Sample records for crack length increases

  1. Some considerations on instability of combined loaded thin-walled tubes with a crack

    NASA Astrophysics Data System (ADS)

    Shariati, M.; Akbarpour, A.

    2016-05-01

    Instability of a thin-walled stainless steel tube with a crack-shaped defect under combined loading is studied in this paper. Furthermore, the effects of the tube length, crack orientation, and crack length on the buckling behavior of tubes are investigated. The behavior of tubes subjected to combined is analyzed by using the finite element method (by Abaqus software). For cracked tubes with a fixed thickness, the buckling load decreases as the tube length and the ratio of the tube length to its diameter increase. Moreover, the buckling load of cracked tubes under combined loading also decreases with increasing crack length.

  2. Stable Tearing and Buckling Responses of Unstiffened Aluminum Shells with Long Cracks

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Rose, Cheryl A.

    1999-01-01

    The results of an analytical and experimental study of the nonlinear response of thin, unstiffened, aluminum cylindrical shells with a long longitudinal crack are presented. The shells are analyzed with a nonlinear shell analysis code that accurately accounts for global and local structural response phenomena. Results are presented for internal pressure and for axial compression loads. The effect of initial crack length on the initiation of stable crack growth and unstable crack growth in typical shells subjected to internal pressure loads is predicted using geometrically nonlinear elastic-plastic finite element analyses and the crack-tip-opening angle (CTOA) fracture criterion. The results of these analyses and of the experiments indicate that the pressure required to initiate stable crack growth and unstable crack growth in a shell subjected to internal pressure loads decreases as the initial crack length increases. The effects of crack length on the prebuckling, buckling and postbuckling responses of typical shells subjected to axial compression loads are also described. For this loading condition, the crack length was not allowed to increase as the load was increased. The results of the analyses and of the experiments indicate that the initial buckling load and collapse load for a shell subjected to axial compression loads decrease as the initial crack length increases. Initial buckling causes general instability or collapse of a shell for shorter initial crack lengths. Initial buckling is a stable local response mode for longer initial crack lengths. This stable local buckling response is followed by a stable postbuckling response, which is followed by general or overall instability of the shell.

  3. Stable Tearing and Buckling Responses of Unstiffened Aluminum Shells with Long Cracks

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Rose, Cheryl A.

    1998-01-01

    The results of an analytical and experimental study of the nonlinear response of thin, unstiffened, aluminum cylindrical shells with a long longitudinal crack are presented. The shells are analyzed with a nonlinear shell analysis code that accurately accounts for global and local structural response phenomena. Results are presented for internal pressure and for axial compression loads. The effect of initial crack length on the initiation of stable crack growth and unstable crack growth in typical shells subjected to internal pressure loads is predicted using geometrically nonlinear elastic-plastic finite element analyses and the crack-tip-opening angle (CTOA) fracture criterion. The results of these analyses and of the experiments indicate that the pressure required to initiate stable crack growth and unstable crack growth in a shell subjected to internal pressure loads decreases as the initial crack length increases. The effects of crack length on the prebuckling, buckling and postbuckling responses of typical shells subjected to axial compression loads are also described. For this loading condition, the crack length was not allowed to increase as the load was increased. The results of the analyses and of the experiments indicate that the initial buckling load and collapse load for a shell subjected to axial compression loads decrease as the initial crack length increases. Initial buckling causes general instability or collapse of a shell for shorter initial crack lengths. Initial buckling is a stable local response mode for longer initial crack lengths. This stable local buckling response is followed by a stable postbuckling response, which is followed by general or overall instability of the shell.

  4. Probabilistic Description of Fatigue Crack Growth Under Constant-and Variable-Amplitude Loading

    DTIC Science & Technology

    1989-03-01

    plane, see figure 14. The length of the defected crack component and its angle, b and q, respectively, in Figure 15 were found to depend on the crack...length at which the defection occurs; as the crack length increases, b increases while q decreases. Due to the orientation of the deflected component...Breakpoint Voltage to Fun. Generator Output Setpoint Voltage Take Function Generator Gate High Start Test LNext page 153 Q! ~From last ag lastr DMAe 70

  5. The crack and wedging problem for an orthotropic strip

    NASA Technical Reports Server (NTRS)

    Cinar, A.; Erdogan, F.

    1982-01-01

    The plane elasticity problem for an orthotropic strip containing a crack parallel to its boundaries is considered. The problem is formulated under general mixed mode loading conditions. The stress intensity factors depend on two dimensionless orthotropic constants only. For the crack problem the results are given for a single crack and two collinear cracks. The calculated results show that of the two orthotropic constants the influence of the stiffness ratio on the stress intensity factors is much more significant than that of the shear parameter. The problem of loading the strip by a rigid rectangular lengths continuous contact is maintained along the wedge strip interface; at a certain critical wedge length the separation starts at the midsection of the wedge, and the length of the separation zone increases rapidly with increasing wedge length.

  6. The crack and wedging problem for an orthotropic strip

    NASA Technical Reports Server (NTRS)

    Cinar, A.; Erdogan, F.

    1983-01-01

    The plane elasticity problem for an orthotropic strip containing a crack parallel to its boundaries is considered. The problem is formulated under general mixed mode loading conditions. The stress intensity factors depend on two dimensionless orthotropic constants only. For the crack problem the results are given for a single crack and two collinear cracks. The calculated results show that of the two orthotropic constants the influence of the stiffness ratio on the stress intensity factors is much more significant than that of the shear parameter. The problem of loading the strip by a rigid rectangular lengths continuous contact is maintained along the wedge strip interface; at a certain critical wedge length the separation starts at the midsection of the wedge, and the length of the separation zone increases rapidly with increasing wedge length. Previously announced in STAR as N82-26707

  7. Fracture Toughness of Thin Plates by the Double-Torsion Test Method

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Radovic, Miladin; Lara-Curzio, Edgar; Nelson, George

    2006-01-01

    Double torsion testing can produce fracture toughness values without crack length measurement that are comparable to those measured via standardized techniques such as the chevron-notch, surface-crack-in-flexure and precracked beam if the appropriate geometry is employed, and the material does not exhibit increasing crack growth resistance. Results to date indicate that 8 < W/d < 80 and L/W > 2 are required if crack length is not considered in stress intensity calculations. At L/W = 2, the normalized crack length should be 0.35 < a/L < 0.65; whereas for L/W = 3, 0.2 < a/L < 0.75 is acceptable. In addition, the load-points need to roll to reduce friction. For an alumina exhibiting increasing crack growth resistance, values corresponding to the plateau of the R-curve were measured. For very thin plates (W/d > 80) nonlinear effects were encountered.

  8. Sudden bending of cracked laminates

    NASA Technical Reports Server (NTRS)

    Sih, G. C.; Chen, E. P.

    1980-01-01

    A dynamic approximate laminated plate theory is developed with emphasis placed on obtaining effective solution for the crack configuration where the 1/square root of r stress singularity and the condition of plane strain are preserved. The radial distance r is measured from the crack edge. The results obtained show that the crack moment intensity tends to decrease as the crack length to laminate plate thickness is increased. Hence, a laminated plate has the desirable feature of stabilizing a through crack as it increases its length at constant load. Also, the level of the average load intensity transmitted to a through crack can be reduced by making the inner layers to be stiffer than the outer layers. The present theory, although approximate, is useful for analyzing laminate failure to crack propagation under dynamic load conditions.

  9. Mixed-mode stress intensity factors for kink cracks with finite kink length loaded in tension and bending: application to dentin and enamel.

    PubMed

    Bechtle, Sabine; Fett, Theo; Rizzi, Gabriele; Habelitz, Stefan; Schneider, Gerold A

    2010-05-01

    Fracture toughness resistance curves describe a material's resistance against crack propagation. These curves are often used to characterize biomaterials like bone, nacre or dentin as these materials commonly exhibit a pronounced increase in fracture toughness with crack extension due to co-acting mechanisms such as crack bridging, crack deflection and microcracking. The knowledge of appropriate stress intensity factors which depend on the sample and crack geometry is essential for determining these curves. For the dental biomaterials enamel and dentin it was observed that, under bending and tensile loading, crack propagation occurs under certain constant angles to the initial notch direction during testing procedures used for fracture resistance curve determination. For this special crack geometry (a kink crack of finite length in a finite body) appropriate geometric function solutions are missing. Hence, we present in this study new mixed-mode stress intensity factors for kink cracks with finite kink length within samples of finite dimensions for two loading cases (tension and bending) which were derived from a combination of mixed-mode stress intensity factors of kink cracks with infinitely small kinks and of slant cracks. These results were further applied to determine the fracture resistance curves of enamel and dentin by testing single edge notched bending (SENB) specimens. It was found that kink cracks with finite kink length exhibit identical stress fields to slant cracks as soon as the kink length exceeds 0.15 times the initial straight crack or notch length. The use of stress intensity factor solutions for infinitely small kink cracks for the determination of dentin fracture resistance curves (as was done by other researchers) leads to an overestimation of dentin's fracture resistance of up to 30%. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Mechanical properties and crack growth behavior of polycrystalline copper using molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Qiu, Ren-Zheng; Li, Chi-Chen; Fang, Te-Hua

    2017-08-01

    This study investigated the mechanical properties and crack propagation behavior of polycrystalline copper using a molecular dynamics simulation. The effects of temperature, grain size, and crack length were evaluated in terms of atomic trajectories, slip vectors, common neighbor analysis, the material’s stress-strain diagram and Young’s modulus. The simulation results show that the grain boundary of the material is more easily damaged at high temperatures and that grain boundaries will combine at the crack tip. From the stress-strain diagram, it was observed that the maximum stress increased as the temperature decreased. In contrast, the maximum stress was reduced by increasing the temperature. With regard to the effect of the grain size, when the grain size was too small, the structure of the sample deformed due to the effect of atomic interactions, which caused the grain boundary structure to be disordered in general. However, when the grain size was larger, dislocations appeared and began to move from the tip of the crack, which led to a new dislocation phenomenon. With regards to the effect of the crack length, the tip of the crack did not affect the sample’s material when the crack length was less than 5 nm. However, when the crack length was above 7.5 nm, the grain boundary was damaged, and twinning structures and dislocations appeared on both sides of the crack tip. This is because the tip of the crack was blunt at first before sharpening due to the dislocation effect.

  11. Mode I stress intensity factors of slanted cracks in plates

    NASA Astrophysics Data System (ADS)

    Ismail, Al Emran; Ghazali, Mohd Zubir Mohd; Nor, Nik Hisyamudin Muhd

    2017-01-01

    This paper presents the roles of slanted cracks on the stress intensity factors (SIF) under mode I tension and bending loading. Based on the literature survey, lack of solution of SIFs of slanted cracks in plain strain plates are available. In this work, the cracks are modelled numerically using ANSYS finite element program. There are two important parameters such as slanted angles and relative crack length. SIFs at the crack tips are calculated according to domain integral method. Before the model is further used, it is validated with the existing model. It is found that the present model is well agreed with the previous model. According to finite element analysis, there are not only mode I SIFs produced but also mode II. As expected the SIFs increased as the relative crack length increased. However, when slanted angles are introduced (slightly higher than normal crack), the SIFs increased. Once the angles are further increased, the SIFs decreased gradually however they are still higher than the SIFs of normal cracks. For mode II SIFs, higher the slanted angels higher the SIFs. This is due to the fact that when the cracks are slanted, the cracked plates are not only failed due to mode I but a combination between both modes I and II.

  12. Variations in enamel damage after debonding of two different bracket base designs: An in vitro study.

    PubMed

    Ahangar Atashi, Mohammad Hossein; Sadr Haghighi, Amir Hooman; Nastarin, Parastou; Ahangar Atashi, Sina

    2018-01-01

    Background. Bracket base design is a factor influencing shear bond strength. High shear bond strength leads to enamel crack formation during debonding. The aim of this study was to compare enamel damage variations, including the number and length of enamel cracks after debonding of two different base designs. Methods. Eighty-eight extracted human premolars were randomly divided into2 groups (n=44). The teeth in each group were bonded by two types of brackets with different base designs: 80-gauge mesh design versus anchor pylon design with pylons for adhesive retention. The number and length of enamel cracks before bonding and after debonding were evaluated under an optical stereomicroscope ×40 in both groups. Mann-Whitney U test was used to compare the number of cracks between the two groups. ANCOVA was used for comparison of crack lengths after and before debonding in each group and between the two groups. Results. There was a significant increase in enamel crack length and numbers in each group after debonding. There was no significant difference in enamel crack numbers after debonding between the two groups, whereas the length of enamel cracks was significantly greater in anchor pylon base design after debonding. Conclusion. Bracket bases with pylon design for adhesive retention caused more iatrogenic debonding damage to enamel surface.

  13. A proposal for unification of fatigue crack growth law

    NASA Astrophysics Data System (ADS)

    Kobelev, V.

    2017-05-01

    In the present paper, the new fractional-differential dependences of cycles to failure for a given initial crack length upon the stress amplitude in the linear fracture approach are proposed. The anticipated unified propagation function describes the infinitesimal crack length growths per increasing number of load cycles, supposing that the load ratio remains constant over the load history. Two unification fractional-differential functions with different number of fitting parameters are proposed. An alternative, threshold formulations for the fractional-differential propagation functions are suggested. The mean stress dependence is the immediate consequence from the considered laws. The corresponding formulas for crack length over the number of cycles are derived in closed form.

  14. An experimental study on fatigue performance of cryogenic metallic materials for IMO type B tank

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Sung; You, Won-Hyo; Yoo, Chang-Hyuk; Kim, Kyung-Su; Kim, Yooil

    2013-12-01

    Three materials SUS304, 9% Ni steel and Al 5083-O alloy, which are considered possible candidate for International Maritime Organization (IMO) type B Cargo Containment System, were studied. Monotonic tensile, fatigue, fatigue crack growth rate and Crack Tip Opening Displacement tests were carried out at room, intermediate low (-100 °C) and cryogenic (-163 °C) temperatures. The initial yield and tensile strengths of all materials tended to increase with decreasing temperature, whereas the change in elastic modulus was not as remarkable. The largest and smallest improvement ratio of the initial yield strengths due to a temperature reduction were observed in the SUS304 and Al 5083- O alloy, respectively. The fatigue strengths of the three materials increased with decreasing temperature. The largest increase in fatigue strength was observed in the Al 5083-O alloy, whereas the 9% Ni steel sample showed the smallest increase. In the fatigue crack growth rate test, SUS304 and Al 5083-O alloy showed a decrease in the crack propagation rate, due to decrease in temperature, but no visible improvement in da/dN was observed in the case of 9% Ni steel. In the Crack Tip Opening Displacement (CTOD) test, CTOD values were converted to critical crack length for the comparison with different thickness specimens. The critical crack length tended to decrease in the case of SUS304 and increase for the Al 5083-O alloy with decreasing temperature. In case of 9% Ni steel, change of critical crack length was not observed due to temperature decrease. In addition, the changing material properties according to the temperature of the LNG tank were analyzed according to the international code for the construction and equipment of ships carrying liquefied gases in bulk (IGC code) and the rules of classifications.

  15. Strength and Microstructure of Ceramics.

    DTIC Science & Technology

    1987-11-01

    triangular slab. 12-mm edge length and 2-mm thickness. to produce crack 7 mm long. Starter notch length portantly. the strength plateau at small flaw sizes...however. a tapered the starter notch tip. "Pop-in" behavior of this kind is not uncom- geometry was used. width increasing in the direction of ultimate...mon in notched specimens, of course: in such cases the initial crack propagation. The main crack was started at a sawcut notch fracture response can be

  16. Nonlinear Response of Thin Cylindrical Shells with Longitudinal Cracks and Subjected to Internal Pressure and Axial compression Loads

    NASA Technical Reports Server (NTRS)

    Starnes, James H.; Rose, Cheryl A.

    1998-01-01

    The results of an analytical study of the nonlinear response of a thin unstiffened aluminum cylindrical shell with a longitudinal crack are presented. The shell is analyzed with a nonlinear shell analysis code that maintains the shell in a nonlinear equilibrium state while the crack is grown. The analysis accurately accounts for global and local structural response phenomena. Results are presented for internal pressure, axial compression, and combined internal pressure and axial compression loads. The effects of varying crack length on the nonlinear response of the shell subjected to internal pressure are described. The effects of varying crack length on the prebuckling, buckling and postbuckling responses of the shell subjected to axial compression, and subjected to combined internal pressure and axial compression are also described. The results indicate that the nonlinear interaction between the in-plane stress resultants and the out-of-plane displacements near a crack can significantly affect the structural response of the shell. The results also indicate that crack growth instabilities and shell buckling instabilities can both affect the response of the shell as the crack length is increased.

  17. Dynamics of a fluid-driven crack in three dimensions by the finite difference method

    NASA Astrophysics Data System (ADS)

    Chouet, Bernard

    1986-12-01

    The finite difference method is applied to the study of the dynamics of a three-dimensional fluid-filled crack excited into resonance by the sudden failure of a small barrier of area ΔS on the crack surface. The impulse response of the crack is examined for various ratios of crack width to crack length and for several values of the crack stiffness C = (b/μ)(L/d), where b is the bulk modulus of the fluid, μ is the rigidity of the solid, and L and d are the crack length and crack thickness, respectively. The motion of the crack is characterized by distinct time scales representing the duration of brittle failure and the periods of acoustic resonance in the lateral and longitudinal dimensions of the source. The rupture has a duration proportional to the area of crack expansion and is the trigger responsible for the excitation of the crack into resonance; the resonant periods are proportional to the crack stiffness and to the width and length of the crack. The crack wave sustaining the resonance is analogous to the tube wave propagating in a fluid-filled borehole. It is dispersive, showing a phase velocity that decreases with increasing wavelength. Its wave speed is always lower than the acoustic velocity of the fluid and shows a strong dependence on the crack stiffness, decreasing as the stiffness increases. The initial motion of the crack surface is an opening, and the radiated far-field compressional wave starts with a strong but brief compression which has a duration proportional to the crack stiffness and size of the rupture area; the amplitude of this pulse increases with the area of rupture but decreases with increasing stiffness. Flow into the newly created cavity triggers a pressure drop in the fluid, which produces a partial collapse of the wall propagated over the crack surface at the speed of the crack wave. The collapse of the crack surface generates a weak long-period component of dilatation following the compressional first motion in the far-field P wave train; the dilatational component is clearer in the signal from stiffer cracks when seen in the direction of the rupture. The energy loss by radiation is stronger for high frequencies, resulting in a progressive enrichment of the crack response in lower frequencies over the duration of resonance. These source characteristics translate into a far-field signature that is marked by a high-frequency content near its onset and dominated by a longer-period component in its coda. The source duration shows a strong dependence on the fluid viscosity and associated viscous damping at the crack wall.

  18. Modeling Near-Crack-Tip Plasticity from Nano- to Micro-Scales

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Saether, Erik; Hochhalter, Jake D.; Yamakov, Vesselin I.

    2010-01-01

    Several efforts that are aimed at understanding the plastic deformation mechanisms related to crack propagation at the nano-, meso- and micro-length scales including atomistic simulation, discrete dislocation plasticity, strain gradient plasticity and crystal plasticity are discussed. The paper focuses on discussion of newly developed methodologies and their application to understanding damage processes in aluminum and its alloys. Examination of plastic mechanisms as a function of increasing length scale illustrates increasingly complex phenomena governing plasticity

  19. Sudden bending of a cracked laminate

    NASA Technical Reports Server (NTRS)

    Sih, G. C.; Chen, E. P.

    1981-01-01

    The intensification of stresses near a through crack in the laminate that suddenly undergoes bending is investigated. A dynamic plate theory is developed which includes the effects of material inhomogeneity in the thickness direction and realistic crack edge stress singularity and distribution. Numerical examples indicate that (1) the crack moment intensity tends to decrease as the crack length to laminate thickness is increased, and (2) the average load intensity transmitted to a through crack can be reduced by making the inner layers to be stiffer than the outer layers.

  20. Stress intensity factors for deep cracks emanating from the corner formed by a hole intersecting a plate surface

    NASA Technical Reports Server (NTRS)

    Mcgowan, J. J.; Smith, C. W.

    1976-01-01

    The stress intensity factors (SIFs) at the end points of flaws emanating from the corner formed by the intersection of a plate with a hole were determined using stress freezing photoelasticity and a numerical technique known as the Taylor series correction method to extract the SIF values from the photoelastic data. The geometries studied were crack depth to thickness ratios of about 0.2, 0.5, and 0.75; crack depth to crack length ratios of about 1.0 to 2.0; and crack length to hole radius ratios of about 0.5 to 2.0. The SIFs were determined at the intersection of the flaw border with the plate surface (KS) and with the edge of the hole (KH). It is shown that extension of a crack emanating from a corner of intersection of a hole with a plate under monotonically increasing load is not self-similar and that as the flaw depth increases, KH decreases and KS increases. Existing theories and design criteria significantly overestimate the SIF at both the hole and the surface except for shallow flaws at the hole and deep flaws at the surface.

  1. How Is the Enamel Affected by Different Orthodontic Bonding Agents and Polishing Techniques?

    PubMed

    Heravi, Farzin; Shafaee, Hooman; Abdollahi, Mojtaba; Rashed, Roozbeh

    2015-03-01

    The objective of this study was to assess the effect of new bonding techniques on enamel surface. Sixty upper central incisors were randomly divided into two equal groups. In the first group, metal brackets were bonded using TransbondXT and, in the second group, the same brackets were bonded with Maxcem Elite. The shear bond strength (SBS) of both agents to enamel was measured and the number and length of enamel cracks before bonding, after debonding and after polishing were compared. The number of visible cracks and the adhesive remnant index (ARI) scores in each group were also measured. There were significantly more enamel cracks in the Transbond XT group after debonding and polishing compared to the Maxcem Elite group. There was no significant difference in the length of enamel cracks between the two groups; but, in each group, a significant increase in the length of enamel cracks was noticeable after debonding. Polishing did not cause any statistically significant change in crack length. The SBS of Maxcem Elite was significantly lower than that of Transbond XT (95% confidence interval). Maxcem Elite offers clinically acceptable bond strength and can thus be used as a routine adhesive for orthodontic purposes since it is less likely to damage the enamel.

  2. The effects of confining pressure and stress difference on static fatigue of granite

    NASA Technical Reports Server (NTRS)

    Kranz, R. L.

    1979-01-01

    Samples of Barre granite were creep tested at room temperature at confining pressures up to 2 kilobars. The time to fracture increased with decreasing stress difference at every pressure, but the rate of change of fracture time with respect to the stress difference increased with pressure. At 87% of the short-term fracture strength, the time to fracture increased from about 4 minutes at atmospheric pressure to longer than one day at 2 Kb of pressure. The inelastic volumetric strain at the onset of tertiary creep, delta, was constant within 25% at any particular pressure but increased with pressure in a manner analogous to the increase of strength with pressure. At the onset of tertiary creep, the number of cracks and their average length increased with pressure. The crack angle and crack length spectra were quite similar, however, at each pressure at the onset of tertiary creep.

  3. The length of pre-existing fissures effects on the mechanical properties of cracked red sandstone and strength design in engineering.

    PubMed

    Wu, Jiangyu; Feng, Meimei; Yu, Bangyong; Han, Guansheng

    2018-01-01

    It is important to study the mechanical properties of cracked rock to understand the engineering behavior of cracked rock mass. Consequently, the influence of the length of pre-existing fissures on the strength, deformation, acoustic emission (AE) and failure characteristics of cracked rock specimen was analyzed, and the optimal selection of strength parameter in engineering design was discussed. The results show that the strength parameters (stress of dilatancy onset and uniaxial compressive strength) and deformation parameters (axial strain and circumferential strain at dilatancy onset and peak point) of cracked rock specimen decrease with the increase of the number of pre-existing fissures, and the relations which can use the negative exponential function to fit. Compared with the intact rock specimens, the different degrees of stress drop phenomena were produced in the process of cracked rock specimens when the stress exceeds the dilatancy onset. At this moment, the cracked rock specimens with the existence of stress drop are not instantaneous failure, but the circumferential strain, volumetric strain and AE signals increase burstingly. And the yield platform was presented in the cracked rock specimen with the length of pre-existing fissure more than 23mm, the yield failure was gradually conducted around the inner tip of pre-existing fissure, the development of original fissures and new cracks was evolved fully in rock. However, the time of dilatancy onset is always ahead of the the time of that point with the existence of stress drop. It indicates that the stress of dilatancy onset can be as the parameter of strength design in rock engineering, which can effectively prevent the large deformation of rock. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Variation of the distribution of crack lengths during corrosion fatigue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishihara, S.; Miyao, K.; Shiozawa, K.

    1984-07-01

    The detailed initiation and growth behaviour of distributed cracks on a specimen surface was investigated during corrosion fatigue. It can be clarified that the changes of the distribution of crack lengths with stress cycling reflect the behaviour of initiation and growth of distributed cracks. The distribution of crack lengths for certain stress cycles could be explained by a statistical calculation which takes into account both the variation of number of cracks during stress cycling and the scatter of crack growth rate.

  5. Variations of a global constraint factor in cracked bodies under tension and bending loads

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Crews, J. H., Jr.; Bigelow, C. A.; Dawicke, D. S.

    1994-01-01

    Elastic-plastic finite-element analyses were used to calculate stresses and displacements around a crack in finite-thickness plates for an elastic-perfectly plastic material. Middle- and edge-crack specimens were analyzed under tension and bending loads. Specimens were 1.25 to 20 mm thick with various widths and crack lengths. A global constraint factor alpha(sub g), an averaged normal-stress to flow-stress ratio over the plastic region, was defined to simulate three-dimensional (3D) effects in two-dimensional (2D) models. For crack lengths and uncracked ligament lengths greater than four times the thickness, the global constraint factor was found to be nearly a unique function of a normalized stress-intensity factor (related to plastic-zone size to thickness ratio) from small- to large-scale yielding conditions for various specimen types and thickness. For crack length-to-thickness ratios less than four, the global constraint factor was specimen type, crack length and thickness dependent. Using a 2D strip-yield model and the global constraint factors, plastic-zone sizes and crack-tip displacements agreed reasonably well with the 3D analyses. For a thin sheet aluminum alloy, the critical crack-tip-opening angle during stable tearing was found to be independent of specimen type and crack length for crack length-to-thickness ratios greater than 4.

  6. Crack networks in damaged glass

    NASA Astrophysics Data System (ADS)

    Mallet, Celine; Fortin, Jerome; Gueguen, Yves

    2013-04-01

    We investigate how cracks develop and propagate in synthetic glass samples. Cracks are introduced in glass by a thermal shock of 300oC. Crack network is documented from optical and electronic microscopy on these samples that have been submitted to a thermal shock only. Samples are cylinder of 80 mm length and 40 mm diameter. Sections were cut along the cylinder axis and perpendicular to it. Using SEM, crack lengths and apertures can be measured. Optical microscopy allows to get the crack distribution over the entire sample. The sample average crack length is 3 mm. The average aperture is 6 ± 3μm. There is however a clear difference between the sample core, where the crack network has approximatively a transverse isotrope symmetry and the outer ring, where cracks are smaller and more numerous. By measuring before and after the thermal treatment the radial P and S wave velocities in room conditions, we can determine the total crack density which is 0.24. Thermally cracked samples, as described above, were submitted to creep tests. Constant axial stress and lateral stress were applied. Several experiments were performed at different stress values. Samples are saturated for 48 hours (to get an homogeneous pore fluid distribution), the axial stress is increased up to 80% of the sample strength. Stress step tests were performed in order to get creep data. The evolution of strain (axial and radial strain) is measured using strain gages, gap sensors (for the global axial strain) and pore volume change (for the volumetric strain). Creep data are interpreted as evidence of sub-critical crack growth in the cracked glass samples. The above microstructural observations are used, together with a crack propagation model, to account for the creep behavior. Assuming that (i) the observed volumetric strain rate is due to crack propagation and (ii) crack aspect ratio is constant we calculate the creep rate. We obtain some value on the crack propagation during a 24 hours of constant stress test. At each of these test, crack propagate of 0.3 to 0.4 mm. From the initial average crack length of 3 mm, the crack reach the size of 5.8 mm at the end of a complete creep test (with 8 constant stress step of 24 hours).

  7. Change of Hot Cracking Susceptibility in Welding of High Strength Aluminum Alloy AA 7075

    NASA Astrophysics Data System (ADS)

    Holzer, M.; Hofmann, K.; Mann, V.; Hugger, F.; Roth, S.; Schmidt, M.

    High strength aluminum alloys are known as hard to weld alloys due to their high hot crack susceptibility. However, they have high potential for applications in light weight constructions of automotive industry and therefore it is needed to increase weldability. One major issue is the high hot cracking susceptibility. Vaporization during laser beam welding leads to a change of concentration of the volatile elements magnesium and zinc. Hence, solidification range of the weld and therefore hot cracking susceptibility changes. Additionally, different welding velocities lead to changed solidification conditions with certain influence on hot cracking. This paper discusses the influence of energy per unit length during laser beam welding of AA 7075 on the change of element concentration in the weld seam and the resulting influence on hot cracking susceptibility. Therefore EDS-measurements of weld seams generated with different velocities are performed to determine the change of element concentration. These quantitative data is used to numerically calculate the solidification range in order to evaluate its influence on the hot cracking susceptibility. Besides that, relative hot crack length and mechanical properties are measured. The results increase knowledge about welding of high strength aluminum alloy AA 7075 and hence support further developing of the welding process.

  8. Measuring Crack Length in Coarse Grain Ceramics

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Ghosn, Louis J.

    2010-01-01

    Due to a coarse grain structure, crack lengths in precracked spinel specimens could not be measured optically, so the crack lengths and fracture toughness were estimated by strain gage measurements. An expression was developed via finite element analysis to correlate the measured strain with crack length in four-point flexure. The fracture toughness estimated by the strain gaged samples and another standardized method were in agreement.

  9. Feasibility of Reducing the Fiber Content in Ultra-High-Performance Fiber-Reinforced Concrete under Flexure.

    PubMed

    Park, Jung-Jun; Yoo, Doo-Yeol; Park, Gi-Joon; Kim, Sung-Wook

    2017-01-28

    In this study, the flexural behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) is examined as a function of fiber length and volume fraction. Straight steel fiber with three different lengths ( l f ) of 13, 19.5, and 30 mm and four different volume fractions ( v f ) of 0.5%, 1.0%, 1.5%, and 2.0% are considered. Test results show that post-cracking flexural properties of UHPFRC, such as flexural strength, deflection capacity, toughness, and cracking behavior, improve with increasing fiber length and volume fraction, while first-cracking properties are not significantly influenced by fiber length and volume fraction. A 0.5 vol % reduction of steel fiber content relative to commercial UHPFRC can be achieved without deterioration of flexural performance by replacing short fibers ( l f of 13 mm) with longer fibers ( l f of 19.5 mm and 30 mm).

  10. Feasibility of Reducing the Fiber Content in Ultra-High-Performance Fiber-Reinforced Concrete under Flexure

    PubMed Central

    Park, Jung-Jun; Yoo, Doo-Yeol; Park, Gi-Joon; Kim, Sung-Wook

    2017-01-01

    In this study, the flexural behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) is examined as a function of fiber length and volume fraction. Straight steel fiber with three different lengths (lf) of 13, 19.5, and 30 mm and four different volume fractions (vf) of 0.5%, 1.0%, 1.5%, and 2.0% are considered. Test results show that post-cracking flexural properties of UHPFRC, such as flexural strength, deflection capacity, toughness, and cracking behavior, improve with increasing fiber length and volume fraction, while first-cracking properties are not significantly influenced by fiber length and volume fraction. A 0.5 vol % reduction of steel fiber content relative to commercial UHPFRC can be achieved without deterioration of flexural performance by replacing short fibers (lf of 13 mm) with longer fibers (lf of 19.5 mm and 30 mm). PMID:28772477

  11. Cracking of Clay Due to Contact with Waste Chlorinated Solvents

    NASA Astrophysics Data System (ADS)

    Otero, M.; Ayral, D.; Shipan, J.; Goltz, M. N.; Huang, J.; Demond, A. H.

    2012-12-01

    Clays are known to crack upon desiccation. Desiccation cracks of up to 3 cm wide have been reported in natural soils. This raises the question if a similar behavior is seen when a dense non-aqueous phase liquids (DNAPL) waste is in contact with clay. The contact with organic liquids causes the clay structure to shrink, leading to the formation of cracks. Moreover, DNAPL waste not only contains the organic liquid solvent but also includes surface-active solutes or surfactants. Such solutes can enhance the interaction of the organic solvents with the clay. This research will assess whether or not contact with chlorinated organic waste causes cracking. In order to evaluate the possibility of cracking in the clay, microcosms have been constructed that mimic aquifer systems, consisting of a saturated layer of sand, a saturated layer of bentonite clay and a 2.5 cm layer of either pure chlorinated solvents or DNAPL waste. The onset of cracking for the microcosm with tetrachloroethylene (PCE) waste as the DNAPL layer occurred after ten days of contact. Similarly, at eight days, cracks were observed in a microcosm containing trichloroethylene (TCE) waste . Forty-four days later, the length and number of cracks have grown considerably; with a total crack length of 50 cm on a surface of 80 cm2 in the microcosm containing PCE waste. On the other hand it took approximately 161 days for the clay layer in the microcosm containing pure PCE to crack. To quantity the degree of cracking, crack maps were developed using the image software, Image J. Characteristics like crack length, crack aperture, and the percentage of total length for a range of apertures were calculated using this software. For example, for the PCE waste microcosm, it was calculated that 3.7% of the crack length had an aperture of 100-300 microns, 15.1% of the crack length had an aperture of 300-500 microns, 29.7% of the crack length had an aperture of 500-700 microns, 40.1% of the crack length had an aperture of 700-900 microns, 6.3% had an aperture of 900-1,100 microns and 5.1% had an aperture of over 1,100 microns. These data suggest that aquitards in the field might crack when in contact with the DNAPL waste. Moreover, it is apparent that the waste contains solutes that accelerate the cracking of the clay layer. Thus, models examining the impact of storage in low permeability layers need to consider the possible impact of cracking.

  12. Numerical and experimental study on buckling and postbuckling behavior of cracked cylindrical shells

    NASA Astrophysics Data System (ADS)

    Saemi, J.; Sedighi, M.; Shariati, M.

    2015-09-01

    The effect of crack on load-bearing capacity and buckling behavior of cylindrical shells is an essential consideration in their design. In this paper, experimental and numerical buckling analysis of steel cylindrical shells of various lengths and diameters with cracks have been studied using the finite element method, and the effect of crack position, crack orientation and the crack length-to-cylindrical shell perimeter ( λ = a/(2 πr)) and shell length-to-diameter ( L/ D) ratios on the buckling and post-buckling behavior of cylindrical shells has been investigated. For several specimens, buckling test was performed using an INSTRON 8802 servo hydraulic machine, and the results of experimental tests were compared to numerical results. A very good correlation was observed between numerical simulation and experimental results. Finally, based on the experimental and numerical results, sensitivity of the buckling load to the shell length, crack length and orientation has also been investigated.

  13. Improving computer security for authentication of users: influence of proactive password restrictions.

    PubMed

    Proctor, Robert W; Lien, Mei-Ching; Vu, Kim-Phuong L; Schultz, E Eugene; Salvendy, Gavriel

    2002-05-01

    Entering a username-password combination is a widely used procedure for identification and authentication in computer systems. However, it is a notoriously weak method, in that the passwords adopted by many users are easy to crack. In an attempt to improve security, proactive password checking may be used, in which passwords must meet several criteria to be more resistant to cracking. In two experiments, we examined the influence of proactive password restrictions on the time that it took to generate an acceptable password and to use it subsequently to long in. The required length was a minimum of five characters in Experiment 1 and eight characters in Experiment 2. In both experiments, one condition had only the length restriction, and the other had additional restrictions. The additional restrictions greatly increased the time it took to generate the password but had only a small effect on the time it took to use it subsequently to long in. For the five-character passwords, 75% were cracked when no other restrictions were imposed, and this was reduced to 33% with the additional restrictions. For the eight-character passwords, 17% were cracked with no other restrictions, and 12.5% with restrictions. The results indicate that increasing the minimum character length reduces crackability and increases security, regardless of whether additional restrictions are imposed.

  14. Matrix fatigue crack development in a notched continuous fiber SCS-6/Ti-15-3 composite

    NASA Technical Reports Server (NTRS)

    Hillberry, B. M.; Johnson, W. S.

    1990-01-01

    In this study the extensive matrix fatigue cracking that has been observed in notched SCS-6/Ti-15-3 composites is investigated. Away from the notch uniform spacing of the fatigue cracks develops. Closer to the notch, fiber-matrix debonding which occurs increases the crack spacing. Crack spacing and debond length determined from shear-lag cylinder models compare favorably with experimental observations. Scanning electron microscope (SEM) fractography showed that the principal fatigue crack initiation occurred around the zero degree fibers. Interface failure in the 90 degree plies does not lead to the development of the primary fatigue cracking.

  15. Matrix fatigue crack development in a notched continuous fiber SCS-6/Ti-15-3 composite

    NASA Technical Reports Server (NTRS)

    Hillberry, B. M.; Johnson, W. S.

    1990-01-01

    In this study the extensive matrix fatigue cracking that has been observed in notched SCS-6/Ti-15-3 composites is investigated. Away from the notch a uniform spacing of the fatigue cracks develops. Closer to the notch, fiber-matrix debonding which occurs increases the crack spacing. Crack spacing and debond length determined from shear-lag cylinder models compare favorably with experimental observations. Scanning electron microscope (SEM) fractography showed that the principal fatigue crack initiation occurred around the zero degree fibers. Interface failure in the 90 degree plies does not lead to the development of the primary fatigue cracking.

  16. The noncontinuum crack tip deformation behavior of surface microcracks

    NASA Astrophysics Data System (ADS)

    Morris, W. L.

    1980-07-01

    The crack tip opening displacement (CTOD) of small surface fatigue cracks (lengths of the grain size) in Al 2219-T851 depends upon the location of a crack relative to the grain boundaries. Both CTOD and crack tip closure stress are greatest when the crack tip is a large distance from the next grain boundary in the direction of crack propagation. Contrary to behavioral trends predicted by continuum fracture mechanics, crack length has no detectable effect on the contribution of plastic deformation to CTOD. It is apparent from these observations that the region of significant plastic deformation is confined by the grain boundaries, resulting in a plastic zone size that is insensitive to crack length and to external load.

  17. Near-tip dual-length scale mechanics of mode-I cracking in laminate brittle matrix composites

    NASA Technical Reports Server (NTRS)

    Ballarini, R.; Islam, S.; Charalambides, P. G.

    1992-01-01

    This paper presents the preliminary results of an on-going study of the near-tip mechanics of mode-I cracking in brittle matrix composite laminates. A finite element model is developed within the context of two competing characteristic lengths present in the composite: the microstructural length (the thickness of the layers) and a macro-length (crack-length, uncracked ligament size, etc.). For various values of the parameters which describe the ratio of these lengths and the constituent properties, the stresses ahead of a crack perpendicular to the laminates are compared with those predicted by assuming the composite is homogeneous orthotropic. The results can be used to determine the conditions for which homogenization can provide a sufficiently accurate description of the stresses in the vicinity of the crack-tip.

  18. High speed thin plate fatigue crack monitor

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz A. (Inventor); Heyman, Joseph S. (Inventor); Namkung, Min (Inventor); Fulton, James P. (Inventor)

    1996-01-01

    A device and method are provided which non-destructively detect crack length and crack geometry in thin metallic plates. A non-contacting vibration apparatus produces resonant vibrations without introducing extraneous noise. Resulting resonant vibration shifts in cracked plates are correlated to known crack length in plates with similar resonant vibration shifts. In addition, acoustic emissions of cracks at resonance frequencies are correlated to acoustic emissions from known crack geometries.

  19. Simulated impact damage in a thick graphite/epoxy laminate using spherical indenters

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1988-01-01

    The extent of fiber damage due to low-velocity impacts was determined for very thick graphite/epoxy laminates. The impacts were simulated by pressing spherical indenters against the laminates. After the forces were applied, the laminate was cut into smaller pieces so that each piece contained a test site. Then the pieces were deplied and the individual plies were examined to determine the extent of fiber damage. Broken fibers were found in the outer layers directly beneath the contact site. The locus of broken fibers resembled cracks. The cracks were more or less oriented in the direction of the fibers in the contiguous layers. The maximum length and depth of the cracks increased with increasing contact pressure and indenter diameter. The length and depth of the cracks were also predicted using maximum compression and shear stress criteria. The internal stresses were calculated using Hertz's law and Love's solution for pressure applied on part of the boundary of a semi-infinite body. The predictions and measurements were in good agreement.

  20. Fracture mechanics in fiber reinforced composite materials, taking as examples B/A1 and CRFP

    NASA Technical Reports Server (NTRS)

    Peters, P. W. M.

    1982-01-01

    The validity of linear elastic fracture mechanics and other fracture criteria was investigated with laminates of boron fiber reinforced aluminum (R/A1) and of carbon fiber reinforced epoxide (CFRP). Cracks are assessed by fracture strength Kc or Kmax (critical or maximum value of the stress intensity factor). The Whitney and Nuismer point stress criterion and average stress criterion often show that Kmax of fiber composite materials increases with increasing crack length; however, for R/A1 and CFRP the curve showing fracture strength as a function of crack length is only applicable in a small domain. For R/A1, the reason is clearly the extension of the plastic zone (or the damage zone n the case of CFRP) which cannot be described with a stress intensity factor.

  1. 7 CFR 51.1564 - External defects.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the potato or when green color affects more than 50 percent of the surface in the aggregate. Growth Cracks When the growth crack(s) affects more than 1/2 the length of the potato in the aggregate on round... that as outlined in Table V. (See Table V.) When the growth crack(s) affects more than 3/4 the length...

  2. Fabrication of metal nanopatterns for organic field effect transistor electrodes by cracking and transfer printing

    NASA Astrophysics Data System (ADS)

    Wang, Xiaonan; Fu, Tingting; Wang, Zhe

    2018-04-01

    In this paper, we demonstrate a novel method for fabricating metal nanopatterns using cracking to address the limitations of traditional techniques. Parallel crack arrays were created in a polydimethylsiloxane (PDMS) mold using a combination of surface modification and control of strain fields. The elastic PDMS containing the crack arrays was subsequently used as a stamp to prepare nanoscale metal patterns on a substrate by transfer printing. To illustrate the functionality of this technique, we employed the metal patterns as the source and drain contacts of an organic field effect transistor. Using this approach, we fabricated transistors with channel lengths ranging from 70-600 nm. The performance of these devices when the channel length was reduced was studied. The drive current density increases as expected, indicating the creation of operational transistors with recognizable properties.

  3. Numerical calibration of the stable poisson loaded specimen

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Calomino, Anthony M.; Brewer, Dave N.

    1992-01-01

    An analytical calibration of the Stable Poisson Loaded (SPL) specimen is presented. The specimen configuration is similar to the ASTM E-561 compact-tension specimen with displacement controlled wedge loading used for R-Curve determination. The crack mouth opening displacements (CMOD's) are produced by the diametral expansion of an axially compressed cylindrical pin located in the wake of a machined notch. Due to the unusual loading configuration, a three-dimensional finite element analysis was performed with gap elements simulating the contact between the pin and specimen. In this report, stress intensity factors, CMOD's, and crack displacement profiles are reported for different crack lengths and different contacting conditions. It was concluded that the computed stress intensity factor decreases sharply with increasing crack length, thus making the SPL specimen configuration attractive for fracture testing of brittle, high modulus materials.

  4. Analytical stress intensity solution for the Stable Poisson Loaded specimen

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Calomino, Anthony M.; Brewer, David N.

    1993-01-01

    An analytical calibration of the Stable Poisson Loaded (SPL) specimen is presented. The specimen configuration is similar to the ASTM E-561 compact-tension specimen with displacement controlled wedge loading used for R-curve determination. The crack mouth opening displacements (CMODs) are produced by the diametral expansion of an axially compressed cylindrical pin located in the wake of a machined notch. Due to the unusual loading configuration, a three-dimensional finite element analysis was performed with gap elements simulating the contact between the pin and specimen. In this report, stress intensity factors, CMODs, and crack displacement profiles, are reported for different crack lengths and different contacting conditions. It was concluded that the computed stress intensity factor decreases sharply with increasing crack length thus making the SPL specimen configuration attractive for fracture testing of brittle, high modulus materials.

  5. The Role of Crack Formation in Chevron-Notched Four-Point Bend Specimens

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony M.; Ghosn, Louis J.

    1994-01-01

    The failure sequence following crack formation in a chevron-notched four-point bend 1 specimen is examined in a parametric study using the Bluhm slice synthesis model. Premature failure resulting from crack formation forces which exceed those required to propagate a crack beyond alpha (min) is examined together with the critical crack length and critical crack front length. An energy based approach is used to establish factors which forecast the tendency of such premature failure due to crack formation for any selected chevron-notched geometry. A comparative study reveals that, for constant values of alpha (1) and alpha (0), the dimensionless beam compliance and stress intensity factor are essentially independent of specimen width and thickness. The chevron tip position, alpha (0) has its primary effect on the force required to initiate a sharp crack. Small values for alpha (0) maximize the stable region length, however, the premature failure tendency is also high for smaller alpha (0) values. Improvements in premature failure resistance can be realized for larger values of alpha (0) with only a minor reduction in the stable region length. The stable region length is also maximized for larger chevron based positions, alpha (1) but the chance for premature failure is also raised. Smaller base positions improve the premature failure resistance with only minor decreases in the stable region length. Chevron geometries having a good balance of premature failure resistance, stable region length, and crack front length are 0.20 less than or equal to alpha (0) is less than or equal to 0.30 and 0.70 is less than or equal to alpha (1) is less than or equal to 0.80.

  6. The Growth of Small Corrosion Fatigue Cracks in Alloy 7075

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.

    2015-01-01

    The corrosion fatigue crack growth characteristics of small (greater than 35 micrometers) surface and corner cracks in aluminum alloy 7075 is established. The early stage of crack growth is studied by performing in situ long focal length microscope (500×) crack length measurements in laboratory air and 1% sodium chloride (NaCl) environments. To quantify the "small crack effect" in the corrosive environment, the corrosion fatigue crack propagation behavior of small cracks is compared to long through-the-thickness cracks grown under identical experimental conditions. In salt water, long crack constant K(sub max) growth rates are similar to small crack da/dN.

  7. The Growth of Small Corrosion Fatigue Cracks in Alloy 7075

    NASA Technical Reports Server (NTRS)

    Piascik, R. S.

    2001-01-01

    The corrosion fatigue crack growth characteristics of small (less than 35 microns) surface and corner cracks in aluminum alloy 7075 is established. The early stage of crack growth is studied by performing in situ long focal length microscope (500X) crack length measurements in laboratory air and 1% NaCl environments. To quantify the "small crack effect" in the corrosive environment, the corrosion fatigue crack propagation behavior of small cracks is compared to long through-the-thickness cracks grown under identical experimental conditions. In salt water, long crack constant K(sub max) growth rates are similar to small crack da/dN.

  8. Fatigue crack sizing in rail steel using crack closure-induced acoustic emission waves

    NASA Astrophysics Data System (ADS)

    Li, Dan; Kuang, Kevin Sze Chiang; Ghee Koh, Chan

    2017-06-01

    The acoustic emission (AE) technique is a promising approach for detecting and locating fatigue cracks in metallic structures such as rail tracks. However, it is still a challenge to quantify the crack size accurately using this technique. AE waves can be generated by either crack propagation (CP) or crack closure (CC) processes and classification of these two types of AE waves is necessary to obtain more reliable crack sizing results. As the pre-processing step, an index based on wavelet power (WP) of AE signal is initially established in this paper in order to distinguish between the CC-induced AE waves and their CP-induced counterparts. Here, information embedded within the AE signal was used to perform the AE wave classification, which is preferred to the use of real-time load information, typically adopted in other studies. With the proposed approach, it renders the AE technique more amenable to practical implementation. Following the AE wave classification, a novel method to quantify the fatigue crack length was developed by taking advantage of the CC-induced AE waves, the count rate of which was observed to be positively correlated with the crack length. The crack length was subsequently determined using an empirical model derived from the AE data acquired during the fatigue tests of the rail steel specimens. The performance of the proposed method was validated by experimental data and compared with that of the traditional crack sizing method, which is based on CP-induced AE waves. As a significant advantage over other AE crack sizing methods, the proposed novel method is able to estimate the crack length without prior knowledge of the initial crack length, integration of AE data or real-time load amplitude. It is thus applicable to the health monitoring of both new and existing structures.

  9. Experimental research on crack detection in pipes based on Fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Cai, Lin; Wei, Qin; Yu, Zhaoxiang; Lu, Ming; Li, Xiaowei

    2017-11-01

    Crack is one of the primary faults in pipes, and its detection is a significant measure to ensure the safety of pipes. The feasibility of circumferential crack detection in pipes on the basis of fiber Bragg grating (FBG) detection technology is discussed through experimental research. Crack is formed on the surface of a metal pipe, the circumferential length of crack is one index of the damage degree. In the experiments, both electronic vibration sensor and FBG strain sensors are used to collect response signals of impulse excitation in different damage degrees. Furthermore, the characteristics of damage detection are analysed in both frequency domain and time domain. First, the natural frequencies are compared between practical and simulated results in different damage degrees of pipes; second, the multi-fractal detrended fluctuation analysis (MFDFA) is applied to acquire the singular values α as the characteristic parameter. The experimental results indicate that FBG strain sensors can perceive the impulse response of the pipe and change in different damage degrees effectively, like the vibration sensor. And both the natural frequency and the singular value are sensitive to increasing length of crack, they are able to distinguish different degrees of crack on the pipe.

  10. Unidirectionally oriented nanocracks on metal surfaces irradiated by low-fluence femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Shimizu, Masahiro; Hashida, Masaki; Miyasaka, Yasuhiro; Tokita, Shigeki; Sakabe, Shuji

    2013-10-01

    We have investigated the origin of nanostructures formed on metals by low-fluence femtosecond laser pulses. Nanoscale cracks oriented perpendicular to the incident laser polarization are induced on tungsten, molybdenum, and copper targets. The number density of the cracks increases with the number of pulses, but crack length plateaus. Electromagnetic field simulation by the finite-difference time-domain method indicates that electric field is locally enhanced along the direction perpendicular to the incident laser polarization around a nanoscale hole on the metal surface. Crack formation originates from the hole.

  11. Combined mode I stress intensity factors of slanted cracks

    NASA Astrophysics Data System (ADS)

    Ismail, A. E.; Rahman, M. Q. Abdul; Ghazali, M. Z. Mohd; Zulafif Rahim, M.; Rasidi Ibrahim, M.; Fahrul Hassan, Mohd; Nor, Nik Hisyamudin Muhd; Ariffin, A. M. T.; Zaini Yunos, Muhamad

    2017-08-01

    The solutions of stress intensity factors (SIFs) for slanted cracks in plain strain plate are hard to find in open literature. There are some previous solutions of SIFs available, however the studies are not completed except for the case of plain stress. The slanted cracks are modelled numerically using ANSYS finite element program. There are ten slanted angles and seven relative crack depths are used and the plate contains cracks which is assumed to fulfil the plain strain condition. The plate is then stressed under tension and bending loading and the SIFs are determined according to the displacement extrapolation method. Based on the numerical analysis, both slanted angles and relative crack length, a/L played an important role in determining the modes I and II SIFs. As expected the SIFs increased when a/L is increased. Under tension force, the introduction of slanted angles increased the SIFs. Further increment of angles reduced the SIFs however they are still higher than the SIFs obtained using normal cracks. Under bending moment, the present of slanted angles are significantly reduced the SIFs compared with the normal cracks. Under similar loading, mode II SIFs increased as function of a/L and slanted angles where increasing such parameters increasing the mode II SIFs.

  12. Performance of Chevron-notch short bar specimen in determining the fracture toughness of silicon nitride and aluminum oxide

    NASA Technical Reports Server (NTRS)

    Munz, D.; Bubsey, R. T.; Shannon, J. L., Jr.

    1980-01-01

    Ease of preparation and testing are advantages unique to the chevron-notch specimen used for the determination of the plane strain fracture toughness of extremely brittle materials. During testing, a crack develops at the notch tip and extends stably as the load is increased. For a given specimen and notch configuration, maximum load always occurs at the same relative crack length independent of the material. Fracture toughness is determined from the maximum load with no need for crack length measurement. Chevron notch acuity is relatively unimportant since a crack is produced during specimen loading. In this paper, the authors use their previously determined stress intensity factor relationship for the chevron-notch short bar specimen to examine the performance of that specimen in determining the plane strain fracture toughness of silicon nitride and aluminum oxide.

  13. How do subcritical cracking rates and styles influence rock erosion? A test case from the Blue Ridge Mountains of Virginia.

    NASA Astrophysics Data System (ADS)

    Eppes, M. C.; Hancock, G. S.; Dewers, T. A.; Chen, X.; Eichhubl, P.

    2017-12-01

    There is a disconnect between measured rates of rock erosion and regolith production and our understanding of the factors and processes that drive them. Here we examine the mechanical weathering (cracking) characteristics of natural, bare bedrock outcrops characterized by 10Be derived erosion rates that vary from 2 to 40 m/my in the Blue Ridge Mountains, VA. Observed erosion rate variance generally correlates with rock type; we seek to characterize and quantify to what extent the mechanical weathering properties of the different rock types drive erosion rates. We assert that subcritical cracking constitutes the primary mechanism by which the outcrops increase their porosity and subsequently weather and erode. We therefore hypothesize that rock parameters that control rates and styles of subcritical cracking set the outcrop erosion rates. For each outcrop, we measured crack characteristics along transects: for every crack >2 cm length, we measured its length, width, orientation, and weathering characteristics (rounded vs sharp edges); and we measured the thickness of all `steps' (spallation remnants) encountered in the transects. For most outcrops, we collected surface samples in order to characterize their mineralogy and microcracking characteristics through thin section analysis. For each rock type, we collected samples for which we measured fracture toughness, as well as the subcritical crack growth index under different moisture conditions. Preliminary analysis of the field crack data indicates that each rock type (granite, sandstone, quartzite) is characterized by unique macro- and micro-scale crack characteristics consistent with known generic subcritical cracking parameters for those rocks. Crack density and length correlate with erosion rates in faster eroding rock types, but not slowly eroding ones. Overall, we hope these data will help to shed light on the driving and limiting factors for the mechanical production of porosity in rock at and near Earth's surface.

