(+)>Pb(+2). It reduced the concentration of Fe(+3) (91.31%), Cr(+3) (80.80%), Co(+2) (79.71%), Cu(+2) (57.14%), Zn(+2) (55.14%), Cd(+2) (49.02%), Ag(+) (43.25%) and Pb(+2) (36.86%) at different optimum pH within 720 min. When this strain was applied in the industrial waste water biosorption preference was in the following order Fe(+3)>Cr(+3)>Cd(+2)>Pb(+2)>Cu(+2)>Co(+2)>Zn(+2)>Ag(+) and concentrations reduced up to 43.94% for Fe(+3), 39.2% for Cr(+3), 35.88% for Cd(+2), 18.22% for Pb(+2), 13.03% for Cu(+2), 11.43% for Co(+2), 9.02% for Zn(+2) and 7.65% for Ag(+) within 120 min. (c) 2009 Elsevier B.V. All rights reserved.

  8. Analysis of heavy metals in the re-suspended road dusts from different functional areas in Xi'an, China.

    PubMed

    Wang, Qian; Lu, Xinwei; Pan, Huiyun

    2016-10-01

    A study on heavy metal pollution was undertaken in the re-suspended road dusts from different functional areas in Xi'an City of China to investigate the impacts of human activities and land uses on urban environment. The concentrations of Co, Cr, Cu, Mn, Ni, Pb, V, and Zn were determined using X-ray fluorescence spectrometry, and their accumulations were analyzed using enrichment factor. Correlation analysis, principal component analysis, and cluster analysis, combined with the concentration property and enrichment factor, were used to identify the possible sources of heavy metals investigated. The investigated re-suspended road dusts had Co, Cr, Cu, Pb, and Zn concentrations higher than background levels. Samples from different functional areas had diverse heavy metal concentration levels. Co, Cr, Cu, Pb, and Zn presented moderate/significant enrichment in the samples. The source analyses indicated that Mn, Ni, V, Pb, and Zn had the mixed sources of nature and traffic, Cr and Cu mainly originated from traffic source, while Co was primarily derived from construction source. Traffic and construction activities had a significant impact on urban environment. This preliminary research provides a valuable basis for urban environment protection and management.

  9. Effect of cobalt on microstructure and properties of AlCr1.5CuFeNi2Cox high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Kukshal, Vikas; Patnaik, Amar; Bhat, I. K.

    2018-04-01

    The present paper investigates the effect of Co addition on the alloying behaviour, microstructure and the resulting properties of cast AlCr1.5CuFeNi2Cox high-entropy alloys intended to be used for high temperature applications. The elements Al, Cr, Cu, Fe, Ni and Co (Purity > 99) weighing approximately 800 g was melted in a high temperature vacuum induction furnace. The microstructure, phase transformation, density, microhardness and compressive strength of the samples were analysed using x-ray diffraction (XRD), scanning electron microscopes (SEM), Vickers microhardness tester and universal Testing machine. The crystalline structure of the alloys exhibits simple FCC and BCC phases. The microstructures investigation of the alloys shows the segregation of copper in the interdendritic region resulting in Cu-rich FCC phase. The addition of Co further enhances the formation of FCC phase resulting in the decrease in micro hardness value of the alloys, which varies from 471 HV to 364 HV with increase in the cobalt content from x = 0 to x = 1 (molar ratio). The similar decreasing trend is also observed for the compressive strength of the alloys.

  10. Laser-produced spectra and QED effects for Fe-, Co-, Cu-, and Zn-like ions of Au, Pb, Bi, Th, and U

    NASA Technical Reports Server (NTRS)

    Seely, J. F.; Ekberg, J. O.; Brown, C. M.; Feldman, U.; Behring, W. E.

    1986-01-01

    Spectra of very highly charged ions of Au, Pb, Bi, Th, and U have been observed in laser-produced plasmas generated by the OMEGA laser. Line identifications in the region 9-110 A were made for ions in the Fe, Co, Cu, and Zn isoelectronic sequences. Comparison of the measured wavelengths of the Cu-like ions with values calculated with and without QED corrections shows that the inclusion of QED corrections greatly improves the accuracy of the calculated 4s-4p wavelengths. However, significant differences between the observed and calculated values remain.

  11. Accumulation of metal ions by pectinates

    NASA Astrophysics Data System (ADS)

    Deiana, S.; Deiana, L.; Palma, A.; Premoli, A.; Senette, C.

    2009-04-01

    The knowledge of the mechanisms which regulate the interactions of metal ions with partially methyl esterified linear polymers of α-1,4 linked D-galacturonic acid units (pectinates), well represented in the root inner and outer apoplasm, is of great relevance to understand the processes which control their accumulation at the soil-root interface as well as their mobilization by plant metabolites. Accumulation of a metal by pectinates can be affected by the presence of other metals so that competition or distribution could be expected depending on the similar or different affinity of the metal ions towards the binding sites, mainly represented by the carboxylate groups. In order to better understand the mechanism of accumulation in the apoplasm of several metal ions, the sorption of Cd(II), Zn(II), Cu(II), Pb(II) and Cr(III) by a Ca-polygalacturonate gel, used as model of the soil-root interface, with a degree of esterification of 18% (PGAE1) and 65% (PGAE2) was studied at pH 3.0, 4.0, 5.0 and 6.0 in the presence of CaCl2 2.5 mM.. The results show that sorption increases with increasing both the initial metal concentration and pH. A similar sorption trend was evidenced for Cu(II) and Pb(II) and for Zn(II) and Cd(II), indicating that the mechanism of sorption for these two ionic couples is quite different. As an example, at pH 6.0 and an initial metal concentration equal to 2.0 mM, the amount of Cu(II) and Pb(II) sorbed was about 1.98 mg-1 of PGAE1 while that of Cd(II) and Zn(II) was about 1.2 mg-1. Cr(III) showed a rather different sorption trend and a much higher amount (2.8 mg-1of PGAE1 at pH 6.0) was recorded. The higher affinity of Cr(III) for the polysaccharidic matrix is attributable to the formation of Cr(III) polynuclear species in solution, as shown by the distribution diagrams obtained through the MEDUSA software. On the basis of these findings, the following affinity towards the PGAE1 can be assessed: Cr(III) > Cu(II) ? Pb(II) > Zn (II) ? Cd

  12. Ages and sources of components of Zn-Pb, Cu, precious metal, and platinum group element deposits in the goodsprings district, Clark County, Nevada

    USGS Publications Warehouse

    Vikre, Peter G.; Browne, Quentin J.; Fleck, Robert J.; Hofstra, Albert H.; Wooden, Joseph L.

    2011-01-01

    The Goodsprings district, Clark County, Nevada, includes zinc-dominant carbonate replacement deposits of probable late Paleozoic age, and lead-dominant carbonate replacement deposits, copper ± precious metal-platinum group element (PGE) deposits, and gold ± silver deposits that are spatially associated with Late Triassic porphyritic intrusions. The district encompasses ~500 km2 although the distribution of all deposits has been laterally condensed by late Mesozoic crustal contraction. Zinc, Pb, and Cu production from about 90 deposits was ~160,000 metric tons (t) (Zn > Pb >> Cu), 2.1 million ounces (Moz) Ag, 0.09 Moz Au, and small amounts of PGEs—Co, V, Hg, Sb, Ni, Mo, Mn, Ir, and U—were also recovered.Zinc-dominant carbonate replacement deposits (Zn > Pb; Ag ± Cu) resemble Mississippi Valley Type (MVT) Zn-Pb deposits in that they occur in karst and fault breccias in Mississippian limestone where the southern margin of the regional late Paleozoic foreland basin adjoins Proterozoic crystalline rocks of the craton. They consist of calcite, dolomite, sphalerite, and galena with variably positive S isotope compositions (δ34S values range from 2.5–13‰), and highly radiogenic Pb isotope compositions (206Pb/204Pb >19), typical of MVT deposits above crystalline Precambrian basement. These deposits may have formed when southward flow of saline fluids, derived from basinal and older sedimentary rocks, encountered thinner strata and pinch-outs against the craton, forcing fluid mixing and mineral precipitation in karst and fault breccias. Lead-dominant carbonate replacement deposits (Pb > Zn, Ag ± Cu ± Au) occur among other deposit types, often near porphyritic intrusions. They generally contain higher concentrations of precious metals than zinc-dominant deposits and relatively abundant iron oxides after pyrite. They share characteristics with copper ± precious metal-PGE and gold ± silver deposits including fine-grained quartz replacement of carbonate minerals

  13. Analysis of Zn, Cd, As, Cu, Pb, and Fe in snails as bioindicators and soil samples near traffic road by ICP-OES.

    PubMed

    Massadeh, Adnan M; Alomary, Ahmed A; Mir, Sayeeda; Momani, Fouad A; Haddad, Hazem I; Hadad, Yazen A

    2016-07-01

    Snails are used as biological indicators of the environment pollution for heavy metals. Living snail samples were collected from different sites at the city of Irbid-Jordan and classified according to their morphological features including Helix pelasga, Eobania vermiculata, Xeropicta derbentina, Oychilus, Xerocrassa seetzenii, Xerocrassa simulata, and Pila. Zn, Cd, As, Cu, Pb, and Fe levels were measured by inductively coupled plasma-optical emission spectroscopy. Results indicated that metal concentrations in all snail shell samples were with an average and range for Zn 22.4 (6.5-105.5) μg g(-1), Cd 7.8 (0.4-48.1) μg g(-1), As 25.9 (0.7-248.5) μg g(-1), Cu 15.1 (1.6-69.0) μg g(-1), Pb 0.4 (0.2-1.7) μg g(-1), and Fe 119.6 (14.0-1102.0) μg g(-1), whereas, in soil samples, the average and range for Zn 204.0 (12.0-709.0) μg g(-1), Cd 5.7 (0.2-39.5) μg g(-1), As 3.2 (1.8-5.2) μg g(-1), Cu 22.1 (2.3-77.4) μg g(-1), Pb 0.2 (0.1-0.3) μg g(-1), and Fe 242.4 (25.0-680.0) μg g(-1).

  14. Influence of gravity level and interfacial energies on dispersion-forming tendencies in hypermonotectic Cu-Pb-Al alloys

    NASA Technical Reports Server (NTRS)

    Andrews, J. B.; Curreri, P. A.; Sandlin, A. C.

    1988-01-01

    Results on the nondirectional solidification of several hypermonotectic Cu-Pb-Al alloys were obtained aboard NASA's KC-135 zero-gravity aircraft in order to determine the influence of interfacial energies and gravity levels on dispersion-forming tendencies. The Al content was systematially varied in the alloys. The dispersion-forming ability is correlated with gravity level during solidification, the interfacial energy between the immiscible phases, and the tendency for the minority immiscible phase to wet the walls of the crucible.

  15. Antisite Defects in Layered Multiferroic CuCr 0.9In 0.1P 2S 6

    DOE PAGES

    He, Qian; Belianinov, Alex; Dziaugys, Andrius; ...

    2015-10-06

    The CuCr 1-xIn xP 2S 6 system represents a large family of metal chalcogenophosphates that are unique and promising candidates for 2D materials with functionalities such as ferroelectricity. We carried out detailed microstructural and chemical characterization of these compounds using aberration-corrected STEM, in order to understand the origin of these different ordering phenomena. Quantitative STEM-HAADF imaging and analysis identified the stacking order of an 8-layer thin flake, which leads to the identification of anti-site In 3+(Cu +) doping. We believe that these findings will pave the way towards understanding the ferroic coupling phenomena in van der Waals lamellar compounds, asmore » well as the potential applications in 2-D electronics.« less

  16. Antisite defects in layered multiferroic CuCr(0.9)In(0.1)P2S6.

    PubMed

    He, Qian; Belianinov, Alex; Dziaugys, Andrius; Maksymovych, Petro; Vysochanskii, Yulian; Kalinin, Sergei V; Borisevich, Albina Y

    2015-11-28

    The CuCr1-xInxP2S6 system represents a large family of metal chalcogenophosphates that are unique and promising candidates for 2D materials with functionalities such as ferroelectricity. In this work, we carried out detailed microstructural and chemical characterization of these compounds using aberration-corrected STEM, in order to understand the origin of these different ordering phenomena. Quantitative STEM-HAADF imaging and analysis identified the stacking order of an 8-layer thin flake, which leads to the identification of anti-site In(3+)(Cu(+)) doping. We believe that these findings will pave the way towards understanding the ferroic coupling phenomena in van der Waals lamellar compounds, as well as their potential applications in 2-D electronics.

