Mode I and mixed I/III crack initiation and propagation behavior of V-4Cr-4Ti alloy at 25{degrees}C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, H.X.; Kurtz, R.J.; Jones, R.H.
1997-04-01
The mode I and mixed-mode I/III fracture behavior of the production-scale heat (No. 832665) of V-4Cr-4Ti has been investigated at 25{degrees}C using compact tension (CT) specimens for a mode I crack and modified CT specimens for a mixed-mode I/III crack. The mode III to mode I load ratio was 0.47. Test specimens were vacuum annealed at 1000{degrees}C for 1 h after final machining. Both mode I and mixed-mode I/III specimens were fatigue cracked prior to J-integral testing. It was noticed that the mixed-mode I/III crack angle decreased from an initial 25 degrees to approximately 23 degrees due to crack planemore » rotation during fatigue cracking. No crack plane rotation occurred in the mode I specimen. The crack initiation and propagation behavior was evaluated by generating J-R curves. Due to the high ductility of this alloy and the limited specimen thickness (6.35 mm), plane strain requirements were not met so valid critical J-integral values were not obtained. However, it was found that the crack initiation and propagation behavior was significantly different between the mode I and the mixed-mode I/III specimens. In the mode I specimen crack initiation did not occur, only extensive crack tip blunting due to plastic deformation. During J-integral testing the mixed-mode crack rotated to an increased crack angle (in contrast to fatigue precracking) by crack blunting. When the crack initiated, the crack angle was about 30 degrees. After crack initiation the crack plane remained at 30 degrees until the test was completed. Mixed-mode crack initiation was difficult, but propagation was easy. The fracture surface of the mixed-mode specimen was characterized by microvoid coalescence.« less
Durability and life prediction modeling in polyimide composites
NASA Technical Reports Server (NTRS)
Binienda, Wieslaw K.
1995-01-01
Sudden appearance of cracks on a macroscopically smooth surface of brittle materials due to cooling or drying shrinkage is a phenomenon related to many engineering problems. Although conventional strength theories can be used to predict the necessary condition for crack appearance, they are unable to predict crack spacing and depth. On the other hand, fracture mechanics theory can only study the behavior of existing cracks. The theory of crack initiation can be summarized into three conditions, which is a combination of a strength criterion and laws of energy conservation, the average crack spacing and depth can thus be determined. The problem of crack initiation from the surface of an elastic half plane is solved and compares quite well with available experimental evidence. The theory of crack initiation is also applied to concrete pavements. The influence of cracking is modeled by the additional compliance according to Okamura's method. The theoretical prediction by this structural mechanics type of model correlates very well with the field observation. The model may serve as a theoretical foundation for future pavement joint design. The initiation of interactive cracks of quasi-brittle material is studied based on a theory of cohesive crack model. These cracks may grow simultaneously, or some of them may close during certain stages. The concept of crack unloading of cohesive crack model is proposed. The critical behavior (crack bifurcation, maximum loads) of the cohesive crack model are characterized by rate equations. The post-critical behavior of crack initiation is also studied.
Estimate of Probability of Crack Detection from Service Difficulty Report Data.
DOT National Transportation Integrated Search
1995-09-01
The initiation and growth of cracks in a fuselage lap joint were simulated. Stochastic distribution of crack initiation and rivet interference were included. The simulation also contained a simplified crack growth. Nominal crack growth behavior of la...
Estimate of probability of crack detection from service difficulty report data
DOT National Transportation Integrated Search
1994-09-01
The initiation and growth of cracks in a fuselage lap joint were simulated. Stochastic distribution of crack initiation and rivet interference were included. The simulation also contained a simplified crack growth. Nominal crack growth behavior of la...
NASA Astrophysics Data System (ADS)
Zhou, Xiao-Ping; Zhang, Jian-Zhi; Wong, Louis Ngai Yuen
2018-05-01
The crack initiation, growth, wrapping and coalescence of two 3D pre-existing cross-embedded flaws in PMMA specimens under uniaxial compression are investigated. The stress-strain curves of PMMA specimens with 3D cross-embedded flaws are obtained. The tested PMMA specimens exhibit dominant elastic deformation and eventual brittle failure. The experimental results show that four modes of crack initiation and five modes of crack coalescence are observed. The initiations of oblique secondary crack and anti-wing crack in 3D cracking behaviors are first reported as well as the coalescence of anti-wing cracks. Moreover, two types of crack wrapping are found. Substantial wrapping of petal cracks, which includes open and closed modes of wrapping, appears to be the major difference between 2D and 3D cracking behaviors of pre-existing flaws, which are also first reported. Petal crack wraps symmetrically from either the propagated wing cracks or the coalesced wing cracks. Besides, only limited growth of petal cracks is observed, and ultimate failure of specimens is induced by the further growth of the propagated wing crack. The fracture mechanism of the tested PMMA specimens is finally revealed. In addition, the initiation stress and the peak stress versus the geometry of two 3D pre-existing cross-embedded flaws are also investigated in detail.
Prediction of corrosion fatigue crack initiation behavior of A7N01P-T4 aluminum alloy welded joints
NASA Astrophysics Data System (ADS)
An, J.; Chen, J.; Gou, G.; Chen, H.; Wang, W.
2017-07-01
Through investigating the corrosion fatigue crack initiation behavior of A7N01P-T4 aluminum alloy welded joints in 3.5 wt.% NaCl solution, corrosion fatigue crack initiation life is formulated as Ni = 6.97 × 1012[Δσeqv1.739 - 491.739]-2 and the mechanism of corrosion fatigue crack initiation is proposed. SEM and TEM tests revealed that several corrosion fatigue cracks formed asynchronously and the first crack does not necessarily develop into the leading crack. The uneven reticular dislocations produced by fatigue loading are prone to piling up and tangling near the grain boundaries or the second phases and form the “high dislocation-density region” (HDDR), which acts as an anode in microbatteries and dissolved to form small crack. Thus the etching pits, HDDR near the grain boundaries and second phases are confirmed as the main causes inducing the initiation of fatigue crack.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritchie, R.O.; Lankford, J.
Topics discussed in this volume include crack initiation and stage I growth, microstructure effects, crack closure, environment effects, the role of notches, analytical modeling, fracture mechanics characterization, experimental techniques, and engineering applications. Papers are presented on fatigue crack initiation along slip bands, the effect of microplastic surface deformation on the growth of small cracks, short fatigue crack behavior in relation to three-dimensional aspects and the crack closure effect, the influence of crack depth on crack electrochemistry and fatigue crack growth, and nondamaging notches in fatigue. Consideration is also given to models of small fatigue cracks, short crack theory, assessment ofmore » the growth of small flaws from residual strength data, the relevance of short crack behavior to the integrity of major rotating aero engine components, and the relevance of short fatigue crack growth data to the durability and damage tolerance analyses of aircraft.« less
NASA Astrophysics Data System (ADS)
Moss, Tyler; Was, Gary S.
2017-04-01
The objective of this study is to determine whether stress corrosion crack initiation of Alloys 600 and 690 occurs by the same mechanism in subcritical and supercritical water. Tensile bars of Alloys 690 and 600 were strained in constant extension rate tensile experiments in hydrogenated subcritical and supercritical water from 593 K to 723 K (320 °C to 450 °C), and the crack initiation behavior was characterized by high-resolution electron microscopy. Intergranular cracking was observed across the entire temperature range, and the morphology, structure, composition, and temperature dependence of initiated cracks in Alloy 690 were consistent between hydrogenated subcritical and supercritical water. Crack initiation of Alloy 600 followed an Arrhenius relationship and did not exhibit a discontinuity or change in slope after crossing the critical temperature. The measured activation energy was 121 ± 13 kJ/mol. Stress corrosion crack initiation in Alloy 690 was fit with a single activation energy of 92 ± 12 kJ/mol across the entire temperature range. Cracks were observed to propagate along grain boundaries adjacent to chromium-depleted metal, with Cr2O3 observed ahead of crack tips. All measures of the SCC behavior indicate that the mechanism for stress corrosion crack initiation of Alloy 600 and Alloy 690 is consistent between hydrogenated subcritical and supercritical water.
2016-08-31
crack initiation and SCG mechanisms (initiation and growth versus resistance). 2. Final summary Here, we present a hierarchical form of multiscale...prismatic faults in -Ti: A combined quantum mechanics /molecular mechanics study 2. Nano-indentation and slip transfer (critical in understanding crack...initiation) 3. An extended-finite element framework (XFEM) to study SCG mechanisms 4. Atomistic methods to develop a grain and twin boundaries database
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Sutton, M. A.
1993-01-01
The stable tearing behavior of thin sheets 2024-T3 aluminum alloy was studied for middle crack tension specimens having initial cracks that were: flat cracks (low fatigue stress) and 45 degrees through-thickness slant cracks (high fatigue stress). The critical crack-tip-opening angle (CTOA) values during stable tearing were measured by two independent methods, optical microscopy and digital image correlation. Results from the two methods agreed well. The CTOA measurements and observations of the fracture surfaces showed that the initial stable tearing behavior of low and high fatigue stress tests is significantly different. The cracks in the low fatigue stress tests underwent a transition from flat-to-slant crack growth, during which the CTOA values were high and significant crack tunneling occurred. After crack growth equal to about the thickness, CTOA reached a constant value of 6 deg and after crack growth equal to about twice the thickness, crack tunneling stabilized. The initial high CTOA values, in the low fatigue crack tests, coincided with large three-dimensional crack front shape changes due to a variation in the through-thickness crack tip constraint. The cracks in the high fatigue stress tests reach the same constant CTOA value after crack growth equal to about the thickness, but produced only a slightly higher CTOA value during initial crack growth. For crack growth on the 45 degree slant, the crack front and local field variables are still highly three-dimensional. However, the constant CTOA values and stable crack front shape may allow the process to be approximated with two-dimensional models.
Resistance to Fracture, Fatigue and Stress-Corrosion of Al-Cu-Li-Zr Alloys
1985-02-19
alloys , in both smooth and notch fatigue conditions, are compared in Figure 15 giving a summary of Mg- effect on S-N fatigue behavior. Several ...crack initiation of conventional aluminum alloys and reported that fatigue cracks were associated with cracked constituent particles in 2024 -T3... fatigue cracks. Kung & Fine (14) investigated surface crack initiation in a 2024 -T4 alloy . They observed that at high stresses most cracks formed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anandakumar, U.; Webb, J.E.; Singh, R.N.
The matrix cracking behavior of a zircon matrix - uniaxial SCS 6 fiber composite was studied as a function of initial flaw size and temperature. The composites were fabricated by a tape casting and hot pressing technique. Surface flaws of controlled size were introduced using a vicker`s indenter. The composite samples were tested in three point flexure at three different temperatures to study the non steady state and steady state matrix cracking behavior. The composite samples exhibited steady state and non steady matrix cracking behavior at all temperatures. The steady state matrix cracking stress and steady state crack size increasedmore » with increasing temperature. The results of the study correlated well with the results predicted by the matrix cracking models.« less
Analysis of crack propagation as an energy absorption mechanism in metal matrix composites
NASA Technical Reports Server (NTRS)
Adams, D. F.; Murphy, D. P.
1981-01-01
The crack initiation and crack propagation capability was extended to the previously developed generalized plane strain, finite element micromechanics analysis. Also, an axisymmetric analysis was developed, which contains all of the general features of the plane analysis, including elastoplastic material behavior, temperature-dependent material properties, and crack propagation. These analyses were used to generate various example problems demonstrating the inelastic response of, and crack initiation and propagation in, a boron/aluminum composite.
Three-dimensional CTOA and constraint effects during stable tearing in a thin-sheet material
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Newman, J. C., Jr.; Bigelow, C. A.
1995-01-01
A small strain theory, three-dimensional elastic-plastic finite element analysis was used to simulate fracture in thin sheet 2024-T3 aluminum alloy in the T-L orientation. Both straight and tunneled cracks were modeled. The tunneled crack front shapes as a function of applied stress were obtained from the fracture surface of tested specimens. The stable crack growth behavior was measured at the specimen surface as a function of applied stress. The fracture simulation modeled the crack tunneling and extension as a function of applied stress. The results indicated that the global constraint factor, alpha(sub g), initially dropped during stable crack growth. After peak applied stress was achieved, alpha(sub g) began to increase slightly. The effect of crack front shape on alpha(sub g) was small, but the crack front shape did greatly influence the local constraint and through-thickness crack-tip opening angle (CTOA) behavior. The surface values of CTOA for the tunneled crack front model agreed well with experimental measurements, showing the same initial decrease from high values during the initial 3mm of crack growth at the specimen's surface. At the same time, the interior CTOA values increased from low angles. After the initial stable tearing region, the CTOA was constant through the thickness. The three-dimensional analysis appears to confirm the potential of CTOA as a two-dimensional fracture criterion.
Stable tearing behavior of a thin-sheet material with multiple cracks
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Newman, J. C., Jr.; Sutton, M. A.; Amstutz, B. E.
1994-01-01
Fracture tests were conducted on 2.3mm thick, 305mm wide sheets of 2024-T3 aluminum alloy with 1-5 collinear cracks. The cracks were introduced (crack history) into the specimens by three methods: (1) saw cutting; (2) fatigue precracking at a low stress range; and (3) fatigue precracking at a high stress range. For the single crack tests, the initial crack history influenced the stress required for the onset of stable crack growth and the first 10mm of crack growth. The effect on failure stress was about 4 percent or less. For the multiple crack tests, the initial crack history was shown to cause differences of more than 20 percent in the link-up stress and 13 percent in failure stress. An elastic-plastic finite element analysis employing the Crack Tip Opening Angle (CTOA) fracture criterion was used to predict the fracture behavior of the single and multiple crack tests. The numerical predictions were within 7 percent of the observed link-up and failure stress in all the tests.
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Newman, J. C., Jr.; Sutton, M. A.; Amstutz, B. E.
1994-01-01
Fracture tests were conducted on 2.3mm thick, 305mm wide sheets of 2024-T3 aluminum alloy with from one to five collinear cracks. The cracks were introduced (crack history) into the specimens by three methods: saw cutting, fatigue precracking at a low stress range, and fatigue precracking at a high stress range. For the single crack tests, the initial crack history influenced the stress required for the onset of stable crack growth and the first 10mm of crack growth. The effect on failure stress was about 4 percent or less. For the multiple crack tests, the initial crack history was shown to cause differences of more than 20 percent in the link-up stress and 13 percent in failure stress. An elastic-plastic finite element analysis employing the CTOA fracture criterion was used to predict the fracture behavior of the single and multiple crack tests. The numerical predictions were within 7 percent of the observed link-up and failure stress in all the tests.
Giddings, V L; Kurtz, S M; Jewett, C W; Foulds, J R; Edidin, A A
2001-07-01
Polymethylmethacrylate (PMMA) bone cement is used in total joint replacements to anchor implants to the underlying bone. Establishing and maintaining the integrity of bone cement is thus of critical importance to the long-term outcome of joint replacement surgery. The goal of the present study was to evaluate the suitability of a novel testing technique, the small punch or miniaturized disk bend test, to characterize the elastic modulus and fracture behavior of PMMA. We investigated the hypothesis that the crack initiation behavior of PMMA during the small punch test was sensitive to the test temperature. Miniature disk-shaped specimens, 0.5 mm thick and 6.4 mm in diameter, were prepared from PMMA and Simplex-P bone cement according to manufacturers' instructions. Testing was conducted at ambient and body temperatures, and the effect of test temperature on the elastic modulus and fracture behavior was statistically evaluated using analysis of variance. For both PMMA materials, the test temperature had a significant effect on elastic modulus and crack initiation behavior. At body temperature, the specimens exhibited "ductile" crack initiation, whereas at room temperature "brittle" crack initiation was observed. The small punch test was found to be a sensitive and repeatable test method for evaluating the mechanical behavior of PMMA. In light of the results of this study, future small punch testing should be conducted at body temperature.
Wang, Songquan; Zhang, Dekun; Hu, Ningning; Zhang, Jialu
2016-01-01
In this work, the effects of loading condition and corrosion solution on the corrosion fatigue behavior of smooth steel wire were discussed. The results of polarization curves and weight loss curves showed that the corrosion of steel wire in acid solution was more severe than that in neutral and alkaline solutions. With the extension of immersion time in acid solution, the cathodic reaction of steel wire gradually changed from the reduction of hydrogen ion to the reduction of oxygen, but was always the reduction of hydrogen ion in neutral and alkaline solutions. The corrosion kinetic parameters and equivalent circuits of steel wires were also obtained by simulating the Nyquist diagrams. In corrosion fatigue test, the effect of stress ratio and loading frequency on the crack initiation mechanism was emphasized. The strong corrosivity of acid solution could accelerate the nucleation of crack tip. The initiation mechanism of crack under different conditions was summarized according to the side and fracture surface morphologies. For the crack initiation mechanism of anodic dissolution, the stronger the corrosivity of solution was, the more easily the fatigue crack source formed, while, for the crack initiation mechanism of deformation activation, the lower stress ratio and higher frequency would accelerate the generation of corrosion fatigue crack source. PMID:28773869
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hai Huang; Ben Spencer; Jason Hales
2014-10-01
A discrete element Model (DEM) representation of coupled solid mechanics/fracturing and heat conduction processes has been developed and applied to explicitly simulate the random initiations and subsequent propagations of interacting thermal cracks in a ceramic nuclear fuel pellet during initial rise to power and during power cycles. The DEM model clearly predicts realistic early-life crack patterns including both radial cracks and circumferential cracks. Simulation results clearly demonstrate the formation of radial cracks during the initial power rise, and formation of circumferential cracks as the power is ramped down. In these simulations, additional early-life power cycles do not lead to themore » formation of new thermal cracks. They do, however clearly indicate changes in the apertures of thermal cracks during later power cycles due to thermal expansion and shrinkage. The number of radial cracks increases with increasing power, which is consistent with the experimental observations.« less
Evidence that abnormal grain growth precedes fatigue crack initiation in nanocrystalline Ni-Fe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furnish, Timothy A.; Bufford, Daniel C.; Ren, Fang
Prior studies on the high-cycle fatigue behavior of nanocrystalline metals have shown that fatigue fracture is associated with abnormal grain growth (AGG). However, those previous studies have been unable to determine if AGG precedes fatigue crack initiation, or vice-versa. The present study shows that AGG indeed occurs prior to crack formation in nanocrystalline Ni-Fe by using a recently developed synchrotron X-ray diffraction modality that has been adapted for in-situ analysis. The technique allows fatigue tests to be interrupted at the initial signs of the AGG process, and subsequent microscopy reveals the precursor damage state preceding crack initiation.
Evidence that abnormal grain growth precedes fatigue crack initiation in nanocrystalline Ni-Fe
Furnish, Timothy A.; Bufford, Daniel C.; Ren, Fang; ...
2018-09-06
Prior studies on the high-cycle fatigue behavior of nanocrystalline metals have shown that fatigue fracture is associated with abnormal grain growth (AGG). However, those previous studies have been unable to determine if AGG precedes fatigue crack initiation, or vice-versa. The present study shows that AGG indeed occurs prior to crack formation in nanocrystalline Ni-Fe by using a recently developed synchrotron X-ray diffraction modality that has been adapted for in-situ analysis. The technique allows fatigue tests to be interrupted at the initial signs of the AGG process, and subsequent microscopy reveals the precursor damage state preceding crack initiation.
Cracking process of Fe-26Cr-1Mo during low cycle corrosion fatigue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J.Q.; Li, J.; Wang, Z.F.
1994-12-01
The corrosion fatigue (CF) life has been divided classically into the initiation'' and propagation'' periods. Usually, the crack initiation process dominates the component lifetime under the low cycle CF condition because the crack propagates rapidly one initiated. Despite much work done on the research of the CF crack initiation mechanisms, however, a full understanding of crack initiation is still lacking. There are some limitations in explaining the CF crack initiation in an aqueous solution using the above four mechanisms individually. And, it is difficult to conduct experiments in which one mechanism along can be examined. Although CF is complicated, itmore » is possible to reproduce a specific experiment condition which will have the dominant factor affecting the CF crack initiation. Once the cracks initiate on the smooth metal surface, their coalescence, micropropagation and macropropagation will take place successively. The initiated cracks propagate first in the range of several grains, and the behavior of the microcrack propagation is different from that of macrocrack propagation. For Fe-26Cr-1Mo ferritic stainless steel, the fundamental research work of straining electrode has been done by many investigators, but the observation of the material surface at different deformation processes has not been reported. In the present study, the detailed observation of the cracking process of the material has been carried out in low cycle CF.« less
Effect of solution treatment on the fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy
NASA Astrophysics Data System (ADS)
Wang, S. D.; Xu, D. K.; Wang, B. J.; Han, E. H.; Dong, C.
2016-04-01
Through investigating and comparing the fatigue behavior of an as-forged Mg-6.7Zn-1.3Y-0.6Zr (wt.%) alloy before and after solid solution treatment (T4) in laboratory air, the effect of T4 treatment on fatigue crack initiation was disclosed. S-N curves illustrated that the fatigue strength of as-forged samples was 110 MPa, whereas the fatigue strength of T4 samples was only 80 MPa. Observations to fracture surfaces demonstrated that for as-forged samples, fatigue crack initiation sites were covered with a layer of oxide film. However, due to the coarse grain structure and the dissolution of MgZn2 precipitates, the activation and accumulation of {10-12} twins in T4 samples were much easier, resulting in the preferential fatigue crack initiation at cracked twin boundaries (TBs). Surface characterization demonstrated that TB cracking was mainly ascribed to the incompatible plastic deformation in the twinned area and nearby α-Mg matrix.
On fractography of shallow and deep HY-100 cracked bend specimens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, D.W.; Zarzour, J.F.; Kleinosky, M.J.
1994-12-01
The influence of shallow cracks on the fracture behavior of structural components has been studied extensively in recent years. Finite element analyses have indicated dramatic differences in the crack-tip stress states between shallow and deep cracked bend specimens. In this study, an experimental program was carried out to investigate the fracture behavior of HY-100 steel containing various initial flaw depths. Four a/w ratios ranging from 0.05 to 0.5 were chosen for the notched three-point bend tests. Test results showed that higher fracture toughness values are associated with specimens having shorter surface cracks. Also, fractographic studies indicated that two sets ofmore » dimples are present for a/w = 0.5 specimen, one set of equiaxed dimple for a/w = 0.05 specimen near the crack initiation zone. As the crack grows, increase in the volume fraction of the small dimple were observed. Finally, it showed that the characteristic features of the fracture surfaces can be correlated with the previous numerical predictions.« less
NASA Technical Reports Server (NTRS)
Reuter, Walter G. (Editor); Underwood, John H. (Editor); Newman, James C., Jr. (Editor)
1990-01-01
The present volume on surface-crack growth modeling, experimental methods, and structures, discusses elastoplastic behavior, the fracture analysis of three-dimensional bodies with surface cracks, optical measurements of free-surface effects on natural surfaces and through cracks, an optical and finite-element investigation of a plastically deformed surface flaw under tension, fracture behavior prediction for rapidly loaded surface-cracked specimens, and surface cracks in thick laminated fiber composite plates. Also discussed are a novel study procedure for crack initiation and growth in thermal fatigue testing, the growth of surface cracks under fatigue and monotonically increasing load, the subcritical growth of a surface flaw, surface crack propagation in notched and unnotched rods, and theoretical and experimental analyses of surface cracks in weldments.
Fatigue and fracture: Overview
NASA Technical Reports Server (NTRS)
Halford, G. R.
1984-01-01
A brief overview of the status of the fatigue and fracture programs is given. The programs involve the development of appropriate analytic material behavior models for cyclic stress-strain-temperature-time/cyclic crack initiation, and cyclic crack propagation. The underlying thrust of these programs is the development and verification of workable engineering methods for the calculation, in advance of service, of the local cyclic stress-strain response at the critical life governing location in hot section compounds, and the resultant crack initiation and crack growth lifetimes.
Effect of Understress on Fretting Fatigue Crack Initiation of Press-Fitted Axle
NASA Astrophysics Data System (ADS)
Kubota, Masanobu; Niho, Sotaro; Sakae, Chu; Kondo, Yoshiyuki
Axles are one of the most important components in railway vehicles with regard to safety, since a fail-safe design is not available. The problems of fretting fatigue crack initiation in a press-fitted axle have not been completely solved even though up-to-date fatigue design methods are employed. The objective of the present study is to clarify the effect of understress on fretting fatigue crack initiation behavior in the press-fitted axle. Most of the stress amplitude given to the axle in service is smaller than the fretting fatigue limit based on the stress to initiate cracks under a constant load σwf1. Rotating bending fatigue tests were performed using a 40mm-diameter press-fitted axle assembly. Two-step variable stresses consisting of σwf1 and half or one-third of σwf1 were used in the experiment. Crack initiation life was defined as the number of cycles when a fretting fatigue crack, which is longer than 30µm, was found using a metallurgical microscope. Fretting fatigue cracks were initiated even when the variable stress did not contain the stress above the fretting fatigue crack initiation limit. The crack initiation life varied from 4.0×107 to 1.2×108 depending on the stress frequency ratio nL/nH. The sum of the number of cycles of higher stress at crack initiation NH was much smaller than the number of cycles to initiate cracks estimated from the modified Miner's rule. The value of the modified Miner's damage ranged from 0.013 to 0.185. To clarify the effect of variable amplitude on the fretting fatigue crack initiation, a comprehensive investigation related to relative slip, tangential force and fretting wear is necessary.
A total life prediction model for stress concentration sites
NASA Technical Reports Server (NTRS)
Hartman, G. A.; Dawicke, D. S.
1983-01-01
Fatigue crack growth tests were performed on center crack panels and radial crack hole samples. The data were reduced and correlated with the elastic parameter K taking into account finite width and corner crack corrections. The anomalous behavior normally associated with short cracks was not observed. Total life estimates for notches were made by coupling an initiation life estimate with a propagation life estimate.
A total life prediction model for stress concentration sites
NASA Technical Reports Server (NTRS)
Hartman, G. A.; Dawicke, D. S.
1983-01-01
Fatigue crack growth tests were performed on center crack panels and radial crack hole samples. The data were reduced and correlated with the elastic parameter-K taking into account finite width and corner crack corrections. The anomalous behavior normally associated with short cracks was not observed. Total life estimates for notches were made by coupling an initiation life estimate with a propagation life estimate.
In-situ observations of crack initiation and growth at notches in cast Ti-48Al-2Cr-2Nb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollock, T.M.; Muraleedharan, K.; Mumm, D.R.
1996-12-01
Gamma titanium aluminide alloys have recently received a great deal of attention due to their demonstrated potential for application in aircraft engines. Although a number of studies have been conducted on the fracture behavior of these alloys under conditions where relatively long pre-existing cracks are present, there is little information on the early stages of crack initiation and growth. The objective of the study reported here was to observe the initial development of cracks at the scale of the microstructure. To confine the process of interest to well-defined regions, notched specimens were utilized. Observations regarding the initiation, growth and themore » influence of environment on failure are discussed.« less
Mean vs. Life-Limiting Fatigue Behavior of a Nickel-Based Superalloy (Postprint)
2008-09-01
6 -2- 4 - 6 ), an α+β titanium ...sensitivity of the mean-behavior to stress level. In other materials, including Ti- 6 -2- 4 - 6 [7, 9, 10] and a γ-TiAl based alloy [8], we have shown that this...10-7 10- 6 10-5 10- 4 10-3 10-2 4 6 8 10 30 50 70 Long crack (Threshold) Long cracks (Constant K max ) Small cracks, 1150 MPa (initiated from
Characterization of cracking behavior using posttest fractographic analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, T.; Shockey, D.A.
A determination of time to initiation of stress corrosion cracking in structures and test specimens is important for performing structural failure analysis and for setting inspection intervals. Yet it is seldom possible to establish how much of a component's lifetime represents the time to initiation of fracture and how much represents postinitiation crack growth. This exploratory research project was undertaken to examine the feasibility of determining crack initiation times and crack growth rates from posttest examination of fracture surfaces of constant-extension-rate-test (CERT) specimens by using the fracture reconstruction applying surface topography analysis (FRASTA) technique. The specimens used in this studymore » were Type 304 stainless steel fractured in several boiling water reactor (BWR) aqueous environments. 2 refs., 25 figs., 2 tabs.« less
NASA Astrophysics Data System (ADS)
Washabaugh, Peter; Hill, Larry
2007-06-01
A dynamic crack propagating in a brittle material releases enough thermal energy to produce visible light. The dynamic fracture of even macroscopically amorphous materials becomes unsteady as the crack propagation velocity approaches the material wave-speeds. The heat generated at a crack-tip, especially as it jumps, may be a mechanism to initiate a self-sustaining reaction in an energetic material. Experiments were conducted in specimens to simulate an infinite plate for 20 μs. The initial specimens were 152 mm square by 6 mm thick acrylic sheets, and were fabricated to study non-steady near-wave-speed crack propagation. A variant of this specimen embedded a 25 mm x 3 mm PBX 9205 pellet to explore the influence of dynamic Mode-I cracks in these materials. The crack was initiated by up to 0.2 g of Detasheet placed along a precursor 50 mm long notch, with a shield to contain the reaction products and prevent propagation along the fractured surfaces. The crack was studied by means of a streak camera and a Fourier-filter of the light reflecting off the newly minted surfaces. The sub-microsecond behavior of holes initiating, preceding and coalescing with the main crack were observed in the PMMA samples. The embedding and mechanical loading of explosives by this technique did not initiate a self-sustaining reaction in preliminary testing.
Microstructural characterization of hydrogen induced cracking in TRIP-assisted steel by EBSD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laureys, A., E-mail: Aurelie.Laureys@UGent.be; Depover, T.; Petrov, R.
2016-02-15
The present work evaluates hydrogen induced cracking by performing an elaborate EBSD (Electron BackScatter Diffraction) study in a steel with transformation induced plasticity (TRIP-assisted steel). This type of steel exhibits a multiphase microstructure which undergoes a deformation induced phase transformation. Additionally, each microstructural constituent displays a different behavior in the presence of hydrogen. The aim of this study is to obtain a better understanding on the mechanisms governing hydrogen induced crack initiation and propagation in the hydrogen saturated multiphase structure. Tensile tests on notched samples combined with in-situ electrochemical hydrogen charging were conducted. The tests were interrupted at stresses justmore » after reaching the tensile strength, i.e. before macroscopic failure of the material. This allowed to study hydrogen induced crack initiation and propagation by SEM (Scanning Electron Microscopy) and EBSD. A correlation was found between the presence of martensite, which is known to be very susceptible to hydrogen embrittlement, and the initiation of hydrogen induced cracks. Initiation seems to occur mostly by martensite decohesion. High strain regions surrounding the hydrogen induced crack tips indicate that further crack propagation may have occurred by the HELP (hydrogen-enhanced localized plasticity) mechanism. Small hydrogen induced cracks located nearby the notch are typically S-shaped and crack propagation was dominantly transgranularly. The second stage of crack propagation consists of stepwise cracking by coalescence of small hydrogen induced cracks. - Highlights: • Hydrogen induced cracking in TRIP-assisted steel is evaluated by EBSD. • Tensile tests were conducted on notched hydrogen saturated samples. • Crack initiation occurs by a H-Enhanced Interface DEcohesion (HEIDE) mechanism. • Crack propagation involves growth and coalescence of small cracks. • Propagation is governed by the characteristics of phases on the crack path.« less
Three-Dimensional Analysis of Enamel Crack Behavior Using Optical Coherence Tomography.
Segarra, M S; Shimada, Y; Sadr, A; Sumi, Y; Tagami, J
2017-03-01
The aim of this study was to nondestructively analyze enamel crack behavior on different areas of teeth using 3D swept source-optical coherence tomography (SS-OCT). Ten freshly extracted human teeth of each type on each arch ( n = 80 teeth) were inspected for enamel crack patterns on functional, contact and nonfunctional, or noncontact areas using 3D SS-OCT. The predominant crack pattern for each location on each specimen was noted and analyzed. The OCT observations were validated by direct observations of sectioned specimens under confocal laser scanning microscopy (CLSM). Cracks appeared as bright lines with SS-OCT, with 3 crack patterns identified: Type I - superficial horizontal cracks; Type II - vertically (occluso-gingival) oriented cracks; and Type III - hybrid or complicated cracks, a combination of a Type I and Type III cracks, which may or may not be confluent with each other. Type II cracks were predominant on noncontacting surfaces of incisors and canines and nonfunctional cusps of posterior teeth. Type I and III cracks were predominant on the contacting surfaces of incisors, cusps of canines, and functional cusps of posterior teeth. Cracks originating from the dental-enamel junction and enamel tufts, crack deflections, and the initiation of new cracks within the enamel (internal cracks) were observed as bright areas. CLSM observations corroborated the SS-OCT findings. We found that crack pattern, tooth type, and the location of the crack on the tooth exhibited a strong correlation. We show that the use of 3D SS-OCT permits for the nondestructive 3D imaging and analysis of enamel crack behavior in whole human teeth in vitro. 3D SS-OCT possesses potential for use in clinical studies for the analysis of enamel crack behavior.
Deng, Hailong; Li, Wei; Sakai, Tatsuo; Sun, Zhenduo
2015-12-02
The unexpected failures of structural materials in very high cycle fatigue (VHCF) regime have been a critical issue in modern engineering design. In this study, the VHCF property of a Cr-Ni-W gear steel was experimentally investigated under axial loading with the stress ratio of R = -1, and a life prediction model associated with crack initiation and growth behaviors was proposed. Results show that the Cr-Ni-W gear steel exhibits the constantly decreasing S-N property without traditional fatigue limit, and the fatigue strength corresponding to 10⁸ cycles is around 485 MPa. The inclusion-fine granular area (FGA)-fisheye induced failure becomes the main failure mechanism in the VHCF regime, and the local stress around the inclusion play a key role. By using the finite element analysis of representative volume element, the local stress tends to increase with the increase of elastic modulus difference between inclusion and matrix. The predicted crack initiation life occupies the majority of total fatigue life, while the predicted crack growth life is only accounts for a tiny fraction. In view of the good agreement between the predicted and experimental results, the proposed VHCF life prediction model involving crack initiation and growth can be acceptable for inclusion-FGA-fisheye induced failure.
NASA Technical Reports Server (NTRS)
Calomino, Anthony Martin
1994-01-01
The subcritical growth of cracks from pre-existing flaws in ceramics can severely affect the structural reliability of a material. The ability to directly observe subcritical crack growth and rigorously analyze its influence on fracture behavior is important for an accurate assessment of material performance. A Mode I fracture specimen and loading method has been developed which permits the observation of stable, subcritical crack extension in monolithic and toughened ceramics. The test specimen and procedure has demonstrated its ability to generate and stably propagate sharp, through-thickness cracks in brittle high modulus materials. Crack growth for an aluminum oxide ceramic was observed to be continuously stable throughout testing. Conversely, the fracture behavior of a silicon nitride ceramic exhibited crack growth as a series of subcritical extensions which are interrupted by dynamic propagation. Dynamic initiation and arrest fracture resistance measurements for the silicon nitride averaged 67 and 48 J/sq m, respectively. The dynamic initiation event was observed to be sudden and explosive. Increments of subcritical crack growth contributed to a 40 percent increase in fracture resistance before dynamic initiation. Subcritical crack growth visibly marked the fracture surface with an increase in surface roughness. Increments of subcritical crack growth loosen ceramic material near the fracture surface and the fracture debris is easily removed by a replication technique. Fracture debris is viewed as evidence that both crack bridging and subsurface microcracking may be some of the mechanisms contributing to the increase in fracture resistance. A Statistical Fracture Mechanics model specifically developed to address subcritical crack growth and fracture reliability is used together with a damaged zone of material at the crack tip to model experimental results. A Monte Carlo simulation of the actual experiments was used to establish a set of modeling input parameters. It was demonstrated that a single critical parameter does not characterize the conditions required for dynamic initiation. Experimental measurements for critical crack lengths, and the energy release rates exhibit significant scatter. The resulting output of the model produces good agreement with both the average values and scatter of experimental measurements.
NASA Astrophysics Data System (ADS)
Alfat, Sayahdin; Kimura, Masato; Firihu, Muhammad Zamrun; Rahmat
2018-05-01
In engineering area, investigation of shape effect in elastic materials was very important. It can lead changing elasticity and surface energy, and also increase of crack propagation in the material. A two-dimensional mathematical model was developed to investigation of elasticity and surface energy in elastic material by Adaptive Finite Element Method. Besides that, behavior of crack propagation has observed for every those materials. The government equations were based on a phase field approach in crack propagation model that developed by Takaishi-Kimura. This research has varied four shape domains where physical properties of materials were same (Young's modulus E = 70 GPa and Poisson's ratio ν = 0.334). Investigation assumptions were; (1) homogeneous and isotropic material, (2) there was not initial cracking at t = 0, (3) initial displacement was zero [u1, u2] = 0) at initial condition (t = 0), and (4) length of time simulation t = 5 with interval Δt = 0.005. Mode I/II or mixed mode crack propagation has been used for the numerical investigation. Results of this studies were very good and accurate to show changing energy and behavior of crack propagation. In the future time, this research can be developed to complex phenomena and domain. Furthermore, shape optimization can be investigation by the model.
Geometry and Material Constraint Effects on Creep Crack Growth Behavior in Welded Joints
NASA Astrophysics Data System (ADS)
Li, Y.; Wang, G. Z.; Xuan, F. Z.; Tu, S. T.
2017-02-01
In this work, the geometry and material constraint effects on creep crack growth (CCG) and behavior in welded joints were investigated. The CCG paths and rates of two kinds of specimen geometry (C(T) and M(T)) with initial cracks located at soft HAZ (heat-affected zone with lower creep strength) and different material mismatches were simulated. The effect of constraint on creep crack initiation (CCI) time was discussed. The results show that there exists interaction between geometry and material constraints in terms of their effects on CCG rate and CCI time of welded joints. Under the condition of low geometry constraint, the effect of material constraint on CCG rate and CCI time becomes more obvious. Higher material constraint can promote CCG due to the formation of higher stress triaxiality around crack tip. Higher geometry constraint can increase CCG rate and reduce CCI time of welded joints. Both geometry and material constraints should be considered in creep life assessment and design for high-temperature welded components.
Hughes, Cris E; White, Crystal A
2009-03-01
This study presents a new method for understanding postmortem heat-induced crack propagation patterns in teeth. The results demonstrate that patterns of postmortem heat-induced crack propagation differ from perimortem and antemortem trauma-induced crack propagation patterns. Dental material of the postmortem tooth undergoes dehydration leading to a shrinking and more brittle dentin material and a weaker dentin-enamel junction. Dentin intertubule tensile stresses are amplified by the presence of the pulp cavity, and initiates crack propagation from the internal dentin, through the dentin-enamel junction and lastly the enamel. In contrast, in vivo perimortem and antemortem trauma-induced crack propagation initiates cracking from the external surface of the enamel toward the dentin-enamel junction where the majority of the energy of the crack is dissipated, eliminating the crack's progress into the dentin. These unique patterns of crack propagation can be used to differentiate postmortem taphonomy-induced damage from antemortem and perimortem trauma in teeth.
Fatigue crack growth and low cycle fatigue of two nickel base superalloys
NASA Technical Reports Server (NTRS)
Stoloff, N. S.; Duquette, D. J.; Choe, S. J.; Golwalkar, S.
1983-01-01
The fatigue crack growth and low cycle fatigue behavior of two P/M superalloys, Rene 95 and Astroloy, in the hot isostatically pressed (HIP) condition, was determined. Test variables included frequency, temperature, environment, and hold times at peak tensile loads (or strains). Crack initiation sites were identified in both alloys. Crack growth rates were shown to increase in argon with decreasing frequency or with the imposition of hold times. This behavior was attributed to the effect of oxygen in the argon. Auger analyses were performed on oxide films formed in argon. Low cycle fatigue lives also were degraded by tensile hold, contrary to previous reports in the literature. The role of environment in low cycle fatigue behavior is discussed.
The Effect of Boron on the Low Cycle Fatigue Behavior of Disk Alloy KM4
NASA Technical Reports Server (NTRS)
Gabb, Timothy; Gayda, John; Sweeney, Joseph
2000-01-01
The durability of powder metallurgy nickel base superalloys employed as compressor and turbine disks is often limited by low cycle fatigue (LCF) crack initiation and crack growth from highly stressed surface locations (corners, holes, etc.). Crack growth induced by dwells at high stresses during aerospace engine operation can be particularly severe. Supersolvus solution heat treatments can be used to produce coarse grain sizes approaching ASTM 6 for improved resistance to dwell fatigue crack growth. However, the coarse grain sizes reduce yield strength, which can lower LCF initiation life. These high temperature heat treatments also can encourage pores to form. In the advanced General Electric disk superalloy KM4, such pores can initiate fatigue cracks that limit LCF initiation life. Hot isostatic pressing (HIP) during the supersolvus solution heat treatment has been shown to improve LCF initiation life in KM4, as the HIP pressure minimizes formation of the pores. Reduction of boron levels in KM4 has also been shown to increase LCF initiation life after a conventional supersolvus heat treatment, again possibly due to effects on the formation tendencies of these pores. However, the effects of reduced boron levels on microstructure, pore characteristics, and LCF failure modes in KM4 still need to be fully quantified. The objective of this study was to determine the effect of boron level on the microstructure, porosity, LCF behavior, and failure modes of supersolvus heat treated KM4.
NASA Astrophysics Data System (ADS)
Luo, Y.; Wu, S. C.; Hu, Y. N.; Fu, Y. N.
2018-03-01
Damage accumulation and failure behaviors are crucial concerns during the design and service of a critical component, leading researchers and engineers to thoroughly identifying the crack evolution. Third-generation synchrotron radiation X-ray computed microtomography can be used to detect the inner damage evolution of a large-density material or component. This paper provides a brief review of studying the crack initiation and propagation inside lightweight materials with advanced synchrotron three-dimensional (3D) X-ray imaging, such as aluminum materials. Various damage modes under both static and dynamic loading are elucidated for pure aluminum, aluminum alloy matrix, aluminum alloy metal matrix composite, and aluminum alloy welded joint. For aluminum alloy matrix, metallurgical defects (porosity, void, inclusion, precipitate, etc.) or artificial defects (notch, scratch, pit, etc.) strongly affect the crack initiation and propagation. For aluminum alloy metal matrix composites, the fracture occurs either from the particle debonding or voids at the particle/matrix interface, and the void evolution is closely related with fatigued cycles. For the hybrid laser welded aluminum alloy, fatigue cracks usually initiate from gas pores located at the surface or sub-surface and gradually propagate to a quarter ellipse or a typical semi-ellipse profile.
NASA Technical Reports Server (NTRS)
Fadragas, M. I.; Fine, M. E.; Moran, B.
1994-01-01
In panel specimens with rivet holes cracks initiate in the blunted knife edge of the chamfered rivet hole and propagate inward as well as along the hole. The fatigue lifetime to dominant crack information was defined as the number of cycles, N500 micrometer, to formation of a 500 micrometer long crack. Statistical data on N500 micrometer and on crack propagation after N500 micrometer were obtained for a large number of uncorroded specimens and specimens corroded in an ASTM B 117 salt spray. Considerable variation in N500 micrometer and crack propagation behavior was observed from specimen to specimen of the same nominal geometry with chamfered rivet holes increased the probability for both early formation and later formation of a propagating 500 micrometer fatigue crack. The growth of fatigue cracks after 500 micrometer size was little affected by prior salt spray.
NASA Astrophysics Data System (ADS)
Washabaugh, P. D.; Hill, L. G.
2007-12-01
A dynamic crack propagating in a brittle material releases enough thermal energy to produce visible light. The dynamic fracture of even macroscopically amorphous materials becomes unsteady as the crack propagation velocity approaches the material wave-speeds. The heat generated at a crack-tip, especially as it jumps, may be a mechanism to initiate a self-sustaining reaction in an energetic material. Experiments were conducted in specimens to simulate an infinite plate for ˜10 μs. The initial specimens were 152 mm square by 6 mm thick acrylic sheets, and were fabricated to study non-steady near-wave-speed crack propagation. A variant of this specimen embedded a 25 mm×3 mm PBX 9205 pellet to explore the influence of dynamic Mode-I cracks in these materials. The crack was initiated by up to 0.24 g of Detasheet placed along a precursor 50 mm long notch, with a shield to contain the reaction products and prevent propagation along the fractured surfaces. The crack was studied by means of a streak camera and a Fourier-filter of the light reflecting off the newly minted surfaces. The sub-microsecond behavior of holes initiating, preceding and coalescing with the main crack were observed in the PMMA samples. The embedding and mechanical loading of explosives by this technique did not initiate a self-sustaining reaction in preliminary testing.
Crack Initiation and Growth Behavior at Corrosion Pit in 7075-T6 High Strength Aluminum Alloy
2013-06-01
Corrosion Fatigue Corrosion fatigue is defined as the failure of metal due to a cyclical load in combination with exposure to a caustic environment...lifetime is spent creating the crack while the actual crack growth makes up a smaller portion of the total lifetime. With corrosion fatigue however
Crack Initiation and Growth Behavior at Corrosion Pit in 2024-T3 Aluminum Alloy
2014-09-01
63 Figure B.1: The crack length vs. number of cycles during fatigue testing for the 2AI-01 specimen...number of cycles during fatigue testing for the the 2AI- 02 specimen...64 Figure B.3: The crack length vs. number of cycles during fatigue testing for the 2Sl-01 specimen
NASA Astrophysics Data System (ADS)
Hai-Yang, Song; Yu-Long, Li
2016-02-01
The effects of amorphous lamella on the crack propagation behavior in crystalline/amorphous (C/A) Mg/Mg-Al nanocomposites under tensile loading are investigated using the molecular dynamics simulation method. The sample with an initial crack of orientation [0001] is considered here. For the nano-monocrystal Mg, the crack growth exhibits brittle cleavage. However, for the C/A Mg/Mg-Al nanocomposites, the ‘double hump’ behavior can be observed in all the stress-strain curves regardless of the amorphous lamella thickness. The results indicate that the amorphous lamella plays a critical role in the crack deformation, and it can effectively resist the crack propagation. The above mentioned crack deformation behaviors are also disclosed and analyzed in the present work. The results here provide a strategy for designing the high-performance hexagonal-close-packed metal and alloy materials. Project supported by the National Natural Science Foundation of China (Grant Nos. 11372256 and 11572259), the 111 Project (Grant No. B07050), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-1046), and the Program for New Scientific and Technological Star of Shaanxi Province, China (Grant No. 2012KJXX-39).
Very High Cycle Fatigue Behavior of a Directionally Solidified Ni-Base Superalloy DZ4
Nie, Baohua; Zhao, Zihua; Liu, Shu; Chen, Dongchu; Ouyang, Yongzhong; Hu, Zhudong; Fan, Touwen; Sun, Haibo
2018-01-01
The effect of casting pores on the very high cycle fatigue (VHCF) behavior of a directionally solidified (DS) Ni-base superalloy DZ4 is investigated. Casting and hot isostatic pressing (HIP) specimens were subjected to very high cycle fatigue loading in an ambient atmosphere. The results demonstrated that the continuously descending S-N curves were exhibited for both the casting and HIP specimens. Due to the elimination of the casting pores, the HIP samples had better fatigue properties than the casting samples. The subsurface crack initiated from the casting pore in the casting specimens at low stress amplitudes, whereas fatigue crack initiated from crystallographic facet decohesion for the HIP specimens. When considering the casting pores as initial cracks, there exists a critical stress intensity threshold ranged from 1.1 to 1.3 MPam, below which fatigue cracks may not initiate from the casting pores. Furthermore, the effect of the casting pores on the fatigue limit is estimated based on a modified El Haddad model, which is in good agreement with the experimental results. Fatigue life for both the casting and HIP specimens is well predicted using the Fatigue Indicator Parameter (FIP) model. PMID:29320429
Fractography of a bis-GMA resin.
Davis, D M; Waters, N E
1989-07-01
The fracture behavior of a bis-GMA resin was studied by means of the double-torsion test. The fracture parameter measured was the stress-intensity factor. Fracture occurred in either a stick-slip (unstable) or continuous (stable) manner, depending upon the test conditions. When stick-slip propagation occurred, the fracture surfaces showed characteristic crack-arrest lines. The fracture surfaces were examined by use of a reflected-light optical microscope. The stress-intensity factor for crack initiation was found to be related to the size of the crack-arrest line which, in turn, could be related to the Dugdale model for plastic zone size. The evidence supported the concept that the behavior of the crack during propagation was controlled by the amount of plastic deformation occurring at the crack tip.
NASA Technical Reports Server (NTRS)
Gilbreath, W. P.; Adamson, M. J.
1974-01-01
The crack growth behavior of D6AC steel as a function of stress intensity, stress and corrosion history and test technique, under sustained load in natural seawater, 3.3 percent NaCl solution, distilled water, and high humidity air was investigated. Reported investigations of D6AC were considered with emphasis on thermal treatment, specimen configuration, fracture toughness, crack-growth rates, initiation period, threshold, and the extension of corrosion fatigue data to sustained load conditions. Stress history effects were found to be most important in that they controlled incubation period, initial crack growth rates, and apparent threshold.
Interaction of Cracks Between Two Adjacent Indents in Glass
NASA Technical Reports Server (NTRS)
Choi, S. R.; Salem, J. A.
1993-01-01
Experimental observations of the interaction behavior of cracks between two adjacent indents were made using an indentation technique in soda-lime glass. It was specifically demonstrated how one indent crack initiates and propagates in the vicinity of another indent crack. Several types of crack interactions were examined by changing the orientation and distance of one indent relative to the other. It was found that the residual stress field produced by elastic/plastic indentation has a significant influence on controlling the mode of crack interaction. The interaction of an indent crack with a free surface was also investigated for glass and ceramic specimens.
NASA Astrophysics Data System (ADS)
Tamada, Kazuhiro; Kakiuchi, Toshifumi; Uematsu, Yoshihiko
2017-07-01
Plane bending fatigue tests are conducted to investigate fatigue crack initiation mechanisms in coarse-grained magnesium alloy, AZ31, under the stress ratios R = -1 and 0.1. The initial crystallographic structures are analyzed by an electron backscatter diffraction method. The slip or twin operation during fatigue tests is identified from the line angle analyses based on Euler angles of the grains. Under the stress ratio R = -1, relatively thick tension twin bands are formed in coarse grains. Subsequently, compression twin or secondary pyramidal slip operates within the tension twin band, resulting in the fatigue crack initiation. On the other hand, under R = 0.1 with tension-tension loading cycles, twin bands are formed on the specimen surface, but the angles of those bands do not correspond to tension twins. Misorientation analyses of c-axes in the matrix grain and twin band reveal that double twins are activated. Under R = 0.1, fatigue crack initiates along the double twin boundaries. The different manners of fatigue crack initiation at R = -1 and 0.1 are related to the asymmetricity of twining under tension and compression loadings. The fatigue strengths under different stress ratios cannot be estimated by the modified Goodman diagram due to the effect of stress ratio on crack initiation mechanisms.
Fatigue behavior of a 2XXX series aluminum alloy reinforced with 15 vol Pct SiCp
NASA Astrophysics Data System (ADS)
Bonnen, J. J.; Allison, J. E.; Jones, J. W.
1991-05-01
The fatigue behavior of a naturally aged powder metallurgy 2xxx series aluminum alloy (Alcoa MB85) and a composite made of this alloy with 15 vol pct SiCp, has been investigated. Fatigue lives were determined using load-controlled axial testing of unnotched cylindrical samples. The influence of mean stress was determined at stress ratios of -1, 0.1, and 0.7. Mean stress had a significant influence on fatigue life, and this influence was consistent with that normally observed in metals. At each stress ratio, the incorporation of SiC reinforcement led to an increase in fatigue life at low and intermediate stresses. When considered on a strain-life basis, however, the composite materials had a somewhat inferior resistance to fatigue. Fatigue cracks initiated from several different microstructural features or defect types, but fatigue life did not vary significantly with the specific initiation site. As the fatigue crack advanced away from the fatigue crack initiation site, increasing numbers of SiC particles were fractured, in agreement with crack-tip process zone models.
NASA Astrophysics Data System (ADS)
Ferdous, Md. Shafiul; Setyabudi, Sofyan Arief; Makabe, Chobin; Fujikawa, Masaki
2013-05-01
The fatigue and fracture behavior of C/C composites fabricated using fine-woven carbon fiber laminates with α = 0/90° direction were investigated. Also, the phenomenon of crack growth behavior and the shear damage in the fiber bundle was discussed. Slits of several sizes were cut on both sides of a test section and different sizes of slit length were chosen. The effect of the slit configuration on crack initiation and growth behavior was observed. Specimens with blunt-notches and center-holes were also used to compare the fatigue strength and crack growth behavior. Non-propagating cracks were observed and fatigue limit was defined as the maximum stress at which specimen did not break for N = 107 cycles stress application. The longest fatigue life was obtained in the case of specimens with shorter slits. The relationships between fatigue strengths and specimen shapes were analyzed by stress concentration, Kt, and stress intensity factor, KI. The effect of slit configuration on fatigue strength was then discussed regarding both the experimental and calculated consequences.
NASA Astrophysics Data System (ADS)
Jeon, Changwoo; Kim, Choongnyun Paul; Kim, Hyoung Seop; Lee, Sunghak
2015-04-01
Fracture properties of Ti-based amorphous alloys containing ductile β dendrites were explained by directly observing microfracture processes. Three Ti-based amorphous alloys were fabricated by adding Ti, Zr, V, Ni, Al, and Be into a Ti-6Al-4V alloy by a vacuum arc melting method. The effective sizes of dendrites varied from 63 to 104 μm, while their volume fractions were almost constant within the range from 74 to 76 pct. The observation of the microfracture of the alloy containing coarse dendrites revealed that a microcrack initiated at the amorphous matrix of the notch tip and propagated along the amorphous matrix. In the alloy containing fine dendrites, the crack propagation was frequently blocked by dendrites, and many deformation bands were formed near or in front of the propagating crack, thereby resulting in a zig-zag fracture path. Crack initiation toughness was almost the same at 35 to 36 MPa√m within error ranges in the three alloys because it was heavily affected by the stress applied to the specimen at the time of crack initiation at the crack tip as well as strength levels of the alloys. According to the R-curve behavior, however, the best overall fracture properties in the alloy containing fine dendrites were explained by mechanisms of blocking of the crack growth and crack blunting and deformation band formation at dendrites.
NASA Technical Reports Server (NTRS)
Czabaj, Michael W.; Ratcliffe, James
2012-01-01
The intralaminar and interlaminar mode-I fracture-toughness of a unidirectional IM7/8552 graphite/epoxy composite were measured using compact tension (CT) and double cantilever beam (DCB) test specimens, respectively. Two starter crack geometries were considered for both the CT and DCB specimen configurations. In the first case, starter cracks were produced by 12.5 micron thick, Teflon film inserts. In the second case, considerably sharper starter cracks were produced by fatigue precracking. For each specimen configuration, use of the Teflon film starter cracks resulted in initially unstable crack growth and artificially high initiation fracture-toughness values. Conversely, specimens with fatigue precracks exhibited stable growth onset and lower initiation fracture toughness. For CT and DCB specimens with fatigue precracks, the intralaminar and interlaminar initiation fracture toughnesses were approximately equal. However, during propagation, the CT specimens exhibited more extensive fiber bridging, and rapidly increasing R-curve behavior as compared to the DCB specimens. Observations of initiation and propagation of intralaminar and interlaminar fracture, and the measurements of fracture toughness, were supported by fractographic analysis using scanning electron microscopy.
Direct observation of the residual plastic deformation caused by a single tensile overload
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bichler, C.; Pippan, R.
1999-07-01
The fatigue crack growth behavior following single tensile overloads at high stress intensity ranges in a cold-rolled austenitic steel has been studied experimentally. After tensile overloads, fatigue cracks initially accelerate, followed by significant retardation, before the growth rates return to their baseline level. The initial acceleration was attributed to an immediate reduction in near-tip closure. Scanning electron micrography and stereophotogrammetric reconstruction of the fracture surface were applied to study the residual plastic deformation caused by a single tensile overload in the mid-thickness of the specimen. The measured residual opening displacement of the crack as a function of the overload ismore » presented and compared with simple estimations. Also, free specimen surface observations of the residual plastic deformation and crack growth rate were performed. In the midsection of the specimens the striation spacing-length, i.e., the microscopic growth rates, were measured before and after the applied overload. It will be shown that the measured plasticity-induced wedges from the single overload and the observed propagation behavior support the significance of the concept of crack closure.« less
Atomistic Simulation of Single Asperity Contact
NASA Astrophysics Data System (ADS)
Philip; Kromer; Marder, Michael
2003-03-01
In the standard (Bowden and Tabor) model of friction, the macroscopic behavior of sliding results from the deformation of microscopic asperities in contact. A recent idea instead extracts macroscopic friction from the aggregate behavior of traveling, self-healing interfacial cracks: certain families of cracks are found to be mathematically forbidden, and the envelope of allowed cracks dictates the familiar Coulomb law of friction. To explore the connection between the new and traditional pictures of friction, we conducted molecular dynamics (MD) simulations of single-asperity contact subjected to an oscillatory sliding force -- a geometry important for the problem of fretting (damage due to small-scale vibratory contact). Our simulations reveal the importance of traveling interface cracks to the dynamics of slip at the interface, and illuminate the dynamics of crack initiation and suppression.
Impact initiation of explosives and propellants via statistical crack mechanics
NASA Astrophysics Data System (ADS)
Dienes, J. K.; Zuo, Q. H.; Kershner, J. D.
2006-06-01
A statistical approach has been developed for modeling the dynamic response of brittle materials by superimposing the effects of a myriad of microcracks, including opening, shear, growth and coalescence, taking as a starting point the well-established theory of penny-shaped cracks. This paper discusses the general approach, but in particular an application to the sensitivity of explosives and propellants, which often contain brittle constituents. We examine the hypothesis that the intense heating by frictional sliding between the faces of a closed crack during unstable growth can form a hot spot, causing localized melting, ignition, and fast burn of the reactive material adjacent to the crack. Opening and growth of a closed crack due to the pressure of burned gases inside the crack and interactions of adjacent cracks can lead to violent reaction, with detonation as a possible consequence. This approach was used to model a multiple-shock experiment by Mulford et al. [1993. Initiation of preshocked high explosives PBX-9404, PBX-9502, PBX-9501, monitored with in-material magnetic gauging. In: Proceedings of the 10th International Detonation Symposium, pp. 459-467] involving initiation and subsequent quenching of chemical reactions in a slab of PBX 9501 impacted by a two-material flyer plate. We examine the effects of crack orientation and temperature dependence of viscosity of the melt on the response. Numerical results confirm our theoretical finding [Zuo, Q.H., Dienes, J.K., 2005. On the stability of penny-shaped cracks with friction: the five types of brittle behavior. Int. J. Solids Struct. 42, 1309-1326] that crack orientation has a significant effect on brittle behavior, especially under compressive loading where interfacial friction plays an important role. With a reasonable choice of crack orientation and a temperature-dependent viscosity obtained from molecular dynamics calculations, the calculated particle velocities compare well with those measured using embedded velocity gauges.
Indentation Damage and Crack Repair in Human Enamel*
Rivera, C.; Arola, D.; Ossa, A.
2013-01-01
Tooth enamel is the hardest and most highly mineralized tissue in the human body. While there have been a number of studies aimed at understanding the hardness and crack growth resistance behavior of this tissue, no study has evaluated if cracks in this tissue undergo repair. In this investigation the crack repair characteristics of young human enamel were evaluated as a function of patient gender and as a function of the distance from the Dentin Enamel Junction (DEJ). Cracks were introduced via microindentation along the prism direction and evaluated as a function of time after the indentation. Microscopic observations indicated that the repair of cracks began immediately after crack initiation and reaches saturation after approximately 48 hours. During this process he crack length decreased up to 10% of the initial length, and the largest degree of reduction occurred in the deep enamel, nearest the DEJ. In addition, it was found that the degree of repair was significantly greater in the enamel of female patients. PMID:23541701
Indentation damage and crack repair in human enamel.
Rivera, C; Arola, D; Ossa, A
2013-05-01
Tooth enamel is the hardest and most highly mineralized tissue in the human body. While there have been a number of studies aimed at understanding the hardness and crack growth resistance behavior of this tissue, no study has evaluated if cracks in this tissue undergo repair. In this investigation the crack repair characteristics of young human enamel were evaluated as a function of patient gender and as a function of the distance from the Dentin Enamel Junction (DEJ). Cracks were introduced via microindentation along the prism direction and evaluated as a function of time after the indentation. Microscopic observations indicated that the repair of cracks began immediately after crack initiation and reaches saturation after approximately 48 h. During this process he crack length decreased up to 10% of the initial length, and the largest degree of reduction occurred in the deep enamel, nearest the DEJ. In addition, it was found that the degree of repair was significantly greater in the enamel of female patients. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hatefi Ardakani, S.; Ahmadian, H.; Mohammadi, S.
2015-04-01
In this paper, the extended finite element method is used for fracture analysis of shape memory alloys for both cases of super elastic and shape memory effects. Heat generation during the forward and reverse phase transformations can lead to temperature variation in the material because of strong thermo-mechanical coupling, which significantly influences the SMA mechanical behavior. First, the stationary crack mode is studied and the effects of loading rate on material behavior in the crack tip are examined. Then, the crack propagation analysis is performed in the presence of an initial crack by adopting a weighted averaging criterion, where the direction of crack propagation is determined by weighted averaging of effective stresses at all the integration points in the vicinity of the crack tip. Finally, several numerical examples are analyzed and the obtained results are compared with the available reference results.
NASA Astrophysics Data System (ADS)
Huang, Yan-Hua; Yang, Sheng-Qi; Tian, Wen-Ling; Zeng, Wei; Yu, Li-Yuan
2016-06-01
Strength and deformability characteristics of rock with pre-existing fissures are governed by cracking behavior. To further research the effects of pre-existing fissures on the mechanical properties and crack coalescence process, a series of uniaxial compression tests were carried out for rock-like material with two unparallel fissures. In the present study, cement, quartz sand, and water were used to fabricate a kind of brittle rock-like material cylindrical model specimen. The mechanical properties of rock-like material specimen used in this research were all in good agreement with the brittle rock materials. Two unparallel fissures (a horizontal fissure and an inclined fissure) were created by inserting steel during molding the model specimen. Then all the pre-fissured rock-like specimens were tested under uniaxial compression by a rock mechanics servo-controlled testing system. The peak strength and Young's modulus of pre-fissured specimen all first decreased and then increased when the fissure angle increased from 0° to 75°. In order to investigate the crack initiation, propagation and coalescence process, photographic monitoring was adopted to capture images during the entire deformation process. Moreover, acoustic emission (AE) monitoring technique was also used to obtain the AE evolution characteristic of pre-fissured specimen. The relationship between axial stress, AE events, and the crack coalescence process was set up: when a new crack was initiated or a crack coalescence occurred, the corresponding axial stress dropped in the axial stress-time curve and a big AE event could be observed simultaneously. Finally, the mechanism of crack propagation under microscopic observation was discussed. These experimental results are expected to increase the understanding of the strength failure behavior and the cracking mechanism of rock containing unparallel fissures.
Investigation into the Fatigue Crack Initiation Process in Metals.
1985-12-01
fatigue crack initiation in metals under spectrum loading is described. The work focuses on the microplastic deformation properties of a surface...behavior is then controlled by the external load spectra, but is greatly influenced by the reaction stresses within a microplastic grain generated when its...49 4.7 Example values of strain just outside microplastic grains indicating an elastic matrix and deformation depths around 10 n - the typical
Sandgren, Hayley R.; Zhai, Yuwei; Lados, Diana A.; ...
2016-09-28
Laser Engineered Net Shaping (LENS) is an additive manufacturing technique that belongs to the ASTM standardized directed energy deposition category. To date, very limited work has been conducted towards understanding the fatigue crack growth behavior of LENS fabricated materials, which hinders the widespread adoption of this technology for high-integrity structural applications. In this study, the propagation of a 20 μm initial crack in LENS fabricated Ti-6Al-4V was captured in-situ, using high-energy synchrotron x-ray microtomography. Fatigue crack growth (FCG) data were then determined from 2D and 3D tomography reconstructions, as well as from fracture surface striation measurements using SEM. The generatedmore » data were compared to those obtained from conventional FCG tests that used compliance and direct current potential drop (DCPD) techniques to measure long and small crack growth. In conclusion, the observed agreement demonstrates that x-ray microtomography and fractographic analysis using SEM can be successfully combined to study the propagation behavior of fatigue cracks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandgren, Hayley R.; Zhai, Yuwei; Lados, Diana A.
Laser Engineered Net Shaping (LENS) is an additive manufacturing technique that belongs to the ASTM standardized directed energy deposition category. To date, very limited work has been conducted towards understanding the fatigue crack growth behavior of LENS fabricated materials, which hinders the widespread adoption of this technology for high-integrity structural applications. In this study, the propagation of a 20 μm initial crack in LENS fabricated Ti-6Al-4V was captured in-situ, using high-energy synchrotron x-ray microtomography. Fatigue crack growth (FCG) data were then determined from 2D and 3D tomography reconstructions, as well as from fracture surface striation measurements using SEM. The generatedmore » data were compared to those obtained from conventional FCG tests that used compliance and direct current potential drop (DCPD) techniques to measure long and small crack growth. In conclusion, the observed agreement demonstrates that x-ray microtomography and fractographic analysis using SEM can be successfully combined to study the propagation behavior of fatigue cracks.« less
Biaxial fatigue crack propagation behavior of perfluorosulfonic-acid membranes
NASA Astrophysics Data System (ADS)
Lin, Qiang; Shi, Shouwen; Wang, Lei; Chen, Xu; Chen, Gang
2018-04-01
Perfluorosulfonic-acid membranes have long been used as the typical electrolyte for polymer-electrolyte fuel cells, which not only transport proton and water but also serve as barriers to prevent reactants mixing. However, too often the structural integrity of perfluorosulfonic-acid membranes is impaired by membrane thinning or cracks/pinholes formation induced by mechanical and chemical degradations. Despite the increasing number of studies that report crack formation, such as crack size and shape, the underlying mechanism and driving forces have not been well explored. In this paper, the fatigue crack propagation behaviors of Nafion membranes subjected to biaxial loading conditions have been investigated. In particular, the fatigue crack growth rates of flat cracks in responses to different loading conditions are compared, and the impact of transverse stress on fatigue crack growth rate is clarified. In addition, the crack paths for slant cracks under both uniaxial and biaxial loading conditions are discussed, which are similar in geometry to those found after accelerated stress testing of fuel cells. The directions of initial crack propagation are calculated theoretically and compared with experimental observations, which are in good agreement. The findings reported here lays the foundation for understanding of mechanical failure of membranes.
NASA Astrophysics Data System (ADS)
Chen, Xu; Ren, Bin; Yu, Dunji; Xu, Bin; Zhang, Zhe; Chen, Gang
2018-06-01
The effects of uniaxial tension properties and low cycle fatigue behavior of 16MND5 bainitic steel cylinder pre-corroded in simulated pressurized water reactor (PWR) were investigated by fatigue at room temperature in air and immersion test system, scanning electron microscopy (SEM), energy disperse spectroscopy (EDS). The experimental results indicated that the corrosion fatigue lives of 16MND5 specimen were significantly affected by the strain amplitude and simulated PWR environments. The compositions of corrosion products were complexly formed in simulated PWR environments. The porous corrosion surface of pre-corroded materials tended to generate pits as a result of promoting contact area to the fresh metal, which promoted crack initiation. For original materials, the fatigue cracks initiated at inclusions imbedded in the micro-cracks. Moreover, the simulated PWR environments degraded the mechanical properties and low cycle fatigue behavior of 16MND5 specimens remarkably. Pre-corrosion of 16MND5 specimen mainly affected the plastic term of the Coffin-Manson equation.
Fatigue-Life Prediction Methodology Using Small-Crack Theory
NASA Technical Reports Server (NTRS)
Newmann, James C., Jr.; Phillips, Edward P.; Swain, M. H.
1997-01-01
This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using 'small-crack theory' for various materials and loading conditions. Crack-tip constraint factors, to account for three-dimensional state-of-stress effects, were selected to correlate large-crack growth rate data as a function of the effective-stress-intensity factor range (delta K(eff)) under constant-amplitude loading. Some modifications to the delta k(eff)-rate relations were needed in the near-threshold regime to fit measured small-crack growth rate behavior and fatigue endurance limits. The model was then used to calculate small- and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens made of two aluminum alloys and a steel under constant-amplitude and spectrum loading. Fatigue lives were calculated using the crack-growth relations and microstructural features like those that initiated cracks for the aluminum alloys and steel for edge-notched specimens. An equivalent-initial-flaw-size concept was used to calculate fatigue lives in other cases. Results from the tests and analyses agreed well.
Analysis of crack initiation and growth in the high level vibration test at Tadotsu
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kassir, M.K.; Park, Y.J.; Hofmayer, C.H.
1993-08-01
The High Level Vibration Test data are used to assess the accuracy and usefulness of current engineering methodologies for predicting crack initiation and growth in a cast stainless steel pipe elbow under complex, large amplitude loading. The data were obtained by testing at room temperature a large scale modified model of one loop of a PWR primary coolant system at the Tadotsu Engineering Laboratory in Japan. Fatigue crack initiation time is reasonably predicted by applying a modified local strain approach (Coffin-Mason-Goodman equation) in conjunction with Miner`s rule of cumulative damage. Three fracture mechanics methodologies are applied to investigate the crackmore » growth behavior observed in the hot leg of the model. These are: the {Delta}K methodology (Paris law), {Delta}J concepts and a recently developed limit load stress-range criterion. The report includes a discussion on the pros and cons of the analysis involved in each of the methods, the role played by the key parameters influencing the formulation and a comparison of the results with the actual crack growth behavior observed in the vibration test program. Some conclusions and recommendations for improvement of the methodologies are also provided.« less
Fatigue Crack Closure Analysis Using Digital Image Correlation
NASA Technical Reports Server (NTRS)
Leser, William P.; Newman, John A.; Johnston, William M.