  14. Numerical simulations of electric potential field for alternating current potential drop associated with surface cracks in low-alloy steel nuclear material

    NASA Astrophysics Data System (ADS)

    Yeh, Chun-Ping; Huang, Jiunn-Yuan

    2018-04-01

    Low-alloy steels used as structural materials in nuclear power plants are subjected to cyclic stresses during power plant operations. As a result, cracks may develop and propagate through the material. The alternating current potential drop technique is used to measure the lengths of cracks in metallic components. The depth of the penetration of the alternating current is assumed to be small compared to the crack length. This assumption allows the adoption of the unfolding technique to simplify the problem to a surface Laplacian field. The numerical modelling of the electric potential and current density distribution prediction model for a compact tension specimen and the unfolded crack model are presented in this paper. The goal of this work is to conduct numerical simulations to reduce deviations occurring in the crack length measurements. Numerical simulations were conducted on AISI 4340 low-alloy steel with different crack lengths to evaluate the electric potential distribution. From the simulated results, an optimised position for voltage measurements in the crack region was proposed.

  15. Non-local damage rheology and size effect

    NASA Astrophysics Data System (ADS)

    Lyakhovsky, V.

    2011-12-01

    We study scaling relations controlling the onset of transiently-accelerating fracturing and transition to dynamic rupture propagation in a non-local damage rheology model. The size effect is caused principally by growth of a fracture process zone, involving stress redistribution and energy release associated with a large fracture. This implies that rupture nucleation and transition to dynamic propagation are inherently scale-dependent processes. Linear elastic fracture mechanics (LEFM) and local damage mechanics are formulated in terms of dimensionless strain components and thus do not allow introducing any space scaling, except linear relations between fracture length and displacements. Generalization of Weibull theory provides scaling relations between stress and crack length at the onset of failure. A powerful extension of the LEFM formulation is the displacement-weakening model which postulates that yielding is complete when the crack wall displacement exceeds some critical value or slip-weakening distance Dc at which a transition to kinetic friction is complete. Scaling relations controlling the transition to dynamic rupture propagation in slip-weakening formulation are widely accepted in earthquake physics. Strong micro-crack interaction in a process zone may be accounted for by adopting either integral or gradient type non-local damage models. We formulate a gradient-type model with free energy depending on the scalar damage parameter and its spatial derivative. The damage-gradient term leads to structural stresses in the constitutive stress-strain relations and a damage diffusion term in the kinetic equation for damage evolution. The damage diffusion eliminates the singular localization predicted by local models. The finite width of the localization zone provides a fundamental length scale that allows numerical simulations with the model to achieve the continuum limit. A diffusive term in the damage evolution gives rise to additional damage diffusive time scale associated with the structural length scale. The ratio between two time scales associated with damage accumulation and diffusion, the damage diffusivity ratio, reflects the role of the diffusion-controlled delocalization. We demonstrate that localized fracturing occurs at the damage diffusivity ratio below certain critical value leading to a linear scaling between stress and crack length compatible with size effect for failures at crack initiation. A subseuqent quasi-static fracture growth is self-similar with increasing size of the process zone proportional to the fracture length. At a certain stage, controlled by dynamic weakening, the self-similarity breaks down and crack velocity significantly deviates from that predicted by the quasi-static regime, the size of the process zone decreases, and the rate of crack growth ceases to be controlled by the rate of damage increase. Furthermore, the crack speed approaches that predicted by the elasto-dynamic equation. The non-local damage rheology model predicts that the nucleation size of the dynamic fracture scales with fault zone thickness distance of the stress interraction.

  16. Multiple cracking of unidirectional and cross-ply ceramic matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, W.S.; Chou, T.W.

    1995-03-01

    This paper examines the multiple cracking behavior of unidirectional and cross-ply ceramic matrix composites. For unidirectional composites, a model of concentric cylinders with finite crack spacing and debonding length is introduced. Stresses in the fiber and matrix are found and then applied to predict the composite moduli. Using an energy balance method, critical stresses for matrix cracking initiation are predicted. Effects of interfacial shear stress, debonding length and bonding energy on the critical stress are studied. All the three composite systems examined show that the critical stress for the completely debonded case is lower than that for the perfectly bondedmore » case. For crossply composites, an extensive study has been made for the transverse cracking in 90{degree} plies and the matrix cracking in 0{degree} plies. One transverse cracking and four matrix cracking modes are studied, and closed-form solutions of the critical stresses are obtained. The results indicate that the case of combined matrix and transverse crackings with associated fiber/matrix interfacial sliding in the 0{degree} plies gives the lowest critical stress for matrix cracking. The theoretical predictions are compared with experimental data of SiC/CAS cross-ply composites; both results demonstrated that an increase in the transverse ply thickness reduces the critical stress for matrix cracking in the longitudinal plies. The effects of fiber volume fraction and fiber modulus on the critical stress have been quantified. Thermal residual stresses are included in the analysis.« less

  17. Correlation of eddy current responses between fatigue cracks and electrical-discharge-machining notches

    NASA Astrophysics Data System (ADS)

    Seo, Sukho; Choi, Gyudong; Eom, Tae Jhoun; Lee, Bokwon; Lee, Soo Yeol

    2017-07-01

    The eddy current responses of Electrical Discharge Machining (EDM) notches and fatigue cracks are directly compared to verify the reliability of eddy current inspection. The fatigue crack growth tests using a constant load range control mode were conducted to obtain a variety of edge crack sizes, ranging from 0.9 to 6.6 mm for Al alloy and from 0.1 to 3 mm for Ti alloy. EDM notch specimens of Al and Ti alloys were accordingly prepared in lengths similar to that of the fatigued specimen. The crack length was determined by optical microscope and scanning electron microscope. The eddy current responses between the EDM and fatigued specimens with varying notch/crack length were examined using probe sensors at (100-500) kHz and (1-2) MHz for Al and Ti alloys, respectively. The results show a significant difference in the eddy current signal between the two specimens, based on the correlation between the eddy current response and notch/crack length. This suggests that eddy current inspection using the EDM reference specimen is inaccurate in determining the precise crack size, unless the eddy current response data base is obtained from a fatigue-cracked specimen.

  18. Back-Face Strain for Monitoring Stable Crack Extension in Precracked Flexure Specimens

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Ghosn, Louis J.

    2010-01-01

    Calibrations relating back-face strain to crack length in precracked flexure specimens were developed for different strain gage sizes. The functions were verified via experimental compliance measurements of notched and precracked ceramic beams. Good agreement between the functions and experiments occurred, and fracture toughness was calculated via several operational methods: maximum test load and optically measured precrack length; load at 2 percent crack extension and optical precrack length; maximum load and back-face strain crack length. All the methods gave vary comparable results. The initiation toughness, K(sub Ii) , was also estimated from the initial compliance and load.The results demonstrate that stability of precracked ceramics specimens tested in four-point flexure is a common occurrence, and that methods such as remotely-monitored load-point displacement are only adequate for detecting stable extension of relatively deep cracks.

  19. An Intelligent Sensor System for Monitoring Fatigue Damage in Welded Steel Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandes, B.; Gaydecki, P.; Burdekin, F. Michael

    A system for monitoring fatigue damage in steel components is described. The sensor, a thin steel sheet with a pre-crack in it, is attached to the component. Its crack length increases by fatigue in service and is recorded using a microcontroller. Measurement is accomplished using conductive tracks in a circuit whose output voltage changes when the crack propagates past a track. Data stored in memory can be remotely downloaded using Bluetooth{sup TM} technology to a PC.

  20. An Intelligent Sensor System for Monitoring Fatigue Damage in Welded Steel Components

    NASA Astrophysics Data System (ADS)

    Fernandes, B.; Gaydecki, P.; Burdekin, F. Michael

    2005-04-01

    A system for monitoring fatigue damage in steel components is described. The sensor, a thin steel sheet with a pre-crack in it, is attached to the component. Its crack length increases by fatigue in service and is recorded using a microcontroller. Measurement is accomplished using conductive tracks in a circuit whose output voltage changes when the crack propagates past a track. Data stored in memory can be remotely downloaded using Bluetooth™ technology to a PC.

  1. Influence of fatigue crack wake length and state of stress on crack closure

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Fisher, D. M.

    1986-01-01

    The location of crack closure with respect to crack wake and specimen thickness under different loading conditions was determined. The rate of increase of K sub CL in the crack wake was found to be significantly higher for plasticity induced closure in comparison to roughness induced closure. Roughness induced closure was uniform throughout the thickness of the specimen while plasticity induced closure levels were 50 percent higher in the near surface region than in the midthickness. The influence of state of stress on low-high load interaction effects was also examined. Load interaction effects differed depending upon the state of stress and were explained in terms of delta K sub eff.

  2. Influence of fatigue crack wake length and state of stress on crack closure

    NASA Technical Reports Server (NTRS)

    Telesman, Jack; Fisher, Douglas M.

    1988-01-01

    The location of crack closure with respect to crack wake and specimen thickness under different loading conditions was determined. The rate of increase of K sub CL in the crack wake was found to be significantly higher for plasticity induced closure in comparison to roughness induced closure. Roughness induced closure was uniform throughout the thickness of the specimen while plasticity induced closure levels were 50 percent higher in the near surface region than in the midthickness. The influence of state of stress on low-high load interaction effects was also examined. Load interaction effects differed depending upon the state of stress and were explained in terms of delta K sub eff.

  3. AE characteristic for monitoring of fatigue crack in steel bridge members

    NASA Astrophysics Data System (ADS)

    Yoon, Dong-Jin; Jung, Juong-Chae; Park, Philip; Lee, Seung-Seok

    2000-06-01

    Acoustic emission technique was employed for the monitoring of crack activity in both steel bridge members and laboratory specimen. Laboratory experiment was carried out to identify AE characteristics of fatigue cracks for compact tension specimen. The relationship between a stress intensity factor and AE signals activity as well as conventional AE parameter analysis was discussed. A field test was also conducted on a railway bridge, which contain several fatigue cracks. Crack activities were investigated while in service with strain measurement. From the results, in the laboratory tests, the features of three parameters such as the length of crack growth, the AE energy, and the cumulative AE events, showed the almost same trend in their increase as the number of fatigue cycle increased. From the comparisons of peak amplitude and AE energy with stress intensity factor, it was verified that the higher stress intensity factors generated AE signals with higher peak amplitude and a large number of AE counts. In the field test, real crack propagation signals were captured and the crack activity was verified in two cases.

  4. Fatigue crack growth at elevated temperature 316 stainless steel and H-13 steel

    NASA Technical Reports Server (NTRS)

    Chen, W. C.; Liu, H. W.

    1976-01-01

    Crack growths were measured at elevated temperatures under four types of loading: pp, pc, cp, and cc. In H-13 steel, all these four types of loading gave nearly the same crack growth rates, and the length of hold time had negligible effects. In AISI 316 stainless steel, the hold time effects on crack growth rate were negligible if the loading was tension-tension type; however, these effects were significant in reversed bending load, and the crack growth rates under these four types of loading varied considerably. Both tensile and compressive hold times caused increased crack growth rate, but the compressive hold period was more deleterious than the tensile one. Metallographic examination showed that all the crack paths under different types of loading were largely transgranular for both CTS tension-tension specimens and SEN reversed cantilever bending specimens. In addition, an electric potential technique was used to monitor crack growth at elevated temperature.

  5. Evaluation of enamel damages following orthodontic bracket debonding in fluorosed teeth bonded with adhesion promoter.

    PubMed

    Baherimoghadam, Tahreh; Akbarian, Sahar; Rasouli, Reza; Naseri, Navid

    2016-01-01

    To evaluate shear bond strength (SBS) of the orthodontic brackets bonded to fluorosed and nonfluorosed teeth using Light Bond with and without adhesion promoters and compare their enamel damages following debonding. In this study, 30 fluorosed (Thylstrup and Fejerskov Index = 4-5) and 30 nonfluorosed teeth were randomly distributed between two subgroups according to the bonding materials: Group 1, fluorosed teeth bonded with Light Bond; Group 2, fluorosed teeth bonded with adhesion promoters and Light Bond; Group 3, nonfluorosed teeth bonded with Light Bond; Group 4, nonfluorosed bonded with adhesion promoters and Light Bond. After bonding, the SBS of the brackets was tested with a universal testing machine. Stereomicroscopic evaluation was performed by unbiased stereology in all teeth to determine the amount of adhesive remnants and the number and length of enamel cracks before bonding and after debonding. The data were analyzed using two-way analysis of variance, Kruskal-Wallis, Wilcoxon Signed Rank, and Mann-Whitney test. While fluorosis reduced the SBS of orthodontic bracket (P = 0.017), Enhance Locus Ceruleus LC significantly increased the SBS of the orthodontic bracket in fluorosed and nonfluorosed teeth (P = 0.039). Significant increasing in the number and length of enamel crack after debonding was found in all four groups. There were no significant differences in the length of enamel crack increased after debonding among four groups (P = 0.768) while increasing in the number of enamel cracks after debonding was significantly different among the four groups (P = 0.023). Teeth in Group 2 showed the highest enamel damages among four groups following debonding. Adhesion promoters could improve the bond strength of orthodontic brackets, but conservative debonding methods for decreasing enamel damages would be necessary.

  6. Analysis of interface crack branching

    NASA Technical Reports Server (NTRS)

    Ballarini, R.; Mukai, D. J.; Miller, G. R.

    1989-01-01

    A solution is presented for the problem of a finite length crack branching off the interface between two bonded dissimilar isotropic materials. Results are presented in terms of the ratio of the energy release rate of a branched interface crack to the energy release rate of a straight interface crack with the same total length. It is found that this ratio reaches a maximum when the interface crack branches into the softer material. Longer branches tend to have smaller maximum energy release rate ratio angles indicating that all else being equal, a branch crack will tend to turn back parallel to the interface as it grows.

  7. Detection of Fatigue Crack in Basalt FRP Laminate Composite Pipe using Electrical Potential Change Method

    NASA Astrophysics Data System (ADS)

    Altabey, Wael A.; Noori, Mohammed

    2017-05-01

    Novel modulation electrical potential change (EPC) method for fatigue crack detection in a basalt fibre reinforced polymer (FRP) laminate composite pipe is carried out in this paper. The technique is applied to a laminate pipe with an embedded crack in three layers [0º/90º/0º]s. EPC is applied for evaluating the dielectric properties of basalt FRP pipe by using an electrical capacitance sensor (ECS) to discern damages in the pipe. Twelve electrodes are mounted on the outer surface of the pipe and the changes in the modulation dielectric properties of the piping system are analyzed to detect damages in the pipe. An embedded crack is created by a fatigue internal pressure test. The capacitance values, capacitance change and node potential distribution of ECS electrodes are calculated before and after crack initiates using a finite element method (FEM) by ANSYS and MATLAB, which are combined to simulate sensor characteristics and fatigue behaviour. The crack lengths of the basalt FRP are investigated for various number of cycles to failure for determining crack growth rate. Response surfaces are adopted as a tool for solving inverse problems to estimate crack lengths from the measured electric potential differences of all segments between electrodes to validate the FEM results. The results show that, the good convergence between the FEM and estimated results. Also the results of this study show that the electrical potential difference of the basalt FRP laminate increases during cyclic loading, caused by matrix cracking. The results indicate that the proposed method successfully provides fatigue crack detection for basalt FRP laminate composite pipes.

  8. Concrete Crack Identification Using a UAV Incorporating Hybrid Image Processing.

    PubMed

    Kim, Hyunjun; Lee, Junhwa; Ahn, Eunjong; Cho, Soojin; Shin, Myoungsu; Sim, Sung-Han

    2017-09-07

    Crack assessment is an essential process in the maintenance of concrete structures. In general, concrete cracks are inspected by manual visual observation of the surface, which is intrinsically subjective as it depends on the experience of inspectors. Further, it is time-consuming, expensive, and often unsafe when inaccessible structural members are to be assessed. Unmanned aerial vehicle (UAV) technologies combined with digital image processing have recently been applied to crack assessment to overcome the drawbacks of manual visual inspection. However, identification of crack information in terms of width and length has not been fully explored in the UAV-based applications, because of the absence of distance measurement and tailored image processing. This paper presents a crack identification strategy that combines hybrid image processing with UAV technology. Equipped with a camera, an ultrasonic displacement sensor, and a WiFi module, the system provides the image of cracks and the associated working distance from a target structure on demand. The obtained information is subsequently processed by hybrid image binarization to estimate the crack width accurately while minimizing the loss of the crack length information. The proposed system has shown to successfully measure cracks thicker than 0.1 mm with the maximum length estimation error of 7.3%.

  9. Fatigue Crack Prognostics by Optical Quantification of Defect Frequency

    NASA Astrophysics Data System (ADS)

    Chan, K. S.; Buckner, B. D.; Earthman, J. C.

    2018-01-01

    Defect frequency, a fatigue crack prognostics indicator, is defined as the number of microcracks per second detected using a laser beam that is scanned across a surface at a constant predetermined frequency. In the present article, a mechanistic approach was taken to develop a methodology for deducing crack length and crack growth information from defect frequency data generated from laser scanning measurements made on fatigued surfaces. The method was developed by considering a defect frequency vs fatigue cycle curve that comprised three regions: (i) a crack initiation regime of rising defect frequency, (ii) a plateau region of a relatively constant defect frequency, and (iii) a region of rapid rising defect frequency due to crack growth. Relations between defect frequency and fatigue cycle were developed for each of these three regions and utilized to deduce crack depth information from laser scanning data of 7075-T6 notched specimens. The proposed method was validated using experimental data of crack density and crack length data from the literature for a structural steel. The proposed approach was successful in predicting the length or depth of small fatigue cracks in notched 7075-T6 specimens and in smooth fatigue specimens of a structural steel.

  10. Solvent Assisted Delamination Crack Growth Behavior of Amorphous Thermoplastic Materials

    DTIC Science & Technology

    1989-02-01

    72CRD285. October 1972. 4. Standard Method of Test for Plane- Strain Fracture Toughness of Metallic Materials. 1988 Annual Book of ASTM Standards, Technical...intensity factor K I or the associated strain energy release rate, G I . ASTM compact tension test yields stress intensity factor, KI, via Equation 1...are such that a constant deadweight load results in increasing strain energy release rate with increasing crack length. Figure 3 shows the neat resin

  11. Automatic Detection and Evaluation of Solar Cell Micro-Cracks in Electroluminescence Images Using Matched Filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    A method for detecting micro-cracks in solar cells using two dimensional matched filters was developed, derived from the electroluminescence intensity profile of typical micro-cracks. We describe the image processing steps to obtain a binary map with the location of the micro-cracks. Finally, we show how to automatically estimate the total length of each micro-crack from these maps, and propose a method to identify severe types of micro-cracks, such as parallel, dendritic, and cracks with multiple orientations. With an optimized threshold parameter, the technique detects over 90 % of cracks larger than 3 cm in length. The method shows great potentialmore » for quantifying micro-crack damage after manufacturing or module transportation for the determination of a module quality criterion for cell cracking in photovoltaic modules.« less

  12. Buckling and postbuckling of size-dependent cracked microbeams based on a modified couple stress theory

    NASA Astrophysics Data System (ADS)

    Akbarzadeh Khorshidi, M.; Shariati, M.

    2017-07-01

    The elastic buckling analysis and the static postbuckling response of the Euler-Bernoulli microbeams containing an open edge crack are studied based on a modified couple stress theory. The cracked section is modeled by a massless elastic rotational spring. This model contains a material length scale parameter and can capture the size effect. The von Kármán nonlinearity is applied to display the postbuckling behavior. Analytical solutions of a critical buckling load and the postbuckling response are presented for simply supported cracked microbeams. This parametric study indicates the effects of the crack location, crack severity, and length scale parameter on the buckling and postbuckling behaviors of cracked microbeams.

  13. In silico simulation of liver crack detection using ultrasonic shear wave imaging.

    PubMed

    Nie, Erwei; Yu, Jiao; Dutta, Debaditya; Zhu, Yanying

    2018-05-16

    Liver trauma is an important source of morbidity and mortality worldwide. A timely detection and precise evaluation of traumatic liver injury and the bleeding site is necessary. There is a need to develop better imaging modalities of hepatic injuries to increase the sensitivity of ultrasonic imaging techniques for sites of hemorrhage caused by cracks. In this study, we conduct an in silico simulation of liver crack detection and delineation using an ultrasonic shear wave imaging (USWI) based method. We simulate the generation and propagation of the shear wave in a liver tissue medium having a crack using COMSOL. Ultrasound radio frequency (RF) signal synthesis and the two-dimensional speckle tracking algorithm are applied to simulate USWI in a medium with randomly distributed scatterers. Crack detection is performed using the directional filter and the edge detection algorithm rather than the conventional inversion algorithm. Cracks with varied sizes and locations are studied with our method and the crack localization results are compared with the given crack. Our pilot simulation study shows that, by using USWI combined with a directional filter cum edge detection technique, the near-end edge of the crack can be detected in all the three cracks that we studied. The detection errors are within 5%. For a crack of 1.6 mm thickness, little shear wave can pass through it and the far-end edge of the crack cannot be detected. The detected crack lengths using USWI are all slightly shorter than the actual crack length. The robustness of our method in detecting a straight crack, a curved crack and a subtle crack of 0.5 mm thickness is demonstrated. In this paper, we simulate the use of a USWI based method for the detection and delineation of the crack in liver. The in silico simulation helps to improve understanding and interpretation of USWI measurements in a physical scattered liver medium with a crack. This pilot study provides a basis for improved insights in future crack detection studies in a tissue phantom or liver.

  14. [The effect of size reduction of corn silage on feed intake, milk production and milk composition of cows].

    PubMed

    Preissinger, W; Schwarz, F J; Kirchgessner, M

    1998-01-01

    In three experiments (E1, E2, E3) maize silage of different physical structure and of different stage of maturity at harvest were fed to 24 (E1), 36 (E2) or 28 (E3) dairy cows. The cows were fed individually over an experimental period of five or six weeks. The maize silages had a mean DM content of 28% (E1), 32% (E2) or 36% (E3). At the stage of harvest, the stovers and the cobs had a mean DM content of < 22% (E1, E2) or 27% (E3), 40% (E1), 46% (E2) or 57% (E3), respectively. The maize was harvested with a chopping length of 4 and 8 mm (E1, E3) and of 6 and 8 mm (E2), without corn cracking (E1) or with and without corn cracking (E2, E3). The daily feed ration consisted of ad libitum offered maize silage, 1.7 kg DM hay, soya bean meal (E2, E3) and concentrate. The different chopping length of 4 mm, 6 mm or 8 mm had no effect on the maize silage intake in E1 and E2. In E3 the daily maize silage intake increased by about 1.2 kg DM per cow at a chopping length of 4 mm in comparison to 8 mm, whereas only the treatment with the combination of 4 mm chopping length and corn cracking showed a significant increase in DMI. The corn cracking improved the milk yield significantly (E2) or in a tendency (E3) at 2.0 kg (E2) or at 1.6 kg (E2), while the variation of chopping length had no effect on milk yield. The different physical structure did not influence the milk fat content with mean values of 4.65% (E1), 4.15% (E2) and 4.10% (E3), respectively. The milk protein content decreased in E2 feeding maize silage with a chopping length of 8 mm and corn cracking; but in E1 and E3 no effect was seen on protein content with mean values of 3.66% (E1) or 3.51% (E2).

  15. The growth of small corrosion fatigue cracks in alloy 2024

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Willard, Scott A.

    1993-01-01

    The corrosion fatigue crack growth characteristics of small surface and corner cracks in aluminum alloy 2024 is established. The damaging effect of salt water on the early stages of small crack growth is characterized by crack initiation at constituent particle pits, intergranular microcracking for a less than 100 micrometers, and transgranular small crack growth for a micrometer. In aqueous 1 percent NaCl and at a constant anodic potential of -700 mV(sub SCE), small cracks exhibit a factor of three increase in fatigue crack growth rates compared to laboratory air. Small cracks exhibit accelerated corrosion fatigue crack growth rates at low levels of delta-K (less than 1 MPa square root of m) below long crack delta-K (sub th). When exposed to Paris regime levels of crack tip stress intensity, small corrosion fatigue cracks exhibit growth rates similar to that observed for long cracks. Results suggest that crack closure effects influence the corrosion fatigue crack growth rates of small cracks (a less than or equal to 100 micrometers). This is evidenced by similar small and long crack growth behavior at various levels of R. Contrary to the corrosion fatigue characteristics of small cracks in high strength steels, no pronounced chemical crack length effect is observed for Al by 2024 exposed to salt water.

  16. Analysis of surface cracks in finite plates under tension or bending loads

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Raju, I. S.

    1979-01-01

    Stress-intensity factors calculated with a three-dimensional, finite-element analysis for shallow and deep semielliptical surface cracks in finite elastic isotropic plates subjected to tension or bending loads are presented. A wide range of configuration parameters was investigated. The ratio of crack depth to plate thickness ranged from 0.2 to 0.8 and the ratio of crack depth to crack length ranged from 0.2 to 2.0. The effects of plate width on stress-intensity variations along the crack front was also investigated. A wide-range equation for stress-intensity factors along the crack front as a function of crack depth, crack length, plate thickness, and plate width was developed for tension and bending loads. The equation was used to predict patterns of surface-crack growth under tension or bending fatigue loads. A modified form of the equation was also used to correlate surface-crack fracture data for a brittle epoxy material within + or - 10 percent for a wide range of crack shapes and crack sizes.

  17. Determination of leakage areas in nuclear piping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keim, E.

    1997-04-01

    For the design and operation of nuclear power plants the Leak-Before-Break (LBB) behavior of a piping component has to be shown. This means that the length of a crack resulting in a leak is smaller than the critical crack length and that the leak is safely detectable by a suitable monitoring system. The LBB-concept of Siemens/KWU is based on computer codes for the evaluation of critical crack lengths, crack openings, leakage areas and leakage rates, developed by Siemens/KWU. In the experience with the leak rate program is described while this paper deals with the computation of crack openings and leakagemore » areas of longitudinal and circumferential cracks by means of fracture mechanics. The leakage areas are determined by the integration of the crack openings along the crack front, considering plasticity and geometrical effects. They are evaluated with respect to minimum values for the design of leak detection systems, and maximum values for controlling jet and reaction forces. By means of fracture mechanics LBB for subcritical cracks has to be shown and the calculation of leakage areas is the basis for quantitatively determining the discharge rate of leaking subcritical through-wall cracks. The analytical approach and its validation will be presented for two examples of complex structures. The first one is a pipe branch containing a circumferential crack and the second one is a pipe bend with a longitudinal crack.« less

  18. Fatigue Crack Length Sizing Using a Novel Flexible Eddy Current Sensor Array.

    PubMed

    Xie, Ruifang; Chen, Dixiang; Pan, Mengchun; Tian, Wugang; Wu, Xuezhong; Zhou, Weihong; Tang, Ying

    2015-12-21

    The eddy current probe, which is flexible, array typed, highly sensitive and capable of quantitative inspection is one practical requirement in nondestructive testing and also a research hotspot. A novel flexible planar eddy current sensor array for the inspection of microcrack presentation in critical parts of airplanes is developed in this paper. Both exciting and sensing coils are etched on polyimide films using a flexible printed circuit board technique, thus conforming the sensor to complex geometric structures. In order to serve the needs of condition-based maintenance (CBM), the proposed sensor array is comprised of 64 elements. Its spatial resolution is only 0.8 mm, and it is not only sensitive to shallow microcracks, but also capable of sizing the length of fatigue cracks. The details and advantages of our sensor design are introduced. The working principal and the crack responses are analyzed by finite element simulation, with which a crack length sizing algorithm is proposed. Experiments based on standard specimens are implemented to verify the validity of our simulation and the efficiency of the crack length sizing algorithm. Experimental results show that the sensor array is sensitive to microcracks, and is capable of crack length sizing with an accuracy within ±0.2 mm.

  19. Fatigue Crack Length Sizing Using a Novel Flexible Eddy Current Sensor Array

    PubMed Central

    Xie, Ruifang; Chen, Dixiang; Pan, Mengchun; Tian, Wugang; Wu, Xuezhong; Zhou, Weihong; Tang, Ying

    2015-01-01

    The eddy current probe, which is flexible, array typed, highly sensitive and capable of quantitative inspection is one practical requirement in nondestructive testing and also a research hotspot. A novel flexible planar eddy current sensor array for the inspection of microcrack presentation in critical parts of airplanes is developed in this paper. Both exciting and sensing coils are etched on polyimide films using a flexible printed circuit board technique, thus conforming the sensor to complex geometric structures. In order to serve the needs of condition-based maintenance (CBM), the proposed sensor array is comprised of 64 elements. Its spatial resolution is only 0.8 mm, and it is not only sensitive to shallow microcracks, but also capable of sizing the length of fatigue cracks. The details and advantages of our sensor design are introduced. The working principal and the crack responses are analyzed by finite element simulation, with which a crack length sizing algorithm is proposed. Experiments based on standard specimens are implemented to verify the validity of our simulation and the efficiency of the crack length sizing algorithm. Experimental results show that the sensor array is sensitive to microcracks, and is capable of crack length sizing with an accuracy within ±0.2 mm. PMID:26703608

  20. Use of Marker Bands for Determination of Fatigue Crack Growth Rates and Crack Front Shapes in Pre-Corroded Coupons

    NASA Technical Reports Server (NTRS)

    Willard, S. A.

    1997-01-01

    Groups of striations called marker bands generated on a fatigue fracture surface can be used to mark the position of an advancing fatigue crack at known intervals. A technique has been developed that uses the distance between multiple sets of marker bands to obtain a vs. N, crack front shape, and fatigue crack growth rate data for small cracks. This technique is particularly usefull for specimens that require crack length measurements during testing that cannot be obtained because corrosion obscures the surface of the specimen. It is also useful for specimens with unusual or non-symmetric shapes where it is difficult to obtain accurate crack lengths using traditional methods such as compliance or electric potential difference in the early stages of testing.

  1. The Statistical Nature of Fatigue Crack Propagation

    DTIC Science & Technology

    1977-03-01

    LEVEL x - V AFFDL-TRt-T843 r THE STATISTICAL NATURE OF b FATIGUE CRACK PROPAGATION D. A. VIRKLER B. M. HILLBERR Y LL= P. K. GOEL C* SCHOOL...function of crack length was best represented by the three-parameter log-normal distribution. Six growth rate calculation methods were investigated and the...dN, which varied moderately as a function of crack length, replicate a vs. N data were predicted This predicted data reproduced the mean behavior but

  2. Fracture mechanics modeling of popping event during daughter cell separation.

    PubMed

    Jiang, Yuxuan; Liang, Xudong; Guo, Ming; Cao, Yanping; Cai, Shengqiang

    2018-05-10

    Most bacteria cells divide by binary fission which is part of a bacteria cell cycle and requires tight regulations and precise coordination. Fast separation of Staphylococcus Aureus (S. Aureus) daughter cells, named as popping event, has been observed in recent experiments. The popping event was proposed to be driven by mechanical crack propagation in the peripheral ring which connected two daughter cells before their separation. It has also been shown that after the fast separation, a small portion of the peripheral ring was left as a hinge. In the article, we develop a fracture mechanics model for the crack growth in the peripheral ring during S. Aureus daughter cell separation. In particular, using finite element analysis, we calculate the energy release rate associated with the crack growth in the peripheral ring, when daughter cells are inflated by a uniform turgor pressure inside. Our results show that with a fixed inflation of daughter cells, the energy release rate depends on the crack length non-monotonically. The energy release rate reaches a maximum value for a crack of an intermediate length. The non-monotonic relationship between the energy release rate and crack length clearly indicates that the crack propagation in the peripheral ring can be unstable. The computed energy release rate as a function of crack length can also be used to explain the existence of a small portion of peripheral ring remained as hinge after the popping event.

  3. Concrete Crack Identification Using a UAV Incorporating Hybrid Image Processing

    PubMed Central

    Lee, Junhwa; Ahn, Eunjong; Cho, Soojin; Shin, Myoungsu

    2017-01-01

    Crack assessment is an essential process in the maintenance of concrete structures. In general, concrete cracks are inspected by manual visual observation of the surface, which is intrinsically subjective as it depends on the experience of inspectors. Further, it is time-consuming, expensive, and often unsafe when inaccessible structural members are to be assessed. Unmanned aerial vehicle (UAV) technologies combined with digital image processing have recently been applied to crack assessment to overcome the drawbacks of manual visual inspection. However, identification of crack information in terms of width and length has not been fully explored in the UAV-based applications, because of the absence of distance measurement and tailored image processing. This paper presents a crack identification strategy that combines hybrid image processing with UAV technology. Equipped with a camera, an ultrasonic displacement sensor, and a WiFi module, the system provides the image of cracks and the associated working distance from a target structure on demand. The obtained information is subsequently processed by hybrid image binarization to estimate the crack width accurately while minimizing the loss of the crack length information. The proposed system has shown to successfully measure cracks thicker than 0.1 mm with the maximum length estimation error of 7.3%. PMID:28880254

  4. Crack Initiation and Growth Behavior at Corrosion Pit in 2024-T3 Aluminum Alloy

    DTIC Science & Technology

    2014-09-01

    63 Figure B.1: The crack length vs. number of cycles during fatigue testing for the 2AI-01 specimen...number of cycles during fatigue testing for the the 2AI- 02 specimen...64 Figure B.3: The crack length vs. number of cycles during fatigue testing for the 2Sl-01 specimen

  5. Mixed-mode fatigue fracture of adhesive joints in harsh environments and nonlinear viscoelastic modeling of the adhesive

    NASA Astrophysics Data System (ADS)

    Arzoumanidis, Alexis Gerasimos

    A four point bend, mixed-mode, reinforced, cracked lap shear specimen experimentally simulated adhesive joints between load bearing composite parts in automotive components. The experiments accounted for fatigue, solvent and temperature effects on a swirled glass fiber composite adherend/urethane adhesive system. Crack length measurements based on compliance facilitated determination of da/dN curves. A digital image processing technique was also utilized to monitor crack growth from in situ images of the side of the specimen. Linear elastic fracture mechanics and finite elements were used to determine energy release rate and mode-mix as a function of crack length for this specimen. Experiments were conducted in air and in a salt water bath at 10, 26 and 90°C. Joints tested in the solvent were fully saturated. In air, both increasing and decreasing temperature relative to 26°C accelerated crack growth rates. In salt water, crack growth rates increased with increasing temperature. Threshold energy release rate is shown to be the most appropriate design criteria for joints of this system. In addition, path of the crack is discussed and fracture surfaces are examined on three length scales. Three linear viscoelastic properties were measured for the neat urethane adhesive. Dynamic tensile compliance (D*) was found using a novel extensometer and results were considerably more accurate and precise than standard DMTA testing. Dynamic shear compliance (J*) was determined using an Arcan specimen. Dynamic Poisson's ratio (nu*) was extracted from strain gage data analyzed to include gage reinforcement. Experiments spanned three frequency decades and isothermal data was shifted by time-temperature superposition to create master curves spanning thirty decades. Master curves were fit to time domain Prony series. Shear compliance inferred from D* and nu* compared well with measured J*, forming a basis for finding the complete time dependent material property matrix for this isotropic material. A constitutive model is introduced which replaces time with internal energy in time-temperature superposition. Internal energy for mechanical loading was calculated from stress history and time domain Prony series representation of compliance. The model also included pressure and volume effects. Ramp loading experiments conducted at strain rates spanning three decades were effectively predicted, but unloading predictions were poor.

  6. Salinity effects on the dynamics and patterns of desiccation cracks

    NASA Astrophysics Data System (ADS)

    Shokri, N.; Zhou, P.

    2012-12-01

    Cracking arising from desiccation is a ubiquitous phenomenon encountered in various industrial and geo-environmental applications including drying of clayey soil, cement, ceramics, gels, and many more colloidal suspensions. Presence of cracks in muddy sediments modifies the characteristics of the medium such as pore structure, porosity, and permeability which in turn influence various flow and transport processes. Thus it remains a topic of great interest in many disciplines to describe the dynamics of desiccation cracking under various boundary conditions. To this end, we conducted a comprehensive study to investigate effects of NaCl concentrations on cracking dynamics and patterns during desiccation of Bentonite. Mixtures of Bentonite and NaCl solutions were prepared with NaCl concentration varying from 2 to 10 percent in 0.5 percent increment (totally 17 configurations). The slurry was placed in a Petri dish mounted on a digital balance to record the evaporation dynamics. The atmospheric conditions were kept constant using an environmental chamber. An automatic camera was used to record the dynamics of macro-cracks (mm scale) at the surface of desiccating clay each minute. The obtained results illustrate the significant effects of salt concentration on the initiation, propagation, morphology and general dynamics of macro-cracks. We found that higher salt concentrations results in larger macro cracks' lengths attributed to the effects of NaCl on compressing the electric double layer of particles at increasing electrolyte concentrations which reduce considerably the repulsive forces among the particles and causing instability of the slurry and flocculation of the colloidal particles. Rheological measurements by means of a stress controlled rheometer revealed that the yield stress of the slurry decreases as NaCl concentration increases which may indicate aggregation of larger units in the slurry as a result of flocculation causing larger cracks' lengths due to drying. At the end of each round of the experiment, a detailed visualization was conducted using Scanning Electron Microscopy to investigate the patterns and morphology of cracks at micro-scale as influenced by the salt concentration. Our results provide new insights and finding about the effects of salt concentrations on desiccation cracks at different scales ranging from a few mm to few microns.

  7. Closure of fatigue cracks at high strains

    NASA Technical Reports Server (NTRS)

    Iyyer, N. S.; Dowling, N. E.

    1985-01-01

    Experiments were conducted on smooth specimens to study the closure behavior of short cracks at high cyclic strains under completely reversed cycling. Testing procedures and methodology, and closure measurement techniques, are described in detail. The strain levels chosen for the study cover from predominantly elastic to grossly plastic strains. Crack closure measurements are made at different crack lengths. The study reveals that, at high strains, cracks close only as the lowest stress level in the cycle is approached. The crack opening is observed to occur in the compressive part of the loading cycle. The applied stress needed to open a short crack under high strain is found to be less than for cracks under small scale yielding. For increased plastic deformations, the value of sigma sub op/sigma sub max is observed to decrease and approaches the value of R. Comparison of the experimental results with existing analysis is made and indicates the limitations of the small scale yielding approach where gross plastic deformation behavior occurs.

  8. Dynamic toughness in elastic nonlinear viscous solids

    NASA Astrophysics Data System (ADS)

    Tang, S.; Guo, T. F.; Cheng, L.

    2009-02-01

    This work addresses the interrelationship among dissipative mechanisms—material separation in the fracture process zone (FPZ), nonelastic deformation in the surrounding background material and kinetic energy—and how they affect the macroscopic dynamic fracture toughness as well as the limiting crack speed in strain rate sensitive materials. To this end, a micromechanics-based model for void growth in a nonlinear viscous solid is incorporated into a microporous strip of cell elements that forms the FPZ. The latter is surrounded by background material described by conventional constitutive relations. In the first part of the paper, the background material is assumed to be purely elastic. Here, the computed dynamic fracture toughness is a convex function of crack velocity. In the second part, the background material as well as the FPZ are described by similar rate-sensitivity parameters. Voids grow in the strain rate strengthened FPZ as the crack velocity increases. Consequently, the work of separation increases. By contrast, the inelastic dissipation in the background material appears to be a concave function of crack velocity. At the lower crack velocity regime, where dissipation in the background material is dominant, toughness decreases as crack velocity increases. At high crack velocities, inelastic deformation enhanced by the inertial force can cause a sharp increase in toughness. Here, the computed toughness increases rapidly with crack velocity. There exist regimes where the toughness is a non-monotonic function of the crack velocity. Two length scales—the width of the FPZ and the ratio of the shear wave speed to the reference strain rate—can be shown to strongly affect the dynamic fracture toughness. Our computational simulations can predict experimental data for fracture toughness vs. crack velocity reported in several studies for amorphous polymeric materials.

  9. Stress-intensity factors and crack-opening displacements for round compact specimens. [fracture toughness of metallic materials

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1979-01-01

    A two dimensional, boundary collocation stress analysis was used to analyze various round compact specimens. The influence of the round external boundary and of pin-loaded holes on stress intensity factors and crack opening displacements was determined as a function of crack-length-to-specimen-width ratios. A wide-range equation for the stress intensity factors was developed. Equations for crack-surface displacements and load-point displacements were also developed. In addition, stress intensity factors were calculated from compliance methods to demonstrate that load-displacement records must be made at the loading points and not along the crack line for crack-length-to-specimen-width ratios less than about 0.4.

  10. Amplitude-independent flaw length determination using differential eddy current

    NASA Astrophysics Data System (ADS)

    Shell, E.

    2013-01-01

    Military engine component manufacturers typically specify the eddy current (EC) inspection requirements as a crack length or depth with the assumption that the cracks in both the test specimens and inspected component are of a similar fixed aspect ratio. However, differential EC response amplitude is dependent on the area of the crack face, not the length or depth. Additionally, due to complex stresses, in-service cracks do not always grow in the assumed manner. It would be advantageous to use more of the information contained in the EC data to better determine the full profile of cracks independent of the fixed aspect ratio amplitude response curve. A specimen with narrow width notches is used to mimic cracks of varying aspect ratios in a controllable manner. The specimen notches have aspect ratios that vary from 1:1 to 10:1. Analysis routines have been developed using the shape of the EC response signals that can determine the length of a surface flaw of common orientations without use of the amplitude of the signal or any supporting traditional probability of detection basis. Combined with the relationship between signal amplitude and area, the depth of the flaw can also be calculated.

  11. A risk assessment method for multi-site damage

    NASA Astrophysics Data System (ADS)

    Millwater, Harry Russell, Jr.

    This research focused on developing probabilistic methods suitable for computing small probabilities of failure, e.g., 10sp{-6}, of structures subject to multi-site damage (MSD). MSD is defined as the simultaneous development of fatigue cracks at multiple sites in the same structural element such that the fatigue cracks may coalesce to form one large crack. MSD is modeled as an array of collinear cracks with random initial crack lengths with the centers of the initial cracks spaced uniformly apart. The data used was chosen to be representative of aluminum structures. The structure is considered failed whenever any two adjacent cracks link up. A fatigue computer model is developed that can accurately and efficiently grow a collinear array of arbitrary length cracks from initial size until failure. An algorithm is developed to compute the stress intensity factors of all cracks considering all interaction effects. The probability of failure of two to 100 cracks is studied. Lower bounds on the probability of failure are developed based upon the probability of the largest crack exceeding a critical crack size. The critical crack size is based on the initial crack size that will grow across the ligament when the neighboring crack has zero length. The probability is evaluated using extreme value theory. An upper bound is based on the probability of the maximum sum of initial cracks being greater than a critical crack size. A weakest link sampling approach is developed that can accurately and efficiently compute small probabilities of failure. This methodology is based on predicting the weakest link, i.e., the two cracks to link up first, for a realization of initial crack sizes, and computing the cycles-to-failure using these two cracks. Criteria to determine the weakest link are discussed. Probability results using the weakest link sampling method are compared to Monte Carlo-based benchmark results. The results indicate that very small probabilities can be computed accurately in a few minutes using a Hewlett-Packard workstation.

  12. Analytical Modeling of Pressure Wall Hole Size and Maximum Tip-to-Tip Crack Length for Perforating Normal and Oblique Orbital Debris Impacts

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Mohamed, Essam

    1997-01-01

    This report presents the results of a study whose objective was to develop first-principles-based models of hole size and maximum tip-to-tip crack length for a spacecraft module pressure wall that has been perforated in an orbital debris particle impact. The hole size and crack length models are developed by sequentially characterizing the phenomena comprising the orbital debris impact event, including the initial impact, the creation and motion of a debris cloud within the dual-wall system, the impact of the debris cloud on the pressure wall, the deformation of the pressure wall due to debris cloud impact loading prior to crack formation, pressure wall crack initiation, propagation, and arrest, and finally pressure wall deformation following crack initiation and growth. The model development has been accomplished through the application of elementary shock physics and thermodynamic theory, as well as the principles of mass, momentum, and energy conservation. The predictions of the model developed herein are compared against the predictions of empirically-based equations for hole diameters and maximum tip-to-tip crack length for three International Space Station wall configurations. The ISS wall systems considered are the baseline U.S. Lab Cylinder, the enhanced U.S. Lab Cylinder, and the U.S. Lab Endcone. The empirical predictor equations were derived from experimentally obtained hole diameters and crack length data. The original model predictions did not compare favorably with the experimental data, especially for cases in which pressure wall petalling did not occur. Several modifications were made to the original model to bring its predictions closer in line with the experimental results. Following the adjustment of several empirical constants, the predictions of the modified analytical model were in much closer agreement with the experimental results.

  13. Calculation of contraction stresses in dental composites by analysis of crack propagation in the matrix surrounding a cavity.

    PubMed

    Yamamoto, Takatsugu; Ferracane, Jack L; Sakaguchi, Ronald L; Swain, Michael V

    2009-04-01

    Polymerization contraction of dental composite produces a stress field in the bonded surrounding substrate that may be capable of propagating cracks from pre-existing flaws. The objectives of this study were to assess the extent of crack propagation from flaws in the surrounding ceramic substrate caused by composite contraction stresses, and to propose a method to calculate the contraction stress in the ceramic using indentation fracture. Initial cracks were introduced with a Vickers indenter near a cylindrical hole drilled into a glass-ceramic simulating enamel. Lengths of the radial indentation cracks were measured. Three composites having different contraction stresses were cured within the hole using one- or two-step light-activation methods and the crack lengths were measured. The contraction stress in the ceramic was calculated from the crack length and the fracture toughness of the glass-ceramic. Interfacial gaps between the composite and the ceramic were expressed as the ratio of the gap length to the hole perimeter, as well as the maximum gap width. All groups revealed crack propagation and the formation of contraction gaps. The calculated contraction stresses ranged from 4.2 MPa to 7.0 MPa. There was no correlation between the stress values and the contraction gaps. This method for calculating the stresses produced by composites is a relatively simple technique requiring a conventional hardness tester. The method can investigate two clinical phenomena that may occur during the placement of composite restorations, i.e. simulated enamel cracking near the margins and the formation of contraction gaps.

  14. The dependence of acoustic properties of a crack on the resonance mode and geometry

    USGS Publications Warehouse

    Kumagai, H.; Chouet, B.A.

    2001-01-01

    We examine the dependence of the acoustic properties of a crack containing magmatic or hydrothermal fluids on the resonance mode and geometry to quantify the source properties of long-period (LP) events observed in volcanic areas. Our results, based on spectral analyses of synthetic waveforms generated with a fluid-driven crack model, indicate that the basic features of the dimensionless frequency (??) and quality factor (Qr) for a crack containing various types of fluids are not strongly affected by the choice of mode, although the actual ranges of Q?? and ?? both depend on the mode. The dimensionless complex frequency systematically varies with changes in the crack geometry, showing increases in both Qr and ?? as the crack length to aperture ratio decreases. The present results may be useful for the interpretation of spatial and temporal variations in the observed complex frequencies of LP events.

  15. Stress and strain field singularities, micro-cracks, and their role in failure initiation at the composite laminate free-edge

    NASA Astrophysics Data System (ADS)

    Dustin, Joshua S.

    A state-of-the-art multi-scale analysis was performed to predict failure initiation at the free-edge of an angle-ply laminate using the Strain Invariant Failure Theory (SIFT), and multiple improvements to this analysis methodology were proposed and implemented. Application of this analysis and theory led to the conclusion that point-wise failure criteria which ignore the singular stress and strain fields from a homogenized analysis and the presence of free-edge damage in the form of micro-cracking, may do so at the expense of failure prediction capability. The main contributions of this work then are made in the study of the laminate free-edge singularity and in the effects of micro-cracking at the composite laminate free-edge. Study of both classical elasticity and finite element solutions of the laminate free-edge stress field based upon the assumption of homogenized lamina properties reveal that the order of the free-edge singularity is sufficiently small such that the domain of dominance of this term away from the laminate free-edge is much smaller than the relevant dimensions of the microstructure. In comparison to a crack-tip field, these free-edge singularities generate stress and strain fields which are half as intense as those at the crack-tip, leading to the conclusion that existing flaws at the free-edge in the form of micro-cracks would be more prone to the initiation of free-edge failure than the existence of a singularity in the free-edge elasticity solutions. A methodical experiment was performed on a family of [±25°/90°] s laminates made of IM7/8552 carbon/epoxy composite, to both characterize micro-cracks present at the laminate free-edge and to study their behavior under the application of a uniform extensional load. The majority of these micro-cracks were of length on the order of a few fiber diameters, though larger micro-cracks as long as 100 fiber diameters were observed in thicker laminates. A strong correlation between the application of vacuum during cure and the presence of micro-cracks was observed. The majority of micro-cracks were located along ply interfaces, even along the interfaces of plies with identical orientation, further implicating processing methods and conditions in the formation of these micro-cracks and suggesting that a region of interphase is present between composite plies. No micro-cracks of length smaller than approximately 36 fiber diameters (180 µm) grew or interacted with the free-edge delamination or damage at ultimate laminate failure, and the median length of micro-cracks which did grow was approximately 50 fiber diameters (250 µm). While the internal depth of these free-edge cracks was unknown, the results of these experiments then suggests a critical free-edge crack-length in the [±25°/90°]s family of laminates of approximately 50 fiber diameters (250 µm, or 1.5 lamina thicknesses). A multi-scale analysis of free-edge micro-cracks using traditional displacement based finite element submodeling and XFEM was used to explain the experimental observation that micro-cracks did not grow unless they were of sufficient length. Analysis of the stress-intensity factors along the micro-crack front revealed that penny shaped micro-cracks in the 90° plies of the [±25°/90°] s family of laminates of length two fiber diameters or longer are under mode I dominated loading conditions when oriented parallel or perpendicular to the laminate loading direction. The maximum observed KI along the crack-front of these modeled micro-cracks was no larger than 26% of the ultimate KIC of the matrix material, under the application of a uniform temperature change (ΔT=-150°C) and uniform extension equal to the experimentally measured ultimate failure strain of the laminate. This indicates that insufficient energy is supplied to these small micro-cracks to facilitate crack growth, confirming what was experimentally observed. A method for estimating a critical micro-crack length based upon the results of the fracture mechanics analysis was developed, and predictions for this critical crack length were between 26 and 255 fiber diameters with a nominal prediction of approximately 73 fiber diameters, which agreed quite well with the experimentally observed critical micro-crack length of approximately 50 fiber diameters. The overall conclusion of this work is that the composite laminate does not appear to be as sensitive to free-edge singular stress-fields or free-edge micro-cracking and damage as the research community has portrayed in the literature. In laminates designed to delaminate, material flaws on the order of the relevant dimensions of the micro-structure appear to have little to no effect on the static strength of a composite laminate.

  16. Stress intensity factors for deep cracks emanating from the corner formed by a hole intersecting a plate surface

    NASA Technical Reports Server (NTRS)

    Mcgowan, J. J.; Smith, C. W.

    1974-01-01

    A technique consisting of freezing photo-elasticity and a numerical method was used to obtain stress intensity factors for natural cracks emanating from the corner at which a hole intersects a plate surface. Geometries studied were: (1) crack depth to thickness ratios of approximately 0.2, (2) 0.5 and 0.75; (3) crack depth to crack length ratios of approximately 1.0 to 2.0; and (4) crack length to hole radius ratios of about 0.5 to 2.0. All final crack geometries were grown under monotonic loading and growth was not self similar, with most of the growth occuring through the thickness under remote extension. Stress intensity factors were determined at the intersection of the flaw border.

  17. Weldability of Aluminium Alloys for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Löveborn, D.; Larsson, J. K.; Persson, K.-A.

    Restrictions in CO2-emissions have caused increased demands on decreased weight and increased use of lightweight materials in the automotive industry. Aluminium has shown to be of great interest due to its beneficial weight to strength ratio, and are suitable for hang-on parts such as roof, doors etc. However, the use of aluminium requires reliable joining techniques. This project has been focusing on laser welding of aluminium. It have been reported earlier that hot cracks and porosity are common defects while joining aluminium with laser welding. The aim with this project has been to produce crack free laser welds while joining thin aluminium sheets. Two different optics have been used in this project, oscillating- and triple-spot optics. The results from the experiments show that both the oscillating optics and the triple-spot optics can produce crack free welds. The amount of pores is shown to be low for both cases. The results do also show that the amount of pores in the welds increases with the weld length while the flange length is of minor impact. The mechanical properties are similar for the both optics. The oscillation specimens receive a higher tensile strength while the triple-spot specimens receive a larger elongation at break value.

  18. How tough is Brittle Bone? Investigating Osteogenesis Imperfecta in Mouse Bone††

    PubMed Central

    Carriero, A.; Zimmermann, E. A.; Paluszny, A.; Tang, S. Y.; Bale, H.; Busse, B.; Alliston, T.; Kazakia, G.

    2015-01-01

    The multiscale hierarchical structure of bone is naturally optimized to resist fractures. In osteogenesis imperfecta, or brittle bone disease, genetic mutations affect the quality and/or quantity of collagen, dramatically increasing bone fracture risk. Here we reveal how the collagen defect results in bone fragility in a mouse model of osteogenesis imperfecta (oim), which has homotrimeric α1(I) collagen. At the molecular level we attribute the loss in toughness to a decrease in the stabilizing enzymatic crosslinks and an increase in non-enzymatic crosslinks, which may break prematurely inhibiting plasticity. At the tissue level, high vascular canal density reduces the stable crack growth, and extensive woven bone limits the crack-deflection toughening during crack growth. This demonstrates how modifications at the bone molecular level have ramifications at larger length scales affecting the overall mechanical integrity of the bone; thus, treatment strategies have to address multiscale properties in order to regain bone toughness. In this regard, findings from the heterozygous oim bone, where defective as well as normal collagen are present, suggest that increasing the quantity of healthy collagen in these bones helps to recover toughness at the multiple length scales. PMID:24420672

  19. Athermal brittle-to-ductile transition in amorphous solids.

    PubMed

    Dauchot, Olivier; Karmakar, Smarajit; Procaccia, Itamar; Zylberg, Jacques

    2011-10-01

    Brittle materials exhibit sharp dynamical fractures when meeting Griffith's criterion, whereas ductile materials blunt a sharp crack by plastic responses. Upon continuous pulling, ductile materials exhibit a necking instability that is dominated by a plastic flow. Usually one discusses the brittle to ductile transition as a function of increasing temperature. We introduce an athermal brittle to ductile transition as a function of the cutoff length of the interparticle potential. On the basis of extensive numerical simulations of the response to pulling the material boundaries at a constant speed we offer an explanation of the onset of ductility via the increase in the density of plastic modes as a function of the potential cutoff length. Finally we can resolve an old riddle: In experiments brittle materials can be strained under grip boundary conditions and exhibit a dynamic crack when cut with a sufficiently long initial slot. Mysteriously, in molecular dynamics simulations it appeared that cracks refused to propagate dynamically under grip boundary conditions, and continuous pulling was necessary to achieve fracture. We argue that this mystery is removed when one understands the distinction between brittle and ductile athermal amorphous materials.