  17. 1-(2-Formamidoethyl)-3-phenylurea functionalized activated carbon for selective solid-phase extraction and preconcentration of metal ions.

    PubMed

    Tu, Zhifeng; He, Qun; Chang, Xijun; Hu, Zheng; Gao, Ru; Zhang, Lina; Li, Zhenhua

    2009-09-07

    A novel method that utilizes 1-(2-formamidoethyl)-3-phenylurea-modified activated carbon (AC-1-(2-formamidoethyl)-3-phenylurea) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) prior to the measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of trace levels of Cr(III), Cu(II), Fe(III) and Pb(II) were optimized using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4. And the adsorbed metal ions could be completely eluted by using 2.0 mL 2.0 mol L(-1) HCl solution. Common coexisting ions did not interfere with the separation and determination of target metal ions. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.8, 39.9, 77.8 and 17.3 mg g(-1) for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The detection limits of the method were found to be 0.15, 0.41, 0.27 and 0.36 ng mL(-1) for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The relative standard deviation (RSD) of the method was lower than 4.0% (n=8). The method was successfully applied for the preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) in natural and certified samples with satisfactory results.

  18. Heavy metals in sediment and their accumulation in commonly consumed fish species in Bangladesh.

    PubMed

    Islam, Md Saiful; Ahmed, Md Kawser; Habibullah-Al-Mamun, Md

    2017-01-02

    Six heavy metals (chromium [Cr], nickel [Ni], copper [Cu], arsenic [As], cadmium [Cd], and lead [Pb]) were measured in sediments and soft tissues of eleven commonly consumed fish species collected from an urban river in the northern part of Bangladesh. The abundance of heavy metals in sediments varied in the decreasing order of Cr > Ni > Cu > Pb > As > Cd. The ranges of mean metal concentrations in fish species, in mg/kg wet weight (ww), were as follows: Cr, 0.11-0.46; Ni, 0.77-2.6; Cu, 0.57-2.1; As, 0.43-1.7; Cd, 0.020-0.23; and Pb, 0.15-1.1. Target hazard quotients (THQs) and target carcinogenic risk (TR) showed the intake of As and Pb through fish consumption were higher than the recommended values, indicating the consumption of these fish species is associated with noncarcinogenic and carcinogenic health risks.

  19. 40 CFR 413.14 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... exceed CN, T 1.9 1.0 Cu 4.5 2.7 Ni 4.1 2.6 Cr 7.0 4.0 Zn 4.2 2.6 Pb .6 .4 Cd 1.2 .7 Total metals 10.5 6.8... monitoring days shall not exceed CN, T 74 39 Cu 176 105 Ni 160 100 Cr 273 156 Zn 164 102 Pb 23 16 Cd 47 29...

  20. 40 CFR 413.24 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 1.9 1.0 Cu 4.5 2.7 Ni 4.1 2.6 Cr 7.0 4.0 Zn 4.2 2.6 Pb .6 .4 Cd 1.2 .7 Total metals 10.5 6.8 (d... exceed Ag 47 29 CN, T 74 39 Cu 176 105 Ni 160 100 Cr 273 156 Zn 164 102 Pb 23 16 Cd 47 29 Total metals...

  1. 40 CFR 413.24 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 1.9 1.0 Cu 4.5 2.7 Ni 4.1 2.6 Cr 7.0 4.0 Zn 4.2 2.6 Pb .6 .4 Cd 1.2 .7 Total metals 10.5 6.8 (d... exceed Ag 47 29 CN, T 74 39 Cu 176 105 Ni 160 100 Cr 273 156 Zn 164 102 Pb 23 16 Cd 47 29 Total metals...

  2. 40 CFR 413.14 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exceed CN, T 1.9 1.0 Cu 4.5 2.7 Ni 4.1 2.6 Cr 7.0 4.0 Zn 4.2 2.6 Pb .6 .4 Cd 1.2 .7 Total metals 10.5 6.8... monitoring days shall not exceed CN, T 74 39 Cu 176 105 Ni 160 100 Cr 273 156 Zn 164 102 Pb 23 16 Cd 47 29...

  3. 40 CFR 413.84 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... exceed CN, T 1.9 1.0 Cu 4.5 2.7 Ni 4.1 2.6 Cr 7.0 4.0 Zn 4.2 2.6 Pb 0.6 0.4 Cd 1.2 0.7 Total metals 10.5... consecutive monitoring days shall not exceed CN, T 169 89 Cu 401 241 Ni 365 229 Cr 623 357 Zn 374 232 Pb 53 36...

  4. 40 CFR 413.84 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exceed CN, T 1.9 1.0 Cu 4.5 2.7 Ni 4.1 2.6 Cr 7.0 4.0 Zn 4.2 2.6 Pb 0.6 0.4 Cd 1.2 0.7 Total metals 10.5... consecutive monitoring days shall not exceed CN, T 169 89 Cu 401 241 Ni 365 229 Cr 623 357 Zn 374 232 Pb 53 36...

  5. The spatial and temporal trends of Cd, Cu, Hg, Pb and Zn in Seine River floodplain deposits (1994-2000)

    USGS Publications Warehouse

    Grosbois, C.; Meybeck, Michel; Horowitz, A.; Ficht, A.

    2006-01-01

    Fresh floodplain deposits (FD), from 11 key stations, covering the Seine mainstem and its major tributaries (Yonne, Marne and Oise Rivers), were sampled from 1994 to 2000. Background levels for Cd, Cu, Hg, Pb, and Zn were established using prehistoric FD and actual bed sediments collected in small forested sub-basins in the most upstream part of the basin. Throughout the Seine River Basin, FD contain elevated concentrations of Cd, Cu, Hg, Pb and Zn compared to local background values (by factors > twofold). In the Seine River Basin, trace element concentrations display substantial downstream increases as a result of increasing population densities, particularly from Greater Paris (10 million inhabitants), and reach their maxima at the river mouth (Poses). These elevated levels make the Seine one of the most heavily impacted rivers in the world. On the other hand, floodplain-associated trace element levels have declined over the past 7 years. This mirrors results from contemporaneous suspended sediment surveys at the river mouth for the 1984-1999 period. Most of these temporal declines appear to reflect reductions in industrial and domestic solid wastes discharged from the main Parisian sewage plant (Seine Aval). ?? 2005 Elsevier B.V. All rights reserved.

  6. Efficient CH3NH3PbI3 perovskite/fullerene planar heterojunction hybrid solar cells with oxidized Ni/Au/Cu transparent electrode

    NASA Astrophysics Data System (ADS)

    Lai, Wei-Chih; Lin, Kun-Wei; Guo, Tzung-Fang; Chen, Peter; Liao, Yuan-Yu

    2018-02-01

    We demonstrated the performance of inverted CH3NH3PbI3 perovskite-based solar cells (SCs) with a thermally oxidized nickel/gold/copper (Ni/Au/Cu) trilayer transparent electrode. Oxidized Ni/Au/Cu is a high transparent layer and has less resistance than the oxidized Ni/Au layer. Like the oxidized Ni/Au layer, oxidized Ni and Cu in oxidized Ni/Au/Cu could perform as a hole transport layer of the perovskite-based SCs. It leads to improved perovskite SC performance on an open circuit voltage of 1.01 V, a short circuit current density of 14.36 mA/cm2, a fill factor of 76.7%, and a power conversion efficiency (η%) of 11.1%. The η% of perovskite SCs with oxidized Ni (10 nm)/Au (6 nm)/Cu (1 nm) improved by approximately 10% compared with that of perovskite SCs with oxidized Ni/Au.

  7. Magnetic resonance studies of mixed chalcospinel CuCr2SxSe4-x (x = 0; 2) and CoxCu1-xCr2S4 (x = 0.1; 0.2) nanocrystals with strong interparticle interactions

    NASA Astrophysics Data System (ADS)

    Pankrats, A. I.; Vorotynov, A. M.; Tugarinov, V. I.; Zharkov, S. M.; Zeer, G. M.; Ramasamy, K.; Gupta, A.

    2018-04-01

    Magnetic resonance characteristics of mixed chalcospinel nanocrystals CuCr2SxSe4-x (x = 0 and 2) and CoxCu1-xCr2S4 (x = 0.1 and 0.2) have been investigated. It has been established based on TEM, SEM and resonance data that all the samples contain both blocks with sizes from 1 to 50 m of compacted nanosized crystallites and individual nanoparticles with sizes from 10 to 30 nm. The studies provide evidence of strong interparticle interaction in all the samples leading to high values of the blocking temperature. Magnetic dipolar field arise in the boundary regions of interacting adjacent nanocrystals below the blocking temperature. This results in inhomogeneous broadening of the magnetic resonance spectrum along with appearance of additional absorption lines. With increase in magnetic anisotropy at low temperatures, a shift of the resonance field along with line broadening are observed for all the studied compounds due to freezing of the moments in the nanoparticles, both in the individual and compacted ones. A gapped characteristic of the resonance spectrum is established below the freezing temperature Tfr, with the energy gap defined by the averaged magnetic anisotropy . Anionic substitution of sulfur by selenium results in a decrease in the magnetic anisotropy. In contrast, cationic substitution of copper by cobalt increases the magnetic anisotropy due to a strong contribution from the latter ion.

  8. Preliminary assessment of heavy metals in water, sediment and macrophyte ( Lemna minor) collected from Anchar Lake, Kashmir, India

    NASA Astrophysics Data System (ADS)

    Showqi, Irfana; Lone, Farooq Ahmad; Naikoo, Mehrajuddin

    2018-06-01

    Water samples, sediments and free floating macrophytic plant, Lemna minor specimens were collected from five designated sites in Anchar lake (Srinagar, J&K, India) to assess its heavy metal (Cu, Cr, Zn, Ni, Cd, Pb) load and changes on seasonal basis. The concentration of heavy metals was determined using atomic absorption spectroscopy. Most of the samples were found within limits of maximum permissible concentrations as recommended by WHO (Guidelines for drinking water quality, pp 491-493, 2006). During all the seasons, highest concentration of all heavy metals (Cu, Cr, Zn, Ni, Cd, Pb) was recorded at highly polluted sites of the lake viz. near agricultural fields (S1), near settlements (S3) and SKIMS (S4). These sites received huge agrochemical run-off from the surrounding agricultural fields, solid and liquid wastes from the nearby catchment areas and effluents from Sher-e-Kashmir Institute of Medical Sciences (SKIMS) compared to control site lake centre (S5). Furthermore, most of the metals in water and sediment were found with highest concentration during autumn (Viz., Cu-1.5 ppm; Zn-0.38 ppm; Ni-1.89 ppm; Pb-0.84 ppm in water and Cu-26.9 ppm; Zn-13.6 ppm; Pb-4.33 ppm in sediment) and summer (Viz., Cr-0.68 ppm in water and Ni-4.8 ppm; Cd-2.6 ppm; Cr-8.01 ppm in sediment) seasons. Also in Lemna minor plant highest concentration was observed during summer season (Cu-29.09 ppm; Zn-19.11 ppm; Ni-5.7 ppm; Cd-1.34 ppm; Cr-9.18 ppm and Pb-9.77 ppm). From these observations, it was found that the sources of heavy metals in Anchar lake were both natural and anthropogenic ones. This study recommended that continuous monitoring of heavy metals (Viz; Cu, Cr, Zn, Ni, Cd and Pb) in water, sediment and other aquatic biota of Anchar lake should be directed to protection of ecological status of the lake and its surrounding area.

  9. Influence of Pb on microbial activity in Pb-contaminated soils

    USGS Publications Warehouse

    Landmeyer, J.E.; Bradley, P.M.; Chapelle, F.H.

    1993-01-01

    Investigations of the influence of Pb on soil microbial communities have focused on Pb concentrations of 1 g kg-’ or less (Barkay et al., 1985; Capone et al., 1983; Chang and Broadbent, 1981; Doelman and Haanstra, 1979; Trevors et al., 1985). However, a number of environments exist in which Pb concentrations exceed 1 g kg-’ dry soil (Davenport and Peryea, 1991; Davis et al., 1992; Bisessar, 1982). Bisessar (1982) reported an inverse correlation between Pb concentration and the bacterial population size in soil near a secondary lead smelter. However, similar trends in the concentrations of Pb, As, Cd, and Cu at the site make it difficult to attribute the reductions in population size to Pb alone. Although the effects on microbial carbon mineralization of Pb concentrations as high as 20,000 g kg-’ dry soil were investigated by Debosz et a/. (1985), differences in pH between Pb treatments and the lack of controls for abiotic CO, evolution make the results of the study equivocal. Our purpose was to examine the effects of g kg-’ Pb concentrations on the growth and productivity of soil microbial communities.