2010-01-01
Fatigue crack closure during crack growth testing is analyzed in order to evaluate the critieria of ASTM Standard E647 for measurement of fatigue crack growth rates. Of specific concern is remote closure, which occurs away from the crack tip and is a product of the load history during crack-driving-force-reduction fatigue crack growth testing. Crack closure behavior is characterized using relative displacements determined from a series of high-magnification digital images acquired as the crack is loaded. Changes in the relative displacements of features on opposite sides of the crack are used to generate crack closure data as a function of crack wake position. For the results presented in this paper, remote closure did not affect fatigue crack growth rate measurements when ASTM Standard E647 was strictly followed and only became a problem when testing parameters (e.g., load shed rate, initial crack driving force, etc.) greatly exceeded the guidelines of the accepted standard.
NASA Astrophysics Data System (ADS)
Yang, Di
Duplex stainless steel (DSS) is a dual-phase material with approximately equal volume amount of austenite and ferrite. It has both great mechanical properties (good ductility and high tensile/fatigue strength) and excellent corrosion resistance due to the mixture of the two phases. Cyclic loadings with high stress level and low frequency are experienced by many structures. However, the existing study on corrosion fatigue (CF) study of various metallic materials has mainly concentrated on relatively high frequency range. No systematic study has been done to understand the ultra-low frequency (˜10-5 Hz) cyclic loading effect on stress corrosion cracking (SCC) of DSSs. In this study, the ultra-low frequency cyclic loading effect on SCC of DSS 2205 was studied in acidified sodium chloride and caustic white liquor (WL) solutions. The research work focused on the environmental effect on SCC of DSS 2205, the cyclic stress effect on strain accumulation behavior of DSS 2205, and the combined environmental and cyclic stress effect on the stress corrosion crack initiation of DSS 2205 in the above environments. Potentiodynamic polarization tests were performed to investigate the electrochemical behavior of DSS 2205 in acidic NaCl solution. Series of slow strain rate tests (SSRTs) at different applied potential values were conducted to reveal the optimum applied potential value for SCC to happen. Room temperature static and cyclic creep tests were performed in air to illustrate the strain accumulation effect of cyclic stresses. Test results showed that cyclic loading could enhance strain accumulation in DSS 2205 compared to static loading. Moreover, the strain accumulation behavior of DSS 2205 was found to be controlled by the two phases of DSS 2205 with different crystal structures. The B.C.C. ferrite phase enhanced strain accumulation due to extensive cross-slips of the dislocations, whereas the F.C.C. austenite phase resisted strain accumulation due to cyclic strain hardening. Cyclic SSRTs were performed under the conditions that SCC occurs in sodium chloride and WL solutions. Test results show that cyclic stress facilitated crack initiations in DSS 2205. Stress corrosion cracks initiated from the intermetallic precipitates in acidic chloride environment, and the cracks initiated from austenite phase in WL environment. Cold-working has been found to retard the crack initiations induced by cyclic stresses.
NASA Technical Reports Server (NTRS)
Ward, G. T.; Herrmann, D. J.; Hillberry, B. M.
1993-01-01
Fatigue tests of the SCS-6/Timetal 21S composite system were performed to characterize the fatigue behavior for unnotched conditions. The stress-life behavior of the unnotched (9/90)2s laminates was investigated for stress ratios of R = 0.1 and R = 0.3. The occurrence of matrix cracking was also examined in these specimens. This revealed multiple matrix crack initiation sites throughout the composite, as well as evenly spaced surface cracks along the length of the specimens. No difference in fatigue lives were observed for stress ratios of R = 0.1 and R = 0.3 when compared on a stress range basis. The unnotched SCS-6/Timetal 21S composites had shorter fatigue lives than the SCS-6/Ti-15-3 composites, however the neat Timetal 21S matrix material had a longer fatigue life than the neat Ti-15-3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okabe, T.; Takeda, N.; Komotori, J.
1999-11-26
A new model is proposed for multiple matrix cracking in order to take into account the role of matrix-rich regions in the cross section in initiating crack growth. The model is used to predict the matrix cracking stress and the total number of matrix cracks. The model converts the matrix-rich regions into equivalent penny shape crack sizes and predicts the matrix cracking stress with a fracture mechanics crack-bridging model. The estimated distribution of matrix cracking stresses is used as statistical input to predict the number of matrix cracks. The results show good agreement with the experimental results by replica observations.more » Therefore, it is found that the matrix cracking behavior mainly depends on the distribution of matrix-rich regions in the composite.« less
Influence of load interactions on crack growth as related to state of stress and crack closure
NASA Technical Reports Server (NTRS)
Telesman, J.
1985-01-01
Fatigue crack propagation (FCP) after an application of a low-high loading sequence was investigated as a function of specimen thickness and crack closure. No load interaction effects were detected for specimens in a predominant plane strain state. However, for the plane stress specimens, initially high FCP rates after transition to a higher stress intensity range were observed. The difference in observed behavior was explained by examining the effect of the resulting closure stress intensity values on the effective stress intensity range.
A Crack Growth Evaluation Method for Interacting Multiple Cracks
NASA Astrophysics Data System (ADS)
Kamaya, Masayuki
When stress corrosion cracking or corrosion fatigue occurs, multiple cracks are frequently initiated in the same area. According to section XI of the ASME Boiler and Pressure Vessel Code, multiple cracks are considered as a single combined crack in crack growth analysis, if the specified conditions are satisfied. In crack growth processes, however, no prescription for the interference between multiple cracks is given in this code. The JSME Post-Construction Code, issued in May 2000, prescribes the conditions of crack coalescence in the crack growth process. This study aimed to extend this prescription to more general cases. A simulation model was applied, to simulate the crack growth process, taking into account the interference between two cracks. This model made it possible to analyze multiple crack growth behaviors for many cases (e. g. different relative position and length) that could not be studied by experiment only. Based on these analyses, a new crack growth analysis method was suggested for taking into account the interference between multiple cracks.
NASA Astrophysics Data System (ADS)
Zhou, Bing; Cui, Hao; Liu, Haibo; Li, Yang; Liu, Gaofeng; Li, Shujun; Zhang, Shangzhou
2018-03-01
The fatigue behavior of single-lap four-riveted aluminum alloy 7050 joints was investigated by using high-frequency fatigue test and scanning electron microscope (SEM). Stress distributions obtained by finite element (FE) analysis help explain the fatigue performance. The fatigue test results showed that the fatigue lives of the joints depend on cold expansion and applied cyclic loads. FE analysis and fractography indicated that the improved fatigue lives can be attributed to the reduction in maximum stress and evolution of fatigue damage at the critical location. The beneficial effects of strengthening techniques result in tearing ridges or lamellar structure on fracture surface, decrease in fatigue striations spacing, delay of fatigue crack initiation, crack deflection in fatigue crack propagation and plasticity-induced crack closure.
Stress corrosion cracking of titanium alloys
NASA Technical Reports Server (NTRS)
May, R. C.; Beck, F. H.; Fontana, M. G.
1971-01-01
Experiments were conducted to study (1) the basic electrochemical behavior of titanium in acid chloride solutions and (2) the response of the metal to dynamic straining in the same evironment. The aim of this group of experiments was to simulate, as nearly as possible, the actual conditions which exist at the tip of a crack. One of the foremost theories proposed to explain the propagation of stress corrosion cracks is a hydrogen embrittlement theory involving the precipitation of embrittling titanium hydrides inside the metal near the crack tip. An initial survey of the basic electrochemical literature indicated that surface hydrides play a critical role in the electrochemistry of titanium in acid solutions. A comprehensive analysis of the effect of surface films, particularly hydrides, on the electrochemical behavior of titanium in these solution is presented.
NASA Astrophysics Data System (ADS)
Nikulin, S.; Nikitin, A.; Belov, V.; Rozhnov, A.; Turilina, V.; Anikeenko, V.; Khatkevich, V.
2017-07-01
The crack resistances as well as fracture behavior of 20GL steel quenched with a fast-moving water stream and having gradient microstructure and strength are analyzed. Crack resistance tests with quenched and normalized flat rectangular specimens having different cut lengths loaded by three-point bending with acoustic emission measurements have been performed. The critical J-integral has been used as the crack resistance parameter of the material. Quenching with a fast moving water stream leads to gradient (along a specimen wall thickness) strengthening of steel due to highly refined gradient microstructure formation of the troostomartensite type. Quenching with a fast-moving water stream increases crack resistance Jc , of 20GL steel by a factor of ∼ 1.5. The fracture accrues gradually with the load in the normalized specimens while the initiated crack is hindered in the variable ductility layer and further arrested in the more ductile core in the quenched specimens.
Small crack test program for helicopter materials
NASA Technical Reports Server (NTRS)
Annigeri, Bal; Schneider, George
1994-01-01
Crack propagation tests were conducted to determine crack growth behavior in five helicopter materials for surface cracks between 0.005 to 0.020 inches in depth. Constant amplitude tests were conducted at stress ratios R equals 0.1 and 0.5, and emphasis was placed on near threshold data (i.e., 10-8 to 10-6 inches/cycle). Spectrum tests were conducted using a helicopter spectrum. The test specimen was an unnotched tension specimen, and cracks were initiated from a small EDM notch. An optical/video system was used to monitor crack growth. The material for the test specimens was obtained from helicopter part forgings. Testing was conducted at stresses below yield to reflect actual stresses in helicopter parts.
NASA Astrophysics Data System (ADS)
Wang, Peitao; Cai, Meifeng; Ren, Fenhua; Li, Changhong; Yang, Tianhong
2017-07-01
This paper develops a numerical approach to determine the mechanical behavior of discrete fractures network (DFN) models based on digital image processing technique and particle flow code (PFC2D). A series of direct shear tests of jointed rocks were numerically performed to study the effect of normal stress, friction coefficient and joint bond strength on the mechanical behavior of joint rock and evaluate the influence of micro-parameters on the shear properties of jointed rocks using the proposed approach. The complete shear stress-displacement curve of the DFN model under direct shear tests was presented to evaluate the failure processes of jointed rock. The results show that the peak and residual strength are sensitive to normal stress. A higher normal stress has a greater effect on the initiation and propagation of cracks. Additionally, an increase in the bond strength ratio results in an increase in the number of both shear and normal cracks. The friction coefficient was also found to have a significant influence on the shear strength and shear cracks. Increasing in the friction coefficient resulted in the decreasing in the initiation of normal cracks. The unique contribution of this paper is the proposed modeling technique to simulate the mechanical behavior of jointed rock mass based on particle mechanics approaches.
Strength and Microstructure of Ceramics.
1987-11-01
triangular slab. 12-mm edge length and 2-mm thickness. to produce crack 7 mm long. Starter notch length portantly. the strength plateau at small flaw sizes...however. a tapered the starter notch tip. "Pop-in" behavior of this kind is not uncom- geometry was used. width increasing in the direction of ultimate...mon in notched specimens, of course: in such cases the initial crack propagation. The main crack was started at a sawcut notch fracture response can be
Analysis of damaging process and crack propagation
NASA Astrophysics Data System (ADS)
Semenski, D.; Wolf, H.; Božić, Ž.
2010-06-01
Supervising and health monitoring of structures can assess the actual state of existing structures after initial loading or in the state of operation. Structural life management requires the integration of design and analysis, materials behavior and structural testing, as given for several examples. Procedure of survey of structural elements and criteria for their selection must be strongly defined as it is for the offshore gas platforms. Numerical analysis of dynamic loading is shown for the Aeolian vibrations of overhead transmission line conductors. Since the damper’s efficiency strongly depends on its position, the procedure of determining the optimum position of the damper is described. The optical method of caustics is established in isotropic materials for determination of the stress intensity factors (SIFs) of the cracks in deformed structures and is advantageously improved for the application to fiberreinforced composites. A procedure for simulation of crack propagation for multiple cracks was introduced and SIFs have been calculated by using finite element method. Crack growth of a single crack or a periodical array of cracks initiated at the stiffeners in a stiffened panel has been investigated.
Crack Growth Behavior in the Threshold Region for High Cycle Fatigue Loading
NASA Technical Reports Server (NTRS)
Forman, Royce G.; Figert, J.; Beek, J.; Ventura, J.; Martinez, J.; Samonski, F.
2011-01-01
This presentation describes results obtained from a research project conducted at the NASA Johnson Space Center (JSC) that was jointly supported by the FAA Technical Center and JSC. The JSC effort was part of a multi-task FAA program involving several U.S. laboratories and initiated for the purpose of developing enhanced analysis tools to assess damage tolerance of rotorcraft and aircraft propeller systems. The research results to be covered in this presentation include a new understanding of the behavior of fatigue crack growth in the threshold region. This behavior is important for structural life analysis of aircraft propeller systems and certain rotorcraft structural components (e.g., the mast). These components are often designed to not allow fatigue crack propagation to exceed an experimentally determined fatigue crack growth threshold value. During the FAA review meetings for the program, disagreements occurred between the researchers regarding the observed fanning (spread between the da/dN curves of constant R) in the threshold region at low stress ratios, R. Some participants believed that the fanning was a result of the ASTM load shedding test method for threshold testing, and thus did not represent the true characteristics of the material. If the fanning portion of the threshold value is deleted or not included in a life analysis, a significant penalty in the calculated life and design of the component would occur. The crack growth threshold behavior was previously studied and reported by several research investigators in the time period: 1970-1980. Those investigators used electron microscopes to view the crack morphology of the fatigue fracture surfaces. Their results showed that just before reaching threshold, the crack morphology often changed from a striated to a faceted or cleavage-like morphology. This change was reported to have been caused by particular dislocation properties of the material. Based on the results of these early investigations, a program was initiated at JSC to repeat these examinations on a number of aircraft structural alloys that were currently being tested for obtaining fatigue crack growth properties. These new scanning electron microscope (SEM) examinations of the fatigue fracture faces confirmed the change in crack morphology in the threshold crack tip region. In addition, SEM examinations were further performed in the threshold crack-tip region before breaking the specimens open (not done in the earlier published studies). In these examinations, extensive crack forking and even 90-degree crack bifurcations were found to have occurred in the final threshold crack-tip region. The forking and bifurcations caused numerous closure points to occur that prevented full crack closure in the threshold region, and thus were the cause of the fanning at low-R values. Therefore, we have shown that the fanning behavior was caused by intrinsic dislocation properties of the different alloy materials and were not the result of a plastic wake that remains from the load-shedding test phase. Also, to accommodate the use of da/dN data which includes fanning at low R-values, an updated fanning factor term has been developed and will be implemented into the NASGRO fatigue crack growth software. The term can be set to zero if it is desired that the fanning behavior is not be modeled for particular cases, such as when fanning is not a result of the intrinsic properties of a material.
Tokita, Daisuke; Ebihara, Arata; Miyara, Kana; Okiji, Takashi
2017-08-01
This study examined the dynamic fracture behavior of nickel-titanium rotary instruments in torsional or cyclic loading at continuous or reciprocating rotation by means of high-speed digital video imaging. The ProFile instruments (size 30, 0.06 taper; Dentsply Maillefer, Ballaigues, Switzerland) were categorized into 4 groups (n = 7 in each group) as follows: torsional/continuous (TC), torsional/reciprocating (TR), cyclic/continuous (CC), and cyclic/reciprocating (CR). Torsional loading was performed by rotating the instruments by holding the tip with a vise. For cyclic loading, a custom-made device with a 38° curvature was used. Dynamic fracture behavior was observed with a high-speed camera. The time to fracture was recorded, and the fractured surface was examined with scanning electron microscopy. The TC group initially exhibited necking of the file followed by the development of an initial crack line. The TR group demonstrated opening and closing of a crack according to its rotation in the cutting and noncutting directions, respectively. The CC group separated without any detectable signs of deformation. In the CR group, initial crack formation was recognized in 5 of 7 samples. The reciprocating rotation exhibited a longer time to fracture in both torsional and cyclic fatigue testing (P < .05). The scanning electron microscopic images showed a severely deformed surface in the TR group. The dynamic fracture behavior of NiTi rotary instruments, as visualized with high-speed digital video imaging, varied between the different modes of rotation and different fatigue testing. Reciprocating rotation induced a slower crack propagation and conferred higher fatigue resistance than continuous rotation in both torsional and cyclic loads. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Yan-Hua; Yang, Sheng-Qi; Zhao, Jian
2016-12-01
A three-dimensional particle flow code (PFC3D) was used for a systematic numerical simulation of the strength failure and cracking behavior of rock-like material specimens containing two unparallel fissures under conventional triaxial compression. The micro-parameters of the parallel bond model were first calibrated using the laboratory results of intact specimens and then validated from the experimental results of pre-fissured specimens under triaxial compression. Numerically simulated stress-strain curves, strength and deformation parameters and macro-failure modes of pre-fissured specimens were all in good agreement with the experimental results. The relationship between stress and the micro-crack numbers was summarized. Crack initiation, propagation and coalescence process of pre-fissured specimens were analyzed in detail. Finally, horizontal and vertical cross sections of numerical specimens were derived from PFC3D. A detailed analysis to reveal the internal damage behavior of rock under triaxial compression was carried out. The experimental and simulated results are expected to improve the understanding of the strength failure and cracking behavior of fractured rock under triaxial compression.
Fracture behavior of human molars.
Keown, Amanda J; Lee, James J-W; Bush, Mark B
2012-12-01
Despite the durability of human teeth, which are able to withstand repeated loading while maintaining form and function, they are still susceptible to fracture. We focus here on longitudinal fracture in molar teeth-channel-like cracks that run along the enamel sidewall of the tooth between the gum line (cemento-enamel junction-CEJ) and the occlusal surface. Such fractures can often be painful and necessitate costly restorative work. The following study describes fracture experiments made on molar teeth of humans in which the molars are placed under axial compressive load using a hard indenting plate in order to induce longitudinal cracks in the enamel. Observed damage modes include fractures originating in the occlusal region ('radial-median cracks') and fractures emanating from the margin of the enamel in the region of the CEJ ('margin cracks'), as well as 'spalling' of enamel (the linking of longitudinal cracks). The loading conditions that govern fracture behavior in enamel are reported and observations made of the evolution of fracture as the load is increased. Relatively low loads were required to induce observable crack initiation-approximately 100 N for radial-median cracks and 200 N for margin cracks-both of which are less than the reported maximum biting force on a single molar tooth of several hundred Newtons. Unstable crack growth was observed to take place soon after and occurred at loads lower than those calculated by the current fracture models. Multiple cracks were observed on a single cusp, their interactions influencing crack growth behavior. The majority of the teeth tested in this study were noted to exhibit margin cracks prior to compression testing, which were apparently formed during the functional lifetime of the tooth. Such teeth were still able to withstand additional loading prior to catastrophic fracture, highlighting the remarkable damage containment capabilities of the natural tooth structure.
Creep Crack Initiation and Growth Behavior for Ni-Base Superalloys
NASA Astrophysics Data System (ADS)
Nagumo, Yoshiko; Yokobori, A. Toshimitsu, Jr.; Sugiura, Ryuji; Ozeki, Go; Matsuzaki, Takashi
The structural components which are used in high temperature gas turbines have various shapes which may cause the notch effect. Moreover, the site of stress concentration might have the heterogeneous microstructural distribution. Therefore, it is necessary to clarify the creep fracture mechanism for these materials in order to predict the life of creep fracture with high degree of accuracy. In this study, the creep crack growth tests were performed using in-situ observational testing machine with microscope to observe the creep damage formation and creep crack growth behavior. The materials used are polycrystalline Ni-base superalloy IN100 and directionally solidified Ni-base superalloy CM247LC which were developed for jet engine turbine blades and gas turbine blades in electric power plants, respectively. The microstructural observation of the test specimens was also conducted using FE-SEM/EBSD. Additionally, the analyses of two-dimensional elastic-plastic creep finite element using designed methods were conducted to understand the effect of microstructural distribution on creep damage formation. The experimental and analytical results showed that it is important to determine the creep crack initiation and early crack growth to predict the life of creep fracture and it is indicated that the highly accurate prediction of creep fracture life could be realized by measuring notch opening displacement proposed as the RNOD characteristic.
Mechanisms by Which Humidity Alters Ductility
1982-06-01
Example Results and Discussion.,........,,,,,,,, .... 10 2.2 Effects of Ambient Water Vapor and Internal Hydrogen op Surface Microplasticity and Crack...Localized Microplastic Deformation of the Surface of Al 2219-T851,,. ,.. ... ,,. ... ,,* ,, .. ..... .. .... 55 4.2 Effects of Ambient Humidity and Internal...Hydrogen on Surface Local Microplastic Behavior ..... 00. ,00..... ..06...... 56 4.3 Relationship of Localized Plasticity to Crack Initiation and
NASA Astrophysics Data System (ADS)
Meric de Bellefon, G.; van Duysen, J. C.
2018-05-01
A recent finite-element method (FEM)-based study from the present authors quantified the effect of elastic anisotropy of grains on stress intensification at potential intergranular stress corrosion cracking (IGSCC) initiation sites in austenitic stainless steels. In particular, it showed that the auxetic behavior of grains (negative Poisson's ratio) in some directions plays a very important role in IGSCC initiation, since it can induce local stress intensification factors of about 1.6. A similar effect is expected for other fcc alloys such as Ni-based alloys. The present article confirms those results and paves the way to the definition of an IGSCC susceptibility index by identifying grain configurations that are the most favorable for crack initiation. The index will rely on the probability to get those configurations on surface of specimens.
Crack Cocaine Injection Practices and HIV Risk: Findings From New York and Bridgeport
Lankenau, Stephen E.; Clatts, Michael C.; Goldsamt, Lloyd A.; Welle, Dorinda L.
2007-01-01
This article examines the behavioral practices and health risks associated with preparing crack cocaine for injection. Using an ethno-epidemiological approach, injection drug users (n=38) were recruited between 1999 and 2000 from public settings in New York City and Bridgeport, Connecticut and responded to a semistructured interview focusing on crack injection initiation and their most recent crack injection. Study findings indicate that methods of preparing crack for injection were impacted by a transforming agent, heat applied to the “cooker,” heroin use, age of the injector, and geographic location of the injector. The findings suggest that crack injectors use a variety of methods to prepare crack, which may carry different risks for the transmission of bloodborne pathogens. In particular, crack injection may be an important factor in the current HIV epidemic. PMID:18079990
Fracture Test Methods for Plastically Responding COPV Liners
NASA Technical Reports Server (NTRS)
Dawicke, David S.; Lewis, Joseph C.
2009-01-01
An experimental procedure for evaluating the validity of using uniaxial tests to provide a conservative bound on the fatigue crack growth rate behavior small cracks in bi-axially loaded Composite Overwrapped Pressure Vessel (COPV) liners is described. The experimental procedure included the use of a laser notch to quickly generate small surface fatigue cracks with the desired size and aspect ratios. An out-of-plane constraint system was designed to allow fully reversed, fully plastic testing of thin sheet uniaxial coupons. Finally, a method was developed to determine to initiate small cracks in the liner of COPVs.
Life prediction and constitutive behavior
NASA Technical Reports Server (NTRS)
Halford, G. R.
1983-01-01
One of the primary drivers that prompted the initiation of the hot section technology (HOST) program was the recognized need for improved cyclic durability of costly hot section components. All too frequently, fatigue in one form or another was directly responsible for the less than desired durability, and prospects for the future weren't going to improve unless a significant effort was mounted to increase our knowledge and understanding of the elements governing cyclic crack initiation and propagation lifetime. Certainly one of the important factors is the ability to perform accurate structural stress-strain analyses on a routine basis to determine the magnitudes of the localized stresses and strains since it is these localized conditions that govern the initiation and crack growth processes. Developing the ability to more accurately predict crack initiation lifetimes and cyclic crack growth rates for the complex loading conditions found in turbine engine hot sections is of course the ultimate goal of the life prediction research efforts. It has been found convenient to divide the research efforts into those dealing with nominally isotropic and anisotropic alloys; the latter for application to directionally solidified and single crystal turbine blades.
1990-01-01
considerable microplasticity associated with cracking. applications, Some of this deformation may be involved in initiating the dealloying appli tan or...brittle fracture, but is Lea and Hondros 3 have defined susceptibility in terms of a fraglt accompanied by microplastic behavior in the crack-tip...stress admonished us to look for microplasticity in the SEM at 10,OOOX, field around a dislocation can be reduced by an atmosphere, the much as Lynch has
NASA Astrophysics Data System (ADS)
Lou, Xiaoyuan; Andresen, Peter L.; Rebak, Raul B.
2018-02-01
Intergranular and intragranular Si and Mn rich oxide inclusions are present in laser additive manufactured austenitic stainless steel. The uniform oxide dispersions in additive manufactured material promoted early initiation of microvoids and reduced its impact toughness relative to powder metallurgy (hot isostatic pressing) and wrought materials. For stress corrosion cracking in high temperature water, the silica inclusions along the grain boundaries preferentially dissolved and appeared to accelerate oxidation and caused extensive crack branching.
NASA Technical Reports Server (NTRS)
Pettit, D. E.; Hoeppner, D. W.
1972-01-01
A program was conducted to determine the fatigue-crack propagation behavior of parent and welded 2219-T87 aluminum alloy sheet under controlled cyclic stress conditions in room temperature air and 300 F air. Specimens possessing an initial surface defect of controlled dimensions were cycled under constant load amplitude until the propagating fatigue crack penetrated the back surface of the specimen. A series of precracked specimens were prepared to determine optimum penetrant, X-ray, ultrasonic, and eddy current nondestructive inspection procedures.
Fatigue life and crack growth prediction methodology
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Phillips, E. P.; Everett, R. A., Jr.
1993-01-01
The capabilities of a plasticity-induced crack-closure model and life-prediction code to predict fatigue crack growth and fatigue lives of metallic materials are reviewed. Crack-tip constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective-stress-intensity factor range (delta(K(sub eff))) under constant-amplitude loading. Some modifications to the delta(K(sub eff))-rate relations were needed in the near threshold regime to fit small-crack growth rate behavior and endurance limits. The model was then used to calculate small- and large-crack growth rates, and in some cases total fatigue lives, for several aluminum and titanium alloys under constant-amplitude, variable-amplitude, and spectrum loading. Fatigue lives were calculated using the crack growth relations and microstructural features like those that initiated cracks. Results from the tests and analyses agreed well.
Low cycle fatigue behavior of a ferritic reactor pressure vessel steel
NASA Astrophysics Data System (ADS)
Sarkar, Apu; Kumawat, Bhupendra K.; Chakravartty, J. K.
2015-07-01
The cyclic stress-strain response and the low cycle fatigue (LCF) behavior of 20MnMoNi55 pressure vessel steel were studied. Tensile strength and LCF properties were examined at room temperature (RT) using specimens cut from rolling direction of a rolled block. The fully reversed strain-controlled LCF tests were conducted at a constant total strain rate with different axial strain amplitude levels. The cyclic strain-stress relationships and the strain-life relationships were obtained through the test results, and related LCF parameters of the steel were calculated. The studied steel exhibits cyclic softening behavior. Furthermore, analysis of stabilized hysteresis loops showed that the steel exhibits non-Masing behavior. Complementary scanning electron microscopy examinations were also carried out on fracture surfaces to reveal dominant damage mechanisms during crack initiation, propagation and fracture. Multiple crack initiation sites were observed on the fracture surface. The investigated LCF behavior can provide reference for pressure vessel life assessment and fracture mechanisms analysis.
Comparison of Crack Initiation, Propagation and Coalescence Behavior of Concrete and Rock Materials
NASA Astrophysics Data System (ADS)
Zengin, Enes; Abiddin Erguler, Zeynal
2017-04-01
There are many previously studies carried out to identify crack initiation, propagation and coalescence behavior of different type of rocks. Most of these studies aimed to understand and predict the probable instabilities on different engineering structures such as mining galleries or tunnels. For this purpose, in these studies relatively smaller natural rock and synthetic rock-like models were prepared and then the required laboratory tests were performed to obtain their strength parameters. By using results provided from these models, researchers predicted the rock mass behavior under different conditions. However, in the most of these studies, rock materials and models were considered as contains none or very few discontinuities and structural flaws. It is well known that rock masses naturally are extremely complex with respect to their discontinuities conditions and thus it is sometimes very difficult to understand and model their physical and mechanical behavior. In addition, some vuggy rock materials such as basalts and limestones also contain voids and gaps having various geometric properties. Providing that the failure behavior of these type of rocks controlled by the crack initiation, propagation and coalescence formed from their natural voids and gaps, the effect of these voids and gaps over failure behavior of rocks should be investigated. Intact rocks are generally preferred due to relatively easy side of their homogeneous characteristics in numerical modelling phases. However, it is very hard to extract intact samples from vuggy rocks because of their complex pore sizes and distributions. In this study, the feasibility of concrete samples to model and mimic the failure behavior vuggy rocks was investigated. For this purpose, concrete samples were prepared at a mixture of %65 cement dust and %35 water and their physical and mechanical properties were determined by laboratory experiments. The obtained physical and mechanical properties were used to constitute numerical models, and then uniaxial compressive strength (UCS) tests were performed on these models by using a commercial software called as Particle Flow Code (PFC2D). When the crack behavior of concrete samples obtained from both laboratory tests and numerical models are compared with the results of previous studies, a significant similarity was found. As a result, due to the observed similarity crack behavior between concretes and rocks, it can be concluded that intact concrete samples can be used for modelling purposes to understand the effect of voids and gaps on failure characteristics of vuggy rocks.
Experimental and Numerical Analysis of Fracture in 41Cr4 Steel - Issues of the Stationary Cracks
NASA Astrophysics Data System (ADS)
Graba, M.
2018-02-01
This paper analyzes the process of fracture in 41Cr4 steel on the basis of experimental and numerical data obtained for non-propagating cracks. The author's previous and latest experimental results were used to determine the apparent crack initiation moment and fracture toughness for the material under plane strain conditions. Numerical simulations were carried out to assess changes in the J-integral, the crack tip opening displacement, the size of the plastic region and the distribution of stresses around the crack tip. A complex numerical analysis based on the true stress-strain curve was performed to determine the behavior of 41Cr4 steel under increasing external loads.
Fracture toughness of the nickel-alumina laminates by digital image-correlation technique
NASA Astrophysics Data System (ADS)
Mekky, Waleed
The purpose of this work is to implement the digital image correlation technique (DIC) in composite laminate fracture testing. The latter involves measuring the crack opening displacement (COD) during stable crack propagation and characterizing the strain development in a constrained nickel layer under applied loading. The major challenge to measure the COD of alternated metal/ceramic layers is the elastic-mismatch effect. This leads to oscillating COD measurement. Smoothing the result with built-in modules of commercial software leads to a loss of data accuracy. A least-squares fitting routine for the data output gave acceptable COD profiles. The behavior of a single Ni ligament sandwiched between two Al2O3 layers was determined for two Ni thicknesses (0.125 and 0.25mm). Modeling of the behavior via a modified Bridgman approach for rectangular cross section samples, proved limited as different mechanisms are operating. Nevertheless, the behavior is however captured to a point, but the model underestimates the results vis a vis experimental ones. The fracture-resistance curves for Nickel/Alumina laminates were developed experimentally and modeled via LEFM using the weight function approach and utilizing single-ligament-, and COD-, data. The crack-tip toughness was found to increase with Ni layer thickness due to crack-tip-shielding. The crack-initiation-toughness was estimated from the stress field and the crack-opening-displacement of the main crack.
Study on Corrosion-induced Crack Initiation and Propagation of Sustaining Loaded RCbeams
NASA Astrophysics Data System (ADS)
Zhong, X. P.; Li, Y.; Yuan, C. B.; Yang, Z.; Chen, Y.
2018-05-01
For 13 pieces of reinforced concrete beams with HRB500 steel bars under long-term sustained loads, at time of corrosion-induced initial crack of concrete, and corrosion-induced crack widths of 0.3mm and 1mm, corrosion of steel bars and time-varying behavior of corrosion-induced crack width were studied by the ECWD (Electro-osmosis - constant Current – Wet and Dry cycles) accelerated corrosion method. The results show that when cover thickness was between 30 and 50mm,corrosion rates of steel bars were between 0.8% and 1.7% at time of corrosion-induced crack, and decreased with increasing concrete cover thickness; when corrosion-induced crack width was 0.3mm, the corrosion rate decreased with increasing steel bar diameter, and increased with increasing cover thickness; its corrosion rate varied between 0.98% and 4.54%; when corrosion-induced crack width reached 1mm, corrosion rate of steel bars was between 4% and 4.5%; when corrosion rate of steel bars was within 5%, the maximum and average corrosion-induced crack and corrosion rate of steel bars had a good linear relationship. The calculation model predicting the maximum and average width of corrosion-induced crack is given in this paper.
Influence of High Cycle Thermal Loads on Thermal Fatigue Behavior of Thick Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
1997-01-01
Thick thermal barrier coating systems in a diesel engine experience severe thermal Low Cycle Fatigue (LCF) and High Cycle Fatigue (HCF) during engine operation. In the present study, the mechanisms of fatigue crack initiation and propagation, as well as of coating failure, under thermal loads which simulate engine conditions, are investigated using a high power CO2 laser. In general, surface vertical cracks initiate early and grow continuously under LCF and HCF cyclic stresses. It is found that in the absence of interfacial oxidation, the failure associated with LCF is closely related to coating sintering and creep at high temperatures, which induce tensile stresses in the coating after cooling. Experiments show that the HCF cycles are very damaging to the coating systems. The combined LCF and HCF tests produced more severe coating surface cracking, microspallation and accelerated crack growth, as compared to the pure LCF test. It is suggested that the HCF component cannot only accelerate the surface crack initiation, but also interact with the LCF by contributing to the crack growth at high temperatures. The increased LCF stress intensity at the crack tip due to the HCF component enhances the subsequent LCF crack growth. Conversely, since a faster HCF crack growth rate will be expected with lower effective compressive stresses in the coating, the LCF cycles also facilitate the HCF crack growth at high temperatures by stress relaxation process. A surface wedging model has been proposed to account for the HCF crack growth in the coating system. This mechanism predicts that HCF damage effect increases with increasing temperature swing, the thermal expansion coefficient and the elastic modulus of the ceramic coating, as well as the HCF interacting depth. A good agreement has been found between the analysis and experimental evidence.
High Cycle Fatigue (HCF) Science and Technology Program 2000 Annual Report
2000-01-01
in an area of deep compressive stress. • Results of industry and government testing have indicated the ability to stop crack initiation and...fatigue crack nucleation process with the cyclic deformation behavior of the alloy for different microstructures and crystallographic texture ... texture combinations investigated, bimodal fine uni-rolled and lamellar cross-rolled displayed superior fatigue properties to the remaining four
Crack Initiation and Growth Behavior of Cold-Sprayed Ni Particles on IN718 Alloy
NASA Astrophysics Data System (ADS)
Cavaliere, P.; Silvello, A.
2017-04-01
Cold spray processing parameters, governing particle velocity and impact energy, are analyzed in the present paper for pure Ni sprayed on IN718 substrates. Finite element modeling (FEM) was used to calculate the particle impact velocity and temperature as a function of gas temperature and pressure and particle density and dimensions. Experimental evidence underlines the possibility of performing repairing through cold spray thanks to the good level of adhesion achievable by employing optimal combinations of materials and spray processing parameters. In the present paper, the potential repairing of cracked superalloys sheets, by employing cold spray technology, is presented. 30° surface V-notched IN718 panels have been repaired by using pure Ni cold-sprayed powders. The bending behavior of the repaired sheets was analyzed by FEM and mechanical testing in order to compare the properties with those belonging to the unrepaired panels. Simulations and mechanical results showed a reduction in the stress intensity factor, a modification of the crack initiation site and a crack retardation in the repaired structures if compared with the unrepaired ones. The K factor was quantified; the resistance of repaired panels was increased of more than eight times in the case of repairing with Ni cold spray particles. Geometrical and mechanical properties of the coating-substrate interfaces, such as adhesion strength and residual stresses influencing the coatings behavior, were largely analyzed.
NASA Astrophysics Data System (ADS)
Bykov, A. A.; Matveenko, B. P.; Serovaev, G. S.; Shardakov, I. N.; Shestakov, A. P.
2015-03-01
The contemporary construction industry is based on the use of reinforced concrete structures, but emergency situations resulting in fracture can arise in their exploitation. In a majority of cases, reinforced concrete fracture is realized as the process of crack formation and development. As a rule, the appearance of the first cracks does not lead to the complete loss of the carrying capacity but is a fracture precursor. One method for ensuring the safe operation of building structures is based on crack initiation monitoring. A vibration method for the monitoring of reinforced concrete structures is justified in this paper. An example of a reinforced concrete beam is used to consider all stages related to the analysis of the behavior of natural frequencies in the development of a crack-shaped defect and the use of the obtained numerical results for the vibration test method. The efficiency of the method is illustrated by the results of modeling of the physical part of the method related to the analysis of the natural frequency evolution as a response to the impact action in the crack development process.
Zhan, Yijian; Meschke, Günther
2017-07-08
The effective analysis of the nonlinear behavior of cement-based engineering structures not only demands physically-reliable models, but also computationally-efficient algorithms. Based on a continuum interface element formulation that is suitable to capture complex cracking phenomena in concrete materials and structures, an adaptive mesh processing technique is proposed for computational simulations of plain and fiber-reinforced concrete structures to progressively disintegrate the initial finite element mesh and to add degenerated solid elements into the interfacial gaps. In comparison with the implementation where the entire mesh is processed prior to the computation, the proposed adaptive cracking model allows simulating the failure behavior of plain and fiber-reinforced concrete structures with remarkably reduced computational expense.
Zhan, Yijian
2017-01-01
The effective analysis of the nonlinear behavior of cement-based engineering structures not only demands physically-reliable models, but also computationally-efficient algorithms. Based on a continuum interface element formulation that is suitable to capture complex cracking phenomena in concrete materials and structures, an adaptive mesh processing technique is proposed for computational simulations of plain and fiber-reinforced concrete structures to progressively disintegrate the initial finite element mesh and to add degenerated solid elements into the interfacial gaps. In comparison with the implementation where the entire mesh is processed prior to the computation, the proposed adaptive cracking model allows simulating the failure behavior of plain and fiber-reinforced concrete structures with remarkably reduced computational expense. PMID:28773130
Cheung, Gary S P; Shen, Ya; Darvell, Brian W
2007-10-01
The purpose of this study was to compare the low-cycle fatigue (LCF) behavior of electropolished and nonelectropolished nickel-titanium (NiTi) instruments of the same design in hypochlorite. Forty-five electropolished and 62 nonelectropolished NiTi engine files were subjected to rotational bending at various curvatures in 1.2% hypochlorite solution. Number of revolutions to failure, crack-initiation sites, extent of slow crack extension into the fracture cross-section, and surface-strain amplitude were noted. A linear relationship was found between LCF life and surface-strain amplitude for both groups, with no discernible difference between the two (p > 0.05). No electropolished instrument showed more than one crack origin, significantly fewer than for the nonelectropolished instruments (p < 0.05). The square root of crack extension and strain amplitude were inversely related. Although surface smoothness is enhanced by electropolishing, this did not protect the instrument from LCF failure.
Fracture Behavior of Ceramics Under Displacement Controlled Loading
NASA Technical Reports Server (NTRS)
Calomino, Anthony; Brewer, David; Ghosn, Louis
1994-01-01
A Mode I fracture specimen and loading method has been developed which permits the observation of stable crack extension in monolithic and in situ toughened ceramics. The developed technique was used to conduct room temperature tests on commercial grade alumina (Coors' AD-995) and silicon nitride (Norton NC-132). The results of these tests are reported. Crack growth for the alumina remained subcritical throughout testing revealing possible effects of environmental stress corrosion. The crack growth resistance curve for the alumina is presented. The silicon nitride tests displayed a series of stable (slow) crack growth segments interrupted by dynamic (rapid) crack extension. Crack initiation and arrest stress intensity factors, K(sub Ic) and K(sub Ia), for silicon nitride are reported. The evolution of the specimen design through testing is briefly discussed.
NASA Astrophysics Data System (ADS)
Texier, Damien; Gómez, Ana Casanova; Pierret, Stéphane; Franchet, Jean-Michel; Pollock, Tresa M.; Villechaise, Patrick; Cormier, Jonathan
2016-03-01
The low-cycle fatigue behavior of two direct-aged versions of the nickel-based superalloy Inconel 718 (IN718DA) was examined in the low-strain amplitude regime at intermediate temperature. High variability in fatigue life was observed, and abnormally short lifetimes were systematically observed to be due to crack initiation at (sub)-surface non-metallic inclusions. However, crack initiation within (sub)-surface non-metallic inclusions did not necessarily lead to short fatigue life. The macro- to micro-mechanical mechanisms of deformation and damage have been examined by means of detailed microstructural characterization, tensile and fatigue mechanical tests, and in situ tensile testing. The initial stages of crack micro-propagation from cracked non-metallic particles into the surrounding metallic matrix occupies a large fraction of the fatigue life and requires extensive local plastic straining in the matrix adjacent to the cracked inclusions. Differences in microstructure that influence local plastic straining, i.e., the δ-phase content and the grain size, coupled with the presence of non-metallic inclusions at the high end of the size distribution contribute strongly to the fatigue life variability.
Modeling Micro-cracking Behavior of Bukit Timah Granite Using Grain-Based Model
NASA Astrophysics Data System (ADS)
Peng, Jun; Wong, Louis Ngai Yuen; Teh, Cee Ing; Li, Zhihuan
2018-01-01
Rock strength and deformation behavior has long been recognized to be closely related to the microstructure and the associated micro-cracking process. A good understanding of crack initiation and coalescence mechanisms will thus allow us to account for the variation of rock strength and deformation properties from a microscopic view. This paper numerically investigates the micro-cracking behavior of Bukit Timah granite by using a grain-based modeling approach. First, the principles of grain-based model adopted in the two-dimensional Particle Flow Code and the numerical model generation procedure are reviewed. The micro-parameters of the numerical model are then calibrated to match the macro-properties of the rock obtained from tension and compression tests in the laboratory. The simulated rock properties are in good agreement with the laboratory test results with the errors less than ±6%. Finally, the calibrated model is used to study the micro-cracking behavior and the failure modes of the rock under direct tension and under compression with different confining pressures. The results reveal that when the numerical model is loaded in direct tension, only grain boundary tensile cracks are generated, and the simulated macroscopic fracture agrees well with the results obtained in laboratory tests. When the model is loaded in compression, the ratio of grain boundary tensile cracks to grain boundary shear cracks decreases with the increase in confining pressure. In other words, the results show that as the confining pressure increases, the failure mechanism changes from tension to shear. The simulated failure mode of the model changes from splitting to shear as the applied confining pressure gradually increases, which is comparable with that observed in laboratory tests. The grain-based model used in this study thus appears promising for further investigation of microscopic and macroscopic behavior of crystalline rocks under different loading conditions.
A statistical model of brittle fracture by transgranular cleavage
NASA Astrophysics Data System (ADS)
Lin, Tsann; Evans, A. G.; Ritchie, R. O.
A MODEL for brittle fracture by transgranular cleavage cracking is presented based on the application of weakest link statistics to the critical microstructural fracture mechanisms. The model permits prediction of the macroscopic fracture toughness, KI c, in single phase microstructures containing a known distribution of particles, and defines the critical distance from the crack tip at which the initial cracking event is most probable. The model is developed for unstable fracture ahead of a sharp crack considering both linear elastic and nonlinear elastic ("elastic/plastic") crack tip stress fields. Predictions are evaluated by comparison with experimental results on the low temperature flow and fracture behavior of a low carbon mild steel with a simple ferrite/grain boundary carbide microstructure.
2011-03-01
Hall. Fatigue crack initiation in alpha-beta titanium alloys, International Journal of Fatigue, 31 (Suppl. 1), (1997) S23–S37. [ 4 ] G. Lutjering...Power Research Institute - October 1983. [ 6 ] F. Larson, A. Zarkades. Properties of Textured Titanium Alloys, MCIC Report - MCIC·74- 20 – Metals and...Figure 3 and 4 . Table II. The cycle count and relative rankings of fatigue crack growth rates measured from the cracks shown in Figure 5 and 6
A computer program for cyclic plasticity and structural fatigue analysis
NASA Technical Reports Server (NTRS)
Kalev, I.
1980-01-01
A computerized tool for the analysis of time independent cyclic plasticity structural response, life to crack initiation prediction, and crack growth rate prediction for metallic materials is described. Three analytical items are combined: the finite element method with its associated numerical techniques for idealization of the structural component, cyclic plasticity models for idealization of the material behavior, and damage accumulation criteria for the fatigue failure.
The effect of microstructure on the tensile and fatigue behavior of Ti-22Al-23Nb in air and vacuum
NASA Astrophysics Data System (ADS)
Luetjering, Stephanie
Titanium aluminide alloys containing the ordered orthorhombic (O) phase, based on Ti2AlNb, exhibit high specific strengths at elevated temperature along with good room temperature tensile ductility and fracture toughness values. They are thus considered as potential materials for aerospace applications both in their monolithic form and as matrices in metal matrix composites. Microstructure/property relationships have been studied to a great extend with regard to tensile and creep properties. However, only little is known in the key areas of fatigue crack initiation, fatigue crack propagation and fatigue life. The main objective of this work therefore is to get a comprehensive understanding of the effects of microstructural parameters (such as volume fraction of the individual phases, their size and distribution) on the cyclic properties of O-based titanium aluminides. Furthermore, the performance of these alloys in aggressive environments, a critical issue for this alloy class, is being addressed. Tensile, isothermal fatigue, and fatigue crack growth (FCG) tests were conducted at 20°C and 540°C both in lab air and vacuum (pressure ≤ 1 x 10-6 torr) on three microstructural conditions of a representative O-based titanium alloy, Ti-22Al-23Nb. Results indicate a strong effect of microstructure on tensile and FCG properties, whereas only a slight influence of microstructure on the fatigue life is evident. The O phase contributes mainly to the material's yield stress. The tensile elongation is predominantly influenced by the beta phase volume fraction. The observed effect of microstructure on the FCG behavior is attributed to crack closure, crack front geometry and crystallographic texture. Environmental effects on the fatigue life are pronounced at elevated temperature and high applied stress amplitudes only. These conditions lead to premature crack initiation at the specimen's surface for testing in air, whereas testing in vacuum results in subsurface crack nucleation and an extended fatigue life of about two orders of magnitude. The FCG behavior is influenced by the environment at both 20°C and 540°C, proposing fatigue crack growth mechanisms enhanced by hydrogen embrittlement.
Analytical Methodology for Predicting the Onset of Widespread Fatigue Damage in Fuselage Structure
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Newman, James C., Jr.; Piascik, Robert S.; Starnes, James H., Jr.
1996-01-01
NASA has developed a comprehensive analytical methodology for predicting the onset of widespread fatigue damage in fuselage structure. The determination of the number of flights and operational hours of aircraft service life that are related to the onset of widespread fatigue damage includes analyses for crack initiation, fatigue crack growth, and residual strength. Therefore, the computational capability required to predict analytically the onset of widespread fatigue damage must be able to represent a wide range of crack sizes from the material (microscale) level to the global structural-scale level. NASA studies indicate that the fatigue crack behavior in aircraft structure can be represented conveniently by the following three analysis scales: small three-dimensional cracks at the microscale level, through-the-thickness two-dimensional cracks at the local structural level, and long cracks at the global structural level. The computational requirements for each of these three analysis scales are described in this paper.
NASA Technical Reports Server (NTRS)
Covey, Steven J.
1993-01-01
Notched unidirectional SCS-6/Ti-15-3 composite of three different fiber volume fractions (vf = 0.15, 0.37, and 0.41) was investigated for various room temperature microstructural and material properties including: fatigue crack initiation, fatigue crack growth, and fracture toughness. While the matrix hardness is similar for all fiber volume fractions, the fiber/matrix interfacial shear strength and matrix residual stress increases with fiber volume fraction. The composite fatigue crack initiation stress is shown to be matrix controlled and occurs when the net maximum matrix stress approaches the endurance limit stress of the matrix. A model is presented which includes residual stresses and presents the composite initiation stress as a function of fiber volume fraction. This model predicts a maximum composite initiation stress at vf approximately 0.15 which agrees with the experimental data. The applied composite stress levels were increased as necessary for continued crack growth. The applied Delta(K) values at crack arrest increase with fiber volume fraction by an amount better approximated using an energy based formulation rather than when scaled linear with modulus. After crack arrest, the crack growth rate exponents for vf37 and vf41 were much lower and toughness much higher, when compared to the unreinforced matrix, because of the bridged region which parades with the propagating fatigue crack. However, the vf15 material exhibited a higher crack growth rate exponent and lower toughness than the unreinforced matrix because once the bridged fibers nearest the crack mouth broke, the stress redistribution broke all bridged fibers, leaving an unbridged crack. Degraded, unbridged behavior is modeled using the residual stress state in the matrix ahead of the crack tip. Plastic zone sizes were directly measured using a metallographic technique and allow prediction of an effective matrix stress intensity which agrees with the fiber pressure model if residual stresses are considered. The sophisticated macro/micro finite element models of the 0.15 and 0.37 fiber volume fractions presented show good agreement with experimental data and the fiber pressure model when an estimated effective fiber/matrix debond length is used.
NASA Astrophysics Data System (ADS)
Smith, E. F.; Duquette, D. J.
1986-02-01
Fatigue experiments were conducted on polycrystalline and monocrystalline samples of a high purity Al, 5.5 wt pct Zn, 2.5 wt pct Mg, 1.5 wt pct Cu alloy in the peak-hardened heat treatment condition. These experiments were conducted in dry laboratory air and in 0.5 N NaCl solutions at the corrosion potential and at applied potentials cathodic to the corrosion potential. It has been shown that saline solutions severely reduce the fatigue resistance of the alloy, resulting in considerable amounts of intergranular crack initiation and propagation under freely corroding conditions for polycrystalline samples. Applied cathodic potentials resulted in still larger decreases in fatigue resistance and, for poly crystals, increases in the degree of transgranular crack initiation and propagation. Increasing amounts of intergranular cracking were observed when applied cyclic stresses were reduced (longer test times). The characteristics of cracking, combined with results obtained on tensile tests of deformed and hydrogen charged samples, suggest that environmental cracking of these alloys is associated with a form of hydrogen embrittlement of the process zones of growing cracks. Further, it is suggested that stress corrosion cracking and corrosion fatigue of these alloys occurs by essentially the same mechanism, but that the often observed transgranular cracking under cyclic loading conditions occurs due to enhanced hydrogen transport and/or concentrations associated with mobile dislocations at growing crack tips.
Multicracking and Magnetic Behavior of Ni80Fe20 Nanowires Deposited onto a Polymer Substrate.
Merabtine, Skander; Zighem, Fatih; Faurie, Damien; Garcia-Sanchez, Alexis; Lupo, Pierpaolo; Adeyeye, Adekunle O
2018-05-09
This work presents the effect of large strains (up to 20%) on the behavior of magnetic nanowires (Ni 80 Fe 20 ) deposited on a Kapton substrate. The multicracking phenomenon was followed by in situ tensile tests combined with atomic force microscopy measurements. These measurements show, on the one hand, a delay in crack initiation relative to the nonpatterned thin film and, on the other hand, a saturation of the length of the nanowire fragments. The latter makes it possible to retain the initial magnetic anisotropy measured after deformation by ferromagnetic resonance. In addition, the ferromagnetic resonance line profile (intensity, width) is minimally affected by the numerous cracks, which is explained by the small variation in magnetic anistropy and the low magnetostriction coefficient of Ni 80 Fe 20 .
In Situ SEM Observations of Fracture Behavior of Laser Welded-Brazed Al/Steel Dissimilar Joint
NASA Astrophysics Data System (ADS)
Xia, Hongbo; Tan, Caiwang; Li, Liqun; Ma, Ninshu
2018-03-01
Laser welding-brazing of 6061-T6 aluminum alloy to DP590 dual-phase steel with Al-Si12 flux-cored filler wire was performed. The microstructure at the brazing interface was characterized. Fracture behavior was observed and analyzed by in situ scanning electron microscope. The microstructure of the brazing interface showed that inhomogeneous intermetallic compounds formed along the thickness direction, which had a great influence on the crack initiation and propagation. In the top region, the reaction layer at the interface consisted of scattered needle-like Fe(Al,Si)3 and serration-shaped Fe1.8Al7.2Si. In the middle region, the compound at the interface was only serration-shaped Fe1.8Al7.2Si. In the bottom region, the interface was composed of lamellar-shaped Fe1.8Al7.2Si. The cracks were first detected in the bottom region and propagated from bottom to top along the interface. At the bottom region, the crack initiated and propagated along the Fe1.8Al7.2Si/weld seam interface during the in situ tensile test. When the crack propagated into the middle region, a deflection of crack propagation appeared. The crack first propagated along the steel/Fe1.8Al7.2Si interface and then moved along the weld seam until the failure of the joint. The tensile strength of the joint was 146.5 MPa. Some micro-cracks were detected at Fe(Al,Si)3 and the interface between the steel substrate and Fe(Al,Si)3 in the top region while the interface was still connected.
The growth of small corrosion fatigue cracks in alloy 2024
NASA Technical Reports Server (NTRS)
Piascik, Robert S.; Willard, Scott A.
1993-01-01
The corrosion fatigue crack growth characteristics of small surface and corner cracks in aluminum alloy 2024 is established. The damaging effect of salt water on the early stages of small crack growth is characterized by crack initiation at constituent particle pits, intergranular microcracking for a less than 100 micrometers, and transgranular small crack growth for a micrometer. In aqueous 1 percent NaCl and at a constant anodic potential of -700 mV(sub SCE), small cracks exhibit a factor of three increase in fatigue crack growth rates compared to laboratory air. Small cracks exhibit accelerated corrosion fatigue crack growth rates at low levels of delta-K (less than 1 MPa square root of m) below long crack delta-K (sub th). When exposed to Paris regime levels of crack tip stress intensity, small corrosion fatigue cracks exhibit growth rates similar to that observed for long cracks. Results suggest that crack closure effects influence the corrosion fatigue crack growth rates of small cracks (a less than or equal to 100 micrometers). This is evidenced by similar small and long crack growth behavior at various levels of R. Contrary to the corrosion fatigue characteristics of small cracks in high strength steels, no pronounced chemical crack length effect is observed for Al by 2024 exposed to salt water.
NASA Technical Reports Server (NTRS)
Lu, M. C.; Erdogan, F.
1980-01-01
The basic crack problem which is essential for the study of subcritical crack propagation and fracture of layered structural materials is considered. Because of the apparent analytical difficulties, the problem is idealized as one of plane strain or plane stress. An additional simplifying assumption is made by restricting the formulation of the problem to crack geometries and loading conditions which have a plane of symmetry perpendicular to the interface. The general problem is formulated in terms of a coupled system of four integral equations. For each relevant crack configuration of practical interest, the singular behavior of the solution near and at the ends and points of intersection of the cracks is investigated and the related characteristic equations are obtained. The edge crack terminating at and crossing the interface, the T-shaped crack consisting of a broken layer and a delamination crack, the cross-shaped crack which consists of a delamination crack intersecting a crack which is perpendicular to the interface, and a delamination crack initiating from a stress-free boundary of the bonded layers are some of the practical crack geometries considered.
Creep and cracking of concrete hinges: insight from centric and eccentric compression experiments.
Schlappal, Thomas; Schweigler, Michael; Gmainer, Susanne; Peyerl, Martin; Pichler, Bernhard
2017-01-01
Existing design guidelines for concrete hinges consider bending-induced tensile cracking, but the structural behavior is oversimplified to be time-independent. This is the motivation to study creep and bending-induced tensile cracking of initially monolithic concrete hinges systematically. Material tests on plain concrete specimens and structural tests on marginally reinforced concrete hinges are performed. The experiments characterize material and structural creep under centric compression as well as bending-induced tensile cracking and the interaction between creep and cracking of concrete hinges. As for the latter two aims, three nominally identical concrete hinges are subjected to short-term and to longer-term eccentric compression tests. Obtained material and structural creep functions referring to centric compression are found to be very similar. The structural creep activity under eccentric compression is significantly larger because of the interaction between creep and cracking, i.e. bending-induced cracks progressively open and propagate under sustained eccentric loading. As for concrete hinges in frame-like integral bridge construction, it is concluded (i) that realistic simulation of variable loads requires consideration of the here-studied time-dependent behavior and (ii) that permanent compressive normal forces shall be limited by 45% of the ultimate load carrying capacity, in order to avoid damage of concrete hinges under sustained loading.
NASA Astrophysics Data System (ADS)
Co, Noelle Easter C.; Brown, Donald E.; Burns, James T.
2018-05-01
This study applies data science approaches (random forest and logistic regression) to determine the extent to which macro-scale corrosion damage features govern the crack formation behavior in AA7050-T7451. Each corrosion morphology has a set of corresponding predictor variables (pit depth, volume, area, diameter, pit density, total fissure length, surface roughness metrics, etc.) describing the shape of the corrosion damage. The values of the predictor variables are obtained from white light interferometry, x-ray tomography, and scanning electron microscope imaging of the corrosion damage. A permutation test is employed to assess the significance of the logistic and random forest model predictions. Results indicate minimal relationship between the macro-scale corrosion feature predictor variables and fatigue crack initiation. These findings suggest that the macro-scale corrosion features and their interactions do not solely govern the crack formation behavior. While these results do not imply that the macro-features have no impact, they do suggest that additional parameters must be considered to rigorously inform the crack formation location.
Mueller, Inga; Rementeria, Rosalia; Caballero, Francisca G.; Kuntz, Matthias; Sourmail, Thomas; Kerscher, Eberhard
2016-01-01
The recently developed nanobainitic steels show high strength as well as high ductility. Although this combination seems to be promising for fatigue design, fatigue properties of nanostructured bainitic steels are often surprisingly low. To improve the fatigue behavior, an understanding of the correlation between the nanobainitic microstructure and the fatigue limit is fundamental. Therefore, our hypothesis to predict the fatigue limit was that the main function of the microstructure is not necessarily totally avoiding the initiation of a fatigue crack, but the microstructure has to increase the ability to decelerate or to stop a growing fatigue crack. Thus, the key to understanding the fatigue behavior of nanostructured bainite is to understand the role of the microstructural features that could act as barriers for growing fatigue cracks. To prove this hypothesis, we carried out fatigue tests, crack growth experiments, and correlated these results to the size of microstructural features gained from microstructural analysis by light optical microscope and EBSD-measurements. Finally, we were able to identify microstructural features that influence the fatigue crack growth and the fatigue limit of nanostructured bainitic steels. PMID:28773953
Isothermal Damage and Fatigue Behavior of SCS-6/Timetal 21S [0/90](Sub S) Composite at 650 Deg C
NASA Technical Reports Server (NTRS)
Castelli, Michael G.
1994-01-01
The isothermal fatigue damage and life behaviors of SCS-6/Timetal 21S (0/90)s were investigated at 650 C. Strain ratcheting and degradation of the composite's static elastic modulus were carefully monitored as functions of cycles to indicate damage progression. Extensive fractographic and metallographic analyses were conducted to determine damage/failure mechanisms. Resulting fatigue lives show considerable reductions in comparison to (0) reinforced titanium matrix composites subjected to comparable conditions. Notable stiffness degradations were found to occur after the first cycle of loading, even at relatively low maximum stress levels, where cyclic lives are greater than 25,000 cycles. This was attributed to the extremely weak fiber/matrix bond which fails under relatively low transverse loads. Stiffness degradations incurred on first cycle loadings and degradations thereafter were found to increase with increasing maximum stress. Environmental effects associated with oxidation of the (90) fiber interfaces clearly played a role in the damage mechanisms as fracture surfaces revealed environment assisted matrix cracking along the (90) fibers. Metallographic analysis indicated that all observable matrix fatigue cracks initiated at the (90) fiber/matrix interfaces. Global de-bonding in the loading direction was found along the (90) fibers. No surface initiated cracks were evident and minimal if any (0) fiber cracking was visible.
NASA Technical Reports Server (NTRS)
Lerch, B. A.
1982-01-01
Longitudinal specimens of Waspaloy containing either coarse grains with small gamma or fine grains with large gamma were tested in air at a frequency of 0.33 Hz or 0.50 Hz. The coarse grained structures exhibited planar slip on (III) planes and precipitate shearing at all temperatures. Cracks initiated by a Stage 1 mechanism and propagated by a striation forming mechanism. At 700 C and 800 C, cleavage and intergranular cracking were observed. Testing at 500 C, 700 C, and 800 C caused precipitation of grain boundary carbides. At 700 C, carbides precipitated on slip bands. The fine grained structures exhibited planar slip on (111) planes. Dislocations looped the large gamma precipitates. This structure led to stress saturation and propagation was observed. Increasing temperatures resulted in increased specimen oxidation for both heat treatments. Slip band and grain boundary oxidation were observed. At 800 C, oxidized grain boundaries were cracked by intersecting slip bands which resulted in intergranular failure. The fine specimens had crack initiation later in the fatigue life, but with more rapid propagation crack propagation.
Corrosion and Corrosion-Fatigue Behavior of 7075 Aluminum Alloys Studied by In Situ X-Ray Tomography
NASA Astrophysics Data System (ADS)
Stannard, Tyler
7XXX Aluminum alloys have high strength to weight ratio and low cost. They are used in many critical structural applications including automotive and aerospace components. These applications frequently subject the alloys to static and cyclic loading in service. Additionally, the alloys are often subjected to aggressive corrosive environments such as saltwater spray. These chemical and mechanical exposures have been known to cause premature failure in critical applications. Hence, the microstructural behavior of the alloys under combined chemical attack and mechanical loading must be characterized further. Most studies to date have analyzed the microstructure of the 7XXX alloys using two dimensional (2D) techniques. While 2D studies yield valuable insights about the properties of the alloys, they do not provide sufficiently accurate results because the microstructure is three dimensional and hence its response to external stimuli is also three dimensional (3D). Relevant features of the alloys include the grains, subgrains, intermetallic inclusion particles, and intermetallic precipitate particles. The effects of microstructural features on corrosion pitting and corrosion fatigue of aluminum alloys has primarily been studied using 2D techniques such as scanning electron microscopy (SEM) surface analysis along with post-mortem SEM fracture surface analysis to estimate the corrosion pit size and fatigue crack initiation site. These studies often limited the corrosion-fatigue testing to samples in air or specialized solutions, because samples tested in NaCl solution typically have fracture surfaces covered in corrosion product. Recent technological advancements allow observation of the microstructure, corrosion and crack behavior of aluminum alloys in solution in three dimensions over time (4D). In situ synchrotron X-Ray microtomography was used to analyze the corrosion and cracking behavior of the alloy in four dimensions to elucidate crack initiation at corrosion pits for samples of multiple aging conditions and impurity concentrations. Additionally, chemical reactions between the 3.5 wt% NaCl solution and the crack surfaces were quantified by observing the evolution of hydrogen bubbles from the crack. The effects of the impurity particles and age-hardening particles on the corrosion and fatigue properties were examined in 4D.
Transient features and growth behavior of artificial cracks during the initial damage period.
Ma, Bin; Wang, Ke; Lu, Menglei; Zhang, Li; Zhang, Lei; Zhang, Jinlong; Cheng, Xinbin; Wang, Zhanshan
2017-02-01
The laser damage of transmission elements contains a series of complex processes and physical phenomena. The final morphology is a crater structure with different sizes and shapes. The formation and development of the crater are also accompanied by the generation, extension, and submersion of cracks. The growth characteristics of craters and cracks are important in the thermal-mechanism damage research. By using pump-probe detection and an imaging technique with a nanosecond pulsewidth probe laser, we obtained the formation time of the crack structure in the radial and circumferential directions. We carried out statistical analysis in angle, number, and crack length. We further analyzed the relationship between cracks and stress intensity or laser irradiation energy as well as the crack evolution process and the inner link between cracks and pit growth. We used an artificial indentation defect to investigate the time-domain evolution of crack growth, growth speed, transient morphology, and the characteristics of crater expansion. The results can be used to elucidate thermal stress effects on cracks, time-domain evolution of the damage structure, and the damage growth mechanism.
Fatigue Analyses Under Constant- and Variable-Amplitude Loading Using Small-Crack Theory
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Phillips, E. P.; Everett, R. A., Jr.
1999-01-01
Studies on the growth of small cracks have led to the observation that fatigue life of many engineering materials is primarily "crack growth" from micro-structural features, such as inclusion particles, voids, slip-bands or from manufacturing defects. This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using "small-crack theory" under various loading conditions. Constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective stress-intensity factor range (delta-Keff) under constant-amplitude loading. Modifications to the delta-Keff-rate relations in the near-threshold regime were needed to fit measured small-crack growth rate behavior. The model was then used to calculate small-and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens under constant-amplitude and spectrum loading. Fatigue lives were predicted using crack-growth relations and micro-structural features like those that initiated cracks in the fatigue specimens for most of the materials analyzed. Results from the tests and analyses agreed well.
NASA Technical Reports Server (NTRS)
Panontin, Tina L.; Sheppard, Sheri D.
1994-01-01
The use of small laboratory specimens to predict the integrity of large, complex structures relies on the validity of single parameter fracture mechanics. Unfortunately, the constraint loss associated with large scale yielding, whether in a laboratory specimen because of its small size or in a structure because it contains shallow flaws loaded in tension, can cause the breakdown of classical fracture mechanics and the loss of transferability of critical, global fracture parameters. Although the issue of constraint loss can be eliminated by testing actual structural configurations, such an approach can be prohibitively costly. Hence, a methodology that can correct global fracture parameters for constraint effects is desirable. This research uses micromechanical analyses to define the relationship between global, ductile fracture initiation parameters and constraint in two specimen geometries (SECT and SECB with varying a/w ratios) and one structural geometry (circumferentially cracked pipe). Two local fracture criteria corresponding to ductile fracture micromechanisms are evaluated: a constraint-modified, critical strain criterion for void coalescence proposed by Hancock and Cowling and a critical void ratio criterion for void growth based on the Rice and Tracey model. Crack initiation is assumed to occur when the critical value in each case is reached over some critical length. The primary material of interest is A516-70, a high-hardening pressure vessel steel sensitive to constraint; however, a low-hardening structural steel that is less sensitive to constraint is also being studied. Critical values of local fracture parameters are obtained by numerical analysis and experimental testing of circumferentially notched tensile specimens of varying constraint (e.g., notch radius). These parameters are then used in conjunction with large strain, large deformation, two- and three-dimensional finite element analyses of the geometries listed above to predict crack initiation loads and to calculate the associated (critical) global fracture parameters. The loads are verified experimentally, and microscopy is used to measure pre-crack length, crack tip opening displacement (CTOD), and the amount of stable crack growth. Results for A516-70 steel indicate that the constraint-modified, critical strain criterion with a critical length approximately equal to the grain size (0.0025 inch) provides accurate predictions of crack initiation. The critical void growth criterion is shown to considerably underpredict crack initiation loads with the same critical length. The relationship between the critical value of the J-integral for ductile crack initiation and crack depth for SECT and SECB specimens has been determined using the constraint-modified, critical strain criterion, demonstrating that this micromechanical model can be used to correct in-plane constraint effects due to crack depth and bending vs. tension loading. Finally, the relationship developed for the SECT specimens is used to predict the behavior of circumferentially cracked pipe specimens.
Evaluation of the cyclic behavior of aircraft turbine disk alloys
NASA Technical Reports Server (NTRS)
Cowles, B. A.; Sims, D. L.; Warren, J. R.
1978-01-01
Five aircraft turbine disk alloys representing various strength and processing histories were evaluated at 650 C to determine if recent strength advances in powder metallurgy have resulted in corresponding increases in low cycle fatigue (LCF) capability. Controlled strain LCF tests and controlled load crack propagation tests were performed. Results were used for direct material comparisons and in the analysis of an advanced aircraft turbine disk, having a fixed design and operating cycle. Crack initiation lives were found to increase with increasing tensile yield strength, while resistance to fatigue crack propagation generally decreased with increasing strength.
Literature survey on oxidations and fatigue lives at elevated temperatures
NASA Technical Reports Server (NTRS)
Liu, H. W.; Oshida, Y.
1984-01-01
Nickel-base superalloys are the most complex and the most widely used for high temperature applications such as aircraft engine components. The desirable properties of nickel-base superalloys at high temperatures are tensile strength, thermomechanical fatigue resistance, low thermal expansion, as well as oxidation resistance. At elevated temperature, fatigue cracks are often initiated by grain boundary oxidation, and fatigue cracks often propagate along grain boundaries, where the oxidation rate is higher. Oxidation takes place at the interface between metal and gas. Properties of the metal substrate, the gaseous environment, as well as the oxides formed all interact to make the oxidation behavior of nickel-base superalloys extremely complicated. The important topics include general oxidation, selective oxidation, internal oxidation, grain boundary oxidation, multilayer oxide structure, accelerated oxidation under stress, stress-generation during oxidation, composition and substrate microstructural changes due to prolonged oxidation, fatigue crack initiation at oxidized grain boundaries and the oxidation accelerated fatigue crack propagation along grain boundaries.