  20. Finite-Element Analysis of Crack Arrest Properties of Fiber Reinforced Composites Application in Semi-Elliptical Cracked Pipelines

    NASA Astrophysics Data System (ADS)

    Wang, Linyuan; Song, Shulei; Deng, Hongbo; Zhong, Kai

    2018-04-01

    In nowadays, repair method using fiber reinforced composites as the mainstream pipe repair technology, it can provide security for X100 high-grade steel energy long-distance pipelines in engineering. In this paper, analysis of cracked X100 high-grade steel pipe was conducted, simulation analysis was made on structure of pipes and crack arresters (CAs) to obtain the J-integral value in virtue of ANSYS Workbench finite element software and evaluation on crack arrest effects was done through measured elastic-plastic fracture mechanics parameter J-integral and the crack arrest coefficient K, in a bid to summarize effect laws of composite CAs and size of pipes and cracks for repairing CAs. The results indicate that the K value is correlated with laying angle λ, laying length L2/D1, laying thickness T1/T2of CAs, crack depth c/T1 and crack length a/c, and calculate recommended parameters for repairing fiber reinforced composite CAs in terms of two different crack forms.

  1. Shear Strength and Cracking Process of Non-persistent Jointed Rocks: An Extensive Experimental Investigation

    NASA Astrophysics Data System (ADS)

    Asadizadeh, Mostafa; Moosavi, Mahdi; Hossaini, Mohammad Farouq; Masoumi, Hossein

    2018-02-01

    In this paper, a number of artificial rock specimens with two parallel (stepped and coplanar) non-persistent joints were subjected to direct shearing. The effects of bridge length ( L), bridge angle ( γ), joint roughness coefficient (JRC) and normal stress ( σ n) on shear strength and cracking process of non-persistent jointed rock were studied extensively. The experimental program was designed based on Taguchi method, and the validity of the resulting data was assessed using analysis of variance. The results revealed that σ n and γ have the maximum and minimum effects on shear strength, respectively. Also, increase in L from 10 to 60 mm led to decrease in shear strength where high level of JRC profile and σ n led to the initiation of tensile cracks due to asperity interlocking. Such tensile cracks are known as "interlocking cracks" which normally initiate from the asperity and then propagate toward the specimen boundaries. Finally, the cracking process of specimens was classified into three categories, namely tensile cracking, shear cracking and combination of tension and shear or mixed mode tensile-shear cracking.

  2. Investigation of the effects of manufacturing variations and materials on fatigue crack detection methods in gear teeth

    NASA Technical Reports Server (NTRS)

    Wheitner, Jeffrey A.; Houser, Donald R.

    1994-01-01

    The fatigue life of a gear tooth can be thought of as the sum of the number of cycles required to initiate a crack, N(sub i), plus the number of cycles required to propagate the crack to such a length that fracture occurs, N(sub p). The factors that govern crack initiation are thought to be related to localized stress or strain at a point, while propagation of a fatigue crack is a function of the crack tip parameters such as crack shape, stress state, and stress intensity factor. During a test there is no clear transition between initiation and propagation. The mechanisms of initiation and propagation are quite different and modeling them separately produces a higher degree of accuracy, but then the question that continually arises is 'what is a crack?' The total life prediction in a fracture mechanics model presently hinges on the assumption of an initial crack length, and this length can significantly affect the total life prediction. The size of the initial crack is generally taken to be in the range of 0.01 in. to 0.2 in. Several researchers have used various techniques to determine the beginning of the crack propagation stage. Barhorst showed the relationship between dynamic stiffness changes and crack propagation. Acoustic emissions, which are stress waves produced by the sudden movement of stressed materials, have also been successfully used to monitor the growth of cracks in tensile and fatigue specimens. The purpose of this research is to determine whether acoustic emissions can be used to define the beginning of crack propagation in a gear using a single-tooth bending fatigue test.

  3. A simple model for enamel fracture from margin cracks.

    PubMed

    Chai, Herzl; Lee, James J-W; Kwon, Jae-Young; Lucas, Peter W; Lawn, Brian R

    2009-06-01

    We present results of in situ fracture tests on extracted human molar teeth showing failure by margin cracking. The teeth are mounted into an epoxy base and loaded with a rod indenter capped with a Teflon insert, as representative of food modulus. In situ observations of cracks extending longitudinally upward from the cervical margins are recorded in real time with a video camera. The cracks appear above some threshold and grow steadily within the enamel coat toward the occlusal surface in a configuration reminiscent of channel-like cracks in brittle films. Substantially higher loading is required to delaminate the enamel from the dentin, attesting to the resilience of the tooth structure. A simplistic fracture mechanics analysis is applied to determine the critical load relation for traversal of the margin crack along the full length of the side wall. The capacity of any given tooth to resist failure by margin cracking is predicted to increase with greater enamel thickness and cuspal radius. Implications in relation to dentistry and evolutionary biology are briefly considered.

  4. A conductive grating sensor for online quantitative monitoring of fatigue crack.

    PubMed

    Li, Peiyuan; Cheng, Li; Yan, Xiaojun; Jiao, Shengbo; Li, Yakun

    2018-05-01

    Online quantitative monitoring of crack damage due to fatigue is a critical challenge for structural health monitoring systems assessing structural safety. To achieve online quantitative monitoring of fatigue crack, a novel conductive grating sensor based on the principle of electrical potential difference is proposed. The sensor consists of equidistant grating channels to monitor the fatigue crack length and conductive bars to provide the circuit path. An online crack monitoring system is established to verify the sensor's capability. The experimental results prove that the sensor is suitable for online quantitative monitoring of fatigue crack. A finite element model for the sensor is also developed to optimize the sensitivity of crack monitoring, which is defined by the rate of sensor resistance change caused by the break of the first grating channel. Analysis of the model shows that the sensor sensitivity can be enhanced by reducing the number of grating channels and increasing their resistance and reducing the resistance of the conductive bar.

  5. A conductive grating sensor for online quantitative monitoring of fatigue crack

    NASA Astrophysics Data System (ADS)

    Li, Peiyuan; Cheng, Li; Yan, Xiaojun; Jiao, Shengbo; Li, Yakun

    2018-05-01

    Online quantitative monitoring of crack damage due to fatigue is a critical challenge for structural health monitoring systems assessing structural safety. To achieve online quantitative monitoring of fatigue crack, a novel conductive grating sensor based on the principle of electrical potential difference is proposed. The sensor consists of equidistant grating channels to monitor the fatigue crack length and conductive bars to provide the circuit path. An online crack monitoring system is established to verify the sensor's capability. The experimental results prove that the sensor is suitable for online quantitative monitoring of fatigue crack. A finite element model for the sensor is also developed to optimize the sensitivity of crack monitoring, which is defined by the rate of sensor resistance change caused by the break of the first grating channel. Analysis of the model shows that the sensor sensitivity can be enhanced by reducing the number of grating channels and increasing their resistance and reducing the resistance of the conductive bar.

  6. Compliance and stress intensity coefficients for short bar specimens with chevron notches

    NASA Technical Reports Server (NTRS)

    Munz, D.; Bubsey, R. T.; Srawley, J. E.

    1980-01-01

    For the determination of fracture toughness especially with brittle materials, a short bar specimen with rectangular cross section and chevron notch can be used. As the crack propagates from the tip of the triangular notch, the load increases to a maximum then decreases. To obtain the relation between the fracture toughness and maximum load, calculations of Srawley and Gross for specimens with a straight-through crack were applied to the specimens with chevron notches. For the specimens with a straight-through crack, an analytical expression was obtained. This expression was used for the calculation of the fracture toughness versus maximum load relation under the assumption that the change of the compliance with crack length for the specimen with a chevron notch is the same as for a specimen with a straight-through crack.

  7. Optical and Scanning Electron Microscopy of the Materials International Space Station Experiment (MISSE) Spacecraft Silicone Experiment

    NASA Technical Reports Server (NTRS)

    Hung, Ching-cheh; de Groh, Kim K.; Banks, Bruce A.

    2012-01-01

    Under a microscope, atomic oxygen (AO) exposed silicone surfaces are crazed and seen as "islands" separated by numerous crack lines, much analogous to mud-tile cracks. This research characterized and compared the degree of AO degradation of silicones by analyzing optical microscope images of samples exposed to low Earth orbit (LEO) AO as part of the Spacecraft Silicone Experiment. The Spacecraft Silicone Experiment consisted of eight DC 93-500 silicone samples exposed to eight different AO fluence levels (ranged from 1.46 to 8.43 10(exp 21) atoms/sq cm) during two different Materials International Space Station Experiment (MISSE) missions. Image analysis software was used to analyze images taken using a digital camera. To describe the morphological degradation of each AO exposed flight sample, three different parameters were selected and estimated: (1) average area of islands was determined and found to be in the 1000 to 3100 sq mm range; (2) total length of crack lines per unit area of the sample surface were determined and found to be in the range of 27 to 59 mm of crack length per sq mm of sample surface; and (3) the fraction of sample surface area that is occupied by crack lines was determined and found to be in the 25 to 56 percent range. In addition, average crack width can be estimated from crack length and crack area measurements and was calculated to be about 10 mm. Among the parameters studied, the fraction of sample surface area that is occupied by crack lines is believed to be most useful in characterizing the degree of silicone conversion to silicates by AO because its value steadily increases with increasing fluence over the entire fluence range. A series of SEM images from the eight samples exposed to different AO fluences suggest a complex sequence of surface stress due to surface shrinkage and crack formation, followed by re-distribution of stress and shrinking rate on the sample surface. Energy dispersive spectra (EDS) indicated that upon AO exposure, carbon content on the surface decreased relatively quickly at the beginning, to 32 percent of the pristine value for the least exposed sample in this set of experiments (1.46 10(exp 21) atoms/sq cm), but then decreased slowly, to 22 percent of the pristine value for the most exposed sample in this set of experiment (8.43 10(exp 21) atoms/sq cm). The oxygen content appears to increase at a slower rate. The least and most AO exposed samples were, respectively, 52 and 150 percent above the pristine values. The silicone samples with the greater AO exposure (7.75 10(exp 21) atoms/sq cm and higher) appear to have a surface layer which contains SiO2 with perhaps small amounts of unreacted silicone, CO and CO2 sealed inside.

  8. Nonlinear Local Bending Response and Bulging Factors for Longitudinal and Circumferential Cracks in Pressurized Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Young, Richard D.; Rose, Cheryl A.; Starnes, James H., Jr.

    2000-01-01

    Results of a geometrically nonlinear finite element parametric study to determine curvature correction factors or bulging factors that account for increased stresses due to curvature for longitudinal and circumferential cracks in unstiffened pressurized cylindrical shells are presented. Geometric parameters varied in the study include the shell radius, the shell wall thickness, and the crack length. The major results are presented in the form of contour plots of the bulging factor as a function of two nondimensional parameters: the shell curvature parameter, lambda, which is a function of the shell geometry, Poisson's ratio, and the crack length; and a loading parameter, eta, which is a function of the shell geometry, material properties, and the applied internal pressure. These plots identify the ranges of the shell curvature and loading parameters for which the effects of geometric nonlinearity are significant. Simple empirical expressions for the bulging factor are then derived from the numerical results and shown to predict accurately the nonlinear response of shells with longitudinal and circumferential cracks. The numerical results are also compared with analytical solutions based on linear shallow shell theory for thin shells, and with some other semi-empirical solutions from the literature, and limitations on the use of these other expressions are suggested.

  9. Fretting Fatigue with Cylindrical-On-Flat Contact: Crack Nucleation, Crack Path and Fatigue Life

    PubMed Central

    Noraphaiphipaksa, Nitikorn; Manonukul, Anchalee; Kanchanomai, Chaosuan

    2017-01-01

    Fretting fatigue experiments and finite element analysis were carried out to investigate the influence of cylindrical-on-flat contact on crack nucleation, crack path and fatigue life of medium-carbon steel. The location of crack nucleation was predicted using the maximum shear stress range criterion and the maximum relative slip amplitude criterion. The prediction using the maximum relative slip amplitude criterion gave the better agreement with the experimental result, and should be used for the prediction of the location of crack nucleation. Crack openings under compressive bulk stresses were found in the fretting fatigues with flat-on-flat contact and cylindrical-on-flat contacts, i.e., fretting-contact-induced crack openings. The crack opening stress of specimen with flat-on-flat contact was lower than those of specimens with cylindrical-on-flat contacts, while that of specimen with 60-mm radius contact pad was lower than that of specimen with 15-mm radius contact pad. The fretting fatigue lives were estimated by integrating the fatigue crack growth curve from an initial propagating crack length to a critical crack length. The predictions of fretting fatigue life with consideration of crack opening were in good agreement with the experimental results. PMID:28772522

  10. Fatigue Crack Growth Rate and Stress-Intensity Factor Corrections for Out-of-Plane Crack Growth

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Herman, Dave J.; James, Mark A.

    2003-01-01

    Fatigue crack growth rate testing is performed by automated data collection systems that assume straight crack growth in the plane of symmetry and use standard polynomial solutions to compute crack length and stress-intensity factors from compliance or potential drop measurements. Visual measurements used to correct the collected data typically include only the horizontal crack length, which for cracks that propagate out-of-plane, under-estimates the crack growth rates and over-estimates the stress-intensity factors. The authors have devised an approach for correcting both the crack growth rates and stress-intensity factors based on two-dimensional mixed mode-I/II finite element analysis (FEA). The approach is used to correct out-of-plane data for 7050-T7451 and 2025-T6 aluminum alloys. Results indicate the correction process works well for high DeltaK levels but fails to capture the mixed-mode effects at DeltaK levels approaching threshold (da/dN approximately 10(exp -10) meter/cycle).

  11. Fracture mechanics analyses of partial crack closure in shell structures

    NASA Astrophysics Data System (ADS)

    Zhao, Jun

    2007-12-01

    This thesis presents the theoretical and finite element analyses of crack-face closure behavior in shells and its effect on the stress intensity factor under a bending load condition. Various shell geometries, such as spherical shell, cylindrical shell containing an axial crack, cylindrical shell containing a circumferential crack and shell with double curvatures, are all studied. In addition, the influence of material orthotropy on the crack closure effect in shells is also considered. The theoretical formulation is developed based on the shallow shell theory of Delale and Erdogan, incorporating the effect of crack-face closure at the compressive edges. The line-contact assumption, simulating the crack-face closure at the compressive edges, is employed so that the contact force at the closure edges is introduced, which can be translated to the mid-plane of the shell, accompanied by an additional distributed bending moment. The unknown contact force is computed by solving a mixed-boundary value problem iteratively, that is, along the crack length, either the normal displacement of the crack face at the compressive edges is equal to zero or the contact pressure is equal to zero. It is found that due to the curvature effects crack closure may not always occur on the entire length of the crack, depending on the direction of the bending load and the geometry of the shell. The crack-face closure influences significantly the magnitude of the stress intensity factors; it increases the membrane component but decreases the bending component. The maximum stress intensity factor is reduced by the crack-face closure. The significant influence of geometry and material orthotropy on rack closure behavior in shells is also predicted based on the analytical solutions. Three-dimensional FEA is performed to validate the theoretical solutions. It demonstrates that the crack face closure occurs actually over an area, not on a line, but the theoretical solutions of the stress intensity factor and the FEA solutions are in good agreement, because the contact area is very small compared with the shell thickness.

  12. Local approach to fatigue based on energy considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milella, P.P.

    1996-12-01

    The paper presents a development of a fatigue crack growth theory published by the author in 1981 based on an energy approach. In an ideally elastic material containing a crack the only mechanism through which energy can be absorbed during a virtual crack extension is that associated to the creation of new free surface. It is an in-out situation in that a crack of a given length 2a under a stress state {sigma} either becomes unstable or stays like it is. In a real elastic-plastic material the energy absorption rate R comes mainly from the energy stored ahead of themore » crack tip as plastic strain energy. The resistance R is no longer represented by a constant term, but becomes a rather complex function of crack length increasing the crack grows. The consequence is that there is sufficient energy in the system to drive the crack to a point where the driving force G is equal to the resistance R and the crack stops. Unloading the system and reloading it, the crack grows by fatigue indicating that the previous condition G = R is no longer satisfied. If this happens it is because the volume that yields ahead of the crack tip is not capable during the reloading to absorb energy with the same rate as before. This causes the crack to grow further to regain the loss through the yielding of new material and establishes again the equilibrium between G and R. The author has related this lack of capability to develop the same energy absorption rate in any of the following cycles to a shake-down effect that takes place in the plastic enclave. The theory and the equation explain why short cracks shall grow faster than large ones. It also explains why the fatigue crack growth rate depends on the ratio between the minimum and maximum stress and is practically the same in any material independently of the yield stress and toughness that the material may have.« less

  13. A finite element model on effects of impact load and cavitation on fatigue crack propagation in mechanical bileaflet aortic heart valve.

    PubMed

    Mohammadi, H; Klassen, R J; Wan, W-K

    2008-10-01

    Pyrolytic carbon mechanical heart valves (MHVs) are widely used to replace dysfunctional and failed heart valves. As the human heart beats around 40 million times per year, fatigue is the prime mechanism of mechanical failure. In this study, a finite element approach is implemented to develop a model for fatigue analysis of MHVs due to the impact force between the leaflet and the stent and cavitation in the aortic position. A two-step method to predict crack propagation in the leaflets of MHVs has been developed. Stress intensity factors (SIFs) are computed at a small initiated crack located on the leaflet edge (the worst case) using the boundary element method (BEM). Static analysis of the crack is performed to analyse the stress distribution around the front crack zone when the crack is opened; this is followed by a dynamic crack analysis to consider crack propagation using the finite element approach. Two factors are taken into account in the calculation of the SIFs: first, the effect of microjet formation due to cavitation in the vicinity of leaflets, resulting in water hammer pressure; second, the effect of the impact force between the leaflet and the stent of the MHVs, both in the closing phase. The critical initial crack length, the SIFs, the water hammer pressure, and the maximum jet velocity due to cavitation have been calculated. With an initial crack length of 35 microm, the fatigue life of the heart valve is greater than 60 years (i.e. about 2.2 x 10(9) cycles) and, with an initial crack length of 170 microm, the fatigue life of the heart valve would be around 2.5 years (i.e. about 9.1 x 10(7) cycles). For an initial crack length greater than 170 microm, there is catastrophic failure and fatigue cracking no longer occurs. A finite element model of fatigue analysis using Patran command language (PCL custom code) in MSC software can be used to evaluate the useful lifespan of MHVs. Similar methodologies can be extended to other medical devices under cyclic loads.

  14. Detection of submicron scale cracks and other surface anomalies using positron emission tomography

    DOEpatents

    Cowan, Thomas E.; Howell, Richard H.; Colmenares, Carlos A.

    2004-02-17

    Detection of submicron scale cracks and other mechanical and chemical surface anomalies using PET. This surface technique has sufficient sensitivity to detect single voids or pits of sub-millimeter size and single cracks or fissures of millimeter size; and single cracks or fissures of millimeter-scale length, micrometer-scale depth, and nanometer-scale length, micrometer-scale depth, and nanometer-scale width. This technique can also be applied to detect surface regions of differing chemical reactivity. It may be utilized in a scanning or survey mode to simultaneously detect such mechanical or chemical features over large interior or exterior surface areas of parts as large as about 50 cm in diameter. The technique involves exposing a surface to short-lived radioactive gas for a time period, removing the excess gas to leave a partial monolayer, determining the location and shape of the cracks, voids, porous regions, etc., and calculating the width, depth, and length thereof. Detection of 0.01 mm deep cracks using a 3 mm detector resolution has been accomplished using this technique.

  15. Unified risk analysis of fatigue failure in ductile alloy components during all three stages of fatigue crack evolution process.

    PubMed

    Patankar, Ravindra

    2003-10-01

    Statistical fatigue life of a ductile alloy specimen is traditionally divided into three stages, namely, crack nucleation, small crack growth, and large crack growth. Crack nucleation and small crack growth show a wide variation and hence a big spread on cycles versus crack length graph. Relatively, large crack growth shows a lesser variation. Therefore, different models are fitted to the different stages of the fatigue evolution process, thus treating different stages as different phenomena. With these independent models, it is impossible to predict one phenomenon based on the information available about the other phenomenon. Experimentally, it is easier to carry out crack length measurements of large cracks compared to nucleating cracks and small cracks. Thus, it is easier to collect statistical data for large crack growth compared to the painstaking effort it would take to collect statistical data for crack nucleation and small crack growth. This article presents a fracture mechanics-based stochastic model of fatigue crack growth in ductile alloys that are commonly encountered in mechanical structures and machine components. The model has been validated by Ray (1998) for crack propagation by various statistical fatigue data. Based on the model, this article proposes a technique to predict statistical information of fatigue crack nucleation and small crack growth properties that uses the statistical properties of large crack growth under constant amplitude stress excitation. The statistical properties of large crack growth under constant amplitude stress excitation can be obtained via experiments.

  16. Application of the line-spring model to a cylindrical shell containing a circumferential or axial part-through crack

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1981-01-01

    An approximate solution was obtained for a cylindrical shell containing a part-through surface crack. It was assumed that the shell contains a circumferential or axial semi-elliptic internal or external surface crack and was subjected to a uniform membrane loading or a uniform bending moment away from the crack region. A Reissner type theory was used to account for the effects of the transverse shear deformations. The stress intensity factor at the deepest penetration point of the crack was tabulated for bending and membrane loading by varying three dimensionless length parameters of the problem formed from the shell radius, the shell thickness, the crack length, and the crack depth. The upper bounds of the stress intensity factors are provided by the results of the elasticity solution obtained from the axisymmetric crack problem for the circumferential crack, and that found from the plane strain problem for a circular ring having a radial crack for the axial crack. The line-spring model gives the expected results in comparison with the elasticity solutions. Results also compare well with the existing finite element solution of the pressurized cylinder containing an internal semi-elliptic surface crack.

  17. Characteristics of lead induced stress corrosion cracking of alloy 690 in high temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, K.K.; Lim, J.K.; Watanabe, Yutaka

    1996-10-01

    Slow strain rate tests (SSRT) were conducted on alloy 690 in various lead chloride solutions and metal lead added to 100 ppm chloride solution at 288 C. The corrosion potential (rest potential) for the alloy was measured with SSRT tests. The cracking was observed by metallographic examination and electron probe micro analyzer. Also, the corrosion behavior of the alloy was evaluated by anodic polarized measurement at 30 C. Resulting from the tests, cracking was characterized by cracking behavior, crack length and crack growth rate, and lead effects on cracking. The cracking was mainly intergranular in mode, approximately from 60 ummore » to 450 um in crack length, and approximately 10{sup {minus}6} to 10{sup {minus}7} mmS-1 in crack velocity. The cracking was evaluated through the variation the corrosion potential in potential-time and lead behavior during SSRTs. The lead effect in corrosion was evaluated through active to passive transition behavior in anodic polarized curves. The corrosion reactions in the cracking region were confirmed by electron probe microanalysis. Alloy 690 is used for steam generation tubes in pressurized water reactors.« less

  18. 7 CFR 51.1564 - External defects.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... than 50 percent of the surface in the aggregate. Growth Cracks When the growth crack(s) affects more... Table V.) When the growth crack(s) affects more than 3/4 the length of the potato in the aggregate or.... Second Growth When materially detracting from the appearance of the potato When seriously detracting from...

  19. 7 CFR 51.1564 - External defects.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... than 50 percent of the surface in the aggregate. Growth Cracks When the growth crack(s) affects more... Table V.) When the growth crack(s) affects more than 3/4 the length of the potato in the aggregate or.... Second Growth When materially detracting from the appearance of the potato When seriously detracting from...

  20. 7 CFR 51.1564 - External defects.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... percent of the surface in the aggregate. Growth Cracks When the growth crack(s) affects more than 1/2 the... growth crack(s) affects more than 3/4 the length of the potato in the aggregate or when the depth is... 25 percent of the surface in the aggregate is affected. Second Growth When materially detracting from...

  1. 7 CFR 51.586 - Serious damage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... allowed for any one defect, shall be considered as serious damage: (a) Growth cracks when more than 4 branches are affected by growth cracks which are over one-half inch in length, or when more than 8 branches have growth cracks; (b) Horizontal cracks when more than 5 branches have horizontal cracks which are...

  2. 7 CFR 51.586 - Serious damage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... allowed for any one defect, shall be considered as serious damage: (a) Growth cracks when more than 4 branches are affected by growth cracks which are over one-half inch in length, or when more than 8 branches have growth cracks; (b) Horizontal cracks when more than 5 branches have horizontal cracks which are...

  3. 7 CFR 51.586 - Serious damage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... allowed for any one defect, shall be considered as serious damage: (a) Growth cracks when more than 4 branches are affected by growth cracks which are over one-half inch in length, or when more than 8 branches have growth cracks; (b) Horizontal cracks when more than 5 branches have horizontal cracks which are...

  4. 46 CFR 59.10-5 - Cracks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service § 59.10-5 Cracks. (a) Cracks extending... corrugated furnaces may be repaired by welding provided any one crack does not exceed 20 inches in length. (e... any direction, nor more than a total of four cracks in a drum, and further provided the welding meets...

  5. 46 CFR 59.10-5 - Cracks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service § 59.10-5 Cracks. (a) Cracks extending... corrugated furnaces may be repaired by welding provided any one crack does not exceed 20 inches in length. (e... any direction, nor more than a total of four cracks in a drum, and further provided the welding meets...

  6. 46 CFR 59.10-5 - Cracks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service § 59.10-5 Cracks. (a) Cracks extending... corrugated furnaces may be repaired by welding provided any one crack does not exceed 20 inches in length. (e... any direction, nor more than a total of four cracks in a drum, and further provided the welding meets...

  7. Identification of breathing cracks in a beam structure with entropy

    NASA Astrophysics Data System (ADS)

    Wimarshana, Buddhi; Wu, Nan; Wu, Christine

    2016-04-01

    A cantilever beam with a breathing crack is studied to detect and evaluate the crack using entropy measures. Closed cracks in engineering structures lead to proportional complexities to their vibration responses due to weak bi-linearity imposed by the crack breathing phenomenon. Entropy is a measure of system complexity and has the potential in quantifying the complexity. The weak bi-linearity in vibration signals can be amplified using wavelet transformation to increase the sensitivity of the measurements. A mathematical model of harmonically excited unit length steel cantilever beam with a breathing crack located near the fixed end is established, and an iterative numerical method is applied to generate accurate time domain dynamic responses. The bi-linearity in time domain signals due to the crack breathing are amplified by wavelet transformation first, and then the complexities due to bi-linearity is quantified using sample entropy to detect the possible crack and estimate the crack depth. It is observed that the method is capable of identifying crack depths even at very early stages of 3% with the increase in the entropy values more than 10% compared with the healthy beam. The current study extends the entropy based damage detection of rotary machines to structural analysis and takes a step further in high-sensitivity structural health monitoring by combining wavelet transformation with entropy calculations. The proposed technique can also be applied to other types of structures, such as plates and shells.

  8. Temporal evolution of crack propagation propensity in snow in relation to slab and weak layer properties

    NASA Astrophysics Data System (ADS)

    Schweizer, Jürg; Reuter, Benjamin; van Herwijnen, Alec; Richter, Bettina; Gaume, Johan

    2016-11-01

    If a weak snow layer below a cohesive slab is present in the snow cover, unstable snow conditions can prevail for days or even weeks. We monitored the temporal evolution of a weak layer of faceted crystals as well as the overlaying slab layers at the location of an automatic weather station in the Steintälli field site above Davos (Eastern Swiss Alps). We focussed on the crack propagation propensity and performed propagation saw tests (PSTs) on 7 sampling days during a 2-month period from early January to early March 2015. Based on video images taken during the tests we determined the mechanical properties of the slab and the weak layer and compared them to the results derived from concurrently performed measurements of penetration resistance using the snow micro-penetrometer (SMP). The critical cut length, observed in PSTs, increased overall during the measurement period. The increase was not steady and the lowest values of critical cut length were observed around the middle of the measurement period. The relevant mechanical properties, the slab effective elastic modulus and the weak layer specific fracture, overall increased as well. However, the changes with time differed, suggesting that the critical cut length cannot be assessed by simply monitoring a single mechanical property such as slab load, slab modulus or weak layer specific fracture energy. Instead, crack propagation propensity is the result of a complex interplay between the mechanical properties of the slab and the weak layer. We then compared our field observations to newly developed metrics of snow instability related to either failure initiation or crack propagation propensity. The metrics were either derived from the SMP signal or calculated from simulated snow stratigraphy (SNOWPACK). They partially reproduced the observed temporal evolution of critical cut length and instability test scores. Whereas our unique dataset of quantitative measures of snow instability provides new insights into the complex slab-weak layer interaction, it also showed some deficiencies of the modelled metrics of instability - calling for an improved representation of the mechanical properties.

  9. Experimental and Computational Studies on the Scattering of an Edge-Guided Wave by a Hidden Crack on a Racecourse Shaped Hole.

    PubMed

    Vien, Benjamin Steven; Rose, Louis Raymond Francis; Chiu, Wing Kong

    2017-07-01

    Reliable and quantitative non-destructive evaluation for small fatigue cracks, in particular those in hard-to-inspect locations, is a challenging problem. Guided waves are advantageous for structural health monitoring due to their slow geometrical decay of amplitude with propagating distance, which is ideal for rapid wide-area inspection. This paper presents a 3D laser vibrometry experimental and finite element analysis of the interaction between an edge-guided wave and a small through-thickness hidden edge crack on a racecourse shaped hole that occurs, in practice, as a fuel vent hole. A piezoelectric transducer is bonded on the straight edge of the hole to generate the incident wave. The excitation signal consists of a 5.5 cycle Hann-windowed tone burst of centre frequency 220 kHz, which is below the cut-off frequency for the first order Lamb wave modes (SH1). Two-dimensional fast Fourier transformation (2D FFT) is applied to the incident and scattered wave field along radial lines emanating from the crack mouth, so as to identify the wave modes and determine their angular variation and amplitude. It is shown experimentally and computationally that mid-plane symmetric edge waves can travel around the hole's edge to detect a hidden crack. Furthermore, the scattered wave field due to a small crack length, a , (compared to the wavelength λ of the incident wave) is shown to be equivalent to a point source consisting of a particular combination of body-force doublets. It is found that the amplitude of the scattered field increases quadratically as a function of a/λ , whereas the scattered wave pattern is independent of crack length for small cracks a < λ . This study of the forward scattering problem from a known crack size provides a useful guide for the inverse problem of hidden crack detection and sizing.

  10. An evaluation of the pressure proof test concept for 2024-T3 aluminium alloy sheet

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Poe, C. C., Jr.; Newman, J. C.; Harris, C. E.

    1991-01-01

    The concept of pressure proof testing of fuselage structures with fatigue cracks to insure structural integrity was evaluated from a fracture mechanics viewpoint. A generic analytical and experimental investigation was conducted on uniaxially loaded flat panels with crack configurations and stress levels typical of longitudinal lap splice joints in commercial transport aircraft fuselages. The results revealed that the remaining fatigue life after a proof cycle was longer than that without the proof cycle because of crack growth retardation due to increased crack closure. However, based on a crack length that is slightly less than the critical value at the maximum proof stress, the minimum assured life or proof test interval must be no more than 550 pressure cycles for a 1.33 proof factor and 1530 pressure cycles for a 1.5 proof factor to prevent in-flight failures.

  11. An evaluation of the pressure proof test concept for thin sheet 2024-T3

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Poe, C. C., Jr.; Newman, J. C., Jr.; Harris, C. E.

    1990-01-01

    The concept of pressure proof testing of fuselage structures with fatigue cracks to insure structural integrity was evaluated from a fracture mechanics viewpoint. A generic analytical and experimental investigation was conducted on uniaxially loaded flat panels with crack configurations and stress levels typical of longitudinal lap-splice joints in commercial transport aircraft fuselage. The results revealed that the remaining fatigue life after a proof test was longer than that without the proof test because of crack growth retardation due to increased crack closure. However, based on a crack length that is slightly less than the critical value at the maximum proof test stress, the minimum assured life or proof test interval must be no more than 550 pressure cycles for a 1.33 proof factor and 1530 pressure cycles for a 1.5 proof factor to prevent in-flight failures.

  12. An evaluation of the pressure proof test concept for thin sheet 2024-T3

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Poe, C. C., Jr.; Newman, James C., Jr.; Harris, Charles E.

    1990-01-01

    The concept of pressure proof testing of fuselage structures with fatigue cracks to insure structural integrity was evaluated from a fracture mechanics viewpoint. A generic analytical and experimental investigation was conducted on uniaxially loaded flat panels with crack configurations and stress levels typical of longitudinal lap splice joints in commercial transport aircraft fuselages. The results revealed that the remaining fatigue life after a proof test was longer than that without the proof test because of crack growth retardation due to increased crack closure. However, based on a crack length that is slightly less than the critical value at the maximum proof test stress, the minimum assured life or proof test interval must be no more than 550 pressure cycles for a 1.33 proof factor and 1530 pressure cycles for a 1.5 proof factor to prevent in-flight failures.

  13. Prevention of crack in stretch flanging process using hot stamping technique

    NASA Astrophysics Data System (ADS)

    Syafiq, Y. Mohd; Hamedon, Z.; Azila Aziz, Wan; Razlan Yusoff, Ahmad

    2017-10-01

    Demand for enhancing of passenger safety as well as weight reduction of automobiles has increased the use of high strength steel sheets. As a sheet metal is a lightweight having high strength is suitable for producing automotive parts such as white body panel. The stretch flanging of the high strength steel sheet is a problem due to high springback and easy to crack. This study uses three methods to stretch flange the sheets; using lubricants, shear-edge polishing and hot stamping. The effectiveness of these methods will be measured by comparing the flange length of each methods can achieved. For stretch flange with lubricant and polished sheared edge, the flange length failed to achieve the target 15 mm while hot stamping improved the formability of the sheet and preventing the occurrence of the springback and crack. Hot stamping not only improved formability of the sheet but also transformed the microstructure into martensite thus improve the hardness and the strength of the sheet after been quenched with the dies.

  14. Indentation Damage and Crack Repair in Human Enamel*

    PubMed Central

    Rivera, C.; Arola, D.; Ossa, A.

    2013-01-01

    Tooth enamel is the hardest and most highly mineralized tissue in the human body. While there have been a number of studies aimed at understanding the hardness and crack growth resistance behavior of this tissue, no study has evaluated if cracks in this tissue undergo repair. In this investigation the crack repair characteristics of young human enamel were evaluated as a function of patient gender and as a function of the distance from the Dentin Enamel Junction (DEJ). Cracks were introduced via microindentation along the prism direction and evaluated as a function of time after the indentation. Microscopic observations indicated that the repair of cracks began immediately after crack initiation and reaches saturation after approximately 48 hours. During this process he crack length decreased up to 10% of the initial length, and the largest degree of reduction occurred in the deep enamel, nearest the DEJ. In addition, it was found that the degree of repair was significantly greater in the enamel of female patients. PMID:23541701

  15. Indentation damage and crack repair in human enamel.

    PubMed

    Rivera, C; Arola, D; Ossa, A

    2013-05-01

    Tooth enamel is the hardest and most highly mineralized tissue in the human body. While there have been a number of studies aimed at understanding the hardness and crack growth resistance behavior of this tissue, no study has evaluated if cracks in this tissue undergo repair. In this investigation the crack repair characteristics of young human enamel were evaluated as a function of patient gender and as a function of the distance from the Dentin Enamel Junction (DEJ). Cracks were introduced via microindentation along the prism direction and evaluated as a function of time after the indentation. Microscopic observations indicated that the repair of cracks began immediately after crack initiation and reaches saturation after approximately 48 h. During this process he crack length decreased up to 10% of the initial length, and the largest degree of reduction occurred in the deep enamel, nearest the DEJ. In addition, it was found that the degree of repair was significantly greater in the enamel of female patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Crack growth through the thickness of thin-sheet Hydrided Zircaloy-4

    NASA Astrophysics Data System (ADS)

    Raynaud, Patrick A. C.

    In recent years, the limits on fuel burnup have been increased to allow an increase in the amount of energy produced by a nuclear fuel assembly thus reducing waste volume and allowing greater capacity factors. As a result, it is paramount to ensure safety after longer reactor exposure times in the case of design-basis accidents, such as reactivity-initiated accidents (RIA). Previously proposed failure criteria do not directly address the particular cladding failure mechanism during a RIA, in which crack initiation in brittle outer-layers is immediately followed by crack growth through the thickness of the thin-wall tubing. In such a case, the fracture toughness of hydrided thin-wall cladding material must be known for the conditions of through-thickness crack growth in order to predict the failure of high-burnup cladding. The fracture toughness of hydrided Zircaloy-4 in the form of thin-sheet has been examined for the condition of through-thickness crack growth as a function of hydride content and distribution at 25°C, 300°C, and 375°C. To achieve this goal, an experimental procedure was developed in which a linear hydride blister formed across the width of a four-point bend specimen was used to inject a sharp crack that was subsequently extended by fatigue pre-cracking. The electrical potential drop method was used to monitor the crack length during fracture toughness testing, thus allowing for correlation of the load-displacement record with the crack length. Elastic-plastic fracture mechanics were used to interpret the experimental test results in terms of fracture toughness, and J-R crack growth resistance curves were generated. Finite element modeling was performed to adapt the classic theories of fracture mechanics applicable to thick-plate specimens to the case of through-thickness crack growth in thin-sheet materials, and to account for non-uniform crack fronts. Finally, the hydride microstructure was characterized in the vicinity of the crack tip by means of digital image processing, so as to understand the influence of the hydride microstructure on fracture toughness, at the various test temperatures. Crack growth occurred through a microstructure which varied within the thickness of the thin-sheet Zircaloy-4 such that the hydrogen concentration and the radial hydride content decreased with increasing distance from the hydride blister. At 25°C, the fracture toughness was sensitive to the changes in hydride microstructure, such that the toughness KJi decreased from 39 MPa√m to 24 MPa√m with increasing hydrogen content and increasing the fraction of radial hydrides. The hydride particles present in the Zircaloy-4 substrate fractured ahead of the crack tip, and crack growth occurred by linking the crack-tip with the next hydride-induced primary void ahead of it. Unstable crack growth was observed at 25°C prior to any stable crack growth in the specimens where the hydrogen content was the highest. At 375°C as well as in most cases at 300°C, the hydride particles were resistant to cracking and the resistance to crack-growth initiation was very high. As a result, for this bend test procedure, crack extension was solely due to crack-tip blunting instead of crack growth in all tests at 375°C and in most cases at 300°C. The lower bound for fracture toughness at these temperatures, the parameter KJPmax, had values of K JPmax˜54MPa√m at both 300°C and 375°C. For cases where stable crack growth occurred at 300°C, the fracture toughness was K Ji˜58MPa√m and the tearing modulus was twice as high as that at 25°C. It is believed that the failure of hydrided Zircaloy-4 thin-wall cladding can be predicted using fracture mechanics analyses when failure occurs by crack growth. This failure mechanism was observed to occur in all cases at 25°C and in some cases at 300°C. However, at more elevated temperatures, such as 375°C, failure will likely occur by a mechanism other than crack growth, possibly by an imperfection-induced shear instability.

  17. Strength evaluation of butt joint by stress intensity factor of small edge crack near interface edge

    NASA Astrophysics Data System (ADS)

    Sato, T.; Oda, K.; Tsutsumi, N.

    2018-06-01

    Failure of the bonded dissimilar materials generally initiates near the interface, or just from the interface edge due to the stress singularity at the interface edge. In this study, the stress intensity factor of an edge crack close to the interface between the dissimilar materials is analyzed. The small edge crack is strongly dominated by the singular stress field near the interface edge. The analysis of stress intensity factor of small edge crack near the interface in bi-material and butt joint plates is carried out by changing the length and the location of the crack and the region dominated by the interface edge is examined. It is found that the dimensionless stress intensity factor of small crack, normalized by the singular stress at the crack tip point in the bonded plate without the crack, is equal to 1.12, independent of the material combination and adhesive layer thickness, when the relative crack length with respect to the crack location is less than 0.01. The adhesive strength of the bonded plate with various adhesive layer thicknesses can be expressed as the constant critical stress intensity factor of the small edge crack.

  18. Fatigue crack growth behaviour of semi-elliptical surface cracks for an API 5L X65 gas pipeline under tension

    NASA Astrophysics Data System (ADS)

    Shaari, M. S.; Akramin, M. R. M.; Ariffin, A. K.; Abdullah, S.; Kikuchi, M.

    2018-02-01

    The paper is presenting the fatigue crack growth (FCG) behavior of semi-elliptical surface cracks for API X65 gas pipeline using S-version FEM. A method known as global-local overlay technique was used in this study to predict the fatigue behavior that involve of two separate meshes each specifically for global (geometry) and local (crack). The pre-post program was used to model the global geometry (coarser mesh) known as FAST including the material and boundary conditions. Hence, the local crack (finer mesh) will be defined the exact location and the mesh control accordingly. The local mesh was overlaid along with the global before the numerical computation taken place to solve the engineering problem. The stress intensity factors were computed using the virtual crack closure-integral method (VCCM). The most important results is the behavior of the fatigue crack growth, which contains the crack depth (a), crack length (c) and stress intensity factors (SIF). The correlation between the fatigue crack growth and the SIF shows a good growth for the crack depth (a) and dissimilar for the crack length (c) where stunned behavior was resulted. The S-version FEM will benefiting the user due to the overlay technique where it will shorten the computation process.

  19. Acoustic emission analysis of crack resistance and fracture behavior of 20GL steel having the gradient microstructure and strength

    NASA Astrophysics Data System (ADS)

    Nikulin, S.; Nikitin, A.; Belov, V.; Rozhnov, A.; Turilina, V.; Anikeenko, V.; Khatkevich, V.

    2017-07-01

    The crack resistances as well as fracture behavior of 20GL steel quenched with a fast-moving water stream and having gradient microstructure and strength are analyzed. Crack resistance tests with quenched and normalized flat rectangular specimens having different cut lengths loaded by three-point bending with acoustic emission measurements have been performed. The critical J-integral has been used as the crack resistance parameter of the material. Quenching with a fast moving water stream leads to gradient (along a specimen wall thickness) strengthening of steel due to highly refined gradient microstructure formation of the troostomartensite type. Quenching with a fast-moving water stream increases crack resistance Jc , of 20GL steel by a factor of ∼ 1.5. The fracture accrues gradually with the load in the normalized specimens while the initiated crack is hindered in the variable ductility layer and further arrested in the more ductile core in the quenched specimens.

  20. Enamel cracks evaluation - A method to predict tooth surface damage during the debonding.

    PubMed

    Dumbryte, Irma; Jonavicius, Tomas; Linkeviciene, Laura; Linkevicius, Tomas; Peciuliene, Vytaute; Malinauskas, Mangirdas

    2015-01-01

    The objective of this in vitro study was to evaluate the effect of the enamel cracks on the tooth damage during the debonding. Measurements of the cracks characteristics (visibility, direction, length, and location) were performed utilizing a scanning electron microscopy (SEM) technique and mathematically derived formulas (x=h/30, l=n*x) before and following the removal of mechanically retained metal and ceramic brackets. The likelihood of having greater extent enamel defects was higher for the teeth with pronounced cracks (odds vatios, OR=3.728), increased when the crack was located in more than one zone of the tooth (OR=1.998), and the inclination did not exceed 30-45° (OR=0.505). Using ceramic brackets the risk of greater amount tooth structure defects raised 1.45 times (OR=1.450). Enamel crack showing all these characteristics at the beginning of the orthodontic treatment and the use of ceramic brackets might predispose to higher risk of greater extent tooth surface damage after the debonding by 20.4%.

  1. Corrosion Effects on the Fatigue Crack Propagation of Giga-Grade Steel and its Heat Affected Zone in pH Buffer Solutions for Automotive Application

    NASA Astrophysics Data System (ADS)

    Lee, H. S.

    2018-03-01

    Corrosion fatigue crack propagation test was conducted of giga-grade steel and its heat affected zone in pH buffer solutions, and the results were compared with model predictions. Pure corrosion effect on fatigue crack propagation, particularly, in corrosive environment was evaluated by means of the modified Forman equation. As shown in results, the average corrosion rate determined from the ratio of pure corrosion induced crack length to entire crack length under a cycle load were 0.11 and 0.37 for base metal and heat affected zone, respectively, with load ratio of 0.5, frequency of 0.5 and pH 10.0 environment. These results demonstrate new interpretation methodology for corrosion fatigue crack propagation enabling the pure corrosion effects on the behavior to be determined.

  2. Thermal fatigue performance of integrally cast automotive turbine wheels

    NASA Technical Reports Server (NTRS)

    Humphreys, V. E.; Hofer, K. E.

    1980-01-01

    Fluidized bed thermal fatigue testing was conducted on 16 integrally cast automotive turbine wheels for 1000-10,000 (600 sec total) thermal cycles at 935/50 C. The 16 wheels consisted of 14 IN-792 + 1% Hf and 2 gatorized AF2-1DA wheels; 6 of the IN-792 + Hf wheels contained crack arrest pockets inside the blade root flange. Temperature transients during the thermal cycling were measured in three calibration tests using either 18 or 30 thermocouples per wheel. Thermal cracking based on crack length versus accumulated cycles was greatest for unpocketed wheels developing cracks in 8-13 cycles compared to 75-250 cycles for unpocketed wheels. However, pocketed wheels survived up to 10,000 cycles with crack lengths less than 20 mm, whereas two unpocketed wheels developed 45 mm long cracks in 1000-2000 cycles.

  3. Analysis of delamination in cross-ply laminates initiating from impact induced matrix cracking

    NASA Technical Reports Server (NTRS)

    Salpekar, S. A.

    1993-01-01

    Two-dimensional finite element analyses of (02/90(8)/02) glass/epoxy and graphite/epoxy composite laminates were performed to investigate some of the characteristics of damage development due to an impact load. A cross section through the thickness of the laminate with fixed ends, and carrying a transverse load in the center, was analyzed. Inclined matrix cracks, such as those produced by a low-velocity impact, were modeled in the 90 deg ply group. The introduction of the matrix cracks caused large interlaminar tensile and shear stresses in the vicinity of both crack tips in the 0/90 and 90/0 interfaces, indicating that matrix cracking may give rise to delamination. The ratio of Mode I to total strain energy release rate, G(I)/G(total), at the beginning of delamination, calculated at the two (top and bottom) matrix crack tips was 60 and 28 percent, respectively, in the glass/epoxy laminate. The corresponding ratio was 97 and 77 percent in the graphite/epoxy laminate. Thus, a significant Mode I component of strain energy release rate may be present at the delamination initiation due to an impact load. The value of strain energy release rate at either crack tip increased due to an increase in the delamination length at the other crack tip and may give rise to an unstable delamination growth under constant load.

  4. Fracture behavior of hybrid composite laminates

    NASA Technical Reports Server (NTRS)

    Kennedy, J. M.

    1983-01-01

    The tensile fracture behavior of 15 center-notched hybrid laminates was studied. Three basic laminate groups were tested: (1) a baseline group with graphite/epoxy plies, (2) a group with the same stacking sequence but where the zero-deg plies were one or two plies of S-glass or Kevlar, and (3) a group with graphite plies but where the zero-deg plies were sandwiched between layers of perforated Mylar. Specimens were loaded linearly with time; load, far field strain, and crack opening displacement (COD) were monitored. The loading was stopped periodically and the notched region was radiographed to reveal the extent and type of damage (failure progression). Results of the tests showed that the hybrid laminates had higher fracture toughnesses than comparable all-graphite laminates. The higher fracture toughness was due primarily to the larger damage region at the ends of the slit; delamination and splitting lowered the stress concentration in the primary load-carrying plies. A linear elastic fracture analysis, which ignored delamination and splitting, underestimated the fracture toughness. For almost all of the laminates, the tests showed that the fracture toughness increased with crack length. The size of the damage region at the ends of the slit and COD measurements also increased with crack length.

  5. Application of the line-spring model to a cylindrical shell containing a circumferential or axial part-through crack

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1982-01-01

    The line-spring model developed by Rice and Levy (1972) is used to obtain an approximate solution for a cylindrical shell containing a part-through surface crack. A Reissner type theory is used to account for the effects of the transverse shear deformations, and the stress intensity factor at the deepest penetration point of the crack is tabulated for bending and membrane loading by varying three-dimensionless length parameters of the problem formed from the shell radius, the shell thickness, the crack length, and the crack depth. The upper bounds of the stress intensity factors are provided, and qualitatively the line-spring model gives the expected results in comparison with elasticity solutions.

  6. Development of structural ceramics having large crack-healing ability and fracture toughness

    NASA Astrophysics Data System (ADS)

    Takahashi, Koji; Yokouchi, Masahiro; Lee, Sang-Kee; Ando, Kotoji

    2004-02-01

    Al2O3 reinforced by SiC whiskers (Al2O3/SiC-W) was hot pressed to investigate the crack-healing behavior. Semi-elliptical surface cracks of 50 to 450μm in surface length were introduced using a Vickers indenter. The specimens containing pre-cracks were crack-healed at temperatures between 1000°C and 1300°C for 1h in air, and their strengths were measured by three-point bending tests at room temperature and elevated temperatures between 400°C and 1300°C. The results show that Al2O3/SiC-W possesses considerable crack-healing ability. The surface cracks with length of 2c=100μm could be healed by crack-healing at 1200°C or 1300°C for 1h in air. The maximum crack size that can be healed for Al2O3/SiC-W is 2c=200μm. Fracture toughness of the material was also determined. As expected, the SiC whiskers made their Al2O3 tougher.

  7. Three-dimensional elastic-plastic finite-element analyses of constraint variations in cracked bodies

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Bigelow, C. A.; Shivakumar, K. N.

    1993-01-01

    Three-dimensional elastic-plastic (small-strain) finite-element analyses were used to study the stresses, deformations, and constraint variations around a straight-through crack in finite-thickness plates for an elastic-perfectly plastic material under monotonic and cyclic loading. Middle-crack tension specimens were analyzed for thicknesses ranging from 1.25 to 20 mm with various crack lengths. Three local constraint parameters, related to the normal, tangential, and hydrostatic stresses, showed similar variations along the crack front for a given thickness and applied stress level. Numerical analyses indicated that cyclic stress history and crack growth reduced the local constraint parameters in the interior of a plate, especially at high applied stress levels. A global constraint factor alpha(sub g) was defined to simulate three-dimensional effects in two-dimensional crack analyses. The global constraint factor was calculated as an average through-the-thickness value over the crack-front plastic region. Values of alpha(sub g) were found to be nearly independent of crack length and were related to the stress-intensity factor for a given thickness.

  8. 46 CFR 59.10-5 - Cracks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... does not exceed 12 inches in length and after completion the weld is stress-relieved. Cracks in... the shell of water tube boiler drums, provided there are not more than two cracks in any one row in... Commandant. (g) Cracks that occur in superheater manifolds, water wallheaders, water drums, sectional headers...

  9. 46 CFR 59.10-5 - Cracks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... does not exceed 12 inches in length and after completion the weld is stress-relieved. Cracks in... the shell of water tube boiler drums, provided there are not more than two cracks in any one row in... Commandant. (g) Cracks that occur in superheater manifolds, water wallheaders, water drums, sectional headers...

  10. 7 CFR 51.573 - Damage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the maximum allowed for any one defect, shall be considered as damage: (a) Growth cracks when more than 2 branches are affected by growth cracks which are over one-half inch in length, or when more than 6 branches have growth cracks; (b) Horizontal cracks when more than 3 branches have horizontal...

  11. 7 CFR 51.573 - Damage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the maximum allowed for any one defect, shall be considered as damage: (a) Growth cracks when more than 2 branches are affected by growth cracks which are over one-half inch in length, or when more than 6 branches have growth cracks; (b) Horizontal cracks when more than 3 branches have horizontal...

  12. Stress-intensity factor equations for cracks in three-dimensional finite bodies

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Raju, I. S.

    1981-01-01

    Empirical stress intensity factor equations are presented for embedded elliptical cracks, semi-elliptical surface cracks, quarter-elliptical corner cracks, semi-elliptical surface cracks at a hole, and quarter-elliptical corner cracks at a hole in finite plates. The plates were subjected to remote tensile loading. Equations give stress intensity factors as a function of parametric angle, crack depth, crack length, plate thickness, and where applicable, hole radius. The stress intensity factors used to develop the equations were obtained from three dimensional finite element analyses of these crack configurations.

  13. Simulation of fatigue crack growth under large scale yielding conditions

    NASA Astrophysics Data System (ADS)

    Schweizer, Christoph; Seifert, Thomas; Riedel, Hermann

    2010-07-01

    A simple mechanism based model for fatigue crack growth assumes a linear correlation between the cyclic crack-tip opening displacement (ΔCTOD) and the crack growth increment (da/dN). The objective of this work is to compare analytical estimates of ΔCTOD with results of numerical calculations under large scale yielding conditions and to verify the physical basis of the model by comparing the predicted and the measured evolution of the crack length in a 10%-chromium-steel. The material is described by a rate independent cyclic plasticity model with power-law hardening and Masing behavior. During the tension-going part of the cycle, nodes at the crack-tip are released such that the crack growth increment corresponds approximately to the crack-tip opening. The finite element analysis performed in ABAQUS is continued for so many cycles until a stabilized value of ΔCTOD is reached. The analytical model contains an interpolation formula for the J-integral, which is generalized to account for cyclic loading and crack closure. Both simulated and estimated ΔCTOD are reasonably consistent. The predicted crack length evolution is found to be in good agreement with the behavior of microcracks observed in a 10%-chromium steel.

  14. Fracture and crack growth in orthotropic laminates

    NASA Technical Reports Server (NTRS)

    Goree, James G.; Kaw, Autar K.

    1985-01-01

    A mathematical model based on the classical shear-lag assumptions is used to study the residual strength and fracture behavior of composite laminates with symmetrically placed buffer strips. The laminate is loaded by a uniform remote longitudinal tensile strain and has initial damage in the form of a transverse crack in the parent laminate between buffer strips. The crack growth behavior as a function of material properties, number of buffer-strip plies, spacing, width of buffer strips, longitudinal matrix splitting, and debonding at the interface is studied. Buffer-strip laminates are shown to arrest fracture and increase the residual strengths significantly over those of one material laminates, with S-glass being a more effective buffer strip material than Kevlar in increasing the damage tolerance of graphite/epoxy panels. For a typical graphite/epoxy laminate with S-glass buffer-strips, the residual strength is about 2.4 times the residual strength of an all graphite/epoxy panel with the same crack length. Approximately 50% of this increase is due to the S-glass/epoxy buffer-strips, 40% due to longitudinal splitting of the buffer strip interface and 10% due to bonding.

