Sample records for crack detection process

  1. Improved modified pressure imaging and software for egg micro-crack detection and egg quality grading

    USDA-ARS?s Scientific Manuscript database

    Cracks in the egg shell increase a food safety risk. Especially, eggs with very fine, hairline cracks (micro-cracks) are often undetected during the grading process because they are almost impossible to detect visually. A modified pressure imaging system was developed to detect eggs with micro-crack...

  2. The crack detection algorithm of pavement image based on edge information

    NASA Astrophysics Data System (ADS)

    Yang, Chunde; Geng, Mingyue

    2018-05-01

    As the images of pavement cracks are affected by a large amount of complicated noises, such as uneven illumination and water stains, the detected cracks are discontinuous and the main body information at the edge of the cracks is easily lost. In order to solve the problem, a crack detection algorithm in pavement image based on edge information is proposed. Firstly, the image is pre-processed by the nonlinear gray-scale transform function and reconstruction filter to enhance the linear characteristic of the crack. At the same time, an adaptive thresholding method is designed to coarsely extract the cracks edge according to the gray-scale gradient feature and obtain the crack gradient information map. Secondly, the candidate edge points are obtained according to the gradient information, and the edge is detected based on the single pixel percolation processing, which is improved by using the local difference between pixels in the fixed region. Finally, complete crack is obtained by filling the crack edge. Experimental results show that the proposed method can accurately detect pavement cracks and preserve edge information.

  3. Pattern recognition of concrete surface cracks and defects using integrated image processing algorithms

    NASA Astrophysics Data System (ADS)

    Balbin, Jessie R.; Hortinela, Carlos C.; Garcia, Ramon G.; Baylon, Sunnycille; Ignacio, Alexander Joshua; Rivera, Marco Antonio; Sebastian, Jaimie

    2017-06-01

    Pattern recognition of concrete surface crack defects is very important in determining stability of structure like building, roads or bridges. Surface crack is one of the subjects in inspection, diagnosis, and maintenance as well as life prediction for the safety of the structures. Traditionally determining defects and cracks on concrete surfaces are done manually by inspection. Moreover, any internal defects on the concrete would require destructive testing for detection. The researchers created an automated surface crack detection for concrete using image processing techniques including Hough transform, LoG weighted, Dilation, Grayscale, Canny Edge Detection and Haar Wavelet Transform. An automatic surface crack detection robot is designed to capture the concrete surface by sectoring method. Surface crack classification was done with the use of Haar trained cascade object detector that uses both positive samples and negative samples which proved that it is possible to effectively identify the surface crack defects.

  4. a Cost-Effective Method for Crack Detection and Measurement on Concrete Surface

    NASA Astrophysics Data System (ADS)

    Sarker, M. M.; Ali, T. A.; Abdelfatah, A.; Yehia, S.; Elaksher, A.

    2017-11-01

    Crack detection and measurement in the surface of concrete structures is currently carried out manually or through Non-Destructive Testing (NDT) such as imaging or scanning. The recent developments in depth (stereo) cameras have presented an opportunity for cost-effective, reliable crack detection and measurement. This study aimed at evaluating the feasibility of the new inexpensive depth camera (ZED) for crack detection and measurement. This depth camera with its lightweight and portable nature produces a 3D data file of the imaged surface. The ZED camera was utilized to image a concrete surface and the 3D file was processed to detect and analyse cracks. This article describes the outcome of the experiment carried out with the ZED camera as well as the processing tools used for crack detection and analysis. Crack properties that were also of interest were length, orientation, and width. The use of the ZED camera allowed for distinction between surface and concrete cracks. The ZED high-resolution capability and point cloud capture technology helped in generating a dense 3D data in low-lighting conditions. The results showed the ability of the ZED camera to capture the crack depth changes between surface (render) cracks, and crack that form in the concrete itself.

  5. Eddy current testing for blade edge micro cracks of aircraft engine

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-min; Xu, Min-dong; Gao, Xuan-yi; Jin, Xin; Qin, Feng

    2017-10-01

    Based on the problems of low detection efficiency in the micro cracks detection of aircraft engine blades, a differential excitation eddy current testing system was designed and developed. The function and the working principle of the system were described, the problems which contained the manufacture method of simulated cracks, signal generating, signal processing and the signal display method were described. The detection test was carried out by taking a certain model aircraft engine blade with simulated cracks as a tested specimen. The test data was processed by digital low-pass filter in the computer and the crack signals of time domain display and Lissajous figure display were acquired. By comparing the test results, it is verified that Lissajous figure display shows better performance compared to time domain display when the crack angle is small. The test results show that the eddy current testing system designed in this paper is feasible to detect the micro cracks on the aeroengine blade and can effectively improve the detection efficiency of micro cracks in the practical detection work.

  6. Automatic crack detection method for loaded coal in vibration failure process

    PubMed Central

    Li, Chengwu

    2017-01-01

    In the coal mining process, the destabilization of loaded coal mass is a prerequisite for coal and rock dynamic disaster, and surface cracks of the coal and rock mass are important indicators, reflecting the current state of the coal body. The detection of surface cracks in the coal body plays an important role in coal mine safety monitoring. In this paper, a method for detecting the surface cracks of loaded coal by a vibration failure process is proposed based on the characteristics of the surface cracks of coal and support vector machine (SVM). A large number of cracked images are obtained by establishing a vibration-induced failure test system and industrial camera. Histogram equalization and a hysteresis threshold algorithm were used to reduce the noise and emphasize the crack; then, 600 images and regions, including cracks and non-cracks, were manually labelled. In the crack feature extraction stage, eight features of the cracks are extracted to distinguish cracks from other objects. Finally, a crack identification model with an accuracy over 95% was trained by inputting the labelled sample images into the SVM classifier. The experimental results show that the proposed algorithm has a higher accuracy than the conventional algorithm and can effectively identify cracks on the surface of the coal and rock mass automatically. PMID:28973032

  7. Automatic crack detection method for loaded coal in vibration failure process.

    PubMed

    Li, Chengwu; Ai, Dihao

    2017-01-01

    In the coal mining process, the destabilization of loaded coal mass is a prerequisite for coal and rock dynamic disaster, and surface cracks of the coal and rock mass are important indicators, reflecting the current state of the coal body. The detection of surface cracks in the coal body plays an important role in coal mine safety monitoring. In this paper, a method for detecting the surface cracks of loaded coal by a vibration failure process is proposed based on the characteristics of the surface cracks of coal and support vector machine (SVM). A large number of cracked images are obtained by establishing a vibration-induced failure test system and industrial camera. Histogram equalization and a hysteresis threshold algorithm were used to reduce the noise and emphasize the crack; then, 600 images and regions, including cracks and non-cracks, were manually labelled. In the crack feature extraction stage, eight features of the cracks are extracted to distinguish cracks from other objects. Finally, a crack identification model with an accuracy over 95% was trained by inputting the labelled sample images into the SVM classifier. The experimental results show that the proposed algorithm has a higher accuracy than the conventional algorithm and can effectively identify cracks on the surface of the coal and rock mass automatically.

  8. Detection of Cracking Levels in Brittle Rocks by Parametric Analysis of the Acoustic Emission Signals

    NASA Astrophysics Data System (ADS)

    Moradian, Zabihallah; Einstein, Herbert H.; Ballivy, Gerard

    2016-03-01

    Determination of the cracking levels during the crack propagation is one of the key challenges in the field of fracture mechanics of rocks. Acoustic emission (AE) is a technique that has been used to detect cracks as they occur across the specimen. Parametric analysis of AE signals and correlating these parameters (e.g., hits and energy) to stress-strain plots of rocks let us detect cracking levels properly. The number of AE hits is related to the number of cracks, and the AE energy is related to magnitude of the cracking event. For a full understanding of the fracture process in brittle rocks, prismatic specimens of granite containing pre-existing flaws have been tested in uniaxial compression tests, and their cracking process was monitored with both AE and high-speed video imaging. In this paper, the characteristics of the AE parameters and the evolution of cracking sequences are analyzed for every cracking level. Based on micro- and macro-crack damage, a classification of cracking levels is introduced. This classification contains eight stages (1) crack closure, (2) linear elastic deformation, (3) micro-crack initiation (white patch initiation), (4) micro-crack growth (stable crack growth), (5) micro-crack coalescence (macro-crack initiation), (6) macro-crack growth (unstable crack growth), (7) macro-crack coalescence and (8) failure.

  9. Adaptive road crack detection system by pavement classification.

    PubMed

    Gavilán, Miguel; Balcones, David; Marcos, Oscar; Llorca, David F; Sotelo, Miguel A; Parra, Ignacio; Ocaña, Manuel; Aliseda, Pedro; Yarza, Pedro; Amírola, Alejandro

    2011-01-01

    This paper presents a road distress detection system involving the phases needed to properly deal with fully automatic road distress assessment. A vehicle equipped with line scan cameras, laser illumination and acquisition HW-SW is used to storage the digital images that will be further processed to identify road cracks. Pre-processing is firstly carried out to both smooth the texture and enhance the linear features. Non-crack features detection is then applied to mask areas of the images with joints, sealed cracks and white painting, that usually generate false positive cracking. A seed-based approach is proposed to deal with road crack detection, combining Multiple Directional Non-Minimum Suppression (MDNMS) with a symmetry check. Seeds are linked by computing the paths with the lowest cost that meet the symmetry restrictions. The whole detection process involves the use of several parameters. A correct setting becomes essential to get optimal results without manual intervention. A fully automatic approach by means of a linear SVM-based classifier ensemble able to distinguish between up to 10 different types of pavement that appear in the Spanish roads is proposed. The optimal feature vector includes different texture-based features. The parameters are then tuned depending on the output provided by the classifier. Regarding non-crack features detection, results show that the introduction of such module reduces the impact of false positives due to non-crack features up to a factor of 2. In addition, the observed performance of the crack detection system is significantly boosted by adapting the parameters to the type of pavement.

  10. Adaptive Road Crack Detection System by Pavement Classification

    PubMed Central

    Gavilán, Miguel; Balcones, David; Marcos, Oscar; Llorca, David F.; Sotelo, Miguel A.; Parra, Ignacio; Ocaña, Manuel; Aliseda, Pedro; Yarza, Pedro; Amírola, Alejandro

    2011-01-01

    This paper presents a road distress detection system involving the phases needed to properly deal with fully automatic road distress assessment. A vehicle equipped with line scan cameras, laser illumination and acquisition HW-SW is used to storage the digital images that will be further processed to identify road cracks. Pre-processing is firstly carried out to both smooth the texture and enhance the linear features. Non-crack features detection is then applied to mask areas of the images with joints, sealed cracks and white painting, that usually generate false positive cracking. A seed-based approach is proposed to deal with road crack detection, combining Multiple Directional Non-Minimum Suppression (MDNMS) with a symmetry check. Seeds are linked by computing the paths with the lowest cost that meet the symmetry restrictions. The whole detection process involves the use of several parameters. A correct setting becomes essential to get optimal results without manual intervention. A fully automatic approach by means of a linear SVM-based classifier ensemble able to distinguish between up to 10 different types of pavement that appear in the Spanish roads is proposed. The optimal feature vector includes different texture-based features. The parameters are then tuned depending on the output provided by the classifier. Regarding non-crack features detection, results show that the introduction of such module reduces the impact of false positives due to non-crack features up to a factor of 2. In addition, the observed performance of the crack detection system is significantly boosted by adapting the parameters to the type of pavement. PMID:22163717

  11. Crack Detection in Concrete Tunnels Using a Gabor Filter Invariant to Rotation.

    PubMed

    Medina, Roberto; Llamas, José; Gómez-García-Bermejo, Jaime; Zalama, Eduardo; Segarra, Miguel José

    2017-07-20

    In this article, a system for the detection of cracks in concrete tunnel surfaces, based on image sensors, is presented. Both data acquisition and processing are covered. Linear cameras and proper lighting are used for data acquisition. The required resolution of the camera sensors and the number of cameras is discussed in terms of the crack size and the tunnel type. Data processing is done by applying a new method called Gabor filter invariant to rotation, allowing the detection of cracks in any direction. The parameter values of this filter are set by using a modified genetic algorithm based on the Differential Evolution optimization method. The detection of the pixels belonging to cracks is obtained to a balanced accuracy of 95.27%, thus improving the results of previous approaches.

  12. Quantitative Detection of Cracks in Steel Using Eddy Current Pulsed Thermography.

    PubMed

    Shi, Zhanqun; Xu, Xiaoyu; Ma, Jiaojiao; Zhen, Dong; Zhang, Hao

    2018-04-02

    Small cracks are common defects in steel and often lead to catastrophic accidents in industrial applications. Various nondestructive testing methods have been investigated for crack detection; however, most current methods focus on qualitative crack identification and image processing. In this study, eddy current pulsed thermography (ECPT) was applied for quantitative crack detection based on derivative analysis of temperature variation. The effects of the incentive parameters on the temperature variation were analyzed in the simulation study. The crack profile and position are identified in the thermal image based on the Canny edge detection algorithm. Then, one or more trajectories are determined through the crack profile in order to determine the crack boundary through its temperature distribution. The slope curve along the trajectory is obtained. Finally, quantitative analysis of the crack sizes was performed by analyzing the features of the slope curves. The experimental verification showed that the crack sizes could be quantitatively detected with errors of less than 1%. Therefore, the proposed ECPT method was demonstrated to be a feasible and effective nondestructive approach for quantitative crack detection.

  13. Improved imaging algorithm for bridge crack detection

    NASA Astrophysics Data System (ADS)

    Lu, Jingxiao; Song, Pingli; Han, Kaihong

    2012-04-01

    This paper present an improved imaging algorithm for bridge crack detection, through optimizing the eight-direction Sobel edge detection operator, making the positioning of edge points more accurate than without the optimization, and effectively reducing the false edges information, so as to facilitate follow-up treatment. In calculating the crack geometry characteristics, we use the method of extracting skeleton on single crack length. In order to calculate crack area, we construct the template of area by making logical bitwise AND operation of the crack image. After experiment, the results show errors of the crack detection method and actual manual measurement are within an acceptable range, meet the needs of engineering applications. This algorithm is high-speed and effective for automated crack measurement, it can provide more valid data for proper planning and appropriate performance of the maintenance and rehabilitation processes of bridge.

  14. Automatic Detection and Evaluation of Solar Cell Micro-Cracks in Electroluminescence Images Using Matched Filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    A method for detecting micro-cracks in solar cells using two dimensional matched filters was developed, derived from the electroluminescence intensity profile of typical micro-cracks. We describe the image processing steps to obtain a binary map with the location of the micro-cracks. Finally, we show how to automatically estimate the total length of each micro-crack from these maps, and propose a method to identify severe types of micro-cracks, such as parallel, dendritic, and cracks with multiple orientations. With an optimized threshold parameter, the technique detects over 90 % of cracks larger than 3 cm in length. The method shows great potentialmore » for quantifying micro-crack damage after manufacturing or module transportation for the determination of a module quality criterion for cell cracking in photovoltaic modules.« less

  15. Process for the detection of micro-cracks

    DOEpatents

    Lapinski, Norman; Sather, Allen

    1979-01-01

    A process for the nondestructive testing of ceramic objects to detect the presence of defects and micro-cracks in the surface in which a solution of silver nitrate is applied to the surface of the object which penetrates into the surface defects, drying the object so that the silver nitrate remains in the defects, and preparing an X-ray radiograph whereby any defects and micro-cracks will appear in the radiograph.

  16. Planetary Gearbox Fault Detection Using Vibration Separation Techniques

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason

    2011-01-01

    Studies were performed to demonstrate the capability to detect planetary gear and bearing faults in helicopter main-rotor transmissions. The work supported the Operations Support and Sustainment (OSST) program with the U.S. Army Aviation Applied Technology Directorate (AATD) and Bell Helicopter Textron. Vibration data from the OH-58C planetary system were collected on a healthy transmission as well as with various seeded-fault components. Planetary fault detection algorithms were used with the collected data to evaluate fault detection effectiveness. Planet gear tooth cracks and spalls were detectable using the vibration separation techniques. Sun gear tooth cracks were not discernibly detectable from the vibration separation process. Sun gear tooth spall defects were detectable. Ring gear tooth cracks were only clearly detectable by accelerometers located near the crack location or directly across from the crack. Enveloping provided an effective method for planet bearing inner- and outer-race spalling fault detection.

  17. Automatic crack detection and classification method for subway tunnel safety monitoring.

    PubMed

    Zhang, Wenyu; Zhang, Zhenjiang; Qi, Dapeng; Liu, Yun

    2014-10-16

    Cracks are an important indicator reflecting the safety status of infrastructures. This paper presents an automatic crack detection and classification methodology for subway tunnel safety monitoring. With the application of high-speed complementary metal-oxide-semiconductor (CMOS) industrial cameras, the tunnel surface can be captured and stored in digital images. In a next step, the local dark regions with potential crack defects are segmented from the original gray-scale images by utilizing morphological image processing techniques and thresholding operations. In the feature extraction process, we present a distance histogram based shape descriptor that effectively describes the spatial shape difference between cracks and other irrelevant objects. Along with other features, the classification results successfully remove over 90% misidentified objects. Also, compared with the original gray-scale images, over 90% of the crack length is preserved in the last output binary images. The proposed approach was tested on the safety monitoring for Beijing Subway Line 1. The experimental results revealed the rules of parameter settings and also proved that the proposed approach is effective and efficient for automatic crack detection and classification.

  18. Automatic Crack Detection and Classification Method for Subway Tunnel Safety Monitoring

    PubMed Central

    Zhang, Wenyu; Zhang, Zhenjiang; Qi, Dapeng; Liu, Yun

    2014-01-01

    Cracks are an important indicator reflecting the safety status of infrastructures. This paper presents an automatic crack detection and classification methodology for subway tunnel safety monitoring. With the application of high-speed complementary metal-oxide-semiconductor (CMOS) industrial cameras, the tunnel surface can be captured and stored in digital images. In a next step, the local dark regions with potential crack defects are segmented from the original gray-scale images by utilizing morphological image processing techniques and thresholding operations. In the feature extraction process, we present a distance histogram based shape descriptor that effectively describes the spatial shape difference between cracks and other irrelevant objects. Along with other features, the classification results successfully remove over 90% misidentified objects. Also, compared with the original gray-scale images, over 90% of the crack length is preserved in the last output binary images. The proposed approach was tested on the safety monitoring for Beijing Subway Line 1. The experimental results revealed the rules of parameter settings and also proved that the proposed approach is effective and efficient for automatic crack detection and classification. PMID:25325337

  19. Automatic concrete cracks detection and mapping of terrestrial laser scan data

    NASA Astrophysics Data System (ADS)

    Rabah, Mostafa; Elhattab, Ahmed; Fayad, Atef

    2013-12-01

    Terrestrial laser scanning has become one of the standard technologies for object acquisition in surveying engineering. The high spatial resolution of imaging and the excellent capability of measuring the 3D space by laser scanning bear a great potential if combined for both data acquisition and data compilation. Automatic crack detection from concrete surface images is very effective for nondestructive testing. The crack information can be used to decide the appropriate rehabilitation method to fix the cracked structures and prevent any catastrophic failure. In practice, cracks on concrete surfaces are traced manually for diagnosis. On the other hand, automatic crack detection is highly desirable for efficient and objective crack assessment. The current paper submits a method for automatic concrete cracks detection and mapping from the data that was obtained during laser scanning survey. The method of cracks detection and mapping is achieved by three steps, namely the step of shading correction in the original image, step of crack detection and finally step of crack mapping and processing steps. The detected crack is defined in a pixel coordinate system. To remap the crack into the referred coordinate system, a reverse engineering is used. This is achieved by a hybrid concept of terrestrial laser-scanner point clouds and the corresponding camera image, i.e. a conversion from the pixel coordinate system to the terrestrial laser-scanner or global coordinate system. The results of the experiment show that the mean differences between terrestrial laser scan and the total station are about 30.5, 16.4 and 14.3 mms in x, y and z direction, respectively.

  20. Detection of cracks on concrete surfaces by hyperspectral image processing

    NASA Astrophysics Data System (ADS)

    Santos, Bruno O.; Valença, Jonatas; Júlio, Eduardo

    2017-06-01

    All large infrastructures worldwide must have a suitable monitoring and maintenance plan, aiming to evaluate their behaviour and predict timely interventions. In the particular case of concrete infrastructures, the detection and characterization of crack patterns is a major indicator of their structural response. In this scope, methods based on image processing have been applied and presented. Usually, methods focus on image binarization followed by applications of mathematical morphology to identify cracks on concrete surface. In most cases, publications are focused on restricted areas of concrete surfaces and in a single crack. On-site, the methods and algorithms have to deal with several factors that interfere with the results, namely dirt and biological colonization. Thus, the automation of a procedure for on-site characterization of crack patterns is of great interest. This advance may result in an effective tool to support maintenance strategies and interventions planning. This paper presents a research based on the analysis and processing of hyper-spectral images for detection and classification of cracks on concrete structures. The objective of the study is to evaluate the applicability of several wavelengths of the electromagnetic spectrum for classification of cracks in concrete surfaces. An image survey considering highly discretized wavelengths between 425 nm and 950 nm was performed on concrete specimens, with bandwidths of 25 nm. The concrete specimens were produced with a crack pattern induced by applying a load with displacement control. The tests were conducted to simulate usual on-site drawbacks. In this context, the surface of the specimen was subjected to biological colonization (leaves and moss). To evaluate the results and enhance crack patterns a clustering method, namely k-means algorithm, is being applied. The research conducted allows to define the suitability of using clustering k-means algorithm combined with hyper-spectral images highly discretized for crack detection on concrete surfaces, considering cracking combined with the most usual concrete anomalies, namely biological colonization.

  1. Intelligent detection of cracks in metallic surfaces using a waveguide sensor loaded with metamaterial elements.

    PubMed

    Ali, Abdulbaset; Hu, Bing; Ramahi, Omar

    2015-05-15

    This work presents a real life experiment of implementing an artificial intelligence model for detecting sub-millimeter cracks in metallic surfaces on a dataset obtained from a waveguide sensor loaded with metamaterial elements. Crack detection using microwave sensors is typically based on human observation of change in the sensor's signal (pattern) depicted on a high-resolution screen of the test equipment. However, as demonstrated in this work, implementing artificial intelligence to classify cracked from non-cracked surfaces has appreciable impact in terms of sensing sensitivity, cost, and automation. Furthermore, applying artificial intelligence for post-processing data collected from microwave sensors is a cornerstone for handheld test equipment that can outperform rack equipment with large screens and sophisticated plotting features. The proposed method was tested on a metallic plate with different cracks and the obtained experimental results showed good crack classification accuracy rates.

  2. Intelligent Detection of Cracks in Metallic Surfaces Using a Waveguide Sensor Loaded with Metamaterial Elements

    PubMed Central

    Ali, Abdulbaset; Hu, Bing; Ramahi, Omar M.

    2015-01-01

    This work presents a real-life experiment implementing an artificial intelligence model for detecting sub-millimeter cracks in metallic surfaces on a dataset obtained from a waveguide sensor loaded with metamaterial elements. Crack detection using microwave sensors is typically based on human observation of change in the sensor's signal (pattern) depicted on a high-resolution screen of the test equipment. However, as demonstrated in this work, implementing artificial intelligence to classify cracked from non-cracked surfaces has appreciable impacts in terms of sensing sensitivity, cost, and automation. Furthermore, applying artificial intelligence for post-processing the data collected from microwave sensors is a cornerstone for handheld test equipment that can outperform rack equipment with large screens and sophisticated plotting features. The proposed method was tested on a metallic plate with different cracks, and the experimental results showed good crack classification accuracy rates. PMID:25988871

  3. Eddy Current System for Detection of Cracking Beneath Braiding in Corrugated Metal Hose

    NASA Astrophysics Data System (ADS)

    Wincheski, Buzz; Simpson, John; Hall, George

    2009-03-01

    In this paper an eddy current system for the detection of partially-through-the-thickness cracks in corrugated metal hose is presented. Design criteria based upon the geometry and conductivity of the part are developed and applied to the fabrication of a prototype inspection system. Experimental data are used to highlight the capabilities of the system and an image processing technique is presented to improve flaw detection capabilities. A case study for detection of cracking damage in a space shuttle radiator retract flex hoses is also presented.

  4. Eddy Current System for Detection of Cracking Beneath Braiding in Corrugated Metal Hose

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Simpson, John; Hall, George

    2008-01-01

    In this paper an eddy current system for the detection of partially-through-the-thickness cracks in corrugated metal hose is presented. Design criteria based upon the geometry and conductivity of the part are developed and applied to the fabrication of a prototype inspection system. Experimental data are used to highlight the capabilities of the system and an image processing technique is presented to improve flaw detection capabilities. A case study for detection of cracking damage in a space shuttle radiator retract flex hoses is also presented.

  5. Detection and reconstruction of solidification cracks - Laser ultrasonic measurements during the continuous casting process of aluminum

    NASA Astrophysics Data System (ADS)

    Mitter, Thomas; Grün, Hubert; Roither, Jürgen; Betz, Andreas; Bozorgi, Salar; Reitinger, Bernhard; Burgholzer, Peter

    2014-05-01

    In the continuous casting process the avoidance and rapid detection of occurring solidification cracks in the slab is a crucial issue, in particular for the maintenance of a high quality level in further production processes. Due to the elevated temperatures of the slab surface a remote sensing non-destructive tool for quality inspection is required, which is also applicable for the harsh industrial environment. In this work the application of laser ultrasound (LUS) technique during the continuous casting process in industrial environment is shown. The proof of principle of the detection of the centered solidification cracks is shown by pulse-echo measurements with laser ultrasonic equipment for inline quality inspection. Preliminary examinations in the lab of different casted samples have shown the distinguishability of slabs with and without any solidification cracks. Furthermore the damping of the bulk wave has been used for the prediction of the dimension of the crack. With an adapted "synthetic aperture focusing technique" (SAFT) algorithm the image reconstruction of multiple measurements at different positions around the circumference has provided enough information for the estimation of the localization and extension of the centered solidification cracks. Subsequent first measurements using this laser ultrasonic setup during the continuous casting of aluminum were carried out and showed the proof of principle in an industrial environment with elevated temperatures, dust, cooling water and vibrations.

  6. Improvements on FEA with a two-step simulation of experimental procedures in turbine blade crack detection in sonic IR NDE

    NASA Astrophysics Data System (ADS)

    Zhang, Ding; Han, Xiaoyan; Newaz, Golam; Favro, Lawrence D.; Thomas, Robert L.

    2013-01-01

    We showed our work on modeling turbine blade crack detection in Sonic Infrared (IR) Imaging with a method of creating flat crack surface in finite element analysis (FEA) in last year's QNDE paper. This modeling has been carried out continuously as part of model-assisted study on crack detection in aircraft engine turbine blades. We have presented that Sonic IR Imaging NDE is a viable method to detect defects in various structures. It combines ultrasound excitation for frictional heating in defects and infrared imaging to sense this heating, and thus to identify the defects. It is a fast wide-area imaging technology. It only takes a second to image a large area of a target sample. When an aircraft is in flight, the turbine engine blades operate under high temperature and high cyclic stresses. Thus, fatigue cracks can form after many hours of operation. Sonic IR Imaging can be used to detect such cracks. However, we still need to better understand contributions of parameters/factors in the crack detection process with Sonic IR Imaging. FEA modeling can help us to reveal certain aspects through the data it produces where experimental work cannot achieve. Upon the model we presented last year, a two-step simulation process was designed to simulate the important aspects in our experiments. These include a newly designed model for the ultrasound transducer which delivers mechanical energy to the sample and the implementation of static force while engaging the transducer to the sample. In this paper, we present the ideas and the results from the new model.

  7. Applying terahertz technology for nondestructive detection of crack initiation in a film-coated layer on a swelling tablet

    PubMed Central

    Momose, Wataru; Yoshino, Hiroyuki; Katakawa, Yoshifumi; Yamashita, Kazunari; Imai, Keiji; Sako, Kazuhiro; Kato, Eiji; Irisawa, Akiyoshi; Yonemochi, Etsuo; Terada, Katsuhide

    2012-01-01

    Here, we describe a nondestructive approach using terahertz wave to detect crack initiation in a film-coated layer on a drug tablet. During scale-up and scale-down of the film coating process, differences in film density and gaps between the film-coated layer and the uncoated tablet were generated due to differences in film coating process parameters, such as the tablet-filling rate in the coating machine, spray pressure, and gas–liquid ratio etc. Tablets using the PEO/PEG formulation were employed as uncoated tablets. We found that heat and humidity caused tablets to swell, thereby breaking the film-coated layer. Using our novel approach with terahertz wave nondestructively detect film surface density (FSD) and interface density differences (IDDs) between the film-coated layer and an uncoated tablet. We also found that a reduced FSD and IDD between the film-coated layer and uncoated tablet increased the risk of crack initiation in the film-coated layer, thereby enabling us to nondestructively predict initiation of cracks in the film-coated layer. Using this method, crack initiation can be nondestructively assessed in swelling tablets after the film coating process without conducting accelerated stability tests, and film coating process parameters during scale-up and scale-down studies can be appropriately established. PMID:25755992

  8. Development of a novel non-contact inspection technique to detect micro cracks under the surface of a glass substrate by thermal stress-induced light scattering method

    NASA Astrophysics Data System (ADS)

    Sakata, Yoshitaro; Terasaki, Nao; Nonaka, Kazuhiro

    2017-05-01

    Fine polishing techniques, such as a chemical mechanical polishing treatment, are important techniques in glass substrate manufacturing. However, these techniques may cause micro cracks under the surface of glass substrates because they used mechanical friction. A stress-induced light scattering method (SILSM), which was combined with light scattering method and mechanical stress effects, was proposed for inspecting surfaces to detect polishing-induced micro cracks. However, in the conventional SILSM, samples need to be loaded with physical contact, and the loading point is invisible in transparent materials. Here, we introduced a novel non-contact SILSM using a heating device. A glass substrate was heated first, and then the light scattering intensity of micro cracks was detected by a cooled charge-couple device camera during the natural cooling process. Results clearly showed during the decreasing surface temperature of a glass substrate, appropriate thermal stress is generated for detecting micro cracks by using the SILSM and light scattering intensity from micro cracks changes. We confirmed that non-contact thermal SILSM (T-SILSM) can detect micro cracks under the surface of transparent materials.

  9. Nonlinear ultrasonic fatigue crack detection using a single piezoelectric transducer

    NASA Astrophysics Data System (ADS)

    An, Yun-Kyu; Lee, Dong Jun

    2016-04-01

    This paper proposes a new nonlinear ultrasonic technique for fatigue crack detection using a single piezoelectric transducer (PZT). The proposed technique identifies a fatigue crack using linear (α) and nonlinear (β) parameters obtained from only a single PZT mounted on a target structure. Based on the different physical characteristics of α and β, a fatigue crack-induced feature is able to be effectively isolated from the inherent nonlinearity of a target structure and data acquisition system. The proposed technique requires much simpler test setup and less processing costs than the existing nonlinear ultrasonic techniques, but fast and powerful. To validate the proposed technique, a real fatigue crack is created in an aluminum plate, and then false positive and negative tests are carried out under varying temperature conditions. The experimental results reveal that the fatigue crack is successfully detected, and no positive false alarm is indicated.

  10. Electromagnetic pulsed thermography for natural cracks inspection

    NASA Astrophysics Data System (ADS)

    Gao, Yunlai; Tian, Gui Yun; Wang, Ping; Wang, Haitao; Gao, Bin; Woo, Wai Lok; Li, Kongjing

    2017-02-01

    Emerging integrated sensing and monitoring of material degradation and cracks are increasingly required for characterizing the structural integrity and safety of infrastructure. However, most conventional nondestructive evaluation (NDE) methods are based on single modality sensing which is not adequate to evaluate structural integrity and natural cracks. This paper proposed electromagnetic pulsed thermography for fast and comprehensive defect characterization. It hybrids multiple physical phenomena i.e. magnetic flux leakage, induced eddy current and induction heating linking to physics as well as signal processing algorithms to provide abundant information of material properties and defects. New features are proposed using 1st derivation that reflects multiphysics spatial and temporal behaviors to enhance the detection of cracks with different orientations. Promising results that robust to lift-off changes and invariant features for artificial and natural cracks detection have been demonstrated that the proposed method significantly improves defect detectability. It opens up multiphysics sensing and integrated NDE with potential impact for natural understanding and better quantitative evaluation of natural cracks including stress corrosion crack (SCC) and rolling contact fatigue (RCF).

  11. Cascaded image analysis for dynamic crack detection in material testing

    NASA Astrophysics Data System (ADS)

    Hampel, U.; Maas, H.-G.

    Concrete probes in civil engineering material testing often show fissures or hairline-cracks. These cracks develop dynamically. Starting at a width of a few microns, they usually cannot be detected visually or in an image of a camera imaging the whole probe. Conventional image analysis techniques will detect fissures only if they show a width in the order of one pixel. To be able to detect and measure fissures with a width of a fraction of a pixel at an early stage of their development, a cascaded image analysis approach has been developed, implemented and tested. The basic idea of the approach is to detect discontinuities in dense surface deformation vector fields. These deformation vector fields between consecutive stereo image pairs, which are generated by cross correlation or least squares matching, show a precision in the order of 1/50 pixel. Hairline-cracks can be detected and measured by applying edge detection techniques such as a Sobel operator to the results of the image matching process. Cracks will show up as linear discontinuities in the deformation vector field and can be vectorized by edge chaining. In practical tests of the method, cracks with a width of 1/20 pixel could be detected, and their width could be determined at a precision of 1/50 pixel.

  12. Computerized evaluation of holographic interferograms for fatigue crack detection in riveted lap joints

    NASA Astrophysics Data System (ADS)

    Zhou, Xiang

    Using an innovative portable holographic inspection and testing system (PHITS) developed at the Australian Defence Force Academy, fatigue cracks in riveted lap joints can be detected by visually inspecting the abnormal fringe changes recorded on holographic interferograms. In this thesis, for automatic crack detection, some modern digital image processing techniques are investigated and applied to holographic interferogram evaluation. Fringe analysis algorithms are developed for identification of the crack-induced fringe changes. Theoretical analysis of PHITS and riveted lap joints and two typical experiments demonstrate that the fatigue cracks in lightly-clamped joints induce two characteristic fringe changes: local fringe discontinuities at the cracking sites; and the global crescent fringe distribution near to the edge of the rivet hole. Both of the fringe features are used for crack detection in this thesis. As a basis of the fringe feature extraction, an algorithm for local fringe orientation calculation is proposed. For high orientation accuracy and computational efficiency, Gaussian gradient filtering and neighboring direction averaging are used to minimize the effects of image background variations and random noise. The neighboring direction averaging is also used to approximate the fringe directions in centerlines of bright and dark fringes. Experimental results indicate that for high orientation accuracy the scales of the Gaussian filter and neighboring direction averaging should be chosen according to the local fringe spacings. The orientation histogram technique is applied to detect the local fringe discontinuity due to the fatigue cracks. The Fourier descriptor technique is used to characterize the global fringe distribution change from a circular to a crescent distribution with the fatigue crack growth. Experiments and computer simulations are conducted to analyze the detectability and reliability of crack detection using the two techniques. Results demonstrate that the Fourier descriptor technique is more promising in the detection of the short cracks near the edge of the rivet head. However, it is not as reliable as the fringe orientation technique for detection of the long through cracks. For reliability, both techniques should be used in practical crack detection. Neither the Fourier descriptor technique nor the orientation histogram technique have been previously applied to holographic interferometry. While this work related primarily to interferograms of cracked rivets, the techniques would be readily applied to other areas of fringe pattern analysis.

  13. Crack detection in oak flooring lamellae using ultrasound-excited thermography

    NASA Astrophysics Data System (ADS)

    Pahlberg, Tobias; Thurley, Matthew; Popovic, Djordje; Hagman, Olle

    2018-01-01

    Today, a large number of people are manually grading and detecting defects in wooden lamellae in the parquet flooring industry. This paper investigates the possibility of using the ensemble methods random forests and boosting to automatically detect cracks using ultrasound-excited thermography and a variety of predictor variables. When friction occurs in thin cracks, they become warm and thus visible to a thermographic camera. Several image processing techniques have been used to suppress the noise and enhance probable cracks in the images. The most successful predictor variables captured the upper part of the heat distribution, such as the maximum temperature, kurtosis and percentile values 92-100 of the edge pixels. The texture in the images was captured by Completed Local Binary Pattern histograms and cracks were also segmented by background suppression and thresholding. The classification accuracy was significantly improved from previous research through added image processing, introduction of more predictors, and by using automated machine learning. The best ensemble methods reach an average classification accuracy of 0.8, which is very close to the authors' own manual attempt at separating the images (0.83).

  14. Replacement/Refurbishment of JSC/NASA POD Specimens

    NASA Technical Reports Server (NTRS)

    Castner, Willard L.

    2010-01-01

    The NASA Special NDE certification process requires demonstration of NDE capability by test per NASA-STD-5009. This test is performed with fatigue cracked specimens containing very small cracks. The certification test results are usually based on binomial statistics and must meet a 90/95 Probability of Detection (POD). The assumption is that fatigue cracks are tightly closed, difficult to detect, and inspectors and processes passing such a test are well qualified for inspecting NASA fracture critical hardware. The JSC NDE laboratory has what may be the largest inventory that exists of such fatigue cracked NDE demonstration specimens. These specimens were produced by the hundreds in the late 1980s and early 1990s. None have been produced since that time and the condition and usability of the specimens are questionable.

  15. Recognition and inference of crevice processing on digitized paintings

    NASA Astrophysics Data System (ADS)

    Karuppiah, S. P.; Srivatsa, S. K.

    2013-03-01

    This paper is designed to detect and removal of cracks on digitized paintings. The cracks are detected by threshold. Afterwards, the thin dark brush strokes which have been misidentified as cracks are removed using Median radial basis function neural network on hue and saturation data, Semi-automatic procedure based on region growing. Finally, crack is filled using wiener filter. The paper is well designed in such a way that most of the cracks on digitized paintings have identified and removed. The paper % of betterment is 90%. This paper helps us to perform not only on digitized paintings but also the medical images and bmp images. This paper is implemented by Mat Lab.

  16. The cellular transducer in bone: What is it?

    PubMed

    Taylor, David; Hazenberg, Jan; Lee, T Clive

    2006-01-01

    Bone is able to detect its strain environment and respond accordingly. In particular it is able to adapt to over-use and under-use by bone deposition or resorption. How can bone sense strain? Various physical mechanisms have been proposed for the so-called cellular transducer, but there is no conclusive proof for any one of them. This paper examines the theories and evidence, with particular reference to a new theory proposed by the authors, involving damage to cellular processes by microcracks. Experiments on bone samples ex-vivo showed that cracks cannot fracture osteocytes, but that cellular processes which span the crack can be broken. A theoretical model was developed for predicting the number of broken processes as a function of crack size and applied stress. This showed that signals emitted by fractured processes could be used to detect cracks which needed repairing and to provide information on the overall level of damage which could be used to initiate repair and adaptation responses.

  17. Experimental Investigation on the Detection of Multiple Surface Cracks Using Vibrothermography with a Low-Power Piezoceramic Actuator.

    PubMed

    Xu, Changhang; Xie, Jing; Zhang, Wuyang; Kong, Qingzhao; Chen, Guoming; Song, Gangbing

    2017-11-23

    Vibrothermography often employs a high-power actuator to generate heat on a specimen to reveal damage, however, the high-power actuator brings inconvenience to the application and possibly introduces additional damage to the inspected objects. This study uses a low-power piezoceramic transducer as the actuator of vibrothermography and explores its ability to detect multiple surface cracks in a metal part. Experiments were conducted on a thin aluminum beam with three cracks in different orientations. Detailed analyses of both thermograms and temperature data are presented to validate the proposed vibrothermography method. To further investigate the performance of the proposed vibrothermography method, we experimentally studied the effects of several critical factors, including the amplitude of excitation signal, specimen constraints, relative position between the transducer and cracks (the transducer is mounted on the same or the opposite side with the cracks). The results demonstrate that all cracks can be detected conveniently and simultaneously by using the proposed low-power vibrothermography. We also found that the magnitude of excitation signal and the specimen constraints have a great influence on detection results. Combined with effective data processing methods, such as Fourier transformation employed in this study, the proposed method provides a promising potential to detect multiple cracks on a metal surface in a safe and effective manner.

  18. Ultrasonic infrared thermal wave nondestructive evaluation for crack detection of several aerospace materials

    NASA Astrophysics Data System (ADS)

    Xu, Weichao; Shen, Jingling; Zhang, Cunlin; Tao, Ning; Feng, Lichun

    2008-03-01

    The applications of ultrasonic infrared thermal wave nondestructive evaluation for crack detection of several materials, which often used in aviation alloy. For instance, steel and carbon fiber. It is difficult to test cracks interfacial or vertical with structure's surface by the traditional nondestructive testing methods. Ultrasonic infrared thermal wave nondestructive testing technology uses high-power and low-frequency ultrasonic as heat source to excite the sample and an infrared video camera as a detector to detect the surface temperature. The ultrasonic emitter launch pulses of ultrasonic into the skin of the sample, which causes the crack interfaces to rub and dissipate energy as heat, and then caused local increase in temperature at one of the specimen surfaces. The infrared camera images the returning thermal wave reflections from subsurface cracks. A computer collects and processes the thermal images according to different properties of samples to get the satisfied effect. In this paper, a steel plate with fatigue crack we designed and a juncture of carbon fiber composite that has been used in a space probe were tested and get satisfying results. The ultrasonic infrared thermal wave nondestructive detection is fast, sensitive for cracks, especially cracks that vertical with structure's surface. It is significative for nondestructive testing in manufacture produce and application of aviation, cosmography and optoelectronics.

  19. Ultrasonic inspection of studs (bolts) using dynamic predictive deconvolution and wave shaping.

    PubMed

    Suh, D M; Kim, W W; Chung, J G

    1999-01-01

    Bolt degradation has become a major issue in the nuclear industry since the 1980's. If small cracks in stud bolts are not detected early enough, they grow rapidly and cause catastrophic disasters. Their detection, despite its importance, is known to be a very difficult problem due to the complicated structures of the stud bolts. This paper presents a method of detecting and sizing a small crack in the root between two adjacent crests in threads. The key idea is from the fact that the mode-converted Rayleigh wave travels slowly down the face of the crack and turns from the intersection of the crack and the root of thread to the transducer. Thus, when a crack exists, a small delayed pulse due to the Rayleigh wave is detected between large regularly spaced pulses from the thread. The delay time is the same as the propagation delay time of the slow Rayleigh wave and is proportional to the site of the crack. To efficiently detect the slow Rayleigh wave, three methods based on digital signal processing are proposed: wave shaping, dynamic predictive deconvolution, and dynamic predictive deconvolution combined with wave shaping.

  20. Electromagnetic pulsed thermography for natural cracks inspection

    PubMed Central

    Gao, Yunlai; Tian, Gui Yun; Wang, Ping; Wang, Haitao; Gao, Bin; Woo, Wai Lok; Li, Kongjing

    2017-01-01

    Emerging integrated sensing and monitoring of material degradation and cracks are increasingly required for characterizing the structural integrity and safety of infrastructure. However, most conventional nondestructive evaluation (NDE) methods are based on single modality sensing which is not adequate to evaluate structural integrity and natural cracks. This paper proposed electromagnetic pulsed thermography for fast and comprehensive defect characterization. It hybrids multiple physical phenomena i.e. magnetic flux leakage, induced eddy current and induction heating linking to physics as well as signal processing algorithms to provide abundant information of material properties and defects. New features are proposed using 1st derivation that reflects multiphysics spatial and temporal behaviors to enhance the detection of cracks with different orientations. Promising results that robust to lift-off changes and invariant features for artificial and natural cracks detection have been demonstrated that the proposed method significantly improves defect detectability. It opens up multiphysics sensing and integrated NDE with potential impact for natural understanding and better quantitative evaluation of natural cracks including stress corrosion crack (SCC) and rolling contact fatigue (RCF). PMID:28169361

  1. Effective Crack Detection in Railway Axles Using Vibration Signals and WPT Energy.

    PubMed

    Gómez, María Jesús; Corral, Eduardo; Castejón, Cristina; García-Prada, Juan Carlos

    2018-05-17

    Crack detection for railway axles is key to avoiding catastrophic accidents. Currently, non-destructive testing is used for that purpose. The present work applies vibration signal analysis to diagnose cracks in real railway axles installed on a real Y21 bogie working on a rig. Vibration signals were obtained from two wheelsets with cracks at the middle section of the axle with depths from 5.7 to 15 mm, at several conditions of load and speed. Vibration signals were processed by means of wavelet packet transform energy. Energies obtained were used to train an artificial neural network, with reliable diagnosis results. The success rate of 5.7 mm defects was 96.27%, and the reliability in detecting larger defects reached almost 100%, with a false alarm ratio lower than 5.5%.

  2. Experimental Investigation on the Detection of Multiple Surface Cracks Using Vibrothermography with a Low-Power Piezoceramic Actuator

    PubMed Central

    Xu, Changhang; Xie, Jing; Zhang, Wuyang; Kong, Qingzhao; Chen, Guoming; Song, Gangbing

    2017-01-01

    Vibrothermography often employs a high-power actuator to generate heat on a specimen to reveal damage, however, the high-power actuator brings inconvenience to the application and possibly introduces additional damage to the inspected objects. This study uses a low-power piezoceramic transducer as the actuator of vibrothermography and explores its ability to detect multiple surface cracks in a metal part. Experiments were conducted on a thin aluminum beam with three cracks in different orientations. Detailed analyses of both thermograms and temperature data are presented to validate the proposed vibrothermography method. To further investigate the performance of the proposed vibrothermography method, we experimentally studied the effects of several critical factors, including the amplitude of excitation signal, specimen constraints, relative position between the transducer and cracks (the transducer is mounted on the same or the opposite side with the cracks). The results demonstrate that all cracks can be detected conveniently and simultaneously by using the proposed low-power vibrothermography. We also found that the magnitude of excitation signal and the specimen constraints have a great influence on detection results. Combined with effective data processing methods, such as Fourier transformation employed in this study, the proposed method provides a promising potential to detect multiple cracks on a metal surface in a safe and effective manner. PMID:29168759

  3. An algorithm for pavement crack detection based on multiscale space

    NASA Astrophysics Data System (ADS)

    Liu, Xiang-long; Li, Qing-quan

    2006-10-01

    Conventional human-visual and manual field pavement crack detection method and approaches are very costly, time-consuming, dangerous, labor-intensive and subjective. They possess various drawbacks such as having a high degree of variability of the measure results, being unable to provide meaningful quantitative information and almost always leading to inconsistencies in crack details over space and across evaluation, and with long-periodic measurement. With the development of the public transportation and the growth of the Material Flow System, the conventional method can far from meet the demands of it, thereby, the automatic pavement state data gathering and data analyzing system come to the focus of the vocation's attention, and developments in computer technology, digital image acquisition, image processing and multi-sensors technology made the system possible, but the complexity of the image processing always made the data processing and data analyzing come to the bottle-neck of the whole system. According to the above description, a robust and high-efficient parallel pavement crack detection algorithm based on Multi-Scale Space is proposed in this paper. The proposed method is based on the facts that: (1) the crack pixels in pavement images are darker than their surroundings and continuous; (2) the threshold values of gray-level pavement images are strongly related with the mean value and standard deviation of the pixel-grey intensities. The Multi-Scale Space method is used to improve the data processing speed and minimize the effectiveness caused by image noise. Experiment results demonstrate that the advantages are remarkable: (1) it can correctly discover tiny cracks, even from very noise pavement image; (2) the efficiency and accuracy of the proposed algorithm are superior; (3) its application-dependent nature can simplify the design of the entire system.

  4. A Hessian-based methodology for automatic surface crack detection and classification from pavement images

    NASA Astrophysics Data System (ADS)

    Ghanta, Sindhu; Shahini Shamsabadi, Salar; Dy, Jennifer; Wang, Ming; Birken, Ralf

    2015-04-01

    Around 3,000,000 million vehicle miles are annually traveled utilizing the US transportation systems alone. In addition to the road traffic safety, maintaining the road infrastructure in a sound condition promotes a more productive and competitive economy. Due to the significant amounts of financial and human resources required to detect surface cracks by visual inspection, detection of these surface defects are often delayed resulting in deferred maintenance operations. This paper introduces an automatic system for acquisition, detection, classification, and evaluation of pavement surface cracks by unsupervised analysis of images collected from a camera mounted on the rear of a moving vehicle. A Hessian-based multi-scale filter has been utilized to detect ridges in these images at various scales. Post-processing on the extracted features has been implemented to produce statistics of length, width, and area covered by cracks, which are crucial for roadway agencies to assess pavement quality. This process has been realized on three sets of roads with different pavement conditions in the city of Brockton, MA. A ground truth dataset labeled manually is made available to evaluate this algorithm and results rendered more than 90% segmentation accuracy demonstrating the feasibility of employing this approach at a larger scale.

  5. Nonlinear ultrasonic wave modulation for online fatigue crack detection

    NASA Astrophysics Data System (ADS)

    Sohn, Hoon; Lim, Hyung Jin; DeSimio, Martin P.; Brown, Kevin; Derriso, Mark

    2014-02-01

    This study presents a fatigue crack detection technique using nonlinear ultrasonic wave modulation. Ultrasonic waves at two distinctive driving frequencies are generated and corresponding ultrasonic responses are measured using permanently installed lead zirconate titanate (PZT) transducers with a potential for continuous monitoring. Here, the input signal at the lower driving frequency is often referred to as a 'pumping' signal, and the higher frequency input is referred to as a 'probing' signal. The presence of a system nonlinearity, such as a crack formation, can provide a mechanism for nonlinear wave modulation, and create spectral sidebands around the frequency of the probing signal. A signal processing technique combining linear response subtraction (LRS) and synchronous demodulation (SD) is developed specifically to extract the crack-induced spectral sidebands. The proposed crack detection method is successfully applied to identify actual fatigue cracks grown in metallic plate and complex fitting-lug specimens. Finally, the effect of pumping and probing frequencies on the amplitude of the first spectral sideband is investigated using the first sideband spectrogram (FSS) obtained by sweeping both pumping and probing signals over specified frequency ranges.

  6. Nonlinear damage identification of breathing cracks in Truss system

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; DeSmidt, Hans

    2014-03-01

    The breathing cracks in truss system are detected by Frequency Response Function (FRF) based damage identification method. This method utilizes damage-induced changes of frequency response functions to estimate the severity and location of structural damage. This approach enables the possibility of arbitrary interrogation frequency and multiple inputs/outputs which greatly enrich the dataset for damage identification. The dynamical model of truss system is built using the finite element method and the crack model is based on fracture mechanics. Since the crack is driven by tensional and compressive forces of truss member, only one damage parameter is needed to represent the stiffness reduction of each truss member. Assuming that the crack constantly breathes with the exciting frequency, the linear damage detection algorithm is developed in frequency/time domain using Least Square and Newton Raphson methods. Then, the dynamic response of the truss system with breathing cracks is simulated in the time domain and meanwhile the crack breathing status for each member is determined by the feedback from real-time displacements of member's nodes. Harmonic Fourier Coefficients (HFCs) of dynamical response are computed by processing the data through convolution and moving average filters. Finally, the results show the effectiveness of linear damage detection algorithm in identifying the nonlinear breathing cracks using different combinations of HFCs and sensors.

  7. Forced oscillations of cracked beam under the stochastic cyclic loading

    NASA Astrophysics Data System (ADS)

    Matsko, I.; Javors'kyj, I.; Yuzefovych, R.; Zakrzewski, Z.

    2018-05-01

    An analysis of forced oscillations of cracked beam using statistical methods for periodically correlated random processes is presented. The oscillation realizations are obtained on the basis of numerical solutions of differential equations of the second order, for the case when applied force is described by a sum of harmonic and stationary random process. It is established that due to crack appearance forced oscillations acquire properties of second-order periodical non-stationarity. It is shown that in a super-resonance regime covariance and spectral characteristics, which describe non-stationary structure of forced oscillations, are more sensitive to crack growth than the characteristics of the oscillation's deterministic part. Using diagnostic indicators formed on their basis allows the detection of small cracks.

  8. Reliably detectable flaw size for NDE methods that use calibration

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2017-04-01

    Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-1823 and associated mh18232 POD software gives most common methods of POD analysis. In this paper, POD analysis is applied to an NDE method, such as eddy current testing, where calibration is used. NDE calibration standards have known size artificial flaws such as electro-discharge machined (EDM) notches and flat bottom hole (FBH) reflectors which are used to set instrument sensitivity for detection of real flaws. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. Therefore, it is important to correlate signal responses from real flaws with signal responses form artificial flaws used in calibration process to determine reliably detectable flaw size.

  9. Reliably Detectable Flaw Size for NDE Methods that Use Calibration

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2017-01-01

    Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-1823 and associated mh1823 POD software gives most common methods of POD analysis. In this paper, POD analysis is applied to an NDE method, such as eddy current testing, where calibration is used. NDE calibration standards have known size artificial flaws such as electro-discharge machined (EDM) notches and flat bottom hole (FBH) reflectors which are used to set instrument sensitivity for detection of real flaws. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. Therefore, it is important to correlate signal responses from real flaws with signal responses form artificial flaws used in calibration process to determine reliably detectable flaw size.

  10. Transient features and growth behavior of artificial cracks during the initial damage period.

    PubMed

    Ma, Bin; Wang, Ke; Lu, Menglei; Zhang, Li; Zhang, Lei; Zhang, Jinlong; Cheng, Xinbin; Wang, Zhanshan

    2017-02-01

    The laser damage of transmission elements contains a series of complex processes and physical phenomena. The final morphology is a crater structure with different sizes and shapes. The formation and development of the crater are also accompanied by the generation, extension, and submersion of cracks. The growth characteristics of craters and cracks are important in the thermal-mechanism damage research. By using pump-probe detection and an imaging technique with a nanosecond pulsewidth probe laser, we obtained the formation time of the crack structure in the radial and circumferential directions. We carried out statistical analysis in angle, number, and crack length. We further analyzed the relationship between cracks and stress intensity or laser irradiation energy as well as the crack evolution process and the inner link between cracks and pit growth. We used an artificial indentation defect to investigate the time-domain evolution of crack growth, growth speed, transient morphology, and the characteristics of crater expansion. The results can be used to elucidate thermal stress effects on cracks, time-domain evolution of the damage structure, and the damage growth mechanism.

  11. Long range guided wave defect monitoring in rail track

    NASA Astrophysics Data System (ADS)

    Loveday, Philip W.; Long, Craig S.

    2014-02-01

    A guided wave ultrasound system was previously developed for monitoring rail track used on heavy duty freight lines. This system operates by transmitting guided waves between permanently installed transmit and receive transducers spaced approximately 1km apart. The system has been proven to reliably detect rail breaks without false alarms. While cracks are sometimes detected there is a trade - off between detecting cracks and the possibility of false alarms. Adding a pulse-echo mode of operation to the system could provide increased functionality by detecting, locating and possibly monitoring cracks. This would require an array of transducers to control the direction and mode of propagation and it would be necessary to detect cracks up to a range of approximately 500 m in either direction along the rail. A four transducer array was designed and full matrix capture was used for field measurements. Post processing of the signals showed that a thermite weld could be detected at a range of 790m from the transducer array. It was concluded that the required range can be achieved in new rail while it would be extremely difficult in very old rail.

  12. An investigation on die crack detection using Temperature Sensitive Parameter for high speed LED mass production

    NASA Astrophysics Data System (ADS)

    Annaniah, Luruthudass; Devarajan, Mutharasu; San, Teoh Kok

    To ensure the highest quality & long-term reliability of LED components it is necessary to examine LED dice that have sustained mechanical damage during the manufacturing process. This paper has demonstrated that detection of die crack in mass manufactured LEDs can be achieved by measuring Temperature Sensitive Parameters (TSPs) during final testing. A newly-designed apparatus and microcontroller was used for this investigation in order to achieve the millisecond switching time needed for detecting thermal transient effects and at the same time meet the expected speed for mass manufacturing. Evaluations conducted at lab scale shows that thermal transient behaviour of cracked die is significantly different than that of an undamaged die. Having an established test limits to differentiate cracked dice, large volume tests in a production environment were used to confirm the effectiveness of this test method. Failure Bin Analysis (FBA) of this high volume experiment confirmed that all the cracked die LEDs were detected and the undamaged LEDs passed this test without over-rejection. The work verifies that tests based on TSP are effective in identifying die cracks and it is believed that the method could be extended to other types of rejects that have thermal transient signatures such as die delamination.

  13. In silico simulation of liver crack detection using ultrasonic shear wave imaging.

    PubMed

    Nie, Erwei; Yu, Jiao; Dutta, Debaditya; Zhu, Yanying

    2018-05-16

    Liver trauma is an important source of morbidity and mortality worldwide. A timely detection and precise evaluation of traumatic liver injury and the bleeding site is necessary. There is a need to develop better imaging modalities of hepatic injuries to increase the sensitivity of ultrasonic imaging techniques for sites of hemorrhage caused by cracks. In this study, we conduct an in silico simulation of liver crack detection and delineation using an ultrasonic shear wave imaging (USWI) based method. We simulate the generation and propagation of the shear wave in a liver tissue medium having a crack using COMSOL. Ultrasound radio frequency (RF) signal synthesis and the two-dimensional speckle tracking algorithm are applied to simulate USWI in a medium with randomly distributed scatterers. Crack detection is performed using the directional filter and the edge detection algorithm rather than the conventional inversion algorithm. Cracks with varied sizes and locations are studied with our method and the crack localization results are compared with the given crack. Our pilot simulation study shows that, by using USWI combined with a directional filter cum edge detection technique, the near-end edge of the crack can be detected in all the three cracks that we studied. The detection errors are within 5%. For a crack of 1.6 mm thickness, little shear wave can pass through it and the far-end edge of the crack cannot be detected. The detected crack lengths using USWI are all slightly shorter than the actual crack length. The robustness of our method in detecting a straight crack, a curved crack and a subtle crack of 0.5 mm thickness is demonstrated. In this paper, we simulate the use of a USWI based method for the detection and delineation of the crack in liver. The in silico simulation helps to improve understanding and interpretation of USWI measurements in a physical scattered liver medium with a crack. This pilot study provides a basis for improved insights in future crack detection studies in a tissue phantom or liver.

  14. Reducing uncertainty in wind turbine blade health inspection with image processing techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Huiyi

    Structural health inspection has been widely applied in the operation of wind farms to find early cracks in wind turbine blades (WTBs). Increased numbers of turbines and expanded rotor diameters are driving up the workloads and safety risks for site employees. Therefore, it is important to automate the inspection process as well as minimize the uncertainties involved in routine blade health inspection. In addition, crack documentation and trending is vital to assess rotor blade and turbine reliability in the 20 year designed life span. A new crack recognition and classification algorithm is described that can support automated structural health inspection of the surface of large composite WTBs. The first part of the study investigated the feasibility of digital image processing in WTB health inspection and defined the capability of numerically detecting cracks as small as hairline thickness. The second part of the study identified and analyzed the uncertainty of the digital image processing method. A self-learning algorithm was proposed to recognize and classify cracks without comparing a blade image to a library of crack images. The last part of the research quantified the uncertainty in the field conditions and the image processing methods.

  15. Improving visibility of rear surface cracks during inductive thermography of metal plates using Autoencoder

    NASA Astrophysics Data System (ADS)

    Xie, Jing; Xu, Changhang; Chen, Guoming; Huang, Weiping

    2018-06-01

    Inductive thermography is one kind of infrared thermography (IRT) technique, which is effective in detection of front surface cracks in metal plates. However, rear surface cracks are usually missed due to their weak indications during inductive thermography. Here we propose a novel approach (AET: AE Thermography) to improve the visibility of rear surface cracks during inductive thermography by employing the Autoencoder (AE) algorithm, which is an important block to construct deep learning architectures. We construct an integrated framework for processing the raw inspection data of inductive thermography using the AE algorithm. Through this framework, underlying features of rear surface cracks are efficiently extracted and new clearer images are constructed. Experiments of inductive thermography were conducted on steel specimens to verify the efficacy of the proposed approach. We visually compare the raw thermograms, the empirical orthogonal functions (EOFs) of the prominent component thermography (PCT) technique and the results of AET. We further quantitatively evaluated AET by calculating crack contrast and signal-to-noise ratio (SNR). The results demonstrate that the proposed AET approach can remarkably improve the visibility of rear surface cracks and then improve the capability of inductive thermography in detecting rear surface cracks in metal plates.

  16. Refinement of determination of critical thresholds of stress-strain behaviour by using AE data: potential for evaluation of durability of natural stone

    NASA Astrophysics Data System (ADS)

    Prikryl, Richard; Lokajíček, Tomáš

    2017-04-01

    According to previous studies, evaluation of stress-strain behaviour (in uniaxial compression) of various rocks appears to be effective tool allowing for prediction of resistance of natural stone to some physical weathering processes. Precise determination of critical thresholds, specifically of 'crack initiation' and 'crack damage' is fundamental issue in this approach. In contrast to 'crack damage stress/strain threshold', which can be easily read from deflection point on volumetric curve, detection of 'crack initiation' is much more difficult. Besides previously proposed mathematical processing of axial stress-strain curve, recording of acoustic emission (AE) data and their processing provide direct measure of various stress/strain thresholds, specifically of 'crack initiation'. This specific parameter is required during successive computation of energetic parameters (mechanical work), that can be stored by a material without formation of new defects (microcracks) due to acting stress. Based on our experimental data, this mechanical work seems to be proportional to the resistance of a material to formation of mode I (tensile) cracks that are responsible for destruction of subsurface below exposed faces of natural stone.

  17. Detecting the activation of a self-healing mechanism in concrete by acoustic emission and digital image correlation.

    PubMed

    Tsangouri, E; Aggelis, D G; Van Tittelboom, K; De Belie, N; Van Hemelrijck, D

    2013-01-01

    Autonomous crack healing in concrete is obtained when encapsulated healing agent is embedded into the material. Cracking damage in concrete elements ruptures the capsules and activates the healing process by healing agent release. Previously, the strength and stiffness recovery as well as the sealing efficiency after autonomous crack repair was well established. However, the mechanisms that trigger capsule breakage remain unknown. In parallel, the conditions under which the crack interacts with embedded capsules stay black-box. In this research, an experimental approach implementing an advanced optical and acoustic method sets up scopes to monitor and justify the crack formation and capsule breakage of concrete samples tested under three-point bending. Digital Image Correlation was used to visualize the crack opening. The optical information was the basis for an extensive and analytical study of the damage by Acoustic Emission analysis. The influence of embedding capsules on the concrete fracture process, the location of capsule damage, and the differentiation between emissions due to capsule rupture and crack formation are presented in this research. A profound observation of the capsules performance provides a clear view of the healing activation process.

  18. Detecting the Activation of a Self-Healing Mechanism in Concrete by Acoustic Emission and Digital Image Correlation

    PubMed Central

    Tsangouri, E.; Aggelis, D. G.; Van Tittelboom, K.; De Belie, N.; Van Hemelrijck, D.

    2013-01-01

    Autonomous crack healing in concrete is obtained when encapsulated healing agent is embedded into the material. Cracking damage in concrete elements ruptures the capsules and activates the healing process by healing agent release. Previously, the strength and stiffness recovery as well as the sealing efficiency after autonomous crack repair was well established. However, the mechanisms that trigger capsule breakage remain unknown. In parallel, the conditions under which the crack interacts with embedded capsules stay black-box. In this research, an experimental approach implementing an advanced optical and acoustic method sets up scopes to monitor and justify the crack formation and capsule breakage of concrete samples tested under three-point bending. Digital Image Correlation was used to visualize the crack opening. The optical information was the basis for an extensive and analytical study of the damage by Acoustic Emission analysis. The influence of embedding capsules on the concrete fracture process, the location of capsule damage, and the differentiation between emissions due to capsule rupture and crack formation are presented in this research. A profound observation of the capsules performance provides a clear view of the healing activation process. PMID:24381518

  19. Stress corrosion crack initiation of alloy 600 in PWR primary water

    DOE PAGES

    Zhai, Ziqing; Toloczko, Mychailo B.; Olszta, Matthew J.; ...

    2017-04-27

    Stress corrosion crack (SCC) initiation of three mill-annealed alloy 600 heats in simulated pressurized water reactor primary water has been investigated using constant load tests equipped with in-situ direct current potential drop (DCPD) measurement capabilities. SCC initiation times were greatly reduced by a small amount of cold work. Shallow intergranular attack and/or cracks were found on most high-energy grain boundaries intersecting the surface with only a small fraction evolving into larger cracks and intergranular SCC growth. Crack depth profiles were measured and related to DCPD-detected initiation response. Lastly, we discuss processes controlling the SCC initiation in mill-annealed alloy 600.

  20. Stress corrosion crack initiation of alloy 600 in PWR primary water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Ziqing; Toloczko, Mychailo B.; Olszta, Matthew J.

    Stress corrosion crack (SCC) initiation of three mill-annealed alloy 600 heats in simulated pressurized water reactor primary water has been investigated using constant load tests equipped with in-situ direct current potential drop (DCPD) measurement capabilities. SCC initiation times were greatly reduced by a small amount of cold work. Shallow intergranular attack and/or cracks were found on most high-energy grain boundaries intersecting the surface with only a small fraction evolving into larger cracks and intergranular SCC growth. Crack depth profiles were measured and related to DCPD-detected initiation response. Lastly, we discuss processes controlling the SCC initiation in mill-annealed alloy 600.

  1. A robust signal processing method for quantitative high-cycle fatigue crack monitoring using soft elastomeric capacitor sensors

    NASA Astrophysics Data System (ADS)

    Kong, Xiangxiong; Li, Jian; Collins, William; Bennett, Caroline; Laflamme, Simon; Jo, Hongki

    2017-04-01

    A large-area electronics (LAE) strain sensor, termed soft elastomeric capacitor (SEC), has shown great promise in fatigue crack monitoring. The SEC is able to monitor strain changes over a mesoscale structural surface and endure large deformations without being damaged under cracking. Previous tests verified that the SEC is able to detect, localize, and monitor fatigue crack activities under low-cycle fatigue loading. In this paper, to examine the SEC's capability of monitoring high-cycle fatigue cracks, a compact specimen is tested under cyclic tension, designed to ensure realistic crack opening sizes representative of those in real steel bridges. To overcome the difficulty of low signal amplitude and relatively high noise level under high-cycle fatigue loading, a robust signal processing method is proposed to convert the measured capacitance time history from the SEC sensor to power spectral densities (PSD) in the frequency domain, such that signal's peak-to-peak amplitude can be extracted at the dominant loading frequency. A crack damage indicator is proposed as the ratio between the square root of the amplitude of PSD and load range. Results show that the crack damage indicator offers consistent indication of crack growth.