  10. The function of digestive enzymes on Cu, Zn, and Pb release from soil in in vitro digestion tests.

    PubMed

    Li, Yi; Demisie, Walelign; Zhang, Ming-kui

    2013-07-01

    The bioaccessibility of soil heavy metals is the solubility of soil heavy metals in synthetic human digestive juice, which is usually determined using in vitro digestion test. To reveal the effects of digestive enzymes on soil heavy metals bioaccessibility, three representative in vitro digestion tests, Simple Bioaccessibility Extraction Test (SBET), Physiologically Based Extraction Test (PBET), and Simple Gastrointestinal Extraction Test (SGET), were chosen. The bioaccessibility of soil Cu, Zn, and Pb in each method were respectively evaluated with and without digestive enzymes, and the differences were compared. The results showed that the effects of digestive enzymes varied with different methods and elements. Because of digestive enzymes addition, the environmental change from acid gastric phase to neutral intestinal phase of PBET did not result in apparently decrease of the bioaccessibility of soil Cu. However, the solubility of soil Zn and Pb were pH-dependent. For SGET, when digestive enzymes were added, its results reflected more variations resulting from soil and element types. The impacts of digestive enzymes on heavy metal dissolution are mostly seen in the intestinal phase. Therefore, digestive enzyme addition is indispensable to the gastrointestinal digestion methods (PBET and SGET), while the pepsin addition is not important for the methods only comprised of gastric digestion (SBET).

  11. MBE growth and FMR, BLS and MOKE studies of exchange coupling in Fe whisker/Cr/Fe(001) and in Fe/Cu/Fe(001) 'loose spin' structures

    NASA Astrophysics Data System (ADS)

    Heinrich, B.; From, M.; Cochran, J. F.; Kowalewski, M.; Atlan, D.; Celinski, Z.; Myrtle, K.

    1995-02-01

    The exchange coupling has been studied in structures which consist of two ferromagnetic layers separated by non-ferromagnetic spacers (trilayers). The exchange coupling was measured using FMR and BLS techniques in the temperature range 77-400 K. Two systems were investigated: (a) Fe whisker/Cr/Fe(001) and (b) Fe/Cr/Fe(001). The oscillatory thickness dependence of the exchange coupling through a spin-density wave Cr spacer will be discussed and compared with recent data obtained by other groups. Cu interlayers were deposited either in a pure form, or a single monolayer of {Cu}/{Fe} alloy ('loose spins') was inserted between two pure bcc Cu(001) layers. Several such 'loose spin' structures were engineered to test the behavior of 'loose spin' structures. It was found that the presence of Fe impurity atoms has a strong tendency to decrease the direct bilinear exchange coupling. The contribution of 'loose spins' to the exchange coupling can be made significant, and even dominant, by a suitable choice of the RKKY coupling energy between the 'loose spins' and the surrounding ferromagnetic layers.

  12. Heavy metals and polycyclic aromatic hydrocarbons: pollution and ecological risk assessment in street dust of Tehran.

    PubMed

    Saeedi, Mohsen; Li, Loretta Y; Salmanzadeh, Mahdiyeh

    2012-08-15

    50 street dust samples from four major streets in eastern and southern Tehran, the capital of Iran, were analyzed for metal pollution (Cu, Cr, Pb, Ni, Cd, Zn, Fe, Mn and Li). Hakanson's method was used to determine the Risk Index (RI) and ecological risks. Amongst these samples, 21 were also analyzed for polycyclic aromatic hydrocarbons (PAHs). Correlation, cluster and principal component analyses identified probable natural and anthropogenic sources of contaminants. The dust had elevated concentrations of Pb, Cd, Cu, Cr, Ni, Zn, Fe and PAHs. Enrichment factors of Cu, Pb, Cd and Zn showed that the dust is extremely enriched in these metals. Multivariate statistical analyses revealed that Cu, Pb, Zn, Fe and PAHs and, to a lesser extent, Cr and Ni have common anthropogenic sources. While Mn and Li were identified to have natural sources, Cd may have different anthropogenic origins. All samples demonstrated high ecological risk. Traffic and related activities, petrogenic and pyrogenic sources are likely to be the main anthropogenic sources of heavy metals and PAHs in Tehran dust. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. [Speciation Distribution and Risk Assessment of Heavy Metals in Typical Material Roof Dusts].

    PubMed

    Li, Dun-zhu; Guan, Yun-tao; Liu, An; Li, Si-yuan

    2015-09-01

    With the modified BCR sequential extraction procedure, the chemical speciation and risk for 10 heavy metals (Ba, Co, Cr, Cu, Mn, Ni, Pb, Sb, Sr and Zn) in roof dusts were investigated. The subjects of this study were collected from four typical material paved roofs (i. e., ceramic tile, concrete, metal and asphalt) in southeast China. The results indicated that the average contents of heavy metals in roof dust significantly exceeded road dust. The analysis of chemical fraction showed that the acid soluble/exchangeable fraction of Zn was much higher than other elements, the existence of Pb and Cu was mainly in oxidization fraction, while other heavy metals dominated by the residual fraction. The mobility sequence percentages for all roof dust samples decreased in the order of Pb > Zn > Cu >Mn > Co >Sr > Sb > Ni > Ba > Cr, and it should be noted that Pb, Zn, Cu, Mn and Co all have more than 50% proportion in mobility sequence. Based on environmental risk assessment, the highest values of contamination factors (Cf) and risk assessment code (RAC) consistently was observed in Zn, which indicated that Zn had relatively high ecological risk. Health risk assessment showed that the non-carcinogenic hazard indexes (HI) of heavy metals decreased in the order of Pb > Cr > Sb > Zn > Mn > Cu > Ba > Ni > Co > Sr, the HI of heavy metals for adults were lower than safe value while the HI of Pb for children was higher than safe value, suggesting that they will not harm the adult's health except Pb for children. The carcinogenic risk for Cr, Co and Ni were all below the threshold values, which indicated that there was no carcinogenic risk.

  14. Cu2+, Co2+ and Cr3+ doping of a calcium phosphate cement influences materials properties and response of human mesenchymal stromal cells.

    PubMed

    Schamel, Martha; Bernhardt, Anne; Quade, Mandy; Würkner, Claudia; Gbureck, Uwe; Moseke, Claus; Gelinsky, Michael; Lode, Anja

    2017-04-01

    The application of biologically active metal ions to stimulate cellular reactions is a promising strategy to accelerate bone defect healing. Brushite-forming calcium phosphate cements were modified with low doses of Cu 2+ , Co 2+ and Cr 3+ . The modified cements released the metal ions in vitro in concentrations which were shown to be non-toxic for cells. The release kinetics correlated with the solubility of the respective metal phosphates: 17-45 wt.-% of Co 2+ and Cu 2+ , but <1 wt.-% of Cr 3+ were released within 28days. Moreover, metal ion doping led to alterations in the exchange of calcium and phosphate ions with cell culture medium. In case of cements modified with 50mmol Cr 3+ /mol β-tricalcium phosphate (β-TCP), XRD and SEM analyses revealed a significant amount of monetite and a changed morphology of the cement matrix. Cell culture experiments with human mesenchymal stromal cells indicated that the observed cell response is not only influenced by the released metal ions but also by changed cement properties. A positive effect of modifications with 50mmol Cr 3+ or 10mmol Cu 2+ per mol β-TCP on cell behaviour was observed in indirect and direct culture. Modification with Co 2+ resulted in a clear suppression of cell proliferation and osteogenic differentiation. In conclusion, metal ion doping of the cement influences cellular activities in addition to the effect of released metal ions by changing properties of the ceramic matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Mobility of as, Cu, Cr, and Zn from tailings covered with sealing materials using alkaline industrial residues: a comparison between two leaching methods.

    PubMed

    Jia, Yu; Maurice, Christian; Öhlander, Björn

    2016-01-01

    Different alkaline residue materials (fly ash, green liquor dregs, and lime mud) generated from the pulp and paper industry as sealing materials were evaluated to cover aged mine waste tailings (<1% sulfur content, primarily pyrite). The mobility of four selected trace elements (Cr, Cu, Zn, and As) was compared based on batch and column leaching studies to assess the effectiveness of these alkaline materials as sealing agents. Based on the leaching results, Cr, Cu, and Zn were immobilized by the alkaline amendments. In the amended tailings in the batch system only As dramatically exceeded the limit values at L/S 10 L/kg. The leaching results showed similar patterns to the batch results, though leached Cr, Cu, and Zn showed higher levels in the column tests than in the batch tests. However, when the columns were compared with the batches, the trend for Cu was opposite for the unamended tailings. By contrast, both batch and column results showed that the amendment caused mobilization of As compared with the unamended tailings in the ash-amended tailings. The amount of As released was greatest in the ash column and decreased from the dregs to the lime columns. The leaching of As at high levels can be a potential problem whenever alkaline materials (especially for fly ash) are used as sealing materials over tailings. The column test was considered by the authors to be a more informative method in remediation of the aged tailings with low sulfur content, since it mimics better actual situation in a field.

  16. Combined Toxic Effects of Heavy Metals and Antibiotics on a Pseudomonas fluorescens Strain ZY2 Isolated from Swine Wastewater

    PubMed Central

    Zhou, Yan; Xu, Yan-Bin; Xu, Jia-Xin; Zhang, Xiao-Hua; Xu, Shi-Hui; Du, Qing-Ping

    2015-01-01

    A Pseudomonas fluorescens strain ZY2, isolated from swine wastewater, was used to investigate the synergistic effects of five heavy metals (Pb, Cu, Zn, Cr(VI) and Hg) on bacterial resistance to antibiotics. Results indicate that the combined effects of antibiotic type, heavy metal type and concentration were significant (p < 0.01). Cross-resistance to Hg and antibiotics was the most noticeable. Moreover, the resistance to Hg and cefradine or amoxicillin, and Cr and amoxicillin were synergistic for low heavy metal concentrations, and turned antagonistic with increasing concentrations, while the resistances to Cr or Cu and cefradine, Pb or Cu and amoxicillin, Cu and norfloxacin showed reverse effects. In addition, resistance to Zn and amoxicillin were always synergetic, while resistance to Pb and cefradine or norfloxacin, Cr or Hg and norfloxacin as well as all the heavy metals and tetracycline were antagonistic. These results indicate that bacterial resistance to antibiotics can be affected by the type and concentration of co-exposed heavy metals and may further threaten people’s health and ecological security severely via horizontal gene transfer. PMID:25633105

  17. Assessment of metal concentrations (Cu, Zn, and Pb) in seawater, sediment and biota samples in the coastal area of Eastern Black Sea, Turkey.

    PubMed

    Baltas, Hasan; Sirin, Murat; Dalgic, Goktug; Bayrak, Esra Yilmaz; Akdeniz, Aysel

    2017-09-15

    This study investigated the contents of Cu, Zn and Pb in seawater, sediment, different shell sizes of mussel (Mytilus galloprovincialis) and sea snail (Rapana venosa) samples collected from four different provinces of the Eastern Black Sea Region. With the exception of Zn, all the metal concentration values measured in the sea snail were observed to be higher than those of mussels in all stations. While the correlation between mussels and sea snail according to metal concentrations was found to be positive (p˂0.05), this relation was not observed between the other parameters, such as the shell sizes, salinity and pH (p˃0.05). Although the mean concentration values of Cu, Zn, and Pb for mussel and sea snail are significantly above the tolerable levels, the estimated daily intake values for mussel were below the daily intake recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. SWASV speciation of Cd, Pb and Cu for the determination of seawater contamination in the area of the Nicole shipwreck (Ancona coast, Central Adriatic Sea).

    PubMed

    Annibaldi, Anna; Illuminati, Silvia; Truzzi, Cristina; Scarponi, Giuseppe

    2011-12-01

    The study reports for the first time on the heavy metal contamination of the waters surrounding a shipwreck lying on the sea floor. Square wave anodic stripping voltammetry has been used for a survey of the total and dissolved Cd, Pb and Cu contents of the seawater at the site of the sinking of the Nicole M/V (Coastal Adriatic Sea, Italy). Results show that the hulk has a considerable impact as regards all three metals in the bottom water, especially for the particulate fraction concentrations, which increased by factors of ≈ 9 (Cd), ≈ 3 (Pb) and ≈ 5 (Cu). The contaminated plume extended downstream for about 2 miles. Much lower contamination was observed for dissolved bottom concentrations; nevertheless Pb (0.56 ± 0.03 nmol/L) is higher than the Italian legal limits established for 2015 and Cd (0.23 ± 0.03 nmol/L) is very close the limit of Cd will be exceeded if the hulk is not removed. Copyright © 2011. Published by Elsevier Ltd.