  15. The effect of crack blunting on the competition between dislocation nucleation and cleavage

    NASA Astrophysics Data System (ADS)

    Fischer, Lisa L.; Beltz, Glenn E.

    2001-03-01

    To better understand the ductile versus brittle fracture behavior of crystalline materials, attention should be directed towards physically realistic crack geometries. Currently, continuum models of ductile versus brittle behavior are typically based on the analysis of a pre-existing sharp crack in order to use analytical solutions for the stress fields around the crack tip. This paper examines the effects of crack blunting on the competition between dislocation nucleation and atomic decohesion using continuum methods. We accomplish this by assuming that the crack geometry is elliptical, which has the primary advantage that the stress fields are available in closed form. These stress field solutions are then used to calculate the thresholds for dislocation nucleation and atomic decohesion. A Peierls-type framework is used to obtain the thresholds for dislocation nucleation, in which the region of the slip plane ahead of the crack develops a distribution of slip discontinuity prior to nucleation. This slip distribution increases as the applied load is increased until an instability is reached and the governing integral equation can no longer be solved. These calculations are carried out for various crack tip geometries to ascertain the effects of crack tip blunting. The thresholds for atomic decohesion are calculated using a cohesive zone model, in which the region of the crack front develops a distribution of opening displacement prior to atomic decohesion. Again, loading of the elliptical crack tip eventually results in an instability, which marks the onset of crack advance. These calculations are carried out for various crack tip geometries. The results of these separate calculations are presented as the critical energy release rates versus the crack tip radius of curvature for a given crack length. The two threshold curves are compared simultaneously to determine which failure mode is energetically more likely at various crack tip curvatures. From these comparisons, four possible types of material fracture behavior are identified: intrinsically brittle, quasi-brittle, intrinsically ductile, and quasi-ductile. Finally, real material examples are discussed.

  16. Role of prism decussation on fatigue crack growth and fracture of human enamel.

    PubMed

    Bajaj, Devendra; Arola, Dwayne

    2009-10-01

    The role of prism decussation on the crack growth resistance of human enamel is evaluated. Miniature inset compact tension (CT) specimens embodying a section of cuspal enamel were subjected to Mode I cyclic or monotonic loads. Cracks were grown in either the forward (from outer enamel inwards) or reverse (from inner enamel outwards) direction and the responses were compared quantitatively. Results showed that the outer enamel exhibits lower resistance to the inception and growth of cracks. Regardless of the growth direction, the near-threshold region of cyclic extension was typical of "short crack" behavior (i.e. deceleration of growth with an increase in crack length). Cyclic crack growth was more stable in the forward direction and occurred over twice the spatial distance achieved in the reverse direction. In response to the monotonic loads, a rising R-curve response was exhibited by growth in the forward direction only. The total energy absorbed in fracture for the forward direction was more than three times that in the reverse. The rise in crack growth resistance was largely attributed to a combination of mechanisms that included crack bridging, crack bifurcation and crack curving, which were induced by decussation in the inner enamel. An analysis of the responses distinguished that the microstructure of enamel appears optimized for resisting crack growth initiating from damage at the tooth's surface.

  17. Stress intensity factors for part-elliptical cracks emanating from dimpled rivet holes

    NASA Astrophysics Data System (ADS)

    Wang, Ailun; She, Chongmin; Lin, Gang; Zhou, You; Guo, Wanlin

    2014-11-01

    Detailed investigations on the stress intensity factors (SIFs) for corner cracks emanated from interference fitted dimpled rivet holes are conducted using three-dimensional finite element method. The influences of the crack length a, elliptical shape factor t, far-end stress S and interference magnitude δ on the stress intensity factors are systematically studied. The SIFs for corner cracks emanated from open holes are also investigated for comparisons. An empirical formula of the normalized SIF is proposed by use of the least square method for convenience of the engineering application, which is a function of the crack length a, elliptical shape factor t, far-end stress S, interference magnitude δ and the normalized elliptical centrifugal angle φn. Based on the empirical formula, a crack growth simulation for a rivet filled hole is conducted, which shows a good agreement with the test data.

  18. Fatigue crack growth in unidirectional and cross-ply SCS-6/Timetal 21S titanium matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann, D.J.

    1994-01-01

    Fatigue crack growth in unidirectional and cross-ply SCS-6/ Timetal(R) 21S titanium matrix composite was investigated. Fatigue crack growth tests were performed on (0){sub 4}, (90){sub 4}, and (0/90){sub s} center notch specimens. The (0){sub 4} and (0/90){sub s} fatigue crack growth rates decreased initially. Specimens removed prior to failure were polished to the first row of fibers and intact fibers in the wake of the matrix crack were observed. These bridging fibers reduced the stress intensity range that the matrix material was subjected to, thus reducing the crack growth rate. The crack growth rate eventually increased as fibers failed inmore » the crack wake but the fatigue crack growth rate was still much slower than that of unreinforced Timetal(R) 21S. A model was developed to study the mechanics of a cracked unidirectional composite with any combination of intact and broken fibers in the wake of a matrix crack. The model was correlated to fatigue crack growth rate tests. The model was verified by comparing predicted displacements near the crack surface with Elber gage (1.5 mm gage length extensometer) measurements. The fatigue crack growth rate for the (90){sub 4} specimens was faster than that of unreinforced Timetal(registered trademark) 21S. Elber gage displacement measurements were in agreement with linear elastic fracture mechanics predictions, suggesting that linear elastic fracture mechanics may be applicable to transversely loaded titanium matrix composites.« less

  19. International Conference/Workshop on Small Fatigue Cracks (2nd) Held in Santa Barbara, California on 5-10 January 1986.

    DTIC Science & Technology

    1986-03-31

    critical issues thus pertain to the determination of crack tip conditions, as a function of crack length, in terms of the coupled processes of fluid...transport and chemical/electrochemical reactions within the crack, and the determination of the origin of the environmentally-enhanced cracking rates in...Depth in Determining Crack Electrochemistry and Crack Growth" A. Turnbull, National Physical Laboratory, U.K., and R. C. Newmann, UMIST, U.K. 7:30 p.m.-7

  20. Stress-intensity factors for circumferential surface cracks in pipes and rods under tension and bending loads

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Newman, J. C., Jr.

    1985-01-01

    The purpose of this paper is to present stress-intensity factors for a wide range of nearly semi-elliptical surface cracks in pipes and rods. The configurations were subjected to either remote tension or bending loads. For pipes, the ratio of crack depth to crack length (a/c) ranged from 0.6 to 1; the ratio of crack depth to wall thickness (a/t) ranged from 0.2 to 0.8; and the ratio of internal radius to wall thickness (R/t) ranged from 1 to 10. For rods, the ratio of crack depth to crack length also ranged from 0.6 to 1; and the ratio of crack depth to rod diameter (a/D) ranged from 0.05 to 0.35. These particular crack configurations were chosen to cover the range of crack shapes (a/c) that have been observed in experiments conducted on pipes and rods under tension and bending fatigue loads. The stress-intensity factors were calculated by a three-dimensional finite-element method. The finite-element models employed singularity elements along the crack front and linear-strain elements elsewhere. The models had about 6500 degrees of freedom. The stress-intensity factors were evaluated using a nodal-force method.

  1. 7 CFR 51.586 - Serious damage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Growth cracks when more than 4 branches are affected by growth cracks which are over one-half inch in length, or when more than 8 branches have growth cracks; (b) Horizontal cracks when more than 5 branches..., whichever is less, has more than 3 distinct hair-like lines more than 3 inches long occurring on the outer...

  2. 7 CFR 51.586 - Serious damage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Growth cracks when more than 4 branches are affected by growth cracks which are over one-half inch in length, or when more than 8 branches have growth cracks; (b) Horizontal cracks when more than 5 branches..., whichever is less, has more than 3 distinct hair-like lines more than 3 inches long occurring on the outer...

  3. Safety assessment of Cracked K-joint Structure Based on Fracture Mechanics

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Pengyu, Yan; Jianwei, Du; Fuhai, Cai

    2017-05-01

    The K-joint is the main bearing structure of lattice jib crane. During frequent operation of the crane, surface cracks often occur at its weld toe, and then continue to expand until failure. The safety of the weak structure K-joint of the crane jib can be evaluated by BS7910 failure assessment standard in order to improve its utilization. The finite element model of K-joint structure with cracks is established, and its mechanical properties is analyzed by ABAQUS software, the results show that the crack depth has a great influence on the bearing capacity of the structure compared with the crack length. It is assumed that the K-joint with the semi-elliptical surface crack under the action of the tension propagate stably under the condition that the c/a (ratio of short axis to long axis of ellipse) is about 0.3. The safety assessment of K-joint with different lengths crack is presented according to the 2A failure assessment diagram of BS7910, and the critical crack of K-joint under different loads can be obtained.

  4. Coseismic Surface Cracks Produced By the Mw8.1 Pisagua Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Allmendinger, R. W.; Scott, C. P.; Gonzalez, G.; Loveless, J. P.

    2014-12-01

    The April 1, 2014 Mw8.1 Pisagua earthquake filled a relatively small part of the Iquique Gap, a segment of the the Nazca-South America plate boundary that had not experienced a great earthquake since 1877. The slip maximum for the event occurred south of the hypocenter offshore of the village of Pisagua. To document the permanent surface deformation, we measured more than 3,700 co- or post seismic cracks, spanning 220 km of coast length, during three field excursions 2 weeks, 6 weeks, and 3 months after the main shock. Thanks to the hyperarid climate of the region, many fresh cracks are still visible 3.5 months after the main event but eolian processes and sloughing of the side-walls are rapidly obscuring these fragile features. The distribution of crack strikes is noisy for several reasons: (1) the vast majority of new cracks reactivated pre-existing cracks in many cases with less than ideal orientations; (2) both the April 1 main shock and the April 2 Mw7.7 aftershock 70 km to the south probably produced cracks; (3) several smaller crustal aftershocks occurred on EW reverse faults and may have enhanced cracking on EW scarps; and (4) cracking is locally enhanced along sharp topographic features. Nonetheless, there is a tendency for NNE striking cracks S of the slip maximum and NNW cracks to the north. We measured crack aperture and calculate strain in transects of 500-1000 m length at 3 localities along the earthquake rupture length. Those close to the slip maximum have permanent coseismic extensional strains on the order of 1e-4 and even a site 60 km S of the Mw7.7 event has crack strain of 5e-5. These strains are not homogenous, but diminish eastward. These data indicate that surface cracking caused by any one event utilizes the most suitably pre-existing weaknesses, Presumably, over time earthquakes with similar slip characteristics will add constructively in the geological record to produce a crack population characteristic of the long term average earthquake in the region.

  5. Virtual hybrid test control of sinuous crack

    NASA Astrophysics Data System (ADS)

    Jailin, Clément; Carpiuc, Andreea; Kazymyrenko, Kyrylo; Poncelet, Martin; Leclerc, Hugo; Hild, François; Roux, Stéphane

    2017-05-01

    The present study aims at proposing a new generation of experimental protocol for analysing crack propagation in quasi brittle materials. The boundary conditions are controlled in real-time to conform to a predefined crack path. Servo-control is achieved through a full-field measurement technique to determine the pre-set fracture path and a simple predictor model based on linear elastic fracture mechanics to prescribe the boundary conditions on the fly so that the actual crack path follows at best the predefined trajectory. The final goal is to identify, for instance, non-local damage models involving internal lengths. The validation of this novel procedure is performed via a virtual test-case based on an enriched damage model with an internal length scale, a prior chosen sinusoidal crack path and a concrete sample. Notwithstanding the fact that the predictor model selected for monitoring the test is a highly simplified picture of the targeted constitutive law, the proposed protocol exhibits a much improved sensitivity to the sought parameters such as internal lengths as assessed from the comparison with other available experimental tests.

  6. Role of Prism Decussation on Fatigue Crack Growth and Fracture of Human Enamel

    PubMed Central

    Bajaj, Devendra; Arola, Dwayne

    2009-01-01

    The role of prism decussation on the crack growth resistance of human enamel is evaluated. Miniature inset Compact Tension (CT) specimens embodying a section of cuspal enamel were subjected to Mode I cyclic or monotonic loads. Cracks were grown in either the forward (from outer enamel inwards) or reverse (from inner enamel outwards) direction and the responses were compared quantitatively. Results showed that the outer enamel exhibits lower resistance to the inception and growth of cracks. Regardless of the growth direction, the near threshold region of cyclic extension was typical of ‘short crack’ behavior (i.e. deceleration of growth with an increase in crack length). Cyclic crack growth was more stable in the forward direction and occurred over twice the spatial distance achieved in the reverse direction. In response to the monotonic loads, a rising R-curve response was exhibited by growth in the forward direction only. The total energy absorbed in fracture for the forward direction was more than three times that in the reverse. The rise in crack growth resistance was largely attributed to a combination of mechanisms that included crack bridging, crack bifurcation and crack curving, which were induced by decussation in the inner enamel. An analysis of the responses distinguished that the microstructure of enamel appears optimized for resisting crack growth initiating from damage at the tooth’s surface. PMID:19433137

  7. Damage Mechanisms and Controlled Crack Propagation in a Hot Pressed Silicon Nitride Ceramic. Ph.D. Thesis - Northwestern Univ., 1993

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony Martin

    1994-01-01

    The subcritical growth of cracks from pre-existing flaws in ceramics can severely affect the structural reliability of a material. The ability to directly observe subcritical crack growth and rigorously analyze its influence on fracture behavior is important for an accurate assessment of material performance. A Mode I fracture specimen and loading method has been developed which permits the observation of stable, subcritical crack extension in monolithic and toughened ceramics. The test specimen and procedure has demonstrated its ability to generate and stably propagate sharp, through-thickness cracks in brittle high modulus materials. Crack growth for an aluminum oxide ceramic was observed to be continuously stable throughout testing. Conversely, the fracture behavior of a silicon nitride ceramic exhibited crack growth as a series of subcritical extensions which are interrupted by dynamic propagation. Dynamic initiation and arrest fracture resistance measurements for the silicon nitride averaged 67 and 48 J/sq m, respectively. The dynamic initiation event was observed to be sudden and explosive. Increments of subcritical crack growth contributed to a 40 percent increase in fracture resistance before dynamic initiation. Subcritical crack growth visibly marked the fracture surface with an increase in surface roughness. Increments of subcritical crack growth loosen ceramic material near the fracture surface and the fracture debris is easily removed by a replication technique. Fracture debris is viewed as evidence that both crack bridging and subsurface microcracking may be some of the mechanisms contributing to the increase in fracture resistance. A Statistical Fracture Mechanics model specifically developed to address subcritical crack growth and fracture reliability is used together with a damaged zone of material at the crack tip to model experimental results. A Monte Carlo simulation of the actual experiments was used to establish a set of modeling input parameters. It was demonstrated that a single critical parameter does not characterize the conditions required for dynamic initiation. Experimental measurements for critical crack lengths, and the energy release rates exhibit significant scatter. The resulting output of the model produces good agreement with both the average values and scatter of experimental measurements.

  8. Critical stresses for extension of filament-bridged matrix cracks in ceramic-matrix composites: An assessment with a model composite with tailored interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danchaivijit, S.; Shetty, D.K.; Eldridge, J.

    Matrix cracking was studied in a model unidirectional composite of SiC filaments in an epoxy-bonded alumina matrix. The residual clamping stress on the filaments due to the shrinkage of the epoxy was moderated with the addition of the alumina filler, and the filament surface was coated with a releasing agent to produce unbonded frictional interfaces. Uniaxial tension specimens with controlled through-cracks with bridging filaments were fabricated by a two-step casting technique. Critical stresses for extension of the filament-bridged cracks of various lengths were measured in uniaxial tension using a high-sensitivity extensometer. The measured crack-length dependence of the critical stress wasmore » in good agreement with the prediction of a stress-intensity analysis that employed a new force-displacement law for the bridging filaments. The analysis required independent experimental evaluation of the matrix fracture toughness, the interfacial sliding friction stress, and the residual tension in the matrix. The matrix-cracking stress for the test specimens without the deliberately introduced cracks was significantly higher than the steady-state cracking stress measured for the long, filament-bridged cracks.« less

  9. Stochastic model for fatigue crack size and cost effective design decisions. [for aerospace structures

    NASA Technical Reports Server (NTRS)

    Hanagud, S.; Uppaluri, B.

    1975-01-01

    This paper describes a methodology for making cost effective fatigue design decisions. The methodology is based on a probabilistic model for the stochastic process of fatigue crack growth with time. The development of a particular model for the stochastic process is also discussed in the paper. The model is based on the assumption of continuous time and discrete space of crack lengths. Statistical decision theory and the developed probabilistic model are used to develop the procedure for making fatigue design decisions on the basis of minimum expected cost or risk function and reliability bounds. Selections of initial flaw size distribution, NDT, repair threshold crack lengths, and inspection intervals are discussed.

  10. Analysis of propagation mechanisms of stimulation-induced fractures in rocks

    NASA Astrophysics Data System (ADS)

    Krause, Michael; Renner, Joerg

    2016-04-01

    Effectivity of geothermal energy production depends crucially on the heat exchange between the penetrated hot rock and the circulating water. Hydraulic stimulation of rocks at depth intends to create a network of fractures that constitutes a large area for exchange. Two endmembers of stimulation products are typically considered, tensile hydro-fractures that propagate in direction of the largest principal stress and pre-existing faults that are sheared when fluid pressure reduces the effective normal stress acting on them. The understanding of the propagation mechanisms of fractures under in-situ conditions is still incomplete despite intensive research over the last decades. Wing-cracking has been suggested as a mechanism of fracture extension from pre-existent faults with finite length that are induced to shear. The initiation and extension of the wings is believed to be in tensile mode. Open questions concern the variability of the nominal material property controlling tensile fracture initiation and extension, the mode I facture toughness KIC, with in-situ conditions, e.g., its mean-stress dependence. We investigated the fracture-propagation mechanism in different rocks (sandstones and granites) under varying conditions mimicking those representative for geothermal systems. To determine KIC-values we performed 3-point bending experiments. We varied the confining pressure, the piston velocity, and the position of the chevron notch relative to the loading configuration. Additional triaxial experiments at a range of confining pressures were performed to study wing crack propagation from artificial flaws whose geometrical characteristics, i.e., length, width, and orientation relative to the axial load are varied. We monitored acoustic emissions to constrain the spacio-temporal evolution of the fracturing. We found a significant effect of the length of the artificial flaw and the confining pressure on wing-crack initiation but did not observe a systematic dependence of wing-crack initiation on the orientation of the initial flaw in the range of tested angles. In fact, wings do not develop for artificial flaws shorter than 3 mm. The force required to initiate wing cracking increases with increasing confining pressure as does the apparent fracture toughness. So called ``anti-wing cracks'' were observed too, probably an artifact of the geometrical constraints imposed on the sample in a conventional triaxial compression test.

  11. Sub-10-micrometer toughening and crack tip toughness of dental enamel.

    PubMed

    Ang, Siang Fung; Schulz, Anja; Pacher Fernandes, Rodrigo; Schneider, Gerold A

    2011-04-01

    In previous studies, enamel showed indications to occlude small cracks in-vivo and exhibited R-curve behaviors for bigger cracks ex-vivo. This study quantifies the crack tip's toughness (K(I0),K(III0)), the crack's closure stress and the cohesive zone size at the crack tip of enamel and investigates the toughening mechanisms near the crack tip down to the length scale of a single enamel crystallite. The crack-opening-displacement (COD) profile of cracks induced by Vickers indents on mature bovine enamel was studied using atomic force microscopy (AFM). The mode I crack tip toughness K(I0) of cracks along enamel rod boundaries and across enamel rods exhibit a similar range of values: K(I0,Ir)=0.5-1.6MPa m(0.5) (based on Irwin's 'near-field' solution) and K(I0,cz)=0.8-1.5MPa m(0.5) (based on the cohesive zone solution of the Dugdale-Muskhelishvili (DM) crack model). The mode III crack tip toughness K(III0,Ir) was computed as 0.02-0.15MPa m(0.5). The crack-closure stress at the crack tip was computed as 163-770 MPa with a cohesive zone length and width 1.6-10.1μm and 24-44 nm utilizing the cohesive zone solution. Toughening elements were observed under AFM and SEM: crack bridging due to protein ligament and hydroxyapatite fibres (micro- and nanometer scale) as well as microcracks were identified. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  12. Crack propagation analysis using acoustic emission sensors for structural health monitoring systems.

    PubMed

    Kral, Zachary; Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems.

  13. Analysis of crack propagation in human long bone by using finite element modeling

    NASA Astrophysics Data System (ADS)

    Salim, Mohammad Shahril; Salleh, Ahmad Faizal; Daud, Ruslizam

    2017-12-01

    The aim of this research is to present a numerical modeling of crack for human long bone specifically on femur shaft bone under mode I loading condition. Two - dimensional model (2D) of long bone was developed based on past research study. The finite element analysis and construction of the model are done using Mechanical APDL (ANSYS) v14.0 software. The research was conducted mainly based on two conditions that were at different crack lengths and different loading forces for male and female. In order to evaluate the stress intensity factor (KI) of the femur shaft of long bone, this research employed finite element method to predict the brittle fracture loading by using three-point bending test. The result of numerical test found that the crack was formed when the crack length reached 0.0022 m where KI values are proportional with the crack's length. Also, various loading forces in range of 400 N to 1000 N were applied in an attempt to study their effect on stress intensity factor and it was found that the female dimension has higher KI values compared to male. It was also observed that K values found by this method have good agreement with theoretical results based on previous research.

  14. Bridge-indentation precracking of glass bars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lue, J.L.; Scattergood, R.O.

    1993-07-01

    Bridge indentation precracking was first reported by Sadahiro et al., and has been used by a number of subsequent investigators. The procedure involves placing a half-penny starter crack, formed by Vickers indentation, at the center of the bottom surface of a rectangular bar specimen. The bar is loaded between pusher and anvil platens. The bridge span S produces tensile bending stress on the bottom surface of the bar, which contains the starter crack. With increasing load, the crack grows stably outward and inward, and at a certain load the crack will propagate unstably (pop-in) to a straight, through-section crack ofmore » length c. The method is very convenient for producing sharp, through-section precracks in ceramic bars without the need for saw cutting or fatigue cycling. However, the effects of bridge geometry and friction on the precracking results will be presented here which point to an important influence of the friction between the specimen and anvil platens.« less

  15. Evaluation of fracture toughness of ZrO 2 and Si 3N 4 engineering ceramics following CO 2 and fibre laser surface treatment

    NASA Astrophysics Data System (ADS)

    Shukla, P. P.; Lawrence, J.

    2011-02-01

    The fracture toughness property ( K1C) of Si 3N 4 and ZrO 2 engineering ceramics was investigated by means of CO 2 and a fibre laser surface treatment. Near surface modifications in the hardness were investigated by employing the Vickers indentation method. Crack lengths and the crack geometry were then measured by using the optical microscopy. A co-ordinate measuring machine was used to investigate the diamond indentations and to measure the lengths of the cracks. Thereafter, computational and analytical methods were employed to determine the K1C. An increase in the K1C of both ceramics was found by the CO 2 and the fibre laser surface treatment in comparison to the as-received surfaces. The K1C of the CO 2 laser radiated surface of the Si 3N 4 was over 3% higher in comparison to that of the fibre laser treated surface. This was by softening of the near surface layer of the Si 3N 4 which comprised of lowering of hardness, which in turn increased the crack resistance. The effects were not similar in ZrO 2 ceramic to that of the Si 3N 4 as the fibre laser radiation in this case had produced an increase of 34% compared to that of the CO 2 laser radiation. This occurred due to propagation of lower crack resulting from the Vickers indentation test during the fibre laser surface treatment which inherently affected the end K1C through an induced compressive stress layer. The K1C modification of the two ceramics treated by the CO 2 and the fibre laser was also believed to be influenced by the different laser wavelength and its absorption co-efficient, the beam delivery system as well as the differences in the brightness of the two lasers used.

  16. A stiffness derivative finite element technique for determination of crack tip stress intensity factors

    NASA Technical Reports Server (NTRS)

    Parks, D. M.

    1974-01-01

    A finite element technique for determination of elastic crack tip stress intensity factors is presented. The method, based on the energy release rate, requires no special crack tip elements. Further, the solution for only a single crack length is required, and the crack is 'advanced' by moving nodal points rather than by removing nodal tractions at the crack tip and performing a second analysis. The promising straightforward extension of the method to general three-dimensional crack configurations is presented and contrasted with the practical impossibility of conventional energy methods.

  17. Effects of Diode Laser Debonding of Ceramic Brackets on Enamel Surface and Pulpal Temperature.

    PubMed

    Yassaei, Soghra; Soleimanian, Azadeh; Nik, Zahra Ebrahimi

    2015-04-01

    Debonding of ceramic brackets due to their high bond strength and low fracture toughness is one of the most challenging complications of orthodontic clinicians. Application of lasers might be effective in the debonding of ceramic brackets as they reduce bond strength of resins and, therefore, can eliminate the risk of enamel damage. However, the thermal effects of laser radiation on dental tissue can cause undesirable results. The aim of this study is to evaluate the enamel surface characteristics and pulpal temperature changes of teeth after debonding of ceramic brackets with or without laser light. Thirty polycrystalline brackets were bonded to 30 intact extracted premolars, and later debonded conventionally or through a diode laser (2.5 W, 980 nm). The laser was applied for 10 seconds with sweeping movement. After debonding, the adhesive remnant index (ARI), the lengths and frequency of enamel cracks were compared among the groups. The increase in intrapulpal temperature was also measured. The collected data were analyzed by Chi-squared test and paired t-test using Statistical Package for Social Sciences (SPSS) software. There was no case of enamel fracture in none of the groups. Laser debonding caused a significant decrease in the frequency and lengths of enamel cracks, compared to conventional debonding. In laser debonding group, the increase in intrapulpal temperature (1.46°C) was significantly below the benchmark of 5.5°C for all the specimens. No significant difference was observed in ARI scores among the groups. Laser-assisted debonding of ceramic brackets could reduce the risk of enamel damage, without causing thermal damage to the pulp. However, some increases in the length and frequency of enamel cracks should be expected with all debonding methods.

  18. Fatigue-Crack-Growth Structural Analysis

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1986-01-01

    Elastic and plastic deformations calculated under variety of loading conditions. Prediction of fatigue-crack-growth lives made with FatigueCrack-Growth Structural Analysis (FASTRAN) computer program. As cyclic loads are applied to initial crack configuration, FASTRAN predicts crack length and other parameters until complete break occurs. Loads are tensile or compressive and of variable or constant amplitude. FASTRAN incorporates linear-elastic fracture mechanics with modifications of load-interaction effects caused by crack closure. FASTRAN considered research tool, because of lengthy calculation times. FASTRAN written in FORTRAN IV for batch execution.

  19. In situ investigation of high humidity stress corrosion cracking of 7075 aluminum alloy by three-dimensional (3D) X-ray synchrotron tomography

    DOE PAGES

    Singh, S. S.; Williams, J. J.; Lin, M. F.; ...

    2014-05-14

    In situ X-ray synchrotron tomography was used to investigate the stress corrosion cracking behavior of under-aged Al–Zn–Mg–Cu alloy in moisture. The discontinuous surface cracks (crack jumps) mentioned in the literature are actually a single continuous and tortuous crack when observed in three dimension (3D). Contrary to 2D measurements made at the surface which suggest non-uniform crack growth rates, 3D measurements of the crack length led to a much more accurate measurement of crack growth rates.

  20. [Monitoring of Crack Propagation in Repaired Structures Based on Characteristics of FBG Sensors Reflecting Spectra].

    PubMed

    Yuan, Shen-fang; Jin, Xin; Qiu, Lei; Huang, Hong-mei

    2015-03-01

    In order to improve the security of aircraft repaired structures, a method of crack propagation monitoring in repaired structures is put forward basing on characteristics of Fiber Bragg Grating (FBG) reflecting spectra in this article. With the cyclic loading effecting on repaired structure, cracks propagate, while non-uniform strain field appears nearby the tip of crack which leads to the FBG sensors' reflecting spectra deformations. The crack propagating can be monitored by extracting the characteristics of FBG sensors' reflecting spectral deformations. A finite element model (FEM) of the specimen is established. Meanwhile, the distributions of strains which are under the action of cracks of different angles and lengths are obtained. The characteristics, such as main peak wavelength shift, area of reflecting spectra, second and third peak value and so on, are extracted from the FBGs' reflecting spectral which are calculated by transfer matrix algorithm. An artificial neural network is built to act as the model between the characteristics of the reflecting spectral and the propagation of crack. As a result, the crack propagation of repaired structures is monitored accurately and the error of crack length is less than 0.5 mm, the error of crack angle is less than 5 degree. The accurately monitoring problem of crack propagation of repaired structures is solved by taking use of this method. It has important significance in aircrafts safety improvement and maintenance cost reducing.

  1. Effect of loading rate on the monotonic tensile behavior of a continuous-fiber-reinforced glass-ceramic matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soerensen, B.F.; Holmes, J.W.

    The stress-strain behavior of a continuous-fiber-reinforced ceramic matrix composite has been measured over a wide range of loading rates (0.01 to 500 MPa/s). It was found that the loading rate has a strong effect on almost every feature of the stress-strain curve: the proportionality stress, the composite strength and failure strain increase with increasing loading rate. The microstructural damage varies also with the loading rate; with increasing loading rate, the average matrix crack spacing increases and the average fiber pullout length decreases. Using simple models, it is suggested that these phenomena are caused partly by time-dependent matrix cracking (due tomore » stress corrosion) and partly by an increasing interfacial shear stress with loading rate.« less

  2. Processing, microstructure and mechanics of functionally graded Al A359/SiC(p) composite

    NASA Astrophysics Data System (ADS)

    Rodriguez-Castro, Ramon

    2000-11-01

    Metal matrix composites (MMCs) have great promise for high temperature, high strength, wear resistant applications. However, their brittleness has limited their use in load bearing applications. Functionally graded MMCs with a reinforcement concentration higher on the surface than in the interior offer new opportunities, as these materials will have high surface hardness as well as high resistance to crack growth towards the interior. In this dissertation the processing and mechanical properties of a functionally graded MMC are investigated. Rectangular blocks (100 mmx60 mmx50 mm) of functionally graded SiC particulate reinforced aluminum A359 matrix composite were prepared by centrifugal casting techniques. The reinforcement volume fraction profiles varied as the centrifugal force was applied, owing to the different densities of Al and SiC. The casting at 1300 rpm (angular velocity) had a well-mixed, refined microstructure with the maximum SiC volume fraction of 44% near the outer surface of the blocks. This surface exhibited an elevated hardness. The effect of SiC particulate reinforcement on strengthening of A359 Al alloy was experimentally studied by tensile testing specimens prepared from the cast blocks. There was a continuous increase in tensile and yield strength with increasing SiC volume fractions in the range of 0.20 to 0.30. On the contrary, there was a reduction in tensile and yield strength for SiC concentrations in the range of 0.30 to 0.40. The elasticity modulus increased with increasing SiC volume fractions in the whole reinforcement range (0.20--0.40). Fractographic analysis by SEM revealed a ductile failure process of void growth in the matrix, but the amount of the void growth was less when the SiC concentration was higher. SEM also revealed SiC reinforcement fracture and decohesion, with the particle fracture increasing with the particle concentration. Appropriate flat specimens with a continuously graded microstructure for fracture mechanics testing were machined from the cast blocks. No published work has reported specimens of similar characteristics (size of the specimens and continuous reinforcement gradation). Fracture mechanics of the composite specimens with the crack parallel to the gradation in elastic properties was studied to investigate the effect of the nonhomogeneous microstructure on fracture toughness. Fatigue pre-cracking was used and a limited amount of fatigue crack propagation data was gathered. Low values of DeltaKth and increased crack growth resistance in the Paris region were observed for the functionally graded composite compared to a homogeneous 20 vol% composite. R-curve (KR) behavior of fracture was investigated in the functionally graded composite. At elevated SiC concentrations (low values of crack length), limited dissipation of energy by restrained plastic deformation of the matrix at the crack tip produced low fracture toughness values. On the contrary, at longer crack lengths SiC content decreased and there was more absorption of energy, resulting in higher fracture toughness values. In addition, the crack growth resistance behavior of the FGM composite was compared to the corresponding behavior of an Al A359/SiCp 20 vol% homogeneous composite. The latter exhibited a declining KR-curve behavior whereas the FGM composite displayed an increasing KR-curve behavior. Consequently, this increasing crack growth resistance behavior displayed by the functionally graded Al A359/SiCp composite shows that tailored changes in the microstructure could circumvent the low toughness inherent in MMCs.

  3. Residual stress in glass: indentation crack and fractography approaches.

    PubMed

    Anunmana, Chuchai; Anusavice, Kenneth J; Mecholsky, John J

    2009-11-01

    To test the hypothesis that the indentation crack technique can determine surface residual stresses that are not statistically significantly different from those determined from the analytical procedure using surface cracks, the four-point flexure test, and fracture surface analysis. Soda-lime-silica glass bar specimens (4 mm x 2.3 mm x 28 mm) were prepared and annealed at 650 degrees C for 30 min before testing. The fracture toughness values of the glass bars were determined from 12 specimens based on induced surface cracks, four-point flexure, and fractographic analysis. To determine the residual stress from the indentation technique, 18 specimens were indented under 19.6N load using a Vickers microhardness indenter. Crack lengths were measured within 1 min and 24h after indentation, and the measured crack lengths were compared with the mean crack lengths of annealed specimens. Residual stress was calculated from an equation developed for the indentation technique. All specimens were fractured in a four-point flexure fixture and the residual stress was calculated from the strength and measured crack sizes on the fracture surfaces. The results show that there was no significant difference between the residual stresses calculated from the two techniques. However, the differences in mean residual stresses calculated within 1 min compared with those calculated after 24h were statistically significant (p=0.003). This study compared the indentation technique with the fractographic analysis method for determining the residual stress in the surface of soda-lime-silica glass. The indentation method may be useful for estimating residual stress in glass.

  4. Residual stress in glass: indentation crack and fractography approaches

    PubMed Central

    Anunmana, Chuchai; Anusavice, Kenneth J.; Mecholsky, John J.

    2009-01-01

    Objective To test the hypothesis that the indentation crack technique can determine surface residual stresses that are not statistically significantly different from those determined from the analytical procedure using surface cracks, the four-point flexure test, and fracture surface analysis. Methods Soda-lime-silica glass bar specimens (4 mm × 2.3 mm × 28 mm) were prepared and annealed at 650 °C for 30 min before testing. The fracture toughness values of the glass bars were determined from 12 specimens based on induced surface cracks, four-point flexure, and fractographic analysis. To determine the residual stress from the indentation technique, 18 specimens were indented under 19.6 N load using a Vickers microhardness indenter. Crack lengths were measured within 1 min and 24 h after indentation, and the measured crack lengths were compared with the mean crack lengths of annealed specimens. Residual stress was calculated from an equation developed for the indentation technique. All specimens were fractured in a four-point flexure fixture and the residual stress was calculated from the strength and measured crack sizes on the fracture surfaces. Results The results show that there was no significant difference between the residual stresses calculated from the two techniques. However, the differences in mean residual stresses calculated within 1 min compared with those calculated after 24 h were statistically significant (p=0.003). Significance This study compared the indentation technique with the fractographic analysis method for determining the residual stress in the surface of soda-lime silica glass. The indentation method may be useful for estimating residual stress in glass. PMID:19671475

  5. Anomaly Detection Techniques with Real Test Data from a Spinning Turbine Engine-Like Rotor

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Woike, Mark R.; Oza, Nikunj C.; Matthews, Bryan L.

    2012-01-01

    Online detection techniques to monitor the health of rotating engine components are becoming increasingly attractive to aircraft engine manufacturers in order to increase safety of operation and lower maintenance costs. Health monitoring remains a challenge to easily implement, especially in the presence of scattered loading conditions, crack size, component geometry, and materials properties. The current trend, however, is to utilize noninvasive types of health monitoring or nondestructive techniques to detect hidden flaws and mini-cracks before any catastrophic event occurs. These techniques go further to evaluate material discontinuities and other anomalies that have grown to the level of critical defects that can lead to failure. Generally, health monitoring is highly dependent on sensor systems capable of performing in various engine environmental conditions and able to transmit a signal upon a predetermined crack length, while acting in a neutral form upon the overall performance of the engine system.

  6. Crack surface roughness in three-dimensional random fuse networks

    NASA Astrophysics Data System (ADS)

    Nukala, Phani Kumar V. V.; Zapperi, Stefano; Šimunović, Srđan

    2006-08-01

    Using large system sizes with extensive statistical sampling, we analyze the scaling properties of crack roughness and damage profiles in the three-dimensional random fuse model. The analysis of damage profiles indicates that damage accumulates in a diffusive manner up to the peak load, and localization sets in abruptly at the peak load, starting from a uniform damage landscape. The global crack width scales as Wtilde L0.5 and is consistent with the scaling of localization length ξ˜L0.5 used in the data collapse of damage profiles in the postpeak regime. This consistency between the global crack roughness exponent and the postpeak damage profile localization length supports the idea that the postpeak damage profile is predominantly due to the localization produced by the catastrophic failure, which at the same time results in the formation of the final crack. Finally, the crack width distributions can be collapsed for different system sizes and follow a log-normal distribution.

  7. Large increase in fracture resistance of stishovite with crack extension less than one micrometer

    PubMed Central

    Yoshida, Kimiko; Wakai, Fumihiro; Nishiyama, Norimasa; Sekine, Risako; Shinoda, Yutaka; Akatsu, Takashi; Nagoshi, Takashi; Sone, Masato

    2015-01-01

    The development of strong, tough, and damage-tolerant ceramics requires nano/microstructure design to utilize toughening mechanisms operating at different length scales. The toughening mechanisms so far known are effective in micro-scale, then, they require the crack extension of more than a few micrometers to increase the fracture resistance. Here, we developed a micro-mechanical test method using micro-cantilever beam specimens to determine the very early part of resistance-curve of nanocrystalline SiO2 stishovite, which exhibited fracture-induced amorphization. We revealed that this novel toughening mechanism was effective even at length scale of nanometer due to narrow transformation zone width of a few tens of nanometers and large dilatational strain (from 60 to 95%) associated with the transition of crystal to amorphous state. This testing method will be a powerful tool to search for toughening mechanisms that may operate at nanoscale for attaining both reliability and strength of structural materials. PMID:26051871

  8. Analyses of Buckling and Stable Tearing in Thin-Sheet Materials

    NASA Technical Reports Server (NTRS)

    Seshadri, B. R.; Newman, J. C., Jr.

    1998-01-01

    This paper was to verify the STAGS (general shell, geometric and material nonlinear) code and the critical crack tip opening angle (CTOA) fracture criterion for predicting stable tearing in cracked panels that fail with severe out of plane buckling. Materials considered ranged from brittle to ductile behavior. Test data used in this study are reported elsewhere. The STAGS code was used to model stable tearing using a critical CTOA value that was determined from a cracked panel that was 'restrained' from buckling. ne analysis methodology was then used to predict the influence of buckling on stable tearing and failure loads. Parameters like crack length to specimen width ratio, crack configuration, thickness, and material tensile properties had a significant influence on the buckling behavior of cracked thin sheet materials. Experimental and predicted results showed a varied buckling response for different crack length to sheet thickness ratios because different buckling modes were activated. Effects of material tensile properties and fracture toughness on buckling response were presented. The STAGS code and the CTOA fracture criterion were able to predict the influence of buckling on stable tearing behavior and failure loads on a variety of materials and crack configurations.

  9. EFFECTS OF MINERAL CONTENT ON THE FRACTURE PROPERTIES OF EQUINE CORTICAL BONE IN DOUBLE-NOTCHED BEAMS

    PubMed Central

    McCormack, Jordan; Stover, Susan M.; Gibeling, Jeffery C.; Fyhrie, David P.

    2012-01-01

    We recently developed a method to measure cortical bone fracture initiation toughness using a double-notched beam in four-point bending. This method was used to test the hypothesis that mineralization around the two notch roots is correlated with fracture toughness and crack extension (physical damage). Total energy absorbed to failure negatively correlated with average mineralization of the beam (r2=0.62), but not with notch root mineralization. Fracture initiation toughness was positively correlated to mineralization at the broken notch root (r2=0.34). Crack length extension at the unbroken notch was strongly negatively correlated with the average mineralization of the notch roots (r2=0.81) whereas crack length extension at the broken notch did not correlate with any of the mineralization measurements. Mineralization at the notch roots and the average mineralization contributed independently to the mechanical and damage properties. The data are consistent with an hypothesis that a) high notch root mineralization results in less stable crack length extension but high force to initiate unstable crack propagation while b) higher average mineralization leads to low post-yield (and total) energy absorption to failure. PMID:22394589

  10. Contraction fracture: From 90° to 120° crack intersections

    NASA Astrophysics Data System (ADS)

    Lazarus, V.; Gauthier, G.; Pauchard, L.

    2009-12-01

    Giant's Causeway, Port Arthur tessellated pavement, Bimini Road, Mars polygons (whose presence indicated past occurrence of water), fracture networks in permafrost, septarias are some more or less known examples of self-organized crack patterns that have intrigued people through out history. Even now, they are sometimes attributed to legendary figures : Giant's, Atlantis mythical citizens. These pavements are in fact formed by constrained shrinking of the media due, for instance, to cooling or drying leading to fracture. The crack networks form mostly 90° or 120° angles. Here, we report experiments allowing to control the transition between 90° and 120°. We show that the transition is governed by the linear elastic fracture mechanics energy minimization principle, hence by two parameters: the cell size and the Griffith's length (minimum crack length beyond which the bulk energy is not sufficient to allow its propagation). This was achieved by measuring the Griffith's length directly on the same type of experiments by changing the cell geometry. Example of 90 degree and 120 crack intersections. Top-left : Giant's Causeway hexagonal tessellated pavement, Ireland (courtesy A. Davaille). Top-right: Port Arthur rectangular tessellated pavement, Tasmania (courtesy Wayne Bentley). Bottom : septarias (courtesy A. Rifki and M. Toussaint)

  11. Calculation of Stress Intensity Factors for Interfacial Cracks in Fiber Metal Laminates

    NASA Technical Reports Server (NTRS)

    Wang, John T.

    2009-01-01

    Stress intensity factors for interfacial cracks in Fiber Metal Laminates (FML) are computed by using the displacement ratio method recently developed by Sun and Qian (1997, Int. J. Solids. Struct. 34, 2595-2609). Various FML configurations with single and multiple delaminations subjected to different loading conditions are investigated. The displacement ratio method requires the total energy release rate, bimaterial parameters, and relative crack surface displacements as input. Details of generating the energy release rates, defining bimaterial parameters with anisotropic elasticity, and selecting proper crack surface locations for obtaining relative crack surface displacements are discussed in the paper. Even though the individual energy release rates are nonconvergent, mesh-size-independent stress intensity factors can be obtained. This study also finds that the selection of reference length can affect the magnitudes and the mode mixity angles of the stress intensity factors; thus, it is important to report the reference length used with the calculated stress intensity factors.

  12. Investigation of Cracks Found in Helicopter Longerons

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Baughman, James M.; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurigical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  13. Investigation of Helicopter Longeron Cracks

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Baughman, James; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurgical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  14. Effect of Instrumentation Length and Instrumentation Systems: Hand Versus Rotary Files on Apical Crack Formation – An In vitro Study

    PubMed Central

    Mahesh, MC; Bhandary, Shreetha

    2017-01-01

    Introduction Stresses generated during root canal instrumentation have been reported to cause apical cracks. The smaller, less pronounced defects like cracks can later propagate into vertical root fracture, when the tooth is subjected to repeated stresses from endodontic or restorative procedures. Aim This study evaluated occurrence of apical cracks with stainless steel hand files, rotary NiTi RaCe and K3 files at two different instrumentation lengths. Materials and Methods In the present in vitro study, 60 mandibular premolars were mounted in resin blocks with simulated periodontal ligament. Apical 3 mm of the root surfaces were exposed and stained using India ink. Preoperative images of root apices were obtained at 100x using stereomicroscope. The teeth were divided into six groups of 10 each. First two groups were instrumented with stainless steel files, next two groups with rotary NiTi RaCe files and the last two groups with rotary NiTi K3 files. The instrumentation was carried out till the apical foramen (Working Length-WL) and 1 mm short of the apical foramen (WL-1) with each file system. After root canal instrumentation, postoperative images of root apices were obtained. Preoperative and postoperative images were compared and the occurrence of cracks was recorded. Descriptive statistical analysis and Chi-square tests were used to analyze the results. Results Apical root cracks were seen in 30%, 35% and 20% of teeth instrumented with K-files, RaCe files and K3 files respectively. There was no statistical significance among three instrumentation systems in the formation of apical cracks (p=0.563). Apical cracks were seen in 40% and 20% of teeth instrumented with K-files; 60% and 10% of teeth with RaCe files and 40% and 0% of teeth with K3 files at WL and WL-1 respectively. For groups instrumented with hand files there was no statistical significance in number of cracks at WL and WL-1 (p=0.628). But for teeth instrumented with RaCe files and K3 files significantly more number of cracks were seen at WL than WL-1 (p=0.057 for RaCe files and p=0.087 for K3 files). Conclusion There was no statistical significance between stainless steel hand files and rotary files in terms of crack formation. Instrumentation length had a significant effect on the formation of cracks when rotary files were used. Using rotary instruments 1 mm short of apical foramen caused lesser crack formation. But, there was no statistically significant difference in number of cracks formed with hand files at two instrumentation levels. PMID:28274036

  15. Effect of Instrumentation Length and Instrumentation Systems: Hand Versus Rotary Files on Apical Crack Formation - An In vitro Study.

    PubMed

    Devale, Madhuri R; Mahesh, M C; Bhandary, Shreetha

    2017-01-01

    Stresses generated during root canal instrumentation have been reported to cause apical cracks. The smaller, less pronounced defects like cracks can later propagate into vertical root fracture, when the tooth is subjected to repeated stresses from endodontic or restorative procedures. This study evaluated occurrence of apical cracks with stainless steel hand files, rotary NiTi RaCe and K3 files at two different instrumentation lengths. In the present in vitro study, 60 mandibular premolars were mounted in resin blocks with simulated periodontal ligament. Apical 3 mm of the root surfaces were exposed and stained using India ink. Preoperative images of root apices were obtained at 100x using stereomicroscope. The teeth were divided into six groups of 10 each. First two groups were instrumented with stainless steel files, next two groups with rotary NiTi RaCe files and the last two groups with rotary NiTi K3 files. The instrumentation was carried out till the apical foramen (Working Length-WL) and 1 mm short of the apical foramen (WL-1) with each file system. After root canal instrumentation, postoperative images of root apices were obtained. Preoperative and postoperative images were compared and the occurrence of cracks was recorded. Descriptive statistical analysis and Chi-square tests were used to analyze the results. Apical root cracks were seen in 30%, 35% and 20% of teeth instrumented with K-files, RaCe files and K3 files respectively. There was no statistical significance among three instrumentation systems in the formation of apical cracks (p=0.563). Apical cracks were seen in 40% and 20% of teeth instrumented with K-files; 60% and 10% of teeth with RaCe files and 40% and 0% of teeth with K3 files at WL and WL-1 respectively. For groups instrumented with hand files there was no statistical significance in number of cracks at WL and WL-1 (p=0.628). But for teeth instrumented with RaCe files and K3 files significantly more number of cracks were seen at WL than WL-1 (p=0.057 for RaCe files and p=0.087 for K3 files). There was no statistical significance between stainless steel hand files and rotary files in terms of crack formation. Instrumentation length had a significant effect on the formation of cracks when rotary files were used. Using rotary instruments 1 mm short of apical foramen caused lesser crack formation. But, there was no statistically significant difference in number of cracks formed with hand files at two instrumentation levels.

  16. Dynamic fracture of inorganic glasses by hard spherical and conical projectiles.

    PubMed

    Chaudhri, M Munawar

    2015-03-28

    In this article, high-speed photographic investigations of the dynamic crack initiation and propagation in several inorganic glasses by the impact of small spherical and conical projectiles are described. These were carried out at speeds of up to approximately 2×10(6) frames s(-1). The glasses were fused silica, 'Pyrex' (a borosilicate glass), soda lime and B(2)O(3). The projectiles were 0.8-2 mm diameter spheres of steel, glass, sapphire and tungsten carbide, and their velocities were up to 340 m s(-1). In fused silica and Pyrex, spherical projectiles' impact produced Hertzian cone cracks travelling at terminal crack velocities, whereas in soda-lime glass fast splinter cracks were generated. No crack bifurcation was observed, which has been explained by the nature of the stress intensity factor of the particle-impact-generated cracks, which leads to a stable crack growth. Crack bifurcation was, however, observed in thermally tempered glass; this bifurcation has been explained by the tensile residual stress and the associated unstable crack growth. A new explanation has been proposed for the decrease of the included angle of the Hertzian cone cracks with increasing impact velocity. B(2)O(3) glass showed dynamic compaction and plasticity owing to impact with steel spheres. Other observations, such as total contact time, crack lengths and response to oblique impacts, have also been explained. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Simulating Fatigue Crack Growth in Spiral Bevel Pinion

    NASA Technical Reports Server (NTRS)

    Ural, Ani; Wawrzynek, Paul A.; Ingraffe, Anthony R.

    2003-01-01

    This project investigates computational modeling of fatigue crack growth in spiral bevel gears. Current work is a continuation of the previous efforts made to use the Boundary Element Method (BEM) to simulate tooth-bending fatigue failure in spiral bevel gears. This report summarizes new results predicting crack trajectory and fatigue life for a spiral bevel pinion using the Finite Element Method (FEM). Predicting crack trajectories is important in determining the failure mode of a gear. Cracks propagating through the rim may result in catastrophic failure, whereas the gear may remain intact if one tooth fails and this may allow for early detection of failure. Being able to predict crack trajectories is insightful for the designer. However, predicting growth of three-dimensional arbitrary cracks is complicated due to the difficulty of creating three-dimensional models, the computing power required, and absence of closed- form solutions of the problem. Another focus of this project was performing three-dimensional contact analysis of a spiral bevel gear set incorporating cracks. These analyses were significant in determining the influence of change of tooth flexibility due to crack growth on the magnitude and location of contact loads. This is an important concern since change in contact loads might lead to differences in SIFs and therefore result in alteration of the crack trajectory. Contact analyses performed in this report showed the expected trend of decreasing tooth loads carried by the cracked tooth with increasing crack length. Decrease in tooth loads lead to differences between SIFs extracted from finite element contact analysis and finite element analysis with Hertz contact loads. This effect became more pronounced as the crack grew.

  18. A study of fiber volume fraction effects in notched unidirectional SCS-6/Ti-15V-3Cr-3Al-3Sn composite. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Covey, Steven J.

    1993-01-01

    Notched unidirectional SCS-6/Ti-15-3 composite of three different fiber volume fractions (vf = 0.15, 0.37, and 0.41) was investigated for various room temperature microstructural and material properties including: fatigue crack initiation, fatigue crack growth, and fracture toughness. While the matrix hardness is similar for all fiber volume fractions, the fiber/matrix interfacial shear strength and matrix residual stress increases with fiber volume fraction. The composite fatigue crack initiation stress is shown to be matrix controlled and occurs when the net maximum matrix stress approaches the endurance limit stress of the matrix. A model is presented which includes residual stresses and presents the composite initiation stress as a function of fiber volume fraction. This model predicts a maximum composite initiation stress at vf approximately 0.15 which agrees with the experimental data. The applied composite stress levels were increased as necessary for continued crack growth. The applied Delta(K) values at crack arrest increase with fiber volume fraction by an amount better approximated using an energy based formulation rather than when scaled linear with modulus. After crack arrest, the crack growth rate exponents for vf37 and vf41 were much lower and toughness much higher, when compared to the unreinforced matrix, because of the bridged region which parades with the propagating fatigue crack. However, the vf15 material exhibited a higher crack growth rate exponent and lower toughness than the unreinforced matrix because once the bridged fibers nearest the crack mouth broke, the stress redistribution broke all bridged fibers, leaving an unbridged crack. Degraded, unbridged behavior is modeled using the residual stress state in the matrix ahead of the crack tip. Plastic zone sizes were directly measured using a metallographic technique and allow prediction of an effective matrix stress intensity which agrees with the fiber pressure model if residual stresses are considered. The sophisticated macro/micro finite element models of the 0.15 and 0.37 fiber volume fractions presented show good agreement with experimental data and the fiber pressure model when an estimated effective fiber/matrix debond length is used.

  19. Damage assessment and progression in a polyisocyanurate-based continuous swirl mat composite

    NASA Astrophysics Data System (ADS)

    Worley, Darwell Carlton, II

    This research conducted in conjunction with Oak Ridge National Laboratories and the Automotive Composite Consortium, ACC, was motivated by the desire to reduce vehicle weight for increased efficiency. At present, there are no databases of failure mechanisms, experimental procedures to study failure, mathematical expressions for empirical or theoretical prediction of properties of a continuous swirl mat composite, CSMC. Therefore, to contribute to the increased utilization of this class of materials the following research was performed. This research enabled the failure mechanism to be formulated, development of a method to quantify failure based on ultrasonic attenuation maps, and the prediction of the fracture toughness parameter KIC. The use of scanning electron microscopy, light microscopy, and real-time tensile loading showed that the CSMC failed in a brittle mode. These techniques also provided imaging information as to how a dominant crack propagates in the presence of a continuously swirled E-glass mat reinforcement and voids. This evaluation enabled a reconstruction of failure in order to demonstrate a possible failure mechanism. The aforementioned techniques revealed that the dominant crack follows the fiber/matrix interface, but may be influenced by the presence of voids. Voids have the tendency of luring the growing crack away from the interface. A growing crack would, however, return to a fiber/matrix interface until complete failure occurred. Another aspect of this work was the quantification of progressive damage using ultrasound. Comparisons were made between ultrasonic attenuation maps for unloaded and sequentially loaded specimens. The sequential loads were applied at different percentages of the ultimate tensile strength, UTS. This technique provided attenuation maps for a series of specimens with a controlled degree of damage, which showed an increase in attenuation with an increase in percent UTS. Fracture toughness experiments yielded an average KIC value of 17.1 MPa√m, while the prediction of the fracture toughness parameter, KIC, was achieved by combining K-solution expressions for in-line and parallel crack configurations while evaluating the needed stress, sigma, using of the "Rule of Mixtures". The average void length was used as the crack length, which was obtained by light microscopy in conjunction with NIHTM software. The predicted KIC value at 40% glass fiber and void orientations of 45°, 30° and 25° was 11.4 MPa√m, 17.0 MPa√m and 18.6 MPa√m, respectively.