  2. Early detection of materials degradation

    NASA Astrophysics Data System (ADS)

    Meyendorf, Norbert

    2017-02-01

    Lightweight components for transportation and aerospace applications are designed for an estimated lifecycle, taking expected mechanical and environmental loads into account. The main reason for catastrophic failure of components within the expected lifecycle are material inhomogeneities, like pores and inclusions as origin for fatigue cracks, that have not been detected by NDE. However, material degradation by designed or unexpected loading conditions or environmental impacts can accelerate the crack initiation or growth. Conventional NDE methods are usually able to detect cracks that are formed at the end of the degradation process, but methods for early detection of fatigue, creep, and corrosion are still a matter of research. For conventional materials ultrasonic, electromagnetic, or thermographic methods have been demonstrated as promising. Other approaches are focused to surface damage by using optical methods or characterization of the residual surface stresses that can significantly affect the creation of fatigue cracks. For conventional metallic materials, material models for nucleation and propagation of damage have been successfully applied for several years. Material microstructure/property relations are well established and the effect of loading conditions on the component life can be simulated. For advanced materials, for example carbon matrix composites or ceramic matrix composites, the processes of nucleation and propagation of damage is still not fully understood. For these materials NDE methods can not only be used for the periodic inspections, but can significantly contribute to the material scientific knowledge to understand and model the behavior of composite materials.

  3. Defect characterization by inductive heated thermography

    NASA Astrophysics Data System (ADS)

    Noethen, Matthias; Meyendorf, Norbert

    2012-05-01

    During inductive-thermographic inspection, an eddy current of high intensity is induced into the inspected material and the thermal response is detected by an infrared camera. Anomalies in the surface temperature during and after inductive heating correspond to inhomogeneities in the material. A finite element simulation of the surface crack detection process using active thermography with inductive heating has been developed. The simulation model is based on the finite element software ANSYS. The simulation tool was tested and used for investigations on steel components with different longitudinal orientated cracks, varying in shape, width and height. This paper focuses on surface connected longitudinal orientated cracks in austenitic steel. The results show that depending on the excitation frequency the temperature distribution of the material under test are different and a possible way to measure the depth of the crack will be discussed.

  4. Time-resolved measurement of photon emission during fast crack propagation in three-point bending fracture of silica glass and soda lime glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiota, Tadashi, E-mail: tshiota@ceram.titech.ac.jp; Sato, Yoshitaka; Yasuda, Kouichi

    2014-03-10

    Simultaneous time-resolved measurements of photon emission (PE) and fast crack propagation upon bending fracture were conducted in silica glass and soda lime glass. Observation of fracture surfaces revealed that macroscopic crack propagation behavior was similar between the silica glass and soda lime glass when fracture loads for these specimens were comparable and cracks propagated without branching. However, a large difference in the PE characteristics was found between the two glasses. In silica glass, PE (645–655 nm) was observed during the entire crack propagation process, whereas intense PE (430–490 nm and 500–600 nm) was observed during the initial stages of propagation. In contrast, onlymore » weak PE was detected in soda lime glass. These results show that there is a large difference in the atomic processes involved in fast crack propagation between these glasses, and that PE can be used to study brittle fracture on the atomic scale.« less

  5. Pavement crack detection combining non-negative feature with fast LoG in complex scene

    NASA Astrophysics Data System (ADS)

    Wang, Wanli; Zhang, Xiuhua; Hong, Hanyu

    2015-12-01

    Pavement crack detection is affected by much interference in the realistic situation, such as the shadow, road sign, oil stain, salt and pepper noise etc. Due to these unfavorable factors, the exist crack detection methods are difficult to distinguish the crack from background correctly. How to extract crack information effectively is the key problem to the road crack detection system. To solve this problem, a novel method for pavement crack detection based on combining non-negative feature with fast LoG is proposed. The two key novelties and benefits of this new approach are that 1) using image pixel gray value compensation to acquisit uniform image, and 2) combining non-negative feature with fast LoG to extract crack information. The image preprocessing results demonstrate that the method is indeed able to homogenize the crack image with more accurately compared to existing methods. A large number of experimental results demonstrate the proposed approach can detect the crack regions more correctly compared with traditional methods.

  6. Cross-validated detection of crack initiation in aerospace materials

    NASA Astrophysics Data System (ADS)

    Vanniamparambil, Prashanth A.; Cuadra, Jefferson; Guclu, Utku; Bartoli, Ivan; Kontsos, Antonios

    2014-03-01

    A cross-validated nondestructive evaluation approach was employed to in situ detect the onset of damage in an Aluminum alloy compact tension specimen. The approach consisted of the coordinated use primarily the acoustic emission, combined with the infrared thermography and digital image correlation methods. Both tensile loads were applied and the specimen was continuously monitored using the nondestructive approach. Crack initiation was witnessed visually and was confirmed by the characteristic load drop accompanying the ductile fracture process. The full field deformation map provided by the nondestructive approach validated the formation of a pronounced plasticity zone near the crack tip. At the time of crack initiation, a burst in the temperature field ahead of the crack tip as well as a sudden increase of the acoustic recordings were observed. Although such experiments have been attempted and reported before in the literature, the presented approach provides for the first time a cross-validated nondestructive dataset that can be used for quantitative analyses of the crack initiation information content. It further allows future development of automated procedures for real-time identification of damage precursors including the rarely explored crack incubation stage in fatigue conditions.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiusheng, Y., E-mail: qsyan@gdut.edu.cn; Senkai, C., E-mail: senkite@sina.com; Jisheng, P., E-mail: panjisheng@gdut.edu.cn

    Different machining processes were used in the single crystal SiC wafer machining. SEM was used to observe the surface morphology and a cross-sectional cleavages microscopy method was used for subsurface cracks detection. Surface and subsurface cracks characteristics of single crystal SiC wafer in abrasive machining were analysed. The results show that the surface and subsurface cracks system of single crystal SiC wafer in abrasive machining including radial crack, lateral crack and the median crack. In lapping process, material removal is dominated by brittle removal. Lots of chipping pits were found on the lapping surface. With the particle size becomes smaller,more » the surface roughness and subsurface crack depth decreases. When the particle size was changed to 1.5µm, the surface roughness Ra was reduced to 24.0nm and the maximum subsurface crack was 1.2µm. The efficiency of grinding is higher than lapping. Plastic removal can be achieved by changing the process parameters. Material removal was mostly in brittle fracture when grinding with 325# diamond wheel. Plow scratches and chipping pits were found on the ground surface. The surface roughness Ra was 17.7nm and maximum subsurface crack depth was 5.8 µm. When grinding with 8000# diamond wheel, the material removal was in plastic flow. Plastic scratches were found on the surface. A smooth surface of roughness Ra 2.5nm without any subsurface cracks was obtained. Atomic scale removal was possible in cluster magnetorheological finishing with diamond abrasive size of 0.5 µm. A super smooth surface eventually obtained with a roughness of Ra 0.4nm without any subsurface crack.« less

  8. Procedure for Automated Eddy Current Crack Detection in Thin Titanium Plates

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A.

    2012-01-01

    This procedure provides the detailed instructions for conducting Eddy Current (EC) inspections of thin (5-30 mils) titanium membranes with thickness and material properties typical of the development of Ultra-Lightweight diaphragm Tanks Technology (ULTT). The inspection focuses on the detection of part-through, surface breaking fatigue cracks with depths between approximately 0.002" and 0.007" and aspect ratios (a/c) of 0.2-1.0 using an automated eddy current scanning and image processing technique.

  9. Infrasonic wave accompanying a crack opening during the 2015 Hakone eruption

    NASA Astrophysics Data System (ADS)

    Yukutake, Yohei; Ichihara, Mie; Honda, Ryou

    2018-03-01

    To understand the initial process of the phreatic eruption of the Hakone volcano from June 29 to July 01, 2015, we analyzed infrasound data using the cross-correlation between infrasound and vertical ground velocity and compared the results of our analysis to the crustal deformation detected by tiltmeters and broadband seismometers. An infrasound signal and vertical ground motion due to an infrasound wave coupled to the ground were detected simultaneously with the opening of a crack source beneath the Owakudani geothermal region during the 2-min time period after 07:32 JST on June 29, 2015 (JST = UTC + 8 h). Given that the upper end of the open crack was approximately 150 m beneath the surface, the time for the direct emission of highly pressurized fluid from the upper end of the open crack to the surface should have exceeded the duration of the inflation owing to the hydraulic diffusivity in the porous media. Therefore, the infrasound signal coincident with the opening of the crack may reflect a sudden emission of volcanic gas resulting from the rapid vaporization of pre-existing groundwater beneath Owakudani because of the transfer of the volumetric strain change from the deformation source. We also noticed a correlation pattern corresponding to discrete impulsive infrasound signals during vent formation, which occurred several hours to 2 days after the opening of the crack. In particular, we noted that the sudden emission of vapor coincided with the inflation of the shallow pressure source, whereas the eruptive burst events accompanied by the largest vent formation were delayed by approximately 2 days. Furthermore, we demonstrated that the correlation method is a useful tool in detecting small infrasound signals and provides important information regarding the initial processes of the eruption.[Figure not available: see fulltext.

  10. Tiled fuzzy Hough transform for crack detection

    NASA Astrophysics Data System (ADS)

    Vaheesan, Kanapathippillai; Chandrakumar, Chanjief; Mathavan, Senthan; Kamal, Khurram; Rahman, Mujib; Al-Habaibeh, Amin

    2015-04-01

    Surface cracks can be the bellwether of the failure of any component under loading as it indicates the component's fracture due to stresses and usage. For this reason, crack detection is indispensable for the condition monitoring and quality control of road surfaces. Pavement images have high levels of intensity variation and texture content, hence the crack detection is difficult. Moreover, shallow cracks result in very low contrast image pixels making their detection difficult. For these reasons, studies on pavement crack detection is active even after years of research. In this paper, the fuzzy Hough transform is employed, for the first time to detect cracks on any surface. The contribution of texture pixels to the accumulator array is reduced by using the tiled version of the Hough transform. Precision values of 78% and a recall of 72% are obtaining for an image set obtained from an industrial imaging system containing very low contrast cracking. When only high contrast crack segments are considered the values move to mid to high 90%.

  11. Vibration based algorithm for crack detection in cantilever beam containing two different types of cracks

    NASA Astrophysics Data System (ADS)

    Behzad, Mehdi; Ghadami, Amin; Maghsoodi, Ameneh; Michael Hale, Jack

    2013-11-01

    In this paper, a simple method for detection of multiple edge cracks in Euler-Bernoulli beams having two different types of cracks is presented based on energy equations. Each crack is modeled as a massless rotational spring using Linear Elastic Fracture Mechanics (LEFM) theory, and a relationship among natural frequencies, crack locations and stiffness of equivalent springs is demonstrated. In the procedure, for detection of m cracks in a beam, 3m equations and natural frequencies of healthy and cracked beam in two different directions are needed as input to the algorithm. The main accomplishment of the presented algorithm is the capability to detect the location, severity and type of each crack in a multi-cracked beam. Concise and simple calculations along with accuracy are other advantages of this method. A number of numerical examples for cantilever beams including one and two cracks are presented to validate the method.

  12. Lining seam elimination algorithm and surface crack detection in concrete tunnel lining

    NASA Astrophysics Data System (ADS)

    Qu, Zhong; Bai, Ling; An, Shi-Quan; Ju, Fang-Rong; Liu, Ling

    2016-11-01

    Due to the particularity of the surface of concrete tunnel lining and the diversity of detection environments such as uneven illumination, smudges, localized rock falls, water leakage, and the inherent seams of the lining structure, existing crack detection algorithms cannot detect real cracks accurately. This paper proposed an algorithm that combines lining seam elimination with the improved percolation detection algorithm based on grid cell analysis for surface crack detection in concrete tunnel lining. First, check the characteristics of pixels within the overlapping grid to remove the background noise and generate the percolation seed map (PSM). Second, cracks are detected based on the PSM by the accelerated percolation algorithm so that the fracture unit areas can be scanned and connected. Finally, the real surface cracks in concrete tunnel lining can be obtained by removing the lining seam and performing percolation denoising. Experimental results show that the proposed algorithm can accurately, quickly, and effectively detect the real surface cracks. Furthermore, it can fill the gap in the existing concrete tunnel lining surface crack detection by removing the lining seam.

  13. Surface and subsurface cracks characteristics of single crystal SiC wafer in surface machining

    NASA Astrophysics Data System (ADS)

    Qiusheng, Y.; Senkai, C.; Jisheng, P.

    2015-03-01

    Different machining processes were used in the single crystal SiC wafer machining. SEM was used to observe the surface morphology and a cross-sectional cleavages microscopy method was used for subsurface cracks detection. Surface and subsurface cracks characteristics of single crystal SiC wafer in abrasive machining were analysed. The results show that the surface and subsurface cracks system of single crystal SiC wafer in abrasive machining including radial crack, lateral crack and the median crack. In lapping process, material removal is dominated by brittle removal. Lots of chipping pits were found on the lapping surface. With the particle size becomes smaller, the surface roughness and subsurface crack depth decreases. When the particle size was changed to 1.5µm, the surface roughness Ra was reduced to 24.0nm and the maximum subsurface crack was 1.2µm. The efficiency of grinding is higher than lapping. Plastic removal can be achieved by changing the process parameters. Material removal was mostly in brittle fracture when grinding with 325# diamond wheel. Plow scratches and chipping pits were found on the ground surface. The surface roughness Ra was 17.7nm and maximum subsurface crack depth was 5.8 µm. When grinding with 8000# diamond wheel, the material removal was in plastic flow. Plastic scratches were found on the surface. A smooth surface of roughness Ra 2.5nm without any subsurface cracks was obtained. Atomic scale removal was possible in cluster magnetorheological finishing with diamond abrasive size of 0.5 µm. A super smooth surface eventually obtained with a roughness of Ra 0.4nm without any subsurface crack.

  14. Bladed disc crack diagnostics using blade passage signals

    NASA Astrophysics Data System (ADS)

    Hanachi, Houman; Liu, Jie; Banerjee, Avisekh; Koul, Ashok; Liang, Ming; Alavi, Elham

    2012-12-01

    One of the major potential faults in a turbo fan engine is the crack initiation and propagation in bladed discs under cyclic loads that could result in the breakdown of the engines if not detected at an early stage. Reliable fault detection techniques are therefore in demand to reduce maintenance cost and prevent catastrophic failures. Although a number of approaches have been reported in the literature, it remains very challenging to develop a reliable technique to accurately estimate the health condition of a rotating bladed disc. Correspondingly, this paper presents a novel technique for bladed disc crack detection through two sequential signal processing stages: (1) signal preprocessing that aims to eliminate the noises in the blade passage signals; (2) signal postprocessing that intends to identify the crack location. In the first stage, physics-based modeling and interpretation are established to help characterize the noises. The crack initiation can be determined based on the calculated health monitoring index derived from the sinusoidal effects. In the second stage, the crack is located through advanced detrended fluctuation analysis of the preprocessed data. The proposed technique is validated using a set of spin rig test data (i.e. tip clearance and time of arrival) that was acquired during a test conducted on a bladed military engine fan disc. The test results have demonstrated that the developed technique is an effective approach for identifying and locating the incipient crack that occurs at the root of a bladed disc.

  15. Application of Probability of Crack Detection to Aircraft Systems Reliability.

    DOT National Transportation Integrated Search

    1993-08-31

    This report describes three tasks related to probability of crack detection (POD) and aircraft systems reliablity. All three consider previous work in which crack growth simulations and crack detection data in the Service Difficulty Report (SDR) data...

  16. Influence of material ductility and crack surface roughness on fracture instability

    NASA Astrophysics Data System (ADS)

    Khezrzadeh, Hamed; Wnuk, Michael P.; Yavari, Arash

    2011-10-01

    This paper presents a stability analysis for fractal cracks. First, the Westergaard stress functions are proposed for semi-infinite and finite smooth cracks embedded in the stress fields associated with the corresponding self-affine fractal cracks. These new stress functions satisfy all the required boundary conditions and according to Wnuk and Yavari's (2003 Eng. Fract. Mech. 70 1659-74) embedded crack model they are used to derive the stress and displacement fields generated around a fractal crack. These results are then used in conjunction with the final stretch criterion to study the quasi-static stable crack extension, which in ductile materials precedes the global failure. The material resistance curves are determined by solving certain nonlinear differential equations and then employed in predicting the stress levels at the onset of stable crack growth and at the critical point, where a transition to the catastrophic failure occurs. It is shown that the incorporation of the fractal geometry into the crack model, i.e. accounting for the roughness of the crack surfaces, results in (1) higher threshold levels of the material resistance to crack propagation and (2) higher levels of the critical stresses associated with the onset of catastrophic fracture. While the process of quasi-static stable crack growth (SCG) is viewed as a sequence of local instability states, the terminal instability attained at the end of this process is identified with the global instability. The phenomenon of SCG can be used as an early warning sign in fracture detection and prevention.

  17. Stress corrosion crack initiation of alloy 600 in PWR primary water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Ziqing; Toloczko, Mychailo B.; Olszta, Matthew J.

    Stress corrosion crack (SCC) initiation of three mill-annealed (MA) alloy 600 heats in simulated pressurized water reactor primary water has been investigated using constant load tests equipped with in-situ direct current potential drop (DCPD) measurement capabilities. SCC initiation times were greatly reduced by a small amount of cold work. Shallow intergranular (IG) attack and/or cracks were found on most high-energy grain boundaries intersecting the surface with only a small fraction evolving into larger cracks and IGSCC growth. Crack depth profiles were measured and related to DCPD-detected initiation response. Processes controlling the SCC initiation in MA alloy 600 are discussed. INmore » PRESS, CORRECTED PROOF, 05/02/2017 - mfl« less

  18. Detection of pavement cracks using tiled fuzzy Hough transform

    NASA Astrophysics Data System (ADS)

    Mathavan, Senthan; Vaheesan, Kanapathippillai; Kumar, Akash; Chandrakumar, Chanjief; Kamal, Khurram; Rahman, Mujib; Stonecliffe-Jones, Martyn

    2017-09-01

    Surface cracks can be the bellwether of the failure of a road. Hence, crack detection is indispensable for the condition monitoring and quality control of road surfaces. Pavement images have high levels of intensity variation and texture content; hence, the crack detection is generally difficult. Moreover, shallow cracks are very low contrast, making their detection difficult. Therefore, studies on pavement crack detection are active even after years of research. The fuzzy Hough transform is employed, for the first time, to detect cracks from pavement images. A careful consideration is given to the fact that cracks consist of near straight segments embedded in a surface of considerable texture. In this regard, the fuzzy part of the algorithm tackles the segments that are not perfectly straight. Moreover, tiled detection helps reduce the contribution of texture and noise pixels to the accumulator array. The proposed algorithm is compared against a state-of-the-art algorithm for a number of crack datasets, demonstrating its strengths. Precision and recall values of more than 75% are obtained, on different image sets of varying textures and other effects, captured by industrial pavement imagers. The paper also recommends numerical values for parameters used in the proposed method.

  19. Detection of gear cracks in a complex gearbox of wind turbines using supervised bounded component analysis of vibration signals collected from multi-channel sensors

    NASA Astrophysics Data System (ADS)

    Li, Zhixiong; Yan, Xinping; Wang, Xuping; Peng, Zhongxiao

    2016-06-01

    In the complex gear transmission systems, in wind turbines a crack is one of the most common failure modes and can be fatal to the wind turbine power systems. A single sensor may suffer with issues relating to its installation position and direction, resulting in the collection of weak dynamic responses of the cracked gear. A multi-channel sensor system is hence applied in the signal acquisition and the blind source separation (BSS) technologies are employed to optimally process the information collected from multiple sensors. However, literature review finds that most of the BSS based fault detectors did not address the dependence/correlation between different moving components in the gear systems; particularly, the popular used independent component analysis (ICA) assumes mutual independence of different vibration sources. The fault detection performance may be significantly influenced by the dependence/correlation between vibration sources. In order to address this issue, this paper presents a new method based on the supervised order tracking bounded component analysis (SOTBCA) for gear crack detection in wind turbines. The bounded component analysis (BCA) is a state of art technology for dependent source separation and is applied limitedly to communication signals. To make it applicable for vibration analysis, in this work, the order tracking has been appropriately incorporated into the BCA framework to eliminate the noise and disturbance signal components. Then an autoregressive (AR) model built with prior knowledge about the crack fault is employed to supervise the reconstruction of the crack vibration source signature. The SOTBCA only outputs one source signal that has the closest distance with the AR model. Owing to the dependence tolerance ability of the BCA framework, interfering vibration sources that are dependent/correlated with the crack vibration source could be recognized by the SOTBCA, and hence, only useful fault information could be preserved in the reconstructed signal. The crack failure thus could be precisely identified by the cyclic spectral correlation analysis. A series of numerical simulations and experimental tests have been conducted to illustrate the advantages of the proposed SOTBCA method for fatigue crack detection. Comparisons to three representative techniques, i.e. Erdogan's BCA (E-BCA), joint approximate diagonalization of eigen-matrices (JADE), and FastICA, have demonstrated the effectiveness of the SOTBCA. Hence the proposed approach is suitable for accurate gear crack detection in practical applications.

  20. Motion compensated image processing and optimal parameters for egg crack detection using modified pressure

    USDA-ARS?s Scientific Manuscript database

    Shell eggs with microcracks are often undetected during egg grading processes. In the past, a modified pressure imaging system was developed to detect eggs with microcracks without adversely affecting the quality of normal intact eggs. The basic idea of the modified pressure imaging system was to ap...

  1. A novel underwater dam crack detection and classification approach based on sonar images

    PubMed Central

    Shi, Pengfei; Fan, Xinnan; Ni, Jianjun; Khan, Zubair; Li, Min

    2017-01-01

    Underwater dam crack detection and classification based on sonar images is a challenging task because underwater environments are complex and because cracks are quite random and diverse in nature. Furthermore, obtainable sonar images are of low resolution. To address these problems, a novel underwater dam crack detection and classification approach based on sonar imagery is proposed. First, the sonar images are divided into image blocks. Second, a clustering analysis of a 3-D feature space is used to obtain the crack fragments. Third, the crack fragments are connected using an improved tensor voting method. Fourth, a minimum spanning tree is used to obtain the crack curve. Finally, an improved evidence theory combined with fuzzy rule reasoning is proposed to classify the cracks. Experimental results show that the proposed approach is able to detect underwater dam cracks and classify them accurately and effectively under complex underwater environments. PMID:28640925

  2. A novel underwater dam crack detection and classification approach based on sonar images.

    PubMed

    Shi, Pengfei; Fan, Xinnan; Ni, Jianjun; Khan, Zubair; Li, Min

    2017-01-01

    Underwater dam crack detection and classification based on sonar images is a challenging task because underwater environments are complex and because cracks are quite random and diverse in nature. Furthermore, obtainable sonar images are of low resolution. To address these problems, a novel underwater dam crack detection and classification approach based on sonar imagery is proposed. First, the sonar images are divided into image blocks. Second, a clustering analysis of a 3-D feature space is used to obtain the crack fragments. Third, the crack fragments are connected using an improved tensor voting method. Fourth, a minimum spanning tree is used to obtain the crack curve. Finally, an improved evidence theory combined with fuzzy rule reasoning is proposed to classify the cracks. Experimental results show that the proposed approach is able to detect underwater dam cracks and classify them accurately and effectively under complex underwater environments.

  3. Autonomous Robotic Inspection in Tunnels

    NASA Astrophysics Data System (ADS)

    Protopapadakis, E.; Stentoumis, C.; Doulamis, N.; Doulamis, A.; Loupos, K.; Makantasis, K.; Kopsiaftis, G.; Amditis, A.

    2016-06-01

    In this paper, an automatic robotic inspector for tunnel assessment is presented. The proposed platform is able to autonomously navigate within the civil infrastructures, grab stereo images and process/analyse them, in order to identify defect types. At first, there is the crack detection via deep learning approaches. Then, a detailed 3D model of the cracked area is created, utilizing photogrammetric methods. Finally, a laser profiling of the tunnel's lining, for a narrow region close to detected crack is performed; allowing for the deduction of potential deformations. The robotic platform consists of an autonomous mobile vehicle; a crane arm, guided by the computer vision-based crack detector, carrying ultrasound sensors, the stereo cameras and the laser scanner. Visual inspection is based on convolutional neural networks, which support the creation of high-level discriminative features for complex non-linear pattern classification. Then, real-time 3D information is accurately calculated and the crack position and orientation is passed to the robotic platform. The entire system has been evaluated in railway and road tunnels, i.e. in Egnatia Highway and London underground infrastructure.

  4. Nonlinear structural crack growth monitoring

    DOEpatents

    Welch, Donald E.; Hively, Lee M.; Holdaway, Ray F.

    2002-01-01

    A method and apparatus are provided for the detection, through nonlinear manipulation of data, of an indicator of imminent failure due to crack growth in structural elements. The method is a process of determining energy consumption due to crack growth and correlating the energy consumption with physical phenomena indicative of a failure event. The apparatus includes sensors for sensing physical data factors, processors or the like for computing a relationship between the physical data factors and phenomena indicative of the failure event, and apparatus for providing notification of the characteristics and extent of such phenomena.

  5. Fatigue crack sizing in rail steel using crack closure-induced acoustic emission waves

    NASA Astrophysics Data System (ADS)

    Li, Dan; Kuang, Kevin Sze Chiang; Ghee Koh, Chan

    2017-06-01

    The acoustic emission (AE) technique is a promising approach for detecting and locating fatigue cracks in metallic structures such as rail tracks. However, it is still a challenge to quantify the crack size accurately using this technique. AE waves can be generated by either crack propagation (CP) or crack closure (CC) processes and classification of these two types of AE waves is necessary to obtain more reliable crack sizing results. As the pre-processing step, an index based on wavelet power (WP) of AE signal is initially established in this paper in order to distinguish between the CC-induced AE waves and their CP-induced counterparts. Here, information embedded within the AE signal was used to perform the AE wave classification, which is preferred to the use of real-time load information, typically adopted in other studies. With the proposed approach, it renders the AE technique more amenable to practical implementation. Following the AE wave classification, a novel method to quantify the fatigue crack length was developed by taking advantage of the CC-induced AE waves, the count rate of which was observed to be positively correlated with the crack length. The crack length was subsequently determined using an empirical model derived from the AE data acquired during the fatigue tests of the rail steel specimens. The performance of the proposed method was validated by experimental data and compared with that of the traditional crack sizing method, which is based on CP-induced AE waves. As a significant advantage over other AE crack sizing methods, the proposed novel method is able to estimate the crack length without prior knowledge of the initial crack length, integration of AE data or real-time load amplitude. It is thus applicable to the health monitoring of both new and existing structures.

  6. Automatic quantification framework to detect cracks in teeth

    PubMed Central

    Shah, Hina; Hernandez, Pablo; Budin, Francois; Chittajallu, Deepak; Vimort, Jean-Baptiste; Walters, Rick; Mol, André; Khan, Asma; Paniagua, Beatriz

    2018-01-01

    Studies show that cracked teeth are the third most common cause for tooth loss in industrialized countries. If detected early and accurately, patients can retain their teeth for a longer time. Most cracks are not detected early because of the discontinuous symptoms and lack of good diagnostic tools. Currently used imaging modalities like Cone Beam Computed Tomography (CBCT) and intraoral radiography often have low sensitivity and do not show cracks clearly. This paper introduces a novel method that can detect, quantify, and localize cracks automatically in high resolution CBCT (hr-CBCT) scans of teeth using steerable wavelets and learning methods. These initial results were created using hr-CBCT scans of a set of healthy teeth and of teeth with simulated longitudinal cracks. The cracks were simulated using multiple orientations. The crack detection was trained on the most significant wavelet coefficients at each scale using a bagged classifier of Support Vector Machines. Our results show high discriminative specificity and sensitivity of this method. The framework aims to be automatic, reproducible, and open-source. Future work will focus on the clinical validation of the proposed techniques on different types of cracks ex-vivo. We believe that this work will ultimately lead to improved tracking and detection of cracks allowing for longer lasting healthy teeth. PMID:29769755

  7. Fatigue Crack Detection via Load-Differential Guided Wave Methods (Preprint)

    DTIC Science & Technology

    2011-11-01

    AFRL-RX-WP-TP-2011-4362 FATIGUE CRACK DETECTION VIA LOAD- DIFFERENTIAL GUIDED WAVE METHODS (PREPRINT) Jennifer E. Michaels, Sang Jun Lee...November 2011 Technical Paper 1 November 2011 – 1 November 2011 4. TITLE AND SUBTITLE FATIGUE CRACK DETECTION VIA LOAD-DIFFERENTIAL GUIDED WAVE...document contains color. 14. ABSTRACT Detection of fatigue cracks originating from fastener holes is an important application for structural health

  8. Paint removal using wheat starch blast media

    NASA Astrophysics Data System (ADS)

    Foster, Terry; Oestreich, John

    1993-03-01

    A review of the Wheat Starch Blasting technology is presented. Laboratory evaluations covering Almen Arc testing on bare 2024-T3 aluminum and magnesium, as well as crack detection on 7075-T6 bare aluminum, are discussed. Comparisons with Type V plastic media show lower residual stresses are achieved on aluminum and magnesium with wheat starch media. Dry blasting effects on the detection of cracks confirms better crack visibility with wheat starch media versus Type V or Type II plastic media. Testing of wheat starch media in several composite test programs, including fiberglass, Kevlar, and graphite-epoxy composites, showed no fiber damage. Process developments and production experience at the first U.S. aircraft stripping facility are also reviewed. Corporate and regional aircraft are being stripped in this three nozzle dry blast hanger.

  9. Multi-fault clustering and diagnosis of gear system mined by spectrum entropy clustering based on higher order cumulants

    NASA Astrophysics Data System (ADS)

    Shao, Renping; Li, Jing; Hu, Wentao; Dong, Feifei

    2013-02-01

    Higher order cumulants (HOC) is a new kind of modern signal analysis of theory and technology. Spectrum entropy clustering (SEC) is a data mining method of statistics, extracting useful characteristics from a mass of nonlinear and non-stationary data. Following a discussion on the characteristics of HOC theory and SEC method in this paper, the study of signal processing techniques and the unique merits of nonlinear coupling characteristic analysis in processing random and non-stationary signals are introduced. Also, a new clustering analysis and diagnosis method is proposed for detecting multi-damage on gear by introducing the combination of HOC and SEC into the damage-detection and diagnosis of the gear system. The noise is restrained by HOC and by extracting coupling features and separating the characteristic signal at different speeds and frequency bands. Under such circumstances, the weak signal characteristics in the system are emphasized and the characteristic of multi-fault is extracted. Adopting a data-mining method of SEC conducts an analysis and diagnosis at various running states, such as the speed of 300 r/min, 900 r/min, 1200 r/min, and 1500 r/min of the following six signals: no-fault, short crack-fault in tooth root, long crack-fault in tooth root, short crack-fault in pitch circle, long crack-fault in pitch circle, and wear-fault on tooth. Research shows that this combined method of detection and diagnosis can also identify the degree of damage of some faults. On this basis, the virtual instrument of the gear system which detects damage and diagnoses faults is developed by combining with advantages of MATLAB and VC++, employing component object module technology, adopting mixed programming methods, and calling the program transformed from an *.m file under VC++. This software system possesses functions of collecting and introducing vibration signals of gear, analyzing and processing signals, extracting features, visualizing graphics, detecting and diagnosing faults, detecting and monitoring, etc. Finally, the results of testing and verifying show that the developed system can effectively be used to detect and diagnose faults in an actual operating gear transmission system.

  10. Multi-fault clustering and diagnosis of gear system mined by spectrum entropy clustering based on higher order cumulants.

    PubMed

    Shao, Renping; Li, Jing; Hu, Wentao; Dong, Feifei

    2013-02-01

    Higher order cumulants (HOC) is a new kind of modern signal analysis of theory and technology. Spectrum entropy clustering (SEC) is a data mining method of statistics, extracting useful characteristics from a mass of nonlinear and non-stationary data. Following a discussion on the characteristics of HOC theory and SEC method in this paper, the study of signal processing techniques and the unique merits of nonlinear coupling characteristic analysis in processing random and non-stationary signals are introduced. Also, a new clustering analysis and diagnosis method is proposed for detecting multi-damage on gear by introducing the combination of HOC and SEC into the damage-detection and diagnosis of the gear system. The noise is restrained by HOC and by extracting coupling features and separating the characteristic signal at different speeds and frequency bands. Under such circumstances, the weak signal characteristics in the system are emphasized and the characteristic of multi-fault is extracted. Adopting a data-mining method of SEC conducts an analysis and diagnosis at various running states, such as the speed of 300 r/min, 900 r/min, 1200 r/min, and 1500 r/min of the following six signals: no-fault, short crack-fault in tooth root, long crack-fault in tooth root, short crack-fault in pitch circle, long crack-fault in pitch circle, and wear-fault on tooth. Research shows that this combined method of detection and diagnosis can also identify the degree of damage of some faults. On this basis, the virtual instrument of the gear system which detects damage and diagnoses faults is developed by combining with advantages of MATLAB and VC++, employing component object module technology, adopting mixed programming methods, and calling the program transformed from an *.m file under VC++. This software system possesses functions of collecting and introducing vibration signals of gear, analyzing and processing signals, extracting features, visualizing graphics, detecting and diagnosing faults, detecting and monitoring, etc. Finally, the results of testing and verifying show that the developed system can effectively be used to detect and diagnose faults in an actual operating gear transmission system.

  11. Investigation on Characteristic Variation of the FBG Spectrum with Crack Propagation in Aluminum Plate Structures

    PubMed Central

    Jin, Bo; Zhang, Weifang; Zhang, Meng; Ren, Feifei; Dai, Wei; Wang, Yanrong

    2017-01-01

    In order to monitor the crack tip propagation of aluminum alloy, this study investigates the variation of the spectrum characteristics of a fiber Bragg grating (FBG), combined with an analysis of the spectrum simulation. The results identify the location of the subordinate peak as significantly associated with the strain distribution along the grating, corresponding to the different plastic zones ahead of the crack tip with various crack lengths. FBG sensors could observe monotonic and cyclic plastic zones ahead of the crack tip, with the quadratic strain distribution along the grating at the crack tip-FBG distance of 1.2 and 0.7 mm, respectively. FBG sensors could examine the process zones ahead of the crack tip with the cubic strain distribution along the grating at the crack tip-FBG distance of 0.5 mm. The spectrum oscillation occurs as the crack approaches the FBG where the highly heterogeneous strain is distributed. Another idea is to use a finite element method (FEM), together with a T-matrix method, to analyze the reflection intensity spectra of FBG sensors for various crack sizes. The described crack propagation detection system may apply in structural health monitoring. PMID:28772949

  12. Investigation on Characteristic Variation of the FBG Spectrum with Crack Propagation in Aluminum Plate Structures.

    PubMed

    Jin, Bo; Zhang, Weifang; Zhang, Meng; Ren, Feifei; Dai, Wei; Wang, Yanrong

    2017-05-27

    In order to monitor the crack tip propagation of aluminum alloy, this study investigates the variation of the spectrum characteristics of a fiber Bragg grating (FBG), combined with an analysis of the spectrum simulation. The results identify the location of the subordinate peak as significantly associated with the strain distribution along the grating, corresponding to the different plastic zones ahead of the crack tip with various crack lengths. FBG sensors could observe monotonic and cyclic plastic zones ahead of the crack tip, with the quadratic strain distribution along the grating at the crack tip-FBG distance of 1.2 and 0.7 mm, respectively. FBG sensors could examine the process zones ahead of the crack tip with the cubic strain distribution along the grating at the crack tip-FBG distance of 0.5 mm. The spectrum oscillation occurs as the crack approaches the FBG where the highly heterogeneous strain is distributed. Another idea is to use a finite element method (FEM), together with a T -matrix method, to analyze the reflection intensity spectra of FBG sensors for various crack sizes. The described crack propagation detection system may apply in structural health monitoring.

  13. Eddy current crack detection capability assessment approach using crack specimens with differing electrical conductivity

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2018-03-01

    Like other NDE methods, eddy current surface crack detectability is determined using probability of detection (POD) demonstration. The POD demonstration involves eddy current testing of surface crack specimens with known crack sizes. Reliably detectable flaw size, denoted by, a90/95 is determined by statistical analysis of POD test data. The surface crack specimens shall be made from a similar material with electrical conductivity close to the part conductivity. A calibration standard with electro-discharged machined (EDM) notches is typically used in eddy current testing for surface crack detection. The calibration standard conductivity shall be within +/- 15% of the part conductivity. This condition is also applicable to the POD demonstration crack set. Here, a case is considered, where conductivity of the crack specimens available for POD testing differs by more than 15% from that of the part to be inspected. Therefore, a direct POD demonstration of reliably detectable flaw size is not applicable. Additional testing is necessary to use the demonstrated POD test data. An approach to estimate the reliably detectable flaw size in eddy current testing for part made from material A using POD crack specimens made from material B with different conductivity is provided. The approach uses additional test data obtained on EDM notch specimens made from materials A and B. EDM notch test data from the two materials is used to create a transfer function between the demonstrated a90/95 size on crack specimens made of material B and the estimated a90/95 size for part made of material A. Two methods are given. For method A, a90/95 crack size for material B is given and POD data is available. Objective of method A is to determine a90/95 crack size for material A using the same relative decision threshold that was used for material B. For method B, target crack size a90/95 for material A is known. Objective is to determine decision threshold for inspecting material A.

  14. Characterization of delamination and transverse cracking in graphite/epoxy laminates by acoustic emission

    NASA Technical Reports Server (NTRS)

    Garg, A.; Ishaei, O.

    1983-01-01

    Efforts to characterize and differentiate between two major failure processes in graphite/epoxy composites - transverse cracking and Mode I delamination are described. Representative laminates were tested in uniaxial tension and flexure. The failure processes were monitored and identified by acoustic emission (AE). The effect of moisture on AE was also investigated. Each damage process was found to have a distinctive AE output that is significantly affected by moisture conditions. It is concluded that AE can serve as a useful tool for detecting and identifying failure modes in composite structures in laboratory and in service environments.

  15. Crack Damage Detection Method via Multiple Visual Features and Efficient Multi-Task Learning Model.

    PubMed

    Wang, Baoxian; Zhao, Weigang; Gao, Po; Zhang, Yufeng; Wang, Zhe

    2018-06-02

    This paper proposes an effective and efficient model for concrete crack detection. The presented work consists of two modules: multi-view image feature extraction and multi-task crack region detection. Specifically, multiple visual features (such as texture, edge, etc.) of image regions are calculated, which can suppress various background noises (such as illumination, pockmark, stripe, blurring, etc.). With the computed multiple visual features, a novel crack region detector is advocated using a multi-task learning framework, which involves restraining the variability for different crack region features and emphasizing the separability between crack region features and complex background ones. Furthermore, the extreme learning machine is utilized to construct this multi-task learning model, thereby leading to high computing efficiency and good generalization. Experimental results of the practical concrete images demonstrate that the developed algorithm can achieve favorable crack detection performance compared with traditional crack detectors.

  16. Detecting Gear Tooth Fatigue Cracks in Advance of Complete Fracture

    NASA Technical Reports Server (NTRS)

    Zakrajsek, James J.; Lewicki, David G.

    1996-01-01

    Results of using vibration-based methods to detect gear tooth fatigue cracks are presented. An experimental test rig was used to fail a number of spur gear specimens through bending fatigue. The gear tooth fatigue crack in each test was initiated through a small notch in the fillet area of a tooth on the gear. The primary purpose of these tests was to verify analytical predictions of fatigue crack propagation direction and rate as a function of gear rim thickness. The vibration signal from a total of three tests was monitored and recorded for gear fault detection research. The damage consisted of complete rim fracture on the two thin rim gears and single tooth fracture on the standard full rim test gear. Vibration-based fault detection methods were applied to the vibration signal both on-line and after the tests were completed. The objectives of this effort were to identify methods capable of detecting the fatigue crack and to determine how far in advance of total failure positive detection was given. Results show that the fault detection methods failed to respond to the fatigue crack prior to complete rim fracture in the thin rim gear tests. In the standard full rim gear test all of the methods responded to the fatigue crack in advance of tooth fracture; however, only three of the methods responded to the fatigue crack in the early stages of crack propagation.

  17. Use of Carbon Nano-Fiber Foams as Strain Gauges to Detect Crack Propagation

    DTIC Science & Technology

    2015-06-01

    FIBER FOAMS AS STRAIN GAUGES TO DETECT CRACK PROPAGATION by Ervin N. Mercado June 2015 Thesis Advisor: Claudia C. Luhrs Co-Advisor...AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE USE OF CARBON NANO-FIBER FOAMS AS STRAIN GAUGES TO DETECT CRACK PROPAGATION 5. FUNDING...using carbon nanofiber foams as strain gauge material to detect crack propagation in aluminum structures. We produced the tridimensional carbon

  18. Load-Differential Features for Automated Detection of Fatigue Cracks Using Guided Waves (Preprint)

    DTIC Science & Technology

    2011-11-01

    AFRL-RX-WP-TP-2011-4363 LOAD-DIFFERENTIAL FEATURES FOR AUTOMATED DETECTION OF FATIGUE CRACKS USING GUIDED WAVES (PREPRINT) Jennifer E...AUTOMATED DETECTION OF FATIGUE CRACKS USING GUIDED WAVES (PREPRINT) 5a. CONTRACT NUMBER FA8650-09-C-5206 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...tensile loads open fatigue cracks and thus enhance their detectability using ultrasonic methods. Here we introduce a class of load-differential methods

  19. Steel bridge fatigue crack detection with piezoelectric wafer active sensors

    NASA Astrophysics Data System (ADS)

    Yu, Lingyu; Giurgiutiu, Victor; Ziehl, Paul; Ozevin, Didem; Pollock, Patrick

    2010-04-01

    Piezoelectric wafer active sensors (PWAS) are well known for its dual capabilities in structural health monitoring, acting as either actuators or sensors. Due to the variety of deterioration sources and locations of bridge defects, there is currently no single method that can detect and address the potential sources globally. In our research, our use of the PWAS based sensing has the novelty of implementing both passive (as acoustic emission) and active (as ultrasonic transducers) sensing with a single PWAS network. The combined schematic is using acoustic emission to detect the presence of fatigue cracks in steel bridges in their early stage since methods such as ultrasonics are unable to quantify the initial condition of crack growth since most of the fatigue life for these details is consumed while the fatigue crack is too small to be detected. Hence, combing acoustic emission with ultrasonic active sensing will strengthen the damage detection process. The integration of passive acoustic emission detection with active sensing will be a technological leap forward from the current practice of periodic and subjective visual inspection, and bridge management based primarily on history of past performance. In this study, extensive laboratory investigation is performed supported by theoretical modeling analysis. A demonstration system will be presented to show how piezoelectric wafer active sensor is used for acoustic emission. Specimens representing complex structures are tested. The results will also be compared with traditional acoustic emission transducers to identify the application barriers.

  20. Lamb wave line sensing for crack detection in a welded stiffener.

    PubMed

    An, Yun-Kyu; Kim, Jae Hong; Yim, Hong Jae

    2014-07-18

    This paper proposes a novel Lamb wave line sensing technique for crack detection in a welded stiffener. The proposed technique overcomes one of the biggest technical challenges of Lamb wave crack detection for real structure applications: crack-induced Lamb waves are often mixed with multiple reflections from complex waveguides. In particular, crack detection in a welded joint, one of the structural hot spots due to stress concentration, is accompanied by reflections from the welded joint as well as a crack. Extracting and highlighting crack-induced Lamb wave modes from Lamb wave responses measured at multi-spatial points along a single line can be accomplished through a frequency-wavenumber domain analysis. The advantages of the proposed technique enable us not only to enhance the crack detectability in the welded joint but also to minimize false alarms caused by environmental and operational variations by avoiding the direct comparison with the baseline data previously accumulated from the pristine condition of a target structure. The proposed technique is experimentally and numerically validated in vertically stiffened metallic structures, revealing that it successfully identifies and localizes subsurface cracks, regardless of the coexistence with the vertical stiffener.

  1. Identification of cracks in thick beams with a cracked beam element model

    NASA Astrophysics Data System (ADS)

    Hou, Chuanchuan; Lu, Yong

    2016-12-01

    The effect of a crack on the vibration of a beam is a classical problem, and various models have been proposed, ranging from the basic stiffness reduction method to the more sophisticated model involving formulation based on the additional flexibility due to a crack. However, in the damage identification or finite element model updating applications, it is still common practice to employ a simple stiffness reduction factor to represent a crack in the identification process, whereas the use of a more realistic crack model is rather limited. In this paper, the issues with the simple stiffness reduction method, particularly concerning thick beams, are highlighted along with a review of several other crack models. A robust finite element model updating procedure is then presented for the detection of cracks in beams. The description of the crack parameters is based on the cracked beam flexibility formulated by means of the fracture mechanics, and it takes into consideration of shear deformation and coupling between translational and longitudinal vibrations, and thus is particularly suitable for thick beams. The identification procedure employs a global searching technique using Genetic Algorithms, and there is no restriction on the location, severity and the number of cracks to be identified. The procedure is verified to yield satisfactory identification for practically any configurations of cracks in a beam.

  2. Passive detection and localization of fatigue cracking in aluminum plates using Green's function reconstruction from ambient noise.

    PubMed

    Yang, Yang; Xiao, Li; Qu, Wenzhong; Lu, Ye

    2017-11-01

    Recent theoretical and experimental studies have demonstrated that a local Green's function can be retrieved from the cross-correlation of ambient noise field. This technique can be used to detect fatigue cracking in metallic structures, owing to the fact that the presence of crack can lead to a change in Green's function. This paper presents a method of structural fatigue cracking characterization method by measuring Green's function reconstruction from noise excitation and verifies the feasibility of crack detection in poor noise source distribution. Fatigue cracks usually generate nonlinear effects, in which different wave amplitudes and frequency compositions can cause different nonlinear responses. This study also undertakes analysis of the capacity of the proposed approach to identify fatigue cracking under different noise amplitudes and frequency ranges. Experimental investigations of an aluminum plate are conducted to assess the cross-correlations of received noise between sensor pairs and finally to detect the introduced fatigue crack. A damage index is proposed according to the variation between cross-correlations obtained from the pristine crack closed state and the crack opening-closure state when sufficient noise amplitude is used to generate nonlinearity. A probability distribution map of damage is calculated based on damage indices. The fatigue crack introduced in the aluminum plate is successfully identified and oriented, verifying that a fatigue crack can be detected by reconstructing Green's functions from an imperfect diffuse field in which ambient noise sources exist locally. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Acoustic emission detection of macro-cracks on engraving tool steel inserts during the injection molding cycle using PZT sensors.

    PubMed

    Svečko, Rajko; Kusić, Dragan; Kek, Tomaž; Sarjaš, Andrej; Hančič, Aleš; Grum, Janez

    2013-05-14

    This paper presents an improved monitoring system for the failure detection of engraving tool steel inserts during the injection molding cycle. This system uses acoustic emission PZT sensors mounted through acoustic waveguides on the engraving insert. We were thus able to clearly distinguish the defect through measured AE signals. Two engraving tool steel inserts were tested during the production of standard test specimens, each under the same processing conditions. By closely comparing the captured AE signals on both engraving inserts during the filling and packing stages, we were able to detect the presence of macro-cracks on one engraving insert. Gabor wavelet analysis was used for closer examination of the captured AE signals' peak amplitudes during the filling and packing stages. The obtained results revealed that such a system could be used successfully as an improved tool for monitoring the integrity of an injection molding process.

  4. Acoustic Emission Detection of Macro-Cracks on Engraving Tool Steel Inserts during the Injection Molding Cycle Using PZT Sensors

    PubMed Central

    Svečko, Rajko; Kusić, Dragan; Kek, Tomaž; Sarjaš, Andrej; Hančič, Aleš; Grum, Janez

    2013-01-01

    This paper presents an improved monitoring system for the failure detection of engraving tool steel inserts during the injection molding cycle. This system uses acoustic emission PZT sensors mounted through acoustic waveguides on the engraving insert. We were thus able to clearly distinguish the defect through measured AE signals. Two engraving tool steel inserts were tested during the production of standard test specimens, each under the same processing conditions. By closely comparing the captured AE signals on both engraving inserts during the filling and packing stages, we were able to detect the presence of macro-cracks on one engraving insert. Gabor wavelet analysis was used for closer examination of the captured AE signals' peak amplitudes during the filling and packing stages. The obtained results revealed that such a system could be used successfully as an improved tool for monitoring the integrity of an injection molding process. PMID:23673677

  5. Development and field application of a nonlinear ultrasonic modulation technique for fatigue crack detection without reference data from an intact condition

    NASA Astrophysics Data System (ADS)

    Lim, Hyung Jin; Kim, Yongtak; Koo, Gunhee; Yang, Suyoung; Sohn, Hoon; Bae, In-hwan; Jang, Jeong-Hwan

    2016-09-01

    In this study, a fatigue crack detection technique, which detects a fatigue crack without relying on any reference data obtained from the intact condition of a target structure, is developed using nonlinear ultrasonic modulation and applied to a real bridge structure. Using two wafer-type lead zirconate titanate (PZT) transducers, ultrasonic excitations at two distinctive frequencies are applied to a target inspection spot and the corresponding ultrasonic response is measured by another PZT transducer. Then, the nonlinear modulation components produced by a breathing-crack are extracted from the measured ultrasonic response, and a statistical classifier, which can determine if the nonlinear modulation components are statistically significant in comparison with the background noise level, is proposed. The effectiveness of the proposed fatigue crack detection technique is experimentally validated using the data obtained from aluminum plates and aircraft fitting-lug specimens under varying temperature and loading conditions, and through a field testing of Yeongjong Grand Bridge in South Korea. The uniqueness of this study lies in that (1) detection of a micro fatigue crack with less than 1 μm width and fatigue cracks in the range of 10-20 μm in width using nonlinear ultrasonic modulation, (2) automated detection of fatigue crack formation without using reference data obtained from an intact condition, (3) reliable and robust diagnosis under varying temperature and loading conditions, (4) application of a local fatigue crack detection technique to online monitoring of a real bridge.

  6. Experimental Study on GFRP Surface Cracks Detection Using Truncated-Correlation Photothermal Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Liu, Junyan; Mohummad, Oliullah; Wang, Yang

    2018-04-01

    In this paper, truncated-correlation photothermal coherence tomography (TC-PCT) was used as a nondestructive inspection technique to evaluate glass-fiber reinforced polymer (GFRP) composite surface cracks. Chirped-pulsed signal that combines linear frequency modulation and pulse excitation was proposed as an excitation signal to detect GFRP composite surface cracks. The basic principle of TC-PCT and extraction algorithm of the thermal wave signal feature was described. The comparison experiments between lock-in thermography, thermal wave radar imaging and chirped-pulsed photothermal radar for detecting GFRP artificial surface cracks were carried out. Experimental results illustrated that chirped-pulsed photothermal radar has the merits of high signal-to-noise ratio in detecting GFRP composite surface cracks. TC-PCT as a depth-resolved photothermal imaging modality was employed to enable three-dimensional visualization of GFRP composite surface cracks. The results showed that TC-PCT can effectively evaluate the cracks depth of GFRP composite.

  7. Investigation of eddy current examination on OD fatigue crack for steam generator tubes

    NASA Astrophysics Data System (ADS)

    Kong, Yuying; Ding, Boyuan; Li, Ming; Liu, Jinhong; Chen, Huaidong; Meyendorf, Norbert G.

    2015-03-01

    The opening width of fatigue crack was very small, and conventional Bobbin probe was very difficult to detect it in steam generator tubes. Different sizes of 8 fatigue cracks were inspected using bobbin probe rotating probe. The analysis results showed that, bobbin probe was not sensitive for fatigue crack even for small through wall crack mixed with denting signal. On the other hand, the rotating probe was easily to detect all cracks. Finally, the OD phase to depth curve for fatigue crack using rotating probe was established and the results agreed very well with the true crack size.

  8. Acoustic detection of cracks in the anvil of a large-volume cubic high-pressure apparatus

    NASA Astrophysics Data System (ADS)

    Yan, Zhaoli; Chen, Bin; Tian, Hao; Cheng, Xiaobin; Yang, Jun

    2015-12-01

    A large-volume cubic high-pressure apparatus with three pairs of tungsten carbide anvils is the most popular device for synthetic diamond production. Currently, the consumption of anvils is one of the important costs for the diamond production industry. If one of the anvils is fractured during the production process, the other five anvils in the apparatus may be endangered as a result of a sudden loss of pressure. It is of critical importance to detect and replace cracked anvils before they fracture for reduction of the cost of diamond production and safety. An acoustic detection method is studied in this paper. Two new features, nested power spectrum centroid and modified power spectrum variance, are proposed and combined with linear prediction coefficients to construct a feature vector. A support vector machine model is trained for classification. A sliding time window is proposed for decision-level information fusion. The experiments and analysis show that the recognition rate of anvil cracks is 95%, while the false-alarm rate is as low as 5.8 × 10-4 during a time window; this false-alarm rate indicates that at most one false alarm occurs every 2 months at a confidence level of 90%. An instrument to monitor anvil cracking was designed based on a digital signal processor and has been running for more than eight months in a diamond production field. In this time, two anvil-crack incidents occurred and were detected by the instrument correctly. In addition, no false alarms occurred.

  9. Acoustic detection of cracks in the anvil of a large-volume cubic high-pressure apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Zhaoli, E-mail: zl-yan@mail.ioa.ac.cn; Tian, Hao; Cheng, Xiaobin

    2015-12-15

    A large-volume cubic high-pressure apparatus with three pairs of tungsten carbide anvils is the most popular device for synthetic diamond production. Currently, the consumption of anvils is one of the important costs for the diamond production industry. If one of the anvils is fractured during the production process, the other five anvils in the apparatus may be endangered as a result of a sudden loss of pressure. It is of critical importance to detect and replace cracked anvils before they fracture for reduction of the cost of diamond production and safety. An acoustic detection method is studied in this paper.more » Two new features, nested power spectrum centroid and modified power spectrum variance, are proposed and combined with linear prediction coefficients to construct a feature vector. A support vector machine model is trained for classification. A sliding time window is proposed for decision-level information fusion. The experiments and analysis show that the recognition rate of anvil cracks is 95%, while the false-alarm rate is as low as 5.8 × 10{sup −4} during a time window; this false-alarm rate indicates that at most one false alarm occurs every 2 months at a confidence level of 90%. An instrument to monitor anvil cracking was designed based on a digital signal processor and has been running for more than eight months in a diamond production field. In this time, two anvil-crack incidents occurred and were detected by the instrument correctly. In addition, no false alarms occurred.« less

  10. A Comparison of the Capability of Sensitivity Level 3 and Sensitivity Level 4 Fluorescent Penetrants to Detect Fatigue Cracks in Various Metals

    NASA Technical Reports Server (NTRS)

    Parker, Bradford H.

    2011-01-01

    In April 2008, NASA-STD-5009 established a requirement that only sensitivity level 4 penetrants are acceptable for NASA Standard Level liquid penetrant inspections. Having NASA contractors change existing processes or perform demonstration tests to certify sensitivity level 3 penetrants posed a potentially huge cost to the Agency. This study was conducted to directly compare the probability of detection (POD) of sensitivity level 3 and level 4 penetrants using both Method A and Method D inspection processes. POD demonstration tests were performed on 6061-Al, Haynes 188 and Ti-6Al-4V crack panel sets. The study results strongly support the conclusion that sensitivity level 3 penetrants are acceptable for NASA Standard Level inspections.

  11. Experimental study on the crack detection with optimized spatial wavelet analysis and windowing

    NASA Astrophysics Data System (ADS)

    Ghanbari Mardasi, Amir; Wu, Nan; Wu, Christine

    2018-05-01

    In this paper, a high sensitive crack detection is experimentally realized and presented on a beam under certain deflection by optimizing spatial wavelet analysis. Due to the crack existence in the beam structure, a perturbation/slop singularity is induced in the deflection profile. Spatial wavelet transformation works as a magnifier to amplify the small perturbation signal at the crack location to detect and localize the damage. The profile of a deflected aluminum cantilever beam is obtained for both intact and cracked beams by a high resolution laser profile sensor. Gabor wavelet transformation is applied on the subtraction of intact and cracked data sets. To improve detection sensitivity, scale factor in spatial wavelet transformation and the transformation repeat times are optimized. Furthermore, to detect the possible crack close to the measurement boundaries, wavelet transformation edge effect, which induces large values of wavelet coefficient around the measurement boundaries, is efficiently reduced by introducing different windowing functions. The result shows that a small crack with depth of less than 10% of the beam height can be localized with a clear perturbation. Moreover, the perturbation caused by a crack at 0.85 mm away from one end of the measurement range, which is covered by wavelet transform edge effect, emerges by applying proper window functions.

  12. Laser-Ultrasonic Testing and its Applications to Nuclear Reactor Internals

    NASA Astrophysics Data System (ADS)

    Ochiai, M.; Miura, T.; Yamamoto, S.

    2008-02-01

    A new nondestructive testing technique for surface-breaking microcracks in nuclear reactor components based on laser-ultrasonics is developed. Surface acoustic wave generated by Q-switched Nd:YAG laser and detected by frequency-stabilized long pulse laser coupled with confocal Fabry-Perot interferometer is used to detect and size the cracks. A frequency-domain signal processing is developed to realize accurate sizing capability. The laser-ultrasonic testing allows the detection of surface-breaking microcrack having a depth of less than 0.1 mm, and the measurement of their depth with an accuracy of 0.2 mm when the depth exceeds 0.5 mm including stress corrosion cracking. The laser-ultrasonic testing system combined with laser peening system, which is another laser-based maintenance technology to improve surface stress, for inner surface of small diameter tube is developed. The generation laser in the laser-ultrasonic testing system can be identical to the laser source of the laser peening. As an example operation of the system, the system firstly works as the laser-ultrasonic testing mode and tests the inner surface of the tube. If no cracks are detected, the system then changes its work mode to the laser peening and improves surface stress to prevent crack initiation. The first nuclear industrial application of the laser-ultrasonic testing system combined with the laser peening was completed in Japanese nuclear power plant in December 2004.

  13. Sub-surface defects detection of by using active thermography and advanced image edge detection

    NASA Astrophysics Data System (ADS)

    Tse, Peter W.; Wang, Gaochao

    2017-05-01

    Active or pulsed thermography is a popular non-destructive testing (NDT) tool for inspecting the integrity and anomaly of industrial equipment. One of the recent research trends in using active thermography is to automate the process in detecting hidden defects. As of today, human effort has still been using to adjust the temperature intensity of the thermo camera in order to visually observe the difference in cooling rates caused by a normal target as compared to that by a sub-surface crack exists inside the target. To avoid the tedious human-visual inspection and minimize human induced error, this paper reports the design of an automatic method that is capable of detecting subsurface defects. The method used the technique of active thermography, edge detection in machine vision and smart algorithm. An infrared thermo-camera was used to capture a series of temporal pictures after slightly heating up the inspected target by flash lamps. Then the Canny edge detector was employed to automatically extract the defect related images from the captured pictures. The captured temporal pictures were preprocessed by a packet of Canny edge detector and then a smart algorithm was used to reconstruct the whole sequences of image signals. During the processes, noise and irrelevant backgrounds exist in the pictures were removed. Consequently, the contrast of the edges of defective areas had been highlighted. The designed automatic method was verified by real pipe specimens that contains sub-surface cracks. After applying such smart method, the edges of cracks can be revealed visually without the need of using manual adjustment on the setting of thermo-camera. With the help of this automatic method, the tedious process in manually adjusting the colour contract and the pixel intensity in order to reveal defects can be avoided.

  14. Detection, discrimination, and real-time tracking of cracks in rotating disks

    NASA Astrophysics Data System (ADS)

    Haase, Wayne C.; Drumm, Michael J.

    2002-06-01

    The purpose of this effort was to develop a system* to detect, discriminate and track fatigue cracks in rotating disks. Aimed primarily at jet engines in flight applications, the system also has value for detecting cracks in a spin pit during low cycle fatigue testing, and for monitoring the health of steam turbines and land-based gas turbine engines for maintenance purposes. The results of this effort produced: a physics-based model that describes the change in the center of mass of a rotating disk using damping ratio, initial unbalance and crack size as parameters; the development of a data acquisition and analysis system that can detect and discriminate a crack using a single cycle of data; and initial validation of the model through testing in a spin pit. The development of the physics-based model also pointed to the most likely regimes for crack detection; identified specific powers of (omega) search for in specific regimes; dictated a particular type of data acquisition for crack discrimination; and demonstrated a need for a higher signal-to-noise ratio in the measurement of the basic vibration signal.

  15. Modified Pressure Imaging for Egg Crack Detection and Resulting Egg Quality

    USDA-ARS?s Scientific Manuscript database

    Cracks in the shell surface impair the primary barrier for external microbial contamination of the egg. Microcracks are very small cracks in the shell surface which are difficult to detect by human graders. New technology has been developed which utilizes modified pressure and imaging to detect mi...

  16. Crack image segmentation based on improved DBC method

    NASA Astrophysics Data System (ADS)

    Cao, Ting; Yang, Nan; Wang, Fengping; Gao, Ting; Wang, Weixing

    2017-11-01

    With the development of computer vision technology, crack detection based on digital image segmentation method arouses global attentions among researchers and transportation ministries. Since the crack always exhibits the random shape and complex texture, it is still a challenge to accomplish reliable crack detection results. Therefore, a novel crack image segmentation method based on fractal DBC (differential box counting) is introduced in this paper. The proposed method can estimate every pixel fractal feature based on neighborhood information which can consider the contribution from all possible direction in the related block. The block moves just one pixel every time so that it could cover all the pixels in the crack image. Unlike the classic DBC method which only describes fractal feature for the related region, this novel method can effectively achieve crack image segmentation according to the fractal feature of every pixel. The experiment proves the proposed method can achieve satisfactory results in crack detection.

  17. Improved egg crack detection algorithm for modified pressure imaging system

    USDA-ARS?s Scientific Manuscript database

    Shell eggs with microcracks are often undetected during egg grading processes. In the past, a modified pressure imaging system was developed to detect eggs with microcracks without adversely affecting the quality of normal intact eggs. The basic idea of the modified pressure imaging system was to ap...

  18. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system

    NASA Astrophysics Data System (ADS)

    Kang, Daeshik; Pikhitsa, Peter V.; Choi, Yong Whan; Lee, Chanseok; Shin, Sung Soo; Piao, Linfeng; Park, Byeonghak; Suh, Kahp-Yang; Kim, Tae-Il; Choi, Mansoo

    2014-12-01

    Recently developed flexible mechanosensors based on inorganic silicon, organic semiconductors, carbon nanotubes, graphene platelets, pressure-sensitive rubber and self-powered devices are highly sensitive and can be applied to human skin. However, the development of a multifunctional sensor satisfying the requirements of ultrahigh mechanosensitivity, flexibility and durability remains a challenge. In nature, spiders sense extremely small variations in mechanical stress using crack-shaped slit organs near their leg joints. Here we demonstrate that sensors based on nanoscale crack junctions and inspired by the geometry of a spider's slit organ can attain ultrahigh sensitivity and serve multiple purposes. The sensors are sensitive to strain (with a gauge factor of over 2,000 in the 0-2 per cent strain range) and vibration (with the ability to detect amplitudes of approximately 10 nanometres). The device is reversible, reproducible, durable and mechanically flexible, and can thus be easily mounted on human skin as an electronic multipixel array. The ultrahigh mechanosensitivity is attributed to the disconnection-reconnection process undergone by the zip-like nanoscale crack junctions under strain or vibration. The proposed theoretical model is consistent with experimental data that we report here. We also demonstrate that sensors based on nanoscale crack junctions are applicable to highly selective speech pattern recognition and the detection of physiological signals. The nanoscale crack junction-based sensory system could be useful in diverse applications requiring ultrahigh displacement sensitivity.

  19. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system.

    PubMed

    Kang, Daeshik; Pikhitsa, Peter V; Choi, Yong Whan; Lee, Chanseok; Shin, Sung Soo; Piao, Linfeng; Park, Byeonghak; Suh, Kahp-Yang; Kim, Tae-il; Choi, Mansoo

    2014-12-11

    Recently developed flexible mechanosensors based on inorganic silicon, organic semiconductors, carbon nanotubes, graphene platelets, pressure-sensitive rubber and self-powered devices are highly sensitive and can be applied to human skin. However, the development of a multifunctional sensor satisfying the requirements of ultrahigh mechanosensitivity, flexibility and durability remains a challenge. In nature, spiders sense extremely small variations in mechanical stress using crack-shaped slit organs near their leg joints. Here we demonstrate that sensors based on nanoscale crack junctions and inspired by the geometry of a spider's slit organ can attain ultrahigh sensitivity and serve multiple purposes. The sensors are sensitive to strain (with a gauge factor of over 2,000 in the 0-2 per cent strain range) and vibration (with the ability to detect amplitudes of approximately 10 nanometres). The device is reversible, reproducible, durable and mechanically flexible, and can thus be easily mounted on human skin as an electronic multipixel array. The ultrahigh mechanosensitivity is attributed to the disconnection-reconnection process undergone by the zip-like nanoscale crack junctions under strain or vibration. The proposed theoretical model is consistent with experimental data that we report here. We also demonstrate that sensors based on nanoscale crack junctions are applicable to highly selective speech pattern recognition and the detection of physiological signals. The nanoscale crack junction-based sensory system could be useful in diverse applications requiring ultrahigh displacement sensitivity.

  20. A Monitoring Method Based on FBG for Concrete Corrosion Cracking

    PubMed Central

    Mao, Jianghong; Xu, Fangyuan; Gao, Qian; Liu, Shenglin; Jin, Weiliang; Xu, Yidong

    2016-01-01

    Corrosion cracking of reinforced concrete caused by chloride salt is one of the main determinants of structure durability. Monitoring the entire process of concrete corrosion cracking is critical for assessing the remaining life of the structure and determining if maintenance is needed. Fiber Bragg Grating (FBG) sensing technology is extensively developed in photoelectric monitoring technology and has been used on many projects. FBG can detect the quasi-distribution of strain and temperature under corrosive environments, and thus it is suitable for monitoring reinforced concrete cracking. According to the mechanical principle that corrosion expansion is responsible for the reinforced concrete cracking, a package design of reinforced concrete cracking sensors based on FBG was proposed and investigated in this study. The corresponding relationship between the grating wavelength and strain was calibrated by an equal strength beam test. The effectiveness of the proposed method was verified by an electrically accelerated corrosion experiment. The fiber grating sensing technology was able to track the corrosion expansion and corrosion cracking in real time and provided data to inform decision-making for the maintenance and management of the engineering structure. PMID:27428972

  1. A Monitoring Method Based on FBG for Concrete Corrosion Cracking.

    PubMed

    Mao, Jianghong; Xu, Fangyuan; Gao, Qian; Liu, Shenglin; Jin, Weiliang; Xu, Yidong

    2016-07-14

    Corrosion cracking of reinforced concrete caused by chloride salt is one of the main determinants of structure durability. Monitoring the entire process of concrete corrosion cracking is critical for assessing the remaining life of the structure and determining if maintenance is needed. Fiber Bragg Grating (FBG) sensing technology is extensively developed in photoelectric monitoring technology and has been used on many projects. FBG can detect the quasi-distribution of strain and temperature under corrosive environments, and thus it is suitable for monitoring reinforced concrete cracking. According to the mechanical principle that corrosion expansion is responsible for the reinforced concrete cracking, a package design of reinforced concrete cracking sensors based on FBG was proposed and investigated in this study. The corresponding relationship between the grating wavelength and strain was calibrated by an equal strength beam test. The effectiveness of the proposed method was verified by an electrically accelerated corrosion experiment. The fiber grating sensing technology was able to track the corrosion expansion and corrosion cracking in real time and provided data to inform decision-making for the maintenance and management of the engineering structure.