Short fatigue crack behavior in notched 2024-T3 aluminum specimens
NASA Technical Reports Server (NTRS)
Lee, J. J.; Sharpe, W. N., Jr.
1986-01-01
Single-edge, semi-circular notched specimens of Al 2024-T3, 2.3 mm thick, were cyclicly loaded at R-ratios of 0.5, 0.0, -1.0, and -2.0. The notch roots were periodically inspected using a replica technique which duplicates the bore surface. The replicas were examined under an optical microscope to determine the initiation of very short cracks and to monitor the growth of short cracks ranging in length from a few tens of microns to the specimen thickness. In addition to short crack growth measurements, the crack opening displacement (COD) was measured for surface cracks as short as 0.035 mm and for through-thickness cracks using the Interferometric Strain/Displacement Gage (ISDG), a laser-based optical technique. The growth rates of short cracks were faster than the long crack growth rates for R-ratios of -1.0 and -2.0. No significant difference between short and long crack growth rates was observed for R = 0.0. Short cracks had slower growth rates than long cracks for R = 0.5. The crack opening stresses measured for short cracks were smaller than those predicted for large cracks, with little difference appearing for positive R-ratios and large differences noted for negative R-ratios.
Fracture Behavior of Zr-BASED Bulk Metallic Glass Under Impact Loading
NASA Astrophysics Data System (ADS)
Shin, Hyung-Seop; Kim, Ki-Hyun; Oh, Sang-Yeob
The fracture behavior of a Zr-based bulk amorphous metal under impact loading using subsize V-shaped Charpy specimens was investigated. Influences of loading rate on the fracture behavior of amorphous Zr-Al-Ni-Cu alloy were examined. As a result, the maximum load and absorbed fracture energy under impact loading were lower than those under quasi-static loading. A large part of the absorbed fracture energy in the Zr-based BMG was consumed in the process for crack initiation and not for crack propagation. In addition, fractographic characteristics of BMGs, especially the initiation and development of shear bands at the notch tip were investigated. Fractured surfaces under impact loading are smoother than those under quasi-static loading. The absorbed fracture energy appeared differently depending on the appearance of the shear bands developed. It can be found that the fracture energy and fracture toughness of Zr-based BMG are closely related with the extent of shear bands developed during fracture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yongfeng; Millett, P.C.; Tonks, M.R.
2013-07-01
In this study, the intergranular fracture behavior of UO{sub 2} was studied by molecular dynamics simulations using the Basak potential. In addition, the constitutive traction-separation law was derived from atomistic data using the cohesive-zone model. In the simulations a bicrystal model with the (100) symmetric tilt Σ5 grain boundaries was utilized. Uniaxial tension along the grain boundary normal was applied to simulate Mode-I fracture. The fracture was observed to propagate along the grain boundary by micro-pore nucleation and coalescence, giving an overall intergranular fracture behavior. Phase transformations from the Fluorite to the Rutile and Scrutinyite phases were identified at themore » propagating crack tips. These new phases are metastable and they transformed back to the Fluorite phase at the wake of crack tips as the local stress concentration was relieved by complete cracking. Such transient behavior observed at atomistic scale was found to substantially increase the energy release rate for fracture. Insertion of Xe gas into the initial notch showed minor effect on the overall fracture behavior. (authors)« less
Intergranular fracture in UO2: derivation of traction-separation law from atomistic simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yongfeng Zhang; Paul C Millett; Michael R Tonks
2013-10-01
In this study, the intergranular fracture behavior of UO2 was studied by molecular dynamics simulations using the Basak potential. In addition, the constitutive traction-separation law was derived from atomistic data using the cohesive-zone model. In the simulations a bicrystal model with the (100) symmetric tilt E5 grain boundaries was utilized. Uniaxial tension along the grain boundary normal was applied to simulate Mode-I fracture. The fracture was observed to propagate along the grain boundary by micro-pore nucleation and coalescence, giving an overall intergranular fracture behavior. Phase transformations from the Fluorite to the Rutile and Scrutinyite phases were identified at the propagatingmore » crack tips. These new phases are metastable and they transformed back to the Fluorite phase at the wake of crack tips as the local stress concentration was relieved by complete cracking. Such transient behavior observed at atomistic scale was found to substantially increase the energy release rate for fracture. Insertion of Xe gas into the initial notch showed minor effect on the overall fracture behavior.« less
Evaluation of Cyclic Behavior of Aircraft Turbine Disk Alloys
NASA Technical Reports Server (NTRS)
Shahani, V.; Popp, H. G.
1978-01-01
An evaluation of the cyclic behavior of three aircraft engine turbine disk materials was conducted to compare their relative crack initiation and crack propagation resistance. The disk alloys investigated were Inconel 718, hot isostatically pressed and forged powder metallurgy Rene '95, and as-hot-isostatically pressed Rene '95. The objective was to compare the hot isostatically pressed powder metallurgy alloy forms with conventionally processed superalloys as represented by Inconel 718. Cyclic behavior was evaluated at 650 C both under continuously cycling and a fifteen minute tensile hold time cycle to simulate engine conditions. Analysis of the test data were made to evaluate the strain range partitioning and energy exhaustion concepts for predicting hold time effects on low cycle fatigue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, M.G.
1995-12-31
The quasi-static fracture behavior of advanced ceramics was assessed in the temperature range of 20{degrees} to 1400{degrees}C. Chevron-notched, three-point flexure specimens and a laser-based CMOD measurement systems were used in testing. Types of materials characterized included monolithic ceramics (SiC, Si{sub 3}N{sub 4}, MgAl{sub 2}O{sub 4}), self-reinforced monoliths (acicular-grained Si{sub 3}N{sub 4}, acicular grained mullite), and ceramic matrix composites (SiC whisker/Al{sub 2}O{sub 3} matrix, TiB{sub 2} particulate/SiC matrix, SiC fibre/CVI SiC matrix, Al{sub 2}O{sub 3} fibre/CVI SiC matrix). Fracture resistance behaviour of the materials was quantified as three distinct regimes of the fracture histories. At crack initiation, the apparent fracture toughnessmore » was evaluated as the critical stress intensity factor, K{sub IC}. During stable crack propagation, the crack growth resistance was characterized by the instantaneous strain energy release rate, G{sub R} using a compliance method assuming linear-elastic unloading to calculate the effective crack lengths. At final fracture, the complete fracture process was quantified using the work-of-fracture, WOF, which can be equated to the fracture surface energy for linearelastic materials. Results indicate that the chevron-notched, three-point flexure specimen facilitates the study of fracture behavior in a wide range of brittle and quasi-brittle materials at elevated temperatures. The unique features of the chevron geometry, which are automatic, in-situ crack initiation and inherent stable crack growth, are crucial to the successful evaluation of the fracture tests.« less
Double torsion fracture mechanics testing of shales under chemically reactive conditions
NASA Astrophysics Data System (ADS)
Chen, X.; Callahan, O. A.; Holder, J. T.; Olson, J. E.; Eichhubl, P.
2015-12-01
Fracture properties of shales is vital for applications such as shale and tight gas development, and seal performance of carbon storage reservoirs. We analyze the fracture behavior from samples of Marcellus, Woodford, and Mancos shales using double-torsion (DT) load relaxation fracture tests. The DT test allows the determination of mode-I fracture toughness (KIC), subcritical crack growth index (SCI), and the stress-intensity factor vs crack velocity (K-V) curves. Samples are tested at ambient air and aqueous conditions with variable ionic concentrations of NaCl and CaCl2, and temperatures up to 70 to determine the effects of chemical/environmental conditions on fracture. Under ambient air condition, KIC determined from DT tests is 1.51±0.32, 0.85±0.25, 1.08±0.17 MPam1/2 for Marcellus, Woodford, and Mancos shales, respectively. Tests under water showed considerable change of KIC compared to ambient condition, with 10.6% increase for Marcellus, 36.5% decrease for Woodford, and 6.7% decrease for Mancos shales. SCI under ambient air condition is between 56 and 80 for the shales tested. The presence of water results in a significant reduction of the SCI from 70% to 85% compared to air condition. Tests under chemically reactive solutions are currently being performed with temperature control. K-V curves under ambient air conditions are linear with stable SCI throughout the load-relaxation period. However, tests conducted under water result in an initial cracking period with SCI values comparable to ambient air tests, which then gradually transition into stable but significantly lower SCI values of 10-20. The non-linear K-V curves reveal that crack propagation in shales is initially limited by the transport of chemical agents due to their low permeability. Only after the initial cracking do interactions at the crack tip lead to cracking controlled by faster stress corrosion reactions. The decrease of SCI in water indicates higher crack propagation velocity due to faster stress corrosion rate in water than in ambient air. The experimental results are applicable for the prediction of fracture initiation based on KIC, modeling fracture pattern based on SCI, and the estimation of dynamic fracture propagation such as crack growth velocity and crack re-initiation.
NASA Technical Reports Server (NTRS)
Lu, M.-C.; Erdogan, F.
1983-01-01
The basic crack problem which is essential for the study of subcritical crack propagation and fracture of layered structural materials is considered. Because of the apparent analytical difficulties, the problem is idealized as one of plane strain or plane stress. An additional simplifying assumption is made by restricting the formulation of the problem to crack geometries and loading conditions which have a plane of symmetry perpendicular to the interface. The general problem is formulated in terms of a coupled systems of four integral equations. For each relevant crack configuration of practical interest, the singular behavior of the solution near and at the ends and points of intersection of the cracks is investigated and the related characteristic equations are obtained. The edge crack terminating at and crossing the interface, the T-shaped crack consisting of a broken layer and a delamination crack, the cross-shaped crack which consists of a delamination crack intersecting a crack which is perpendicular to the interface, and a delamination crack initiating from a stress-free boundary of the bonded layers are some of the practical crack geometries considered. Previously announced in STAR as N80-18428 and N80-18429
The Severely-Distressed African American Family in the Crack Era: Empowerment is not Enough
Dunlap, Eloise; Golub, Andrew; Johnson, Bruce D.
2008-01-01
Numerous African American families have struggled for generations with persistent poverty, especially in the inner city. These conditions were further strained during the 1980s and 1990s by the widespread use of crack cocaine. For many, crack use became an obsession, dominated their lives, and superseded family responsibilities. This behavior placed additional pressure on already stressed kin support networks. This paper explores the processes prevailing in two households during this period. In the 2000s, children born to members of the Crack Generation are avoiding use of crack but face major deficits from their difficult childhoods. This presents both challenges and opportunities. The discussion considers initiatives from both a social problems and a strengths perspective that could help these families and help these families help themselves to advance their economic circumstances. PMID:18852841
Finite element analysis on flexural behavior of high ductility of fiber reinforced concrete beam
NASA Astrophysics Data System (ADS)
Zhou, Mohan; Chi, Cuiping; Pei, Changchun
2017-03-01
In this paper, finite element software is used to simulate and analyze ECC beams. With the ratio of water-binder, fiber content and the content of fly ash as variables, the initial cracking moments, the yield moments, the initial cracking deflections, and the yield deflections of the ECC beams are studied. The results show that the lower the water-binder ratio is, the better the beam performance is; When the fiber content is 13kg/m3, the mechanical properties of the ECC beams are the lowest, and then strengthen; When the content of fly ash increase, the bending moment of the specimen beam becomes smaller and the deflection tends to increase, however the deflection of the fly ash decreases when the content of fly ash is higher than 1300kg/m3 in the initial cracking. According to the formula of ordinary concrete ultimate load capacity, the formula of yield capacity of ECC beam is deduced.
Thermal-stress fracture and fractography in UO/sub 2/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, C.R.; Bandyopadhyay, G.
1976-01-01
Pressed and sintered UO/sub 2/ pellets were thermally shocked by quenching into a water bath at room temperature. The cracking behavior and strength degradation, as measured by the diametral compression technique, in these quench tests are discussed. Fractography of the thermally shocked specimens by scanning-electron microscopy indicated predominantly intergranular fracture in UO/sub 2/ in severe thermal-shock tests. The implication of this observation is that intergranular cracking may occur during the initial heat up in a reactor. Because fission gas bubbles tend to migrate toward the grain boundary, preferential microcracking along the boundary may strongly affect subsequent fission gas release behavior.
Laser-driven mechanical fracture in fused silica
NASA Astrophysics Data System (ADS)
Dahmani, Faiz
1999-10-01
Fused silica, widely used as optical-window material in high-fluence requirements on glass and KrF lasers, experiences optical damage. Under fatigue conditions, the damage is initiated by slow crack growth and culminates, if not arrested, with catastrophic crack growth and implosive failure when the stress intensity approaches the critical value. Since laser-induced cracks cannot be eliminated entirely, the behavior of cracked structures under service conditions must be quantified to be predicted. Systematic scientific rules must be devised to characterize laser-induced cracks and their effects, and to predict if and when it may become necessary to replace the damaged components. This thesis makes a contribution toward this end. Measurements of fatigue failure strength of laser-cracked fused silica in air at room temperature for different number of laser pulses and laser fluences are presented. The failure-strength variability is found to be due mainly to the spectrum of crack depths. Agreement with theory suggests the incorporation of a residual term into the failure-strength equation. Experiments on residual stresses induced in fused silica by the presence of a laser-induced crack are carried out using two different techniques. Theoretical modelings show that this residual stress field is of shear nature and mouth-opening. A correlation between the reduction in fracture strength of fused silica and the increase of the residual-stress field is established, providing laser systems designers and operators with guidance on the rate of crack growth as well as on the stress-related ramifications such as laser-driven cracks entail. Specifically, a hoop-stress in the immediate vicinity of a crack growing along the beam propagation direction is identified as strongly coupling to both the laser fluence and the crack growth. This coupling prompted the question of whether or not breaking the hoop stress symmetry by some external perturbation will accelerate or stymie crack growth. Experimental results on stress-inhibited laser-driven crack growth and stress-delayed-laser-damage initiation thresholds in fused silica and borosilicate glass (BK7) are presented. The results obtained show that, for very low compressive stresses (<10 psi), the damage initiation threshold is raised by as much as 78%, while the crack growth is arrested by 70%. Different loading- geometries are tested, giving different crack growth rates and raising the distinction between uniaxial and biaxial states of stresses.
Effects of NaCl, pH, and Potential on the Static Creep Behavior of AA1100
NASA Astrophysics Data System (ADS)
Wan, Quanhe; Quesnel, David J.
2013-03-01
The creep rates of AA1100 are measured during exposure to a variety of aggressive environments. NaCl solutions of various concentrations have no influence on the steady-state creep behavior, producing creep rates comparable to those measured in lab air at room temperature. However, after an initial incubation period of steady strain rate, a dramatic increase of strain rate is observed on exposure to HCl solutions and NaOH solutions, as well as during cathodic polarization of specimens in NaCl solutions. Creep strain produces a continuous deformation and elongation of the sample surface that is comparable to slow strain rates at crack tips thought to control the kinetics of crack growth during stress corrosion cracking (SCC). In this experiment, we separate the strain and surface deformation from the complex geometry of the crack tip to better understand the processes at work. Based on this concept, two possible explanations for the environmental influences on creep strain rates are discussed relating to the anodic dissolution of the free surface and hydrogen influences on deformation mechanisms. Consistencies of pH dependence between corrosion creep and SCC at low pH prove a creep-involved SCC mechanism, while the discrepancies between corrosion creep behavior and previous SCC results at high pH indicate a rate-limit step change in the crack propagation of the SCC process.
Crack Initiation and Growth Behavior at Corrosion Pit in 7075-T6 Under Biaxial and Uniaxial Fatigue
2014-06-19
al. examined the effect of biaxial loading on the fatigue crack growth [52]. They conducted their fatigue tests on SUS 304 stainless steel using a...specimens. Their experiments were carried out on cruciform test coupons using a digitally controlled four actuator biaxial testing system. Steel ...as shown in Figure 3.7. The test specimen was placed between two stainless steel chambers. These chambers were connected together using screws, and
Deng, Hailong; Li, Wei; Zhao, Hongqiao; Sakai, Tatsuo
2017-01-01
Axial loading tests with stress ratios R of −1, 0 and 0.3 were performed to examine the fatigue failure behavior of a carburized Cr-Ni steel in the long-life regime from 104 to 108 cycles. Results show that this steel represents continuously descending S-N characteristics with interior inclusion-induced failure under R = −1, whereas it shows duplex S-N characteristics with surface defect-induced failure and interior inclusion-induced failure under R = 0 and 0.3. The increasing tension eliminates the effect of compressive residual stress and promotes crack initiation from the surface or interior defects in the carburized layer. The FGA (fine granular area) formation greatly depends on the number of loading cycles, but can be inhibited by decreasing the compressive stress. Based on the evaluation of the stress intensity factor at the crack tip, the surface and interior failures in the short life regime can be characterized by the crack growth process, while the interior failure with the FGA in the long life regime can be characterized by the crack initiation process. In view of the good agreement between predicted and experimental results, the proposed approach can be well utilized to predict fatigue lives associated with interior inclusion-FGA-fisheye induced failure, interior inclusion-fisheye induced failure, and surface defect induced failure. PMID:28906454
Characterization and modeling of tensile behavior of ceramic woven fabric composites
NASA Technical Reports Server (NTRS)
Kuo, Wen-Shyong; Chen, Wennei Y.; Parvizi-Majidi, Azar; Chou, Tsu-Wei
1991-01-01
This paper examines the tensile behavior of SiC/SiC fabric composites. In the characterization effort, the stress-strain relation and damage evolution are studied with a series of loading and unloading tensile test experiments. The stress-strain relation is linear in response to the initial loading and becomes nonlinear when loading exceeds the proportional limit. Transverse cracking has been observed to be a dominant damage mode governing the nonlinear deformation. The damage is initiated at the inter-tow pores where fiber yarns cross over each other. In the modeling work, the analysis is based upon a fiber bundle model, in which fiber undulation in the warp and fill directions and gaps among fiber yarns have been taken into account. Two limiting cases of fabric stacking arrangements are studied. Closed form solutions are obtained for the composite stiffness and Poisson's ratio. Transverse cracking in the composite is discussed by applying a constant failure strain criterion.
Analyses of Fatigue and Fatigue-Crack Growth under Constant- and Variable-Amplitude Loading
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.
1999-01-01
Studies on the growth of small cracks have led to the observation that fatigue life of many engineering materials is primarily crack growth from micro-structural features, such as inclusion particles, voids, slip-bands or from manufacturing defects. This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using small-crack theory under various loading conditions. Constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective stress-intensity factor range (delta K(sub eff)) under constant-amplitude loading. Modifications to the delta K(sub eff)-rate relations in the near-threshold regime were needed to fit measured small-crack growth rate behavior. The model was then used to calculate small- and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens under constant-amplitude and spectrum loading. Fatigue lives were predicted using crack-growth relations and micro-structural features like those that initiated cracks in the fatigue specimens for most of the materials analyzed. Results from the tests and analyses agreed well.
Aqueous stress-corrosion cracking of high-toughness D6AC steel
NASA Technical Reports Server (NTRS)
Gilbreath, W. P.; Adamson, M. J.
1976-01-01
The crack growth behavior of D6AC steel as a function of stress intensity, stress and corrosion history, and test technique, under sustained load in filtered natural seawater, 3.3 per cent sodium chloride solution, and distilled water, was investigated. Reported investigations of D6AC were considered in terms of the present study with emphasis on thermal treatment, specimen configuration, fracture toughness, crack-growth rates, initiation period, and threshold. Both threshold and growth kinetics were found to be relatively insensitive to these test parameters. The apparent incubation period was dependent on technique, both detection sensitivity and precracking stress intensity level.
Sirimamilla, P. Abhiram; Furmanski, Jevan; Rimnac, Clare M.
2012-01-01
The mechanism of crack initiation from a clinically relevant notch is not well-understood for crosslinked ultra high molecular weight polyethylene (UHMWPE) used in total joint replacement components. Static mode driving forces, rather than the cyclic mode conditions typically associated with fatigue processes, have been shown to drive crack propagation in this material. Thus, in this study, crack initiation in a notched specimen under a static load was investigated. A video microscope was used to monitor the notch surface of the specimen and crack initiation time was measured from the video by identifying the onset of crack initiation at the notch. Crack initiation was considered using a viscoelastic fracture theory. It was found that the mechanism of crack initiation involved both single layer and a distributed multi-layer phenomenon and that multi-layer crack initiation delayed the crack initiation time for all loading conditions examined. The findings of this study support that the viscoelastic fracture theory governs fracture mechanics in crosslinked UHMWPE. The findings also support that crack initiation from a notch in UHMWPE is a more complex phenomenon than treated by traditional fracture theories for polymers. PMID:23127638
Simulation of Complex Cracking in Plain Weave C/SiC Composite under Biaxial Loading
NASA Technical Reports Server (NTRS)
Cheng, Ron-Bin; Hsu, Su-Yuen
2012-01-01
Finite element analysis is performed on a mesh, based on computed geometry of a plain weave C/SiC composite with assumed internal stacking, to reveal the pattern of internal damage due to biaxial normal cyclic loading. The simulation encompasses intertow matrix cracking, matrix cracking inside the tows, and separation at the tow-intertow matrix and tow-tow interfaces. All these dissipative behaviors are represented by traction-separation cohesive laws. Not aimed at quantitatively predicting the overall stress-strain relation, the simulation, however, does not take the actual process of fiber debonding into account. The fiber tows are represented by a simple rule-of-mixture model where the reinforcing phase is a hypothetical one-dimensional material. Numerical results indicate that for the plain weave C/SiC composite, 1) matrix-crack initiation sites are primarily determined by large intertow matrix voids and interlayer tow-tow contacts, 2) the pattern of internal damage strongly depends on the loading path and initial stress, 3) compressive loading inflicts virtually no damage evolution. KEY WORDS: ceramic matrix composite, plain weave, cohesive model, brittle failure, smeared crack model, progressive damage, meso-mechanical analysis, finite element.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez-Rodriguez, J.G.; Salinas-Bravo, V.M.; Garcia-Ochoa, E.
1997-09-01
Corrosion potential transients were associated with nucleation and propagation of stress corrosion cracks in a 17-4 precipitation-hardenable (PH) martensitic stainless steel (SS) during slow strain rate tests (SSRT) at 90 C in deaerated sodium chloride (NaCl) solutions, Test solutions included 20 wt% NaCl at pH 3 and 7, similar to normal and faulted steam turbine environments, respectively. Time series were analyzed using the fast Fourier transform method. At the beginning of straining, the consistent noise behavior was perturbed with small potential transients, probably associated with rupture of the surface oxide layer. After yielding, these transients increased in intensity. At maximummore » load, the transients were still higher in intensity and frequency. These potential transients were related to crack nucleation and propagation. When the steel did not fail by stress corrosion cracking (SCC), such transients were found only at the beginning of the test. The power spectra showed some differences in all cases in roll-off slope and voltage magnitude, but these were not reliable tools to monitor the initiation and propagation of stress corrosion cracks.« less
Research on anti crack mechanism of bionic coupling brake disc
NASA Astrophysics Data System (ADS)
Shi, Lifeng; Yang, Xiao; Zheng, Lingnan; Wu, Can; Ni, Jing
2017-09-01
According to the biological function of fatigue resistance possessed by biology, this study designed a Bionic Coupling Brake Disc (BCBD) which can inhibit crack propagation as the result of improving fatigue property. Thermal stress field of brake disc was calculated under emergency working condition, and circumferential and radial stress field which lead to fatigue failure of brake disc were investigated simultaneously. Results showed that the maximum temperature of surface reached 890°C and the maximum residual tensile stress was 207 Mpa when the initial velocity of vehicle was 200 km/h. Based on the theory of elastic plastic fracture mechanics, the crack opening displacement and the crack front J integrals of the BCBD and traditional brake disc (TBD) with pre-cracking were calculated, and the strength of crack front was compared. Results revealed the growth behavior of fatigue crack located on surface of brake disc, and proved the anti fatigue resistance of BCBD was better, and the strength of crack resistance of BCBD was much stronger than that of TBD. This simulation research provided significant references for optimization and manufacturing of BCBD.
Study on underclad cracking in nuclear reactor vessel steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horiya, T.; Takeda, T.; Yamato, K.
1985-02-01
Susceptibility to underclad cracking in nuclear reactor vessel steels, such as SA533 Grade B Class 1 and SA508 Class 2, was studied in detail. A convenient simulation test method using simulated HAZ specimens of small size has been developed for quantitative evaluation of susceptibility to underclad cracks. The method can predict precisely the cracking behavior in weldments of steels with relative low crack susceptibility. The effect of chemical compositions on susceptibility to the cracking was examined systematically using the developed simulation test method and the following index was obtained from the test results: U = 20(V) + 7(C) + 4(Mo)more » + (Cr) + (Cu) - 0.5(Mn) + 1.5 log(X) X = Al . . . Al/2N less than or equal to 1 X = 2N . . . Al/2N > 1 It was confirmed that the new index (U) is useful for the prediction of crack susceptibility of the nuclear vessel steels; i.e., no crack initiation is detected in weldments in the roller bend test for steels having U value below 0.90.« less
Santibanez, Scott S; Garfein, Richard S; Swartzendruber, Andrea; Kerndt, Peter R; Morse, Edward; Ompad, Danielle; Strathdee, Steffanie; Williams, Ian T; Friedman, Samuel R; Ouellet, Lawrence J
2005-03-07
We estimated prevalence and identified correlates of crack-cocaine injection among young injection drug users in the United States. We analyzed data from the second Collaborative Injection Drug Users Study (CIDUS II), a 1997-1999 cohort study of 18-30-year-old, street-recruited injection drug users from six US cities. Crack-cocaine injection was reported by 329 (15%) of 2198 participants. Prevalence varied considerably by site (range, 1.5-28.0%). No participants injected only crack-cocaine. At four sites where crack-cocaine injection prevalence was greater than 10%, recent (past 6 months) crack-cocaine injection was correlated with recent daily injection and sharing of syringes, equipment, and drug solution. Lifetime crack-cocaine injection was correlated with using shooting galleries, initiating others into drug injection, and having serologic evidence of hepatitis B virus and hepatitis C virus infection. Crack-cocaine injection may be a marker for high-risk behaviors that can be used to direct efforts to prevent HIV and other blood-borne viral infections.
NASA Technical Reports Server (NTRS)
Goree, J. G.
1982-01-01
The fracture behavior of unifirectional hybrid (buffer strip) composite laminates is studied. Three particular solutions are discussed: (1) broken fibers in a unidirectional half plane; (2) adjoined half planes of different fiber and matrix properties and (3) the solution of two half planes bounding a third distinct region of finite width. This finite width region represents a buffer strip and the potential of this strip to arrest a crack that originates in one of the half planes is investigated. The analysis is based on a materials modeling approach using the classical shear lag assumption to described the stress transfer between fibers. Explicit fiber and matrix properties of the three regions are retained and changes in the laminate behavior as a function of the relative material properties, buffer strip width and initial crack length are discussed.
A preliminary study of crack initiation and growth at stress concentration sites
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Gallagher, J. P.; Hartman, G. A.; Rajendran, A. M.
1982-01-01
Crack initiation and propagation models for notches are examined. The Dowling crack initiation model and the E1 Haddad et al. crack propagation model were chosen for additional study. Existing data was used to make a preliminary evaluation of the crack propagation model. The results indicate that for the crack sizes in the test, the elastic parameter K gave good correlation for the crack growth rate data. Additional testing, directed specifically toward the problem of small cracks initiating and propagating from notches is necessary to make a full evaluation of these initiation and propagation models.
Temperature effects on the deformation and fracture of Al-Li-Cu-In alloys
NASA Technical Reports Server (NTRS)
Wagner, John A.; Gangloff, Richard P.
1991-01-01
The crack initiation and growth fracture resistance of Al-Cu-Li and Al-Cu-Li-In alloys were characterized and optimized for cryogenic tank applications. Presently, the effects of stress state and temperature is being determined on the fracture toughness and fracture mechanisms of commercially available Vintage 3 2090-T81 and experimental 2090+In-T6. Precracked J-integral specimens of both alloys were tested at ambient and cryogenic temperatures in the plane stress and plane strain conditions. Considering ambient temperature, results showed that 2090-T81 exhibited the highest toughness in both plane strain and plane stress conditions. For the plane strain condition, reasonable crack initiation and growth toughness of 1090-T81 are associated with a significant amount of delamination and transgranular fracture. Plane stress toughnesses were higher and fracture was characterized by shear cracking with minimal delaminations. In comparisons, the fracture behavior of 2090+In-T6 is significantly degraded by subgrain boundary precipitation. Toughness is low and characterized by intersubgranular fracture with no delamination in the plane stress or plane strain conditions. Intersubgranular cracking is a low energy event which presumably occurs prior to the onset of slip band cracking. Copious grain boundary precipitation is atypical of commercially available 2090. At cryogenic temperatures, both alloys exhibit increased yield strength, toughness, and amount of delamination and shear cracking. The change in fracture mode of 2090+In-T6 from intersubgranular cracking at ambient temperature to a combination of intersubgranular cracking, shear cracking, and delamination at cryogenic temperature is the subject of further investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan, Charles R.; Enos, David
The majority of existing dry storage systems used for spent nuclear fuel (SNF) consist of a welded 304 stainless steel container placed within a passively-ventilated concrete or steel overpack. More recently fielded systems are constructed with dual certified 304/304L and in some cases, 316 or 316L. In service, atmospheric salts, a portion of which will be chloride bearing, will be deposited on the surface of these containers. Initially, the stainless steel canister surface temperatures will be high (exceeding the boiling point of water in many cases) due to decay heat from the SNF. As the SNF cools over time, themore » container surface will also cool, and deposited salts will deliquesce to form potentially corrosive chloride-rich brines. Because austenitic stainless steels are prone to chloride-induced stress corrosion cracking (CISCC), the concern has been raised that SCC may significantly impact long-term canister performance. While the susceptibility of austenitic stainless steels to CISCC in the general sense is well known, the behavior of SCC cracks (i.e., initiation and propagation behavior) under the aforementioned atmospheric conditions is poorly understood.« less
Lin, Chia-Wei; Ju, Chien-Ping; Chern Lin, Jiin-Huey
2005-06-01
The purpose of the present study is to compare the high-cycle fatigue behavior of newly developed Ti-7.5Mo alloy with that of c.p. Ti, Ti-13Nb-13Zr and Ti-6Al-4V alloys in their as-cast state. Experimental results indicate that Ti-6Al-4V and c.p. Ti have higher stress-controlled fatigue resistance but lower strain-controlled fatigue resistance than Ti-7.5Mo and Ti-13Nb-13Zr. Among four materials Ti-7.5Mo demonstrates the best strain-controlled fatigue performance. The fracture surfaces of the present materials are comprised of three morphologically distinct zones: crack initiation zone, crack propagation zone, and the final-stage overload zone. The fatigue cracks almost always initiate from casting-induced surface/subsurface pores. A river pattern is observed in the propagation zone. In the overload zone dimples are typically observed. Three factors most significantly affecting the fatigue performance of the present materials are the presence of the casting-induced surface/subsurface pores; the location of the pores; and the inherent mechanical properties of the materials.
NASA Astrophysics Data System (ADS)
Li, Xiaozhao; Qi, Chengzhi; Shao, Zhushan; Ma, Chao
2018-02-01
Natural brittle rock contains numerous randomly distributed microcracks. Crack initiation, growth, and coalescence play a predominant role in evaluation for the strength and failure of brittle rocks. A new analytical method is proposed to predict the strength and failure of brittle rocks containing initial microcracks. The formulation of this method is based on an improved wing crack model and a suggested micro-macro relation. In this improved wing crack model, the parameter of crack angle is especially introduced as a variable, and the analytical stress-crack relation considering crack angle effect is obtained. Coupling the proposed stress-crack relation and the suggested micro-macro relation describing the relation between crack growth and axial strain, the stress-strain constitutive relation is obtained to predict the rock strength and failure. Considering different initial microcrack sizes, friction coefficients and confining pressures, effects of crack angle on tensile wedge force acting on initial crack interface are studied, and effects of crack angle on stress-strain constitutive relation of rocks are also analyzed. The strength and crack initiation stress under different crack angles are discussed, and the value of most disadvantaged angle triggering crack initiation and rock failure is founded. The analytical results are similar to the published study results. Rationality of this proposed analytical method is verified.
Effects of mechanical strain amplitude on the isothermal fatigue behavior of H13
NASA Astrophysics Data System (ADS)
Zeng, Yan; Zuo, Peng-peng; Wu, Xiao-chun; Xia, Shu-wen
2017-09-01
Isothermal fatigue (IF) tests were performed on H13 tool steel subjected to three different mechanical strain amplitudes at a constant temperature to determine the effects of mechanical strain amplitude on the microstructure of the steel samples. The samples' extent of damage after IF tests was compared by observation of their cracks and calculation of their damage parameters. Optical microscopy (OM) and scanning electron microscopy (SEM) were used to observe the microstructure of the samples. Cracks were observed to initiate at the surface because the strains and stresses there were the largest during thermal cycling. Mechanical strain accelerated the damage and softening of the steel. A larger mechanical strain caused greater deformation of the steel, which made the precipitated carbides easier to gather and grow along the deformation direction, possibly resulting in softening of the material or the initiation of cracks.
Ultrasonic Corrosion Fatigue Behavior of High Strength Austenitic Stainless Steels
NASA Astrophysics Data System (ADS)
Ebara, R.; Yamaguchi, Y.; Kanei, D.; Yamamoto, Y.
Ultrasonic corrosion fatigue tests were conducted for high strength austenitic stainless steels such as YUS270 and SUS304N2 in 3%NaCl aqueous solution. The reduction of giga-cycle corrosion fatigue strength of YUS270 and SUS304N2 was not observed at all, while the reduction of corrosion fatigue life was observed at higher stress amplitude. Corrosion pit was observed on corrosion fatigue crack initiation area. Striation was predominantly observed on crack propagation area in air and in 3% NaCl aqueous solution. The reduction of corrosion fatigue strength of high strength austenitic stainless steels such as YUS270 and SUS304N2 is due to the corrosion pit formation at corrosion fatigue crack initiation area. It can be concluded that the higher the ultimate tensile strength of austenitic stainless steels the higher the giga-cycle corrosion fatigue strength in 3%NaCl aqueous solution is.
Statistical distribution of time to crack initiation and initial crack size using service data
NASA Technical Reports Server (NTRS)
Heller, R. A.; Yang, J. N.
1977-01-01
Crack growth inspection data gathered during the service life of the C-130 Hercules airplane were used in conjunction with a crack propagation rule to estimate the distribution of crack initiation times and of initial crack sizes. A Bayesian statistical approach was used to calculate the fraction of undetected initiation times as a function of the inspection time and the reliability of the inspection procedure used.
Fracture mechanics analyses of ceramic/veneer interface under mixed-mode loading.
Wang, Gaoqi; Zhang, Song; Bian, Cuirong; Kong, Hui
2014-11-01
Few studies have focused on the interface fracture performance of zirconia/veneer bilayered structure, which plays an important role in dental all-ceramic restorations. The purpose of this study was to evaluate the fracture mechanics performance of zirconia/veneer interface in a wide range of mode-mixities (at phase angles ranging from 0° to 90°), and to examine the effect of mechanical properties of the materials and the interface on the fracture initiation and crack path of an interfacial crack. A modified sandwich test configuration with an oblique interfacial crack was proposed and calibrated to choose the appropriate geometry dimensions by means of finite element analysis. The specimens with different interface inclination angles were tested to failure under three-point bending configuration. Interface fracture parameters were obtained with finite element analyses. Based on the interfacial fracture mechanics, three fracture criteria for crack kinking were used to predict crack initiation and propagation. In addition, the effects of residual stresses due to coefficient of thermal expansion mismatch between zirconia and veneer on the crack behavior were evaluated. The crack initiation and propagation were well predicted by the three fracture criteria. For specimens at phase angle of 0, the cracks propagated in the interface; whereas for all the other specimens the cracks kinked into the veneer. Compressive residual stresses in the veneer can improve the toughness of the interface structure. The results suggest that, in zirconia/veneer bilayered structure the veneer is weaker than the interface, which can be used to explain the clinical phenomenon that veneer chipping rate is larger than interface delamination rate. Consequently, a veneer material with larger fracture toughness is needed to decrease the failure rate of all-ceramic restorations. And the coefficient of thermal expansion mismatch of the substrates can be larger to produce larger compressive stresses in the veneer. Copyright © 2014 Elsevier Ltd. All rights reserved.
Prediction of thermal cycling induced cracking in polymer matrix composites
NASA Technical Reports Server (NTRS)
Mcmanus, Hugh L.
1993-01-01
This report summarizes the work done in the period February 1993 through July 1993 on the 'Prediction of Thermal Cycling Induced Cracking In Polymer Matrix Composites' program. An oral presentation of this work was given to Langley personnel in September of 1993. This document was prepared for archival purposes. Progress studies have been performed on the effects of spatial variations in material strength. Qualitative agreement was found with observed patterns of crack distribution. These results were presented to NASA Langley personnel in November 1992. The analytical methodology developed by Prof. McManus in the summer of 1992 (under an ASEE fellowship) has been generalized. A method for predicting matrix cracking due to decreasing temperatures and/or thermal cycling in all plies of an arbitrary laminate has been implemented as a computer code. The code also predicts changes in properties due to the cracking. Experimental progressive cracking studies on a variety of laminates were carried out at Langley Research Center. Results were correlated to predictions using the new methods. Results were initially mixed. This motivated an exploration of the configuration of cracks within laminates. A crack configuration study was carried out by cutting and/or sanding specimens in order to examine the distribution of cracks within the specimens. These investigations were supplemented by dye-penetrant enhanced X-ray photographs. The behavior of thin plies was found to be different from the behavior of thicker plies (or ply groups) on which existing theories are based. Significant edge effects were also noted, which caused the traditional metric of microcracking (count of cracks on a polished edge) to be very inaccurate in some cases. With edge and configuration taken into account, rough agreement with predictions was achieved. All results to date were reviewed with NASA Langley personnel in September 1993.
Fracture behavior of the Space Shuttle thermal protection system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komine, A.; Kobayashi, A.S.
1983-09-01
Stable crack-growth and fracture-toughness experiments were conducted using precracked specimens machined from LI-900 reusable surface insulation (RSI) tiles of the Space Shuttle thermal protection system (TPS) at room temperature. Similar fracture experiments were conducted on fracture specimens with preexisting cracks at the interface of the tile and the strain isolation pad (SIP). Stable crack growth was not observed in the LI-900 tile fracture specimens which had a fracture toughness of 12.0 kPa sq rt of m. The intermittent subcritical crack growth at the tile-pad interface of the fracture specimens was attributed to successive local pull-outs due to tensile overload inmore » the LI-900 tile and cannot be characterized by linear elastic fracture mechanics. No subcritical interfacial crack growth was observed in the fracture specimens with densified LI-900 tiles where brittle fracture initiated at an interior point away from the densification. 11 references.« less
dK/da effects on the SCC growth rates of nickel base alloys in high-temperature water
NASA Astrophysics Data System (ADS)
Chen, Kai; Wang, Jiamei; Du, Donghai; Andresen, Peter L.; Zhang, Lefu
2018-05-01
The effect of dK/da on crack growth behavior of nickel base alloys has been studied by conducting stress corrosion cracking tests under positive and negative dK/da loading conditions on Alloys 690, 600 and X-750 in high temperature water. Results indicate that positive dK/da accelerates the SCC growth rates, and the accelerating effect increases with dK/da and the initial CGR. The FRI model was found to underestimate the dK/da effect by ∼100X, especially for strain hardening materials, and this underscores the need for improved insight and models for crack tip strain rate. The effect of crack tip strain rate and dK/dt in particular can explain the dK/da accelerating effect.
Fracture and crack growth in orthotropic laminates
NASA Technical Reports Server (NTRS)
Goree, James G.; Kaw, Autar K.
1985-01-01
A mathematical model based on the classical shear-lag assumptions is used to study the residual strength and fracture behavior of composite laminates with symmetrically placed buffer strips. The laminate is loaded by a uniform remote longitudinal tensile strain and has initial damage in the form of a transverse crack in the parent laminate between buffer strips. The crack growth behavior as a function of material properties, number of buffer-strip plies, spacing, width of buffer strips, longitudinal matrix splitting, and debonding at the interface is studied. Buffer-strip laminates are shown to arrest fracture and increase the residual strengths significantly over those of one material laminates, with S-glass being a more effective buffer strip material than Kevlar in increasing the damage tolerance of graphite/epoxy panels. For a typical graphite/epoxy laminate with S-glass buffer-strips, the residual strength is about 2.4 times the residual strength of an all graphite/epoxy panel with the same crack length. Approximately 50% of this increase is due to the S-glass/epoxy buffer-strips, 40% due to longitudinal splitting of the buffer strip interface and 10% due to bonding.
Effects of Contact Load on the Fretting Fatigue Behavior of IN-100 at Elevated Temperature
2009-03-01
initiated crack. The bulk stress dominates the third stage as the crack continues to propagate further. The fourth and final stage occurs when either the...two contacting bodies . The following equation governs the contact region: )()(1)( * 1 xqd x p x xh A βς ς ς πδ δ − − = ∫ (2.1) where )()()( 21...two contact bodies respectively. The determination of the Young’s modulus for this experimental setup is discussed in Appendix C. Based on the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiota, Tadashi, E-mail: tshiota@ceram.titech.ac.jp; Sato, Yoshitaka; Yasuda, Kouichi
2014-03-10
Simultaneous time-resolved measurements of photon emission (PE) and fast crack propagation upon bending fracture were conducted in silica glass and soda lime glass. Observation of fracture surfaces revealed that macroscopic crack propagation behavior was similar between the silica glass and soda lime glass when fracture loads for these specimens were comparable and cracks propagated without branching. However, a large difference in the PE characteristics was found between the two glasses. In silica glass, PE (645–655 nm) was observed during the entire crack propagation process, whereas intense PE (430–490 nm and 500–600 nm) was observed during the initial stages of propagation. In contrast, onlymore » weak PE was detected in soda lime glass. These results show that there is a large difference in the atomic processes involved in fast crack propagation between these glasses, and that PE can be used to study brittle fracture on the atomic scale.« less
Microstructural Effects on SCC Initiation PWR Primary Water Cold-Worked Alloy 600
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Ziqing; Toloczko, Mychailo B.; Bruemmer, Stephen M.
SCC initiation behavior of one mill annealed alloy 600 plate heat was investigated in simulated PWR primary water under constant load at yield stress with in-situ direct current potential drop (DCPD) monitoring for crack initiation. Twelve specimens were tested at similar cold work levels among which three showed much shorter SCC initiation times (<400 hrs) than the others (>1200 hrs). Post-test examinations revealed that these three specimens all feature an inhomogeneous microstructure where the primary crack always nucleated along the boundary of large elongated grains protruding normally into the gauge. In contrast, such microstructure was either not observed or didmore » not extend deep enough into the gauge in the other specimens exhibiting ~3-6X longer initiation times. In order to better understand the role of this microstructural inhomogeneity in SCC initiation, high-resolution microscopy was performed to compare carbide morphology and strain distribution between the long grains and normal grains, and their potential effects on SCC initiation are discussed in this paper.« less
Stable Tearing and Buckling Responses of Unstiffened Aluminum Shells with Long Cracks
NASA Technical Reports Server (NTRS)
Starnes, James H., Jr.; Rose, Cheryl A.
1999-01-01
The results of an analytical and experimental study of the nonlinear response of thin, unstiffened, aluminum cylindrical shells with a long longitudinal crack are presented. The shells are analyzed with a nonlinear shell analysis code that accurately accounts for global and local structural response phenomena. Results are presented for internal pressure and for axial compression loads. The effect of initial crack length on the initiation of stable crack growth and unstable crack growth in typical shells subjected to internal pressure loads is predicted using geometrically nonlinear elastic-plastic finite element analyses and the crack-tip-opening angle (CTOA) fracture criterion. The results of these analyses and of the experiments indicate that the pressure required to initiate stable crack growth and unstable crack growth in a shell subjected to internal pressure loads decreases as the initial crack length increases. The effects of crack length on the prebuckling, buckling and postbuckling responses of typical shells subjected to axial compression loads are also described. For this loading condition, the crack length was not allowed to increase as the load was increased. The results of the analyses and of the experiments indicate that the initial buckling load and collapse load for a shell subjected to axial compression loads decrease as the initial crack length increases. Initial buckling causes general instability or collapse of a shell for shorter initial crack lengths. Initial buckling is a stable local response mode for longer initial crack lengths. This stable local buckling response is followed by a stable postbuckling response, which is followed by general or overall instability of the shell.
Stable Tearing and Buckling Responses of Unstiffened Aluminum Shells with Long Cracks
NASA Technical Reports Server (NTRS)
Starnes, James H., Jr.; Rose, Cheryl A.
1998-01-01
The results of an analytical and experimental study of the nonlinear response of thin, unstiffened, aluminum cylindrical shells with a long longitudinal crack are presented. The shells are analyzed with a nonlinear shell analysis code that accurately accounts for global and local structural response phenomena. Results are presented for internal pressure and for axial compression loads. The effect of initial crack length on the initiation of stable crack growth and unstable crack growth in typical shells subjected to internal pressure loads is predicted using geometrically nonlinear elastic-plastic finite element analyses and the crack-tip-opening angle (CTOA) fracture criterion. The results of these analyses and of the experiments indicate that the pressure required to initiate stable crack growth and unstable crack growth in a shell subjected to internal pressure loads decreases as the initial crack length increases. The effects of crack length on the prebuckling, buckling and postbuckling responses of typical shells subjected to axial compression loads are also described. For this loading condition, the crack length was not allowed to increase as the load was increased. The results of the analyses and of the experiments indicate that the initial buckling load and collapse load for a shell subjected to axial compression loads decrease as the initial crack length increases. Initial buckling causes general instability or collapse of a shell for shorter initial crack lengths. Initial buckling is a stable local response mode for longer initial crack lengths. This stable local buckling response is followed by a stable postbuckling response, which is followed by general or overall instability of the shell.
Wang, Raorao; Lu, Chenglin; Arola, Dwayne; Zhang, Dongsheng
2013-08-01
The aim of this study was to compare failure modes and fracture strength of ceramic structures using a combination of experimental and numerical methods. Twelve specimens with flat layer structures were fabricated from two types of ceramic systems (IPS e.max ceram/e.max press-CP and Vita VM9/Lava zirconia-VZ) and subjected to monotonic load to fracture with a tungsten carbide sphere. Digital image correlation (DIC) and fractography technology were used to analyze fracture behaviors of specimens. Numerical simulation was also applied to analyze the stress distribution in these two types of dental ceramics. Quasi-plastic damage occurred beneath the indenter in porcelain in all cases. In general, the fracture strength of VZ specimens was greater than that of CP specimens. The crack initiation loads of VZ and CP were determined as 958 ± 50 N and 724 ± 36 N, respectively. Cracks were induced by plastic damage and were subsequently driven by tensile stress at the elastic/plastic boundary and extended downward toward to the veneer/core interface from the observation of DIC at the specimen surface. Cracks penetrated into e.max press core, which led to a serious bulk fracture in CP crowns, while in VZ specimens, cracks were deflected and extended along the porcelain/zirconia core interface without penetration into the zirconia core. The rupture loads for VZ and CP ceramics were determined as 1150 ± 170 N and 857 ± 66 N, respectively. Quasi-plastic deformation (damage) is responsible for crack initiation within porcelain in both types of crowns. Due to the intrinsic mechanical properties, the fracture behaviors of these two types of ceramics are different. The zirconia core with high strength and high elastic modulus has better resistance to fracture than the e.max core. © 2013 by the American College of Prosthodontists.
Hot Corrosion of Inconel 625 Overlay Weld Cladding in Smelting Off-Gas Environment
NASA Astrophysics Data System (ADS)
Mohammadi Zahrani, E.; Alfantazi, A. M.
2013-10-01
Degradation mechanisms and hot corrosion behavior of weld overlay alloy 625 were studied. Phase structure, morphology, thermal behavior, and chemical composition of deposited salt mixture on the weld overlay were characterized utilizing XRD, SEM/EDX, DTA, and ICP/OES, respectively. Dilution level of Fe in the weldment, dendritic structure, and degradation mechanisms of the weld were investigated. A molten phase formed on the weld layer at the operating temperature range of the boiler, which led to the hot corrosion attack in the water wall and the ultimate failure. Open circuit potential and weight-loss measurements and potentiodynamic polarization were carried out to study the hot corrosion behavior of the weld in the simulated molten salt medium at 873 K, 973 K, and 1073 K (600 °C, 700 °C, and 800 °C). Internal oxidation and sulfidation plus pitting corrosion were identified as the main hot corrosion mechanisms in the weld and boiler tubes. The presence of a significant amount of Fe made the dendritic structure of the weld susceptible to preferential corrosion. Preferentially corroded (Mo, Nb)-depleted dendrite cores acted as potential sites for crack initiation from the surface layer. The penetration of the molten phase into the cracks accelerated the cracks' propagation mainly through the dendrite cores and further crack branching/widening.
Static and Dynamic Behavior of High Modulus Hybrid Boron/Glass/Aluminum Fiber Metal Laminates
NASA Astrophysics Data System (ADS)
Yeh, Po-Ching
2011-12-01
This dissertation presents the investigation of a newly developed hybrid fiber metal laminates (FMLs) which contains commingled boron fibers, glass fibers, and 2024-T3 aluminum sheets. Two types of hybrid boron/glass/aluminum FMLs are developed. The first, type I hybrid FMLs, contained a layer of boron fiber prepreg in between two layers of S2-glass fiber prepreg, sandwiched by two aluminum alloy 2024-T3 sheets. The second, type II hybrid FMLs, contained three layer of commingled hybrid boron/glass fiber prepreg layers, sandwiched by two aluminum alloy 2024-T3 sheets. The mechanical behavior and deformation characteristics including blunt notch strength, bearing strength and fatigue behavior of these two types of hybrid boron/glass/aluminum FMLs were investigated. Compared to traditional S2-glass fiber reinforced aluminum laminates (GLARE), the newly developed hybrid boron/glass/aluminum fiber metal laminates possess high modulus, high yielding stress, and good blunt notch properties. From the bearing test result, the hybrid boron/glass/aluminum fiber metal laminates showed outstanding bearing strength. The high fiber volume fraction of boron fibers in type II laminates lead to a higher bearing strength compared to both type I laminates and traditional GLARE. Both types of hybrid FMLs have improved fatigue crack initiation lives and excellent fatigue crack propagation resistance compared to traditional GLARE. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, improved the fatigue crack initiation life and crack propagation rates of the aluminum sheets. Moreover, a finite element model was established to predict and verify the properties of hybrid boron/glass/aluminum FMLs. The simulated results showed good agreement with the experimental results.
Corrosion initiation and propagation behavior of corrosion resistant concrete reinforcing materials
NASA Astrophysics Data System (ADS)
Hurley, Michael F.
The life of a concrete structure exposed to deicing compounds or seawater is often limited by chloride induced corrosion of the steel reinforcement. In this study, the key material attributes that affect the corrosion initiation and propagation periods were studied. These included material composition, surface condition, ageing time, propagation behavior during active corrosion, morphology of attack, and type of corrosion products generated by each rebar material. The threshold chloride concentrations for solid 316LN stainless steel, 316L stainless steel clad over carbon steel, 2101 LDX, MMFX-2, and carbon steel rebar were investigated using electrochemical techniques in saturated calcium hydroxide solutions. Surface preparation, test method, duration of period exposed to a passivating condition prior to introduction of chloride, and presence of cladding defects all affected the threshold chloride concentration obtained. A model was implemented to predict the extension of time until corrosion initiation would be expected. 8 years was the predicted time to corrosion initiation for carbon steel. However, model results confirmed that use of 316LN may increase the time until onset of corrosion to 100 years or more. To assess the potential benefits afforded by new corrosion resistant rebar alloys from a corrosion resistance standpoint the corrosion propagation behavior and other factors that might affect the risk of corrosion-induced concrete cracking must also be considered. Radial pit growth was found to be ohmically controlled but repassivation occurred more readily at high potentials in the case of 316LN and 2101 stainless steels. The discovery of ohmically controlled propagation enabled transformation of propagation rates from simulated concrete pore solution to less conductive concrete by accounting for resistance changes in the surrounding medium. The corrosion propagation behavior as well as the morphology of attack directly affects the propensity for concrete cracking. Experimental results were used in conjunction with an existing model to predict the time until concrete cracking occurs for new rebar materials. The results suggest that corrosion resistant materials offer a significant extension to the corrosion propagation stage over carbon steel, even in very aggressive conditions because small, localized anodes develop when initiated.
Interference-Fit-Fastener Investigation
1975-09-01
Crack Initiation . .*. . . .* e . . .*. . . .*. 20 Figure 9. Actual and Predicted Fatigue Life Behavior of Notched Open Hole Plates for 2024 - T351 ... Aluminum (Reference 19) * .. . . . . . . . .. . 22 Figure 10. Gage I Strain Response With Cycles . . . . . . . . 24 Figure 11. Fatigue Damage - Life ... Fatigue Behavior", Effect of Environment and Complex Load History on Fatigue Life , ASTM STP 462, pp 74-91 (1970). (7) Grosskreutz, J. C., and Shaw, G. G
NASA Astrophysics Data System (ADS)
Böttger, B.; Apel, M.; Santillana, B.; Eskin, D. G.
2013-08-01
Hot cracking is one of the major defects in continuous casting of steels, frequently limiting the productivity. To understand the factors leading to this defect, microstructure formation is simulated for a low-carbon and two high-strength low-alloyed steels. 2D simulation of the initial stage of solidification is performed in a moving slice of the slab using proprietary multiphase-field software and taking into account all elements which are expected to have a relevant effect on the mechanical properties and structure formation during solidification. To account for the correct thermodynamic and kinetic properties of the multicomponent alloy grades, the simulation software is online coupled to commercial thermodynamic and mobility databases. A moving-frame boundary condition allows traveling through the entire solidification history starting from the slab surface, and tracking the morphology changes during growth of the shell. From the simulation results, significant microstructure differences between the steel grades are quantitatively evaluated and correlated with their hot cracking behavior according to the Rappaz-Drezet-Gremaud (RDG) hot cracking criterion. The possible role of the microalloying elements in hot cracking, in particular of traces of Ti, is analyzed. With the assumption that TiN precipitates trigger coalescence of the primary dendrites, quantitative evaluation of the critical strain rates leads to a full agreement with the observed hot cracking behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruemmer, Stephen M.; Olszta, Matthew J.; Toloczko, Mychailo B.
2012-10-01
Grain boundary microstructures and microchemistries are examined in cold-rolled alloy 690 tubing and plate materials and comparisons are made to intergranular stress corrosion cracking (IGSCC) behavior in PWR primary water. Chromium carbide precipitation is found to be a key aspect for materials in both the mill annealed and thermally treated conditions. Cold rolling to high levels of reduction was discovered to produce small IG voids and cracked carbides in alloys with a high density of grain boundary carbides. The degree of permanent grain boundary damage from cold rolling was found to depend directly on the initial IG carbide distribution. Formore » the same degree of cold rolling, alloys with few IG precipitates exhibited much less permanent damage. Although this difference in grain boundary damage appears to correlate with measured SCC growth rates, crack tip examinations reveal that cracked carbides appeared to blunt propagation of IGSCC cracks in many cases. Preliminary results suggest that the localized grain boundary strains and stresses produced during cold rolling promote IGSCC susceptibility and not the cracked carbides and voids.« less
Kinetic Energy Corrections for Slip-Stick Behavior in Brittle Adhesives
NASA Technical Reports Server (NTRS)
Macon, David J.; Anderson, Greg L.; McCool, Alex (Technical Monitor)
2001-01-01
Fracture mechanics is the study of the failure of a body that contains a flaw. In the energy balance approach to fracture mechanics, contributions from the external work and elastic strain energy are accounted for but rarely are corrections for the kinetic energy given. Under slip-stick conditions, part of the external work is expended as kinetic energy. The magnitude of this kinetic energy depends upon the shape of the crack. A specimen with a blunt crack will fail at a high load and the crack will catastrophically travel through the material until the kinetic energy is dissipated. Material with a sharp crack will fail at a lower load but will still be catastrophic in nature. A kinetic term is incorporated into the energy balance approach. This term accounts for the velocity of the crack after failure and how far the crack travels before arresting. This correction makes the shape of the initiation crack irrelevant. When applied to data generated by tapered double cantilever beam specimens under slip-stick conditions, the scatter in the measured critical strain energy release rate is significantly reduced.
Pellet Cladding Mechanical Interaction Modeling Using the Extended Finite Element Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Benjamin W.; Jiang, Wen; Dolbow, John E.
As a brittle material, the ceramic UO2 used as light water reactor fuel experiences significant fracturing throughout its life, beginning with the first rise to power of fresh fuel. This has multiple effects on the thermal and mechanical response of the fuel/cladding system. One such effect that is particularly important is that when there is mechanical contact between the fuel and cladding, cracks that extending from the outer surface of the fuel into the volume of the fuel cause elevated stresses in the adjacent cladding, which can potentially lead to cladding failure. Modeling the thermal and mechanical response of themore » cladding in the vicinity of these surface-breaking cracks in the fuel can provide important insights into this behavior to help avoid operating conditions that could lead to cladding failure. Such modeling has traditionally been done in the context of finite-element-based fuel performance analysis by modifying the fuel mesh to introduce discrete cracks. While this approach is effective in capturing the important behavior at the fuel/cladding interface, there are multiple drawbacks to explicitly incorporating the cracks in the finite element mesh. Because the cracks are incorporated in the original mesh, the mesh must be modified for cracks of specified location and depth, so it is difficult to account for crack propagation and the formation of new cracks at other locations. The extended finite element method (XFEM) has emerged in recent years as a powerful method to represent arbitrary, evolving, discrete discontinuities within the context of the finite element method. Development work is underway by the authors to implement XFEM in the BISON fuel performance code, and this capability has previously been demonstrated in simulations of fracture propagation in ceramic nuclear fuel. These preliminary demonstrations have included only the fuel, and excluded the cladding for simplicity. This paper presents initial results of efforts to apply XFEM to model stress concentrations induced by fuel fractures at the fuel/cladding interface during pellet cladding mechanical interaction (PCMI). This is accomplished by enhancing the thermal and mechanical contact enforcement algorithms employed by BISON to permit their use in conjunction with XFEM. The results from this methodology are demonstrated to be equivalent to those from using meshed discrete cracks. While the results of the two methods are equivalent for the case of a stationary crack, it is demonstrated that XFEM provides the additional flexibility of allowing arbitrary crack initiation and propagation during the analysis, and minimizes model setup effort for cases with stationary cracks.« less
On crack initiation in notched, cross-plied polymer matrix composites
NASA Astrophysics Data System (ADS)
Yang, Q. D.; Schesser, D.; Niess, M.; Wright, P.; Mavrogordato, M. N.; Sinclair, I.; Spearing, S. M.; Cox, B. N.
2015-05-01
The physics of crack initiation in a polymer matrix composite are investigated by varying the modeling choices made in simulations and comparing the resulting predictions with high-resolution in situ images of cracks. Experimental data were acquired using synchrotron-radiation computed tomography (SRCT) at a resolution on the order of 1 μm, which provides detailed measurement of the location, shape, and size of small cracks, as well as the crack opening and shear displacements. These data prove sufficient to discriminate among competing physical descriptions of crack initiation. Simulations are executed with a high-fidelity formulation, the augmented finite element method (A-FEM), which permits consideration of coupled damage mechanisms, including both discrete cracks and fine-scale continuum damage. The discrete cracks are assumed to be nonlinear fracture events, governed by reasonably general mixed-mode cohesive laws. Crack initiation is described in terms of strength parameters within the cohesive laws, so that the cohesive law provides a unified model for crack initiation and growth. Whereas the cracks investigated are typically 1 mm or less in length, the fine-scale continuum damage refers to irreversible matrix deformation occurring over gauge lengths extending down to the fiber diameter (0.007 mm). We find that the location and far-field stress for crack initiation are predicted accurately only if the variations of local stress within plies and in the presence of stress concentrators (notches, etc.) are explicitly computed and used in initiation criteria; stress redistribution due to matrix nonlinearity that occurs prior to crack initiation is accounted for; and a mixed-mode criterion is used for crack initiation. If these factors are not all considered, which is the case for commonly used failure criteria, predictions of the location and far-field stress for initiation are not accurate.
SCC Initiation Behavior of Alloy 182 in PWR Primary Water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toloczko, Mychailo B.; Zhai, Ziqing; Bruemmer, Stephen M.
SCC initiation behavior of 15% cold forged specimens cut from four different alloy 182 weldments was investigated in 360°C simulated PWR primary water under constant load at the yield stress using direct current potential drop to perform in-situ monitoring of SCC initiation time. Within each weldment, one or more specimens underwent SCC initiation within 24 hours of reaching full load while some specimens had much longer initiation times, in a few cases exceeding 2500 hours. Detailed examinations were conducted on these specimens with a focus on different microstructural features such as preexisting defects, grain orientation and second phases, highlighting anmore » important role of microstructure in crack initiation of alloy 182.« less
Damage Accumulation in SiC/SiC Composites with 3D Architectures
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Yun, Hee-Mann; DiCarlo, James A.
2003-01-01
The formation and propagation of multiple matrix cracks in relatively dense ceramic matrix composites when subjected to increasing tensile stress is necessary for high strength and tough composites. However, the occurrence of matrix cracks at low stresses may limit the usefulness of some non-oxide composite systems when subjected to oxidizing environments for long times at stresses sufficient to cause matrix cracking. For SiC fiber-reinforced composites with two-dimensional woven architectures and chemically vapor infiltrated (CVI) SiC matrix and melt-infiltrated (MI) Si/SiC matrix composites, the matrix cracking behavior has been fairly well characterized for different fiber-types and woven architectures. It was found that the occurrence, degree, and growth of matrix cracks depends on the material properties of the composite constituents as well as other physical properties of the composite or architecture, e.g., matrix porosity and size of the fiber bundle. In this study, matrix cracking in SiC fiber reinforced, melt-infiltrated SiC composites with a 3D orthogonal architecture was determined for specimens tested in tension at room temperature. Acoustic emission (AE) was used to monitor the matrix cracking activity, which was later confirmed by microscopic examination of specimens that had failed. The determination of the exact location of AE demonstrated that initial cracking occurred in the matrix rich regions when a large z-direction fiber bundle was used. For specimens with large z-direction fiber tows, the earliest matrix cracking could occur at half the stress for standard 2D woven composites with similar constituents. Damage accumulation in 3D architecture composites will be compared to damage accumulation in 2D architecture composites and discussed with respect to modeling composite stress-strain behavior and use of these composites at elevated temperatures.
Fatigue damage behavior of a surface-mount electronic package under different cyclic applied loads
NASA Astrophysics Data System (ADS)
Ren, Huai-Hui; Wang, Xi-Shu
2014-04-01
This paper studies and compares the effects of pull-pull and 3-point bending cyclic loadings on the mechanical fatigue damage behaviors of a solder joint in a surface-mount electronic package. The comparisons are based on experimental investigations using scanning electron microscopy (SEM) in-situ technology and nonlinear finite element modeling, respectively. The compared results indicate that there are different threshold levels of plastic strain for the initial damage of solder joints under two cyclic applied loads; meanwhile, fatigue crack initiation occurs at different locations, and the accumulation of equivalent plastic strain determines the trend and direction of fatigue crack propagation. In addition, simulation results of the fatigue damage process of solder joints considering a constitutive model of damage initiation criteria for ductile materials and damage evolution based on accumulating inelastic hysteresis energy are identical to the experimental results. The actual fatigue life of the solder joint is almost the same and demonstrates that the FE modeling used in this study can provide an accurate prediction of solder joint fatigue failure.
Zhao, Youxuan; Li, Feilong; Cao, Peng; Liu, Yaolu; Zhang, Jianyu; Fu, Shaoyun; Zhang, Jun; Hu, Ning
2017-08-01
Since the identification of micro-cracks in engineering materials is very valuable in understanding the initial and slight changes in mechanical properties of materials under complex working environments, numerical simulations on the propagation of the low frequency S 0 Lamb wave in thin plates with randomly distributed micro-cracks were performed to study the behavior of nonlinear Lamb waves. The results showed that while the influence of the randomly distributed micro-cracks on the phase velocity of the low frequency S 0 fundamental waves could be neglected, significant ultrasonic nonlinear effects caused by the randomly distributed micro-cracks was discovered, which mainly presented as a second harmonic generation. By using a Monte Carlo simulation method, we found that the acoustic nonlinear parameter increased linearly with the micro-crack density and the size of micro-crack zone, and it was also related to the excitation frequency and friction coefficient of the micro-crack surfaces. In addition, it was found that the nonlinear effect of waves reflected by the micro-cracks was more noticeable than that of the transmitted waves. This study theoretically reveals that the low frequency S 0 mode of Lamb waves can be used as the fundamental waves to quantitatively identify micro-cracks in thin plates. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Maile, K.
1982-01-01
The influence of different parameters on the creep-fatigue behavior of several steel alloys was investigated. The higher the temperature the lower the crack initiation value. Pauses during the cycle reduce the damage. Oxidation reduces and protective gas increases the lifetime. Prior loading and prior deformation reduce the lifetime. Short annealing slightly affects the cycle stress behavior. The test results do not satisfactorily agree with methods of extrapolation and damage accumulation.
Role of prism decussation on fatigue crack growth and fracture of human enamel.
Bajaj, Devendra; Arola, Dwayne
2009-10-01
The role of prism decussation on the crack growth resistance of human enamel is evaluated. Miniature inset compact tension (CT) specimens embodying a section of cuspal enamel were subjected to Mode I cyclic or monotonic loads. Cracks were grown in either the forward (from outer enamel inwards) or reverse (from inner enamel outwards) direction and the responses were compared quantitatively. Results showed that the outer enamel exhibits lower resistance to the inception and growth of cracks. Regardless of the growth direction, the near-threshold region of cyclic extension was typical of "short crack" behavior (i.e. deceleration of growth with an increase in crack length). Cyclic crack growth was more stable in the forward direction and occurred over twice the spatial distance achieved in the reverse direction. In response to the monotonic loads, a rising R-curve response was exhibited by growth in the forward direction only. The total energy absorbed in fracture for the forward direction was more than three times that in the reverse. The rise in crack growth resistance was largely attributed to a combination of mechanisms that included crack bridging, crack bifurcation and crack curving, which were induced by decussation in the inner enamel. An analysis of the responses distinguished that the microstructure of enamel appears optimized for resisting crack growth initiating from damage at the tooth's surface.
Quantitative image analysis of WE43-T6 cracking behavior
NASA Astrophysics Data System (ADS)
Ahmad, A.; Yahya, Z.
2013-06-01
Environment-assisted cracking of WE43 cast magnesium (4.2 wt.% Yt, 2.3 wt.% Nd, 0.7% Zr, 0.8% HRE) in the T6 peak-aged condition was induced in ambient air in notched specimens. The mechanism of fracture was studied using electron backscatter diffraction, serial sectioning and in situ observations of crack propagation. The intermetallic (rare earthed-enriched divorced intermetallic retained at grain boundaries and predominantly at triple points) material was found to play a significant role in initiating cracks which leads to failure of this material. Quantitative measurements were required for this project. The populations of the intermetallic and clusters of intermetallic particles were analyzed using image analysis of metallographic images. This is part of the work to generate a theoretical model of the effect of notch geometry on the static fatigue strength of this material.
Dynamic delamination crack propagation in a graphite/epoxy laminate
NASA Technical Reports Server (NTRS)
Grady, J. E.; Sun, C. T.
1991-01-01
Dynamic delamination crack propagation in a (90/0) 5s Graphite/Epoxy laminate with an embedded interfacial crack was investigated experimentally using high speed photography. The dynamic motion was produced by impacting the beamlike laminate specimen with a silicon rubber ball. The threshold impact velocities required to initiate dynamic crack propagation in laminates with varying initial crack positions were determined. The crack propagation speeds were estimated from the photographs. Results show that the through the thickness position of the embedded crack can significantly affect the dominant mechanism and the threshold impact velocity for the onset of crack movement. If the initial delamination is placed near the top of bottom surface of the laminate, local buckling of the delaminated plies may cause instability of the crack. If the initial delamination lies on the midplane, local buckling does not occur and the initiation of crack propagation appears to be dominated by Mode II fracture. The crack propagation and arrest observed was seen to be affected by wave motion within the delamination region.
NASA Astrophysics Data System (ADS)
Tanaka, Y.; Endo, M.; Moriyama, S.
2017-05-01
Delamination failure is one of the most important engineering problems. This failure can frequently be detrimental to rolling contact machine elements such as bearings, gear wheels, etc. This phenomenon, called rolling contact fatigue, has a close relationship not only with opening-mode but also with shear-mode fatigue crack growth. The crack face interference is known to significantly affect the shear-mode fatigue crack propagation and its threshold behavior. Quantitative investigation on friction and wear at fatigue crack faces in the material is essentially impossible. Previously, thus, a novel ring-on-ring test by making use of fatigue testing machine was proposed to simulate a cyclic reciprocating sliding contact of crack surfaces. However, this test procedure had some problems. For instance, in order to achieve the uniform contact at the start of test, the rubbing of specimens must be conducted in advance. By this treatment, the specimen surfaces were already damaged before the test. In this study, an improvement of experimental method was made to perform the test using the damage-free specimens. The friction and wear properties for heat-treated high carbon-chromium bearing steel were investigated with this new method and the results were compared to the results obtained by using the initially damaged specimens.