  19. Effect of deep cryogenic treatment on the microstructure and wear performance of Cr-Mn-Cu white cast iron grinding media

    NASA Astrophysics Data System (ADS)

    Vidyarthi, M. K.; Ghose, A. K.; Chakrabarty, I.

    2013-12-01

    The phase transformation and grinding wear behavior of Cr-Mn-Cu white cast irons subjected to destabilization treatment followed by air cooling or deep cryogenic treatment were studied as a part of the development program of substitute alloys for existing costly wear resistant alloys. The microstructural evolution during heat treatment and the consequent improvement in grinding wear performance were evaluated with optical and scanning electron microscopy, X-ray diffraction analysis, bulk hardness, impact toughness and corrosion rate measurements, laboratory ball mill grinding wear test etc. The deep cryogenic treatment has a significant effect in minimizing the retained austenite content and converts it to martensite embedded with fine M7C3 alloy carbides. The cumulative wear losses in cryotreated alloys are lesser than those with conventionally destabilized alloys followed by air cooling both in wet and dry grinding conditions. The cryotreated Cr-Mn-Cu irons exhibit comparable wear performance to high chromium irons.

  20. The Uitkomst intrusion and Nkomati Ni-Cu-Cr-PGE deposit, South Africa: trace element geochemistry, Nd isotopes and high-precision geochronology

    NASA Astrophysics Data System (ADS)

    Maier, W. D.; Prevec, S. A.; Scoates, J. S.; Wall, C. J.; Barnes, S.-J.; Gomwe, T.

    2018-01-01

    The Uitkomst intrusion is a tubular mafic-ultramafic layered body that hosts one of South Africa's largest Ni-Cu-Cr-PGE deposits, Nkomati. The sulphide ore occurs in the form of massive lenses in the immediate quartzitic footwall and as disseminations within peridotite. The chromite ore forms an up to ˜10-m-thick layer in the lower portion of the intrusion. Uitkomst has generally been interpreted as a magma conduit, possibly related to the Bushveld event. Here, we present a new high-precision U-Pb zircon date of 2057.64 ± 0.69 Ma that overlaps with the age of the Merensky Reef of the Bushveld Complex and thus demonstrates a coeval relationship between the intrusions. Based on incompatible trace elements as well as O- and Nd isotope data (ɛNd -4.5 to -6.2), we show that the Uitkomst parent magmas were contaminated with up to 20% Archean upper crust prior to emplacement, and with up to 15% dolomitic country rock during emplacement. Ore formation at Nkomati was critically aided by substantial devolatisation and removal of dolomitic floor rocks leading to hydrodynamic concentration of sulphide and chromite during slumping of crystal mushes into the trough-like centre of the subsiding intrusion and its footwall.

  1. Cu-In Halide Perovskite Solar Absorbers.

    PubMed

    Zhao, Xin-Gang; Yang, Dongwen; Sun, Yuanhui; Li, Tianshu; Zhang, Lijun; Yu, Liping; Zunger, Alex

    2017-05-17

    The long-term chemical instability and the presence of toxic Pb in otherwise stellar solar absorber APbX 3 made of organic molecules on the A site and halogens for X have hindered their large-scale commercialization. Previously explored ways to achieve Pb-free halide perovskites involved replacing Pb 2+ with other similar M 2+ cations in ns 2 electron configuration, e.g., Sn 2+ or by Bi 3+ (plus Ag + ), but unfortunately this showed either poor stability (M = Sn) or weakly absorbing oversized indirect gaps (M = Bi), prompting concerns that perhaps stability and good optoelectronic properties might be contraindicated. Herein, we exploit the electronic structure underpinning of classic Cu[In,Ga]Se 2 (CIGS) chalcopyrite solar absorbers to design Pb-free halide perovskites by transmuting 2Pb to the pair [B IB + C III ] such as [Cu + Ga] or [Ag + In] and combinations thereof. The resulting group of double perovskites with formula A 2 BCX 6 (A = K, Rb, Cs; B = Cu, Ag; C = Ga, In; X = Cl, Br, I) benefits from the ionic, yet narrow-gap character of halide perovskites, and at the same time borrows the advantage of the strong Cu(d)/Se(p) → Ga/In(s/p) valence-to-conduction-band absorption spectra known from CIGS. This constitutes a new group of CuIn-based Halide Perovskite (CIHP). Our first-principles calculations guided by such design principles indicate that the CIHPs class has members with clear thermodynamic stability, showing direct band gaps, and manifesting a wide-range of tunable gap values (from zero to about 2.5 eV) and combination of light electron and heavy-light hole effective masses. Materials screening of candidate CIHPs then identifies the best-of-class Rb 2 [CuIn]Cl 6 , Rb 2 [AgIn]Br 6 , and Cs 2 [AgIn]Br 6 , having direct band gaps of 1.36, 1.46, and 1.50 eV, and theoretical spectroscopic limited maximal efficiency comparable to chalcopyrites and CH 3 NH 3 PbI 3 . Our finding offers a new routine for designing new-type Pb-free halide perovskite solar

  2. Accumulation of heavy metal in scalp hair of people exposed in Beijing sewage discharge channel sewage irrigation area in Tianjin, China.

    PubMed

    Wang, Zuwei; Yu, Xiaoman; Geng, Mingshuo; Wang, Zilu; Wang, Qianqian; Zeng, Xiangfeng

    2017-05-01

    Heavy metal concentrations in soil, wheat, and scalp hair exposed to Beijing sewage discharge channel sewage irrigation area (BSIA) in Tianjin were studied to evaluate the influence of sewage irrigation. Results showed that the continuous application of wastewater has led to an accumulation of heavy metals in the soil, with 55.2 and 8.62% of soil samples accumulating Cd and Zn, respectively, at concentrations exceeding the permissible limits in China. Concentrations of heavy metals in wheat grain from BSIA were higher than these from the clean water irrigation area by 63.2% for Cd, 3.8% for Cu, 100% for Pb, 6.6% for Zn, and 326.7% for Cr. The heavy metal bioaccumulation factor (BAF) of wheat/soil in BSIA showed the following order: Zn > Cd > Cu > Pb > Cr. Interestingly, these accumulation of heavy metals in soil after sewage irrigation could increase the migration ability of heavy metals (particularly Zn and Cd) from soil to wheat. Mean concentrations of heavy metals in the hair of residents followed the decreasing trend of Zn > Cu > Pb > Cr > Cd, which were higher than the control area by 110.0% for Cd, 20.0% for Cu, 55.9% for Zn, 36.6% for Pb, and 64.6% for Cr. Concentrations of heavy metals in male human hair in BSIA were higher than those of females. And the concentrations of heavy metals except for Pb in human hair increased with their increasing ages. The heavy metal BAF values of wheat/soil in BSIA showed the trend of Zn (98.0057) > Pb (7.0162) > Cr (5.5788) > Cu (5.4853) > Cd (3.5584); heavy metals had obvious biological amplification from wheat to human hair. These results indicated that local population health was potentially exposed to the heavy metal risk via wheat consumption.

  3. Heavy metals bioconcentration from soil to vegetables and appraisal of health risk in Koka and Wonji farms, Ethiopia.

    PubMed

    Eliku, Temesgen; Leta, Seyoum

    2017-04-01

    Heavy metal accumulation in agricultural crops has grown a major concern globally as a result of a significant health impact on human. The quantification of heavy metals (Cd, Pb, Cr, Zn, Cu, and Ni) in the soil and vegetables at two sites (Koka and Wonji Gefersa) was done using flame atomic absorption spectrophotometer. The mean concentrations of heavy metals in vegetable fields' soil samples obtained from Koka were higher for Pb, Cr, Zn, Cu, and Ni. The overall results of soil samples ranged 0.52-0.93, 13.6-27.3, 10.0-21.8, 44.4-88.5, 11.9-30.3, and 14.7-34.5 mg kg -1 for Cd, Pb, Cr, Zn, Cu, and Ni, respectively. The concentrations of heavy metals were maximum for Cd (0.41 ± 0.03 mg kg -1 ), Pb (0.54 ± 0.11 mg kg -1 ), Zn (14.4 ± 0.72 mg kg -1 ), Cu (2.84 ± 0.27 mg kg -1 ), and Ni (1.09 ± 0.11 mg kg -1 ) in Cabbage and for Cr (2.63 ± 0.11 mg kg -1 ) in green pepper. The result indicated that Cd has high transfer factor value and Pb was the lowest. The transfer pattern for heavy metals in different vegetables showed a trend in the order: Cd > Zn > Cu > Cr > Ni > Pb. Among different vegetables, cabbage showed the highest value of metal pollution index and bean had the lowest value. Hazard index of all the vegetables was less than unity; thus, the consumption of these vegetables is unlikely to pose health risks to the target population.

  4. Concentration distribution and assessment of several heavy metals in sediments of west-four Pearl River Estuary

    NASA Astrophysics Data System (ADS)

    Wang, Shanshan; Cao, Zhimin; Lan, Dongzhao; Zheng, Zhichang; Li, Guihai

    2008-09-01

    Grain size parameters, trace metals (Co, Cu, Ni, Pb, Cr, Zn, Ba, Zr and Sr) and total organic matter (TOM) of 38 surficial sediments and a sediment core of west-four Pearl River Estuary region were analyzed. The spacial distribution and the transportation procession of the chemical element in surficial sediments were studied mainly. Multivariate statistics are used to analyses the interrelationship of metal elements, TOM and the grain size parameters. The results demonstrated that terrigenous sediment taken by the rivers are main sources of the trace metal elements and TOM, and the lithology of parent material is a dominating factor controlling the trace metal composition in the surficial sediment. In addition, the hydrodynamic condition and landform are the dominating factors controlling the large-scale distribution, while the anthropogenic input in the coastal area alters the regional distribution of heavy metal elements Co, Cu, Ni, Pb, Cr and Zn. The enrichment factor (EF) analysis was used for the differentiation of the metal source between anthropogenic and naturally occurring, and for the assessment of the anthropogenic influence, the deeper layer content of heavy metals were calculated as the background values and Zr was chosen as the reference element for Co, Cu, Ni, Pb, Cr and Zn. The result indicate prevalent enrichment of Co, Cu, Ni, Pb and Cr, and the contamination of Pb is most obvious, further more, the peculiar high EF value sites of Zn and Pb probably suggest point source input.

  5. Concentrations of Cd, Cu, Pb and Zn in soft tissue of oyster (Saccostrea cucullata) collected from the Lengeh Port coast, Persian Gulf, Iran: a comparison with the permissible limits for public health.

    PubMed

    Heidari, Behnam; Riyahi Bakhtiari, Alireza; Shirneshan, Golshan

    2013-12-01

    This study examines concentrations of Cd, Cu, Pb and Zn in the soft tissue of Saccostrea cucullata in the intertidal zones of Lengeh Port, Persian Gulf, Iran, to survey whether heavy metals are within the acceptable limits for public health? The results revealed that the average metal concentrations (μg/g dry weight) ranged from 10.28 to 12.03 for Cd, 294.10 to 345.80 for Cu, 20.64 to 58.23 for Pb and 735.60 to 760.40 for Zn in the soft tissue of oysters. From the human public health point of view, comparison between the mean concentrations of the metals in the soft tissue of oyster and global guidelines clearly indicates that nearly in all cases concentrations are higher than the permissible amounts for human consumption. In addition, levels of Zn, Pb and Cu were well below their recommended oral maximum residue level (MRLs), whereas levels of Cd were observed two times higher. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Speciation and distribution characteristics of heavy metals and pollution assessments in the sediments of Nashina Lake, Heilongjiang, China.