  2. Dynamic calibration and analysis of crack tip propagation in energetic materials using real-time radiography

    NASA Astrophysics Data System (ADS)

    Butt, Ali

    Crack propagation in a solid rocket motor environment is difficult to measure directly. This experimental and analytical study evaluated the viability of real-time radiography for detecting bore regression and propellant crack propagation speed. The scope included the quantitative interpretation of crack tip velocity from simulated radiographic images of a burning, center-perforated grain and actual real-time radiographs taken on a rapid-prototyped model that dynamically produced the surface movements modeled in the simulation. The simplified motor simulation portrayed a bore crack that propagated radially at a speed that was 10 times the burning rate of the bore. Comparing the experimental image interpretation with the calibrated surface inputs, measurement accuracies were quantified. The average measurements of the bore radius were within 3% of the calibrated values with a maximum error of 7%. The crack tip speed could be characterized with image processing algorithms, but not with the dynamic calibration data. The laboratory data revealed that noise in the transmitted X-Ray intensity makes sensing the crack tip propagation using changes in the centerline transmitted intensity level impractical using the algorithms employed.

  3. Development and Characterization of Embedded Sensory Particles Using Multi-Scale 3D Digital Image Correlation

    NASA Technical Reports Server (NTRS)

    Cornell, Stephen R.; Leser, William P.; Hochhalter, Jacob D.; Newman, John A.; Hartl, Darren J.

    2014-01-01

    A method for detecting fatigue cracks has been explored at NASA Langley Research Center. Microscopic NiTi shape memory alloy (sensory) particles were embedded in a 7050 aluminum alloy matrix to detect the presence of fatigue cracks. Cracks exhibit an elevated stress field near their tip inducing a martensitic phase transformation in nearby sensory particles. Detectable levels of acoustic energy are emitted upon particle phase transformation such that the existence and location of fatigue cracks can be detected. To test this concept, a fatigue crack was grown in a mode-I single-edge notch fatigue crack growth specimen containing sensory particles. As the crack approached the sensory particles, measurements of particle strain, matrix-particle debonding, and phase transformation behavior of the sensory particles were performed. Full-field deformation measurements were performed using a novel multi-scale optical 3D digital image correlation (DIC) system. This information will be used in a finite element-based study to determine optimal sensory material behavior and density.

  4. Location identification of closed crack based on Duffing oscillator transient transition

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofeng; Bo, Lin; Liu, Yaolu; Zhao, Youxuan; Zhang, Jun; Deng, Mingxi; Hu, Ning

    2018-02-01

    The existence of a closed micro-crack in plates can be detected by using the nonlinear harmonic characteristics of the Lamb wave. However, its location identification is difficult. By considering the transient nonlinear Lamb under the noise interference, we proposed a location identification method for the closed crack based on the quantitative measurement of Duffing oscillator transient transfer in the phase space. The sliding short-time window was used to create a window truncation of to-be-detected signal. And then, the periodic extension processing for transient nonlinear Lamb wave was performed to ensure that the Duffing oscillator has adequate response time to reach a steady state. The transient autocorrelation method was used to reduce the occurrence of missed harmonic detection due to the random variable phase of nonlinear Lamb wave. Moreover, to overcome the deficiency in the quantitative analysis of Duffing system state by phase trajectory diagram and eliminate the misjudgment caused by harmonic frequency component contained in broadband noise, logic operation method of oscillator state transition function based on circular zone partition was adopted to establish the mapping relation between the oscillator transition state and the nonlinear harmonic time domain information. Final state transition discriminant function of Duffing oscillator was used as basis for identifying the reflected and transmitted harmonics from the crack. Chirplet time-frequency analysis was conducted to identify the mode of generated harmonics and determine the propagation speed. Through these steps, accurate position identification of the closed crack was achieved.

  5. Finite element model study of the effect of corner rounding on detectability of corner cracks using bolt hole eddy current

    NASA Astrophysics Data System (ADS)

    Underhill, P. R.; Krause, T. W.

    2017-02-01

    Recent work has shown that the detectability of corner cracks in bolt-holes is compromised when rounding of corners arises, as might occur during bolt-hole removal. Probability of Detection (POD) studies normally require a large number of samples of both fatigue cracks and electric discharge machined notches. In the particular instance of rounding of bolt-hole corners the generation of such a large set of samples representing the full spectrum of potential rounding would be prohibitive. In this paper, the application of Finite Element Method (FEM) modeling is used to supplement the study of detection of cracks forming at the rounded corners of bolt-holes. FEM models show that rounding of the corner of the bolt-hole reduces the size of the response to a corner crack to a greater extent than can be accounted for by loss of crack area. This reduced sensitivity can be ascribed to a lower concentration of eddy currents at the rounded corner surface and greater lift-off of pick-up coils relative to that of a straight-edge corner. A rounding with a radius of 0.4 mm (.016 inch) showed a 20% reduction in the strength of the crack signal. Assuming linearity of the crack signal with crack size, this would suggest an increase in the minimum detectable size by 25%.

  6. The detectability of cracks using sonic IR

    NASA Astrophysics Data System (ADS)

    Morbidini, Marco; Cawley, Peter

    2009-05-01

    This paper proposes a methodology to study the detectability of fatigue cracks in metals using sonic IR (also known as thermosonics). The method relies on the validation of simple finite-element thermal models of the cracks and specimens in which the thermal loads have been defined by means of a priori measurement of the additional damping introduced in the specimens by each crack. This estimate of crack damping is used in conjunction with a local measurement of the vibration strain during ultrasonic excitation to retrieve the power released at the crack; these functions are then input to the thermal model of the specimens to find the resulting temperature rises (sonic IR signals). The method was validated on mild steel beams with two-dimensional cracks obtained in the low-cycle fatigue regime as well as nickel-based superalloy beams with three-dimensional "thumbnail" cracks generated in the high-cycle fatigue regime. The equivalent 40kHz strain necessary to obtain a desired temperature rise was calculated for cracks in the nickel superalloy set, and the detectability of cracks as a function of length in the range of 1-5mm was discussed.

  7. Nondestructive Crack Detection in a Fuel System Component

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay; Ruffino, Norman; Wincheski, Russell; Prosser, William; Winfree, William; Russell, Richard; Bryson, Craig; Devries, Robert; Engel, James; Landy, James

    2010-01-01

    The presentation examines the background and objective of nondestructive crack detection, flow control valve assembly and poppet post flight evaluation, poppet properties. magnetic property characterization of lab data, NDE, eddy current inspection, simulation, eddy current criteria, poppet cycle testing and NDE criteria, and the use of ultrasonic surface wave for crack detection.

  8. Detection of submicron scale cracks and other surface anomalies using positron emission tomography

    DOEpatents

    Cowan, Thomas E.; Howell, Richard H.; Colmenares, Carlos A.

    2004-02-17

    Detection of submicron scale cracks and other mechanical and chemical surface anomalies using PET. This surface technique has sufficient sensitivity to detect single voids or pits of sub-millimeter size and single cracks or fissures of millimeter size; and single cracks or fissures of millimeter-scale length, micrometer-scale depth, and nanometer-scale length, micrometer-scale depth, and nanometer-scale width. This technique can also be applied to detect surface regions of differing chemical reactivity. It may be utilized in a scanning or survey mode to simultaneously detect such mechanical or chemical features over large interior or exterior surface areas of parts as large as about 50 cm in diameter. The technique involves exposing a surface to short-lived radioactive gas for a time period, removing the excess gas to leave a partial monolayer, determining the location and shape of the cracks, voids, porous regions, etc., and calculating the width, depth, and length thereof. Detection of 0.01 mm deep cracks using a 3 mm detector resolution has been accomplished using this technique.

  9. Self-Healing of biocompatible polymeric nanocomposities

    NASA Astrophysics Data System (ADS)

    Espino, Omar; Chipara, Dorina

    2014-03-01

    Polymers are vulnerable to damage in form of cracks deep within the structure, where detection is difficult and repair is near to impossible. These cracks lead to mechanical degradation of the polymer. A method has been created to solve this problem named polymeric self healing. Self healing capabilities implies the dispersion within the polymeric matrix of microcapsules filled with a monomer and of catalyst. Poly urea-formaldehyde microcapsules used in this method are filled with dicyclopentadiene that is liberated after being ruptured by the crack propagation in the material. Polymerization is assisted by a catalyst FGGC that ignites the self healing process. Nanocomposites, such as titanium oxide, will be used as an integration of these polymers that will be tested by rupturing mechanically slowly. In order to prove the self healing process, Raman spectroscopy, FTIR, and SEM are used.

  10. High-Resolution Millimeter Wave Detection of Vertical Cracks in the Space Shuttle External Tank (ET) Spray-on-Foam Insulation (SOFI)

    NASA Technical Reports Server (NTRS)

    Kharkovsky, S.; Zoughi, R.; Hepburn, Frank L.

    2006-01-01

    Space Shuttle Columbia's catastrophic failure has been attributed to a piece of spray-on-foam insulation (SOFI) that was dislodged from the external tank (ET) and struck the leading edge of the left wing. A piece of SOFI was also dislodged in the Space Shuttle Discovery's flight in 2005 and recently a crack was detected in its ET foam prior to its successful launch. Millimeter wave nondestructive testing methods have been considered as potential effective inspection tools for evaluating the integrity of the SOFI. Recently, in a specific investigation into the potential of these methods for detecting vertical cracks in SOFI was explored using a focused millimeter wave reflectometer at 150 GHz. The results showed the capability of these methods for detecting tight vertical cracks (also as a function of crack opening dimension) in exposed SOFI panels and while covered by a piece of SOFI ramp simulating a more realistic and challenging situation. Some crack-like anomalies were also detected in a blind SOFI panel. This paper presents the background for these techniques as well as representative images of the vertical crack in the SOFI panel, crack-like anomalies in the blind panel and a discussion of the practical attributes of these inspection methods.

  11. Some advances/results in monitoring road cracks from 2D pavement images within the scope of the collaborative FP7 TRIMM project

    NASA Astrophysics Data System (ADS)

    Baltazart, Vincent; Moliard, Jean-Marc; Amhaz, Rabih; Wright, Dean; Jethwa, Manish

    2015-04-01

    Monitoring road surface conditions is an important issue in many countries. Several projects have looked into this issue in recent years, including TRIMM 2011-2014. The objective of such projects has been to detect surface distresses, like cracking, raveling and water ponding, in order to plan effective road maintenance and to afford a better sustainability of the pavement. The monitoring of cracking conventionally focuses on open cracks on the surface of the pavement, as opposed to reflexive cracks embedded in the pavement materials. For monitoring surface condition, in situ human visual inspection has been gradually replaced by automatic image data collection at traffic speed. Off-line image processing techniques have been developed for monitoring surface condition in support of human visual control. Full automation of crack monitoring has been approached with caution, and depends on a proper manual assessment of the performance. This work firstly presents some aspects of the current state of monitoring that have been reported so far in the literature and in previous projects: imaging technology and image processing techniques. Then, the work presents the two image processing techniques that have been developed within the scope of the TRIMM project to automatically detect pavement cracking from images. The first technique is a heuristic approach (HA) based on the search for gradient within the image. It was originally developed to process pavement images from the French imaging device, Aigle-RN. The second technique, the Minimal Path Selection (MPS) method, has been developed within an ongoing PhD work at IFSTTAR. The proposed new technique provides a fine and accurate segmentation of the crack pattern along with the estimation of the crack width. HA has been assessed against the field data collection provided by Yotta and TRL with the imaging device Tempest 2. The performance assessment has been threefold: first it was performed against the reference data set including 130 km of pavement images over UK roads, second over a few selected short sections of contiguous pavement images, and finally over a few sample images as a case study. The performance of MPS has been assessed against an older image data base. Pixel-based PGT was available to provide the most sensitive performance assessment. MPS has shown its ability to provide a very accurate cracking pattern without reducing the image resolution on the segmented images. Thus, it allows measurement of the crack width; it is found to behave more robustly against the image texture and better matched for dealing with low contrast pavement images. The benchmarking of seven automatic segmentation techniques has been provided at both the pixel and the grid levels. The performance assessment includes three minimal path selection algorithms, namely MPS, Free Form Anisotropy (FFA), one geodesic contour with automatic selection of points of interests (GC-POI), HA, and two Markov-based methods. Among others, MPS approach reached the best performance at the pixel level while it is matched to the FFA approach at the grid level. Finally, the project has emphasized the need for a reliable ground truth data collection. Owing to its accuracy, MPS may serve as a reference benchmark for other methods to provide the automatic segmentation of pavement images at the pixel level and beyond. As a counterpart, MPS requires a reduction in the computing time. Keywords: cracking, automatic segmentation, image processing, pavement, surface distress, monitoring, DICE, performance

  12. Evaluation of shrinkage and cracking in concrete of ring test by acoustic emission method

    NASA Astrophysics Data System (ADS)

    Watanabe, Takeshi; Hashimoto, Chikanori

    2015-03-01

    Drying shrinkage of concrete is one of the typical problems related to reduce durability and defilation of concrete structures. Lime stone, expansive additive and low-heat Portland cement are used to reduce drying shrinkage in Japan. Drying shrinkage is commonly evaluated by methods of measurement for length change of mortar and concrete. In these methods, there is detected strain due to drying shrinkage of free body, although visible cracking does not occur. In this study, the ring test was employed to detect strain and age cracking of concrete. The acoustic emission (AE) method was adopted to detect micro cracking due to shrinkage. It was recognized that in concrete using lime stone, expansive additive and low-heat Portland cement are effective to decrease drying shrinkage and visible cracking. Micro cracking due to shrinkage of this concrete was detected and evaluated by the AE method.

  13. Automatic internal crack detection from a sequence of infrared images with a triple-threshold Canny edge detector

    NASA Astrophysics Data System (ADS)

    Wang, Gaochao; Tse, Peter W.; Yuan, Maodan

    2018-02-01

    Visual inspection and assessment of the condition of metal structures are essential for safety. Pulse thermography produces visible infrared images, which have been widely applied to detect and characterize defects in structures and materials. When active thermography, a non-destructive testing tool, is applied, the necessity of considerable manual checking can be avoided. However, detecting an internal crack with active thermography remains difficult, since it is usually invisible in the collected sequence of infrared images, which makes the automatic detection of internal cracks even harder. In addition, the detection of an internal crack can be hindered by a complicated inspection environment. With the purpose of putting forward a robust and automatic visual inspection method, a computer vision-based thresholding method is proposed. In this paper, the image signals are a sequence of infrared images collected from the experimental setup with a thermal camera and two flash lamps as stimulus. The contrast of pixels in each frame is enhanced by the Canny operator and then reconstructed by a triple-threshold system. Two features, mean value in the time domain and maximal amplitude in the frequency domain, are extracted from the reconstructed signal to help distinguish the crack pixels from others. Finally, a binary image indicating the location of the internal crack is generated by a K-means clustering method. The proposed procedure has been applied to an iron pipe, which contains two internal cracks and surface abrasion. Some improvements have been made for the computer vision-based automatic crack detection methods. In the future, the proposed method can be applied to realize the automatic detection of internal cracks from many infrared images for the industry.

  14. Remote detection of stress corrosion cracking: Surface composition and crack detection

    NASA Astrophysics Data System (ADS)

    Lissenden, Cliff J.; Jovanovic, Igor; Motta, Arthur T.; Xiao, Xuan; Le Berre, Samuel; Fobar, David; Cho, Hwanjeong; Choi, Sungho

    2018-04-01

    Chloride induced stress corrosion cracking (SCC) of austenitic stainless steel is a potential issue in long term dry storage of spent nuclear fuel canisters. In order for SCC to occur there must be a corrosive environment, a susceptible material, and a driving force. Because it is likely that the material in the heat affected zone (HAZ) of welded stainless steel structures has been sensitized as a result of chromium depletion at the grain boundaries and a thermal residual stress driving force is likely present if solution annealing is not performed, two issues are critical. Is the environment corrosive, i.e., are chlorides present in solution on the surface? And then, are there cracks that could propagate? Remote detection of chlorides on the surface can be accomplished by laser induced breakdown spectroscopy (LIBS), while cracks can be detected by shear horizontal guided waves generated by electromagnetic acoustic transducers (EMATs). Both are noncontact methods that are amenable to robotic delivery systems and harsh environments. The sensitivity to chlorine on stainless steel of a LIBS system that employs optical fiber for pulse delivery is demonstrated. Likewise, the ability of the EMAT system to detect cracks of a prescribed size and orientation is shown. These results show the potential for remote detection of Cl and cracks in dry storage spent fuel canisters.

  15. Experimental research on crack detection in pipes based on Fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Cai, Lin; Wei, Qin; Yu, Zhaoxiang; Lu, Ming; Li, Xiaowei

    2017-11-01

    Crack is one of the primary faults in pipes, and its detection is a significant measure to ensure the safety of pipes. The feasibility of circumferential crack detection in pipes on the basis of fiber Bragg grating (FBG) detection technology is discussed through experimental research. Crack is formed on the surface of a metal pipe, the circumferential length of crack is one index of the damage degree. In the experiments, both electronic vibration sensor and FBG strain sensors are used to collect response signals of impulse excitation in different damage degrees. Furthermore, the characteristics of damage detection are analysed in both frequency domain and time domain. First, the natural frequencies are compared between practical and simulated results in different damage degrees of pipes; second, the multi-fractal detrended fluctuation analysis (MFDFA) is applied to acquire the singular values α as the characteristic parameter. The experimental results indicate that FBG strain sensors can perceive the impulse response of the pipe and change in different damage degrees effectively, like the vibration sensor. And both the natural frequency and the singular value are sensitive to increasing length of crack, they are able to distinguish different degrees of crack on the pipe.

  16. Electromagnetic microscope compared with a conventional pulsed eddy-current probe

    NASA Astrophysics Data System (ADS)

    Podney, Walter N.

    1998-03-01

    A superconductive probe presently can detect a crack at a rivet hole that is two to three times smaller than the smallest crack detectable by a conventional probe. As the technology matures and noise resolution approaches a limit set by SQUIDS, approximately 1 fH, it will enable detecting submillimeter cracks down to approximately 15 mm.

  17. 76 FR 27232 - Airworthiness Directives; Airbus Model A310 Series Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ... rototest inspection to detect cracks in the area of frame 47 and frame 54, install new doublers, and repair if necessary. Repetitive visual inspections to detect cracks on frame 46 between the left- and right... visual inspections to detect cracks at the T- section connecting frame 50A to the beam between the left...

  18. Hot-Spot Fatigue and Impact Damage Detection on a Helicopter Tailboom

    DTIC Science & Technology

    2011-09-01

    other 14 PZT disks were used as sensors. Among the 28 PZT disks, 16 PZT disks were placed in the two fatigue hot-spot areas to detect cracks initiated...more efficient and effective airframe maintenance, fatigue cracking and impact damage detection technologies were developed and demonstrated on a...SHM system in successfully monitoring fatigue cracks initiated from cyclical loading conditions; detecting, locating and quantifying ballistic

  19. The onset and evolution of fatigue-induced abnormal grain growth in nanocrystalline Ni–Fe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furnish, T. A.; Mehta, A.; Van Campen, D.

    Conventional structural metals suffer from fatigue-crack initiation through dislocation activity which forms persistent slip bands leading to notch-like extrusions and intrusions. Ultrafine-grained and nanocrystalline metals can potentially exhibit superior fatigue-crack initiation resistance by suppressing these cumulative dislocation activities. Prior studies on these metals have confirmed improved high-cycle fatigue performance. In the case of nano-grained metals, analyses of subsurface crack initiation sites have indicated that the crack nucleation is associated with abnormally large grains. But, these post-mortem analyses have led to only speculation about when abnormal grain growth occurs (e.g., during fatigue, after crack initiation, or during crack growth). In thismore » study, a recently developed synchrotron X-ray diffraction technique was used to detect the onset and progression of abnormal grain growth during stress-controlled fatigue loading. Our study provides the first direct evidence that the grain coarsening is cyclically induced and occurs well before final fatigue failure—our results indicate that the first half of the fatigue life was spent prior to the detectable onset of abnormal grain growth, while the second half was spent coarsening the nanocrystalline structure and cyclically deforming the abnormally large grains until crack initiation. Post-mortem fractography, coupled with cycle-dependent diffraction data, provides the first details regarding the kinetics of this abnormal grain growth process during high-cycle fatigue testing. Finally, precession electron diffraction images collected in a transmission electron microscope after the in situ fatigue experiment also confirm the X-ray evidence that the abnormally large grains contain substantial misorientation gradients and sub-grain boundaries.« less

  20. The onset and evolution of fatigue-induced abnormal grain growth in nanocrystalline Ni–Fe

    DOE PAGES

    Furnish, T. A.; Mehta, A.; Van Campen, D.; ...

    2016-10-11

    Conventional structural metals suffer from fatigue-crack initiation through dislocation activity which forms persistent slip bands leading to notch-like extrusions and intrusions. Ultrafine-grained and nanocrystalline metals can potentially exhibit superior fatigue-crack initiation resistance by suppressing these cumulative dislocation activities. Prior studies on these metals have confirmed improved high-cycle fatigue performance. In the case of nano-grained metals, analyses of subsurface crack initiation sites have indicated that the crack nucleation is associated with abnormally large grains. But, these post-mortem analyses have led to only speculation about when abnormal grain growth occurs (e.g., during fatigue, after crack initiation, or during crack growth). In thismore » study, a recently developed synchrotron X-ray diffraction technique was used to detect the onset and progression of abnormal grain growth during stress-controlled fatigue loading. Our study provides the first direct evidence that the grain coarsening is cyclically induced and occurs well before final fatigue failure—our results indicate that the first half of the fatigue life was spent prior to the detectable onset of abnormal grain growth, while the second half was spent coarsening the nanocrystalline structure and cyclically deforming the abnormally large grains until crack initiation. Post-mortem fractography, coupled with cycle-dependent diffraction data, provides the first details regarding the kinetics of this abnormal grain growth process during high-cycle fatigue testing. Finally, precession electron diffraction images collected in a transmission electron microscope after the in situ fatigue experiment also confirm the X-ray evidence that the abnormally large grains contain substantial misorientation gradients and sub-grain boundaries.« less

  1. Research of infrared laser based pavement imaging and crack detection

    NASA Astrophysics Data System (ADS)

    Hong, Hanyu; Wang, Shu; Zhang, Xiuhua; Jing, Genqiang

    2013-08-01

    Road crack detection is seriously affected by many factors in actual applications, such as some shadows, road signs, oil stains, high frequency noise and so on. Due to these factors, the current crack detection methods can not distinguish the cracks in complex scenes. In order to solve this problem, a novel method based on infrared laser pavement imaging is proposed. Firstly, single sensor laser pavement imaging system is adopted to obtain pavement images, high power laser line projector is well used to resist various shadows. Secondly, the crack extraction algorithm which has merged multiple features intelligently is proposed to extract crack information. In this step, the non-negative feature and contrast feature are used to extract the basic crack information, and circular projection based on linearity feature is applied to enhance the crack area and eliminate noise. A series of experiments have been performed to test the proposed method, which shows that the proposed automatic extraction method is effective and advanced.

  2. Monitoring corrosion in reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.

    2014-06-01

    Many defects can cause deterioration and cracks in concrete; these are results of poor concrete mix, poor workmanship, inadequate design, shrinkage, chemical and environmental attack, physical or mechanical damage, and corrosion of reinforcing steel (RS). We want to develop a suite of sensors and systems that can detect that corrosion is taking place in RS and inform owners how serious the problem is. By understanding the stages of the corrosion process, we can develop special a sensor that detects each transition. First, moisture ingress can be monitored by a fiber optics humidity sensor, then ingress of Chloride, which acts as a catalyst and accelerates the corrosion process by converting iron into ferrous compounds. We need a fiber optics sensor which can quantify Chloride ingress over time. Converting ferric to ferrous causes large volume expansion and cracks. Such pressure build-up can be detected by a fiber optic pressure sensor. Finally, cracks emit acoustic waves, which can be detected by a high frequency sensor made with phase-shifted gratings. This paper will discuss the progress in our development of these special sensors and also our plan for a field test by the end of 2014. We recommend that we deploy these sensors by visually inspecting the affected area and by identifying locations of corrosion; then, work with the designers to identify spots that would compromise the integrity of the structure; finally, drill a small hole in the concrete and insert these sensors. Interrogation can be done at fixed intervals with a portable unit.

  3. Crack identification for rigid pavements using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Bahaddin Ersoz, Ahmet; Pekcan, Onur; Teke, Turker

    2017-09-01

    Pavement condition assessment is an essential piece of modern pavement management systems as rehabilitation strategies are planned based upon its outcomes. For proper evaluation of existing pavements, they must be continuously and effectively monitored using practical means. Conventionally, truck-based pavement monitoring systems have been in-use in assessing the remaining life of in-service pavements. Although such systems produce accurate results, their use can be expensive and data processing can be time consuming, which make them infeasible considering the demand for quick pavement evaluation. To overcome such problems, Unmanned Aerial Vehicles (UAVs) can be used as an alternative as they are relatively cheaper and easier-to-use. In this study, we propose a UAV based pavement crack identification system for monitoring rigid pavements’ existing conditions. The system consists of recently introduced image processing algorithms used together with conventional machine learning techniques, both of which are used to perform detection of cracks on rigid pavements’ surface and their classification. Through image processing, the distinct features of labelled crack bodies are first obtained from the UAV based images and then used for training of a Support Vector Machine (SVM) model. The performance of the developed SVM model was assessed with a field study performed along a rigid pavement exposed to low traffic and serious temperature changes. Available cracks were classified using the UAV based system and obtained results indicate it ensures a good alternative solution for pavement monitoring applications.

  4. Diagnosis of retrofit fatigue crack re-initiation and growth in steel-girder bridges for proactive repair and emergency planning.

    DOT National Transportation Integrated Search

    2014-07-01

    This report presents a vibration : - : based damage : - : detection methodology that is capable of effectively capturing crack growth : near connections and crack re : - : initiation of retrofitted connections. The proposed damage detection algorithm...

  5. Strengthening Mechanisms, Creep and Fatigue Processes in Dispersion Hardened Niobium Alloy

    DTIC Science & Technology

    1992-04-01

    studies of Nb and Nb-l%Zr were completed. Cyclic hardening is observed and there is a microplastic plateau in Nb. The Nb- l%Lr is stronger in cyclic...strain rate intergranular cracking occurred and a microplastic plateau was observed in the cyclic stress - strain curve for cp Nb. At the slow strain...rate, no definitely intergranular cracks were detected and a microplastic plateau was not observed for cp Nb. The results of these experiments can be

  6. NDT of railway components using induction thermography

    NASA Astrophysics Data System (ADS)

    Netzelmann, U.; Walle, G.; Ehlen, A.; Lugin, S.; Finckbohner, M.; Bessert, S.

    2016-02-01

    Induction or eddy current thermography is used to detect surface cracks in ferritic steel. The technique is applied to detect surface cracks in rails from a moving test car. Cracks were detected at a train speed between 2 and 15 km/h. An automated demonstrator system for testing railway wheels after production is described. While the wheel is rotated, a robot guides the detection unit consisting of inductor and infrared camera over the surface.

  7. Development of a wireless nonlinear wave modulation spectroscopy (NWMS) sensor node for fatigue crack detection

    NASA Astrophysics Data System (ADS)

    Liu, Peipei; Yang, Suyoung; Lim, Hyung Jin; Park, Hyung Chul; Ko, In Chang; Sohn, Hoon

    2014-03-01

    Fatigue crack is one of the main culprits for the failure of metallic structures. Recently, it has been shown that nonlinear wave modulation spectroscopy (NWMS) is effective in detecting nonlinear mechanisms produced by fatigue crack. In this study, an active wireless sensor node for fatigue crack detection is developed based on NWMS. Using PZT transducers attached to a target structure, ultrasonic waves at two distinctive frequencies are generated, and their modulation due to fatigue crack formation is detected using another PZT transducer. Furthermore, a reference-free NWMS algorithm is developed so that fatigue crack can be detected without relying on history data of the structure with minimal parameter adjustment by the end users. The algorithm is embedded into FPGA, and the diagnosis is transmitted to a base station using a commercial wireless communication system. The whole design of the sensor node is fulfilled in a low power working strategy. Finally, an experimental verification has been performed using aluminum plate specimens to show the feasibility of the developed active wireless NWMS sensor node.

  8. Phase Transformation Induced Self-Healing Behavior of Al-Ag Alloy.

    PubMed

    Michalcová, Alena; Marek, Ivo; Knaislová, Anna; Sofer, Zdeněk; Vojtěch, Dalibor

    2018-01-27

    Self-healing alloys are promising materials that can decrease the consequences of accidents. To detect crack formation in a material is simple task that can be performed by e.g., sonic or ultrasound detection, but it is not always possible to immediately replace the damaged parts. In this situation, it is very advantageous to have the chance to heal the crack during operation, which can be done e.g., by annealing. In this paper, self-healing behavior was proven by TEM (Transmission electron microscope) observation of crack healing after annealing. The crack was observed in the rapidly solidified Al-30Ag alloy with non-equilibrium phase composition formed by a minor amount of Ag₂Al and a supersaturated solid solution of Ag in an fcc-Al matrix (fcc = face centered cubic). After annealing at 450 °C, equilibrium phase composition was obtained by forming a higher amount of Ag₂Al. This phase transformation did not allow the crack to be healed. Subsequent annealing at 550 °C caused recrystallization to a supersaturated solid solution of Ag in fcc-Al, followed by a return to the mixture of fcc-Al and Ag₂Al by cooling, and this process was accompanied by the closing of the crack. This observation proved the self-healing possibilities of the Ag₂Al phase. Practical application of this self-healing behavior could be achieved through the dispersion of fine Ag₂Al particles in a structural material, which will enrich the material with self-healing properties.

  9. Crackscope : automatic pavement cracking inspection system.

    DOT National Transportation Integrated Search

    2008-08-01

    The CrackScope system is an automated pavement crack rating system consisting of a : digital line scan camera, laser-line illuminator, and proprietary crack detection and classification : software. CrackScope is able to perform real-time pavement ins...

  10. Comparison of fatigue crack growth of riveted and bonded aircraft lap joints made of Aluminium alloy 2024-T3 substrates - A numerical study

    NASA Astrophysics Data System (ADS)

    Pitta, S.; Rojas, J. I.; Crespo, D.

    2017-05-01

    Aircraft lap joints play an important role in minimizing the operational cost of airlines. Hence, airlines pay more attention to these technologies to improve efficiency. Namely, a major time consuming and costly process is maintenance of aircraft between the flights, for instance, to detect early formation of cracks, monitoring crack growth, and fixing the corresponding parts with joints, if necessary. This work is focused on the study of repairs of cracked aluminium alloy (AA) 2024-T3 plates to regain their original strength; particularly, cracked AA 2024-T3 substrate plates repaired with doublers of AA 2024-T3 with two configurations (riveted and with adhesive bonding) are analysed. The fatigue life of the substrate plates with cracks of 1, 2, 5, 10 and 12.7mm is computed using Fracture Analysis 3D (FRANC3D) tool. The stress intensity factors for the repaired AA 2024-T3 plates are computed for different crack lengths and compared using commercial FEA tool ABAQUS. The results for the bonded repairs showed significantly lower stress intensity factors compared with the riveted repairs. This improves the overall fatigue life of the bonded joint.

  11. Probability of brittle failure

    NASA Technical Reports Server (NTRS)

    Kim, A.; Bosnyak, C. P.; Chudnovsky, A.

    1991-01-01

    A methodology was developed for collecting statistically representative data for crack initiation and arrest from small number of test specimens. An epoxy (based on bisphenol A diglycidyl ether and polyglycol extended diglycyl ether and cured with diethylene triamine) is selected as a model material. A compact tension specimen with displacement controlled loading is used to observe multiple crack initiation and arrests. The energy release rate at crack initiation is significantly higher than that at a crack arrest, as has been observed elsewhere. The difference between these energy release rates is found to depend on specimen size (scale effect), and is quantitatively related to the fracture surface morphology. The scale effect, similar to that in statistical strength theory, is usually attributed to the statistics of defects which control the fracture process. Triangular shaped ripples (deltoids) are formed on the fracture surface during the slow subcritical crack growth, prior to the smooth mirror-like surface characteristic of fast cracks. The deltoids are complementary on the two crack faces which excludes any inelastic deformation from consideration. Presence of defects is also suggested by the observed scale effect. However, there are no defects at the deltoid apexes detectable down to the 0.1 micron level.

  12. Deep Learning and Image Processing for Automated Crack Detection and Defect Measurement in Underground Structures

    NASA Astrophysics Data System (ADS)

    Panella, F.; Boehm, J.; Loo, Y.; Kaushik, A.; Gonzalez, D.

    2018-05-01

    This work presents the combination of Deep-Learning (DL) and image processing to produce an automated cracks recognition and defect measurement tool for civil structures. The authors focus on tunnel civil structures and survey and have developed an end to end tool for asset management of underground structures. In order to maintain the serviceability of tunnels, regular inspection is needed to assess their structural status. The traditional method of carrying out the survey is the visual inspection: simple, but slow and relatively expensive and the quality of the output depends on the ability and experience of the engineer as well as on the total workload (stress and tiredness may influence the ability to observe and record information). As a result of these issues, in the last decade there is the desire to automate the monitoring using new methods of inspection. The present paper has the goal of combining DL with traditional image processing to create a tool able to detect, locate and measure the structural defect.

  13. Detection and Analysis of Enamel Cracks by Quantitative Light-induced Fluorescence Technology.

    PubMed

    Jun, Mi-Kyoung; Ku, Hye-Min; Kim, Euiseong; Kim, Hee-Eun; Kwon, Ho-Keun; Kim, Baek-Il

    2016-03-01

    The ability to accurately detect tooth cracks and quantify their depth would allow the prediction of crack progression and treatment success. The aim of this in vitro study was to determine the capabilities of quantitative light-induced fluorescence (QLF) technology in the detection of enamel cracks. Ninety-six extracted human teeth were selected for examining naturally existing or suspected cracked teeth surfaces using a photocuring unit. QLF performed with a digital camera (QLF-D) images were used to assess the ability to detect enamel cracks based on the maximum fluorescence loss value (ΔFmax, %), which was then analyzed using the QLF-D software. A histologic evaluation was then performed in which the samples were sectioned and observed with the aid of a polarized light microscope. The relationship between ΔFmax and the histology findings was assessed based on the Spearman rank correlation. The sensitivity and specificity were calculated to evaluate the validity of using QLF-D to analyze enamel inner-half cracks and cracks extending to the dentin-enamel junction. There was a strong correlation between the results of histologic evaluations of enamel cracks and the ΔFmax value, with a correlation coefficient of 0.84. The diagnostic accuracy of QLF-D had a sensitivity of 0.87 and a specificity of 0.98 for enamel inner-half cracks and a sensitivity of 0.90 and a specificity of 1.0 for cracks extending to the dentin-enamel junction. These results indicate that QLF technology would be a useful clinical tool for diagnosing enamel cracks, especially given that this is a nondestructive method. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Detecting Cracks in Ceramic Matrix Composites by Electrical Resistance

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Gyekenyesi, Andrew

    2011-01-01

    The majority of damage in SiC/SiC ceramic matrix composites subjected to monotonic tensile loads is in the form of distributed matrix cracks. These cracks initiate near stress concentrations, such as 90o fiber tows or large matrix pores and continue to accumulate with additional stress until matrix crack saturation is achieved. Such damage is difficult to detect with conventional nondestructive evaluation techniques (immersion ultrasonics, x-ray, etc.). Monitoring a specimen.s electrical resistance change provides an indirect approach for monitoring matrix crack density. Sylramic-iBN fiber- reinforced SiC composites with a melt infiltrated (MI) matrix were tensile tested at room temperature. Results showed an increase in resistance of more than 500% prior to fracture, which can be detected either in situ or post-damage. A relationship between resistance change and matrix crack density was also determined.

  15. Evaluation of Various Depainting Processes on Mechanical Properties of 2024-T3 Aluminum Substrate

    NASA Technical Reports Server (NTRS)

    McGill, P.

    2001-01-01

    Alternate alkaline and neutral chemical paint strippers have been identified that, with respect to corrosion requirements, perform as well as or better than a methylene chloride baseline. These chemicals also, in general, meet corrosion acceptance criteria as specified in SAE MA 4872. Alternate acid chemical paint strippers have been identified that, with respect to corrosion requirements, perform as well as or better than a methylene chloride baseline. However, these chemicals do not generally meet corrosion acceptance criteria as specified in SAE MA 4872, especially in the areas of non-clad material performance and hydrogen embrittlement. Media blast methods reviewed in the study do not, in general, adversely affect fatigue performance or crack detectability of 2024-T3 substrate. Sodium bicarbonate stripping exhibited a tendency towards inhibiting crack detectability. These generalizations are based on a limited sample size and additional testing should be performed to characterize the response of specific substrates to specific processes.

  16. Detection of crack in thin cylindrical pipes using piezo-actuated Lamb waves

    NASA Astrophysics Data System (ADS)

    Tua, P. S.; Quek, S. T.; Wang, Q.

    2005-05-01

    The detection of cracks in beams and plates using piezo-actuated Lamb waves has been presented in the last SPIE Symposium. This paper is an extension of the technique to pipes. It has been shown that for a thin-walled pipe, the assumption of Lamb wave propagation is valid. Such waves can be efficiently excited using piezoceramic transducers (PZT) with good control on the pulse characteristics to assess the health of structural components, such as the presence of cracks. In this paper, a systematic methodology to detect and locate cracks in homogenous cylinder/pipe based on the time-of-flight and strength analysis of propagating Lamb wave is proposed. By observing the attenuation in strength of the direct wave incidence at the sensor, the presence of a crack along the propagation path can be determined. At least four actuation positions, two on each end of the pipe segment of interest, are needed to exhaustively interrogate for the presence of cracks. The detailed procedure for locating and tracing the geometry of the crack(s) is described. It is shown experimentally that the detection using circular PZT actuator and sensor, with dimensions of 5.0 mm diameter and 0.5 mm thick, is possible for an aluminum pipe segment of up to at least 4.0 m in length. The proposed methodology is also explored for the aluminum pipe under more practical situations, such as burying it in sand with only the actuator and sensor positions exposed. Experimental results obtained showed the feasibility of detecting the 'concealed' crack on the pipe buried in sand.

  17. Electromagnetic Detection of Fatigue Cracks under Protruding Head Ferromagnetic Fasteners

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Namkung, Min

    2004-01-01

    The detection of fatigue cracks under installed fasteners has been a major goal of the aging aircraft NDE community. The Sliding Probe, Magneto-Optic Imager, Rotating Self-Nulling Probe, Low Frequency Eddy Current Array, and Eddyscan systems are among the instruments developed for this inspection. It has been verified that the detection of fatigue cracks under flush head aluminum and titanium fasteners can be accomplished with a high resolution by the above techniques. The detection of fatigue cracks under ferromagnetic and protruding head fasteners, however, has been found to be much more difficult. For the present work, the inspection for fatigue cracks under SAE 4340 Steel Hi-Lok fasteners is explored. Modifications to the Rotating Self-Nulling Eddy Current Probe System are presented which enable the detection of fatigue cracks hidden under the protruding head of the ferromagnetic fastener. Inspection results for samples with varying length EDM notches are shown, as well as a comparison between the signature from an EDM notch and an actual fatigue crack. Finite Element Modeling is used to investigate the effect of the ferromagnetic fastener on the induced eddy current distribution in order to help explain the detection characteristics of the system. This paper will also introduce a modification to the Rotating Probe System designed specifically for the detection of deeply buried flaws in multilayer conductors. The design change incorporates a giant magnetoresistive (GMR) sensor as the pickup device to improve the low frequency performance of the probe. The flaw detection capabilities of the GMR based Self- Nulling Probe are presented along with the status of the GMR based Rotating Probe System for detection of deeply buried flaws under installed fasteners.

  18. Bridge Crack Detection Using Multi-Rotary Uav and Object-Base Image Analysis

    NASA Astrophysics Data System (ADS)

    Rau, J. Y.; Hsiao, K. W.; Jhan, J. P.; Wang, S. H.; Fang, W. C.; Wang, J. L.

    2017-08-01

    Bridge is an important infrastructure for human life. Thus, the bridge safety monitoring and maintaining is an important issue to the government. Conventionally, bridge inspection were conducted by human in-situ visual examination. This procedure sometimes require under bridge inspection vehicle or climbing under the bridge personally. Thus, its cost and risk is high as well as labor intensive and time consuming. Particularly, its documentation procedure is subjective without 3D spatial information. In order cope with these challenges, this paper propose the use of a multi-rotary UAV that equipped with a SONY A7r2 high resolution digital camera, 50 mm fixed focus length lens, 135 degrees up-down rotating gimbal. The target bridge contains three spans with a total of 60 meters long, 20 meters width and 8 meters height above the water level. In the end, we took about 10,000 images, but some of them were acquired by hand held method taken on the ground using a pole with 2-8 meters long. Those images were processed by Agisoft PhotoscanPro to obtain exterior and interior orientation parameters. A local coordinate system was defined by using 12 ground control points measured by a total station. After triangulation and camera self-calibration, the RMS of control points is less than 3 cm. A 3D CAD model that describe the bridge surface geometry was manually measured by PhotoscanPro. They were composed of planar polygons and will be used for searching related UAV images. Additionally, a photorealistic 3D model can be produced for 3D visualization. In order to detect cracks on the bridge surface, we utilize object-based image analysis (OBIA) technique to segment the image into objects. Later, we derive several object features, such as density, area/bounding box ratio, length/width ratio, length, etc. Then, we can setup a classification rule set to distinguish cracks. Further, we apply semi-global-matching (SGM) to obtain 3D crack information and based on image scale we can calculate the width of a crack object. For spalling volume calculation, we also apply SGM to obtain dense surface geometry. Assuming the background is a planar surface, we can fit a planar function and convert the surface geometry into a DSM. Thus, for spalling area its height will be lower than the plane and its value will be negative. We can thus apply several image processing technique to segment the spalling area and calculate the spalling volume as well. For bridge inspection and UAV image management within a laboratory, we develop a graphic user interface. The major functions include crack auto-detection using OBIA, crack editing, i.e. delete and add cracks, crack attributing, 3D crack visualization, spalling area/volume calculation, bridge defects documentation, etc.

  19. Estimate of Probability of Crack Detection from Service Difficulty Report Data.

    DOT National Transportation Integrated Search

    1995-09-01

    The initiation and growth of cracks in a fuselage lap joint were simulated. Stochastic distribution of crack initiation and rivet interference were included. The simulation also contained a simplified crack growth. Nominal crack growth behavior of la...

  20. Estimate of probability of crack detection from service difficulty report data

    DOT National Transportation Integrated Search

    1994-09-01

    The initiation and growth of cracks in a fuselage lap joint were simulated. Stochastic distribution of crack initiation and rivet interference were included. The simulation also contained a simplified crack growth. Nominal crack growth behavior of la...

  1. Detection of cracks in shafts with the Approximated Entropy algorithm

    NASA Astrophysics Data System (ADS)

    Sampaio, Diego Luchesi; Nicoletti, Rodrigo

    2016-05-01

    The Approximate Entropy is a statistical calculus used primarily in the fields of Medicine, Biology, and Telecommunication for classifying and identifying complex signal data. In this work, an Approximate Entropy algorithm is used to detect cracks in a rotating shaft. The signals of the cracked shaft are obtained from numerical simulations of a de Laval rotor with breathing cracks modelled by the Fracture Mechanics. In this case, one analysed the vertical displacements of the rotor during run-up transients. The results show the feasibility of detecting cracks from 5% depth, irrespective of the unbalance of the rotating system and crack orientation in the shaft. The results also show that the algorithm can differentiate the occurrence of crack only, misalignment only, and crack + misalignment in the system. However, the algorithm is sensitive to intrinsic parameters p (number of data points in a sample vector) and f (fraction of the standard deviation that defines the minimum distance between two sample vectors), and good results are only obtained by appropriately choosing their values according to the sampling rate of the signal.

  2. Detection and Sizing of Fatigue Cracks in Steel Welds with Advanced Eddy Current Techniques

    NASA Astrophysics Data System (ADS)

    Todorov, E. I.; Mohr, W. C.; Lozev, M. G.

    2008-02-01

    Butt-welded specimens were fatigued to produce cracks in the weld heat-affected zone. Advanced eddy current (AEC) techniques were used to detect and size the cracks through a coating. AEC results were compared with magnetic particle and phased-array ultrasonic techniques. Validation through destructive crack measurements was also conducted. Factors such as geometry, surface treatment, and crack tightness interfered with depth sizing. AEC inspection techniques have the potential of providing more accurate and complete sizing flaw data for manufacturing and in-service inspections.

  3. Triboluminesence multifunctional cementitious composites with in situ damage sensing capability

    NASA Astrophysics Data System (ADS)

    Olawale, David O.; Dickens, Tarik; Uddin, Mohammed J.; Okoli, Okenwa O.

    2012-04-01

    Structural health monitoring of civil infrastructure systems like concrete bridges and dams has become critical because of the aging and overloading of these CIS. Most of the available SHM methods are not in-situ and can be very expensive. The triboluminescence multifunctional cementitious composites (TMCC) have in-built crack detection mechanism that can enable bridge engineers to monitor and detect abnormal crack formation in concrete structures so that timely corrective action can be taken to prevent costly or catastrophic failures. This article reports the fabrication process and test result of the flexural characterization of the TMCC. Accelerated durability test indicated that the 0.5 ZnS:Mn/Epoxy weight fraction ITOF sensor configuration to be more desirable in terms of durability. The alkaline environment at the highest temperature investigated (45 °C) resulted in significant reduction in the mean glass transition and storage moduli of the tested ITOF thin films. Further work is ongoing to correlate the TL response of the TMCC with damage, particularly crack opening.

  4. Use of Acoustic Emission and Pattern Recognition for Crack Detection of a Large Carbide Anvil

    PubMed Central

    Chen, Bin; Wang, Yanan; Yan, Zhaoli

    2018-01-01

    Large-volume cubic high-pressure apparatus is commonly used to produce synthetic diamond. Due to the high pressure, high temperature and alternative stresses in practical production, cracks often occur in the carbide anvil, thereby resulting in significant economic losses or even casualties. Conventional methods are unsuitable for crack detection of the carbide anvil. This paper is concerned with acoustic emission-based crack detection of carbide anvils, regarded as a pattern recognition problem; this is achieved using a microphone, with methods including sound pulse detection, feature extraction, feature optimization and classifier design. Through analyzing the characteristics of background noise, the cracked sound pulses are separated accurately from the originally continuous signal. Subsequently, three different kinds of features including a zero-crossing rate, sound pressure levels, and linear prediction cepstrum coefficients are presented for characterizing the cracked sound pulses. The original high-dimensional features are adaptively optimized using principal component analysis. A hybrid framework of a support vector machine with k nearest neighbors is designed to recognize the cracked sound pulses. Finally, experiments are conducted in a practical diamond workshop to validate the feasibility and efficiency of the proposed method. PMID:29382144

  5. Use of Acoustic Emission and Pattern Recognition for Crack Detection of a Large Carbide Anvil.

    PubMed

    Chen, Bin; Wang, Yanan; Yan, Zhaoli

    2018-01-29

    Large-volume cubic high-pressure apparatus is commonly used to produce synthetic diamond. Due to the high pressure, high temperature and alternative stresses in practical production, cracks often occur in the carbide anvil, thereby resulting in significant economic losses or even casualties. Conventional methods are unsuitable for crack detection of the carbide anvil. This paper is concerned with acoustic emission-based crack detection of carbide anvils, regarded as a pattern recognition problem; this is achieved using a microphone, with methods including sound pulse detection, feature extraction, feature optimization and classifier design. Through analyzing the characteristics of background noise, the cracked sound pulses are separated accurately from the originally continuous signal. Subsequently, three different kinds of features including a zero-crossing rate, sound pressure levels, and linear prediction cepstrum coefficients are presented for characterizing the cracked sound pulses. The original high-dimensional features are adaptively optimized using principal component analysis. A hybrid framework of a support vector machine with k nearest neighbors is designed to recognize the cracked sound pulses. Finally, experiments are conducted in a practical diamond workshop to validate the feasibility and efficiency of the proposed method.

  6. Detection of fatigue cracks by nondestructive testing methods

    NASA Technical Reports Server (NTRS)

    Anderson, R. T.; Delacy, T. J.; Stewart, R. C.

    1973-01-01

    The effectiveness was assessed of various NDT methods to detect small tight cracks by randomly introducing fatigue cracks into aluminum sheets. The study included optimizing NDT methods calibrating NDT equipment with fatigue cracked standards, and evaluating a number of cracked specimens by the optimized NDT methods. The evaluations were conducted by highly trained personnel, provided with detailed procedures, in order to minimize the effects of human variability. These personnel performed the NDT on the test specimens without knowledge of the flaw locations and reported on the flaws detected. The performance of these tests was measured by comparing the flaws detected against the flaws present. The principal NDT methods utilized were radiographic, ultrasonic, penetrant, and eddy current. Holographic interferometry, acoustic emission monitoring, and replication methods were also applied on a reduced number of specimens. Generally, the best performance was shown by eddy current, ultrasonic, penetrant and holographic tests. Etching provided no measurable improvement, while proof loading improved flaw detectability. Data are shown that quantify the performances of the NDT methods applied.

  7. STS-112 final main engine is installed after welding/polishing process

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The last engine is installed in orbiter Atlantis after a welding and polishing process was undertaken on flow liners where cracks were detected. All engines were removed for inspection of flow liners. Atlantis will next fly on mission STS-112, scheduled for launch no earlier than Oct. 2.

  8. Vibration-based damage detection in a concrete beam under temperature variations using AR models and state-space approaches

    NASA Astrophysics Data System (ADS)

    Clément, A.; Laurens, S.

    2011-07-01

    The Structural Health Monitoring of civil structures subjected to ambient vibrations is very challenging. Indeed, the variations of environmental conditions and the difficulty to characterize the excitation make the damage detection a hard task. Auto-regressive (AR) models coefficients are often used as damage sensitive feature. The presented work proposes a comparison of the AR approach with a state-space feature formed by the Jacobian matrix of the dynamical process. Since the detection of damage can be formulated as a novelty detection problem, Mahalanobis distance is applied to track new points from an undamaged reference collection of feature vectors. Data from a concrete beam subjected to temperature variations and damaged by several static loading are analyzed. It is observed that the damage sensitive features are effectively sensitive to temperature variations. However, the use of the Mahalanobis distance makes possible the detection of cracking with both of them. Early damage (before cracking) is only revealed by the AR coefficients with a good sensibility.

  9. Crack depth profiling using guided wave angle dependent reflectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volker, Arno, E-mail: arno.volker@tno.nl; Pahlavan, Lotfollah, E-mail: arno.volker@tno.nl; Blacquiere, Gerrit, E-mail: arno.volker@tno.nl

    2015-03-31

    Tomographic corrosion monitoring techniques have been developed, using two rings of sensors around the circumference of a pipe. This technique is capable of providing a detailed wall thickness map, however this might not be the only type of structural damage. Therefore this concept is expanded to detect and size cracks and small corrosion defects like root corrosion. The expanded concept uses two arrays of guided-wave transducers, collecting both reflection and transmission data. The data is processed such that the angle-dependent reflectivity is obtained without using a baseline signal of a defect-free situation. The angle-dependent reflectivity is the input of anmore » inversion scheme that calculates a crack depth profile. From this profile, the depth and length of the crack can be determined. Preliminary experiments show encouraging results. The depth sizing accuracy is in the order of 0.5 mm.« less

  10. Replica-based Crack Inspection

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Smith, Stephen W.; Piascik, R. S.; Willard, Scott A.; Dawicke, David S.

    2007-01-01

    A surface replica-based crack inspection method has recently been developed for use in Space Shuttle main engine (SSME) hydrogen feedline flowliners. These flowliners exist to ensure favorable flow of liquid hydrogen over gimble joint bellows, and consist of two rings each containing 38 elongated slots. In the summer of 2002, multiple cracks ranging from 0.1 inches to 0.6 inches long were discovered; each orbiter contained at least one cracked flowliner. These long cracks were repaired and eddy current inspections ensured that no cracks longer than 0.075 inches were present. However, subsequent fracture-mechanics review of flight rationale required detection of smaller cracks, and was the driving force for development of higher-resolution inspection method. Acetate tape surface replicas have been used for decades to detect and monitor small cracks. However, acetate tape replicas have primarily been limited to laboratory specimens because complexities involved in making these replicas - requiring acetate tape to be dissolved with acetone - are not well suited for a crack inspection tool. More recently developed silicon-based replicas are better suited for use as a crack detection tool. A commercially available silicon-based replica product has been determined to be acceptable for use in SSME hydrogen feedlines. A method has been developed using this product and a scanning electron microscope for analysis, which can find cracks as small as 0.005 inches and other features (e.g., pits, scratches, tool marks, etc.) as small as 0.001 inches. The resolution of this method has been validated with dozens of cracks generated in a laboratory setting and this method has been used to locate 55 cracks (ranging in size from 0.040 inches to 0.004 inches) on space flight hardware. These cracks were removed by polishing away the cracked material and a second round of replicas confirmed the repair.

  11. Ultrasound excited thermography: an efficient tool for the characterization of vertical cracks

    NASA Astrophysics Data System (ADS)

    Mendioroz, A.; Celorrio, R.; Salazar, A.

    2017-11-01

    Ultrasound excited thermography has gained a renewed interest in the last two decades as a nondestructive testing technique aimed at detecting and characterizing surface breaking and shallow subsurface discontinuities. It is based on measurement of the IR radiation emitted by the specimen surface to detect temperature rises produced by the heating of defects under high amplitude ultrasound excitation and is primarily addressed to flaws with contacting faces, such as kissing cracks or tight delaminations. The simplicity of application and the ability to detect small cracks in challenging media makes it an attractive emerging technology, which is still in a development stage. However, it has proven to provide an opportunity for the quantitative characterization of defects, mainly of vertical cracks. In this review, we present the principles of the technique and the different experimental implementations, we put it in context with other nondestructive tests and we summarize the work done in order to improve defect detectability and test reliability, with the final goal of determining the probability of detection. Then we review the contributions aimed at characterizing vertical cracks, i.e. retrieving the geometry and location of the crack from surface temperature data, generated by ultrasonic excitation.

  12. Detection of Steel Fatigue Cracks with Strain Sensing Sheets Based on Large Area Electronics

    PubMed Central

    Yao, Yao; Glisic, Branko

    2015-01-01

    Reliable early-stage damage detection requires continuous monitoring over large areas of structure, and with sensors of high spatial resolution. Technologies based on Large Area Electronics (LAE) can enable direct sensing and can be scaled to the level required for Structural Health Monitoring (SHM) of civil structures and infrastructure. Sensing sheets based on LAE contain dense arrangements of thin-film strain sensors, associated electronics and various control circuits deposited and integrated on a flexible polyimide substrate that can cover large areas of structures. This paper presents the development stage of a prototype strain sensing sheet based on LAE for crack detection and localization. Two types of sensing-sheet arrangements with size 6 × 6 inch (152 × 152 mm) were designed and manufactured, one with a very dense arrangement of sensors and the other with a less dense arrangement of sensors. The sensing sheets were bonded to steel plates, which had a notch on the boundary, so the fatigue cracks could be generated under cyclic loading. The sensors within the sensing sheet that were close to the notch tip successfully detected the initialization of fatigue crack and localized the damage on the plate. The sensors that were away from the crack successfully detected the propagation of fatigue cracks based on the time history of the measured strain. The results of the tests have validated the general principles of the proposed sensing sheets for crack detection and identified advantages and challenges of the two tested designs. PMID:25853407

  13. Research Based on the Acoustic Emission of Wind Power Tower Drum Dynamic Monitoring Technology

    NASA Astrophysics Data System (ADS)

    Zhang, Penglin; Sang, Yuan; Xu, Yaxing; Zhao, Zhiqiang

    Wind power tower drum is one of the key components of the wind power equipment. Whether the wind tower drum performs safety directly affects the efficiency, life, and performance of wind power equipment. Wind power tower drum in the process of manufacture, installation, and operation may lead to injury, and the wind load and gravity load and long-term factors such as poor working environment under the action of crack initiation or distortion, which eventually result in the instability or crack of the wind power tower drum and cause huge economic losses. Thus detecting the wind power tower drum crack damage and instability is especially important. In this chapter, acoustic emission is used to monitor the whole process of wind power tower drum material Q345E steel tensile test at first, and processing and analysis tensile failure signal of the material. And then based on the acoustic emission testing technology to the dynamic monitoring of wind power tower drum, the overall detection and evaluation of the existence of active defects in the whole structure, and the acoustic emission signals collected for processing and analysis, we could preliminarily master the wind tower drum mechanism of acoustic emission source. The acoustic emission is a kind of online, efficient, and economic method, which has very broad prospects for work. The editorial committee of nondestructive testing qualification and certification of personnel teaching material of science and technology industry of national defense, "Acoustic emission testing" (China Machine Press, 2005.1).

  14. Detection of Fatigue Crack in Basalt FRP Laminate Composite Pipe using Electrical Potential Change Method

    NASA Astrophysics Data System (ADS)

    Altabey, Wael A.; Noori, Mohammed

    2017-05-01

    Novel modulation electrical potential change (EPC) method for fatigue crack detection in a basalt fibre reinforced polymer (FRP) laminate composite pipe is carried out in this paper. The technique is applied to a laminate pipe with an embedded crack in three layers [0º/90º/0º]s. EPC is applied for evaluating the dielectric properties of basalt FRP pipe by using an electrical capacitance sensor (ECS) to discern damages in the pipe. Twelve electrodes are mounted on the outer surface of the pipe and the changes in the modulation dielectric properties of the piping system are analyzed to detect damages in the pipe. An embedded crack is created by a fatigue internal pressure test. The capacitance values, capacitance change and node potential distribution of ECS electrodes are calculated before and after crack initiates using a finite element method (FEM) by ANSYS and MATLAB, which are combined to simulate sensor characteristics and fatigue behaviour. The crack lengths of the basalt FRP are investigated for various number of cycles to failure for determining crack growth rate. Response surfaces are adopted as a tool for solving inverse problems to estimate crack lengths from the measured electric potential differences of all segments between electrodes to validate the FEM results. The results show that, the good convergence between the FEM and estimated results. Also the results of this study show that the electrical potential difference of the basalt FRP laminate increases during cyclic loading, caused by matrix cracking. The results indicate that the proposed method successfully provides fatigue crack detection for basalt FRP laminate composite pipes.

  15. Evolutionary Design of a Robotic Material Defect Detection System

    NASA Technical Reports Server (NTRS)

    Ballard, Gary; Howsman, Tom; Craft, Mike; ONeil, Daniel; Steincamp, Jim; Howell, Joe T. (Technical Monitor)

    2002-01-01

    During the post-flight inspection of SSME engines, several inaccessible regions must be disassembled to inspect for defects such as cracks, scratches, gouges, etc. An improvement to the inspection process would be the design and development of very small robots capable of penetrating these inaccessible regions and detecting the defects. The goal of this research was to utilize an evolutionary design approach for the robotic detection of these types of defects. A simulation and visualization tool was developed prior to receiving the hardware as a development test bed. A small, commercial off-the-shelf (COTS) robot was selected from several candidates as the proof of concept robot. The basic approach to detect the defects was to utilize Cadmium Sulfide (CdS) sensors to detect changes in contrast of an illuminated surface. A neural network, optimally designed utilizing a genetic algorithm, was employed to detect the presence of the defects (cracks). By utilization of the COTS robot and US sensors, the research successfully demonstrated that an evolutionarily designed neural network can detect the presence of surface defects.

  16. Modeling the X-Ray Process, and X-Ray Flaw Size Parameter for POD Studies

    NASA Technical Reports Server (NTRS)

    Khoshti, Ajay

    2014-01-01

    Nondestructive evaluation (NDE) method reliability can be determined by a statistical flaw detection study called probability of detection (POD) study. In many instances the NDE flaw detectability is given as a flaw size such as crack length. The flaw is either a crack or behaving like a crack in terms of affecting the structural integrity of the material. An alternate approach is to use a more complex flaw size parameter. The X-ray flaw size parameter, given here, takes into account many setup and geometric factors. The flaw size parameter relates to X-ray image contrast and is intended to have a monotonic correlation with the POD. Some factors such as set-up parameters including X-ray energy, exposure, detector sensitivity, and material type that are not accounted for in the flaw size parameter may be accounted for in the technique calibration and controlled to meet certain quality requirements. The proposed flaw size parameter and the computer application described here give an alternate approach to conduct the POD studies. Results of the POD study can be applied to reliably detect small flaws through better assessment of effect of interaction between various geometric parameters on the flaw detectability. Moreover, a contrast simulation algorithm for a simple part-source-detector geometry using calibration data is also provided for the POD estimation.

  17. Modeling the X-ray Process, and X-ray Flaw Size Parameter for POD Studies

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2014-01-01

    Nondestructive evaluation (NDE) method reliability can be determined by a statistical flaw detection study called probability of detection (POD) study. In many instances, the NDE flaw detectability is given as a flaw size such as crack length. The flaw is either a crack or behaving like a crack in terms of affecting the structural integrity of the material. An alternate approach is to use a more complex flaw size parameter. The X-ray flaw size parameter, given here, takes into account many setup and geometric factors. The flaw size parameter relates to X-ray image contrast and is intended to have a monotonic correlation with the POD. Some factors such as set-up parameters, including X-ray energy, exposure, detector sensitivity, and material type that are not accounted for in the flaw size parameter may be accounted for in the technique calibration and controlled to meet certain quality requirements. The proposed flaw size parameter and the computer application described here give an alternate approach to conduct the POD studies. Results of the POD study can be applied to reliably detect small flaws through better assessment of effect of interaction between various geometric parameters on the flaw detectability. Moreover, a contrast simulation algorithm for a simple part-source-detector geometry using calibration data is also provided for the POD estimation.

  18. Sensing sheets based on large area electronics for fatigue crack detection

    NASA Astrophysics Data System (ADS)

    Yao, Yao; Glisic, Branko

    2015-03-01

    Reliable early-stage damage detection requires continuous structural health monitoring (SHM) over large areas of structure, and with high spatial resolution of sensors. This paper presents the development stage of prototype strain sensing sheets based on Large Area Electronics (LAE), in which thin-film strain gauges and control circuits are integrated on the flexible electronics and deposited on a polyimide sheet that can cover large areas. These sensing sheets were applied for fatigue crack detection on small-scale steel plates. Two types of sensing-sheet interconnects were designed and manufactured, and dense arrays of strain gauge sensors were assembled onto the interconnects. In total, four (two for each design type) strain sensing sheets were created and tested, which were sensitive to strain at virtually every point over the whole sensing sheet area. The sensing sheets were bonded to small-scale steel plates, which had a notch on the boundary so that fatigue cracks could be generated under cyclic loading. The fatigue tests were carried out at the Carleton Laboratory of Columbia University, and the steel plates were attached through a fixture to the loading machine that applied cyclic fatigue load. Fatigue cracks then occurred and propagated across the steel plates, leading to the failure of these test samples. The strain sensor that was close to the notch successfully detected the initialization of fatigue crack and localized the damage on the plate. The strain sensor that was away from the crack successfully detected the propagation of fatigue crack based on the time history of measured strain. Overall, the results of the fatigue tests validated general principles of the strain sensing sheets for crack detection.

  19. 78 FR 17300 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-21

    ... balance land for cracks. Since we issued that AD, a crack was detected in a Trent 500 IP compressor rotor shaft rear balance land during a shop visit, and further engineering evaluation done by RR concluded... AD to detect cracking on the IP compressor rotor shaft rear balance land, which could lead to...

  20. 75 FR 15357 - Airworthiness Directives; The Boeing Company Model 767 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-29

    ... airplanes. This proposed AD would require repetitive inspections to detect fatigue cracking in the upper... this AD to detect and correct fatigue cracking in the upper wing skin at the fastener holes common to... October 28, 1999. Further Boeing analysis has determined the cracks to be a result of fatigue due to...

  1. Feasibility of fatigue crack detection and tracking with a multi-sensor in-situ monitoring system

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoliang; Qi, Kevin; Qian, Tao; Mei, Gang

    2014-02-01

    Fatigue crack is a common problem for steel bridges. A cost effective and reliable method for detecting and verifying growth of a crack is desired. In this work, feasibilities of fatigue crack monitoring with acoustic emission sensors and strain gauges were studied on an A36 steel compact-tension coupon under cyclic tensile loading. By examining the ultrasonic signal time-of-arrival and frequency spectrum, acoustic emissions from a crack growth can be distinguished from other structural borne noises such as those from the interaction of loading bolts with the bolt holes on the plate. Strain sensor and clip gauge sensor data were also correlated well with the growth of the crack.

  2. Physics-Based Image Segmentation Using First Order Statistical Properties and Genetic Algorithm for Inductive Thermography Imaging.

    PubMed

    Gao, Bin; Li, Xiaoqing; Woo, Wai Lok; Tian, Gui Yun

    2018-05-01

    Thermographic inspection has been widely applied to non-destructive testing and evaluation with the capabilities of rapid, contactless, and large surface area detection. Image segmentation is considered essential for identifying and sizing defects. To attain a high-level performance, specific physics-based models that describe defects generation and enable the precise extraction of target region are of crucial importance. In this paper, an effective genetic first-order statistical image segmentation algorithm is proposed for quantitative crack detection. The proposed method automatically extracts valuable spatial-temporal patterns from unsupervised feature extraction algorithm and avoids a range of issues associated with human intervention in laborious manual selection of specific thermal video frames for processing. An internal genetic functionality is built into the proposed algorithm to automatically control the segmentation threshold to render enhanced accuracy in sizing the cracks. Eddy current pulsed thermography will be implemented as a platform to demonstrate surface crack detection. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. In addition, a global quantitative assessment index F-score has been adopted to objectively evaluate the performance of different segmentation algorithms.