Effect of Microstructure on Time Dependent Fatigue Crack Growth Behavior In a P/M Turbine Disk Alloy
NASA Technical Reports Server (NTRS)
Telesman, Ignacy J.; Gabb, T. P.; Bonacuse, P.; Gayda, J.
2008-01-01
A study was conducted to determine the processes which govern hold time crack growth behavior in the LSHR disk P/M superalloy. Nineteen different heat treatments of this alloy were evaluated by systematically controlling the cooling rate from the supersolvus solutioning step and applying various single and double step aging treatments. The resulting hold time crack growth rates varied by more than two orders of magnitude. It was shown that the associated stress relaxation behavior for these heat treatments was closely correlated with the crack growth behavior. As stress relaxation increased, the hold time crack growth resistance was also increased. The size of the tertiary gamma' in the general microstructure was found to be the key microstructural variable controlling both the hold time crack growth behavior and stress relaxation. No relationship between the presence of grain boundary M23C6 carbides and hold time crack growth was identified which further brings into question the importance of the grain boundary phases in determining hold time crack growth behavior. The linear elastic fracture mechanics parameter, Kmax, is unable to account for visco-plastic redistribution of the crack tip stress field during hold times and thus is inadequate for correlating time dependent crack growth data. A novel methodology was developed which captures the intrinsic crack driving force and was able to collapse hold time crack growth data onto a single curve.
Effects of friction and high torque on fatigue crack propagation in Mode III
NASA Astrophysics Data System (ADS)
Nayeb-Hashemi, H.; McClintock, F. A.; Ritchie, R. O.
1982-12-01
Turbo-generator and automotive shafts are often subjected to complex histories of high torques. To provide a basis for fatigue life estimation in such components, a study of fatigue crack propagation in Mode III (anti-plane shear) for a mill-annealed AISI 4140 steel (RB88, 590 MN/m2 tensile strength) has been undertaken, using torsionally-loaded, circumferentially-notched cylindrical specimens. As demonstrated previously for higher strength AISI 4340 steel, Mode III cyclic crack growth rates (dc/dN) IIIcan be related to the alternating stress intensity factor ΔKIII for conditions of small-scale yielding. However, to describe crack propagation behavior over an extended range of crack growth rates (˜10-6 to 10-2 mm per cycle), where crack growth proceeds under elastic-plastic and full plastic conditions, no correlation between (dc/dN) III and ΔKIII is possible. Accordingly, a new parameter for torsional crack growth, termed the plastic strain intensity Γ III, is introduced and is shown to provide a unique description of Mode III crack growth behavior for a wide range of testing conditions, provided a mean load reduces friction, abrasion, and interlocking between mating fracture surfaces. The latter effect is found to be dependent upon the mode of applied loading (i.e., the presence of superimposed axial loads) and the crack length and torque level. Mechanistically, high-torque surfaces were transverse, macroscopically flat, and smeared. Lower torques showed additional axial cracks (longitudinal shear cracking) perpendicular to the main transverse surface. A micro-mechanical model for the main radi l Mode III growth, based on the premise that crack advance results from Mode II coalescence of microcracks initiated at inclusions ahead of the main crack front, is extended to high nominal stress levels, and predicts that Mode III fatigue crack propagation rates should be proportional to the range of plastic strain intensity (ΔΓIII if local Mode II growth rates are proportional to the displacements. Such predictions are shown to be in agreement with measured growth rates in AISI {dy4140} steel from 10-6 to 10-2 mm per cycle.
Investigation of Cracks Found in Helicopter Longerons
NASA Technical Reports Server (NTRS)
Newman, John A.; Baughman, James M.; Wallace, Terryl A.
2009-01-01
Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurigical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.
Investigation of Helicopter Longeron Cracks
NASA Technical Reports Server (NTRS)
Newman, John A.; Baughman, James; Wallace, Terryl A.
2009-01-01
Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurgical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.
Stress corrosion cracking of duplex stainless steels in caustic solutions
NASA Astrophysics Data System (ADS)
Bhattacharya, Ananya
Duplex stainless steels (DSS) with roughly equal amount of austenite and ferrite phases are being used in industries such as petrochemical, nuclear, pulp and paper mills, de-salination plants, marine environments, and others. However, many DSS grades have been reported to undergo corrosion and stress corrosion cracking in some aggressive environments such as chlorides and sulfide-containing caustic solutions. Although stress corrosion cracking of duplex stainless steels in chloride solution has been investigated and well documented in the literature but the SCC mechanisms for DSS in caustic solutions were not known. Microstructural changes during fabrication processes affect the overall SCC susceptibility of these steels in caustic solutions. Other environmental factors, like pH of the solution, temperature, and resulting electrochemical potential also influence the SCC susceptibility of duplex stainless steels. In this study, the role of material and environmental parameters on corrosion and stress corrosion cracking of duplex stainless steels in caustic solutions were investigated. Changes in the DSS microstructure by different annealing and aging treatments were characterized in terms of changes in the ratio of austenite and ferrite phases, phase morphology and intermetallic precipitation using optical micrography, SEM, EDS, XRD, nano-indentation and microhardness methods. These samples were then tested for general and localized corrosion susceptibility and SCC to understand the underlying mechanisms of crack initiation and propagation in DSS in the above-mentioned environments. Results showed that the austenite phase in the DSS is more susceptible to crack initiation and propagation in caustic solutions, which is different from that in the low pH chloride environment where the ferrite phase is the more susceptible phase. This study also showed that microstructural changes in duplex stainless steels due to different heat treatments could affect their SCC susceptibility. Annealed and water quenched specimens were found to be immune to SCC in caustic environment. Aging treatment at 800°C gave rise to sigma and chi precipitates in the DSS. However, these sigma and chi precipitates, known to initiate cracking in DSS in chloride environment did not cause any cracking of DSS in caustic solutions. Aging of DSS at 475°C had resulted in '475°C embrittlement' and caused cracks to initiate in the ferrite phase. This was in contrast to the cracks initiating in the austenite phase in the as-received DSS. Alloy composition and microstructure of DSS as well as solution composition (dissolved ionic species) was also found to affect the electrochemical behavior and passivation of DSS which in turn plays a major role in stress corrosion crack initiation and propagation. Corrosion rates and SCC susceptibility of DSS was found to increase with addition of sulfide to caustic solutions. Corrosion films on DSS, characterized using XRD and X-ray photoelectron spectroscopy, indicated that the metal sulfide compounds were formed along with oxides at the metal surface in the presence of sulfide containing caustic environments. These metal sulfide containing passive films are unstable and hence breaks down under mechanical straining, leading to SCC initiations. The overall results from this study helped in understanding the mechanism of SCC in caustic solutions. Favorable slip systems in the austenite phase of DSS favors slip-induced local film damage thereby initiating a stress corrosion crack. Repeated film repassivation and breaking, followed by crack tip dissolution results in crack propagation in the austenite phase of DSS alloys. Result from this study will have a significant impact in terms of identifying the alloy compositions, fabrication processes, microstructures, and environmental conditions that may be avoided to mitigate corrosion and stress corrosion cracking of DSS in caustic solutions.
Separating the Influence of Environment from Stress Relaxation Effects on Dwell Fatigue Crack Growth
NASA Technical Reports Server (NTRS)
Telesman, Jack; Gabb, Tim; Ghosn, Louis J.
2016-01-01
Seven different microstructural variations of LSHR were produced by controlling the cooling rate and the subsequent aging and thermal exposure heat treatments. Through cyclic fatigue crack growth testing performed both in air and vacuum, it was established that four out of the seven LSHR heat treatments evaluated, possessed similar intrinsic environmental resistance to cyclic crack growth. For these four heat treatments, it was further shown that the large differences in dwell crack growth behavior which still persisted, were related to their measured stress relaxation behavior. The apparent differences in their dwell crack growth resistance were attributed to the inability of the standard linear elastic fracture mechanics (LEFM) stress intensity parameter to account for visco-plastic behavior. Crack tip stress relaxation controls the magnitude of the remaining local tensile stresses which are directly related to the measured dwell crack growth rates. It was hypothesized that the environmentally weakened grain boundary crack tip regions fail during the dwells when their strength is exceeded by the remaining local crack tip tensile stresses. It was shown that the classical creep crack growth mechanisms such as grain boundary sliding did not contribute to crack growth, but the local visco-plastic behavior still plays a very significant role by determining the crack tip tensile stress field which controls the dwell crack growth behavior. To account for the influence of the visco-plastic behavior on the crack tip stress field, an empirical modification to the LEFM stress intensity parameter, Kmax, was developed by incorporating into the formulation the remaining stress level concept as measured by simple stress relaxation tests. The newly proposed parameter, Ksrf, did an excellent job in correlating the dwell crack growth rates for the four heat treatments which were shown to have similar intrinsic environmental cyclic fatigue crack growth resistance.
The influence of the compression interface on the failure behavior and size effect of concrete
NASA Astrophysics Data System (ADS)
Kampmann, Raphael
The failure behavior of concrete materials is not completely understood because conventional test methods fail to assess the material response independent of the sample size and shape. To study the influence of strength and strain affecting test conditions, four typical concrete sample types were experimentally evaluated in uniaxial compression and analyzed for strength, deformational behavior, crack initiation/propagation, and fracture patterns under varying boundary conditions. Both low friction and conventional compression interfaces were assessed. High-speed video technology was used to monitor macrocracking. Inferential data analysis proved reliably lower strength results for reduced surface friction at the compression interfaces, regardless of sample shape. Reciprocal comparisons revealed statistically significant strength differences between most sample shapes. Crack initiation and propagation was found to differ for dissimilar compression interfaces. The principal stress and strain distributions were analyzed, and the strain domain was found to resemble the experimental results, whereas the stress analysis failed to explain failure for reduced end confinement. Neither stresses nor strains indicated strength reductions due to reduced friction, and therefore, buckling effects were considered. The high-speed video analysis revealed localize buckling phenomena, regardless of end confinement. Slender elements were the result of low friction, and stocky fragments developed under conventional confinement. The critical buckling load increased accordingly. The research showed that current test methods do not reflect the "true'' compressive strength and that concrete failure is strain driven. Ultimate collapse results from buckling preceded by unstable cracking.
Role of Prism Decussation on Fatigue Crack Growth and Fracture of Human Enamel
Bajaj, Devendra; Arola, Dwayne
2009-01-01
The role of prism decussation on the crack growth resistance of human enamel is evaluated. Miniature inset Compact Tension (CT) specimens embodying a section of cuspal enamel were subjected to Mode I cyclic or monotonic loads. Cracks were grown in either the forward (from outer enamel inwards) or reverse (from inner enamel outwards) direction and the responses were compared quantitatively. Results showed that the outer enamel exhibits lower resistance to the inception and growth of cracks. Regardless of the growth direction, the near threshold region of cyclic extension was typical of ‘short crack’ behavior (i.e. deceleration of growth with an increase in crack length). Cyclic crack growth was more stable in the forward direction and occurred over twice the spatial distance achieved in the reverse direction. In response to the monotonic loads, a rising R-curve response was exhibited by growth in the forward direction only. The total energy absorbed in fracture for the forward direction was more than three times that in the reverse. The rise in crack growth resistance was largely attributed to a combination of mechanisms that included crack bridging, crack bifurcation and crack curving, which were induced by decussation in the inner enamel. An analysis of the responses distinguished that the microstructure of enamel appears optimized for resisting crack growth initiating from damage at the tooth’s surface. PMID:19433137
NASA Astrophysics Data System (ADS)
Suresh Kumar, T.; Nagesha, A.; Ganesh Kumar, J.; Parameswaran, P.; Sandhya, R.
2018-05-01
Influence of short-term thermal aging on the low-cycle fatigue (LCF) behavior of 316LN austenitic stainless steel weld joint with 0.07 wt pct N has been investigated. Prior thermal exposure was found to improve the fatigue life compared with the as-welded condition. Besides, the treatment also imparted a softening effect on the weld metal, leading to an increase in the ductility of the weld joint which had a bearing on the cyclic stress response. The degree of cyclic hardening was seen to increase after aging. Automated ball-indentation (ABI) technique was employed toward understanding the mechanical properties of individual zones across the weld joint. It was observed that the base metal takes most of the applied cyclic strain during LCF deformation in the as-welded condition. In the aged condition, however, the weld also participates in the cyclic deformation. The beneficial effect of thermal aging on cyclic life is attributed to a reduction in the severity of the metallurgical notch leading to a restoration of ductility of the weld region. The transformation of δ-ferrite to σ-phase during the aging treatment was found to influence the location of crack initiation. Fatigue cracks were found to initiate in the base metal region of the joint in most of the testing conditions. However, embrittlement in the weld metal caused a shift in the point of crack initiation with increasing strain amplitude under LCF.
Dwell Notch Low Cycle Fatigue Behavior of a Powder Metallurgy Nickel Disk Alloy
NASA Technical Reports Server (NTRS)
Telesman, J.; Gabb, T. P.; Yamada, Y.; Ghosn, L. J.; Jayaraman, N.
2012-01-01
A study was conducted to determine the processes which govern dwell notch low cycle fatigue (NLCF) behavior of a powder metallurgy (P/M) ME3 disk superalloy. The emphasis was placed on the environmentally driven mechanisms which may embrittle the highly stressed notch surface regions and reduce NLCF life. In conjunction with the environmentally driven notch surface degradation processes, the visco-plastic driven mechanisms which can significantly change the notch root stresses were also considered. Dwell notch low cycle fatigue testing was performed in air and vacuum on a ME3 P/M disk alloy specimens heat treated using either a fast or a slow cooling rate from the solutioning treatment. It was shown that dwells at the minimum stress typically produced a greater life debit than the dwells applied at the maximum stress, especially for the slow cooled heat treatment. Two different environmentally driven failure mechanisms were identified as the root cause of early crack initiation in the min dwell tests. Both of these failure mechanisms produced mostly a transgranular crack initiation failure mode and yet still resulted in low NLCF fatigue lives. The lack of stress relaxation during the min dwell tests produced higher notch root stresses which caused early crack initiation and premature failure when combined with the environmentally driven surface degradation mechanisms. The importance of environmental degradation mechanisms was further highlighted by vacuum dwell NLCF tests which resulted in considerably longer NLCF lives, especially for the min dwell tests.
Crack initiation modeling of a directionally-solidified nickel-base superalloy
NASA Astrophysics Data System (ADS)
Gordon, Ali Page
Combustion gas turbine components designed for application in electric power generation equipment are subject to periodic replacement as a result of cracking, damage, and mechanical property degeneration that render them unsafe for continued operation. In view of the significant costs associated with inspecting, servicing, and replacing damaged components, there has been much interest in developing models that not only predict service life, but also estimate the evolved microstructural state of the material. This thesis explains manifestations of microstructural damage mechanisms that facilitate fatigue crack nucleation in a newly-developed directionally-solidified (DS) Ni-base superalloy components exposed to elevated temperatures and high stresses. In this study, models were developed and validated for damage and life prediction using DS GTD-111 as the subject material. This material, proprietary to General Electric Energy, has a chemical composition and grain structure designed to withstand creep damage occurring in the first and second stage blades of gas-powered turbines. The service conditions in these components, which generally exceed 600°C, facilitate the onset of one or more damage mechanisms related to fatigue, creep, or environment. The study was divided into an empirical phase, which consisted of experimentally simulating service conditions in fatigue specimens, and a modeling phase, which entailed numerically simulating the stress-strain response of the material. Experiments have been carried out to simulate a variety of thermal, mechanical, and environmental operating conditions endured by longitudinally (L) and transversely (T) oriented DS GTD-111. Both in-phase and out-of-phase thermo-mechanical fatigue tests were conducted. In some cases, tests in extreme environments/temperatures were needed to isolate one or at most two of the mechanisms causing damage. Microstructural examinations were carried out via SEM and optical microscopy. A continuum crystal plasticity model was used to simulate the material behavior in the L and T orientations. The constitutive model was implemented in ABAQUS and a parameter estimation scheme was developed to obtain the material constants. A physically-based model was developed for correlating crack initiation life based on the experimental life data and predictions are made using the crack initiation model. Assuming a unique relationship between the damage fraction and cycle fraction with respect to cycles to crack initiation for each damage mode, the total crack initiation life has been represented in terms of the individual damage components (fatigue, creep-fatigue, creep, and oxidation-fatigue) observed at the end state of crack initiation.
Stress-corrosion behavior of aluminum-lithium alloys in aqueous salt environments
NASA Technical Reports Server (NTRS)
Pizzo, P. P.; Galvin, R. P.; Nelson, H. G.
1984-01-01
The stress corrosion susceptibility of two powder metallurgy (P/M) alloys, Al-Li-Cu and Al-Li-Cu-Mg; two mechanically attrited (M/A) alloys, Al-Li-Cu and Al-Li-Mg; and two wrought, ingot alloys, X-2020 and AA7475, are compared. Time-dependent fracture in an aqueous sodium chloride environment under alternate immersion condition was found to vary significantly between alloys. The stress corrosion behavior of the two powder metallurgy processed alloys was studied in detail under conditions of crack initiation, static crack growth, and fatigue crack growth. A variety of stress corrosion tests were performed including smooth surface, time-to-failure tests; potentiostatic tests on smooth surfaces exposed to constant applied strain rates; and fracture mechanics-type tests under static and cyclic loads. Both alloys show surface pitting and subsequent intergranular corrosion. Pitting is more severe in the magnesium-bearing alloy and is associated with stringer particles strung along the extrusion direction as a result of P/M processing.
Dynamic fracture behavior of single and contacting Poly(methyl methacrylate) particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parab, Niranjan D.; Guo, Zherui; Hudspeth, Matthew C.
Fracture behaviors of single, two, and multiple contacting spherical Poly (methyl methacrylate) (PMMA) particles were recorded using high speed synchrotron X-ray phase contrast imaging. A miniaturized Kolsky bar setup was used to apply dynamic compressive loading on the PMMA particles. In both single and two particle experiments, cracking initiated near the center of the particles and propagated towards the contacts. The crack bifurcated near the contact points for single particle experiments, thus forming conical fragments. The crack bifurcation and subsequent conical fragment formation was observed only at the particle-particle contact for two particle experiments. The particles were observed to fracturemore » in hemispherical fragments normal to the contact plane in the multiparticle experiments. The observed failure mechanisms strongly suggest that the maximum tensile stress near the center of the particle is the critical parameter governing fracture of the particles. Moreover, the compressive stress under the contact areas led to the bifurcation and subsequent conical fragment formation.« less
Dynamic fracture behavior of single and contacting Poly(methyl methacrylate) particles
Parab, Niranjan D.; Guo, Zherui; Hudspeth, Matthew C.; ...
2017-09-19
Fracture behaviors of single, two, and multiple contacting spherical Poly (methyl methacrylate) (PMMA) particles were recorded using high speed synchrotron X-ray phase contrast imaging. A miniaturized Kolsky bar setup was used to apply dynamic compressive loading on the PMMA particles. In both single and two particle experiments, cracking initiated near the center of the particles and propagated towards the contacts. The crack bifurcated near the contact points for single particle experiments, thus forming conical fragments. The crack bifurcation and subsequent conical fragment formation was observed only at the particle-particle contact for two particle experiments. The particles were observed to fracturemore » in hemispherical fragments normal to the contact plane in the multiparticle experiments. The observed failure mechanisms strongly suggest that the maximum tensile stress near the center of the particle is the critical parameter governing fracture of the particles. Moreover, the compressive stress under the contact areas led to the bifurcation and subsequent conical fragment formation.« less
Stress-corrosion behavior of aluminum-lithium alloys in aqueous environments
NASA Technical Reports Server (NTRS)
Pizzo, P. P.; Galvin, R. P.; Nelson, H. G.
1983-01-01
The stress corrosion susceptibility of two powder metallurgy (P/M) alloys, Al-Li-Cu and Al-Li-Cu-Mg two mechanically attrited (M/A) alloys, Al-Li-Cu and Al-Li-Mg; and two wrought, ingot alloys, X-2020 and AA7475, are compared. Time-dependent fracture in an aqueous sodium chloride environment under alternate immersion condition was found to vary significantly between alloys. The stress corrosion behavior of the two powder metallurgy processed alloys was studied in detail under conditions of crack initiation, static crack growth, and fatigue crack growth. A variety of stress corrosion tests were performed including smooth surface, time-to-failure tests; potentiostatic tests on smooth surfaces exposed to constant applied strain rates; and fracture mechanics-type tests under static and cyclic loads. Both alloys show surface pitting and subsequent intergranular corrosion. Pitting is more severe in the magnesium-bearing alloy and is associated with stringer particles strung along the extrusion direction as a result of P/M processing.
A comprehensive study on the damage tolerance of ultrafine-grained copper
Hohenwarter, A.; Pippan, R.
2012-01-01
In this study the fracture behavior of ultrafine-grained copper was assessed by means of elasto-plastic fracture mechanics. For the synthesis of the material high pressure torsion was used. The fracture toughness was quantitatively measured by JIC as a global measure by recording the crack growth resistance curve. Additionally, the initiation toughness in terms of the crack opening displacement (CODi) was evaluated as a local fracture parameter. The results presented here exhibit a low fracture initiation toughness but simultaneously a remarkably high fracture toughness in terms of JIC. The origin of the large difference between these two parameters, peculiarities of the fracture surface and the fracture mechanical performance compared to coarse grained copper will be discussed. PMID:23471016
NASA Technical Reports Server (NTRS)
Lee, Kang N.; Arya, Vinod K.; Halford, Gary R.; Barrett, Charles A.
1996-01-01
Sapphire fiber-reinforced MA956 composites hold promise for significant weight savings and increased high-temperature structural capability, as compared to unreinforced MA956. As part of an overall assessment of the high-temperature characteristics of this material system, cyclic oxidation behavior was studied at 1093 C and 1204 C. Initially, both sets of coupons exhibited parabolic oxidation kinetics. Later, monolithic MA956 exhibited spallation and a linear weight loss, whereas the composite showed a linear weight gain without spallation. Weight loss of the monolithic MA956 resulted from the linking of a multiplicity of randomly oriented and closely spaced surface cracks that facilitated ready spallation. By contrast, cracking of the composite's oxide layer was nonintersecting and aligned nominally parallel with the orientation of the subsurface reinforcing fibers. Oxidative lifetime of monolithic MA956 was projected from the observed oxidation kinetics. Linear elastic, finite element continuum, and micromechanics analyses were performed on coupons of the monolithic and composite materials. Results of the analyses qualitatively agreed well with the observed oxide cracking and spallation behavior of both the MA956 and the Sapphire/MA956 composite coupons.
A Review of the CTOA/CTOD Fracture Criterion: Why it Works
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; James, M. A.
2001-01-01
The CTOA/CTOD fracture criterion is one of the oldest fracture criteria applied to fracture of metallic materials with cracks. During the past two decades, the use of elastic-plastic finite-element analyses to simulate fracture of laboratory specimens and structural components using the CTOA criterion has expanded rapidly. But the early applications were restricted to two-dimensional analyses, assuming either plane-stress or plane-strain behavior, which lead to generally non-constant values of CTOA, especially in the early stages crack extension. Later, the non-constant CTOA values were traced to inappropriate state-of-stress (or constraint) assumptions in the crack-front region and severe crack tunneling in thin-sheet materials. More recently, the CTOA fracture criterion has been used with three-dimensional analyses to study constraint effects, crack tunneling, and the fracture process. The constant CTOA criterion (from crack initiation to failure) has been successfully applied to numerous structural applications, such as aircraft fuselages and pipelines. But why does the "constant CTOA" fracture criterion work so well? This paper reviews the results from several studies, discusses the issues of why CTOA works, and discusses its limitations.
NASA Astrophysics Data System (ADS)
Yang, Sheng-Qi; Tian, Wen-Ling; Huang, Yan-Hua; Ranjith, P. G.; Ju, Yang
2016-04-01
To understand the fracture mechanism in all kinds of rock engineering, it is important to investigate the fracture evolution behavior of pre-fissured rock. In this research, we conducted uniaxial compression experiments to evaluate the influence of ligament angle on the strength, deformability, and fracture coalescence behavior of rectangular prismatic specimens (80 × 160 × 30 mm) of brittle sandstone containing two non-coplanar fissures. The experimental results show that the peak strength of sandstone containing two non-coplanar fissures depends on the ligament angle, but the elastic modulus is not closely related to the ligament angle. With the increase of ligament angle, the peak strength decreased at a ligament angle of 60°, before increasing up to our maximum ligament angle of 120°. Crack initiation, propagation, and coalescence were all observed and characterized from the inner and outer tips of pre-existing non-coplanar fissures using photographic monitoring. Based on the results, the sequence of crack evolution in sandstone containing two non-coplanar fissures was analyzed in detail. In order to fully understand the crack evolution mechanism of brittle sandstone, numerical simulations using PFC2D were performed for specimens containing two non-coplanar fissures under uniaxial compression. The results are in good agreement with the experimental results. By analyzing the stress field, the crack evolution mechanism in brittle sandstone containing two non-coplanar fissures under uniaxial compression is revealed. These experimental and numerical results are expected to improve the understanding of the unstable fracture mechanism of fissured rock engineering structures.
NASA Technical Reports Server (NTRS)
Adler, P.; Deiasi, R.
1974-01-01
The relation of microstructure to the mechanical strength and stress corrosion resistance of highest strength and overaged tempers of BAR and 7050 aluminum alloys was investigated. Comparison is made with previously studied 7075 aluminum alloy. Optical microscopy, transmission electron microscopy, and differential scanning calorimetry were used to characterize the grain morphology, matrix microstructure, and grain boundary microstructure of these tempers. Grain boundary interparticle spacing was significant to stress corrosion crack propagation for all three alloys; increasing interparticle spacing led to increased resistance to crack propagation. In addition, the fire grain size in Bar and 7050 appears to enhance crack propagation. The highest strength temper of 7050 has a comparatively high resistance to crack initiation. Overall stress corrosion behavior is dependent on environment pH, and evaluation over a range of pH is recommended.
NASA Technical Reports Server (NTRS)
Wei, R. P.; Klier, K.; Simmons, G. W.
1974-01-01
Coordinated studies of the kinetics of crack growth and of hydrogen adsorption and diffusion were initiated to develop information that is needed for a clearer determination of the rate controlling process and possible mechanism for hydrogen enhanced crack growth, and for estimating behavior over a range of temperatures and pressures. Inconel 718 alloy and 18Ni(200) maraging steel were selected for these studies. 18Ni(250) maraging steel, 316 stainless steel, and iron single crystal of (111) orientation were also included in the chemistry studies. Crack growth data on 18Ni(250) maraging steel from another program are included for comparison. No sustained-load crack growth was observed for the Inconel 718 alloy in gaseous hydrogen. Gaseous hydrogen assisted crack growth in the 18Ni maraging steels were characterized by K-independent (Stage 2) extension over a wide range of hydrogen pressures (86 to 2000 torr or 12 kN/m2 to 266 kN/m2) and test temperatures (-60 C to +100 C). The higher strength 18Ni(250) maraging steel was more susceptible than the lower strength 200 grade. A transition temperature was observed, above which crack growth rates became diminishingly small.
NASA Astrophysics Data System (ADS)
Farhidzadeh, Alireza; Dehghan-Niri, Ehsan; Salamone, Salvatore
2013-04-01
Reinforced Concrete (RC) has been widely used in construction of infrastructures for many decades. The cracking behavior in concrete is crucial due to the harmful effects on structural performance such as serviceability and durability requirements. In general, in loading such structures until failure, tensile cracks develop at the initial stages of loading, while shear cracks dominate later. Therefore, monitoring the cracking modes is of paramount importance as it can lead to the prediction of the structural performance. In the past two decades, significant efforts have been made toward the development of automated structural health monitoring (SHM) systems. Among them, a technique that shows promises for monitoring RC structures is the acoustic emission (AE). This paper introduces a novel probabilistic approach based on Gaussian Mixture Modeling (GMM) to classify AE signals related to each crack mode. The system provides an early warning by recognizing nucleation of numerous critical shear cracks. The algorithm is validated through an experimental study on a full-scale reinforced concrete shear wall subjected to a reversed cyclic loading. A modified conventional classification scheme and a new criterion for crack classification are also proposed.
A risk assessment method for multi-site damage
NASA Astrophysics Data System (ADS)
Millwater, Harry Russell, Jr.
This research focused on developing probabilistic methods suitable for computing small probabilities of failure, e.g., 10sp{-6}, of structures subject to multi-site damage (MSD). MSD is defined as the simultaneous development of fatigue cracks at multiple sites in the same structural element such that the fatigue cracks may coalesce to form one large crack. MSD is modeled as an array of collinear cracks with random initial crack lengths with the centers of the initial cracks spaced uniformly apart. The data used was chosen to be representative of aluminum structures. The structure is considered failed whenever any two adjacent cracks link up. A fatigue computer model is developed that can accurately and efficiently grow a collinear array of arbitrary length cracks from initial size until failure. An algorithm is developed to compute the stress intensity factors of all cracks considering all interaction effects. The probability of failure of two to 100 cracks is studied. Lower bounds on the probability of failure are developed based upon the probability of the largest crack exceeding a critical crack size. The critical crack size is based on the initial crack size that will grow across the ligament when the neighboring crack has zero length. The probability is evaluated using extreme value theory. An upper bound is based on the probability of the maximum sum of initial cracks being greater than a critical crack size. A weakest link sampling approach is developed that can accurately and efficiently compute small probabilities of failure. This methodology is based on predicting the weakest link, i.e., the two cracks to link up first, for a realization of initial crack sizes, and computing the cycles-to-failure using these two cracks. Criteria to determine the weakest link are discussed. Probability results using the weakest link sampling method are compared to Monte Carlo-based benchmark results. The results indicate that very small probabilities can be computed accurately in a few minutes using a Hewlett-Packard workstation.
NASA Technical Reports Server (NTRS)
Williams, K. K.; Zuber, M. T.
1995-01-01
Models of surface fractures due to volcanic loading an elastic plate are commonly used to constrain thickness of planetary lithospheres, but discrepancies exist in predictions of the style of initial failure and in the nature of subsequent fracture evolution. In this study, we perform an experiment to determine the mode of initial failure due to the incremental addition of a conical load to the surface of an elastic plate and compare the location of initial failure with that predicted by elastic theory. In all experiments, the mode of initial failure was tension cracking at the surface of the plate, with cracks oriented circumferential to the load. The cracks nucleated at a distance from load center that corresponds the maximum radial stress predicted by analytical solutions, so a tensile failure criterion is appropriate for predictions of initial failure. With continued loading of the plate, migration of tensional cracks was observed. In the same azimuthal direction as the initial crack, subsequent cracks formed at a smaller radial distance than the initial crack. When forming in a different azimuthal direction, the subsequent cracks formed at a distance greater than the radial distance of the initial crack. The observed fracture pattern may explain the distribution of extensional structures in annular bands around many large scale, circular volcanic features.
Welding Behavior of Free Machining Stainless Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
BROOKS,JOHN A.; ROBINO,CHARLES V.; HEADLEY,THOMAS J.
2000-07-24
The weld solidification and cracking behavior of sulfur bearing free machining austenitic stainless steel was investigated for both gas-tungsten arc (GTA) and pulsed laser beam weld processes. The GTA weld solidification was consistent with those predicted with existing solidification diagrams and the cracking response was controlled primarily by solidification mode. The solidification behavior of the pulsed laser welds was complex, and often contained regions of primary ferrite and primary austenite solidification, although in all cases the welds were found to be completely austenite at room temperature. Electron backscattered diffraction (EBSD) pattern analysis indicated that the nature of the base metalmore » at the time of solidification plays a primary role in initial solidification. The solid state transformation of austenite to ferrite at the fusion zone boundary, and ferrite to austenite on cooling may both be massive in nature. A range of alloy compositions that exhibited good resistance to solidification cracking and was compatible with both welding processes was identified. The compositional range is bounded by laser weldability at lower Cr{sub eq}/Ni{sub eq} ratios and by the GTA weldability at higher ratios. It was found with both processes that the limiting ratios were somewhat dependent upon sulfur content.« less
NASA Technical Reports Server (NTRS)
Gabb, T. P.; Gayda, J.; Miner, R. V.
1986-01-01
The low cycle fatigue (LCF) properties of a single-crystal nickel-base superalloy Rene N4, have been examined at 760 and 980 C in air. Specimens having crystallographic orientations near the 001, 011, -111, 023, -236, and -145 lines were tested in fully reversed, total-strain-controlled LCF tests at a frequency of 0.1 Hz. At 760 C, this alloy exhibited orientation dependent tension-compression anisotropies of yielding which continued to failure. Also at 760 C, orientations exhibiting predominately single slip exhibited serrated yielding for many cycles. At 980 C, orientation dependencies of yielding behavior were smaller. In spite of the tension-compression anisotropies, cyclic stress range-strain range behavior was not strongly orientation dependent for either test temperature. Fatigue life on a total strain range basis was highly orientation dependent at 760 and 980 C and was related chiefly to elastic modulus, low modulus orientations having longer lives. Stage I crack growth on 111 planes was dominant at 760 C, while Stage II crack growth occurred at 980 C. Crack initiation generally occurred at near-surface micropores, but occasionally at oxidation spikes in the 980 C tests.
Characteristics of lead induced stress corrosion cracking of alloy 690 in high temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, K.K.; Lim, J.K.; Watanabe, Yutaka
1996-10-01
Slow strain rate tests (SSRT) were conducted on alloy 690 in various lead chloride solutions and metal lead added to 100 ppm chloride solution at 288 C. The corrosion potential (rest potential) for the alloy was measured with SSRT tests. The cracking was observed by metallographic examination and electron probe micro analyzer. Also, the corrosion behavior of the alloy was evaluated by anodic polarized measurement at 30 C. Resulting from the tests, cracking was characterized by cracking behavior, crack length and crack growth rate, and lead effects on cracking. The cracking was mainly intergranular in mode, approximately from 60 ummore » to 450 um in crack length, and approximately 10{sup {minus}6} to 10{sup {minus}7} mmS-1 in crack velocity. The cracking was evaluated through the variation the corrosion potential in potential-time and lead behavior during SSRTs. The lead effect in corrosion was evaluated through active to passive transition behavior in anodic polarized curves. The corrosion reactions in the cracking region were confirmed by electron probe microanalysis. Alloy 690 is used for steam generation tubes in pressurized water reactors.« less
Fracture mechanics validity limits
NASA Technical Reports Server (NTRS)
Lambert, Dennis M.; Ernst, Hugo A.
1994-01-01
Fracture behavior is characteristics of a dramatic loss of strength compared to elastic deformation behavior. Fracture parameters have been developed and exhibit a range within which each is valid for predicting growth. Each is limited by the assumptions made in its development: all are defined within a specific context. For example, the stress intensity parameters, K, and the crack driving force, G, are derived using an assumption of linear elasticity. To use K or G, the zone of plasticity must be small as compared to the physical dimensions of the object being loaded. This insures an elastic response, and in this context, K and G will work well. Rice's J-integral has been used beyond the limits imposed on K and G. J requires an assumption of nonlinear elasticity, which is not characteristic of real material behavior, but is thought to be a reasonable approximation if unloading is kept to a minimum. As well, the constraint cannot change dramatically (typically, the crack extension is limited to ten-percent of the initial remaining ligament length). Rice, et al investigated the properties required of J-type parameters, J(sub x), and showed that the time rate, dJ(sub x)/dt, must not be a function of the crack extension rate, da/dt. Ernst devised the modified-J parameter, J(sub M), that meets this criterion. J(sub M) correlates fracture data to much higher crack growth than does J. Ultimately, a limit of the validity of J(sub M) is anticipated, and this has been estimated to be at a crack extension of about 40-percent of the initial remaining ligament length. None of the various parameters can be expected to describe fracture in an environment of gross plasticity, in which case the process is better described by deformation parameters, e.g., stress and strain. In the current study, various schemes to identify the onset of the plasticity-dominated behavior, i.e., the end of fracture mechanics validity, are presented. Each validity limit parameter is developed in detail, and then data is presented and the various schemes for establishing a limit of the validity are compared. The selected limiting parameter is applied to a set of fracture data showing the improvement of correlation gained.
Ply cracking in composite laminates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Youngmyong.
1989-01-01
Ply cracking behavior and accompanying stiffness changes in thermoset as well as thermoplastic matrix composites under various loading conditions are investigated. Specific topics addressed are: analytical model development for property degradations due to ply cracking under general in-plane loading; crack initiation and multiplication under static loading; and crack multiplication under cyclic loading. A model was developed to calculate the energy released due to ply cracking in a composite laminate subjected to general in-plane loading. The method is based on the use of a second order polynomial to represent the crack opening displacement and the concept of a through-the-thickness inherent flaw.more » The model is then used in conjunction with linear elastic fracture mechanics to predict the progressive ply cracking as well as first ply cracking. A resistance curve for crack multiplication is proposed as a means of characterizing the resistance to ply cracking in composite laminates. A methodology of utilizing the resistance curve to assess the crack density or overloading is also discussed. The method was applied to the graphite/thermoplastic polyimide composite to predict progressive ply cracking. However, unlike the thermoset matrix composites, a strength model is found to fit the experimental results better than the fracture mechanics based model. A set of closed form equations is also developed to calculate the accompanying stiffness changes due to the ply cracking. The effect of thermal residual stress is included in the analysis. A new method is proposed to characterize transverse ply cracking of symmetric balanced laminates under cyclic loading. The method is based on the concept of a through-the-thickness inherent flaw, the Paris law, and the resistance curve. Only two constants are needed to predict the crack density as a function of fatigue cycles.« less
Modelling the graphite fracture mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacquemoud, C.; Marie, S.; Nedelec, M.
2012-07-01
In order to define a design criterion for graphite components, it is important to identify the physical phenomena responsible for the graphite fracture, to include them in a more effective modelling. In a first step, a large panel of experiments have been realised in order to build up an important database; results of tensile tests, 3 and 4 point bending tests on smooth and notched specimens have been analysed and have demonstrated an important geometry related effects on the behavior up to fracture. Then, first simulations with an elastic or an elastoplastic bilinear constitutive law have not made it possiblemore » to simulate the experimental fracture stress variations with the specimen geometry, the fracture mechanisms of the graphite being at the microstructural scale. That is the reason why a specific F.E. model of the graphite structure has been developed in which every graphite grain has been meshed independently, the crack initiation along the basal plane of the particles as well as the crack propagation and coalescence have been modelled too. This specific model has been used to test two different approaches for fracture initiation: a critical stress criterion and two criteria of fracture mechanic type. They are all based on crystallographic considerations as a global critical stress criterion gave unsatisfactory results. The criteria of fracture mechanic type being extremely unstable and unable to represent the graphite global behaviour up to the final collapse, the critical stress criterion has been preferred to predict the results of the large range of available experiments, on both smooth and notched specimens. In so doing, the experimental observations have been correctly simulated: the geometry related effects on the experimental fracture stress dispersion, the specimen volume effects on the macroscopic fracture stress and the crack propagation at a constant stress intensity factor. In addition, the parameters of the criterion have been related to experimental observations: the local crack initiation stress of 8 MPa corresponds to the non-linearity apparition on the global behavior observed experimentally and the the maximal critical stress defined for the particle of 30 MPa is equivalent to the fracture stress of notched specimens. This innovative combination of crack modelling and a local crystallographic critical stress criterion made it possible to understand that cleavage initiation and propagation in the graphite microstructure was driven by a mean critical stress criterion. (authors)« less
NASA Astrophysics Data System (ADS)
Shaari, M. S.; Akramin, M. R. M.; Ariffin, A. K.; Abdullah, S.; Kikuchi, M.
2018-02-01
The paper is presenting the fatigue crack growth (FCG) behavior of semi-elliptical surface cracks for API X65 gas pipeline using S-version FEM. A method known as global-local overlay technique was used in this study to predict the fatigue behavior that involve of two separate meshes each specifically for global (geometry) and local (crack). The pre-post program was used to model the global geometry (coarser mesh) known as FAST including the material and boundary conditions. Hence, the local crack (finer mesh) will be defined the exact location and the mesh control accordingly. The local mesh was overlaid along with the global before the numerical computation taken place to solve the engineering problem. The stress intensity factors were computed using the virtual crack closure-integral method (VCCM). The most important results is the behavior of the fatigue crack growth, which contains the crack depth (a), crack length (c) and stress intensity factors (SIF). The correlation between the fatigue crack growth and the SIF shows a good growth for the crack depth (a) and dissimilar for the crack length (c) where stunned behavior was resulted. The S-version FEM will benefiting the user due to the overlay technique where it will shorten the computation process.
NASA Technical Reports Server (NTRS)
Seshadri, Banavara R.; Smith, Stephen W.; Newman, John A.
2013-01-01
Friction stir welding (FSW) fabrication technology is being adopted in aerospace applications. The use of this technology can reduce production cost, lead-times, reduce structural weight and need for fasteners and lap joints, which are typically the primary locations of crack initiation and multi-site fatigue damage in aerospace structures. FSW is a solid state welding process that is well-suited for joining aluminum alloy components; however, the process introduces residual stresses (both tensile and compressive) in joined components. The propagation of fatigue cracks in a residual stress field and the resulting redistribution of the residual stress field and its effect on crack closure have to be estimated. To insure the safe insertion of complex integral structures, an accurate understanding of the fatigue crack growth behavior and the complex crack path process must be understood. A life prediction methodology for fatigue crack growth through the weld under the influence of residual stresses in aluminum alloy structures fabricated using FSW will be detailed. The effects and significance of the magnitude of residual stress at a crack tip on the estimated crack tip driving force are highlighted. The location of the crack tip relative to the FSW and the effect of microstructure on fatigue crack growth are considered. A damage tolerant life prediction methodology accounting for microstructural variation in the weld zone and residual stress field will lead to the design of lighter and more reliable aerospace structures
Multiple cracking of unidirectional and cross-ply ceramic matrix composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuo, W.S.; Chou, T.W.
1995-03-01
This paper examines the multiple cracking behavior of unidirectional and cross-ply ceramic matrix composites. For unidirectional composites, a model of concentric cylinders with finite crack spacing and debonding length is introduced. Stresses in the fiber and matrix are found and then applied to predict the composite moduli. Using an energy balance method, critical stresses for matrix cracking initiation are predicted. Effects of interfacial shear stress, debonding length and bonding energy on the critical stress are studied. All the three composite systems examined show that the critical stress for the completely debonded case is lower than that for the perfectly bondedmore » case. For crossply composites, an extensive study has been made for the transverse cracking in 90{degree} plies and the matrix cracking in 0{degree} plies. One transverse cracking and four matrix cracking modes are studied, and closed-form solutions of the critical stresses are obtained. The results indicate that the case of combined matrix and transverse crackings with associated fiber/matrix interfacial sliding in the 0{degree} plies gives the lowest critical stress for matrix cracking. The theoretical predictions are compared with experimental data of SiC/CAS cross-ply composites; both results demonstrated that an increase in the transverse ply thickness reduces the critical stress for matrix cracking in the longitudinal plies. The effects of fiber volume fraction and fiber modulus on the critical stress have been quantified. Thermal residual stresses are included in the analysis.« less
Fatigue crack initiation of magnesium alloys under elastic stress amplitudes: A review
NASA Astrophysics Data System (ADS)
Wang, B. J.; Xu, D. K.; Wang, S. D.; Han, E. H.
2017-12-01
The most advantageous property of magnesium (Mg) alloys is their density, which is lower compared with traditional metallic materials. Mg alloys, considered the lightest metallic structural material among others, have great potential for applications as secondary load components in the transportation and aerospace industries. The fatigue evaluation of Mg alloys under elastic stress amplitudes is very important in ensuring their service safety and reliability. Given their hexagonal close packed structure, the fatigue crack initiation of Mg and its alloys is closely related to the deformation mechanisms of twinning and basal slips. However, for Mg alloys with shrinkage porosities and inclusions, fatigue cracks will preferentially initiate at these defects, remarkably reducing the fatigue lifetime. In this paper, some fundamental aspects about the fatigue crack initiation mechanisms of Mg alloys are reviewed, including the 3 followings: 1) Fatigue crack initiation of as-cast Mg alloys, 2) influence of microstructure on fatigue crack initiation of wrought Mg alloys, and 3) the effect of heat treatment on fatigue initiation mechanisms. Moreover, some unresolved issues and future target on the fatigue crack initiation mechanism of Mg alloys are also described.
The merging of fatigue and fracture mechanics concepts: a historical perspective
NASA Astrophysics Data System (ADS)
Newman, J. C.
1998-07-01
In this review, some of the technical developments that have occurred during the past 40 years are presented which have led to the merger of fatigue and fracture mechanics concepts. This review is made from the viewpoint of “crack propagation”. As methods to observe the “fatigue” process have improved, the formation of fatigue micro-cracks have been observed earlier in life and the measured crack sizes have become smaller. These observations suggest that fatigue damage can now be characterized by “crack size”. In parallel, the crack-growth analysis methods, using stress-intensity factors, have also improved. But the effects of material inhomogeneities, crack-fracture mechanisms, and nonlinear behavior must now be included in these analyses. The discovery of crack-closure mechanisms, such as plasticity, roughness, and oxide/corrosion/fretting product debris, and the use of the effective stress-intensity factor range, has provided an engineering tool to predict small- and large-crack-growth rate behavior under service loading conditions. These mechanisms have also provided a rationale for developing new, damage-tolerant materials. This review suggests that small-crack growth behavior should be viewed as typical behavior, whereas large-crack threshold behavior should be viewed as the anomaly. Small-crack theory has unified “fatigue” and “fracture mechanics” concepts; and has bridged the gap between safe-life and durability/damage-tolerance design concepts.
The Merging of Fatigue and Fracture Mechanics Concepts: A Historical Perspective
NASA Technical Reports Server (NTRS)
Newman, James C., Jr.
1997-01-01
The seventh Jerry L. Swedlow Memorial Lecture presents a review of some of the technical developments, that have occurred during the past 40 years, which have led to the merger of fatigue and fracture mechanics concepts. This review is made from the viewpoint of 'crack propagation.' As methods to observe the 'fatigue' process have improved, the formation of fatigue micro-cracks have been observed earlier in life and the measured crack sizes have become smaller. These observations suggest that fatigue damage can now be characterized by 'crack size.' In parallel, the crack-growth analysis methods, using stress-intensity factors, have also improved. But the effects of material inhomogeneities, crack-fracture mechanisms, and nonlinear behavior must now be included in these analyses. The discovery of crack-closure mechanisms, such as plasticity, roughness, and oxide/corrosion/fretting product debris, and the use of the effective stress-intensity factor range, has provided an engineering tool to predict small- and large-crack-growth rate behavior under service loading, conditions. These mechanisms have also provided a rationale for developing, new, damage-tolerant materials. This review suggests that small-crack growth behavior should be viewed as typical behavior, whereas large-crack threshold behavior should be viewed as the anomaly. Small-crack theory has unified 'fatigue' and 'fracture mechanics' concepts; and has bridged the cap between safe-life and durability/damage-tolerance design concepts.
NASA Astrophysics Data System (ADS)
Venugopal, A.; Sreekumar, K.; Raja, V. S.
2012-09-01
The stress corrosion cracking (SCC) behavior of the AA2219 aluminum alloy in the single-pass (SP) and multipass (MP) welded conditions was examined and compared with that of the base metal (BM) in 3.5 wt pct NaCl solution using a slow-strain-rate technique (SSRT). The reduction in ductility was used as a parameter to evaluate the SCC susceptibility of both the BM and welded joints. The results showed that the ductility ratio ( ɛ NaCl/( ɛ air) was 0.97 and 0.96, respectively, for the BM and MP welded joint, and the same was marginally reduced to 0.9 for the SP welded joint. The fractographic examination of the failed samples revealed a typical ductile cracking morphology for all the base and welded joints, indicating the good environmental cracking resistance of this alloy under all welded conditions. To understand the decrease in the ductility of the SP welded joint, preexposure SSRT followed by microstructural observations were made, which showed that the decrease in ductility ratio of the SP welded joint was caused by the electrochemical pitting that assisted the nucleation of cracks in the form of corrosion induced mechanical cracking rather than true SCC failure of the alloy. The microstructural examination and polarization tests demonstrated a clear grain boundary (GB) sensitization of the PMZ, resulting in severe galvanic corrosion of the SP weld joint, which initiated the necessary conditions for the localized corrosion and cracking along the PMZ. The absence of PMZ and a refined fusion zone (FZ) structure because of the lesser heat input and postweld heating effect improved the galvanic corrosion resistance of the MP welded joint greatly, and thus, failure occurred along the FZ.
NASA Astrophysics Data System (ADS)
Ito, H.; Kuwahara, M.; Ohta, R.; Usui, M.
2018-04-01
High-temperature joint materials are indispensable to realizing next-generation power modules with high-output performance. However, crack initiation resulting from stress concentration in semiconductor chips joined with high-temperature joint materials remains a critical problem in high-temperature operation. Therefore, clarifying the quantitative influence of joint materials on the stress generated in chips is essential. This study investigates the stress behavior of chips joined by Ni-Sn solid-liquid interdiffusion (SLID), which results in a high-temperature joint material likely to generate cracks after joining or when under thermal cycling. The results are compared with those fabricated using three types of solders, Pb-10%Sn, Sn-0.7%Cu, and Sn-10%Sb (mass %), which are conventional joint materials with different melting points and mechanical properties. Using Ni-Sn SLID results in the generation of high compressive stress (500 MPa) without stress relaxation after the joining process in contrast to the case of solders in which the compressive stresses are low (<300 MPa) and decrease to still lower levels (<250 MPa). In addition, no stress relaxation occurs during thermal cycling when using Ni-Sn SLID, whereas stress relaxation is clearly observed during heating to 200 °C using solders. Different stress behaviors between Ni-Sn SLID and other joint materials are illustrated by their mechanical strength and resistance against plastic and creep deformation. These results suggest that stress relaxation in a chip is key in suppressing crack initiation in highly reliable modules during high-temperature operation.
Flexural Behavior of HPFRCC Members with Inhomogeneous Material Properties.
Shin, Kyung-Joon; Jang, Kyu-Hyeon; Choi, Young-Cheol; Lee, Seong-Cheol
2015-04-21
In this paper, the flexural behavior of High-performance Fiber-Reinforced Cementitious Composite (HPFRCC) has been investigated, especially focusing on the localization of cracks, which significantly governs the flexural behavior of HPFRCC members. From four points bending tests with HPFRCC members, it was observed that almost evenly distributed cracks formed gradually, followed by a localized crack that determined the failure of the members. In order to investigate the effect of a localized crack on the flexural behavior of HPFRCC members, an analytical procedure has been developed with the consideration of intrinsic inhomogeneous material properties of HPFRCC such as cracking and ultimate tensile strengths. From the comparison, while the predictions with homogeneous material properties overestimated flexural strength and ductility of HPFRCC members, it was found that the analysis results considering localization effect with inhomogeneous material properties showed good agreement with the test results, not only the flexural strength and ductility but also the crack widths. The test results and the developed analysis procedure presented in this paper can be usefully applied for the prediction of flexural behaviors of HPFRCC members by considering the effect of localized cracking behavior.
NASA Technical Reports Server (NTRS)
Wheitner, Jeffrey A.; Houser, Donald R.
1994-01-01
The fatigue life of a gear tooth can be thought of as the sum of the number of cycles required to initiate a crack, N(sub i), plus the number of cycles required to propagate the crack to such a length that fracture occurs, N(sub p). The factors that govern crack initiation are thought to be related to localized stress or strain at a point, while propagation of a fatigue crack is a function of the crack tip parameters such as crack shape, stress state, and stress intensity factor. During a test there is no clear transition between initiation and propagation. The mechanisms of initiation and propagation are quite different and modeling them separately produces a higher degree of accuracy, but then the question that continually arises is 'what is a crack?' The total life prediction in a fracture mechanics model presently hinges on the assumption of an initial crack length, and this length can significantly affect the total life prediction. The size of the initial crack is generally taken to be in the range of 0.01 in. to 0.2 in. Several researchers have used various techniques to determine the beginning of the crack propagation stage. Barhorst showed the relationship between dynamic stiffness changes and crack propagation. Acoustic emissions, which are stress waves produced by the sudden movement of stressed materials, have also been successfully used to monitor the growth of cracks in tensile and fatigue specimens. The purpose of this research is to determine whether acoustic emissions can be used to define the beginning of crack propagation in a gear using a single-tooth bending fatigue test.
Gelcasting compositions having improved drying characteristics and machinability
Janney, Mark A.; Walls, Claudia A. H.
2001-01-01
A gelcasting composition has improved drying behavior, machinability and shelf life in the dried and unfired state. The composition includes an inorganic powder, solvent, monomer system soluble in the solvent, an initiator system for polymerizing the monomer system, and a plasticizer soluble in the solvent. Dispersants and other processing aides to control slurry properties can be added. The plasticizer imparts an ability to dry thick section parts, to store samples in the dried state without cracking under conditions of varying relative humidity, and to machine dry gelcast parts without cracking or chipping. A method of making gelcast parts is also disclosed.
Microstructure-based approach for predicting crack initiation and early growth in metals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, James V.; Emery, John M.; Brewer, Luke N.
2009-09-01
Fatigue cracking in metals has been and is an area of great importance to the science and technology of structural materials for quite some time. The earliest stages of fatigue crack nucleation and growth are dominated by the microstructure and yet few models are able to predict the fatigue behavior during these stages because of a lack of microstructural physics in the models. This program has developed several new simulation tools to increase the microstructural physics available for fatigue prediction. In addition, this program has extended and developed microscale experimental methods to allow the validation of new microstructural models formore » deformation in metals. We have applied these developments to fatigue experiments in metals where the microstructure has been intentionally varied.« less
NASA Technical Reports Server (NTRS)
Schuecker, Clara; Davila, Carlos G.; Rose, Cheryl A.
2010-01-01
Five models for matrix damage in fiber reinforced laminates are evaluated for matrix-dominated loading conditions under plane stress and are compared both qualitatively and quantitatively. The emphasis of this study is on a comparison of the response of embedded plies subjected to a homogeneous stress state. Three of the models are specifically designed for modeling the non-linear response due to distributed matrix cracking under homogeneous loading, and also account for non-linear (shear) behavior prior to the onset of cracking. The remaining two models are localized damage models intended for predicting local failure at stress concentrations. The modeling approaches of distributed vs. localized cracking as well as the different formulations of damage initiation and damage progression are compared and discussed.
Identification of fundamental deformation and failure mechanisms in armor ceramics
NASA Astrophysics Data System (ADS)
Muller, Andrea Marie
Indentation of a surface with a hard sphere can be used to examine micromechanical response of a wide range of materials and has been shown to generate loading conditions resembling early stages of ballistic impact events. Cracking morphologies also show similarities, particularly with formation of cone cracks at the contact site. The approach in this thesis is to use this indentation technique to characterize contact damage and deformation processes in armor ceramics, as well as identify the role of cone cracking and inelastic behavior. To accomplish these objectives, an instrumented indentation system was designed and fabricated, extending depth-sensing capabilities originally developed for nano-indentation to higher forces. This system is also equipped with an acoustic emission system to detect onset of cone cracking and subsequent failure. Once calibrated and verified the system was used to evaluate elastic modulus and cone crack initiation forces of two commercial float glasses. As-received air and tin surfaces of soda-lime-silica and borosilicate float glass were tested to determine differences in elastic and fracture behavior. Information obtained from load--displacement curves and visual inspection of indentation sites were used to determine elastic modulus, and conditions for onset of cone cracking as a function of surface roughness. No difference in reduced modulus or cone cracking loads on as-received air and tin surfaces were observed. Abraded surfaces showed the tin surface to be slightly more resistant to cone cracking. A study focusing on the transition from elastic to inelastic deformation in two transparent fine-grained polycrystalline spinels with different grain sizes was then conducted. Congruent experiments included observations on evolution of damage, examinations of sub-surface damage and inspection of remnant surface profiles. Indentation stress--strain behavior obtained from load--displacement curves revealed a small difference in yielding and strain-hardening behavior given the significant grain size difference. Directly below the indentation sites, regions of grain boundary cracking, associated with the inelastic zone, were identified in both spinels. Comparison of Meyer hardness and in-situ hardness showed a discrepancy at low loads, a result of elastic recovery. Elastic-plastic indentation behavior of the two spinels was then compared to behavior of a transparent large-grained aluminum oxinitirde (AlON) and a small-grained sintered aluminum nitride (AlN). Subsurface indentation damage revealed transitions from intergranular to transgranular fracture in the two spinels, AlON showed a transition from multiple cleavage microcracks to transgranular fracture while AlN exhibited only intergranular fracture. Analysis of indentation stress-strain results showed a slight difference in yielding behaviors of the two spinels and AlON whereas AlN showed a much lower yield value comparatively. Slight differences in strain-hardening behavior were observed. When comparing indentation stress--strain energy density and work of indentation a linear correlation was observed and a clear distinction could be made between materials. Therefore, it is suggested by the work in this thesis that instrumented spherical indentation could serve as a useful method of evaluating armor materials, particularly when behavior is described using indentation stress and strain, as this is a useful way to evaluate onset and development of inelastic deformation under high contact pressures and self-confining stresses. Additionally, it proposes that comparison of the work of indentation and indentation strain energy density approaches provide a good foundation for evaluating and comparing a materials penetration resistance.
Effects of electric field on the fracture toughness (KIc) of ceramic PZT
NASA Astrophysics Data System (ADS)
Goljahi, Sam; Lynch, Christopher S.
2013-09-01
This work was motivated by the observation that a small percentage of the ceramic lead zirconate titanate (PZT) parts in a device application, one that requires an electrode pattern on the PZT surface, developed fatigue cracks at the edges of the electrodes; yet all of the parts were subjected to similar loading. To obtain additional information on the fracture behavior of this material, similar specimens were run at higher voltage in the laboratory under a microscope to observe the initiation and growth of the fatigue cracks. A sequence of experiments was next performed to determine whether there were fracture toughness variations that depended on material processing. Plates were cut from a single bar in different locations and the Vickers indentation technique was used to measure the relative fracture toughness as a function of position along the bar. Small variations in toughness were found, that may account for some of the devices developing fatigue cracks and not others. Fracture toughness was measured next as a function of electric field. The surface crack in flexure technique was modified to apply an electric field perpendicular to a crack. The results indicate that the fracture toughness drops under a positive electric field and increases under a negative electric field that is less than the coercive field, but as the negative coercive field is approached the fracture toughness drops. Examination of the fracture surfaces using an optical microscope and a surface profilometer reveal the initial indentation crack shape and (although less accurately) the crack shape and size at the transition from stable to unstable growth. These results are discussed in terms of a ferroelastic toughening mechanism that is dependent on electric field.
Fatigue crack propagation behavior of stainless steel welds
NASA Astrophysics Data System (ADS)
Kusko, Chad S.
The fatigue crack propagation behavior of austenitic and duplex stainless steel base and weld metals has been investigated using various fatigue crack growth test procedures, ferrite measurement techniques, light optical microscopy, stereomicroscopy, scanning electron microscopy, and optical profilometry. The compliance offset method has been incorporated to measure crack closure during testing in order to determine a stress ratio at which such closure is overcome. Based on this method, an empirically determined stress ratio of 0.60 has been shown to be very successful in overcoming crack closure for all da/dN for gas metal arc and laser welds. This empirically-determined stress ratio of 0.60 has been applied to testing of stainless steel base metal and weld metal to understand the influence of microstructure. Regarding the base metal investigation, for 316L and AL6XN base metals, grain size and grain plus twin size have been shown to influence resulting crack growth behavior. The cyclic plastic zone size model has been applied to accurately model crack growth behavior for austenitic stainless steels when the average grain plus twin size is considered. Additionally, the effect of the tortuous crack paths observed for the larger grain size base metals can be explained by a literature model for crack deflection. Constant Delta K testing has been used to characterize the crack growth behavior across various regions of the gas metal arc and laser welds at the empirically determined stress ratio of 0.60. Despite an extensive range of stainless steel weld metal FN and delta-ferrite morphologies, neither delta-ferrite morphology significantly influence the room temperature crack growth behavior. However, variations in weld metal da/dN can be explained by local surface roughness resulting from large columnar grains and tortuous crack paths in the weld metal.
Stress corrosion crack initiation of alloy 600 in PWR primary water
Zhai, Ziqing; Toloczko, Mychailo B.; Olszta, Matthew J.; ...
2017-04-27
Stress corrosion crack (SCC) initiation of three mill-annealed alloy 600 heats in simulated pressurized water reactor primary water has been investigated using constant load tests equipped with in-situ direct current potential drop (DCPD) measurement capabilities. SCC initiation times were greatly reduced by a small amount of cold work. Shallow intergranular attack and/or cracks were found on most high-energy grain boundaries intersecting the surface with only a small fraction evolving into larger cracks and intergranular SCC growth. Crack depth profiles were measured and related to DCPD-detected initiation response. Lastly, we discuss processes controlling the SCC initiation in mill-annealed alloy 600.
Stress corrosion crack initiation of alloy 600 in PWR primary water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Ziqing; Toloczko, Mychailo B.; Olszta, Matthew J.
Stress corrosion crack (SCC) initiation of three mill-annealed alloy 600 heats in simulated pressurized water reactor primary water has been investigated using constant load tests equipped with in-situ direct current potential drop (DCPD) measurement capabilities. SCC initiation times were greatly reduced by a small amount of cold work. Shallow intergranular attack and/or cracks were found on most high-energy grain boundaries intersecting the surface with only a small fraction evolving into larger cracks and intergranular SCC growth. Crack depth profiles were measured and related to DCPD-detected initiation response. Lastly, we discuss processes controlling the SCC initiation in mill-annealed alloy 600.
NASA Astrophysics Data System (ADS)
Moradian, Zabihallah; Einstein, Herbert H.; Ballivy, Gerard
2016-03-01
Determination of the cracking levels during the crack propagation is one of the key challenges in the field of fracture mechanics of rocks. Acoustic emission (AE) is a technique that has been used to detect cracks as they occur across the specimen. Parametric analysis of AE signals and correlating these parameters (e.g., hits and energy) to stress-strain plots of rocks let us detect cracking levels properly. The number of AE hits is related to the number of cracks, and the AE energy is related to magnitude of the cracking event. For a full understanding of the fracture process in brittle rocks, prismatic specimens of granite containing pre-existing flaws have been tested in uniaxial compression tests, and their cracking process was monitored with both AE and high-speed video imaging. In this paper, the characteristics of the AE parameters and the evolution of cracking sequences are analyzed for every cracking level. Based on micro- and macro-crack damage, a classification of cracking levels is introduced. This classification contains eight stages (1) crack closure, (2) linear elastic deformation, (3) micro-crack initiation (white patch initiation), (4) micro-crack growth (stable crack growth), (5) micro-crack coalescence (macro-crack initiation), (6) macro-crack growth (unstable crack growth), (7) macro-crack coalescence and (8) failure.
Araque, Oscar; Arzola, Nelson; Hernández, Edgar
2018-04-12
This research deals with the fatigue behavior of butt-welded joints, by considering the geometry and post-welding cooling cycles, as a result of cooling in quiet air and immersed in water. ASTM A-36 HR structural steel was used as the base metal for the shielded metal arc welding (SMAW) process with welding electrode E6013. The welding reinforcement was 1 mm and 3 mm, respectively; axial fatigue tests were carried out to determine the life and behavior in cracks propagation of the tested welded joints, mechanical characterization tests of properties in welded joints such as microhardness, Charpy impact test and metallographic analysis were carried out. The latter were used as input for the analysis by finite elements which influence the initiation and propagation of cracks and the evaluation of stress intensity factors (SIF). The latter led to obtaining the crack propagation rate and the geometric factor. The tested specimens were analyzed, by taking photographs of the cracks at its beginning in order to make a count of the marks at the origin of the crack. From the results obtained and the marks count, the fatigue crack growth rate and the influence of the cooling media on the life of the welded joint are validated, according to the experimental results. It can be concluded that the welded joints with a higher weld reinforcement have a shorter fatigue life. This is due to the stress concentration that occurs in the vicinity of the weld toe.
Arzola, Nelson; Hernández, Edgar
2018-01-01
This research deals with the fatigue behavior of butt-welded joints, by considering the geometry and post-welding cooling cycles, as a result of cooling in quiet air and immersed in water. ASTM A-36 HR structural steel was used as the base metal for the shielded metal arc welding (SMAW) process with welding electrode E6013. The welding reinforcement was 1 mm and 3 mm, respectively; axial fatigue tests were carried out to determine the life and behavior in cracks propagation of the tested welded joints, mechanical characterization tests of properties in welded joints such as microhardness, Charpy impact test and metallographic analysis were carried out. The latter were used as input for the analysis by finite elements which influence the initiation and propagation of cracks and the evaluation of stress intensity factors (SIF). The latter led to obtaining the crack propagation rate and the geometric factor. The tested specimens were analyzed, by taking photographs of the cracks at its beginning in order to make a count of the marks at the origin of the crack. From the results obtained and the marks count, the fatigue crack growth rate and the influence of the cooling media on the life of the welded joint are validated, according to the experimental results. It can be concluded that the welded joints with a higher weld reinforcement have a shorter fatigue life. This is due to the stress concentration that occurs in the vicinity of the weld toe. PMID:29649117
Crack Turning in Integrally Stiffened Aircraft Structures
NASA Technical Reports Server (NTRS)
Pettit, Richard Glen
2000-01-01
Current emphasis in the aircraft industry toward reducing manufacturing cost has created a renewed interest in integrally stiffened structures. Crack turning has been identified as an approach to improve the damage tolerance and fail-safety of this class of structures. A desired behavior is for skin cracks to turn before reaching a stiffener, instead of growing straight through. A crack in a pressurized fuselage encounters high T-stress as it nears the stiffener--a condition favorable to crack turning. Also, the tear resistance of aluminum alloys typically varies with crack orientation, a form of anisotropy that can influence the crack path. The present work addresses these issues with a study of crack turning in two-dimensions, including the effects of both T-stress and fracture anisotropy. Both effects are shown to have relation to the process zone size, an interaction that is central to this study. Following an introduction to the problem, the T-stress effect is studied for a slightly curved semi-infinite crack with a cohesive process zone, yielding a closed form expression for the future crack path in an infinite medium. For a given initial crack tip curvature and tensile T-stress, the crack path instability is found to increase with process zone size. Fracture orthotropy is treated using a simple function to interpolate between the two principal fracture resistance values in two-dimensions. An extension to three-dimensions interpolates between the six principal values of fracture resistance. Also discussed is the transition between mode I and mode II fracture in metals. For isotropic materials, there is evidence that the crack seeks out a direction of either local symmetry (pure mode I) or local asymmetry (pure mode II) growth. For orthotropic materials the favored states are not pure modal, and have mode mixity that is a function of crack orientation.
NASA Technical Reports Server (NTRS)
Wei, R. P.; Klier, K.; Simmons, G. W.; Chornet, E.
1973-01-01
Embrittlement, or the enhancement of crack growth by gaseous hydrogen in high strength alloys, is of primary interest in selecting alloys for various components in the space shuttle. Embrittlement is known to occur at hydrogen gas pressures ranging from fractions to several hundred atmospheres, and is most severe in the case of martensitic high strength steels. Kinetic information on subcritical crack growth in gaseous hydrogen is sparse at this time. Corroborative information on hydrogen adsorption and diffusion is inadequate to permit a clear determination of the rate controlling process and possible mechanism in hydrogen enhanced crack growth, and for estimating behavior over a range of temperatures and pressures. Therefore, coordinated studies of the kinetics of crack growth, and adsorption and diffusion of hydrogen, using identical materials, have been initiated. Comparable conditions of temperature and pressure will be used in the chemical and mechanical experiments. Inconel 718 alloy and 18Ni(200) maraging steel have been selected for these studies. Results from these studies are expected to provide not only a better understanding of the gaseous hydrogen embrittlement phenomenon itself, but also fundamental information on hydrogen adsorption and diffusion, and crack growth information that can be used directly for design.
Fatigue Crack Growth Database for Damage Tolerance Analysis
NASA Technical Reports Server (NTRS)
Forman, R. G.; Shivakumar, V.; Cardinal, J. W.; Williams, L. C.; McKeighan, P. C.
2005-01-01
The objective of this project was to begin the process of developing a fatigue crack growth database (FCGD) of metallic materials for use in damage tolerance analysis of aircraft structure. For this initial effort, crack growth rate data in the NASGRO (Registered trademark) database, the United States Air Force Damage Tolerant Design Handbook, and other publicly available sources were examined and used to develop a database that characterizes crack growth behavior for specific applications (materials). The focus of this effort was on materials for general commercial aircraft applications, including large transport airplanes, small transport commuter airplanes, general aviation airplanes, and rotorcraft. The end products of this project are the FCGD software and this report. The specific goal of this effort was to present fatigue crack growth data in three usable formats: (1) NASGRO equation parameters, (2) Walker equation parameters, and (3) tabular data points. The development of this FCGD will begin the process of developing a consistent set of standard fatigue crack growth material properties. It is envisioned that the end product of the process will be a general repository for credible and well-documented fracture properties that may be used as a default standard in damage tolerance analyses.
Crack Repair in Aerospace Aluminum Alloy Panels by Cold Spray
NASA Astrophysics Data System (ADS)
Cavaliere, P.; Silvello, A.