    PubMed

    Li, Miao; Zang, Shuying; Xiao, Haifeng; Wu, Changshan

    2014-05-01

    Sediment core samples from Nashina Lake, Heilongjiang, China were collected using a gravity sampler. The cores were sliced horizontally at 1 cm each to determine the particle size, total concentrations and speciation of Cd, Cr, Cu, Mn, Ni, Pb, and Zn. Total concentrations of heavy metals were extracted using an acid mixture (containing hydro fluoric acid, nitric acid, and sulphuric acid) and analyzed using an inductively coupled plasma spectrometry. A sequential extraction procedure was employed to separate chemical species. Analysis of results indicate that the concentrations of heavy metals in the sediments of Nashina Lake in descending order are Mn, Cr, Zn, Pb, Ni, Cu, and Cd. The ratios of the average concentrations of four heavy metals (e.g.Cr, Cu, Ni, Zn) to their background values were >1; and those of Mn, Cd, and Pb were >1. Moreover, some toxic metals were mainly distributed in bioavailable fractions. For instance, both Cd and Mn were typically found in Acid-extractable species or Fe-Mn oxide species, and thus can be easily remobilized and enter the food chain. Finally, the analysis of geo-accumulation index showed that anthropogenic pollution levels of Cr, Cu, Mn, Ni, Zn were low, but those of Pb and Cd were at the moderate level. As both Pb and Cd are toxic metals, it is highly necessary to prohibit their transformation and accumulation in the sediments.

  7. [Sources, pollution statue and potential ecological risk of heavy metals in surface sediments of Aibi Lake, Northwest China].

    PubMed

    Zhang, Zhao-Yong; Abuduwaili, Jilili; Jiang, Feng-Qing

    2015-02-01

    In this paper, the surface sediment samples were harvested from Aibi Lake, and total contents of 8 heavy metals ( Cu, Pb, Zn, As, Hg, Cr, Ni and Cd) were determined. Then the sources, pollution statue, and potential ecological risk were analyzed by using multiple analysis methods. The results show that: (1) The order of the skewness for these 8 heavy metals is: Hg > Cd > Pb > Zn > As > Cu > Cr > Ni. (2) Multivariate statistical analysis shows that 8 heavy metals can be classified to 2 principle components, among which PC1 ( Cd, Pb, Hg and Zn) is man-made source factor and mainly came from all kinds of waste of agriculture; PC2 ( Cu, Ni, Cr and As) is natural source and was mainly controlled by the background of the natural geography of this area. (3) Accumulation of index evaluation results show that the order of pollution degree values of 8 heavy metals in surface sediments of Aibi Lake is: Cd > Hg > Pb > Zn > As > Cu > Ni > Cr. In all samples, heavy metals Hg, Cd and Pb all belong to low and partial moderate pollution statue, while Zn, As, Cr, Ni and Cu belong to no pollution statue in majority samples. (4) Potential ecological risk assessment results show that the potential ecological risk of heavy metals in surface sediments of Aibi Lake mainly caused by Cd, Hg and Pb, and they accounting for 42.6%, 28.6% and 24.0% of the total amount, respectively, among which Cd is the main ecological risk factor, followed by Hg and Pb. In all samples, the potential ecological risk index values (RI) of 8 heavy metals are all lower than 150, and they are all at low ecological risk levels. However, this research also shows that there have high content of Cd and Pb in the sediment. Therefore, we should make long-term monitoring of the lake environment.

  8. The competition between magnetocrystalline and shape anisotropy on the magnetic and magneto-transport properties of crystallographically aligned CuCr2Se4 thin films

    NASA Astrophysics Data System (ADS)

    Edelman, I.; Esters, M.; Johnson, D. C.; Yurkin, G.; Tarasov, A.; Rautsky, M.; Volochaev, M.; Lyashchenko, S.; Ivantsov, R.; Petrov, D.; Solovyov, L. A.

    2017-12-01

    Crystallographically aligned nanocrystalline films of the ferromagnetic spinel CuCr2Se4 were successfully synthesized and their structure and alignment were confirmed by X-ray diffraction and high-resolution transmission electron microscopy. The average size of the crystallites is about 200-250 nm, and their (1 1 1) crystal planes are parallel to the film plane. A good match of the film's electronic structure to that of bulk CuCr2Se4 is confirmed by transverse Kerr effect measurements. Four easy 〈1 1 1〉 axes are present in the films. One of these axes is oriented perpendicular and three others are oriented at an angle of 19.5° relative to the film plane. The magnetic properties of the films are determined by a competition between the out-of-plane magnetocrystalline anisotropy and the in-plane shape anisotropy. Magnetic measurements show that the dominating type of anisotropy switches from shape to magnetocrystalline anisotropy near 160 K, which leads to a switch of the effective easy axis from inside the film plane at room temperature to perpendicular to the film plane as the temperature decreases. At last, a moderately large, negative value of the low-temperature magnetoresistance was observed for the first time in CuCr2Se4 films.

  9. Structural, electronic transport and optical properties of Cr doped PbS thin film by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Preetha, K. C.

    2017-06-01

    Incorporation of Chromium ions into Lead Sulphide thin films have been achieved by CBD technique. Effects of doping were investigated as a function of Pb/Cr ratio from o to 2 at %. X-ray diffraction patterns showed that films were polycrystalline in nature with increase in crystallite size up to an optimum doping concentration. Scanning electron microscopic study revealed excellent morphology with doping concentration. The low transmittance in the UV-VIS region offered the suitability of the samples as solar control coatings. The thin films were found to be P type and electrical conductivity enhanced on doping.

  10. CORRELATION OF THE PARTITIONING OF DISSOLVED ORGANIC MATTER FRACTIONS WITH THE DESORPTION OF CD, CU, NI, PB AND ZN FROM 18 DUTCH SOILS

    EPA Science Inventory

    Eighteen Dutch soils were extracted in aqueous solutions at varying pH. Extracts were analyzed for Cd, Cu, Ni, Pb and Zn by ICP-AES. Extract dissolved organic carbon (DOC) was also concentrated onto a macroreticular resin and fractionation into three operationally defined fract...

  11. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China.

    PubMed

    Qing, Xiao; Yutong, Zong; Shenggao, Lu

    2015-10-01

    The purpose of this study was to determine the concentrations and health risk of heavy metals in urban soils from a steel industrial district in China. A total of 115 topsoil samples from Anshan city, Liaoning, Northeast China were collected and analyzed for Cr, Cd, Pb, Zn, Cu, and Ni. The geoaccumulation index (Igeo), pollution index (PI), and potential ecological risk index (PER) were calculated to assess the pollution level in soils. The hazard index (HI) and carcinogenic risk (RI) were used to assess human health risk of heavy metals. The average concentration of Cr, Cd, Pb, Zn, Cu, and Ni were 69.9, 0.86, 45.1, 213, 52.3, and 33.5mg/kg, respectively. The Igeo and PI values of heavy metals were in the descending order of Cd>Zn>Cu>Pb>Ni>Cr. Higher Igeo value for Cd in soil indicated that Cd pollution was moderate. Pollution index indicated that urban soils were moderate to highly polluted by Cd, Zn, Cu, and Pb. The spatial distribution maps of heavy metals revealed that steel industrial district was the contamination hotspots. Principal component analysis (PCA) and matrix cluster analysis classified heavy metals into two groups, indicating common industrial sources for Cu, Zn, Pb, and Cd. Matrix cluster analysis classified the sampling sites into four groups. Sampling sites within steel industrial district showed much higher concentrations of heavy metals compared to the rest of sampling sites, indicating significant contamination introduced by steel industry on soils. The health risk assessment indicated that non-carcinogenic values were below the threshold values. The hazard index (HI) for children and adult has a descending order of Cr>Pb>Cd>Cu>Ni>Zn. Carcinogenic risks due to Cr, Cd, and Ni in urban soils were within acceptable range for adult. Carcinogenic risk value of Cr for children is slightly higher than the threshold value, indicating that children are facing slight threat of Cr. These results provide basic information of heavy metal pollution control

  12. Augmenting granular activated carbon with natural clay for multicomponent sorption of heavy metals from aqueous solutions.

    PubMed

    Mu'azu, Nuhu Dalhat; Essa, Mohammed Hussain; Lukman, Salihu

    2017-10-01

    Multicomponent adsorption of Cd, Cr, Cu, Pb and Zn onto date palm pits based granular activated carbon (GAC) augmented with highly active natural clay at different proportion was investigated. The effects of the initial pH and the adsorbents mixed ratio on the removal selectivity sequence of the metals evaluated. Batch adsorption experiments were undertaken at initial pH 2, 6 and 12. At initial pH 2, both the percent removal and the metals adsorptive capacity decreased with increasing GAC to clay ratio (from 0 to 1) with the percentage removal of Cd, Zn and Cr ions dropping from 68, 81, 100% to 43, 57 and 70%, respectively. At both pH 6 and 12, the percentage removals and adsorption capacities of all the heavy metal ions are higher than at pH 2. Selectivity sequences for pH 2, 6 and 12 followed the order Pb > Cr > Cu > Zn > Cd; Pb > Cr > Cu > Cd > Zn and Cd > Cr > Cu > Pb > Zn, respectively. The adsorption trends were analyzed in relation to point of zero charge and ξ-potential and the metals ions speciation at different pH. These results will help better understand the feasibility of augmenting GAC with natural clay minerals during fixed bed column test which is more beneficial for practical industrial applications.

  13. Solid Phase Extraction of Trace Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II) Ions in Beverages on Functionalized Polymer Microspheres Prior to Flame Atomic Absorption Spectrometric Determinations.

    PubMed

    Berber, Hale; Alpdogan, Güzin

    2017-01-01

    In this study, poly(glycidyl methacrylate-methyl methacrylate-divinylbenzene) was synthesized in the form of microspheres, and then functionalized by 2-aminobenzothiazole ligand. The sorption properties of these functionalized microspheres were investigated for separation, preconcentration and determination of Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II) ions using flame atomic absorption spectrometry. The optimum pH values for quantitative sorption were 2 - 4, 5 - 8, 6 - 8, 4 - 6, 2 - 6 and 2 - 3 for Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II), respectively, and also the highest sorption capacity of the functionalized microspheres was found to be for Cu(II) with the value of 1.87 mmol g -1 . The detection limits (3σ; N = 6) obtained for the studied metals in the optimal conditions were observed in the range of 0.26 - 2.20 μg L -1 . The proposed method was successfully applied to different beverage samples for the determination of Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II) ions, with the relative standard deviation of <3.7%.

  14. Accumulation of Cr, Cd, Pb, Cu, and Zn by plants in tanning sludge storage sites: opportunities for contamination bioindication and phytoremediation

    USDA-ARS?s Scientific Manuscript database

    The lack of appropriate disposal strategies of tanning sludge (e.g., uncontrolled landfills and disposing sludge to open areas) has led to severe Cr pollution in waters and soils in many developing countries. Excessive Cr can be highly toxic to many living organisms and may damage the ecosystem. In ...

  15. Experimental evidence for the magnetic moment directions of Cr2+ and Cr3+ cations in the spinel ferrites Cux1Crx2Fe3-x1-x2O4

    NASA Astrophysics Data System (ADS)

    Zhang, X. Y.; Xu, J.; Li, Z. Z.; Qi, W. H.; Tang, G. D.; Shang, Z. F.; Ji, D. H.; Lang, L. L.

    2014-08-01

    (A)[B]2O4 spinel ferrite samples with the composition Cux1Crx2Fe3-x1-x2O4 (0.0≤x1≤0.284 and 1.04≥x2≥0.656) were prepared by a chemical co-precipitation method. X-ray diffraction patterns indicated that the samples had a single-phase cubic spinel structure. It is interesting that the saturation magnetization of the samples increased when Cu2+ or Cu3+ (with 1 or 2μB of magnetic moment) substituted for Cr2+ or Cr3+ (with 4 or 3μB), which cannot be obviously explained if the magnetic moments of Cr2+ and Cr3+ cations are assumed to be parallel to those of the Fe and Cu cations. However, with the assumption that the magnetic moments of Cr2+ and Cr3+ cations are antiparallel to the Fe and Cu cation moments in spinel ferrites, the dependence on the Cu doping level of the sample magnetic moments at 10 K was fitted successfully, using the quantum-mechanical potential barrier model earlier proposed by our group. Using the cation distributions obtained in the fitting process, the experimental observation that the magnetic moment of the samples increased with increasing Cu doping level was explained. This work therefore provides experimental evidence that the magnetic moments of the Cr2+ and Cr3+ cations are antiparallel to those of the Fe and Cu cations in spinel ferrites.

  16. Source discrimination of heavy metals in sediment and water of To Lich River in Hanoi City using multivariate statistical approaches.