  3. Load-Differential Imaging for Detection and Localization of Fatigue Cracks Using Lamb Waves (Preprint)

    DTIC Science & Technology

    2012-03-01

    AFRL-RX-WP-TP-2012-0278 LOAD-DIFFERENTIAL IMAGING FOR DETECTION AND LOCALIZATION OF FATIGUE CRACKS USING LAMB WAVES (PREPRINT) X. Chen...OF FATIGUE CRACKS USING LAMB WAVES (PREPRINT) 5a. CONTRACT NUMBER FA8650-09-C-5206 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6...Jan 2012. Preprint journal article to be submitted to NDT & E. This document contains color. 14. ABSTRACT Fatigue cracks are common and

  4. A dynamic model of a cantilever beam with a closed, embedded horizontal crack including local flexibilities at crack tips

    NASA Astrophysics Data System (ADS)

    Liu, J.; Zhu, W. D.; Charalambides, P. G.; Shao, Y. M.; Xu, Y. F.; Fang, X. M.

    2016-11-01

    As one of major failure modes of mechanical structures subjected to periodic loads, embedded cracks due to fatigue can cause catastrophic failure of machineries. Understanding the dynamic characteristics of a structure with an embedded crack is helpful for early crack detection and diagnosis. In this work, a new three-segment beam model with local flexibilities at crack tips is developed to investigate the vibration of a cantilever beam with a closed, fully embedded horizontal crack, which is assumed to be not located at its clamped or free end or distributed near its top or bottom side. The three-segment beam model is assumed to be a linear elastic system, and it does not account for the nonlinear crack closure effect; the top and bottom segments always stay in contact at their interface during the beam vibration. It can model the effects of local deformations in the vicinity of the crack tips, which cannot be captured by previous methods in the literature. The middle segment of the beam containing the crack is modeled by a mechanically consistent, reduced bending moment. Each beam segment is assumed to be an Euler-Bernoulli beam, and the compliances at the crack tips are analytically determined using a J-integral approach and verified using commercial finite element software. Using compatibility conditions at the crack tips and the transfer matrix method, the nature frequencies and mode shapes of the cracked cantilever beam are obtained. The three-segment beam model is used to investigate the effects of local flexibilities at crack tips on the first three natural frequencies and mode shapes of the cracked cantilever beam. A stationary wavelet transform (SWT) method is used to process the mode shapes of the cracked cantilever beam; jumps in single-level SWT decomposition detail coefficients can be used to identify the length and location of an embedded horizontal crack.

  5. Detection of freeze-thaw weathering effect using X-ray micro computed tomography

    NASA Astrophysics Data System (ADS)

    Park, J.; Hyun, C.; Park, H.

    2011-12-01

    Physical weathering caused by repeated freeze-thaw action of water inside rock pores or cracks was artificially simulated in laboratory. The tests were conducted on three rock types, i.e. diorite, basalt, and tuff, which are the major rock types around King Sejong Station of Korea located in Barton Peninsula, King George Island, Antarctica. The temperature of freeze-thaw cycle was also set with simulated the air temperature of the station, i.e. the maximum temperature was + 10 °C and the minimum temperature was - 20 °C. Three cylindrical specimens composed of one for each rock type with 24.6 mm diameter and 14.5 ~ 17.7 mm length were prepared, and 2 mm diameter and 7 mm shallow depth hole was drilled on the center of the specimens. To exaggerate the effect of the freeze-thaw weathering, all tests were conducted under completely saturated condition. 50 cycles of the freeze-thaw test was carried, and X-ray micro computed tomography (CT) images of each rock specimen were obtained after every 10 cycles. Using X-ray micro CT images, 3D structure was rendered and pore and crack structures were extracted. The changes of porosity, absorption rate and pore and crack structure were detected. Porosity of all specimens was decreased linearly and absorption rate of all specimens was increased linearly as weathering processes; the pore connection and crack propagation was detected in 3D rendering pore and crack structure. The change of tuff specimen is the most remarkable among three rock types used in the research, because of its relatively high initial absorption rate and low strength. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST) (No. 2011-0027520).

  6. Passive wireless antenna sensors for crack detection and shear/compression sensing

    NASA Astrophysics Data System (ADS)

    Mohammad, Irshad

    Despite the fact that engineering components and structures are carefully designed against fatigue failures, 50 to 90% of mechanical failures are due to fatigue crack development. The severity of the failure depends on both the crack length and its orientation. Many types of sensors are available that can detect fatigue crack propagation. However, crack orientation detection has been rarely reported in the literature. We evaluated a patch antenna sensor capable of detecting crack propagation as well as crack orientation changes. The aim of these sensors would be to evaluate the real-time health condition of metallic structures to avoid catastrophic failures. The proposed crack sensing system consists of a dielectric substrate with a ground plane on one side of the substrate and an antenna patch printed on the other side of the substrate. The ground plane and the antenna patch, both conductive in nature, form an electromagnetic resonant cavity that radiates at distinct frequencies. These frequencies are monitored to evaluate the condition of cracks. A wireless sensor array can be realized by implementing a wireless interrogation unit. The scientific merits of this research are: 1) high sensitivity: it was demonstrated that the antenna sensors can detect crack growth with a sub-millimeter resolution; 2) passive wireless operation: based on microstrip antennas, the antenna sensors encode the sensing information in the backscattered antenna signal and thus can transmit the information without needing a local battery; 3) thin and conformal: the entire sensor unit is less than a millimeter thick and highly conformal; 4) crack orientation detection: the crack orientation on the structure can be precisely evaluated based on a single parameter, which only few sensors can accomplish. In addition to crack detection, the patch antenna sensors are also investigated for measuring shear and pressure forces, with an aim to study the formation, diagnostics and prevention of foot ulcers in diabetic patients. These sensors were vertically integrated and embedded in the insole of shoes for measuring plantar pressure/shear distribution. The scientific merits of this proposed research are: 1) simultaneous shear/pressure measurement : current smart shoe technology can only measure shear and pressure separately due to the size of the shear sensor. The proposed sensor can measure shear and pressure deformation simultaneously; 2) high sensitivity and spatial resolution: these sensors are very sensitive and have compact size that enables measuring stress distribution with fine spatial resolution; 3) passive and un-tethered operation: the sensor transponder was mounted on the top surface of the shoe to facilitate wireless interrogation of the sensor array embedded in the insole of the shoe, eliminating external wiring completely.

  7. An autonomous surface discontinuity detection and quantification method by digital image correlation and phase congruency

    NASA Astrophysics Data System (ADS)

    Cinar, A. F.; Barhli, S. M.; Hollis, D.; Flansbjer, M.; Tomlinson, R. A.; Marrow, T. J.; Mostafavi, M.

    2017-09-01

    Digital image correlation has been routinely used to measure full-field displacements in many areas of solid mechanics, including fracture mechanics. Accurate segmentation of the crack path is needed to study its interaction with the microstructure and stress fields, and studies of crack behaviour, such as the effect of closure or residual stress in fatigue, require data on its opening displacement. Such information can be obtained from any digital image correlation analysis of cracked components, but it collection by manual methods is quite onerous, particularly for massive amounts of data. We introduce the novel application of Phase Congruency to detect and quantify cracks and their opening. Unlike other crack detection techniques, Phase Congruency does not rely on adjustable threshold values that require user interaction, and so allows large datasets to be treated autonomously. The accuracy of the Phase Congruency based algorithm in detecting cracks is evaluated and compared with conventional methods such as Heaviside function fitting. As Phase Congruency is a displacement-based method, it does not suffer from the noise intensification to which gradient-based methods (e.g. strain thresholding) are susceptible. Its application is demonstrated to experimental data for cracks in quasi-brittle (Granitic rock) and ductile (Aluminium alloy) materials.

  8. Sonic IR crack detection of aircraft turbine engine blades with multi-frequency ultrasound excitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ding; Han, Xiaoyan; Newaz, Golam

    Effectively and accurately detecting cracks or defects in critical engine components, such as turbine engine blades, is very important for aircraft safety. Sonic Infrared (IR) Imaging is such a technology with great potential for these applications. This technology combines ultrasound excitation and IR imaging to identify cracks and flaws in targets. In general, failure of engine components, such as blades, begins with tiny cracks. Since the attenuation of the ultrasound wave propagation in turbine engine blades is small, the efficiency of crack detection in turbine engine blades can be quite high. The authors at Wayne State University have been developingmore » the technology as a reliable tool for the future field use in aircraft engines and engine parts. One part of the development is to use finite element modeling to assist our understanding of effects of different parameters on crack heating while experimentally hard to achieve. The development has been focused with single frequency ultrasound excitation and some results have been presented in a previous conference. We are currently working on multi-frequency excitation models. The study will provide results and insights of the efficiency of different frequency excitation sources to foster the development of the technology for crack detection in aircraft engine components.« less

  9. High speed thin plate fatigue crack monitor

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz A. (Inventor); Heyman, Joseph S. (Inventor); Namkung, Min (Inventor); Fulton, James P. (Inventor)

    1996-01-01

    A device and method are provided which non-destructively detect crack length and crack geometry in thin metallic plates. A non-contacting vibration apparatus produces resonant vibrations without introducing extraneous noise. Resulting resonant vibration shifts in cracked plates are correlated to known crack length in plates with similar resonant vibration shifts. In addition, acoustic emissions of cracks at resonance frequencies are correlated to acoustic emissions from known crack geometries.

  10. An Analysis of the Magneto-Optic Imaging System

    NASA Technical Reports Server (NTRS)

    Nath, Shridhar

    1996-01-01

    The Magneto-Optic Imaging system is being used for the detection of defects in airframes and other aircraft structures. The system has been successfully applied to detecting surface cracks, but has difficulty in the detection of sub-surface defects such as corrosion. The intent of the grant was to understand the physics of the MOI better, in order to use it effectively for detecting corrosion and for classifying surface defects. Finite element analysis, image classification, and image processing are addressed.

  11. Estimation of fatigue life using electromechanical impedance technique

    NASA Astrophysics Data System (ADS)

    Lim, Yee Yan; Soh, Chee Kiong

    2010-04-01

    Fatigue induced damage is often progressive and gradual in nature. Structures subjected to large number of fatigue load cycles will encounter the process of progressive crack initiation, propagation and finally fracture. Monitoring of structural health, especially for the critical components, is therefore essential for early detection of potential harmful crack. Recent advent of smart materials such as piezo-impedance transducer adopting the electromechanical impedance (EMI) technique and wave propagation technique are well proven to be effective in incipient damage detection and characterization. Exceptional advantages such as autonomous, real-time and online, remote monitoring may provide a cost-effective alternative to the conventional structural health monitoring (SHM) techniques. In this study, the main focus is to investigate the feasibility of characterizing a propagating fatigue crack in a structure using the EMI technique as well as estimating its remaining fatigue life using the linear elastic fracture mechanics (LEFM) approach. Uniaxial cyclic tensile load is applied on a lab-sized aluminum beam up to failure. Progressive shift in admittance signatures measured by the piezo-impedance transducer (PZT patch) corresponding to increase of loading cycles reflects effectiveness of the EMI technique in tracing the process of fatigue damage progression. With the use of LEFM, prediction of the remaining life of the structure at different cycles of loading is possible.

  12. STS-112 final main engine is installed after welding/polishing process

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - Workers get ready to install the last engine in orbiter Atlantis after a welding and polishing process was undertaken on flow liners where cracks were detected. All engines were removed for inspection of flow liners. Atlantis will next fly on mission STS-112, scheduled for launch no earlier than Oct. 2.

  13. Crack Detection with Lamb Wave Wavenumber Analysis

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Leckey, Cara; Rogge, Matt; Yu, Lingyu

    2013-01-01

    In this work, we present our study of Lamb wave crack detection using wavenumber analysis. The aim is to demonstrate the application of wavenumber analysis to 3D Lamb wave data to enable damage detection. The 3D wavefields (including vx, vy and vz components) in time-space domain contain a wealth of information regarding the propagating waves in a damaged plate. For crack detection, three wavenumber analysis techniques are used: (i) two dimensional Fourier transform (2D-FT) which can transform the time-space wavefield into frequency-wavenumber representation while losing the spatial information; (ii) short space 2D-FT which can obtain the frequency-wavenumber spectra at various spatial locations, resulting in a space-frequency-wavenumber representation; (iii) local wavenumber analysis which can provide the distribution of the effective wavenumbers at different locations. All of these concepts are demonstrated through a numerical simulation example of an aluminum plate with a crack. The 3D elastodynamic finite integration technique (EFIT) was used to obtain the 3D wavefields, of which the vz (out-of-plane) wave component is compared with the experimental measurement obtained from a scanning laser Doppler vibrometer (SLDV) for verification purposes. The experimental and simulated results are found to be in close agreement. The application of wavenumber analysis on 3D EFIT simulation data shows the effectiveness of the analysis for crack detection. Keywords: : Lamb wave, crack detection, wavenumber analysis, EFIT modeling

  14. Analytical and experimental studies on detection of longitudinal, L and inverted T cracks in isotropic and bi-material beams based on changes in natural frequencies

    NASA Astrophysics Data System (ADS)

    Ravi, J. T.; Nidhan, S.; Muthu, N.; Maiti, S. K.

    2018-02-01

    An analytical method for determination of dimensions of longitudinal crack in monolithic beams, based on frequency measurements, has been extended to model L and inverted T cracks. Such cracks including longitudinal crack arise in beams made of layered isotropic or composite materials. A new formulation for modelling cracks in bi-material beams is presented. Longitudinal crack segment sizes, for L and inverted T cracks, varying from 2.7% to 13.6% of length of Euler-Bernoulli beams are considered. Both forward and inverse problems have been examined. In the forward problems, the analytical results are compared with finite element (FE) solutions. In the inverse problems, the accuracy of prediction of crack dimensions is verified using FE results as input for virtual testing. The analytical results show good agreement with the actual crack dimensions. Further, experimental studies have been done to verify the accuracy of the analytical method for prediction of dimensions of three types of crack in isotropic and bi-material beams. The results show that the proposed formulation is reliable and can be employed for crack detection in slender beam like structures in practice.

  15. Fluorescent Penetrant INSPECTION—CLEANING Study Update

    NASA Astrophysics Data System (ADS)

    Eisenmann, D.; Brasche, L.

    2009-03-01

    Fluorescent penetrant inspection (FPI) is widely used in the aviation industry and other industries for surface-breaking crack detection. As with all inspection methods, adherence to the process parameters is critical to the successful detection of defects. There is variety of lubricants and surface coatings used in the aviation industry which must be removed prior to FPI. Before the FPI process begins, components are cleaned using a variety of cleaning methods which are selected based on the alloy and the soil types which must be removed. It is also important that the cleaning process not adversely affect the FPI process. From the first three phases of this project it has been found that a hot water rinse can aid in the detection process when using this nondestructive method.

  16. Incipient Crack Detection in Composite Wind Turbine Blades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Stuart G.; Choi, Mijin; Jeong, Hyomi

    2012-08-28

    This paper presents some analysis results for incipient crack detection in a 9-meter CX-100 wind turbine blade that underwent fatigue loading to failure. The blade was manufactured to standard specifications, and it underwent harmonic excitation at its first resonance using a hydraulically-actuated excitation system until reaching catastrophic failure. This work investigates the ability of an ultrasonic guided wave approach to detect incipient damage prior to the surfacing of a visible, catastrophic crack. The blade was instrumented with piezoelectric transducers, which were used in an active, pitchcatch mode with guided waves over a range of excitation frequencies. The performance results inmore » detecting incipient crack formation in the fiberglass skin of the blade is assessed over the range of frequencies in order to determine the point at which the incipient crack became detectable. Higher excitation frequencies provide consistent results for paths along the rotor blade's carbon fiber spar cap, but performance falls off with increasing excitation frequencies for paths off of the spar cap. Lower excitation frequencies provide more consistent performance across all sensor paths.« less

  17. Crack-Detection Experiments on Simulated Turbine Engine Disks in NASA Glenn Research Center's Rotordynamics Laboratory

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.; Abdul-Aziz, Ali

    2010-01-01

    The development of new health-monitoring techniques requires the use of theoretical and experimental tools to allow new concepts to be demonstrated and validated prior to use on more complicated and expensive engine hardware. In order to meet this need, significant upgrades were made to NASA Glenn Research Center s Rotordynamics Laboratory and a series of tests were conducted on simulated turbine engine disks as a means of demonstrating potential crack-detection techniques. The Rotordynamics Laboratory consists of a high-precision spin rig that can rotate subscale engine disks at speeds up to 12,000 rpm. The crack-detection experiment involved introducing a notch on a subscale engine disk and measuring its vibration response using externally mounted blade-tip-clearance sensors as the disk was operated at speeds up to 12 000 rpm. Testing was accomplished on both a clean baseline disk and a disk with an artificial crack: a 50.8-mm- (2-in.-) long introduced notch. The disk s vibration responses were compared and evaluated against theoretical models to investigate how successful the technique was in detecting cracks. This paper presents the capabilities of the Rotordynamics Laboratory, the baseline theory and experimental setup for the crack-detection experiments, and the associated results from the latest test campaign.

  18. Sweep excitation with order tracking: A new tactic for beam crack analysis

    NASA Astrophysics Data System (ADS)

    Wei, Dongdong; Wang, KeSheng; Zhang, Mian; Zuo, Ming J.

    2018-04-01

    Crack detection in beams and beam-like structures is an important issue in industry and has attracted numerous investigations. A local crack leads to global system dynamics changes and produce non-linear vibration responses. Many researchers have studied these non-linearities for beam crack diagnosis. However, most reported methods are based on impact excitation and constant frequency excitation. Few studies have focused on crack detection through external sweep excitation which unleashes abundant dynamic characteristics of the system. Together with a signal resampling technique inspired by Computed Order Tracking, this paper utilize vibration responses under sweep excitations to diagnose crack status of beams. A data driven method for crack depth evaluation is proposed and window based harmonics extracting approaches are studied. The effectiveness of sweep excitation and the proposed method is experimentally validated.

  19. Online Bridge Crack Monitoring with Smart Film

    PubMed Central

    Wang, Shuliang; Li, Xingxing; Zhou, Zhixiang; Zhang, Xu; Yang, Guang; Qiu, Minfeng

    2013-01-01

    Smart film crack monitoring method, which can be used for detecting initiation, length, width, shape, location, and propagation of cracks on real bridges, is proposed. Firstly, the fabrication of the smart film is developed. Then the feasibility of the method is analyzed and verified by the mechanical sensing character of the smart film under the two conditions of normal strain and crack initiation. Meanwhile, the coupling interference between parallel enameled wires of the smart film is discussed, and then low-frequency detecting signal and the custom communication protocol are used to decrease interference. On this basis, crack monitoring system with smart film is designed, where the collected crack data is sent to the remote monitoring center and the cracks are simulated and recurred. Finally, the monitoring system is applied to six bridges, and the effects are discussed. PMID:24489496

  20. Method and apparatus for detecting external cracks from within a metal tube

    DOEpatents

    Caffey, Thurlow W. H.

    2001-08-07

    A method and tool using a continuous electromagnetic wave from a transverse magnetic-dipole source with a coaxial electric-dipole receiver is described for the detection of external sidewall cracks and other anomalies in boiler tubes and other enclosures. The invention utilizes the concept of radar backscatter rather than eddy-currents or ultrasound, which are sometimes used in prior art crack-detection methods. A numerical study of the distribution of the fields shows that the direct transmission from the source to the receiver is reduced from that in free space. Further, if the diameter of the receiver dipole is made sufficiently small, it should be possible to detect cracks with a scattering loss of up to -40 dB in thin-walled boiler tubes.

  1. Detecting Damage in Ceramic Matrix Composites Using Electrical Resistance

    NASA Technical Reports Server (NTRS)

    Smith, Craig E.; Gyekenyesi, Andrew

    2011-01-01

    The majority of damage in SiC/SiC ceramic matrix composites subjected to monotonic tensile loads is in the form of distributed matrix cracks. These cracks initiate near stress concentrations, such as 90 deg fiber tows or large matrix pores and continue to accumulate with additional stress until matrix crack saturation is achieved. Such damage is difficult to detect with conventional nondestructive evaluation techniques (immersion ultrasonics, x-ray, etc.). Monitoring a specimen.s electrical resistance change provides an indirect approach for monitoring matrix crack density. Sylramic-iBN fiber- reinforced SiC composites with a melt infiltrated (MI) matrix were tensile tested at room temperature. Results showed an increase in resistance of more than 500% prior to fracture, which can be detected either in situ or post-damage. A relationship between resistance change and matrix crack density was also determined.

  2. Detecting the transition to failure: wavelet analysis of multi-scale crack patterns at different confining pressures

    NASA Astrophysics Data System (ADS)

    Rizzo, R. E.; Healy, D.; Farrell, N. J.

    2017-12-01

    Numerous laboratory brittle deformation experiments have shown that a rapid transition exists in the behaviour of porous materials under stress: at a certain point, early formed tensile cracks interact and coalesce into a `single' narrow zone, the shear plane, rather than remaining distributed throughout the material. In this work, we present and apply a novel image processing tool which is able to quantify this transition between distributed (`stable') damage accumulation and localised (`unstable') deformation, in terms of size, density, and orientation of cracks at the point of failure. Our technique, based on a two-dimensional (2D) continuous Morlet wavelet analysis, can recognise, extract and visually separate the multi-scale changes occurring in the fracture network during the deformation process. We have analysed high-resolution SEM-BSE images of thin sections of Hopeman Sandstone (Scotland, UK) taken from core plugs deformed under triaxial conditions, with increasing confining pressure. Through this analysis, we can determine the relationship between the initial orientation of tensile microcracks and the final geometry of the through-going shear fault, exploiting the total areal coverage of the analysed image. In addition, by comparing patterns of fractures in thin sections derived from triaxial (σ1>σ2=σ3=Pc) laboratory experiments conducted at different confining pressures (Pc), we can quantitatively explore the relationship between the observed geometry and the inferred mechanical processes. The methodology presented here can have important implications for larger-scale mechanical problems related to major fault propagation. Just as a core plug scale fault localises through extension and coalescence of microcracks, larger faults also grow by extension and coalescence of segments in a multi-scale process by which microscopic cracks can ultimately lead to macroscopic faulting. Consequently, wavelet analysis represents a useful tool for fracture pattern recognition, applicable to the detection of the transitions occurring at the time of catastrophic rupture.

  3. Finite element analysis-based study of fiber Bragg grating sensor for cracks detection in reinforced concrete

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Xin, Xiangjun; Song, Jun; Wang, Honggang; Sai, Yaozhang

    2018-02-01

    Fiber Bragg sensor is applied for detecting and monitoring the cracks that occur in the reinforced concrete. We use the three-dimensional finite element model to provide the three-axial stresses along the fiber Bragg sensor and then converted the stresses as a wavelength deformation of fiber Bragg grating (FBG) reflected spectrum. For the crack detection, an FBG sensor with 10-mm length is embedded in the reinforced concrete, and its reflection spectrum is measured after loading is applied to the concrete slab. As a result, the main peak wavelength and the ratio of the peak reflectivity to the maximal side-mode reflectivity of the optic-fiber grating represent the fracture severity. The fact that the sharp decreasing of the ratio of the peak reflectivity to the maximal side-mode reflectivity represents the early crack is confirmed by the theoretical calculation. The method can be used to detect the cracks in the reinforced concrete and give safety evaluation of large-scale infrastructure.

  4. High Resolution Millimeter Wave Detection of Vertical Cracks in the Space Shuttle External Tank Spray-On-Foam Insulation (SOFI)

    NASA Technical Reports Server (NTRS)

    Kharkovsky, S.; Zoughi, R.; Hepburn, F.

    2006-01-01

    Space Shuttle Columbia s catastrophic failure, the separation of a piece of spray-on-foam insulation (SOFI) from the external tank (ET) in the Space Shuttle Discovery s flight in 2005 and crack detected in its ET foam prior to its successful launch in 2006 emphasize the need for effective nondestructive methods for inspecting the shuttle ET SOFI. Millimeter wave nondestructive testing methods have been considered as potential and effective inspection tools for evaluating the integrity of the SOFI. This paper presents recent results of an investigation for the purpose of detecting vertical cracks in SOFI panels using a focused millimeter wave (150 GHz) reflectometer. The presented images of the SOFI panels show the capability of this reflectometer for detecting tight vertical cracks (also as a function of crack opening dimension) in exposed SOFI panels and while covered by a piece of SOFI ramp simulating a more realistic and challenging situation.

  5. An Intelligent Monitoring Network for Detection of Cracks in Anvils of High-Press Apparatus.

    PubMed

    Tian, Hao; Yan, Zhaoli; Yang, Jun

    2018-04-09

    Due to the endurance of alternating high pressure and temperature, the carbide anvils of the high-press apparatus, which are widely used in the synthetic diamond industry, are prone to crack. In this paper, an acoustic method is used to monitor the crack events, and the intelligent monitoring network is proposed to classify the sound samples. The pulse sound signals produced by such cracking are first extracted based on a short-time energy threshold. Then, the signals are processed with the proposed intelligent monitoring network to identify the operation condition of the anvil of the high-pressure apparatus. The monitoring network is an improved convolutional neural network that solves the problems that may occur in practice. The length of pulse sound excited by the crack growth is variable, so a spatial pyramid pooling layer is adopted to solve the variable-length input problem. An adaptive weighted algorithm for loss function is proposed in this method to handle the class imbalance problem. The good performance regarding the accuracy and balance of the proposed intelligent monitoring network is validated through the experiments finally.

  6. Scattering of circumferential waves in a cracked annulus

    NASA Astrophysics Data System (ADS)

    Valle, Christine; Qu, Jianmin; Jacobs, Laurence J.

    2000-05-01

    This paper considers guided waves propagating in the circumferential direction of an annulus with a radial crack, with the objective of developing an ultrasonic technique that can detect and characterize these cracks. Specifically, the finite element method is used to simulate the propagation and scattering of guided circumferential waves in a cracked annulus. This method fosters a better understanding of the wave fields, so that a transducer configuration used in the field can be optimized for crack detection/characterization. Both a point source (simulating laser generated ultrasound) and a distributed source (simulating a PZT transducer) are modeled and compared to corresponding experimental results. Animations (snapshots at different instants in time) of the strain energy field in the annulus are given for various combinations of load profiles, incident angles, and incident frequencies. Results of this paper provide the necessary design guidelines for developing nondestructive ultrasonic techniques for the detection/characterization of radial cracks in cylindrical pressure vessels, gas/oil pipes, and shaft/bearing systems.

  7. Electromagnetic modulation of the ultrasonic signal for nondestructive detection of small defects and ferromagnetic inclusions in thin wall structures

    NASA Astrophysics Data System (ADS)

    Finkel, Peter

    2008-03-01

    We report on new nondestructive evaluation technique based on electromagnetic modulation of ultrasonic signal for detection of the small crack, flaws and inclusions in thin-walled parts. The electromagnetically induced high density current pulse produces stresses which alter the ultrasonic waves scanning the part with the defect and modulate ultrasonic signal. The excited electromagnetic field can produces crack-opening due to Lorentz forces that increase the ultrasonic reflection. The Joule heating associated with the high density current, and consequent thermal stresses may cause both crack-closure, as well as crack-opening, depending on various factors. Experimental data is presented here for the case of a small crack near holes in thin-walled structures. The measurements were taken at 2-10 MHz with a Lamb wave wedge transducer. It is shown that electromagnetic transient modulation of the ultrasonic echo pulse tone-burst suggest that this method could be used to enhance detection of small cracks and ferromagnetic inclusions in thin walled metallic structures.

  8. A Crack Growth Evaluation Method for Interacting Multiple Cracks

    NASA Astrophysics Data System (ADS)

    Kamaya, Masayuki

    When stress corrosion cracking or corrosion fatigue occurs, multiple cracks are frequently initiated in the same area. According to section XI of the ASME Boiler and Pressure Vessel Code, multiple cracks are considered as a single combined crack in crack growth analysis, if the specified conditions are satisfied. In crack growth processes, however, no prescription for the interference between multiple cracks is given in this code. The JSME Post-Construction Code, issued in May 2000, prescribes the conditions of crack coalescence in the crack growth process. This study aimed to extend this prescription to more general cases. A simulation model was applied, to simulate the crack growth process, taking into account the interference between two cracks. This model made it possible to analyze multiple crack growth behaviors for many cases (e. g. different relative position and length) that could not be studied by experiment only. Based on these analyses, a new crack growth analysis method was suggested for taking into account the interference between multiple cracks.

  9. Detection and monitoring of surface micro-cracks by PPP-BOTDA.

    PubMed

    Meng, Dewei; Ansari, Farhad; Feng, Xin

    2015-06-01

    Appearance of micrometer size surface cracks is common in structural elements such as welded connections, beams, and gusset plates in bridges. Brillouin scattering-based sensors are capable of making distributed strain measurements. Pre-pump-pulse Brillouin optical time domain analysis (PPP-BOTDA) provides a centimeter-level spatial resolution, which facilitates detection and monitoring of the cracks. In the work described here, in addition to the shift in Brillouin frequency (distributed strains), change in the Brillouin gain spectrum (BGS) width is investigated for the detection and monitoring of surface micro-cracks. A theoretical analysis was undertaken in order to verify the rationality of the proposed method. The theoretical approach involved simulation of strain within a segment of the optical fiber traversing a crack and use of the simulated strain distribution in the opto-mechanical relations in order to numerically obtain the change in the BGS. Simulations revealed that the increase in crack opening displacements is associated with increase in BGS width and decrease in its peak power. Experimental results also indicated that the increases in crack opening displacements are accompanied with increases in BGS widths. However, it will be difficult to use the decrease in BGS power peak as another indicator due to practical difficulties in establishing generalized power amplitude in all the experiments. The study indicated that, in combination with the shift in Brillouin frequency, the increase in BGS width will provide a strong tool for detection and monitoring of surface micro-crack growths.

  10. Natural Fatigue Crack Initiation and Detection in High Quality Spur Gears

    DTIC Science & Technology

    2012-06-01

    Natural Fatigue Crack Initiation and Detection in High Quality Spur Gears by David “Blake” Stringer, Ph.D., Kelsen E. LaBerge, Ph.D., Cory...0383 June 2012 Natural Fatigue Crack Initiation and Detection in High Quality Spur Gears David “Blake” Stringer and Ph.D., Kelsen E. LaBerge...Quality Spur Gears 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) David “Blake” Stringer, Ph.D., Kelsen E

  11. Experimental assessment of an RFID-based crack sensor for steel structures

    NASA Astrophysics Data System (ADS)

    E Martínez-Castro, R.; Jang, S.; Nicholas, J.; Bansal, R.

    2017-08-01

    The use of welded steel cover plates had been a common design practice to increase beam section capacity in regions of high moment for decades. Many steel girder bridges with cover plates are still in service. Steel girder bridges are subject to cyclic loading, which can initiate crack formation at the toe of the weld and reduce beam capacity. Thus, timely detection of fatigue cracks is of utmost importance in steel girder bridge monitoring. To date, crack monitoring methods using in-house radio frequency identification (RFID)-based sensors have been developed to complement visual inspection and provide quantitative information of damage level. Offering similar properties at a reduced cost, commercial ultra-high frequency (UHF) passive RFID tags have been identified as a more financially viable option for pervasive crack monitoring using a dense array of sensors. This paper presents a study on damage sensitivity of low-cost commercial UHF RFID tags for crack detection and monitoring on metallic structures. Using backscatter power as a parameter for damage identification, a crack sensing system has been developed for single and multiple tag configurations for increased sensing pervasiveness. The effect on backscatter power of the existence and stage of crack propagation has been successfully characterized. For further automation of crack detection, a damage index based on the variation of backscatter power has also been established. The tested commercial RFID-based crack sensor contributes to the usage of this technology on steel girder bridges.

  12. Identification of breathing cracks in a beam structure with entropy

    NASA Astrophysics Data System (ADS)

    Wimarshana, Buddhi; Wu, Nan; Wu, Christine

    2016-04-01

    A cantilever beam with a breathing crack is studied to detect and evaluate the crack using entropy measures. Closed cracks in engineering structures lead to proportional complexities to their vibration responses due to weak bi-linearity imposed by the crack breathing phenomenon. Entropy is a measure of system complexity and has the potential in quantifying the complexity. The weak bi-linearity in vibration signals can be amplified using wavelet transformation to increase the sensitivity of the measurements. A mathematical model of harmonically excited unit length steel cantilever beam with a breathing crack located near the fixed end is established, and an iterative numerical method is applied to generate accurate time domain dynamic responses. The bi-linearity in time domain signals due to the crack breathing are amplified by wavelet transformation first, and then the complexities due to bi-linearity is quantified using sample entropy to detect the possible crack and estimate the crack depth. It is observed that the method is capable of identifying crack depths even at very early stages of 3% with the increase in the entropy values more than 10% compared with the healthy beam. The current study extends the entropy based damage detection of rotary machines to structural analysis and takes a step further in high-sensitivity structural health monitoring by combining wavelet transformation with entropy calculations. The proposed technique can also be applied to other types of structures, such as plates and shells.

  13. Automated and accurate bridge deck crack inspection and mapping.

    DOT National Transportation Integrated Search

    2012-10-01

    One of the important tasks for bridge maintenance is bridge deck crack inspection. Traditionally, a human inspector detects cracks using his/her eyes and finds the location of cracks manually. Thus the accuracy of the inspection result is low due to ...

  14. Detection and monitoring of shear crack growth using S-P conversion of seismic waves

    NASA Astrophysics Data System (ADS)

    Modiriasari, A.; Bobet, A.; Pyrak-Nolte, L. J.

    2017-12-01

    A diagnostic method for monitoring shear crack initiation, propagation, and coalescence in rock is key for the detection of major rupture events, such as slip along a fault. Active ultrasonic monitoring was used in this study to determine the precursory signatures to shear crack initiation in pre-cracked rock. Prismatic specimens of Indiana limestone (203x2101x638x1 mm) with two pre-existing parallel flaws were subjected to uniaxial compression. The flaws were cut through the thickness of the specimen using a scroll saw. The length of the flaws was 19.05 mm and had an inclination angle with respect to the loading direction of 30o. Shear wave transducers were placed on each side of the specimen, with polarization parallel to the loading direction. The shear waves, given the geometry of the flaws, were normally incident to the shear crack forming between the two flaws during loading. Shear crack initiation and propagation was detected on the specimen surface using digital image correlation (DIC), while initiation inside the rock was monitored by measuring full waveforms of the transmitted and reflected shear (S) waves across the specimen. Prior to the detection of a shear crack on the specimen surface using DIC, transmitted S waves were converted to compressional (P) waves. The emergence of converted S-P wave occurs because of the presence of oriented microcracks inside the rock. The microcracks coalesce and form the shear crack observed on the specimen surface. Up to crack coalescence, the amplitude of the converted waves increased with shear crack propagation. However, the amplitude of the transmitted shear waves between the two flaws did not change with shear crack initiation and propagation. This is in agreement with the conversion of elastic waves (P- to S-wave or S- to P-wave) observed by Nakagawa et al., (2000) for normal incident waves. Elastic wave conversions are attributed to the formation of an array of oriented microcracks that dilate under shear stress, which causes energy partitioning into P, S, and P-to-S or S-to-P waves. This finding provides a diagnostic method for detecting shear crack initiation and growth using seismic wave conversions. Acknowledgments: This material is based upon work supported by the National Science Foundation, Geomechanics and Geotechnical Systems Program (award No. CMMI-1162082).

  15. 77 FR 68055 - Airworthiness Directives; Bell Helicopter Textron Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... collective lever for a crack, and if there is a crack, before further flight, replacing the collective lever.... The actions are intended to detect a crack in the collective lever, which could lead to failure of the... cracks with a 10X or higher power magnifying glass. If there is a crack in the collective lever paint...

  16. Non-Destructive Evaluation of Depth of Surface Cracks Using Ultrasonic Frequency Analysis

    PubMed Central

    Her, Shiuh-Chuan; Lin, Sheng-Tung

    2014-01-01

    Ultrasonic is one of the most common uses of a non-destructive evaluation method for crack detection and characterization. The effectiveness of the acoustic-ultrasound Structural Health Monitoring (SHM) technique for the determination of the depth of the surface crack was presented. A method for ultrasonic sizing of surface cracks combined with the time domain and frequency spectrum was adopted. The ultrasonic frequency spectrum was obtained by Fourier transform technique. A series of test specimens with various depths of surface crack ranging from 1 mm to 8 mm was fabricated. The depth of the surface crack was evaluated using the pulse-echo technique. In this work, three different longitudinal waves with frequencies of 2.25 MHz, 5 MHz and 10 MHz were employed to investigate the effect of frequency on the sizing detection of surface cracks. Reasonable accuracies were achieved with measurement errors less than 7%. PMID:25225875

  17. Multiphysics Simulation of Low-Amplitude Acoustic Wave Detection by Piezoelectric Wafer Active Sensors Validated by In-Situ AE-Fatigue Experiment

    PubMed Central

    Giurgiutiu, Victor

    2017-01-01

    Piezoelectric wafer active sensors (PWAS) are commonly used for detecting Lamb waves for structural health monitoring application. However, in most applications of active sensing, the signals are of high-amplitude and easy to detect. In this article, we have shown a new avenue of using the PWAS transducer for detecting the low-amplitude fatigue-crack related acoustic emission (AE) signals. Multiphysics finite element (FE) simulations were performed with two PWAS transducers bonded to the structure. Various configurations of the sensors were studied by using the simulations. One PWAS was placed near to the fatigue-crack and the other one was placed at a certain distance from the crack. The simulated AE event was generated at the crack tip. The simulation results showed that both PWAS transducers were capable of sensing the AE signals. To validate the multiphysics simulation results, an in-situ AE-fatigue experiment was performed. Two PWAS transducers were bonded to the thin aerospace test coupon. The fatigue crack was generated in the test coupon which had produced low-amplitude acoustic waves. The low-amplitude fatigue-crack related AE signals were successfully captured by the PWAS transducers. The distance effect on the captured AE signals was also studied. It has been shown that some high-frequency contents of the AE signal have developed as they travel away from the crack. PMID:28817081

  18. N-Scan®: New Vibro-Modulation System for Crack Detection, Monitoring and Characterization

    NASA Astrophysics Data System (ADS)

    Zagrai, Andrei; Donskoy, Dimitri; Lottiaux, Jean-Louis

    2004-02-01

    In recent years, an innovative vibro-modulation technique has been introduced for the detection of contact-type interfaces such as cracks, debondings, and delaminations. The technique utilizes the effect of nonlinear interaction of ultrasound and vibrations at the interface of the defect. Vibration varies the contact area of the interface, modulating a passing ultrasonic wave. The modulation manifests itself as additional side-band spectral components with the combination frequencies in the spectrum of the received signal. The presence of these components allows for the detection and differentiation of the contact-type defects from other structural and material inhomogeneities. The vibro-modulation technique has been implemented in the N-SCAN® damage detection system providing a cost effective solution for the complex NDT problems. N-SCAN® proved to be very effective for damage detection and characterization in structures and structural components of simple and complex geometries made of steel, aluminum, composites, and other materials. Examples include 24 foot-long gun barrels, stainless steel pipes used in nuclear power plants, aluminum automotive parts, steel train couplers, etc. This paper describes the basic principles of the nonlinear vibro-modulation NDE technique, some theoretical background for nonlinear interaction, and justification of signal processing algorithms. The laboratory experiment is presented for a set of specimens with the calibrated cracks and the quantitative characterization of fatigue damage is given in terms of a modulation index. The paper also discusses examples of practical implementation and application of the technique.

  19. Fatigue crack damage detection using subharmonic component with nonlinear boundary condition

    NASA Astrophysics Data System (ADS)

    Wu, Weiliang; Shen, Yanfeng; Qu, Wenzhong; Xiao, Li; Giurgiutiu, Victor

    2015-03-01

    In recent years, researchers have focused on structural health monitoring (SHM) and damage detection techniques using nonlinear vibration and nonlinear ultrasonic methods. Fatigue cracks may exhibit contact acoustic nonlinearity (CAN) with distinctive features such as superharmonics and subharmonics in the power spectrum of the sensing signals. However, challenges have been noticed in the practical applications of the harmonic methods. For instance, superharmonics can also be generated by the piezoelectric transducers and the electronic equipment; super/subharmonics may also stem from the nonlinear boundary conditions such as structural fixtures and joints. It is hard to tell whether the nonlinear features come from the structural damage or the intrinsic nonlinear boundary conditions. The objective of this paper is to demonstrate the application of nonlinear ultrasonic subharmonic method for detecting fatigue cracks with nonlinear boundary conditions. The fatigue crack was qualitatively modeled as a single-degree-of-freedom (SDOF) system with non-classical hysteretic nonlinear interface forces at both sides of the crack surfaces. The threshold of subharmonic generation was studied, and the influence of crack interface parameters on the subharmonic resonance condition was investigated. The different threshold behaviors between the nonlinear boundary condition and the fatigue crack was found, which can be used to distinguish the source of nonlinear subharmonic features. To evaluate the proposed method, experiments of an aluminum plate with a fatigue crack were conducted to quantitatively verify the subharmonic resonance range. Two surface-bonded piezoelectric transducers were used to generate and receive ultrasonic wave signals. The fatigue damage was characterized in terms of a subharmonic damage index. The experimental results demonstrated that the subharmonic component of the sensing signal can be used to detect the fatigue crack and further distinguish it from inherent nonlinear boundary conditions.

  20. Fatigue crack damage detection using subharmonic component with nonlinear boundary condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Weiliang, E-mail: wwl@whu.edu.cn; Qu, Wenzhong, E-mail: qwz@whu.edu.cn, E-mail: xiaoli6401@126.com; Xiao, Li, E-mail: qwz@whu.edu.cn, E-mail: xiaoli6401@126.com

    In recent years, researchers have focused on structural health monitoring (SHM) and damage detection techniques using nonlinear vibration and nonlinear ultrasonic methods. Fatigue cracks may exhibit contact acoustic nonlinearity (CAN) with distinctive features such as superharmonics and subharmonics in the power spectrum of the sensing signals. However, challenges have been noticed in the practical applications of the harmonic methods. For instance, superharmonics can also be generated by the piezoelectric transducers and the electronic equipment; super/subharmonics may also stem from the nonlinear boundary conditions such as structural fixtures and joints. It is hard to tell whether the nonlinear features come frommore » the structural damage or the intrinsic nonlinear boundary conditions. The objective of this paper is to demonstrate the application of nonlinear ultrasonic subharmonic method for detecting fatigue cracks with nonlinear boundary conditions. The fatigue crack was qualitatively modeled as a single-degree-of-freedom (SDOF) system with non-classical hysteretic nonlinear interface forces at both sides of the crack surfaces. The threshold of subharmonic generation was studied, and the influence of crack interface parameters on the subharmonic resonance condition was investigated. The different threshold behaviors between the nonlinear boundary condition and the fatigue crack was found, which can be used to distinguish the source of nonlinear subharmonic features. To evaluate the proposed method, experiments of an aluminum plate with a fatigue crack were conducted to quantitatively verify the subharmonic resonance range. Two surface-bonded piezoelectric transducers were used to generate and receive ultrasonic wave signals. The fatigue damage was characterized in terms of a subharmonic damage index. The experimental results demonstrated that the subharmonic component of the sensing signal can be used to detect the fatigue crack and further distinguish it from inherent nonlinear boundary conditions.« less

  1. STS-112 final main engine is installed after welding/polishing process

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Workers on the engine lift get ready to install the last engine in orbiter Atlantis after a welding and polishing process was undertaken on flow liners where cracks were detected. All engines were removed for inspection of flow liners. Atlantis will next fly on mission STS-112, scheduled for launch no earlier than Oct. 2.

  2. Nonlinear Structural Health Monitoring of the Responsive Space Satellite Systems Using Magneto Elastic Active Sensors (MEAS)

    DTIC Science & Technology

    2011-11-30

    detection of fatigue damage at early stage, well before onset of fracture and crack development. Analytical and numerical models of MEAS and MMI are...stage, well before onset of fracture and crack development. Analytical and numerical models of MEAS and MMI are suggested. Finally, MEAS capability...47  2.4.1  Far-Field Crack Detection

  3. Crack Imaging and Quantification in Aluminum Plates with Guided Wave Wavenumber Analysis Methods

    NASA Technical Reports Server (NTRS)

    Yu, Lingyu; Tian, Zhenhua; Leckey, Cara A. C.

    2015-01-01

    Guided wavefield analysis methods for detection and quantification of crack damage in an aluminum plate are presented in this paper. New wavenumber components created by abrupt wave changes at the structural discontinuity are identified in the frequency-wavenumber spectra. It is shown that the new wavenumbers can be used to detect and characterize the crack dimensions. Two imaging based approaches, filter reconstructed imaging and spatial wavenumber imaging, are used to demonstrate how the cracks can be evaluated with wavenumber analysis. The filter reconstructed imaging is shown to be a rapid method to map the plate and any existing damage, but with less precision in estimating crack dimensions; while the spatial wavenumber imaging provides an intensity image of spatial wavenumber values with enhanced resolution of crack dimensions. These techniques are applied to simulated wavefield data, and the simulation based studies show that spatial wavenumber imaging method is able to distinguish cracks of different severities. Laboratory experimental validation is performed for a single crack case to confirm the methods' capabilities for imaging cracks in plates.

  4. Quantification of fatigue cracking in CT specimens with passive and active piezoelectric sensing

    NASA Astrophysics Data System (ADS)

    Yu, Jianguo; Ziehl, Paul; Zarate, Boris; Caicedo, Juan; Yu, Lingyu; Giurgiutiu, Victor; Metrovich, Brian; Matta, Fabio

    2010-04-01

    Monitoring of fatigue cracks in steel bridges is of interest to bridge owners and agencies. Monitoring of fatigue cracks has been attempted with acoustic emission using either resonant or broadband sensors. One drawback of passive sensing is that the data is limited to that caused by growing cracks. In this work, passive emission was complemented with active sensing (piezoelectric wafer active sensors) for enhanced detection capabilities. Passive and active sensing methods were described for fatigue crack monitoring on specialized compact tension specimens. The characteristics of acoustic emission were obtained to understand the correlation of acoustic emission behavior and crack growth. Crack and noise induced signals were interpreted through Swansong II Filter and waveform-based approaches, which are appropriate for data interpretation of field tests. Upon detection of crack extension, active sensing was activated to measure the crack size. Model updating techniques were employed to minimize the difference between the numerical results and experimental data. The long term objective of this research is to develop an in-service prognostic system to monitor structural health and to assess the remaining fatigue life.

  5. Development of non-destructive testing technology for the crack of steam generator tubes

    NASA Astrophysics Data System (ADS)

    Cheong, Yong Moo; Chung, Tae Eon; Yim, Chang Jae; Kang, Ki Won

    1993-01-01

    The artificial defects of slot type with width of 0.2 mm were manufactured by EDM to simulate the axial and the circumferential cracks located at the region of expansion transition of the steam generator tubes. The defect signals of ECT using MRPC were analyzed. It is possible to suppress satisfactorily the malign effects of the variation of the geometry of the tubes on the inspection of cracks by using the MRPC probe. The optimum exciting frequency for the detection of cracks by MRPC is greater than 200 kHz and is less than 400 kHz. The direction of crack has little effect on the detectability of the defect.

  6. Simulation and design of ECT differential bobbin probes for the inspection of cracks in bolts

    NASA Astrophysics Data System (ADS)

    Ra, S. W.; Im, K. H.; Lee, S. G.; Kim, H. J.; Song, S. J.; Kim, S. K.; Cho, Y. T.; Woo, Y. D.; Jung, J. A.

    2015-12-01

    All Various defects could be generated in bolts for a use of oil filters for the manufacturing process and then may affect to the safety and quality in bolts. Also, fine defects may be imbedded in oil filter system during multiple forging manufacturing processes. So it is very important that such defects be investigated and screened during the multiple manufacturing processes. Therefore, in order effectively to evaluate the fine defects, the design parameters for bobbin-types were selected under a finite element method (FEM) simulations and Eddy current testing (ECT). Especially the FEM simulations were performed to make characterization in the crack detection of the bolts and the parameters such as number of turns of the coil, the coil size and applied frequency were calculated based on the simulation results.

  7. Ultrasonic detection of plate cracks in railway wheels

    DOT National Transportation Integrated Search

    1976-07-31

    The results of experimental efforts established the feasibility of the detection of railway wheel plate cracks by an ultrasonic pulse echo testing technique from the tread surface. Feasibility and test sensitivities were established using artificial ...

  8. Concrete Crack Identification Using a UAV Incorporating Hybrid Image Processing.

    PubMed

    Kim, Hyunjun; Lee, Junhwa; Ahn, Eunjong; Cho, Soojin; Shin, Myoungsu; Sim, Sung-Han

    2017-09-07

    Crack assessment is an essential process in the maintenance of concrete structures. In general, concrete cracks are inspected by manual visual observation of the surface, which is intrinsically subjective as it depends on the experience of inspectors. Further, it is time-consuming, expensive, and often unsafe when inaccessible structural members are to be assessed. Unmanned aerial vehicle (UAV) technologies combined with digital image processing have recently been applied to crack assessment to overcome the drawbacks of manual visual inspection. However, identification of crack information in terms of width and length has not been fully explored in the UAV-based applications, because of the absence of distance measurement and tailored image processing. This paper presents a crack identification strategy that combines hybrid image processing with UAV technology. Equipped with a camera, an ultrasonic displacement sensor, and a WiFi module, the system provides the image of cracks and the associated working distance from a target structure on demand. The obtained information is subsequently processed by hybrid image binarization to estimate the crack width accurately while minimizing the loss of the crack length information. The proposed system has shown to successfully measure cracks thicker than 0.1 mm with the maximum length estimation error of 7.3%.

  9. Fracture analysis for a penny-shaped crack problem of a superconducting cylinder in a parallel magnetic field

    NASA Astrophysics Data System (ADS)

    Gao, S. W.; Feng, W. J.; Fang, X. Q.; Zhang, G. L.

    2014-11-01

    In this work, the penny-shaped crack problem is investigated for an infinite long superconducting cylinder under electromagnetic forces. The distributions of magnetic flux density in the superconducting cylinder are obtained analytically for both the zero-field cooling (ZFC) and the field cooling (FC) activation processes, where the magnetically impermeable crack surface condition and the Bean model outside the crack region are adopted. Based on the finite element method (FEM), the stress intensity factor (SIF) and energy release rate (ERR) at the crack tips in the process of field descent are further numerically calculated. Numerical results obtained show that according to the maximal energy release rate criterion, the FC process is generally easier to enhance crack initiation and propagation than the ZFC activation process. On the other hand, for the FC activation process, the larger the maximal applied magnetic field, more likely the crack propagates. Additionally, crack size has important and slightly different effects on the crack extension forces for the ZFC and FC cases. Thus, all of the activation processes, the applied field and the diameter of the penny-shaped crack have significant effects on the intensity analysis and design of superconducting materials.

  10. Crack Formation in Powder Metallurgy Carbon Nanotube (CNT)/Al Composites During Post Heat-Treatment

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Imai, Hisashi; Li, Shufeng; Jia, Lei; Umeda, Junko; Kondoh, Katsuyoshi

    2015-12-01

    After the post heat-treatment (PHT) process of powder metallurgy carbon nanotubes (CNT)/Al composites, micro-cracks were observed in the composites, leading to greatly degraded mechanical properties. To understand and suppress the crack formation, an in situ observation of CNT/Al composites was performed at elevated temperatures. PHT was also applied to various bulk pure Al and CNT/Al composites fabricated under different processes. It was observed that the composites consolidated by hot-extrusion might form micro-cracks, but those consolidated by spark plasma sintering (SPS) showed no crack after PHT. A high-temperature SPS process before hot-extrusion was effective to prevent crack formation. The release of residual stress in severe plastic deformed (SPD) materials was responsible for the cracking phenomena during the PHT process. Furthermore, a good particle bonding was essential and effective to suppress cracks for SPD materials in the PHT process.

  11. Evaluation of the Self-Nulling Rotating Eddy Current Probe System

    NASA Technical Reports Server (NTRS)

    Hagemaier, Don; Rengel, Kent; Wincheski, Buzz; Namkung, Min

    1999-01-01

    In order to detect multi-site fatigue cracks located under flush-head rivets, automated eddy current equipment is required. To assure a reliable system, the eddy current probe must be centered easily over the installed rivets. To meet these requirements, the NDE Group at NASA LaRC developed the Self-Nulling Rotating Eddy Current Probe System (SNRECPS) which will be referred to as RPS in this document. The system was evaluated at the FAA, NDI Validation Center, in Albuquerque, New Mexico. The system was capable of detecting a 0.032 inch long crack with a 90/95% PoD. Further evaluations were conducted at Boeing in Long Beach, California. These evaluations included fatigue cracks and notches in a range from 0.025 to 0.100 inch long under flush-head aluminum rivets, and titanium or steel flush-head fasteners. The results of these tests are reported herein. Subsequently, the system was loaned to the USAF Structures Laboratory for the purpose of detecting and measuring short cracks under flush-head rivets in a variety of fatigue test specimens. The inspection task was to detect and plot crack growth from numbered fasteners in lettered rows. In January, 1998, the system was taken to Northwest Airlines Maintenance Base, in Atlanta, to inspect a DC-9, for multi-site cracks in three circumferential splices. The aircraft had 83,000 cycles. The inspection was conducted at 30 kHz from longeron 5 left to longeron 5 right. The system was calibrated using a 0,030 EDM first layer notch. The instrument gain was set to 19 mV from the notch. The reject level was set at 10 mV and the unflawed fasteners yielded a signal amplitude of 2 to 3 mV. Only one fastener location, out of about 2,500 tested, yielded a signal of 58 mV. The rivet was removed and visually evaluated. It appeared to be a slight gouge in the counter-sink zone. No fatigue cracks were detected. The same fastener locations were also inspected using the Boeing MAUS system at 60 kHz. No cracks were detected. Thus far, the rotating probe eddy current system has been found to be very user friendly and capable of detecting first layer cracks on the order of 0.030 inch long or longer.

  12. Interference and differentiation of the neighboring surface microcracks in distributed sensing with PPP-BOTDA.

    PubMed

    Meng, Dewei; Ansari, Farhad

    2016-12-01

    Detection of cracks while at their early stages of evolution is important in health monitoring of civil structures. Review of technical literature reveals that single or sparsely distributed multiple cracks can be detected by Brillouin-scattering-based optical fiber sensor systems. In a recent study, a pre-pump-pulse Brillouin optical time-domain analysis (PPP-BOTDA) system was employed for detection of a single microcrack. Specific characteristics of the Brillouin gain spectrum, such as Brillouin frequency shift, and Brillouin gain spectrum width, were utilized in order to detect the formation and growth of microcracks with crack opening displacements as small as 25 μm. In most situations, formations of neighboring microcracks are not detected due to inherent limitations of Brillouin-based systems. In the study reported here, the capability of PPP-BOTDA for detection of two neighboring microcracks was investigated in terms of the proximity of the microcracks with respect to each other, i.e., crack spacing distance, crack opening displacement, and the spatial resolution of the PPP-BOTDA. The extent of the study pertained both to theoretical as well as experimental investigations. The concept of shape index is introduced in order to establish an analytical method for gauging the influence of the neighboring microcracks in detection and microcrack differentiation capabilities of Brillouin-based optical fiber sensor systems.

  13. Crack identification for reinforced concrete using PZT based smart rebar active sensing diagnostic network

    NASA Astrophysics Data System (ADS)

    Song, N. N.; Wu, F.

    2016-04-01

    An active sensing diagnostic system using PZT based smart rebar for SHM of RC structure has been currently under investigation. Previous test results showed that the system could detect the de-bond of concrete from reinforcement, and the diagnostic signals were increased exponentially with the de-bonding size. Previous study also showed that the smart rebar could function well like regular reinforcement to undertake tension stresses. In this study, a smart rebar network has been used to detect the crack damage of concrete based on guided waves. Experimental test has been carried out for the study. In the test, concrete beams with 2 reinforcements have been built. 8 sets of PZT elements were mounted onto the reinforcement bars in an optimized way to form an active sensing diagnostic system. A 90 kHz 5-cycle Hanning-windowed tone burst was used as input. Multiple cracks have been generated on the concrete structures. Through the guided bulk waves propagating in the structures from actuators and sensors mounted from different bars, crack damage could be detected clearly. Cases for both single and multiple cracks were tested. Different crack depths from the surface and different crack numbers have been studied. Test result shows that the amplitude of sensor output signals is deceased linearly with a propagating crack, and is decreased exponentially with increased crack numbers. From the study, the active sensing diagnostic system using PZT based smart rebar network shows a promising way to provide concrete crack damage information through the "talk" among sensors.

  14. Noninvasive cross-sectional visualization of enamel cracks by optical coherence tomography in vitro.

    PubMed

    Imai, Kanako; Shimada, Yasushi; Sadr, Alireza; Sumi, Yasunori; Tagami, Junji

    2012-09-01

    Current methods for the detection of enamel cracks are not very sensitive. Optical coherence tomography (OCT) is a promising diagnostic method for creating cross-sectional imaging of internal biological structures by measuring echoes of backscattered light. In this study, swept-source OCT (SS-OCT), a variant of OCT that sweeps the near-infrared wavelength at a rate of 30 kHz over a span of 110 nm centered at 1,330 nm, was examined as a diagnostic tool for enamel cracks. Twenty extracted human teeth were visually evaluated without magnification. SS-OCT was conducted on locations in which the presence of an enamel crack was suspected under visual inspection using a photocuring unit as transillumination. The teeth were then sectioned with a diamond saw and directly viewed under a confocal laser scanning microscope (CLSM). Using SS-OCT, the presence and extent of enamel cracks were clearly visualized on images based on backscattering signals. The extension of enamel cracks beyond the dentinoenamel junction could also be confirmed. The diagnostic accuracy of SS-OCT was shown to be superior to that of conventional visual inspection--the area under the receiver operating characteristic curve--for the detection of enamel crack and whole-thickness enamel crack; visual inspection: 0.69 and 0.56, SS-OCT: 0.85 and 0.77, respectively). Enamel cracks can be clearly detected because of increased backscattering of light matching the location of the crack, and the results correlated well with those from the CLSM. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Thermal imaging measurement of lateral diffusivity and non-invasive material defect detection

    DOEpatents

    Sun, Jiangang; Deemer, Chris

    2003-01-01

    A system and method for determining lateral thermal diffusivity of a material sample using a heat pulse; a sample oriented within an orthogonal coordinate system; an infrared camera; and a computer that has a digital frame grabber, and data acquisition and processing software. The mathematical model used within the data processing software is capable of determining the lateral thermal diffusivity of a sample of finite boundaries. The system and method may also be used as a nondestructive method for detecting and locating cracks within the material sample.

  16. Applications of infrared thermography for nondestructive testing of fatigue cracks in steel bridges

    NASA Astrophysics Data System (ADS)

    Sakagami, Takahide; Izumi, Yui; Kobayashi, Yoshihiro; Mizokami, Yoshiaki; Kawabata, Sunao

    2014-05-01

    In recent years, fatigue crack propagations in aged steel bridge which may lead to catastrophic structural failures have become a serious problem. For large-scale steel structures such as orthotropic steel decks in highway bridges, nondestructive inspection of deteriorations and fatigue damages are indispensable for securing their safety and for estimating their remaining strength. As conventional NDT techniques for steel bridges, visual testing, magnetic particle testing and ultrasonic testing have been commonly employed. However, these techniques are time- and labor- consuming techniques, because special equipment is required for inspection, such as scaffolding or a truck mount aerial work platform. In this paper, a new thermography NDT technique, which is based on temperature gap appeared on the surface of structural members due to thermal insulation effect of the crack, is developed for detection of fatigue cracks. The practicability of the developed technique is demonstrated by the field experiments for highway steel bridges in service. Detectable crack size and factors such as measurement time, season or spatial resolution which influence crack detectability are investigated.

  17. 78 FR 51050 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-20

    ... report of cracking in a lower longeron in a nacelle. This AD requires repetitive inspections for cracking... detect and correct such cracking, which could result in degradation of the structural integrity of the... states: There has been one in-service report where a nacelle lower longeron was found to be cracked...

  18. Health monitoring and rehabilitation of a concrete structure using intelligent materials

    NASA Astrophysics Data System (ADS)

    Song, G.; Mo, Y. L.; Otero, K.; Gu, H.

    2006-04-01

    This paper presents the concept of an intelligent reinforced concrete structure (IRCS) and its application in structural health monitoring and rehabilitation. The IRCS has multiple functions which include self-rehabilitation, self-vibration damping, and self-structural health monitoring. These functions are enabled by two types of intelligent (smart) materials: shape memory alloys (SMAs) and piezoceramics. In this research, Nitinol type SMA and PZT (lead zirconate titanate) type piezoceramics are used. The proposed concrete structure is reinforced by martensite Nitinol cables using the method of post-tensioning. The martensite SMA significantly increases the concrete's damping property and its ability to handle large impact. In the presence of cracks due to explosions or earthquakes, by electrically heating the SMA cables, the SMA cables contract and close up the cracks. In this research, PZT patches are embedded in the concrete structure to detect possible cracks inside the concrete structure. The wavelet packet analysis method is then applied as a signal-processing tool to analyze the sensor signals. A damage index is defined to describe the damage severity for health monitoring purposes. In addition, by monitoring the electric resistance change of the SMA cables, the crack width can be estimated. To demonstrate this concept, a concrete beam specimen with reinforced SMA cables and with embedded PZT patches is fabricated. Experiments demonstrate that the IRC has the ability of self-sensing and self-rehabilitation. Three-point bending tests were conducted. During the loading process, a crack opens up to 0.47 inches. Upon removal of the load and heating the SMA cables, the crack closes up. The damage index formed by wavelet packet analysis of the PZT sensor data predicts and confirms the onset and severity of the crack during the loading. Also during the loading, the electrical resistance value of the SMA cable changes by up to 27% and this phenomenon is used to monitor the crack width.

  19. Crack detection and leakage monitoring on reinforced concrete pipe

    NASA Astrophysics Data System (ADS)

    Feng, Qian; Kong, Qingzhao; Huo, Linsheng; Song, Gangbing

    2015-11-01

    Reinforced concrete underground pipelines are some of the most widely used types of structures in water transportation systems. Cracks and leakage are the leading causes of pipeline structural failures which directly results in economic losses and environmental hazards. In this paper, the authors propose a piezoceramic based active sensing approach to detect the cracks and the further leakage of concrete pipelines. Due to the piezoelectric properties, piezoceramic material can be utilized as both the actuator and the sensor in the active sensing approach. The piezoceramic patch, which is sandwiched between protective materials called ‘smart aggregates,’ can be safely embedded into concrete structures. Circumferential and axial cracks were investigated. A wavelet packet-based energy analysis was developed to distinguish the type of crack and determine the further leakage based on different stress wave energy attenuation propagated through the cracks.

  20. Crack Monitoring Method for an FRP-Strengthened Steel Structure Based on an Antenna Sensor.

    PubMed

    Liu, Zhiping; Chen, Kai; Li, Zongchen; Jiang, Xiaoli

    2017-10-20

    Fiber-reinforced polymer (FRP) has been increasingly applied to steel structures for structural strengthening or crack repair, given its high strength-to-weight ratio and high stiffness-to-weight ratio. Cracks in steel structures are the dominant hidden threats to structural safety. However, it is difficult to monitor structural cracks under FRP coverage and there is little related research. In this paper, a crack monitoring method for an FRP-strengthened steel structure deploying a microstrip antenna sensor is presented. A theoretical model of the dual-substrate antenna sensor with FRP is established and the sensitivity of crack monitoring is studied. The effects of the weak conductivity of carbon fiber reinforced polymers (CFRPs) on the performance of crack monitoring are analyzed via contrast experiments. The effects of FRP thickness on the performance of the antenna sensor are studied. The influence of structural strain on crack detection coupling is studied through strain-crack coupling experiments. The results indicate that the antenna sensor can detect cracks in steel structures covered by FRP (including CFRP). FRP thickness affects the antenna sensor's performance significantly, while the effects of strain can be ignored. The results provide a new approach for crack monitoring of FRP-strengthened steel structures with extensive application prospects.

  1. Crack Monitoring Method for an FRP-Strengthened Steel Structure Based on an Antenna Sensor

    PubMed Central

    Liu, Zhiping; Li, Zongchen

    2017-01-01

    Fiber-reinforced polymer (FRP) has been increasingly applied to steel structures for structural strengthening or crack repair, given its high strength-to-weight ratio and high stiffness-to-weight ratio. Cracks in steel structures are the dominant hidden threats to structural safety. However, it is difficult to monitor structural cracks under FRP coverage and there is little related research. In this paper, a crack monitoring method for an FRP-strengthened steel structure deploying a microstrip antenna sensor is presented. A theoretical model of the dual-substrate antenna sensor with FRP is established and the sensitivity of crack monitoring is studied. The effects of the weak conductivity of carbon fiber reinforced polymers (CFRPs) on the performance of crack monitoring are analyzed via contrast experiments. The effects of FRP thickness on the performance of the antenna sensor are studied. The influence of structural strain on crack detection coupling is studied through strain–crack coupling experiments. The results indicate that the antenna sensor can detect cracks in steel structures covered by FRP (including CFRP). FRP thickness affects the antenna sensor’s performance significantly, while the effects of strain can be ignored. The results provide a new approach for crack monitoring of FRP-strengthened steel structures with extensive application prospects. PMID:29053614

  2. Active sensors for health monitoring of aging aerospace structures

    NASA Astrophysics Data System (ADS)

    Giurgiutiu, Victor; Redmond, James M.; Roach, Dennis P.; Rackow, Kirk

    2000-06-01

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (E/M) impedance technique are cited and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high frequency E/M impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acousto- ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens, (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  3. Development of a nondestructive leak testing method utilizing the head space analyzer for ampoule products containing ethanol-based solutions.

    PubMed

    Sudo, Hirotaka; O'driscoll, Michael; Nishiwaki, Kenji; Kawamoto, Yuji; Gammell, Philip; Schramm, Gerhard; Wertli, Toni; Prinz, Heino; Mori, Atsuhide; Sako, Kazuhiro

    2012-01-01

    The application of a head space analyzer for oxygen concentration was examined to develop a novel ampoule leak test method. Studies using ampoules filled with ethanol-based solution and with nitrogen in the headspace demonstrated that the head space analysis (HSA) method showed sufficient sensitivity in detecting an ampoule crack. The proposed method is the use of HSA in conjunction with the pretreatment of an overpressurising process known as bombing to facilitate the oxygen flow through the crack in the ampoule. The method was examined in comparative studies with a conventional dye ingress method, and the results showed that the HSA method exhibits sensitivity superior to the dye method. The results indicate that the HSA method in combination with the bombing treatment provides potential application as a leak test for the detection of container defects not only for ampoule products with ethanol-based solutions, but also for testing lyophilized products in vials with nitrogen in the head space. The application of a head space analyzer for oxygen concentration was examined to develop a novel ampoule leak test method. The proposed method is the use of head space analysis (HSA) in conjunction with the pretreatment of an overpressurising process known as bombing to facilitate oxygen flow through the crack in the ampoule for use in routine production. The result of the comparative study with a conventional dye leak test method indicates that the HSA method in combination with the bombing treatment can be used as a leak test method, enabling detection of container defects.