  20. Crack Closure and Fatigue Crack Growth in 2219-T851 Aluminum Alloy

    DTIC Science & Technology

    1976-08-01

    assumes the length of the crack perimeter to remain es - ’I sentially constant. At the maximum load, the crack is ap- proximately parabolic (or ellipical...for center cracked j specimens) in shape. With unloading, the parabola (or el- lipse) is collapsed. The resulting change in shape produces an apparent...reloading process, the electrical potential remained es - j sentially constant initially and was less than that at the corresponding load during unloading

  1. Controlled crack shapes for indentation fracture of soda-lime glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, S.M.; Scattergood, R.O.

    1992-01-01

    Radial cracks for indented soda-lime glass aged in distilled water were highly elliptical because of truncation by lateral cracks. Indentation in silicone oil minimized radial/lateral crack interaction but still produced cracks having nominally constant ellipticity during bend testing. Analysis of applied stress/indentation crack length data using stress intensity factors based on half-penny crack shape resulted in apparent R-curve behavior and/or overestimation of the fracture toughness. Incorporation of elliptical shape factors eliminated the R-curve behavior and reduced measured toughness to near the accepted value for soda-lime glass.

  2. Internal state variable approach for predicting stiffness reductions in fibrous laminated composites with matrix cracks

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Won; Allen, D. H.; Harris, C. E.

    1989-01-01

    A mathematical model utilizing the internal state variable concept is proposed for predicting the upper bound of the reduced axial stiffnesses in cross-ply laminates with matrix cracks. The axial crack opening displacement is explicitly expressed in terms of the observable axial strain and the undamaged material properties. A crack parameter representing the effect of matrix cracks on the observable axial Young's modulus is calculated for glass/epoxy and graphite/epoxy material systems. The results show that the matrix crack opening displacement and the effective Young's modulus depend not on the crack length, but on its ratio to the crack spacing.

  3. Indenter flaw geometry and fracture toughness estimates for a glass-ceramic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shetty, D.K.; Duckworth, W.H.; Rosenfield, A.R.

    1985-10-01

    Shapes of cracks associated with Vickers indenter flaws in a glass-ceramic were assessed by stepwise polishing and measuring surface traces as a function of depth. The cracks were of the Palmqvist type even at 200-N indentation load. The load dependence of crack lengths and fracture toughness estimates were examined in terms of relations proposed for Palmqvist and half-penny cracks. Estimates based on the half-penny crack analogy were in closer agreement with bulk fracture toughness measurements despite the Palmqvist nature of the cracks.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dag, Serkan; Yildirim, Bora; Sabuncuoglu, Baris

    The objective of this study is to develop crack growth analysis methods for functionally graded materials (FGMs) subjected to mode I cyclic loading. The study presents finite elements based computational procedures for both two and three dimensional problems to examine fatigue crack growth in functionally graded materials. Developed methods allow the computation of crack length and generation of crack front profile for a graded medium subjected to fluctuating stresses. The results presented for an elliptical crack embedded in a functionally graded medium, illustrate the competing effects of ellipse aspect ratio and material property gradation on the fatigue crack growth behavior.

  5. A Review of the Proposed KIsi Offset-Secant Method for Size-Insensitive Linear-Elastic Fracture Toughness Evaluation

    NASA Technical Reports Server (NTRS)

    James, Mark; Wells, Doug; Allen, Phillip; Wallin, Kim

    2017-01-01

    Recently proposed modifications to ASTM E399 would provide a new size-insensitive approach to analyzing the force-displacement test record. The proposed size-insensitive linear-elastic fracture toughness, KIsi, targets a consistent 0.5mm crack extension for all specimen sizes by using an offset secant that is a function of the specimen ligament length. The KIsi evaluation also removes the Pmax/PQ criterion and increases the allowable specimen deformation. These latter two changes allow more plasticity at the crack tip, prompting the review undertaken in this work to ensure the validity of this new interpretation of the force-displacement curve. This paper provides a brief review of the proposed KIsi methodology and summarizes a finite element study into the effects of increased crack tip plasticity on the method given the allowance for additional specimen deformation. The study has two primary points of investigation: the effect of crack tip plasticity on compliance change in the force-displacement record and the continued validity of linear-elastic fracture mechanics to describe the crack front conditions. The analytical study illustrates that linear-elastic fracture mechanics assumptions remain valid at the increased deformation limit; however, the influence of plasticity on the compliance change in the test record is problematic. A proposed revision to the validity criteria for the KIsi test method is briefly discussed.

  6. Surface crack analysis applied to impact damage in a thick graphite-epoxy composite

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.; Harris, C. E.; Morris, D. H.

    1988-01-01

    The residual tensile strength of a thick graphite/epoxy composite with impact damage was predicted using surface crack analysis. The damage was localized to a region directly beneath the impact site and extended only part way through the laminate. The damaged region contained broken fibers, and the locus of breaks in each layer resembled a crack perpendicular to the direction of the fibers. In some cases, the impacts broke fibers without making a visible crater. The impact damage was represented as a semi-elliptical surface crack with length and depth equal to that of the impact damage. The maximum length and depth of the damage were predicted with a stress analysis and a maximum shear stress criterion. The predictions and measurements of strength were in good agreement.

  7. Surface crack analysis applied to impact damage in a thick graphite/epoxy composite

    NASA Technical Reports Server (NTRS)

    Poe, Clarence C., Jr.; Harris, Charles E.; Morris, Don H.

    1990-01-01

    The residual tensile strength of a thick graphite/epoxy composite with impact damage was predicted using surface crack analysis. The damage was localized to a region directly beneath the impact site and extended only part way through the laminate. The damaged region contained broken fibers, and the locus of breaks in each layer resembled a crack perpendicular to the direction of the fibers. In some cases, the impacts broke fibers without making a visible crater. The impact damage was represented as a semi-elliptical surface crack with length and depth equal to that of the impact damage. The maximum length and depth of the damage were predicted with a stress analysis and a maximum shear stress criterion. The predictions and measurements of strength were in good agreement.

  8. On crack initiation in notched, cross-plied polymer matrix composites

    NASA Astrophysics Data System (ADS)

    Yang, Q. D.; Schesser, D.; Niess, M.; Wright, P.; Mavrogordato, M. N.; Sinclair, I.; Spearing, S. M.; Cox, B. N.

    2015-05-01

    The physics of crack initiation in a polymer matrix composite are investigated by varying the modeling choices made in simulations and comparing the resulting predictions with high-resolution in situ images of cracks. Experimental data were acquired using synchrotron-radiation computed tomography (SRCT) at a resolution on the order of 1 μm, which provides detailed measurement of the location, shape, and size of small cracks, as well as the crack opening and shear displacements. These data prove sufficient to discriminate among competing physical descriptions of crack initiation. Simulations are executed with a high-fidelity formulation, the augmented finite element method (A-FEM), which permits consideration of coupled damage mechanisms, including both discrete cracks and fine-scale continuum damage. The discrete cracks are assumed to be nonlinear fracture events, governed by reasonably general mixed-mode cohesive laws. Crack initiation is described in terms of strength parameters within the cohesive laws, so that the cohesive law provides a unified model for crack initiation and growth. Whereas the cracks investigated are typically 1 mm or less in length, the fine-scale continuum damage refers to irreversible matrix deformation occurring over gauge lengths extending down to the fiber diameter (0.007 mm). We find that the location and far-field stress for crack initiation are predicted accurately only if the variations of local stress within plies and in the presence of stress concentrators (notches, etc.) are explicitly computed and used in initiation criteria; stress redistribution due to matrix nonlinearity that occurs prior to crack initiation is accounted for; and a mixed-mode criterion is used for crack initiation. If these factors are not all considered, which is the case for commonly used failure criteria, predictions of the location and far-field stress for initiation are not accurate.

  9. Effects of fracture and crack healing in sI methane and sII methane-ethane gas hydrate

    NASA Astrophysics Data System (ADS)

    Helgerud, M. B.; Waite, W. F.; Stern, L. A.; Kirby, S. H.

    2005-12-01

    Cracking within gas hydrate-bearing sediment can occur in the field at core-scales, due to unloading as material is brought to the surface during conventional coring, and at reservoir scales if the formation is fractured prior to production. Cracking can weaken hydrate-bearing sediment, but can also provide additional surface area for dissociation and permeability pathways for enhanced gas and fluid flow. In pulse-transmission wave speed measurements, we observe cracking in laboratory-formed pure sI methane and sII methane-ethane hydrates when samples are axially unloaded while being held under gas pressure to maintain hydrate stability. Cracking events are inferred from repeated, sharp decreases in shear wave speed occurring concurrently with abrupt increases in sample length. We also visually observe cracks in the solid samples after their recovery from the apparatus following each experiment. Following a cracking event, we observe evidence of rapid crack healing, or annealing expressed as nearly complete recovery of the shear wave speed within approximately 20 minutes. Gas hydrate recrystallization, grain growth, and annealing have also been observed in optical cell experiments and SEM imagery over a similar time frame. In a recovered hydrate-bearing core that is repressurized for storage or experimentation, rapid crack healing and recrystallization can partly restore lost mechanical strength and raise wave speeds. In a fractured portion of a hydrate-bearing reservoir, the rapid healing process can close permeable cracks and reduce the surface area available for dissociation.

  10. Light intensification effect of trailing indent crack in fused silica subsurface

    NASA Astrophysics Data System (ADS)

    Zhang, ChunLai; Xu, Ming; Wang, ChunDong

    2015-03-01

    A finite-difference time-domain algorithm was applied to solve Maxwell's equations to obtain the redistribution of an electromagnetic plane wave in the vicinity of a trailing indent crack (TIC). The roles of five geometrical parameters playing in light intensification were calculated numerically under the irradiation of a 355-nm normal incidence laser. The results show that the light intensity enhancements between the nearest neighbor pits were remarkable, which may lead to damage. The calculated results reveal that the light intensity enhancement factor ( LIEF) can be up to 11.2 when TIC is on the rear-surface. With the increase of the length as well as the depth of pits, LIEF increased. Conversely, with the increase of the axis of pits, LIEF gradually declined to a stable status. It was observed that there exists an optima width or gap, which enables LIEF to be increased dramatically and then decreased gently. By comparison, results suggest that the worst cases occur when the depth and the length are both very large, especially if the width equals to 2 l and the gap equals the width. This work provides a recommended theoretical criterion for defect inspection and classification.

  11. Monitoring the fracture behavior of SiCp/Al alloy composites using infrared lock-in thermography

    NASA Astrophysics Data System (ADS)

    Kordatos, E. Z.; Myriounis, D., P.; Hasan, S., T.; Matikas, T. E.

    2009-03-01

    his work deals with the study of fracture behavior of silicon carbide particle-reinforced (SiCp) A359 aluminum alloy matrix composites using an innovative nondestructive method based on lock-in thermography. The heat wave, generated by the thermo-mechanical coupling and the intrinsic energy dissipated during mechanical cyclic loading of the sample, was detected by an infrared camera. The coefficient of thermo-elasticity allows for the transformation of the temperature profiles into stresses. A new procedure was developed to determine the crack growth rate using thermographic mapping of the material undergoing fatigue: (a) The distribution of temperature and stresses at the surface of the specimen was monitored during the test. To this end, thermal images were obtained as a function of time and saved in the form of a movie. (b) The stresses were evaluated in a post-processing mode, along a series of equally spaced reference lines of the same length, set in front of the crack-starting notch. The idea was that the stress monitored at the location of a line versus time (or fatigue cycles) would exhibit an increase while the crack approaches the line, then attain a maximum when the crack tip was on the line. Due to the fact that the crack growth path could not be predicted and was not expected to follow a straight line in front of the notch, the stresses were monitored along a series of lines of a certain length, instead of a series of equally spaced points in front of the notch. The exact path of the crack could be easily determined by looking at the stress maxima along each of these reference lines. The thermographic results on the crack growth rate of the metal matrix composite (MMC) samples with three different heat treatments were correlated with measurements obtained by the conventional compliance method, and found to be in agreement.

  12. Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems

    DOE PAGES

    Kral, Zachary; Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN).more » Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems.« less

  13. Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems

    PubMed Central

    Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems. PMID:24023536

  14. Effect of Chemical Composition on Susceptibility to Weld Solidification Cracking in Austenitic Weld Metal

    NASA Astrophysics Data System (ADS)

    Kadoi, Kota; Shinozaki, Kenji

    2017-12-01

    The influence of the chemical composition, especially the niobium content, chromium equivalent Creq, and nickel equivalent Nieq, on the weld solidification cracking susceptibility in the austenite single-phase region in the Schaeffler diagram was investigated. Specimens were fabricated using the hot-wire laser welding process with widely different compositions of Creq, Nieq, and niobium in the region. The distributions of the susceptibility, such as the crack length and brittle temperature range (BTR), in the Schaeffler diagram revealed a region with high susceptibility to solidification cracking. Addition of niobium enhanced the susceptibility and changed the distribution of the susceptibility in the diagram. The BTR distribution was in good agreement with the distribution of the temperature range of solidification (Δ T) calculated by solidification simulation based on Scheil model. Δ T increased with increasing content of alloying elements such as niobium. The distribution of Δ T was dependent on the type of alloying element owing to the change of the partitioning behavior. Thus, the solidification cracking susceptibility in the austenite single-phase region depends on whether the alloy contains elements. The distribution of the susceptibility in the region is controlled by the change in Δ T and the segregation behavior of niobium with the chemical composition.

  15. Analysis of radially cracked ring segments subject to forces and couples

    NASA Technical Reports Server (NTRS)

    Gross, B.; Srawley, J. E.

    1977-01-01

    Results of planar boundary collocation analysis are given for ring segment (C-shaped) specimens with radial cracks, subjected to combined forces and couples. Mode I stress intensity factors and crack mouth opening displacements were determined for ratios of outer to inner radius in the range 1.1 to 2.5 and ratios of crack length to segment width in the range 0.1 to 0.8.

  16. Analysis of radially cracked ring segments subject to forces and couples

    NASA Technical Reports Server (NTRS)

    Gross, B.; Strawley, J. E.

    1975-01-01

    Results of planar boundary collocation analysis are given for ring segment (C shaped) specimens with radial cracks, subjected to combined forces and couples. Mode I stress intensity factors and crack mouth opening displacements were determined for ratios of outer to inner radius in the range 1.1 to 2.5, and ratios of crack length to segment width in the range 0.1 to 0.8.

  17. 7 CFR 51.573 - Damage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... defect, shall be considered as damage: (a) Growth cracks when more than 2 branches are affected by growth cracks which are over one-half inch in length, or when more than 6 branches have growth cracks; (b... branches of the stalk, whichever is less, has more than 3 distinct hair-like lines more than 3 inches long...

  18. 7 CFR 51.573 - Damage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... defect, shall be considered as damage: (a) Growth cracks when more than 2 branches are affected by growth cracks which are over one-half inch in length, or when more than 6 branches have growth cracks; (b... branches of the stalk, whichever is less, has more than 3 distinct hair-like lines more than 3 inches long...

  19. 7 CFR 51.573 - Damage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... defect, shall be considered as damage: (a) Growth cracks when more than 2 branches are affected by growth cracks which are over one-half inch in length, or when more than 6 branches have growth cracks; (b... branches of the stalk, whichever is less, has more than 3 distinct hair-like lines more than 3 inches long...

  20. Static Tensile and Transient Dynamic Response of Cracked Aluminum Plate Repaired with Composite Patch - Numerical Study

    NASA Astrophysics Data System (ADS)

    Khalili, S. M. R.; Shariyat, M.; Mokhtari, M.

    2014-06-01

    In this study, the central cracked aluminum plates repaired with two sided composite patches are investigated numerically for their response to static tensile and transient dynamic loadings. Contour integral method is used to define and evaluate the stress intensity factors at the crack tips. The reinforcement for the composite patches is carbon fibers. The effect of adhesive thickness and patch thickness and configuration in tensile loading case and pre-tension, pre-compression and crack length effect on the evolution of the mode I stress intensity factor (SIF) (KI) of the repaired structure under transient dynamic loading case are examined. The results indicated that KI of the central cracked plate is reduced by 1/10 to 1/2 as a result of the bonded composite patch repair in tensile loading case. The crack length and the pre-loads are more effective in repaired structure in transient dynamic loading case in which, the 100 N pre-compression reduces the maximum KI for about 40 %, and the 100 N pre-tension reduces the maximum KI after loading period, by about 196 %.

  1. Case Study and Numerical Analysis of Vibration and Runner Cracks for the Lipno I Hydroelectric Project

    NASA Astrophysics Data System (ADS)

    Zouhar, J.; Obrovsky, J.; Feilhauer, M.; Skotak, A.

    2016-11-01

    The refurbishment of the Lipno I TG2 Francis turbine, situated on River Vltava, with maximum net head of 165 m and required operational range from 0 to 67MW of turbine power was performed in 2014. The new hydraulic design of the spiral case, distributor and runner was developed for this project. After about 1000 hours of operation the site inspection was performed and the cracks were found on 8 runner blades of 17 blades altogether. The all cracks were found near runner hub beginning from the trailing edge. The dimensions of the cracks were different with maximum length of 123 mm and minimum length of 3 mm. The runner was repaired and the intensive investigation was started to define the main cause of the cracks creation and to determine the measures for their elimination. This paper presents the program of this investigation which consists of static and dynamic blade strain measurement, CFD and FEM analysis, discusses the crack causes and overview the solution how to return the turbine successfully to operation.

  2. Critical assessment of precracked specimen configuration and experimental test variables for stress corrosion testing of 7075-T6 aluminum alloy plate

    NASA Technical Reports Server (NTRS)

    Domack, M. S.

    1985-01-01

    A research program was conducted to critically assess the effects of precracked specimen configuration, stress intensity solutions, compliance relationships and other experimental test variables for stress corrosion testing of 7075-T6 aluminum alloy plate. Modified compact and double beam wedge-loaded specimens were tested and analyzed to determine the threshold stress intensity factor and stress corrosion crack growth rate. Stress intensity solutions and experimentally determined compliance relationships were developed and compared with other solutions available in the literature. Crack growth data suggests that more effective crack length measurement techniques are necessary to better characterize stress corrosion crack growth. Final load determined by specimen reloading and by compliance did not correlate well, and was considered a major source of interlaboratory variability. Test duration must be determined systematically, accounting for crack length measurement resolution, time for crack arrest, and experimental interferences. This work was conducted as part of a round robin program sponsored by ASTM committees G1.06 and E24.04 to develop a standard test method for stress corrosion testing using precracked specimens.

  3. Behavior of Ti-5Al-2.5Sn ELI titanium alloy sheet parent and weld metal in the presence of cracks at 20 K

    NASA Technical Reports Server (NTRS)

    Sullivan, T. L.

    1971-01-01

    Through- and surface-cracked specimens of two thicknesses were tested in uniaxial tension. Surface-cracked specimens were generally found to be stronger than through-cracked specimens with the same crack length. Apparent surface-crack fracture toughness calculated using the Anderson modified Irwin equation remained relatively constant for cracks as deep as 90 percent of the sheet thickness. Subcritical growth of surface cracks was investigated. Comparison of chamber and open air welds showed chamber welds to be slightly tougher. Both methods produced welds with toughness that compared favorably with that of the parent metal. Weld efficiencies were above 94 percent.

  4. Age-related changes in the plasticity and toughness of human cortical bone at multiple length-scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmermann, Elizabeth A.; Schaible, Eric; Bale, Hrishikesh

    2011-08-10

    The structure of human cortical bone evolves over multiple length-scales from its basic constituents of collagen and hydroxyapatite at the nanoscale to osteonal structures at nearmillimeter dimensions, which all provide the basis for its mechanical properties. To resist fracture, bone’s toughness is derived intrinsically through plasticity (e.g., fibrillar sliding) at structural-scales typically below a micron and extrinsically (i.e., during crack growth) through mechanisms (e.g., crack deflection/bridging) generated at larger structural-scales. Biological factors such as aging lead to a markedly increased fracture risk, which is often associated with an age-related loss in bone mass (bone quantity). However, we find that age-relatedmore » structural changes can significantly degrade the fracture resistance (bone quality) over multiple lengthscales. Using in situ small-/wide-angle x-ray scattering/diffraction to characterize sub-micron structural changes and synchrotron x-ray computed tomography and in situ fracture-toughness measurements in the scanning electron microscope to characterize effects at micron-scales, we show how these age-related structural changes at differing size-scales degrade both the intrinsic and extrinsic toughness of bone. Specifically, we attribute the loss in toughness to increased non-enzymatic collagen cross-linking which suppresses plasticity at nanoscale dimensions and to an increased osteonal density which limits the potency of crack-bridging mechanisms at micron-scales. The link between these processes is that the increased stiffness of the cross-linked collagen requires energy to be absorbed by “plastic” deformation at higher structural levels, which occurs by the process of microcracking.« less

  5. Improvement of Flame-made ZnO Nanoparticulate Thick Film Morphology for Ethanol Sensing

    PubMed Central

    Liewhiran, Chaikarn; Phanichphantandast, Sukon

    2007-01-01

    ZnO nanoparticles were produced by flame spray pyrolysis using zinc naphthenate as a precursor dissolved in toluene/acetonitrile (80/20 vol%). The particles properties were analyzed by XRD, BET. The ZnO particle size and morphology was observed by SEM and HR-TEM revealing spheroidal, hexagonal, and rod-like morphologies. The crystallite sizes of ZnO spheroidal and hexagonal particles ranged from 10-20 nm. ZnO nanorods were ranged from 10-20 nm in width and 20-50 nm in length. Sensing films were produced by mixing the nanoparticles into an organic paste composed of terpineol and ethyl cellulose as a vehicle binder. The paste was doctor-bladed onto Al2O3 substrates interdigitated with Au electrodes. The morphology of the sensing films was analyzed by optical microscopy and SEM analysis. Cracking of the sensing films during annealing process was improved by varying the heating conditions. The gas sensing of ethanol (25-250 ppm) was studied at 400 °C in dry air containing SiC as the fluidized particles. The oxidation of ethanol on the surface of the semiconductor was confirmed by mass spectroscopy (MS). The effect of micro-cracks was quantitatively accounted for as a provider of extra exposed edges. The sensitivity decreased notably with increasing crack of sensing films. It can be observed that crack widths were reduced with decreasing heating rates. Crack-free of thick (5 μm) ZnO films evidently showed higher sensor signal and faster response times (within seconds) than cracked sensor. The sensor signal increased and the response time decreased with increasing ethanol concentration.

  6. A multi-feature integration method for fatigue crack detection and crack length estimation in riveted lap joints using Lamb waves

    NASA Astrophysics Data System (ADS)

    He, Jingjing; Guan, Xuefei; Peng, Tishun; Liu, Yongming; Saxena, Abhinav; Celaya, Jose; Goebel, Kai

    2013-10-01

    This paper presents an experimental study of damage detection and quantification in riveted lap joints. Embedded lead zirconate titanate piezoelectric (PZT) ceramic wafer-type sensors are employed to perform in situ non-destructive evaluation (NDE) during fatigue cyclical loading. PZT wafers are used to monitor the wave reflection from the boundaries of the fatigue crack at the edge of bolt joints. The group velocity of the guided wave is calculated to select a proper time window in which the received signal contains the damage information. It is found that the fatigue crack lengths are correlated with three main features of the signal, i.e., correlation coefficient, amplitude change, and phase change. It was also observed that a single feature cannot be used to quantify the damage among different specimens since a considerable variability was observed in the response from different specimens. A multi-feature integration method based on a second-order multivariate regression analysis is proposed for the prediction of fatigue crack lengths using sensor measurements. The model parameters are obtained using training datasets from five specimens. The effectiveness of the proposed methodology is demonstrated using several lap joint specimens from different manufactures and under different loading conditions.

  7. Dynamic response of a cracked atomic force microscope cantilever used for nanomachining

    PubMed Central

    2012-01-01

    The vibration behavior of an atomic force microscope [AFM] cantilever with a crack during the nanomachining process is studied. The cantilever is divided into two segments by the crack, and a rotational spring is used to simulate the crack. The two individual governing equations of transverse vibration for the cracked cantilever can be expressed. However, the corresponding boundary conditions are coupled because of the crack interaction. Analytical expressions for the vibration displacement and natural frequency of the cracked cantilever are obtained. In addition, the effects of crack flexibility, crack location, and tip length on the vibration displacement of the cantilever are analyzed. Results show that the crack occurs in the AFM cantilever that can significantly affect its vibration response. PACS: 07.79.Lh; 62.20.mt; 62.25.Jk PMID:22335820

  8. Solution to the problem of the poor cyclic fatigue resistance of bulk metallic glasses

    PubMed Central

    Launey, Maximilien E.; Hofmann, Douglas C.; Johnson, William L.; Ritchie, Robert O.

    2009-01-01

    The recent development of metallic glass-matrix composites represents a particular milestone in engineering materials for structural applications owing to their remarkable combination of strength and toughness. However, metallic glasses are highly susceptible to cyclic fatigue damage, and previous attempts to solve this problem have been largely disappointing. Here, we propose and demonstrate a microstructural design strategy to overcome this limitation by matching the microstructural length scales (of the second phase) to mechanical crack-length scales. Specifically, semisolid processing is used to optimize the volume fraction, morphology, and size of second-phase dendrites to confine any initial deformation (shear banding) to the glassy regions separating dendrite arms having length scales of ≈2 μm, i.e., to less than the critical crack size for failure. Confinement of the damage to such interdendritic regions results in enhancement of fatigue lifetimes and increases the fatigue limit by an order of magnitude, making these “designed” composites as resistant to fatigue damage as high-strength steels and aluminum alloys. These design strategies can be universally applied to any other metallic glass systems. PMID:19289820

  9. The Relationship Between Constraint and Ductile Fracture Initiation as Defined by Micromechanical Analyses

    NASA Technical Reports Server (NTRS)

    Panontin, Tina L.; Sheppard, Sheri D.

    1994-01-01

    The use of small laboratory specimens to predict the integrity of large, complex structures relies on the validity of single parameter fracture mechanics. Unfortunately, the constraint loss associated with large scale yielding, whether in a laboratory specimen because of its small size or in a structure because it contains shallow flaws loaded in tension, can cause the breakdown of classical fracture mechanics and the loss of transferability of critical, global fracture parameters. Although the issue of constraint loss can be eliminated by testing actual structural configurations, such an approach can be prohibitively costly. Hence, a methodology that can correct global fracture parameters for constraint effects is desirable. This research uses micromechanical analyses to define the relationship between global, ductile fracture initiation parameters and constraint in two specimen geometries (SECT and SECB with varying a/w ratios) and one structural geometry (circumferentially cracked pipe). Two local fracture criteria corresponding to ductile fracture micromechanisms are evaluated: a constraint-modified, critical strain criterion for void coalescence proposed by Hancock and Cowling and a critical void ratio criterion for void growth based on the Rice and Tracey model. Crack initiation is assumed to occur when the critical value in each case is reached over some critical length. The primary material of interest is A516-70, a high-hardening pressure vessel steel sensitive to constraint; however, a low-hardening structural steel that is less sensitive to constraint is also being studied. Critical values of local fracture parameters are obtained by numerical analysis and experimental testing of circumferentially notched tensile specimens of varying constraint (e.g., notch radius). These parameters are then used in conjunction with large strain, large deformation, two- and three-dimensional finite element analyses of the geometries listed above to predict crack initiation loads and to calculate the associated (critical) global fracture parameters. The loads are verified experimentally, and microscopy is used to measure pre-crack length, crack tip opening displacement (CTOD), and the amount of stable crack growth. Results for A516-70 steel indicate that the constraint-modified, critical strain criterion with a critical length approximately equal to the grain size (0.0025 inch) provides accurate predictions of crack initiation. The critical void growth criterion is shown to considerably underpredict crack initiation loads with the same critical length. The relationship between the critical value of the J-integral for ductile crack initiation and crack depth for SECT and SECB specimens has been determined using the constraint-modified, critical strain criterion, demonstrating that this micromechanical model can be used to correct in-plane constraint effects due to crack depth and bending vs. tension loading. Finally, the relationship developed for the SECT specimens is used to predict the behavior of circumferentially cracked pipe specimens.

  10. An Effective Modal Approach to the Dynamic Evaluation of Fracture Toughness of Quasi-Brittle Materials

    NASA Astrophysics Data System (ADS)

    Ferreira, L. E. T.; Vareda, L. V.; Hanai, J. B.; Sousa, J. L. A. O.; Silva, A. I.

    2017-05-01

    A modal dynamic analysis is used as the tool to evaluate the fracture toughness of concrete from the results of notched-through beam tests. The dimensionless functions describing the relation between the frequencies and specimen geometry used for identifying the variation in the natural frequency as a function of crack depth is first determined for a 150 × 150 × 500-mm notched-through specimen. The frequency decrease resulting from the propagating crack is modeled through a modal/fracture mechanics approach, leading to determination of an effective crack length. This length, obtained numerically, is used to evaluate the fracture toughness of concrete, the critical crack mouth opening displacements, and the brittleness index proposed. The methodology is applied to tests performed on high-strength concrete specimens. The frequency response for each specimen is evaluated before and after each crack propagation step. The methodology is then validated by comparison with results from the application of other methodologies described in the literature and suggested by RILEM.

  11. Fracture analysis of a central crack in a long cylindrical superconductor with exponential model

    NASA Astrophysics Data System (ADS)

    Zhao, Yu Feng; Xu, Chi

    2018-05-01

    The fracture behavior of a long cylindrical superconductor is investigated by modeling a central crack that is induced by electromagnetic force. Based on the exponential model, the stress intensity factors (SIFs) with the dimensionless parameter p and the length of the crack a/R for the zero-field cooling (ZFC) and field-cooling (FC) processes are numerically simulated using the finite element method (FEM) and assuming a persistent current flow. As the applied field Ba decreases, the dependence of p and a/R on the SIFs in the ZFC process is exactly opposite to that observed in the FC process. Numerical results indicate that the exponential model exhibits different characteristics for the trend of the SIFs from the results obtained using the Bean and Kim models. This implies that the crack length and the trapped field have significant effects on the fracture behavior of bulk superconductors. The obtained results are useful for understanding the critical-state model of high-temperature superconductors in crack problem.

  12. A Crack Growth Evaluation Method for Interacting Multiple Cracks

    NASA Astrophysics Data System (ADS)

    Kamaya, Masayuki

    When stress corrosion cracking or corrosion fatigue occurs, multiple cracks are frequently initiated in the same area. According to section XI of the ASME Boiler and Pressure Vessel Code, multiple cracks are considered as a single combined crack in crack growth analysis, if the specified conditions are satisfied. In crack growth processes, however, no prescription for the interference between multiple cracks is given in this code. The JSME Post-Construction Code, issued in May 2000, prescribes the conditions of crack coalescence in the crack growth process. This study aimed to extend this prescription to more general cases. A simulation model was applied, to simulate the crack growth process, taking into account the interference between two cracks. This model made it possible to analyze multiple crack growth behaviors for many cases (e. g. different relative position and length) that could not be studied by experiment only. Based on these analyses, a new crack growth analysis method was suggested for taking into account the interference between multiple cracks.

  13. The Effects of Shot and Laser Peening on Fatigue Life and Crack Growth in 2024 Aluminum Alloy and 4340 Steel

    NASA Technical Reports Server (NTRS)

    Everett, R. A., Jr.; Matthews, W. T.; Prabhakaran, R.; Newman, J. C., Jr.; Dubberly, M. J.

    2001-01-01

    Fatigue and crack growth tests have been conducted on 4340 steel and 2024-T3 aluminum alloy, respectively, to assess the effects of shot peening on fatigue life and the effects of shot and laser peening on crack growth. Two current programs involving fixed and rotary-wing aircraft will not be using shot peened structures. Since the shot peening compressive residual stress depth is usually less than the 0.05-inch initial damage tolerance crack size, it is believed by some that shot peening should have no beneficial effects toward retarding crack growth. In this study cracks were initiated from an electronic-discharged machining flaw which was cycled to produce a fatigue crack of approximately 0.05-inches in length and then the specimens were peened. Test results showed that after peening the crack growth rates were noticeably slower when the cracks were fairly short for both the shot and laser peened specimens resulting in a crack growth life that was a factor of 2 to 4 times greater than the results of the average unpeened test. Once the cracks reached a length of approximately 0.1-inches the growth rates were about the same for the peened and unpeened specimens. Fatigue tests on 4340 steel showed that the endurance limit of a test specimen with a 0.002-inch-deep machining-like scratch was reduced by approximately 40 percent. However, if the "scratched" specimen was shot peened after inserting the scratch, the fatigue life returned to almost 100 percent of the unflawed specimens original fatigue life.

  14. Acoustic emission analysis of Vickers indentation fracture of cermet and ceramic coatings

    NASA Astrophysics Data System (ADS)

    Faisal, N. H.; Ahmed, R.

    2011-12-01

    The aim of this work was to develop an instrumented experimental methodology of quantitative material evaluation based on the acoustic emission (AE) monitoring of a dead-weight Vickers indentation. This was to assess the degree of cracking and hence the toughness of thermally sprayed coatings. AE data were acquired during indentation tests on samples of coatings of nominal thickness 250-325 µm at a variety of indentation loads ranging from 49 to 490 N. Measurements were carried out on five different carbide and ceramic coatings (HVOF as-sprayed WC-12%Co (JP5000 and JetKote), HIPed WC-12%Co (JetKote) and as-sprayed Al2O3 (APS/Metco and HVOF/theta-gun)). The raw AE signals recorded during indentation were analysed and the total surface crack length around the indent determined. The results showed that the total surface crack length measured gave fracture toughness (K1c) values which were consistent with the published literature for similar coatings but evaluated using the classical approach (Palmqvist/half-penny model). Hence, the total surface crack length criteria can be applied to ceramic and cermet coatings which may or may not exhibit fracture via radial cracks. The values of K1c measured were 3.4 ± 0.1 MPa m1/2 for high-velocity oxygen fuel (HVOF) (theta-gun) Al2O3, 4.6 ± 0.3 MPa m1/2 for as-sprayed HVOF (JetKote) WC-12%Co, 7.1±0.1 MPa m1/2 for as-sprayed HVOF (JP5000) WC-12%Co and 7.4 ± 0.2 MPa m1/2 for HIPed HVOF (JetKote) WC-12%Co coatings. The crack lengths were then calibrated against the AE response and correlation coefficients evaluated. The values of K1c measured using AE correlations were 3.3 MPa m1/2 for HVOF (theta-gun) Al2O3, 2.6 MPa m1/2 for APS (Metco) Al2O3, 2.5 MPa m1/2 for as-sprayed HVOF (JetKote) WC-12%Co, 6.3 MPa m1/2 for as-sprayed HVOF (JP5000) WC-12%Co and 8.6 MPa m1/2 for HIPed HVOF (JetKote) WC-12%Co coatings. It is concluded that within each category of coating type, AE can be used as a suitable surrogate for crack length measurement for assessing coating quality. Hence, a full measure of crack prevalence which would require time-consuming fractal dimension analysis can be made redundant for a given coating type, offering a motivation for AE-based indentation testing as a measure of quality control. Similarly, for cases where surface crack length cannot be measured due to delamination/spallation of surface, AE-based fracture toughness provides a benchmark for coating quality assessment.

  15. A Crack Closure Model and Its Application to Vibrothermography Nondestructive Evaluation

    NASA Astrophysics Data System (ADS)

    Schiefelbein, Bryan Edward

    Vibrothermography nondestructive evaluation (NDE) is in the early stages of research and development, and there exists uncertainty in the fundamental mechanisms and processes by which heat generation occurs. Holland et al. have developed a set of tools which simulate and predict the outcome of a vibrothermography inspection by breaking the inspection into three distinct processes: vibrational excitation, heat generation, and thermal imaging. The stage of vibrothermography which is not well understood is the process by which vibrations are converted to heat at the crack surface. It has been shown that crack closure and closure state impact the resulting heat generation. Despite this, research into the link between partial crack closure and vibrothermography is limited. This work seeks to rectify this gap in knowledge by modeling the behavior of a partially closed crack in response to static external loading and a dynamic vibration. The residual strains left by the plastic wake during fatigue crack growth manifest themselves as contact stresses acting at the crack surface interface. In response to an applied load below the crack opening stress, the crack closure state will evolve, but the crack will remain partially closed. The crack closure model developed in this work is based in linear elastic fracture mechanics (LEFM) and describes the behavior of a partially closed crack in response to a tensile external load and non-uniform closure stress distribution. The model builds on work by Fleck to describe the effective length, crack opening displacement, and crack tip stress field for a partially closed crack. These quantities are solved for by first establishing an equilibrium condition which governs the effective or apparent length of the partially closed crack. The equilibrium condition states that, under any external or crack surface loading, the effective crack tip will be located where the effective stress intensity factor is zero. In LEFM, this is equivalent to saying that the effective crack tip is located where the stress singularity vanishes. If the closure stresses are unknown, the model provides an algorithm with which to solve for the distribution, given measurements of the effective crack length as a function of external load. Within literature, a number of heating mechanisms have been proposed as being dominant in vibrothermography. These include strain hysteresis, adhesion hysteresis, plastic flow, thermoelasticity, and sliding friction. Based on experimental observation and theory, this work eliminates strain hysteresis, thermoelasticity, and plastic flow as plausible heating mechanisms. This leaves friction and adhesion hysteresis as the only plausible mechanisms. Frictional heating is based on the classical Coulomb friction model, while adhesion hysteresis heating comes from irreversibility in surface adhesion. Adhesion hysteresis only satisfies the experimental observation that heating vanishes for high compressive loading if surface roughness and the instability of surface adhesion is considered. By understanding the fundamental behavior of a partially closed crack in response to non-uniform loading, and the link between crack surface motion and heat generation, we are one step closer to a fully predictive vibrothermography heat generation model. Future work is needed to extend the crack closure model to a two-dimensional semi-elliptical surface crack and better understand the distinction between frictional and adhesion heating.

  16. 49 CFR 180.209 - Requirements for requalification of specification cylinders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... sustained load cracking that has expanded into the neck threads must be condemned in accordance with § 180... of this subchapter) Any crack in the neck or shoulder of 2 thread lengths or more 5 1 The requalifier... be applied from the inside of the cylinder's neck to detect any sustained load cracking that has...

  17. 49 CFR 180.209 - Requirements for requalification of specification cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... sustained load cracking that has expanded into the neck threads must be condemned in accordance with § 180... of this subchapter) Any crack in the neck or shoulder of 2 thread lengths or more 5 1 The requalifier... be applied from the inside of the cylinder's neck to detect any sustained load cracking that has...

  18. Heat-shock properties in yttrium-oxide films synthesized from metal-ethylenediamine tetraacetic acid complex through flame-spray apparatus

    NASA Astrophysics Data System (ADS)

    Xin, D. Y.; Komatsu, Keiji; Abe, Keita; Costa, Takashi; Ikeda, Yutaka; Nakamura, Atsushi; Ohshio, Shigeo; Saitoh, Hidetoshi

    2017-03-01

    Recently, a new deposition technique using a metal-ethylenediamine tetraacetic acid (EDTA) complex has been developed. In this study, the heat-shock properties of metal-oxide films synthesized from a metal-EDTA complex were investigated. Y2O3 films were synthesized on stainless-steel (SUS) substrate from EDTA•Y•H through the combustion of H2-O2 gas. A cyclic heat-shock test was conducted on the fabricated Y2O3 films through exposure to the H2-O2 flame. The existence of Y2O3 crystals was confirmed. Surface cracks or damages were not observed in the samples after the cyclic thermal test. Although the number of cross-sectional cracks, crack lengths, and cracks per unit area was increased by the heat shock, delaminations were not observed in the Y2O3 films. The results show that the prepared Y2O3 films have high thermal-shock resistance and are suitable for use as thermal barrier coatings.

  19. Controlled crack growth specimen for brittle systems

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony M.; Brewer, David N.

    1990-01-01

    A pure Mode 1 fracture specimen and test procedure has been developed which provides extended, stable, through-thickness crack growth in ceramics and other brittle, nonmetallic materials. Fixed displacement loading, applied at the crack mouth, promotes stable crack extension by reducing the stored elastic strain energy. Extremely fine control of applied displacements is achieved by utilizing the Poisson's expansion of a compressively loaded cylindrical pin. Stable cracks were successfully grown in soda-lime glass and monolithic Al2O3 for lengths in excess of 20 mm without uncontrollable catastrophic failure.

  20. Controlled crack growth specimen for brittle systems

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony M.; Brewer, David N.

    1992-01-01

    A pure Mode 1 fracture specimen and test procedure has been developed which provides extended, stable, through-thickness crack growth in ceramics and other brittle, nonmetallic materials. Fixed displacement loading, applied at the crack mouth, promotes stable crack extension by reducing the stored elastic strain energy. Extremely fine control of applied displacements is achieved by utilizing the Poisson's expansion of a compressively loaded cylindrical pin. Stable cracks were successfully grown in soda-lime glass and monolithic Al2O3 for lengths in excess of 2O mm without uncontrollable catastrophic failure.

  1. Variables Affecting Probability of Detection in Bolt Hole Eddy Current Inspection

    NASA Astrophysics Data System (ADS)

    Lemire, H.; Krause, T. W.; Bunn, M.; Butcher, D. J.

    2009-03-01

    Physical variables affecting probability of detection (POD) in a bolt-hole eddy current inspection were examined. The POD study involved simulated bolt holes in 7075-T6 aluminum coupons representative of wing areas on CC-130 and CP-140 aircraft. The data were obtained from 24 inspectors who inspected 468 coupons, containing a subset of coupons with 45 electric discharge machined notches and 72 laboratory grown fatigue cracks located at the inner surface corner of the bi-layer structures. A comparison of physical features of cracks and notches in light of skin depth effects and probe geometry was used to identify length rather than depth as the significant variable producing signal variation. Probability of detection based on length produced similar results for the two discontinuity types, except at lengths less than 0.4 mm, where POD for cracks was found to be higher than that of notches.

  2. 7 CFR 51.1222 - Serious damage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... allowed for any one defect, shall be considered as serious damage: (a) Bacterial spot, when any cracks are... inch in diameter; (d) Growth cracks, when unhealed, or more than 1/2 inch in length; (e) Hail injury...

  3. 7 CFR 51.1222 - Serious damage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... allowed for any one defect, shall be considered as serious damage: (a) Bacterial spot, when any cracks are... inch in diameter; (d) Growth cracks, when unhealed, or more than 1/2 inch in length; (e) Hail injury...

  4. 7 CFR 51.1222 - Serious damage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... allowed for any one defect, shall be considered as serious damage: (a) Bacterial spot, when any cracks are... inch in diameter; (d) Growth cracks, when unhealed, or more than 1/2 inch in length; (e) Hail injury...

  5. 7 CFR 51.609 - Damage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... branch or branches. (c) Growth cracks, when the stalk has more than one branch affected by growth cracks... the seedstem. (f) Rust, when there are more than five hair-like lines of any length on one or more...

  6. 7 CFR 51.609 - Damage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... branch or branches. (c) Growth cracks, when the stalk has more than one branch affected by growth cracks... the seedstem. (f) Rust, when there are more than five hair-like lines of any length on one or more...

  7. 7 CFR 51.609 - Damage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... branch or branches. (c) Growth cracks, when the stalk has more than one branch affected by growth cracks... the seedstem. (f) Rust, when there are more than five hair-like lines of any length on one or more...

  8. Characterization of Cracking Mechanisms of Carbon Anodes Used in Aluminum Industry by Optical Microscopy and Tomography

    NASA Astrophysics Data System (ADS)

    Amrani, Salah; Kocaefe, Duygu; Kocaefe, Yasar; Bhattacharyay, Dipankar; Bouazara, Mohamed; Morais, Brigitte

    2016-10-01

    The objective of this work is to understand the different mechanisms of crack formation in dense anodes used in the aluminum industry. The first approach used is based on the qualitative characterization of the surface cracks and the depth of these cracks. The second approach, which constitutes a quantitative characterization, is carried out by determining the distribution of the crack width along its length as well as the percentage of the surface containing cracks. A qualitative analysis of crack formation was also carried out using 3D tomography. It was observed that mixing and forming conditions have a significant effect on crack formation in green anodes. The devolatilization of pitch during baking causes the formation and propagation of cracks in baked anodes in which large particles control the direction of crack propagation.

  9. Periodic Overload and Transport Spectrum Fatigue Crack Growth Tests of Ti62222STA and Al2024T3 Sheet

    NASA Technical Reports Server (NTRS)

    Phillips, Edward P.

    1999-01-01

    Variable amplitude loading crack growth tests have been conducted to provide data that can be used to evaluate crack growth prediction codes. Tests with periodic overloads or overloads followed by underloads were conducted on titanium alloy Ti-6Al-2Sn-2Zr-2Mo-2Cr solution treated and aged (Ti62222STA) material at room temperature and at 350 F. Spectrum fatigue crack growth tests were conducted on two materials (Ti62222STA and aluminum alloy 2024-T3) using two transport lower-wing test spectra at two temperatures (room temperature and 350 F (Ti only)). Test lives (growth from an initial crack half-length of 0.15 in. to failure) were recorded in all tests and the crack length against cycles (or flights) data were recorded in many of the tests. The following observations were made regarding the test results: (1) in tests of the Ti62222STA material, the tests at 350 F had longer lives than those at room temperature, (2) in tests to the MiniTwist spectrum, the Al2024T3 material showed much greater crack growth retardations due to the highest stresses in the spectrum than did the Ti62222STA material, and (3) comparisons of material crack growth performances on an "equal weight" basis were spectrum dependent.

  10. Crack-closing of cement mortar beams using NiTi cold-drawn SMA short fibers

    NASA Astrophysics Data System (ADS)

    Choi, Eunsoo; Kim, Dong Joo; Chung, Young-Soo; Kim, Hee Sun; Jung, Chungsung

    2015-01-01

    In this study, crack-closing tests of mortar beams reinforced by shape memory alloy (SMA) short fibers were performed. For this purpose, NiTi SMA fibers with a diameter of 0.965 mm and a length of 30 mm were made from SMA wires of 1.0 mm diameter by cold drawing. Four types of SMA fibers were prepared, namely, straight and dog-bone-shaped fiber and the two types of fibers with paper wrapping in the middle of the fibers. The paper provides an unbonded length of 15 mm. For bending tests, six types of mortar beams with the dimensions of 40 mm × 40 mm × 160 mm (B×H×L) were prepared. The SMA fibers were placed at the bottom center of the beams along with an artificial crack of 10 mm depth and 1 mm thickness. This study investigated the influence of SMA fibers on the flexural strength of the beams from the measured force- deflection curves. After cracking, the beams were heated at the bottom by fire to activate the SMA fibers. Then, the beams recovered the deflection, and the cracks were closed. This study evaluated crack-closing capacity using the degree of crack recovery and deflection-recovery factor. The first factor is estimated from the crack-width before and after crack-closing, and the second one is obtained from the downward deflection due to loading and the upward deflection due to the closing force of the SMA fibers.

  11. Application of fiber bridging models to fatigue crack growth in unidirectional titanium matrix composites

    NASA Technical Reports Server (NTRS)

    Bakuckas, J. G., Jr.; Johnson, W. S.

    1992-01-01

    Several fiber bridging models were reviewed and applied to study the matrix fatigue crack growth behavior in center notched (0)(sub 8) SCS-6/Ti-15-3 and (0)(sub 4) SCS-6/Ti-6Al-4V laminates. Observations revealed that fatigue damage consisted primarily of matrix cracks and fiber matrix interfacial failure in the (0)(sub 8) SCS-6/Ti-15-3 laminates. Fiber-matrix interface failure included fracture of the brittle reaction zone and cracking between the two carbon rich fiber coatings. Intact fibers in the wake of the matrix cracks reduce the stress intensity factor range. Thus, an applied stress intensity factor range is inappropriate to characterize matrix crack growth behavior. Fiber bridging models were used to determine the matrix stress intensity factor range in titanium metal matrix composites. In these models, the fibers in the wake of the crack are idealized as a closure pressure. An unknown constant frictional shear stress is assumed to act along the debond or slip length of the bridging fibers. The frictional shear stress was used as a curve fitting parameter to available data (crack growth data, crack opening displacement data, and debond length data). Large variations in the frictional shear stress required to fit the experimental data indicate that the fiber bridging models in their present form lack predictive capabilities. However, these models provide an efficient and relatively simple engineering method for conducting parametric studies of the matrix growth behavior based on constituent properties.

  12. Subcritical crack growth in fibrous materials

    NASA Astrophysics Data System (ADS)

    Santucci, S.; Cortet, P.-P.; Deschanel, S.; Vanel, L.; Ciliberto, S.

    2006-05-01

    We present experiments on the slow growth of a single crack in a fax paper sheet submitted to a constant force F. We find that statistically averaged crack growth curves can be described by only two parameters: the mean rupture time τ and a characteristic growth length ζ. We propose a model based on a thermally activated rupture process that takes into account the microstructure of cellulose fibers. The model is able to reproduce the shape of the growth curve, the dependence of ζ on F as well as the effect of temperature on the rupture time τ. We find that the length scale at which rupture occurs in this model is consistently close to the diameter of cellulose microfibrils.

  13. Evaluation of Crack Arrest Toughness ( K IA) of P91 Steel in Various Cold Worked and Thermally Aged Conditions

    NASA Astrophysics Data System (ADS)

    Sathyanarayanan, S.; Moitra, A.; Sasikala, G.; Bhaduri, A. K.

    2015-02-01

    K IA is increasingly being regarded as a characteristic fracture toughness below which cleavage fracture does not occur. Its evaluation from small-sized Charpy specimens would be advantageous for applications in power plant industries. In this study, K IA has been evaluated for P91 steel in various cold worked and thermally aged conditions. Evaluation of K IA requires determination of crack arrest load( P arrest) and crack arrest length( a arrest). The main challenge is in the determination of a arrest due to the non-availability of standard methodologies and the absence of unequivocal microstructural signatures on the fracture surface in this steel to identify crack arrest. a arrest has been determined using the analytical Key- Curve methodology which has proven successful for this steel in unaged condition. The applicability of the Key- Curve method is validated by the good agreement of the determined final crack length with that measured optically on unbroken specimens of N&T and subsequently 15% cold-worked P91 steel which had been previously aged at 650 °C for 5000 h. Mean K IA varies from 47.46 MPa√m (NT steel aged at 600 °C for 5000 h) to 69.85 MPa√m(NT + 15% cw steel aged at 650 °C for 10000 h) for the various cold worked and aged datasets. K IA is found to be an average property unlike initiation toughness ( K Jd) which shows statistical scatter. Mean K IA is found to be in reasonable agreement with the lower bound values of cleavage initiation toughness ( K Jd) for the datasets in this study.

  14. A circumferential crack in a cylindrical shell under tension.

    NASA Technical Reports Server (NTRS)

    Duncan-Fama, M. E.; Sanders, J. L., Jr.

    1972-01-01

    A closed cylindrical shell under uniform internal pressure has a slit around a portion of its circumference. Linear shallow shell theory predicts inverse square-root-type singularities in certain of the stresses at the crack tips. This paper reports the computed strength of these singularities for different values of a dimensionless parameter based on crack length, shell radius and shell thickness.

  15. Crack Coalescence in Molded Gypsum and Carrara Marble

    NASA Astrophysics Data System (ADS)

    Wong, N.; Einstein, H. H.

    2007-12-01

    This research investigates the fracturing and coalescence behavior in prismatic laboratory-molded gypsum and Carrara marble specimens, which consist of either one or two pre-existing open flaws, under uniaxial compression. The tests are monitored by a high speed video system with a frame rate up to 24,000 frames/second. It allows one to precisely observe the cracking mechanisms, in particular if shear or tensile fracturing takes place. Seven crack types and nine crack coalescence categories are identified. The flaw inclination angle, the ligament length and the bridging angle between two flaws have different extents of influence on the coalescence patterns. For coplanar flaws, as the flaw inclination angle increases, there is a general trend of variation from shear coalescence to tensile coalescence. For stepped flaws, as the bridging angle changes from negative to small positive, and further up to large positive values, the coalescence generally progresses from categories of no coalescence, indirect coalescence to direct coalescence. For direct coalescence, it generally progresses from shear, mixed shear-tensile to tensile as the bridging angle increases. Some differences in fracturing and coalescence processes are observed in gypsum and marble, particularly the crack initiation in marble is preceded by the development of macroscopic white patches, but not in gypsum. Scanning Electron Microprobe (SEM) study reveals that the white patches consist of zones of microcracks (process zones).

  16. Numerical investigation of shape domain effect to its elasticity and surface energy using adaptive finite element method

    NASA Astrophysics Data System (ADS)

    Alfat, Sayahdin; Kimura, Masato; Firihu, Muhammad Zamrun; Rahmat

    2018-05-01

    In engineering area, investigation of shape effect in elastic materials was very important. It can lead changing elasticity and surface energy, and also increase of crack propagation in the material. A two-dimensional mathematical model was developed to investigation of elasticity and surface energy in elastic material by Adaptive Finite Element Method. Besides that, behavior of crack propagation has observed for every those materials. The government equations were based on a phase field approach in crack propagation model that developed by Takaishi-Kimura. This research has varied four shape domains where physical properties of materials were same (Young's modulus E = 70 GPa and Poisson's ratio ν = 0.334). Investigation assumptions were; (1) homogeneous and isotropic material, (2) there was not initial cracking at t = 0, (3) initial displacement was zero [u1, u2] = 0) at initial condition (t = 0), and (4) length of time simulation t = 5 with interval Δt = 0.005. Mode I/II or mixed mode crack propagation has been used for the numerical investigation. Results of this studies were very good and accurate to show changing energy and behavior of crack propagation. In the future time, this research can be developed to complex phenomena and domain. Furthermore, shape optimization can be investigation by the model.

  17. A Fracture Mechanics and Crack Propagation Approach to the Study of Overconsolidated Clays.

    DTIC Science & Technology

    1985-02-01

    Once the length of the crack and the critical shearing stress are known a solution due to Erdogan and Ratwani 161 allows one to compute KIIc. lia... tape inserted in them to prevent hydrostatic pressure from closing and healing the crack. The specimens were then placed in a special cell where they...Theory, NASA Report, Grant NAG-3-23. 6. Erdogan , F.E. and Ratwani, M. (1973). A Circumferential Crack in a Cylindrical Shell Under Torsion. Int. J. Fract

  18. Determination of crack depth in aluminum using eddy currents and GMR sensors

    NASA Astrophysics Data System (ADS)

    Lopes Ribeiro, A.; Pasadas, D.; Ramos, H. G.; Rocha, T.