2017-04-01
The cold-spray process has recently been recognized as a very useful tool for repairing metallic sheets, achieving desired adhesion strengths when employing optimal combinations of material process parameters. We present herein the possibility of repairing cracks in aluminum sheets by cold spray. A 2099 aluminum alloy panel with a surface 30° V notch was repaired by cold spraying of 2198 and 7075 aluminum alloy powders. The crack behavior of V-notched sheets subjected to bending loading was studied by finite-element modeling (FEM) and mechanical experiments. The simulations and mechanical results showed good agreement, revealing a remarkable K factor reduction, and a consequent reduction in crack nucleation and growth velocity. The results enable prediction of the failure initiation locus in the case of repaired panels subjected to bending loading and deformation. The stress concentration was quantified to show how the residual stress field and failure are affected by the mechanical properties of the sprayed materials and by the geometrical and mechanical properties of the interface. It was demonstrated that the crack resistance increases more than sevenfold in the case of repair using AA2198 and that cold-spray repair can contribute to increased global fatigue life of cracked structures.
Pezzotti, Giuseppe; Sakakura, Seiji
2003-05-01
A Raman microprobe spectroscopy characterization of microscopic fracture mechanisms is presented for a natural hydroxyapatite material (cortical bovine femur) and two synthetic hydroxyapatite-based materials with biomimetic structures-a hydroxyapatite skeleton interpenetrated with a metallic (silver) or a polymeric (nylon-6) phase. In both the natural and synthetic materials, a conspicuous amount of toughening arose from a microscopic crack-bridging mechanism operated by elasto-plastic stretching of unbroken second-phase ligaments along the crack wake. This mechanism led to a rising R-curve behavior. An additional micromechanism, responsible for stress relaxation at the crack tip, was recognized in the natural bone material and was partly mimicked in the hydroxyapatite/silver composite. This crack-tip mechanism conspicuously enhanced the cortical bone material resistance to fracture initiation. A piezo-spectroscopic technique, based on a microprobe measurement of 980 cm(-1) Raman line of hydroxyapatite, enabled us to quantitatively assess in situ the microscopic stress fields developed during fracture both at the crack tip and along the crack wake. Using the Raman piezo-spectroscopy technique, toughening mechanisms were assessed quantitatively and rationally related to the macroscopic fracture characteristics of hydroxyapatite-based materials. Copyright 2003 Wiley Periodicals, Inc.
Low Cycle Fatigue and Creep-Fatigue Behavior of Alloy 617 at High Temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabet, Celine; Carroll, Laura; Wright, Richard
Alloy 617 is the leading candidate material for an intermediate heat exchanger (IHX) application of the Very High Temperature Nuclear Reactor (VHTR), expected to have an outlet temperature as high as 950 degrees C. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior. Initial creep-fatigue work on Alloy 617 suggests a more dominant role of environment with increasing temperature and/or hold times evidenced through changes in creep-fatigue crack growth mechanism/s and failure life. Continuous cycle fatigue and creep-fatigue testing of Alloy 617 was conducted at 950 degreesmore » C and 0.3% and 0.6% total strain in air to simulate damage modes expected in a VHTR application. Continuous cycle specimens exhibited transgranular cracking. Intergranular cracking was observed in the creep-fatigue specimens, although evidence of grain boundary cavitation was not observed. Despite the absence of grain boundary cavitation to accelerate crack propagation, the addition of a hold time at peak tensile strain was detrimental to cycle life. This suggests that creepfatigue interaction may occur by a different mechanism or that the environment may be partially responsible for accelerating failure.« less
The stress-corrosion behavior of Al-Li-Cu alloys: A comparison of test methods
NASA Technical Reports Server (NTRS)
Rizzo, P. P.; Galvin, R. P.; Nelson, H. G.
1982-01-01
Two powder metallurgy processed (Al-Li-Cu) alloys with and without Mg addition were studied in aqueous 3.5% NaCl solution during the alternate immersion testing of tuning fork specimens, slow crack growth tests using fracture mechanics specimens, and the slow strain rate testing of straining electrode specimens. Scanning electron microscopy and optical metallography were used to demonstrate the character of the interaction between the Al-Li-Cu alloys and the selected environment. Both alloys are susceptible to SC in an aqueous 3.5% NaCl solution under the right electrochemical and microstructural conditions. Each test method yields important information on the character of the SC behavior. Under all conditions investigated, second phase particles strung out in rows along the extrusion direction in the alloys were rapidly attacked, and played principal role in the SC process. With time, larger pits developed from these rows of smaller pits and under certain electrochemical conditions surface cracks initiated from the larger pits and contributed directly to the fracture process. Evidence to support slow crack growth was observed in both the slow strain rate tests and the sustained immersion tests of precracked fracture mechanics specimens. The possible role of H2 in the stress corrosion cracking process is suggested.
Opening-mode cracking in asphalt pavements : crack initiation and saturation.
DOT National Transportation Integrated Search
2009-12-01
This paper investigates the crack initiation and saturation for opening-mode cracking. Using elastic governing equations : and a weak form stress boundary condition, we derive an explicit solution of elastic fields in the surface course and : obtain ...
Nonlinear crack analysis with finite elements
NASA Technical Reports Server (NTRS)
Armen, H., Jr.; Saleme, E.; Pifko, A.; Levine, H. S.
1973-01-01
The application of finite element techniques to the analytic representation of the nonlinear behavior of arbitrary two-dimensional bodies containing cracks is discussed. Specific methods are proposed using which it should be possible to obtain information concerning: the description of the maximum, minimum, and residual near-tip stress and strain fields; the effects of crack closure on the near-tip behavior of stress and strain fields during cyclic loading into the plastic range; the stress-strain and displacement field behavior associated with a nonstationary crack; and the effects of large rotation near the crack tip.
NASA Astrophysics Data System (ADS)
Mao, Y.; Coenen, J. W.; Riesch, J.; Sistla, S.; Almanstötter, J.; Jasper, B.; Terra, A.; Höschen, T.; Gietl, H.; Bram, M.; Gonzalez-Julian, J.; Linsmeier, Ch; Broeckmann, C.
2017-12-01
In future fusion reactors, tungsten is the prime candidate material for the plasma facing components. Nevertheless, tungsten is prone to develop cracks due to its intrinsic brittleness—a major concern under the extreme conditions of fusion environment. To overcome this drawback, tungsten fiber reinforced tungsten (Wf/W) composites are being developed. These composite materials rely on an extrinsic toughing principle, similar to those in ceramic matrix composite, using internal energy dissipation mechanisms, such as crack bridging and fiber pull-out, during crack propagation. This can help Wf/W to facilitate a pseudo-ductile behavior and allows an elevated damage resilience compared to pure W. For pseudo-ductility mechanisms to occur, the interface between the fiber and matrix is crucial. Recent developments in the area of powder-metallurgical Wf/W are presented. Two consolidation methods are compared. Field assisted sintering technology and hot isostatic pressing are chosen to manufacture the Wf/W composites. Initial mechanical tests and microstructural analyses are performed on the Wf/W composites with a 30% fiber volume fraction. The samples produced by both processes can give pseudo-ductile behavior at room temperature.
NASA Technical Reports Server (NTRS)
Bakuckas, John G., Jr.; Johnson, W. Steven
1994-01-01
In this research, thermal residual stresses were incorporated in an analysis of fiber-bridged matrix cracks in unidirectional and cross-ply titanium matrix composites (TMC) containing center holes or center notches. Two TMC were investigated, namely, SCS-6/Timelal-21S laminates. Experimentally, matrix crack initiation and growth were monitored during tension-tension fatigue tests conducted at room temperature and at an elevated temperature of 200 C. Analytically, thermal residual stresses were included in a fiber bridging (FB) model. The local R-ratio and stress-intensity factor in the matrix due to thermal and mechanical loadings were calculated and used to evaluate the matrix crack growth behavior in the two materials studied. The frictional shear stress term, tau, assumed in this model was used as a curve-fitting parameter to matrix crack growth data. The scatter band in the values of tau used to fit the matrix crack growth data was significantly reduced when thermal residual stresses were included in the fiber bridging analysis. For a given material system, lay-up and temperature, a single value of tau was sufficient to analyze the crack growth data. It was revealed in this study that thermal residual stresses are an important factor overlooked in the original FB models.
Thermomechanical Fatigue Damage/Failure Mechanisms in SCS-6/Timetal 21S [0/90](Sub S) Composite
NASA Technical Reports Server (NTRS)
Castelli, Michael G.
1994-01-01
The thermomechanical fatigue (TMF) deformation, damage, and life behaviors of SCS6/Timetal 21S (0/90)s were investigated under zero-tension conditions. In-phase (IP) and out-of-phase (OP) loadings were investigated with a temperature cycle from 150 to 650 deg C. An advanced TMF test technique was used to quantify mechanically damage progression. The technique incorporated explicit measurements of the macroscopic (1) isothermal static moduli at the temperature extremes of the TMF cycle and (2) coefficient of thermal expansion (CTE) as functions of the TMF cycles. The importance of thermal property degradation and its relevance to accurate post-test data analysis and interpretation is briefly addressed. Extensive fractography and metallography were conducted on specimens from failed and interrupted tests to characterize the extent of damage at the microstructure level. Fatigue life results indicated trends analogous to those established for similar unidirectional(0) reinforced titanium matrix composite systems. High stress IP and mid to low stress OP loading conditions were life-limiting in comparison to maximum temperature isothermal conditions. Dominant damage mechanisms changed with cycle type. Damage resulting from IP TMF conditions produced measurable decreases in static moduli but only minimal changes in the CTE. Metallography on interrupted and failed specimens revealed extensive (0) fiber cracking with sparse matrix damage. No surface initiated matrix cracks were present. Comparable OP TMF conditions initiated environment enhanced surface cracking and matrix cracking initiated at (90) fiber/matrix (F/M) interfaces. Notable static moduli and CTE degradations were measured. Fractography and metallography revealed that the transverse cracks originating from the surface and (90) F/M interfaces tended to converge and coalesce at the (0) fibers.
Çapar, İsmail Davut; Uysal, Banu; Ok, Evren; Arslan, Hakan
2015-02-01
The purpose of this study was to investigate the incidence of apical crack initiation and propagation in root dentin after several endodontic procedures. Sixty intact mandibular premolars were sectioned perpendicular to the long axis at 1 mm from the apex, and the apical surface was polished. Thirty teeth were left unprepared and served as a control, and the remaining 30 teeth were instrumented with ProTaper Universal instruments (Dentsply Maillefer, Ballaigues, Switzerland) up to size F5. The root canals were filled with the single-cone technique. Gutta-percha was removed with drills of the Rebilda post system (VOCO, Cuxhaven, Germany). Glass fiber-reinforced composite fiber posts were cemented using a dual-cure resin cement. The fiber posts were removed with a drill of the post system. Retreatment was completed after the removal of the gutta-percha. Crack initiation and propagation in the apical surfaces of the samples were examined with a stereomicroscope after each procedure. The absence/presence of cracks was recorded. Logistic regression was performed to analyze statistically the incidence of crack initiation and propagation with each procedure. The initiation of the first crack and crack propagation was associated with F2 and F4 instruments, respectively. The logistic regression analysis revealed that instrumentation and F2 instrument significantly affected apical crack initiation (P < .001). Post space preparation had a significant effect on crack propagation (P = .0004). The other procedures had no significant effects on crack initiation and propagation (P > .05). Rotary nickel-titanium instrumentation had a significant effect on apical crack initiation, and post space preparation with drills had a significant impact on crack propagation. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Telesman, J.; Gabb, T. P.; Ghosn, L. J.
2016-01-01
Both environmental embrittlement and crack tip visco-plastic stress relaxation play a significant role in determining the dwell fatigue crack growth (DFCG) resistance of nickel-based disk superalloys. In the current study performed on the Low Solvus High Refractory (LSHR) disk alloy, the influence of these two mechanisms were separated so that the effects of each could be quantified and modeled. Seven different microstructural variations of LSHR were produced by controlling the cooling rate and the subsequent aging and thermal exposure heat treatments. Through cyclic fatigue crack growth testing performed both in air and vacuum, it was established that four out of the seven LSHR heat treatments evaluated, possessed similar intrinsic environmental resistance to cyclic crack growth. For these four heat treatments, it was further shown that the large differences in dwell crack growth behavior which still persisted, were related to their measured stress relaxation behavior. The apparent differences in their dwell crack growth resistance were attributed to the inability of the standard linear elastic fracture mechanics (LEFM) stress intensity parameter to account for visco-plastic behavior. Crack tip stress relaxation controls the magnitude of the remaining local tensile stresses which are directly related to the measured dwell crack growth rates. It was hypothesized that the environmentally weakened grain boundary crack tip regions fail during the dwells when their strength is exceeded by the remaining local crack tip tensile stresses. It was shown that the classical creep crack growth mechanisms such as grain boundary sliding did not contribute to crack growth, but the local visco-plastic behavior still plays a very significant role by determining the crack tip tensile stress field which controls the dwell crack growth behavior. To account for the influence of the visco-plastic behavior on the crack tip stress field, an empirical modification to the LEFM stress intensity parameter, Kmax, was developed by incorporating into the formulation the remaining stress level concept as measured by simple stress relaxation tests. The newly proposed parameter, Ksrf, did an excellent job in correlating the dwell crack growth rates for the four heat treatments which were shown to have similar intrinsic environmental cyclic fatigue crack growth resistance.
Crack-closure and crack-growth measurements in surface-flawed titanium alloy Ti6Al-4V
NASA Technical Reports Server (NTRS)
Elber, W.
1975-01-01
The crack-closure and crack-growth characteristics of the titanium alloy Ti-6Al-4V were determined experimentally on surface-flawed plate specimens. Under cyclic loading from zero to tension, cracks deeper than 1 mm opened at approximately 50 percent of the maximum load. Cracks shallower than 1 mm opened at higher loads. The correlation between crack-growth rate and the total stress-intensity range showed a lower threshold behavior. This behavior was attributed to the high crack-opening loads at short cracks because the lower threshold was much less evident in correlations between the crack-growth rates and the effective stress-intensity range.
Elastic-plastic analysis of a propagating crack under cyclic loading
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Armen, H., Jr.
1974-01-01
Development and application of a two-dimensional finite-element analysis to predict crack-closure and crack-opening stresses during specified histories of cyclic loading. An existing finite-element computer program which accounts for elastic-plastic material behavior under cyclic loading was modified to account for changing boundary conditions - crack growth and intermittent contact of crack surfaces. This program was subsequently used to study the crack-closure behavior under constant-amplitude and simple block-program loading.
Composite strengthening. [of nonferrous, fiber reinforced alloys
NASA Technical Reports Server (NTRS)
Stoloff, N. S.
1976-01-01
The mechanical behavior of unidirectionally reinforced metals is examined, with particular attention to fabrication techniques for artificial composites and eutectic alloys and to principles of fiber reinforcement. The properties of artificial composites are discussed in terms of strength of fiber composites, strength of ribbon-reinforced composites, crack initiation, crack propagation, and creep behavior. The properties of eutectic composites are examined relative to tensile strength, compressive strength, fracture, high-temperature strength, and fatigue. In the case of artificial composites, parallelism of fibers, good bonding between fibers and matrix, and freedom of fibers from damage are all necessary to ensure superior performance. For many eutectic systems there are stringent boundary conditions relative to melt purity and superheat, atmosphere control, temperature gradient, and growth rate in order to provide near-perfect alignment of the reinforcements with a minimum of growth defects.
Fatigue pre-cracking and fracture toughness in polycrystalline tungsten and molybdenum
NASA Astrophysics Data System (ADS)
Taguchi, Katsuya; Nakadate, Kazuhito; Matsuo, Satoru; Tokunaga, Kazutoshi; Kurishita, Hiroaki
2018-01-01
Fatigue pre-cracking performance and fracture toughness in polycrystalline tungsten (W) and molybdenum (Mo) have been investigated in relation to grain boundary (GB) configuration with respect to the crack advance direction. Sub-sized, single edge notched bend (SENB) specimens with three different orientations, R-L (ASTM notation) for a forged Mo rod and L-S and T-S for a rolled W plate, were pre-cracked in two steps: fully uniaxial compression fatigue loading to provoke crack initiation and its stable growth from the notch root, and subsequent 3-point bend (3PB) fatigue loading to extend the crack. The latter step intends to minimize the influence of the residual tensile stresses generated during compression fatigue by moving the crack tip away from the plastic zone. It is shown that fatigue pre-cracking performance, especially pre-crack extension behavior, is significantly affected by the specimen orientation. The R-L orientation, giving the easiest cracking path, permitted crack extension completely beyond the plastic zone, while the L-S and T-S orientations with the thickness cracking direction of the rolled plate sustained the crack lengths around or possibly within the plastic zone size due to difficulty in crack advance through an aligned grain structure. Room temperature fracture toughness tests revealed that the 3PB fatigued specimens exhibited appreciably higher fracture toughness by about 30% for R-L, 40% for L-S and 60% for T-S than the specimens of each orientation pre-cracked by compression fatigue only. This indicates that 3PB fatigue provides the crack tip front out of the residual tensile stress zone by crack extension or leads to reduction in the residual stresses at the crack tip front. Strong dependence of fracture toughness on GB configuration was evident. The obtained fracture toughness values are compared with those in the literature and its strong GB configuration dependence is discussed in connection with the appearance of pop-in.
Multiscale crack initiator promoted super-low ice adhesion surfaces.
He, Zhiwei; Xiao, Senbo; Gao, Huajian; He, Jianying; Zhang, Zhiliang
2017-09-27
Preventing icing on exposed surfaces is important for life and technology. While suppressing ice nucleation by surface structuring and local confinement is highly desirable and yet to be achieved, a realistic roadmap of icephobicity is to live with ice, but with lowest possible ice adhesion. According to fracture mechanics, the key to lower ice adhesion is to maximize crack driving forces at the ice-substrate interface. Herein, we present a novel integrated macro-crack initiator mechanism combining nano-crack and micro-crack initiators, and demonstrate a new approach to designing super-low ice adhesion surfaces by introducing sub-structures into smooth polydimethylsiloxane coatings. Our design promotes the initiation of macro-cracks and enables the reduction of ice adhesion by at least ∼50% regardless of the curing temperature, weight ratio and size of internal holes, reaching a lowest ice adhesion of 5.7 kPa. The multiscale crack initiator mechanisms provide an unprecedented and versatile strategy towards designing super-low ice adhesion surfaces.
Phase-field study of grain boundary tracking behavior in crack-seal microstructures
NASA Astrophysics Data System (ADS)
Ankit, Kumar; Nestler, Britta; Selzer, Michael; Reichardt, Mathias
2013-12-01
In order to address the growth of crystals in veins, a multiphase-field model is used to capture the dynamics of crystals precipitating from a super-saturated solution. To gain a detailed understanding of the polycrystal growth phenomena in veins, we investigate the influence of various boundary conditions on crystal growth. In particular, we analyze the formation of vein microstructures resulting from the free growth of crystals as well as crack-sealing processes. We define the crystal symmetry by considering the anisotropy in surface energy to simulate crystals with flat facets and sharp corners. The resulting growth competition of crystals with different orientations is studied to deduce a consistent orientation selection rule in the free-growth regime. Using crack-sealing simulations, we correlate the grain boundary tracking behavior depending on the relative rate of crack opening, opening trajectory, initial grain size, and wall roughness. Further, we illustrate how these parameters induce the microstructural transition between blocky (crystals growing anisotropically) to fibrous morphology (isotropic) and formation of grain boundaries. The phase-field simulations of crystals in the free-growth regime (in 2D and 3D) indicate that the growth or consumption of a crystal is dependent on the orientation difference with neighboring crystals. The crack-sealing simulation results (in 2D and 3D) reveal that crystals grow isotropically and grain boundaries track the opening trajectory if the wall roughness is high, opening increments are small, and crystals touch the wall before the next crack increment starts. Further, we find that within the complete crack-seal regime, anisotropy in surface energy results in the formation of curved/oscillating grain boundaries (instead of straight) when the crack-opening velocity is increased and wall roughness is not sufficiently high. Additionally, the overall capability of phase-field method to simulate large-scale polycrystal growth in veins (in 3D) is demonstrated enumerating the main advantages of adopting the novel approach.
Variation of the distribution of crack lengths during corrosion fatigue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishihara, S.; Miyao, K.; Shiozawa, K.
1984-07-01
The detailed initiation and growth behaviour of distributed cracks on a specimen surface was investigated during corrosion fatigue. It can be clarified that the changes of the distribution of crack lengths with stress cycling reflect the behaviour of initiation and growth of distributed cracks. The distribution of crack lengths for certain stress cycles could be explained by a statistical calculation which takes into account both the variation of number of cracks during stress cycling and the scatter of crack growth rate.
NASA Astrophysics Data System (ADS)
Alwin, B.; Lakshminarayanan, A. K.; Vasudevan, M.; Vasantharaja, P.
2017-12-01
The stress corrosion cracking behavior of duplex stainless steel (DSS) weld joint largely depends on the ferrite-austenite phase microstructure balance. This phase balance is decided by the welding process used, heat input, welding conditions and the weld metal chemistry. In this investigation, the influence of activated tungsten inert gas (ATIG) and tungsten inert gas (TIG) welding processes on the stress corrosion cracking (SCC) resistance of DSS joints was evaluated and compared. Boiling magnesium chloride (45 wt.%) environment maintained at 155 °C was used. The microstructure and ferrite content of different weld zones are correlated with the outcome of sustained load, SCC test. Irrespective of the welding processes used, SCC resistance of weld joints was inferior to that of the base metal. However, ATIG weld joint exhibited superior resistance to SCC than the TIG weld joint. The crack initiation and final failure were in the weld metal for the ATIG weld joint; they were in the heat-affected zone for the TIG weld joint.
NASA Technical Reports Server (NTRS)
Pizzo, P. P.
1982-01-01
Stress corrosion tests of Al-Li-Cu powder metallurgy alloys are described. Alloys investigated were Al-2.6% Li-1.4% and Al-2.6% Li-1.4% Cu-1.6% Mg. The base properties of the alloys were characterized. Process, heat treatment, and size/orientational effects on the tensile and fracture behavior were investigated. Metallurgical and electrochemical conditions are identified which provide reproducible and controlled parameters for stress corrosion evaluation. Preliminary stress corrosion test results are reported. Both Al-Li-Cu alloys appear more susceptible to stress corrosion crack initiation than 7075-T6 aluminum, with the magnesium bearing alloy being the most susceptible. Tests to determine the threshold stress intensity for the base and magnesium bearing alloys are underway. Twelve each, bolt loaded DCB type specimens are under test (120 days) and limited crack growth in these precracked specimens has been observed. General corrosion in the aqueous sodium chloride environment is thought to be obscuring results through crack tip blunting.
Quantity Effect of Radial Cracks on the Cracking Propagation Behavior and the Crack Morphology
Chen, Jingjing; Xu, Jun; Liu, Bohan; Yao, Xuefeng; Li, Yibing
2014-01-01
In this letter, the quantity effect of radial cracks on the cracking propagation behavior as well as the circular crack generation on the impacted glass plate within the sandwiched glass sheets are experimentally investigated via high-speed photography system. Results show that the radial crack velocity on the backing glass layer decreases with the crack number under the same impact conditions during large quantities of repeated experiments. Thus, the “energy conversion factor” is suggested to elucidate the physical relation between the cracking number and the crack propagation speed. Besides, the number of radial crack also takes the determinative effect in the crack morphology of the impacted glass plate. This study may shed lights on understanding the cracking and propagation mechanism in laminated glass structures and provide useful tool to explore the impact information on the cracking debris. PMID:25048684
Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds
Liu, Xuesong; Berto, Filippo
2018-01-01
The use of high strength steel allows the design of lighter, more slender and simpler structures due to high strength and favorable ductility. Nevertheless, the increase of yield strength does not guarantee the corresponding improvement of fatigue resistance, which becomes a major concern for engineering structure design, especially for the welded joints. The paper presents a comparison of the low cycle fatigue behaviors between 10CrNi3MoV high strength steel and its undermatched weldments. Uniaxial tension tests, Push-pull, strain-controlled fatigue tests were conducted on base metal and weldments in the strain range of 0.2–1.2%. The monotonic and cyclic stress-strain curves, stress-life, strain-life and energy-life in terms of these materials were analyzed for fatigue assessment of materials discrepancy. The stress-life results of base metal and undermatched weld metal exhibit cyclic softening behaviors. Furthermore, the shapes of 10CrNi3MoV steel hysteresis loops show a satisfactory Masing-type behavior, while the weld metal shows a non-Masing type behavior. Strain, plastic and total strain energy density amplitudes against the number of reversals to failure results demonstrate that the undermatched weld metal presents a higher resistance to fatigue crack initiation than 10CrNi3MoV high strength steel. Finally, fatigue fracture surfaces of specimens were compared by scanning electron microscopy to identify the differences of crack initiation and the propagation between them. PMID:29695140
Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds.
Song, Wei; Liu, Xuesong; Berto, Filippo; Razavi, S M J
2018-04-24
The use of high strength steel allows the design of lighter, more slender and simpler structures due to high strength and favorable ductility. Nevertheless, the increase of yield strength does not guarantee the corresponding improvement of fatigue resistance, which becomes a major concern for engineering structure design, especially for the welded joints. The paper presents a comparison of the low cycle fatigue behaviors between 10CrNi3MoV high strength steel and its undermatched weldments. Uniaxial tension tests, Push-pull, strain-controlled fatigue tests were conducted on base metal and weldments in the strain range of 0.2⁻1.2%. The monotonic and cyclic stress-strain curves, stress-life, strain-life and energy-life in terms of these materials were analyzed for fatigue assessment of materials discrepancy. The stress-life results of base metal and undermatched weld metal exhibit cyclic softening behaviors. Furthermore, the shapes of 10CrNi3MoV steel hysteresis loops show a satisfactory Masing-type behavior, while the weld metal shows a non-Masing type behavior. Strain, plastic and total strain energy density amplitudes against the number of reversals to failure results demonstrate that the undermatched weld metal presents a higher resistance to fatigue crack initiation than 10CrNi3MoV high strength steel. Finally, fatigue fracture surfaces of specimens were compared by scanning electron microscopy to identify the differences of crack initiation and the propagation between them.
On the finite element modeling of the asymmetric cracked rotor
NASA Astrophysics Data System (ADS)
AL-Shudeifat, Mohammad A.
2013-05-01
The advanced phase of the breathing crack in the heavy duty horizontal rotor system is expected to be dominated by the open crack state rather than the breathing state after a short period of operation. The reason for this scenario is the expected plastic deformation in crack location due to a large compression stress field appears during the continuous shaft rotation. Based on that, the finite element modeling of a cracked rotor system with a transverse open crack is addressed here. The cracked rotor with the open crack model behaves as an asymmetric shaft due to the presence of the transverse edge crack. Hence, the time-varying area moments of inertia of the cracked section are employed in formulating the periodic finite element stiffness matrix which yields a linear time-periodic system. The harmonic balance method (HB) is used for solving the finite element (FE) equations of motion for studying the dynamic behavior of the system. The behavior of the whirl orbits during the passage through the subcritical rotational speeds of the open crack model is compared to that for the breathing crack model. The presence of the open crack with the unbalance force was found only to excite the 1/2 and 1/3 of the backward critical whirling speed. The whirl orbits in the neighborhood of these subcritical speeds were found to have nearly similar behavior for both open and breathing crack models. While unlike the breathing crack model, the subcritical forward whirling speeds have not been observed for the open crack model in the response to the unbalance force. As a result, the behavior of the whirl orbits during the passage through the forward subcritical rotational speeds is found to be enough to distinguish the breathing crack from the open crack model. These whirl orbits with inner loops that appear in the neighborhood of the forward subcritical speeds are then a unique property for the breathing crack model.
Damage development in titanium metal matrix composites subjected to cyclic loading
NASA Technical Reports Server (NTRS)
Johnson, W. S.
1992-01-01
Several layups of SCS-6/Ti-15-3 composites were investigated. Fatigue tests were conducted and analyzed for both notched and unnotched specimens at room temperature and elevated temperatures. Thermo-mechanical fatigue results were analyzed. Test results indicated that the stress in the 0 degree fibers is the controlling factor in fatigue life. The static and fatigue strength of these materials is shown to be strongly dependent on the level of residual stresses and the fiber/matrix interfacial strength. Fatigue tests of notched specimens showed that cracks can initiate and grow many fiber spacings in the matrix materials without breaking fibers. Fiber bridging models were applied to characterize the crack growth behavior. The matrix cracks are shown to significantly reduce the residual strength of notched composites. The notch strength of these composites was accurately predicted using a micromechanics based methodology.
Damage development in titanium metal-matrix composites subjected to cyclic loading
NASA Technical Reports Server (NTRS)
Johnson, W. S.
1993-01-01
Several layups of SCS-6/Ti-15-3 composites were investigated. Fatigue tests were conducted and analyzed for both notched and unnotched specimens at room temperature and elevated temperatures. Thermo-mechanical fatigue results were analyzed. Test results indicated that the stress in the 0 degree fibers is the controlling factor in fatigue life. The static and fatigue strength of these materials is shown to be strongly dependent on the level of residual stresses and the fiber/matrix interfacial strength. Fatigue tests of notched specimens showed that cracks can initiate and grow many fiber spacings in the matrix materials without breaking fibers. Fiber bridging models were applied to characterize the crack growth behavior. The matrix cracks are shown to significantly reduce the residual strength of notched composites. The notch strength of these composites was accurately predicted using a micromechanics based methodology.
Fatigue Crack Growth Threshold Testing of Metallic Rotorcraft Materials
NASA Technical Reports Server (NTRS)
Newman, John A.; James, Mark A.; Johnson, William M.; Le, Dy D.
2008-01-01
Results are presented for a program to determine the near-threshold fatigue crack growth behavior appropriate for metallic rotorcraft alloys. Four alloys, all commonly used in the manufacture of rotorcraft, were selected for study: Aluminum alloy 7050, 4340 steel, AZ91E Magnesium, and Titanium alloy Ti-6Al-4V (beta-STOA). The Federal Aviation Administration (FAA) sponsored this research to advance efforts to incorporate damage tolerance design and analysis as requirements for rotorcraft certification. Rotorcraft components are subjected to high cycle fatigue and are typically subjected to higher stresses and more stress cycles per flight hour than fixed-wing aircraft components. Fatigue lives of rotorcraft components are generally spent initiating small fatigue cracks that propagate slowly under near-threshold cracktip loading conditions. For these components, the fatigue life is very sensitive to the near-threshold characteristics of the material.
Tensile behavior of unidirectional and cross-ply CMC`s
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrmann, R.K.; Kampe, S.L.
1996-12-31
The tensile behavior of two ceramic matrix composites (CMC`s) was observed. The materials of interest in this study were a glass-ceramic matrix composite (GCMC) and a Blackglas{trademark} matrix composite, both reinforced with Nicalon (SiC) fibers. Both composites were produced in laminate form with a symmetric cross-ply layup. Microstructural observations indicated the presence of significant porosity and some cracking in the Blackglas{trademark} samples, while the GCMC samples showed considerably less damage. From the observed tensile behavior of the cross-ply composites, a {open_quote}back-out{close_quote} factor for determining the unidirectional, 0{degrees} ply data of the composites was calculated using Classical Lamination Theory (CLT) andmore » compared to actual data. While the tensile properties obtained from the Blackglas{trademark} composites showed good correlation with the back-calculated values, those from the GCMC did not. Analysis indicates that the applicability of this technique is strongly influenced by the initial matrix microstructure of the composite, i.e., porosity and cracking present following processing.« less
Stress corrosion crack initiation of alloy 600 in PWR primary water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Ziqing; Toloczko, Mychailo B.; Olszta, Matthew J.
Stress corrosion crack (SCC) initiation of three mill-annealed (MA) alloy 600 heats in simulated pressurized water reactor primary water has been investigated using constant load tests equipped with in-situ direct current potential drop (DCPD) measurement capabilities. SCC initiation times were greatly reduced by a small amount of cold work. Shallow intergranular (IG) attack and/or cracks were found on most high-energy grain boundaries intersecting the surface with only a small fraction evolving into larger cracks and IGSCC growth. Crack depth profiles were measured and related to DCPD-detected initiation response. Processes controlling the SCC initiation in MA alloy 600 are discussed. INmore » PRESS, CORRECTED PROOF, 05/02/2017 - mfl« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, O.; Li, Y.; Rabeeh, B.M.
1997-12-01
The effects of interfacial microstructure/thickness on the strength and fatigue behavior of a model four-ply [75]{sub 4} Ti-15V-3Al-3Cr-3Sn/SiC (SCS-6) composite are examined in this article. Interfacial microstructure was controlled by annealing at 815 C for 10, 50, or 100 hours. The reaction layer and coating thickness were observed to increase with increasing annealing duration. Damage initiation/propagation mechanisms were examined in as-received material and composites annealed at 815 C for 10 and 100 hours. Fatigue behavior was observed to be dependent upon the stress amplitude. At high stress amplitudes, the failure was dominated by overload phenomena. However, at all stress levels,more » fatigue crack initiation occurred by early debonding and matrix deformation by stress-induced precipitation. This was followed by matrix crack growth and fiber fracture prior to the onset of catastrophic failure. Matrix shear failure modes were also observed on the fracture surfaces in addition to fatigue striations in the matrix. Correlations were also established between the observed damage modes and acoustic emission signals that were detected under monotonic and cyclic loading conditions.« less
Ductile Crack Initiation Criterion with Mismatched Weld Joints Under Dynamic Loading Conditions.
An, Gyubaek; Jeong, Se-Min; Park, Jeongung
2018-03-01
Brittle failure of high toughness steel structures tends to occur after ductile crack initiation/propagation. Damages to steel structures were reported in the Hanshin Great Earthquake. Several brittle failures were observed in beam-to-column connection zones with geometrical discontinuity. It is widely known that triaxial stresses accelerate the ductile fracture of steels. The study examined the effects of geometrical heterogeneity and strength mismatches (both of which elevate plastic constraints due to heterogeneous plastic straining) and loading rate on critical conditions initiating ductile fracture. This involved applying the two-parameter criterion (involving equivalent plastic strain and stress triaxiality) to estimate ductile cracking for strength mismatched specimens under static and dynamic tensile loading conditions. Ductile crack initiation testing was conducted under static and dynamic loading conditions using circumferentially notched specimens (Charpy type) with/without strength mismatches. The results indicated that the condition for ductile crack initiation using the two parameter criterion was a transferable criterion to evaluate ductile crack initiation independent of the existence of strength mismatches and loading rates.
Controlled crack shapes for indentation fracture of soda-lime glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, S.M.; Scattergood, R.O.
1992-01-01
Radial cracks for indented soda-lime glass aged in distilled water were highly elliptical because of truncation by lateral cracks. Indentation in silicone oil minimized radial/lateral crack interaction but still produced cracks having nominally constant ellipticity during bend testing. Analysis of applied stress/indentation crack length data using stress intensity factors based on half-penny crack shape resulted in apparent R-curve behavior and/or overestimation of the fracture toughness. Incorporation of elliptical shape factors eliminated the R-curve behavior and reduced measured toughness to near the accepted value for soda-lime glass.
Fatigue-Induced Damage in Zr-Based Bulk Metallic Glasses
Chuang, Chih-Pin; Yuan, Tao; Dmowski, Wojciech; Wang, Gong-Yao; Freels, Matt; Liaw, Peter K.; Li, Ran; Zhang, Tao
2013-01-01
In the present work, we investigate the effect of “fatigue” on the fatigue behavior and atomic structure of Zr-based BMGs. Fatigue experiments on the failed-by-fatigue samples indicate that the remnants generally have similar or longer fatigue life than the as-cast samples. Meanwhile, the pair-distribution-function (PDF) analysis of the as-cast and post-fatigue samples showed very small changes of local atomic structures. These observations suggest that the fatigue life of the 6-mm in-diameter Zr-based BMG is dominated by the number of pre-existing crack-initiation sites in the sample. Once the crack initiates in the specimen, the fatigue-induced damage is accumulated locally on these initiated sites, while the rest of the region deforms elastically. The results suggest that the fatigue failure of BMGs under compression-compression fatigue experiments is a defect-controlled process. The present work indicates the significance of the improved fatigue resistance with decreasing the sample size. PMID:23999496
Characterization of Cracking and Crack Growth Properties of the C5A Aircraft Tie-Box Forging
NASA Technical Reports Server (NTRS)
Piascik, Robert S.; Smith, Stephen W.; Newman, John A.; Willard, Scott A.
2003-01-01
Detailed destructive examinations were conducted to characterize the integrity and material properties of two aluminum alloy (7075-T6) horizontal stabilizer tie box forgings removed.from US. Air Force C5A and C5B transport aircraft. The C5B tie box forging was,found to contain no evidence of cracking. Thirteen cracks were found in the CSA,forging. All but one of the cracks observed in the C5A component were located along the top cap region (one crack was located in the bottom cap region). The cracks in the C5A component initiated at fastener holes and propagated along a highly tunneled intergranular crack path. The tunneled crack growth configuration is a likelv result of surface compressive stress produced during peening of the .forging suijace. The tie box forging ,fatigue crack growth, fracture and stress corrosion cracking (SCC) properties were characterized. Reported herein are the results of laboratory air ,fatigue crack growth tests and 95% relative humidity SCC tests conducted using specimens machined from the C5A ,forging. SCC test results revealed that the C5A ,forging material was susceptible to intergranular environmental assisted cracking: the C5A forging material exhibited a SCC crack-tip stress-intensity factor threshold of less than 6 MPadn. Fracture toughness tests revealed that the C5A forging material exhibited a fracture toughness that was 25% less than the C5B forging. The C5A forging exhibited rapid laboratory air fatigue crack growth rates having a threshold crack-tip stress-intensity factor range of less than 0.8 MPa sup m. Detailed fractographic examinations revealed that the ,fatigue crack intergranular growth crack path was similar to the cracking observed in the C5A tie box forging. Because both fatigue crack propagation and SCC exhibit similar intergranular crack path behavior, the damage mechanism resulting in multi-site cracking of tie box forgings cannot be determined unless local cyclic stresses can be quantified.
Damage instability and Earthquake nucleation
NASA Astrophysics Data System (ADS)
Ionescu, I. R.; Gomez, Q.; Campillo, M.; Jia, X.
2017-12-01
Earthquake nucleation (initiation) is usually associated to the loss of the stability of the geological structure under a slip-weakening friction acting on the fault. The key parameters involved in the stability of the fault are the stress drop, the critical slip distance but also the elastic stiffness of the surrounding materials (rocks). We want to explore here how the nucleation phenomena are correlated to the material softening during damage accumulation by dynamic and/or quasi-static processes. Since damage models are describing micro-cracks growth, which is generally an unstable phenomenon, it is natural to expect some loss of stability on the associated micro-mechanics based models. If the model accurately captures the material behavior, then this can be due to the unstable nature of the brittle material itself. We obtained stability criteria at the microscopic scale, which are related to a large class of damage models. We show that for a given continuous strain history the quasi-static or dynamic problems are instable or ill-posed (multiplicity of material responses) and whatever the selection rule is adopted, shocks (time discontinuities) will occur. We show that the quasi-static equilibria chosen by the "perfect delay convention" is always stable. These stability criteria are used to analyze how NIC (Non Interacting Crack) effective elasticity associated to "self similar growth" model work in some special configurations (one family of micro-cracks in mode I, II and III and in plane strain or plain stress). In each case we determine a critical crack density parameter and critical micro-crack radius (length) which distinguish between stable and unstable behaviors. This critical crack density depends only on the chosen configuration and on the Poisson ratio.
The noncontinuum crack tip deformation behavior of surface microcracks
NASA Astrophysics Data System (ADS)
Morris, W. L.
1980-07-01
The crack tip opening displacement (CTOD) of small surface fatigue cracks (lengths of the grain size) in Al 2219-T851 depends upon the location of a crack relative to the grain boundaries. Both CTOD and crack tip closure stress are greatest when the crack tip is a large distance from the next grain boundary in the direction of crack propagation. Contrary to behavioral trends predicted by continuum fracture mechanics, crack length has no detectable effect on the contribution of plastic deformation to CTOD. It is apparent from these observations that the region of significant plastic deformation is confined by the grain boundaries, resulting in a plastic zone size that is insensitive to crack length and to external load.
Krewerth, D; Weidner, A; Biermann, H
2013-12-01
The present paper illustrates the application of infrared thermal measurements for the investigation of crack initiation point and crack propagation in the high-cycle and the very high-cycle fatigue range of cast AlSi7Mg alloy (A356). The influence of casting defects, their location, size and amount was studied both by fractography and thermography. Besides internal and surface fatigue crack initiation as a further crack initiation type multiple fatigue crack initiation was observed via in situ thermography which can be well correlated with the results from fractography obtained by SEM investigations. In addition, crack propagation was studied by the development of the temperature measured via thermography. Moreover, the frequency influence on high-cycle fatigue behaviour was investigated. The presented results demonstrate well that the combination of fractography and thermography can give a significant contribution to the knowledge of crack initiation and propagation in the VHCF regime. Copyright © 2013 Elsevier B.V. All rights reserved.
Behavior of Fatigue Crack Tip Opening in Air and Corrosive Atmosphere
NASA Astrophysics Data System (ADS)
Hayashi, Morihito; Toeda, Kazunori
In the study, a formula for predicting fatigue crack tip opening displacement is deduced firstly. And then, due to comparing actual crack growth rate with the deduced formula, the crack tip configuration factor is defined to figure out the crack tip opening configuration that is useful to clarify the behavior of fatigue crack tip formation apparently. Applying the concept, the crack growth of 7/3 brass and 6/4 brass is predicted from the formula, by replacing material properties such as plastic flow resistance, Young modulus, the Poisson ratio, and fatigue toughness, and fatigue test conditions such as the stress intensity factor range, the load ratio, and cycle frequency. Furthermore, the theoretically expected results are verified with the fatigue tests which were carried out on CT specimens under different load conditions of load ratio, cycle frequency, and cyclic peak load, in different environments of air or corrosive ammonia atmosphere, for various brasses. And by comparing and discussing the calculated crack growth rate with attained experimental results, the apparent configuration factor at the crack tip is determined. And through the attained factor which changes along with crack growth, the behaviors of fatigue crack tip formation under different test conditions have been found out.
Crack Growth Behavior in the Threshold Region for High Cycle Fatigue Loading
NASA Technical Reports Server (NTRS)
Forman, Royce G.; Zanganehgheshlaghi, Mohannad
2014-01-01
The research results described in this paper presents a new understanding of the behavior of fatigue crack growth in the threshold region. It is believed by some crack growth experts that the ASTM load shedding test method does not produce true or valid threshold properties. The concern involves the observed fanning of threshold region da/dN data plots for some materials in which the low R-ratio data fans out or away from the high R-ratio data. This data fanning or elevation of threshold values is obviously caused by an increase in crack closure in the low R-ratio tested specimens. This increase in crack closure is assumed by some investigators to be caused by a plastic wake on the crack surfaces that was created during the load shedding test phase. This study shows that the increase in crack closure is the result of an extensive occurrence of crack bifurcation behavior in some materials, particularly in aluminum alloys, when the crack tip cyclic yield zone size becomes less than the grain size of the alloy. This behavior is related to the high stacking fault energy (SFE) property of aluminum alloys which results in easier slip characteristics. Therefore, the particular fanning behavior in aluminum alloys is a function of intrinsic dislocation property of the materials and that the fanned data represents valid material properties. However, for corrosion sensitive steel alloys used in this study the fanning was caused by a build-up of iron oxide at the crack tip from fretting corrosion.
NASA Astrophysics Data System (ADS)
Na, S.; Sun, W.; Yoon, H.; Choo, J.
2016-12-01
Directional mechanical properties of layered geomaterials such as shale are important on evaluating the onset and growth of fracture for engineering applications such as hydraulic fracturing, geologic carbon storage, and geothermal recovery. In this study, a continuum phase field modeling is conducted to demonstrate the initiation and pattern of cracks in fluid-saturated porous media. The discontinuity of sharp cracks is formulated using diffusive crack phase field modeling and the anisotropic surface energy is incorporated to account for the directional fracture toughness. In particular, the orientation of bedding in geomaterials with respect to the loading direction is represented by the directional critical energy release rate. Interactions between solid skeleton and fluid are also included to analyze the mechanical behavior of fluid-saturated geologic materials through the coupled hydro-mechanical model. Based on the linear elastic phase field modeling, we also addressed how the plasticity in crack phase field influences the crack patterns by adopting the elasto-plastic model with Drucker-Prager yield criterion. Numerical examples exhibit the features of anisotropic surface energy, the interactions between solid and fluid and the effects of plasticity on crack propagations.Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Technical Reports Server (NTRS)
Phillips, Edward P.
1997-01-01
An experimental study was conducted to determine the effects of combined bending and membrane cyclic stresses on the fatigue crack growth behavior of aluminum sheet material. The materials used in the tests were 0.040-in.- thick 2024-T3 alclad and 0.090-in.-thick 2024-T3 bare sheet. In the tests, the membrane stresses were applied as a constant amplitude loading at a stress ratio (minimum to maximum stress) of 0.02, and the bending stresses were applied as a constant amplitude deflection in phase with the membrane stresses. Tests were conducted at ratios of bending to membrane stresses (B/M) of 0, 0.75, and 1.50. The general trends of the results were for larger effects of bending for the higher B/M ratios, the lower membrane stresses, and the thicker material. The addition of cyclic bending stresses to a test with cyclic membrane stresses had only a small effect on the growth rates of through-thickness cracks in the thin material, but had a significant effect on the crack growth rates of through-thickness cracks in the thick material. Adding bending stresses to a test had the most effect on the initiation and early growth of cracks and had less effect on the growth of long through-thickness cracks.
Sulfide Stress Cracking Behavior of a Martensitic Steel Controlled by Tempering Temperature
Sun, Yu; Wang, Qian; Gu, Shunjie; He, Zaoneng; Wang, Qingfeng; Zhang, Fucheng
2018-01-01
A medium-carbon Cr–Mo–V martensitic steel was thermally processed by quenching (Q) at 890 °C and tempering (T) at increasing temperatures from 650 °C to 720 °C and the effect of tempering temperature, Tt, on sulfide stress cracking (SSC) behaviors was estimated mainly via double cantilever beam (DCB) and electrochemical hydrogen permeation (EHP) tests and microstructure characterization. The results indicate that the threshold stress intensity factor for SSC, KISSC, increased with increasing Tt. The overall and local H concentration around the inclusions decreased with increasing Tt, due to reductions in the amounts of solute atoms, grain boundaries and dislocations, which effectively prevented SSC initiation. Also, increasing Tt caused an increased fraction of high-angle boundaries, which evidently lowered the SSC propagation rate by more frequently diverting the propagating direction and accordingly restricted SSC propagation. The overall SSC resistance of this Q&T–treated steel was therefore significantly enhanced. PMID:29522494
Numerical and experimental study on buckling and postbuckling behavior of cracked cylindrical shells
NASA Astrophysics Data System (ADS)
Saemi, J.; Sedighi, M.; Shariati, M.
2015-09-01
The effect of crack on load-bearing capacity and buckling behavior of cylindrical shells is an essential consideration in their design. In this paper, experimental and numerical buckling analysis of steel cylindrical shells of various lengths and diameters with cracks have been studied using the finite element method, and the effect of crack position, crack orientation and the crack length-to-cylindrical shell perimeter ( λ = a/(2 πr)) and shell length-to-diameter ( L/ D) ratios on the buckling and post-buckling behavior of cylindrical shells has been investigated. For several specimens, buckling test was performed using an INSTRON 8802 servo hydraulic machine, and the results of experimental tests were compared to numerical results. A very good correlation was observed between numerical simulation and experimental results. Finally, based on the experimental and numerical results, sensitivity of the buckling load to the shell length, crack length and orientation has also been investigated.
A probabilistic fatigue analysis of multiple site damage
NASA Technical Reports Server (NTRS)
Rohrbaugh, S. M.; Ruff, D.; Hillberry, B. M.; Mccabe, G.; Grandt, A. F., Jr.
1994-01-01
The variability in initial crack size and fatigue crack growth is incorporated in a probabilistic model that is used to predict the fatigue lives for unstiffened aluminum alloy panels containing multiple site damage (MSD). The uncertainty of the damage in the MSD panel is represented by a distribution of fatigue crack lengths that are analytically derived from equivalent initial flaw sizes. The variability in fatigue crack growth rate is characterized by stochastic descriptions of crack growth parameters for a modified Paris crack growth law. A Monte-Carlo simulation explicitly describes the MSD panel by randomly selecting values from the stochastic variables and then grows the MSD cracks with a deterministic fatigue model until the panel fails. Different simulations investigate the influences of the fatigue variability on the distributions of remaining fatigue lives. Six cases that consider fixed and variable conditions of initial crack size and fatigue crack growth rate are examined. The crack size distribution exhibited a dominant effect on the remaining fatigue life distribution, and the variable crack growth rate exhibited a lesser effect on the distribution. In addition, the probabilistic model predicted that only a small percentage of the life remains after a lead crack develops in the MSD panel.
Some considerations on instability of combined loaded thin-walled tubes with a crack
NASA Astrophysics Data System (ADS)
Shariati, M.; Akbarpour, A.
2016-05-01
Instability of a thin-walled stainless steel tube with a crack-shaped defect under combined loading is studied in this paper. Furthermore, the effects of the tube length, crack orientation, and crack length on the buckling behavior of tubes are investigated. The behavior of tubes subjected to combined is analyzed by using the finite element method (by Abaqus software). For cracked tubes with a fixed thickness, the buckling load decreases as the tube length and the ratio of the tube length to its diameter increase. Moreover, the buckling load of cracked tubes under combined loading also decreases with increasing crack length.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Ziqing; Toloczko, Mychailo; Kruska, Karen
Stress corrosion crack initiation of two thermally-treated, cold-worked (CW) alloy 690 (UNS N06690) materials was investigated in 360oC simulated PWR primary water using constant load tensile (CLT) tests and blunt notch compact tension (BNCT) tests equipped with direct current potential drop (DCPD) for in-situ detection of cracking. SCC initiation was not detected by DCPD for either the 21% or 31%CW CLT specimens loaded at their yield stress after ~9,220 hours, however intergranular (IG) precursor damage and isolated surface cracks were observed on the specimens. The two 31%CW BNCT specimens loaded at moderate stress intensity after several cyclic loading ramps showedmore » DCPD-indicated crack initiation after 10,400 hours of exposure at constant stress intensity, which was resulted from significant growth of IG cracks. The 21%CW BNCT specimens only exhibited isolated small IG surface cracks and showed no apparent DCPD change throughout the test. Post-test cross-section examinations revealed many grain boundary (GB) nano-cavities in the bulk of all the CLT and BNCT specimens particularly for the 31%CW materials. Cavities were also found along GBs extending to the surface suggesting an important role in crack nucleation. This paper provides an overview of the evolution of GB cavities and discusses their effects on crack initiation in CW alloy 690.« less
Initiation and propagation toughness of delamination crack under an impact load
NASA Astrophysics Data System (ADS)
Kumar, Prashant; Kishore, N. N.
1998-10-01
A combined experimental and finite element method is developed to determine the interlaminar dynamic fracture toughness. An interlaminar crack is propagated at very high speed in a double cantilever beam (DCB) specimen made of two steel strips with a precrack. A special fixture is designed to apply impact load to one cantilever and determine the deflection of the cantilever-end, initiation time and crack propagation history. The experimental results are used as input data in a FE code to calculate J-integral by the gradual release of nodal forces to model the propagation of the interlaminar crack. The initiation fracture toughness and propagation fracture toughness are evaluated for interlaminar crack propagating between 850 and 1785 ms. The initiation and propagation toughness were found to vary between 90-200 Jm 2 and 2-13 Jm 2 respectively. The technique is extended to study initiation and propagation toughness of interlaminar crack in unidirectional FRP laminates. 1998 Elsevier Science Ltd.
Hidden contributions of the enamel rods on the fracture resistance of human teeth
Yahyazadehfar, M.; Bajaj, Devendra; Arola, Dwayne D.
2013-01-01
The enamel of human teeth is generally regarded as a brittle material with low fracture toughness. Consequently, the contributions of this tissue in resisting tooth fracture and the importance of its complex microstructure have been largely overlooked. In this study an experimental evaluation of the crack growth resistance of human enamel was conducted to characterize the role of rod (i.e. prism) orientation and degree of decussation on the fracture behavior of this tissue. Incremental crack growth was achieved in-plane, with the rods in directions longitudinal or transverse to their axes. Results showed that the fracture resistance of enamel is both inhomogeneous and spatially anisotropic. Cracks extending transverse to the rods in the outer enamel undergo a lower rise in toughness with extension, and achieve significantly lower fracture resistance than in the longitudinal direction. Though cracks initiating at the surface of teeth may begin extension towards the dentin–enamel junction, they are deflected by the decussated rods and continue growth about the tooth’s periphery, transverse to the rods in the outer enamel. This process facilitates dissipation of fracture energy and averts cracks from extending towards the dentin and vital pulp. PMID:23022547
Environmental Barrier Coating (EBC) Durability Modeling; An Overview and Preliminary Analysis
NASA Technical Reports Server (NTRS)
Abdul-Aziz, A.; Bhatt, R. T.; Grady, J. E.; Zhu, D.
2012-01-01
A study outlining a fracture mechanics based model that is being developed to investigate crack growth and spallation of environmental barrier coating (EBC) under thermal cycling conditions is presented. A description of the current plan and a model to estimate thermal residual stresses in the coating and preliminary fracture mechanics concepts for studying crack growth in the coating are also discussed. A road map for modeling life and durability of the EBC and the results of FEA model(s) developed for predicting thermal residual stresses and the cracking behavior of the coating are generated and described. Further initial assessment and preliminary results showed that developing a comprehensive EBC life prediction model incorporating EBC cracking, degradation and spalling mechanism under stress and temperature gradients typically seen in turbine components is difficult. This is basically due to mismatch in thermal expansion difference between sub-layers of EBC as well as between EBC and substrate, diffusion of moisture and oxygen though the coating, and densification of the coating during operating conditions as well as due to foreign object damage, the EBC can also crack and spall from the substrate causing oxidation and recession and reducing the design life of the EBC coated substrate.
Intermittent crack growth in fatigue
NASA Astrophysics Data System (ADS)
Kokkoniemi, R.; Miksic, A.; Ovaska, M.; Laurson, L.; Alava, M. J.
2017-07-01
Fatigue occurs under cyclic loading at stresses below a material’s static strength limit. We consider fatigue crack growth as a stochastic process and perform crack growth experiments in a metal (copper). We follow optically cracks propagating from initial edge notches. The main interest is in the dynamics of the crack growth—the Paris’ law and the initiation phase prior to that—and especially the intermittency this is discovered to display. How the sampling of the crack advancement, performed at regular intervals, influences such measurement results is analysed by the analogy of planar crack dynamics in slow, driven growth.
Mechanical and fracture behavior of veneer-framework composites for all-ceramic dental bridges.
Studart, André R; Filser, Frank; Kocher, Peter; Lüthy, Heinz; Gauckler, Ludwig J
2007-01-01
High-strength ceramics are required in dental posterior restorations in order to withstand the excessive tensile stresses that occur during mastication. The aim of this study was to investigate the fracture behavior and the fast-fracture mechanical strength of three veneer-framework composites (Empress 2/IPS Eris, TZP/Cercon S and Inceram-Zirconia/Vita VM7) for all-ceramic dental bridges. The load bearing capacity of the veneer-framework composites were evaluated using a bending mechanical apparatus. The stress distribution through the rectangular-shaped layered samples was assessed using simple beam calculations and used to estimate the fracture strength of the veneer layer. Optical microscopy of fractured specimens was employed to determine the origin of cracks and the fracture mode. Under fast fracture conditions, cracks were observed to initiate on, or close to, the veneer outer surface and propagate towards the inner framework material. Crack deflection occurred at the veneer-framework interface of composites containing a tough framework material (TZP/Cercon S and Inceram-Zirconia/Vita VM7), as opposed to the straight propagation observed in the case of weaker frameworks (Empress 2/IPS Eris). The mechanical strength of dental composites containing a weak framework (K(IC)<3 MPam(1/2)) is ultimately determined by the low fracture strength of the veneer layer, since no crack arresting occurs at the veneer-framework interface. Therefore, high-toughness ceramics (K(IC)>5 MPam(1/2)) should be used as framework materials of posterior all-ceramic bridges, so that cracks propagating from the veneer layer do not lead to a premature failure of the prosthesis.
Near-Threshold Fatigue Crack Growth Behavior of Fine-Grain Nickel-Based Alloys
NASA Technical Reports Server (NTRS)
Newman, John A.; Piascik, Robert S.
2003-01-01
Constant-Kmax fatigue crack growth tests were performed on two finegrain nickel-base alloys Inconel 718 (DA) and Ren 95 to determine if these alloys exhibit near-threshold time-dependent crack growth behavior observed for fine-grain aluminum alloys in room-temperature laboratory air. Test results showed that increases in K(sub max) values resulted in increased crack growth rates, but no evidence of time-dependent crack growth was observed for either nickel-base alloy at room temperature.
NASA Technical Reports Server (NTRS)
Zhang, Chao; Binienda, Wieslaw K.; Morscher, Gregory; Martin, Richard E.
2012-01-01
The microcrack distribution and mass change in PR520/T700s and 3502/T700s carbon/epoxy braided composites exposed to thermal cycling was evaluated experimentally. Acoustic emission was utilized to record the crack initiation and propagation under cyclic thermal loading between -55 C and 120 C. Transverse microcrack morphology was investigated using X-ray Computed Tomography. Different performance of two kinds of composites was discovered and analyzed. Based on the observations of microcrack formation, a meso-mechanical finite element model was developed to obtain the resultant mechanical properties. The simulation results exhibited a decrease in strength and stiffness with increasing crack density. Strength and stiffness reduction versus crack densities in different orientations were compared. The changes of global mechanical behavior in both axial and transverse loading conditions were studied. Keywords: Thermal cycles; Microcrack; Finite Element Model; Braided Composite
Low-Cycle Fatigue Properties of P92 Ferritic-Martensitic Steel at Elevated Temperature
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Hu, ZhengFei; Schmauder, Siegfried; Mlikota, Marijo; Fan, KangLe
2016-04-01
The low-cycle fatigue behavior of P92 ferritic-martensitic steel and the corresponding microstructure evolution at 873 K has been extensively studied. The test results of fatigue lifetime are consistent with the Coffin-Manson relationship over a range of controlled total strain amplitudes from 0.15 to 0.6%. The influence of strain amplitude on the fatigue crack initiation and growth has been observed using optical microscopy and scanning electron microscopy. The formation mechanism of secondary cracks is established according to the observation of fracture after fatigue process and there is an intrinsic relationship between striation spacing, current crack length, and strain amplitude. Transmission electron microscopy has been employed to investigate the microstructure evolution after fatigue process. It indicates the interaction between carbides and dislocations together with the formation of cell structure inhibits the cyclic softening. The low-angle sub-boundary elimination in the martensite is mainly caused by the cyclic stress.
Creep fatigue life prediction for engine hot section materials (isotropic)
NASA Technical Reports Server (NTRS)
Moreno, V.
1983-01-01
The Hot Section Technology (HOST) program, creep fatigue life prediction for engine hot section materials (isotropic), is reviewed. The program is aimed at improving the high temperature crack initiation life prediction technology for gas turbine hot section components. Significant results include: (1) cast B1900 and wrought IN 718 selected as the base and alternative materials respectively; (2) fatigue test specimens indicated that measurable surface cracks appear early in the specimen lives, i.e., 15% of total life at 871 C and 50% of life at 538 c; (3) observed crack initiation sites are all surface initiated and are associated with either grain boundary carbides or local porosity, transgrannular cracking is observed at the initiation site for all conditions tested; and (4) an initial evaluation of two life prediction models, representative of macroscopic (Coffin-Mason) and more microscopic (damage rate) approaches, was conducted using limited data generated at 871 C and 538 C. It is found that the microscopic approach provides a more accurate regression of the data used to determine crack initiation model constants, but overpredicts the effect of strain rate on crack initiation life for the conditions tested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, P.F.; Wang, J.S.; Chao, Y.J.
The stereo vision is used to study the fracture behavior in the compact tension (CT) specimen made from 304L stainless steel. During crack tip blunting, initiation, and growth in the CT specimen, both in-plane and out-of-plane displacement fields near the crack tip are measured by the stereo vision. Based on the plane stress assumption and the deformation theory of plasticity, the J integral is evaluated along several rectangular paths surrounding the crack tip by using the measured in-plane displacement field. Prior to crack growth, the J integral is path independent. For crack extension up to {Delta}a {approx} 3 mm, themore » near field J integral values are 6% to 10% lower than far field J integral values. For the crack extension of {Delta}a {approx} 4 mm, the J integral lost path independence. The far field J integral values are in good agreement with results obtained from Merkle-Corten`s formula. Both J-{Delta}a and CTOA-{Delta}a are obtained by computing the J integral value and crack tip opening angle (CTOA) at each {Delta}a. Results indicate that CTOA reached a nearly constant value at a crack extension of {Delta}a = 3 mm with a leveled resistance curve thereafter. Also, the J integral value is determined by the maximum transverse diameter of the shadow spots, which are generated by using the out-of-plane displacement field. Results indicate that for crack extension up to 0.25 mm, the J integral values evaluated by using the out-of- plane displacement are close to those obtained by using in-plane displacements and Merkle-Corten`s formula.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yongfeng Zhang; Paul C Millett; Michael R Tonks
The intergranular fracture behavior of UO2 was studied using molecular dynamics simulations with a bicrystal model. The anisotropic fracture behavior due to the different grain boundary characters was investigated with the View the MathML source symmetrical tilt S5 and the View the MathML source symmetrical tilt S3 ({1 1 1} twin) grain boundaries. Nine interatomic potentials, seven rigid-ion plus two core–shell ones, were utilized to elucidate possible potential dependence. Initiating from a notch, crack propagation along grain boundaries was observed for most potentials. The S3 boundary was found to be more prone to fracture than the S5 one, indicated bymore » a lower energy release rate associated with the former. However, some potential dependence was identified on the existence of transient plastic deformation at crack tips, and the results were discussed regarding the relevant material properties including the excess energies of metastable phases and the critical energy release rate for intergranular fracture. In general, local plasticity at crack tips was observed in fracture simulations with potentials that predict low excess energies for metastable phases and high critical energy release rates for intergranular fracture.« less
Resende, Briseida Dogo; Nagy-Reis, Mariana Baldy; Lacerda, Fernanda Neves; Pagnotta, Murillo; Savalli, Carine
2014-11-01
We investigated the process of nut-cracking acquisition in a semi-free population of tufted capuchin monkeys (Sapajus sp) in São Paulo, Brazil. We analyzed the cracking episodes from monkeys of different ages and found that variability of actions related to cracking declined. Inept movements were more frequent in juveniles, which also showed an improvement on efficient striking. The most effective behavioral sequence for cracking was more frequently used by the most experienced monkeys, which also used non-optimal sequences. Variability in behavior sequences and actions may allow adaptive changes to behavior under changing environmental conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
Fracture mechanisms of glass particles under dynamic compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parab, Niranjan D.; Guo, Zherui; Hudspeth, Matthew C.
2017-08-01
In this study, dynamic fracture mechanisms of single and contacting spherical glass particles were observed using high speed synchrotron X-ray phase contrast imaging. A modified Kolsky bar setup was used to apply controlled dynamic compressive loading on the soda-lime glass particles. Four different configurations of particle arrangements with one, two, three, and five particles were studied. In single particle experiments, cracking initiated near the contact area between the particle and the platen, subsequently fragmenting the particle in many small sub-particles. In multi-particle experiments, a crack was observed to initiate from the point just outside the contact area between two particles.more » The initiated crack propagated at an angle to the horizontal loading direction, resulting in separation of a fragment. However, this fragment separation did not affect the ability of the particle to withstand further contact loading. On further compression, large number of cracks initiated in the particle with the highest number of particle-particle contacts near one of the particle-particle contacts. The initiated cracks roughly followed the lines joining the contact points. Subsequently, the initiated cracks along with the newly developed sub-cracks bifurcated rapidly as they propagated through the particle and fractured the particle explosively into many small fragments, leaving the other particles nearly intact.« less
Fatigue Crack Growth Behavior of Gas Metal Arc Welded AISI 409 Grade Ferritic Stainless Steel Joints
NASA Astrophysics Data System (ADS)
Lakshminarayanan, A. K.; Shanmugam, K.; Balasubramanian, V.
2009-10-01
The effect of filler metals such as austenitic stainless steel, ferritic stainless steel, and duplex stainless steel on fatigue crack growth behavior of the gas metal arc welded ferritic stainless steel joints was investigated. Rolled plates of 4 mm thickness were used as the base material for preparing single ‘V’ butt welded joints. Center cracked tensile specimens were prepared to evaluate fatigue crack growth behavior. Servo hydraulic controlled fatigue testing machine with a capacity of 100 kN was used to evaluate the fatigue crack growth behavior of the welded joints. From this investigation, it was found that the joints fabricated by duplex stainless steel filler metal showed superior fatigue crack growth resistance compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Higher yield strength and relatively higher toughness may be the reasons for superior fatigue performance of the joints fabricated by duplex stainless steel filler metal.
Edge-Cracking Behavior of CoCrFeMnNi High-Entropy Alloy During Hot Rolling
NASA Astrophysics Data System (ADS)
Won, Jong Woo; Kang, Minju; Kwon, Heoun-Jun; Lim, Ka Ram; Seo, Seong Moon; Na, Young Sang
2018-05-01
This work investigated edge-cracking behavior of equiatomic CoCrFeMnNi high-entropy alloy during hot rolling at rolling temperatures 500 ≤ T R ≤ 1000 °C. Edge cracks did not form in the material rolled at 500 °C, but widened and deepened into the inside of plate as T R increased from 500 °C. Edge cracks were most severe in the material rolled at 1000 °C. Mn-Cr-O type non-metallic inclusion and oxidation were identified as major factors that caused edge cracking. The inclusions near edge region acted as preferential sites for crack formation. Connection between inclusion cracks and surface cracks induced edge cracking. Rolling at T R ≥ 600 °C generated distinct inclusion cracks whereas they were not serious at T R = 500 °C, so noticeable edge cracks formed at T R ≥ 600 °C. At T R = 1000 °C, significant oxidation occurred at the crack surface. This accelerated edge crack penetration by embrittling the crack tip, so severe edge cracking occurred at T R = 1000 °C.
A Study on Fretting Behavior in Room Temperature for Inconel Alloy 690
NASA Astrophysics Data System (ADS)
Kwon, Jae Do; Chai, Young Suck; Bae, Yong Tak; Choi, Sung Jong
The initial crack under fretting condition occurs at lower stress amplitude and lower cycles of cyclic loading than that under plain fatigue condition. The fretting damage, for example, can be observed in fossil and nuclear power plant, aircraft, automobile and petroleum chemical plants etc. INCONEL alloy 690 is a high-chromium nickel alloy having excellent resistance to many corrosive aqueous media and high-temperature atmospheres. This alloy is used extensively in the industries of nuclear power, chemicals, heat-treatment and electronics. In this paper, the effect of fretting damage on fatigue behavior for INCONEL alloy 690 was studied. Also, various kinds of tests on mechanical properties such as hardness, tension and plain fatigue tests are performed. Fretting fatigue tests were carried out with flat-flat contact configuration using a bridge type contact pad and plate type specimen. Through these experiments, it is found that the fretting fatigue strength decreased about 43% compared to the plain fatigue strength. In fretting fatigue, the wear debris is observed on the contact surface, and the oblique micro-cracks are initiated at an earlier stage. These results can be used as the basic data in a structural integrity evaluation of heat and corrosion resistant alloy considering fretting damages.
NASA Astrophysics Data System (ADS)
Dai, Donghua; Gu, Dongdong; Zhang, Han; Xiong, Jiapeng; Ma, Chenglong; Hong, Chen; Poprawe, Reinhart
2018-02-01
Selective laser melting additive manufacturing of the AlSi12 material parts through the re-melting of the previously solidified layer using the continuous two layers 90° rotate scan strategy was conducted. The influence of the re-melting behavior and scan strategy on the formation of the ;track-track; and ;layer-layer; molten pool boundaries (MPBs), dimensional accuracy, microstructure feature, tensile properties, microscopic sliding behavior and the fracture mechanism as loaded a tensile force has been studied. It showed that the defects, such as the part distortion, delamination and cracks, were significantly eliminated with the deformation rate less than 1%. The microstructure of a homogeneous distribution of the Si phase, no apparent grain orientation on both sides of the MPBs, was produced in the as-fabricated part, promoting the efficient transition of the load stress. Cracks preferentially initiate at the ;track-track; MPBs when the tensile stress increases to a certain value, resulting in the formation of the cleavage steps along the tensile loading direction. The cracks propagate along the ;layer-layer; MPBs, generating the fine dimples. The mechanical behavior of the SLM-processed AlSi12 parts can be significantly enhanced with the ultimate tensile strength, yield strength and elongation of 476.3 MPa, 315.5 MPa and 6.7%, respectively.
NASA Astrophysics Data System (ADS)
Akbarzadeh Khorshidi, M.; Shariati, M.
2017-07-01
The elastic buckling analysis and the static postbuckling response of the Euler-Bernoulli microbeams containing an open edge crack are studied based on a modified couple stress theory. The cracked section is modeled by a massless elastic rotational spring. This model contains a material length scale parameter and can capture the size effect. The von Kármán nonlinearity is applied to display the postbuckling behavior. Analytical solutions of a critical buckling load and the postbuckling response are presented for simply supported cracked microbeams. This parametric study indicates the effects of the crack location, crack severity, and length scale parameter on the buckling and postbuckling behaviors of cracked microbeams.
DOT National Transportation Integrated Search
2006-12-01
This is Volume II-Appendices of Fatigue Crack Growth Behavior of Railroad Tank Car Steel TC-128B Subjected to Various Environments. This document contains miscellaneous supporting documentation, fatigue crack growth laboratory data, and analyses.