  4. Comparative Evaluation of Pavement Crack Detection Using Kernel-Based Techniques in Asphalt Road Surfaces

    NASA Astrophysics Data System (ADS)

    Miraliakbari, A.; Sok, S.; Ouma, Y. O.; Hahn, M.

    2016-06-01

    With the increasing demand for the digital survey and acquisition of road pavement conditions, there is also the parallel growing need for the development of automated techniques for the analysis and evaluation of the actual road conditions. This is due in part to the resulting large volumes of road pavement data captured through digital surveys, and also to the requirements for rapid data processing and evaluations. In this study, the Canon 5D Mark II RGB camera with a resolution of 21 megapixels is used for the road pavement condition mapping. Even though many imaging and mapping sensors are available, the development of automated pavement distress detection, recognition and extraction systems for pavement condition is still a challenge. In order to detect and extract pavement cracks, a comparative evaluation of kernel-based segmentation methods comprising line filtering (LF), local binary pattern (LBP) and high-pass filtering (HPF) is carried out. While the LF and LBP methods are based on the principle of rotation-invariance for pattern matching, the HPF applies the same principle for filtering, but with a rotational invariant matrix. With respect to the processing speeds, HPF is fastest due to the fact that it is based on a single kernel, as compared to LF and LBP which are based on several kernels. Experiments with 20 sample images which contain linear, block and alligator cracks are carried out. On an average a completeness of distress extraction with values of 81.2%, 76.2% and 81.1% have been found for LF, HPF and LBP respectively.

  5. Eddy-Current Detection of Cracks in Tubes

    NASA Technical Reports Server (NTRS)

    Parent, R.; Kettering, D.

    1987-01-01

    Nondestructive device tests narrow, sharply-bent metal tubes. Eddycurrent probe detects incipient cracks inside small metal tubes. Tube-centering device consisting of pair of opposed bars ensures tube centered on eddy-current coil. Probe moves along length of bent tube to inspect repeatably for cracks. Compatible with tubes of different cross sections, oval, flattened, square, rectangular,or irregular. Adapts for inspecting formed tubes in petrochemical, automotive, nuclear, and medical equipment.

  6. 76 FR 65997 - Airworthiness Directives; Rolls-Royce plc (RR) RB211-535 Series Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... (FPI) of the low-pressure (LP) turbine stage 1, 2, and 3 discs to detect cracks in the discs. Since we... detect cracks in the LP turbine stage 1, 2, and 3 discs, which could result in an uncontained release of... inspection of the LP turbine stage 1, 2, and 3 discs. That AD resulted from several findings of cracking at...

  7. New breathing functions for the transverse breathing crack of the cracked rotor system: Approach for critical and subcritical harmonic analysis

    NASA Astrophysics Data System (ADS)

    Al-Shudeifat, Mohammad A.; Butcher, Eric A.

    2011-01-01

    The actual breathing mechanism of the transverse breathing crack in the cracked rotor system that appears due to the shaft weight is addressed here. As a result, the correct time-varying area moments of inertia for the cracked element cross-section during shaft rotation are also determined. Hence, two new breathing functions are identified to represent the actual breathing effect on the cracked element stiffness matrix. The new breathing functions are used in formulating the time-varying finite element stiffness matrix of the cracked element. The finite element equations of motion are then formulated for the cracked rotor system and solved via harmonic balance method for response, whirl orbits and the shift in the critical and subcritical speeds. The analytical results of this approach are compared with some previously published results obtained using approximate formulas for the breathing mechanism. The comparison shows that the previously used breathing function is a weak model for the breathing mechanism in the cracked rotor even for small crack depths. The new breathing functions give more accurate results for the dynamic behavior of the cracked rotor system for a wide range of the crack depths. The current approach is found to be efficient for crack detection since the critical and subcritical shaft speeds, the unique vibration signature in the neighborhood of the subcritical speeds and the sensitivity to the unbalance force direction all together can be utilized to detect the breathing crack before further damage occurs.

  8. Crack growth monitoring at CFRP bond lines

    NASA Astrophysics Data System (ADS)

    Rahammer, M.; Adebahr, W.; Sachse, R.; Gröninger, S.; Kreutzbruck, M.

    2016-02-01

    With the growing need for lightweight technologies in aerospace and automotive industries, fibre-reinforced plastics, especially carbon-fibre (CFRP), are used with a continuously increasing annual growth rate. A promising joining technique for composites is adhesive bonding. While rivet holes destroy the fibres and cause stress concentration, adhesive bond lines distribute the load evenly. Today bonding is only used in secondary structures due to a lack of knowledge with regard to long-term predictability. In all industries, numerical simulation plays a critical part in the development process of new materials and structures, while it plays a vital role when it comes to CFRP adhesive bondings conducing the predictability of life time and damage tolerance. The critical issue with adhesive bondings is crack growth. In a dynamic tensile stress testing machine we dynamically load bonded CFRP coupon specimen and measure the growth rate of an artificially started crack in order to feed the models with the results. We also investigate the effect of mechanical crack stopping features. For observation of the bond line, we apply two non-contact NDT techniques: Air-coupled ultrasound in slanted transmission mode and active lockin-thermography evaluated at load frequencies. Both methods give promising results for detecting the current crack front location. While the ultrasonic technique provides a slightly higher accuracy, thermography has the advantage of true online monitoring, because the measurements are made while the cyclic load is being applied. The NDT methods are compared to visual inspection of the crack front at the specimen flanks and show high congruence. Furthermore, the effect of crack stopping features within the specimen on the crack growth is investigated. The results show, that not all crack fronts are perfectly horizontal, but all of them eventually come to a halt in the crack stopping feature vicinity.

  9. Monitoring Crack Propagation in Turbine Blades Caused by Thermosonics

    NASA Astrophysics Data System (ADS)

    Bolu, G.; Gachagan, A.; Pierce, G.; Harvey, G.; Choong, L.

    2010-02-01

    High-power acoustic excitation of components during a thermosonic (or Sonic IR) inspection may degrade the structural integrity of the component by propagating existing cracks. Process Compensated Resonance Testing (PCRT) technology can be used to detect changes in material properties by comparing a components resonant spectra to a reference spectra at regular intervals after systematic exposure to high-power excitation associated with thermosonic inspection. The objective of this work is to determine whether a typical thermosonic inspection degrades the structural integrity of a turbine blade. In this work, the resonant spectra of six cracked and six uncracked turbine blades are captured before and after a series of thermosonic inspections. Next, these spectra are analyzed using proprietary software for changes in resonant behavior. Results from this work indicate no change in blade resonant behavior for a typical thermosonic inspection.

  10. Determination of leakage areas in nuclear piping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keim, E.

    1997-04-01

    For the design and operation of nuclear power plants the Leak-Before-Break (LBB) behavior of a piping component has to be shown. This means that the length of a crack resulting in a leak is smaller than the critical crack length and that the leak is safely detectable by a suitable monitoring system. The LBB-concept of Siemens/KWU is based on computer codes for the evaluation of critical crack lengths, crack openings, leakage areas and leakage rates, developed by Siemens/KWU. In the experience with the leak rate program is described while this paper deals with the computation of crack openings and leakagemore » areas of longitudinal and circumferential cracks by means of fracture mechanics. The leakage areas are determined by the integration of the crack openings along the crack front, considering plasticity and geometrical effects. They are evaluated with respect to minimum values for the design of leak detection systems, and maximum values for controlling jet and reaction forces. By means of fracture mechanics LBB for subcritical cracks has to be shown and the calculation of leakage areas is the basis for quantitatively determining the discharge rate of leaking subcritical through-wall cracks. The analytical approach and its validation will be presented for two examples of complex structures. The first one is a pipe branch containing a circumferential crack and the second one is a pipe bend with a longitudinal crack.« less

  11. Pulsed magnetic flux leakage method for hairline crack detection and characterization

    NASA Astrophysics Data System (ADS)

    Okolo, Chukwunonso K.; Meydan, Turgut

    2018-04-01

    The Magnetic Flux leakage (MFL) method is a well-established branch of electromagnetic Non-Destructive Testing (NDT), extensively used for evaluating defects both on the surface and far-surface of pipeline structures. However the conventional techniques are not capable of estimating their approximate size, location and orientation, hence an additional transducer is required to provide the extra information needed. This research is aimed at solving the inevitable problem of granular bond separation which occurs during manufacturing, leaving pipeline structures with miniature cracks. It reports on a quantitative approach based on the Pulsed Magnetic Flux Leakage (PMFL) method, for the detection and characterization of the signals produced by tangentially oriented rectangular surface and far-surface hairline cracks. This was achieved through visualization and 3D imaging of the leakage field. The investigation compared finite element numerical simulation with experimental data. Experiments were carried out using a 10mm thick low carbon steel plate containing artificial hairline cracks with various depth sizes, and different features were extracted from the transient signal. The influence of sensor lift-off and pulse width variation on the magnetic field distribution which affects the detection capability of various hairline cracks located at different depths in the specimen is explored. The findings show that the proposed technique can be used to classify both surface and far-surface hairline cracks and can form the basis for an enhanced hairline crack detection and characterization for pipeline health monitoring.

  12. Environmental fatigue of an Al-Li-Cu alloy. Part 3: Modeling of crack tip hydrogen damage

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Gangloff, Richard P.

    1992-01-01

    Environmental fatigue crack propagation rates and microscopic damage modes in Al-Li-Cu alloy 2090 (Parts 1 and 2) are described by a crack tip process zone model based on hydrogen embrittlement. Da/dN sub ENV equates to discontinuous crack advance over a distance, delta a, determined by dislocation transport of dissolved hydrogen at plastic strains above a critical value; and to the number of load cycles, delta N, required to hydrogenate process zone trap sites that fracture according to a local hydrogen concentration-tensile stress criterion. Transgranular (100) cracking occurs for process zones smaller than the subgrain size, and due to lattice decohesion or hydride formation. Intersubgranular cracking dominates when the process zone encompasses one or more subgrains so that dislocation transport provides hydrogen to strong boundary trapping sites. Multi-sloped log da/dN-log delta K behavior is produced by process zone plastic strain-hydrogen-microstructure interactions, and is determined by the DK dependent rates and proportions of each parallel cracking mode. Absolute values of the exponents and the preexponential coefficients are not predictable; however, fractographic measurements theta sub i coupled with fatigue crack propagation data for alloy 2090 established that the process zone model correctly describes fatigue crack propagation kinetics. Crack surface films hinder hydrogen uptake and reduce da/dN and alter the proportions of each fatigue crack propagation mode.

  13. Evaluation of nondestructive testing techniques for the space shuttle nonmetallic thermal protection system

    NASA Technical Reports Server (NTRS)

    Tiede, D. A.

    1972-01-01

    A program was conducted to evaluate nondestructive analysis techniques for the detection of defects in rigidized surface insulation (a candidate material for the Space Shuttle thermal protection system). Uncoated, coated, and coated and bonded samples with internal defects (voids, cracks, delaminations, density variations, and moisture content), coating defects (holes, cracks, thickness variations, and loss of adhesion), and bondline defects (voids and unbonds) were inspected by X-ray radiography, acoustic, microwave, high-frequency ultrasonic, beta backscatter, thermal, holographic, and visual techniques. The detectability of each type of defect was determined for each technique (when applicable). A possible relationship between microwave reflection measurements (or X-ray-radiography density measurements) and the tensile strength was established. A possible approach for in-process inspection using a combination of X-ray radiography, acoustic, microwave, and holographic techniques was recommended.

  14. Concrete Crack Identification Using a UAV Incorporating Hybrid Image Processing

    PubMed Central

    Lee, Junhwa; Ahn, Eunjong; Cho, Soojin; Shin, Myoungsu

    2017-01-01

    Crack assessment is an essential process in the maintenance of concrete structures. In general, concrete cracks are inspected by manual visual observation of the surface, which is intrinsically subjective as it depends on the experience of inspectors. Further, it is time-consuming, expensive, and often unsafe when inaccessible structural members are to be assessed. Unmanned aerial vehicle (UAV) technologies combined with digital image processing have recently been applied to crack assessment to overcome the drawbacks of manual visual inspection. However, identification of crack information in terms of width and length has not been fully explored in the UAV-based applications, because of the absence of distance measurement and tailored image processing. This paper presents a crack identification strategy that combines hybrid image processing with UAV technology. Equipped with a camera, an ultrasonic displacement sensor, and a WiFi module, the system provides the image of cracks and the associated working distance from a target structure on demand. The obtained information is subsequently processed by hybrid image binarization to estimate the crack width accurately while minimizing the loss of the crack length information. The proposed system has shown to successfully measure cracks thicker than 0.1 mm with the maximum length estimation error of 7.3%. PMID:28880254

  15. 77 FR 39624 - Airworthiness Directives; Pratt & Whitney Canada Turboprop Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... serial numbers (S/Ns) of propeller shafts for cracks and removal from service if found cracked. This AD was prompted by reports of two propeller shafts found cracked at time of inspection during maintenance. We are issuing this AD to detect propeller shaft cracks, which could cause failure of the shaft...

  16. 76 FR 82106 - Airworthiness Directives; Lockheed Martin Corporation/Lockheed Martin Aeronautics Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ... results from a damage tolerance analysis conducted by the manufacturer indicating that fatigue cracking... cracking of the wing rear spar and upper surface zones, and repair if necessary. We are issuing this AD to detect and correct such fatigue cracking, which could result in cracking that grows large enough to...

  17. 76 FR 58416 - Airworthiness Directives; Lockheed Martin Corporation/Lockheed Martin Aeronautics Company Model L...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ... specifies a bolt hole eddy current inspection to verify the cracking. The corrective actions for cracking... specified in paragraph (k) of this AD, do eddy current non-destructive inspections (NDI) and detailed... secondary eddy current inspection to detect cracking of fastener holes with suspected crack indications; in...

  18. Study of the Corrosion Resistance of Austenitic Stainless Steels during Conversion of Waste to Biofuel

    PubMed Central

    Cabrini, Marina; Lorenzi, Sergio; Pastore, Tommaso; Pellegrini, Simone; Burattini, Mauro; Miglio, Roberta

    2017-01-01

    The paper deals with the corrosion behavior of stainless steels as candidate materials for biofuel production plants by liquefaction process of the sorted organic fraction of municipal solid waste. Corrosion tests were carried out on AISI 316L and AISI 304L stainless steels at 250 °C in a batch reactor during conversion of raw material to bio-oil (biofuel precursor), by exposing specimens either to water/oil phase or humid gas phase. General corrosion rate was measured by weight loss tests. The susceptibility to stress corrosion cracking was evaluated by means of U-bend specimens and slow stress rate tests at 10−6 or 10−5 s−1 strain rate. After tests, scanning electron microscope analysis was carried out to detect cracks and localized attacks. The results are discussed in relation with exposure conditions. They show very low corrosion rates strictly dependent upon time and temperature. No stress corrosion cracking was observed on U-bend specimens, under constant loading. Small cracks confined in the necking cone of specimens prove that stress corrosion cracking only occurred during slow strain rate tests at stresses exceeding the yield strength. PMID:28772682

  19. Comparative Study of Vibration Condition Indicators for Detecting Cracks in Spur Gears

    NASA Technical Reports Server (NTRS)

    Nanadic, Nenad; Ardis, Paul; Hood, Adrian; Thurston, Michael; Ghoshal, Anindya; Lewicki, David

    2013-01-01

    This paper reports the results of an empirical study on the tooth breakage failure mode in spur gears. Of four dominant gear failure modes (breakage, wear, pitting, and scoring), tooth breakage is the most precipitous and often leads to catastrophic failures. The cracks were initiated using a fatigue tester and a custom-designed single-tooth bending fixture to simulate over-load conditions, instead of traditional notching using wire electrical discharge machining (EDM). The cracks were then propagated on a dynamometer. The ground truth of damage level during crack propagation was monitored with crack-propagation sensors. Ten crack propagations have been performed to compare the existing condition indicators (CIs) with respect to their: ability to detect a crack, ability to assess the damage, and sensitivity to sensor placement. Of more than thirty computed CIs, this paper compares five commonly used: raw RMS, FM0, NA4, raw kurtosis, and NP4. The performance of combined CIs was also investigated, using linear, logistic, and boosted regression trees based feature fusion.

  20. Detection of multiple thin surface cracks using vibrothermography with low-power piezoceramic-based ultrasonic actuator—a numerical study with experimental verification

    NASA Astrophysics Data System (ADS)

    Parvasi, Seyed Mohammad; Xu, Changhang; Kong, Qingzhao; Song, Gangbing

    2016-05-01

    Ultrasonic vibrations in cracked structures generate heat at the location of defects mainly due to frictional rubbing and viscoelastic losses at the defects. Vibrothermography is an effective nondestructive evaluation method which uses infrared imaging (IR) techniques to locate defects such as cracks and delaminations by detecting the heat generated at the defects. In this paper a coupled thermo-electro-mechanical analysis with the use of implicit finite element method was used to simulate a low power (10 W) piezoceramic-based ultrasonic actuator and the corresponding heat generation in a metallic plate with multiple surface cracks. Numerical results show that the finite element software Abaqus can be used to simultaneously model the electrical properties of the actuator, the ultrasonic waves propagating within the plate, as well as the thermal properties of the plate. Obtained numerical results demonstrate the ability of these low power transducers in detecting multiple cracks in the simulated aluminum plate. The validity of the numerical simulations was verified through experimental studies on a physical aluminum plate with multiple surface cracks while the same low power piezoceramic stack actuator was used to excite the plate and generate heat at the cracks. An excellent qualitative agreement exists between the experimental results and the numerical simulation’s results.

  1. Development of Detectability Limits for On-Orbit Inspection of Space Shuttle Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Stephan, Ryan A.; Johnson, David G.; Mastropietro, A. J.; Ancarrow, Walt C.

    2005-01-01

    At the conclusion of the Columbia Accident Investigation, one of the recommendations of the Columbia Accident Investigation Board (CAIB) was that NASA develop and implement an inspection plan for the Reinforced Carbon-Carbon (RCC) system components of the Space Shuttle. To address these issues, a group of scientists and engineers at NASA Langley Research Center proposed the use of an IR camera to inspect the RCC. Any crack in an RCC panel changes the thermal resistance of the material in the direction perpendicular to the crack. The change in thermal resistance can be made visible by introducing a heat flow across the crack and using an IR camera to image the resulting surface temperature distribution. The temperature difference across the crack depends on the change in the thermal resistance, the length of the crack, the local thermal gradient, and the rate of radiation exchange with the environment. This paper describes how the authors derived the minimum thermal gradient detectability limits for a through crack in an RCC panel. This paper will also show, through the use of a transient, 3-dimensional, finite element model, that these minimum gradients naturally exist on-orbit. The results from the finite element model confirm that there are sufficient thermal gradient to detect a crack on 96% of the RCC leading edge.

  2. Progress of a Cross-Correlation Based Optical Strain Measurement Technique for Detecting Radial Growth on a Rotating Disk

    NASA Technical Reports Server (NTRS)

    Clem, Michelle M.; Woike, Mark R.; Abdul-Aziz, Ali

    2014-01-01

    The Aeronautical Sciences Project under NASA's Fundamental Aeronautics Program is interested in the development of novel measurement technologies, such as optical surface measurements for the in situ health monitoring of critical constituents of the internal flow path. In situ health monitoring has the potential to detect flaws, i.e. cracks in key components, such as engine turbine disks, before the flaws lead to catastrophic failure. The present study, aims to further validate and develop an optical strain measurement technique to measure the radial growth and strain field of an already cracked disk, mimicking the geometry of a sub-scale turbine engine disk, under loaded conditions in the NASA Glenn Research Center's High Precision Rotordynamics Laboratory. The technique offers potential fault detection by imaging an applied high-contrast random speckle pattern under unloaded and loaded conditions with a CCD camera. Spinning the cracked disk at high speeds (loaded conditions) induces an external load, resulting in a radial growth of the disk of approximately 50.0-µm in the flawed region and hence, a localized strain field. When imaging the cracked disk under static conditions, the disk will be undistorted; however, during rotation the cracked region will grow radially, thus causing the applied particle pattern to be 'shifted'. The resulting particle displacements between the two images is measured using the two-dimensional cross-correlation algorithms implemented in standard Particle Image Velocimetry (PIV) software to track the disk growth, which facilitates calculation of the localized strain field. A random particle distribution is adhered onto the surface of the cracked disk and two bench top experiments are carried out to evaluate the technique's ability to measure the induced particle displacements. The disk is shifted manually using a translation stage equipped with a fine micrometer and a hotplate is used to induce thermal growth of the disk, causing the particles to become shifted. For both experiments, reference and test images are acquired before and after the induced shifts, respectively, and then processed using PIV software. The controlled manual translation of the disk resulted in detection of the particle displacements accurate to 1.75% of full scale and the thermal expansion experiment resulted in successful detection of the disk's thermal growth as compared to the calculated thermal expansion results. After validation of the technique through the induced shift experiments, the technique is implemented in the Rotordynamics Lab for preliminary assessment in a simulated engine environment. The discussion of the findings and plans for future work to improve upon the results are addressed in the paper.

  3. 76 FR 19278 - Airworthiness Directives; The Boeing Company Model 747-100, 747-100B, 747-100B SUD, 747-200B, 747...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-07

    ... are proposing this AD to detect and correct cracking in the fail-safe interlayer of certain No. 2 and... to detect and correct cracking in the fail-safe interlayer of certain No. 2 and No. 3 glass windows... cracking in the fail-safe interlayer of certain No. 2 and No. 3 glass windows, which could result in loss...

  4. Can acoustic emission detect the initiation of fatigue cracks: Application to high-strength light alloys used in aeronautics

    NASA Technical Reports Server (NTRS)

    Bathias, C.; Brinet, B.; Sertour, G.

    1978-01-01

    Acoustic emission was used for the detection of fatigue cracking in a number of high-strength light alloys used in aeronautical structures. Among the features studied were: the influence of emission frequency, the effect of surface oxidation, and the influence of grains. It was concluded that acoustic emission is an effective nondestructive technique for evaluating the initiation of fatigue cracking in such materials.

  5. Hot-crack test for aluminium alloys welds using TIG process

    NASA Astrophysics Data System (ADS)

    Niel, A.; Deschaux-Beaume, F.; Bordreuil, C.; Fras, G.

    2010-06-01

    Hot cracking is a critical defect frequently observed during welding of aluminium alloys. In order to better understand the interaction between cracking phenomenon, process parameters, mechanical factors and microstructures resulting from solidification after welding, an original hot-cracking test during welding is developed. According to in-situ observations and post mortem analyses, hot cracking mechanisms are investigated, taking into account the interaction between microstructural parameters, depending on the thermal cycles, and mechanical parameters, depending on geometry and clamping conditions of the samples and on the thermal field on the sample. Finally, a process map indicating the limit between cracking and non-cracking zones according to welding parameters is presented.

  6. Tube structural integrity evaluation of Palo Verde Unit 1 steam generators for axial upper-bundle cracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodman, B.W.; Begley, J.A.; Brown, S.D.

    1995-12-01

    The analysis of the issue of upper bundle axial ODSCC as it apples to steam generator tube structural integrity in Unit 1 at the Palo Verde Nuclear generating Station is presented in this study. Based on past inspection results for Units 2 and 3 at Palo Verde, the detection of secondary side stress corrosion cracks in the upper bundle region of Unit 1 may occur at some future date. The following discussion provides a description and analysis of the probability of axial ODSCC in Unit 1 leading to the exceedance of Regulatory Guide 1.121 structural limits. The probabilities of structuralmore » limit exceedance are estimated as function of run time using a conservative approach. The chosen approach models the historical development of cracks, crack growth, detection of cracks and subsequent removal from service and the initiation and growth of new cracks during a given cycle of operation. Past performance of all Palo Verde Units as well as the historical performance of other steam generators was considered in the development of cracking statistics for application to Unit 1. Data in the literature and Unit 2 pulled tube examination results were used to construct probability of detection curves for the detection of axial IGSCC/IGA using an MRPC (multi-frequency rotating panake coil) eddy current probe. Crack growth rates were estimated from Unit 2 eddy current inspection data combined with pulled tube examination results and data in the literature. A Monte-Carlo probabilistic model is developed to provide an overall assessment of the risk of Regulatory Guide exceedance during plant operation.« less

  7. Damage Detection in Railway Prestressed Concrete Sleepers using Acoustic Emission

    NASA Astrophysics Data System (ADS)

    Clark, A.; Kaewunruen, S.; Janeliukstis, R.; Papaelias, M.

    2017-10-01

    Prestressed concrete sleepers (or railroad ties) are safety-critical elements in railway tracks that distribute the wheel loads from the rails to the track support system. Over a period of time, the concrete sleepers age and deteriorate in addition to experiencing various types of static and dynamic loading conditions, which are attributable to train operations. In many cases, structural cracks can develop within the sleepers due to high intensity impact loads or due to poor track maintenance. Often, cracks of sleepers develop and present at the midspan due to excessive negative bending. These cracks can cause broken sleepers and sometimes called ‘center bound’ problem in railway lines. This paper is the world first to present an application of non-destructive acoustic emission technology for damage detection in railway concrete sleepers. It presents experimental investigations in order to detect center-bound cracks in railway prestressed concrete sleepers. Experimental laboratory testing involves three-point bending tests of four concrete sleepers. Three-point bending tests correspond to a real failure mode, when the loads are not transferred uniformly to the ballast support. It is observed that AE sensing provides an accurate means for detecting the location and magnitude of cracks in sleepers. Sensor location criticality is also highlighted in the paper to demonstrate the reliability-based damage detection of the sleepers.

  8. Study on optimization method of test conditions for fatigue crack detection using lock-in vibrothermography

    NASA Astrophysics Data System (ADS)

    Min, Qing-xu; Zhu, Jun-zhen; Feng, Fu-zhou; Xu, Chao; Sun, Ji-wei

    2017-06-01

    In this paper, the lock-in vibrothermography (LVT) is utilized for defect detection. Specifically, for a metal plate with an artificial fatigue crack, the temperature rise of the defective area is used for analyzing the influence of different test conditions, i.e. engagement force, excitation intensity, and modulated frequency. The multivariate nonlinear and logistic regression models are employed to estimate the POD (probability of detection) and POA (probability of alarm) of fatigue crack, respectively. The resulting optimal selection of test conditions is presented. The study aims to provide an optimized selection method of the test conditions in the vibrothermography system with the enhanced detection ability.

  9. Assessing the Accuracy and Reliability of Root Crack and Fracture Detection in Teeth Using Sweep Imaging with Fourier Transform (SWIFT) Magnetic Resonance Imaging (MRI)

    NASA Astrophysics Data System (ADS)

    Schuurmans, Tyler J.

    Introduction: Magnetic Resonance Imaging (MRI) has the potential to aid in determining the presence and extent of cracks/fractures in teeth due to more advantageous contrast, without ionizing radiation. An MRI technique called Sweep Imaging with Fourier Transform (SWIFT) has overcome many of the inherent difficulties of conventional MRI with detecting fast-relaxing signals from densely mineralized dental tissues. The objectives of this in vitro investigation were to develop MRI criteria for root crack/fracture identification in teeth and to establish intra- and inter-rater reliabilities and corresponding sensitivity and specificity values for the detection of tooth-root cracks/fractures in SWIFT MRI and limited field of view (FOV) CBCT. Materials and Methods: MRI-based criteria for crack/fracture appearance was developed by an MRI physicist and 6 dentists, including 3 endodontists and 1 Oral and Maxillofacial (OMF) radiologist. Twenty-nine human adult teeth previously extracted following clinical diagnosis by a board-certified endodontist of a root crack/fracture were frequency-matched to 29 non-cracked controls. Crack/fracture status confirmation was performed with magnified visual inspection, transillumination and vital staining. Samples were scanned with two 3D imaging modalities: 1) SWIFT MRI (10 teeth/scan) via a custom oral radiofrequency (RF) coil and a 90cm, 4-T magnet; 2) Limited FOV CBCT (1 tooth/scan) via a Carestream (CS) 9000 (Rochester, NY). Following a training period, a blinded 4-member panel (3 endodontists, 1 OMF radiologist) evaluated the images with a proportion randomly re-tested to establish intra-rater reliability. Overall observer agreement was measured using Cohen's kappa and levels of agreement judged using the criteria of Landis and Koch. Sensitivity and specificity were computed with 95% confidence interval (CI); statistical significance was set at alpha ≤ 0.05. Results: MRI-based crack/fracture criteria were defined as 1-2 sharply-delineated, high-signal (bright/white) line shape(s) that must be visible on multiple contiguous image slices. The line shape(s) must present as: single entities, or parallel pairs in close proximity, or pairs in close proximity exhibiting convergence or divergence extending from the external boundary of the tooth to the pulpal cavity. Intra-rater reliability for MRI was fair-to-almost perfect (kappa = 0.38-1.00) and for CBCT was moderate-to-almost perfect (kappa = 0.66-1.00). Inter-rater reliability for MRI was fair (kappa = 0.21; 95% CI: 0.10-0.31; p < 0.001) and for CBCT was moderate (kappa = 0.45; 95% CI: 0.34-0.56; p < 0.001). Sensitivity: MRI = 0.59 (95% CI: 0.39-0.76; p = 0.46); CBCT = 0.59 (95% CI: 0.59-0.76; p = 0.46). Specificity: MRI = 0.83 (95% CI: 0.64-0.94; p < 0.01); CBCT = 0.90 (95% CI: 0.73-0.98; p < 0.01). Conclusions: Education and training for both imaging modalities is needed to improve reliabilities for the identification of tooth-root crack/fractures. Despite the advantages of increased contrast and absence of artifact from radio-dense materials in MRI, comparable measures of sensitivity and specificity (in relation to CBCT) suggest quality MRI improvements are needed, specifically in image acquisition and post-processing parameters. Given the early stage of technology development and multiple available pathways to optimize MR imaging of teeth, there may be a use for SWIFT MRI in detecting cracks and fractures in teeth.

  10. Optical Strain and Crack-Detection Measurements on a Rotating Disk

    NASA Technical Reports Server (NTRS)

    Woike, Mark; Abdul-Aziz, Ali; Clem, Michelle; Fralick, Gustave

    2013-01-01

    The development of techniques for the in-situ measurement and structural health monitoring of the rotating components in gas turbine engines is of major interest to NASA. As part of this on-going effort, several experiments have been undertaken to develop methods for detecting cracks and measuring strain on rotating turbine engine like disks. Previous methods investigated have included the use of blade tip clearance sensors to detect the presence of cracks by monitoring the change in measured blade tip clearance and analyzing the combined disk-rotor system's vibration response. More recently, an experiment utilizing a novel optical Moiré based concept has been conducted on a subscale turbine engine disk to demonstrate a potential strain measurement and crack detection technique. Moiré patterns result from the overlap of two repetitive patterns with slightly different spacing. When this technique is applied to a rotating disk, it has the potential to allow for the detection of very small changes in spacing and radial growth in a rotating disk due to a flaw such as a crack. This investigation was a continuation of previous efforts undertaken in 2011-2012 to validate this optical concept. The initial demonstration attempted on a subscale turbine engine disk was inconclusive due to the minimal radial growth experienced by the disk during operation. For the present experiment a new subscale Aluminum disk was fabricated and improvements were made to the experimental setup to better demonstrate the technique. A circular reference pattern was laser etched onto a subscale engine disk and the disk was operated at speeds up to 12 000 rpm as a means of optically monitoring the Moiré created by the shift in patterns created by the radial growth due the presence of the simulated crack. Testing was first accomplished on a clean defect free disk as a means of acquiring baseline reference data. A notch was then machined in to the disk to simulate a crack and testing was repeated for the purposes of demonstrating the concept. Displacement data was acquired using external blade tip clearance and shaft displacement sensors as a means of confirming the optical data and for validating other sensor based crack detection techniques.

  11. Optical Strain and Crack-Detection Measurements on a Rotating Disk

    NASA Technical Reports Server (NTRS)

    Woike, Mark; Abdul-Aziz, Ali; Clem, Michelle M.; Fralick, Gustave

    2013-01-01

    The development of techniques for the in-situ measurement and structural health monitoring of the rotating components in gas turbine engines is of major interest to NASA. As part of this on-going effort, several experiments have been undertaken to develop methods for detecting cracks and measuring strain on rotating turbine engine like disks. Previous methods investigated have included the use of blade tip clearance sensors to detect the presence of cracks by monitoring the change in measured blade tip clearance and analyzing the combined disk-rotor system's vibration response. More recently, an experiment utilizing a novel optical Moiré based concept has been conducted on a subscale turbine engine disk to demonstrate a potential strain measurement and crack detection technique. Moiré patterns result from the overlap of two repetitive patterns with slightly different spacing. When this technique is applied to a rotating disk, it has the potential to allow for the detection of very small changes in spacing and radial growth in a rotating disk due to a flaw such as a crack. This investigation was a continuation of previous efforts undertaken in 2011 to 2012 to validate this optical concept. The initial demonstration attempted on a subscale turbine engine disk was inconclusive due to the minimal radial growth experienced by the disk during operation. For the present experiment a new subscale Aluminum disk was fabricated and improvements were made to the experimental setup to better demonstrate the technique. A circular reference pattern was laser etched onto a subscale engine disk and the disk was operated at speeds up to 12 000 rpm as a means of optically monitoring the Moiré created by the shift in patterns created by the radial growth due the presence of the simulated crack. Testing was first accomplished on a clean defect free disk as a means of acquiring baseline reference data. A notch was then machined in to the disk to simulate a crack and testing was repeated for the purposes of demonstrating the concept. Displacement data was acquired using external blade tip clearance and shaft displacement sensors as a means of confirming the optical data and for validating other sensor based crack detection techniques.

  12. Detection of cracks beneath rivet heads via pulsed eddy current technique

    NASA Astrophysics Data System (ADS)

    Giguère, J. S. R.; Lepine, B. A.; Dubois, J. M. S.

    2002-05-01

    Improving the detectability of fatigue cracks under installed fasteners is one of the many goals of the aging aircraft nondestructive evaluation (NDE) community. The pulsed eddy current offers new capabilities to address this requirement. The aim of the paper is to evaluate the potential of this technique for detecting and quantifying notches under installed fasteners.

  13. Seeding Cracks Using a Fatigue Tester for Accelerated Gear Tooth Breaking

    NASA Technical Reports Server (NTRS)

    Nenadic, Nenad G.; Wodenscheck, Joseph A.; Thurston, Michael G.; Lewicki, David G.

    2011-01-01

    This report describes fatigue-induced seeded cracks in spur gears and compares them to cracks created using a more traditional seeding method, notching. Finite element analysis (FEA) compares the effective compliance of a cracked tooth to the effective compliance of a notched tooth where the crack and the notch are of the same depth. In this analysis, cracks are propagated to the desired depth using FRANC2D and effective compliances are computed in ANSYS. A compliance-based feature for detecting cracks on the fatigue tester is described. The initiated cracks are examined using both nondestructive and destructive methods. The destructive examination reveals variability in the shape of crack surfaces.

  14. 76 FR 36395 - Airworthiness Directives; Piper Aircraft, Inc. Models PA-24, PA-24-250, and PA-24-260 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ... stabilator horn assembly or repetitive inspection of the stabilator horn assembly for corrosion or cracks with replacement of the stabilator horn assembly if any corrosion or cracks are found. This proposed AD... to detect and correct corrosion or cracks in the stabilator horn assembly. Corrosion or cracks could...

  15. Electromagnetic stimulation of the ultrasonic signal for nondestructive detection of the ferromagnetic inclusions and flaws

    NASA Astrophysics Data System (ADS)

    Finkel, Peter

    2007-03-01

    It was recently shown that thermal or optical stimulation can be used to increase sensitivity of the conventional nondestructive ultrasonic detection of the small crack, flaws and inclusions in a ferromagnetic thin-walled parts. We proposed another method based on electromagnetic modulation of the ultrasonic scattered signal from the inclusions or defects. The electromagnetically induced high density current pulse produces stresses which alter the ultrasonic waves scanning the part with the defect and modulate ultrasonic signal. The excited electromagnetic field can produces crack-opening due to Lorentz forces that increase the ultrasonic reflection. The Joule heating associated with the high density current, and consequent thermal stresses may cause both crack-closure, as well as crack-opening, depending on various factors. Experimental data is presented here for the case of a small cracks near small holes in thin-walled structures. The measurements were taken at 2-10 MHz with a Lamb wave wedge transducer. It is shown that electromagnetic transient modulation of the ultrasonic echo pulse tone-burst suggest that this method could be used to enhance detection of small cracks and ferromagnetic inclusions in thin walled metallic structures.

  16. Characterization of Delaminations and Transverse Matrix Cracks in Composite Laminates Using Multiple-Angle Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick H.; Appleget, Chelsea D.; Odarczenko, Michael T.

    2012-01-01

    Delaminations and transverse matrix cracks often appear concurrently in composite laminates. Normal-incidence ultrasound is excellent at detecting delaminations, but is not optimum for matrix cracks. Non-normal incidence, or polar backscattering, has been shown to optimally detect matrix cracks oriented perpendicular to the ultrasonic plane of incidence. In this work, a series of six composite laminates containing slots were loaded in tension to achieve various levels of delamination and ply cracking. Ultrasonic backscattering was measured over a range of incident polar and azimuthal angles, in order to characterize the relative degree of damage of the two types. Sweptpolar- angle measurements were taken with a curved phased array, as a step toward an array-based approach to simultaneous measurement of combined flaws.

  17. Noncontact measurement of guided ultrasonic wave scattering for fatigue crack characterization

    NASA Astrophysics Data System (ADS)

    Fromme, P.

    2013-04-01

    Fatigue cracks can develop in aerospace structures at locations of stress concentration such as fasteners. For the safe operation of the aircraft fatigue cracks need to be detected before reaching a critical length. Guided ultrasonic waves offer an efficient method for the detection and characterization of fatigue cracks in large aerospace structures. Noncontact excitation of guided waves was achieved using electromagnetic acoustic transducers (EMAT). The transducers were developed for the specific excitation of the A0 Lamb mode. Based on the induced eddy currents in the plate a simple theoretical model was developed and reasonably good agreement with the measurements was achieved. However, the detection sensitivity for fatigue cracks depends on the location and orientation of the crack relative to the measurement locations. Crack-like defects have a directionality pattern of the scattered field depending on the angle of the incident wave relative to the defect orientation and on the ratio of the characteristic defect size to wavelength. The detailed angular dependency of the guided wave field scattered at crack-like defects in plate structures has been measured using a noncontact laser interferometer. Good agreement with 3D Finite Element simulation predictions was achieved for machined part-through and through-thickness notches. The amplitude of the scattered wave was quantified for a variation of angle of the incident wave relative to the defect orientation and the defect depth. These results provide the basis for the defect characterization in aerospace structures using guided wave sensors.

  18. Fine characterization rock thermal damage by acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Kong, Biao; Li, Zenghua; Wang, Enyuan

    2018-02-01

    This paper examines the differences in the thermal mechanical properties and acoustic emission (AE) characteristics during the deformation and fracture of rock under the action of continuous heating and after high-temperature treatment. Using AE 3D positioning technology, the development and evolution of the internal thermal cracks and the time domain of AE signals in rock were analyzed. High-temperature treatment causes thermal damage to rock. Under the action of continuous heating, the phase characteristics of AE time series correspond to the five stages of rock thermal deformation and fracture, respectively: the micro-defect development stage, the threshold interval of rock micro-cracks, the crack initiation stage, the crack propagation stage, and the crack multistage propagation evolution. When the initial crack propagates, the crack initiation of the rock causes the AE signal to produce a sudden mutation change. Mechanical fraction characteristics during rock uniaxial compression after temperature treatment indicated that the decrease rate of the rock compressive strength, wave velocity, and elastic modulus are relatively large during uniaxial compression tests after high-temperature treatment. During the deformation and fracture of rock under loading, there is faster growth of AE counts and AE events, indicating an increase in the speed of rock deformation and fracture under loading. AE counts show obvious changes during the latter loading stages, whereas AE events show obvious changes during the loading process. The results obtained are valuable for rock thermal stability detection and evaluation in actual underground engineering.

  19. Transmit-receive eddy current probes for defect detection and sizing in steam generator tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obrutsky, L.S.; Cecco, V.S.; Sullivan, S.P.

    1997-02-01

    Inspection of steam generator tubes in aging Nuclear Generating Stations is increasingly important. Defect detection and sizing, especially in defect prone areas such as the tubesheet, support plates and U-bend regions, are required to assess the fitness-for-service of the steam generators. Information about defect morphology is required to address operational integrity issues, i.e., risk of tube rupture, number of tubes at risk, consequential leakage. A major challenge continues to be the detection and sizing of circumferential cracks. Utilities around the world have experienced this type of tube failure. Conventional in-service inspection, performed with eddy current bobbin probes, is ineffectual inmore » detecting circumferential cracks in tubing. It has been demonstrated in CANDU steam generators, with deformation, magnetite and copper deposits that multi-channel probes with transmit-receive eddy current coils are superior to those using surface impedance coils. Transmit-receive probes have strong directional properties, permitting probe optimization according to crack orientation. They are less sensitive to lift-off noise and magnetite deposits and possess good discrimination to internal defects. A single pass C3 array transmit-receive probe developed by AECL can detect and size circumferential stress corrosion cracks as shallow as 40% through-wall. Since its first trial in 1992, it has been used routinely for steam generator in-service inspection of four CANDU plants, preventing unscheduled shutdowns due to leaking steam generator tubes. More recently, a need has surfaced for simultaneous detection of both circumferential and axial cracks. The C5 probe was designed to address this concern. It combines transmit-receive array probe technology for equal sensitivity to axial and circumferential cracks with a bobbin probe for historical reference. This paper will discuss the operating principles of transmit-receive probes, along with inspection results.« less

  20. A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection

    NASA Astrophysics Data System (ADS)

    Lee, Jaehwan; Kim, Sanghyeok; Lee, Jinjae; Yang, Daejong; Park, Byong Chon; Ryu, Seunghwa; Park, Inkyu

    2014-09-01

    Wearable strain sensors for human motion detection are being highlighted in various fields such as medical, entertainment and sports industry. In this paper, we propose a new type of stretchable strain sensor that can detect both tensile and compressive strains and can be fabricated by a very simple process. A silver nanoparticle (Ag NP) thin film patterned on the polydimethylsiloxane (PDMS) stamp by a single-step direct transfer process is used as the strain sensing material. The working principle is the change in the electrical resistance caused by the opening/closure of micro-cracks under mechanical deformation. The fabricated stretchable strain sensor shows highly sensitive and durable sensing performances in various tensile/compressive strains, long-term cyclic loading and relaxation tests. We demonstrate the applications of our stretchable strain sensors such as flexible pressure sensors and wearable human motion detection devices with high sensitivity, response speed and mechanical robustness.Wearable strain sensors for human motion detection are being highlighted in various fields such as medical, entertainment and sports industry. In this paper, we propose a new type of stretchable strain sensor that can detect both tensile and compressive strains and can be fabricated by a very simple process. A silver nanoparticle (Ag NP) thin film patterned on the polydimethylsiloxane (PDMS) stamp by a single-step direct transfer process is used as the strain sensing material. The working principle is the change in the electrical resistance caused by the opening/closure of micro-cracks under mechanical deformation. The fabricated stretchable strain sensor shows highly sensitive and durable sensing performances in various tensile/compressive strains, long-term cyclic loading and relaxation tests. We demonstrate the applications of our stretchable strain sensors such as flexible pressure sensors and wearable human motion detection devices with high sensitivity, response speed and mechanical robustness. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03295k

  1. 75 FR 1527 - Airworthiness Directives; The Boeing Company Model 737-300, -400, and -500 Series Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-12

    ... subsequent deployment of the oxygen masks. We are issuing this AD to detect and correct fatigue cracking of... deployment of the oxygen masks. We are issuing this AD to detect and correct fatigue cracking of the fuselage...

  2. Electrical Resistance Technique to Monitor SiC Composite Detection

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Morscher, Gregory; Xia, Zhenhai

    2008-01-01

    Ceramic matrix composites are suitable for high temperature structural applications such as turbine airfoils and hypersonic thermal protection systems. The employment of these materials in such applications is limited by the ability to process components reliable and to accurately monitor and predict damage evolution that leads to failure under stressed-oxidation conditions. Current nondestructive methods such as ultrasound, x-ray, and thermal imaging are limited in their ability to quantify small scale, transverse, in-plane, matrix cracks developed over long-time creep and fatigue conditions. Electrical resistance of SiC/SiC composites is one technique that shows special promise towards this end. Since both the matrix and the fibers are conductive, changes in matrix or fiber properties should relate to changes in electrical conductivity along the length of a specimen or part. The effect of matrix cracking on electrical resistivity for several composite systems will be presented and some initial measurements performed at elevated temperatures under stress-rupture conditions. The implications towards electrical resistance as a technique applied to composite processing, damage detection (health monitoring), and life-modeling will be discussed.

  3. Damage detection and locating using tone burst and continuous excitation modulation method

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Wang, Zhi; Xiao, Li; Qu, Wenzhong

    2014-03-01

    Among structural health monitoring techniques, nonlinear ultrasonic spectroscopy methods are found to be effective diagnostic approach to detecting nonlinear damage such as fatigue crack, due to their sensitivity to incipient structural changes. In this paper, a nonlinear ultrasonic modulation method was developed to detect and locate a fatigue crack on an aluminum plate. The method is different with nonlinear wave modulation method which recognizes the modulation of low-frequency vibration and high-frequency ultrasonic wave; it recognizes the modulation of tone burst and high-frequency ultrasonic wave. In the experiment, a Hanning window modulated sinusoidal tone burst and a continuous sinusoidal excitation were simultaneously imposed on the PZT array which was bonded on the surface of an aluminum plate. The modulations of tone burst and continuous sinusoidal excitation was observed in different actuator-sensor paths, indicating the presence and location of fatigue crack. The results of experiments show that the proposed method is capable of detecting and locating the fatigue crack successfully.

  4. Fractography, NDE, and fracture mechanics applications in failure analysis studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morin, C.R.; Shipley, R.J.; Wilkinson, J.A.

    1994-10-01

    While identification of the precise mode of a failure can lead logically to the underlying cause, a thorough failure investigation requires much more than just the identification of a specific metallurgical mechanism, for example, fatigue, creep, stress corrosion cracking, etc. Failures involving fracture provide good illustrations of this concept. An initial step in characterizing fracture surfaces is often the identification of an origin or origins. However, the analysis should not stop there. If the origin is associated with a discontinuity, the manner in which it was formed must also be addressed. The stresses that would have existed at the originmore » must be determined and compared with material properties to determine whether or not a crack should have initiated and propagated during normal operation. Many critical components are inspected throughout their lives by nondestructive methods. When a crack progresses to failure, its nondetection at earlier inspections must also be understood. Careful study of the fracture surface combined with crack growth analysis based on fracture mechanics can provide an estimate of the crack length at the times of previous inspections. An important issue often overlooked in such studies is how processing of parts during manufacture or rework affects the probability of detection of such cracks. The ultimate goal is to understand thoroughly the progression of the failure, to understand the root cause(s), and to design appropriate corrective action(s) to minimize recurrence.« less

  5. The Remote Detection of Incipient Catastrophic Failure in Large Landslides

    NASA Astrophysics Data System (ADS)

    Petley, D.; Bulmer, M. H.; Murphy, W.; Mantovani, F.

    2001-12-01

    Landslide movement is commonly associated with brittle failure and ductile deformation. Kilburn and Petley (2001) proposed that cracking in landslides occurs due to downslope stress acting on the deforming horizon. If the assumption that a given crack event breaks a fixed distance of unbroken rock or soil the rate of cracking becomes equivalent to the number of crack events per unit time. Where crack growth (not nucleation) is occurring, the inverse rate of displacement changes linearly with time. Failure can be assumed to be the time at which displacement rates become infinitely large. Thus, for a slope heading towards catastrophic failure due to the development of a failure plane, this relationship would be linear, with the point at which failure will occur being the time when the line intercepts the x-axis. Increasing rates of deformation associated with ductile processes of crack nucleation would yield a curve with a negative gradient asymptopic to the x-axis. This hypothesis is being examined. In the 1960 movement of the Vaiont slide, Italy, although the rate of movement was accelerating, the plot of 1/deformation against time shows that it was increasing towards a steady state deformation. This movement has been associated with a low accumulated strain ductile phase of movement. In the 1963 movement event, the trend is linear. This was associated with a brittle phase of movement. A plot of 1/deformation against time for movement of the debris flow portion of the Tessina landslide (1998) shows a curve with a negative gradient asymptopic to the x-axis. This indicates that the debris flow moved as a result of ductile deformation processes. Plots of movement data for the Black Ven landslide over 1999 and 2001 also show curves that correlate with known deformation and catastrophic phases. The model results suggest there is a definable deformation pattern that is diagnostic of landslides approaching catastrophic failure. This pattern can be differentiated from landslides that are undergoing ductile deformation and those that are suffering crack nucleation.

  6. 77 FR 41889 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-17

    ... requires inspecting the main gearbox (MGB) for a crack. This AD is prompted by a crack in the cored passage... detect a crack in the MGB housing, which could result in loss of oil, failure of the MGB, and subsequent... prompted by an incident in which a crack in the MGB housing, in the cored passage area adjacent to the...

  7. Effect of crack on natural frequency for beam type of structures

    NASA Astrophysics Data System (ADS)

    Sawant, Saurabh U.; Chauhan, Santosh J.; Deshmukh, Nilaj N.

    2017-07-01

    Detection of damage in early stages reduces chances of sudden failure of that structure which is important from safety and economic point of view. Crack or damage affects dynamic behavior of structure. In last few decades many researchers have been developing different approaches to detect the damage based on its dynamic behavior. This paper focuses on effect on natural frequency of cantilever beam due to the presence of crack at different locations and with different depths. Cantilever beam is selected for analysis because these beams are most common structures used in many industrial applications. In the present study, modeling of healthy and damaged cantilever beam is done using ANSYSsoftware. Crack at 38 different locations with 1 mm, 2 mm and 3 mm crack depth were created for each of these locations. The effect of these cracks on natural frequency were analyzed over the healthy beam for the first four mode shapes. It is found that the presence of crack decreases the natural frequency of the beam and at some particular locations, the natural frequency of the cracked beam is found to be almost the same as that of the healthy beam.

  8. Detection of Matrix Crack Density of CFRP using an Electrical Potential Change Method with Multiple Probes

    NASA Astrophysics Data System (ADS)

    Todoroki, Akira; Omagari, Kazuomi

    Carbon Fiber Reinforced Plastic (CFRP) laminates are adopted for fuel tank structures of next generation space rockets or automobiles. Matrix cracks may cause fuel leak or trigger fatigue damage. A monitoring system of the matrix crack density is required. The authors have developed an electrical resistance change method for the monitoring of delamination cracks in CFRP laminates. Reinforcement fibers are used as a self-sensing system. In the present study, the electric potential method is adopted for matrix crack density monitoring. Finite element analysis (FEA) was performed to investigate the possibility of monitoring matrix crack density using multiple electrodes mounted on a single surface of a specimen. The FEA reveals the matrix crack density increases electrical resistance for a target segment between electrodes. Experimental confirmation was also performed using cross-ply laminates. Eight electrodes were mounted on a single surface of a specimen using silver paste after polishing of the specimen surface with sandpaper. The two outermost electrodes applied electrical current, and the inner electrodes measured electric voltage changes. The slope of electrical resistance during reloading is revealed to be an appropriate index for the detection of matrix crack density.

  9. Detection of asphalt pavement cracks using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Mettas, Christodoulos; Agapiou, Athos; Themistocleous, Kyriacos; Neocleous, Kyriacos; Hadjimitsis, Diofantos G.

    2016-10-01

    Deterioration of asphalt road pavements is inevitable throughout its life cycle. There are several types of deterioration that take place on these surfaces, like surface defects and deformations. One of the most common asphalt defects is cracking. Fatigue, transverse, longitudinal, reflective, edge, block and slippage are types of cracking that can be observed anywhere in the world. Monitoring and preventative/periodic maintenance of these types of wears are two very important actions that have to take place to avoid "costly" solutions. This paper aims to introduce the spectral characteristics of uncracked (healthy) and cracked asphalt surfaces which can give a new asphalt crack index. This is performed through remote sensing applications in the area of asphalt pavements. Multispectral images can be elaborated using the index to enhance crack marks on asphalt surfaces. Ground spectral signatures were acquired from both uncracked and cracked asphalted areas of Cyprus (Limassol). Evaluation separability indices can be used to identify the optimum wavelength regions that can distinguish better the uncracked and cracked asphalt surfaces. The results revealed that the spectral sensitivity for the enhancement of cracked asphalt was detected using the Euclidean, Mahalanobis and Cosine Distance Indices in the Vis range (approximately at 450 nm) and in the SWIR 1 range (approximately at 1750 nm).

  10. Holographic evaluation of fatigue cracks by a compressive stress (HYSTERESIS) technique

    NASA Technical Reports Server (NTRS)

    Freska, S. A.; Rummel, W. D.

    1974-01-01

    Holographic interferometry compares unknown field of optical waves with known one. Differences are displayed as interference bands or fringes. Technique was evaluated on fatigue-cracked 2219-T87 aluminum-alloy panels. Small cracks were detected when specimen was incrementally unloaded.

  11. The noncontinuum crack tip deformation behavior of surface microcracks

    NASA Astrophysics Data System (ADS)

    Morris, W. L.

    1980-07-01

    The crack tip opening displacement (CTOD) of small surface fatigue cracks (lengths of the grain size) in Al 2219-T851 depends upon the location of a crack relative to the grain boundaries. Both CTOD and crack tip closure stress are greatest when the crack tip is a large distance from the next grain boundary in the direction of crack propagation. Contrary to behavioral trends predicted by continuum fracture mechanics, crack length has no detectable effect on the contribution of plastic deformation to CTOD. It is apparent from these observations that the region of significant plastic deformation is confined by the grain boundaries, resulting in a plastic zone size that is insensitive to crack length and to external load.

  12. Detection and sizing of cracks in structural steel using the eddy current method

    DOT National Transportation Integrated Search

    2000-11-01

    This report summarizes research pertaining to the application of the Eddy Current method as a means of crack detection in structural steel members of highway bridges. Eddy currents are induced when an energized coil is placed near the surface of a co...

  13. Acoustic emission during fatigue of porous-coated Ti-6Al-4V implant alloy.

    PubMed

    Kohn, D H; Ducheyne, P; Awerbuch, J

    1992-01-01

    Acoustic emission (AE) events and event intensities (e.g., event amplitude, counts, duration, and energy counts) were recorded and analyzed during fatigue loading of uncoated and porous-coated Ti-6Al-4V. AE source location, spatial filtering, event, and event intensity distributions were used to detect, monitor, analyze, and predict failures. AE provides the ability to spatially and temporally locate multiple fatigue cracks, in real time. Fatigue of porous-coated Ti-6Al-4V is governed by a sequential, multimode fracture process of: transverse fracture in the porous coating; sphere/sphere and sphere/substrate debonding; substrate fatigue crack initiation; slow and rapid substrate fatigue crack propagation. Because of the porosity of the coating, the different stages of fracture within the coating occur in a discontinuous fashion. Therefore, the AE events generated are intermittent and the onset of each mode of fracture in the porous coating can be detected by increases in AE event rate. Changes in AE event rate also correspond to changes in crack extension rate, and may therefore be used to predict failure. AE offers two distinct advantages over conventional optical and microscopic methods of analyzing fatigue cracks--it is more sensitive and it can determine the time history of damage progression. The magnitude of the AE event intensities increased with increasing stress. Failure mechanisms are best differentiated by analyzing AE event amplitudes. Intergranular fracture and microvoid coalescence generated the highest AE event amplitudes (100 dB), whereas, plastic flow and friction generated the lowest AE event amplitudes (55-65 dB). Fractures in the porous coating were characterized by AE event amplitudes of less than 80 dB.

  14. Optimizing Probability of Detection Point Estimate Demonstration

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2017-01-01

    Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-18231and associated mh18232POD software gives most common methods of POD analysis. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. The paper provides discussion on optimizing probability of detection (POD) demonstration experiments using Point Estimate Method. POD Point estimate method is used by NASA for qualifying special NDE procedures. The point estimate method uses binomial distribution for probability density. Normally, a set of 29 flaws of same size within some tolerance are used in the demonstration. The optimization is performed to provide acceptable value for probability of passing demonstration (PPD) and achieving acceptable value for probability of false (POF) calls while keeping the flaw sizes in the set as small as possible.

  15. Detection of Fatigue Cracks at Rivets with Self-Nulling Probe

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Fulton, Jim; Nath, Shridhar; Namkung, Min

    1994-01-01

    A new eddy current probe developed at NASA Langley Research Center has been used to detect small cracks at rivets in aircraft lap splices [1]. The device has earlier been used to detect isolated fatigue cracks with a minimum detectable flaw size of roughly 1/2 to 1/3 the diameter of the probe [2]. The present work shows that the detectable flaw size for cracks originating at rivets can be greatly improved upon from that of isolated flaws. The use of a rotating probe method combined with spatial filtering has been used to detect 0.18 cm EDM notches, as measured from the rivet shank, with a 1.27 cm diameter probe and to detect flaws buried under the rivet head, down to a length of 0.076 cm, using a 0.32 cm diameter probe. The Self-Nulling Electromagnetic Flaw Detector induces a high density eddy current ring in the sample under test. A ferromagnetic flux focusing lens is incorporated such that in the absence of any inhomogeneities in the material under test only a minimal magnetic field will reach the interior of the probe. A magnetometer (pickup coil) located in the center of the probe therefore registers a null voltage in the absence of material defects. When a fatigue crack or other discontinuity is present in the test article the path of the eddy currents in the material is changed. The magnetic field associated with these eddy currents then enter into the interior of the probe, producing a large output voltage across the pickup coil leads. Further

  16. Investigation of a Moire Based Crack Detection Technique for Propulsion Health Monitoring

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.; Abudl-Aziz, Ali; Fralick, Gustave C.; Wrbanek, John D.

    2012-01-01

    The development of techniques for the health monitoring of the rotating components in gas turbine engines is of major interest to NASA s Aviation Safety Program. As part of this on-going effort several experiments utilizing a novel optical Moir based concept along with external blade tip clearance and shaft displacement instrumentation were conducted on a simulated turbine engine disk as a means of demonstrating a potential optical crack detection technique. A Moir pattern results from the overlap of two repetitive patterns with slightly different periods. With this technique, it is possible to detect very small differences in spacing and hence radial growth in a rotating disk due to a flaw such as a crack. The experiment involved etching a circular reference pattern on a subscale engine disk that had a 50.8 mm (2 in.) long notch machined into it to simulate a crack. The disk was operated at speeds up to 12 000 rpm and the Moir pattern due to the shift with respect to the reference pattern was monitored as a means of detecting the radial growth of the disk due to the defect. In addition, blade displacement data were acquired using external blade tip clearance and shaft displacement sensors as a means of confirming the data obtained from the optical technique. The results of the crack detection experiments and its associated analysis are presented in this paper.

  17. An Application of a New Electromagnetic Sensor to Real-Time Monitoring of Fatigue Crack Growth in Thin Metal Plates

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Fulton, J. P.; Wincheski, B.; Clendenin, C. G.

    1993-01-01

    A major part of fracture mechanics is concerned with studying the initiation and propagation of fatigue cracks. This typically requires constant monitoring of crack growth during fatigue cycles which necessitates automation of the whole process. If the rate of crack growth can be determined the experimenter can vary externally controlled parameters such as load level, load cycle frequency and so on. Hence, knowledge of the precise location of the crack tip at any given time is very valuable. One technique currently available for measuring fatigue crack length is the DC potential drop method. The method, however, may be inaccurate if the direction of crack growth deviates considerably from what was assumed initially or the curvature of the crack becomes significant. Another approach is to digitize an optical image of the test specimen surface and then apply a pattern recognition technique to locate the crack tip, but this method is still under development. The present work is an initial study on applying eddy current-type probes to monitoring fatigue crack growth. The performance of two types of electromagnetic probes, a conventional eddy current probe and a newly developed self-nulling probe, was evaluated for the detection characteristics at and near the tips of fatigue cracks. The scan results show that the latter probe provides a very well defined local maximum in its output in the crack tip region suggesting the definite possibility of precisely locating the tip, while the former provides a somewhat ambiguous distribution of the sensor output in the same region. The paper is organized as follows: We start by reviewing the design and performance characteristics of the self-nulling probe and then describe the scan results which demonstrate the basic properties of the self-nulling probe. Next, we provide a brief description of the software developed for tracing a simulated crack and give a brief discussion of the main results of the test. The final section summarizes the major accomplishments of the present work and the elements of the future R&D needs.

  18. Analysis of cracks induced by elevated temperature in rock using micro-focus X-ray CT

    NASA Astrophysics Data System (ADS)

    Cheon, D. S.; Park, E. S.

    2016-12-01

    Thermal energy storage facilities and deep borehole nuclear waste disposal in the underground are repeatedly applied by heat. The thermal stress induced by heat can generate micro-cracks and extend the existing micro-cracks of rocks. For long-term stabilities of the above facilities, the features of thermal induced cracks should be investigated. In this paper, we investigated occurred the features of thermal cracks using micro-focus X-ray CT before and after thermal experiments. Two different kinds of rock core specimens (limestone, granite) were heated within the furnace with the elevated temperatures of 250 °C, 400 °C and 550 °C. In thermal experiments, we heated rocks with the speed of 1.5 ºC /min to avoid thermal shock. Total 16 cases were subjected to X-ray imaging and post-processing to observe thermally induced fractures. Micro-cracks induced by thermal loading may not be extractable by a thresholding method such that the manual tracking within the ROI (Region of Interest) was implemented by using the VG Studio Software. Identified fractures were grouped by each object whose orientation was fitted by 3D plane. And then, its normal vector was computed and visualized. Nominal fractures (less than 10 voxel size) were excluded. Each fracture was projected on the 3D sphere and its volume was represented by color map. Thermal induced cracks in the limestone observed on CT images were very small. On the other hand, they could be more clearly observed in the granite. In case of limestone, the number of cracks is only 4 after heating up 550 °C and most of them occurred within the mineral. In case of granite, 157 cracks are detected both at the boundaries of minerals and within the mineral. In both rocks, the development of thermal cracks within a certain mineral was superior to them that occurred along the interface between minerals. After heating up to 550 °C the occurred cracks significantly increased. Crack volume was also similar pattern to the number of cracks. However the average volume of cracks in limestone is larger than granite. The normal vector of the cracks is similar to the bedding plane of limestone and texture of granite. These cracks affected the physical(density, elastic wave velocity) and mechanical properties(uniaxial compression strength , elastic modulus.

  19. Detection and characterization of fatigue cracks in thin metal plates by low frequency resonant model analysis

    NASA Technical Reports Server (NTRS)

    Wincheski, B.; Namkung, M.; Birt, E. A.

    1992-01-01

    Low-frequency resonant model analysis, a technique for the detection and characterization of fatigue cracks in thin metal plates, which could be adapted to rapid scan or large area testing, is considered. Experimental data displaying a direct correlation between fatigue crack geometry and resonance frequency for the second vibrational plate mode are presented. FEM is used to calculate the mechanical behavior of the plates, and provides a comparison basis for the experimentally determined resonance frequency values. The waveform of the acoustic emission generated at the resonant frequency is examined; it provides the basis for a model of the interaction of fatigue crack faces during plate vibration.

  20. Living with cracks: Damage and repair in human bone

    NASA Astrophysics Data System (ADS)

    Taylor, David; Hazenberg, Jan G.; Lee, T. Clive

    2007-04-01

    Our bones are full of cracks, which form and grow as a result of daily loading activities. Bone is the major structural material in our bodies. Although weaker than many engineering materials, it has one trick that keeps it ahead - it can repair itself. Small cracks, which grow under cyclic stresses by the mechanism of fatigue, can be detected and removed before they become long enough to be dangerous. This article reviews the work that has been done to understand how cracks form and grow in bone, and how they can be detected and repaired in a timely manner. This is truly an interdisciplinary research field, requiring the close cooperation of materials scientists, biologists and engineers.

  1. Crack detection using resonant ultrasound spectroscopy

    DOEpatents

    Migliori, A.; Bell, T.M.; Rhodes, G.W.

    1994-10-04

    Method and apparatus are provided for detecting crack-like flaws in components. A plurality of exciting frequencies are generated and applied to a component in a dry condition to obtain a first ultrasonic spectrum of the component. The component is then wet with a selected liquid to penetrate any crack-like flaws in the component. The plurality of exciting frequencies are again applied to the component and a second ultrasonic spectrum of the component is obtained. The wet and dry ultrasonic spectra are then analyzed to determine the second harmonic components in each of the ultrasonic resonance spectra and the second harmonic components are compared to ascertain the presence of crack-like flaws in the component. 5 figs.

  2. Crack detection using resonant ultrasound spectroscopy

    DOEpatents

    Migliori, Albert; Bell, Thomas M.; Rhodes, George W.

    1994-01-01

    Method and apparatus are provided for detecting crack-like flaws in components. A plurality of exciting frequencies are generated and applied to a component in a dry condition to obtain a first ultrasonic spectrum of the component. The component is then wet with a selected liquid to penetrate any crack-like flaws in the component. The plurality of exciting frequencies are again applied to the component and a second ultrasonic spectrum of the component is obtained. The wet and dry ultrasonic spectra are then analyzed to determine the second harmonic components in each of the ultrasonic resonance spectra and the second harmonic components are compared to ascertain the presence of crack-like flaws in the component.

  3. Machine-vision-based roadway health monitoring and assessment : development of a shape-based pavement-crack-detection approach.

    DOT National Transportation Integrated Search

    2016-01-01

    State highway agencies (SHAs) routinely employ semi-automated and automated image-based methods for network-level : pavement-cracking data collection, and there are different types of pavement-cracking data collected by SHAs for reporting and : manag...

  4. Comparative study of electromechanical impedance and Lamb wave techniques for fatigue crack detection and monitoring in metallic structures

    NASA Astrophysics Data System (ADS)

    Lim, Say Ian; Liu, Yu; Soh, Chee Kiong

    2012-04-01

    Fatigue cracks often initiate at the weld toes of welded steel connections. Usually, these cracks cannot be identified by the naked eyes. Existing identification methods like dye-penetration test and alternating current potential drop (ACPD) may be useful for detecting fatigue cracks at the weld toes. To apply these non-destructive evaluation (NDE) techniques, the potential sites have to be accessible during inspection. Therefore, there is a need to explore other detection and monitoring techniques for fatigue cracks especially when their locations are inaccessible or cost of access is uneconomical. Electro-mechanical Impedance (EMI) and Lamb wave techniques are two fast growing techniques in the Structural Health Monitoring (SHM) community. These techniques use piezoelectric ceramics (PZT) for actuation and sensing. Since the monitoring site is only needed to be accessed once for the instrumentation of the transducers, remote monitoring is made possible. The permanent locations of these transducers also translate to having consistent measurement for monitoring. The main focus of this study is to conduct a comparative investigation on the effectiveness and efficiency of the EMI technique and the Lamb wave technique for successful fatigue crack identification and monitoring of welded steel connections using piezoelectric transducers. A laboratory-sized non-load carrying fillet weld specimen is used in this study. The specimen is subjected to cyclic tensile load and data for both techniques are acquired at stipulated intervals. It can be concluded that the EMI technique is sensitive to the crack initiation phase while the Lamb wave technique correlates well with the crack propagation phase.