    PubMed

    Thuong, Nguyen Thi; Yoneda, Minoru; Ikegami, Maiko; Takakura, Masato

    2013-10-01

    The concentrations of Mn, Fe, Ni, Cr, Cu, Pb, Zn, As, and Cd were determined to evaluate the level of contamination of To Lich River in Hanoi City. All metal concentrations in 0-10-cm water samples, except Mn, were lower than the maximum permitted concentration for irrigation water standard. Meanwhile, concentrations of As, Cd, and Zn in 0-30-cm sediments were likely to have adverse effects on agriculture and aquatic life. Sediment pollution assessment was undertaken using enrichment factor and geoaccumulation index (I geo). The I geo results indicated that the sediment was not polluted with Cr, Mn, Fe, and Ni, and the pollution level increased in the order of Cu < Pb < Zn < As < Cd. Meanwhile, significant enrichment was shown for Cd, As, Zn, and Pb. Cluster and principal component analyses suggest that As and Mn in sediment were derived from both lithogenic and anthropogenic sources, while Cu, Pb, Zn, Cr, Cd, and Ni originated from anthropogenic sources such as vehicular fumes for Pb and metallic discharge from industrial sources and fertilizer application for other metals.

  17. Synthesis, structure and electrochemistry of LiMn 2- yCr y/2 Cu y/2 O 4 (0.0⩽ y⩽0.5) prepared by wet chemistry

    NASA Astrophysics Data System (ADS)

    Julien, C.; Ruth Mangani, I.; Selladurai, S.; Massot, M.

    2002-08-01

    The LiMn 2O 4 co-doped with copper and chromium forming LiMn 2- yCr y/2 Cu y/2 O 4 spinel phases have been synthesized by wet chemistry technique using an aqueous solution of metal acetates and dicarboxylic acid (succinic acid) as a complexing agent. The structural properties of the synthesized products have been investigated by X-ray powder diffraction, Raman scattering, and Fourier-transform infrared spectroscopy. To improve the rechargeable capacity of Li//LiMn 2- yCr y/2 Cu y/2 O 4 cells, the electrochemical features of LiMn 2- yCr y/2 Cu y/2 O 4 compounds have been evaluated as positive electrode materials. The structural properties of these oxides are very similar to LiMn 2O 4, their electrochemical performances show that the capacity is maintained 95% of the initial value at the 36th cycle for y=0.1, this being explained by the change of Mn 3+/Mn 4+ ratio in doped phases.

  18. Influence of moisture content and temperature on degree of carbonation and the effect on Cu and Cr leaching from incineration bottom ash.

    PubMed

    Lin, Wenlin Yvonne; Heng, Kim Soon; Sun, Xiaolong; Wang, Jing-Yuan

    2015-09-01

    This study investigated the influence of moisture content and temperature on the degree of carbonation of municipal solid waste (MSW) incineration bottom ash (IBA) from two different incineration plants in Singapore. The initial rate of carbonation was affected by the nominal moisture content used. Carbonation temperature seemed to play a part in changing the actual moisture content of IBA during carbonation, which in turn affected the degree of carbonation. Results showed that 2h of carbonation was sufficient for the samples to reach a relatively high degree of carbonation that was close to the degree of carbonation observed after 1week of carbonation. Both Cu and Cr leaching also showed significant reduction after only 2h of carbonation. Therefore, the optimum moisture content and temperature were selected based on 2h of carbonation. The optimum moisture content was 15% for both incineration plants while the optimum temperature was different for the two incineration plants, at 35°C and 50°C. The effect on Cu and Cr leaching from IBA after accelerated carbonation was evaluated as a function of carbonation time. Correlation coefficient, Pearson's R, was used to determine the dominant leaching mechanism. The reduction in Cu leaching was found to be contributed by both formation of carbonate mineral and reduction of DOC leaching. On the other hand, Cr leaching seemed to be dominantly controlled by pH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Determination of distributions of Cd, Cu, and Pb concentrations in sediments of a Mexican reservoir to infer their environmental risk.

    PubMed

    Barceló-Quintal, Icela Dagmar; Solís-Correa, Hugo Eduardo; Avila-Pérez, Pedro; López-Galván, Edgar; Gómez-Salazar, Sergio; García-Albortante, Julisa

    2012-07-01

    The José Antonio Alzate Dam in the State of Mexico, Mexico, receives wastewaters from domestic, industrial, and agricultural activities through the Lerma River. Chemical and physicochemical characteristics of the water were determined. Sediment has been studied in order to define the importance of its influence on the reservoir's state as a whole. The quantification of the metals, Cd, Cu, and Pb in total forms and the geochemical distribution and the chemical mobility of these metals in sediment have been established using a chemical sequential extraction scheme. The three metals showed a common characteristic, being more abundant in fraction F6 (residual), but the other fractions of the geochemical distribution were variable depending on the metal. First, the contamination level was evaluated with the results of the total metals, using the criteria of EPA, Thomas and Murdoch, and the Ontario Ministry of Environment for sediment in water bodies. Subsequently, the risk was assessed using the same criteria but considering the results of sequential extractions, where the geochemical distribution of each metal allowed a better understanding of metal portions with more influence on the risk, in which Cu and Pb presented low risk, but not Cd.

  20. Removal of metals from landfill leachate by sorption to activated carbon, bone meal and iron fines.

    PubMed

    Modin, Hanna; Persson, Kenneth M; Andersson, Anna; van Praagh, Martijn

    2011-05-30

    Sorption filters based on granular activated carbon, bone meal and iron fines were tested for their efficiency of removing metals from landfill leachate. Removal of Al, As, Ca, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sr and Zn were studied in a laboratory scale setup. Activated carbon removed more than 90% of Co, Cr, Cu, Fe, Mn and Ni. Ca, Pb, Sr and Zn were removed but less efficiently. Bone meal removed over 80% of Cr, Fe, Hg, Mn and Sr and 20-80% of Al, Ca, Cu, Mo, Ni, Pb and Zn. Iron fines removed most metals (As, Ca, Co, Cr, Cu, Fe, Mg, Mn, Pb, Sr and Zn) to some extent but less efficiently. All materials released unwanted substances (metals, TOC or nutrients), highlighting the need to study the uptake and release of a large number of compounds, not only the target metals. To remove a wide range of metals using these materials two or more filter materials may need to be combined. Sorption mechanisms for all materials include ion exchange, sorption and precipitation. For iron fines oxidation of Fe(0) seems to be important for metal immobilisation. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Differences in the mobility of Cd, Cu, Pb and Zn during composting of two types of household bio-waste collected in four seasons.

    PubMed

    Hanc, Ales; Szakova, Jirina; Ochecova, Pavla

    2014-09-01

    The objective of this study was to evaluate the mobility of Cd, Cu, Pb and Zn during 3 different compost aeration rates of household bio-waste, originating in urban settlement (U-bio-waste) and family house buildings (F-bio-waste). The first two weeks, when the thermophilic composting phase became, the highest decline of exchangeable content was recorded. After 12 weeks of composting, lower exchangeable content was found in the case of U-bio-waste composts than F-bio-waste composts, despite higher loss of fresh mass. The order of fractions in both final composts was as follows: residual>oxidizable>reducible>exchangeable. The exchangeable portion of total content in final composts decreased in this order: Zn (17%), Cd (11%), Pb (4%) and Cu (3%). Regarding the low exchangeable content of heavy metals and high-quality organic matter, these types of composts could be used not only as fertilizer, but for remediation of metals contaminated land. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Measurement of 208Pb(n ,γ )209Pb Maxwellian averaged neutron capture cross section

    NASA Astrophysics Data System (ADS)

    Weissman, L.; Tessler, M.; Arenshtam, A.; Eliyahu, I.; Halfon, S.; Guerrero, C.; Kaizer, B.; Kijel, D.; Kreisel, A.; Palchan, T.; Paul, M.; Perry, A.; Schimel, G.; Silverman, I.; Shor, A.; Tamim, N.; Vaintraub, S.

    2017-07-01

    The doubly magic 208Pb nucleus is a bottleneck at the termination of the s -process path due to its very low neutron capture cross section. This cross section is also important for the decomposition of s , r processes and U/Th radiogenic decay contributions to the Pb-Bi solar abundances. The 208Pb(n ,γ )209Pb cross section was measured at the Soreq Applied Research Accelerator Facility Phase I using an intense quasi-Maxwellian neutron source produced by irradiation of the liquid-lithium target with a 1.5-mA continuous-wave proton beam at 1.94 MeV. The cross section was measured by counting the β activity from the irradiated lead target. The measurement allowed us to evaluate the Maxwellian averaged cross section (MACS) at 30 keV obtaining a value of 0.33(2) mb. This has been compared with the earlier activation and time-of-flight measurements found in the literature. The MACS cross-sectional value of the 63Cu(n ,γ )64Cu reaction was determined in the same experiment and is compared to a recent published value.

  3. Extraction method based on emulsion breaking for the determination of Cu, Fe and Pb in Brazilian automotive gasoline samples by high-resolution continuum source flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Leite, Clarice C.; de Jesus, Alexandre; Kolling, Leandro; Ferrão, Marco F.; Samios, Dimitrios; Silva, Márcia M.

    2018-04-01

    This work reports a new method for extraction of Cu, Fe and Pb from Brazilian automotive gasoline and their determination by high-resolution continuous source flame atomic absorption spectrometry (HR-CS FAAS). The method was based on the formation of water-in-oil emulsion by mixing 2.0 mL of extraction solution constituted by 12% (w/v) Triton X-100 and 5% (v/v) HNO3 with 10 mL of sample. After heating at 90 °C for 10 min, two well-defined phases were formed. The bottom phase (approximately 3.5 mL), composed of acidified water and part of the ethanol originally present in the gasoline sample, containing the extracted analytes was analyzed. The surfactant and HNO3 concentrations and the heating temperature employed in the process were optimized by Doehlert design, using a Brazilian gasoline sample spiked with Cu, Fe and Pb (organometallic compounds). The efficiency of extraction was investigated and it ranged from 80 to 89%. The calibration was accomplished by using matrix matching method. For this, the standards were obtained performing the same extraction procedure used for the sample, using emulsions obtained with a gasoline sample free of analytes and the addition of inorganic standards. Limits of detection obtained were 3.0, 5.0 and 14.0 μg L-1 for Cu, Fe and Pb, respectively. These limits were estimated for the original sample taking into account the preconcentration factor obtained. The accuracy of the proposed method was assured by recovery tests spiking the samples with organometallic standards and the obtained values ranged from 98 to 105%. Ten gasoline samples were analyzed and Fe was found in four samples (0.04-0.35 mg L-1) while Cu (0.28 mg L-1) and Pb (0.60 mg L-1) was found in just one sample.

  4. Total Contents and Sequential Extraction of Heavy Metals in Soils Irrigated with Wastewater, Akaki, Ethiopia

    NASA Astrophysics Data System (ADS)

    Fitamo, Daniel; Itana, Fisseha; Olsson, Mats

    2007-02-01

    The Akaki River, laden with untreated wastes from domestic, industrial, and commercial sources, serves as a source of water for irrigating vegetable farms. The purpose of this study is to identify the impact of waste-water irrigation on the level of heavy metals and to predict their potential mobility and bioavailability. Zn and V had the highest, whereas Hg the lowest, concentrations observed in the soils. The average contents of As, Co, Cr, Cu, Ni, Zn, V, and Hg of both soils; and Pb and Se from Fluvisol surpassed the mean + 2 SD of the corresponding levels reported for their uncontaminated counterparts. Apparently, irrigation with waste water for the last few decades has contributed to the observed higher concentrations of the above elements in the study soils (Vertisol and Fluvisol) when compared to uncontaminated Vertisol and Fluvisol. On the other hand, Vertisol accommodated comparatively higher average levels of Cr, Cu, Ni, Zn, etc V, and Cd, whereas high contents of Pb and Se were observed in Fluvisol. Alternatively, comparable levels of Co and Hg were found in either soil. Except for Ni, Cr, and Cd in contaminated Vertisol, heavy metals in the soils were not significantly affected by the depth (0-20 and 30-50 cm). When the same element from the two soils was compared, the levels of Cr, Cu, Ni, Pb, Se, Zn, V, Cd at 0-20 cm; and Cr, Ni, Cu, Cd, and Zn at 30-50 cm were significantly different. Organic carbon (in both soils), CEC (Fluvisol), and clay (Vertisol) exhibited significant positive correspondences with the total heavy metal levels. Conversely, Se and Hg contents revealed perceptible associations with carbonate and pH. The exchangeable fraction was dominated by Hg and Cd, whereas the carbonate fraction was abounded with Cd, Pb, and Co. conversely, V and Pb displayed strong affinity to reducible fraction, where as Cr, Cu, Zn, and Ni dominated the oxidizable fraction. Cr, Hg, Se, and Zn (in both soils) showed preference to the residual fraction

  5. Effect of nano BiPb-2212 phase addition on BiPb-2223 phase properties

    NASA Astrophysics Data System (ADS)

    Mohammed, N. H.; Abou-Aly, A. I.; Barakat, M. Me.; Hassan, M. S.