NASA Technical Reports Server (NTRS)
Dawicke, David S.; Smith, Stephen W.; Raju, Ivatury S.
2008-01-01
An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). Material characterization tests were conducted to quantify the material behavior for use in the CIFS analyses. Fatigue crack growth rate, Charpy impact, and fracture tests were conducted on the parent and welded A516 Grade 70 steel. The crack growth rate tests confirmed that the material behaved in agreement with literature data and that a salt water environment would not significantly degrade the fatigue resistance. The Charpy impact tests confirmed that the fracture resistance of the material did not have a significant reduction for the expected operational temperatures of the vehicle.
Effects of Grain Size and Twin Layer Thickness on Crack Initiation at Twin Boundaries.
Zhou, Piao; Zhou, Jianqiu; Zhu, Yongwei; Jiang, E; Wang, Zikun
2018-04-01
A theoretical model to explore the effect on crack initiation of nanotwinned materials was proposed based on the accumulation of dislocations at twin boundaries. First, a critical cracking initiation condition was established considering the number of dislocations pill-up at TBs, grain size and twin layer thickness, and a semi-quantitative relationship between the crystallographic orientation and the stacking fault energy was built. In addition, the number of dislocations pill-up was described by introducing the theory of strain gradient. Based on this model, the effects of grain size and twin lamellae thickness on dislocation density and crack initiation at twin boundaries were also discussed. The simulation results demonstrated that the crack initiation resistance can be improved by decreasing the grain size and increasing the twin lamellae, which keeps in agreement with recent experimental findings reported in the literature.
Visualization and Quantitative Analysis of Crack-Tip Plastic Zone in Pure Nickel
NASA Astrophysics Data System (ADS)
Kelton, Randall; Sola, Jalal Fathi; Meletis, Efstathios I.; Huang, Haiying
2018-05-01
Changes in surface morphology have long been thought to be associated with crack propagation in metallic materials. We have studied areal surface texture changes around crack tips in an attempt to understand the correlations between surface texture changes and crack growth behavior. Detailed profiling of the fatigue sample surface was carried out at short fatigue intervals. An image processing algorithm was developed to calculate the surface texture changes. Quantitative analysis of the crack-tip plastic zone, crack-arrested sites near triple points, and large surface texture changes associated with crack release from arrested locations was carried out. The results indicate that surface texture imaging enables visualization of the development of plastic deformation around a crack tip. Quantitative analysis of the surface texture changes reveals the effects of local microstructures on the crack growth behavior.
Microstructural examination of fatigue crack tip in high strength steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuoka, C.; Yoshizawa, H.; Nakagawa, Y.G.
1993-10-01
Fatigue tests were performed to examine how microstructural conditioning influences crack initiation and propagation in SA508 class 3 low-carbon steel. A 3-mm-long crack was introduced in compact tension (CT) fatigue test specimens under four different loads in order to obtain crack tip plastic zones at different stress intensity factor ranges, [Delta]K = 18, 36, 54, and 72 MPa[radical]m. The microstructure of the plastic zones around the crack tip were examined by transmission electron microscopy (TEM) and selected area electron diffraction (SAD). Micro-orientation of the dislocation cells in the plastic zones of all of the CT samples increased to 4 degmore » from the level of an as-received sample. Four-point bending fatigue tests were performed for plate shape samples with a large cyclic strain range. The SAD value of the bending samples was also 4 deg in the damaged area where cracks already initiated at an early stage of the fatigue process. These test results indicate that the microstructural conditioning is a prerequisite for the fatigue crack initiation and propagation in SA508. These observations may lead to better understanding of how fatigue initiation processes transit to cracks.« less
Cyclic plasticity models and application in fatigue analysis
NASA Technical Reports Server (NTRS)
Kalev, I.
1981-01-01
An analytical procedure for prediction of the cyclic plasticity effects on both the structural fatigue life to crack initiation and the rate of crack growth is presented. The crack initiation criterion is based on the Coffin-Manson formulae extended for multiaxial stress state and for inclusion of the mean stress effect. This criterion is also applied for the accumulated damage ahead of the existing crack tip which is assumed to be related to the crack growth rate. Three cyclic plasticity models, based on the concept of combination of several yield surfaces, are employed for computing the crack growth rate of a crack plane stress panel under several cyclic loading conditions.
The operational styles of crack houses in Detroit.
Mieczkowski, T
1990-01-01
This chapter identified three methods by which crack cocaine is distributed at the retail level: the street-corner or walk-up sales system, the runners and beepermen system, and the crack house. The chapter devoted primary attention to the crack house, because it appears as the most popular method for distribution. In examining the crack house, it is noted that there are identifiable styles of crack-house operations. If the quality and quantity of social interaction, as well as the situation in which sellers posture themselves, are taken as indices, then a typology can be created characterizing crack-house operations. One end of the scale is an austere method in which social interaction between buyer and seller is severely restricted; on the other, crack houses operate as tavern-style exchange locations, which include socialization above and beyond that required for the exchange of money for crack. The nature of these exchanges are themselves important, since they involve social behaviors that are of concern. One concern is the degree and nature of violence as it is associated with drug abuse. The data in this chapter describe some ways in which violence appears within the crack subculture. This violence comes from multiple sources, but some prominent ones appear to be the businesslike operations of crack distribution, the personal disorganization that surrounds and characterizes the crack-consuming environment, and the distortions of character that crack users describe as often accompanying significant binges of crack consumption. Distributors use violence to control situations. Violence is most prominently used for security at the point of retail sale, to periodically resolve conflicts with rivals, and to discipline employees when necessary. Insofar as it is described by this group of informants, crack as a social phenomenon is tied to violent and abusive behavior. This chapter reports on behaviors that, although not traditionally violent, are of concern and bear upon public health and safety. Tavern-style crack houses may encourage and make possible hypersexuality among participants and thus increase STD and HIV risks. The use of barter as a supplement to a cash economy in the crack trade represents further complications in creating social policies in reaction to this behavior. A range of other illegal and problematic behaviors was also described, illustrating the complexity of interactions that constitute the life of street-level crack users. The social policies that may be called for in response to these social events are not simple and are most certainly not defined by these particular data.(ABSTRACT TRUNCATED AT 400 WORDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weidenaar, W.A.
1992-12-01
Centrally notched (hole), cross-ply, ((0/90) sub 2) sub s, and unidirectional, (0) sub 8 laminates of Silicon Carbide fiber-reinforced Aluminosilicate glass, SiC/1723, were fatigue tested under tension-compression loading with a load ratio of -1. Damage accumulated continuously for both lay-ups, leading to eventual failure and a reduced fatigue life. Critical damage in the cross-ply consisted of longitudinal cracks in the 90 deg plies growing and combining with transverse cracks to effectively eliminate the 90 deg plies' load carrying capability and allowing the specimen to buckle. Critical damage in the unidirectional lay-up consisted of longitudinal cracks which initiated at the shearmore » stress concentration points on the hole periphery. Reversed cyclic loading caused continued crack growth at maximum stresses below the tension-tension fatigue limit. The cross-ply lay-up appeared insensitive to the hole, while critical damage in the unidirectional lay-up was dependent on the shear stress concentrations at the hole.... Ceramic matrix composite, Tension-compression fatigue, Notched specimen.« less
Self-Healing Nanotextured Vascular-like Materials: Mode I Crack Propagation.
Lee, Min Wook; Sett, Soumyadip; An, Seongpil; Yoon, Sam S; Yarin, Alexander L
2017-08-16
Here, we investigate crack propagation initiated from an initial notch in a self-healing material. The crack propagation in the core-shell nanofiber mats formed by coelectrospinning and the composites reinforced by them is in focus. All samples are observed from the crack initiation until complete failure. Due to the short-time experiments done on purpose, the resin and cure released from the cores of the core-shell nanofibers could not achieve a complete curing and stop crack growth, especially given the fact that no heating was used. The aim is to elucidate their effect on the rate of crack propagation. The crack propagation speed in polyacrylonitrile (PAN)-resin-cure nanofiber mats (with PAN being the polymer in the shell) was remarkably lower than that in the corresponding monolithic PAN nanofiber mat, down to 10%. The nanofiber mats were also encased in polydimethylsiloxane (PDMS) matrix to form composites. The crack shape and propagation in the composite samples were studied experimentally and analyzed theoretically, and the theoretical results revealed agreement with the experimental data.
Healing of Fatigue Crack in 1045 Steel by Using Eddy Current Treatment
Yang, Chuan; Xu, Wenchen; Guo, Bin; Shan, Debin; Zhang, Jian
2016-01-01
In order to investigate the methods to heal fatigue cracks in metals, tubular specimens of 1045 steel with axial and radial fatigue cracks were treated under the eddy current. The optical microscope was employed to examine the change of fatigue cracks of specimens before and after the eddy current treatment. The results show that the fatigue cracks along the axial direction of the specimen could be healed effectively in the fatigue crack initiation zone and the crack tip zone under the eddy current treatment, and the healing could occur within a very short time. The voltage breakdown and the transient thermal compressive stress caused by the detouring of eddy current around the fatigue crack were the main factors contributing to the healing in the fatigue crack initiation zone and the crack tip zone, respectively. Eddy current treatment may be a novel and effective method for crack healing. PMID:28773761
Healing of Fatigue Crack in 1045 Steel by Using Eddy Current Treatment.
Yang, Chuan; Xu, Wenchen; Guo, Bin; Shan, Debin; Zhang, Jian
2016-07-29
In order to investigate the methods to heal fatigue cracks in metals, tubular specimens of 1045 steel with axial and radial fatigue cracks were treated under the eddy current. The optical microscope was employed to examine the change of fatigue cracks of specimens before and after the eddy current treatment. The results show that the fatigue cracks along the axial direction of the specimen could be healed effectively in the fatigue crack initiation zone and the crack tip zone under the eddy current treatment, and the healing could occur within a very short time. The voltage breakdown and the transient thermal compressive stress caused by the detouring of eddy current around the fatigue crack were the main factors contributing to the healing in the fatigue crack initiation zone and the crack tip zone, respectively. Eddy current treatment may be a novel and effective method for crack healing.
NASA Astrophysics Data System (ADS)
Khosrownejad, S. M.; Curtin, W. A.
2017-10-01
Fracture is the main cause of degradation and capacity fading in lithiated silicon during cycling. Experiments on the fracture of lithiated silicon show conflicting results, and so mechanistic models can help interpret experiments and guide component design. Here, large-scale K-controlled atomistic simulations of crack propagation (R-curve KI vs. Δa) are performed at LixSi compositions x = 0.5 , 1.0 , 1.5 for as-quenched/relaxed samples and at x = 0.5 , 1.0 for samples created by discharging from higher Li compositions. In all cases, the fracture mechanism is void nucleation, growth, and coalescence. In as-quenched materials, with increasing Li content the plastic flow stress and elastic moduli decrease but void nucleation and growth happen at smaller stress, so that the initial fracture toughness KIc ≈ 1.0 MPa√{ m} decreases slightly but the initial fracture energy JIc ≈ 10.5J/m2 is similar. After 10 nm of crack growth, the fracture toughnesses increase and become similar at KIc ≈ 1.9 MPa√{ m} across all compositions. Plane-strain equi-biaxial expansion simulations of uncracked samples provide complementary information on void nucleation and growth. The simulations are interpreted within the framework of Gurson model for ductile fracture, which predicts JIc = ασy D where α ≃ 1 and D is the void spacing, and good agreement is found. In spite of flowing plastically, the fracture toughness of LixSi is low because voids nucleate within nano-sized distances ahead of the crack (D ≈ 1nm). Scaling simulation results to experimental conditions, reasonable agreement with experimentally-estimated fracture toughnesses is obtained. The discharging process facilitates void nucleation but decreases the flow stress (as shown previously), leading to enhanced fracture toughness at all levels of crack growth. Therefore, the fracture behavior of lithiated silicon at a given composition is not a material property but instead depends on the history of charging/discharging. These findings indicate that the mechanical behavior (flow and fracture) of lithiated Si must be interpreted within a fully rate- and history-dependent framework.
Towards a better understanding of the cracking behavior in soils
USDA-ARS?s Scientific Manuscript database
Understanding and modeling shrinkage-induced cracks helps bridge the gap between flow problem in the laboratory and at the field. Modeling flow at the field scale with Darcian fluxes developed at the laboratory scales is challenged with preferential flows attributed to the cracking behavior of soils...
The epidemiology of physical attack and rape among crack-using women.
Falck, R S; Wang, J; Carlson, R G; Siegal, H A
2001-02-01
This prospective study examines the epidemiology of physical attack and rape among a sample of 171 not-in-treatment, crack-cocaine using women. Since initiating crack use, 62% of the women reported suffering a physical attack. The annual rate of victimization by physical attack was 45%. Overall, more than half of the victims sought medical care subsequent to an attack. The prevalence of rape since crack use was initiated was 32%, and the annual rate was 11%. Among those women having been raped since they initiated crack use, 83% reported they were high on crack when the crime occurred as were an estimated 57% of the perpetrators. Logistic regression analyses showed that duration of crack use, arrest for prostitution, and some college education were predictors of having experienced a physical attack. Duration of crack use and a history of prostitution were predictors of suffering a rape. Drug abuse treatment programs must be sensitive to high levels of violence victimization experienced by crack-cocaine using women. Screening women for victimization, and treating the problems that emanate from it, may help make drug abuse treatment more effective.
Effect of Speed (Centrifugal Load) on Gear Crack Propagation Direction
NASA Technical Reports Server (NTRS)
Lewicki, David G.
2001-01-01
The effect of rotational speed (centrifugal force) on gear crack propagation direction was explored. Gears were analyzed using finite element analysis and linear elastic fracture mechanics. The analysis was validated with crack propagation experiments performed in a spur gear fatigue rig. The effects of speed, rim thickness, and initial crack location on gear crack propagation direction were investigated. Crack paths from the finite element method correlated well with those deduced from gear experiments. For the test gear with a backup ratio (rim thickness divided by tooth height) of nib = 0.5, cracks initiating in the tooth fillet propagated to rim fractures when run at a speed of 10,000 rpm and became tooth fractures for speeds slower than 10,000 rpm for both the experiments and anal sis. From additional analysis, speed had little effect on crack propagation direction except when initial crack locations were near the tooth/rim fracture transition point for a given backup ratio. When at that point, higher speeds tended to promote rim fracture while lower speeds (or neglecting centrifugal force) produced tooth fractures.
Microstructural examination of
NASA Astrophysics Data System (ADS)
Fukuoka, C.; Yoshizawa, H.; Nakagawa, Y. G.; Lapides, M. E.
1993-10-01
Fatigue tests were performed to examine how microstructural conditioning influences crack initiation and propagation in SA508 class 3 low-carbon steel. A 3-mm-long crack was introduced in compact tension (CT) fatigue test specimens under four different loads in order to obtain crack tip plastic zones at different stress intensity factor ranges, ΔK = 18, 36, 54, and 72 MPa√m. The microstructure of the plastic zones around the crack tip were examined by trans- mission electron microscopy (TEM) and selected area electron diffraction (SAD). Micro- orientation of the dislocation cells in the plastic zones of all of the CT samples increased to 4 deg from the level of an as-received sample. Four-point bending fatigue tests were performed for plate shape samples with a large cyclic strain range. The SAD value of the bending samples was also 4 deg in the damaged area where cracks already initiated at an early stage of the fatigue process. These test results indicate that the microstructural conditioning is a prerequisite for the fatigue crack initiation and propagation in SA508. These observations may lead to better under- standing of how fatigue initiation processes transit to cracks.
Investigation of Low-Cycle Bending Fatigue of AISI 9310 Steel Spur Gears
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Krantz, Timothy L.; Lerch, Bradley A.; Burke, Christopher S.
2007-01-01
An investigation of the low-cycle bending fatigue of spur gears made from AISI 9310 gear steel was completed. Tests were conducted using the single-tooth bending method to achieve crack initiation and propagation. Tests were conducted on spur gears in a fatigue test machine using a dedicated gear test fixture. Test loads were applied at the highest point of single tooth contact. Gear bending stresses for a given testing load were calculated using a linear-elastic finite element model. Test data were accumulated from 1/4 cycle to several thousand cycles depending on the test stress level. The relationship of stress and cycles for crack initiation was found to be semi-logarithmic. The relationship of stress and cycles for crack propagation was found to be linear. For the range of loads investigated, the crack propagation phase is related to the level of load being applied. Very high loads have comparable crack initiation and propagation times whereas lower loads can have a much smaller number of cycles for crack propagation cycles as compared to crack initiation.
Investigation of Low-Cycle Bending Fatigue of AISI 9310 Steel Spur Gears
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Krantz, Timothy L.; Lerch, Bradley A.; Burke, Christopher S.
2007-01-01
An investigation of the low-cycle bending fatigue of spur gears made from AISI 9310 gear steel was completed. Tests were conducted using the single-tooth bending method to achieve crack initiation and propagation. Tests were conducted on spur gears in a fatigue test machine using a dedicated gear test fixture. Test loads were applied at the highest point of single tooth contact. Gear bending stresses for a given testing load were calculated using a linear-elastic finite element model. Test data were accumulated from 1/4 cycle to several thousand cycles depending on the test stress level. The relationship of stress and cycles for crack initiation was found to be semilogarithmic. The relationship of stress and cycles for crack propagation was found to be linear. For the range of loads investigated, the crack propagation phase is related to the level of load being applied. Very high loads have comparable crack initiation and propagation times whereas lower loads can have a much smaller number of cycles for crack propagation cycles as compared to crack initiation.
NASA Astrophysics Data System (ADS)
Pal, Anirban; Picu, Catalin; Lupulescu, Marian V.
We study the mechanical behavior of two-dimensional, stochastically microcracked continua in the range of crack densities close to, and above the transport percolation threshold. We show that these materials retain stiffness up to crack densities much larger than the transport percolation threshold, due to topological interlocking of sample sub-domains. Even with a linear constitutive law for the continuum, the mechanical behavior becomes non-linear in the range of crack densities bounded by the transport and stiffness percolation thresholds. The effect is due to the fractal nature of the fragmentation process and is not linked to the roughness of individual cracks. We associate this behavior to that of itacolumite, a sandstone that exhibits unusual flexibility.
Role of hydrogen on the incipient crack tip deformation behavior in α-Fe: An atomistic perspective
NASA Astrophysics Data System (ADS)
Adlakha, I.; Solanki, K. N.
2018-01-01
A crack tip in α-Fe presents a preferential trap site for hydrogen, and sufficient concentration of hydrogen can change the incipient crack tip deformation response, causing a transition from a ductile to a brittle failure mechanism for inherently ductile alloys. In this work, the effect of hydrogen segregation around the crack tip on deformation in α-Fe was examined using atomistic simulations and the continuum based Rice-Thompson criterion for various modes of fracture (I, II, and III). The presence of a hydrogen rich region ahead of the crack tip was found to cause a decrease in the critical stress intensity factor required for incipient deformation for various crack orientations and modes of fracture examined here. Furthermore, the triaxial stress state ahead of the crack tip was found to play a crucial role in determining the effect of hydrogen on the deformation behavior. Overall, the segregation of hydrogen atoms around the crack tip enhanced both dislocation emission and cleavage behavior suggesting that hydrogen has a dual role during the deformation in α-Fe.
NASA Astrophysics Data System (ADS)
Abrokwah, Emmanuel Otchere
Directionally solidified Rene 80 (DS R80) and polycrystalline Inconel 738(IN 738) Superalloys were tested in thermo-mechanical fatigue (TMF) over the temperature range of 500-900°C and plastic strain range from 0.1 to 0.8% using a DSI Gleeble thermal simulator. Thermo-mechanical testing was carried out on the parent material (baseline) in the conventional solution treated and aged condition (STA), as well as gas tungsten arc welded (GTAW) with an IN-738 filler, followed by solution treatment and ageing. Comparison of the baseline alloy microstructure with that of the welded and heat treated alloy showed that varying crack initiation mechanisms, notably oxidation by stress assisted grain boundary oxidation, grain boundary MC carbides fatigue crack initiation, fatigue crack initiation from sample surfaces, crack initiation from weld defects and creep deformation were operating, leading to different “weakest link” and failure initiation points. The observations from this study show that the repaired samples had extra crack initiation sites not present in the baseline, which accounted for their occasional poor fatigue life. These defects include lack of fusion between the weld and the base metal, fusion zone cracking, and heat affected zone microfissures.
Kral, A H; Bluthenthal, R N; Booth, R E; Watters, J K
1998-01-01
OBJECTIVES: This study deter- mined human immunodeficiency virus (HIV) seroprevalence and factors associated with HIV infection among street-recruited injection drug users and crack cocaine smokers. METHODS: An analysis was performed on HIV serologies and risk behaviors of 6402 injection drug users and 3383 crack smokers in 16 US municipalities in 1992 and 1993. RESULTS: HIV seroprevalence was 12.7% among injection drug users and 7.5% among crack smokers. Most high-seroprevalence municipalities (>25%) were located along the eastern seaboard of the United States. In high-seroprevalence municipalities, but not in others, HIV seroprevalence was higher for injection drug users than for crack smokers. Among injection drug users, cocaine injection, use of speedballs (cocaine or amphetamines with heroin), and sexual risk behaviors were independently associated with HIV infection. Among crack smokers, sexual risk behaviors were associated with HIV infection. CONCLUSIONS: Injection drug users and crack smokers are at high risk for HIV infection. PMID:9584014
DOT National Transportation Integrated Search
2014-07-01
This report presents a vibration : - : based damage : - : detection methodology that is capable of effectively capturing crack growth : near connections and crack re : - : initiation of retrofitted connections. The proposed damage detection algorithm...
NASA Astrophysics Data System (ADS)
Tian, Hongbo
As the candidate target container material of the new Spallation Neutron Source (SNS) being designed and constructed at the Oak Ridge National Laboratory (ORNL), Type 316 low-carbon nitrogen-added (LN) stainless steel (SS) will operate in an aggressive environment, subjected to intense fluxes of high-energy protons and neutrons while exposed to liquid mercury. The current project is oriented toward materials studies regarding the effects of test environment and frequency on the fatigue behavior of 316 LN SS. In order to study the structural applications of this material and improve the fundamental understanding of the fatigue damage mechanisms, fatigue tests were performed in air and mercury environments at various frequencies and R ratios (R = sigma min/sigmamax, sigmamin and sigmamax are the applied minimum and maximum stresses, respectively). Fatigue data were developed for the structural design and engineering applications of this material. Specifically, high-cycle fatigue tests, fatigue crack-propagation tests, and ultrahigh cycle fatigue tests up to 10 9 cycles were conducted in air and mercury with test frequencies from 10 Hz to 700 Hz. Microstructure characterizations were performed using optical microscopy (OM), scanning-electron microscopy (SEM), and transmission-electron microscopy (TEM). It was found that mercury doesn't seem to have a large impact on the crack-initiation behavior of 316 LN SS. However, the crack-propagation mechanisms in air and mercury are different in some test conditions. Transgranular cracks seem to be the main mechanism in air, and intergranular in mercury. A significant specimen self-heating effect was found during high-cycle faituge. Theoretical calculation was performed to predict temperature responses of the material subjected to cyclic deformation. The predicted cyclic temperature evolution seems to be in good agreement with the experimental results.
Hydrogen enhanced crack growth in 18 Ni maraging steels
NASA Technical Reports Server (NTRS)
Hudak, S. J., Jr.; Wei, R. P.
1976-01-01
The kinetics of sustained-load subcritical crack growth for 18 Ni maraging steels in high-purity hydrogen are examined using the crack-tip stress intensity factor K as a measure of crack driving force. Crack growth rate as a function of stress intensity exhibited a clearly defined K-independent stage (Stage II). Crack growth rates in an 18 Ni (grade 250) maraging steel are examined for temperatures from -6 to +100 C. A critical temperature was observed above which crack growth rates became diminishingly small. At lower temperatures the activation energy for Stage II crack growth was found to be 16.7 plus or minus 3.3 kJ/mole. Temperature and hydrogen partial pressure are shown to interact in a complex manner to determine the apparent Kth (stress intensity level below which no observable crack growth occurs) and the crack growth behavior. Comparison of results on '250' and '300' grades of 18 Ni maraging steel indicate a significant influence of alloy composition and/or strength level on the crack growth behavior.
2011-10-01
crack growth, microstructure, EBSD, fractography 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR NUMBER OF PAGES 6 19a...differences in thermomechanical processing routes have been correlated with variations in fatigue life through the use of quantitative fractography ...Keywords: fatigue, crack initiation, crack growth, microstructure, EBSD, fractography 1. Introduction Two-phase titanium alloys have the unique
Fracture of a Brittle-Particle Ductile Matrix Composite with Applications to a Coating System
NASA Astrophysics Data System (ADS)
Bianculli, Steven J.
In material systems consisting of hard second phase particles in a ductile matrix, failure initiating from cracking of the second phase particles is an important failure mechanism. This dissertation applies the principles of fracture mechanics to consider this problem, first from the standpoint of fracture of the particles, and then the onset of crack propagation from fractured particles. This research was inspired by the observation of the failure mechanism of a commercial zinc-based anti-corrosion coating and the analysis was initially approached as coatings problem. As the work progressed it became evident that failure mechanism was relevant to a broad range of composite material systems and research approach was generalized to consider failure of a system consisting of ellipsoidal second phase particles in a ductile matrix. The starting point for the analysis is the classical Eshelby Problem, which considered stress transfer from the matrix to an ellipsoidal inclusion. The particle fracture problem is approached by considering cracks within particles and how they are affected by the particle/matrix interface, the difference in properties between the particle and matrix, and by particle shape. These effects are mapped out for a wide range of material combinations. The trends developed show that, although the particle fracture problem is very complex, the potential for fracture among a range of particle shapes can, for certain ranges in particle shape, be considered easily on the basis of the Eshelby Stress alone. Additionally, the evaluation of cracks near the curved particle/matrix interface adds to the existing body of work of cracks approaching bi-material interfaces in layered material systems. The onset of crack propagation from fractured particles is then considered as a function of particle shape and mismatch in material properties between the particle and matrix. This behavior is mapped out for a wide range of material combinations. The final section of this dissertation qualitatively considers an approach to determine critical particle sizes, below which crack propagation will not occur for a coating system that exhibited stable cracks in an interfacial layer between the coating and substrate.
NASA Technical Reports Server (NTRS)
Seshadri, Banavara R.; Smith, Stephen W.
2007-01-01
Variation in constraint through the thickness of a specimen effects the cyclic crack-tip-opening displacement (DELTA CTOD). DELTA CTOD is a valuable measure of crack growth behavior, indicating closure development, constraint variations and load history effects. Fatigue loading with a continual load reduction was used to simulate the load history associated with fatigue crack growth threshold measurements. The constraint effect on the estimated DELTA CTOD is studied by carrying out three-dimensional elastic-plastic finite element simulations. The analysis involves numerical simulation of different standard fatigue threshold test schemes to determine how each test scheme affects DELTA CTOD. The American Society for Testing and Materials (ASTM) prescribes standard load reduction procedures for threshold testing using either the constant stress ratio (R) or constant maximum stress intensity (K(sub max)) methods. Different specimen types defined in the standard, namely the compact tension, C(T), and middle cracked tension, M(T), specimens were used in this simulation. The threshold simulations were conducted with different initial K(sub max) values to study its effect on estimated DELTA CTOD. During each simulation, the DELTA CTOD was estimated at every load increment during the load reduction procedure. Previous numerical simulation results indicate that the constant R load reduction method generates a plastic wake resulting in remote crack closure during unloading. Upon reloading, this remote contact location was observed to remain in contact well after the crack tip was fully open. The final region to open is located at the point at which the load reduction was initiated and at the free surface of the specimen. However, simulations carried out using the constant Kmax load reduction procedure did not indicate remote crack closure. Previous analysis results using various starting K(sub max) values and different load reduction rates have indicated DELTA CTOD is independent of specimen size. A study of the effect of specimen thickness and geometry on the measured DELTA CTOD for various load reduction procedures and its implication in the estimation of fatigue crack growth threshold values is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chopra, O. K.; Chung, H. M.; Gruber, E. E.
This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors from July 1998 to December 1998. Topics that have been investigated include (a) environmental effects on fatigue S-N behavior of primary pressure boundary materials, (b) irradiation-assisted stress corrosion cracking of austenitic stainless steels (SSs), and (c) EAC of Alloys 600 and 690. Fatigue tests have been conducted to determine the crack initiation and crack growth characteristics of austenitic SSs in LWR environments. Procedures are presented for incorporating the effects of reactor coolant environments on the fatigue life of pressure vesselmore » and piping steels. Slow-strain-rate tensile tests and posttest fractographic analyses were conducted on several model SS alloys irradiated to {approx}0.3 and 0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) in helium at 289 C in the Halden reactor. The results have been used to determine the influence of alloying and impurity elements on the susceptibility of these steels to irradiation-assisted stress corrosion cracking. Fracture toughness J-R curve tests were also conducted on two heats of Type 304 SS that were irradiated to {approx}0.3 x 10{sup 21} n {center_dot} cm{sup -2} in the Halden reactor. Crack-growth-rate tests have been conducted on compact-tension specimens of Alloys 600 and 690 under constant load to evaluate the resistance of these alloys to stress corrosion cracking in LWR environments.« less
NASA Astrophysics Data System (ADS)
Liu, Zhenguang; Gao, Xiuhua; Du, Linxiu; Li, Jianping; Zhou, Xiaowei; Wang, Xiaonan; Wang, Yuxin; Liu, Chuan; Xu, Guoxiang; Misra, R. D. K.
2018-05-01
In this study, hydrogen induced cracking (HIC), sulfide stress corrosion cracking (SSCC) and hydrogen embrittlement (HE) were carried out to study hydrogen assisted cracking behavior (HIC, SSCC and HE) of high strength pipeline steel used for armor layer of flexible pipe in ocean. The CO2 corrosion behavior of designed steel with high strength was studied by using immersion experiment. The experimental results demonstrate that the corrosion resistance of designed steel with tempered martensite to HIC, SSCC and HE is excellent according to specific standards, which contributes to the low concentration of dislocation and vacancies previously formed in cold rolling process. The corrosion mechanism of hydrogen induced cracking of designed steel, which involves in producing process, microstructure and cracking behavior, is proposed. The designed steel with tempered martensite shows excellent corrosion resistance to CO2 corrosion. Cr-rich compound was first formed on the coupon surface exposed to CO2-saturated brine condition and chlorine, one of the corrosion ions in solution, was rich in the inner layer of corrosion products.
Phase Contrast Imaging of Damage Initiation During Ballistic Impact of Boron Carbide
NASA Astrophysics Data System (ADS)
Schuster, Brian; Tonge, Andrew; Ramos, Kyle; Rigg, Paulo; Iverson, Adam; Schuman, Adam; Lorenzo, Nicholas
2017-06-01
For several decades, flash X-ray imaging has been used to perform time-resolved investigations of the response of ceramics under ballistic impact. Traditional absorption based contrast offers little insight into the early initiation of inelastic deformation mechanisms and instead typically only shows the gross deformation and fracture behavior. In the present work, we employed phase contrast imaging (PCI) at the Dynamic Compression Sector (DCS) at the Advanced Photon Source, Argonne National Laboratory, to investigate crack initiation and propagation following the impact of copper penetrators into boron carbide targets. These experiments employed a single-stage propellant gun to launch small-scale (0.6 mm diameter by 3 mm long) pure copper impactors at velocities ranging from 0.9 to 1.9 km/s into commercially available boron carbide targets that were 8 mm on a side. At the lowest striking velocities the penetrator undergoes dwell or interface defeat and the target response is consistent with the cone crack formation at the impact site. At higher striking velocities there is a distinct transition to massive fragmentation leading to the onset of penetration.
Crack networks in damaged glass
NASA Astrophysics Data System (ADS)
Mallet, Celine; Fortin, Jerome; Gueguen, Yves
2013-04-01
We investigate how cracks develop and propagate in synthetic glass samples. Cracks are introduced in glass by a thermal shock of 300oC. Crack network is documented from optical and electronic microscopy on these samples that have been submitted to a thermal shock only. Samples are cylinder of 80 mm length and 40 mm diameter. Sections were cut along the cylinder axis and perpendicular to it. Using SEM, crack lengths and apertures can be measured. Optical microscopy allows to get the crack distribution over the entire sample. The sample average crack length is 3 mm. The average aperture is 6 ± 3μm. There is however a clear difference between the sample core, where the crack network has approximatively a transverse isotrope symmetry and the outer ring, where cracks are smaller and more numerous. By measuring before and after the thermal treatment the radial P and S wave velocities in room conditions, we can determine the total crack density which is 0.24. Thermally cracked samples, as described above, were submitted to creep tests. Constant axial stress and lateral stress were applied. Several experiments were performed at different stress values. Samples are saturated for 48 hours (to get an homogeneous pore fluid distribution), the axial stress is increased up to 80% of the sample strength. Stress step tests were performed in order to get creep data. The evolution of strain (axial and radial strain) is measured using strain gages, gap sensors (for the global axial strain) and pore volume change (for the volumetric strain). Creep data are interpreted as evidence of sub-critical crack growth in the cracked glass samples. The above microstructural observations are used, together with a crack propagation model, to account for the creep behavior. Assuming that (i) the observed volumetric strain rate is due to crack propagation and (ii) crack aspect ratio is constant we calculate the creep rate. We obtain some value on the crack propagation during a 24 hours of constant stress test. At each of these test, crack propagate of 0.3 to 0.4 mm. From the initial average crack length of 3 mm, the crack reach the size of 5.8 mm at the end of a complete creep test (with 8 constant stress step of 24 hours).
Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites
Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.
2016-01-01
Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses. PMID:27067824
Fracture behavior of reinforced aluminum alloy matrix composites using thermal imaging tools
NASA Astrophysics Data System (ADS)
Avdelidis, N. P.; Exarchos, D.; Vazquez, P.; Ibarra-Castanedo, C.; Sfarra, S.; Maldague, X. P. V.; Matikas, T. E.
2016-05-01
In this work the influence of the microstructure at the vicinity of the interface on the fracture behavior of particulate-reinforced aluminum alloy matrix composites (Al/SiCp composites) is studied by using thermographic tools. In particular, infrared thermography was used to monitor the plane crack propagation behavior of the materials. The deformation of solid materials is almost always accompanied by heat release. When the material becomes deformed or is damaged and fractured, a part of the energy necessary to initiate and propagate the damage is transformed in an irreversible way into heat. The thermal camera detects the heat wave, generated by the thermo-mechanical coupling and the intrinsic dissipated energy during mechanical loading of the sample. By using an adapted detector, thermography records the two dimensional "temperature" field as it results from the infrared radiation emitted by the object. The principal advantage of infrared thermography is its noncontact, non-destructive character. This methodology is being applied to characterise the fracture behavior of the particulate composites. Infrared thermography is being used to monitor the plane crack propagation behavior of such materials. Furthermore, an innovative approach to use microscopic measurements using IR microscopic lenses was attempted, in order to enable smaller features (in the micro scale) to be imaged with accuracy and assurance.
Advances in Fatigue and Fracture Mechanics Analyses for Aircraft Structures
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.
1999-01-01
This paper reviews some of the advances that have been made in stress analyses of cracked aircraft components, in the understanding of the fatigue and fatigue-crack growth process, and in the prediction of residual strength of complex aircraft structures with widespread fatigue damage. Finite-element analyses of cracked structures are now used to determine accurate stress-intensity factors for cracks at structural details. Observations of small-crack behavior at open and rivet-loaded holes and the development of small-crack theory has lead to the prediction of stress-life behavior for components with stress concentrations under aircraft spectrum loading. Fatigue-crack growth under simulated aircraft spectra can now be predicted with the crack-closure concept. Residual strength of cracked panels with severe out-of-plane deformations (buckling) in the presence of stiffeners and multiple-site damage can be predicted with advanced elastic-plastic finite-element analyses and the critical crack-tip-opening angle (CTOA) fracture criterion. These advances are helping to assure continued safety of aircraft structures.
Advances in Fatigue and Fracture Mechanics Analyses for Metallic Aircraft Structures
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.
2000-01-01
This paper reviews some of the advances that have been made in stress analyses of cracked aircraft components, in the understanding of the fatigue and fatigue-crack growth process, and in the prediction of residual strength of complex aircraft structures with widespread fatigue damage. Finite-element analyses of cracked metallic structures are now used to determine accurate stress-intensity factors for cracks at structural details. Observations of small-crack behavior at open and rivet-loaded holes and the development of small-crack theory has lead to the prediction of stress-life behavior for components with stress concentrations under aircraft spectrum loading. Fatigue-crack growth under simulated aircraft spectra can now be predicted with the crack-closure concept. Residual strength of cracked panels with severe out-of-plane deformations (buckling) in the presence of stiffeners and multiple-site damage can be predicted with advanced elastic-plastic finite-element analyses and the critical crack-tip-opening angle (CTOA) fracture criterion. These advances are helping to assure continued safety of aircraft structures.
Delamination Behavior of L-Shaped Laminated Composites
NASA Astrophysics Data System (ADS)
Geleta, Tsinuel N.; Woo, Kyeongsik; Lee, Bongho
2018-05-01
We studied the delamination behavior of L-shaped laminated composites numerically and experimentally. In finite-element modeling, cohesive zone modeling was used to simulate the delamination of plies. Cohesive elements were inserted between bulk elements at each interlayer to represent the occurrence of multiple delaminations. The laminated composite models were subjected to several types of loading inducing opening and shearing types of delamination. Numerical results were compared to those in the literature and of experiments conducted in this study. The results were carefully examined to investigate diverse delamination initiation and propagation behaviors. The effect of varying presence and location of pre-crack was also studied.
Crack-growth behavior in thick welded plates of Inconel 718 at room and cryogenic temperatures
NASA Technical Reports Server (NTRS)
Forman, R. G.
1974-01-01
Results of mechanical-properties and axial-load fatigue and fracture tests performed on thick welded plates of Inconel 718 superalloy are presented. The test objectives were to determine the tensile strength properties and the crack-growth behavior in electron-beam, plasma-arc, and gas tungsten are welds for plates 1.90 cm (0.75 in) thick. Base-metal specimens were also tested to determine the flaw-growth behavior. The tests were performed in room-temperature-air and liquid nitrogen environments. The experimental crack-growth-rate data are correlated with theoretical crack-growth-rate predictions for semielliptical surface flaws.
Crack Growth Behavior in the Threshold Region for High Cyclic Loading
NASA Technical Reports Server (NTRS)
Forman, R.; Figert, J.; Beek, J.; Ventura, J.; Martinez, J.; Samonski, F.
2011-01-01
The present studies show that fanning in the threshold regime is likely caused by other factors than a plastic wake developed during load shedding. The cause of fanning at low R-values is a result of localized roughness, mainly formation of a faceted crack surface morphology , plus crack bifurcations which alters the crack closure at low R-values. The crack growth behavior in the threshold regime involves both crack closure theory and the dislocation theory of metals. Research will continue in studying numerous other metal alloys and performing more extensive analysis, such as the variation in dislocation properties (e.g., stacking fault energy) and its effects in different materials.
Growth behavior of surface cracks in the circumferential plane of solid and hollow cylinders
NASA Technical Reports Server (NTRS)
Forman, R. G.; Shivakumar, V.
1986-01-01
Experiments were conducted to study the growth behavior of surface fatigue cracks in the circumferential plane of solid and hollow cylinders. In the solid cylinders, the fatigue cracks were found to have a circular arc crack front with specific upper and lower limits to the arc radius. In the hollow cylinders, the fatigue cracks were found to agree accurately with the shape of a transformed semiellipse. A modification to the usual nondimensionalization expression used for surface flaws in flat plates was found to give correct trends for the hollow cylinder problem.
Crack Arrest Toughness of Two High Strength Steels (AISI 4140 and AISI 4340)
NASA Astrophysics Data System (ADS)
Ripling, E. J.; Mulherin, J. H.; Crosley, P. B.
1982-04-01
The crack initiation toughness ( K c ) and crack arrest toughness ( K a ) of AISI 4140 and AISI 4340 steel were measured over a range of yield strengths from 965 to 1240 MPa, and a range of test temperatures from -53 to +74°C. Emphasis was placed on K a testing since these values are thought to represent the minimum toughness of the steel as a function of loading rate. At the same yield strengths and test temperatures, K a for the AISI 4340 was about twice as high as it was for the AISI 4140. In addition, the K a values showed a more pronounced transition temperature than the K c values, when the data were plotted as a function of test temperature. The transition appeared to be associated with a change in fracture mechanism from cleavage to dimpled rupture as the test temperature was increased. The occurrence of a “pop-in” behavior at supertransition temperatures has not been found in lower strength steels, and its evaluation in these high strength steels was possible only because they are not especially tough at their supertransition temperatures. There is an upper toughness limit at which pop-in will not occur, and this was found for the AISI 4340 steel when it was tempered to its lowest yield strength (965 MPa). All the crack arrest data were identified as plane strain values, while only about one-half of the initiation values could be classified this way.
Hidden contributions of the enamel rods on the fracture resistance of human teeth.
Yahyazadehfar, M; Bajaj, Devendra; Arola, Dwayne D
2013-01-01
The enamel of human teeth is generally regarded as a brittle material with low fracture toughness. Consequently, the contributions of this tissue in resisting tooth fracture and the importance of its complex microstructure have been largely overlooked. In this study an experimental evaluation of the crack growth resistance of human enamel was conducted to characterize the role of rod (i.e. prism) orientation and degree of decussation on the fracture behavior of this tissue. Incremental crack growth was achieved in-plane, with the rods in directions longitudinal or transverse to their axes. Results showed that the fracture resistance of enamel is both inhomogeneous and spatially anisotropic. Cracks extending transverse to the rods in the outer enamel undergo a lower rise in toughness with extension, and achieve significantly lower fracture resistance than in the longitudinal direction. Though cracks initiating at the surface of teeth may begin extension towards the dentin-enamel junction, they are deflected by the decussated rods and continue growth about the tooth's periphery, transverse to the rods in the outer enamel. This process facilitates dissipation of fracture energy and averts cracks from extending towards the dentin and vital pulp. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gupta, J.; Hure, J.; Tanguy, B.; Laffont, L.; Lafont, M.-C.; Andrieu, E.
2018-04-01
Irradiation Assisted Stress Corrosion Cracking (IASCC) is a complex phenomenon of degradation which can have a significant influence on maintenance time and cost of core internals of a Pressurized Water Reactor (PWR). Hence, it is an issue of concern, especially in the context of lifetime extension of PWRs. Proton irradiation is generally used as a representative alternative of neutron irradiation to improve the current understanding of the mechanisms involved in IASCC. This study assesses the possibility of using heavy ions irradiation to evaluate IASCC mechanisms by comparing the irradiation induced modifications (in microstructure and mechanical properties) and cracking susceptibility of SA 304 L after both type of irradiations: Fe irradiation at 450 °C and proton irradiation at 350 °C. Irradiation-induced defects are characterized and quantified along with nano-hardness measurements, showing a correlation between irradiation hardening and density of Frank loops that is well captured by Orowan's formula. Both irradiations (iron and proton) increase the susceptibility of SA 304 L to intergranular cracking on subjection to Constant Extension Rate Tensile tests (CERT) in simulated nominal PWR primary water environment at 340 °C. For these conditions, cracking susceptibility is found to be quantitatively similar for both irradiations, despite significant differences in hardening and degree of localization.
Mohammadi, H; Klassen, R J; Wan, W-K
2008-10-01
Pyrolytic carbon mechanical heart valves (MHVs) are widely used to replace dysfunctional and failed heart valves. As the human heart beats around 40 million times per year, fatigue is the prime mechanism of mechanical failure. In this study, a finite element approach is implemented to develop a model for fatigue analysis of MHVs due to the impact force between the leaflet and the stent and cavitation in the aortic position. A two-step method to predict crack propagation in the leaflets of MHVs has been developed. Stress intensity factors (SIFs) are computed at a small initiated crack located on the leaflet edge (the worst case) using the boundary element method (BEM). Static analysis of the crack is performed to analyse the stress distribution around the front crack zone when the crack is opened; this is followed by a dynamic crack analysis to consider crack propagation using the finite element approach. Two factors are taken into account in the calculation of the SIFs: first, the effect of microjet formation due to cavitation in the vicinity of leaflets, resulting in water hammer pressure; second, the effect of the impact force between the leaflet and the stent of the MHVs, both in the closing phase. The critical initial crack length, the SIFs, the water hammer pressure, and the maximum jet velocity due to cavitation have been calculated. With an initial crack length of 35 microm, the fatigue life of the heart valve is greater than 60 years (i.e. about 2.2 x 10(9) cycles) and, with an initial crack length of 170 microm, the fatigue life of the heart valve would be around 2.5 years (i.e. about 9.1 x 10(7) cycles). For an initial crack length greater than 170 microm, there is catastrophic failure and fatigue cracking no longer occurs. A finite element model of fatigue analysis using Patran command language (PCL custom code) in MSC software can be used to evaluate the useful lifespan of MHVs. Similar methodologies can be extended to other medical devices under cyclic loads.
The Effects of Hot Corrosion Pits on the Fatigue Resistance of a Disk Superalloy
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Telesman, Jack; Hazel, Brian; Mourer, David P.
2009-01-01
The effects of hot corrosion pits on low cycle fatigue life and failure modes of the disk superalloy ME3 were investigated. Low cycle fatigue specimens were subjected to hot corrosion exposures producing pits, then tested at low and high temperatures. Fatigue lives and failure initiation points were compared to those of specimens without corrosion pits. Several tests were interrupted to estimate the fraction of fatigue life that fatigue cracks initiated at pits. Corrosion pits significantly reduced fatigue life by 60 to 98 percent. Fatigue cracks initiated at a very small fraction of life for high temperature tests, but initiated at higher fractions in tests at low temperature. Critical pit sizes required to promote fatigue cracking were estimated, based on measurements of pits initiating cracks on fracture surfaces.
Crack Initiation and Growth in Rigid Polymeric Closed-Cell Foam Cryogenic Applications
NASA Technical Reports Server (NTRS)
Sayyah, Tarek; Steeve, Brian; Wells, Doug
2006-01-01
Cryogenic vessels, such as the Space Shuttle External Tank, are often insulated with closed-cell foam because of its low thermal conductivity. The coefficient of thermal expansion mismatch between the foam and metallic substrate places the foam under a biaxial tension gradient through the foam thickness. The total foam thickness affects the slope of the stress gradient and is considered a significant contributor to the initiation of subsurface cracks. Rigid polymeric foams are brittle in nature and any subsurface cracks tend to propagate a finite distance toward the surface. This presentation investigates the relationship between foam thickness and crack initiation and subsequent crack growth, using linear elastic fracture mechanics, in a rigid polymeric closed-cell foam through analysis and comparison with experimental results.
NASA Astrophysics Data System (ADS)
Sun, Wei; Guan, Zhidong; Li, Zengshan
2017-12-01
In this paper, the Inter-Fiber Fracture (IFF) criterion of Puck failure theory based on the eXtended Finite Element Method (XFEM) was implemented in ABAQUS code to predict the intra-laminar crack initiation of unidirectional (UD) composite laminate. The transverse crack path in the matrix can be simulated accurately by the presented method. After the crack initiation, the propagation of the crack is simulated by Cohesive Zoom Model (CZM), in which the displacement discontinuities and stress concentration caused by matrix crack is introduced into the finite element (FE) model. Combined with the usage of the enriched element interface, which can be used to simulate the inter-laminar delamination crack, the Low Velocity Impact (LVI) induced damage of UD composite laminate beam with a typical stacking of composite laminates [05/903]S is studied. A complete crack initiation and propagation process was simulated and the numerical results obtained by the XFEM are consistent with the experimental results.
Cross-validated detection of crack initiation in aerospace materials
NASA Astrophysics Data System (ADS)
Vanniamparambil, Prashanth A.; Cuadra, Jefferson; Guclu, Utku; Bartoli, Ivan; Kontsos, Antonios
2014-03-01
A cross-validated nondestructive evaluation approach was employed to in situ detect the onset of damage in an Aluminum alloy compact tension specimen. The approach consisted of the coordinated use primarily the acoustic emission, combined with the infrared thermography and digital image correlation methods. Both tensile loads were applied and the specimen was continuously monitored using the nondestructive approach. Crack initiation was witnessed visually and was confirmed by the characteristic load drop accompanying the ductile fracture process. The full field deformation map provided by the nondestructive approach validated the formation of a pronounced plasticity zone near the crack tip. At the time of crack initiation, a burst in the temperature field ahead of the crack tip as well as a sudden increase of the acoustic recordings were observed. Although such experiments have been attempted and reported before in the literature, the presented approach provides for the first time a cross-validated nondestructive dataset that can be used for quantitative analyses of the crack initiation information content. It further allows future development of automated procedures for real-time identification of damage precursors including the rarely explored crack incubation stage in fatigue conditions.
Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller
NASA Astrophysics Data System (ADS)
Sun, Jiao; Chen, Songying; Qu, Yanpeng; Li, Jianfeng
2015-03-01
Corrosion failure, especially stress corrosion cracking and corrosion fatigue, is the main cause of centrifugal compressor impeller failure. And it is concealed and destructive. This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments, and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution (AD), the hydrogen-induced cracking (HIC), and the combined AD and HIC mechanisms. The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking. The effects of stress ratio, loading frequency, and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized. The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments, which contain sulfide, chlorides, and carbonate, are analyzed. The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments. The current research methods for centrifugal compressor impeller corrosion failure are analyzed. Physical analysis, numerical simulation, and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.
NASA Technical Reports Server (NTRS)
Smith, Stephen W.; Piascik, Robert S.
2001-01-01
To study the effects of atmospheric species on the fatigue crack growth behavior of an a+B titanium alloy (Ti 6-2-2-2-2) at room temperature and 177 C, fatigue tests were performed in laboratory air, ultrahigh vacuum, and high purity water vapor, oxygen, nitrogen and helium at various partial pressures. Accelerated fatigue crack growth rates in laboratory air compared to ultrahigh vacuum are linked to the damaging effects of both water vapor and oxygen. Observations of the fatigue crack growth behavior in ultrahigh purity environments, along with surface film analysis using X-ray photoelectron spectroscopy (XPS), suggest that multiple crack-tip processes govern the damaging effects of air. Three possible mechanisms are proposed: 1) at low pressure (less than 10(exp -1) Pa), accelerated da/dN is likely due to monolayer adsorption on crack-tip surfaces presumably resulting in decreased bond strengths at the fatigue crack tip, 2) for pressures greater than 10(exp -1) Pa, accelerated da/dN in oxygen may result from oxidation at the crack tip limiting reversible slip, and 3) in water vapor, absorption of atomic hydrogen at the reactive crack tip resulting in process zone embrittlement.
Analyses of Buckling and Stable Tearing in Thin-Sheet Materials
NASA Technical Reports Server (NTRS)
Seshadri, B. R.; Newman, J. C., Jr.
1998-01-01
This paper was to verify the STAGS (general shell, geometric and material nonlinear) code and the critical crack tip opening angle (CTOA) fracture criterion for predicting stable tearing in cracked panels that fail with severe out of plane buckling. Materials considered ranged from brittle to ductile behavior. Test data used in this study are reported elsewhere. The STAGS code was used to model stable tearing using a critical CTOA value that was determined from a cracked panel that was 'restrained' from buckling. ne analysis methodology was then used to predict the influence of buckling on stable tearing and failure loads. Parameters like crack length to specimen width ratio, crack configuration, thickness, and material tensile properties had a significant influence on the buckling behavior of cracked thin sheet materials. Experimental and predicted results showed a varied buckling response for different crack length to sheet thickness ratios because different buckling modes were activated. Effects of material tensile properties and fracture toughness on buckling response were presented. The STAGS code and the CTOA fracture criterion were able to predict the influence of buckling on stable tearing behavior and failure loads on a variety of materials and crack configurations.
Distribution of Inclusion-Initiated Fatigue Cracking in Powder Metallurgy Udimet 720 Characterized
NASA Technical Reports Server (NTRS)
Bonacuse, Peter J.; Kantzos, Pete T.; Barrie, Robert; Telesman, Jack; Ghosn, Louis J.; Gabb, Timothy P.
2004-01-01
In the absence of extrinsic surface damage, the fatigue life of metals is often dictated by the distribution of intrinsic defects. In powder metallurgy (PM) alloys, relatively large defects occur rarely enough that a typical characterization with a limited number of small volume fatigue test specimens will not adequately sample inclusion-initiated damage. Counterintuitively, inclusion-initiated failure has a greater impact on the distribution in PM alloy fatigue lives because they tend to have fewer defects than their cast and wrought counterparts. Although the relative paucity of defects in PM alloys leads to higher mean fatigue lives, the distribution in observed lives tends to be broader. In order to study this important failure initiation mechanism without expending an inordinate number of specimens, a study was undertaken at the NASA Glenn Research Center where known populations of artificial inclusions (seeds) were introduced to production powder. Fatigue specimens were machined from forgings produced from the seeded powder. Considerable effort has been expended in characterizing the crack growth rate from inclusion-initiated cracks in seeded PM alloys. A rotating and translating positioning system, with associated software, was devised to map the surface inclusions in low-cycle fatigue (LCF) test bars and to monitor the crack growth from these inclusions. The preceding graph illustrates the measured extension in fatigue cracks from inclusions on a seeded LCF test bar subjected to cyclic loading at a strain range of 0.8 percent and a strain ratio (max/min) of zero. Notice that the observed inclusions fall into three categories: some do not propagate at all (arrest), some propagate with a decreasing crack growth rate, and a few propagate at increasing rates that can be modeled by fracture mechanics. The following graph shows the measured inclusion-initiated crack growth rates from 10 interrupted LCF tests plotted against stress intensities calculated for semi-elliptical cracks with the observed surface lengths. The expected scatter in the crack growth rates for stress intensity ranges near threshold is observed. These data will be used to help determine the distribution in growth rates of cracks emanating from inclusions as well as the proportion of cracks that arrest under various loading conditions.
Dynamic fracture mechanics analysis for an edge delamination crack
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Doyle, James F.
1994-01-01
A global/local analysis is applied to the problem of a panel with an edge delamination crack subject to an impulse loading to ascertain the dynamic J integral. The approach uses the spectral element method to obtain the global dynamic response and local resultants to obtain the J integral. The variation of J integral along the crack front is shown. The crack behavior is mixed mode (Mode 2 and Mode 3), but is dominated by the Mode 2 behavior.
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; Telesman, Jack
1988-01-01
Electrical potential methods have been used in the past primarily to monitor crack length in long crack specimens subjected to fatigue loading. An attempt was made to develop test procedures for monitoring the fatigue crack initiation and the growth of short fatigue cracks in a turbine disk alloy with the electrical potential drop technique (EPDT). In addition, the EPDT was also applied to monitor the fatigue crack growth in long crack specimens of the same alloy. The resolution of the EPDT for different specimen geometries was determined. Factors influencing the EPDT are identified and the applicability of EPDT in implementing damage tolerant design concepts for turbine disk materials is discussed. The experimental procedure adopted and the results obtained is discussed. No substantial differences were observed between the fatigue crack growth data of short and long crack specimens.
Nonlocal modeling and buckling features of cracked nanobeams with von Karman nonlinearity
NASA Astrophysics Data System (ADS)
Akbarzadeh Khorshidi, Majid; Shaat, Mohamed; Abdelkefi, Abdessattar; Shariati, Mahmoud
2017-01-01
Buckling and postbuckling behaviors of cracked nanobeams made of single-crystalline nanomaterials are investigated. The nonlocal elasticity theory is used to model the nonlocal interatomic effects on the beam's performance accounting for the beam's axial stretching via von Karman nonlinear theory. The crack is then represented as torsional spring where the crack severity factor is derived accounting for the nonlocal features of the beam. By converting the beam into an equivalent infinite long plate with an edge crack subjected to a tensile stress at the far field, the crack energy release rate, intensity factor, and severity factor are derived according to the nonlocal elasticity theory. An analytical solution for the buckling and the postbuckling responses of cracked nonlocal nanobeams accounting for the beam axial stretching according to von Karman nonlinear theory of kinematics is derived. The impacts of the nonlocal parameter on the critical buckling loads and the static nonlinear postbuckling responses of cracked nonlocal nanobeams are studied. The results indicate that the buckling and postbuckling behaviors of cracked nanobeams are strongly affected by the crack location, crack depth, nonlocal parameter, and length-to-thickness ratio.
Influence of strain on the corrosion of magnesium alloys and zinc in physiological environments.
Törne, Karin; Örnberg, Andreas; Weissenrieder, Jonas
2017-01-15
During implantation load-bearing devices experience stress that may influence its mechanical and corrosion profile and potentially lead to premature rupture. The susceptibility to stress corrosion cracking (SCC) of the Mg-Al alloy AZ61 and Zn was studied in simulated body fluid (m-SBF) and whole blood by slow strain rate (SSR) testing in combination with electrochemical impedance spectroscopy (EIS) and further ex situ analysis including scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy. AZ61 was found to be highly susceptible to SCC. EIS analysis show that although the majority of cracking occurred during the apparent plastic straining, cracking initiation occurs already in the elastic region at ∼50% of the ultimate tensile strength (UTS). Shifts in EIS phase angle and open circuit potential can be used to detect the onset of SCC. Zinc demonstrated a highly ductile behavior with limited susceptibility to SCC. No significant decrease in UTS was observed in m-SBF but a decrease in time to failure by ∼25% compared to reference samples indicates some effect on the mechanical properties during the ductile straining. The formation of micro cracks, ∼10μm deep, was indicated by the EIS analysis and later confirmed by ex situ SEM. The results of SSR analysis of zinc in whole blood showed a reduced effect compared to m-SBF and no cracks were detected. It appears that formation of an organic surface layer protects the corroding surface from cracking. These results highlight the importance of considering the effect of biological species on the degradation of implants in the clinical situation. Strain may deteriorate the corrosion properties of metallic implants drastically. We study the influence of load on the corrosion properties of a magnesium alloy and zinc by a combination of electrochemical impedance spectroscopy (EIS) and slow strain rate analysis. This combination of techniques has previously not been used for studying degradation in physiological relevant electrolytes. EIS provide valuable information on the initial formation of cracks, detecting crack nucleation before feasible in slow strain rate analysis. This sensitivity of EIS shows the potential for electrochemical methods to be used for in situ monitoring crack formation of implants in more applied studies. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
On the Crack Bifurcation and Fanning of Crack Growth Data
NASA Technical Reports Server (NTRS)
Forman, Royce G.; Zanganeh, Mohammad
2015-01-01
Crack growth data obtained from ASTM load shedding method for different R values show some fanning especially for aluminum alloys. It is believed by the authors and it has been shown before that the observed fanning is due to the crack bifurcation occurs in the near threshold region which is a function of intrinsic properties of the alloy. Therefore, validity of the ASTM load shedding test procedure and results is confirmed. However, this position has been argued by some experimentalists who believe the fanning is an artifact of the test procedure and thus the obtained results are invalid. It has been shown that using a special test procedure such as using compressively pre-cracked specimens will eliminate the fanning effect. Since not using the fanned data fit can result in a significantly lower calculated cyclic life, design of a component, particularly for rotorcraft and propeller systems will considerably be impacted and therefore this study is of paramount importance. In this effort both test procedures i.e. ASTM load shedding and the proposed compressive pre-cracking have been used to study the fatigue crack growth behavior of compact tension specimens made of aluminum alloy 2524-T3. Fatigue crack growth paths have been closely observed using SEM machines to investigate the effects of compression pre-cracking on the crack bifurcation behavior. The results of this study will shed a light on resolving the existing argument by better understanding of near threshold fatigue crack growth behavior.
Thermo-mechanical Fatigue Failure of Thermal Barrier Coated Superalloy Specimen
NASA Astrophysics Data System (ADS)
Subramanian, Rajivgandhi; Mori, Yuzuru; Yamagishi, Satoshi; Okazaki, Masakazu
2015-09-01
Failure behavior of thermal barrier coated (TBC) Ni-based superalloy specimens were studied from the aspect of the effect of bond coat material behavior on low cycle fatigue (LCF) and thermo-mechanical fatigue (TMF) at various temperatures and under various loading conditions. Initially, monotonic tensile tests were carried out on a MCrAlY alloy bond coat material in the temperature range of 298 K to 1273 K (25 °C to 1000 °C). Special attention was paid to understand the ductile to brittle transition temperature (DBTT). Next, LCF and TMF tests were carried out on the thermal barrier coated Ni-based alloy IN738 specimen. After these tests, the specimens were sectioned to understand their failure mechanisms on the basis of DBTT of the bond coat material. Experimental results demonstrated that the LCF and TMF lives of the TBC specimen were closely related to the DBTT of the bond coat material, and also the TMF lives were different from those of LCF tests. It has also been observed that the crack density in the bond coat in the TBC specimen was significantly dependent on the test conditions. More importantly, not only the number of cracks but also the crack penetration probability into substrate were shown to be sensitive to the DBTT.
Lee, Seung Min; Yeon, Deuk Ho; Mohanty, Bhaskar Chandra; Cho, Yong Soo
2015-03-04
Tensile stress-dependent fracture behavior of flexible PbS/CdS heterojunction thin-film solar cells on indium tin oxide-coated polyethylene terephthalate (PET) substrates is investigated in terms of the variations of fracture parameters with applied strains and their influences on photovoltaic properties. The PbS absorber layer that exhibits only mechanical cracks within the applied strain range from ∼0.67 to 1.33% is prepared by chemical bath deposition at different temperatures of 50, 70, and 90 °C. The PbS thin films prepared at 50 °C demonstrate better mechanical resistance against the applied bending strain with the highest crack initiating bending strain of ∼1.14% and the lowest saturated crack density of 0.036 μm(-1). Photovoltaic properties of the cells depend on the deposition temperature and the level of applied tensile stress. The values of short-circuit current density and fill factor are dramatically reduced above a certain level of applied strain, while open-circuit voltage is nearly maintained. The dependency of photovoltaic properties on the progress of fractures is understood as related to the reduced fracture energy and toughness, which is limitedly controllable by microstructural features of the absorber layer.
Mechanical Properties of Shock-Damaged Rocks
NASA Technical Reports Server (NTRS)
He, Hongliang; Ahrens, T. J.
1994-01-01
Stress-strain tests were performed both on shock-damaged gabbro and limestone. The effective Young's modulus decreases with increasing initial damage parameter value, and an apparent work-softening process occurs prior to failure. To further characterize shock-induced microcracks, the longitudinal elastic wave velocity behavior of shock-damaged gabbro in the direction of compression up to failure was measured using an acoustic transmission technique under uniaxial loading. A dramatic increase in velocity was observed for the static compressive stress range of 0-50 MPa. Above that stress range, the velocity behavior of lightly damaged (D(sub 0) less than 0.1) gabbro is almost equal to unshocked gabbro. The failure strength of heavily-damaged (D(sub 0) greater than 0.1) gabbro is approx. 100-150 MPa, much lower than that of lightly damaged and unshocked gabbros (approx. 230-260 MPa). Following Nur's theory, the crack shape distribution was analyzed. The shock-induced cracks in gabbro appear to be largely thin penny-shaped cracks with c/a values below 5 x 10(exp -4). Moreover, the applicability of Ashby and Sammis's theory relating failure strength and damage parameter of shock-damaged rocks was examined and was found to yield a good estimate of the relation of shock-induced deficit in elastic modulus with the deficit in compressive strength.
Barrows, Wesley; Dingreville, Rémi; Spearot, Douglas
2015-10-19
A statistical approach combined with molecular dynamics simulations is used to study the influence of hydrogen on intergranular decohesion. This methodology is applied to a Ni Σ3(112)[11¯0] symmetric tilt grain boundary. Hydrogenated grain boundaries with different H concentrations are constructed using an energy minimization technique with initial H atom positions guided by Monte Carlo simulation results. Decohesion behavior is assessed through extraction of a traction–separation relationship during steady-state crack propagation in a statistically meaningful approach, building upon prior work employing atomistic cohesive zone volume elements (CZVEs). A sensitivity analysis is performed on the numerical approach used to extract the traction–separationmore » relationships, clarifying the role of CZVE size, threshold parameters necessary to differentiate elastic and decohesion responses, and the numerical averaging technique. Results show that increasing H coverage at the Ni Σ3(112)[11¯0] grain boundary asymmetrically influences the crack tip velocity during propagation, leads to a general decrease in the work of separation required for crack propagation, and provides a reduction in the peak stress in the extracted traction–separation relationship. Furthermore the present framework offers a meaningful vehicle to pass atomistically derived interfacial behavior to higher length scale formulations for intergranular fracture.« less
Rong, Guan; Liu, Guang; Zhou, Chuang-bing
2013-01-01
Since rocks are aggregates of mineral particles, the effect of mineral microstructure on macroscopic mechanical behaviors of rocks is inneglectable. Rock samples of four different particle shapes are established in this study based on clumped particle model, and a sphericity index is used to quantify particle shape. Model parameters for simulation in PFC are obtained by triaxial compression test of quartz sandstone, and simulation of triaxial compression test is then conducted on four rock samples with different particle shapes. It is seen from the results that stress thresholds of rock samples such as crack initiation stress, crack damage stress, and peak stress decrease with the increasing of the sphericity index. The increase of sphericity leads to a drop of elastic modulus and a rise in Poisson ratio, while the decreasing sphericity usually results in the increase of cohesion and internal friction angle. Based on volume change of rock samples during simulation of triaxial compression test, variation of dilation angle with plastic strain is also studied. PMID:23997677
Rong, Guan; Liu, Guang; Hou, Di; Zhou, Chuang-Bing
2013-01-01
Since rocks are aggregates of mineral particles, the effect of mineral microstructure on macroscopic mechanical behaviors of rocks is inneglectable. Rock samples of four different particle shapes are established in this study based on clumped particle model, and a sphericity index is used to quantify particle shape. Model parameters for simulation in PFC are obtained by triaxial compression test of quartz sandstone, and simulation of triaxial compression test is then conducted on four rock samples with different particle shapes. It is seen from the results that stress thresholds of rock samples such as crack initiation stress, crack damage stress, and peak stress decrease with the increasing of the sphericity index. The increase of sphericity leads to a drop of elastic modulus and a rise in Poisson ratio, while the decreasing sphericity usually results in the increase of cohesion and internal friction angle. Based on volume change of rock samples during simulation of triaxial compression test, variation of dilation angle with plastic strain is also studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hua, W.; Zhang, J.; Wang, Z.
1995-10-01
The relationship between microstructure and propagation behavior of fatigue crack in TiB{sub 2} particulate reinforced ZA-8 Zn alloy and in the corresponding constituent matrix material was studied in three point bending fatigue tests with well-polished and pre-etched specimens. Special attention was paid to the observation of microstructure along the crack path as well as on the fracture surface. Mechanism for the difference in fatigue crack growth behavior of the two materials was investigated. The present results indicate that the addition of reinforcement modified the solidification process of the matrix material leading to a considerable change in the matrix microstructure. Thismore » change in the matrix microstructure and the presence of reinforcing particles considerably affected the fatigue crack propagation behavior in the material.« less
Stress Corrosion Cracking Behavior of LD10 Aluminum Alloy in UDMH and N2O4 propellant
NASA Astrophysics Data System (ADS)
Zhang, Youhong; Chang, Xinlong; Liu, Wanlei
2018-03-01
The LD10 aluminum alloy double cantilever beam specimens were corroded under the conditions of Unsymmetric Uimethyl Hydrazine (UDMH), Dinitrogen Tetroxide (N2O4), and 3.5% NaCl environment. The crack propagation behavior of the aluminum alloy in different corrosion environment was analyzed. The stress corrosion cracking behavior of aluminum alloy in N2O4 is relatively slight and there are not evident stress corrosion phenomenons founded in UDMH.
The effects of anisotropy on the nonlinear behavior of bridged cracks in long strips
NASA Technical Reports Server (NTRS)
Ballarini, R.; Luo, H. A.
1994-01-01
A model which can be used to predict the two-dimensional nonlinear behavior of bridged cracks in orthotropic strips is presented. The results obtained using a singular integral equation formulation which incorporates the anisotropy rigorously show that, although the effects of anisotropy are significant, the nondimensional quantities employed by Cox and Marshall can generate nearly universal results (R-curves, for example) for different levels of relative anisotropy. The role of composite constituent properties in the behavior of bridged cracks is clarified.
NASA Astrophysics Data System (ADS)
Haque, M. H.; Han, Y.; Hull, K. L.; Abousleiman, Y. N.
2017-12-01
Understanding the failure behavior of kerogen-rich shale (KRS) at multiscale is critical to efficient hydraulic fracture stimulations in unconventional source shale reservoirs. As a composite material consisting of compacted clay particles, silt-sized grains, and organic matter (OM), KRS is highly complex both structurally and mechanically. The OM, which is intertwined within the shale matrix, presents a particular challenge as it can be much more compliant than its surrounding minerals while at the same time have a significantly higher tensile strength. The mode-I fracture toughness and tensile failure behavior of KRS has been studied at the core scale by traditional rock mechanics methods i.e., Brazilian tests and more recently with non-traditional approaches at the micro-scale using nanoindentation techniques. However, core scale testing fails in precisely capturing the effects of OM due to its coarse resolution, while nanoindention may capture the behavior of isolated component but in some cases miss the collective properties of the composite system. To bridge this gap, while still complying with ASTM/ISRM standards in principle, we investigate fracture initiation and propagation in KRS using the single-edge notched beam (SENB) miniature samples with span length in the millimeter scale. The size scale attempts to isolate the contributions from individual components, especially the OM, to the emergent and systematic fracturing behavior of KRS. Crack propagation along and across the bedding planes have left noticeable signatures on fractured OM while travelling through and around an OM body depending upon its size and spatial position along the crack path illustrating what looks like crack arrest and/or crack bridging in a composite porous matrix. The fractured surface of OM, even being polymeric in nature, exhibits smooth and even surface profile when ripped apart but not in all observed surfaces. Unique microscale features such as- ridges, twists, and inclusions have also been observed for the OM indicating a mix of complex modes of failures. This study helps further the understanding of fracture morphologies in source rock reservoirs.