  5. Detection of cracks on tomatoes using hyperspectral near-infrared reflectance imaging system

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to evaluate the use of hyperspectral near-infrared (NIR) reflectance imaging techniques for detection of cuticle cracks on tomatoes. A hyperspectral near-infrared reflectance imaging system in the region of 1000-1700 nm was used to obtain hyperspectral reflectance ima...

  6. 75 FR 70101 - Airworthiness Directives; Sikorsky Aircraft Corporation (Sikorsky) Model S-70A and S-70C Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... test (UT) inspection of the tail gearbox output bevel gear (gear) for a crack. If you find a crack... gear cracking incidents, one of which resulted in the tail rotor separating from the helicopter. The actions specified by this AD are intended to detect a crack in the gear to prevent a tail rotor separating...

  7. 75 FR 26888 - Airworthiness Directives; Sikorsky Aircraft Corporation (Sikorsky) Model S-70A and S-70C Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-13

    ... (gear) for a crack. If you find a crack, replacing the gear with an airworthy gear before further flight would be required. This proposal is prompted by three gear cracking incidents, one of which resulted in... to detect a crack in the gear to prevent a tail rotor separating, loss of tail rotor control, and...

  8. Monitoring crack extension in fracture toughness tests by ultrasonics

    NASA Technical Reports Server (NTRS)

    Klima, S. J.; Fisher, D. M.; Buzzard, R. J.

    1975-01-01

    An ultrasonic method was used to observe the onset of crack extension and to monitor continued crack growth in fracture toughness specimens during three point bend tests. A 20 MHz transducer was used with commercially available equipment to detect average crack extension less than 0.09 mm. The material tested was a 300-grade maraging steel in the annealed condition. A crack extension resistance curve was developed to demonstrate the usefulness of the ultrasonic method for minimizing the number of tests required to generate such curves.

  9. A Mode-Shape-Based Fault Detection Methodology for Cantilever Beams

    NASA Technical Reports Server (NTRS)

    Tejada, Arturo

    2009-01-01

    An important goal of NASA's Internal Vehicle Health Management program (IVHM) is to develop and verify methods and technologies for fault detection in critical airframe structures. A particularly promising new technology under development at NASA Langley Research Center is distributed Bragg fiber optic strain sensors. These sensors can be embedded in, for instance, aircraft wings to continuously monitor surface strain during flight. Strain information can then be used in conjunction with well-known vibrational techniques to detect faults due to changes in the wing's physical parameters or to the presence of incipient cracks. To verify the benefits of this technology, the Formal Methods Group at NASA LaRC has proposed the use of formal verification tools such as PVS. The verification process, however, requires knowledge of the physics and mathematics of the vibrational techniques and a clear understanding of the particular fault detection methodology. This report presents a succinct review of the physical principles behind the modeling of vibrating structures such as cantilever beams (the natural model of a wing). It also reviews two different classes of fault detection techniques and proposes a particular detection method for cracks in wings, which is amenable to formal verification. A prototype implementation of these methods using Matlab scripts is also described and is related to the fundamental theoretical concepts.

  10. Crack detection and fatigue related delamination in FRP composites applied to concrete

    NASA Astrophysics Data System (ADS)

    Brown, Jeff; Baker, Rebecca; Kallemeyn, Lisa; Zendler, Andrew

    2008-03-01

    Reinforced concrete beams are designed to allow minor concrete cracking in the tension zone. The severity of cracking in a beam element is a good indicator of how well a structure is performing and whether or not repairs are needed to prevent structural failure. FRP composites are commonly used to increase the flexural and shear capacity of RC beam elements, but one potential disadvantage of this method is that strengthened surfaces are no longer visible and cracks or delaminations that result from excessive loading or fatigue may go undetected. This research investigated thermal imaging techniques for detecting load induced cracking in the concrete substrate and delamination of FRP strengthening systems applied to reinforced concrete (RC). One small-scale RC beam (5 in. x 6 in. x 60 in.) was strengthened with FRP and loaded to failure monotonically. An infrared thermography inspection was performed after failure. A second strengthened beam was loaded cyclically for 1,750,000 cycles to investigate how fatigue might affect substrate cracking and delamination growth throughout the service-life of a repaired element. No changes were observed in the FRP bond during/after the cyclic loading. The thermal imaging component of this research included pixel normalization to enhance detectability and characterization of this specific type of damage.

  11. Growth of surface and corner cracks in beta-processed and mill-annealed Ti-6Al-4V

    NASA Technical Reports Server (NTRS)

    Bell, P. D.

    1975-01-01

    Empirical stress-intensity expressions were developed to relate the growth of cracks from corner flaws to the growth of cracks from surface flaws. An experimental program using beta-processed Ti-6Al-4V verified these expressions for stress ratios, R greater than or equal to 0. An empirical crack growth-rate expression which included stress-ratio and stress-level effects was also developed. Cracks grew approximately 10 percent faster in transverse-grain material than in longitudinal-grain material and at approximately the same rate in longitudinal-grain mill-annealed Ti-6Al-4V. Specimens having surface and corner cracks and made of longitudinal-grain, beta-processed material were tested with block loads, and increasing the stresses in a block did not significantly change the crack growth rates. Truncation of the basic ascending stress sequence within a block caused more rapid crack growth, whereas both the descending and low-to-high stress sequences slowed crack growth.

  12. Applicability of a Crack-Detection System for Use in Rotor Disk Spin Test Experiments Being Evaluated

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.; Roth, Don J.

    2004-01-01

    Engine makers and aviation safety government institutions continue to have a strong interest in monitoring the health of rotating components in aircraft engines to improve safety and to lower maintenance costs. To prevent catastrophic failure (burst) of the engine, they use nondestructive evaluation (NDE) and major overhauls for periodic inspections to discover any cracks that might have formed. The lowest cost fluorescent penetrant inspection NDE technique can fail to disclose cracks that are tightly closed during rest or that are below the surface. The NDE eddy current system is more effective at detecting both crack types, but it requires careful setup and operation and only a small portion of the disk can be practically inspected. So that sensor systems can sustain normal function in a severe environment, health-monitoring systems require the sensor system to transmit a signal if a crack detected in the component is above a predetermined length (but below the length that would lead to failure) and lastly to act neutrally upon the overall performance of the engine system and not interfere with engine maintenance operations. Therefore, more reliable diagnostic tools and high-level techniques for detecting damage and monitoring the health of rotating components are very essential in maintaining engine safety and reliability and in assessing life.

  13. Simulating the X-Ray Image Contrast to Set-Up Techniques with Desired Flaw Detectability

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2015-01-01

    The paper provides simulation data of previous work by the author in developing a model for estimating detectability of crack-like flaws in radiography. The methodology is being developed to help in implementation of NASA Special x-ray radiography qualification, but is generically applicable to radiography. The paper describes a method for characterizing X-ray detector resolution for crack detection. Applicability of ASTM E 2737 resolution requirements to the model are also discussed. The paper describes a model for simulating the detector resolution. A computer calculator application, discussed here, also performs predicted contrast and signal-to-noise ratio calculations. Results of various simulation runs in calculating x-ray flaw size parameter and image contrast for varying input parameters such as crack depth, crack width, part thickness, x-ray angle, part-to-detector distance, part-to-source distance, source sizes, and detector sensitivity and resolution are given as 3D surfaces. These results demonstrate effect of the input parameters on the flaw size parameter and the simulated image contrast of the crack. These simulations demonstrate utility of the flaw size parameter model in setting up x-ray techniques that provide desired flaw detectability in radiography. The method is applicable to film radiography, computed radiography, and digital radiography.

  14. In Situ Acoustic Monitoring of Thermal Spray Process Using High-Frequency Impulse Measurements

    NASA Astrophysics Data System (ADS)

    Tillmann, Wolfgang; Walther, Frank; Luo, Weifeng; Haack, Matthias; Nellesen, Jens; Knyazeva, Marina

    2018-01-01

    In order to guarantee their protective function, thermal spray coatings must be free from cracks, which expose the substrate surface to, e.g., corrosive media. Cracks in thermal spray coatings are usually formed because of tensile residual stresses. Most commonly, the crack occurrence is determined after the thermal spraying process by examination of metallographic cross sections of the coating. Recent efforts focus on in situ monitoring of crack formation by means of acoustic emission analysis. However, the acoustic signals related to crack propagation can be absorbed by the noise of the thermal spraying process. In this work, a high-frequency impulse measurement technique was applied to separate different acoustic sources by visualizing the characteristic signal of crack formation via quasi-real-time Fourier analysis. The investigations were carried out on a twin wire arc spraying process, utilizing FeCrBSi as a coating material. The impact of the process parameters on the acoustic emission spectrum was studied. Acoustic emission analysis enables to obtain global and integral information on the formed cracks. The coating morphology and coating defects were inspected using light microscopy on metallographic cross sections. Additionally, the resulting crack patterns were imaged in 3D by means of x-ray microtomography.

  15. N-SCAN: new vibromodulation system for detection and monitoring of cracks and other contact-type defects

    NASA Astrophysics Data System (ADS)

    Donskoy, Dmitri; Ekimov, Alexander; Luzzato, Emile; Lottiaux, Jean-Louis; Stoupin, Stanislav; Zagrai, Andrei

    2003-08-01

    In recent years, innovative vibro-modulation technique has been introduced for detection of contact-type interfaces such as cracks, debondings, and delaminations. The technique utilizes the effect of nonlinear interaction of ultrasound and vibrations at the interface of the defect. Vibration varies on the contact area of the interface modulating passing through ultrasonic wave. The modulation manifests itself as additional side-band spectral components with the combination frequencies in the spectrum of the received signal. The presence of these components allows for detection and differentiation of the contact-type defects from other structural and material inhomogeneities. Vibro-modulation technique has been implemented in N-SCAN damage detection system. The system consists of a digital synthesizer, high and low frequency amplifiers, a magnetostrictive shaker, ultrasonic transducers and a PC-based data acquisition/processing station with N-SCAN software. The ability of the system to detect contact-type defects was experimentally verified using specimens of simple and complex geometries made of steel, aluminum, composites and other structural materials. N-SCAN proved to be very effective for nondestructive testing of full-scale structures ranging from 24 foot-long gun barrels to stainless steel pipes used in nuclear power plants. Among advantages of the system are applicability for the wide range of structural materials and for structures with complex geometries, real time data processing, convenient interface for system operation, simplicity of interpretation of results, no need for sensor scanning along structure, onsite inspection of large structures at a fraction of time as compared with conventional techniques. This paper describes the basic principles of nonlinear vibro-modulation NDE technique, some theoretical background for nonlinear interaction and justification of signal processing algorithm. It is also presents examples of practical implementation and application of the technique.

  16. Reference-free fatigue crack detection using nonlinear ultrasonic modulation under various temperature and loading conditions

    NASA Astrophysics Data System (ADS)

    Lim, Hyung Jin; Sohn, Hoon; DeSimio, Martin P.; Brown, Kevin

    2014-04-01

    This study presents a reference-free fatigue crack detection technique using nonlinear ultrasonic modulation. When low frequency (LF) and high frequency (HF) inputs generated by two surface-mounted lead zirconate titanate (PZT) transducers are applied to a structure, the presence of a fatigue crack can provide a mechanism for nonlinear ultrasonic modulation and create spectral sidebands around the frequency of the HF signal. The crack-induced spectral sidebands are isolated using a combination of linear response subtraction (LRS), synchronous demodulation (SD) and continuous wavelet transform (CWT) filtering. Then, a sequential outlier analysis is performed on the extracted sidebands to identify the crack presence without referring any baseline data obtained from the intact condition of the structure. Finally, the robustness of the proposed technique is demonstrated using actual test data obtained from simple aluminum plate and complex aircraft fitting-lug specimens under varying temperature and loading variations.

  17. The Mechanical Metallurgy of Armour Steels

    DTIC Science & Technology

    2016-10-01

    21 7.A. Cracking associated with Welding ...associated with Welding A range of defects, including cracks can be caused by welding processes, examples of which are shown in Figure 19, many of...which can lead to structural cracking problems. The avoidance of weld defects, particularly cracking, is the reason why armour steel welding processes

  18. Precursor Evolution and Stress Corrosion Cracking Initiation of Cold-Worked Alloy 690 in Simulated Pressurized Water Reactor Primary Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Ziqing; Toloczko, Mychailo; Kruska, Karen

    Stress corrosion crack initiation of two thermally-treated, cold-worked (CW) alloy 690 (UNS N06690) materials was investigated in 360oC simulated PWR primary water using constant load tensile (CLT) tests and blunt notch compact tension (BNCT) tests equipped with direct current potential drop (DCPD) for in-situ detection of cracking. SCC initiation was not detected by DCPD for either the 21% or 31%CW CLT specimens loaded at their yield stress after ~9,220 hours, however intergranular (IG) precursor damage and isolated surface cracks were observed on the specimens. The two 31%CW BNCT specimens loaded at moderate stress intensity after several cyclic loading ramps showedmore » DCPD-indicated crack initiation after 10,400 hours of exposure at constant stress intensity, which was resulted from significant growth of IG cracks. The 21%CW BNCT specimens only exhibited isolated small IG surface cracks and showed no apparent DCPD change throughout the test. Post-test cross-section examinations revealed many grain boundary (GB) nano-cavities in the bulk of all the CLT and BNCT specimens particularly for the 31%CW materials. Cavities were also found along GBs extending to the surface suggesting an important role in crack nucleation. This paper provides an overview of the evolution of GB cavities and discusses their effects on crack initiation in CW alloy 690.« less

  19. 77 FR 46932 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ... Company Model 767 airplanes. This AD was prompted by reports of cracks of the underwing longeron fittings... for cracking, and related investigative and corrective actions if necessary. We are issuing this AD to detect and correct such cracking, which could result in loss of the primary load path between the...

  20. 77 FR 24355 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    ... cracks found in the Web pockets of the wing center section (WCS) spanwise beams. This AD requires repetitive detailed inspections and high frequency eddy current inspections for cracks of the WCS spanwise beams, and repair if necessary. We are issuing this AD to detect and correct cracking in the WCS...

  1. The flaw-detected coating and its applications in R&M of aircrafts

    NASA Astrophysics Data System (ADS)

    Hu, Feng; Liu, Mabao; Lü, Zhigang

    2009-07-01

    A monitoring method called ICM (Intelligent Coating Monitoring), which is based mainly on the intelligent coating sensors, has the capability to monitor crack initiation and growth in fatigue test coupons has been suggested in this study. The intelligent coating sensor is normally consisted of three layers: driving layer, sensing layer and protective layer where necessary. Fatigue tests with ICM for various materials demonstrate the capability to detect cracks with l<300μm, corresponding to the increment of the sensing layer's resistance at the level of 0.05Ω. Also, ICM resistance measurements correlate with crack length, permitting crack length monitoring. Numerous applications are under evaluation for ICM in difficult-to-access locations on commercial and military aircrafts. The motivation for the permanently flaw-detected coating monitoring is either (i) to replace an existing inspection that requires substantial disassembly and surface preparation (e.g. inside the fuel tank of an aircraft), or (ii) to take advantage of early detection and apply less invasive life-extension repairs, as well as reduce interruption of service when flaws are detected. Implementation of ICM is expected to improve fleet management practices and modify damage tolerance assumptions.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Ziqing; Kruska, Karen; Toloczko, Mychailo B.

    Stress corrosion crack initiation of two thermally-treated, cold-worked (CW) alloy 690 materials was investigated in 360oC simulated PWR primary water using constant load tensile (CLT) tests and blunt notch compact tension (BNCT) tests equipped with direct current potential drop (DCPD) for in-situ detection of cracking. SCC initiation was not detected by DCPD for the 21% and 31%CW CLT specimens loaded at their yield stress after ~9,220 h, however intergranular (IG) precursor damage and isolated surface cracks were observed on the specimens. The two 31%CW BNCT specimens loaded at moderate stress intensity after several cyclic loading ramps showed DCPD-indicated crack initiationmore » after 10,400h exposure at constant stress intensity, which resulted from significant growth of IG cracks. The 21%CW BNCT specimens only exhibited isolated small IG surface cracks and showed no apparent DCPD change throughout the test. Interestingly, post-test cross-section examinations revealed many grain boundary (GB) nano-cavities in the bulk of all the CLT and BNCT specimens particularly for the 31%CW materials. Cavities were also found along GBs extending to the surface suggesting an important role in crack nucleation. This paper provides an overview of the evolution of GB cavities and will discuss their effects on crack initiation in CW alloy 690.« less

  3. Remote monitoring and prognosis of fatigue cracking in steel bridges with acoustic emission

    NASA Astrophysics Data System (ADS)

    Yu, Jianguo Peter; Ziehl, Paul; Pollock, Adrian

    2011-04-01

    Acoustic emission (AE) monitoring is desirable to nondestructively detect fatigue damage in steel bridges. Investigations of the relationship between AE signals and crack growth behavior are of paramount importance prior to the widespread application of passive piezoelectric sensing for monitoring of fatigue crack propagation in steel bridges. Tests have been performed to detect AE from fatigue cracks in A572G50 steel. Noise induced AE signals were filtered based on friction emission tests, loading pattern, and a combined approach involving Swansong II filters and investigation of waveforms. The filtering methods based on friction emission tests and load pattern are of interest to the field evaluation using sparse datasets. The combined approach is suitable for data filtering and interpretation of actual field tests. The pattern recognition program NOESIS (Envirocoustics) was utilized for the evaluation of AE data quality. AE parameters are associated with crack length, crack growth rate, maximum stress intensity and stress intensity range. It is shown that AE hits, counts, absolute energy, and signal strength are able to provide warnings at the critical cracking level where cracking progresses from stage II (stable propagation) to stage III (unstable propagation which may result in failure). Absolute energy rate and signal strength rate may be better than count rate to assess the remaining fatigue life of inservice steel bridges.

  4. Identification and prioritization of rail squat defects in the field using rail magnetisation technology

    NASA Astrophysics Data System (ADS)

    Kaewunruen, Sakdirat

    2015-04-01

    Inevitably, rail squats and studs are continuing to be a serious problem for railway organisations around the world in the 21st century. They are typically classified as the growth of any cracks that have grown longitudinally through the subsurface and some of the cracks propagating to the bottom of rails transversely, and have branched from initial longitudinal cracks with a depression of rail surface. The horizontal crack, which results in a depression of rail surface, induces increased maintenance level, more frequent monitoring, compromised rail testing (as the crack shields the signal echoes), and possible broken rails. This paper presents field investigations using a magnetised-rail testing device developed by MRX Technologies to identify and prioritise the rail squats. Most of the in situ squats were found on the high rail of the transition (variable-radius curved track), which is associated with rolling contact fatigue (RCF). This investigation highlights the field performance of the MRX's surface crack detection technology in comparison with the traditional ultrasonic method and detailed walking inspection. Visually, it was found in the field that the size of the RCF squats varies from very small to moderate. The predicted crack data were obtained by scanning the magnitised rails. The comparison of the actual crack depths (ultrasonic) and the predicted crack depths (MRX device) shows: • A possible correlation for small RCF/ squat cracks. • Poor interpretation of larger defects and welds. The field assessment also suggests some practical issues required for further development, including the detection of rail spalling, deep transverse crack, welding, and so on.

  5. Detection algorithm for cracks on the surface of tomatoes using Multispectral Vis/NIR Reflectance Imagery

    USDA-ARS?s Scientific Manuscript database

    Tomatoes, an important agricultural product in fresh-cut markets, are sometimes a source of foodborne illness, mainly Salmonella spp. Growth cracks on tomatoes can be a pathway for bacteria, so its detection prior to consumption is important for public health. In this study, multispectral Visible/Ne...

  6. 76 FR 721 - Airworthiness Directives; Gulfstream Aerospace Corporation Model G-1159 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-06

    ... requires an inspection to detect cracks or corrosion in the wing structure in the area of Fuselage Station... required repetitive inspections to detect corrosion or cracks in the forward and aft wing attach fittings...; and the application of corrosion protection treatment. Since the issuance of the NPRM, the Federal...

  7. The synthesis and characterization of xerogel silica films for interlayer dielectric applications

    NASA Astrophysics Data System (ADS)

    Chow, Loren Anton

    1999-11-01

    Lowering the dielectric constant, k, of the interlayer dielectric in microprocessors leads to a decrease in power consumption, crosstalk between interconnects and RC time delay. Because of its low density, porous silica, as derived from the sol-gel process, has been widely praised as having the lowest dielectric constant of all viable "low-k" materials. Presented in this work are the results of an investigation featuring the synthesis and characterization of xerogel silica films. Synthesized were xerogel films derived from a tetrafanctional precursor. Such a material was found to be brittle and given to cracking and delamination during curing. it was found, however, that organic modification of the xerogel film led to a compliant material that remained crack-free throughout the curing process. This "hybrid" material filled 0.35 mum trenches without voids, cracks or delamination. The dielectric constant was found to be extremely sensitive to moisture. Although the moisture content was lower than that detectable by Fourier-transform infrared spectroscopy, the dielectric constant in ambient conditions was 80% higher than a dry film. The voltage breakdown was 3.4 MV/cm and the leakage current during bias temperature stressing (at 200 V and 200°C) was negligibly low. There was a critical film thickness at which the film cracked. This critical film thickness was dependent on the elastic constants of the substrate and the film. Because the strain energy released by the cracking film is commensurate with the compliance of the substrate, cracks formed preferentially in the <100> directions; that is, the directions of lowest substrate modulus. The critical thickness for the <100> direction for the hybrid film cured at 500°C was found to be 1.10 mum. Furthermore, it was found that cracks from the xerogel penetrated into the Si substrate to a depth of 0.8 mum. Using substrates of different elastic constants, the biaxial modulus and the coefficient of thermal expansion were found to be respectively 56 GPa and 2.11 x 10-6/°C. With knowledge of the biaxial modulus, the depth of cracking into the Si substrate and an assumption on Poisson's ratio, the critical crack energy release rate of the film was found to be 1.8 J/m2.

  8. Sensitivity and comparison evaluation of Saturn 5 liquid penetrants

    NASA Technical Reports Server (NTRS)

    Jones, G. H.

    1973-01-01

    Results of a sensitivity and comparison evaluation performed on six liquid penetrants that were used on the Saturn 5 vehicle and other space hardware to detect surface discontinuities are described. The relationship between penetrant materials and crack definition capabilities, the optimum penetrant materials evaluation method, and the optimum measurement methods for crack dimensions were investigated. A unique method of precise developer thickness control was envolved, utilizing clear radiographic film and a densitometer. The method of evaluation included five aluminum alloy, 2219-T87, specimens that were heated and then quenched in cold water to produce cracks. The six penetrants were then applied, one at a time, and the crack indications were counted and recorded for each penetrant for comparison purposes. Measurements were made by determining the visual crack indications per linear inch and then sectioning the specimens for a metallographic count of the cracks present. This method provided a numerical approach for assigning a sensitivity index number to the penetrants. Of the six penetrants evaluated, two were not satisfactory (one was not sufficiently sensitive and the other was to sensitive, giving false indications). The other four were satisfactory with approximately the same sensitivity in the range of 78 to 80.5 percent of total cracks detected.

  9. Determination of crack depth in aluminum using eddy currents and GMR sensors

    NASA Astrophysics Data System (ADS)

    Lopes Ribeiro, A.; Pasadas, D.; Ramos, H. G.; Rocha, T.

    2015-03-01

    In this paper we use eddy currents to determine the depth of linear cracks in aluminum plates. A constant field probe is used to generate the spatially uniform excitation field and a single axis giant magneto-resistor (GMR) sensor is used to measure the eddy currents magnetic field. Different depths were machined in one aluminum plate with 4 mm of thickness. By scanning those cracks the magnetic field components parallel and perpendicular to the crack's line were measured when the eddy currents were launched perpendicularly to the crack's line. To characterize one crack in a plate of a given thickness and material, the experimental procedure was defined. The plate surface is scanned to detect and locate one crack. The acquired data enables the determination of the crack's length and orientation. A second scanning is performed with the excitation current perpendicular to the crack and the GMR sensing axis perpendicular and parallel to the crack's line.

  10. Monitoring small-crack growth by the replication method

    NASA Technical Reports Server (NTRS)

    Swain, Mary H.

    1992-01-01

    The suitability of the acetate replication method for monitoring the growth of small cracks is discussed. Applications of this technique are shown for cracks growing at the notch root in semicircular-edge-notch specimens of a variety of aluminum alloys and one steel. The calculated crack growth rate versus Delta K relationship for small cracks was compared to that for large cracks obtained from middle-crack-tension specimens. The primary advantage of this techinque is that it provides an opportunity, at the completion of the test, to go backward in time towards the crack initiation event and 'zoom in' on areas of interest on the specimen surface with a resolution of about 0.1 micron. The primary disadvantage is the inability to automate the process. Also, for some materials, the replication process may alter the crack-tip chemistry or plastic zone, thereby affecting crack growth rates.

  11. Imaging inert fluorinated gases in cracks: perhaps in David's ankles.

    PubMed

    Kuethe, Dean O; Scholz, Markus D; Fantazzini, Paola

    2007-05-01

    Inspired by the challenge of determining the nature of cracks on the ankles of Michelangelo's statue David, we discovered that one can image SF(6) gas in cracks in marble samples with alacrity. The imaging method produces images of gas with a signal-to-noise ratio (SNR) of 100-250, which is very high for magnetic resonance imaging (MRI) in general, let alone for an image of a gas at thermal equilibrium polarization. To put this unusual SNR in better perspective, we imaged SF(6) in a crack in a marble sample and imaged the lung tissue of a live rat (a more familiar variety of sample to many MRI scientists) using the same pulse sequence, the same size coils and the same MRI system. In both cases, we try to image subvoxel thin sheets of material that should appear bright against a darker background. By choosing imaging parameters appropriate for the different relaxation properties of SF(6) gas versus lung tissue and by choosing voxel sizes appropriate for the different goals of detecting subvoxel cracks on marble versus resolving subvoxel thin sheets of tissue, the SNR for voxels full of material was 220 and 14 for marble and lung, respectively. A major factor is that we chose large voxels to optimize SNR for detecting small cracks and we chose small voxels for resolving lung features at the expense of SNR. Imaging physics will cooperate to provide detection of small cracks on marble, but David's size poses a challenge for magnet designers. For the modest goal of imaging cracks in the left ankle, we desire a magnet with an approximately 32-cm gap and a flux density of approximately 0.36 T that weighs <500 kg.

  12. Differentiation of South American crack and domestic (US) crack cocaine via headspace-gas chromatography/mass spectrometry.

    PubMed

    Colley, Valerie L; Casale, John F

    2015-03-01

    South American 'crack' cocaine, produced directly from coca leaf, can be distinguished from US domestically produced crack on the basis of occluded solvent profiles. In addition, analysis of domestically produced crack indicates the solvents that were used for cocaine hydrochloride (HCl) processing in South America. Samples of cocaine base (N=3) from South America and cocaine from the USA (N=157 base, N=88 HCl) were analyzed by headspace-gas chromatography-mass spectrometry (HS-GC-MS) to determine their solvent profiles. Each cocaine HCl sample was then converted to crack cocaine using the traditional crack production method and re-examined by HS-GC-MS. The resulting occluded solvent profiles were then compared to their original HCl solvent profiles. Analysis of the corresponding crack samples confirmed the same primary processing solvents found in the original HCl samples, but at reduced levels. Domestically seized crack samples also contained reduced levels of base-to-HCl conversion solvents. In contrast, analysis of South American crack samples confirmed the presence of low to high boiling hydrocarbons and no base-to-HCl conversion solvents. The presented study showed analysis of crack cocaine samples provides data on which processing solvents were originally utilized in the production of cocaine HCl in South America, prior to conversion to crack cocaine. Determination of processing solvents provides valuable information to the counter-drug intelligence community and assists the law enforcement community in determining cocaine distribution and trafficking routes throughout the world. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  13. Cracking process of Fe-26Cr-1Mo during low cycle corrosion fatigue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.Q.; Li, J.; Wang, Z.F.

    1994-12-01

    The corrosion fatigue (CF) life has been divided classically into the initiation'' and propagation'' periods. Usually, the crack initiation process dominates the component lifetime under the low cycle CF condition because the crack propagates rapidly one initiated. Despite much work done on the research of the CF crack initiation mechanisms, however, a full understanding of crack initiation is still lacking. There are some limitations in explaining the CF crack initiation in an aqueous solution using the above four mechanisms individually. And, it is difficult to conduct experiments in which one mechanism along can be examined. Although CF is complicated, itmore » is possible to reproduce a specific experiment condition which will have the dominant factor affecting the CF crack initiation. Once the cracks initiate on the smooth metal surface, their coalescence, micropropagation and macropropagation will take place successively. The initiated cracks propagate first in the range of several grains, and the behavior of the microcrack propagation is different from that of macrocrack propagation. For Fe-26Cr-1Mo ferritic stainless steel, the fundamental research work of straining electrode has been done by many investigators, but the observation of the material surface at different deformation processes has not been reported. In the present study, the detailed observation of the cracking process of the material has been carried out in low cycle CF.« less

  14. Shear Strength and Cracking Process of Non-persistent Jointed Rocks: An Extensive Experimental Investigation

    NASA Astrophysics Data System (ADS)

    Asadizadeh, Mostafa; Moosavi, Mahdi; Hossaini, Mohammad Farouq; Masoumi, Hossein

    2018-02-01

    In this paper, a number of artificial rock specimens with two parallel (stepped and coplanar) non-persistent joints were subjected to direct shearing. The effects of bridge length ( L), bridge angle ( γ), joint roughness coefficient (JRC) and normal stress ( σ n) on shear strength and cracking process of non-persistent jointed rock were studied extensively. The experimental program was designed based on Taguchi method, and the validity of the resulting data was assessed using analysis of variance. The results revealed that σ n and γ have the maximum and minimum effects on shear strength, respectively. Also, increase in L from 10 to 60 mm led to decrease in shear strength where high level of JRC profile and σ n led to the initiation of tensile cracks due to asperity interlocking. Such tensile cracks are known as "interlocking cracks" which normally initiate from the asperity and then propagate toward the specimen boundaries. Finally, the cracking process of specimens was classified into three categories, namely tensile cracking, shear cracking and combination of tension and shear or mixed mode tensile-shear cracking.

  15. Time-dependent crack growth behavior of alloy 617 and alloy 230 at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Roy, Shawoon Kumar

    2011-12-01

    Two Ni-base solid-solution-strengthened superalloys: INCONEL 617 and HAYNES 230 were studied to check sustained loading crack growth (SLCG) behavior at elevated temperatures appropriate for Next Generation Nuclear Plant (NGNP) applictaions with constant stress intensity factor (Kmax= 27.75 MPa✓m) in air. The results indicate a time-dependent rate controlling process which can be characterized by a linear elastic fracture mechanics (LEFM) parameter -- stress intensity factor (K). At elevated temperatures, the crack growth mechanism was best described using a damage zone concept. Based on results and study, SAGBOE (stress accelerated grain boundary oxidation embrittlement) is considered the primary reason for time-dependent SLCG. A thermodynamic equation was considered to correlate all the SLCG results to determine the thermal activation energy in the process. A phenomenological model based on a time-dependent factor was developed considering the previous researcher's time-dependent fatigue crack propagation (FCP) results and current SLCG results to relate cycle-dependent and time-dependent FCP for both alloys. Further study includes hold time (3+300s) fatigue testing and no hold (1s) fatigue testing with various load ratios (R) at 700°C with a Kmax of 27.75 MPa✓m. Study results suggest an interesting point: crack growth behavior is significantly affected with the change in R value in cycle-dependent process whereas in time-dependent process, change in R does not have any significant effect. Fractography study showed intergranular cracking mode for all time-dependent processes and transgranular cracking mode for cycle-dependent processes. In Alloy 230, SEM images display intergranular cracking with carbide particles, dense oxides and dimple mixed secondary cracks for time-dependent 3+300s FCP and SLCG test. In all cases, Alloy 230 shows better crack growth resistance compared to Alloy 617.

  16. Simplified moment tensor analysis and unified decomposition of acoustic emission source: Application to in situ hydrofracturing test

    NASA Astrophysics Data System (ADS)

    Ohtsu, Masayasu

    1991-04-01

    An application of a moment tensor analysis to acoustic emission (AE) is studied to elucidate crack types and orientations of AE sources. In the analysis, simplified treatment is desirable, because hundreds of AE records are obtained from just one experiment and thus sophisticated treatment is realistically cumbersome. Consequently, a moment tensor inversion based on P wave amplitude is employed to determine six independent tensor components. Selecting only P wave portion from the full-space Green's function of homogeneous and isotropic material, a computer code named SiGMA (simplified Green's functions for the moment tensor analysis) is developed for the AE inversion analysis. To classify crack type and to determine crack orientation from moment tensor components, a unified decomposition of eigenvalues into a double-couple (DC) part, a compensated linear vector dipole (CLVD) part, and an isotropic part is proposed. The aim of the decomposition is to determine the proportion of shear contribution (DC) and tensile contribution (CLVD + isotropic) on AE sources and to classify cracks into a crack type of the dominant motion. Crack orientations determined from eigenvectors are presented as crack-opening vectors for tensile cracks and fault motion vectors for shear cracks, instead of stereonets. The SiGMA inversion and the unified decomposition are applied to synthetic data and AE waveforms detected during an in situ hydrofracturing test. To check the accuracy of the procedure, numerical experiments are performed on the synthetic waveforms, including cases with 10% random noise added. Results show reasonable agreement with assumed crack configurations. Although the maximum error is approximately 10% with respect to the ratios, the differences on crack orientations are less than 7°. AE waveforms detected by eight accelerometers deployed during the hydrofracturing test are analyzed. Crack types and orientations determined are in reasonable agreement with a predicted failure plane from borehole TV observation. The results suggest that tensile cracks are generated first at weak seams and then shear cracks follow on the opened joints.

  17. Transply crack density detection by acousto-ultrasonics

    NASA Technical Reports Server (NTRS)

    Hemann, John H.; Bowles, Kenneth J.; Kautz, Harold; Cavano, Paul

    1987-01-01

    The acousto-ultrasonic method was applied to a PMR-15 8-harness, satin Celion 3000 fabric composite to determine the extent of transply cracking. A six-ply 0/90 laminate was also subjected to mechanical loading, which induced transply cracking. The stress wave factor (SWF) is defined as the energy contained in the received signal from a 2.25-MHz center frequency transducer. The correlation of the SWF with transply crack density is shown.

  18. Effect of Liquid Penetrant Sensitivity on Probability of Detection

    NASA Technical Reports Server (NTRS)

    Parker, Bradford H.

    2011-01-01

    The objective of the task is to investigate the effect of liquid penetrant sensitivity level on probability of detection (POD) of cracks in various metals. NASA-STD-5009 currently requires the use of only sensitivity level 4 liquid penetrants for NASA Standard Level inspections. This requirement is based on the fact that the data used to establish the reliably detectable flaw sizes penetrant inspection was from studies performed in the 1970s using penetrant deemed to be equivalent only to modern day sensitivity level 4 penetrants. However, many NDE contractors supporting NASA Centers routinely use sensitivity level 3 penetrants. Because of the new NASA-STD-5009 requirement, these contractors will have to either shift to sensitivity level 4 penetrants or perform formal POD demonstration tests to qualify their existing process. We propose a study to compare the POD generated for two penetrant manufactures, Sherwin and Magnaflux, and for the two most common penetrant inspection methods, water washable and post emulsifiable, hydrophilic. NDE vendors local to GSFC will be employed. A total of six inspectors will inspect a set of crack panels with a broad range of fatigue crack sizes. Each inspector will perform eight inspections of the panel set using the combination of methods and sensitivity levels described above. At least one inspector will also perform multiple inspections using a fixed technique to investigate repeatability. The hit/miss data sets will be evaluated using both the NASA generated DOEPOD software and the MIL-STD-1823 software.

  19. The detection of tightly closed flaws by nondestructive testing (NDT) methods. [fatigue crack formation in aluminum alloy test specimens

    NASA Technical Reports Server (NTRS)

    Rummel, W. D.; Rathke, R. A.; Todd, P. H., Jr.; Mullen, S. J.

    1975-01-01

    Liquid penetrant, ultrasonic, eddy current and X-radiographic techniques were optimized and applied to the evaluation of 2219-T87 aluminum alloy test specimens in integrally stiffened panel, and weld panel configurations. Fatigue cracks in integrally stiffened panels, lack-of-fusion in weld panels, and fatigue cracks in weld panels were the flaw types used for evaluation. A 2319 aluminum alloy weld filler rod was used for all welding to produce the test specimens. Forty seven integrally stiffened panels containing a total of 146 fatigue cracks, ninety three lack-of-penetration (LOP) specimens containing a total of 239 LOP flaws, and one-hundred seventeen welded specimens containing a total of 293 fatigue cracks were evaluated. Nondestructive test detection reliability enhancement was evaluated during separate inspection sequences in the specimens in the 'as-machined or as-welded', post etched and post proof loaded conditions. Results of the nondestructive test evaluations were compared to the actual flaw size obtained by measurement of the fracture specimens after completing all inspection sequences. Inspection data were then analyzed to provide a statistical basis for determining the flaw detection reliability.

  20. Development of Eddy Current Techniques for the Detection of Cracking in Space Shuttle Primary Reaction Control Thrusters

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz A.; Simpson, John W.; Koshti, Ajay

    2007-01-01

    A recent identification of cracking in the Space Shuttle Primary Reaction Control System (PRCS) thrusters triggered an extensive nondestructive evaluation effort to develop techniques capable of identifying such damage on installed shuttle hardware. As a part of this effort, specially designed eddy current probes inserted into the acoustic cavity were explored for the detection of such flaws and for evaluation of the remaining material between the crack tip and acoustic cavity. The technique utilizes two orthogonal eddy current probes which are scanned under stepper motor control in the acoustic cavity to identify cracks hidden with as much as 0.060 remaining wall thickness to the cavity. As crack growth rates in this area have been determined to be very slow, such an inspection provides a large safety margin for continued operation of the critical shuttle hardware. Testing has been performed on thruster components with both actual and fabricated defects. This paper will review the design and performance of the developed eddy current inspection system. Detection of flaws as a function of remaining wall thickness will be presented along with the proposed system configuration for depot level or on-vehicle inspection capabilities.

  1. Development of Eddy Current Technique for the Detection of Stress Corrosion Cracking in Space Shuttle Primary Reaction Control Thrusters

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Simpson, John; Koshti, Ajay

    2006-01-01

    A recent identification of stress corrosion cracking in the Space Shuttle Primary Reaction Control System (PRCS) thrusters triggered an extensive nondestructive evaluation effort to develop techniques capable of identifying such damage on installed shuttle hardware. As a part of this effort, specially designed eddy current probes inserted into the acoustic cavity were explored for the detection of such flaws and for evaluation of the remaining material between the crack tip and acoustic cavity. The technique utilizes two orthogonal eddy current probes which are scanned under stepper motor control in the acoustic cavity to identify cracks hidden with as much as 0.060 remaining wall thickness to the cavity. As crack growth rates in this area have been determined to be very slow, such an inspection provides a large safety margin for continued operation of the critical shuttle hardware. Testing has been performed on thruster components with both actual and fabricated defects. This paper will review the design and performance of the developed eddy current inspection system. Detection of flaws as a function of remaining wall thickness will be presented along with the proposed system configuration for depot level or on-vehicle inspection capabilities.

  2. Preliminary study of ultrasonic structural quality control of Swiss-type cheese.

    PubMed

    Eskelinen, J J; Alavuotunki, A P; Haeggström, E; Alatossava, T

    2007-09-01

    There is demand for a new nondestructive cheese-structure analysis method for Swiss-type cheese. Such a method would provide the cheese-making industry the means to enhance process control and quality assurance. This paper presents a feasibility study on ultrasonic monitoring of the structural quality of Swiss cheese by using a single-transducer 2-MHz longitudinal mode pulse-echo setup. A volumetric ultrasonic image of a cheese sample featuring gas holes (cheese-eyes) and defects (cracks) in the scan area is presented. The image is compared with an optical reference image constructed from dissection images of the same sample. The results show that the ultrasonic method is capable of monitoring the gas-solid structure of the cheese during the ripening process. Moreover, the method can be used to detect and to characterize cheese-eyes and cracks in ripened cheese. Industrial application demands were taken into account when conducting the measurements.

  3. Monitoring of bone healing by piezoelectric-EMI method

    NASA Astrophysics Data System (ADS)

    Mazlina, M. H.; Sarpinah, Bibi; Tawie, Rudy; Daho, Claira Dalislone; Annuar, Ishak

    2016-02-01

    Smart Piezoelectric devices which have excellent piezoelectric properties have been employed for various sensor and actuators applications. The work presented here is an attempt to demonstrate the feasibility of bone healing monitoring by using piezoelectric-electromechanical impedance (EMI) method that have several advantages such as low cost, portable, light weight and simplicity in measurement. A Piezoelectric sensor (PZT) has been widely used in damage detection of various structures including concrete, pipes and bones due to their unique sensing and actuating properties. The EMI technique has emerged as a universal Structural Health Monitoring (SHM) tool suitable for almost all engineering materials and structures. The method used for this proposed study consists of put healing agent in the host structure in particular cracks bone to be monitored by PZT-needle sensor which is embedded to the host structure. The measurements were taken in the frequency range between 0.04 to 100 kHz at 1 kHz interval using AD5933 evaluation board. The signals retrieved from the AD5933 evaluation board, were quantify and analyse to obtain Root Mean Square Deviation (RMSD) percentage value. Measurements were taken every hour for 12 hours. The result from the study shows the feasibility of the piezoelectric-EMI method to effectively detect changes during bone-cracks healing process until the cracks bone is fully recovered.

  4. 78 FR 60679 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ... Company Model 717-200 airplanes. This AD was prompted by multiple reports of cracks of overwing frames. This AD requires repetitive inspections for cracking of the overwing frames, and corrective actions if necessary. We are issuing this AD to detect and correct such cracking that could sever a frame, which may...

  5. 75 FR 30284 - Airworthiness Directives; Empresa Brasileira de Aeronautica S.A. (EMBRAER) Model ERJ 170 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... condition as: During ERJ 170 airplane full scale fatigue test, cracks were found in some structural... intervals, could prevent a timely detection of fatigue cracks. Undetected fatigue cracks in these areas... unsafe condition for the specified products. The MCAI states: During ERJ 170 airplane full scale fatigue...

  6. 76 FR 72853 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... detect and correct fatigue cracking of the fuselage skin panels at the chem-mill steps, which could... correct fatigue cracking of the fuselage skin panels at the chem-mill steps, which could result in sudden... STA 400 and STA 460 on certain airplanes. The cause of the cracking was fatigue due to high- tension...

  7. 77 FR 28328 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... loose or missing fastener, a crack, damage, or corrosion and adding an internal doubler to the aft shear... proposed actions are intended to detect a loose or missing fastener, a crack, damage, or corrosion on the T... inspection of the T/R pylon ``components and structure for obvious damage, cracks, corrosion, and security...

  8. The detection of fatigue cracks by nondestructive testing methods

    NASA Technical Reports Server (NTRS)

    Rummel, W. D.; Todd, P. H., Jr.; Frecska, S. A.; Rathke, R. A.

    1974-01-01

    X-radiographic penetrant, ultrasonic, eddy current, holographic, and acoustic emission techniques were optimized and applied to the evaluation of 2219-T87 aluminum alloy test specimens. One hundred eighteen specimens containing a total of 328 fatigue cracks were evaluated. The cracks ranged in length from 0.500 inch (1.27 cm) to 0.007 inch (0.018 cm) and in depth from 0.178 inch (0.451 cm) and 0.001 inch (0.003 cm). Specimen thicknesses were nominally 0.060 inch (0.152 cm) and 0.210 inch (0.532 cm) and surface finishes were nominally 32 and 125 rms and 64 and 200 rms respectively. Specimens were evaluated in the as-milled surface condition, in the chemically milled surface condition and, after proof loading, in a randomized inspection sequence. Results of the nondestructive test (NDT) evaluations were compared with actual crack size obtained by measurement of the fractured specimens. Inspection data was then analyzed to provide a statistical basis for determinating the threshold crack detection sensitivity (the largest crack size that would be missed) for each of the inspection techniques at a 95% probability and 95% confidence level.

  9. The effect of ion plated silver and sliding friction on tensile stress-induced cracking in aluminum oxide

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Spalvins, Talivaldis

    1991-01-01

    A Hertzian analysis of the effect of sliding friction on contact stresses in alumina is used to predict the critical load for crack generation. The results for uncoated alumina and alumina coated with ion plated silver are compared. Friction coefficient inputs to the analysis are determined experimentally with a scratch test instrument employing an 0.2 mm radius diamond stylus. A series of scratches were made at constant load increments on coated and uncoated flat alumina surfaces. Critical loads for cracking are detected by microscopic examination of cross sections of scratches made at various loads and friction coefficients. Acoustic emission (AE) and friction trends were also evaluated as experimental techniques for determining critical loads for cracking. Analytical predictions correlate well with micrographic evidence and with the lowest load at which AE is detected in multiple scratch tests. Friction/load trends are not good indicators of early crack formation. Lubrication with silver films reduced friction and thereby increased the critical load for crack initiation in agreement with analytical predictions.

  10. Accelerated crack growth, residual stress, and a cracked zinc coated pressure shell

    NASA Technical Reports Server (NTRS)

    Dittman, Daniel L.; Hampton, Roy W.; Nelson, Howard G.

    1987-01-01

    During a partial inspection of a 42 year old, operating, pressurized wind tunnel at NASA-Ames Research Center, a surface connected defect 114 in. long having an indicated depth of a 0.7 in. was detected. The pressure shell, constructed of a medium carbon steel, contains approximately 10 miles of welds and is cooled by flowing water over its zinc coated external surface. Metallurgical and fractographic analysis showed that the actual detect was 1.7 in. deep, and originated from an area of lack of weld penetration. Crack growth studies were performed on the shell material in the laboratory under various loading rates, hold times, and R-ratios with a simulated shell environment. The combination of zinc, water with electrolyte, and steel formed an electrolytic cell which resulted in an increase in cyclic crack growth rate by as much as 500 times over that observed in air. It was concluded that slow crack growth occurred in the pressure shell by a combination of stress corrosion cracking due to the welding residual stress and corrosion fatigue due to the cyclic operating stress.

  11. The effect of ion-plated silver and sliding friction on tensile stress-induced cracking in aluminum oxide

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Spalvins, Talivaldis

    1993-01-01

    A Hertzian analysis of the effect of sliding friction on contact stresses in alumina is used to predict the critical load for crack generation. The results for uncoated alumina and alumina coated with ion plated silver are compared. Friction coefficient inputs to the analysis are determined experimentally with a scratch test instrument employing an 0.2 mm radius diamond stylus. A series of scratches were made at constant load increments on coated and uncoated flat alumina surfaces. Critical loads for cracking are detected by microscopic examination of cross sections of scratches made at various loads and friction coefficients. Acoustic emission (AE) and friction trends were also evaluated as experimental techniques for determining critical loads for cracking. Analytical predictions correlate well with micrographic evidence and with the lowest load at which AE is detected in multiple scratch tests. Friction/load trends are not good indicators of early crack formation. Lubrication with silver films reduced friction and thereby increased the critical load for crack initiation in agreement with analytical predictions.

  12. Effect of propellant deformation on ignition and combustion processes in solid propellant cracks

    NASA Technical Reports Server (NTRS)

    Kumar, M.; Kuo, K. K.

    1980-01-01

    A comprehensive theoretical model was formulated to study the development of convective burning in a solid propellant crack which continually deforms due to burning and pressure loading. In the theoretical model, the effect of interrelated structural deformation and combustion processes was taken into account by considering (1) transient, one dimensional mass, momentum, and energy conservation equations in the gas phase; (2) a transient, one dimensional heat conduction equation in the solid phase; and (3) quasi-static deformation of the two dimensional, linear viscoelastic propellant crack caused by pressure loading. Partial closures may generate substantial local pressure peaks along the crack, implying a strong coupling between chamber pressurization, crack combustion, and propellant deformation, especially when the cracks are narrow and the chamber pressurization rates high. The maximum pressure in the crack cavity is generally higher than that in the chamber. The initial flame-spreading process is not affected by propellant deformation.

  13. Unified risk analysis of fatigue failure in ductile alloy components during all three stages of fatigue crack evolution process.

    PubMed

    Patankar, Ravindra

    2003-10-01

    Statistical fatigue life of a ductile alloy specimen is traditionally divided into three stages, namely, crack nucleation, small crack growth, and large crack growth. Crack nucleation and small crack growth show a wide variation and hence a big spread on cycles versus crack length graph. Relatively, large crack growth shows a lesser variation. Therefore, different models are fitted to the different stages of the fatigue evolution process, thus treating different stages as different phenomena. With these independent models, it is impossible to predict one phenomenon based on the information available about the other phenomenon. Experimentally, it is easier to carry out crack length measurements of large cracks compared to nucleating cracks and small cracks. Thus, it is easier to collect statistical data for large crack growth compared to the painstaking effort it would take to collect statistical data for crack nucleation and small crack growth. This article presents a fracture mechanics-based stochastic model of fatigue crack growth in ductile alloys that are commonly encountered in mechanical structures and machine components. The model has been validated by Ray (1998) for crack propagation by various statistical fatigue data. Based on the model, this article proposes a technique to predict statistical information of fatigue crack nucleation and small crack growth properties that uses the statistical properties of large crack growth under constant amplitude stress excitation. The statistical properties of large crack growth under constant amplitude stress excitation can be obtained via experiments.

  14. Dual stimuli responsive self-reporting material for chemical reservoir coating

    NASA Astrophysics Data System (ADS)

    Lee, Tae Hee; Song, Young Kyu; Park, Sun Hee; Park, Young Il; Noh, Seung Man; Kim, Jin Chul

    2018-03-01

    In this study, we introduce a novel dual stimuli responsive self-reporting thiol-epoxy thermoset (DSRTET) coatings which can detect both crack occurrence and pH variation. For crack detection, microcapsule containing tetraphenylethylene (TPE) which exhibits aggregation induced emission (AIE) effect was prepared via multi-step emulsion polymerization and dispersed in DSRTET coatings. For pH variation detection, commercial thymol blue as a pH indicator was added into the polymer matrix. The effect of microcapsule contents in DSRTET on their curing behavior, material properties, and crack sensitivity was characterized using an oscillatory rheology, rigid body pendulum test (RPT), nano-indentation test (NST), universal test machine (UTM) and scratch tester. It was revealed that crack sensitivity of DSRTET coatings was greatly influenced by material properties as well as microcapsule content. The color transition of DSRTET coatings in response to acid or base solution were quantitatively investigated using a multi-angle spectrophotometer after simple acid and base solution drop tests. The color of DSRTET coatings changed from a pale green to red for acidic solution and to blue for basic solution. Finally, The DSRTET used in this study was applied to laboratory scale chemical reservoirs in order to verify the potential as a dual stimuli response self-reporting coating which can detect both crack in coating material and chemical spill caused by the leakage or breakage of the reservoir part.

  15. 75 FR 43803 - Airworthiness Directives; The Boeing Company Model 737-100, -200, -200C, -300, -400, and -500...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... resulted from stress corrosion and pitting along the length of the spindle and spindle diameter, and... requirements would ensure that stress and pitting corrosion are detected and corrected, which would avoid... caused by fatigue. Because of the difficulty in detecting small cracks and the rapid crack growth in...

  16. Automated Eddy Current Inspection on Space Shuttle Hardware

    NASA Technical Reports Server (NTRS)

    Hartmann, John; Felker, Jeremy

    2007-01-01

    Over the life time of the Space Shuttle program, metal parts used for the Reusable Solid Rocket Motors (RSRMs) have been nondestructively inspected for cracks and surface breaking discontinuities using magnetic particle (steel) and penetrant methods. Although these inspections adequately screened for critical sized cracks in most regions of the hardware, it became apparent after detection of several sub-critical flaws that the processes were very dependent on operator attentiveness and training. Throughout the 1990's, eddy current inspections were added to areas that had either limited visual access or were more fracture critical. In the late 1990's. a project was initiated to upgrade NDE inspections with the overall objective of improving inspection reliability and control. An automated eddy current inspection system was installed in 2001. A figure shows one of the inspection bays with the robotic axis of the system highlighted. The system was programmed to inspect the various case, nozzle, and igniter metal components that make up an RSRM. both steel and aluminum. For the past few years, the automated inspection system has been a part of the baseline inspection process for steel components. Although the majority of the RSRM metal part inventory ts free of detectable surface flaws, a few small, sub-critical manufacturing defects have been detected with the automated system. This paper will summarize the benefits that have been realized with the current automated eddy current system, as well as the flaws that have been detected.

  17. Near-IR imaging of cracks in teeth

    NASA Astrophysics Data System (ADS)

    Fried, William A.; Simon, Jacob C.; Lucas, Seth; Chan, Kenneth H.; Darling, Cynthia L.; Staninec, Michal; Fried, Daniel

    2014-02-01

    Dental enamel is highly transparent at near-IR wavelengths and several studies have shown that these wavelengths are well suited for optical transillumination for the detection and imaging of tooth decay. We hypothesize that these wavelengths are also well suited for imaging cracks in teeth. Extracted teeth with suspected cracks were imaged at several wavelengths in the near-IR from 1300-1700-nm. Extracted teeth were also examined with optical coherence tomography to confirm the existence of suspected cracks. Several teeth of volunteers were also imaged in vivo at 1300-nm to demonstrate clinical potential. In addition we induced cracks in teeth using a carbon dioxide laser and imaged crack formation and propagation in real time using near-IR transillumination. Cracks were clearly visible using near-IR imaging at 1300-nm in both in vitro and in vivo images. Cracks and fractures also interfered with light propagation in the tooth aiding in crack identification and assessment of depth and severity.

  18. In Situ Guided Wave Structural Health Monitoring System

    NASA Technical Reports Server (NTRS)

    Zhao, George; Tittmann, Bernhard R.

    2011-01-01

    Aircraft engine rotating equipment operates at high temperatures and stresses. Noninvasive inspection of microcracks in those components poses a challenge for nondestructive evaluation. A low-cost, low-profile, high-temperature ultrasonic guided wave sensor was developed that detects cracks in situ. The transducer design provides nondestructive evaluation of structures and materials. A key feature of the sensor is that it withstands high temperatures and excites strong surface wave energy to inspect surface and subsurface cracks. The sol-gel bismuth titanate-based surface acoustic wave (SAW) sensor can generate efficient SAWs for crack inspection. The sensor is very thin (submillimeter) and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. The sensor can be implemented on structures of various shapes. With a spray-coating process, the sensor can be applied to the surface of large curvatures. It has minimal effect on airflow or rotating equipment imbalance, and provides good sensitivity.

  19. Measurement and analysis of critical crack tip processes during fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Davidson, D. L.; Hudak, S. J.; Dexter, R. J.

    1985-01-01

    The mechanics of fatigue crack growth under constant-amplitudes and variable-amplitude loading were examined. Critical loading histories involving relatively simple overload and overload/underload cycles were studied to provide a basic understanding of the underlying physical processes controlling crack growth. The material used for this study was 7091-T7E69, a powder metallurgy aluminum alloy. Local crack-tip parameters were measured at various times before, during, and after the overloads, these include crack-tip opening loads and displacements, and crack-tip strain fields. The latter were useed, in combination with the materials cyclic and monotonic stress-strain properties, to compute crack-tip residual stresses. The experimental results are also compared with analytical predictions obtained using the FAST-2 computer code. The sensitivity of the analytical model to constant-amplitude fatigue crack growth rate properties and to through-thickness constrain are studied.

  20. A Statistics-Based Cracking Criterion of Resin-Bonded Silica Sand for Casting Process Simulation

    NASA Astrophysics Data System (ADS)

    Wang, Huimin; Lu, Yan; Ripplinger, Keith; Detwiler, Duane; Luo, Alan A.

    2017-02-01

    Cracking of sand molds/cores can result in many casting defects such as veining. A robust cracking criterion is needed in casting process simulation for predicting/controlling such defects. A cracking probability map, relating to fracture stress and effective volume, was proposed for resin-bonded silica sand based on Weibull statistics. Three-point bending test results of sand samples were used to generate the cracking map and set up a safety line for cracking criterion. Tensile test results confirmed the accuracy of the safety line for cracking prediction. A laboratory casting experiment was designed and carried out to predict cracking of a cup mold during aluminum casting. The stress-strain behavior and the effective volume of the cup molds were calculated using a finite element analysis code ProCAST®. Furthermore, an energy dispersive spectroscopy fractographic examination of the sand samples confirmed the binder cracking in resin-bonded silica sand.

  1. Detection of Cracks at Welds in Steel Tubing Using Flux Focusing Electromagnetic Probe

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Fulton, Jim; Nath, Shridhar; Simpson, John; Namkung, Min

    1994-01-01

    The inspection of weldments in critical pressure vessel joints is a major concern in the nuclear power industry. Corrosive environments can speed the fatigue process and access to the critical area is often limited. Eddy current techniques have begun to be used to help overcome these obstacles [1]. As direct contact and couplants are not required, remote areas can be inspected by simply snaking an eddy current coil into the intake tube of the vessel. The drawback of the eddy current method has been the high sensitivity to small changes in the conductivity and permeability of the test piece which are known to vary at weldments [1]. The flaw detection mechanism of the flux focusing electromagnetic probe can help alleviate these difficulties and provide a unique capability for detecting longitudinal fatigue cracks in critical tube structures. The Flux Focusing Electromagnetic Flaw Detector, originally invented for the detection of fatigue and corrosion damage in aluminum plates [2-3], has been adapted for use in testing steel tubing for longitudinal fatigue cracks. The modified design allows for the probe to be placed axisymmetrically into the tubing, inducing eddy currents in the tube wall. The pickup coil of the probe is fixed slightly below the primary windings and is rotated 90 so that its axis is normal to the tube wall. The magnetic flux of the primary coil is focused through the use of ferromagnetic material so that in the absence of fatigue damage there will be no flux linkage with the pickup coil. The presence of a longitudinal fatigue crack will cause the eddy currents induced in the tube wall to flow around the flaw and directly under the pickup coil. The magnetic field associated with these currents will then link the pickup coil and an unambiguous increase in the output voltage of the probe will be measured. The use of the flux focusing electromagnetic probe is especially suited for the detection of flaws originating at or near tube welds. The probe is shown to discriminate against signals due solely to the weld joint so that flaw signals are not hidden in the background in these locations. Experimental and finite element modeling results are presented for the flaw detection capabilities of the probe in stainless steel tubes.

  2. DEVELOPMENT OF AN EMAT IN-LINE INSPECTION SYSTEM FOR DETECTION, DISCRIMINATION, AND GRADING OF STRESS CORROSION CRACKING IN PIPELINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeff Aron; Jeff Jia; Bruce Vance

    2005-02-01

    This report describes prototypes, measurements, and results for a project to develop a prototype pipeline in-line inspection (ILI) tool that uses electromagnetic acoustic transducers (EMATs) to detect and grade stress corrosion cracking (SCC). The introduction briefly provides motivation and describes SCC, gives some background on EMATs and guided ultrasonic waves, and reviews promising results of a previous project using EMATs for SCC. The experimental section then describes lab measurement techniques and equipment, the lab mouse and prototypes for a mule, and scan measurements made on SCC. The mouse was a moveable and compact EMAT setup. The prototypes were even moremore » compact circuits intended to be pulled or used in an ILI tool. The purpose of the measurements was to determine the best modes, transduction, and processing to use, to characterize the transducers, and to prove EMATs and mule components could produce useful results. Next, the results section summarizes the measurements and describes the mouse scans, processing, prototype circuit operating parameters, and performance for SH0 scans. Results are given in terms of specifications--like SNR, power, insertion loss--and parametric curves--such as signal amplitude versus magnetic bias or standoff, reflection or transmission coefficients versus crack depth. Initially, lab results indicated magnetostrictive transducers using both SH0 and SV1 modes would be worthwhile to pursue in a practical ILI system. However, work with mule components showed that SV1 would be too dispersive, so SV1 was abandoned. The results showed that reflection measurements, when normalized by the direct arrival are sensitive to and correlated with SCC. This was not true for transmission measurements. Processing yields a high data reduction, almost 60 to 1, and permits A and C scan display techniques and software already in use for pipeline inspection. An analysis of actual SH0 scan results for SCC of known dimensions showed that length and depth could be determined for deep enough cracks. Defect shadow and short length effects were apparent but may be taken into account. The SH0 scan was done with the mule prototype circuits and permanent magnet EMATs. These gave good enough results that this hardware and the processing techniques are very encouraging for use in a practical ILI tool.« less

  3. 75 FR 8554 - Airworthiness Directives; The Boeing Company Model 747-100, -200B, and -200F Series Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... AD results from reports of fatigue cracking on modified airplanes. We are proposing this AD to detect and correct fatigue cracking in the longitudinal lap joints of the fuselage lower lobe, which could... reports of incidents involving fatigue cracking and corrosion of transport category airplanes that are...

  4. 77 FR 22686 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ...-500 series airplanes. This proposed AD was prompted by reports of chem-mill step cracking on the aft...-mill steps, and repair if necessary. We are proposing this AD to detect and correct cracking on the aft... proposed AD. Discussion More than 300 incidents of skin chem-mill cracks on 26 airplanes have been reported...

  5. 78 FR 6251 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... airplanes. This proposed AD was prompted by reports of cracks and heat damage on pivot joint components... proposing this AD to detect and correct heat damage and cracks in the pivot pin, truck beam lugs, and inner... joint components have been found with cracks or heat damage. There have been 11 such findings on Model...

  6. 49 CFR 180.209 - Requirements for requalification of specification cylinders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... sustained load cracking that has expanded into the neck threads must be condemned in accordance with § 180... of this subchapter) Any crack in the neck or shoulder of 2 thread lengths or more 5 1 The requalifier... be applied from the inside of the cylinder's neck to detect any sustained load cracking that has...

  7. 49 CFR 180.209 - Requirements for requalification of specification cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... sustained load cracking that has expanded into the neck threads must be condemned in accordance with § 180... of this subchapter) Any crack in the neck or shoulder of 2 thread lengths or more 5 1 The requalifier... be applied from the inside of the cylinder's neck to detect any sustained load cracking that has...

  8. 75 FR 9811 - Airworthiness Directives; Empresa Brasileira de Aeronautica S.A. (EMBRAER) Model ERJ 170 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... 170 airplane full scale fatigue test, cracks were found in some structural components of the airplane... timely detection of fatigue cracks. Undetected fatigue cracks in these areas could adversely affect the...., Washington, DC, between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. For service...

  9. 77 FR 68061 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ...) pylon for a loose or missing fastener, a crack, damage, or corrosion and adding an internal doubler to... actions are intended to detect a loose or missing fastener, a crack, damage, or corrosion on the T/R pylon..., a crack, damage, or corrosion, and repairing or replacing the T/R pylon if any of these conditions...

  10. Self-healing of early age cracks in cement-based materials by mineralization of carbonic anhydrase microorganism

    PubMed Central

    Qian, Chunxiang; Chen, Huaicheng; Ren, Lifu; Luo, Mian

    2015-01-01

    This research investigated the self-healing potential of early age cracks in cement-based materials incorporating the bacteria which can produce carbonic anhydrase. Cement-based materials specimens were pre-cracked at the age of 7, 14, 28, 60 days to study the repair ability influenced by cracking time, the width of cracks were between 0.1 and 1.0 mm to study the healing rate influenced by width of cracks. The experimental results indicated that the bacteria showed excellent repairing ability to small cracks formed at early age of 7 days, cracks below 0.4 mm was almost completely closed. The repair effect reduced with the increasing of cracking age. Cracks width influenced self-healing effectiveness significantly. The transportation of CO2and Ca2+ controlled the self-healing process. The computer simulation analyses revealed the self-healing process and mechanism of microbiologically precipitation induced by bacteria and the depth of precipitated CaCO3 could be predicted base on valid Ca2+. PMID:26583014

  11. Continuous AE crack monitoring of a dissimilar metal weldment at Limerick Unit 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutton, P.H.; Friesel, M.A.; Dawson, J.F.

    1993-12-01

    Acoustic emission (AE) technology for continuous surveillance of a reactor component(s) to detect crack initiation and/or crack growth has been developed at Pacific Northwest Laboratory (PNL). The technology was validated off-reactor in several major tests, but it had not been validated by monitoring crack growth on an operating reactor system. A flaw indication was identified during normal inservice inspection of piping at Philadelphia Electric Company (PECO) Limerick Unit 1 reactor during the 1989 refueling outage. Evaluation of the flaw indication showed that it could remain in place during the subsequent fuel cycle without compromising safety. The existence of this flawmore » indication offered a long sought opportunity to validate AE surveillance to detect and evaluate crack growth during reactor operation. AE instrumentation was installed by PNL and PECO to monitor the flaw indication during two complete fuel cycles. This report discusses the results obtained from the AE monitoring over the period May 1989 to March 1992 (two fuel cycles).« less

  12. Temperature measurement and damage detection in concrete beams exposed to fire using PPP-BOTDA based fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Bao, Yi; Hoehler, Matthew S.; Smith, Christopher M.; Bundy, Matthew; Chen, Genda

    2017-10-01

    In this study, Brillouin scattering-based distributed fiber optic sensor is implemented to measure temperature distributions and detect cracks in concrete structures subjected to fire for the first time. A telecommunication-grade optical fiber is characterized as a high temperature sensor with pulse pre-pump Brillouin optical time domain analysis (PPP-BODTA), and implemented to measure spatially-distributed temperatures in reinforced concrete beams in fire. Four beams were tested to failure in a natural gas fueled compartment fire, each instrumented with one fused silica, single-mode optical fiber as a distributed sensor and four thermocouples. Prior to concrete cracking, the distributed temperature was validated at locations of the thermocouples by a relative difference of less than 9%. The cracks in concrete can be identified as sharp peaks in the temperature distribution since the cracks are locally filled with hot air. Concrete cracking did not affect the sensitivity of the distributed sensor but concrete spalling broke the optical fiber loop required for PPP-BOTDA measurements.

  13. Mechanics of the Delayed Fracture of Viscoelastic Bodies with Cracks: Theory and Experiment (Review)

    NASA Astrophysics Data System (ADS)

    Kaminsky, A. A.