    2015-03-01

    In this paper we use eddy currents to determine the depth of linear cracks in aluminum plates. A constant field probe is used to generate the spatially uniform excitation field and a single axis giant magneto-resistor (GMR) sensor is used to measure the eddy currents magnetic field. Different depths were machined in one aluminum plate with 4 mm of thickness. By scanning those cracks the magnetic field components parallel and perpendicular to the crack's line were measured when the eddy currents were launched perpendicularly to the crack's line. To characterize one crack in a plate of a given thickness and material, the experimental procedure was defined. The plate surface is scanned to detect and locate one crack. The acquired data enables the determination of the crack's length and orientation. A second scanning is performed with the excitation current perpendicular to the crack and the GMR sensing axis perpendicular and parallel to the crack's line.

  19. Growth rate models for short surface cracks in AI 2219-T851

    NASA Astrophysics Data System (ADS)

    Morris, W. L.; James, M. R.; Buck, O.

    1981-01-01

    Rates of fatigue propagation of short Mode I surface cracks in Al 2219-T851 are measured as a function of crack length and of the location of the surface crack tips relative to the grain boundaries. The measured rates are then compared to values predicted from crack growth models. The crack growth rate is modeled with an underlying assumption that slip responsible for early propagation does not extend in significant amounts beyond the next grain boundary in the direction of crack propagation. Two models that contain this assumption are combined: 1) cessation of propagation into a new grain until a mature plastic zone is developed; 2) retardation of propagation by crack closure stress, with closure stress calculated from the location of a crack tip relative to the grain boundary. The transition from short to long crack growth behavior is also discussed.

  20. Demonstrating the self-healing behaviour of some selected ceramics under combustion chamber conditions

    NASA Astrophysics Data System (ADS)

    Farle, A.; Boatemaa, L.; Shen, L.; Gövert, S.; Kok, J. B. W.; Bosch, M.; Yoshioka, S.; van der Zwaag, S.; Sloof, W. G.

    2016-08-01

    Closure of surface cracks by self-healing of conventional and MAX phase ceramics under realistic turbulent combustion chamber conditions is presented. Three ceramics namely; Al2O3, Ti2AlC and Cr2AlC are investigated. Healing was achieved in Al2O3 by even dispersion of TiC particles throughout the matrix as the MAX phases, Ti2AlC and Cr2AlC exhibit intrinsic self-healing. Fully dense samples (>95%) were sintered by spark plasma sintering and damage was introduced by indentation, quenching and low perpendicular velocity impact methods. The samples were exposed to the oxidizing atmosphere in the post flame zone of a turbulent flame in a combustion chamber to heal at temperatures of approx. 1000 °C at low pO2 levels for 4 h. Full crack-gap closure was observed for cracks up to 20 mm in length and more than 10 μm in width. The reaction products (healing agents) were analysed by scanning electron microscope, x-ray microanalysis and XRD. A semi-quantification of the healing showed that cracks in Al2O3/TiC composite (width 1 μm and length 100 μm) were fully filled with TiO2. In Ti2AlC large cracks were fully filled with a mixture of TiO2 and Al2O3. And in the Cr2AlC, cracks of up to 1.0 μm in width and more than 100 μm in length were also completely filled with Al2O3.

  1. Effect of Surface Treatment on Enamel Cracks After Orthodontic Bracket Debonding: Er,Cr:YSGG Laser-Etching Versus Acid-Etching

    PubMed Central

    Ghaffari, Hassanali; Mirhashemi, Amirhossein; Baherimoghadam, Tahereh; Azmi, Amir

    2017-01-01

    Objectives: This study sought to compare enamel cracks after orthodontic bracket debonding in the surfaces prepared with erbium, chromium: yttrium-scandium-galliumgarnet (Er,Cr:YSGG) laser and the conventional acid-etching technique. Materials and Methods: This in-vitro experimental study was conducted on 60 sound human premolars extracted for orthodontic purposes. The teeth were randomly divided into two groups (n=30). The teeth in group A were etched with 37% phosphoric acid gel, while the teeth in group B were subjected to Er,Cr:YSGG laser irradiation (gold handpiece, MZ8 tip, 50Hz, 4.5W, 60μs, 80% water and 60% air). Orthodontic brackets were bonded to the enamel surfaces and were then debonded in both groups. The samples were inspected under a stereomicroscope at ×38 magnification to assess the number and length of enamel cracks before bonding and after debonding. Independent-samples t-test was used to compare the frequency of enamel cracks in the two groups. Levene’s test was applied to assess the equality of variances. Results: No significant difference was noted in the frequency or length of enamel cracks between the two groups after debonding (P>0.05). Conclusions: Despite the same results of the frequency and length of enamel cracks in the two groups and by considering the side effects of acid-etching (demineralization and formation of white spot lesions), Er,Cr:YSGG laser may be used as an alternative to acid-etching for enamel surface preparation prior to bracket bonding. PMID:29296111

  2. Lead induced stress corrosion cracking of Alloy 690 in high temperature water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, K.K.; Lim, J.K.; Moriya, Shinichi

    1995-12-31

    Recent investigations of cracked steam generator tubes at nuclear power plants concluded that lead significantly contributed to cracking the Alloy 600 materials. In order to investigate the stress corrosion cracking (SCC) behavior of Alloy 690, slow strain rate tests (SSRT) and anodic polarization measurements were performed. The SSRTs were conducted in a lead-chloride solution (PbCl{sub 2}) and in a chloride but lead free solution (NaCl) at pH of 3 and 4.5 at 288 C. The anodic polarization measurements were carried out at 30 C using the same solutions as in SSRT. The SSRT results showed that Alloy 690 was susceptiblemore » to SCC in both solutions. In the lead chloride solution, cracking had slight dependence on lead concentration and pH. Cracking tend to increase with a higher lead concentration and a lower pH and was mainly intergranular and was to be a few tens to hundreds micrometers in length. In the chloride only solution, cracking was similar to the lead induced SCC. The results of anodic polarization measurement and electron probe micro analysis (EPMA) helped to understand lead induced SCC. Lead was a stronger active corrosive element but had a minor affect on cracking susceptibility of the alloy. While, chloride was quite different from lead effect to SCC. A possible mechanism of lead induced SCC of Alloy 690 was also discussed based on the test results.« less

  3. A study of creep crack growth in 2219-T851

    NASA Astrophysics Data System (ADS)

    Bensussan, Philippe L.; Jablonski, David A.; Pelloux, Regis M.

    1984-01-01

    Creep crack growth rates were measured in high strength 2219-T851 aluminum alloy with a computerized fully automated test procedure. Crack growth tests were performed on CT specimens with side grooves. The experimental set-up is described. During a test, the specimen is cyclically loaded on a servohydraulic testing machine under computer control, maintained at maximum load for a given hold time at each cycle, unloaded, and then reloaded. Crack lengths are obtained from compliance measurements recorded during each unloading. It is shown that the measured crack growth rates per cycle do represent creep crack growth rates per unit time for hold times longer than 10 seconds. The validity of LEFM concepts for side-grooved specimens is reviewed, and compliance and stress intensity factor calibrations for such specimens are reported. For the range of testing conditions of this study, 2219-T851 is shown to be creep brittle in terms of concepts of fracture mechanics of creeping solids. It is found that, under these testing conditions, a correlation exists between the creep crack growth rates under plane strain conditions and the stress intensity factor ( da/dt = A K 3.8 at 175 °C) for simple K histories in a regime of steady or quasi-steady state crack growth. The micromechanisms of fracture are determined to be of complex nature. The fracture mode is observed to be mixed inter- and transgranular, the relative amount of intergranular fracture decreasing as K and da/dt increase.

  4. Discretization and Numerical Solution of a Plane Problem in the Mechanics of Interfacial Cracks

    NASA Astrophysics Data System (ADS)

    Khoroshun, L. P.

    2017-01-01

    The Fourier transform is used to reduce the linear plane problem of the tension of a body with an interfacial crack to a system of dual equations for the transformed stresses and, then, to a system of integro-differential equations for the difference of displacements of the crack faces. After discretization, this latter system transforms into a system of algebraic equations for displacements of the crack faces. The effect of the bielastic constant and the number of discretization points on the half-length of the crack faces and the distribution of stresses at the interface is studied

  5. Analysis of a Generally Oriented Crack in a Functionally Graded Strip Sandwiched Between Two Homogeneous Half Planes

    NASA Technical Reports Server (NTRS)

    Shbeeb, N.; Binienda, W. K.; Kreider, K.

    1999-01-01

    The driving forces for a generally oriented crack embedded in a Functionally Graded strip sandwiched between two half planes are analyzed using singular integral equations with Cauchy kernels, and integrated using Lobatto-Chebyshev collocation. Mixed-mode Stress Intensity Factors (SIF) and Strain Energy Release Rates (SERR) are calculated. The Stress Intensity Factors are compared for accuracy with previously published results. Parametric studies are conducted for various nonhomogeneity ratios, crack lengths. crack orientation and thickness of the strip. It is shown that the SERR is more complete and should be used for crack propagation analysis.

  6. Application of Crack Identification Techniques for an Aging Concrete Bridge Inspection Using an Unmanned Aerial Vehicle.

    PubMed

    Kim, In-Ho; Jeon, Haemin; Baek, Seung-Chan; Hong, Won-Hwa; Jung, Hyung-Jo

    2018-06-08

    Bridge inspection using unmanned aerial vehicles (UAV) with high performance vision sensors has received considerable attention due to its safety and reliability. As bridges become obsolete, the number of bridges that need to be inspected increases, and they require much maintenance cost. Therefore, a bridge inspection method based on UAV with vision sensors is proposed as one of the promising strategies to maintain bridges. In this paper, a crack identification method by using a commercial UAV with a high resolution vision sensor is investigated in an aging concrete bridge. First, a point cloud-based background model is generated in the preliminary flight. Then, cracks on the structural surface are detected with the deep learning algorithm, and their thickness and length are calculated. In the deep learning method, region with convolutional neural networks (R-CNN)-based transfer learning is applied. As a result, a new network for the 384 collected crack images of 256 × 256 pixel resolution is generated from the pre-trained network. A field test is conducted to verify the proposed approach, and the experimental results proved that the UAV-based bridge inspection is effective at identifying and quantifying the cracks on the structures.

  7. Simulated impact damage in a thick graphite/epoxy laminate using spherical indenters

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1988-01-01

    A study was made to determine the extent of fiber damage caused by low-velocity impact of spherical impactors to a very thick graphite/epoxy laminate. The laminate was cut from a filament wound case being developed for the Space Shuttle solid rocket motors. The case was wound using a wet process with AS4W graphite fiber and HBRF-55A epoxy. Impacts were simulated under quasi-static conditions by pressing hemispherically shaped indenters against the laminate at different locations. The contact force and indenter diameter were varied from location to location. The forces were chosen for each indenter diameter to produce contact pressures below and above that required to initiate damage. After the forces were applied, the laminate was cut into smaller pieces so that each piece contained a test site. The pieces were then deplied and the individual plies examined to determine the extent of fiber damage. Broken fibers were found in the outer layers directly beneath the contact site. The locus of broken fibers in each layer resembled a crack normal to the direction of the fibers. The maximum length and depth of the cracks increased with increasing contact pressure and indenter diameter. The internal stresses in the laminate were calculated using Hertz's law and Love's solution for pressure applied on part of the boundary of a semi-infinite body. The maximum length and depth of the cracks were predicted using a maximum shear stress criterion. Predictions and measurements were in good agreement.

  8. Influence of crack opening and incident wave angle on second harmonic generation of Lamb waves

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Ng, Ching-Tai; Kotousov, Andrei

    2018-05-01

    Techniques utilising second harmonic generation (SHG) have proven their great potential in detecting contact-type damage. However, the gap between the practical applications and laboratory studies is still quite large. The current work is aimed to bridge this gap by investigating the effects of the applied load and incident wave angle on the detectability of fatigue cracks at various lengths. Both effects are critical for practical implementations of these techniques. The present experimental study supported by three-dimensional (3D) finite element (FE) modelling has demonstrated that the applied load, which changes the crack opening and, subsequently, the contact nonlinearity, significantly affects the amplitude of the second harmonic generated by the fundamental symmetric mode (S0) of Lamb wave. This amplitude is also dependent on the length of the fatigue crack as well as the incident wave angle. The experimental and FE results correlate well, so the modelling approach can be implemented for practical design of damage monitoring systems as well as for the evaluation of the severity of the fatigue cracks.

  9. An Intelligent Monitoring Network for Detection of Cracks in Anvils of High-Press Apparatus.

    PubMed

    Tian, Hao; Yan, Zhaoli; Yang, Jun

    2018-04-09

    Due to the endurance of alternating high pressure and temperature, the carbide anvils of the high-press apparatus, which are widely used in the synthetic diamond industry, are prone to crack. In this paper, an acoustic method is used to monitor the crack events, and the intelligent monitoring network is proposed to classify the sound samples. The pulse sound signals produced by such cracking are first extracted based on a short-time energy threshold. Then, the signals are processed with the proposed intelligent monitoring network to identify the operation condition of the anvil of the high-pressure apparatus. The monitoring network is an improved convolutional neural network that solves the problems that may occur in practice. The length of pulse sound excited by the crack growth is variable, so a spatial pyramid pooling layer is adopted to solve the variable-length input problem. An adaptive weighted algorithm for loss function is proposed in this method to handle the class imbalance problem. The good performance regarding the accuracy and balance of the proposed intelligent monitoring network is validated through the experiments finally.

  10. Multiscale approach to micro/macro fatigue crack growth in 2024-T3 aluminum panel

    NASA Astrophysics Data System (ADS)

    Sih, G. C.

    2014-01-01

    When two contacting solid surfaces are tightly closed and invisible to the naked eye, the discontinuity is said to be microscopic regardless of whether its length is short or long. By this definition, it is not sufficient to distinguish the difference between a micro- and macro-crack by using the length parameter. Microcracks in high strength metal alloys have been known to be several centimeters or longer. Considered in this work is a dual scale fatigue crack growth model where the main crack can be micro or macro but there prevails an inherent microscopic tip region that is damaged depending on the irregularities of the microstructure. This region is referred to as the "micro-tip" and can be simulated by a sharp wedge with different angles in addition to mixed boundary conditions. The combination is sufficient to model microscopic entities in the form of voids, inclusions, precipitations, interfaces, in addition to subgrain imperfections, or cluster of dislocations. This is accomplished by using the method of "singularity representation" such that closed form asymptotic solutions can be obtained for the development of fatigue crack growth rate relations with three parameters. They include: (1) the crack surface tightness σ* represented by σ o/ σ ∞ = 0.3-0.5 for short cracks in region I, and 0.1-0.2 for long cracks in region II, (2) the micro/macro material properties reflected by the shear modulus ratio µ* (=µmicro/µmacro varying between 2 and 5) and (3) the most sensitive parameter d* being the micro-tip characteristic length d* (= d/ d o) whose magnitude decreases in the direction of region I→II. The existing fatigue crack growth data for 2024-T3 and 7075-T6 aluminum sheets are used to reinterpret the two-parameter d a/d N= C(Δ K) n relation where Δ K has now been re-derived for a microcrack with surfaces tightly in contact. The contact force will depend on the mean stress σm or mean stress ratio R as the primary parameter and on the stress amplitude σ a as the secondary parameter.

  11. Characterization of fatigue crack initiation and propagation in Ti-6Al-4V with electrical potential drop technique

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Telesman, Jack

    1988-01-01

    Electrical potential methods have been used in the past primarily to monitor crack length in long crack specimens subjected to fatigue loading. An attempt was made to develop test procedures for monitoring the fatigue crack initiation and the growth of short fatigue cracks in a turbine disk alloy with the electrical potential drop technique (EPDT). In addition, the EPDT was also applied to monitor the fatigue crack growth in long crack specimens of the same alloy. The resolution of the EPDT for different specimen geometries was determined. Factors influencing the EPDT are identified and the applicability of EPDT in implementing damage tolerant design concepts for turbine disk materials is discussed. The experimental procedure adopted and the results obtained is discussed. No substantial differences were observed between the fatigue crack growth data of short and long crack specimens.

  12. Simulation of 90{degrees} ply fatigue crack growth along the width of cross-ply carbon-epoxy coupons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henaff-Gardin, C.; Urwald, E.; Lafarie-Frenot, M.C.

    1994-07-01

    We study the mechanism of fatigue cracking of the matrix of cross-ply carbon-epoxy laminates. Primary attention is given to the study of the influence of the specimen width on the evolution of damage. On the basis of shear lag analysis, we determine the strain energy release rate in the processes of initiation and growth of transverse fatigue cracks. We also present results of experimental research on the evolution of the edge crack density per ply, the average length of the cracks, and the crack propagation rate under transverse fatigue cracking. It is shown that these characteristics are independent of themore » specimen width. At the same time, as soon as the edge crack density reaches its saturation value, the average crack growth rate becomes constant. All the experimental results are in good agreement with results obtained by using the theoretical model.« less

  13. Improved imaging algorithm for bridge crack detection

    NASA Astrophysics Data System (ADS)

    Lu, Jingxiao; Song, Pingli; Han, Kaihong

    2012-04-01

    This paper present an improved imaging algorithm for bridge crack detection, through optimizing the eight-direction Sobel edge detection operator, making the positioning of edge points more accurate than without the optimization, and effectively reducing the false edges information, so as to facilitate follow-up treatment. In calculating the crack geometry characteristics, we use the method of extracting skeleton on single crack length. In order to calculate crack area, we construct the template of area by making logical bitwise AND operation of the crack image. After experiment, the results show errors of the crack detection method and actual manual measurement are within an acceptable range, meet the needs of engineering applications. This algorithm is high-speed and effective for automated crack measurement, it can provide more valid data for proper planning and appropriate performance of the maintenance and rehabilitation processes of bridge.

  14. The effects of shot-peening residual stresses on the fracture and crack growth properties of D6AC steel

    NASA Technical Reports Server (NTRS)

    Elber, W.

    1973-01-01

    The fracture strength and cyclic crack-growth properties of surface-flawed, shot-peened D6AC steel plate were investigated. For short crack lengths (up to 1.5mm) simple linear elastic fracture mechanics - based only on applied loading - did not predict the fracture strengths. Also, Paris' Law for cyclic crack growth did not correlate the crack-growth behavior. To investigate the effect of shot-peening, additional fracture and crack-growth tests were performed on material which was precompressed to remove the residual stresses left by the shot-peening. Both tests and analysis show that the shot-peening residual stresses influence the fracture and crack-growth properties of the material. The analytical method of compensating for residual stresses and the fracture and cyclic crack-growth test results and predictions are presented.

  15. Effects of shot-peening residual stresses on the fracture and crack-growth properties of D6AC steel

    NASA Technical Reports Server (NTRS)

    Elber, W.

    1974-01-01

    The fracture strength and cyclic crack-growth properties of surface-flawed, shot-peened D6AC steel plate were investigated. For short crack lengths (up to 1.5 mm) simple linear elastic fracture mechanics - based only on applied loading - did not predict the fracture strengths. Also, Paris' Law for cyclic crack growth did not correlate the crack-growth behavior. To investigate the effect of shot-peening, additional fracture and crack-growth tests were performed on material which was precompressed to remove the residual stresses left by the shot-peening. Both tests and analysis show that shot-peening residual stresses influence the fracture and crack-growth properties of the material. This report presents the analytical method of compensating for residual stresses and the fracture and cyclic crack-growth test results and predictions.

  16. The Significance of Small Cracks in Fatigue Design Concepts as Related to Rotorcraft Metallic Dynamic Components

    NASA Technical Reports Server (NTRS)

    Everett, R. A., Jr.; Elber, W.

    2000-01-01

    In this paper the significance of the "small" crack effect as defined in fracture mechanics will be discussed as it relates to life managing rotorcraft dynamic components using the conventional safe-life, the flaw tolerant safe-life, and the damage tolerance design philosophies. These topics will be introduced starting with an explanation of the small-crack theory, then showing how small-crack theory has been used to predict the total fatigue life of fatigue laboratory test coupons with and without flaws, and concluding with how small cracks can affect the crack-growth damage tolerance design philosophy. As stated in this paper the "small" crack effect is defined in fracture mechanics where it has been observed that cracks on the order of 300 microns or less in length will propagate at higher growth rates than long cracks and also will grow at AK values below the long crack AK threshold. The small-crack effect is illustrated herein as resulting from a lack of crack closure and is explained based on continuum mechanics principles using crack-closure concepts in fracture mechanics.

  17. Influence of Random Inclusion of Coconut Fibres on the Short term Strength of Highly Compressible Clay

    NASA Astrophysics Data System (ADS)

    Ramani Sujatha, Evangelin; SaiSree, S.; Prabalini, C.; Aysha Farsana, Z.

    2017-07-01

    The choice of natural fibres for soil stabilization provides an economic, safe and eco-friendly alternative to improve the properties of soil. They are an important step forward toward sustainable development. An attempt was made to study the influence of the random addition of untreated coconut fibres on the short term strength of soil, its stress-strain behavior, compaction characteristics and index properties. The soil selected for the study is a highly compressible clay sample with a liquid limit of 52.5 % and plasticity index of 38 %. The soil has no organic content. The study reveals that the compaction curves tend to shift to the right side, indicating more plastic behavior with the addition of fibres. The addition of fibres also reorient the soil structure to a more dispersed fashion. A significant increase in the unconfined compressive strength is also observed. An increase of nearly 51 % in the unconfined compressive strength is observed at 0.75 % coir inclusion. The stress-strain behavior of the soil shows a shift toward more plastic behavior. The mode of failure of the soil specimen is by cracking and with fibre inclusion, length of the failure cracks is restrained as the fibre tends to hold the cracks together, resulting in shorter cracks, with significant bulging of the specimen at failure.

  18. Eddy-Current Detection of Cracks in Tubes

    NASA Technical Reports Server (NTRS)

    Parent, R.; Kettering, D.

    1987-01-01

    Nondestructive device tests narrow, sharply-bent metal tubes. Eddycurrent probe detects incipient cracks inside small metal tubes. Tube-centering device consisting of pair of opposed bars ensures tube centered on eddy-current coil. Probe moves along length of bent tube to inspect repeatably for cracks. Compatible with tubes of different cross sections, oval, flattened, square, rectangular,or irregular. Adapts for inspecting formed tubes in petrochemical, automotive, nuclear, and medical equipment.

  19. The effect of plasma electrolytic oxidation on the mean stress sensitivity of the fatigue life of the 6082 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Winter, L.; Morgenstern, R.; Hockauf, K.; Lampke, T.

    2016-03-01

    In this work the mean stress influence on the high cycle fatigue behavior of the plasma electrolytic oxidized (PEO) 6082 aluminum alloy (AlSi1MgMn) is investigated. The present study is focused on the fatigue life time and the susceptibility of fatigue-induced cracking of the oxide coating and their dependence on the applied mean stress. Systematic work is done comparing conditions with and without PEO treatment, which have been tested using three different load ratios. For the uncoated substrate the cycles to failure show a significant dependence on the mean stress, which is typical for aluminum alloys. With increased load ratio and therefore increased mean stress, the fatigue strength decreases. The investigation confirms the well-known effect of PEO treatment on the fatigue life: The fatigue strength is significantly reduced by the PEO process, compared to the uncoated substrate. However, also the mean stress sensitivity of the fatigue performance is reduced. The fatigue limit is not influenced by an increasing mean stress for the PEO treated conditions. This effect is firstly shown in these findings and no explanation for this effect can be found in literature. Supposedly the internal compressive stresses and the micro-cracks in the oxide film have a direct influence on the crack initiation and growth from the oxide film through the interface and in the substrate. Contrary to these findings, the susceptibility of fatigue-induced cracking of the oxide coating is influenced by the load ratio. At tension-tension loading a large number of cracks, which grow partially just in the aluminum substrate, are present. With decreasing load ratio to alternating tension-compression stresses, the crack number and length increases and shattering of the oxide film is more pronounced due to the additional effective compressive part of the load cycle.

  20. Identification of Flaws Responsible for Crack Initiation and Micromechanisms of Slow Crack Growth in the Delayed Fracture of Alumina.

    DTIC Science & Technology

    1982-02-01

    ntsitycrOtained Alumina in 50 % Relative Humidity . 123 (1) the material constants under a certain environment, A, B, and n in eq. (2-14) and eq. (2-15), evalu... Fatigue Crack Growth," Int. Jour. Fract., 17 (1981) 235-247. 3. S.M. Wiederhorn, " Effects of Environment on the Fracture of Glass," Environment-Sensitive...Distribution of Alumina 4 1 34 2-11 Schematic Drawing of Variation in Effective Critical Stress Intensity Factor, KC ff with Crack Length Relative to Grain

  1. Convergence rates for finite element problems with singularities. Part 1: Antiplane shear. [crack

    NASA Technical Reports Server (NTRS)

    Plunkett, R.

    1980-01-01

    The problem of a finite crack in an infinite medium under antiplane shear load is considered. It is shown that the nodal forces at the tip of the crack accurately gives the order of singularity, that n energy release methods can give the strength to better than 1 percent with element size 1/10 the crack length, and that nodal forces give a much better estimate of the stress field than do the elements themselves. The finite element formulation and the factoring of tridiagonal matrices are discussed.

  2. Structural Health Monitoring System Trade Space Analysis Tool with Consideration for Crack Growth, Sensor Degradation and a Variable Detection Threshold

    DTIC Science & Technology

    2014-09-18

    Erdogan , 1963). 26 Paris’s Law Under a fatigue stress regime Paris’s Law relates sub-critical crack growth to stress intensity factor. The basic...Paris and Erdogan , 1963). After takeoff, the model generates a probability distribution for the crack length in that specific sortie based on the...Law is one of the most widely used fatigue crack growth models and was used in this research effort (Paris and Erdogan , 1963). Paris’s Law Under a

  3. Coke formation in the thermal cracking of hydrocarbons. 4: Modeling of coke formation in naphtha cracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reyniers, G.C.; Froment, G.F.; Kopinke, F.D.

    1994-11-01

    An extensive experimental program has been carried out in a pilot unit for the thermal cracking of hydrocarbons. On the basis of the experimental information and the insight in the mechanisms for coke formation in pyrolysis reactors, a mathematical model describing the coke formation has been derived. This model has been incorporated in the existing simulation tools at the Laboratorium voor Petrochemische Techniek, and the run length of an industrial naphtha cracking furnace has been accurately simulated. In this way the coking model has been validated.

  4. The Dugdale model for the compact specimen

    NASA Technical Reports Server (NTRS)

    Mall, S.; Newman, J. C., Jr.

    1983-01-01

    Plastic zone size and crack tip opening displacement (CTOD) equations were developed. Boundary collocation analyses were used to analyze the compact specimen subjected to various loading conditions (pin loads, concentrated forces, and uniform pressure acting on the crack surface). Stress intensity factor and crack surface displacement equations for some of these loadings were developed and used to obtain the Dugdale model. The results from the equations for plastic zone size and CTOD agreed well with numerical values calculated by Terada for crack length to width ratios greater than 0.4.

  5. [Mechanism of the dentino-enamel junction on the resist-crack propagation of human teeth by the finite element method].

    PubMed

    Jingjing, Zheng; Tiezhou, Hou; Hong, Tao; Xueyan, Guo; Cui, Wu

    2014-10-01

    This study aims to identify the crack tip stress intensity factor of the propagation process, crack propagation path, and the changes in the shape of the crack tip by the finite element method. The finite element model of dentino-enamel junction was established with ANSYS software, and the length of the initial crack in the single edge was set to 0.1 mm. The lower end of the sample was fixed. The tensile load of 1 MPa with frequency of 5 Hz was applied to the upper end. The stress intensity factor, deflection angle, and changes in the shape of the crack tip in the crack propagation were calculated by ANSYS. The stress intensity factor suddenly and continuously decreased in dentino-enamel junction as the crack extended. A large skewed angle appeared, and the stress on crack tip was reduced. The dentino-enamel junction on human teeth may resist crack propagation through stress reduction.

  6. Exploring How Weathering Related Stresses and Subcritical Crack Growth May Influence the Size of Sediment Produced From Different Rock Types.

    NASA Astrophysics Data System (ADS)

    Eppes, M. C.; Hallet, B.; Hancock, G. S.; Mackenzie-Helnwein, P.; Keanini, R.

    2016-12-01

    The formation and diminution of rock debris, sediment and soil at and near Earth's surface is driven in large part by in situ, non-transport related, rock cracking. Given the relatively low magnitude stresses that arise in surface and near-surface settings, this production and diminution of granular material is likely strongly influenced and/or driven by subcritical crack growth (Eppes et al., 2016), cracking that occurs under stress loading conditions much lower than a rock's strength as typically measured in the laboratory under rapid loading. Despite a relatively sound understanding of subcritical crack growth through engineering and geophysical studies, its geomorphic and sedimentologic implications have only been minimally explored. Here, based on existing studies, we formulate several hypotheses to predict how weathering-induced stresses combined with the subcritical crack growth properties of rock may influence sediment size distribution. For example, subcritical crack growth velocity (v) can be described by v = CKIn where KI is the mode I (simple opening mode) stress intensity factor, a function of tensile stress at the crack tip and crack length; C is a rock- and environment-dependent constant; and n is material constant, the subcritical crack growth index. Fracture length and spacing in rock is strongly dependent on n, where higher n values result in fewer, more distally spaced cracks (e.g. Olsen, 1993). Thus, coarser sediment might be expected from rocks with higher n values. Weathering-related stresses such as thermal stresses and mineral hydration, however, can disproportionally stress boundaries between minerals with contrasting thermal or chemical properties and orientation, resulting in granular disintegration. Thus, rocks with properties favorable to inducing these stresses might produce sediment whose size is reflective of its constituent grains. We begin to test these hypotheses through a detailed examination of crack and rock characteristics in outcrops of granite, sandstone, and quartzite found in Shenandoah National Park, Virginia. Preliminary results reveal that many observed cracking characteristics are consistent with our hypotheses linking subcritical crack growth, weathering stresses and the production of different sized sediment from different rock types.

  7. Real-Time Visualization of Joint Cavitation

    PubMed Central

    Rowe, Lindsay

    2015-01-01

    Cracking sounds emitted from human synovial joints have been attributed historically to the sudden collapse of a cavitation bubble formed as articular surfaces are separated. Unfortunately, bubble collapse as the source of joint cracking is inconsistent with many physical phenomena that define the joint cracking phenomenon. Here we present direct evidence from real-time magnetic resonance imaging that the mechanism of joint cracking is related to cavity formation rather than bubble collapse. In this study, ten metacarpophalangeal joints were studied by inserting the finger of interest into a flexible tube tightened around a length of cable used to provide long-axis traction. Before and after traction, static 3D T1-weighted magnetic resonance images were acquired. During traction, rapid cine magnetic resonance images were obtained from the joint midline at a rate of 3.2 frames per second until the cracking event occurred. As traction forces increased, real-time cine magnetic resonance imaging demonstrated rapid cavity inception at the time of joint separation and sound production after which the resulting cavity remained visible. Our results offer direct experimental evidence that joint cracking is associated with cavity inception rather than collapse of a pre-existing bubble. These observations are consistent with tribonucleation, a known process where opposing surfaces resist separation until a critical point where they then separate rapidly creating sustained gas cavities. Observed previously in vitro, this is the first in-vivo macroscopic demonstration of tribonucleation and as such, provides a new theoretical framework to investigate health outcomes associated with joint cracking. PMID:25875374

  8. Combined effect of matrix cracking and stress-free edge on delamination

    NASA Technical Reports Server (NTRS)

    Salpekar, S. A.; Obrien, T. K.

    1990-01-01

    The effect of the stress-free edge on the growth of local delaminations initiating from a matrix crack in (0 sub 2/90 sub 4) sub s and (+ or - 45.90 sub 4) sub s glass epoxy laminates is investigated using 3-D finite element analysis. The presence of high interlaminar normal stresses at the intersection (corner) of the matrix crack with the stress-free edge, suggests that a mode I delamination may initiate at the corners. The strain energy release rates (G) were calculated by modeling a uniform through-width delamination and two inclined delaminations at 10.6 deg and 45 deg to the matrix crack. All components of G have high values near the free edges. The mode I component of G is high at small delamination length and becomes zero for a delamination length of one-ply thickness. The total G values near the free edge agreed well with previously derived closed form solution. The quasi-3D solutions agreed well with the 3-D interior solutions.

  9. Combined effect of matrix cracking and stress-free edge on delamination

    NASA Technical Reports Server (NTRS)

    Salpekar, Satish A.; O'Brien, T. K.

    1991-01-01

    The effect of the stress-free edge on the growth of local delaminations initiating from a matrix crack in (O sub 2/90 sub 4) sub s and (+/- 45.90 sub 4) sub s glass epoxy laminates is investigated using 3D finite element analysis. The presence of high interlaminar normal stresses at the intersection (corner) of the matrix crack with the stress-free edge, suggests that a mode I delamination may initiate at the corners. The strain energy release rates (G) were calculated by modeling a uniform through-width delamination and two inclined delaminations at 10.6 deg and 45 deg to the matrix crack. All components of G have high values near the free edges. The mode I component of G is high at small delamination length and becomes zero for a delamination length of one-ply thickness. The total G values near the free edge agreed well with previously derived closed form solution. The quasi-3D solutions agreed well with the 3D interior solutions.

  10. The Development of Directional Decohesion Finite Elements for Multiscale Failure Analysis of Metallic Polycrystals

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Glaessgen, Edward H.

    2009-01-01

    Atomistic simulations of intergranular fracture have indicated that grain-scale crack growth in polycrystalline metals can be direction dependent. At these material length scales, the atomic environment greatly influences the nature of intergranular crack propagation, through either brittle or ductile mechanisms, that are a function of adjacent grain orientation and direction of crack propagation. Methods have been developed to obtain cohesive zone models (CZM) directly from molecular dynamics simulations. These CZMs may be incorporated into decohesion finite element formulations to simulate fracture at larger length scales. A new directional decohesion element is presented that calculates the direction of Mode I opening and incorporates a material criterion for dislocation emission based on the local crystallographic environment to automatically select the CZM that best represents crack growth. The simulation of fracture in 2-D and 3-D aluminum polycrystals is used to illustrate the effect of parameterized CZMs and the effectiveness of directional decohesion finite elements.

  11. Subcritical crack growth in porcelains, glass-ceramics, and glass-infiltrated alumina composite for dental restorations.

    PubMed

    Gonzaga, Carla Castiglia; Yoshimura, Humberto Naoyuki; Cesar, Paulo Francisco; Miranda, Walter Gomes

    2009-05-01

    The objective was to compare fracture toughness (K(Ic)), stress corrosion susceptibility coefficient (n), and stress intensity factor threshold for crack propagation (K(I0)) of two porcelains [VM7/Vita (V) and d.Sign/Ivoclar (D)], two glass-ceramics [Empress/Ivolcar (E1) and Empress2/Ivlocar (E2)] and a glass-infiltrated alumina composite [In-Ceram Alumina/Vita (IC)]. Disks were constructed according to each manufacturer's processing method, and polished before induction of cracks by a Vickers indenter. Crack lengths were measured under optical microscopy at times between 0.1 and 100 h. Specimens were stored in artificial saliva at 37 degrees C during the whole experiment. K(Ic) and n were determined using indentation fracture method. K(I0) was determined by plotting log crack velocity versus log K(I). Microstructure characterization was carried out under SEM, EDS, X-ray diffraction and X-ray fluorescence. IC and E2 presented higher K(Ic) and K(I0) compared to E1, V, and D. IC presented the highest n value, followed by E2, D, E1, and V in a decreasing order. V and D presented similar K(Ic), but porcelain V showed higher K(I0) and lower n compared to D. Microstructure features (volume fraction, size, aspect ratio of crystalline phases and chemical composition of glassy matrix) determined K(Ic). The increase of K(Ic) value favored the increases of n and K(I0).

  12. Fracture processes and mechanisms of crack growth resistance in human enamel

    NASA Astrophysics Data System (ADS)

    Bajaj, Devendra; Park, Saejin; Quinn, George D.; Arola, Dwayne

    2010-07-01

    Human enamel has a complex micro-structure that varies with distance from the tooth’s outer surface. But contributions from the microstructure to the fracture toughness and the mechanisms of crack growth resistance have not been explored in detail. In this investigation the apparent fracture toughness of human enamel and the mechanisms of crack growth resistance were evaluated using the indentation fracture approach and an incremental crack growth technique. Indentation cracks were introduced on polished surfaces of enamel at selected distances from the occlusal surface. In addition, an incremental crack growth approach using compact tension specimens was used to quantify the crack growth resistance as a Junction of distance from the occlusal surface. There were significant differences in the apparent toughness estimated using the two approaches, which was attributed to the active crack length and corresponding scale of the toughening mechanisms.

  13. Research on a Lamb Wave and Particle Filter-Based On-Line Crack Propagation Prognosis Method.

    PubMed

    Chen, Jian; Yuan, Shenfang; Qiu, Lei; Cai, Jian; Yang, Weibo

    2016-03-03

    Prognostics and health management techniques have drawn widespread attention due to their ability to facilitate maintenance activities based on need. On-line prognosis of fatigue crack propagation can offer information for optimizing operation and maintenance strategies in real-time. This paper proposes a Lamb wave-particle filter (LW-PF)-based method for on-line prognosis of fatigue crack propagation which takes advantages of the possibility of on-line monitoring to evaluate the actual crack length and uses a particle filter to deal with the crack evolution and monitoring uncertainties. The piezoelectric transducers (PZTs)-based active Lamb wave method is adopted for on-line crack monitoring. The state space model relating to crack propagation is established by the data-driven and finite element methods. Fatigue experiments performed on hole-edge crack specimens have validated the advantages of the proposed method.

  14. Preliminary research on eddy current bobbin quantitative test for heat exchange tube in nuclear power plant

    NASA Astrophysics Data System (ADS)

    Qi, Pan; Shao, Wenbin; Liao, Shusheng

    2016-02-01

    For quantitative defects detection research on heat transfer tube in nuclear power plants (NPP), two parts of work are carried out based on the crack as the main research objects. (1) Production optimization of calibration tube. Firstly, ASME, RSEM and homemade crack calibration tubes are applied to quantitatively analyze the defects depth on other designed crack test tubes, and then the judgment with quantitative results under crack calibration tube with more accuracy is given. Base on that, weight analysis of influence factors for crack depth quantitative test such as crack orientation, length, volume and so on can be undertaken, which will optimize manufacture technology of calibration tubes. (2) Quantitative optimization of crack depth. Neural network model with multi-calibration curve adopted to optimize natural crack test depth generated in in-service tubes shows preliminary ability to improve quantitative accuracy.

  15. The behaviour of fatigue-induced microdamage in compact bone samples from control and ovariectomised sheep.

    PubMed

    Kennedy, Oran D; Brennan, Orlaith; Mauer, Peter; O'Brien, Fergal J; Rackard, Susan M; Taylor, David; Lee, T Clive

    2008-01-01

    This study investigates the effect of microdamage on bone quality in osteoporosis using an ovariectomised (OVX) sheep model of osteoporosis. Thirty-four sheep were divided into an OVX group (n=16) and a control group (n=18). Fluorochromes were administered intravenously at 3 monthly intervals after surgery to label bone turnover. After sacrifice, beams were removed from the metatarsal and tested in three-point bending. Following failure, microcracks were identified and quantified in terms of region, location and interaction with osteons. Number of cycles to failure (Nf) was lower in the OVX group relative to controls by approximately 7%. Crack density (CrDn) was higher in the OVX group compared to controls. CrDn was 2.5 and 3.5 times greater in the compressive region compared to tensile in control and OVX bone respectively. Combined results from both groups showed that 91% of cracks remained in interstitial bone, approximately 8% of cracks penetrated unlabelled osteons and less than 1% penetrated into labelled osteons. All cases of labelled osteon penetration occurred in controls. Crack surface density (CrSDn), was 25% higher in the control group compared to OVX. It is known that crack behaviour on meeting microstructural features such as osteons will depend on crack length. We have shown that osteon age also affects crack propagation. Long cracks penetrated unlabelled osteons but not labelled ones. Some cracks in the control group did penetrate labelled osteons. This may be due the fact that control bone is more highly mineralized. CrSDn was increased by 25% in the control group compared to OVX. Further study of these fracture mechanisms will help determine the effect of microdamage on bone quality and how this contributes to bone fragility.

  16. Fatigue life calculation of desuperheater for solving pipe cracking issue using finite element method (FEM) software

    NASA Astrophysics Data System (ADS)

    Kumar, Aravinda; Singh, Jeetendra Kumar; Mohan, K.

    2012-06-01

    Desuperheater assembly experiences thermal cycling in operation by design. During power plant's start up, load change and shut down, thermal gradient is highest. Desuperheater should be able to handle rapid ramp up or ramp down of temperature in these operations. With "hump style" two nozzle desuperheater, cracks were appearing in the pipe after only few cycles of operation. From the field data, it was clear that desuperheater is not able to handle disproportionate thermal expansion happening in the assembly during temperature ramp up and ramp down in operation and leading to cracks appearing in the piping. Growth of thermal fatigue crack is influenced by several factors including geometry, severity of thermal stress and applied mechanical load. This paper seeks to determine cause of failure of two nozzle "hump style" desuperheater using Finite Element Method (FEM) simulation technique. Thermal stress simulation and fatigue life calculation were performed using commercial FEA software "ANSYS" [from Ansys Inc, USA]. Simulation result showed that very high thermal stress is developing in the region where cracks are seen in the field. From simulation results, it is also clear that variable thermal expansion of two nozzle studs is creating high stress at the water manifold junction. A simple and viable solution is suggested by increasing the length of the manifold which solved the cracking issues in the pipe.

  17. Comparative Analysis of Crack Propagation in Roots with Hand and Rotary Instrumentation of the Root Canal -An Ex-vivo Study.

    PubMed

    Kumari, Manju Raj; Krishnaswamy, Manjunath Mysore

    2016-07-01

    Success of any endodontic treatment depends on strict adherence to 'endodontic triad'. Preparation of root canal system is recognized as being one of the most important stages in root canal treatment. At times, we inevitably end up damaging root dentin which becomes a Gateway for infections like perforation, zipping, dentinal cracks and minute intricate fractures or even vertical root fractures, thereby resulting in failure of treatment. Several factors may be responsible for the formation of dentinal cracks like high concentration of sodium hypochlorite, compaction methods and various canal shaping methods. To compare and evaluate the effects of root canal preparation techniques and instrumentation length on the development of apical root cracks. Seventy extracted premolars with straight roots were mounted on resin blocks with simulated periodontal ligaments, exposing 1-2 mm of the apex followed by sectioning of 1mm of root tip for better visualization under stereomicroscope. The teeth were divided into seven groups of 10 teeth each - a control group and six experimental groups. Subgroup A & B were instrumented with: Stainless Steel hand files (SS) up to Root Canal Length (RCL) & (RCL -1 mm) respectively; sub group C & D were instrumented using ProTaper Universal (PTU) up to RCL and (RCL -1mm) respectively; subgroup E & F were instrumented using ProTaper Next (PTN) up to RCL & (RCL -1 mm) respectively. Stereomicroscopic images of the instrumentation sequence were compared for each tooth. The data was analyzed statistically using descriptive analysis by 'Phi' and 'Cramers' test to find out statistical significance between the groups. The level of significance was set at p< 0.05 using SPSS software. Stainless steel hand file group showed most cracks followed by ProTaper Universal & ProTaper Next though statistically not significant. Samples instrumented up to 1mm short of working length (RCL-1mm) showed lesser number of cracks. All groups showed cracks formation, the stainless steel group being the highest. Working 1mm short of apex reduces the incidence of crack formation.

  18. Mode 1 crack surface displacements for a round compact specimen subject to a couple and force

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1979-01-01

    Mode I displacement coefficients along the crack surface are presented for a radially cracked round compact specimen, treated as a plane elastostatic problem, subjected to two types of loading; a uniform tensile stress and a nominal bending stress distribution across the net section. By superposition the resultant displacement coefficient or the corresponding influence coefficient can be obtained for any practical load location. Load line displacements are presented for A/D ratios ranging from 0.40 to 0.95, where A is the crack length measured from the crack mouth to the crack tip and D is the specimen diameter. Through a linear extrapolation procedure crack mouth displacements are also obtained. Experimental evidence shows that the results are valid over the range of A/D ratios analyzed for a practical pin loaded round compact specimen.

  19. The effect of the interaction of cracks in orthotropic layered materials under compressive loading.

    PubMed

    Winiarski, B; Guz, I A

    2008-05-28

    The non-classical problem of fracture mechanics of composites compressed along the layers with interfacial cracks is analysed. The statement of the problem is based on the model of piecewise homogeneous medium, the most accurate within the framework of the mechanics of deformable bodies as applied to composites. The condition of plane strain state is examined. The layers are modelled by a transversally isotropic material (a matrix reinforced by continuous parallel fibres). The frictionless Hertzian contact of the crack faces is considered. The complex fracture mechanics problem is solved using the finite-element analysis. The shear mode of stability loss is studied. The results are obtained for the typical dispositions of cracks. It was found that the interacting crack faces, the crack length and the mutual position of cracks influence the critical strain in the composite.

  20. Online Bridge Crack Monitoring with Smart Film

    PubMed Central

    Wang, Shuliang; Li, Xingxing; Zhou, Zhixiang; Zhang, Xu; Yang, Guang; Qiu, Minfeng

    2013-01-01

    Smart film crack monitoring method, which can be used for detecting initiation, length, width, shape, location, and propagation of cracks on real bridges, is proposed. Firstly, the fabrication of the smart film is developed. Then the feasibility of the method is analyzed and verified by the mechanical sensing character of the smart film under the two conditions of normal strain and crack initiation. Meanwhile, the coupling interference between parallel enameled wires of the smart film is discussed, and then low-frequency detecting signal and the custom communication protocol are used to decrease interference. On this basis, crack monitoring system with smart film is designed, where the collected crack data is sent to the remote monitoring center and the cracks are simulated and recurred. Finally, the monitoring system is applied to six bridges, and the effects are discussed. PMID:24489496

  1. Nonlocal modeling and buckling features of cracked nanobeams with von Karman nonlinearity

    NASA Astrophysics Data System (ADS)

    Akbarzadeh Khorshidi, Majid; Shaat, Mohamed; Abdelkefi, Abdessattar; Shariati, Mahmoud

    2017-01-01

    Buckling and postbuckling behaviors of cracked nanobeams made of single-crystalline nanomaterials are investigated. The nonlocal elasticity theory is used to model the nonlocal interatomic effects on the beam's performance accounting for the beam's axial stretching via von Karman nonlinear theory. The crack is then represented as torsional spring where the crack severity factor is derived accounting for the nonlocal features of the beam. By converting the beam into an equivalent infinite long plate with an edge crack subjected to a tensile stress at the far field, the crack energy release rate, intensity factor, and severity factor are derived according to the nonlocal elasticity theory. An analytical solution for the buckling and the postbuckling responses of cracked nonlocal nanobeams accounting for the beam axial stretching according to von Karman nonlinear theory of kinematics is derived. The impacts of the nonlocal parameter on the critical buckling loads and the static nonlinear postbuckling responses of cracked nonlocal nanobeams are studied. The results indicate that the buckling and postbuckling behaviors of cracked nanobeams are strongly affected by the crack location, crack depth, nonlocal parameter, and length-to-thickness ratio.

  2. Multi-Scale Effects in the Strength of Ceramics

    PubMed Central

    Cook, Robert F.

    2016-01-01

    Multiple length-scale effects are demonstrated in indentation-strength measurements of a range of ceramic materials under inert and reactive conditions. Meso-scale effects associated with flaw disruption by lateral cracking at large indentation loads are shown to increase strengths above the ideal indentation response. Micro-scale effects associated with toughening by microstructural restraints at small indentation loads are shown to decrease strengths below the ideal response. A combined meso-micro-scale analysis is developed that describes ceramic inert strength behaviors over the complete indentation flaw size range. Nano-scale effects associated with chemical equilibria and crack velocity thresholds are shown to lead to invariant minimum strengths at slow applied stressing rates under reactive conditions. A combined meso-micro-nano-scale analysis is developed that describes the full range of reactive and inert strength behaviors as a function of indentation load and applied stressing rate. Applications of the multi-scale analysis are demonstrated for materials design, materials selection, toughness determination, crack velocity determination, bond-rupture parameter determination, and prediction of reactive strengths. The measurements and analysis provide strong support for the existence of sharp crack tips in ceramics such that the nano-scale mechanisms of discrete bond rupture are separate from the larger scale crack driving force mechanics characterized by continuum-based stress-intensity factors. PMID:27563150

  3. Stress intensity and displacement coefficients for radially cracked ring segments subject to three-point bending

    NASA Technical Reports Server (NTRS)

    Gross, B.; Srawley, J. E.

    1983-01-01

    The boudary collocation method was used to generate Mode 1 stress intensity and crack mouth displacement coefficients for internally and externally radially cracked ring segments (arc bend specimens) subjected to three point radial loading. Numerical results were obtained for ring segment outer to inner radius ratios (R sub o/ R sub i) ranging from 1.10 to 2.50 and crack length to width ratios (a/W) ranging from 0.1 to 0.8. Stress intensity and crack mouth displacement coefficients were found to depend on the ratios R sub o/R sub i and a/W as well as the included angle between the directions of the reaction forces.

  4. Elastostatic stress analysis of orthotropic rectangular center-cracked plates

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, G. S.; Mendelson, A.

    1972-01-01

    A mapping-collocation method was developed for the elastostatic stress analysis of finite, anisotropic plates with centrally located traction-free cracks. The method essentially consists of mapping the crack into the unit circle and satisfying the crack boundary conditions exactly with the help of Muskhelishvili's function extension concept. The conditions on the outer boundary are satisfied approximately by applying the method of least-squares boundary collocation. A parametric study of finite-plate stress intensity factors, employing this mapping-collocation method, is presented. It shows the effects of varying material properties, orientation angle, and crack-length-to-plate-width and plate-height-to-plate-width ratios for rectangular orthotropic plates under constant tensile and shear loads.

  5. Preliminary results on the fracture analysis of multi-site cracking of lap joints in aircraft skins

    NASA Astrophysics Data System (ADS)

    Beuth, J. L., Jr.; Hutchinson, John W.

    1992-07-01

    Results of a fracture mechanics analysis relevant to fatigue crack growth at rivets in lap joints of aircraft skins are presented. Multi-site damage (MSD) is receiving increased attention within the context of problems of aging aircraft. Fracture analyses previously carried out include small-scale modeling of rivet/skin interactions, larger-scale two-dimensional models of lap joints similar to that developed here, and full scale three-dimensional models of large portions of the aircraft fuselage. Fatigue testing efforts have included flat coupon specimens, two-dimensional lap joint tests, and full scale tests on specimens designed to closely duplicate aircraft sections. Most of this work is documented in the proceedings of previous symposia on the aging aircraft problem. The effect MSD has on the ability of skin stiffeners to arrest the growth of long skin cracks is a particularly important topic that remains to be addressed. One of the most striking features of MSD observed in joints of some test sections and in the joints of some of the older aircraft fuselages is the relative uniformity of the fatigue cracks from rivet to rivet along an extended row of rivets. This regularity suggests that nucleation of the cracks must not be overly difficult. Moreover, it indicates that there is some mechanism which keeps longer cracks from running away from shorter ones, or, equivalently, a mechanism for shorter cracks to catch-up with longer cracks. This basic mechanism has not been identified, and one of the objectives of the work is to see to what extent the mechanism is revealed by a fracture analysis of the MSD cracks. Another related aim is to present accurate stress intensity factor variations with crack length which can be used to estimate fatigue crack growth lifetimes once cracks have been initiated. Results are presented which illustrate the influence of load shedding from rivets with long cracks to neighboring rivets with shorter cracks. Results are also included for the effect of residual stress due to the riveting process itself.

  6. Preliminary results on the fracture analysis of multi-site cracking of lap joints in aircraft skins

    NASA Technical Reports Server (NTRS)

    Beuth, J. L., Jr.; Hutchinson, John W.

    1992-01-01

    Results of a fracture mechanics analysis relevant to fatigue crack growth at rivets in lap joints of aircraft skins are presented. Multi-site damage (MSD) is receiving increased attention within the context of problems of aging aircraft. Fracture analyses previously carried out include small-scale modeling of rivet/skin interactions, larger-scale two-dimensional models of lap joints similar to that developed here, and full scale three-dimensional models of large portions of the aircraft fuselage. Fatigue testing efforts have included flat coupon specimens, two-dimensional lap joint tests, and full scale tests on specimens designed to closely duplicate aircraft sections. Most of this work is documented in the proceedings of previous symposia on the aging aircraft problem. The effect MSD has on the ability of skin stiffeners to arrest the growth of long skin cracks is a particularly important topic that remains to be addressed. One of the most striking features of MSD observed in joints of some test sections and in the joints of some of the older aircraft fuselages is the relative uniformity of the fatigue cracks from rivet to rivet along an extended row of rivets. This regularity suggests that nucleation of the cracks must not be overly difficult. Moreover, it indicates that there is some mechanism which keeps longer cracks from running away from shorter ones, or, equivalently, a mechanism for shorter cracks to catch-up with longer cracks. This basic mechanism has not been identified, and one of the objectives of the work is to see to what extent the mechanism is revealed by a fracture analysis of the MSD cracks. Another related aim is to present accurate stress intensity factor variations with crack length which can be used to estimate fatigue crack growth lifetimes once cracks have been initiated. Results are presented which illustrate the influence of load shedding from rivets with long cracks to neighboring rivets with shorter cracks. Results are also included for the effect of residual stress due to the riveting process itself.

  7. Moving template analysis of crack growth. 1: Procedure development

    NASA Astrophysics Data System (ADS)

    Padovan, Joe; Guo, Y. H.

    1994-06-01

    Based on a moving template procedure, this two part series will develop a method to follow the crack tip physics in a self-adaptive manner which provides a uniformly accurate prediction of crack growth. For multiple crack environments, this is achieved by attaching a moving template to each crack tip. The templates are each individually oriented to follow the associated growth orientation and rate. In this part, the essentials of the procedure are derived for application to fatigue crack environments. Overall the scheme derived possesses several hierarchical levels, i.e. the global model, the interpolatively tied moving template, and a multilevel element death option to simulate the crack wake. To speed up computation, the hierarchical polytree scheme is used to reorganize the global stiffness inversion process. In addition to developing the various features of the scheme, the accuracy of predictions for various crack lengths is also benchmarked. Part 2 extends the scheme to multiple crack problems. Extensive benchmarking is also presented to verify the scheme.