NASA Astrophysics Data System (ADS)
Chaouadi, R.
2008-01-01
This paper examines the effect of irradiation-induced plastic flow localization on the crack resistance behavior. Tensile and crack resistance measurements were performed on Eurofer-97 that was irradiated at 300 °C to neutron doses ranging between 0.3 and 2.1 dpa. A severe degradation of crack resistance behavior is experimentally established at quasi-static loading, in contradiction with the Charpy impact data and the dynamic crack resistance measurements. This degradation is attributed to the dislocation channel deformation phenomenon. At quasi-static loading rate, scanning electron microscopy observations of the fracture surfaces revealed a significant change of fracture topography, mainly from equiaxed dimples (mode I) to shear dimples (mode I + II). With increasing loading rate, the high peak stresses that develop inside the process zone activate much more dislocation sources resulting in a higher density of cross cutting dislocation channels and therefore an almost unaffected crack resistance. These explanations provide a rational to all experimental observations.
Detection and monitoring of shear crack growth using S-P conversion of seismic waves
NASA Astrophysics Data System (ADS)
Modiriasari, A.; Bobet, A.; Pyrak-Nolte, L. J.
2017-12-01
A diagnostic method for monitoring shear crack initiation, propagation, and coalescence in rock is key for the detection of major rupture events, such as slip along a fault. Active ultrasonic monitoring was used in this study to determine the precursory signatures to shear crack initiation in pre-cracked rock. Prismatic specimens of Indiana limestone (203x2101x638x1 mm) with two pre-existing parallel flaws were subjected to uniaxial compression. The flaws were cut through the thickness of the specimen using a scroll saw. The length of the flaws was 19.05 mm and had an inclination angle with respect to the loading direction of 30o. Shear wave transducers were placed on each side of the specimen, with polarization parallel to the loading direction. The shear waves, given the geometry of the flaws, were normally incident to the shear crack forming between the two flaws during loading. Shear crack initiation and propagation was detected on the specimen surface using digital image correlation (DIC), while initiation inside the rock was monitored by measuring full waveforms of the transmitted and reflected shear (S) waves across the specimen. Prior to the detection of a shear crack on the specimen surface using DIC, transmitted S waves were converted to compressional (P) waves. The emergence of converted S-P wave occurs because of the presence of oriented microcracks inside the rock. The microcracks coalesce and form the shear crack observed on the specimen surface. Up to crack coalescence, the amplitude of the converted waves increased with shear crack propagation. However, the amplitude of the transmitted shear waves between the two flaws did not change with shear crack initiation and propagation. This is in agreement with the conversion of elastic waves (P- to S-wave or S- to P-wave) observed by Nakagawa et al., (2000) for normal incident waves. Elastic wave conversions are attributed to the formation of an array of oriented microcracks that dilate under shear stress, which causes energy partitioning into P, S, and P-to-S or S-to-P waves. This finding provides a diagnostic method for detecting shear crack initiation and growth using seismic wave conversions. Acknowledgments: This material is based upon work supported by the National Science Foundation, Geomechanics and Geotechnical Systems Program (award No. CMMI-1162082).
FASTRAN II - FATIGUE CRACK GROWTH STRUCTURAL ANALYSIS (UNIX VERSION)
NASA Technical Reports Server (NTRS)
Newman, J. C.
1994-01-01
Predictions of fatigue crack growth behavior can be made with the Fatigue Crack Growth Structural Analysis (FASTRAN II) computer program. As cyclic loads are applied to a selected crack configuration with an initial crack size, FASTRAN II predicts crack growth as a function of cyclic load history until either a desired crack size is reached or failure occurs. FASTRAN II is based on plasticity-induced crack-closure behavior of cracks in metallic materials and accounts for load-interaction effects, such as retardation and acceleration, under variable-amplitude loading. The closure model is based on the Dugdale model with modifications to allow plastically deformed material to be left along the crack surfaces as the crack grows. Plane stress and plane strain conditions, as well as conditions between these two, can be simulated in FASTRAN II by using a constraint factor on tensile yielding at the crack front to approximately account for three-dimensional stress states. FASTRAN II contains seventeen predefined crack configurations (standard laboratory fatigue crack growth rate specimens and many common crack configurations found in structures); and the user can define one additional crack configuration. The baseline crack growth rate properties (effective stress-intensity factor against crack growth rate) may be given in either equation or tabular form. For three-dimensional crack configurations, such as surface cracks or corner cracks at holes or notches, the fatigue crack growth rate properties may be different in the crack depth and crack length directions. Final failure of the cracked structure can be modelled with fracture toughness properties using either linear-elastic fracture mechanics (brittle materials), a two-parameter fracture criterion (brittle to ductile materials), or plastic collapse (extremely ductile materials). The crack configurations in FASTRAN II can be subjected to either constant-amplitude, variable-amplitude or spectrum loading. The applied loads may be either tensile or compressive. Several standardized aircraft flight-load histories, such as TWIST, Mini-TWIST, FALSTAFF, Inverted FALSTAFF, Felix and Gaussian, are included as options. FASTRAN II also includes two other methods that will help the user input spectrum load histories. The two methods are: (1) a list of stress points, and (2) a flight-by-flight history of stress points. Examples are provided in the user manual. Developed as a research program, FASTRAN II has successfully predicted crack growth in many metallic materials under various aircraft spectrum loading. A computer program DKEFF which is a part of the FASTRAN II package was also developed to analyze crack growth rate data from laboratory specimens to obtain the effective stress-intensity factor against crack growth rate relations used in FASTRAN II. FASTRAN II is written in standard FORTRAN 77. It has been successfully compiled and implemented on Sun4 series computers running SunOS and on IBM PC compatibles running MS-DOS using the Lahey F77L FORTRAN compiler. Sample input and output data are included with the FASTRAN II package. The UNIX version requires 660K of RAM for execution. The standard distribution medium for the UNIX version (LAR-14865) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. It is also available on a 3.5 inch diskette in UNIX tar format. The standard distribution medium for the MS-DOS version (LAR-14944) is a 5.25 inch 360K MS-DOS format diskette. The contents of the diskette are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. The program was developed in 1984 and revised in 1992. Sun4 and SunOS are trademarks of Sun Microsystems, Inc. IBM PC is a trademark of International Business Machines Corp. MS-DOS is a trademark of Microsoft, Inc. F77L is a trademark of the Lahey Computer Systems, Inc. UNIX is a registered trademark of AT&T Bell Laboratories. PKWARE and PKUNZIP are trademarks of PKWare, Inc.
FASTRAN II - FATIGUE CRACK GROWTH STRUCTURAL ANALYSIS (IBM PC VERSION)
NASA Technical Reports Server (NTRS)
Newman, J. C.
1994-01-01
Predictions of fatigue crack growth behavior can be made with the Fatigue Crack Growth Structural Analysis (FASTRAN II) computer program. As cyclic loads are applied to a selected crack configuration with an initial crack size, FASTRAN II predicts crack growth as a function of cyclic load history until either a desired crack size is reached or failure occurs. FASTRAN II is based on plasticity-induced crack-closure behavior of cracks in metallic materials and accounts for load-interaction effects, such as retardation and acceleration, under variable-amplitude loading. The closure model is based on the Dugdale model with modifications to allow plastically deformed material to be left along the crack surfaces as the crack grows. Plane stress and plane strain conditions, as well as conditions between these two, can be simulated in FASTRAN II by using a constraint factor on tensile yielding at the crack front to approximately account for three-dimensional stress states. FASTRAN II contains seventeen predefined crack configurations (standard laboratory fatigue crack growth rate specimens and many common crack configurations found in structures); and the user can define one additional crack configuration. The baseline crack growth rate properties (effective stress-intensity factor against crack growth rate) may be given in either equation or tabular form. For three-dimensional crack configurations, such as surface cracks or corner cracks at holes or notches, the fatigue crack growth rate properties may be different in the crack depth and crack length directions. Final failure of the cracked structure can be modelled with fracture toughness properties using either linear-elastic fracture mechanics (brittle materials), a two-parameter fracture criterion (brittle to ductile materials), or plastic collapse (extremely ductile materials). The crack configurations in FASTRAN II can be subjected to either constant-amplitude, variable-amplitude or spectrum loading. The applied loads may be either tensile or compressive. Several standardized aircraft flight-load histories, such as TWIST, Mini-TWIST, FALSTAFF, Inverted FALSTAFF, Felix and Gaussian, are included as options. FASTRAN II also includes two other methods that will help the user input spectrum load histories. The two methods are: (1) a list of stress points, and (2) a flight-by-flight history of stress points. Examples are provided in the user manual. Developed as a research program, FASTRAN II has successfully predicted crack growth in many metallic materials under various aircraft spectrum loading. A computer program DKEFF which is a part of the FASTRAN II package was also developed to analyze crack growth rate data from laboratory specimens to obtain the effective stress-intensity factor against crack growth rate relations used in FASTRAN II. FASTRAN II is written in standard FORTRAN 77. It has been successfully compiled and implemented on Sun4 series computers running SunOS and on IBM PC compatibles running MS-DOS using the Lahey F77L FORTRAN compiler. Sample input and output data are included with the FASTRAN II package. The UNIX version requires 660K of RAM for execution. The standard distribution medium for the UNIX version (LAR-14865) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. It is also available on a 3.5 inch diskette in UNIX tar format. The standard distribution medium for the MS-DOS version (LAR-14944) is a 5.25 inch 360K MS-DOS format diskette. The contents of the diskette are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. The program was developed in 1984 and revised in 1992. Sun4 and SunOS are trademarks of Sun Microsystems, Inc. IBM PC is a trademark of International Business Machines Corp. MS-DOS is a trademark of Microsoft, Inc. F77L is a trademark of the Lahey Computer Systems, Inc. UNIX is a registered trademark of AT&T Bell Laboratories. PKWARE and PKUNZIP are trademarks of PKWare, Inc.
The effect of crack blunting on the competition between dislocation nucleation and cleavage
NASA Astrophysics Data System (ADS)
Fischer, Lisa L.; Beltz, Glenn E.
2001-03-01
To better understand the ductile versus brittle fracture behavior of crystalline materials, attention should be directed towards physically realistic crack geometries. Currently, continuum models of ductile versus brittle behavior are typically based on the analysis of a pre-existing sharp crack in order to use analytical solutions for the stress fields around the crack tip. This paper examines the effects of crack blunting on the competition between dislocation nucleation and atomic decohesion using continuum methods. We accomplish this by assuming that the crack geometry is elliptical, which has the primary advantage that the stress fields are available in closed form. These stress field solutions are then used to calculate the thresholds for dislocation nucleation and atomic decohesion. A Peierls-type framework is used to obtain the thresholds for dislocation nucleation, in which the region of the slip plane ahead of the crack develops a distribution of slip discontinuity prior to nucleation. This slip distribution increases as the applied load is increased until an instability is reached and the governing integral equation can no longer be solved. These calculations are carried out for various crack tip geometries to ascertain the effects of crack tip blunting. The thresholds for atomic decohesion are calculated using a cohesive zone model, in which the region of the crack front develops a distribution of opening displacement prior to atomic decohesion. Again, loading of the elliptical crack tip eventually results in an instability, which marks the onset of crack advance. These calculations are carried out for various crack tip geometries. The results of these separate calculations are presented as the critical energy release rates versus the crack tip radius of curvature for a given crack length. The two threshold curves are compared simultaneously to determine which failure mode is energetically more likely at various crack tip curvatures. From these comparisons, four possible types of material fracture behavior are identified: intrinsically brittle, quasi-brittle, intrinsically ductile, and quasi-ductile. Finally, real material examples are discussed.
Improved High-Cycle Fatigue (HCF) Life Prediction
2001-01-01
fatigue in 2024 - T351 aluminum alloy ’, Wear 221, 24-36. Appendix 6C CHARACTERIZATION OF FRETTING FATIGUE INITIATED CRACKS P.J. Golden A.F...0.8. To evaluate the effects of surface residual stresses on notch fatigue life , shot peened specimens were tested at R = -1.0 and 0.1. Data in...Behavior - Response • The undamaged fatigue test program demonstrates the sensitivity of surface effects (for different
NASA Technical Reports Server (NTRS)
Telesman, J.; Smith, T. M.; Gabb, T. P.; Ring, A. J.
2017-01-01
An investigation of high temperature cyclic fatigue crack growth (FCG) threshold behavior of two advanced nickel disk alloys was conducted. The focus of the study was the unusual crossover effect in the near-threshold region of these type of alloys where conditions which produce higher crack growth rates in the Paris regime, produce higher resistance to crack growth in the near threshold regime. It was shown that this crossover effect is associated with a sudden change in the fatigue failure mode from a predominant transgranular mode in the Paris regime to fully intergranular mode in the threshold fatigue crack growth region. This type of a sudden change in the fracture mechanisms has not been previously reported and is surprising considering that intergranular failure is typically associated with faster crack growth rates and not the slow FCG rates of the near-threshold regime. By characterizing this behavior as a function of test temperature, environment and cyclic frequency, it was determined that both the crossover effect and the onset of intergranular failure are caused by environmentally driven mechanisms which have not as yet been fully identified. A plausible explanation for the observed behavior is proposed.
Thermal-Mechanical Response of Cracked Satin Weave CFRP Composites at Cryogenic Temperatures
NASA Astrophysics Data System (ADS)
Watanabe, S.; Shindo, Y.; Narita, F.; Takeda, T.
2008-03-01
This paper examines the thermal-mechanical response of satin weave carbon fiber reinforced polymer (CFRP) laminates with internal and/or edge cracks subjected to uniaxial tension load at cryogenic temperatures. Cracks are considered to occur in the transverse fiber bundles and extend through the entire thickness of the fiber bundles. Two-dimentional generalized plane strain finite element models are developed to study the effects of residual thermal stresses and cracks on the mechanical behavior of CFRP woven laminates. A detailed examination of the Young's modulus and stress distributions near the crack tip is carried out which provides insight into material behavior at cryogenic temperatures.
Environmental Degradation of Materials: Surface Chemistry Related to Stress Corrosion Cracking
NASA Technical Reports Server (NTRS)
Schwarz, J. A.
1985-01-01
Parallel experiments have been performed in order to develop a comprehensive model for stress cracking (SCC) in structural materials. The central objective is to determine the relationship between the activity and selectivity of the microstructure of structural materials to their dissolution kinetics and experimentally measured SCC kinetics. Zinc was chosen as a prototype metal system. The SCC behavior of two oriented single-crystal disks of zinc in a chromic oxide/sodium sulfate solution (Palmerton solution) were determined. It was found that: (1) the dissolution rate is strongly (hkil)-dependent and proportional to the exposure time in the aggressive environment; and (2) a specific slip system is selectively active to dissolution under applied stress and this slip line controls crack initiation and propagation. As a precursor to potential microgrvity experiments, electrophoretic mobility measurements of zinc particles were obtained in solutions of sodium sulfate (0.0033 M) with concentrations of dissolved oxygen from 2 to 8 ppm. The equilibrium distribution of exposed oriented planes as well as their correlation will determine the particle mobility.
Vasquez-Sancho, Fabian; Abdollahi, Amir; Damjanovic, Dragan; Catalan, Gustau
2018-03-01
Bones generate electricity under pressure, and this electromechanical behavior is thought to be essential for bone's self-repair and remodeling properties. The origin of this response is attributed to the piezoelectricity of collagen, which is the main structural protein of bones. In theory, however, any material can also generate voltages in response to strain gradients, thanks to the property known as flexoelectricity. In this work, the flexoelectricity of bone and pure bone mineral (hydroxyapatite) are measured and found to be of the same order of magnitude; the quantitative similarity suggests that hydroxyapatite flexoelectricity is the main source of bending-induced polarization in cortical bone. In addition, the measured flexoelectric coefficients are used to calculate the (flexo)electric fields generated by cracks in bone mineral. The results indicate that crack-generated flexoelectricity is theoretically large enough to induce osteocyte apoptosis and thus initiate the crack-healing process, suggesting a central role of flexoelectricity in bone repair and remodeling. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Crack Cocaine Use and its Relationship with Violence and Hiv
de Carvalho, Heraclito Barbosa; Seibel, Sergio Dario
2009-01-01
OBJECTIVES To evaluate crack cocaine use practices, risk behaviors associated with HIV infection among drug users, and their involvement with violence. INTRODUCTION HIV infections are frequent among drug users due to risky sexual behavior. It is generally accepted that crack cocaine use is related to increased levels of violence. Several reports point to an increase in violence from those involved in drug trafficking. Although HIV infections and risky sexual behavior among drug users have been quite well studied, there are few studies that evaluate violence as it relates to drugs, particularly crack. METHODS A total of 350 drug users attending drug abuse treatment clinics in São Paulo, Brazil were interviewed about their risky behaviors. Each patient had a serological HIV test done. RESULTS HIV prevalence was 6.6% (4.0 to 10.2). Violence was reported by 97% (94.7 to 99.1) of the subjects (including cases without personal involvement). Acts of violence such as verbal arguments, physical fights, threats, death threats, theft, and drug trafficking were significantly higher among crack users. A decrease in frequency of sexual intercourse was observed among users of injected drugs, though prostitution was observed as a means of obtaining drugs. A high number of crack cocaine users had a history of previous imprisonment, many for drug-related infractions. DISCUSSION The data presented are in accordance with other reports in the literature, and they show a correlation between drug use, imprisonment, violence, and drug trafficking. CONCLUSION A high HIV prevalence and associated risky sexual behaviors were observed among crack cocaine users. The society and the authorities that deal with violence related to crack users and drug trafficking should be aware of these problems. PMID:19759879
Diffraction-based study of fatigue crack initiation and propagation in aerospace aluminum alloys
NASA Astrophysics Data System (ADS)
Gupta, Vipul K.
The crack initiation sites and microstructure-sensitive growth of small fatigue cracks are experimentally characterized in two precipitation-hardened aluminum alloys, 7075-T651 and 7050-T7451, stressed in ambient temperature moist-air (warm-humid) and -50°C dry N2 (cold-dry) environmental conditions. Backscattered electron imaging (BSE) and energy dispersive spectroscopy (EDS) of the fracture surfaces showed that Fe-Cu rich constituent particle clusters are the most common initiation sites within both alloys stressed in either environment. The crack growth within each alloy, on average, was observed to be slowed in the cold-dry environment than in the warm-humid environment, but only at longer crack lengths. Although no overwhelming effects of grain boundaries and grain orientations on small-crack growth were observed, crack growth data showed local fluctuations within individual grains. These observations are understood as crack propagation through the underlying substructure at the crack surface and frequent interaction with low/high-angle grain and subgrain boundaries, during cyclic loading, and, are further attributed to periodic changes in crack propagation path and multiple occurrences of crack-branching observed in the current study. SEM-based stereology in combination with electron backscattered diffraction (EBSD) established fatigue crack surface crystallography within the region from ˜1 to 50 mum of crack initiating particle clusters. Fatigue crack facets were parallel to a wide variety of crystallographic planes, with pole orientations distributed broadly across the irreducible stereographic triangle between the {001} and {101}-poles within both warm-humid and cold-dry environments. The results indicate environmentally affected fatigue cracking in both cases, given the similarity between the observed morphology and crystallography with that of a variety of aerospace aluminum alloys cracked in the presence of moist-air. There was no evidence of crystallographic {111} slip-plane cracking typical of the Stage I crack growth mode observed in single crystals and high purity polycrystals of face centered cubic metals, and which has presently been assumed for the present materials within fatigue crack initiation models. Rather, the facets tend to have near-Mode I spatial orientation, which is another indicator of the importance of environmentally affected fatigue damage. The results provide a physical basis to develop microstructurally-based next generation multi-stage fatigue (MSF) models that should include a new crack decohesion criteria based upon environmental fatigue cracking mechanisms. EBSD study of small-cracks in alloy 7050-T7451, stressed in warm-humid environment, showed that crack-path orientation changes and crack-branching occurred at both low/high-angle grain and subgrain boundaries. Single surface trace analysis suggests that the crack-path differs substantially from crystallographic slip-planes. EBSD-based observations of small-crack propagation through subgrain structure, either formed by cyclic plastic strain accumulation or pre-existing (typical of unrecrystallized grain structure in the present materials), suggest that subgrain structure plays a crucial role in small fatigue crack propagation. As mentioned earlier, local fluctuations in small-crack growth rates appear to be caused by frequent interaction with subgrain boundaries, and multiple occurrences of crack-branching and crack-path orientation changes at low/high-angle grain and subgrain boundaries. The aforementioned deviation from low-index {001}/{101}-planes and the occurrence of high-index cracking planes observed by EBSD/Stereology, in this study and others, are interpreted as trans-subgranular decohesion or inter-subgranular cracking, due to trapped hydrogen. In summary, the results provide a firmer experimental foundation for, and clearer understanding of, the mechanisms of environmental fatigue cracking of aluminum alloys, especially the role of inter-subgranular cracking, which had previously been advanced based upon fracture surface observations alone.
Micro-mechanics of hydro-mechanical coupled processes during hydraulic fracturing in sandstone
NASA Astrophysics Data System (ADS)
Caulk, R.; Tomac, I.
2017-12-01
This contribution presents micro-mechanical study of hydraulic fracture initiation and propagation in sandstone. The Discrete Element Method (DEM) Yade software is used as a tool to model fully coupled hydro-mechanical behavior of the saturated sandstone under pressures typical for deep geo-reservoirs. Heterogeneity of sandstone strength tensile and shear parameters are introduced using statistical representation of cathodoluminiscence (CL) sandstone rock images. Weibull distribution of statistical parameter values was determined as a best match of the CL scans of sandstone grains and cement between grains. Results of hydraulic fracturing stimulation from the well bore indicate significant difference between models with the bond strengths informed from CL scans and uniform homogeneous representation of sandstone parameters. Micro-mechanical insight reveals formed hydraulic fracture typical for mode I or tensile cracking in both cases. However, the shear micro-cracks are abundant in the CL informed model while they are absent in the standard model with uniform strength distribution. Most of the mode II cracks, or shear micro-cracks, are not part of the main hydraulic fracture and occur in the near-tip and near-fracture areas. The position and occurrence of the shear micro-cracks is characterized as secondary effect which dissipates the hydraulic fracturing energy. Additionally, the shear micro-crack locations qualitatively resemble acoustic emission cloud of shear cracks frequently observed in hydraulic fracturing, and sometimes interpreted as re-activation of existing fractures. Clearly, our model does not contain pre-existing cracks and has continuous nature prior to fracturing. This observation is novel and interesting and is quantified in the paper. The shear particle contact forces field reveals significant relaxation compared to the model with uniform strength distribution.
NASA Technical Reports Server (NTRS)
Wu, X. R.; Newman, J. C.; Zhao, W.; Swain, M. H.; Ding, C. F.; Phillips, E. P.
1998-01-01
The small crack effect was investigated in two high-strength aluminium alloys: 7075-T6 bare and LC9cs clad alloy. Both experimental and analytical investigations were conducted to study crack initiation and growth of small cracks. In the experimental program, fatigue tests, small crack and large crack tests A,ere conducted under constant amplitude and Mini-TWIST spectrum loading conditions. A pronounced small crack effect was observed in both materials, especially for the negative stress ratios. For all loading conditions, most of the fatigue life of the SENT specimens was shown to be crack propagation from initial material defects or from the cladding layer. In the analysis program, three-dimensional finite element and A weight function methods were used to determine stress intensity factors and to develop SIF equations for surface and corner cracks at the notch in the SENT specimens. A plastisity-induced crack-closure model was used to correlate small and large crack data, and to make fatigue life predictions, Predicted crack-growth rates and fatigue lives agreed well with experiments. A total fatigue life prediction method for the aluminum alloys was developed and demonstrated using the crack-closure model.
Topçuoğlu, Hüseyin Sinan; Düzgün, Salih; Kesim, Bertan; Tuncay, Oznur
2014-07-01
The aim of this study was to determine the incidence of crack initiation and propagation in apical root dentin after retreatment procedures performed by using 2 rotary retreatment systems and hand files with additional instrumentation. Eighty extracted mandibular premolars with single canals were selected. One millimeter from the apex of each tooth was ground perpendicular to the long axis of the tooth, and the apical surface was polished. Twenty teeth served as the control group, and no preparation was performed. The remaining 60 teeth were prepared to size 35 with rotary files and filled with gutta-percha and AH Plus sealer. Specimens were then divided into 3 groups (n = 20), and retreatment procedures were performed with the following devices and techniques: ProTaper Universal retreatment files, Mtwo retreatment files, and hand files. After retreatment, the additional instrumentation was performed by using size 40 ProTaper, Mtwo, and hand files. Digital images of the apical root surface were recorded before preparation, after instrumentation, after filling, after retreatment, and after additional instrumentation. The images were then inspected for the presence of any new apical cracks and propagation. Data were analyzed with the logistic regression and Fisher exact tests. All experimental groups caused crack initiation and propagation after use of retreatment instruments. The ProTaper and Mtwo retreatment groups caused greater crack initiation and propagation than the hand instrument group (P < .05) after retreatment. Additional instrumentation with ProTaper and Mtwo instruments after the use of retreatment instruments caused crack initiation and propagation, whereas hand files caused neither crack initiation nor propagation (P < .05). This study showed that retreatment procedures and additional instrumentation after the use of retreatment files may cause crack initiation and propagation in apical dentin. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chasse, Kevin Robert
Duplex stainless steels (DSS) generally have superior strength and corrosion resistance as compared to most standard austenitic and ferritic stainless grades owing to a balanced microstructure of austenite and ferrite. As a result of having favorable properties, DSS have been selected for the construction of equipment in pulp and paper, chemical processing, nuclear, oil and gas as well as other industries. The use of DSS has been restricted in some cases because of stress corrosion cracking (SCC), which can initiate and grow in either the ferrite or austenite phase depending on the environment. Thorough understanding of SCC mechanisms of DSS in chloride- and hydrogen sulfide-containing solutions has been useful for material selection in many environments. However, understanding of SCC mechanisms of DSS in sulfide-containing caustic solutions is limited, which has restricted the capacity to optimize process and equipment design in pulp and paper environments. Process environments may contain different concentrations of hydroxide, sulfide, and chloride, altering corrosion and SCC susceptibility of each phase. Crack initiation and growth behavior will also change depending on the relative phase distribution and properties of austenite and ferrite. The role of microstructure and environment on the SCC of standard grade UNS S32205 and lean grade UNS S32101 in hot alkaline-sulfide solution were evaluated in this work using electrochemical, film characterization, mechanical testing, X-ray diffraction, and microscopy techniques. Microstructural aspects, which included residual stress state, phase distribution, phase ratio, and microhardness, were related to the propensity for SCC crack initiation in different simulated alkaline pulping liquors at 170 °C. Other grades of DSS and reference austenitic and superferritic grades of stainless steel were studied using exposure coupons for comparison to understand compositional effects and individual phase susceptibility. Environments having different ionic concentrations of inorganic salts, i.e. sodium hydroxide, sodium sulfide, and sodium chloride, were used to understand the effect of liquor alkalinity, percent sulfidity, and chloride content on the corrosion and SCC behavior. Hydrogen embrittlement of S32205 was studied to understand the electrochemical conditions and fracture features associated with this failure mode. The results showed that there is an appreciable increase in the susceptibility of DSS to SCC in the presence of sulfide and chloride in hot alkaline environments. Sulfide and chloride adsorption at active sites on the metal surface caused unstable passivity and defective film formation. Chloride and sulfide available at the electrolyte/film surface reduced the charge transfer resistance and shifted the response of the films to lower frequencies indicating the films became more defective. The surface films had an outer, discontinuous layer, and an inner, barrier layer. Fe, Mo, and Mn were selectively dissolved in hot alkaline environments. The onset of SCC was related to the extent of selective dissolution and was consistent with a slip-step dissolution mechanism. Selective corrosion of the austenite phase depended on percent sulfidity and liquor alkalinity. Chlorides enhanced crack initiation and coalescence along the austenite/ferrite boundaries. Crack initiation and transgranular growth strongly depended on the phase distribution in the banded microstructure of DSS. These findings will augment understanding of SCC in this alloy-environment combination and facilitate materials selection in hot alkaline-sulfide environments, particularly in the petrochemical, nuclear, chemical processing, and pulp and paper industries.
Fatigue Life Prediction Based on Crack Closure and Equivalent Initial Flaw Size
Wang, Qiang; Zhang, Wei; Jiang, Shan
2015-01-01
Failure analysis and fatigue life prediction are necessary and critical for engineering structural materials. In this paper, a general methodology is proposed to predict fatigue life of smooth and circular-hole specimens, in which the crack closure model and equivalent initial flaw size (EIFS) concept are employed. Different effects of crack closure on small crack growth region and long crack growth region are considered in the proposed method. The EIFS is determined by the fatigue limit and fatigue threshold stress intensity factor △Kth. Fatigue limit is directly obtained from experimental data, and △Kth is calculated by using a back-extrapolation method. Experimental data for smooth and circular-hole specimens in three different alloys (Al2024-T3, Al7075-T6 and Ti-6Al-4V) under multiple stress ratios are used to validate the method. In the validation section, Semi-circular surface crack and quarter-circular corner crack are assumed to be the initial crack shapes for the smooth and circular-hole specimens, respectively. A good agreement is observed between model predictions and experimental data. The detailed analysis and discussion are performed on the proposed model. Some conclusions and future work are given. PMID:28793625
Fatigue behavior of ultrafine grained medium Carbon steel processed by severe plastic deformation
NASA Astrophysics Data System (ADS)
Ruffing, C.; Ivanisenko, Yu; Kerscher, E.
2014-08-01
The endurance limit of materials has been observed to be significantly increased in materials with an ultrafine grained microstructure [1, 2]. As this effect, however, has not yet been investigated in steels, fatigue experiments of an unalloyed medium carbon steel with a carbon content of 0.45 wt.-%, which was treated by high pressure torsion (HPT) [3-5] at elevated temperature were carried out. The treatments were applied to discs which had different initial carbide morphologies and showed an increase of hardness after HPT by a factor of 1.75 - 3.2 compared to the initial states, whereby the amount of increase depends on the initial carbide morphology. The maximum hardness achieved was 810 HV. The discs were cut into fatigue specimens in the form of bars of the size of 4 mm x 1 mm x 600 gm. Until a hardness of 500 HV the endurance limits correspond linearly with the hardness. This is no longer the case at higher hardness values, where inherent and process-initiated flaws lead to lower fatigue limits. The maximum endurance limit exceeded 1050 MPa in 4-point-micro-bending and at a load ratio of R = 0.1. Fractography revealed different crack initiation sites like pre cracks and shear bands [6, 7] resulting from HPT or fisheye fractures initiated from non-metallic inclusions.
Crack Growth Behavior in the Threshold Region for High Cycle Fatigue Loading
NASA Technical Reports Server (NTRS)
Forman, R. G.; Zanganeh, M.
2014-01-01
This paper describes the results of a research program conducted to improve the understanding of fatigue crack growth rate behavior in the threshold growth rate region and to answer a question on the validity of threshold region test data. The validity question relates to the view held by some experimentalists that using the ASTM load shedding test method does not produce valid threshold test results and material properties. The question involves the fanning behavior observed in threshold region of da/dN plots for some materials in which the low R-ratio data fans out from the high R-ratio data. This fanning behavior or elevation of threshold values in the low R-ratio tests is generally assumed to be caused by an increase in crack closure in the low R-ratio tests. Also, the increase in crack closure is assumed by some experimentalists to result from using the ASTM load shedding test procedure. The belief is that this procedure induces load history effects which cause remote closure from plasticity and/or roughness changes in the surface morphology. However, experimental studies performed by the authors have shown that the increase in crack closure is a result of extensive crack tip bifurcations that can occur in some materials, particularly in aluminum alloys, when the crack tip cyclic yield zone size becomes less than the grain size of the alloy. This behavior is related to the high stacking fault energy (SFE) property of aluminum alloys which results in easier slip characteristics. Therefore, the fanning behavior which occurs in aluminum alloys is a function of intrinsic dislocation property of the alloy, and therefore, the fanned data does represent the true threshold properties of the material. However, for the corrosion sensitive steel alloys tested in laboratory air, the occurrence of fanning results from fretting corrosion at the crack tips, and these results should not be considered to be representative of valid threshold properties because the fanning is eliminated when testing is performed in dry air.
Dynamic analysis of a geared rotor system considering a slant crack on the shaft
NASA Astrophysics Data System (ADS)
Han, Qinkai; Zhao, Jingshan; Chu, Fulei
2012-12-01
The vibration problems associated with geared systems have been the focus of research in recent years. As the torque is mainly transmitted by the geared system, a slant crack is more likely to appear on the gear shaft. Due to the slant crack and its breathing mechanism, the dynamic behavior of cracked geared system would differ distinctly with that of uncracked system. Relatively less work is reported on slant crack in the geared rotor system during the past research. Thus, the dynamic analysis of a geared rotor-bearing system with a breathing slant crack is performed in the paper. The finite element model of a geared rotor with slant crack is presented. Based on fracture mechanics, the flexibility matrix for the slant crack is derived that accounts for the additional stress intensity factors. Three methods for whirling analysis, parametric instability analysis and steady-state response analysis are introduced. Then, by taking a widely used one-stage geared rotor-bearing system as an example, the whirling frequencies of the equivalent time-invariant system, two types of instability regions and steady-state response under the excitations of unbalance forces and tooth transmission errors, are computed numerically. The effects of crack depth, position and type (transverse or slant) on the system dynamic behaviors are considered in the discussion. The comparative study with slant cracked geared rotor is carried out to explore distinctive features in their modal, parametric instability and frequency response behaviors.
NASA Astrophysics Data System (ADS)
Stephenson, Kale J.; Was, Gary S.
2015-01-01
The objective of this study was to compare the microstructures, microchemistry, hardening, susceptibility to IASCC initiation, and deformation behavior resulting from proton or reactor irradiation. Two commercial purity and six high purity austenitic stainless steels with various solute element additions were compared. Samples of each alloy were irradiated in the BOR-60 fast reactor at 320 °C to doses between approximately 4 and 12 dpa or by a 3.2 MeV proton beam at 360 °C to a dose of 5.5 dpa. Irradiated microstructures consisted mainly of dislocation loops, which were similar in size but lower in density after proton irradiation. Both irradiation types resulted in the formation of Ni-Si rich precipitates in a high purity alloy with added Si, but several other high purity neutron irradiated alloys showed precipitation that was not observed after proton irradiation, likely due to their higher irradiation dose. Low densities of small voids were observed in several high purity proton irradiated alloys, and even lower densities in neutron irradiated alloys, implying void nucleation was in process. Elemental segregation at grain boundaries was very similar after each irradiation type. Constant extension rate tensile experiments on the alloys in simulated light water reactor environments showed excellent agreement in terms of the relative amounts of intergranular cracking, and an analysis of localized deformation after straining showed a similar response of cracking to surface step height after both irradiation types. Overall, excellent agreement was observed after proton and reactor irradiation, providing additional evidence that proton irradiation is a useful tool for accelerated testing of irradiation effects in austenitic stainless steel.
NASA Astrophysics Data System (ADS)
Yokozeki, Tomohiro; Iwahori, Yutaka; Ishiwata, Shin
This study investigated the thermo-elastic properties and microscopic ply cracking behaviors in carbon fiber reinforced nanotube-dispersed epoxy laminates. The nanocomposite laminates used in this study consisted of traditional carbon fibers and epoxy resin filled with cup-stacked carbon nanotubes (CSCNTs). Thermo-mechanical properties of unidirectional nanocomposite laminates were evaluated, and quasi-static and fatigue tension tests of cross-ply laminates were carried out in order to observe the damage accumulation behaviors of matrix cracks. Clear retardation of matrix crack onset and accumulation was found in composite laminates with CSCNT compared to those without CSCNT. Fracture toughness associated with matrix cracking was evaluated based on the analytical model using the experimental results. It was concluded that the dispersion of CSCNT resulted in fracture toughness improvement and residual thermal strain decrease, and specifically, the former was the main contribution to the retardation of matrix crack formation.
NASA Technical Reports Server (NTRS)
Bretz, P. E.; Hertzberg, R. W.
1979-01-01
Fatigue crack propagation studies were carried out on unidirectionally solidified gamma/gamma-prime-delta (Ni-Nb-Al) alloys over an aluminum content range of 1.5-2.5% by weight. The variation of Al content of as-grown alloys did not significantly affect the crack growth behavior of these eutectic composites. The results indicate that the addition of Al to the eutectic dramatically improved the FCP behavior. The gamma/gamma-prime-delta alloy exhibited crack growth rates for a given stress intensity range that are an order of magnitude lower than those for the gamma-delta alloy. It is suggested that this difference in FCP behavior can be explained on the basis of stacking fault energy considerations. Extensive delaminations at the crack tip were also revealed, which contributed to the superior fatigue response. Delamination was predominantly intergranular in nature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuang, Chunqiang, E-mail: chunqiang.zhuang@bjut.edu.cn; Li, Zhipeng; Lin, Songsheng
2015-10-15
The basic issue related to radial crack in ceramic thin films has received considerable attention due to the fact that the radial crack plays an important role in evaluating the toughness properties of ceramic materials. In this work, an atomic-scale new experimental evidence is clearly presented to reveal the counter-intuitive initiation, the nucleation and the propagation mechanism of the radial crack in Al-Cr-N ceramic thin films.
NASA Technical Reports Server (NTRS)
Mitchell, William S.; Throckmorton, David (Technical Monitor)
2002-01-01
The purpose of this research was to further the understanding of a crack initiation problem in a highly strained pressure containment housing. Finite Element Analysis methods were used to model the behavior of shot peened materials undergoing plastic deformation. Analytical results are in agreement with laboratory tensile tests that simulated the actual housing load conditions. These results further validate the original investigation finding that the shot peened residual stress had reversed, changing from compressive to tensile, and demonstrate that analytical finite element methods can be used to predict this behavior.
NASA Technical Reports Server (NTRS)
Goldsby, Jon C.
2001-01-01
Sintered aluminum oxide materials were formed using commercial methods from mechanically mixed powders of nano-and micrometer alumina. The powders were consolidated at 1500 and 1600 C with 3.2 and 7.2 ksi applied stress in argon. The conventional micrometer sized powders failed to consolidate. While 100 percent nanometer-sized alumina and its mixture with the micrometer powders achieved less than 99 percent density. Preliminary high temperature creep behavior indicates no super-plastic strains. However high strains (less than 0.65 percent) were generated in the nanometer powder, due to cracks and linked voids initiated by cavitation.
Reactive Behavior of Explosive Billets in Deflagration Tube of Varied Confinements
NASA Astrophysics Data System (ADS)
Hu, Haibo; Guo, Yingwen; Li, Tao; Fu, Hua; Shang, Hailin; Wen, Shanggang; Qiu, Tian; LaboratoryShock Wave; Detonation Physics Research Team
2017-06-01
The deflagration process of small size cylinder billets of pressed HMX-based explosive JO-9159 and the deflagration tube wall deformation is recorded by combined pressure velocity-meter high-speed frame photographic and radiographic diagnostic system. The influence of confinement structure strength on deflagration evolution behavior is compared with analysis of convective flame propagation along the slot between explosive billet and confinement wall.The follow-up reaction inside the cracks on the initiation site end surface on the side surfaces and between the end surfaces of explosive billets is restored with the analysis results of post experimental explosive billet remains.
Fracture Kinetics of Hydrogen Embrittled Niobium.
1981-03-01
Effects on Hydride Solvus 4...........4 2.3 Subcritical Crack Growth Behavior and Mechanism . . 6 2.4 Crack Propagation Measurements and Techniques... maraging steels in gaseous hydrogen, Hudak and Wei (18) ei has suggested that the KI independence of Stage II velocities is due to a rate limited...lattice decohesion model for hydrogen assisted cracking in steels . The occurrence of three stage behavior in hydrogen embrittled refractory alloys has
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torronen, K.; Kemppainen, M.
1981-10-01
This paper describes the findings and interpretations of the fractographic survey conducted for the International Cyclic Crack Growth Rate (ICCGR) cooperative group round-robin specimens. Specimens of A533B pressure vessel steel were tested at several laboratories in the United States and elsewhere with the same nominal test parameters. A rather wide scatter of the results was found. A fractographic and metallographic survey was carried out in order to clarify the scatter and to evaluate the micromechanism of the crack growth. The fractographic findings are reported in detail and correlated to the crack growth behavior. A hydrogen-assisted crack propagation mechanism based onmore » the fractography is proposed and applied to the observed crack growth behavior.« less
NASA Astrophysics Data System (ADS)
Biradar, N. S.; Raman, R.
2012-09-01
Hot cracking studies on autogenous AA2014 T6 TIG welds were carried out. Significant cracking was observed during linear and circular welding test (CWT) on 4-mm-thick plates. Weld metal grain structure and amount of liquid distribution during the terminal stages of solidification were the key cause for hot cracking in aluminum welds. Square-wave AC TIG welding with transverse mechanical arc oscillation (TMAO) was employed to study the cracking behavior during linear and CWT. TMAO welds with amplitude = 0.9 mm and frequency = 0.5 Hz showed significant reduction in cracking tendency. The increase in cracking resistance in the arc-oscillated weld was attributed to grain refinement and improved weld bead morphology, which improved the weld metal ductility and uniformity, respectively, of residual tensile stresses that developed during welding. The obtained results were comparable to those of reported favorable results of electromagnetic arc oscillation.
Effects of fine porosity on the fatigue behavior of a powder metallurgy superalloy
NASA Technical Reports Server (NTRS)
Miner, R. V.; Dreshfield, R. L.
1980-01-01
Hot-isostatically-pressed powder-metallurgy Astroloy was obtained which contained 1.4 percent porosity at the grain boundaries produced by argon entering the powder container during pressing. This material was tested at 650 C in fatigue, creep-fatigue, tension, and stress-rupture and the results compared with data on sound Astroloy. They influenced fatigue crack initiation and produced a more intergranular mode of propagation but fatigue life was not drastically reduced. Fatigue behavior of the porous material showed typical correlation with tensile behavior. The plastic strain range-life relation was reduced proportionately with the reduction in tensile ductility, but the elastic strain range-life relation was changed little.
Fracture mechanics of cellular glass
NASA Technical Reports Server (NTRS)
Zwissler, J. G.; Adams, M. A.
1981-01-01
The fracture mechanics of cellular glasses (for the structural substrate of mirrored glass for solr concentrator reflecting panels) are discussed. Commercial and developmental cellular glasses were tested and analyzed using standard testing techniques and models developed from linear fracture mechanics. Two models describing the fracture behavior of these materials were developed. Slow crack growth behavior in cellular glass was found to be more complex than that encountered in dense glasses or ceramics. The crack velocity was found to be strongly dependent upon water vapor transport to the tip of the moving crack. The existence of a static fatigue limit was not conclusively established, however, it is speculated that slow crack growth behavior in Region 1 may be slower, by orders of magnitude, than that found in dense glasses.
Closure of fatigue cracks at high strains
NASA Technical Reports Server (NTRS)
Iyyer, N. S.; Dowling, N. E.
1985-01-01
Experiments were conducted on smooth specimens to study the closure behavior of short cracks at high cyclic strains under completely reversed cycling. Testing procedures and methodology, and closure measurement techniques, are described in detail. The strain levels chosen for the study cover from predominantly elastic to grossly plastic strains. Crack closure measurements are made at different crack lengths. The study reveals that, at high strains, cracks close only as the lowest stress level in the cycle is approached. The crack opening is observed to occur in the compressive part of the loading cycle. The applied stress needed to open a short crack under high strain is found to be less than for cracks under small scale yielding. For increased plastic deformations, the value of sigma sub op/sigma sub max is observed to decrease and approaches the value of R. Comparison of the experimental results with existing analysis is made and indicates the limitations of the small scale yielding approach where gross plastic deformation behavior occurs.
The fatigue response of the aluminium-lithium alloy, 8090
NASA Technical Reports Server (NTRS)
Birt, M. J.; Beevers, C. J.
1989-01-01
The fatigue response of an Al-Li-Cu-Mg-Zr (8090) alloy has been studied at room temperature. The initiation and growth of small and long cracks has been examined at R = 0.1 and at a frequency of 100 Hz. Initiation was observed to occur dominantly at sub-grain boundaries. The growth of the small cracks was crystallographic in character and exhibited little evidence of retardation or arrest at the grain boundaries. The long crack data showed the alloy to have a high resistance to fatigue crack growth with underaging providing the optimum heat treatment for fatigue crack growth resistance. In general, this can be attributed to high levels of crack closure which resulted from the presence of extensive microstructurally related asperities.
NASA Astrophysics Data System (ADS)
Lu, Yulin
Low cycle fatigue (LCF) and fatigue crack growth (FCG) experiments on three superalloys HASTELLOY X, HAYNES 230, and HAYNES 188 have been conducted at temperatures from 649 to 982°C. Hold times were imposed at the maximum strain or load to investigate the hold-time effect. In general, the fatigue life decreased as the temperature or hold time increased. However, for the HAYNES 230 alloy at total strain ranges higher than 1.0% and without a hold time, the LCF life was longer at 927°C than at 816°C. This "abnormal" behavior was found to result from the smaller plastic strain amplitude at half-life at 927°C than that at 816°C. An increase in the temperature and/or the introduction of a hold time decreased the hardening rate and increased the softening rate for all the three alloys. The introduction of a hold time and/or the increase of the test temperature progressively changed the fracture mode from the transgranular to mixed trans/inter-granular, then to intergranular feature. Within the two phases of the fatigue process, crack initiation was more severely influenced by the change of the hold time and/or temperature. The FCG data of HASTELLOY X and HAYNES 230 alloys were analyzed with an emphasis on hold-time and temperature effects. The crack grew faster at a higher temperature and a longer hold time. Fracture-mechanics parameters, C*, Ct, and (Ct)avg, were applied to correlate the crack-growth rates. The fatigue-cracking path was mainly transgranular at 816 and 927°C. The cracking path became dominantly intergranular if the hold time increased to 2 min, indicating that the time-dependent damage mechanisms were in control. The Ct and (Ct)avg parameters were capable of consolidating time dependent crack growth rate from different temperatures and alloys. The tests were conducted in air. Therefore, the fracture surfaces were frequently covered with a dark layer of oxides, making fracture feature difficult to identify under scanning-electron-microscopy. To overcome this problem, an oxide-stripping technique has been developed. The sample is first boiled in a potassium permanganate solution for 1 h, and then electrolytically cleaned in an alkaline solution for 5 min.
Behavior and influence of desiccation cracking in loess landfill covers
NASA Astrophysics Data System (ADS)
Wu, Tao; Lan, Ji-wu; Qiu, Qing-wen; He, Hai-jie; Li, He
2017-11-01
In the northwest region of China, loess was the main closure cover material of local landfills. Tests in a full-scale testing facility were conducted to investigate the behavior and influence of desiccation cracking in loess landfill covers. The desiccation cracks in the loess landfill cover intersected with T-shape, and the intersection angles were close to 90 degrees. The desiccation cracks formed as a result of drying, and would heal with the increase of moisture content of the loess. In addition, desiccation cracking in loess covers would promote the formation of preferential flow channels. As a consequence, the gas permeability of the loess cover was improved, and methane emissions increased obviously.
Natural Fatigue Crack Initiation and Detection in High Quality Spur Gears
2012-06-01
Natural Fatigue Crack Initiation and Detection in High Quality Spur Gears by David “Blake” Stringer, Ph.D., Kelsen E. LaBerge, Ph.D., Cory...0383 June 2012 Natural Fatigue Crack Initiation and Detection in High Quality Spur Gears David “Blake” Stringer and Ph.D., Kelsen E. LaBerge...Quality Spur Gears 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) David “Blake” Stringer, Ph.D., Kelsen E
Online Bridge Crack Monitoring with Smart Film
Wang, Shuliang; Li, Xingxing; Zhou, Zhixiang; Zhang, Xu; Yang, Guang; Qiu, Minfeng
2013-01-01
Smart film crack monitoring method, which can be used for detecting initiation, length, width, shape, location, and propagation of cracks on real bridges, is proposed. Firstly, the fabrication of the smart film is developed. Then the feasibility of the method is analyzed and verified by the mechanical sensing character of the smart film under the two conditions of normal strain and crack initiation. Meanwhile, the coupling interference between parallel enameled wires of the smart film is discussed, and then low-frequency detecting signal and the custom communication protocol are used to decrease interference. On this basis, crack monitoring system with smart film is designed, where the collected crack data is sent to the remote monitoring center and the cracks are simulated and recurred. Finally, the monitoring system is applied to six bridges, and the effects are discussed. PMID:24489496
The Growth of Small Corrosion Fatigue Cracks in Alloy 7075
NASA Technical Reports Server (NTRS)
Piascik, Robert S.
2015-01-01
The corrosion fatigue crack growth characteristics of small (greater than 35 micrometers) surface and corner cracks in aluminum alloy 7075 is established. The early stage of crack growth is studied by performing in situ long focal length microscope (500×) crack length measurements in laboratory air and 1% sodium chloride (NaCl) environments. To quantify the "small crack effect" in the corrosive environment, the corrosion fatigue crack propagation behavior of small cracks is compared to long through-the-thickness cracks grown under identical experimental conditions. In salt water, long crack constant K(sub max) growth rates are similar to small crack da/dN.
The Growth of Small Corrosion Fatigue Cracks in Alloy 7075
NASA Technical Reports Server (NTRS)
Piascik, R. S.
2001-01-01
The corrosion fatigue crack growth characteristics of small (less than 35 microns) surface and corner cracks in aluminum alloy 7075 is established. The early stage of crack growth is studied by performing in situ long focal length microscope (500X) crack length measurements in laboratory air and 1% NaCl environments. To quantify the "small crack effect" in the corrosive environment, the corrosion fatigue crack propagation behavior of small cracks is compared to long through-the-thickness cracks grown under identical experimental conditions. In salt water, long crack constant K(sub max) growth rates are similar to small crack da/dN.
Crack Coalescence in Molded Gypsum and Carrara Marble
NASA Astrophysics Data System (ADS)
Wong, N.; Einstein, H. H.
2007-12-01
This research investigates the fracturing and coalescence behavior in prismatic laboratory-molded gypsum and Carrara marble specimens, which consist of either one or two pre-existing open flaws, under uniaxial compression. The tests are monitored by a high speed video system with a frame rate up to 24,000 frames/second. It allows one to precisely observe the cracking mechanisms, in particular if shear or tensile fracturing takes place. Seven crack types and nine crack coalescence categories are identified. The flaw inclination angle, the ligament length and the bridging angle between two flaws have different extents of influence on the coalescence patterns. For coplanar flaws, as the flaw inclination angle increases, there is a general trend of variation from shear coalescence to tensile coalescence. For stepped flaws, as the bridging angle changes from negative to small positive, and further up to large positive values, the coalescence generally progresses from categories of no coalescence, indirect coalescence to direct coalescence. For direct coalescence, it generally progresses from shear, mixed shear-tensile to tensile as the bridging angle increases. Some differences in fracturing and coalescence processes are observed in gypsum and marble, particularly the crack initiation in marble is preceded by the development of macroscopic white patches, but not in gypsum. Scanning Electron Microprobe (SEM) study reveals that the white patches consist of zones of microcracks (process zones).
Curvature in solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Li, Wenxia; Hasinska, Kathy; Seabaugh, Matt; Swartz, Scott; Lannutti, John
At this point in history, curvature is inherent to the laminated components that comprise solid oxide fuel cells (SOFCs). Surprisingly, however, this fact has never been previously quantified in the literature. In addition, potential curvature changes associated with NiO reduction and re-oxidation during operation have not been investigated. In this report, an optical profilometer was employed to non-destructively quantify the surface curvature or cracking behavior observed on a large scale in industrially manufactured cells. This provides insights into the challenges that the component materials face as well as additional appreciation for why, in spite of a concerted effort to commercialize SOFC power generation, all currently manufactured SOFC stacks fail. Our results demonstrate that cracked electrolyte areas (caused by differential sintering) are flatter than uncracked regions. The height of the electrolyte surface ranged from 86 to 289 μm above the baseline following sintering. Reduction typically results in increases in curvature of up to 214 μm. Initial crack density appears to affect curvature evolution during reduction; the higher the crack density, the smaller the curvature increase following reduction at 600 °C. In general, however, we observed that the electrolyte layer is remarkably resistant to further cracking during these typographic changes. Following oxidation at 750 °C, large changes in curvature (up to 280 μm) are noted that appear to be related to the strength of the bond between the electrolyte and the underlying anode.
NASA Astrophysics Data System (ADS)
Enos, David George
Assessment of the effect of cathodic protection on a chloride contaminated bridge pile involves the definition of the hydrogen embrittlement behavior of the pearlitic reinforcement combined with quantification of the local (i.e., at the steel/concrete interface) chemical and electrochemical conditions, both prior to and throughout the application of cathodic protection. The hydrogen embrittlement behavior of the reinforcement was assessed through a combination of Devanathan/Stachurski permeation experiments to quantify subsurface hydrogen concentrations, CsbH, as a function of the applied hydrogen overpotential, eta, and crack initiation tests for bluntly notched and fatigue pre-cracked tensile specimens employing elastic-plastic finite element analysis and linear elastic fracture mechanics, respectively. A threshold mobile lattice hydrogen concentration for embrittlement of 2×10sp{-7} mol/cmsp3 was established for bluntly notched and fatigue pre-cracked specimens. Crack initiation occurred by the formation of shear cracks oriented at an angle approaching 45sp° from the tensile axis, as proposed by Miller and Smith (Miller, 1970), in regions where both the longitudinal and shear stresses were maximized (i.e., near the notch root). These Miller cracks then triggered longitudinal splitting which continued until fast fracture of the remaining ligament occurred. Instrumented laboratory scale piles were constructed and partially immersed in ASTM artificial ocean water. With time, localized corrosion (crevicing) was initiated along the reinforcement, and was accompanied by an acidic shift in the pH of the occluded environment due to ferrous ion hydrolysis. Cathodic protection current densities from -0.1 muA/cmsp2 to -3.0 muA/cmsp2 were applied via a skirt anode located at the waterline. Current densities as low as 0.66 muA/cmsp2 were sufficient to deplete the dissolved oxygen concentration at the steel/concrete interface and result in the observance of hydrogen production within regions near the waterline where the pH had decreased locally due to ferrous ion hydrolysis. By combining the effect of local cathodic protection level as a function of position along the reinforcement on hydrogen absorption with the information on the hydrogen embrittlement characteristics of the reinforcement as a function of hydrogen concentration, safe windows for the application of cathodic protection may be identified. Although hydrogen production and absorption were detected at -0.66 muA/cmsp2, concentrations which were of sufficient magnitude to be considered embrittling were not realized until -1.33 muA/cmsp2. Local hydrogen concentrations were compared to the 100 mV, 200 mV, and -780 mVsbSCE absolute potential cathodic protection criteria. With the exception of the 100 mV depolarization/decay criteria, it was not possible to sufficiently protect the high corrosion rate splash zone of the piling without exceeding the threshold hydrogen concentration for embrittlement at some zone within the reinforcement.
NASA Astrophysics Data System (ADS)
Becker, T. H.; Marrow, T. J.; Tait, R. B.
2011-07-01
The crack initiation and propagation characteristics of two medium grained polygranular graphites, nuclear block graphite (NBG10) and Gilsocarbon (GCMB grade) graphite, have been studied using the Double Torsion (DT) technique. The DT technique allows stable crack propagation and easy crack tip observation of such brittle materials. The linear elastic fracture mechanics (LEFM) methodology of the DT technique was adapted for elastic-plastic fracture mechanics (EPFM) in conjunction with a methodology for directly calculating the J-integral from in-plane displacement fields (JMAN) to account for the non-linearity of graphite deformation. The full field surface displacement measurement techniques of electronic speckle pattern interferometry (ESPI) and digital image correlation (DIC) were used to observe and measure crack initiation and propagation. Significant micro-cracking in the fracture process zone (FPZ) was observed as well as crack bridging in the wake of the crack tip. The R-curve behaviour was measured to determine the critical J-integral for crack propagation in both materials. Micro-cracks tended to nucleate at pores, causing deflection of the crack path. Rising R-curve behaviour was observed, which is attributed to the formation of the FPZ, while crack bridging and distributed micro-cracks are responsible for the increase in fracture resistance. Each contributes around 50% of the irreversible energy dissipation in both graphites.
Oxidation behavior of a thermal barrier coating
NASA Technical Reports Server (NTRS)
Miller, R. A.
1984-01-01
Thermal barrier coatings, consisting of a plasma sprayed calcium silicate ceramic layer and a CoCrAlY or NiCrAlY bond coat, were applied on B-1900 coupons and cycled hourly in air in a rapid-response furnace to maximum temperatures of 1030, 1100, or 1160 C. Eight specimens were tested for each of the six conditions of bond-coat composition and temperature. Specimens were removed from test at the onset of failure, which was taken to be the formation of a fine surface crack visible at 10X magnification. Specimens were weighed periodically, and plots of weight gain vs time indicate that weight is gained at a parabolic rate after an initial period where weight was gained at a much greater rate. The high initial oxidation rate is thought to arise from the initially high surface area in the porous bond coat. Specimen life (time to first crack) was found to be a strong function of temperature. However, while test lives varied greatly with time, the weight gain at the time of specimen failure was quite insensitive to temperature. This indicates that there is a critical weight gain at which the coating fails when subjected to this test.
Simulation of fatigue crack growth under large scale yielding conditions
NASA Astrophysics Data System (ADS)
Schweizer, Christoph; Seifert, Thomas; Riedel, Hermann
2010-07-01
A simple mechanism based model for fatigue crack growth assumes a linear correlation between the cyclic crack-tip opening displacement (ΔCTOD) and the crack growth increment (da/dN). The objective of this work is to compare analytical estimates of ΔCTOD with results of numerical calculations under large scale yielding conditions and to verify the physical basis of the model by comparing the predicted and the measured evolution of the crack length in a 10%-chromium-steel. The material is described by a rate independent cyclic plasticity model with power-law hardening and Masing behavior. During the tension-going part of the cycle, nodes at the crack-tip are released such that the crack growth increment corresponds approximately to the crack-tip opening. The finite element analysis performed in ABAQUS is continued for so many cycles until a stabilized value of ΔCTOD is reached. The analytical model contains an interpolation formula for the J-integral, which is generalized to account for cyclic loading and crack closure. Both simulated and estimated ΔCTOD are reasonably consistent. The predicted crack length evolution is found to be in good agreement with the behavior of microcracks observed in a 10%-chromium steel.
NASA Technical Reports Server (NTRS)
Corner, Ralph E.; Lerch, Brad A.
1992-01-01
A microstructural study and a preliminary characterization of the room temperature tensile and fatigue behavior of a continuous, tungsten fiber, Waspaloy-matrix composite was conducted. A heat treatment was chosen that would allow visibility of planar slip if it occurred during deformation, but would not allow growth of the reaction zone. Tensile and fatigue tests showed that the failed specimens contained transverse cracks in the fibers. The cracks that occurred in the tensile specimen were observed at the fracture surface and up to approximately 4.0 mm below the fracture surface. The crack spacing remained constant along the entire length of the cracked fibers. Conversely, the cracks that occurred in the fatigue specimen were only observed in the vicinity of the fracture surface. In instances where two fiber cracks occurred in the same plane, the matrix often necked between the two cracked fibers. Large groups of slip bands were generated in the matrix near the fiber cracks. Slip bands in the matrix of the tensile specimen were also observed in areas where there were no fiber cracks, at distances greater than 4 mm from the fracture surface. This suggests that the matrix plastically flows before fiber cracking occurs.
Separation of crack extension modes in orthotropic delamination models
NASA Technical Reports Server (NTRS)
Beuth, Jack L.
1995-01-01
In the analysis of an interface crack between dissimilar elastic materials, the mode of crack extension is typically not unique, due to oscillatory behavior of near-tip stresses and displacements. This behavior currently limits the applicability of interfacial fracture mechanics as a means to predict composite delamination. The Virtual Crack Closure Technique (VCCT) is a method used to extract mode 1 and mode 2 energy release rates from numerical fracture solutions. The mode of crack extension extracted from an oscillatory solution using the VCCT is not unique due to the dependence of mode on the virtual crack extension length, Delta. In this work, a method is presented for using the VCCT to extract Delta-independent crack extension modes for the case of an interface crack between two in-plane orthotropic materials. The method does not involve altering the analysis to eliminate its oscillatory behavior. Instead, it is argued that physically reasonable, Delta-independent modes of crack extension can be extracted from oscillatory solutions. Knowledge of near-tip fields is used to determine the explicit Delta dependence of energy release rate parameters. Energy release rates are then defined that are separated from the oscillatory dependence on Delta. A modified VCCT using these energy release rate definitions is applied to results from finite element analyses, showing that Delta-independent modes of crack extension result. The modified technique has potential as a consistent method for extracting crack extension modes from numerical solutions. The Delta-independent modes extracted using this technique can also serve as guides for testing the convergence of finite element models. Direct applications of this work include the analysis of planar composite delamination problems, where plies or debonded laminates are modeled as in-plane orthotropic materials.
Fatigue crack closure behavior at high stress ratios
NASA Technical Reports Server (NTRS)
Turner, C. Christopher; Carman, C. Davis; Hillberry, Ben M.
1988-01-01
Fatigue crack delay behavior at high stress ratio caused by single peak overloads was investigated in two thicknesses of 7475-T731 aluminum alloy. Closure measurements indicated no closure occurred before or throughout the overload plastic zones following the overload. This was further substantiated by comparing the specimen compliance following the overload with the compliance of a low R ratio test when the crack was fully open. Scanning electron microscope studies revealed that crack tunneling and possibly reinitiation of the crack occurred, most likely a result of crack-tip blunting. The number of delay cycles was greater for the thinner mixed mode stress state specimen than for the thicker plane strain stress state specimen, which is similar to low R ratio test results and may be due to a larger plastic zone for the mixed mode cased.
NASA Technical Reports Server (NTRS)
Bakuckas, J. G., Jr.; Johnson, W. S.
1992-01-01
Several fiber bridging models were reviewed and applied to study the matrix fatigue crack growth behavior in center notched (0)(sub 8) SCS-6/Ti-15-3 and (0)(sub 4) SCS-6/Ti-6Al-4V laminates. Observations revealed that fatigue damage consisted primarily of matrix cracks and fiber matrix interfacial failure in the (0)(sub 8) SCS-6/Ti-15-3 laminates. Fiber-matrix interface failure included fracture of the brittle reaction zone and cracking between the two carbon rich fiber coatings. Intact fibers in the wake of the matrix cracks reduce the stress intensity factor range. Thus, an applied stress intensity factor range is inappropriate to characterize matrix crack growth behavior. Fiber bridging models were used to determine the matrix stress intensity factor range in titanium metal matrix composites. In these models, the fibers in the wake of the crack are idealized as a closure pressure. An unknown constant frictional shear stress is assumed to act along the debond or slip length of the bridging fibers. The frictional shear stress was used as a curve fitting parameter to available data (crack growth data, crack opening displacement data, and debond length data). Large variations in the frictional shear stress required to fit the experimental data indicate that the fiber bridging models in their present form lack predictive capabilities. However, these models provide an efficient and relatively simple engineering method for conducting parametric studies of the matrix growth behavior based on constituent properties.
Crack tip field and fatigue crack growth in general yielding and low cycle fatigue
NASA Technical Reports Server (NTRS)
Minzhong, Z.; Liu, H. W.
1984-01-01
Fatigue life consists of crack nucleation and crack propagation periods. Fatigue crack nucleation period is shorter relative to the propagation period at higher stresses. Crack nucleation period of low cycle fatigue might even be shortened by material and fabrication defects and by environmental attack. In these cases, fatigue life is largely crack propagation period. The characteristic crack tip field was studied by the finite element method, and the crack tip field is related to the far field parameters: the deformation work density, and the product of applied stress and applied strain. The cyclic carck growth rates in specimens in general yielding as measured by Solomon are analyzed in terms of J-integral. A generalized crack behavior in terms of delta is developed. The relations between J and the far field parameters and the relation for the general cyclic crack growth behavior are used to analyze fatigue lives of specimens under general-yielding cyclic-load. Fatigue life is related to the applied stress and strain ranges, the deformation work density, crack nucleus size, fracture toughness, fatigue crack growth threshold, Young's modulus, and the cyclic yield stress and strain. The fatigue lives of two aluminum alloys correlate well with the deformation work density as depicted by the derived theory. The general relation is reduced to Coffin-Manson low cycle fatigue law in the high strain region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Ziqing; Kruska, Karen; Toloczko, Mychailo B.
Stress corrosion crack initiation of two thermally-treated, cold-worked (CW) alloy 690 materials was investigated in 360oC simulated PWR primary water using constant load tensile (CLT) tests and blunt notch compact tension (BNCT) tests equipped with direct current potential drop (DCPD) for in-situ detection of cracking. SCC initiation was not detected by DCPD for the 21% and 31%CW CLT specimens loaded at their yield stress after ~9,220 h, however intergranular (IG) precursor damage and isolated surface cracks were observed on the specimens. The two 31%CW BNCT specimens loaded at moderate stress intensity after several cyclic loading ramps showed DCPD-indicated crack initiationmore » after 10,400h exposure at constant stress intensity, which resulted from significant growth of IG cracks. The 21%CW BNCT specimens only exhibited isolated small IG surface cracks and showed no apparent DCPD change throughout the test. Interestingly, post-test cross-section examinations revealed many grain boundary (GB) nano-cavities in the bulk of all the CLT and BNCT specimens particularly for the 31%CW materials. Cavities were also found along GBs extending to the surface suggesting an important role in crack nucleation. This paper provides an overview of the evolution of GB cavities and will discuss their effects on crack initiation in CW alloy 690.« less
Hydrogen-Induced Delayed Cracking in TRIP-Aided Lean-Alloyed Ferritic-Austenitic Stainless Steels.
Papula, Suvi; Sarikka, Teemu; Anttila, Severi; Talonen, Juho; Virkkunen, Iikka; Hänninen, Hannu
2017-06-03
Susceptibility of three lean-alloyed ferritic-austenitic stainless steels to hydrogen-induced delayed cracking was examined, concentrating on internal hydrogen contained in the materials after production operations. The aim was to study the role of strain-induced austenite to martensite transformation in the delayed cracking susceptibility. According to the conducted deep drawing tests and constant load tensile testing, the studied materials seem not to be particularly susceptible to delayed cracking. Delayed cracks were only occasionally initiated in two of the materials at high local stress levels. However, if a delayed crack initiated in a highly stressed location, strain-induced martensite transformation decreased the crack arrest tendency of the austenite phase in a duplex microstructure. According to electron microscopy examination and electron backscattering diffraction analysis, the fracture mode was predominantly cleavage, and cracks propagated along the body-centered cubic (BCC) phases ferrite and α'-martensite. The BCC crystal structure enables fast diffusion of hydrogen to the crack tip area. No delayed cracking was observed in the stainless steel that had high austenite stability. Thus, it can be concluded that the presence of α'-martensite increases the hydrogen-induced cracking susceptibility.
Hydrogen-Induced Delayed Cracking in TRIP-Aided Lean-Alloyed Ferritic-Austenitic Stainless Steels
Papula, Suvi; Sarikka, Teemu; Anttila, Severi; Talonen, Juho; Virkkunen, Iikka; Hänninen, Hannu
2017-01-01
Susceptibility of three lean-alloyed ferritic-austenitic stainless steels to hydrogen-induced delayed cracking was examined, concentrating on internal hydrogen contained in the materials after production operations. The aim was to study the role of strain-induced austenite to martensite transformation in the delayed cracking susceptibility. According to the conducted deep drawing tests and constant load tensile testing, the studied materials seem not to be particularly susceptible to delayed cracking. Delayed cracks were only occasionally initiated in two of the materials at high local stress levels. However, if a delayed crack initiated in a highly stressed location, strain-induced martensite transformation decreased the crack arrest tendency of the austenite phase in a duplex microstructure. According to electron microscopy examination and electron backscattering diffraction analysis, the fracture mode was predominantly cleavage, and cracks propagated along the body-centered cubic (BCC) phases ferrite and α’-martensite. The BCC crystal structure enables fast diffusion of hydrogen to the crack tip area. No delayed cracking was observed in the stainless steel that had high austenite stability. Thus, it can be concluded that the presence of α’-martensite increases the hydrogen-induced cracking susceptibility. PMID:28772975
Thermal fatigue behaviour for a 316 L type steel
NASA Astrophysics Data System (ADS)
Fissolo, A.; Marini, B.; Nais, G.; Wident, P.
1996-10-01
This paper deals with initiation and growth of cracks produced by thermal fatigue loadings on 316 L steel, which is a reference material for the first wall of the next fusion reactor ITER. Two types of facilities have been built. As for true components, thermal cycles have been repeatedly applied on the surface of the specimen. The first is mainly concerned with initiation, which is detected with a light microscope. The second allows one to determine the propagation of a single crack. Crack initiation is analyzed using the French RCC-MR code procedure, and the strain-controlled isothermal fatigue curves. To predict crack growth, a model previously proposed by Haigh and Skelton is applied. This is based on determination of effective stress intensity factors, which takes into account both plastic strain and crack closure phenomena. It is shown that estimations obtained with such methodologies are in good agreement with experimental data.