    2014-09-01

    Theoretical and experimental studies on the deformation and delayed fracture of viscoelastic bodies due to slow subcritical crack growth are reviewed. The focus of this review is on studies of subcritical growth of cracks with well-developed fracture process zones, the conditions that lead to their critical development, and all stages of slow crack growth from initiation to the onset of catastrophic growth. Models, criteria, and methods used to study the delayed fracture of viscoelastic bodies with through and internal cracks are analyzed. Experimental studies of the fracture process zones in polymers using physical and mechanical methods as well as theoretical studies of these zones using fracture mesomechanics models that take into account the structural and rheological features of polymers are reviewed. Particular attention is given to crack growth in anisotropic media, the effect of the aging of viscoelastic materials on their delayed fracture, safe external loads that do not cause cracks to propagate, the mechanism of multiple-flaw fracture of viscoelastic bodies with several cracks and, especially, processes causing cracks to coalesce into a main crack, which may result in a break of the body. Methods and results of solving two- and three-dimensional problems of the mechanics of delayed fracture of aging and non-aging viscoelastic bodies with cracks under constant and variable external loads, wedging, and biaxial loads are given

  14. InSAR analysis for detecting the route of hydrothermal fluid to the surface during the 2015 phreatic eruption of Hakone Volcano, Japan

    NASA Astrophysics Data System (ADS)

    Doke, Ryosuke; Harada, Masatake; Mannen, Kazutaka; Itadera, Kazuhiro; Takenaka, Jun

    2018-04-01

    Although the 2015 Hakone Volcano eruption was a small-scale phreatic eruption with a discharged mass of only about 100 tons, interferometric synthetic aperture radar successfully detected surface deformations related to the eruption. Inversion model of the underground hydrothermal system based on measured ground displacements by ALOS-2/PALSAR-2 images showed that a crack opened at an elevation of about 530-830 m, probably at the time of the eruption. A geomorphological analysis detected several old NW-SE trending fissures, and the open crack was located just beneath one of the fissures. Thus, the crack that opened during the 2015 eruption could have been a preexisting crack that formed during a more voluminous hydrothermal eruption. In addition, the inversion model implies that a sill deflation occurred at an elevation of about 225 m, probably at the time of the eruption. The deflation of sill-like body represents a preexisting hydrothermal reservoir at an elevation of 100-400 m, which intruded fluid in the open crack prior to eruption. The volume changes of the open crack and the sill were calculated to be 1.14 × 105 m3 (inflation) and 0.49 × 105 m3 (deflation), respectively. A very local swelling (about 200 m in diameter) was also detected at the eruption center 2 months before the eruption. The local swelling, whose rate in satellite line-of-sight was 0.7-0.9 cm/day during May 2015 and declined in June, had been monitored until the time of the eruption, when its uplift halted. This was modeled as a point pressure source at an elevation of about 900 m (at a depth of about 80-90 m from the ground surface) and is considered to be a minor hydrothermal reservoir just beneath the fumarolic field. Our analysis shows that the northernmost tip of the open crack reached within 200 m of the surface. Thus, it is reasonable to assume that the hydrothermal fluid in the open crack found a way to the surface and formed the eruption.[Figure not available: see fulltext.

  15. Preliminary Results of Cleaning Process for Lubricant Contamination

    NASA Astrophysics Data System (ADS)

    Eisenmann, D.; Brasche, L.; Lopez, R.

    2006-03-01

    Fluorescent penetrant inspection (FPI) is widely used for aviation and other components for surface-breaking crack detection. As with all inspection methods, adherence to the process parameters is critical to the successful detection of defects. Prior to FPI, components are cleaned using a variety of cleaning methods which are selected based on the alloy and the soil types which must be removed. It is also important that the cleaning process not adversely affect the FPI process. There are a variety of lubricants and surface coatings used in the aviation industry which must be removed prior to FPI. To assess the effectiveness of typical cleaning processes on removal of these contaminants, a study was initiated at an airline overhaul facility. Initial results of the cleaning study for lubricant contamination in nickel, titanium and aluminum alloys will be presented.

  16. Comparing the floquet stability of open and breathing fatigue cracks in an overhung rotordynamic system

    NASA Astrophysics Data System (ADS)

    Varney, Philip; Green, Itzhak

    2017-11-01

    Rotor cracks represent an uncommon but serious threat to rotating machines and must be detected early to avoid catastrophic machine failure. An important aspect of analyzing rotor cracks is understanding their influence on the rotor stability. It is well-known that the extent of rotor instability versus shaft speed is exacerbated by deeper cracks. Consequently, crack propagation can eventually result in an unstable response even if the shaft speed remains constant. Most previous investigations of crack-induced rotor instability concern simple Jeffcott rotors. This work advances the state-of-the-art by (a) providing a novel inertial-frame model of an overhung rotor, and (b) assessing the stability of the cracked overhung rotor using Floquet stability analysis. The rotor Floquet stability analysis is performed for both an open crack and a breathing crack, and conclusions are drawn regarding the importance of appropriately selecting the crack model. The rotor stability is analyzed versus crack depth, external viscous damping ratio, and rotor inertia. In general, this work concludes that the onset of instability occurs at lower shaft speeds for thick rotors, lower viscous damping ratios, and deeper cracks. In addition, when comparing commensurate cracks, the breathing crack is shown to induce more regions of instability than the open crack, though the open crack generally predicts an unstable response for shallower cracks than the breathing crack. Keywords: rotordynamics, stability, rotor cracks.

  17. Crack identification and evolution law in the vibration failure process of loaded coal

    NASA Astrophysics Data System (ADS)

    Li, Chengwu; Ai, Dihao; Sun, Xiaoyuan; Xie, Beijing

    2017-08-01

    To study the characteristics of coal cracks produced in the vibration failure process, we set up a static load and static and dynamic combination load failure test simulation system, prepared with different particle size, formation pressure, and firmness coefficient coal samples. Through static load damage testing of coal samples and then dynamic load (vibration exciter) and static (jack) combination destructive testing, the crack images of coal samples under the load condition were obtained. Combined with digital image processing technology, an algorithm of crack identification with high precision and in real-time is proposed. With the crack features of the coal samples under different load conditions as the research object, we analyzed the distribution of cracks on the surface of the coal samples and the factors influencing crack evolution using the proposed algorithm and a high-resolution industrial camera. Experimental results showed that the major portion of the crack after excitation is located in the rear of the coal sample where the vibration exciter cannot act. Under the same disturbance conditions, crack size and particle size exhibit a positive correlation, while crack size and formation pressure exhibit a negative correlation. Soft coal is more likely to lead to crack evolution than hard coal, and more easily causes instability failure. The experimental results and crack identification algorithm provide a solid basis for the prevention and control of instability and failure of coal and rock mass, and they are helpful in improving the monitoring method of coal and rock dynamic disasters.

  18. Flow Liner Slot Edge Replication Feasibility Study

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Willard, Scott A.; Smith, Stephen W.; Piascik, Robert S.

    2006-01-01

    Surface replication has been proposed as a method for crack detection in space shuttle main engine flowliner slots. The results of a feasibility study show that examination of surface replicas with a scanning electron microscope can result in the detection of cracks as small as 0.005 inch, and surface flaws as small as 0.001 inch, for the flowliner material.

  19. 78 FR 40640 - Airworthiness Directives; Agusta S.p.A. (Type Certificate Currently Held by AgustaWestland S.p.A...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-08

    ... AW139 helicopters. The existing AD currently requires inspecting the fuselage frame to detect fatigue... interval for inspecting the fuselage frame for a fatigue crack. This proposed AD would require inspecting... detect a fatigue crack that could result in failure of the fuselage frame and subsequent loss of control...

  20. 76 FR 2281 - Airworthiness Directives; BAE SYSTEMS (OPERATIONS) LIMITED Model BAe 146 Airplanes, and Model...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ... this AD, perform an external eddy current inspection of the forward fuselage skin to detect cracking... paragraphs (j)(1), (j)(2), and (j)(3) of this AD, do an external eddy current inspection of the forward... this AD, do an external eddy current inspection of the forward fuselage skin to detect cracking, in...

  1. Crack detection on wind turbine blades in an operating environment using vibro-acoustic modulation technique

    NASA Astrophysics Data System (ADS)

    Kim, S.; Adams, D. E.; Sohn, H.

    2013-01-01

    As the wind power industry has grown rapidly in the recent decade, maintenance costs have become a significant concern. Due to the high repair costs for wind turbine blades, it is especially important to detect initial blade defects before they become structural failures leading to other potential failures in the tower or nacelle. This research presents a method of detecting cracks on wind turbine blades using the Vibo-Acoustic Modulation technique. Using Vibro-Acoustic Modulation, a crack detection test is conducted on a WHISPER 100 wind turbine in its operating environment. Wind turbines provide the ideal conditions in which to utilize Vibro-Acoustic Modulation because wind turbines experience large structural vibrations. The structural vibration of the wind turbine balde was used as a pumping signal and a PZT was used to generate the probing signal. Because the non-linear portion of the dynamic response is more sensitive to the presence of a crack than the environmental conditions or operating loads, the Vibro-Acoustic Modulation technique can provide a robust structural health monitoring approach for wind turbines. Structural health monitoring can significantly reduce maintenance costs when paired with predictive modeling to minimize unscheduled maintenance.

  2. EPA/NASA/USAF Depainting Effort Concludes

    NASA Technical Reports Server (NTRS)

    Finckenor, Miria M.; Clark-Ingram, Marceia

    2000-01-01

    The final report contains strip rate data from all of the methods, lessons learned during processing, metallurgical evaluations of the panels, and summaries of corrosion and hydrogen embrittlement studies. Any changes in surface roughness, fatigue and tensile properties, and crack detectability are noted in the report. No process was singled out above the others, as companies should consider equipment and operational costs when complying with the Aerospace NESHAP (National Emission Standards for Hazardous Air Pollutants) and new OSHA (Occupational Safety and Health Administration) regulations.

  3. Crack Turning in Integrally Stiffened Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Pettit, Richard Glen

    2000-01-01

    Current emphasis in the aircraft industry toward reducing manufacturing cost has created a renewed interest in integrally stiffened structures. Crack turning has been identified as an approach to improve the damage tolerance and fail-safety of this class of structures. A desired behavior is for skin cracks to turn before reaching a stiffener, instead of growing straight through. A crack in a pressurized fuselage encounters high T-stress as it nears the stiffener--a condition favorable to crack turning. Also, the tear resistance of aluminum alloys typically varies with crack orientation, a form of anisotropy that can influence the crack path. The present work addresses these issues with a study of crack turning in two-dimensions, including the effects of both T-stress and fracture anisotropy. Both effects are shown to have relation to the process zone size, an interaction that is central to this study. Following an introduction to the problem, the T-stress effect is studied for a slightly curved semi-infinite crack with a cohesive process zone, yielding a closed form expression for the future crack path in an infinite medium. For a given initial crack tip curvature and tensile T-stress, the crack path instability is found to increase with process zone size. Fracture orthotropy is treated using a simple function to interpolate between the two principal fracture resistance values in two-dimensions. An extension to three-dimensions interpolates between the six principal values of fracture resistance. Also discussed is the transition between mode I and mode II fracture in metals. For isotropic materials, there is evidence that the crack seeks out a direction of either local symmetry (pure mode I) or local asymmetry (pure mode II) growth. For orthotropic materials the favored states are not pure modal, and have mode mixity that is a function of crack orientation.

  4. Improving Data Collection and Analysis Interface for the Data Acquisition Software of the Spin Laboratory at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Curatolo, Ben S.; Woike, Mark R.

    2011-01-01

    In jet engines, turbines spin at high rotational speeds. The forces generated from these high speeds make the rotating components of the turbines susceptible to developing cracks that can lead to major engine failures. The current inspection technologies only allow periodic examinations to check for cracks and other anomalies due to the requirements involved, which often necessitate entire engine disassembly. Also, many of these technologies cannot detect cracks that are below the surface or closed when the crack is at rest. Therefore, to overcome these limitations, efforts at NASA Glenn Research Center are underway to develop techniques and algorithms to detect cracks in rotating engine components. As a part of these activities, a high-precision spin laboratory is being utilized to expand and conduct highly specialized tests to develop methodologies that can assist in detecting predetermined cracks in a rotating turbine engine rotor. This paper discusses the various features involved in the ongoing testing at the spin laboratory and elaborates on its functionality and on the supporting data system tools needed to enable successfully running optimal tests and collecting accurate results. The data acquisition system and the associated software were updated and customized to adapt to the changes implemented on the test rig system and to accommodate the data produced by various sensor technologies. Discussion and presentation of these updates and the new attributes implemented are herein reported

  5. Photomultiplier tube failure under hydrostatic pressure in future neutrino detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chambliss, K.; Diwan, M.; Simos, N.

    Failure of photomultiplier tubes (PMTs) under hydrostatic pressure is a concern in neutrino detection, specifically, in the proposed Long-Baseline Neutrino Experiment project. Controlled hydrostatic implosion tests were performed on prototypic PMT bulbs of 10-inch diameter and recorded using high speed filming techniques to capture failures in detail. These high-speed videos were analyzed frame-by-frame in order to identify the origin of a crack, measure the progression of individual crack along the surface of the bulb as it propagates through the glass, and estimate crack velocity. Crack velocity was calculated for each individual crack, and an average velocity was determined for allmore » measurable cracks on each bulb. Overall, 32 cracks were measured in 9 different bulbs tested. Finite element modeling (FEM) of crack formation and growth in prototypic PMT shows stress concentration near the middle section of the PMT bulbs that correlates well with our crack velocity measurements in that section. The FEM model predicts a crack velocity value that is close to the terminal crack velocity reported. Our measurements also reveal significantly reduced crack velocities compared to terminal crack velocities measured in glasses using fracture mechanics testing and reported in literature.« less

  6. Photomultiplier tube failure under hydrostatic pressure in future neutrino detectors

    DOE PAGES

    Chambliss, K.; Diwan, M.; Simos, N.; ...

    2014-10-09

    Failure of photomultiplier tubes (PMTs) under hydrostatic pressure is a concern in neutrino detection, specifically, in the proposed Long-Baseline Neutrino Experiment project. Controlled hydrostatic implosion tests were performed on prototypic PMT bulbs of 10-inch diameter and recorded using high speed filming techniques to capture failures in detail. These high-speed videos were analyzed frame-by-frame in order to identify the origin of a crack, measure the progression of individual crack along the surface of the bulb as it propagates through the glass, and estimate crack velocity. Crack velocity was calculated for each individual crack, and an average velocity was determined for allmore » measurable cracks on each bulb. Overall, 32 cracks were measured in 9 different bulbs tested. Finite element modeling (FEM) of crack formation and growth in prototypic PMT shows stress concentration near the middle section of the PMT bulbs that correlates well with our crack velocity measurements in that section. The FEM model predicts a crack velocity value that is close to the terminal crack velocity reported. Our measurements also reveal significantly reduced crack velocities compared to terminal crack velocities measured in glasses using fracture mechanics testing and reported in literature.« less

  7. Modeling and monitoring of tooth fillet crack growth in dynamic simulation of spur gear set

    NASA Astrophysics Data System (ADS)

    Guilbault, Raynald; Lalonde, Sébastien; Thomas, Marc

    2015-05-01

    This study integrates a linear elastic fracture mechanics analysis of the tooth fillet crack propagation into a nonlinear dynamic model of spur gear sets. An original formulation establishes the rigidity of sound and damaged teeth. The formula incorporates the contribution of the flexible gear body and real crack trajectories in the fillet zone. The work also develops a KI prediction formula. A validation of the equation estimates shows that the predicted KI are in close agreement with published numerical and experimental values. The representation also relies on the Paris-Erdogan equation completed with crack closure effects. The analysis considers that during dN fatigue cycles, a harmonic mean of ΔK assures optimal evaluations. The paper evaluates the influence of the mesh frequency distance from the resonances of the system. The obtained results indicate that while the dependence may demonstrate obvious nonlinearities, the crack progression rate increases with a mesh frequency augmentation. The study develops a tooth fillet crack propagation detection procedure based on residual signals (RS) prepared in the frequency domain. The proposed approach accepts any gear conditions as reference signature. The standard deviation and mean values of the RS are evaluated as gear condition descriptors. A trend tracking of their responses obtained from a moving linear regression completes the analysis. Globally, the results show that, regardless of the reference signal, both descriptors are sensitive to the tooth fillet crack and sharply react to tooth breakage. On average, the mean value detected the crack propagation after a size increase of 3.69 percent as compared to the reference condition, whereas the standard deviation required crack progressions of 12.24 percent. Moreover, the mean descriptor shows evolutions closer to the crack size progression.

  8. Fatigue crack detection by nonlinear spectral correlation with a wideband input

    NASA Astrophysics Data System (ADS)

    Liu, Peipei; Sohn, Hoon

    2017-04-01

    Due to crack-induced nonlinearity, ultrasonic wave can distort, create accompanying harmonics, multiply waves of different frequencies, and, under resonance conditions, change resonance frequencies as a function of driving amplitude. All these nonlinear ultrasonic features have been widely studied and proved capable of detecting fatigue crack at its very early stage. However, in noisy environment, the nonlinear features might be drown in the noise, therefore it is difficult to extract those features using a conventional spectral density function. In this study, nonlinear spectral correlation is defined as a new nonlinear feature, which considers not only nonlinear modulations in ultrasonic waves but also spectral correlation between the nonlinear modulations. The proposed nonlinear feature is associated with the following two advantages: (1) stationary noise in the ultrasonic waves has little effect on nonlinear spectral correlation; and (2) the contrast of nonlinear spectral correlation between damage and intact conditions can be enhanced simply by using a wideband input. To validate the proposed nonlinear feature, micro fatigue cracks are introduced to aluminum plates by repeated tensile loading, and the experiment is conducted using surface-mounted piezoelectric transducers for ultrasonic wave generation and measurement. The experimental results confirm that the nonlinear spectral correlation can successfully detect fatigue crack with a higher sensitivity than the classical nonlinear coefficient.

  9. Eddy-Current Detection Of Cracks In Reinforced Carbon/Carbon

    NASA Technical Reports Server (NTRS)

    Christensen, Scott V.; Koshti, Ajay M.

    1995-01-01

    Investigations of failures of components made of reinforced carbon/carbon show eddy-current flaw-detection techniques applicable to these components. Investigation focused on space shuttle parts, but applicable to other parts made of carbon/carbon materials. Techniques reveal cracks, too small to be detected visually, in carbon/carbon matrix substrates and in silicon carbide coates on substrates. Also reveals delaminations in carbon/carbon matrices. Used to characterize extents and locations of discontinuities in substrates in situations in which ultrasonic techniques and destructive techniques not practical.

  10. Vibration Based Crack Detection in a Rotating Disk. Part 2; Experimental Results

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Sawicki, Jerzy T.; Martin, Richard E.; Haase, Wayne C.; Baaklini, George

    2005-01-01

    This paper describes the experimental results concerning the detection of a crack in a rotating disk. The goal was to utilize blade tip clearance and shaft vibration measurements to monitor changes in the system's center of mass and/or blade deformation behaviors. The concept of the approach is based on the fact that the development of a disk crack results in a distorted strain field within the component. As a result, a minute deformation in the disk's geometry as well as a change in the system's center of mass occurs. Here, a notch was used to simulate an actual crack. The vibration based experimental results failed to identify the existence of a notch when utilizing the approach described above, even with a rather large, circumferential notch (l.2 in.) located approximately mid-span on the disk (disk radius = 4.63 in. with notch at r = 2.12 in.). This was somewhat expected, since the finite element based results in Part 1 of this study predicted changes in blade tip clearance as well as center of mass shifts due to a notch to be less than 0.001 in. Therefore, the small changes incurred by the notch could not be differentiated from the mechanical and electrical noise of the rotor system. Although the crack detection technique of interest failed to identify the existence ofthe notch, the vibration data produced and captured here will be utilized in upcoming studies that will focus on different data mining techniques concerning damage detection in a disk.

  11. 76 FR 15800 - Airworthiness Directives; The Boeing Company Model MD-90-30 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... products listed above. This AD requires repetitive inspections for cracking of the left and right upper... by a report of a crack found in the upper skin panel at the aft inboard corner of a right horizontal stabilizer. We are issuing this AD to detect and correct cracks in the upper center skin panels of the...

  12. Development of a Distributed Crack Sensor Using Coaxial Cable.

    PubMed

    Zhou, Zhi; Jiao, Tong; Zhao, Peng; Liu, Jia; Xiao, Hai

    2016-07-29

    Cracks, the important factor of structure failure, reflect structural damage directly. Thus, it is significant to realize distributed, real-time crack monitoring. To overcome the shortages of traditional crack detectors, such as the inconvenience of installation, vulnerability, and low measurement range, etc., an improved topology-based cable sensor with a shallow helical groove on the outside surface of a coaxial cable is proposed in this paper. The sensing mechanism, fabrication method, and performances are investigated both numerically and experimentally. Crack monitoring experiments of the reinforced beams are also presented in this paper, illustrating the utility of this sensor in practical applications. These studies show that the sensor can identify a minimum crack width of 0.02 mm and can measure multiple cracks with a spatial resolution of 3 mm. In addition, it is also proved that the sensor performs well to detect the initiation and development of cracks until structure failure.

  13. Development of a Distributed Crack Sensor Using Coaxial Cable

    PubMed Central

    Zhou, Zhi; Jiao, Tong; Zhao, Peng; Liu, Jia; Xiao, Hai

    2016-01-01

    Cracks, the important factor of structure failure, reflect structural damage directly. Thus, it is significant to realize distributed, real-time crack monitoring. To overcome the shortages of traditional crack detectors, such as the inconvenience of installation, vulnerability, and low measurement range, etc., an improved topology-based cable sensor with a shallow helical groove on the outside surface of a coaxial cable is proposed in this paper. The sensing mechanism, fabrication method, and performances are investigated both numerically and experimentally. Crack monitoring experiments of the reinforced beams are also presented in this paper, illustrating the utility of this sensor in practical applications. These studies show that the sensor can identify a minimum crack width of 0.02 mm and can measure multiple cracks with a spatial resolution of 3 mm. In addition, it is also proved that the sensor performs well to detect the initiation and development of cracks until structure failure. PMID:27483280

  14. Preliminary research on eddy current bobbin quantitative test for heat exchange tube in nuclear power plant

    NASA Astrophysics Data System (ADS)

    Qi, Pan; Shao, Wenbin; Liao, Shusheng

    2016-02-01

    For quantitative defects detection research on heat transfer tube in nuclear power plants (NPP), two parts of work are carried out based on the crack as the main research objects. (1) Production optimization of calibration tube. Firstly, ASME, RSEM and homemade crack calibration tubes are applied to quantitatively analyze the defects depth on other designed crack test tubes, and then the judgment with quantitative results under crack calibration tube with more accuracy is given. Base on that, weight analysis of influence factors for crack depth quantitative test such as crack orientation, length, volume and so on can be undertaken, which will optimize manufacture technology of calibration tubes. (2) Quantitative optimization of crack depth. Neural network model with multi-calibration curve adopted to optimize natural crack test depth generated in in-service tubes shows preliminary ability to improve quantitative accuracy.

  15. Guided wave crack detection and size estimation in stiffened structures

    NASA Astrophysics Data System (ADS)

    Bhuiyan, Md Yeasin; Faisal Haider, Mohammad; Poddar, Banibrata; Giurgiutiu, Victor

    2018-03-01

    Structural health monitoring (SHM) and nondestructive evaluation (NDE) deals with the nondestructive inspection of defects, corrosion, leaks in engineering structures by using ultrasonic guided waves. In the past, simplistic structures were often considered for analyzing the guided wave interaction with the defects. In this study, we focused on more realistic and relatively complicated structure for detecting any defect by using a non-contact sensing approach. A plate with a stiffener was considered for analyzing the guided wave interactions. Piezoelectric wafer active transducers were used to produce excitation in the structures. The excitation generated the multimodal guided waves (aka Lamb waves) that propagate in the plate with stiffener. The presence of stiffener in the plate generated scattered waves. The direct wave and the additional scattered waves from the stiffener were experimentally recorded and studied. These waves were considered as a pristine case in this research. A fine horizontal semi-circular crack was manufactured by using electric discharge machining in the same stiffener. The presence of crack in the stiffener produces additional scattered waves as well as trapped waves. These scattered waves and trapped wave modes from the cracked stiffener were experimentally measured by using a scanning laser Doppler vibrometer (SLDV). These waves were analyzed and compared with that from the pristine case. The analyses suggested that both size and shape of the horizontal crack may be predicted from the pattern of the scattered waves. Different features (reflection, transmission, and mode-conversion) of the scattered wave signals are analyzed. We found direct transmission feature for incident A0 wave mode and modeconversion feature for incident S0 mode are most suitable for detecting the crack in the stiffener. The reflection feature may give a better idea of sizing the crack.

  16. Crack detection in fastener holes using surface acoustic wave

    NASA Astrophysics Data System (ADS)

    Bao, Xiao-Qi; Varadan, Vasundara V.; Varadan, Vijay K.

    1995-05-01

    This paper presents an investigation of the monitoring of cracks at the edge of fastener holes on plates using an ultrasonic pulse-echo technique. Our studies show that, if the surface of the plate surrounding the hold is free, an acoustic wave on the surface of the plate is able to detect the cracks located in an arc of 60 degree(s). When the inner surface of the hole is free, surface acoustic waves on the inner surface are alternate choices. For the case when all these surfaces are in tight contact with other parts, hence unavailable for mounting transducers, a particular type of Lamb wave mode is presented.

  17. Welding processes for Inconel 718- A brief review

    NASA Astrophysics Data System (ADS)

    Tharappel, Jose Tom; Babu, Jalumedi

    2018-03-01

    Inconel 718 is being extensively used for high-temperature applications, rocket engines, gas turbines, etc. due to its ability to maintain high strength at temperatures range 450-700°C complimented by excellent oxidation and corrosion resistance and its outstanding weldability in either the age hardened or annealed condition. Though alloy 718 is reputed to possess good weldability in the context of their resistance to post weld heat treatment cracking, heat affected zone (HAZ) and weld metal cracking problems persist. This paper presents a brief review on welding processes for Inconel 718 and the weld defects, such as strain cracking during post weld heat treatment, solidification cracking, and liquation cracking. The effect of alloy chemistry, primary and secondary processing on the HAZ cracking susceptibility, influence of post/pre weld heat treatments on precipitation, segregation reactions, and effect of grain size etc. discussed and concluded with future scope for research.

  18. Three Dimensional Numerical Simulation and Characterization of Crack Growth in the Weld Region of a Friction Stir Welded Structure

    NASA Technical Reports Server (NTRS)

    Seshadri, Banavara R.; Smith, Stephen W.; Newman, John A.

    2013-01-01

    Friction stir welding (FSW) fabrication technology is being adopted in aerospace applications. The use of this technology can reduce production cost, lead-times, reduce structural weight and need for fasteners and lap joints, which are typically the primary locations of crack initiation and multi-site fatigue damage in aerospace structures. FSW is a solid state welding process that is well-suited for joining aluminum alloy components; however, the process introduces residual stresses (both tensile and compressive) in joined components. The propagation of fatigue cracks in a residual stress field and the resulting redistribution of the residual stress field and its effect on crack closure have to be estimated. To insure the safe insertion of complex integral structures, an accurate understanding of the fatigue crack growth behavior and the complex crack path process must be understood. A life prediction methodology for fatigue crack growth through the weld under the influence of residual stresses in aluminum alloy structures fabricated using FSW will be detailed. The effects and significance of the magnitude of residual stress at a crack tip on the estimated crack tip driving force are highlighted. The location of the crack tip relative to the FSW and the effect of microstructure on fatigue crack growth are considered. A damage tolerant life prediction methodology accounting for microstructural variation in the weld zone and residual stress field will lead to the design of lighter and more reliable aerospace structures

  19. Analysis of the status of pre-release cracks in prestressed concrete structures using long-gauge sensors

    NASA Astrophysics Data System (ADS)

    Abdel-Jaber, H.; Glisic, B.

    2015-02-01

    Prestressed structures experience limited tensile stresses in concrete, which limits or completely eliminates the occurrence of cracks. However, in some cases, large tensile stresses can develop during the early age of the concrete due to thermal gradients and shrinkage effects. Such stresses can cause early-age cracks, termed ‘pre-release cracks’, which occur prior to the transfer of the prestressing force. When the prestressing force is applied to the cross-section, it is assumed that partial or full closure of the cracks occurs by virtue of the force transfer through the cracked cross-section. Verification of the closure of the cracks after the application of the prestressing force is important as it can either confirm continued structural integrity or indicate and approximate reduced structural capacity. Structural health monitoring (SHM) can be used for this purpose. This paper researches an SHM method that can be applied to prestressed beam structures to assess the condition of pre-release cracks. The sensor network used in this method consists of parallel long-gauge fiber optic strain sensors embedded in the concrete cross-sections at various locations. The same network is used for damage detection, i.e. detection and characterization of the pre-release cracks, and for monitoring the prestress force transfer. The method is validated on a real structure, a curved continuous girder. Results from the analysis confirm the safety and integrity of the structure. The method and its application are presented in this paper.

  20. Fast Detection of Material Deformation through Structural Dissimilarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ushizima, Daniela; Perciano, Talita; Parkinson, Dilworth

    2015-10-29

    Designing materials that are resistant to extreme temperatures and brittleness relies on assessing structural dynamics of samples. Algorithms are critically important to characterize material deformation under stress conditions. Here, we report on our design of coarse-grain parallel algorithms for image quality assessment based on structural information and on crack detection of gigabyte-scale experimental datasets. We show how key steps can be decomposed into distinct processing flows, one based on structural similarity (SSIM) quality measure, and another on spectral content. These algorithms act upon image blocks that fit into memory, and can execute independently. We discuss the scientific relevance of themore » problem, key developments, and decomposition of complementary tasks into separate executions. We show how to apply SSIM to detect material degradation, and illustrate how this metric can be allied to spectral analysis for structure probing, while using tiled multi-resolution pyramids stored in HDF5 chunked multi-dimensional arrays. Results show that the proposed experimental data representation supports an average compression rate of 10X, and data compression scales linearly with the data size. We also illustrate how to correlate SSIM to crack formation, and how to use our numerical schemes to enable fast detection of deformation from 3D datasets evolving in time.« less

  1. Wireless and embedded carbon nanotube networks for damage detection in concrete structures

    NASA Astrophysics Data System (ADS)

    Saafi, Mohamed

    2009-09-01

    Concrete structures undergo an uncontrollable damage process manifesting in the form of cracks due to the coupling of fatigue loading and environmental effects. In order to achieve long-term durability and performance, continuous health monitoring systems are needed to make critical decisions regarding operation, maintenance and repairs. Recent advances in nanostructured materials such as carbon nanotubes have opened the door for new smart and advanced sensing materials that could effectively be used in health monitoring of structures where wireless and real time sensing could provide information on damage development. In this paper, carbon nanotube networks were embedded into a cement matrix to develop an in situ wireless and embedded sensor for damage detection in concrete structures. By wirelessly measuring the change in the electrical resistance of the carbon nanotube networks, the progress of damage can be detected and monitored. As a proof of concept, wireless cement-carbon nanotube sensors were embedded into concrete beams and subjected to monotonic and cyclic loading to evaluate the effect of damage on their response. Experimental results showed that the wireless response of the embedded nanotube sensors changes due to the formation of cracks during loading. In addition, the nanotube sensors were able to detect the initiation of damage at an early stage of loading.

  2. Method for Assessment of Changes in the Width of Cracks in Cement Composites with Use of Computer Image Processing and Analysis

    NASA Astrophysics Data System (ADS)

    Tomczak, Kamil; Jakubowski, Jacek; Fiołek, Przemysław

    2017-06-01

    Crack width measurement is an important element of research on the progress of self-healing cement composites. Due to the nature of this research, the method of measuring the width of cracks and their changes over time must meet specific requirements. The article presents a novel method of measuring crack width based on images from a scanner with an optical resolution of 6400 dpi, subject to initial image processing in the ImageJ development environment and further processing and analysis of results. After registering a series of images of the cracks at different times using SIFT conversion (Scale-Invariant Feature Transform), a dense network of line segments is created in all images, intersecting the cracks perpendicular to the local axes. Along these line segments, brightness profiles are extracted, which are the basis for determination of crack width. The distribution and rotation of the line of intersection in a regular layout, automation of transformations, management of images and profiles of brightness, and data analysis to determine the width of cracks and their changes over time are made automatically by own code in the ImageJ and VBA environment. The article describes the method, tests on its properties, sources of measurement uncertainty. It also presents an example of application of the method in research on autogenous self-healing of concrete, specifically the ability to reduce a sample crack width and its full closure within 28 days of the self-healing process.

  3. A Continuum-Atomistic Analysis of Transgranular Crack Propagation in Aluminum

    NASA Technical Reports Server (NTRS)

    Yamakov, V.; Saether, E.; Glaessgen, E.

    2009-01-01

    A concurrent multiscale modeling methodology that embeds a molecular dynamics (MD) region within a finite element (FEM) domain is used to study plastic processes at a crack tip in a single crystal of aluminum. The case of mode I loading is studied. A transition from deformation twinning to full dislocation emission from the crack tip is found when the crack plane is rotated around the [111] crystallographic axis. When the crack plane normal coincides with the [112] twinning direction, the crack propagates through a twinning mechanism. When the crack plane normal coincides with the [011] slip direction, the crack propagates through the emission of full dislocations. In intermediate orientations, a transition from full dislocation emission to twinning is found to occur with an increase in the stress intensity at the crack tip. This finding confirms the suggestion that the very high strain rates, inherently present in MD simulations, which produce higher stress intensities at the crack tip, over-predict the tendency for deformation twinning compared to experiments. The present study, therefore, aims to develop a more realistic and accurate predictive modeling of fracture processes.

  4. Deformation mechanics of deep surface flaw cracks

    NASA Technical Reports Server (NTRS)

    Francis, P. H.; Nagy, A.; Beissner, R. E.

    1972-01-01

    A combined analytical and experimental program was conducted to determine the deformation characteristics of deep surface cracks in Mode I loading. An approximate plane finite element analysis was performed to make a parameter study on the influence of crack depth, crack geometry, and stress level on plastic zones, crack opening displacement, and back surface dimpling in Fe-3Si steel and 2219-T87 aluminum. Surface replication and profiling techniques were used to examine back surface dimple configurations in 2219-T87 aluminum. Interferometry and holography were used to evaluate the potential of various optical techniques to detect small surface dimples on large surface areas.

  5. Crack turning in integrally stiffened aircraft structures

    NASA Astrophysics Data System (ADS)

    Pettit, Richard Glen

    Current emphasis in the aircraft industry toward reducing manufacturing cost has created a renewed interest in integrally stiffened structures. Crack turning has been identified as an approach to improve the damage tolerance and fail-safety of this class of structures. A desired behavior is for skin cracks to turn before reaching a stiffener, instead of growing straight through. A crack in a pressurized fuselage encounters high T-stress as it nears the stiffener---a condition favorable to crack turning. Also, the tear resistance of aluminum alloys typically varies with crack orientation, a form of anisotropy that can influence the crack path. The present work addresses these issues with a study of crack turning in two-dimensions, including the effects of both T-stress and fracture anisotropy. Both effects are shown to have relation to the process zone size, an interaction that is central to this study. Following an introduction to the problem, the T-stress effect is studied for a slightly curved semi-infinite crack with a cohesive process zone, yielding a closed form expression for the future crack path in an infinite medium. For a given initial crack tip curvature and tensile T-stress, the crack path instability is found to increase with process zone size. Fracture orthotropy is treated using a simple function to interpolate between the two principal fracture resistance values in two-dimensions. An extension to three-dimensions interpolates between the six principal values of fracture resistance. Also discussed is the transition between mode I and mode II fracture in metals. For isotropic materials, there is evidence that the crack seeks out a direction of either local symmetry (pure mode I) or local asymmetry (pure mode II) growth. For orthotropic materials the favored states are not pure modal, and have mode mixity that is a function of crack orientation. Drawing upon these principles, two crack turning prediction approaches are extended to include fracture resistance orthotropy---a second-order linear elastic method with a characteristic length parameter to incorporate T-stress/process-zone effects, and an elastic-plastic method that uses the Crack Tip Opening Displacement (CTOD) to determine the failure response. Together with a novel method for obtaining enhanced accuracy T-stress calculations, these methods are incorporated into an adaptive-mesh, finite-element fracture simulation code. A total of 43 fracture tests using symmetrically and asymmetrically loaded double cantilever beam specimens were run to develop crack turning parameters and compare predicted and observed crack paths.

  6. A new approach for structural health monitoring by applying anomaly detection on strain sensor data

    NASA Astrophysics Data System (ADS)

    Trichias, Konstantinos; Pijpers, Richard; Meeuwissen, Erik

    2014-03-01

    Structural Health Monitoring (SHM) systems help to monitor critical infrastructures (bridges, tunnels, etc.) remotely and provide up-to-date information about their physical condition. In addition, it helps to predict the structure's life and required maintenance in a cost-efficient way. Typically, inspection data gives insight in the structural health. The global structural behavior, and predominantly the structural loading, is generally measured with vibration and strain sensors. Acoustic emission sensors are more and more used for measuring global crack activity near critical locations. In this paper, we present a procedure for local structural health monitoring by applying Anomaly Detection (AD) on strain sensor data for sensors that are applied in expected crack path. Sensor data is analyzed by automatic anomaly detection in order to find crack activity at an early stage. This approach targets the monitoring of critical structural locations, such as welds, near which strain sensors can be applied during construction and/or locations with limited inspection possibilities during structural operation. We investigate several anomaly detection techniques to detect changes in statistical properties, indicating structural degradation. The most effective one is a novel polynomial fitting technique, which tracks slow changes in sensor data. Our approach has been tested on a representative test structure (bridge deck) in a lab environment, under constant and variable amplitude fatigue loading. In both cases, the evolving cracks at the monitored locations were successfully detected, autonomously, by our AD monitoring tool.

  7. Some Observations on Damage Tolerance Analyses in Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Dawicke, David S.; Hampton, Roy W.

    2017-01-01

    AIAA standards S080 and S081 are applicable for certification of metallic pressure vessels (PV) and composite overwrap pressure vessels (COPV), respectively. These standards require damage tolerance analyses with a minimum reliable detectible flaw/crack and demonstration of safe life four times the service life with these cracks at the worst-case location in the PVs and oriented perpendicular to the maximum principal tensile stress. The standards require consideration of semi-elliptical surface cracks in the range of aspect ratios (crack depth a to half of the surface length c, i.e., (a/c) of 0.2 to 1). NASA-STD-5009 provides the minimum reliably detectible standard crack sizes (90/95 probability of detection (POD) for several non-destructive evaluation (NDE) methods (eddy current (ET), penetrant (PT), radiography (RT) and ultrasonic (UT)) for the two limits of the aspect ratio range required by the AIAA standards. This paper tries to answer the questions: can the safe life analysis consider only the life for the crack sizes at the two required limits, or endpoints, of the (a/c) range for the NDE method used or does the analysis need to consider values within that range? What would be an appropriate method to interpolate 90/95 POD crack sizes at intermediate (a/c) values? Several procedures to develop combinations of a and c within the specified range are explored. A simple linear relationship between a and c is chosen to compare the effects of seven different approaches to determine combinations of aj and cj that are between the (a/c) endpoints. Two of the seven are selected for evaluation: Approach I, the simple linear relationship, and a more conservative option, Approach III. For each of these two Approaches, the lives are computed for initial semi-elliptic crack configurations in a plate subjected to remote tensile fatigue loading with an R-ratio of 0.1, for an assumed material evaluated using NASGRO (registered 4) version 8.1. These calculations demonstrate that for this loading, using Approach I and the initial detectable crack sizes at the (a/c) endpoints in 5009 specified for the ET and UT NDE methods, the smallest life is not at the two required limits of the (a/c) range, but rather is at an intermediate configuration in the range (a/c) of 0.4 to 0.6. Similar analyses using both Approach I and III with the initial detectable crack size at the (a/c) endpoints in 5009 for PT NDE showed the smallest life may be at an (a/c) endpoint or an intermediate (a/c), depending upon which Approach is used. As such, analyses that interrogate only the two (a/c) values of 0.2 and 1 may result in unconservative life predictions. The standard practice may need to be revised based on these results.

  8. Multifunctional two-stage riser fluid catalytic cracking process.

    PubMed

    Zhang, Jinhong; Shan, Honghong; Chen, Xiaobo; Li, Chunyi; Yang, Chaohe

    This paper described the discovering process of some shortcomings of the conventional fluid catalytic cracking (FCC) process and the proposed two-stage riser (TSR) FCC process for decreasing dry gas and coke yields and increasing light oil yield, which has been successfully applied in 12 industrial units. Furthermore, the multifunctional two-stage riser (MFT) FCC process proposed on the basis of the TSR FCC process was described, which were carried out by the optimization of reaction conditions for fresh feedstock and cycle oil catalytic cracking, respectively, by the coupling of cycle oil cracking and light FCC naphtha upgrading processes in the second-stage riser, and the specially designed reactor for further reducing the olefin content of gasoline. The pilot test showed that it can further improve the product quality, increase the diesel yield, and enhance the conversion of heavy oil.

  9. 40 CFR 419.50 - Applicability; description of the integrated subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... topping, cracking, lube oil manufacturing processes, and petrochemical operations, whether or not the facility includes any process in addition to topping, cracking, lube oil manufacturing processes, and...

  10. 40 CFR 419.50 - Applicability; description of the integrated subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... topping, cracking, lube oil manufacturing processes, and petrochemical operations, whether or not the facility includes any process in addition to topping, cracking, lube oil manufacturing processes, and...

  11. 78 FR 69595 - Airworthiness Directives; AgustaWestland S.p.A. (Type Certificate Formerly Held by Agusta S.p.A...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    ... require recurring visual inspections of the tail rotor (T/R) blade retaining bolts (bolts) for a crack, corrosion, damage, or missing cadmium plating in the central part of the bolt. If a crack is not detected by.... Replacing a cracked or damaged bolt would be required before further flight. This proposed AD is prompted by...

  12. 77 FR 26663 - Airworthiness Directives; The Boeing Company Model 767-200, -300, -300F, and -400ER Series Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-07

    ... removing corrosion from fail-safe straps. We have received Boeing Service Bulletin 767-53A0100, Revision 3.... That AD currently requires inspections to detect cracking or corrosion of the fail-safe straps between... cracks in 51 fail-safe straps on 41 airplanes; we have also received a report of a crack found in the ``T...

  13. A windowing and mapping strategy for gear tooth fault detection of a planetary gearbox

    NASA Astrophysics Data System (ADS)

    Liang, Xihui; Zuo, Ming J.; Liu, Libin

    2016-12-01

    When there is a single cracked tooth in a planet gear, the cracked tooth is enmeshed for very short time duration in comparison to the total time of a full revolution of the planet gear. The fault symptom generated by the single cracked tooth may be very weak. This study aims to develop a windowing and mapping strategy to interpret the vibration signal of a planetary gear at the tooth level. The fault symptoms generated by a single cracked tooth of the planet gear of interest can be extracted. The health condition of the planet gear can be assessed by comparing the differences among the signals of all teeth of the planet gear. The proposed windowing and mapping strategy is tested with both simulated vibration signals and experimental vibration signals. The tooth signals can be successfully decomposed and a single tooth fault on a planet gear can be effectively detected.

  14. Active photo-thermal self-healing of shape memory polyurethanes

    NASA Astrophysics Data System (ADS)

    Kazemi-Lari, Mohammad A.; Malakooti, Mohammad H.; Sodano, Henry A.

    2017-05-01

    Structural health monitoring (SHM) has received significant interest over the past decade and has led to the development of a wide variety of sensors and signal processing techniques to determine the presence of changes or damage in a structural system. The topic has attracted significant attention due to the safety and performance enhancing benefits as well as the potential lifesaving capabilities offered by the technology. While the resulting systems are capable of sensing their surrounding structural and environmental conditions, few methods exist for using the information to autonomously react and repair or protect the system. One of the major challenges in the future implementation of SHM systems is their coupling with materials that can react to the damage to heal themselves and return to normal function. The coupling of self-healing materials with SHM has the potential to significantly prolong the lifetime of structural systems and extend the required inspection intervals. In the present study, an optical fiber based self-healing system composed of mendable polyurethanes based on the thermally reversible Diels-Alder (DA) reaction is developed. Inspired by health monitoring techniques, active photo-thermal sensing and actuation is achieved using infrared laser light passing through an optical fiber and a thermal power sensor to detect the presence of cracking in the structure. Healing is triggered as the crack propagates through the polymer and fractures the embedded optical fiber. Through a feedback loop, the detected power drop by the sensor is utilized as a signal to heat the cracked area and stimulate the shape memory effect of the polyurethane and the retro-DA reaction. The healing performance results indicate that this novel integrated system can be effectively employed to monitor the incidence of damage and actively heal a crack in the polymer.

  15. Gaseous hydrogen embrittlement of high strength steels

    NASA Technical Reports Server (NTRS)

    Gangloff, R. P.; Wei, R. P.

    1977-01-01

    The effects of temperature, hydrogen pressure, stress intensity, and yield strength on the kinetics of gaseous hydrogen assisted crack propagation in 18Ni maraging steels were investigated experimentally. It was found that crack growth rate as a function of stress intensity was characterized by an apparent threshold for crack growth, a stage where the growth rate increased sharply, and a stage where the growth rate was unchanged over a significant range of stress intensity. Cracking proceeded on load application with little or no detectable incubation period. Gaseous hydrogen embrittlement susceptibility increased with increasing yield strength.

  16. Influence of load interactions on crack growth as related to state of stress and crack closure

    NASA Technical Reports Server (NTRS)

    Telesman, J.

    1985-01-01

    Fatigue crack propagation (FCP) after an application of a low-high loading sequence was investigated as a function of specimen thickness and crack closure. No load interaction effects were detected for specimens in a predominant plane strain state. However, for the plane stress specimens, initially high FCP rates after transition to a higher stress intensity range were observed. The difference in observed behavior was explained by examining the effect of the resulting closure stress intensity values on the effective stress intensity range.

  17. Structural Health Monitoring System Trade Space Analysis Tool with Consideration for Crack Growth, Sensor Degradation and a Variable Detection Threshold

    DTIC Science & Technology

    2014-09-18

    Erdogan , 1963). 26 Paris’s Law Under a fatigue stress regime Paris’s Law relates sub-critical crack growth to stress intensity factor. The basic...Paris and Erdogan , 1963). After takeoff, the model generates a probability distribution for the crack length in that specific sortie based on the...Law is one of the most widely used fatigue crack growth models and was used in this research effort (Paris and Erdogan , 1963). Paris’s Law Under a

  18. Visualization of Lamb Wave Interaction with a 5 mm Fatigue Crack using 1D Ultra High Frequency Laser Doppler Vibrometry

    DTIC Science & Technology

    2011-09-01

    detection of a fatigue crack via 3D LDV measurements, both in aluminum plates. All the referenced LDV/guided wave studies made use of PZT or similar...Figure 1a). (b) (a) (c) Figure 1: (a) Test specimen in MTS fatigue test machine, (b) hole with 5 mm crack, (c) PZT placement with...mm thick aluminum plates with a small (1.59 mm) center hole added to facilitate growth of a fatigue crack. One plate was left undamaged while the

  19. Fatigue of Ti6Al4V Structural Health Monitoring Systems Produced by Selective Laser Melting.

    PubMed

    Strantza, Maria; Vafadari, Reza; de Baere, Dieter; Vrancken, Bey; van Paepegem, Wim; Vandendael, Isabelle; Terryn, Herman; Guillaume, Patrick; van Hemelrijck, Danny

    2016-02-11

    Selective laser melting (SLM) is an additive manufacturing (AM) process which is used for producing metallic components. Currently, the integrity of components produced by SLM is in need of improvement due to residual stresses and unknown fracture behavior. Titanium alloys produced by AM are capable candidates for applications in aerospace and industrial fields due to their fracture resistance, fatigue behavior and corrosion resistance. On the other hand, structural health monitoring (SHM) system technologies are promising and requested from the industry. SHM systems can monitor the integrity of a structure and during the last decades the research has primarily been influenced by bionic engineering. In that aspect a new philosophy for SHM has been developed: the so-called effective structural health monitoring (eSHM) system. The current system uses the design freedom provided by AM. The working principle of the system is based on crack detection by means of a network of capillaries that are integrated in a structure. The main objective of this research is to evaluate the functionality of Ti6Al4V produced by the SLM process in the novel SHM system and to confirm that the eSHM system can successfully detect cracks in SLM components. In this study four-point bending fatigue tests on Ti6Al4V SLM specimens with an integrated SHM system were conducted. Fractographic analysis was performed after the final failure, while finite element simulations were used in order to determine the stress distribution in the capillary region and on the component. It was proven that the SHM system does not influence the crack initiation behavior during fatigue. The results highlight the effectiveness of the eSHM on SLM components, which can potentially be used by industrial and aerospace applications.

  20. Crack layer theory

    NASA Technical Reports Server (NTRS)

    Chudnovsky, A.

    1984-01-01

    A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.

  1. Crack layer theory

    NASA Technical Reports Server (NTRS)

    Chudnovsky, A.

    1987-01-01

    A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.

  2. Transverse Crack Detection in 3D Angle Interlock Glass Fibre Composites Using Acoustic Emission.

    PubMed

    Gresil, Matthieu; Saleh, Mohamed Nasr; Soutis, Constantinos

    2016-08-16

    In addition to manufacturing cost and production rates, damage resistance has become a major issue for the composites industry. Three-dimensional (3D) woven composites have superior through-thickness properties compared to two-dimensional (2D) laminates, for example, improved impact damage resistance, high interlaminar fracture toughness and reduced notch sensitivity. The performance of 3D woven preforms is dependent on the fabric architecture, which is determined by the binding pattern. For this study, angle interlock (AI) structures with through-thickness binding were manufactured. The AI cracking simulation shows that the transverse component is the one that leads to transverse matrix cracking in the weft yarn under tensile loading. Monitoring of acoustic emission (AE) during mechanical loading is an effective tool in the study of damage processes in glass fiber-reinforced composites. Tests were performed with piezoelectric sensors bonded on a tensile specimen acting as passive receivers of AE signals. An experimental data has been generated which was useful to validate the multi-physics finite element method (MP-FEM), providing insight into the damage behaviour of novel 3D AI glass fibre composites. MP-FEM and experimental data showed that transverse crack generated a predominant flexural mode A0 and also a less energetic extensional mode S0.

  3. Transverse Crack Detection in 3D Angle Interlock Glass Fibre Composites Using Acoustic Emission

    PubMed Central

    Gresil, Matthieu; Saleh, Mohamed Nasr; Soutis, Constantinos

    2016-01-01

    In addition to manufacturing cost and production rates, damage resistance has become a major issue for the composites industry. Three-dimensional (3D) woven composites have superior through-thickness properties compared to two-dimensional (2D) laminates, for example, improved impact damage resistance, high interlaminar fracture toughness and reduced notch sensitivity. The performance of 3D woven preforms is dependent on the fabric architecture, which is determined by the binding pattern. For this study, angle interlock (AI) structures with through-thickness binding were manufactured. The AI cracking simulation shows that the transverse component is the one that leads to transverse matrix cracking in the weft yarn under tensile loading. Monitoring of acoustic emission (AE) during mechanical loading is an effective tool in the study of damage processes in glass fiber-reinforced composites. Tests were performed with piezoelectric sensors bonded on a tensile specimen acting as passive receivers of AE signals. An experimental data has been generated which was useful to validate the multi-physics finite element method (MP-FEM), providing insight into the damage behaviour of novel 3D AI glass fibre composites. MP-FEM and experimental data showed that transverse crack generated a predominant flexural mode A0 and also a less energetic extensional mode S0. PMID:28773821

  4. International Conference/Workshop on Small Fatigue Cracks (2nd) Held in Santa Barbara, California on 5-10 January 1986.

    DTIC Science & Technology

    1986-03-31

    critical issues thus pertain to the determination of crack tip conditions, as a function of crack length, in terms of the coupled processes of fluid...transport and chemical/electrochemical reactions within the crack, and the determination of the origin of the environmentally-enhanced cracking rates in...Depth in Determining Crack Electrochemistry and Crack Growth" A. Turnbull, National Physical Laboratory, U.K., and R. C. Newmann, UMIST, U.K. 7:30 p.m.-7

  5. Using Impact Modulation to Identify Loose Bolts on a Satellite

    DTIC Science & Technology

    2011-10-21

    for public release; distribution is unlimited the literature to be an effective damage detection method for cracks, delamination, and fatigue in...to identify loose bolts and fatigue damage using optimized sensor locations using a Support Vector Machines algorithm to classify the dam- age. Finally...48] did preliminary work which showed that VM is effective in detecting fatigue cracks in engineering components despite changes in actuator location

  6. Influence of crack opening and incident wave angle on second harmonic generation of Lamb waves

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Ng, Ching-Tai; Kotousov, Andrei

    2018-05-01

    Techniques utilising second harmonic generation (SHG) have proven their great potential in detecting contact-type damage. However, the gap between the practical applications and laboratory studies is still quite large. The current work is aimed to bridge this gap by investigating the effects of the applied load and incident wave angle on the detectability of fatigue cracks at various lengths. Both effects are critical for practical implementations of these techniques. The present experimental study supported by three-dimensional (3D) finite element (FE) modelling has demonstrated that the applied load, which changes the crack opening and, subsequently, the contact nonlinearity, significantly affects the amplitude of the second harmonic generated by the fundamental symmetric mode (S0) of Lamb wave. This amplitude is also dependent on the length of the fatigue crack as well as the incident wave angle. The experimental and FE results correlate well, so the modelling approach can be implemented for practical design of damage monitoring systems as well as for the evaluation of the severity of the fatigue cracks.

  7. Microscopic observations of self-healing products in calcareous fly ash mortars.

    PubMed

    Jóźwiak-Niedźwiedzka, Daria

    2015-01-01

    The results of microstructural characterization of mortars containing fly ash class C (High Calcium Fly Ash) from combustion of lignite are presented. The evaluation of the microstructure was performed using scanning electron microscope, optical, and confocal microscope. The tested beams were bent till the crack and microcracks opening, which were healed during the different curing time. The results showed that the replacement of cement with fly ash class C influenced the process of crack healing. The addition of HCFA, at both 30% and 60%, speeds up the self-healing process in cracks and particularly in micro-cracks. In the research, the completely filling up of the cracks by new phases has not been observed, only the beginning of such process has been noticed. © 2014 Wiley Periodicals, Inc.

  8. Catalytic and thermal cracking processes of waste cooking oil for bio-gasoline synthesis

    NASA Astrophysics Data System (ADS)

    Dewanto, Muhammad Andry Rizki; Januartrika, Aulia Azka; Dewajani, Heny; Budiman, Arief

    2017-03-01

    Non-renewable energy resources such as fossil fuels, and coal were depleted as the increase of global energy demand. Moreover, environmental aspect becomes a major concern which recommends people to utilize bio-based resources. Waste cooking oil is one of the economical sources for biofuel production and become the most used raw material for biodiesel production. However, the products formed during frying, can affect the trans-esterification reaction and the biodiesel properties. Therefore, it needs to convert low-quality cooking oil directly into biofuel by both thermal and catalytic cracking processes. Thermal and catalytic cracking sometimes are regarded as prospective bio-energy conversion processes. This research was carried out in the packed bed reactor equipped with 2 stages preheater with temperature of reactor was variated in the range of 450-550°C. At the same temperature, catalytic cracking had been involved in this experiment, using activated ZSM-5 catalyst with 1 cm in length. The organic liquid product was recovered by three stages of double pipe condensers. The composition of cracking products were analyzed using GC-MS instrument and the caloric contents were analyzed using Bomb calorimeter. The results reveal that ZSM-5 was highly selective toward aromatic and long aliphatic compounds formation. The percentage recovery of organic liquid product from the cracking process varies start from 8.31% and the optimal results was 54.08%. The highest heating value of liquid product was resulted from catalytic cracking process at temperature of 450°C with value of 10880.48 cal/gr and the highest product yield with 54.08% recovery was achieved from thermal cracking process with temperature of 450°C.

  9. Probabilistic Estimation of Critical Flaw Sizes in the Primary Structure Welds of the Ares I-X Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.; Hoge, Peter A.; Patel, B. M.; Nagpal, Vinod K.

    2009-01-01

    The primary structure of the Ares I-X Upper Stage Simulator (USS) launch vehicle is constructed of welded mild steel plates. There is some concern over the possibility of structural failure due to welding flaws. It was considered critical to quantify the impact of uncertainties in residual stress, material porosity, applied loads, and material and crack growth properties on the reliability of the welds during its pre-flight and flight. A criterion--an existing maximum size crack at the weld toe must be smaller than the maximum allowable flaw size--was established to estimate the reliability of the welds. A spectrum of maximum allowable flaw sizes was developed for different possible combinations of all of the above listed variables by performing probabilistic crack growth analyses using the ANSYS finite element analysis code in conjunction with the NASGRO crack growth code. Two alternative methods were used to account for residual stresses: (1) The mean residual stress was assumed to be 41 ksi and a limit was set on the net section flow stress during crack propagation. The critical flaw size was determined by parametrically increasing the initial flaw size and detecting if this limit was exceeded during four complete flight cycles, and (2) The mean residual stress was assumed to be 49.6 ksi (the parent material s yield strength) and the net section flow stress limit was ignored. The critical flaw size was determined by parametrically increasing the initial flaw size and detecting if catastrophic crack growth occurred during four complete flight cycles. Both surface-crack models and through-crack models were utilized to characterize cracks in the weld toe.

  10. Failure prediction in ceramic composites using acoustic emission and digital image correlation

    NASA Astrophysics Data System (ADS)

    Whitlow, Travis; Jones, Eric; Przybyla, Craig

    2016-02-01

    The objective of the work performed here was to develop a methodology for linking in-situ detection of localized matrix cracking to the final failure location in continuous fiber reinforced CMCs. First, the initiation and growth of matrix cracking are measured and triangulated via acoustic emission (AE) detection. High amplitude events at relatively low static loads can be associated with initiation of large matrix cracks. When there is a localization of high amplitude events, a measurable effect on the strain field can be observed. Full field surface strain measurements were obtained using digital image correlation (DIC). An analysis using the combination of the AE and DIC data was able to predict the final failure location.

  11. An impedance-based approach for detection and quantification of damage in cracked plates and loose bolts in bridge structures

    NASA Astrophysics Data System (ADS)

    Rabiei, Masoud; Sheldon, Jeremy; Palmer, Carl

    2012-04-01

    The applicability of Electro-Mechanical Impedance (EMI) approach to damage detection, localization and quantification in a mobile bridge structure is investigated in this paper. The developments in this paper focus on assessing the health of Armored Vehicle Launched Bridges (AVLBs). Specifically, two key failure mechanisms of the AVLB to be monitored were fatigue crack growth and damaged (loose) rivets (bolts) were identified. It was shown through experiment that bolt damage (defined here as different torque levels applied to bolts) can be detected, quantified and located using a network of lead zirconate titanate (PZT) transducers distributed on the structure. It was also shown that cracks of various sizes can be detected and quantified using the EMI approach. The experiments were performed on smaller laboratory specimens as well as full size bridge-like components that were built as part of this research. The effects of various parameters such as transducer type and size on the performance of the proposed health assessment approach were also investigated.

  12. Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission

    PubMed Central

    Zhang, Zhiheng; Yang, Guoan; Hu, Kun

    2018-01-01

    Fatigue failure is the main type of failure that occurs in gas turbine engine blades and an online monitoring method for detecting fatigue cracks in blades is urgently needed. Therefore, in this present study, we propose the use of acoustic emission (AE) monitoring for the online identification of the blade status. Experiments on fatigue crack propagation based on the AE monitoring of gas turbine engine blades and TC11 titanium alloy plates were conducted. The relationship between the cumulative AE hits and the fatigue crack length was established, before a method of using the AE parameters to determine the crack propagation stage was proposed. A method for predicting the degree of crack propagation and residual fatigue life based on the AE energy was obtained. The results provide a new method for the online monitoring of cracks in the gas turbine engine blade. PMID:29693556

  13. Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission.

    PubMed

    Zhang, Zhiheng; Yang, Guoan; Hu, Kun

    2018-04-25

    Fatigue failure is the main type of failure that occurs in gas turbine engine blades and an online monitoring method for detecting fatigue cracks in blades is urgently needed. Therefore, in this present study, we propose the use of acoustic emission (AE) monitoring for the online identification of the blade status. Experiments on fatigue crack propagation based on the AE monitoring of gas turbine engine blades and TC11 titanium alloy plates were conducted. The relationship between the cumulative AE hits and the fatigue crack length was established, before a method of using the AE parameters to determine the crack propagation stage was proposed. A method for predicting the degree of crack propagation and residual fatigue life based on the AE energy was obtained. The results provide a new method for the online monitoring of cracks in the gas turbine engine blade.

  14. A novel rail defect detection method based on undecimated lifting wavelet packet transform and Shannon entropy-improved adaptive line enhancer

    NASA Astrophysics Data System (ADS)

    Hao, Qiushi; Zhang, Xin; Wang, Yan; Shen, Yi; Makis, Viliam

    2018-07-01

    Acoustic emission (AE) technology is sensitive to subliminal rail defects, however strong wheel-rail contact rolling noise under high-speed condition has gravely impeded detecting of rail defects using traditional denoising methods. In this context, the paper develops an adaptive detection method for rail cracks, which combines multiresolution analysis with an improved adaptive line enhancer (ALE). To obtain elaborate multiresolution information of transient crack signals with low computational cost, lifting scheme-based undecimated wavelet packet transform is adopted. In order to feature the impulsive property of crack signals, a Shannon entropy-improved ALE is proposed as a signal enhancing approach, where Shannon entropy is introduced to improve the cost function. Then a rail defect detection plan based on the proposed method for high-speed condition is put forward. From theoretical analysis and experimental verification, it is demonstrated that the proposed method has superior performance in enhancing the rail defect AE signal and reducing the strong background noise, offering an effective multiresolution approach for rail defect detection under high-speed and strong-noise condition.

  15. Comparison of Visual and Acoustic Emission Observations in a Four Point Bending Experiment on Barre Granite

    NASA Astrophysics Data System (ADS)

    Li, Bing Qiuyi; Einstein, Herbert H.

    2017-09-01

    We present an experimental study in which a pre-notched specimen of Barre Granite was subjected to four point bending under crack mouth opening displacement control. The experimental observations consisted of load-displacement measurements, acoustic emissions, and photography on a macroscopic ( cm) as well as microscopic ( μm) scale. These observations were compared and analysed to better understand process zone development and crack propagation. Load-displacement data showed that the load reaches its maximum at crack initiation, and the machine input work is constant while the crack propagates. AE moment magnitudes between Mw = -6 to -10 were observed, and focal mechanisms consisted of both shear and tensile components. During process zone development, AE formed a large cloud of events located near the notch tip and then tended to occur away from the notch tip as the crack propagated. Image analysis at the microscopic scale showed that microcracks formed and coalesced during process zone development; specifically, the microcracks initiated in tension and then propagated as a series of en-echelon cracks. In general, the synthesis of the three observations showed that a wider bulb of activity at lower energy tended to occur during process zone development, while crack propagation tended to be more spatially concentrated and contained higher energy.

  16. Effect of heating rate on thermal cracking characteristics and kinetics of Xinjiang oil sand bitumen by TG-FTIR

    NASA Astrophysics Data System (ADS)

    Hao, Junhui; Zhang, Jinhong; Qiao, Yingyun; Tian, Yuanyu

    2017-08-01

    This work was aimed to investigate effects of heating rate on thermal cracking behaviors, distribution of gaseous products and activation energy of the thermal cracking process of Xinjiang oil sand bitumen (OSB). The thermal cracking experiments of Xinjiang OSB were performed by using thermogravimetric analyzer (TGA) at various heating rates of 10, 20, 50, 80 and 120 K/min. The evolving characteristic of gaseous products produced from the thermal cracking process was evaluated by the Fourier transform infrared spectrometry (FTIR) connected with TG. The kinetic parameters of the thermal cracking process of Xinjiang OSB at each of heating rate were determined by the Coats-Redfern model. The result show that the temperature intervals of DE volatilization stage and main reaction stage, the ((dw/dt) max and Tmax in thermal cracking process of Xinjiang OSB all increased with the increasing heating rate. While the heating rate has not obvious effect on the coke yield of Xinjiang OSB. Furthermore, the maximum absorbance of gaseous products and corresponding temperature became larger as the heating rate increases. The activation energy of this two stage both presented increasing trend with the rising heating rate, while the increasing content of that of DE volatilization stage was weaker compared to that of main reaction stage.

  17. High resolution monitoring of strain fields in concrete during hydraulic fracturing processes.

    PubMed

    Chen, Rongzhang; Zaghloul, Mohamed A S; Yan, Aidong; Li, Shuo; Lu, Guanyi; Ames, Brandon C; Zolfaghari, Navid; Bunger, Andrew P; Li, Ming-Jun; Chen, Kevin P

    2016-02-22

    We present a distributed fiber optic sensing scheme to image 3D strain fields inside concrete blocks during laboratory-scale hydraulic fracturing. Strain fields were measured by optical fibers embedded during casting of the concrete blocks. The axial strain profile along the optical fiber was interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry (OFDR). The 3D strain fields inside the cubes under various driving pressures and pumping schedules were measured and used to characterize the location, shape, and growth rate of the hydraulic fractures. The fiber optic sensor detection method presented in this paper provides scientists and engineers an unique laboratory tool to understand the hydraulic fracturing processes via internal, 3D strain measurements with the potential to ascertain mechanisms related to crack growth and its associated damage of the surrounding material as well as poromechanically-coupled mechanisms driven by fluid diffusion from the crack into the permeable matrix of concrete specimens.

  18. An Evaluation of the Applicability of Damage Tolerance to Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Le, Dy; Turnberg, Jay

    2005-01-01

    The Federal Aviation Administration, the National Aeronautics and Space Administration and the aircraft industry have teamed together to develop methods and guidance for the safe life-cycle management of dynamic systems. Based on the success of the United States Air Force damage tolerance initiative for airframe structure, a crack growth based damage tolerance approach is being examined for implementation into the design and management of dynamic systems. However, dynamic systems accumulate millions of vibratory cycles per flight hour, more than 12,000 times faster than an airframe system. If a detectable crack develops in a dynamic system, the time to failure is extremely short, less than 100 flight hours in most cases, leaving little room for error in the material characterization, life cycle analysis, nondestructive inspection and maintenance processes. In this paper, the authors review the damage tolerant design process focusing on uncertainties that affect dynamic systems and evaluate the applicability of damage tolerance on dynamic systems.