  8. Universal Shapes formed by Interacting Cracks

    NASA Astrophysics Data System (ADS)

    Fender, Melissa; Lechenault, Frederic; Daniels, Karen

    2011-03-01

    Brittle failure through multiple cracks occurs in a wide variety of contexts, from microscopic failures in dental enamel and cleaved silicon to geological faults and planetary ice crusts. In each of these situations, with complicated curvature and stress geometries, pairwise interactions between approaching cracks nonetheless produce characteristically curved fracture paths known in the geologic literature as en passant cracks. While the fragmentation of solids via many interacting cracks has seen wide investigation, less attention has been paid to the details of individual crack-crack interactions. We investigate the origins of this widely observed crack pattern using a rectangular elastic plate which is notched on each long side and then subjected to quasistatic uniaxial strain from the short side. The two cracks propagate along approximately straight paths until the pass each other, after which they curve and release a lenticular fragment. We find that, for materials with diverse mechanical properties, the shape of this fragment has an aspect ratio of 2:1, with the length scale set by the initial cracks offset s and the time scale set by the ratio of s to the pulling velocity. The cracks have a universal square root shape, which we understand by using a simple geometric model and the crack-crack interaction.

  9. Analysis and Modeling of Small Crack Detection in Pressurized Fuselages for Structural Health Monitoring Applications (Preprint)

    DTIC Science & Technology

    2012-07-01

    airframe failures resulting in the total loss of the aircraft [ Parton and Morozov (1978); Piascik (1999)]. More recently, in April 1988, the Aloha...a material [ Parton and Morozov (1978)]. The size of the region covered by the plastic flow depends on the material properties and the loading...crack length due to uniaxial loads applied normal to the crack orientation. The Griffith-Orowan-Irwin concept [ Parton (1992)] establishes that the

  10. Characterization of stress corrosion cracks in Ni-based weld alloys 52, 52M and 152 grown in high-temperature water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Yi; Wu, Yaqiao; Burns, Jatuporn

    Ni-based weld alloys 52, 52M and 152 are extensively used in repair and mitigation of primary water stress corrosion cracking (SCC) in nuclear power plants. In the present study, a series of microstructure and microchemistry at the SCC tips of these alloys were examined with scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), scanning transmission electron microscopy (STEM) and energy filtered transmission electron microscopy (EFTEM). The specimens have similar chemical compositions and testing conditions. Intergranular (IG) and transgranular (TG) SCC was observed in all of them. The cracks were filled with nickel-oxidesmore » and partial precipitations of chrome carbides (CrCs), niobium carbides (NbCs), titanium nitrides (TiNs) and silicon carbides (SiCs), while iron (Fe) was largely dissolved into the solution. However, the crack densities, lengths and distributions were different for all three specimens. - Highlights: • Microstructure and microchemistry at the SCC tips of Ni-based weld alloys 52, 52M and 152 were examined. • The crack densities, lengths and distributions were found to be different for different alloys. • IGSCC and TGSCC were observed on alloy 52, only TGSCC was observed on alloy 52M and 152. • The cracks were filled by Ni-oxides and precipitated CrCs, NbCs, TiNs and SiCs.« less

  11. Short fatigue crack behavior in notched 2024-T3 aluminum specimens

    NASA Technical Reports Server (NTRS)

    Lee, J. J.; Sharpe, W. N., Jr.

    1986-01-01

    Single-edge, semi-circular notched specimens of Al 2024-T3, 2.3 mm thick, were cyclicly loaded at R-ratios of 0.5, 0.0, -1.0, and -2.0. The notch roots were periodically inspected using a replica technique which duplicates the bore surface. The replicas were examined under an optical microscope to determine the initiation of very short cracks and to monitor the growth of short cracks ranging in length from a few tens of microns to the specimen thickness. In addition to short crack growth measurements, the crack opening displacement (COD) was measured for surface cracks as short as 0.035 mm and for through-thickness cracks using the Interferometric Strain/Displacement Gage (ISDG), a laser-based optical technique. The growth rates of short cracks were faster than the long crack growth rates for R-ratios of -1.0 and -2.0. No significant difference between short and long crack growth rates was observed for R = 0.0. Short cracks had slower growth rates than long cracks for R = 0.5. The crack opening stresses measured for short cracks were smaller than those predicted for large cracks, with little difference appearing for positive R-ratios and large differences noted for negative R-ratios.

  12. A new procedure for refurbishment of power plant Superalloy 617 by pulsed Nd:YAG laser process

    NASA Astrophysics Data System (ADS)

    Taheri, Naser; Naffakh-Moosavy, Homam; Ghaini, Farshid Malek

    2017-06-01

    The present study has evaluated the surface rejuvenation of aged Inconel 617 superalloy by both GTAW and pulsed Nd:YAG laser techniques. The gas tungsten arc welding (GTAW) by heat input per unit length [Q/V(J/mm)] of 280, 291.67, 309.74 and 225.48 (J/mm), and the pulse Nd:YAG laser process by the 15.71, 19.43 and 22.32 (J/mm), were employed. The Rosenthal equation was used for calculation of mushy zone (MZ) and partially-melted zone (PMZ). Size of MZ and PMZ in GTAW are more than 31 and 6 times than that of formed in pulsed Nd:YAG laser. According to the characterizations, solidification and liquation cracks were observed in these areas produced by GTAW whereas no cracks were identified in laser treated samples. Also, line scan EDS analyses demonstrated the interdendritic chromium and molybdenum segregation, which facilitated formation of hot cracks. With reduction in heat input per unit length, the hardness increased and the size of solidified metal microstructure reduced in pulse Nd:YAG laser. These comparative results showed that pulse Nd:YAG laser can easily be utilized as a new rejuvenation technique for aged Alloy 617 in comparison to the conventional processes due to extremely narrow MZ and HAZ and better surface soundness and mechanical properties.

  13. Stress-intensity factors for small surface and corner cracks in plates

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Atluri, S. N.; Newman, J. C., Jr.

    1988-01-01

    Three-dimensional finite-element and finite-alternating methods were used to obtain the stress-intensity factors for small surface and corner cracked plates subjected to remote tension and bending loads. The crack-depth-to-crack-length ratios (a/c) ranged from 0.2 to 1 and the crack-depth-to-plate-thickness ratios (a/t) ranged from 0.05 to 0.2. The performance of the finite-element alternating method was studied on these crack configurations. A study of the computational effort involved in the finite-element alternating method showed that several crack configurations could be analyzed with a single rectangular mesh idealization, whereas the conventional finite-element method requires a different mesh for each configuration. The stress-intensity factors obtained with the finite-element-alternating method agreed well (within 5 percent) with those calculated from the finite-element method with singularity elements.

  14. Mode I crack surface displacements for a round compact specimen subject to a couple and force

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1979-01-01

    Mode I displacement coefficients along the crack surface are presented for a radially cracked round compact specimen, treated as a plane elastostatic problem, subjected to two types of loading; a uniform tensile stress and a nominal bending stress distribution across the net section. By superposition the resultant displacement coefficient or the corresponding influence coefficient can be obtained for any practical load location. Load line displacements are presented for A/D ratios ranging from 0.40 to 0.95, where A is the crack length measured from the crack mouth to the crack tip and D is the specimen diameter. Through a linear extrapolation procedure crack mouth displacements are also obtained. Experimental evidence shows that the results of this study are valid over the range of A/D ratios analyzed for a practical pin loaded round compact specimen.

  15. Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission

    PubMed Central

    Zhang, Zhiheng; Yang, Guoan; Hu, Kun

    2018-01-01

    Fatigue failure is the main type of failure that occurs in gas turbine engine blades and an online monitoring method for detecting fatigue cracks in blades is urgently needed. Therefore, in this present study, we propose the use of acoustic emission (AE) monitoring for the online identification of the blade status. Experiments on fatigue crack propagation based on the AE monitoring of gas turbine engine blades and TC11 titanium alloy plates were conducted. The relationship between the cumulative AE hits and the fatigue crack length was established, before a method of using the AE parameters to determine the crack propagation stage was proposed. A method for predicting the degree of crack propagation and residual fatigue life based on the AE energy was obtained. The results provide a new method for the online monitoring of cracks in the gas turbine engine blade. PMID:29693556

  16. Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission.

    PubMed

    Zhang, Zhiheng; Yang, Guoan; Hu, Kun

    2018-04-25

    Fatigue failure is the main type of failure that occurs in gas turbine engine blades and an online monitoring method for detecting fatigue cracks in blades is urgently needed. Therefore, in this present study, we propose the use of acoustic emission (AE) monitoring for the online identification of the blade status. Experiments on fatigue crack propagation based on the AE monitoring of gas turbine engine blades and TC11 titanium alloy plates were conducted. The relationship between the cumulative AE hits and the fatigue crack length was established, before a method of using the AE parameters to determine the crack propagation stage was proposed. A method for predicting the degree of crack propagation and residual fatigue life based on the AE energy was obtained. The results provide a new method for the online monitoring of cracks in the gas turbine engine blade.

  17. Stress intensity factors for an inclined crack in an orthotropic strip

    NASA Technical Reports Server (NTRS)

    Delale, F.; Bakirtas, I.; Erdogan, F.

    1978-01-01

    The elastostatic problem for an infinite orthotropic strip containing a crack is considered. It is assumed that the orthogonal axes of material orthotropy may have an arbitrary angular orientation with respect to the orthogonal axes of geometric symmetry of the uncracked strip. The crack is located along an axis of orthotropy, hence at an arbitrary angle with respect to the sides of the strip. The general problem is formulated in terms of a system of singular integral equations for arbitrary crack surface tractions. As examples Modes I and II stress intensity factors are calculated for the strip having an internal or an edge crack with various lengths and angular orientations. In most calculations uniform tension or uniform bending away from the crack region is used as the external load. Limited results are also given for uniform normal or shear tractions on the crack surface.

  18. Analytical and experimental studies on detection of longitudinal, L and inverted T cracks in isotropic and bi-material beams based on changes in natural frequencies

    NASA Astrophysics Data System (ADS)

    Ravi, J. T.; Nidhan, S.; Muthu, N.; Maiti, S. K.

    2018-02-01

    An analytical method for determination of dimensions of longitudinal crack in monolithic beams, based on frequency measurements, has been extended to model L and inverted T cracks. Such cracks including longitudinal crack arise in beams made of layered isotropic or composite materials. A new formulation for modelling cracks in bi-material beams is presented. Longitudinal crack segment sizes, for L and inverted T cracks, varying from 2.7% to 13.6% of length of Euler-Bernoulli beams are considered. Both forward and inverse problems have been examined. In the forward problems, the analytical results are compared with finite element (FE) solutions. In the inverse problems, the accuracy of prediction of crack dimensions is verified using FE results as input for virtual testing. The analytical results show good agreement with the actual crack dimensions. Further, experimental studies have been done to verify the accuracy of the analytical method for prediction of dimensions of three types of crack in isotropic and bi-material beams. The results show that the proposed formulation is reliable and can be employed for crack detection in slender beam like structures in practice.

  19. A probabilistic fatigue analysis of multiple site damage

    NASA Technical Reports Server (NTRS)

    Rohrbaugh, S. M.; Ruff, D.; Hillberry, B. M.; Mccabe, G.; Grandt, A. F., Jr.

    1994-01-01

    The variability in initial crack size and fatigue crack growth is incorporated in a probabilistic model that is used to predict the fatigue lives for unstiffened aluminum alloy panels containing multiple site damage (MSD). The uncertainty of the damage in the MSD panel is represented by a distribution of fatigue crack lengths that are analytically derived from equivalent initial flaw sizes. The variability in fatigue crack growth rate is characterized by stochastic descriptions of crack growth parameters for a modified Paris crack growth law. A Monte-Carlo simulation explicitly describes the MSD panel by randomly selecting values from the stochastic variables and then grows the MSD cracks with a deterministic fatigue model until the panel fails. Different simulations investigate the influences of the fatigue variability on the distributions of remaining fatigue lives. Six cases that consider fixed and variable conditions of initial crack size and fatigue crack growth rate are examined. The crack size distribution exhibited a dominant effect on the remaining fatigue life distribution, and the variable crack growth rate exhibited a lesser effect on the distribution. In addition, the probabilistic model predicted that only a small percentage of the life remains after a lead crack develops in the MSD panel.

  20. The detectability of cracks using sonic IR

    NASA Astrophysics Data System (ADS)

    Morbidini, Marco; Cawley, Peter

    2009-05-01

    This paper proposes a methodology to study the detectability of fatigue cracks in metals using sonic IR (also known as thermosonics). The method relies on the validation of simple finite-element thermal models of the cracks and specimens in which the thermal loads have been defined by means of a priori measurement of the additional damping introduced in the specimens by each crack. This estimate of crack damping is used in conjunction with a local measurement of the vibration strain during ultrasonic excitation to retrieve the power released at the crack; these functions are then input to the thermal model of the specimens to find the resulting temperature rises (sonic IR signals). The method was validated on mild steel beams with two-dimensional cracks obtained in the low-cycle fatigue regime as well as nickel-based superalloy beams with three-dimensional "thumbnail" cracks generated in the high-cycle fatigue regime. The equivalent 40kHz strain necessary to obtain a desired temperature rise was calculated for cracks in the nickel superalloy set, and the detectability of cracks as a function of length in the range of 1-5mm was discussed.

  1. Transient features and growth behavior of artificial cracks during the initial damage period.

    PubMed

    Ma, Bin; Wang, Ke; Lu, Menglei; Zhang, Li; Zhang, Lei; Zhang, Jinlong; Cheng, Xinbin; Wang, Zhanshan

    2017-02-01

    The laser damage of transmission elements contains a series of complex processes and physical phenomena. The final morphology is a crater structure with different sizes and shapes. The formation and development of the crater are also accompanied by the generation, extension, and submersion of cracks. The growth characteristics of craters and cracks are important in the thermal-mechanism damage research. By using pump-probe detection and an imaging technique with a nanosecond pulsewidth probe laser, we obtained the formation time of the crack structure in the radial and circumferential directions. We carried out statistical analysis in angle, number, and crack length. We further analyzed the relationship between cracks and stress intensity or laser irradiation energy as well as the crack evolution process and the inner link between cracks and pit growth. We used an artificial indentation defect to investigate the time-domain evolution of crack growth, growth speed, transient morphology, and the characteristics of crater expansion. The results can be used to elucidate thermal stress effects on cracks, time-domain evolution of the damage structure, and the damage growth mechanism.

  2. Long-period events, the most characteristic seismicity accompanying the emplacement and extrusion of a lava dome in Galeras Volcano, Colombia, in 1991

    USGS Publications Warehouse

    Gil, Cruz F.; Chouet, B.A.

    1997-01-01

    Since its reactivation in 1988 the principal eruptions of Galeras Volcano occurred on May 4-9, 1989, July 16, 1992, and January 14, March 23, April 3, April 14 and June 7, 1993. The initial eruption was a phreatic event which clearly marked a new period of activity. A lava dome was extruded within the main crater in October 1991 and subsequently destroyed in an explosive eruption on July 16, 1992. The eruptions that followed were all vulcanian-type explosions. The seismicity accompanying the emplacement, extrusion, and destruction of the lava dome was dominated by a mix of long-period (LP) events and tremor displaying a variety of waveforms. Repetitive LP events with dominant periods in the range 0.2-1 s were observed in October and November 1991 and visually correlated with short energetic pulses of gas venting through a crack bisecting the dome surface. Each LP event was characterized by a weak precursory signal with dominant periods in the range 0.05-0.1 s lasting roughly 7 s. Using the fluid-driven crack model of Chouet (1988, 1992), we infer that two distinct cracks may have acted as sources for the LP and precursor signals. Spectral analyses of the data yield the following parameters for the LP source: crack length, 240-360 m; crack width, 130-150 m; crack aperture, 0.5-3.4 mm; crack stiffness, 100-500; sound speed of fluid, 880 m/s; and excess pressure, 0.01-0.19 MPa. Similar analyses yield the parameters of the precursor source: crack length, 20-30 m; crack width, 15-25 m; crack aperture, 2.3-8.7 mm; crack stiffness, 5-15; sound speed of fluid, 140 m/s; and excess pressure, 0.06-0.15 MPa. Combined with geologic and thermodynamic constraints obtained from field observations, these seismic parameters suggest a gas-release mechanism in which the episodic collapse of a foam layer trapped at the top of the magma column subjacent to the dome releases a slug of pressurized gas which escapes to the surface while dilating a preexisting system of cracks in the dome structure. Accordingly, the fracture observed on the crystallized dome body is the surface extension of the LP-source crack, where LP activity is induced by the rapid emission and expansion of gas flowing through this conduit. The width and aperture of the crack estimated in the model are in good agreement with the length and aperture of the fracture estimated from visual observations. The source parameters of the precursor signal are suggestive of a nozzle-like conduit connecting the LP-source crack to the underlying magma reservoir. Excitation of this conduit segment is attributed to the rapid emission and acceleration of the frothy fluid resulting from the collapse of the foam layer at the top of the reservoir. The calculated periodicity of foam collapse events is in agreement with the observed average rate of thirteen LP events per hour.

  3. Catalytic and thermal cracking processes of waste cooking oil for bio-gasoline synthesis

    NASA Astrophysics Data System (ADS)

    Dewanto, Muhammad Andry Rizki; Januartrika, Aulia Azka; Dewajani, Heny; Budiman, Arief

    2017-03-01

    Non-renewable energy resources such as fossil fuels, and coal were depleted as the increase of global energy demand. Moreover, environmental aspect becomes a major concern which recommends people to utilize bio-based resources. Waste cooking oil is one of the economical sources for biofuel production and become the most used raw material for biodiesel production. However, the products formed during frying, can affect the trans-esterification reaction and the biodiesel properties. Therefore, it needs to convert low-quality cooking oil directly into biofuel by both thermal and catalytic cracking processes. Thermal and catalytic cracking sometimes are regarded as prospective bio-energy conversion processes. This research was carried out in the packed bed reactor equipped with 2 stages preheater with temperature of reactor was variated in the range of 450-550°C. At the same temperature, catalytic cracking had been involved in this experiment, using activated ZSM-5 catalyst with 1 cm in length. The organic liquid product was recovered by three stages of double pipe condensers. The composition of cracking products were analyzed using GC-MS instrument and the caloric contents were analyzed using Bomb calorimeter. The results reveal that ZSM-5 was highly selective toward aromatic and long aliphatic compounds formation. The percentage recovery of organic liquid product from the cracking process varies start from 8.31% and the optimal results was 54.08%. The highest heating value of liquid product was resulted from catalytic cracking process at temperature of 450°C with value of 10880.48 cal/gr and the highest product yield with 54.08% recovery was achieved from thermal cracking process with temperature of 450°C.

  4. A penny-shaped crack in a filament-reinforced matrix. I - The filament model. II - The crack problem

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Pacella, A. H.

    1974-01-01

    The study deals with the elastostatic problem of a penny-shaped crack in an elastic matrix which is reinforced by filaments or fibers perpendicular to the plane of the crack. An elastic filament model is first developed, followed by consideration of the application of the model to the penny-shaped crack problem in which the filaments of finite length are asymmetrically distributed around the crack. Since the primary interest is in the application of the results to studies relating to the fracture of fiber or filament-reinforced composites and reinforced concrete, the main emphasis of the study is on the evaluation of the stress intensity factor along the periphery of the crack, the stresses in the filaments or fibers, and the interface shear between the matrix and the filaments or fibers. Using the filament model developed, the elastostatic interaction problem between a penny-shaped crack and a slender inclusion or filament in an elastic matrix is formulated.

  5. Theoretical aspects of stress corrosion cracking of Alloy 22

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Kwon; Macdonald, Digby D.

    2018-05-01

    Theoretical aspects of the stress corrosion cracking of Alloy 22 in contact with saturated NaCl solution are explored in terms of the Coupled Environment Fracture Model (CEFM), which was calibrated upon available experimental crack growth rate data. Crack growth rate (CGR) was then predicted as a function of stress intensity, electrochemical potential, solution conductivity, temperature, and electrochemical crack length (ECL). From the dependence of the CGR on the ECL and the evolution of a semi-elliptical surface crack in a planar surface under constant loading conditions it is predicted that penetration through the 2.5-cm thick Alloy 22 corrosion resistant layer of the waste package (WP) could occur 32,000 years after nucleation. Accordingly, the crack must nucleate within the first 968,000 years of storage. However, we predict that the Alloy 22 corrosion resistant layer will not be penetrated by SCC within the 10,000-year Intermediate Performance Period, even if a crack nucleates immediately upon placement of the WP in the repository.

  6. Predict the fatigue life of crack based on extended finite element method and SVR

    NASA Astrophysics Data System (ADS)

    Song, Weizhen; Jiang, Zhansi; Jiang, Hui

    2018-05-01

    Using extended finite element method (XFEM) and support vector regression (SVR) to predict the fatigue life of plate crack. Firstly, the XFEM is employed to calculate the stress intensity factors (SIFs) with given crack sizes. Then predicetion model can be built based on the function relationship of the SIFs with the fatigue life or crack length. Finally, according to the prediction model predict the SIFs at different crack sizes or different cycles. Because of the accuracy of the forward Euler method only ensured by the small step size, a new prediction method is presented to resolve the issue. The numerical examples were studied to demonstrate the proposed method allow a larger step size and have a high accuracy.

  7. Quick Reaction Evaluation of Materials for Systems Applications.

    DTIC Science & Technology

    1980-04-01

    The six slack-quenched aluminum alloy plates used in this program were: (1) 2024 -T851; 2.75 inches (60 mm) thick, (2) 2024 - T351 ; 2.00 inches (51 mm...compact (CT) specimen machined from aluminum alloys 7075-T6 and 2024 - T351 , titanium 6A1-4V, and 4340 steel. Deviation between the two curves is small...1.6 Complete Fatigue Crack Growth Rate Curves for Aluminum Alloy 2124-T851 Including Crack Growth Modeling 44 1.7 Crack Length Determination for the

  8. Compliance measurements of chevron notched four point bend specimen

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony; Bubsey, Raymond; Ghosn, Louis J.

    1994-01-01

    The experimental stress intensity factors for various chevron notched four point bend specimens are presented. The experimental compliance is verified using the analytical solution for a straight through crack four point bend specimen and the boundary integral equation method for one chevron geometry. Excellent agreement is obtained between the experimental and analytical results. In this report, stress intensity factors, loading displacements and crack mouth opening displacements are reported for different crack lengths and different chevron geometries, under four point bend loading condition.

  9. Spectrum Fatigue of 7075-T651 Aluminum Alloy under Overloading and Underloading

    DTIC Science & Technology

    2016-03-15

    underload, stress ratio, and environment on fatigue crack growth. Fatigue crack growth tests were conducted with a 7075-T651 aluminum alloy under constant...the UniGrow equation, the variation of crack length with number of loading cycle was predicted. The prediction and the fatigue test life were found to...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18 REPORT NO. NAWCADPAX/TIM-2015/282 ii SUMMARY Fatigue tests of 7075-T651

  10. Size-Dependent Rupture Strain of Elastically Stretchable Metal Conductors

    PubMed Central

    Graudejus, O.; Jia, Z.; Li, T.; Wagner, S.

    2012-01-01

    Experiments show that the rupture strain of gold conductors on elastomers decreases as the conductors are made long and narrow. Rupture is caused by the irreversible coalescence of microcracks into one long crack. A mechanics model identifies a critical crack length ℓcr, above which the long crack propagates across the entire conductor width. ℓcr depends on the fracture toughness of the gold film and the width of the conductor. The model provides guidance for the design of highly stretchable conductors. PMID:22773917

  11. 77 FR 55773 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ...) inspections for cracking of the left and right rib hinge bearing lugs of the aft face of the center section of... bearing lugs of the aft face of the center section of the horizontal stabilizer; measuring crack length...). Recognition That Reporting of Findings Is Not Required American Airlines stated it recognizes that reporting...

  12. Slow crack growth: Models and experiments

    NASA Astrophysics Data System (ADS)

    Santucci, S.; Vanel, L.; Ciliberto, S.

    2007-07-01

    The properties of slow crack growth in brittle materials are analyzed both theoretically and experimentally. We propose a model based on a thermally activated rupture process. Considering a 2D spring network submitted to an external load and to thermal noise, we show that a preexisting crack in the network may slowly grow because of stress fluctuations. An analytical solution is found for the evolution of the crack length as a function of time, the time to rupture and the statistics of the crack jumps. These theoretical predictions are verified by studying experimentally the subcritical growth of a single crack in thin sheets of paper. A good agreement between the theoretical predictions and the experimental results is found. In particular, our model suggests that the statistical stress fluctuations trigger rupture events at a nanometric scale corresponding to the diameter of cellulose microfibrils.

  13. Contraction star-shaped cracks: From 90 degrees to 120 degrees crack intersections

    NASA Astrophysics Data System (ADS)

    Lazarus, Veronique; Gauthier, Georges

    2010-05-01

    Giant's Causeway, Port Arthur tessellated pavement, Bimini Road, Mars polygons, fracture networks in permafrost, septarias are some more or less known examples of self-organized crack patterns that have intrigued people through out history. These pavements are formed by constrained shrinking of the media due, for instance, to cooling or drying leading to fracture. The crack networks form in some conditions star-shaped cracks with mostly 90 or 120 degrees angles. Here, we report experiments allowing to control the transition between 90 and 120 degrees. We show that the transition is governed by the linear elastic fracture mechanics energy minimization principle, hence by two parameters: the cell size and the Griffith's length (balance between the energy needed to create cracks and to deform the material elastically). The results are used to infer new informations on tessellated pavements formation.

  14. Thermal-mechanical fatigue crack growth in Inconel X-750

    NASA Technical Reports Server (NTRS)

    Marchand, N.; Pelloux, R. M.

    1984-01-01

    Thermal-mechanical fatigue crack growth (TMFCG) was studied in a gamma-gamma' nickel base superalloy Inconel X-750 under controlled load amplitude in the temperature range from 300 to 650 C. In-phase (T sub max at sigma sub max), out-of-phase (T sub min at sigma sub max), and isothermal tests at 650 C were performed on single-edge notch bars under fully reversed cyclic conditions. A dc electrical potential method was used to measure crack length. The electrical potential response obtained for each cycle of a given wave form and R value yields information on crack closure and crack extension per cycle. The macroscopic crack growth rates are reported as a function of delta k and the relative magnitude of the TMFCG are discussed in the light of the potential drop information and of the fractographic observations.

  15. Failure analysis of fuel cell electrodes using three-dimensional multi-length scale X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Pokhrel, A.; El Hannach, M.; Orfino, F. P.; Dutta, M.; Kjeang, E.

    2016-10-01

    X-ray computed tomography (XCT), a non-destructive technique, is proposed for three-dimensional, multi-length scale characterization of complex failure modes in fuel cell electrodes. Comparative tomography data sets are acquired for a conditioned beginning of life (BOL) and a degraded end of life (EOL) membrane electrode assembly subjected to cathode degradation by voltage cycling. Micro length scale analysis shows a five-fold increase in crack size and 57% thickness reduction in the EOL cathode catalyst layer, indicating widespread action of carbon corrosion. Complementary nano length scale analysis shows a significant reduction in porosity, increased pore size, and dramatically reduced effective diffusivity within the remaining porous structure of the catalyst layer at EOL. Collapsing of the structure is evident from the combination of thinning and reduced porosity, as uniquely determined by the multi-length scale approach. Additionally, a novel image processing based technique developed for nano scale segregation of pore, ionomer, and Pt/C dominated voxels shows an increase in ionomer volume fraction, Pt/C agglomerates, and severe carbon corrosion at the catalyst layer/membrane interface at EOL. In summary, XCT based multi-length scale analysis enables detailed information needed for comprehensive understanding of the complex failure modes observed in fuel cell electrodes.

  16. Adsorption Thermodynamics and Intrinsic Activation Parameters for Monomolecular Cracking of n -Alkanes on Brønsted Acid Sites in Zeolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janda, Amber; Vlaisavljevich, Bess; Lin, Li-Chiang

    Experimental measurements of the rate coefficient (kapp) and apparent enthalpies and entropies of activation (ΔHapp and ΔSapp) for alkane cracking catalyzed by acidic zeolites can be used to characterize the effects of zeolite structure and alkane size on the intrinsic enthalpy and entropy of activation, ΔHint‡ and ΔSint‡. To determine ΔHint‡ and ΔSint‡, enthalpies and entropies of adsorption, ΔHads-H+ and ΔSads-H+, must be determined for alkane molecules moving from the gas phase to Brønsted acid sites at reaction temperatures (>673 K). Experimental values of ΔHapp and ΔSapp must also be properly defined in terms of ΔHads-H+ and ΔSads-H+. We reportmore » here a method for determining ΔHads-H+ and ΔSads-H+ in which the adsorption site is represented by a fixed volume that includes the proton. Values of ΔHads-H+ and ΔSads-H+ obtained from Monte Carlo simulations are in good agreement with values obtained from experimental data measured at 300–400 K. An important feature of the simulations, however, is their ability to account for the redistribution of alkane adsorbed at protons in different locations with increasing temperature. Values of ΔHint‡ and ΔSint‡ for the cracking of propane through n-hexane, determined from measured values of kapp and ΔHapp and simulated values of ΔHads-H+ and ΔSads-H+, agree well with values obtained independently from quantum mechanics/molecular mechanics calculations. Application of our method of analysis reveals that the observed increase in kapp with increasing n-alkane size is due primarily to a decrease in ΔHint‡ with increasing chain length and that ΔSint‡ is independent of chain length.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, P

    Finite element method was used to analyze the three-point bend experimental data of A533B-1 pressure vessel steel obtained by Sherry, Lidbury, and Beardsmore [1] from -160 to -45 C within the ductile-brittle transition regime. As many researchers have shown, the failure stress ({sigma}{sub f}) of the material could be approximated as a constant. The characteristic length, or the critical distance (r{sub c}) from the crack tip, at which {sigma}{sub f} is reached, is shown to be temperature dependent based on the crack tip stress field calculated by the finite element method. With the J-A{sub 2} two-parameter constraint theory in fracturemore » mechanics, the fracture toughness (J{sub C} or K{sub JC}) can be expressed as a function of the constraint level (A{sub 2}) and the critical distance r{sub c}. This relationship is used to predict the fracture toughness of A533B-1 in the ductile-brittle transition regime with a constant {sigma}{sub f} and a set of temperature-dependent r{sub c}. It can be shown that the prediction agrees well with the test data for wide range of constraint levels from shallow cracks (a/W= 0.075) to deep cracks (a/W= 0.5), where a is the crack length and W is the specimen width.« less

  18. Application of chaotic attractor analysis in crack assessment of plates

    NASA Astrophysics Data System (ADS)

    Jalili, Sina; Daneshmehr, A. R.

    2018-03-01

    Part-through crack presence with limited length is one of the prevalent defects in plate structures. However, this type of damage has only a slight effect on the dynamic response of the structures. In this paper the modified line spring method (MLSM) is used to develop a nonlinear multi-degree of freedom model of part through cracked rectangular plate and chaotic interrogation is implemented to assess crack-induced degradation in the nonlinear model. After a convergence study of the proposed model in time series domain in which the plate subjected to Lorenz-type chaotic excitation, the tuning of interrogation is conducted by crossing the Lyapunov exponents' spectrums of the nonlinear model of the plate and chaotic signal. In this research nonlinear prediction error (NPE) is proposed as a damage sensitive feature which deals with the chaotic attractor of the excited system response. It is found that there are ranges of tuning parameter that result in higher damage sensitivity of the NPE. Damage characteristics such as: length, angle, location and depth of crack are considered as parameters to be varied to scrutinize the response of the plates. Results show that NPE generally has significantly higher sensitivity in comparison with conventional frequency-based methods; however this property has different levels for various boundary conditions.

  19. Applicability of a Crack-Detection System for Use in Rotor Disk Spin Test Experiments Being Evaluated

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.; Roth, Don J.

    2004-01-01

    Engine makers and aviation safety government institutions continue to have a strong interest in monitoring the health of rotating components in aircraft engines to improve safety and to lower maintenance costs. To prevent catastrophic failure (burst) of the engine, they use nondestructive evaluation (NDE) and major overhauls for periodic inspections to discover any cracks that might have formed. The lowest cost fluorescent penetrant inspection NDE technique can fail to disclose cracks that are tightly closed during rest or that are below the surface. The NDE eddy current system is more effective at detecting both crack types, but it requires careful setup and operation and only a small portion of the disk can be practically inspected. So that sensor systems can sustain normal function in a severe environment, health-monitoring systems require the sensor system to transmit a signal if a crack detected in the component is above a predetermined length (but below the length that would lead to failure) and lastly to act neutrally upon the overall performance of the engine system and not interfere with engine maintenance operations. Therefore, more reliable diagnostic tools and high-level techniques for detecting damage and monitoring the health of rotating components are very essential in maintaining engine safety and reliability and in assessing life.

  20. Gunshot energy transfer profile in ballistic gelatine, determined with computed tomography using the total crack length method.

    PubMed

    Bolliger, Stephan A; Thali, Michael J; Bolliger, Michael J; Kneubuehl, Beat P

    2010-11-01

    By measuring the total crack lengths (TCL) along a gunshot wound channel simulated in ordnance gelatine, one can calculate the energy transferred by a projectile to the surrounding tissue along its course. Visual quantitative TCL analysis of cut slices in ordnance gelatine blocks is unreliable due to the poor visibility of cracks and the likely introduction of secondary cracks resulting from slicing. Furthermore, gelatine TCL patterns are difficult to preserve because of the deterioration of the internal structures of gelatine with age and the tendency of gelatine to decompose. By contrast, using computed tomography (CT) software for TCL analysis in gelatine, cracks on 1-cm thick slices can be easily detected, measured and preserved. In this, experiment CT TCL analyses were applied to gunshots fired into gelatine blocks by three different ammunition types (9-mm Luger full metal jacket, .44 Remington Magnum semi-jacketed hollow point and 7.62 × 51 RWS Cone-Point). The resulting TCL curves reflected the three projectiles' capacity to transfer energy to the surrounding tissue very accurately and showed clearly the typical energy transfer differences. We believe that CT is a useful tool in evaluating gunshot wound profiles using the TCL method and is indeed superior to conventional methods applying physical slicing of the gelatine.

  1. Investigation on Characteristic Variation of the FBG Spectrum with Crack Propagation in Aluminum Plate Structures

    PubMed Central

    Jin, Bo; Zhang, Weifang; Zhang, Meng; Ren, Feifei; Dai, Wei; Wang, Yanrong

    2017-01-01

    In order to monitor the crack tip propagation of aluminum alloy, this study investigates the variation of the spectrum characteristics of a fiber Bragg grating (FBG), combined with an analysis of the spectrum simulation. The results identify the location of the subordinate peak as significantly associated with the strain distribution along the grating, corresponding to the different plastic zones ahead of the crack tip with various crack lengths. FBG sensors could observe monotonic and cyclic plastic zones ahead of the crack tip, with the quadratic strain distribution along the grating at the crack tip-FBG distance of 1.2 and 0.7 mm, respectively. FBG sensors could examine the process zones ahead of the crack tip with the cubic strain distribution along the grating at the crack tip-FBG distance of 0.5 mm. The spectrum oscillation occurs as the crack approaches the FBG where the highly heterogeneous strain is distributed. Another idea is to use a finite element method (FEM), together with a T-matrix method, to analyze the reflection intensity spectra of FBG sensors for various crack sizes. The described crack propagation detection system may apply in structural health monitoring. PMID:28772949

  2. Investigation on Characteristic Variation of the FBG Spectrum with Crack Propagation in Aluminum Plate Structures.

    PubMed

    Jin, Bo; Zhang, Weifang; Zhang, Meng; Ren, Feifei; Dai, Wei; Wang, Yanrong

    2017-05-27

    In order to monitor the crack tip propagation of aluminum alloy, this study investigates the variation of the spectrum characteristics of a fiber Bragg grating (FBG), combined with an analysis of the spectrum simulation. The results identify the location of the subordinate peak as significantly associated with the strain distribution along the grating, corresponding to the different plastic zones ahead of the crack tip with various crack lengths. FBG sensors could observe monotonic and cyclic plastic zones ahead of the crack tip, with the quadratic strain distribution along the grating at the crack tip-FBG distance of 1.2 and 0.7 mm, respectively. FBG sensors could examine the process zones ahead of the crack tip with the cubic strain distribution along the grating at the crack tip-FBG distance of 0.5 mm. The spectrum oscillation occurs as the crack approaches the FBG where the highly heterogeneous strain is distributed. Another idea is to use a finite element method (FEM), together with a T -matrix method, to analyze the reflection intensity spectra of FBG sensors for various crack sizes. The described crack propagation detection system may apply in structural health monitoring.

  3. Scaled boundary finite element simulation and modeling of the mechanical behavior of cracked nanographene sheets

    NASA Astrophysics Data System (ADS)

    Honarmand, M.; Moradi, M.

    2018-06-01

    In this paper, by using scaled boundary finite element method (SBFM), a perfect nanographene sheet or cracked ones were simulated for the first time. In this analysis, the atomic carbon bonds were modeled by simple bar elements with circular cross-sections. Despite of molecular dynamics (MD), the results obtained from SBFM analysis are quite acceptable for zero degree cracks. For all angles except zero, Griffith criterion can be applied for the relation between critical stress and crack length. Finally, despite the simplifications used in nanographene analysis, obtained results can simulate the mechanical behavior with high accuracy compared with experimental and MD ones.

  4. Changes in crack shape and saturation during water penetration into stressed rock

    NASA Astrophysics Data System (ADS)

    Masuda, K.; Nishizawa, O.

    2012-12-01

    Open cracks and cavities in rocks play important roles in fluid transport. Water penetration induced microcrack activities and caused the failure of rocks. Fluids in cracks affect earthquake generation mechanism through physical and physicochemical effects. Methods of characterizing crack shape and water saturation of rocks underground are needed for many scientific and industrial applications. It would be desirable to estimate the status of cracks using readily observable data such as elastic-wave velocities. We demonstrate a laboratory method for estimating crack status inside a cylindrical rock sample based on least-squares fitting of a cracked solid model to measured P- and S-wave velocities, and porosity derived from strain data. We used a cylinder (50 mm in diameter and 100 mm in length) of medium-grained granite. We applied a differential stress of 370 MPa, which corresponds to about 70% of fracture strength, to the rock sample under 30 MPa confining pressure and held it constant throughout the experiment. When the primary creep stage and acoustic emission (AE) caused by the initial loading had ceased, we injected distilled water into the bottom end of the sample at a constant pressure of 25 MPa until macroscopic fracture occurred. During water migration, we measured P waves and S waves (Sv and Sh), in five directions parallel to the top and bottom surfaces of the sample. We also measured strains of the sample surface and monitored AE. We created X-ray computer tomography (CT) images of the rock sample after the experiment in order to recognize the location and shape of fractured surfaces. We observed the different patterns of velocity changes in the upper and lower portions of the rock sample. Changes in P-wave velocities can be interpreted based on the crack density. S-waves showed the splitting with Vsv being faster than Vsh, corresponding to the second kind of anisotropy. We estimated two crack characteristics, crack shape and the degree of water saturation, and their changes during the loading and water migration into a granitic rock subjected to confining pressure and differential stress. We found that during injection of water to induce failure of a stressed rock sample, the aspect ratio of cracks increased and the degree of water saturation increased to about 70%. Laboratory derived method can be applicable for the well-planned observation in the field experiments. Monitoring in situ crack situations with seismic waves are useful for industrial and scientific applications such as sequestrations of carbon dioxide and waste, and measuring the regional stress field.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, T.; Shimizu, S.; Ogata, Y.

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan bymore » means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.« less

  6. Multiscale structure and damage tolerance of coconut shells.

    PubMed

    Gludovatz, B; Walsh, F; Zimmermann, E A; Naleway, S E; Ritchie, R O; Kruzic, J J

    2017-12-01

    We investigated the endocarp of the fruit of Cocos nucifera (i.e., the inner coconut shell), examining the structure across multiple length scales through advanced characterization techniques and in situ testing of mechanical properties. Like many biological materials, the coconut shell possesses a hierarchical structure with distinct features at different length scales that depend on orientation and age. Aged coconut was found to have a significantly stronger (ultimate tensile strength, UTS = 48.5MPa), stiffer (Young's modulus, E = 1.92GPa), and tougher (fracture resistance (R-curve) peak of K J = 3.2MPa m 1/2 ) endocarp than the younger fruit for loading in the latitudinal orientation. While the mechanical properties of coconut shell were observed to improve with age, they also become more anisotropic: the young coconut shell had the same strength (17MPa) and modulus (0.64GPa) values and similar R-curves for both longitudinal and latitudinal loading configurations, whereas the old coconut had 82% higher strength for loading in the latitudinal orientation, and >50% higher crack growth toughness for cracking on the latitudinal plane. Structural aspects affecting the mechanical properties across multiple length scales with aging were identified as improved load transfer to the cellulose crystalline nanostructure (identified by synchrotron x-ray diffraction) and sclerification of the endocarp, the latter of which included closing of the cell lumens and lignification of the cell walls. The structural changes gave a denser and mechanically superior micro and nanostructure to the old coconut shell. Additionally, the development of anisotropy was attributed to the formation of an anisotropic open channel structure throughout the shell of the old coconut that affected both crack initiation during uniaxial tensile tests and the toughening mechanisms of crack trapping and deflection during crack propagation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Dynamic Characteristics of Green Sandstone Subjected to Repetitive Impact Loading: Phenomena and Mechanisms

    NASA Astrophysics Data System (ADS)

    Li, S. H.; Zhu, W. C.; Niu, L. L.; Yu, M.; Chen, C. F.

    2018-06-01

    A split Hopkinson pressure bar apparatus driven by a pendulum hammer was used to perform uniaxial compression tests to examine the degradation process of green sandstone subjected to repetitive impact loading. The acoustic characteristics, dissipated energy, deformation characteristics, and microstructure evolution were investigated. The representative stress-strain curve can be broken into five stages that were characterized by changes in the axial strain response during impact loading. Both the ultrasonic wave velocity and cumulative dissipated energy exhibited obvious three-stage behavior with respect to the impact number. As the impact number increased, more than one peak was observed in the frequency spectra, and the relative weight of the peak frequency increased in the low-frequency range. According to the evolution of the ultrasonic wave velocity, the degradation process was divided into three stages. By comparing the intact stage I and early stage II microcrack development patterns, the initiation of new cracks and elongation of existing cracks were identified as the main degradation mechanisms. Furthermore, a slight increase in the number of cracks was observed, and microcrack lengths steadily increased. Moreover, due to the low level of microcrack damage, the deformation mechanism was mainly characterized by volume compression during impact loading. In late stage II, the main degradation mechanism was the elongation of existing cracks. Additionally, as microcracks accumulated in the rock samples, cracks were arranged parallel to the loading direction, which led to volume dilation. In stage III, microcracks continued to elongate nearly parallel to the loading direction and then linked to each other, which led to intense degradation in the rock samples. In this stage, rock sample deformation was mainly characterized by volume dilation during impact loading. Finally, rock samples were split into blocks with fractures oriented subparallel to the loading direction. These results can improve the understanding of the stability evaluations of rock structures subjected to repetitive impact loading.

  8. Crack turning in integrally stiffened aircraft structures

    NASA Astrophysics Data System (ADS)

    Pettit, Richard Glen

    Current emphasis in the aircraft industry toward reducing manufacturing cost has created a renewed interest in integrally stiffened structures. Crack turning has been identified as an approach to improve the damage tolerance and fail-safety of this class of structures. A desired behavior is for skin cracks to turn before reaching a stiffener, instead of growing straight through. A crack in a pressurized fuselage encounters high T-stress as it nears the stiffener---a condition favorable to crack turning. Also, the tear resistance of aluminum alloys typically varies with crack orientation, a form of anisotropy that can influence the crack path. The present work addresses these issues with a study of crack turning in two-dimensions, including the effects of both T-stress and fracture anisotropy. Both effects are shown to have relation to the process zone size, an interaction that is central to this study. Following an introduction to the problem, the T-stress effect is studied for a slightly curved semi-infinite crack with a cohesive process zone, yielding a closed form expression for the future crack path in an infinite medium. For a given initial crack tip curvature and tensile T-stress, the crack path instability is found to increase with process zone size. Fracture orthotropy is treated using a simple function to interpolate between the two principal fracture resistance values in two-dimensions. An extension to three-dimensions interpolates between the six principal values of fracture resistance. Also discussed is the transition between mode I and mode II fracture in metals. For isotropic materials, there is evidence that the crack seeks out a direction of either local symmetry (pure mode I) or local asymmetry (pure mode II) growth. For orthotropic materials the favored states are not pure modal, and have mode mixity that is a function of crack orientation. Drawing upon these principles, two crack turning prediction approaches are extended to include fracture resistance orthotropy---a second-order linear elastic method with a characteristic length parameter to incorporate T-stress/process-zone effects, and an elastic-plastic method that uses the Crack Tip Opening Displacement (CTOD) to determine the failure response. Together with a novel method for obtaining enhanced accuracy T-stress calculations, these methods are incorporated into an adaptive-mesh, finite-element fracture simulation code. A total of 43 fracture tests using symmetrically and asymmetrically loaded double cantilever beam specimens were run to develop crack turning parameters and compare predicted and observed crack paths.

  9. Oxidation of UC: An in situ high temperature environmental scanning electron microscopy study

    NASA Astrophysics Data System (ADS)

    Gasparrini, Claudia; Podor, Renaud; Horlait, Denis; Rushton, Michael J. D.; Fiquet, Olivier; Lee, William Edward

    2017-10-01

    In situ HT-ESEM oxidation of sintered UC fragments revealed the morphological changes occurring during the transformation between UC to UO2 and UO2 to U3O8 at 723-848 K and in an atmosphere of 10-100 Pa O2. Two main oxidation pathways were revealed. Oxidation at 723 K in atmospheres ≤25 Pa O2 showed the transformation from UC to UO2+x, as confirmed by post mortem HRTEM analysis. This oxidation pathway was comprised of three steps: (i) an induction period, where only surface UC particles oxidised, (ii) a sample area expansion accompanied by crack formation and propagation, (iii) a stabilisation of the total crack length inferring that crack propagation had stopped. Samples oxidised under 50 Pa O2 at 723 K and at 773-848 K for 10-100 Pa O2 showed an "explosive" oxidation pathway: (i) sample area expansion occurred as soon as oxygen was inserted into the chamber and crack propagation and crack length followed an exponential law; (ii) cracks propagated as a network and the oxide layer fragmented, (iii) an "explosion" occurred causing a popcorn-like transformation, typical for oxidation from UO2 to U3O8. HRTEM characterisation revealed U3O8 preferentially grow in the [001] direction. The explosive growth, triggered by ignition of UC, proceeded as a self-propagating high-temperature synthesis reaction, with a propagation speed of 150-500 ± 50 μm/s.

  10. Healing of damaged metal by a pulsed high-energy electromagnetic field

    NASA Astrophysics Data System (ADS)

    Kukudzhanov, K. V.; Levitin, A. L.

    2018-04-01

    The processes of defect (intergranular micro-cracks) transformation are investigated for metal samples in a high-energy short-pulsed electromagnetic field. This investigation is based on a numerical coupled model of the impact of high-energy electromagnetic field on the pre-damaged thermal elastic-plastic material with defects. The model takes into account the melting and evaporation of the metal and the dependence of its physical and mechanical properties on the temperature. The system of equations is solved numerically by finite element method with an adaptive mesh using the arbitrary Euler–Lagrange method. The calculations show that the welding of the crack and the healing of micro-defects under treatment by short pulses of the current takes place. For the macroscopic description of the healing process, the healing and damage parameters of the material are introduced. The healing of micro-cracks improves the material healing parameter and reduces its damage. The micro-crack shapes practically do not affect the time-dependence of the healing and damage under the treatment by the current pulses. These changes are affected only by the value of the initial damage of the material and the initial length of the micro-crack. The time-dependence of the healing and the damage is practically the same for all different shapes of micro-defects, provided that the initial lengths of micro-cracks and the initial damages are the same for these different shapes of defects.

  11. Development of flaw acceptance criteria for aging management of spent nuclear fuel multiple-purpose canisters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, P.; Sindelar, R.

    2015-03-09

    A typical multipurpose canister (MPC) is made of austenitic stainless steel and is loaded with spent nuclear fuel assemblies. The canister may be subject to service-induced degradation when it is exposed to aggressive atmospheric environments during a possibly long-term storage period if the permanent repository is yet to be identified and readied. Because heat treatment for stress relief is not required for the construction of an MPC, stress corrosion cracking may be initiated on the canister surface in the welds or in the heat affected zone. An acceptance criteria methodology is being developed for flaw disposition should the crack-like defectsmore » be detected by periodic In-service Inspection. The first-order instability flaw sizes has been determined with bounding flaw configurations, that is, through-wall axial or circumferential cracks, and part-through-wall long axial flaw or 360° circumferential crack. The procedure recommended by the American Petroleum Institute (API) 579 Fitness-for-Service code (Second Edition) is used to estimate the instability crack length or depth by implementing the failure assessment diagram (FAD) methodology. The welding residual stresses are mostly unknown and are therefore estimated with the API 579 procedure. It is demonstrated in this paper that the residual stress has significant impact on the instability length or depth of the crack. The findings will limit the applicability of the flaw tolerance obtained from limit load approach where residual stress is ignored and only ligament yielding is considered.« less

  12. Development of flaw acceptance criteria for aging management of spent nuclear fuel multi-purpose canisters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, Poh -Sang; Sindelar, Robert L.

    2015-03-09

    A typical multipurpose canister (MPC) is made of austenitic stainless steel and is loaded with spent nuclear fuel assemblies. The canister may be subject to service-induced degradation when it is exposed to aggressive atmospheric environments during a possibly long-term storage period if the permanent repository is yet to be identified and readied. Because heat treatment for stress relief is not required for the construction of an MPC, stress corrosion cracking may be initiated on the canister surface in the welds or in the heat affected zone. An acceptance criteria methodology is being developed for flaw disposition should the crack-like defectsmore » be detected by periodic in-service Inspection. The first-order instability flaw sizes has been determined with bounding flaw configurations, that is, through-wall axial or circumferential cracks, and part-through-wall long axial flaw or 360° circumferential crack. The procedure recommended by the American Petroleum Institute (API) 579 Fitness-for-Service code (Second Edition) is used to estimate the instability crack length or depth by implementing the failure assessment diagram (FAD) methodology. The welding residual stresses are mostly unknown and are therefore estimated with the API 579 procedure. It is demonstrated in this paper that the residual stress has significant impact on the instability length or depth of the crack. The findings will limit the applicability of the flaw tolerance obtained from limit load approach where residual stress is ignored and only ligament yielding is considered.« less

  13. Second harmonic generation at fatigue cracks by low-frequency Lamb waves: Experimental and numerical studies

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Ng, Ching-Tai; Kotousov, Andrei; Sohn, Hoon; Lim, Hyung Jin

    2018-01-01

    This paper presents experimental and theoretical analyses of the second harmonic generation due to non-linear interaction of Lamb waves with a fatigue crack. Three-dimensional (3D) finite element (FE) simulations and experimental studies are carried out to provide physical insight into the mechanism of second harmonic generation. The results demonstrate that the 3D FE simulations can provide a reasonable prediction on the second harmonic generated due to the contact nonlinearity at the fatigue crack. The effect of the wave modes on the second harmonic generation is also investigated in detail. It is found that the magnitude of the second harmonic induced by the interaction of the fundamental symmetric mode (S0) of Lamb wave with the fatigue crack is much higher than that by the fundamental anti-symmetric mode (A0) of Lamb wave. In addition, a series of parametric studies using 3D FE simulations are conducted to investigate the effect of the fatigue crack length to incident wave wavelength ratio, and the influence of the excitation frequency on the second harmonic generation. The outcomes show that the magnitude and directivity pattern of the generated second harmonic depend on the fatigue crack length to incident wave wavelength ratio as well as the ratio of S0 to A0 incident Lamb wave amplitude. In summary, the findings of this study can further advance the use of second harmonic generation in damage detection.

  14. Sub-surface mechanical damage distributions during grinding of fused silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suratwala, T I; Wong, L L; Miller, P E

    2005-11-28

    The distribution and characteristics of surface cracking (i.e. sub-surface damage or SSD) formed during standard grinding processes has been investigated on fused silica glass. The SSD distributions of the ground surfaces were determined by: (1) creating a shallow (18-108 {micro}m) wedge/taper on the surface by magneto-rheological finishing; (2) exposing the SSD by HF acid etching; and (3) performing image analysis of the observed cracks from optical micrographs taken along the surface taper. The observed surface cracks are characterized as near-surface lateral and deeper trailing indent type fractures (i.e., chatter marks). The SSD depth distributions are typically described by a singlemore » exponential distribution followed by an asymptotic cutoff in depth (c{sub max}). The length of the trailing indent is strongly correlated with a given process. Using established fracture indentation relationships, it is shown that only a small fraction of the abrasive particles are being mechanically loaded and causing fracture, and it is likely the larger particles in the abrasive particle size distribution that bear the higher loads. The SSD depth was observed to increase with load and with a small amount of larger contaminant particles. Using a simple brittle fracture model for grinding, the SSD depth distribution has been related to the SSD length distribution to gain insight into ''effective'' size distribution of particles participating in the fracture. Both the average crack length and the surface roughness were found to scale linearly with the maximum SSD depth (c{sub max}). These relationships can serve as useful rules-of-thumb for nondestructively estimating SSD depth and to identify the process that caused the SSD. In certain applications such as high intensity lasers, SSD on the glass optics can serve as a reservoir for minute amounts of impurities that absorb the high intensity laser light and lead to subsequent laser-induced surface damage. Hence a more scientific understanding of SSD formation can provide a means to establish recipes to fabricate SSD-free, laser damage resistant optical surfaces.« less

  15. Rock fracture processes in chemically reactive environments

    NASA Astrophysics Data System (ADS)

    Eichhubl, P.