Fatigue crack layer propagation in silicon-iron
NASA Technical Reports Server (NTRS)
Birol, Y.; Welsch, G.; Chudnovsky, A.
1986-01-01
Fatigue crack propagation in metal is almost always accompanied by plastic deformation unless conditions strongly favor brittle fracture. The analysis of the plastic zone is crucial to the understanding of crack propagation behavior as it governs the crack growth kinetics. This research was undertaken to study the fatigue crack propagation in a silicon iron alloy. Kinetic and plasticity aspects of fatigue crack propagation in the alloy were obtained, including the characterization of damage evolution.
Crack turning in integrally stiffened aircraft structures
NASA Astrophysics Data System (ADS)
Pettit, Richard Glen
Current emphasis in the aircraft industry toward reducing manufacturing cost has created a renewed interest in integrally stiffened structures. Crack turning has been identified as an approach to improve the damage tolerance and fail-safety of this class of structures. A desired behavior is for skin cracks to turn before reaching a stiffener, instead of growing straight through. A crack in a pressurized fuselage encounters high T-stress as it nears the stiffener---a condition favorable to crack turning. Also, the tear resistance of aluminum alloys typically varies with crack orientation, a form of anisotropy that can influence the crack path. The present work addresses these issues with a study of crack turning in two-dimensions, including the effects of both T-stress and fracture anisotropy. Both effects are shown to have relation to the process zone size, an interaction that is central to this study. Following an introduction to the problem, the T-stress effect is studied for a slightly curved semi-infinite crack with a cohesive process zone, yielding a closed form expression for the future crack path in an infinite medium. For a given initial crack tip curvature and tensile T-stress, the crack path instability is found to increase with process zone size. Fracture orthotropy is treated using a simple function to interpolate between the two principal fracture resistance values in two-dimensions. An extension to three-dimensions interpolates between the six principal values of fracture resistance. Also discussed is the transition between mode I and mode II fracture in metals. For isotropic materials, there is evidence that the crack seeks out a direction of either local symmetry (pure mode I) or local asymmetry (pure mode II) growth. For orthotropic materials the favored states are not pure modal, and have mode mixity that is a function of crack orientation. Drawing upon these principles, two crack turning prediction approaches are extended to include fracture resistance orthotropy---a second-order linear elastic method with a characteristic length parameter to incorporate T-stress/process-zone effects, and an elastic-plastic method that uses the Crack Tip Opening Displacement (CTOD) to determine the failure response. Together with a novel method for obtaining enhanced accuracy T-stress calculations, these methods are incorporated into an adaptive-mesh, finite-element fracture simulation code. A total of 43 fracture tests using symmetrically and asymmetrically loaded double cantilever beam specimens were run to develop crack turning parameters and compare predicted and observed crack paths.
Koivisto, J; Dalbe, M-J; Alava, M J; Santucci, S
2016-08-31
Crack propagation is tracked here with Digital Image Correlation analysis in the test case of two cracks propagating in opposite directions in polycarbonate, a material with high ductility and a large Fracture Process Zone (FPZ). Depending on the initial distances between the two crack tips, one may observe different complex crack paths with in particular a regime where the two cracks repel each other prior to being attracted. We show by strain field analysis how this can be understood according to the principle of local symmetry: the propagation is to the direction where the local shear - mode KII in fracture mechanics language - is zero. Thus the interactions exhibited by the cracks arise from symmetry, from the initial geometry, and from the material properties which induce the FPZ. This complexity makes any long-range prediction of the path(s) impossible.
Yang, Xiaoxia; Chen, Shili; Jin, Shijiu; Chang, Wenshuang
2013-09-13
Stress corrosion cracks (SCC) in low-pressure steam turbine discs are serious hidden dangers to production safety in the power plants, and knowing the orientation and depth of the initial cracks is essential for the evaluation of the crack growth rate, propagation direction and working life of the turbine disc. In this paper, a method based on phased array ultrasonic transducer and artificial neural network (ANN), is proposed to estimate both the depth and orientation of initial cracks in the turbine discs. Echo signals from cracks with different depths and orientations were collected by a phased array ultrasonic transducer, and the feature vectors were extracted by wavelet packet, fractal technology and peak amplitude methods. The radial basis function (RBF) neural network was investigated and used in this application. The final results demonstrated that the method presented was efficient in crack estimation tasks.
Yang, Xiaoxia; Chen, Shili; Jin, Shijiu; Chang, Wenshuang
2013-01-01
Stress corrosion cracks (SCC) in low-pressure steam turbine discs are serious hidden dangers to production safety in the power plants, and knowing the orientation and depth of the initial cracks is essential for the evaluation of the crack growth rate, propagation direction and working life of the turbine disc. In this paper, a method based on phased array ultrasonic transducer and artificial neural network (ANN), is proposed to estimate both the depth and orientation of initial cracks in the turbine discs. Echo signals from cracks with different depths and orientations were collected by a phased array ultrasonic transducer, and the feature vectors were extracted by wavelet packet, fractal technology and peak amplitude methods. The radial basis function (RBF) neural network was investigated and used in this application. The final results demonstrated that the method presented was efficient in crack estimation tasks. PMID:24064602
Modes of supraglacial lake drainage and dynamic ice sheet response
NASA Astrophysics Data System (ADS)
Das, S. B.; Behn, M. D.; Joughin, I. R.
2011-12-01
We investigate modes of supraglacial lake drainage using geophysical, ground, and remote sensing observations over the western margin of the Greenland ice sheet. Lakes exhibit a characteristic life cycle defined by a pre-drainage, drainage, and post-drainage phase. In the pre-drainage phase winter snow fills pre-existing cracks and stream channels, efficiently blocking past drainage conduits. As temperatures increase in the spring, surface melting commences, initially saturating the snow pack and subsequently forming a surface network of streams that fills the lake basins. Basins continue to fill until lake drainage commences, which for individual lakes occurs at different times depending on the previous winter snow accumulation and summer temperatures. Three styles of drainage behavior have been observed: (1) no drainage, (2) slow drainage over the side into an adjacent pre-existing crack, and (3) rapid drainage through a new crack formed beneath the lake basin. Moreover, from year-to-year individual lakes exhibit different drainage behaviors. Lakes that drain slowly often utilize the same outflow channel for multiple years, creating dramatic canyons in the ice. Ultimately, these surface channels are advected out of the lake basin and a new channel forms. In the post-drainage phase, melt water continues to access the bed typically through a small conduit (e.g. moulin) formed near a local topographic minimum along the main drainage crack, draining the lake catchment throughout the remainder of the melt season. This melt water input to the bed leads to continued basal lubrication and enhanced ice flow compared to background velocities. Lakes that do not completely drain freeze over to form a surface ice layer that persists into the following year. Our results show that supraglacial lakes show a spectrum of drainage behaviors and that these styles of drainage lead to varying rates and timing of surface meltwater delivery to the bed resulting in different dynamic ice responses.
High-temperature low cycle fatigue behavior of a gray cast iron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, K.L., E-mail: 12klfan@tongji.edu.cn; He, G.Q.; She, M.
The strain controlled low cycle fatigue properties of the studied gray cast iron for engine cylinder blocks were investigated. At the same total strain amplitude, the low cycle fatigue life of the studied material at 523 K was higher than that at 423 K. The fatigue behavior of the studied material was characterized as cyclic softening at any given total strain amplitude (0.12%–0.24%), which was attributed to fatigue crack initiation and propagation. Moreover, this material exhibited asymmetric hysteresis loops due to the presence of the graphite lamellas. Transmission electron microscopy analysis suggested that cyclic softening was also caused by themore » interactions of dislocations at 423 K, such as cell structure in ferrite, whereas cyclic softening was related to subgrain boundaries and dislocation climbing at 523 K. Micro-analysis of specimen fracture appearance was conducted in order to obtain the fracture characteristics and crack paths for different strain amplitudes. It showed that the higher the temperature, the rougher the crack face of the examined gray cast iron at the same total strain amplitude. Additionally, the microcracks were readily blunted during growth inside the pearlite matrix at 423 K, whereas the microcracks could easily pass through pearlite matrix along with deflection at 523 K. The results of fatigue experiments consistently showed that fatigue damage for the studied material at 423 K was lower than that at 523 K under any given total strain amplitude. - Highlights: • The low cycle fatigue behavior of the HT250 for engine cylinder blocks was investigated. • TEM investigations were conducted to explain the cyclic deformation response. • The low cycle fatigue cracks of HT250 GCI were studied by SEM. • The fatigue life of the examined material at 523 K is higher than that at 423 K.« less
Probability of brittle failure
NASA Technical Reports Server (NTRS)
Kim, A.; Bosnyak, C. P.; Chudnovsky, A.
1991-01-01
A methodology was developed for collecting statistically representative data for crack initiation and arrest from small number of test specimens. An epoxy (based on bisphenol A diglycidyl ether and polyglycol extended diglycyl ether and cured with diethylene triamine) is selected as a model material. A compact tension specimen with displacement controlled loading is used to observe multiple crack initiation and arrests. The energy release rate at crack initiation is significantly higher than that at a crack arrest, as has been observed elsewhere. The difference between these energy release rates is found to depend on specimen size (scale effect), and is quantitatively related to the fracture surface morphology. The scale effect, similar to that in statistical strength theory, is usually attributed to the statistics of defects which control the fracture process. Triangular shaped ripples (deltoids) are formed on the fracture surface during the slow subcritical crack growth, prior to the smooth mirror-like surface characteristic of fast cracks. The deltoids are complementary on the two crack faces which excludes any inelastic deformation from consideration. Presence of defects is also suggested by the observed scale effect. However, there are no defects at the deltoid apexes detectable down to the 0.1 micron level.
RSRM TP-H1148 Main Grain Propellant Crack Initiation Evaluation
NASA Technical Reports Server (NTRS)
Earnest, Todd E.
2005-01-01
Pressurized TP-HI 148 propellant fracture toughness testing was performed to assess the potential for initiation of visually undetectable cracks in the RSRM forward segment transition region during motor ignition. Two separate test specimens were used in this evaluation. Testing was performed in cold-gas and hot-fire environments, and under both static and dynamic pressurization conditions. Analysis of test results demonstrates safety factors against initiation of visually undetectable cracks in excess of 8.0. The Reusable Solid Rocket Motor (RSRM) forward segment is cast with PBAN propellant (TP-HI 148) to form T an 1 1-point star configuration that transitions to a tapered center perforated bore (see Figure 1). The geometry of the transition region between the fin valleys and the bore causes a localized area of high strain during horizontal storage. Updated analyses using worst-case mechanical properties at 40 F and improved modeling techniques indicated a slight reduction in safety margins over previous predictions. Although there is no history of strain induced cracks or flaws in the transition region propellant, a proactive test effort was initiated to better understand the implications of the new analysis, primarily the resistance of TP-H1148 propellant to crack initiation' during RSRM ignition.
NASA Technical Reports Server (NTRS)
Telesman, Jack; Kantzos, Peter
1988-01-01
An in situ fatigue loading stage inside a scanning electron microscope (SEM) was used to determine the fatigue crack growth behavior of a PWA 1480 single-crystal nickel-based superalloy. The loading stage permits real-time viewing of the fatigue damage processes at high magnification. The PWA 1480 single-crystal, single-edge notch specimens were tested with the load axis parallel to the (100) orientation. Two distinct fatigue failure mechanisms were identified. The crack growth rate differed substantially when the failure occurred on a single slip system in comparison to multislip system failure. Two processes by which crack branching is produced were identified and are discussed. Also discussed are the observed crack closure mechanisms.
The onset and evolution of fatigue-induced abnormal grain growth in nanocrystalline Ni–Fe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furnish, T. A.; Mehta, A.; Van Campen, D.
Conventional structural metals suffer from fatigue-crack initiation through dislocation activity which forms persistent slip bands leading to notch-like extrusions and intrusions. Ultrafine-grained and nanocrystalline metals can potentially exhibit superior fatigue-crack initiation resistance by suppressing these cumulative dislocation activities. Prior studies on these metals have confirmed improved high-cycle fatigue performance. In the case of nano-grained metals, analyses of subsurface crack initiation sites have indicated that the crack nucleation is associated with abnormally large grains. But, these post-mortem analyses have led to only speculation about when abnormal grain growth occurs (e.g., during fatigue, after crack initiation, or during crack growth). In thismore » study, a recently developed synchrotron X-ray diffraction technique was used to detect the onset and progression of abnormal grain growth during stress-controlled fatigue loading. Our study provides the first direct evidence that the grain coarsening is cyclically induced and occurs well before final fatigue failure—our results indicate that the first half of the fatigue life was spent prior to the detectable onset of abnormal grain growth, while the second half was spent coarsening the nanocrystalline structure and cyclically deforming the abnormally large grains until crack initiation. Post-mortem fractography, coupled with cycle-dependent diffraction data, provides the first details regarding the kinetics of this abnormal grain growth process during high-cycle fatigue testing. Finally, precession electron diffraction images collected in a transmission electron microscope after the in situ fatigue experiment also confirm the X-ray evidence that the abnormally large grains contain substantial misorientation gradients and sub-grain boundaries.« less
The onset and evolution of fatigue-induced abnormal grain growth in nanocrystalline Ni–Fe
Furnish, T. A.; Mehta, A.; Van Campen, D.; ...
2016-10-11
Conventional structural metals suffer from fatigue-crack initiation through dislocation activity which forms persistent slip bands leading to notch-like extrusions and intrusions. Ultrafine-grained and nanocrystalline metals can potentially exhibit superior fatigue-crack initiation resistance by suppressing these cumulative dislocation activities. Prior studies on these metals have confirmed improved high-cycle fatigue performance. In the case of nano-grained metals, analyses of subsurface crack initiation sites have indicated that the crack nucleation is associated with abnormally large grains. But, these post-mortem analyses have led to only speculation about when abnormal grain growth occurs (e.g., during fatigue, after crack initiation, or during crack growth). In thismore » study, a recently developed synchrotron X-ray diffraction technique was used to detect the onset and progression of abnormal grain growth during stress-controlled fatigue loading. Our study provides the first direct evidence that the grain coarsening is cyclically induced and occurs well before final fatigue failure—our results indicate that the first half of the fatigue life was spent prior to the detectable onset of abnormal grain growth, while the second half was spent coarsening the nanocrystalline structure and cyclically deforming the abnormally large grains until crack initiation. Post-mortem fractography, coupled with cycle-dependent diffraction data, provides the first details regarding the kinetics of this abnormal grain growth process during high-cycle fatigue testing. Finally, precession electron diffraction images collected in a transmission electron microscope after the in situ fatigue experiment also confirm the X-ray evidence that the abnormally large grains contain substantial misorientation gradients and sub-grain boundaries.« less
Effect of NaCl Solution Spraying on Fatigue Lives of Smooth and Slit Specimens of 0.37% Carbon Steel
NASA Astrophysics Data System (ADS)
Makabe, Chobin; Ferdous, Md. Shafiul; Shimabukuro, Akimichi; Murdani, Anggit
2017-07-01
The fatigue crack initiation life and growth rate are affected by experimental conditions. A corrosive environment can be created in a laboratory by means of dropping salt water onto the specimen surface, spraying chloride mist into the experimental chamber, etc. In the case of smooth specimens of some metals, fatigue life is shortened and the fatigue limit disappears under such corrosive experimental conditions. In this study, the effects of intermittent spraying of 3% NaCl solution-mist on corrosion fatigue behavior were investigated. The material used was 0.37% carbon steel. This is called JIS S35C in Japan. Spraying of 3% NaCl solution-mist attacked the surface layer of the specimen. It is well known that the pitting, oxidation-reduction reaction, etc. affect the fatigue strength of metals in a corrosive environment. We carried out corrosion fatigue tests with smooth specimens, holed specimens and slit specimens. Then the effects of such specimen geometry on the fatigue strength were investigated when the NaCl solution-mist was sprayed onto the specimen surface. In the case of lower stress amplitude application in slit specimens, the fatigue life in a corrosive atmosphere was longer than that in the open air. It is discussed that the behavior is related to the crack closure which happens when the oxide builds up and clogs the crack or slit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyum, E.A.
1993-12-01
This research, the first load-controlled tension-compression fatigue testing to be performed on a MMC, extends the existing knowledge of MMC fatigue damage mechanisms to include the tension compression loading condition. To accomplish this, a (0/90)2, SCS-6/Ti-15-3 laminate was subjected to tension-tension fatigue at room temperature, and tension-compression fatigue at both room temperature and 427 deg C. Stress and strain data was taken to evaluate the macro-mechanic behavior of the material. Microscopy and fractography were performed to characterize the damage on a micro-mechanic level. On a maximum applied stress basis, the room temperature tension-tension specimens had longer fatigue lives than themore » room temperature tension-compression specimens. The room and high temperature tension-compression fatigue lives were nearly identical in the fiber-dominated high stress region of the SN curve. However, the increased ductility and diffused plasticity of the titanium matrix at 427 deg C delayed the onset and severity of matrix cracking, and thus increased the elevated temperature fatigue lives in the matrix dominated region of the SN curve. In all cases, matrix damage initiated at reaction zone cracks which nucleated both matrix plasticity and matrix cracking. Metal matrix composite, Elevated temperature, Fatigue testing, Compression, Fully-reversed, Titanium, Silicon carbide.« less
Cao, Rihong; Cao, Ping; Lin, Hang; Fan, Xiang
2017-01-01
Joints and fissures in natural rocks have a significant influence on the stability of the rock mass, and it is often necessary to evaluate strength failure and crack evolution behavior. In this paper, based on experimental tests and numerical simulation (PFC2D), the macro-mechanical behavior and energy mechanism of jointed rock-like specimens with cross non-persistent joints under uniaxial loading were investigated. The focus was to study the effect of joint dip angle α and intersection angle γ on the characteristic stress, the coalescence modes and the energy release of jointed rock-like specimens. For specimens with γ = 30° and 45°, the UCS (uniaxial compression strength), CIS (crack initiation stress) and CDiS (critical dilatancy stress) increase as α increases from 0° to 75°. When γ = 60° and 75°, the UCS, CIS and CDiS increase as α increases from 0° to 60° and decrease when α is over 60°. Both the inclination angle α and intersection angle γ have great influence on the failure pattern of pre-cracked specimens. With different α and γ, specimens exhibit 4 kinds of failure patterns. Both the experimental and numerical results show that the energy of a specimen has similar trends with characteristic stress as α increases.
Evaluation of fatigue crack behavior in electron beam irradiated polyethylene pipes
NASA Astrophysics Data System (ADS)
Pokharel, Pashupati; Jian, Wei; Choi, Sunwoong
2016-09-01
A cracked round bar (CRB) fatigue test was employed to determine the slow crack growth (SCG) behavior of samples from high density polyethylene (HDPE) pipes using PE4710 resin. The structure property relationships of fatigue failure of polyethylene CRB specimens which have undergone various degree of electron beam (EB) irradiation were investigated by observing fatigue failure strength and the corresponding fracture surface morphology. Tensile test of these HDPE specimens showed improvements in modulus and yield strength while the failure strain decreased with increasing EB irradiation. The CRB fatigue test of HDPE pipe showed remarkable effect of EB irradiation on number of cycles to failure. The slopes of the stress-cycles to failure curve were similar for 0-100 kGy; however, significantly higher slope was observed for 500 kGy EB irradiated pipe. Also, the cycle to fatigue failure was seen to decrease as with EB irradiation in the high stress range, ∆σ=(16 MPa to 10.8 MPa); however, 500 kGy EB irradiated samples showed longer cycles to failure than the un-irradiated specimens at the stress range below 9.9 MPa and the corresponding initial stress intensity factor (∆KI,0)=0.712 MPa m1/2. The fracture surface morphology indicated that the cross-linked network in 500 kGy EB irradiated PE pipe can endure low dynamic load more effectively than the parent pipe.
Short-crack growth behaviour in an aluminum alloy: An AGARD cooperative test program
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Edwards, P. R.
1988-01-01
An AGARD Cooperative Test Program on the growth of short fatigue cracks was conducted to define the significance of the short-crack effect, to compare test results from various laboratories, and to evaluate an existing analytical crack-growth prediction model. The initiation and growth of short fatigue cracks (5 micrometer to 2 mm) from the surface of a semi-circular notch in 2024-T3 aluminum alloy sheet material were monitored under various load histories. The cracks initiated from inclusion particle clusters or voids on the notch surface and generally grew as surface cracks. Tests were conducted under several constant-amplitude (stress ratios of -2, -1, 0, and 0.5) and spectrum (FALSTAFF and Gaussian) loading conditions at 3 stress levels each. Short crack growth was recorded using a plastic-replica technique. Over 250 edge-notched specimens were fatigue tested and nearly 950 cracks monitored by 12 participants from 9 countries. Long crack-growth rate data for cracks greater than 2 mm in length were obtained over a wide range in rates (10 to the -8 to 10 to the -1 mm/cycle) for all constant-amplitude loading conditions. Long crack-growth rate data for the FALSTAFF and Gaussian load sequences were also obtained.
Exceptional cracking behavior in H-implanted Si/B-doped Si0.70Ge0.30/Si heterostructures
NASA Astrophysics Data System (ADS)
Chen, Da; Wang, Dadi; Chang, Yongwei; Li, Ya; Ding, Rui; Li, Jiurong; Chen, Xiao; Wang, Gang; Guo, Qinglei
2018-01-01
The cracking behavior in H-implanted Si/B-doped Si0.70Ge0.30/Si structures after thermal annealing was investigated. The crack formation position is found to closely correlate with the thickness of the buried Si0.70Ge0.30 layer. For H-implanted Si containing a buried 3-nm-thick B-doped Si0.70Ge0.30 layer, localized continuous cracking occurs at the interfaces on both sides of the Si0.70Ge0.30 interlayer. Once the thickness of the buried Si0.70Ge0.30 layer increases to 15 and 70 nm, however, a continuous sharp crack is individually observed along the interface between the Si substrate and the B-doped Si0.70Ge0.30 interlayer. We attribute this exceptional cracking behavior to the existence of shear stress on both sides of the buried Si0.70Ge0.30 layer and the subsequent trapping of hydrogen, which leads to a crack in a well-controlled manner. This work may pave the way for high-quality Si or SiGe membrane transfer in a feasible manner, thus expediting its potential applications to ultrathin silicon-on-insulator (SOI) or silicon-germanium-on-insulator (SGOI) production.
NASA Astrophysics Data System (ADS)
Ahmed, Abubaker Ali
As part of the structural integrity research of the National Aging Aircraft Research Program, a comprehensive study on multiple-site damage (MSD) initiation and growth in a pristine lap-joint fuselage panel has been conducted. The curved stiffened fuselage panel was tested at the Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility located at the Federal Aviation Administration William J. Hughes Technical Center. A strain survey test was conducted to verify proper load application. The panel was then subjected to a fatigue test with constant-amplitude cyclic loading. The applied loading spectrum included underload marker cycles so that crack growth history could be reconstructed from post-test fractographic examinations. Crack formation and growth were monitored via nondestructive and high-magnification visual inspections. Strain gage measurements recorded during the strain survey tests indicated that the inner surface of the skin along the upper rivet row of the lap joint experienced high tensile stresses due to local bending. During the fatigue loading, cracks were detected by eddy-current inspections at multiple rivet holes along the upper rivet row. Through-thickness cracks were detected visually after about 80% of the fatigue life. Once MSD cracks from two adjacent rivet holes linked up, there was a quick deterioration in the structural integrity of the lap joint. The linkup resulted in a 2.87" (72.9-mm) lead fatigue crack that rapidly propagated across 12 rivet holes and crossed over into the next skin bay, at which stage the fatigue test was terminated. A post-fatigue residual strength test was then conducted by loading the panel quasi-statically up to final failure. The panel failed catastrophically when the crack extended instantaneously across three additional bays. Post-test fractographic examinations of the fracture surfaces in the lap joint of the fuselage panel were conducted to characterize subsurface crack initiation and growth. Results showed evidence of fretting damage and crack initiation at multiple locations near the rivet holes along the faying surface of the skin. The subsurface cracks grew significantly along the faying surface before reaching the outer surface of the skin, forming elliptical crack fronts. A finite element model (FE) of the panel was constructed and geometrically-nonlinear analyses conducted to determine strain distribution under the applied loads. The FE model was validated by comparing the analysis results with the strain gage measurements recorded during the strain survey test. The validated FE model was then used to determine stress-intensity factors at the crack tips. Stress-intensity factor results indicated that crack growth in the lap joint was under mixed-mode; however, the opening-mode stress intensity factor was dominant. The stress-intensity factors computed from the FE analysis were used to conduct cycle-by-cycle integration of fatigue crack growth. In the cycle-by-cycle integration, the NASGRO crack growth model was used with its parameters selected to account for the effects of plasticity-induced crack closure and the test environment on crack growth rate. Fatigue crack growth predictions from cycle-by-cycle computation were in good agreement with the experimental measured crack growth data. The results of the study provide key insights into the natural development and growth of MSD cracks in the pristine lap joint. The data provided by the study represent a valuable source for the evaluation and validation of analytical methodologies used for predicting MSD crack initiation and growth.
The reduction in fatigue crack growth resistance of dentin with depth.
Ivancik, J; Neerchal, N K; Romberg, E; Arola, D
2011-08-01
The fatigue crack growth resistance of dentin was characterized as a function of depth from the dentino-enamel junction. Compact tension (CT) specimens were prepared from the crowns of third molars in the deep, middle, and peripheral dentin. The microstructure was quantified in terms of the average tubule dimensions and density. Fatigue cracks were grown in-plane with the tubules and characterized in terms of the initiation and growth responses. Deep dentin exhibited the lowest resistance to the initiation of fatigue crack growth, as indicated by the stress intensity threshold (ΔK(th) ≈ 0.8 MPa•m(0.5)) and the highest incremental fatigue crack growth rate (over 1000 times that in peripheral dentin). Cracks in deep dentin underwent incremental extension under cyclic stresses that were 40% lower than those required in peripheral dentin. The average fatigue crack growth rates increased significantly with tubule density, indicating the importance of microstructure on the potential for tooth fracture. Molars with deep restorations are more likely to suffer from the cracked-tooth syndrome, because of the lower fatigue crack growth resistance of deep dentin.
NASA Astrophysics Data System (ADS)
Asadizadeh, Mostafa; Moosavi, Mahdi; Hossaini, Mohammad Farouq; Masoumi, Hossein
2018-02-01
In this paper, a number of artificial rock specimens with two parallel (stepped and coplanar) non-persistent joints were subjected to direct shearing. The effects of bridge length ( L), bridge angle ( γ), joint roughness coefficient (JRC) and normal stress ( σ n) on shear strength and cracking process of non-persistent jointed rock were studied extensively. The experimental program was designed based on Taguchi method, and the validity of the resulting data was assessed using analysis of variance. The results revealed that σ n and γ have the maximum and minimum effects on shear strength, respectively. Also, increase in L from 10 to 60 mm led to decrease in shear strength where high level of JRC profile and σ n led to the initiation of tensile cracks due to asperity interlocking. Such tensile cracks are known as "interlocking cracks" which normally initiate from the asperity and then propagate toward the specimen boundaries. Finally, the cracking process of specimens was classified into three categories, namely tensile cracking, shear cracking and combination of tension and shear or mixed mode tensile-shear cracking.
Telephone counseling for young Brazilian cocaine and/or crack users. Who are these users?
Bisch, Nadia K; Moreira, Taís de C; Benchaya, Mariana C; Pozza, Dan R; Freitas, Larissa C N de; Farias, Michelle S; Ferigolo, Maristela; Barros, Helena M T
2018-03-09
To describe the users' drug abuse characteristics, problematic behaviors associated with addiction, the motivation of teenagers and young adults to quit cocaine and/or crack abuse, and then compare these characteristics. A cross-section study was conducted with 2390 cocaine/crack users (teenagers from 14 to 19 years of age, and young adults from 20 to 24 years of age); 1471 were young adults and 919 were teenagers who had called a phone counseling service between January 2006 and December 2013. Semi-structured interviews were performed via phone calls. The questionnaires included sociodemographic information; assessment of the characteristics of cocaine/crack abuse; assessment of the problematic behaviors; also, the Contemplation Ladder was used to evaluate the stages of readiness to cease substance abuse. Participants reported using cocaine (48.2%), crack and other smoking forms (36.7%) and combined consumption of both drugs (15%). Young adults were more prone to using crack or crack associated with cocaine (OR=1.9; CI 95%=1.05-1.57) and they were exposed to substance abuse for longer than two years (OR=3.45; CI 95%=2.84-4.18), when compared to teenagers. On the other hand, they showed higher readiness to quit. Data shows important differences in drug abuse characteristics, problematic behaviors and motivation to cease substance abuse between teenager and young adult cocaine and/or crack users. Behaviors displayed by young adults involve greater physical, mental and social health damages. These findings reinforce the importance of public policy to act on prevention and promoting health, to increase protection factors among teenagers and lower risks and losses during adult life. Copyright © 2018. Published by Elsevier Editora Ltda.
NASA Astrophysics Data System (ADS)
Chan, Kwai S.; Koike, Marie; Mason, Robert L.; Okabe, Toru
2013-02-01
Additive layer deposition techniques such as electron beam melting (EBM) and laser beam melting (LBM) have been utilized to fabricate rectangular plates of Ti-6Al-4V with extra low interstitial (ELI) contents. The layer-by-layer deposition techniques resulted in plates that have different surface finishes which can impact significantly on the fatigue life by providing potential sites for fatigue cracks to initiate. The fatigue life of Ti-6Al-4V ELI alloys fabricated by EBM and LBM deposition techniques was investigated by three-point testing of rectangular beams of as-fabricated and electro-discharge machined surfaces under stress-controlled conditions at 10 Hz until complete fracture. Fatigue life tests were also performed on rolled plates of Ti-6Al-4V ELI, regular Ti-6Al-4V, and CP Ti as controls. Fatigue surfaces were characterized by scanning electron microscopy to identify the crack initiation site in the various types of specimen surfaces. The fatigue life data were analyzed statistically using both analysis of variance techniques and the Kaplan-Meier survival analysis method with the Gehan-Breslow test. The results indicate that the LBM Ti-6Al-4V ELI material exhibits a longer fatigue life than the EBM counterpart and CP Ti, but a shorter fatigue life compared to rolled Ti-6Al-4V ELI. The difference in the fatigue life behavior may be largely attributed to the presence of rough surface features that act as fatigue crack initiation sites in the EBM material.
DISFRAC Version 2.0 Users Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Kristine B; Erickson, Marjorie A; Williams, Paul T
2013-01-01
DISFRAC is the implementation of a theoretical, multi-scale model for the prediction of fracture toughness in the ductile-to-brittle transition temperature (DBTT) region of ferritic steels. Empirically-derived models of the DBTT region cannot legitimately be extrapolated beyond the range of existing fracture toughness data. DISFRAC requires only tensile properties and microstructural information as input, and thus allows for a wider range of application than empirical, toughness data dependent models. DISFRAC is also a framework for investigating the roles of various microstructural and macroscopic effects on fracture behavior, including carbide particle sizes, grain sizes, strain rates, and material condition. DISFRAC s novelmore » approach is to assess the interaction effects of macroscopic conditions (geometry, loading conditions) with variable microstructural features on cleavage crack initiation and propagation. The model addresses all stages of the fracture process, from microcrack initiation within a carbide particle, to propagation of that crack through grains and across grain boundaries, finally to catastrophic failure of the material. The DISFRAC procedure repeatedly performs a deterministic analysis of microcrack initiation and propagation within a macroscopic crack plastic zone to calculate a critical fracture toughness value for each microstructural geometry set. The current version of DISFRAC, version 2.0, is a research code for developing and testing models related to cleavage fracture and transition toughness. The various models and computations have evolved significantly over the course of development and are expected to continue to evolve as testing and data collection continue. This document serves as a guide to the usage and theoretical foundations of DISFRAC v2.0. Feedback is welcomed and encouraged.« less
NASA Technical Reports Server (NTRS)
Cornell, Stephen R.; Leser, William P.; Hochhalter, Jacob D.; Newman, John A.; Hartl, Darren J.
2014-01-01
A method for detecting fatigue cracks has been explored at NASA Langley Research Center. Microscopic NiTi shape memory alloy (sensory) particles were embedded in a 7050 aluminum alloy matrix to detect the presence of fatigue cracks. Cracks exhibit an elevated stress field near their tip inducing a martensitic phase transformation in nearby sensory particles. Detectable levels of acoustic energy are emitted upon particle phase transformation such that the existence and location of fatigue cracks can be detected. To test this concept, a fatigue crack was grown in a mode-I single-edge notch fatigue crack growth specimen containing sensory particles. As the crack approached the sensory particles, measurements of particle strain, matrix-particle debonding, and phase transformation behavior of the sensory particles were performed. Full-field deformation measurements were performed using a novel multi-scale optical 3D digital image correlation (DIC) system. This information will be used in a finite element-based study to determine optimal sensory material behavior and density.
NASA Astrophysics Data System (ADS)
Jezequel, T.; Auzoux, Q.; Le Boulch, D.; Bono, M.; Andrieu, E.; Blanc, C.; Chabretou, V.; Mozzani, N.; Rautenberg, M.
2018-02-01
During accidental power transient conditions with Pellet Cladding Interaction (PCI), the synergistic effect of the stress and strain imposed on the cladding by thermal expansion of the fuel, and corrosion by iodine released as a fission product, may lead to cladding failure by Stress Corrosion Cracking (SCC). In this study, internal pressure tests were conducted on unirradiated cold-worked stress-relieved Zircaloy-4 cladding tubes in an iodine vapor environment. The goal was to investigate the influence of loading type (constant pressure tests, constant circumferential strain rate tests, or constant circumferential strain tests) and test temperature (320, 350, or 380 °C) on iodine-induced stress corrosion cracking (I-SCC). The experimental results obtained with different loading types were consistent with each other. The apparent threshold hoop stress for I-SCC was found to be independent of the test temperature. SEM micrographs of the tested samples showed many pits distributed over the inner surface, which tended to coalesce into large pits in which a microcrack could initiate. A model for the time-to-failure of a cladding tube was developed using finite element simulations of the viscoplastic mechanical behavior of the material and a modified Kachanov's damage growth model. The times-to-failure predicted by this model are consistent with the experimental data.
Fatigue Crack Initiation Properties of Rail Steels
DOT National Transportation Integrated Search
1982-01-01
Fatigue crack initiation properties of rail-steels were determined experimentally. One new and four used rail steels were investigated. The effects of the following parameters were studied: stress ratio (ratio of minimum to maximum stress in a cycle)...
Fatigue crack initiation and microcrack propagation in X7091 type aluminum P/M alloys
NASA Astrophysics Data System (ADS)
Hirose, S.; Fine, M. E.
1983-06-01
Fatigu crack initiation in extruded X7091 RSP-P/M aluminum type alloys o°Curs at grain boundaries at both low and high stresses. By a process of elimination this grain boundary embrittlement was attributed to Al2O3 particles formed mainly during atomization and segregated to some grain boundaries. It is not due to the small grain size, to Co2Al9, to η precipitates at grain boundaries, nor to a precipitate free zone. Thermomechanical processing after extrusion of X7091 with 0.8 pct Co was done by Alcoa to produce large recrystallized grains. This resulted in initiation of fatigue cracks at slip bands, and the resistance to initiation of fatigue cracks at low stresses was much greater. Microcrack growth is, however, much faster in the thermomechanically treated samples, as well as in ingot alloys, than in extruded and aged X7091.
NASA Astrophysics Data System (ADS)
Ning, Jianguo; Wang, Jun; Jiang, Jinquan; Hu, Shanchao; Jiang, Lishuai; Liu, Xuesheng
2018-01-01
A new energy-dissipation method to identify crack initiation and propagation thresholds is introduced. Conventional and cyclic loading-unloading triaxial compression tests and acoustic emission experiments were performed for coal specimens from a 980-m deep mine with different confining pressures of 10, 15, 20, 25, 30, and 35 MPa. Stress-strain relations, acoustic emission patterns, and energy evolution characteristics obtained during the triaxial compression tests were analyzed. The majority of the input energy stored in the coal specimens took the form of elastic strain energy. After the elastic-deformation stage, part of the input energy was consumed by stable crack propagation. However, with an increase in stress levels, unstable crack propagation commenced, and the energy dissipation and coal damage were accelerated. The variation in the pre-peak energy-dissipation ratio was consistent with the coal damage. This new method demonstrates that the crack initiation threshold was proportional to the peak stress ( σ p) for ratios that ranged from 0.4351 to 0.4753 σ p, and the crack damage threshold ranged from 0.8087 to 0.8677 σ p.
Initiation and growth kinetics of solidification cracking during welding of steel
Aucott, L.; Huang, D.; Dong, H. B.; Wen, S. W.; Marsden, J. A.; Rack, A.; Cocks, A. C. F.
2017-01-01
Solidification cracking is a key phenomenon associated with defect formation during welding. To elucidate the failure mechanisms, solidification cracking during arc welding of steel are investigated in situ with high-speed, high-energy synchrotron X-ray radiography. Damage initiates at relatively low true strain of about 3.1% in the form of micro-cavities at the weld subsurface where peak volumetric strain and triaxiality are localised. The initial micro-cavities, with sizes from 10 × 10−6 m to 27 × 10−6 m, are mostly formed in isolation as revealed by synchrotron X-ray micro-tomography. The growth of micro-cavities is driven by increasing strain induced to the solidifying steel. Cavities grow through coalescence of micro-cavities to form micro-cracks first and then through the propagation of micro-cracks. Cracks propagate from the core of the weld towards the free surface along the solidifying grain boundaries at a speed of 2–3 × 10−3 m s−1. PMID:28074852
NASA Astrophysics Data System (ADS)
Prikryl, Richard; Lokajíček, Tomáš
2017-04-01
According to previous studies, evaluation of stress-strain behaviour (in uniaxial compression) of various rocks appears to be effective tool allowing for prediction of resistance of natural stone to some physical weathering processes. Precise determination of critical thresholds, specifically of 'crack initiation' and 'crack damage' is fundamental issue in this approach. In contrast to 'crack damage stress/strain threshold', which can be easily read from deflection point on volumetric curve, detection of 'crack initiation' is much more difficult. Besides previously proposed mathematical processing of axial stress-strain curve, recording of acoustic emission (AE) data and their processing provide direct measure of various stress/strain thresholds, specifically of 'crack initiation'. This specific parameter is required during successive computation of energetic parameters (mechanical work), that can be stored by a material without formation of new defects (microcracks) due to acting stress. Based on our experimental data, this mechanical work seems to be proportional to the resistance of a material to formation of mode I (tensile) cracks that are responsible for destruction of subsurface below exposed faces of natural stone.
NASA Technical Reports Server (NTRS)
Ernst, Hugo A. (Editor); Saxena, Ashok (Editor); Mcdowell, David L. (Editor); Atluri, Satya N. (Editor); Newman, James C., Jr. (Editor); Raju, Ivatury S. (Editor); Epstein, Jonathan S. (Editor)
1992-01-01
Current research on fracture mechanics is reviewed, focusing on ductile fracture; high-temperature and time-dependent fracture; 3D problems; interface fracture; microstructural aspects of fatigue and fracture; and fracture predictions and applications. Particular attention is given to the determination and comparison of crack resistance curves from wide plates and fracture mechanics specimens; a relationship between R-curves in contained and uncontained yield; the creep crack growth behavior of titanium alloy Ti-6242; a crack growth response in three heat resistant materials at elevated temperature; a crack-surface-contact model for determining effective-stress-intensity factors; interfacial dislocations in anisotropic bimaterials; an effect of intergranular crack branching on fracture toughness evaluation; the fracture toughness behavior of exservice chromium-molybdenum steels; the application of fracture mechanics to assess the significance of proof loading; and a load ratio method for estimating crack extension.
2011-05-01
wafer pair through further processing. Initial cracking issues were identified due to liquid penetration between the wafers during wet processing...free-standing MCD films we needed to address crack formation in the diamond and the Si substrate, which we observed during our initial growths due to...NCD film grown using the heated stage, and finally the thick MCD film grown on the cooled stage. We also found that the control of cracking in the
Hot-Spot Fatigue and Impact Damage Detection on a Helicopter Tailboom
2011-09-01
other 14 PZT disks were used as sensors. Among the 28 PZT disks, 16 PZT disks were placed in the two fatigue hot-spot areas to detect cracks initiated...more efficient and effective airframe maintenance, fatigue cracking and impact damage detection technologies were developed and demonstrated on a...SHM system in successfully monitoring fatigue cracks initiated from cyclical loading conditions; detecting, locating and quantifying ballistic
Singh, S. S.; Williams, J. J.; Lin, M. F.; ...
2014-05-14
In situ X-ray synchrotron tomography was used to investigate the stress corrosion cracking behavior of under-aged Al–Zn–Mg–Cu alloy in moisture. The discontinuous surface cracks (crack jumps) mentioned in the literature are actually a single continuous and tortuous crack when observed in three dimension (3D). Contrary to 2D measurements made at the surface which suggest non-uniform crack growth rates, 3D measurements of the crack length led to a much more accurate measurement of crack growth rates.
Fatigue analysis of multiple site damage at a row of holes in a wide panel
NASA Technical Reports Server (NTRS)
Buhler, Kimberley; Grandt, Alten F., Jr.; Moukawsher, E. J.
1994-01-01
This paper is concerned with predicting the fatigue life of unstiffened panels which contain multiple site damage (MSD). The initial damage consists of through-the-thickness cracks emanating from a row of holes in the center of a finite width panel. A fracture mechanics analysis has been developed to predict the growth, interaction, and coalescence of the various cracks which propagate in the panel. A strain-life analysis incorporating Neuber's rule for notches, and Miner's rule for cumulative damage, is also employed to predict crack initiation for holes without initial cracking. This analysis is compared with the results of a series of fatigue tests on 2024-T3 aluminum panels, and is shown to do an excellent job of predicting the influence of MSD on the fatigue life of nine inch wide specimens. Having established confidence in the ability to analyze the influence of MSD on fatigue life, a parametric study is conducted to examine the influence of various MSD scenarios in an unstiffened panel. The numerical study considered 135 cases in all, with the parametric variables being the applied cyclic stress level, the lead crack geometry, and the number and location of MSD cracks. The numerical analysis provides details for the manner in which lead cracks and MSD cracks grow and coalesce leading to final failure. The results indicate that MSD located adjacent to lead cracks is the most damaging configuration, while for cases without lead cracks, MSD clusters which are not separated by uncracked holes are most damaging.
Distributed deformation ahead of the Cocos-Nazca Rift at the Galapagos triple junction
NASA Astrophysics Data System (ADS)
Smith, Deborah K.; Schouten, Hans; Zhu, Wen-lu; Montési, Laurent G. J.; Cann, Johnson R.
2011-11-01
The Galapagos triple junction is not a simple ridge-ridge-ridge (RRR) triple junction. The Cocos-Nazca Rift (C-N Rift) tip does not meet the East Pacific Rise (EPR). Instead, two secondary rifts form the link: Incipient Rift at 2°40‧N and Dietz Deep volcanic ridge, the southern boundary of the Galapagos microplate (GMP), at 1°10‧N. Recently collected bathymetry data are used to investigate the regional tectonics prior to the establishment of the GMP (∼1.5 Ma). South of C-N Rift a band of northeast-trending cracks cuts EPR-generated abyssal hills. It is a mirror image of a band of cracks previously identified north of C-N Rift on the same age crust. In both areas, the western ends of the cracks terminate against intact abyssal hills suggesting that each crack initiated at the EPR spreading center and cut eastward into pre-existing topography. Each crack formed a short-lived triple junction until it was abandoned and a new crack and triple junction initiated nearby. Between 2.5 and 1.5 Ma, the pattern of cracking is remarkably symmetric about C-N Rift providing support for a crack interaction model in which crack initiation at the EPR axis is controlled by stresses associated with the tip of the westward-propagating C-N Rift. The model also shows that offsets of the EPR axis may explain times when cracking is not symmetric. South of C-N Rift, cracks are observed on seafloor as old as 10.5 Ma suggesting that this triple junction has not been a simple RRR triple junction during that time.
Decrepitation and crack healing of fluid inclusions in San Carlos olivine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wanamaker, B.J.; Wong, Tengfong; Evans, B.
1990-09-10
Fluid inclusions break, or decrepitate, when the fluid pressure exceeds the least principal lithostatic stress by a critical amount. After decrepitation, excess fluid pressure is relaxed, resulting in crack arrest; subsequently, crack healing may occur. The authors developed a linear elastic fracture mechanics model to analyze new data on decrepitation and crack arrest in San Carlos Olivine, compared the model with previous fluid inclusion investigations, and used it to interpret some natural decrepitation microstructures. The common experimental observation that smaller inclusions may sustain higher internal fluid pressures without decrepitating may be rationalized by assuming that flaws associated with the inclusionmore » scale with the inclusion size. According to the model, the length of the crack formed by decrepitation depends on the lithostatic pressure at the initiation of cracking, the initial sizes of the flaw and the inclusion, and the critical stress intensity factor. Further experiments show that microcracks in San Carlos olivine heal within several days at 1,280 to 1,400{degree}C; healing rates depend on the crack geometry, temperature, and chemistry of the buffering gas. The regression distance of the crack tip during healing can be related to time through a power law with exponent n = 0.6. Chemical changes which become apparent after extremely long heat-treatments significantly affect the healing rates. Many of the inclusions in the San Carlos xenoliths stretched, decrepitated, and finally healed during uplift. The crack arrest model indicates that completely healed cracks had an initial fluid pressure of the order of 1 GPa. Using the crack arrest model and the healing kinetics, they estimate the ascent rate of these xenoliths to be between 0.001 and 0.1 m/s.« less
2016-08-18
structure [24]. 4 Researchers have already started studying crack propagation and the affect of environments on the crack growth behavior [24]. In this...saltwater environment have been started to be conducted [24, 25]. Many of these studies have focused on positive biaxial loading cases . No conclusive...between positive biaxial loading cases and negative biaxial loading cases having the same experimental setup, to study the effect of negative
Time-dependent crack growth behavior of alloy 617 and alloy 230 at elevated temperatures
NASA Astrophysics Data System (ADS)
Roy, Shawoon Kumar
2011-12-01
Two Ni-base solid-solution-strengthened superalloys: INCONEL 617 and HAYNES 230 were studied to check sustained loading crack growth (SLCG) behavior at elevated temperatures appropriate for Next Generation Nuclear Plant (NGNP) applictaions with constant stress intensity factor (Kmax= 27.75 MPa✓m) in air. The results indicate a time-dependent rate controlling process which can be characterized by a linear elastic fracture mechanics (LEFM) parameter -- stress intensity factor (K). At elevated temperatures, the crack growth mechanism was best described using a damage zone concept. Based on results and study, SAGBOE (stress accelerated grain boundary oxidation embrittlement) is considered the primary reason for time-dependent SLCG. A thermodynamic equation was considered to correlate all the SLCG results to determine the thermal activation energy in the process. A phenomenological model based on a time-dependent factor was developed considering the previous researcher's time-dependent fatigue crack propagation (FCP) results and current SLCG results to relate cycle-dependent and time-dependent FCP for both alloys. Further study includes hold time (3+300s) fatigue testing and no hold (1s) fatigue testing with various load ratios (R) at 700°C with a Kmax of 27.75 MPa✓m. Study results suggest an interesting point: crack growth behavior is significantly affected with the change in R value in cycle-dependent process whereas in time-dependent process, change in R does not have any significant effect. Fractography study showed intergranular cracking mode for all time-dependent processes and transgranular cracking mode for cycle-dependent processes. In Alloy 230, SEM images display intergranular cracking with carbide particles, dense oxides and dimple mixed secondary cracks for time-dependent 3+300s FCP and SLCG test. In all cases, Alloy 230 shows better crack growth resistance compared to Alloy 617.
Fatigue Strength Prediction for Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting
NASA Astrophysics Data System (ADS)
Leuders, Stefan; Vollmer, Malte; Brenne, Florian; Tröster, Thomas; Niendorf, Thomas
2015-09-01
Selective laser melting (SLM), as a metalworking additive manufacturing technique, received considerable attention from industry and academia due to unprecedented design freedom and overall balanced material properties. However, the fatigue behavior of SLM-processed materials often suffers from local imperfections such as micron-sized pores. In order to enable robust designs of SLM components used in an industrial environment, further research regarding process-induced porosity and its impact on the fatigue behavior is required. Hence, this study aims at a transfer of fatigue prediction models, established for conventional process-routes, to the field of SLM materials. By using high-resolution computed tomography, load increase tests, and electron microscopy, it is shown that pore-based fatigue strength predictions for a titanium alloy TiAl6V4 have become feasible. However, the obtained accuracies are subjected to scatter, which is probably caused by the high defect density even present in SLM materials manufactured following optimized processing routes. Based on thorough examination of crack surfaces and crack initiation sites, respectively, implications for optimization of prediction accuracy of the models in focus are deduced.
Damage prediction of 7025 aluminum alloy during equal-channel angular pressing
NASA Astrophysics Data System (ADS)
Ebrahimi, M.; Attarilar, Sh.; Gode, C.; Djavanroodi, F.
2014-10-01
Equal-channel angular pressing (ECAP) is a prominent technique that imposes severe plastic deformation into materials to enhance their mechanical properties. In this research, experimental and numerical approaches were utilized to investigate the mechanical properties, strain behavior, and damage prediction of ECAPed 7025 aluminum alloy in various conditions, such as die channel angle, outer corner angle, and friction coefficient. Experimental results indicate that, after the first pass, the yield strength, ultimate tensile strength, and hardness magnitude are improved by approximately 95%, 28%, and 48.5%, respectively, compared with the annealed state, mainly due to grain refinement during the deformation. Finite element analysis shows that the influence of die channel angle is more important than that of outer corner angle or friction coefficient on both the strain behavior and the damage prediction. Also, surface cracks are the main cause of damage during the ECAP process for every die channel angle except for 90°; however, the cracks initiated from the neighborhood of the central regions are the possible cause of damage in the ECAPed sample with the die channel angle of 90°.
Fatigue behavior of 5Ni-Cr-Mo-V steel weldments containing fabrication discontinuities
NASA Technical Reports Server (NTRS)
Gill, Steven J.; Hauser, Joseph A., II; Crooker, Thomas W.; Kruse, Brian J.; Menon, Ravi
1988-01-01
The applicability of linear elastic fracture mechanics to characterize the fatigue behavior of high-strength steel weldments containing lack-of-penetration (LOP) and slag/lack-of-fusion (S/LOF) discontinuities is explored. Full penetration, double-V butt welds with reinforcements removed were tested under zero-to-tension axial loading. Various filler metals and welding techniques were used. Both sound welds and welds containing discontinuities were cycled to failure. Where possible, cycles to crack initiation were estimated by strain gage measurements. The fracture mechanics approach was successful in correlating the fatigue lifetimes of specimens containing single LOP discontinuities of varying size. However, the fatigue behavior of specimens containing multiple S/LOF discontinuities proved to be much more complex and difficult to analyze.
NASA Astrophysics Data System (ADS)
Picu, R. C.; Pal, A.; Lupulescu, M. V.
2016-04-01
We study the mechanical behavior of two-dimensional, stochastically microcracked continua in the range of crack densities close to, and above, the transport percolation threshold. We show that these materials retain stiffness up to crack densities much larger than the transport percolation threshold due to topological interlocking of sample subdomains. Even with a linear constitutive law for the continuum, the mechanical behavior becomes nonlinear in the range of crack densities bounded by the transport and stiffness percolation thresholds. The effect is due to the fractal nature of the fragmentation process and is not linked to the roughness of individual cracks.
NASA Astrophysics Data System (ADS)
Honarmand, M.; Moradi, M.
2018-06-01
In this paper, by using scaled boundary finite element method (SBFM), a perfect nanographene sheet or cracked ones were simulated for the first time. In this analysis, the atomic carbon bonds were modeled by simple bar elements with circular cross-sections. Despite of molecular dynamics (MD), the results obtained from SBFM analysis are quite acceptable for zero degree cracks. For all angles except zero, Griffith criterion can be applied for the relation between critical stress and crack length. Finally, despite the simplifications used in nanographene analysis, obtained results can simulate the mechanical behavior with high accuracy compared with experimental and MD ones.
NASA Astrophysics Data System (ADS)
Taillebot, V.; Lexcellent, C.; Vacher, P.
2012-03-01
The thermomechanical behavior of shape memory alloys is now well mastered. However, a hindrance to their sustainable use is the lack of knowledge of their fracture behavior. With the aim of filling this partial gap, fracture tests on edge-cracked specimens in NiTi have been made. Particular attention was paid to determine the phase transformation zones in the vicinity of the crack tip. In one hand, experimental kinematic fields are observed using digital image correlation showing strain localization around the crack tip. In the other hand, an analytical prediction, based on a modified equivalent stress criterion and taking into account the asymmetric behavior of shape memory alloys in tension-compression, provides shape and size of transformation outset zones. Experimental results are relatively in agreement with our analytical modeling.
Analysis of small crack behavior for airframe applications
NASA Technical Reports Server (NTRS)
Mcclung, R. C.; Chan, K. S.; Hudak, S. J., Jr.; Davidson, D. L.
1994-01-01
The small fatigue crack problem is critically reviewed from the perspective of airframe applications. Different types of small cracks-microstructural, mechanical, and chemical-are carefully defined and relevant mechanisms identified. Appropriate analysis techniques, including both rigorous scientific and practical engineering treatments, are briefly described. Important materials data issues are addressed, including increased scatter in small crack data and recommended small crack test methods. Key problems requiring further study are highlighted.
Integrated Design Software Predicts the Creep Life of Monolithic Ceramic Components
NASA Technical Reports Server (NTRS)
1996-01-01
Significant improvements in propulsion and power generation for the next century will require revolutionary advances in high-temperature materials and structural design. Advanced ceramics are candidate materials for these elevated-temperature applications. As design protocols emerge for these material systems, designers must be aware of several innate features, including the degrading ability of ceramics to carry sustained load. Usually, time-dependent failure in ceramics occurs because of two different, delayedfailure mechanisms: slow crack growth and creep rupture. Slow crack growth initiates at a preexisting flaw and continues until a critical crack length is reached, causing catastrophic failure. Creep rupture, on the other hand, occurs because of bulk damage in the material: void nucleation and coalescence that eventually leads to macrocracks which then propagate to failure. Successful application of advanced ceramics depends on proper characterization of material behavior and the use of an appropriate design methodology. The life of a ceramic component can be predicted with the NASA Lewis Research Center's Ceramics Analysis and Reliability Evaluation of Structures (CARES) integrated design programs. CARES/CREEP determines the expected life of a component under creep conditions, and CARES/LIFE predicts the component life due to fast fracture and subcritical crack growth. The previously developed CARES/LIFE program has been used in numerous industrial and Government applications.
NASA Astrophysics Data System (ADS)
Sharma, Mala M.; Ziemian, Constance W.
2008-12-01
The stress corrosion cracking (SCC) behavior of two developmental nanocrystalline 5083 alloys with varied composition and processing conditions was studied. The results were compared to a commercial aluminum AA 5083 (H111) alloy. The pitting densities, size and depths, and residual tensile strengths were measured after alternate immersion in artificial seawater and atmospheric exposure under different loading conditions. Optical and scanning electron microscopy (SEM) with EDX was used to analyze the fracture surfaces of failed specimen after removal at selected intervals and tensile testing. One of the nanostructured Al-Mg alloys exhibited significantly superior pitting resistance when compared to conventional microstructured AA 5083. Under conditions where pitting corrosion showed up as local tunnels toward phase inclusions, transgranular cracking was observed, whereas under conditions when pitting corrosion evolved along grain boundaries, intergranular cracking inside the pit was observed. Pit initiation resistance of the nano alloys appears to be better than that of the conventional alloys. However, long-term pit propagation is a concern and warrants further study. The objective of this investigation was to obtain information regarding the role that ultra-fine microstructures play in their degradation in marine environments and to provide insight into the corrosion mechanisms and damage processes of these alloys.
NASA Astrophysics Data System (ADS)
Yang, Bing; Liao, Zhen; Qin, Yahang; Wu, Yayun; Liang, Sai; Xiao, Shoune; Yang, Guangwu; Zhu, Tao
2017-05-01
To describe the complicated nonlinear process of the fatigue short crack evolution behavior, especially the change of the crack propagation rate, two different calculation methods are applied. The dominant effective short fatigue crack propagation rates are calculated based on the replica fatigue short crack test with nine smooth funnel-shaped specimens and the observation of the replica films according to the effective short fatigue cracks principle. Due to the fast decay and the nonlinear approximation ability of wavelet analysis, the self-learning ability of neural network, and the macroscopic searching and global optimization of genetic algorithm, the genetic wavelet neural network can reflect the implicit complex nonlinear relationship when considering multi-influencing factors synthetically. The effective short fatigue cracks and the dominant effective short fatigue crack are simulated and compared by the Genetic Wavelet Neural Network. The simulation results show that Genetic Wavelet Neural Network is a rational and available method for studying the evolution behavior of fatigue short crack propagation rate. Meanwhile, a traditional data fitting method for a short crack growth model is also utilized for fitting the test data. It is reasonable and applicable for predicting the growth rate. Finally, the reason for the difference between the prediction effects by these two methods is interpreted.
A fracture criterion for widespread cracking in thin-sheet aluminum alloys
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Dawicke, D. S.; Sutton, M. A.; Bigelow, C. A.
1993-01-01
An elastic-plastic finite-element analysis was used with a critical crack-tip-opening angle (CTOA) fracture criterion to model stable crack growth in thin-sheet 2024-T3 aluminum alloy panels with single and multiple-site damage (MSD) cracks. Comparisons were made between critical angles determined from the analyses and those measured with photographic methods. Calculated load against crack extension and load against crack-tip displacement on single crack specimens agreed well with test data even for large-scale plastic deformations. The analyses were also able to predict the stable tearing behavior of large lead cracks in the presence of stably tearing MSD cracks. Small MSD cracks significantly reduced the residual strength for large lead cracks.
Crack propagation life of detail fractures in rails
DOT National Transportation Integrated Search
1988-10-01
The results of a comprehensive study of the crack propagation behavior of detail fractures in railroad rails are presented. The study includes full-scale crack growth experiments in a test track under simulated heavy freight train service, similar fi...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gazda, J.; Meshii, M.; Tsai, H.
Specimens of V-(4-5)Cr-(4-5)Ti alloys were irradiated to {approx}18 dpa at 320 C in the Fusion-1 capsule inserted into the BOR-60 reactor. Tensile tests at 23 C indicated dramatic yield strength increase (>300%), lack of work hardening, and minimal (<1%) total elongations. SEM analysis of fracture and side surfaces were conducted to determine reduction in are and the mode of fracture. The reduction of area was negligible. All but one specimen failed by a combination of ductile shear deformation and cleavage crack growth. Transgranular cleavage cracks were initiated by stress concentrations at the tips of the shear bands. In side-view observations,more » evidence was found of slip bands typically associated with dislocation channeling. No differences due to pre-irradiation heat treatment and heat-to-heat composition variations were detected. The only deviation from this behavior was found in V-4Cr-4Ti-B alloy, which failed in the grip portion by complete cleavage cracking.« less
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Fox, Dennis S.; Miller, Robert A.
2002-01-01
The development of the pulse detonation engine (PDE) requires robust design of the engine components that are capable of enduring harsh detonation environments. In this study, a high cycle thermal fatigue test rig was developed for evaluating candidate PDE combustor materials using a CO2 laser. The high cycle thermal fatigue behavior of Haynes 188 alloy was investigated under an enhanced pulsed laser test condition of 30 Hz cycle frequency (33 ms pulse period, and 10 ms pulse width including 0.2 ms pulse spike). The temperature swings generated by the laser pulses near the specimen surface were characterized by using one-dimensional finite difference modeling combined with experimental measurements. The temperature swings resulted in significant thermal cyclic stresses in the oxide scale/alloy system, and induced extensive surface cracking. Striations of various sizes were observed at the cracked surfaces and oxide/alloy interfaces under the cyclic stresses. The test results indicated that oxidation and creep-enhanced fatigue at the oxide scale/alloy interface was an important mechanism for the surface crack initiation and propagation under the simulated PDE condition.
Acoustic Emission Parameters of Three Gorges Sandstone during Shear Failure
NASA Astrophysics Data System (ADS)
Xu, Jiang; Liu, Yixin; Peng, Shoujian
2016-12-01
In this paper, an experimental investigation of sandstone samples from the Three Gorges during shear failure was conducted using acoustic emission (AE) and direct shear tests. The AE count rate, cumulative AE count, AE energy, and amplitude of the sandstone samples were determined. Then, the relationships among the AE signals and shearing behaviors of the samples were analyzed in order to detect micro-crack initiation and propagation and reflect shear failure. The results indicated that both the shear strength and displacement exhibited a logarithmic relationship with the displacement rate at peak levels of stress. In addition, the various characteristics of the AE signals were apparent in various situations. The AE signals corresponded with the shear stress under different displacement rates. As the displacement rate increased, the amount of accumulative damage to each specimen decreased, while the AE energy peaked earlier and more significantly. The cumulative AE count primarily increased during the post-peak period. Furthermore, the AE count rate and amplitude exhibited two peaks during the peak shear stress period due to crack coalescence and rock bridge breakage. These isolated cracks later formed larger fractures and eventually caused ruptures.
Structural Performance of Inconel 625 Superalloy Brazed Joints
NASA Astrophysics Data System (ADS)
Chen, Jianqiang; Demers, Vincent; Cadotte, Eve-Line; Turner, Daniel; Bocher, Philippe
2017-02-01
The purpose of this work was to investigate tensile and fatigue behaviors of Inconel 625 superalloy brazed joints after transient liquid-phase bonding process. Brazing was performed in a vacuum furnace using a nickel-based filler metal in a form of paste to join wrought Inconel 625 plates. Mechanical tests were carried out on single-lap joints under various lap distance-to-thickness ratios. The fatigue crack initiation and crack growth modes were examined via metallographic analysis, and the effect of local stress on fatigue life was assessed by finite element simulations. The fatigue results show that fatigue strength and endurance limit increase with overlap distance, leading to a relatively large scatter of results. Fatigue cracks nucleated in the high-stressed region of the weld fillets from brittle eutectic phases or from internal brazing cavities. The present work proposes to rationalize the results by using the local stress at the brazing fillet. When using this local stress, all fatigue-obtained results find themselves on a single S- N curve, providing a design curve for any joint configuration in fatigue solicitation.
NASA Astrophysics Data System (ADS)
Hiwarkar, V. R.; Babitsky, V. I.; Silberschmidt, V. V.
2013-07-01
Numerous techniques are available for monitoring structural health. Most of these techniques are expensive and time-consuming. In this paper, vibration-based techniques are explored together with their use as diagnostic tools for structural health monitoring. Finite-element simulations are used to study the effect of material nonlinearity on dynamics of a cracked bar. Additionally, several experiments are performed to study the effect of vibro-impact behavior of crack on its dynamics. It was observed that a change in the natural frequency of the cracked bar due to crack-tip plasticity and vibro-impact behavior linked to interaction of crack faces, obtained from experiments, led to generation of higher harmonics; this can be used as a diagnostic tool for structural health monitoring.
NASA Astrophysics Data System (ADS)
Chen, Kai; Du, Donghai; Gao, Wenhua; Guo, Xianglong; Zhang, Lefu; Andresen, Peter L.
2018-01-01
The stress corrosion cracking (SCC) behavior of Alloy 690 with 0, 20% and 30% cold work (CW) was studied in supercritical water (SCW) environment with an emphasis on CW and creep on the CGRs (CGR). SCC and creep CGRs increased with %CW, which correlated hardness very well. Microscopic characterization of the crack tip and fracture surface showed obvious cavity-like features, which is clear evidence of creep attack. The creep CGRs in inert gas were comparable to the SCC CGRs in SCW, indicating that creep is a major factor in crack growth. Increasing level of CW was found to increase the creep susceptibility, and high activation energies for creep crack growth were observed between 500 °C and 550 °C.
NASA Astrophysics Data System (ADS)
Li, L. L.; Zhang, P.; Zhang, Z. J.; Zhang, Z. F.
2014-01-01
Incoherent twin boundaries (ITBs) are widespread and play a crucial role in unidirectional deformation behavior of materials, however, the intrinsic role of individual ITB under cyclic loading remains elusive. Here we show the fatigue cracking behavior of Cu bicrystal with an ITB as its sole interface for the first time. The slip bands (SBs) could transfer through the ITB; meanwhile, the ITB could migrate with the motion of partial dislocations. Both the penetrability and mobility contribute to the higher fatigue cracking resistance of the ITB and hence the fatigue crack nucleates along the SBs preferentially. These new findings not only shed light on the fatigue cracking mechanisms of a penetrable boundary with direct evidence but also could provide important implications for future interfacial optimization of metallic materials.
Frequency domain analysis of the random loading of cracked panels
NASA Technical Reports Server (NTRS)
Doyle, James F.
1994-01-01
The primary effort concerned the development of analytical methods for the accurate prediction of the effect of random loading on a panel with a crack. Of particular concern was the influence of frequency on the stress intensity factor behavior. Many modern structures, such as those found in advanced aircraft, are lightweight and susceptible to critical vibrations, and consequently dynamic response plays a very important role in their analysis. The presence of flaws and cracks can have catastrophic consequences. The stress intensity factor, K, emerges as a very significant parameter that characterizes the crack behavior. In analyzing the dynamic response of panels that contain cracks, the finite element method is used, but because this type of problem is inherently computationally intensive, a number of ways of calculating K more efficiently are explored.
Kim, Dong Joo; Kang, Seok Hee; Ahn, Tae-Ho
2014-01-01
The crack self-healing behavior of high-performance steel-fiber reinforced cement composites (HPSFRCs) was investigated. High-strength deformed steel fibers were employed in a high strength mortar with very fine silica sand to decreasing the crack width by generating higher interfacial bond strength. The width of micro-cracks, strongly affected by the type of fiber and sand, clearly produced the effects on the self-healing behavior. The use of fine silica sand in HPSFRCs with high strength deformed steel fibers successfully led to rapid healing owing to very fine cracks with width less than 20 μm. The use of very fine silica sand instead of normal sand produced 17%–19% higher tensile strength and 51%–58% smaller width of micro-cracks. PMID:28788471
The Role of Structural Dynamics and Testing in the Shuttle Flowliner Crack Investigation
NASA Technical Reports Server (NTRS)
Frady, Gregory P.
2005-01-01
During a normal inspection of the main propulsion system at Kennedy Space Center, small cracks were noticed near a slotted region of a gimbal joint flowliner located just upstream from one of the Space Shuttle Main Engines (SSME). These small cracks sparked an investigation of the entire Space Shuttle fleet main propulsion feedlines. The investigation was initiated to determine the cause of the small cracks and a repair method that would be needed to return the Shuttle fleet back to operation safely. The cracks were found to be initiated by structural resonance caused by flow fluctuations from the SSME low pressure fuel turbopump interacting with the flowliner. The pump induced backward traveling wakes that excited the liner and duct acoustics which also caused the liner to vibrate in complex mode shapes. The investigation involved an extensive effort by a team of engineers from the NASA civil servant and contractor workforce with the goal to characterize the root cause of the cracking behavior of the fuel side gimbal joint flowliners. In addition to working to identify the root cause, a parallel path was taken to characterize the material properties and fatigue capabilities of the liner material such that the life of the liners could be ascertained. As the characterization of the material and the most probable cause matured, the combination of the two with pump speed restrictions provided a means to return the Shuttle to flight in a safe manner. This paper traces the flowliner investigation results with respect to the structural dynamics analysis, component level testing and hot-fire flow testing on a static testbed. The paper will address the unique aspects of a very complex problem involving backflow from a high performance pump that has never been characterized nor understood to such detail. In addition, the paper will briefly address the flow phenomena that excited the liners, the unique structural dynamic modal characteristics and the variability of SSME operation which has ultimately ensured the safe and reliable operation of the shuttle main engines for each flight.
NASA Technical Reports Server (NTRS)
Nishioka, Owen S.
1997-01-01
Defects that develop in welds during the fabrication process are frequently manifested as embedded flaws from lack of fusion or lack of penetration. Fracture analyses of welded structures must be able to assess the effect of such defects on the structural integrity of weldments; however, the transferability of R-curves measured in laboratory specimens to defective structural welds has not been fully examined. In the current study, the fracture behavior of an overmatched butt weld containing a simulated buried, lack-of-penetration defect is studied. A specimen designed to simulate pressure vessel butt welds is considered; namely, a center crack panel specimen, of 1.25 inch by 1.25 inch cross section, loaded in tension. The stress-relieved double-V weld has a yield strength 50% higher than that of the plate material, and displays upper shelf fracture behavior at room temperature. Specimens are precracked, loaded monotonically while load-CMOD measurements are made, then stopped and heat tinted to mark the extent of ductile crack growth. These measurements are compared to predictions made using finite element analysis of the specimens using the fracture mechanics code Warp3D, which models void growth using the Gurson-Tvergaard dilitant plasticity formulation within fixed sized computational cells ahead of the crack front. Calibrating data for the finite element analyses, namely cell size and initial material porosities are obtained by matching computational predictions to experimental results from tests of welded compact tension specimens. The R-curves measured in compact tension specimens are compared to those obtained from multi-specimen weld tests, and conclusions as to the transferability of R-curves is discussed.