  19. High resolution monitoring of strain fields in concrete during hydraulic fracturing processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Rongzhang; Zaghloul, Mohamed A. S.; Yan, Aidong

    Here, we present a distributed fiber optic sensing scheme to image 3D strain fields inside concrete blocks during laboratory-scale hydraulic fracturing. Strain fields were measured by optical fibers embedded during casting of the concrete blocks. The axial strain profile along the optical fiber was interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry (OFDR). The 3D strain fields inside the cubes under various driving pressures and pumping schedules were measured and used to characterize the location, shape, and growth rate of the hydraulic fractures. The fiber optic sensor detection method presented in this papermore » provides scientists and engineers an unique laboratory tool to understand the hydraulic fracturing processes via internal, 3D strain measurements with the potential to ascertain mechanisms related to crack growth and its associated damage of the surrounding material as well as poromechanically-coupled mechanisms driven by fluid diffusion from the crack into the permeable matrix of concrete specimens.« less

  20. High resolution monitoring of strain fields in concrete during hydraulic fracturing processes

    DOE PAGES

    Chen, Rongzhang; Zaghloul, Mohamed A. S.; Yan, Aidong; ...

    2016-02-17

    Here, we present a distributed fiber optic sensing scheme to image 3D strain fields inside concrete blocks during laboratory-scale hydraulic fracturing. Strain fields were measured by optical fibers embedded during casting of the concrete blocks. The axial strain profile along the optical fiber was interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry (OFDR). The 3D strain fields inside the cubes under various driving pressures and pumping schedules were measured and used to characterize the location, shape, and growth rate of the hydraulic fractures. The fiber optic sensor detection method presented in this papermore » provides scientists and engineers an unique laboratory tool to understand the hydraulic fracturing processes via internal, 3D strain measurements with the potential to ascertain mechanisms related to crack growth and its associated damage of the surrounding material as well as poromechanically-coupled mechanisms driven by fluid diffusion from the crack into the permeable matrix of concrete specimens.« less

  1. 3D characterization of trans- and inter-lamellar fatigue crack in (α + β) Ti alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babout, Laurent, E-mail: Laurent.babout@p.lodz.pl; Jopek, Łukasz; Preuss, Michael

    2014-12-15

    This paper presents a three dimensional image processing strategy that has been developed to quantitatively analyze and correlate the path of a fatigue crack with the lamellar microstructure found in Ti-6246. The analysis is carried out on X-ray microtomography images acquired in situ during uniaxial fatigue testing. The crack, the primary β-grain boundaries and the α lamellae have been segmented separately and merged for the first time to allow a better characterization and understanding of their mutual interaction. This has particularly emphasized the role of translamellar crack growth at a very high propagation angle with regard to the lamellar orientation,more » supporting the central role of colonies favorably oriented for basal 〈a〉 slip to guide the crack in the fully lamellar microstructure of Ti alloy. - Highlights: • 3D tomography images reveal strong short fatigue crack interaction with α lamellae. • Proposed 3D image processing methodology makes their segmentation possible. • Crack-lamellae orientation maps show prevalence of translamellar cracking. • Angle study comforts the influence of basal/prismatic slip on crack path.« less

  2. Passive wireless antenna sensor for strain and crack sensing—electromagnetic modeling, simulation, and testing

    NASA Astrophysics Data System (ADS)

    Yi, Xiaohua; Cho, Chunhee; Cooper, James; Wang, Yang; Tentzeris, Manos M.; Leon, Roberto T.

    2013-08-01

    This research investigates a passive wireless antenna sensor designed for strain and crack sensing. When the antenna experiences deformation, the antenna shape changes, causing a shift in the electromagnetic resonance frequency of the antenna. A radio frequency identification (RFID) chip is adopted for antenna signal modulation, so that a wireless reader can easily distinguish the backscattered sensor signal from unwanted environmental reflections. The RFID chip captures its operating power from an interrogation electromagnetic wave emitted by the reader, which allows the antenna sensor to be passive (battery-free). This paper first reports the latest simulation results on radiation patterns, surface current density, and electromagnetic field distribution. The simulation results are followed with experimental results on the strain and crack sensing performance of the antenna sensor. Tensile tests show that the wireless antenna sensor can detect small strain changes lower than 20 με, and can perform well at large strains higher than 10 000 με. With a high-gain reader antenna, the wireless interrogation distance can be increased up to 2.1 m. Furthermore, an array of antenna sensors is capable of measuring the strain distribution in close proximity. During emulated crack and fatigue crack tests, the antenna sensor is able to detect the growth of a small crack.

  3. Practical theories for service life prediction of critical aerospace structural components

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Monaghan, Richard C.; Jackson, Raymond H.

    1992-01-01

    A new second-order theory was developed for predicting the service lives of aerospace structural components. The predictions based on this new theory were compared with those based on the Ko first-order theory and the classical theory of service life predictions. The new theory gives very accurate service life predictions. An equivalent constant-amplitude stress cycle method was proposed for representing the random load spectrum for crack growth calculations. This method predicts the most conservative service life. The proposed use of minimum detectable crack size, instead of proof load established crack size as an initial crack size for crack growth calculations, could give a more realistic service life.

  4. A method for evaluating the fatigue crack growth in spiral notch torsion fracture toughness test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy -An John; Tan, Ting

    The spiral notch torsion test (SNTT) has been a recent breakthrough in measuring fracture toughness for different materials, including metals, ceramics, concrete, and polymers composites. Due to its high geometry constraint and unique loading condition, SNTT can be used to measure the fracture toughness with smaller specimens without concern of size effects. The application of SNTT to brittle materials has been proved to be successful. The micro-cracks induced by original notches in brittle materials could ensure crack growth in SNTT samples. Therefore, no fatigue pre-cracks are needed. The application of SNTT to the ductile material to generate valid toughness datamore » will require a test sample with sufficient crack length. Fatigue pre-crack growth techniques are employed to introduce sharp crack front into the sample. Previously, only rough calculations were applied to estimate the compliance evolution in the SNTT crack growth process, while accurate quantitative descriptions have never been attempted. This generates an urgent need to understand the crack evolution during the SNTT fracture testing process of ductile materials. Here, the newly developed governing equations for SNTT crack growth estimate are discussed in the paper.« less

  5. A method for evaluating the fatigue crack growth in spiral notch torsion fracture toughness test

    DOE PAGES

    Wang, Jy -An John; Tan, Ting

    2018-05-21

    The spiral notch torsion test (SNTT) has been a recent breakthrough in measuring fracture toughness for different materials, including metals, ceramics, concrete, and polymers composites. Due to its high geometry constraint and unique loading condition, SNTT can be used to measure the fracture toughness with smaller specimens without concern of size effects. The application of SNTT to brittle materials has been proved to be successful. The micro-cracks induced by original notches in brittle materials could ensure crack growth in SNTT samples. Therefore, no fatigue pre-cracks are needed. The application of SNTT to the ductile material to generate valid toughness datamore » will require a test sample with sufficient crack length. Fatigue pre-crack growth techniques are employed to introduce sharp crack front into the sample. Previously, only rough calculations were applied to estimate the compliance evolution in the SNTT crack growth process, while accurate quantitative descriptions have never been attempted. This generates an urgent need to understand the crack evolution during the SNTT fracture testing process of ductile materials. Here, the newly developed governing equations for SNTT crack growth estimate are discussed in the paper.« less

  6. Fracture mechanics life analytical methods verification testing

    NASA Technical Reports Server (NTRS)

    Favenesi, J. A.; Clemons, T. G.; Riddell, W. T.; Ingraffea, A. R.; Wawrzynek, P. A.

    1994-01-01

    The objective was to evaluate NASCRAC (trademark) version 2.0, a second generation fracture analysis code, for verification and validity. NASCRAC was evaluated using a combination of comparisons to the literature, closed-form solutions, numerical analyses, and tests. Several limitations and minor errors were detected. Additionally, a number of major flaws were discovered. These major flaws were generally due to application of a specific method or theory, not due to programming logic. Results are presented for the following program capabilities: K versus a, J versus a, crack opening area, life calculation due to fatigue crack growth, tolerable crack size, proof test logic, tearing instability, creep crack growth, crack transitioning, crack retardation due to overloads, and elastic-plastic stress redistribution. It is concluded that the code is an acceptable fracture tool for K solutions of simplified geometries, for a limited number of J and crack opening area solutions, and for fatigue crack propagation with the Paris equation and constant amplitude loads when the Paris equation is applicable.

  7. On the use of a roving body with rotary inertia to locate cracks in beams

    NASA Astrophysics Data System (ADS)

    Cannizzaro, F.; De Los Rios, J.; Caddemi, S.; Caliò, I.; Ilanko, S.

    2018-07-01

    Identifying cracks and damages in structures using measured vibrational characteristics has received considerable attention in the past few decades. The possibility of using frequency changes due to the application of a mass appended to the structure has also been considered. In this paper an analytical proof to show that the natural frequencies of a cracked beam with a roving body possessing mass and rotary inertia will generally change abruptly as the body passes over a crack, provided that the crack permits differential flexural rotations, is presented. A novel explicit closed form solution of the governing equation of an Euler-Bernoulli beam with a roving body possessing mass and rotary inertia, in the presence of multiple cracks is also proposed. The presented exact solution is used to conduct a parametric analysis of cracked beams. Numerical results for natural frequencies are provided and a procedure to exploit the occurrence of frequency shifts to detect and locate each crack, without having to perform any additional calculation, is described.

  8. Study on influence of crack on the blade status using FBGs

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Liang, Lei; Li, Jianzhi; Mei, Huaping; Li, Hongli; Liu, Yijun

    2018-03-01

    The status detection for rotating parts is difficult since the sensor is influenced by the rotation in the inflammable, explosive, and strong magnetic environment. Based on the fiber Bragg grating sensing technology, this paper studies the influence of the natural frequency and deformation of a rotor blade affected by the size of crack in the blade. Test results show that the speed of the equipment and blade excited vibration frequency are two main factors or deformation and vibration frequency of the blade. With an increase in the crack depth, the blade deformation is increased while the stimulated natural frequency of the blade is decreased; at a low rotational speed, the deformation is mainly caused by the rotating speed of the blade. On the contrary, the vibration blade itself contributes to the deformation at a high speed. During the process of full speed rotation, the influence of the rotational speed on the blade deformation almost remains the same, and the influence of the natural vibration on blade deformation is increased with an increase in the rotational speed.

  9. Study on influence of crack on the blade status using FBGs

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Liang, Lei; Li, Jianzhi; Mei, Huaping; Li, Hongli; Liu, Yijun

    2017-12-01

    The status detection for rotating parts is difficult since the sensor is influenced by the rotation in the inflammable, explosive, and strong magnetic environment. Based on the fiber Bragg grating sensing technology, this paper studies the influence of the natural frequency and deformation of a rotor blade affected by the size of crack in the blade. Test results show that the speed of the equipment and blade excited vibration frequency are two main factors or deformation and vibration frequency of the blade. With an increase in the crack depth, the blade deformation is increased while the stimulated natural frequency of the blade is decreased; at a low rotational speed, the deformation is mainly caused by the rotating speed of the blade. On the contrary, the vibration blade itself contributes to the deformation at a high speed. During the process of full speed rotation, the influence of the rotational speed on the blade deformation almost remains the same, and the influence of the natural vibration on blade deformation is increased with an increase in the rotational speed.

  10. Laser Engineered Net Shape (LENS) Technology for the Repair of Ni-Base Superalloy Turbine Components

    NASA Astrophysics Data System (ADS)

    Liu, Dejian; Lippold, John C.; Li, Jia; Rohklin, Stan R.; Vollbrecht, Justin; Grylls, Richard

    2014-09-01

    The capability of the laser engineered net shape (LENS) process was evaluated for the repair of casting defects and improperly machined holes in gas turbine engine components. Various repair geometries, including indentations, grooves, and through-holes, were used to simulate the actual repair of casting defects and holes in two materials: Alloy 718 and Waspaloy. The influence of LENS parameters, including laser energy density, laser scanning speed, and deposition pattern, on the repair of these defects and holes was studied. Laser surface remelting of the substrate prior to repair was used to remove machining defects and prevent heat-affected zone (HAZ) liquation cracking. Ultrasonic nondestructive evaluation techniques were used as a possible approach for detecting lack-of-fusion in repairs. Overall, Alloy 718 exhibited excellent repair weldability, with essentially no defects except for some minor porosity in repairs representative of deep through-holes and simulated large area casting defects. In contrast, cracking was initially observed during simulated repair of Waspaloy. Both solidification cracking and HAZ liquation cracking were observed in the repairs, especially under conditions of high heat input (high laser power and/or low scanning speed). For Waspaloy, the degree of cracking was significantly reduced and, in most cases, completely eliminated by the combination of low laser energy density and relatively high laser scanning speeds. It was found that through-hole repairs of Waspaloy made using a fine powder size exhibited excellent repair weldability and were crack-free relative to repairs using coarser powder. Simulated deep (7.4 mm) blind-hole repairs, representative of an actual Waspaloy combustor case, were successfully produced by the combination use of fine powder and relatively high laser scanning speeds.

  11. A structural health monitoring fastener for tracking fatigue crack growth in bolted metallic joints

    NASA Astrophysics Data System (ADS)

    Rakow, Alexi Schroder

    Fatigue cracks initiating at fastener hole locations in metallic components are among the most common form of airframe damage. The fastener hole site has been surveyed as the second leading initiation site for fatigue related accidents of fixed wing aircraft. Current methods for inspecting airframes for these cracks are manual, whereby inspectors rely on non-destructive inspection equipment or hand-held probes to scan over areas of a structure. Use of this equipment often demands disassembly of the vehicle to search appropriate hole locations for cracks, which elevates the complexity and cost of these maintenance inspections. Improved reliability, safety, and reduced cost of such maintenance can be realized by the permanent integration of sensors with a structure to detect this damage. Such an integrated system of sensors would form a structural health monitoring (SHM) system. In this study, an Additive, Interleaved, Multi-layer Electromagnetic (AIME) sensor was developed and integrated with the shank of a fastener to form a SHM Fastener, a new SHM technology targeted at detection of fastener hole cracks. The major advantages of the SHM Fastener are its installation, which does not require joint layer disassembly, its capability to detect inner layer cracks, and its capability to operate in a continuous autonomous mode. Two methods for fabricating the proposed SHM Fastener were studied. The first option consisted of a thin flexible printed circuit film that was bonded around a thin metallic sleeve placed around the fastener shank. The second option consisted of coating sensor materials directly to the shank of a part in an effort to increase the durability of the sensor under severe loading conditions. Both analytical and numerical models were developed to characterize the capability of the sensors and provide a design tool for the sensor layout. A diagnostic technique for crack growth monitoring was developed to complete the SHM system, which consists of the sensor, data acquisition hardware, algorithm, and diagnostic display. The AIME sensor design, SHM Fastener, and complete SHM system are presented along with experimental results from a series of single-layer and bolted double lap joint aluminum laboratory specimens to validate the capability of these sensors to monitor metallic joints for fastener hole cracks. Fatigue cracks were successfully tracked to over 0.7 inches from the fastener hole in these tests. Sensor output obtained from single-layer fatigue specimens was compared with analytical predictions for fatigue crack growth versus cycle number showing a good correlation in trend between sensor output and predicted crack size.

  12. Improved hairline crack detector and poor shell-quality eggs

    USDA-ARS?s Scientific Manuscript database

    Cracks frequently occur throughout various points of egg collection and processing and there are numerous high-speed online commercial crack detectors in use. The accuracy of crack detectors is validated by USDA human graders to ensure that they are in compliance with voluntary grade standards USDA...

  13. Variables Affecting Probability of Detection in Bolt Hole Eddy Current Inspection

    NASA Astrophysics Data System (ADS)

    Lemire, H.; Krause, T. W.; Bunn, M.; Butcher, D. J.

    2009-03-01

    Physical variables affecting probability of detection (POD) in a bolt-hole eddy current inspection were examined. The POD study involved simulated bolt holes in 7075-T6 aluminum coupons representative of wing areas on CC-130 and CP-140 aircraft. The data were obtained from 24 inspectors who inspected 468 coupons, containing a subset of coupons with 45 electric discharge machined notches and 72 laboratory grown fatigue cracks located at the inner surface corner of the bi-layer structures. A comparison of physical features of cracks and notches in light of skin depth effects and probe geometry was used to identify length rather than depth as the significant variable producing signal variation. Probability of detection based on length produced similar results for the two discontinuity types, except at lengths less than 0.4 mm, where POD for cracks was found to be higher than that of notches.

  14. Detection of Real Flaw using Uniform Eddy Current Multi-probe

    NASA Astrophysics Data System (ADS)

    Fukuoka, Katsuhiro; Hashimoto, Mitsuo

    The establishment of the nondestructive inspection technology with plant structures has been stimulated by the recent occurrence of cracks in the nuclear power plant structures. In this research, a uniform eddy current multi-probe to apply to the complex structure and inspect the cracks at high-speed data acquisition was developed. Pick-up coils of the developed probe were arranged on a flexible printed circuit board. This probe was able to obtain clear signal for an EDM (electro-discharge machining) slit with 0.5 mm depth and distinguish EDM slits arranged at 2 mm intervals. It was confirmed that the SCC (stress corrosion cracking) of real flaw was able to be detected with developed uniform eddy current multi-probe by using the ferrite core for the exciting coil and considering the impedance matching of the exciting coil and the flaw detection device.

  15. Anomaly Detection Techniques with Real Test Data from a Spinning Turbine Engine-Like Rotor

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Woike, Mark R.; Oza, Nikunj C.; Matthews, Bryan L.

    2012-01-01

    Online detection techniques to monitor the health of rotating engine components are becoming increasingly attractive to aircraft engine manufacturers in order to increase safety of operation and lower maintenance costs. Health monitoring remains a challenge to easily implement, especially in the presence of scattered loading conditions, crack size, component geometry, and materials properties. The current trend, however, is to utilize noninvasive types of health monitoring or nondestructive techniques to detect hidden flaws and mini-cracks before any catastrophic event occurs. These techniques go further to evaluate material discontinuities and other anomalies that have grown to the level of critical defects that can lead to failure. Generally, health monitoring is highly dependent on sensor systems capable of performing in various engine environmental conditions and able to transmit a signal upon a predetermined crack length, while acting in a neutral form upon the overall performance of the engine system.

  16. Microwave detection of fatigue cracks in specially prepared steel specimens.

    DOT National Transportation Integrated Search

    1998-01-01

    In the aging highway systems the problems of fatigue-induced damage and cracking in metal structures are very severe. Many such systems are operating even beyond their design lifetime, which requires more than the originally prescribed inspection cyc...

  17. Crack deflection in brittle media with heterogeneous interfaces and its application in shale fracking

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaguang; Wei, Yujie

    Driven by the rapid progress in exploiting unconventional energy resources such as shale gas, there is growing interest in hydraulic fracture of brittle yet heterogeneous shales. In particular, how hydraulic cracks interact with natural weak zones in sedimentary rocks to form permeable cracking networks is of significance in engineering practice. Such a process is typically influenced by crack deflection, material anisotropy, crack-surface friction, crustal stresses, and so on. In this work, we extend the He-Hutchinson theory (He and Hutchinson, 1989) to give the closed-form formulae of the strain energy release rate of a hydraulic crack with arbitrary angles with respect to the crustal stress. The critical conditions in which the hydraulic crack deflects into weak interfaces and exhibits a dependence on crack-surface friction and crustal stress anisotropy are given in explicit formulae. We reveal analytically that, with increasing pressure, hydraulic fracture in shales may sequentially undergo friction locking, mode II fracture, and mixed mode fracture. Mode II fracture dominates the hydraulic fracturing process and the impinging angle between the hydraulic crack and the weak interface is the determining factor that accounts for crack deflection; the lower friction coefficient between cracked planes and the greater crustal stress difference favor hydraulic fracturing. In addition to shale fracking, the analytical solution of crack deflection could be used in failure analysis of other brittle media.

  18. Experimental and Computational Studies on the Scattering of an Edge-Guided Wave by a Hidden Crack on a Racecourse Shaped Hole.

    PubMed

    Vien, Benjamin Steven; Rose, Louis Raymond Francis; Chiu, Wing Kong

    2017-07-01

    Reliable and quantitative non-destructive evaluation for small fatigue cracks, in particular those in hard-to-inspect locations, is a challenging problem. Guided waves are advantageous for structural health monitoring due to their slow geometrical decay of amplitude with propagating distance, which is ideal for rapid wide-area inspection. This paper presents a 3D laser vibrometry experimental and finite element analysis of the interaction between an edge-guided wave and a small through-thickness hidden edge crack on a racecourse shaped hole that occurs, in practice, as a fuel vent hole. A piezoelectric transducer is bonded on the straight edge of the hole to generate the incident wave. The excitation signal consists of a 5.5 cycle Hann-windowed tone burst of centre frequency 220 kHz, which is below the cut-off frequency for the first order Lamb wave modes (SH1). Two-dimensional fast Fourier transformation (2D FFT) is applied to the incident and scattered wave field along radial lines emanating from the crack mouth, so as to identify the wave modes and determine their angular variation and amplitude. It is shown experimentally and computationally that mid-plane symmetric edge waves can travel around the hole's edge to detect a hidden crack. Furthermore, the scattered wave field due to a small crack length, a , (compared to the wavelength λ of the incident wave) is shown to be equivalent to a point source consisting of a particular combination of body-force doublets. It is found that the amplitude of the scattered field increases quadratically as a function of a/λ , whereas the scattered wave pattern is independent of crack length for small cracks a < λ . This study of the forward scattering problem from a known crack size provides a useful guide for the inverse problem of hidden crack detection and sizing.

  19. Simulating the x-ray image contrast to setup techniques with desired flaw detectability

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2015-04-01

    The paper provides simulation data of previous work by the author in developing a model for estimating detectability of crack-like flaws in radiography. The methodology is developed to help in implementation of NASA Special x-ray radiography qualification, but is generically applicable to radiography. The paper describes a method for characterizing the detector resolution. Applicability of ASTM E 2737 resolution requirements to the model are also discussed. The paper describes a model for simulating the detector resolution. A computer calculator application, discussed here, also performs predicted contrast and signal-to-noise ratio calculations. Results of various simulation runs in calculating x-ray flaw size parameter and image contrast for varying input parameters such as crack depth, crack width, part thickness, x-ray angle, part-to-detector distance, part-to-source distance, source sizes, and detector sensitivity and resolution are given as 3D surfaces. These results demonstrate effect of the input parameters on the flaw size parameter and the simulated image contrast of the crack. These simulations demonstrate utility of the flaw size parameter model in setting up x-ray techniques that provide desired flaw detectability in radiography. The method is applicable to film radiography, computed radiography, and digital radiography.

  20. Simulation and experiment for depth sizing of cracks in anchor bolts by ultrasonic phased array technology

    NASA Astrophysics Data System (ADS)

    Lin, Shan

    2018-04-01

    There have been lots of reports about the occurrence of cracks in bolts in aging nuclear and thermal power plants. Sizing of such cracks is crucial for assessing the integrity of bolts. Currently, hammering and visual tests are used to detect cracks in bolts. However, they are not applicable for sizing cracks. Although the tip diffraction method is well known as a crack sizing technique, reflection echoes from threads make it difficult to apply this technique to bolts. This paper addresses a method for depth sizing of cracks in bolts by means of ultrasonic phased array technology. Numerical results of wave propagation in bolts by the finite element method (FEM) shows that a peak associated within the vicinity of a crack tip can be observed in the curve of echo intensity versus refraction angle for deep cracks. The refraction angle with respect to this peak decreases as crack depth increases. Such numerical results are verified by experiments on bolt specimens that have electrical discharge machining notches or fatigue cracks with different depths. In the experiment, a 10-MHz linear array probe is used. Depth of cracks in bolts using the refraction angle associated with the peak is determined and compared to actual depths. The comparison shows that accurately determining a crack depth from the inspection results is possible.

  1. On prediction of crack in different orientations in pipe using frequency based approach

    NASA Astrophysics Data System (ADS)

    Naniwadekar, M. R.; Naik, S. S.; Maiti, S. K.

    2008-04-01

    A technique based on measurement of change in natural frequencies and modeling of crack by rotational spring is employed to detect a crack with straight front in different orientations in a section of straight horizontal steel hollow pipe (outer diameter 0.0378 m and inner diameter 0.0278 m). Crack orientations in the range 0-60° with the vertical have been examined and sizes/depths in the range 1-4 mm through the wall of thickness 5 mm have been studied. Variation of rotational spring stiffness with crack size and orientation has been obtained experimentally by deflection and vibration methods. The spring stiffness reduces as expected, with an increase in crack size; it increases with an increase in the crack orientation angle. The crack location has been predicted with a maximum error of 7.29%. The sensitivity of the method for prediction of crack location on variations in experimental data has been examined by changing the difference between the frequencies of pipes with and without crack by ±10%. The method is found to be very robust; the maximum variation in location is 2.68%, which is much less than the change in frequency difference introduced.

  2. Fatigue Crack Prognostics by Optical Quantification of Defect Frequency

    NASA Astrophysics Data System (ADS)

    Chan, K. S.; Buckner, B. D.; Earthman, J. C.

    2018-01-01

    Defect frequency, a fatigue crack prognostics indicator, is defined as the number of microcracks per second detected using a laser beam that is scanned across a surface at a constant predetermined frequency. In the present article, a mechanistic approach was taken to develop a methodology for deducing crack length and crack growth information from defect frequency data generated from laser scanning measurements made on fatigued surfaces. The method was developed by considering a defect frequency vs fatigue cycle curve that comprised three regions: (i) a crack initiation regime of rising defect frequency, (ii) a plateau region of a relatively constant defect frequency, and (iii) a region of rapid rising defect frequency due to crack growth. Relations between defect frequency and fatigue cycle were developed for each of these three regions and utilized to deduce crack depth information from laser scanning data of 7075-T6 notched specimens. The proposed method was validated using experimental data of crack density and crack length data from the literature for a structural steel. The proposed approach was successful in predicting the length or depth of small fatigue cracks in notched 7075-T6 specimens and in smooth fatigue specimens of a structural steel.

  3. Fault Diagnosis of Demountable Disk-Drum Aero-Engine Rotor Using Customized Multiwavelet Method.

    PubMed

    Chen, Jinglong; Wang, Yu; He, Zhengjia; Wang, Xiaodong

    2015-10-23

    The demountable disk-drum aero-engine rotor is an important piece of equipment that greatly impacts the safe operation of aircraft. However, assembly looseness or crack fault has led to several unscheduled breakdowns and serious accidents. Thus, condition monitoring and fault diagnosis technique are required for identifying abnormal conditions. Customized ensemble multiwavelet method for aero-engine rotor condition identification, using measured vibration data, is developed in this paper. First, customized multiwavelet basis function with strong adaptivity is constructed via symmetric multiwavelet lifting scheme. Then vibration signal is processed by customized ensemble multiwavelet transform. Next, normalized information entropy of multiwavelet decomposition coefficients is computed to directly reflect and evaluate the condition. The proposed approach is first applied to fault detection of an experimental aero-engine rotor. Finally, the proposed approach is used in an engineering application, where it successfully identified the crack fault of a demountable disk-drum aero-engine rotor. The results show that the proposed method possesses excellent performance in fault detection of aero-engine rotor. Moreover, the robustness of the multiwavelet method against noise is also tested and verified by simulation and field experiments.

  4. Advances in transient (pulsed) eddy current for inspection of multi-layer aluminum structures in the presence of ferrous fasteners

    NASA Astrophysics Data System (ADS)

    Desjardins, D. R.; Vallières, G.; Whalen, P. P.; Krause, T. W.

    2012-05-01

    An experimental investigation of the electromagnetic processes underlying transient (pulsed) eddy current inspection of aircraft wing structures in the vicinity of ferrous fasteners is performed. The separate effects of transient excitation of ferrous fastener and eddy currents induced in the surrounding aluminum structure are explored using a transmit-receive configuration with transient excitation of a steel rod, an aluminum plate with a bore hole and a steel rod through the bore hole. Observations are used to interpret results from a coupled driving and differential coil sensing unit applied to detect fatigue cracks emanating from bolt holes in aluminum structures with ferrous fasteners present. In particular, it is noted that abrupt magnetization of the fastener, by the probe's central driving unit, can transfer flux and consequently, induce strong eddy current responses deep within the aluminum structure in the vicinity of the bore hole. Rotation of the probe, centered over the fastener, permits detection of subsurface discontinuities, such as cracks, by the pair of differentially connected pickup coils.

  5. 75 FR 61980 - Airworthiness Directives; Eurocopter France Model SA-365N, SA-365N1, AS-365N2, AS-365N3, SA-366G1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... gearbox (MGB) planet gear carrier for a crack and replacing any MGB that has a cracked planet gear carrier... planet gear carrier and additional analysis that indicates that the initial inspection interval must be shortened. The actions specified by this AD are intended to detect a crack in the web of the planet gear...

  6. Effect of Layering on Cracking Initiation and Propagation under Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Modiriasari, A.; Jiang, L.; Yoon, H.; Bobet, A.; Pyrak-Nolte, L. J.

    2017-12-01

    Rock anisotropy can arise from textural and structural causes both of which contribute to anisotropic strength and moduli. Rock variability makes it difficult to determine which properties dominate failure. Here, laboratory experiments were performed on 3D printed samples to examine the effect of layering on crack formation. Samples with two pre-existing coplanar flaws were fabricated using an additive 3D printing process (Projet CJP 360). Layers of gypsum (0.2 mm thick) were printed in either a horizontal (H) or a vertical (V) orientation to create prismatic samples (152.4 mm x 76.2 mm x 25.1 mm) with two 12.7 mm long coplanar flaws (19.05 mm apart) oriented at 450 with the load. Cracks were induced under uniaxial loading conditions. Digital image correlation (DIC) and acoustic emission (AE) (18 AE sensors with a frequency range of 100-450 kHz) were used to monitor crack evolution. DIC imaging of the V specimen during uniaxial compression showed that smooth cracks were initiated and propagated from the tips of the flaws parallel to the layering. Unlike the strongly bonded samples, no cracks were formed between the pre-existing flaws. The failure mechanism between the flaws was controlled by the weak bonding between the layers, and not by the coalescence of the new cracks. However, for the H specimen, failure was caused by crack coalescence between the two flaws. The new cracks exhibited a step-like roughness that was influenced by the layering in the sample. AE events were only detected when a synchronized mode was used. 3D printed samples can be effectively used to study the effect of anisotropic layering on crack initiation and propagation in a repeatable and controlled manner. Acknowledgements: Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. This material is also based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022) and by the National Science Foundation, Geomechanics and Geotechnical Systems Program (award No. CMMI-1162082).

  7. Near-Field Acoustical Imaging using Lateral Bending Mode of Atomic Force Microscope Cantilevers

    NASA Astrophysics Data System (ADS)

    Caron, A.; Rabe, U.; Rödel, J.; Arnold, W.

    Scanning probe microscopy techniques enable one to investigate surface properties such as contact stiffness and friction between the probe tip and a sample with nm resolution. So far the bending and the torsional eigenmodes of an atomic force microscope cantilever have been used to image variations of elasticity and shear elasticity, respectively. Such images are near-field images with the resolution given by the contact radius typically between 10 nm and 50 nm. We show that the flexural modes of a cantilever oscillating in the width direction and parallel to the sample surface can also be used for imaging. Additional to the dominant in-plane component of the oscillation, the lateral modes exhibit a vertical component as well, provided there is an asymmetry in the cross-section of the cantilever or in its suspension. The out-of-plane deflection renders the lateral modes detectable by the optical position sensors used in atomic force microscopes. We studied cracks which were generated by Vickers indents, in submicro- and nanocrystalline ZrO2. Images of the lateral contact stiffness were obtained by vibrating the cantilever close to a contact-resonance frequency. A change in contact stiffness causes a shift of the resonant frequency and hence a change of the cantilever vibration amplitude. The lateral contact-stiffness images close to the crack faces display a contrast that we attribute to altered elastic properties indicating a process zone. This could be caused by a stress-induced phase transformation during crack propagation. Using the contact mode of an atomic force microscope, we measured the crack-opening displacement as a function of distance from the crack tip, and we determined the crack-tip toughness Ktip. Furthermore, K1c was inferred from the length of radial cracks of Vickers indents that were measured using classical scanning acoustic microscopy

  8. Monitoring the fracture behavior of SiCp/Al alloy composites using infrared lock-in thermography

    NASA Astrophysics Data System (ADS)

    Kordatos, E. Z.; Myriounis, D., P.; Hasan, S., T.; Matikas, T. E.

    2009-03-01

    his work deals with the study of fracture behavior of silicon carbide particle-reinforced (SiCp) A359 aluminum alloy matrix composites using an innovative nondestructive method based on lock-in thermography. The heat wave, generated by the thermo-mechanical coupling and the intrinsic energy dissipated during mechanical cyclic loading of the sample, was detected by an infrared camera. The coefficient of thermo-elasticity allows for the transformation of the temperature profiles into stresses. A new procedure was developed to determine the crack growth rate using thermographic mapping of the material undergoing fatigue: (a) The distribution of temperature and stresses at the surface of the specimen was monitored during the test. To this end, thermal images were obtained as a function of time and saved in the form of a movie. (b) The stresses were evaluated in a post-processing mode, along a series of equally spaced reference lines of the same length, set in front of the crack-starting notch. The idea was that the stress monitored at the location of a line versus time (or fatigue cycles) would exhibit an increase while the crack approaches the line, then attain a maximum when the crack tip was on the line. Due to the fact that the crack growth path could not be predicted and was not expected to follow a straight line in front of the notch, the stresses were monitored along a series of lines of a certain length, instead of a series of equally spaced points in front of the notch. The exact path of the crack could be easily determined by looking at the stress maxima along each of these reference lines. The thermographic results on the crack growth rate of the metal matrix composite (MMC) samples with three different heat treatments were correlated with measurements obtained by the conventional compliance method, and found to be in agreement.

  9. Analysis of Eddy Current Capabilities for the Detection of Outer Diameter Stress Corrosion Cracking in Small Bore Metallic Structures

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Williams, Phillip; Simpson, John

    2007-01-01

    The use of eddy current techniques for the detection of outer diameter damage in tubing and many complex aerospace structures often requires the use of an inner diameter probe due to a lack of access to the outside of the part. In small bore structures the probe size and orientation are constrained by the inner diameter of the part, complicating the optimization of the inspection technique. Detection of flaws through a significant remaining wall thickness becomes limited not only by the standard depth of penetration, but also geometrical aspects of the probe. Recently, an orthogonal eddy current probe was developed for detection of such flaws in Space Shuttle Primary Reaction Control System (PRCS) Thrusters. In this case, the detection of deeply buried stress corrosion cracking by an inner diameter eddy current probe was sought. Probe optimization was performed based upon the limiting spatial dimensions, flaw orientation, and required detection sensitivity. Analysis of the probe/flaw interaction was performed through the use of finite and boundary element modeling techniques. Experimental data for the flaw detection capabilities, including a probability of detection study, will be presented along with the simulation data. The results of this work have led to the successful deployment of an inspection system for the detection of stress corrosion cracking in Space Shuttle Primary Reaction Control System (PRCS) Thrusters.

  10. Validation Test Results for Orthogonal Probe Eddy Current Thruster Inspection System

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A.

    2007-01-01

    Recent nondestructive evaluation efforts within NASA have focused on an inspection system for the detection of intergranular cracking originating in the relief radius of Primary Reaction Control System (PCRS) Thrusters. Of particular concern is deep cracking in this area which could lead to combustion leakage in the event of through wall cracking from the relief radius into an acoustic cavity of the combustion chamber. In order to reliably detect such defects while ensuring minimal false positives during inspection, the Orthogonal Probe Eddy Current (OPEC) system has been developed and an extensive validation study performed. This report describes the validation procedure, sample set, and inspection results as well as comparing validation flaws with the response from naturally occuring damage.

  11. Crack detection in a wheel end spindle using wave propagation via modal impacts and piezo actuation

    NASA Astrophysics Data System (ADS)

    Ackers, Spencer; Evans, Ronald; Johnson, Timothy; Kess, Harold; White, Jonathan; Adams, Douglas E.; Brown, Pam

    2006-03-01

    This research demonstrates two methodologies for detecting cracks in a metal spindle housed deep within a vehicle wheel end assembly. First, modal impacts are imposed on the hub of the wheel in the longitudinal direction to produce broadband elastic wave excitation spectra out to 7000 Hz. The response data on the flange is collected using 3000 Hz bandwidth accelerometers. It is shown using frequency response analysis that the crack produces a filter, which amplifies the elastic response of the surrounding components of the wheel assembly. Experiments on wheel assemblies mounted on the vehicle with the vehicle lifted off the ground are performed to demonstrate that the modal impact method can be used to nondestructively evaluate cracks of varying depths despite sources of variability such as the half shaft angular position relative to the non-rotating spindle. Second, an automatic piezo-stack actuator is utilized to excite the wheel hub with a swept sine signal extending from 20 kHz. Accelerometers are then utilized to measure the response on the flange. It is demonstrated using frequency response analysis that the crack filters waves traveling from the hub to the flange. A simple finite element model is used to interpret the experimental results. Challenges discussed include variability from assembly to assembly, the variability in each assembly, and the high amount of damping present in each assembly due to the transmission gearing, lubricant, and other components in the wheel end. A two-channel measurement system with a graphical user interface for detecting cracks was also developed and a procedure was created to ensure that operators properly perform the test.

  12. Sub-grain induced crack deviation in multi-crystalline silicon

    NASA Astrophysics Data System (ADS)

    Zhao, Lv; Nelias, Daniel; Bardel, Didier; Wang, Meng; Marie, Benoit

    2017-06-01

    The fracture process in crystalline silicon is dictated by energy dissipation. Here, we show that sub-grains can deviate the crack path from the most energetically favorable ( 111) plane. Albeit a small misorientation across the sub-grain boundary is identified, upon entering into the sub-grain region, the crack either slightly deviates from the ideal ( 111) plane or directly chooses the secondly most favorable ( 110) one. We propose that the deviation is related to the dislocation core in the ( 111) crystal plane, which leads to a discontinuous atom debonding process and consequently a pronounced lattice trapping. In this circumstance, localized crystal defects prevail in the fracture process of silicon, while energetical criterion fails to interpret the crack path.

  13. [The management of 126 cases of posterior cracked crown of tooth and its effective observation].

    PubMed

    Chen, L L

    2000-06-01

    To detect the treatment and effect of posterior cracked tooth. 162 posterior cracked teeth of 158 cases, including enamel fissure and dentin fissure, all there cases undergone the synthetical treatment and follow up in different period, the longest observation period was 2.5 years. The healing and improved rate of 162 cracked teeth 90.74%. Among cases of failure, we have founded 6 cases of acute pulpitis (3.7%), 3 cases of alveodental abscess (1.85%), 2 cases of chronic apical periodontitis (1.24%), 4 cases of tooth fracture (2.4%). Cracked tooth was caused by multiple factors. Early diagnosis, synthetical treatment, and follow up in different period are 3 main factors in treatment.

  14. The US Navy’s Helicopter Integrated Diagnostics System (HIDS) Program: Power Drive Train Crack Detection Diagnostics and Prognostics Life Usage Monitoring and Damage Tolerance; Techniques, Methodologies, and Experiences

    DTIC Science & Technology

    2000-02-01

    HIDS] Program: Power Drive Train Crack Detection Diagnostics and Prognostics ife Usage Monitoring and Damage Tolerance; Techniques, Methodologies, and...and Prognostics , Life Usage Monitoring , and Damage Tolerance; Techniques, Methodologies, and Experiences Andrew Hess Harrison Chin William Hardman...continuing program and deployed engine monitoring systems in fixed to evaluate helicopter diagnostic, prognostic , and wing aircraft, notably on the A

  15. A flexural crack model for damage detection in reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Hamad, W. I.; Owen, J. S.; Hussein, M. F. M.

    2011-07-01

    The use of changes in vibration data for damage detection of reinforced concrete structures faces many challenges that obstruct its transition from a research topic to field applications. Among these is the lack of appropriate damage models that can be deployed in the damage detection methods. In this paper, a model of a simply supported reinforced concrete beam with multiple cracks is developed to examine its use for damage detection and structural health monitoring. The cracks are simulated by a model that accounts for crack formation, propagation and closure. The beam model is studied under different dynamic excitations, including sine sweep and single excitation frequency, for various damage levels. The changes in resonant frequency with increasing loads are examined along with the nonlinear vibration characteristics. The model demonstrates that the resonant frequency reduces by about 10% at the application of 30% of the ultimate load and then drops gradually by about 25% at 70% of the ultimate load. The model also illustrates some nonlinearity in the dynamic response of damaged beams. The appearance of super-harmonics shows that the nonlinearity is higher when the damage level is about 35% and then decreases with increasing damage. The restoring force-displacement relationship predicted the reduction in the overall stiffness of the damaged beam. The model quantitatively predicts the experimental vibration behaviour of damaged RC beams and also shows the damage dependency of nonlinear vibration behaviour.

  16. Implementing Recommendations of the Columbia Accident Investigation Board: Development of On-Orbit IR Thermography

    NASA Technical Reports Server (NTRS)

    Ottens, Brian P.; Parker, Bradford; Stephan, Ryan

    2005-01-01

    One of NASA's Space Shuttle Return-to-Flight (RTF) efforts has been to develop thermography for the on-orbit inspection of the Reinforced Carbon Carbon (RCC) portion of the Orbiter Wing Leading Edge (WLE). This paper addresses the capability of thermography to detect cracks in RCC by using in-plane thermal gradients that naturally occur on-orbit. Crack damage, which can result from launch debris impact, is a detection challenge for other on-orbit sensors under consideration for RTF, such as the Intensified Television Camera and Laser Dynamic Range Imager. We studied various cracks in RCC, both natural and simulated, along with material characteristics, such as emissivity uniformity, in steady-state thermography. Severity of crack, such as those likely and unlikely to cause burn through were tested, both in-air and in-vacuum, and the goal of this procedure was to assure crew and vehicle safety during reentry by identification and quantification of a damage condition while on-orbit. Expected thermal conditions are presented in typical shuttle orbits, and the expected damage signatures for each scenario are presented. Finally, through statistical signal detection, our results show that even at very low in-plane thermal gradients, we are able to detect damage at or below the threshold for fatality in the most critical sections of the WLE, with a confidence exceeding 1 in 10,000 probability of false negative.

  17. Implementing Recommendations of the Columbia Accident Investigation Board - Development of on-Orbit RCC Thermography

    NASA Technical Reports Server (NTRS)

    Ottens, Brian; Parker, Brad; Stephen, Ryan

    2005-01-01

    One of NASA s Space Shuttle Return-to-Flight (RTF) efforts has been to develop thermography for the on-orbit inspection of the Reinforced Carbon Carbon (RCC) portion of the Orbiter Wing Leading Edge (WLE). This paper addresses the capability of thermography to detect cracks in RCC by using in-plane thermal gradients that naturally occur on-orbit. Crack damage, which can result from launch debris impact, is a detection challenge for other on-orbit sensors under consideration for RTF, such as the Intensified Television Camera and Laser Dynamic Range Imager. We studied various cracks in RCC, both natural and simulated, along with material characteristics, such as emissivity uniformity, in steady-state thermography. Severity of crack, such as those likely and unlikely to cause burn through were tested, both in-air and in-vacuum, and the goal of this procedure was to assure crew and vehicle safety during re-entry by identification and quantification of a damage condition while on-orbit. Expected thermal conditions are presented in typical shuttle orbits, and the expected damage signatures for each scenario are presented. Finally, through statistical signal detection, our results show that even at very low in-plane thermal gradients, we are able to detect damage at or below the threshold for fatality in the most critical sections of the WLE, with a confidence exceeding 1 in 10,000 probability of false negative.

  18. On-line Bayesian model updating for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Rocchetta, Roberto; Broggi, Matteo; Huchet, Quentin; Patelli, Edoardo

    2018-03-01

    Fatigue induced cracks is a dangerous failure mechanism which affects mechanical components subject to alternating load cycles. System health monitoring should be adopted to identify cracks which can jeopardise the structure. Real-time damage detection may fail in the identification of the cracks due to different sources of uncertainty which have been poorly assessed or even fully neglected. In this paper, a novel efficient and robust procedure is used for the detection of cracks locations and lengths in mechanical components. A Bayesian model updating framework is employed, which allows accounting for relevant sources of uncertainty. The idea underpinning the approach is to identify the most probable crack consistent with the experimental measurements. To tackle the computational cost of the Bayesian approach an emulator is adopted for replacing the computationally costly Finite Element model. To improve the overall robustness of the procedure, different numerical likelihoods, measurement noises and imprecision in the value of model parameters are analysed and their effects quantified. The accuracy of the stochastic updating and the efficiency of the numerical procedure are discussed. An experimental aluminium frame and on a numerical model of a typical car suspension arm are used to demonstrate the applicability of the approach.

  19. An integrated eddy current detection and imaging system on a silicon chip

    NASA Technical Reports Server (NTRS)

    Henderson, H. Thurman; Kartalia, K. P.; Dury, Joseph D.

    1991-01-01

    Eddy current probes have been used for many years for numerous sensing applications including crack detection in metals. However, these applications have traditionally used the eddy current effect in the form of a physically wound single or different probe pairs which of necessity must be made quite large compared to microelectronics dimensions. Also, the traditional wound probe can only take a point reading, although that point might include tens of individual cracks or crack arrays; thus, conventional eddy current probes are beset by two major problems: (1) no detailed information can be obtained about the crack or crack array; and (2) for applications such as quality assurance, a vast amount of time must be taken to scan a complete surface. Laboratory efforts have been made to fabricate linear arrays of single turn probes in a thick film format on a ceramic substrate as well as in a flexible cable format; however, such efforts inherently suffer from relatively large size requirements as well as sensitivity issues. Preliminary efforts to fully extend eddy current probing from a point or single dimensional level to a two dimensional micro-eddy current format on a silicon chip, which might overcome all of the above problems, are presented.

  20. Microscopic Observation of the Side Surface of Dynamically-Tensile-Fractured 6061-T6 and 2219-T87 Aluminum Alloys with Pre-Fatigue

    NASA Astrophysics Data System (ADS)

    Itabashi, Masaaki; Nakajima, Shigeru; Fukuda, Hiroshi

    After unexpected failure of metallic structure, microscopic investigation will be performed. Generally, such an investigation is limited to search striation pattern with a SEM (scanning electron microscope). But, when the cause of the failure was not severe repeated stress, this investigation is ineffective. In this paper, new microscopic observation technique is proposed to detect low cycle fatigue-impact tensile loading history. Al alloys, 6061-T6 and 2219-T87, were fractured in dynamic tension, after severe pre-fatigue. The side surface of the fractured specimens was observed with a SEM. Neighboring fractured surface, many opened cracks on the side surface have been generated. For each specimen, the number of the cracks was counted together with information of individual sizes and geometric features. For 6061-T6 alloy specimen with the pre-fatigue, the number of the cracks is greater than that for the specimen without the pre-fatigue. For 2219-T87 alloy, the same tendency can be found after a certain screening of the crack counting. Therefore, the crack counting technique may be useful to detect the existence of the pre-fatigue from the dynamically fractured specimen surface.

  1. Acoustic emission monitoring of crack propagation in additively manufactured and conventional titanium components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strantza, Maria; Van Hemelrijck, Danny; Guillaume, Patrick

    We report that additive manufacturing (AM) is a novel and innovative production technology that can produce complex and lightweight engineering products. In AM components, as in all engineering materials, fatigue is considered as one of the principle causes of unexpected failure. In order to detect, localise and characterise cracks in various material components and metals, acoustic emission (AE) is used as a non-destructive monitoring technique. One of the main advantages of AE is that it can be also used for dynamic damage characterisation and specifically for crack propagation monitoring. In this research, we use AE to monitor the fatigue crackmore » growth behaviour of Ti6Al4V components under four-point bending. The samples were produced by means of AM as well as conventional material. Notched and unnotched specimens were investigated with respect to the crack severity and crack detection using AE. The main AE signal parameters –such as cumulative events, hits, duration, average frequency and rise time– were evaluated and indicate sensitivity to damage propagation in order to lead to a warning against the final fracture occurrence. Finally, this is the first time that AE is applied in AM components under fatigue.« less

  2. Acoustic emission monitoring of crack propagation in additively manufactured and conventional titanium components

    DOE PAGES

    Strantza, Maria; Van Hemelrijck, Danny; Guillaume, Patrick; ...

    2017-05-31

    We report that additive manufacturing (AM) is a novel and innovative production technology that can produce complex and lightweight engineering products. In AM components, as in all engineering materials, fatigue is considered as one of the principle causes of unexpected failure. In order to detect, localise and characterise cracks in various material components and metals, acoustic emission (AE) is used as a non-destructive monitoring technique. One of the main advantages of AE is that it can be also used for dynamic damage characterisation and specifically for crack propagation monitoring. In this research, we use AE to monitor the fatigue crackmore » growth behaviour of Ti6Al4V components under four-point bending. The samples were produced by means of AM as well as conventional material. Notched and unnotched specimens were investigated with respect to the crack severity and crack detection using AE. The main AE signal parameters –such as cumulative events, hits, duration, average frequency and rise time– were evaluated and indicate sensitivity to damage propagation in order to lead to a warning against the final fracture occurrence. Finally, this is the first time that AE is applied in AM components under fatigue.« less

  3. Method of refining cracked oil by using metallic soaps. [desulfurization of cracked oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masakichi, M.; Marunouchi, K.K.; Yoshimura, T.

    1937-04-13

    The method of refining cracked oil consists in dissolving oil-soluble heavy metallic soap of oleic acid in a volatile organic solvent which will disperse homogeneously in cracked oil; pouring the solution thus obtained slowly into cracked oil to effect dispersion naturally and homogeneously at room temperature in the cracked oil. This process serves to react the mercaptans in the cracked oil with the heavy metallic soap by a double decomposition reaction and to precipitate the mercaptans as insoluble metallic salts. The remaining liquid is distilled to separate it from the remaining solvent.

  4. Creep, Fatigue and Environmental Interactions and Their Effect on Crack Growth in Superalloys

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Gabb, T. P.; Ghosn, L. J.; Smith, T.

    2017-01-01

    Complex interactions of creep/fatigue/environment control dwell fatigue crack growth (DFCG) in superalloys. Crack tip stress relaxation during dwells significantly changes the crack driving force and influence DFCG. Linear Elastic Fracture Mechanics, Kmax, parameter unsuitable for correlating DFCG behavior due to extensive visco-plastic deformation. Magnitude of remaining crack tip axial stresses controls DFCG resistance due to the brittle-intergranular nature of the crack growth process. Proposed a new empirical parameter, Ksrf, which incorporates visco-plastic evolution of the magnitude of remaining crack tip stresses. Previous work performed at 704C, extend the work to 760C.

  5. Intermittent crack growth in fatigue

    NASA Astrophysics Data System (ADS)

    Kokkoniemi, R.; Miksic, A.; Ovaska, M.; Laurson, L.; Alava, M. J.

    2017-07-01

    Fatigue occurs under cyclic loading at stresses below a material’s static strength limit. We consider fatigue crack growth as a stochastic process and perform crack growth experiments in a metal (copper). We follow optically cracks propagating from initial edge notches. The main interest is in the dynamics of the crack growth—the Paris’ law and the initiation phase prior to that—and especially the intermittency this is discovered to display. How the sampling of the crack advancement, performed at regular intervals, influences such measurement results is analysed by the analogy of planar crack dynamics in slow, driven growth.

  6. Influence of strain on the corrosion of magnesium alloys and zinc in physiological environments.

    PubMed

    Törne, Karin; Örnberg, Andreas; Weissenrieder, Jonas

    2017-01-15

    During implantation load-bearing devices experience stress that may influence its mechanical and corrosion profile and potentially lead to premature rupture. The susceptibility to stress corrosion cracking (SCC) of the Mg-Al alloy AZ61 and Zn was studied in simulated body fluid (m-SBF) and whole blood by slow strain rate (SSR) testing in combination with electrochemical impedance spectroscopy (EIS) and further ex situ analysis including scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy. AZ61 was found to be highly susceptible to SCC. EIS analysis show that although the majority of cracking occurred during the apparent plastic straining, cracking initiation occurs already in the elastic region at ∼50% of the ultimate tensile strength (UTS). Shifts in EIS phase angle and open circuit potential can be used to detect the onset of SCC. Zinc demonstrated a highly ductile behavior with limited susceptibility to SCC. No significant decrease in UTS was observed in m-SBF but a decrease in time to failure by ∼25% compared to reference samples indicates some effect on the mechanical properties during the ductile straining. The formation of micro cracks, ∼10μm deep, was indicated by the EIS analysis and later confirmed by ex situ SEM. The results of SSR analysis of zinc in whole blood showed a reduced effect compared to m-SBF and no cracks were detected. It appears that formation of an organic surface layer protects the corroding surface from cracking. These results highlight the importance of considering the effect of biological species on the degradation of implants in the clinical situation. Strain may deteriorate the corrosion properties of metallic implants drastically. We study the influence of load on the corrosion properties of a magnesium alloy and zinc by a combination of electrochemical impedance spectroscopy (EIS) and slow strain rate analysis. This combination of techniques has previously not been used for studying degradation in physiological relevant electrolytes. EIS provide valuable information on the initial formation of cracks, detecting crack nucleation before feasible in slow strain rate analysis. This sensitivity of EIS shows the potential for electrochemical methods to be used for in situ monitoring crack formation of implants in more applied studies. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Dynamic response of a cracked atomic force microscope cantilever used for nanomachining

    PubMed Central

    2012-01-01

    The vibration behavior of an atomic force microscope [AFM] cantilever with a crack during the nanomachining process is studied. The cantilever is divided into two segments by the crack, and a rotational spring is used to simulate the crack. The two individual governing equations of transverse vibration for the cracked cantilever can be expressed. However, the corresponding boundary conditions are coupled because of the crack interaction. Analytical expressions for the vibration displacement and natural frequency of the cracked cantilever are obtained. In addition, the effects of crack flexibility, crack location, and tip length on the vibration displacement of the cantilever are analyzed. Results show that the crack occurs in the AFM cantilever that can significantly affect its vibration response. PACS: 07.79.Lh; 62.20.mt; 62.25.Jk PMID:22335820

  8. Processing of Alumina-Toughened Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Choi, Sung R.

    2003-01-01

    Dense and crack-free 10-mol%-yttria-stabilized zirconia (10YSZ)-alumina composites, containing 0 to 30 mol% of alumina, have been fabricated by hot pressing. Release of pressure before onset of cooling was crucial in obtaining crack-free material. Hot pressing at 1600 C resulted in the formation of ZrC by reaction of zirconia with grafoil. However, no such reaction was observed at 1500 C. Cubic zirconia and -alumina were the only phases detected from x-ray diffraction indicating no chemical reaction between the composite constituents during hot pressing. Microstructure of the composites was analyzed by scanning electron microscopy and transmission electron microscopy. Density and elastic modulus of the composites followed the rule-of-mixtures. Addition of alumina to 10YSZ resulted in lighter, stronger, and stiffer composites by decreasing density and increasing strength and elastic modulus.

  9. Use of infrared thermography to detect thermal segregation in asphalt overlay and reflective cracking potential.

    DOT National Transportation Integrated Search

    2015-03-01

    The objectives of this study were to assess whether temperature differentials measured using Infrared : Thermography (IRT) occur in an overlay built on top of discontinuities such as joints and cracks and to : study the horizontal and vertical therma...

  10. Development of Alternating Current Potential Drop (ACPD) Procedures for Crack Detection in Aluminum Aircraft Panels.

    DOT National Transportation Integrated Search

    1993-12-01

    The Alternating Current Potential Drop (ACPD) method is investigated as a means of making measurements in laboratory experiments on the initiation and growth of multiple site damage (MSD) cracks in a common aluminum alloy used for aircraft constructi...

  11. Quantification technology study on flaws in steam-filled pipelines based on image processing

    NASA Astrophysics Data System (ADS)

    Sun, Lina; Yuan, Peixin

    2009-07-01

    Starting from exploiting the applied detection system of gas transmission pipeline, a set of X-ray image processing methods and pipeline flaw quantificational evaluation methods are proposed. Defective and non-defective strings and rows in gray image were extracted and oscillogram was obtained. We can distinguish defects in contrast with two gray images division. According to the gray value of defects with different thicknesses, the gray level depth curve is founded. Through exponential and polynomial fitting way to obtain the attenuation mathematical model which the beam penetrates pipeline, thus attain flaw deep dimension. This paper tests on the PPR pipe in the production of simulated holes flaw and cracks flaw, 135KV used the X-ray source on the testing. Test results show that X-ray image processing method, which meet the needs of high efficient flaw detection and provide quality safeguard for thick oil recovery, can be used successfully in detecting corrosion of insulated pipe.

  12. Quantification technology study on flaws in steam-filled pipelines based on image processing

    NASA Astrophysics Data System (ADS)

    Yuan, Pei-xin; Cong, Jia-hui; Chen, Bo

    2008-03-01

    Starting from exploiting the applied detection system of gas transmission pipeline, a set of X-ray image processing methods and pipeline flaw quantificational evaluation methods are proposed. Defective and non-defective strings and rows in gray image were extracted and oscillogram was obtained. We can distinguish defects in contrast with two gray images division. According to the gray value of defects with different thicknesses, the gray level depth curve is founded. Through exponential and polynomial fitting way to obtain the attenuation mathematical model which the beam penetrates pipeline, thus attain flaw deep dimension. This paper tests on the PPR pipe in the production of simulated holes flaw and cracks flaw. The X-ray source tube voltage was selected as 130kv and valve current was 1.5mA.Test results show that X-ray image processing methods, which meet the needs of high efficient flaw detection and provide quality safeguard for thick oil recovery, can be used successfully in detecting corrosion of insulated pipe.

  13. 76 FR 13546 - Airworthiness Directives; The Boeing Company Model MD-90-30 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ...We propose to adopt a new airworthiness directive (AD) for the products listed above. This proposed AD would require a detailed inspection to detect distress and existing repairs to the leading edge structure of the vertical stabilizer at the splice at Station Zfs=52.267; repetitive inspections for cracking in the front spar cap forward flanges of the vertical stabilizer, and either the aft flanges or side skins; repetitive inspections for loose and missing fasteners; and related investigative and corrective actions if necessary. This proposed AD was prompted by reports of cracked vertical stabilizer skin, a severed front spar cap, elongated fastener holes at the leading edge of the vertical stabilizer, and a cracked front spar web and front spar cap bolt holes in the vertical stabilizer. We are proposing this AD to detect and correct such cracking damage, which could result in the structure being unable to support limit load, and could lead to the loss of the vertical stabilizer.

  14. 76 FR 41651 - Airworthiness Directives; The Boeing Company Model DC-9-81 (MD-81), DC-9-82 (MD-82), DC-9-83 (MD...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ...We are adopting a new airworthiness directive (AD) for the products listed above. This AD requires a detailed inspection to detect distress and existing repairs to the leading edge structure of the vertical stabilizer at the splice at Station Zfs = 52.267; repetitive inspections for cracking in the front spar cap forward flanges of the vertical stabilizer, and either the aft flanges or side skins; repetitive inspections for loose and missing fasteners; and related investigative and corrective actions if necessary. This AD was prompted by reports of cracked vertical stabilizer skin, a severed front spar cap, elongated fastener holes at the leading edge of the vertical stabilizer, and a cracked front spar web and front spar cap bolt holes in the vertical stabilizer. We are issuing this AD to detect and correct such cracking damage, which could result in the structure being unable to support limit load, and could lead to the loss of the vertical stabilizer.

  15. 76 FR 35342 - Airworthiness Directives; The Boeing Company Model MD-90-30 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ...We are adopting a new airworthiness directive (AD) for the products listed above. This AD requires a detailed inspection to detect distress and existing repairs to the leading edge structure of the vertical stabilizer at the splice at Station Zfs=52.267; repetitive inspections for cracking in the front spar cap forward flanges of the vertical stabilizer, and either the aft flanges or side skins; repetitive inspections for loose and missing fasteners; and related investigative and corrective actions if necessary. This AD was prompted by reports of cracked vertical stabilizer skin, a severed front spar cap, elongated fastener holes at the leading edge of the vertical stabilizer, and cracked front spar web and front spar cap bolt holes in the vertical stabilizer. We are issuing this AD to detect and correct such cracking damage, which could result in the structure being unable to support limit load, and could lead to the loss of the vertical stabilizer.

  16. Hydrocarbon liquid production via the bioCRACK process and catalytic hydroprocessing of the product oil

    DOE PAGES

    Schwaiger, Nickolaus; Elliott, Douglas C.; Ritzberger, Jurgen; ...

    2015-01-01

    Continuous hydroprocessing of liquid phase pyrolysis bio-oil, provided by BDI-BioEnergy International bioCRACK pilot plant at OMV Refinery in Schwechat/Vienna Austria was investigated. These hydroprocessing tests showed promising results using catalytic hydroprocessing strategies developed for unfractionated bio-oil. A sulfided base metal catalyst (CoMo on Al2O3) was evaluated. The bed of catalyst was operated at 400 °C in a continuous-flow reactor at a pressure of 12.1 MPa with flowing hydrogen. The condensed liquid products were analyzed and found that the hydrocarbon liquid was significantly hydrotreated so that nitrogen and sulfur were below the level of detection (<0.05), while the residual oxygen rangedmore » from 0.7 to 1.2%. The density of the products varied from 0.71 g/mL up to 0.79 g/mL with a correlated change of the hydrogen to carbon atomic ratio from 2.1 down to 1.9. The product quality remained high throughout the extended tests suggesting minimal loss of catalyst activity through the test. These tests provided the data needed to assess the quality of liquid fuel products obtained from the bioCRACK process as well as the activity of the catalyst for comparison with products obtained from hydrotreated fast pyrolysis bio-oils from fluidized-bed operation.« less

  17. Environmental fatigue of an Al-Li-Cu alloy. Part 2: Microscopic hydrogen cracking processes

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Gangloff, Richard P.

    1992-01-01

    Based on a fractographic analysis of fatigue crack propagation (FCP) in Al-Li-Cu alloy 2090 stressed in a variety of inert and embrittling environments, microscopic crack paths are identified and correlated with intrinsic da/dN-delta K kinetics. FCP rates in 2090 are accelerated by hydrogen producing environments (pure water vapor, moist air, and aqueous NaCl), as defined in Part 1. For these cases, subgrain boundary fatigue cracking (SGC) dominates for delta K values where the crack tip process zone, a significant fraction of the cyclic plastic zone, is sufficiently large to envelop 5 micron subgrains in the unrecrystallized microstructure. SGC may be due to strong hydrogen trapping at T1 precipitates concentrated at sub-boundaries. At low delta K, the plastic zone diameter is smaller than the subgrain size and FCP progresses along (100) planes due to either local lattice decohesion or aluminum-lithium hydride cracking. For inert environments (vacuum, helium, and oxygen), or at high delta K where the hydrogen effect on da/dN is small, FCP is along (111) slip planes; this mode does not transition with increasing delta K and plastic zone size. The SGC and (100) crystallographic cracking modes, and the governing influence of the crack tip process zone volume (delta K), support hydrogen embrittlement rather than a surface film rupture and anodic dissolution mechanism for environmental FCP. Multi-sloped log da/dN-log delta K behavior is produced by changes in process zone hydrogen-microstructure interactions, and not by purely micromechanical-microstructure interactions, in contradiction to microstructural distance-based fatigue models.

  18. Un Jalón, Un Volteón, y Otra Vez: High-Risk Crack Smoking Paraphernalia in México City.

    PubMed

    Valdez, Avelardo; Nowotny, Kathryn M; Negi, Nalini; Mora, Eduardo Zafra; Cepeda, Alice

    2016-01-01

    During the past decade, crack smoking has increased in Mexico among poor urban populations. Despite this increasing prevalence, little is known about the types of paraphernalia used and related sharing practices and physical harms. Data come from in-depth semi-structured interviews and observations with 156 current crack smokers in Mexico City. Findings reveal a complex, crack-smoking process in Mexico City that represents an interconnected structure of paraphernalia items and pipes that could contribute to detrimental health consequences. Specifically, we identify essential paraphernalia items that make the smoking of crack possible; describe the homemade construction of two categories of pipes; and detail the sharing practices and physical harms associated with these paraphernalia. Results point towards a smoking process that is embedded in impoverished urban neighborhoods sustained by an accessible street-level crack market. Discussed are the policy and intervention implications associated with reducing crack-related health consequences in Mexico and other Latin American countries.

  19. Un Jalón, Un Volteón, y Otra Vez: High-Risk Crack Smoking Paraphernalia in México City

    PubMed Central

    Valdez, Avelardo; Cepeda, Alice; Nowotny, Kathryn M.; Mora, Eduardo Zafra; Negi, Nalini

    2016-01-01

    During the past decade, crack smoking has increased in Mexico among poor urban populations. Despite this increasing prevalence, little is known about the types of paraphernalia used and related sharing practices and physical harms. Data come from in-depth semi-structured interviews and observations with 156 current crack smokers in Mexico City. Findings reveal a complex, crack-smoking process in Mexico City that represents an interconnected structure of paraphernalia items and pipes that could contribute to detrimental health consequences. Specifically, we identify essential paraphernalia items that make the smoking of crack possible; describe the home- made construction of two categories of pipes; and the sharing practices and physical harms associated with these paraphernalia. Results point towards a smoking process that is embedded in impoverished urban neighborhoods sustained by an accessible street-level crack market. Discussed are the policy and intervention implications associated with reducing crack related health consequences in Mexico and other Latin American countries. PMID:27356211

  20. RECOVERY ACT: MULTIMODAL IMAGING FOR SOLAR CELL MICROCRACK DETECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janice Hudgings; Lawrence Domash

    2012-02-08

    Undetected microcracks in solar cells are a principal cause of failure in service due to subsequent weather exposure, mechanical flexing or diurnal temperature cycles. Existing methods have not been able to detect cracks early enough in the production cycle to prevent inadvertent shipment to customers. This program, sponsored under the DOE Photovoltaic Supply Chain and Cross-Cutting Technologies program, studied the feasibility of quantifying surface micro-discontinuities by use of a novel technique, thermoreflectance imaging, to detect surface temperature gradients with very high spatial resolution, in combination with a suite of conventional imaging methods such as electroluminescence. The project carried out laboratorymore » tests together with computational image analyses using sample solar cells with known defects supplied by industry sources or DOE National Labs. Quantitative comparisons between the effectiveness of the new technique and conventional methods were determined in terms of the smallest detectable crack. Also the robustness of the new technique for reliable microcrack detection was determined at various stages of processing such as before and after antireflectance treatments. An overall assessment is that the new technique compares favorably with existing methods such as lock-in thermography or ultrasonics. The project was 100% completed in Sept, 2010. A detailed report of key findings from this program was published as: Q.Zhou, X.Hu, K.Al-Hemyari, K.McCarthy, L.Domash and J.Hudgings, High spatial resolution characterization of silicon solar cells using thermoreflectance imaging, J. Appl. Phys, 110, 053108 (2011).« less

Top