    2018-06-01

    BiPb-2212 phase in nanoscale was added to BiPb-2223 phase with a general stoichiometry of (Bi1.7Pb0.4Sr2.1Ca1.1Cu2.1O8+δ)x/Bi1.8Pb0.4Sr2.0Ca2.0Cu3.2O10+δ, 0.0 ≤ x  ≤ 2.5 wt.%. All samples were prepared by the standard solid-state reaction method. The prepared nano BiPb-2212 phase was characterized by X-ray powder diffraction (XRD) and transmission electron microscope (TEM). The prepared samples were characterized by XRD and the scanning electron microscope (SEM). XRD analysis indicated that the sample with x = 1.5 wt.% has the highest relative volume fraction for BiPb-2223 phase. Samples were examined by electrical resistivity and I-V measurements. There is no significant change in the superconducting transition temperature Tc for all samples. The highest critical current density Jc was recorded for the sample with x = 1.5 wt.%. The normalized excess conductivity (Δσ/σroom) was calculated according to Aslamazov-Larkin (AL) model. Four different fluctuating regions were recorded as the temperature decreased. The coherence length along the c-axis at 0 K ξc(0), interlayer coupling strength s, Fermi velocity vF of the carriers and Fermi energy EF were calculated for both samples with x = 0.0 wt.% and 1.5 wt.%.

  6. Enriching and Separating Primary Copper Impurity from Pb-3 Mass Pct Cu Melt by Super-Gravity Technology

    NASA Astrophysics Data System (ADS)

    Yang, Yuhou; Song, Bo; Song, Gaoyang; Yang, Zhanbing; Xin, Wenbin

    2016-10-01

    In this study, super-gravity technology was introduced in the lead bullion-refining process to investigate the enriching and separating laws of copper impurity from Pb-3 mass pct Cu melt. With the gravity coefficient G = 700 at the cooling rate of ν = 5 K min-1, the entire copper phase gathers at the upper area of the sample, and it is hard to find any copper particles at the bottom area of the sample. The floatation movement of copper phase was greatly intensified by super gravity and the mass pct of copper in tailing lead is up to 8.631 pct, while that in the refined lead is only 0.113 pct. The refining rate of lead bullion reached up to 94.27 pct. Copper-phase impurity can be separated effectively from Pb-3 mass pct Cu melt by filtration method in super-gravity field, and the separation efficiency increased with the increasing gravity coefficient in the range of G ≥ 10. After filtration at 613 K (340 °C) with gravity coefficient G = 100 for 10 minutes, the refined lead, with just 0.157 mass pct copper impurity, was separated to the bottom of the crucible, and the copper dross containing only 23.56 mass pct residual lead was intercepted by the carbon fiber felt, leading to the separation efficiency up to 96.18 pct (meaning a great reduction in metal loss).

  7. Accumulation of Zn, Cd, Cu, and Pb in Chinese cabbage as influenced by climatic conditions under protected cultivation.

    PubMed

    Moreno, Diego A; Víllora, Gemma; Hernández, Joaquín; Castilla, Nicolás; Romero, Luis

    2002-03-27

    Accumulation of heavy metals from agricultural soils contaminated by low levels heavy metals has important implications in the understanding of heavy metal contamination in the food chain. Through field experiments (1994-1996), the influence of thermal regime under different treatments on the accumulation of zinc, cadmium, copper, and lead in Chinese cabbage [Brassica pekinensis (Lour) Rupr. cv. Nagaoka 50] grown in a Calcareous Fluvisol (Xerofluvent) in Granada (southern Spain) was examined. Two floating row covers were used: T(1) (perforated polyethylene, 50 microm thick) and T(2) (17 g m(-2) polypropylene nonwoven fleece). An uncovered cultivation (T(0)) served as control. Zn, Cd, Cu, and Pb levels in the whole tops of experimental plants were analyzed. Treatments T(1) and T(2) gave rise to differences in environmental conditions with respect to T(0). The influence of environmental factors manipulated by floating row covers (particularly under T(1)) increased total heavy metal accumulation in the above ground plant biomass with respect to the open-air crop. The total contents of Zn, Cd, Cu, and Pb were 30, 50, 90, and 40% higher in T(1), respectively, than in T(0). This technique could be used in contaminated zones for different plant species because the thermal effect favors the process of phytoextraction and thus reduces the contamination.

  8. Fractionation of Pb and Cu in the fine fraction (<10 mm) of waste excavated from a municipal landfill.

    PubMed

    Kaczala, Fabio; Orupõld, Kaja; Augustsson, Anna; Burlakovs, Juris; Hogland, Marika; Bhatnagar, Amit; Hogland, William

    2017-11-01

    The fractionation of metals in the fine fraction (<10 mm) of excavated waste from an Estonian landfill was carried out to evaluate the metal (Pb and Cu) contents and their potential towards not only mobility but also possibilities of recovery/extraction. The fractionation followed the BCR (Community Bureau of Reference) sequential extraction, and the exchangeable (F1), reducible (F2), oxidizable (F3) and residual fractions were determined. The results showed that Pb was highly associated with the reducible (F2) and oxidizable (F3) fractions, suggesting the potential mobility of this metal mainly when in contact with oxygen, despite the low association with the exchangeable fraction (F1). Cu has also shown the potential for mobility when in contact with oxygen, since high associations with the oxidizable fraction (F3) were observed. On the other hand, the mobility of metals in excavated waste can be seen as beneficial considering the circular economy and recovery of such valuables back into the economy. To conclude, not only the total concentration of metals but also a better understanding of fractionation and in which form metals are bound is very important to bring information on how to manage the fine fraction from excavated waste both in terms of environmental impacts and also recovery of such valuables in the economy.

  9. Physico-Chemical and Heavy Metal Profiles of Top Soils Sourced from Abandoned Lead-Zinc Mines at Enyigba, Ameri and Ameka Villages, Abakaliki District, Ebonyi State, South Eastern Nigeria

    NASA Astrophysics Data System (ADS)

    Osayande, D. A.; Azi, E. D.; Obayagbona, N.; Ovwasa, O. M.; Anegbe, B.

    2016-12-01

    Twenty (20) soil samples were collected from several abandoned old Pb - Zn mines located in Enyigba, Ameri, Ameka villages in the Abakaliki district of Ebonyi State, South-Eastern Nigeria. The soils were analyzed for Fe, Mn, Cu, Zn, Pb, Cd, Ni, Cr, V, pH, organic carbon and Electrical Conductivity using routine procedures. The physic-chemical analyses showed that pH values were generally low. The Electrical conductivity of the soils were high while organic carbon content in the soil was generally low. The heavy metal mean trend indicated that Pb (86) > Zn (64) > Cu (20) > Cd (15) > Ni (7) > Cr (6) > V (1). Fe and Mn values were also high. The variations observed for the heavy metal suggested both geogenic and anthropogenic activities were responsible for their distribution. Soil contamination was assessed on the basis of contamination factor (CF) and enrichment factor (EF). The CF values for the soil revealed moderate contamination for Ni, Cr, V, Zn and Mn, while Pb and Cd showed high contamination. The results of enrichment factor (EF) showed that using Fe concentration in the background value, Ni, Cr, V and Mn had moderate enrichment, Pb and Zn showed significant enrichment while Cd indicated high enrichment. The results of the principal component and cluster analyses showed that Zn, Cu, Cd, Pb metal originated from similar source but may have been significantly influenced by anthropogenic activities, while Ni, Cr, V were attributable to geogenic sources.

  10. Determination and maternal transfer of heavy metals (Cd, Cu, Zn, Pb and Hg) in the Hawksbill sea turtle (Eretmochelys imbricata) from a nesting colony of Qeshm Island, Iran.

    PubMed

    Ehsanpour, Maryam; Afkhami, Majid; Khoshnood, Reza; Reich, Kimberly J

    2014-06-01

    This study was conducted to determine trace metal concentrations (Cd, Cu, Zn, Pb and Hg) in blood and three egg fractions from Eretmochelys imbricata nesting on Qeshm Island in Iran. The results showed detectable levels of all analytes in all fractions. Pb and Hg were detectable in the blood and eggs, reflecting a maternal transfer. With the exception of Cu and Pb, analyzed elements in eggs were concentrated in yolk. Only Zn in blood had a significant correlation with the body size and weight (p < 0.01). It appears that Hawksbill sea turtles can regulate Zn concentrations through homeostatic processes to balance metabolic requirements. The relatively low concentrations of metals in blood support the knowledge that E. imbricata feed mainly on the low trophic levels. All essential and non-essential elements were detectable in blood and in eggs of the hawksbill, reflecting a maternal transfer. Consequently, movement patterns, home ranges of foraging grounds, and availability of food could explain variations in trace element concentrations among female turtles.

  11. Influence of minor combined addition of Cr and Pr on microstructure, mechanical properties and corrosion behaviors of an ultrahigh strength Al-Zn-Mg-Cu-Zr alloy.

    PubMed

    Wang, Ming; Huang, Lanping; Chen, Kanghua; Liu, Wensheng

    2018-01-01

    This work focuses on controlling grain boundary structure in an ultra-high strength Al-8.6Zn-2.5Mg-2.2Cu-0.16Zr (wt.%) alloy by the combined addition of trace Cr (0.1wt.%) and Pr (0.14wt.%), and evaluating mechanical properties and localized corrosion behaviors of the alloy in the peak aged condition. The introduction of trace Cr and Pr leads to the formation of nanoscale Cr, Pr-containing Al 3 Zr and Zr-containing PrCr 2 Al 20 dispersoids which can obviously inhibit the recrystallization and sub-grain growth of the super-high strength Al-Zn-Mg-Cu alloys, and retain the deformation-recovery microstructure dominated by low-angle grain boundaries. The nearly ellipsoidal dispersoids with a size of 10-35nm are discretely distributed and precipitate free zones are hardly formed in low-angle grain boundaries. This new alloy composition exhibits better combined properties, higher resistance to stress corrosion, exfoliation corrosion and inter-granular corrosion with the undamaged strength, ductility and fracture toughness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Metallogeny of precious and base metal mineralization in the Murchison Greenstone Belt, South Africa: indications from U-Pb and Pb-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Jaguin, J.; Poujol, M.; Boulvais, P.; Robb, L. J.; Paquette, J. L.

    2012-10-01

    The 3.09 to 2.97 Ga Murchison Greenstone Belt is an important metallotect in the northern Kaapvaal Craton (South Africa), hosting several precious and base metal deposits. Central to the metallotect is the Antimony Line, striking ENE for over 35 km, which hosts a series of structurally controlled Sb-Au deposits. To the north of the Antimony Line, hosted within felsic volcanic rocks, is the Copper-Zinc Line where a series of small, ca. 2.97 Ga Cu-Zn volcanogenic massive sulfide (VMS)-type deposits occur. New data are provided for the Malati Pump gold mine, located at the eastern end of the Antimony Line. Crystallizations of a granodiorite in the Malati Pump Mine and of the Baderoukwe granodiorite are dated at 2,964 ± 7 and 2,970 ± 7 Ma, respectively (zircon U-Pb), while pyrite associated with gold mineralization yielded a Pb-Pb age of 2,967 ± 48 Ma. Therefore, granodiorite emplacement, sulfide mineral deposition and gold mineralization all happened at ca. 2.97 Ga. It is, thus, suggested that the major styles of orogenic Au-Sb and the Cu-Zn VMS mineralization in the Murchison Greenstone Belt are contemporaneous and that the formation of meso- to epithermal Au-Sb mineralization at fairly shallow levels was accompanied by submarine extrusion of felsic volcanic rocks to form associated Cu-Zn VMS mineralization.

  13. Optimal formation and enhanced superconductivity of Tl-1212 phase (Tl0.6Pb0.4)(Ba,Sr)CaCu2O7

    NASA Astrophysics Data System (ADS)

    Ranjbar, M. G.; Ghoranneviss, Mahmood; Abd-Shukor, R.

    2018-06-01

    The effect of heating temperature on the formation of Tl-1212 phase with nominal starting composition (Tl0.6Pb0.4)(Ba,Sr)CaCu2O7 (Tl-1212) is reported. The Ba-bearing Tl-1212 phase is normally prepared at around 900 °C while with Sr-bearing sample is prepared at a much higher temperature of around 1000 °C. This work was conducted to determine the optimal temperature to synthesis the Tl-1212 phase when the sample contains Ba and Sr with 1:1 ratio. (Tl0.6Pb0.4)(Ba,Sr)CaCu2O7 samples were prepared using the solid-state reaction method via the precursor route. In the final preparation stage, the samples were heated at 850, 870, 900, 920, 950, 970 and 1000 °C in oxygen flow. X-Ray diffraction patterns showed that most samples consisted of a mixed (Tl0.6Pb0.4)(Ba,Sr)Ca2Cu3O9 (Tl-1223) and Tl-1212 phase except for the sample heated at 970 °C which showed a single Tl-1212 phase and the sample heated at 850 °C which showed the Tl-1223 phase. The transition temperature measured by four-probe method showed that the sample heated at 970 °C exhibited the highest onset temperature of 118 K and zero-resistance temperature of 100 K. This transition temperature is higher than the usually reported value for the Tl-1212 phase. AC susceptibility measurements also showed the 970 °C heated sample with the highest transition temperature T c χ' = 109 K. The interplay of ionic radius (Ba2+ and Sr2+) decreases of the unit cell volume and changes in the internal lattice strain enhanced the transition temperature and the formation of the Tl-1212 phase.

  14. Enhanced performance of CO oxidation over Pt/CuCrOx catalyst in the presence of CO2 and H2O

    NASA Astrophysics Data System (ADS)

    Deng, Yun; Wang, Ting; Zhu, Li; Jia, Ai-Pin; Lu, Ji-Qing; Luo, Meng-Fei

    2018-06-01

    A Pt catalyst supported on CuO-CrOx composite oxide (Pt/CuCrOx) was prepared and tested for CO oxidation in the presence of CO2 and H2O. It was found that the catalyst was stable in the realistic reaction conditions and the catalytic activity was improved in the presence of CO2 and H2O compared to that in dry condition. Kinetic investigation and temperature - programmed desorption of CO results revealed that the addition of CO2 in the feed resulted in the competitive adsorption of CO/CO2 and the formation of surface carbonate species, which consequently deactivated the catalyst. In contrast, although the presence of H2O also inhibited the adsorption of CO, the possible formation of surface hydroxyl groups may trigger a new and more facile reaction route for CO oxidation, which could explain the promoting effect of H2O. Therefore, the current findings makes the catalyst promising in CO oxidation under realistic reaction conditions.

  15. Removal of Cd(II), Pb(II) and Cr(III) from water using modified residues of Anacardium occidentale L.

    NASA Astrophysics Data System (ADS)

    Coelho, Gustavo Ferreira; Gonçalves, Affonso Celso; Schwantes, Daniel; Rodríguez, Esperanza Álvarez; Tarley, César Ricardo Teixeira; Dragunski, Douglas; Conradi Junior, Élio

    2018-06-01

    The pollution of water has been one of the greatest problems faced by the modern society, due to industrialization and urban growth. Rivers, lakes and seas have been continually suffering from the rising concentration of various pollutants, especially toxic elements. This study aimed to evaluate the use of cashew nut shell ( Anacardium occidentale) (CNS), after chemical modification with H2O2, H2SO4 and NaOH, as an new and renewable adsorbent material, for the removal of metals Cd2+, Pb2+ and Cr3+ in aqueous medium. The adsorbents were characterized by its chemical constitution, structure, infrared spectroscopy, morphology, by means of scanning electron microscopy, determination of the point of zero charge, thermogravimetrical analysis and porosimetry assessments. Tests were conducted to determine the optimal conditions (pH vs. adsorbent mass) for adsorption, by means of multivariate analysis using a central composite design. The adsorption kinetics was evaluated by models of pseudo-first order, pseudo-second order, Elovich and intraparticle diffusion, while adsorption isotherms were linearized by Langmuir, Freundlich and Dubinin-Radushkevich. The effect of initial concentration, temperature and desorption was also performed. The adsorbents exhibited irregular, spongy and heterogeneous structure. FTIR analysis confirms the presence of hydroxyl, aliphatic, phenolic and carboxylic acid groups, which are favorable adsorption characteristics. The pHPZC of adsorbent is 4.35, 2.50 e 6.92, respectively, for CNS H2O2, H2SO4 and NaOH. The optimum adsorption conditions were as follows: pH 5.0; relation of adsorbent mass/volume of water: 4 g L-1; 40 min of contact time for reaching the equilibration. Results suggest the predominance of chemisorption of Cd2+ and Cr3+. Most of biosorbents exhibited good fit by Langmuir and Freundlich, suggesting the occurrence of adsorption on mono- and multilayers. The adsorbents of cashew nut shell exhibited high removal efficiency of Cd, Pb

  16. Synthesis and electrical properties of (Pb,Co)Sr2(Y,Ca)Cu2Oz

    NASA Astrophysics Data System (ADS)

    Tashiro, T.; Maeda, T.; Abe, R.; Takechi, S.; Takahashi, T.; Haruta, M.; Horii, S.

    One of related materials to high-temperature superconductors (HTSC's) with nominal compositions of (Pb0.5Co0.5)Sr2(Y1xCax)Cu2Oz (x=0∼0.6) is synthesized and characterized. All samples are nearly single-phase, and its crystal structure is likely to be so-called "1-2-1-2" type which is one of typical structures of HTSC's. Electrical resistivity is decreased as x increases. While superconductivity is not observed at temperatures between room-temperature and 20 K for all samples, temperature dependence of the resistivity exhibits metallic behavior down to 150 K for x=0.5. Phase formation and transport behavior are discussed focusing on mixed valence-state of Co2+ and Co3+.

  17. Effects of sediment burial disturbance on macro and microelement dynamics in decomposing litter of Phragmites australis in the coastal marsh of the Yellow River estuary, China.

    PubMed

    Sun, Zhigao; Mou, Xiaojie

    2016-03-01

    From April 2008 to November 2009, a field decomposition experiment was conducted to investigate the effects of sediment burial on macro (C, N) and microelement (Pb, Cr, Cu, Zn, Ni, and Mn) variations in decomposing litter of Phragmites australis in the coastal marsh of the Yellow River estuary. Three one-off sediment burial treatments [no sediment burial (0 mm year(-1), S0), current sediment burial (100 mm year(-1), S10), and strong sediment burial (200 mm year(-1), S20)] were laid in different decomposition sites. Results showed that sediment burials showed significant influence on the decomposition rate of P. australis, in the order of S10 (0.001990 day(-1)) ≈ S20 (0.001710 day(-1)) > S0 (0.000768 day(-1)) (p < 0.05). The macro and microelement in decomposing litters of the three burial depths exhibited different temporal variations except for Cu, Zn, and Ni. No significant differences in C, N, Pb, Cr, Zn, and Mn concentrations were observed among the three burial treatments except for Cu and Ni (p > 0.05). With increasing burial depth, N, Cr, Cu, Ni, and Mn concentrations generally increased, while C, Pb, and Zn concentrations varied insignificantly. Sediment burial was favorable for C and N release from P. australis, and, with increasing burial depth, the C release from litter significantly increased, and the N in litter shifted from accumulation to release. With a few exceptions, Pb, Cr, Zn, and Mn stocks in P. australis in the three treatments evidenced the export of metals from litter to environment, and, with increasing burial depth, the export amounts increased greatly. Stocks of Cu and Ni in P. australis in the S10 and S20 treatments were generally positive, evidencing incorporation of the two metals in most sampling times. Except for Ni, the variations of C, N, Pb, Cr, Cu, Zn, and Mn stocks in P. australis in the S10 and S20 treatments were approximated, indicating that the strong burial episodes (S20) occurred in P. australis marsh in

  18. [Spatial distribution and ecological risk assessment of heavy metals in the estuaries surface sediments from the Haihe River Basin].

    PubMed

    Lü, Shu-Cong; Zhang, Hong; Shan, Bao-Qing; Li, Li-Qing

    2013-11-01

    It is well known that the rivers in the Haihe River Basin have been seriously polluted. However, what is the present condition of the estuary pollution and how the polluted inland rivers affect the estuary areas are not clear. 10 main estuaries of the Haihe River Basin were selected to measure the contents of typical heavy metals (Pb, Cu, Zn, Cd, Cr and Ni) in the surface sediments and to analyze the spatial distribution of these heavy metals. The potential ecological risk index was used to assess the ecological risk of the six heavy metals in the estuaries. The results showed that the contents of Pb, Cu, Zn, Cd, Cr and Ni in the surface sediments of the 10 estuaries were all higher than their background values in the main local soil types and the contents of Cu, Ni and Pb were 2.3-2.6 times as high as their background values, which indicated that the estuaries were contaminated by the six heavy metals. The results also indicated that the contents of the six heavy metals in surface sediment varied from one estuary to another. The four heavy metals of Cr, Cu, Ni and Zn had bigger spatial differences than Pb and Cd in the contents in sediment from different estuaries. The contents of Cr, Cu, Ni and Zn in sediment were higher in the estuaries of the Yongdingxin River, Ziyaxin River and Beipai River than those in the other estuaries, and there were significant correlations between each other (R(Cu-Zn) = 0.891, R(Cu-Cr) = 0.927, R(Cu-Ni) = 0.964, R(Zn-Cr) = 0.842, R(Zn-Ni) = 0.939, and R(Cr-Ni) = 0.879, P < 0.01), which indicated that they possibly came from the same sources. Moreover, the contents of Cr, Cu, Ni and Zn in sediment also had significant correlations with the populations of sub-river basins with correlation coefficients of 0.855, 0.806, 0.867 and 0.855 (P < 0.01), respectively. The contents of Cd and Pb had smaller spatial differences in sediment from different estuaries than the other heavy metals, with the values ranged 23.3-95.8 mg x kg(-1) and 0

  19. Pb uptake and toxicity to Iris halophila tested on Pb mine tailing materials.

    PubMed

    Han, Yulin; Zhang, Lili; Yang, Yongheng; Yuan, Haiyan; Zhao, Jiuzhou; Gu, Jiguang; Huang, Suzhen

    2016-07-01

    Pb tolerant mechanisms, plant physiological response and Pb sub-cellular localization in the root cells of Iris halophila were studied in sand culture and the Pb mine tailings. Results showed that the activities of superoxide dismutase (SOD) and peroxidase (POD) in the underground parts and the activity of catalase (CAT) in the aboveground and underground parts increased as Pb level was enhanced. Glutathione (GSH) and ascorbic acid (AsA) contents increased by Pb treatments. Pb deposits were found in the middle cell walls or along the inner side of epibiotic protoplasm of some cells which accumulated a large quantity of Pb and died. The dry weights (DWs) of aboveground parts under all Pb tailings treatments decreased insignificantly, while the DW of the underground parts growing in the pure Pb tailings decreased significantly. Pb, Cu, Cd, and Zn contents increased significantly as the levels of Pb tailings were enhanced and Pb contents in the aboveground and underground parts reached 64.75 and 751.75 μg/g DW, respectively, at pure Pb tailings treatment. The results indicated that I. halophila is a promising plant in the phytoremediation of Pb contaminated environment. Some antioxidant enzymes, antioxidants and compartmentalization of Pb were played major roles in Pb tolerance of I. halophila. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Environmental and Ecological Risk Assessment of Trace Metal Contamination in Mangrove Ecosystems: A Case from Zhangjiangkou Mangrove National Nature Reserve, China

    PubMed Central

    Wang, Jun; Du, Huihong; Xu, Ye; Chen, Kai; Liang, Junhua; Ke, Hongwei; Cheng, Sha-Yen; Liu, Mengyang; Deng, Hengxiang; He, Tong; Wang, Wenqing

    2016-01-01

    Zhangjiangkou Mangrove National Nature Reserve is a subtropical wetland ecosystem in southeast coast of China, which is of dense population and rapid development. The concentrations, sources, and pollution assessment of trace metals (Cu, Cd, Pb, Cr, Zn, As, and Hg) in surface sediment from 29 sites and the biota specimen were investigated for better ecological risk assessment and environmental management. The ranges of trace metals in mg/kg sediment were as follows: Cu (10.79–26.66), Cd (0.03–0.19), Pb (36.71–59.86), Cr (9.67–134.51), Zn (119.69–157.84), As (15.65–31.60), and Hg (0.00–0.08). The sequences of the bioaccumulation of studied metals are Zn > Cu > As > Cr > Pb > Cd > Hg with few exceptions. Cluster analysis and principal component analysis revealed that the trace metals in the studied area mainly derived from anthropogenic activities, such as industrial effluents, agricultural waste, and domestic sewage. Pollution load index and geoaccumulation index were calculated for trace metals in surface sediments, which indicated unpolluted status in general except Pb, Cr, and As. PMID:27795956