    2015-12-01

    Rock fracture is traditionally viewed as a brittle process involving damage nucleation and growth in a zone ahead of a larger fracture, resulting in fracture propagation once a threshold loading stress is exceeded. It is now increasingly recognized that coupled chemical-mechanical processes influence fracture growth in wide range of subsurface conditions that include igneous, metamorphic, and geothermal systems, and diagenetically reactive sedimentary systems with possible applications to hydrocarbon extraction and CO2 sequestration. Fracture processes aided or driven by chemical change can affect the onset of fracture, fracture shape and branching characteristics, and fracture network geometry, thus influencing mechanical strength and flow properties of rock systems. We are investigating two fundamental modes of chemical-mechanical interactions associated with fracture growth: 1. Fracture propagation may be aided by chemical dissolution or hydration reactions at the fracture tip allowing fracture propagation under subcritical stress loading conditions. We are evaluating effects of environmental conditions on critical (fracture toughness KIc) and subcritical (subcritical index) fracture properties using double torsion fracture mechanics tests on shale and sandstone. Depending on rock composition, the presence of reactive aqueous fluids can increase or decrease KIc and/or subcritical index. 2. Fracture may be concurrent with distributed dissolution-precipitation reactions in the hostrock beyond the immediate vicinity of the fracture tip. Reconstructing the fracture opening history recorded in crack-seal fracture cement of deeply buried sandstone we find that fracture length growth and fracture opening can be decoupled, with a phase of initial length growth followed by a phase of dominant fracture opening. This suggests that mechanical crack-tip failure processes, possibly aided by chemical crack-tip weakening, and distributed solution-precipitation creep in the hostrock can independently affect fracture opening displacement and thus fracture aperture profiles and aperture distribution.

  16. Multiscale Modeling of Damage Processes in Aluminum Alloys: Grain-Scale Mechanisms

    NASA Technical Reports Server (NTRS)

    Hochhalter, J. D.; Veilleux, M. G.; Bozek, J. E.; Glaessgen, E. H.; Ingraffea, A. R.

    2008-01-01

    This paper has two goals related to the development of a physically-grounded methodology for modeling the initial stages of fatigue crack growth in an aluminum alloy. The aluminum alloy, AA 7075-T651, is susceptible to fatigue cracking that nucleates from cracked second phase iron-bearing particles. Thus, the first goal of the paper is to validate an existing framework for the prediction of the conditions under which the particles crack. The observed statistics of particle cracking (defined as incubation for this alloy) must be accurately predicted to simulate the stochastic nature of microstructurally small fatigue crack (MSFC) formation. Also, only by simulating incubation of damage in a statistically accurate manner can subsequent stages of crack growth be accurately predicted. To maintain fidelity and computational efficiency, a filtering procedure was developed to eliminate particles that were unlikely to crack. The particle filter considers the distributions of particle sizes and shapes, grain texture, and the configuration of the surrounding grains. This filter helps substantially reduce the number of particles that need to be included in the microstructural models and forms the basis of the future work on the subsequent stages of MSFC, crack nucleation and microstructurally small crack propagation. A physics-based approach to simulating fracture should ultimately begin at nanometer length scale, in which atomistic simulation is used to predict the fundamental damage mechanisms of MSFC. These mechanisms include dislocation formation and interaction, interstitial void formation, and atomic diffusion. However, atomistic simulations quickly become computationally intractable as the system size increases, especially when directly linking to the already large microstructural models. Therefore, the second goal of this paper is to propose a method that will incorporate atomistic simulation and small-scale experimental characterization into the existing multiscale framework. At the microscale, the nanoscale mechanics are represented within cohesive zones where appropriate, i.e. where the mechanics observed at the nanoscale can be represented as occurring on a plane such as at grain boundaries or slip planes at a crack front. Important advancements that are yet to be made include: 1. an increased fidelity in cohesive zone modeling; 2. a means to understand how atomistic simulation scales with time; 3. a new experimental methodology for generating empirical models for CZMs and emerging materials; and 4. a validation of simulations of the damage processes at the nano-micro scale. With ever-increasing computer power, the long-term ability to employ atomistic simulation for the prognosis of structural components will not be limited by computation power, but by our lack of knowledge in incorporating atomistic models into simulations of MSFC into a multiscale framework.

  17. Short-crack growth behaviour in an aluminum alloy: An AGARD cooperative test program

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Edwards, P. R.

    1988-01-01

    An AGARD Cooperative Test Program on the growth of short fatigue cracks was conducted to define the significance of the short-crack effect, to compare test results from various laboratories, and to evaluate an existing analytical crack-growth prediction model. The initiation and growth of short fatigue cracks (5 micrometer to 2 mm) from the surface of a semi-circular notch in 2024-T3 aluminum alloy sheet material were monitored under various load histories. The cracks initiated from inclusion particle clusters or voids on the notch surface and generally grew as surface cracks. Tests were conducted under several constant-amplitude (stress ratios of -2, -1, 0, and 0.5) and spectrum (FALSTAFF and Gaussian) loading conditions at 3 stress levels each. Short crack growth was recorded using a plastic-replica technique. Over 250 edge-notched specimens were fatigue tested and nearly 950 cracks monitored by 12 participants from 9 countries. Long crack-growth rate data for cracks greater than 2 mm in length were obtained over a wide range in rates (10 to the -8 to 10 to the -1 mm/cycle) for all constant-amplitude loading conditions. Long crack-growth rate data for the FALSTAFF and Gaussian load sequences were also obtained.

  18. Testing of Military Towbars

    DTIC Science & Technology

    2016-09-28

    pin diameters, lunette diameter, clevis end details, cross section, and overall tube length and straightness. b. Weld failures, voids, cracks...etc., should be considered failures if they are identified visually or using a nondestructive weld inspection test method, per the applicable American... Welding Society standard for the specific material being inspected. c. Broken or cracked components, or catastrophic damage should be considered

  19. 7 CFR 51.613 - Serious damage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... aggregating more than one square inch on the midrib portion of the branch or branches. (c) Growth cracks, when the stalk has more than two branches affected by growth cracks any of which are more than one-half... fifteen hair-like lines of any length on one or more heart branches, or when there are more than one and...

  20. 7 CFR 51.613 - Serious damage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... aggregating more than one square inch on the midrib portion of the branch or branches. (c) Growth cracks, when the stalk has more than two branches affected by growth cracks any of which are more than one-half... fifteen hair-like lines of any length on one or more heart branches, or when there are more than one and...

  1. 7 CFR 51.609 - Damage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... one-half of a square inch on the midrib portion of the branch or branches. (c) Growth cracks, when the stalk has more than one branch affected by growth cracks any of which are more than one-half inch long... are more than five hair-like lines of any length on one or more heart branches, or when there is more...

  2. 7 CFR 51.609 - Damage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... one-half of a square inch on the midrib portion of the branch or branches. (c) Growth cracks, when the stalk has more than one branch affected by growth cracks any of which are more than one-half inch long... are more than five hair-like lines of any length on one or more heart branches, or when there is more...

  3. 75 FR 43803 - Airworthiness Directives; The Boeing Company Model 737-100, -200, -200C, -300, -400, and -500...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... resulted from stress corrosion and pitting along the length of the spindle and spindle diameter, and... requirements would ensure that stress and pitting corrosion are detected and corrected, which would avoid... caused by fatigue. Because of the difficulty in detecting small cracks and the rapid crack growth in...

  4. A method for evaluating the fatigue crack growth in spiral notch torsion fracture toughness test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy -An John; Tan, Ting

    The spiral notch torsion test (SNTT) has been a recent breakthrough in measuring fracture toughness for different materials, including metals, ceramics, concrete, and polymers composites. Due to its high geometry constraint and unique loading condition, SNTT can be used to measure the fracture toughness with smaller specimens without concern of size effects. The application of SNTT to brittle materials has been proved to be successful. The micro-cracks induced by original notches in brittle materials could ensure crack growth in SNTT samples. Therefore, no fatigue pre-cracks are needed. The application of SNTT to the ductile material to generate valid toughness datamore » will require a test sample with sufficient crack length. Fatigue pre-crack growth techniques are employed to introduce sharp crack front into the sample. Previously, only rough calculations were applied to estimate the compliance evolution in the SNTT crack growth process, while accurate quantitative descriptions have never been attempted. This generates an urgent need to understand the crack evolution during the SNTT fracture testing process of ductile materials. Here, the newly developed governing equations for SNTT crack growth estimate are discussed in the paper.« less

  5. A method for evaluating the fatigue crack growth in spiral notch torsion fracture toughness test

    DOE PAGES

    Wang, Jy -An John; Tan, Ting

    2018-05-21

    The spiral notch torsion test (SNTT) has been a recent breakthrough in measuring fracture toughness for different materials, including metals, ceramics, concrete, and polymers composites. Due to its high geometry constraint and unique loading condition, SNTT can be used to measure the fracture toughness with smaller specimens without concern of size effects. The application of SNTT to brittle materials has been proved to be successful. The micro-cracks induced by original notches in brittle materials could ensure crack growth in SNTT samples. Therefore, no fatigue pre-cracks are needed. The application of SNTT to the ductile material to generate valid toughness datamore » will require a test sample with sufficient crack length. Fatigue pre-crack growth techniques are employed to introduce sharp crack front into the sample. Previously, only rough calculations were applied to estimate the compliance evolution in the SNTT crack growth process, while accurate quantitative descriptions have never been attempted. This generates an urgent need to understand the crack evolution during the SNTT fracture testing process of ductile materials. Here, the newly developed governing equations for SNTT crack growth estimate are discussed in the paper.« less

  6. A preliminary characterization of the tensile and fatigue behavior of tungsten-fiber/Waspaloy-matrix composite

    NASA Technical Reports Server (NTRS)

    Corner, Ralph E.; Lerch, Brad A.

    1992-01-01

    A microstructural study and a preliminary characterization of the room temperature tensile and fatigue behavior of a continuous, tungsten fiber, Waspaloy-matrix composite was conducted. A heat treatment was chosen that would allow visibility of planar slip if it occurred during deformation, but would not allow growth of the reaction zone. Tensile and fatigue tests showed that the failed specimens contained transverse cracks in the fibers. The cracks that occurred in the tensile specimen were observed at the fracture surface and up to approximately 4.0 mm below the fracture surface. The crack spacing remained constant along the entire length of the cracked fibers. Conversely, the cracks that occurred in the fatigue specimen were only observed in the vicinity of the fracture surface. In instances where two fiber cracks occurred in the same plane, the matrix often necked between the two cracked fibers. Large groups of slip bands were generated in the matrix near the fiber cracks. Slip bands in the matrix of the tensile specimen were also observed in areas where there were no fiber cracks, at distances greater than 4 mm from the fracture surface. This suggests that the matrix plastically flows before fiber cracking occurs.

  7. Stress analysis for structures with surface cracks

    NASA Technical Reports Server (NTRS)

    Bell, J. C.

    1978-01-01

    Two basic forms of analysis, one treating stresses around arbitrarily loaded circular cracks, the other treating stresses due to loads arbitrarily distributed on the surface of a half space, are united by a boundary-point least squares method to obtain analyses for stresses from surface cracks in places or bars. Calculations were for enough cases to show how effects from the crack vary with the depth-to-length ratio, the fractional penetration ratio, the obliquity of the load, and to some extent the fractional span ratio. The results include plots showing stress intensity factors, stress component distributions near the crack, and crack opening displacement patterns. Favorable comparisons are shown with two kinds of independent experiments, but the main method for confirming the results is by wide checking of overall satisfaction of boundary conditions, so that external confirmation is not essential. Principles involved in designing analyses which promote dependability of the results are proposed and illustrated.

  8. Evaluation of shrinkage and cracking in concrete of ring test by acoustic emission method

    NASA Astrophysics Data System (ADS)

    Watanabe, Takeshi; Hashimoto, Chikanori

    2015-03-01

    Drying shrinkage of concrete is one of the typical problems related to reduce durability and defilation of concrete structures. Lime stone, expansive additive and low-heat Portland cement are used to reduce drying shrinkage in Japan. Drying shrinkage is commonly evaluated by methods of measurement for length change of mortar and concrete. In these methods, there is detected strain due to drying shrinkage of free body, although visible cracking does not occur. In this study, the ring test was employed to detect strain and age cracking of concrete. The acoustic emission (AE) method was adopted to detect micro cracking due to shrinkage. It was recognized that in concrete using lime stone, expansive additive and low-heat Portland cement are effective to decrease drying shrinkage and visible cracking. Micro cracking due to shrinkage of this concrete was detected and evaluated by the AE method.

  9. Fatigue and Fracture Characterization of GlasGridRTM Reinforced Asphalt Concrete Pavement

    NASA Astrophysics Data System (ADS)

    Safavizadeh, Seyed Amirshayan

    The purpose of this research is to develop an experimental and analytical framework for describing, modeling, and predicting the reflective cracking patterns and crack growth rates in GlasGridRTM-reinforced asphalt pavements. In order to fulfill this objective, the effects of different interfacial conditions (mixture and tack coat type, and grid opening size) on reflective cracking-related failure mechanisms and the fatigue and fracture characteristics of fiberglass grid-reinforced asphalt concrete beams were studied by means of four- and threepoint bending notched beam fatigue tests (NBFTs) and cyclic and monotonic interface shear tests. The digital image correlation (DIC) technique was utilized for obtaining the displacement and strain contours of specimen surfaces during each test. The DIC analysis results were used to develop crack tip detection methods that were in turn used to determine interfacial crack lengths in the shear tests, and vertical and horizontal (interfacial) crack lengths in the notched beam fatigue tests. Linear elastic fracture mechanics (LEFM) principles were applied to the crack length data to describe the crack growth. In the case of the NBFTs, a finite element (FE) code was developed and used for modeling each beam at different stages of testing and back-calculating the stress intensity factors (SIFs) for the vertical and horizontal cracks. The local effect of reinforcement on the stiffness of the system at a vertical crack-interface intersection or the resistance of the grid system to the deflection differential at the joint/crack (hereinafter called joint stiffness) for GlasGrid-reinforced asphalt concrete beams was determined by implementing a joint stiffness parameter into the finite element code. The strain level dependency of the fatigue and fracture characteristics of the GlasGrid-reinforced beams was studied by performing four-point bending notched beam fatigue tests at strain levels of 600, 750, and 900 microstrain. These beam tests were conducted at 15°C, 20°C, and 23°C, with the main focus being to find the characteristics at 20°C. The results obtained from the tests at the different temperatures were used to investigate the effects of temperature on the reflective cracking performance of the gridreinforced beam specimens. The temperature tests were also used to investigate the validity of the time-temperature superposition (t-TS) principle in shear and the beam fatigue performance of the grid-reinforced specimens. The NBFT results suggest that different interlayer conditions do not reflect a unique failure mechanism, and thus, in order to predict and model the performance of grid-reinforced pavement, all the mechanisms involved in weakening its structural integrity, including damage within the asphalt layers and along the interface, must be considered. The shear and beam fatigue test results suggest that the grid opening size, interfacial bond quality, and mixture type play important roles in the reflective cracking performance of GlasGrid-reinforced asphalt pavements. According to the NBTF results, GlasGrid reinforcement retards reflective crack growth by stiffening the composite system and introducing a joint stiffness parameter. The results also show that the higher the bond strength and interlayer stiffness values, the higher the joint stiffness and retardation effects. The t-TS studies proved the validity of this principle in terms of the reflective crack growth of the grid-reinforced beam specimens and the shear modulus and shear strength of the grid-reinforced interfaces.

  10. Vascularized networks with two optimized channel sizes

    NASA Astrophysics Data System (ADS)

    Wang, K.-M.; Lorente, S.; Bejan, A.

    2006-07-01

    This paper reports the development of optimal vascularization for supplying self-healing smart materials with liquid that fills and seals the cracks that may occur throughout their volume. The vascularization consists of two-dimensional grids of interconnected orthogonal channels with two hydraulic diameters (D1, D2). The smallest square loop is designed to match the size (d) of the smallest crack. The network is sealed with respect to the outside and is filled with pressurized liquid. In this work, the crack site is modelled as a small spherical volume of diameter d. When a crack is formed, fluid flows from neighbouring channels to the crack site. This volume-to-point flow is optimized using two formulations: (1) incompressible liquid from steady constant-strength sources located in every node of the grid and from sources located equidistantly on the perimeter of the vascularized body of length scale L and (2) slightly compressible liquid from an initially pressurized grid discharging in time-dependent fashion into one crack site. The flow in every channel is laminar and fully developed. The objectives are (a) to minimize the global resistance to the flow from the grid to the crack site and (b) to minimize the time of discharge from the pressurized grid to the crack site. It is shown that methods (a) and (b) yield similar results. There is an optimal ratio of channel diameters D2/D1 < 1, and it decreases as the grid fineness (L/d) increases. The global flow resistance of the grid with optimized ratio of diameters is approximately half of the resistance of the corresponding grid with one channel size (D1 = D2). The optimized ratio of diameters and the minimized global resistance depend on how the grid intersects the crack site: this effect is minor and stresses the robustness of the vascularized design.

  11. Fatigue damage assessment of high-usage in-service aircraft fuselage structure

    NASA Astrophysics Data System (ADS)

    Mosinyi, Bao Rasebolai

    As the commercial and military aircraft fleets continue to age, there is a growing concern that multiple-site damage (MSD) can compromise structural integrity. Multiple site damage is the simultaneous occurrence of many small cracks at independent structural locations, and is the natural result of fatigue, corrosion, fretting and other possible damage mechanisms. These MSD cracks may linkup and form a fatigue lead crack of critical length. The presence of MSD also reduces the structure's ability to withstand longer cracks. The objective of the current study is to assess, both experimentally and analytically, MSD formation and growth in the lap joint of curved panels removed from a retired aircraft. A Boeing 727-232 airplane owned and operated by Delta Air Lines, and retired at its design service goal, was selected for the study. Two panels removed from the left-hand side of the fuselage crown, near stringer 4L, were subjected to extended fatigue testing using the Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility located at the Federal Aviation Administration (FAA) William J. Hughes Technical Center. The state of MSD was continuously assessed using several nondestructive inspection (NDI) methods. Damage to the load attachment points of the first panel resulted in termination of the fatigue test at 43,500 fatigue cycles, before cracks had developed in the lap joint. The fatigue test for the second panel was initially conducted under simulated in-service loading conditions for 120,000 cycles, and no cracks were detected in the skin of the panel test section. Artificial damage was then introduced into the panel at selected rivets in the critical (lower) rivet row, and the fatigue loads were increased. Visually detectable crack growth from the artificial notches was first seen after 133,000 cycles. The resulting lead crack grew along the lower rivet row, eventually forming an 11.8" long unstable crack after 141,771 cycles, at which point the test was terminated. Posttest fractograpic examinations of the crack surfaces were conducted, revealing the presence of subsurface MSD at the critical rivet row of the lap joint. Special attention was also given to the stringer clips that attach the fuselage frames to the stringers, since they also experienced cracking during the fatigue tests. The performance of the different conventional and emerging NDI methods was also assessed, and some of the emerging NDI methods were quite effective in detecting and measuring the length of subsurface cracks. Delta Air Lines conducted a separate destructive investigation on the state of damage along the right-hand side of the fuselage, near stringer 4R. A comparison of these two studies showed that the lap joint on the left hand-side of the aircraft, along stringer 4L, had better fatigue life than the one on the opposite side, along stringer 4R. The cause of the difference in fatigue life was investigated by close examination of the rivet installation qualities, and was found to be a result of better rivet installation along the lap joint at stringer 4L. Finite element models for both the skin and substructures of the panels were developed and geometrically nonlinear finite element analyses were conducted to verify the loading conditions and to determine near-field parameters governing MSD initiation and growth. Fatigue crack growth predictions based on the NASGRO equation were in good agreement with the experimental crack growth data for through-the-thickness cracks. For subsurface cracks, simulation of crack growth was found to correlate better with fractography data when an empirical crack growth model was used. The results of the study contribute to the understanding of the initiation and growth of MSD in the inner skin layer of a lap joint, and provide valuable data for the evaluation and validation of analytical methodologies to predict MSD initiation and growth and a better understanding on the effect of manufacturing quality on damage accumulation along the lap joint.

  12. 3D multiscale crack propagation using the XFEM applied to a gas turbine blade

    NASA Astrophysics Data System (ADS)

    Holl, Matthias; Rogge, Timo; Loehnert, Stefan; Wriggers, Peter; Rolfes, Raimund

    2014-01-01

    This work presents a new multiscale technique to investigate advancing cracks in three dimensional space. This fully adaptive multiscale technique is designed to take into account cracks of different length scales efficiently, by enabling fine scale domains locally in regions of interest, i.e. where stress concentrations and high stress gradients occur. Due to crack propagation, these regions change during the simulation process. Cracks are modeled using the extended finite element method, such that an accurate and powerful numerical tool is achieved. Restricting ourselves to linear elastic fracture mechanics, the -integral yields an accurate solution of the stress intensity factors, and with the criterion of maximum hoop stress, a precise direction of growth. If necessary, the on the finest scale computed crack surface is finally transferred to the corresponding scale. In a final step, the model is applied to a quadrature point of a gas turbine blade, to compute crack growth on the microscale of a real structure.

  13. Distribution of Inclusion-Initiated Fatigue Cracking in Powder Metallurgy Udimet 720 Characterized

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.; Kantzos, Pete T.; Barrie, Robert; Telesman, Jack; Ghosn, Louis J.; Gabb, Timothy P.

    2004-01-01

    In the absence of extrinsic surface damage, the fatigue life of metals is often dictated by the distribution of intrinsic defects. In powder metallurgy (PM) alloys, relatively large defects occur rarely enough that a typical characterization with a limited number of small volume fatigue test specimens will not adequately sample inclusion-initiated damage. Counterintuitively, inclusion-initiated failure has a greater impact on the distribution in PM alloy fatigue lives because they tend to have fewer defects than their cast and wrought counterparts. Although the relative paucity of defects in PM alloys leads to higher mean fatigue lives, the distribution in observed lives tends to be broader. In order to study this important failure initiation mechanism without expending an inordinate number of specimens, a study was undertaken at the NASA Glenn Research Center where known populations of artificial inclusions (seeds) were introduced to production powder. Fatigue specimens were machined from forgings produced from the seeded powder. Considerable effort has been expended in characterizing the crack growth rate from inclusion-initiated cracks in seeded PM alloys. A rotating and translating positioning system, with associated software, was devised to map the surface inclusions in low-cycle fatigue (LCF) test bars and to monitor the crack growth from these inclusions. The preceding graph illustrates the measured extension in fatigue cracks from inclusions on a seeded LCF test bar subjected to cyclic loading at a strain range of 0.8 percent and a strain ratio (max/min) of zero. Notice that the observed inclusions fall into three categories: some do not propagate at all (arrest), some propagate with a decreasing crack growth rate, and a few propagate at increasing rates that can be modeled by fracture mechanics. The following graph shows the measured inclusion-initiated crack growth rates from 10 interrupted LCF tests plotted against stress intensities calculated for semi-elliptical cracks with the observed surface lengths. The expected scatter in the crack growth rates for stress intensity ranges near threshold is observed. These data will be used to help determine the distribution in growth rates of cracks emanating from inclusions as well as the proportion of cracks that arrest under various loading conditions.

  14. Modeling and Characterization of Near-Crack-Tip Plasticity from Micro- to Nano-Scales

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Saether, Erik; Hochhalter, Jacob; Smith, Stephen W.; Ransom, Jonathan B.; Yamakov, Vesselin; Gupta, Vipul

    2010-01-01

    Methodologies for understanding the plastic deformation mechanisms related to crack propagation at the nano-, meso- and micro-length scales are being developed. These efforts include the development and application of several computational methods including atomistic simulation, discrete dislocation plasticity, strain gradient plasticity and crystal plasticity; and experimental methods including electron backscattered diffraction and video image correlation. Additionally, methodologies for multi-scale modeling and characterization that can be used to bridge the relevant length scales from nanometers to millimeters are being developed. The paper focuses on the discussion of newly developed methodologies in these areas and their application to understanding damage processes in aluminum and its alloys.

  15. Modeling and Characterization of Near-Crack-Tip Plasticity from Micro- to Nano-Scales

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Saether, Erik; Hochhalter, Jacob; Smith, Stephen W.; Ransom, Jonathan B.; Yamakov, Vesselin; Gupta, Vipul

    2011-01-01

    Methodologies for understanding the plastic deformation mechanisms related 10 crack propagation at the nano, meso- and micro-length scales are being developed. These efforts include the development and application of several computational methods including atomistic simulation, discrete dislocation plasticity, strain gradient plasticity and crystal plasticity; and experimental methods including electron backscattered diffraction and video image correlation. Additionally, methodologies for multi-scale modeling and characterization that can be used to bridge the relevant length scales from nanometers to millimeters are being developed. The paper focuses on the discussion of newly developed methodologies in these areas and their application to understanding damage processes in aluminum and its alloys.

  16. Improvement of Anisotropic Mechanical Behavior by Sulfide Control in Quenched and Tempered 4340 Steel

    NASA Astrophysics Data System (ADS)

    Jung, Jae-Hoon; Shin, Jung-Ho; Lee, Seok-Jae

    2015-07-01

    The anisotropic mechanical behavior of quenched and tempered 4340 steel with different Ca contents was investigated by means of a macro/micrograph analysis, Charpy impact test, and rotating bending fatigue test. The 4340 steel with Ca added formed small spherical (Ca,Mn)S inclusions and effectively decreased both the inclusion size and the aspect ratio (length to width) of the MnS inclusions as compared to the Ca-free 4340 steel. The anisotropic impact value and fatigue strength were effectively improved due to the Ca addition that prevented the growth of MnS inclusions, which provided increased resistance against deformation to maintain a spherical shape because the elongated MnS inclusions acted as a crack propagation path and promoted the crack propagation due to higher stress concentrations.

  17. Fatigue Magnification Factors of Arc-Soft-Toe Bracket Joints

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Li, Huajun; Wang, Hongqing; Wang, Shuqing; Li, Dejiang; Li, Qun; Fang, Hui

    2018-06-01

    Arc-soft-toe bracket (ASTB), as a joint structure in the marine structure, is the hot spot with significant stress concentration, therefore, fatigue behavior of ASTBs is an important point of concern in their design. Since macroscopic geometric factors obviously influence the stress flaws in joints, the shapes and sizes of ASTBs should represent the stress distribution around cracks in the hot spots. In this paper, we introduce a geometric magnification factor for reflecting the macroscopic geometric effects of ASTB crack features and construct a 3D finite element model to simulate the distribution of stress intensity factor (SIF) at the crack endings. Sensitivity analyses with respect to the geometric ratio H t / L b , R/ L b , L t / L b are performed, and the relations between the geometric factor and these parameters are presented. A set of parametric equations with respect to the geometric magnification factor is obtained using a curve fitting technique. A nonlinear relationship exists between the SIF and the ratio of ASTB arm to toe length. When the ratio of ASTB arm to toe length reaches a marginal value, the SIF of crack at the ASTB toe is not influenced by ASTB geometric parameters. In addition, the arc shape of the ASTB slope edge can transform the stress flowing path, which significantly affects the SIF at the ASTB toe. A proper method to reduce stress concentration is setting a slope edge arc size equal to the ASTB arm length.

  18. Enamel subsurface damage due to tooth preparation with diamonds.

    PubMed

    Xu, H H; Kelly, J R; Jahanmir, S; Thompson, V P; Rekow, E D

    1997-10-01

    In clinical tooth preparation with diamond burs, sharp diamond particles indent and scratch the enamel, causing material removal. Such operations may produce subsurface damage in enamel. However, little information is available on the mechanisms and the extent of subsurface damage in enamel produced during clinical tooth preparation. The aim of this study, therefore, was to investigate the mechanisms of subsurface damage produced in enamel during tooth preparation by means of diamond burs, and to examine the dependence of such damage on enamel rod orientation, diamond particle size, and removal rate. Subsurface damage was evaluated by a bonded-interface technique. Tooth preparation was carried out on two enamel rod orientations, with four clinical diamond burs (coarse, medium, fine, and superfine) used in a dental handpiece. The results of this study showed that subsurface damage in enamel took the form of median-type cracks and distributed microcracks, extending preferentially along the boundaries between the enamel rods. Microcracks within individual enamel rods were also observed. The median-type cracks were significantly longer in the direction parallel to the enamel rods than perpendicular to the rods. Preparation with the coarse diamond bur produced cracks as deep as 84 +/- 30 microns in enamel. Finishing with fine diamond burs was effective in crack removal. The crack lengths in enamel were not significantly different when the removal rate was varied. Based on these results, it is concluded that subsurface damage in enamel induced by tooth preparation takes the form of median-type cracks as well as inter- and intra-rod microcracks, and that the lengths of these cracks are sensitive to diamond particle size and enamel rod orientation, but insensitive to removal rate.

  19. Ae Behavior of Smart Stress Memory Patch after Variable Amplitude Loading

    NASA Astrophysics Data System (ADS)

    Fujino, Y.; Nambu, S.; Enoki, M.

    Recently, the structural health monitoring becomes increasingly great important to assure the ease and safety of our life, and it is required significantly to develop non-destructive evaluation for structures such as bridges and tunnels. Some sacrificed specimens have been developed to evaluate the fatigue damage of structures such as fatigue cycles and residual lifetime, but it can be applied only when the stress history is known beforehand. These fatigue sensors need no cable and can be used at low cost in contrast to strain gage. In previous study, a smart stress memory patch was developed as a new fatigue sensor. The patch can measure simultaneously the maximum stress, stress amplitude and the number of fatigue cycles by crack length measurement and Kaiser effect of Acoustic Emission (AE). The crack growth behavior under constant amplitude (CA) loading has been investigated, and AE behavior also has been evaluated only after CA loading. However, AE characteristics after variable amplitude (VA) loading in service are extremely important. Moreover, it is very important to control AE behavior of the smart patch in order to evaluate the applied stress using Kaiser effect. In this study, fatigue test with single overload was investigated to evaluate its influence. Moreover, effect of crack length and heat treatment on AE behavior was also investigated. Finally, AE behavior of the patch was evaluated after fatigue CA loading with overload or VA loading with log-normal distribution and overload.

  20. Mode I analysis of a cracked circular disk subject to a couple and a force

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1978-01-01

    Mode I stress intensity coefficients were obtained for an edge-cracked disk (round compact specimen). Results for this plane elastostatic problem, obtained by a boundary collocation analysis are presented for A/D ratios of 0.35 to 1, where A is the crack length and D is the disk diameter. The results presented are for two complementary types of loading. By superposition of these results the stress intensity factor for any practical load line location of a pin-loaded round compact specimen can be obtained.

  1. Stress-intensity factors of r-cracks in fiber-reinforced composites under thermal and mechanical loading

    NASA Astrophysics Data System (ADS)

    Mueller, W. H.; Schmauder, S.

    1993-02-01

    The plane stress/plane strain problem of radial matrix cracking in fiber-reinforced composites, due to thermal mismatch and externally applied stress is solved numerically in the framework of linear elasticity, using Erdogan's integral equation technique. It is shown that, in order to obtain the results of the combined loading case, the solutions of purely thermal and purely mechanical loading can simply be superimposed. Stress-intensity factors are calculated for various lengths and distances of the crack from the interface for each of these loading conditions.

  2. Spontaneous Cracking in Unfired Magnesia Compacts Upon Standing in Air

    NASA Technical Reports Server (NTRS)

    Davies, Myron O.; Grimes, Hubert H.; May, Charles E.

    1961-01-01

    Analytical-grade magnesium oxide powder without binder was compressed hydrostatically to 50,000 lb. per sq. in. to form compacts. When exposed to moist air immediately after pressing, these compacts developed irregularly shaped cracks. Controlled tests, in which these compacts were exposed for various lengths of time to various atmospheres, indicated that in general water vapor, carbon dioxide, and residual stresses had to be present if cracking was to occur. The probable cause of the cracking was the formation of a less dense and mechanically weak basic carbonate of magnesium at crystallite surface points of high stress concentration which developed during the compacting. The adsorption of dry CO2 at such sites prevented subsequent delayed fracture.

  3. NASA-Langley Research Center's participation in a round-robin comparison between some current crack-propagation prediction methods

    NASA Technical Reports Server (NTRS)

    Hudson, C. M.; Lewis, P. E.

    1979-01-01

    A round-robin study was conducted which evaluated and compared different methods currently in practice for predicting crack growth in surface-cracked specimens. This report describes the prediction methods used by the Fracture Mechanics Engineering Section, at NASA-Langley Research Center, and presents a comparison between predicted crack growth and crack growth observed in laboratory experiments. For tests at higher stress levels, the correlation between predicted and experimentally determined crack growth was generally quite good. For tests at lower stress levels, the predicted number of cycles to reach a given crack length was consistently higher than the experimentally determined number of cycles. This consistent overestimation of the number of cycles could have resulted from a lack of definition of crack-growth data at low values of the stress intensity range. Generally, the predicted critical flaw sizes were smaller than the experimentally determined critical flaw sizes. This underestimation probably resulted from using plane-strain fracture toughness values to predict failure rather than the more appropriate values based on maximum load.

  4. Microstructurally-sensitive fatigue crack nucleation in Ni-based single and oligo crystals

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Jiang, Jun; Dunne, Fionn P. E.

    2017-09-01

    An integrated experimental, characterisation and computational crystal plasticity study of cyclic plastic beam loading has been carried out for nickel single crystal (CMSX4) and oligocrystal (MAR002) alloys in order to assess quantitatively the mechanistic drivers for fatigue crack nucleation. The experimentally validated modelling provides knowledge of key microstructural quantities (accumulated slip, stress and GND density) at experimentally observed fatigue crack nucleation sites and it is shown that while each of these quantities is potentially important in crack nucleation, none of them in its own right is sufficient to be predictive. However, the local (elastic) stored energy density, measured over a length scale determined by the density of SSDs and GNDs, has been shown to predict crack nucleation sites in the single and oligocrystals tests. In addition, once primary nucleated cracks develop and are represented in the crystal model using XFEM, the stored energy correctly identifies where secondary fatigue cracks are observed to nucleate in experiments. This (Griffith-Stroh type) quantity also correctly differentiates and explains intergranular and transgranular fatigue crack nucleation.

  5. A fracture mechanics approach for estimating fatigue crack initiation in carbon and low-alloy steels in LWR coolant environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, H. B.; Chopra, O. K.

    2000-04-10

    A fracture mechanics approach for elastic-plastic materials has been used to evaluate the effects of light water reactor (LWR) coolant environments on the fatigue lives of carbon and low-alloy steels. The fatigue life of such steel, defined as the number of cycles required to form an engineering-size crack, i.e., 3-mm deep, is considered to be composed of the growth of (a) microstructurally small cracks and (b) mechanically small cracks. The growth of the latter was characterized in terms of {Delta}J and crack growth rate (da/dN) data in air and LWR environments; in water, the growth rates from long crack testsmore » had to be decreased to match the rates from fatigue S-N data. The growth of microstructurally small cracks was expressed by a modified Hobson relationship in air and by a slip dissolution/oxidation model in water. The crack length for transition from a microstructurally small crack to a mechanically small crack was based on studies on small crack growth. The estimated fatigue S-N curves show good agreement with the experimental data for these steels in air and water environments. At low strain amplitudes, the predicted lives in water can be significantly lower than the experimental values.« less

  6. a Cost-Effective Method for Crack Detection and Measurement on Concrete Surface

    NASA Astrophysics Data System (ADS)

    Sarker, M. M.; Ali, T. A.; Abdelfatah, A.; Yehia, S.; Elaksher, A.

    2017-11-01

    Crack detection and measurement in the surface of concrete structures is currently carried out manually or through Non-Destructive Testing (NDT) such as imaging or scanning. The recent developments in depth (stereo) cameras have presented an opportunity for cost-effective, reliable crack detection and measurement. This study aimed at evaluating the feasibility of the new inexpensive depth camera (ZED) for crack detection and measurement. This depth camera with its lightweight and portable nature produces a 3D data file of the imaged surface. The ZED camera was utilized to image a concrete surface and the 3D file was processed to detect and analyse cracks. This article describes the outcome of the experiment carried out with the ZED camera as well as the processing tools used for crack detection and analysis. Crack properties that were also of interest were length, orientation, and width. The use of the ZED camera allowed for distinction between surface and concrete cracks. The ZED high-resolution capability and point cloud capture technology helped in generating a dense 3D data in low-lighting conditions. The results showed the ability of the ZED camera to capture the crack depth changes between surface (render) cracks, and crack that form in the concrete itself.

  7. A Stereomicroscopic Evaluation of Dentinal Cracks at Different Instrumentation Lengths by Using Different Rotary Files (ProTaper Universal, ProTaper Next, and HyFlex CM): An Ex Vivo Study

    PubMed Central

    Shankarappa, Pushpa; Misra, Abhinav; Sawhney, Asheesh; Sridevi, Nandamuri; Singh, Anu

    2016-01-01

    Introduction. The aim of the present study was to evaluate the dentinal cracks after root canal preparation with rotary files: Gates Glidden, ProTaper Universal, ProTaper Next, and HyFlex CM at different instrumentation lengths. Methodology. Sixty-five mandibular premolars were mounted in the acrylic tube with simulated periodontal ligaments and the apex was exposed. The root canals were instrumented with different rotary files, namely, ProTaper Universal, ProTaper Next, and HyFlex CM, to the major apical foramen (AF), short AF, and beyond AF. The root apex was stained with 1% methylene blue dye and digital images of apical surface of every tooth were taken and development of dentinal defects was determined by using stereomicroscope. Multinomial logistic regression test was performed to identify influencing factors. Results. Instrumentation with rotary files terminated 2 mm short AF and did not cause any cracks. Significantly less cracks were seen when instrumentation with rotary files terminated 1 mm short apical foramen when compared with the instrumentation terminated at or beyond apical foramen (p < 0.05). Conclusion. ProTaper Universal rotary files caused more dentinal cracks than ProTaper Next and HyFlex CM. Instrumentation short AF reduced the risk of dentinal defects. PMID:27446636

  8. Cohesive zone finite element analysis of crack initiation from a butt joint’s interface corner

    DOE PAGES

    Reedy, E. D.

    2014-09-06

    The Cohesive zone (CZ) fracture analysis techniques are used to predict the initiation of crack growth from the interface corner of an adhesively bonded butt joint. In this plane strain analysis, a thin linear elastic adhesive layer is sandwiched between rigid adherends. There is no preexisting crack in the problem analyzed, and the focus is on how the shape of the traction–separation (T–U) relationship affects the predicted joint strength. Unlike the case of a preexisting interfacial crack, the calculated results clearly indicate that the predicted joint strength depends on the shape of the T–U relationship. Most of the calculations usedmore » a rectangular T–U relationship whose shape (aspect ratio) is defined by two parameters: the interfacial strength σ* and the work of separation/unit area Γ. The principal finding of this study is that for a specified adhesive layer thickness, there is any number of σ*, Γ combinations that generate the same predicted joint strength. For each combination there is a corresponding CZ length. We developed an approximate CZ-like elasticity solution to show how such combinations arise and their connection with the CZ length.« less

  9. The flaw-detected coating and its applications in R&M of aircrafts

    NASA Astrophysics Data System (ADS)

    Hu, Feng; Liu, Mabao; Lü, Zhigang

    2009-07-01

    A monitoring method called ICM (Intelligent Coating Monitoring), which is based mainly on the intelligent coating sensors, has the capability to monitor crack initiation and growth in fatigue test coupons has been suggested in this study. The intelligent coating sensor is normally consisted of three layers: driving layer, sensing layer and protective layer where necessary. Fatigue tests with ICM for various materials demonstrate the capability to detect cracks with l<300μm, corresponding to the increment of the sensing layer's resistance at the level of 0.05Ω. Also, ICM resistance measurements correlate with crack length, permitting crack length monitoring. Numerous applications are under evaluation for ICM in difficult-to-access locations on commercial and military aircrafts. The motivation for the permanently flaw-detected coating monitoring is either (i) to replace an existing inspection that requires substantial disassembly and surface preparation (e.g. inside the fuel tank of an aircraft), or (ii) to take advantage of early detection and apply less invasive life-extension repairs, as well as reduce interruption of service when flaws are detected. Implementation of ICM is expected to improve fleet management practices and modify damage tolerance assumptions.

  10. Correlation between ambient air and continuous bending stress for the electrical reliability of flexible pentacene-based thin-film transistors

    NASA Astrophysics Data System (ADS)

    Fan, Ching-Lin; Lin, Wei-Chun; Peng, Han-Hsing; Lin, Yu-Zuo; Huang, Bohr-Ran

    2015-01-01

    This study investigated how continuous bending stress affects the electrical characteristics of pentacene-based organic thin-film transistors (OTFTs) with poly(4-vinylphenol) (PVP) gate insulator in a vacuum and in ambient air. In tension mode, the strain direction of the fabricated devices was perpendicular to the device channel length. The OTFT devices that were bent in a vacuum exhibited a decreased on current because of cracking in the pentacene channel layer, which can obstruct the transport of charge carriers and deteriorate the on current of the OTFTs. The OTFT devices that were bent in ambient air exhibited a slightly decreased on current and considerably increased off current and subthreshold swing (SS). It was assumed that air moisture passed through the pentacene cracks into the interface between the PVP and pentacene layer, thereby yielding an increase in polar moisture traps, and leading to an increase in the conductivity of the pentacene, thus yielding a slightly decreased on current and considerably increased off current and SS.

  11. Effect of water vapor on fatigue crack growth in 7475-T651 aluminum alloy plate. [for aerospace applications

    NASA Technical Reports Server (NTRS)

    Dicus, D. L.

    1984-01-01

    The effects of water vapor on fatigue crack growth in 7475-T651 aluminum alloy plate at frequencies of 1 Hz and 10 Hz were investigated. Twenty-five mm thick compact specimens were subjected to constant amplitude fatigue testing at a load ratio of 0.2. Fatigue crack growth rates were calculated from effective crack lengths determined using a compliance method. Tests were conducted in hard vacuum and at water vapor partial pressures ranging from 94 Pa to 3.8 kPa. Fatigue crack growth rates were frequency insensitive under all environment conditions tested. For constant stress intensity factor ranges crack growth rate transitions occurred at low and high water vapor pressures. Crack growth rates at intermediate pressures were relatively constant and showed reasonable agreement with published data for two Al-Cu-Mg alloys. The existence of two crack growth rate transitions suggests either a change in rate controlling kinetics or a change in corrosion fatigue mechanism as a function of water vapor pressure. Reduced residual deformation and transverse cracking specimens tested in water vapor versus vacuum may be evidence of embrittlement within the plastic zone due to environmental interaction.

  12. The effect of water vapor on fatigue crack Growth in 7475-t651 aluminum alloy plate. [for aerospace applications

    NASA Technical Reports Server (NTRS)

    Dicus, D. L.

    1982-01-01

    The effects of water vapor on fatigue crack growth in 7475-T651 aluminum alloy plate at frequencies of 1 Hz and 10 Hz were investigated. Twenty-five mm thick compact specimens were subjected to constant amplitude fatigue testing at a load ratio of 0.2. Fatigue crack growth rates were calculated from effective crack lengths determined using a compliance method. Tests were conducted in hard vacuum and at water vapor partial pressures ranging from 94 Pa to 3.8 kPa. Fatigue crack growth rates were frequency insensitive under all environment conditions tested. For constant stress intensity factor ranges crack growth rate transitions occurred at low and high water vapor pressures. Crack growth rates at intermediate pressures were relatively constant and showed reasonable agreement with published data for two Al-Cu-Mg alloys. The existence of two crack growth rate transitions suggests either a change in rate controlling kinetics or a change in corrosion fatigue mechanism as a function of water vapor pressure. Reduced residual deformation and transverse cracking specimens tested in water vapor versus vacuum may be evidence of embrittlement within the plastic zone due to environmental interaction.

  13. Effects of subcritical crack growth on fracture toughness of ceramics assessed in chevron-notched three-point bend tests

    NASA Technical Reports Server (NTRS)

    Chao, L. Y.; Singh, D.; Shetty, D. K.

    1988-01-01

    A numerical computational study was carried out to assess the effects of subcritical crack growth on crack stability in the chevron-notched three-point bend specimens. A power-law relationship between the subcritical crack velocity and the applied stress intensity were used along with compliance and stress-intensity relationships for the chevron-notched bend specimen to calculate the load response under fixed deflection rate and a machine compliance. The results indicate that the maximum load during the test occurs at the same crack length for all the deflection rates; the maximum load, however, is dependent on the deflection rate for rates below the critical rate. The resulting dependence of the apparent fracture toughness on the deflection rate is compared to experimental results on soda-lime glass and polycrystalline alumina.

  14. Calculation of trajectories and the rate of growth of curvilinear fatigue cracks in isotropic and composite plates

    NASA Astrophysics Data System (ADS)

    Pokhmurska, H.; Maksymovych, O.; Dzyubyk, A.; Dzyubyk, L.

    2018-06-01

    The methods of calculating the trajectories and the rate of growth of curvilinear fatigue cracks in isotropic and composite plate structure elements during cyclic loading along straight or curvilinear trajectories are developed. For isotropic and anisotropic materials, the methodes are developed on the basis of the force criterion of destruction with the additional application of the fatigue fracture diagrams. To find the change in the shape of the cracks in the loading process, the step-by-step method was used. At each stage, the direction of the growth of all vertices of cracks and the lengths of their arcs was found on the basis of determining the intensity coefficients of stresses by the method of singular integral equations. The results of calculations of the cracks system growth process are presented.

  15. Application of fracture toughness scaling models to the ductile-to- brittle transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, R.E.; Joyce, J.A.

    1996-01-01

    An experimental investigation of fracture toughness in the ductile-brittle transition range was conducted. A large number of ASTM A533, Grade B steel, bend and tension specimens with varying crack lengths were tested throughout the transition region. Cleavage fracture toughness scaling models were utilized to correct the data for the loss of constraint in short crack specimens and tension geometries. The toughness scaling models were effective in reducing the scatter in the data, but tended to over-correct the results for the short crack bend specimens. A proposed ASTM Test Practice for Fracture Toughness in the Transition Range, which employs a mastermore » curve concept, was applied to the results. The proposed master curve over predicted the fracture toughness in the mid-transition and a modified master curve was developed that more accurately modeled the transition behavior of the material. Finally, the modified master curve and the fracture toughness scaling models were combined to predict the as-measured fracture toughness of the short crack bend and the tension specimens. It was shown that when the scaling models over correct the data for loss of constraint, they can also lead to non-conservative estimates of the increase in toughness for low constraint geometries.« less

  16. In vivo MRI-based simulation of fatigue process: a possible trigger for human carotid atherosclerotic plaque rupture.

    PubMed

    Huang, Yuan; Teng, Zhongzhao; Sadat, Umar; He, Jing; Graves, Martin J; Gillard, Jonathan H

    2013-04-23

    Atherosclerotic plaque is subjected to a repetitive deformation due to arterial pulsatility during each cardiac cycle and damage may be accumulated over a time period causing fibrous cap (FC) fatigue, which may ultimately lead to rupture. In this study, we investigate the fatigue process in human carotid plaques using in vivo carotid magnetic resonance (MR) imaging. Twenty seven patients with atherosclerotic carotid artery disease were included in this study. Multi-sequence, high-resolution MR imaging was performed to depict the plaque structure. Twenty patients were found with ruptured FC or ulceration and 7 without. Modified Paris law was used to govern crack propagation and the propagation direction was perpendicular to the maximum principal stress at the element node located at the vulnerable site. The predicted crack initiations from 20 patients with FC defect all matched with the locations of the in vivo observed FC defect. Crack length increased rapidly with numerical steps. The natural logarithm of fatigue life decreased linearly with the local FC thickness (R(2) = 0.67). Plaques (n=7) without FC defect had a longer fatigue life compared with those with FC defect (p = 0.03). Fatigue process seems to explain the development of cracks in FC, which ultimately lead to plaque rupture.

  17. Detection and monitoring of shear crack growth using S-P conversion of seismic waves

    NASA Astrophysics Data System (ADS)

    Modiriasari, A.; Bobet, A.; Pyrak-Nolte, L. J.

    2017-12-01

    A diagnostic method for monitoring shear crack initiation, propagation, and coalescence in rock is key for the detection of major rupture events, such as slip along a fault. Active ultrasonic monitoring was used in this study to determine the precursory signatures to shear crack initiation in pre-cracked rock. Prismatic specimens of Indiana limestone (203x2101x638x1 mm) with two pre-existing parallel flaws were subjected to uniaxial compression. The flaws were cut through the thickness of the specimen using a scroll saw. The length of the flaws was 19.05 mm and had an inclination angle with respect to the loading direction of 30o. Shear wave transducers were placed on each side of the specimen, with polarization parallel to the loading direction. The shear waves, given the geometry of the flaws, were normally incident to the shear crack forming between the two flaws during loading. Shear crack initiation and propagation was detected on the specimen surface using digital image correlation (DIC), while initiation inside the rock was monitored by measuring full waveforms of the transmitted and reflected shear (S) waves across the specimen. Prior to the detection of a shear crack on the specimen surface using DIC, transmitted S waves were converted to compressional (P) waves. The emergence of converted S-P wave occurs because of the presence of oriented microcracks inside the rock. The microcracks coalesce and form the shear crack observed on the specimen surface. Up to crack coalescence, the amplitude of the converted waves increased with shear crack propagation. However, the amplitude of the transmitted shear waves between the two flaws did not change with shear crack initiation and propagation. This is in agreement with the conversion of elastic waves (P- to S-wave or S- to P-wave) observed by Nakagawa et al., (2000) for normal incident waves. Elastic wave conversions are attributed to the formation of an array of oriented microcracks that dilate under shear stress, which causes energy partitioning into P, S, and P-to-S or S-to-P waves. This finding provides a diagnostic method for detecting shear crack initiation and growth using seismic wave conversions. Acknowledgments: This material is based upon work supported by the National Science Foundation, Geomechanics and Geotechnical Systems Program (award No. CMMI-1162082).

  18. Detection of tightly closed flaws by nondestructive testing (NDT) methods in steel and titanium

    NASA Technical Reports Server (NTRS)

    Rummel, W. D.; Rathke, R. A.; Todd, P. H., Jr.; Tedrow, T. L.; Mullen, S. J.

    1976-01-01

    X-radiographic, liquid penetrant, ultrasonic, eddy current and magnetic particle testing techniques were optimized and applied to the evaluation of 4340 steel (180 KSI-UTS) and 6Al-4V titanium (STA) alloy specimens. Sixty steel specimens containing a total of 176 fatigue cracks and 60 titanium specimens containing a total of 135 fatigue cracks were evaluated. The cracks ranged in length from .043 cm (0.017 inch) to 1.02 cm (.400 inch) and in depth from .005 cm (.002 inch) to .239 cm (.094 inch) for steel specimens. Lengths ranged from .048 cm (0.019 inch) to 1.03 cm (.407 inch) and depths from 0.010 cm (.004 inch) to .261 cm (0.103 inch) for titanium specimens. Specimen thicknesses were nominally .152 cm (0.060 inch) and 0.635 cm (0.250 inch) and surface finishes were nominally 125 rms. Specimens were evaluated in the "as machined" surface condition, after etch surface and after proof loading in a randomized inspection sequence.

  19. Fracture toughness determination using spiral-grooved cylindrical specimen and pure torsional loading

    DOEpatents

    Wang, Jy-An; Liu, Kenneth C.

    2003-07-08

    A method for determining fracture toughness K.sub.IC of materials ranging from metallic alloys, brittle ceramics and their composites, and weldments. A cylindrical specimen having a helical V-groove with a 45.degree. pitch is subjected to pure torsion. This loading configuration creates a uniform tensile-stress crack-opening mode, and a transverse plane-strain state along the helical groove. The full length of the spiral groove is equivalent to the thickness of a conventional compact-type specimen. K.sub.IC values are determined from the fracture torque and crack length measured from the test specimen using a 3-D finite element program (TOR3D-KIC) developed for the purpose. In addition, a mixed mode (combined tensile and shear stress mode) fracture toughness value can be determined by varying the pitch of the helical groove. Since the key information needed for determining the K.sub.IC value is condensed in the vicinity of the crack tip, the specimen can be significantly miniaturized without the loss of generality.

  20. Air Launch Instrumented Vehicles Evaluation (ALIVE).

    DTIC Science & Technology

    1977-02-01

    propellant .s. The study addressed aging of two 12—inch—diamete r , SRBDM—type motors cast with mode ra te—burning—rate prope l l a n t . The propel lan t...s Ii t ttiis j t .y Factor vs Half Crack Length 86 30 Stress Intensity Factor /Load vs I1~ l 1 Crack Length 87 31 Log Stress I n t c r t s t t y... Factor vs Log Crac k Tip V e l o c i ty for S t r ip Biaxial Specimen 88 32 Log Stress I t i t i n s i t v Factor A d j u s t e d for Stra in

  1. 75 FR 38066 - Airworthiness Directives; The Boeing Company Model 727, 727C, 727-100, 727-100C, 727-200, and 727...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... 0.75 inch to 11.8 inches in length at the buttock line 61, between water line (WL) 220 and WL 228..., and between 10,685 total flight cycles and 29,357 total flight cycles. The cracking is attributed to..., in addition to normal pressurization cycles. Material analysis revealed multiple crack initiation...

  2. Marine Structural Steel Toughness Data Bank. Volume 4

    DTIC Science & Technology

    1990-08-31

    Break? Did specimen fracture completely? CODIc Critical COD CODi Initial COD CVN Energy Charpy V Energy Crack lgth Crack Length Curve Curve Shape DT...Onien Test Temp COIi CODIc i1 imax Tear Mod degF in In in-lb/in**2 in-lb/in**2 in-lb/in**2 L-T 72 0.0236 0.0380 4346 4315 260.2 L-T 72

  3. A unified phase-field theory for the mechanics of damage and quasi-brittle failure

    NASA Astrophysics Data System (ADS)

    Wu, Jian-Ying

    2017-06-01

    Being one of the most promising candidates for the modeling of localized failure in solids, so far the phase-field method has been applied only to brittle fracture with very few exceptions. In this work, a unified phase-field theory for the mechanics of damage and quasi-brittle failure is proposed within the framework of thermodynamics. Specifically, the crack phase-field and its gradient are introduced to regularize the sharp crack topology in a purely geometric context. The energy dissipation functional due to crack evolution and the stored energy functional of the bulk are characterized by a crack geometric function of polynomial type and an energetic degradation function of rational type, respectively. Standard arguments of thermodynamics then yield the macroscopic balance equation coupled with an extra evolution law of gradient type for the crack phase-field, governed by the aforesaid constitutive functions. The classical phase-field models for brittle fracture are recovered as particular examples. More importantly, the constitutive functions optimal for quasi-brittle failure are determined such that the proposed phase-field theory converges to a cohesive zone model for a vanishing length scale. Those general softening laws frequently adopted for quasi-brittle failure, e.g., linear, exponential, hyperbolic and Cornelissen et al. (1986) ones, etc., can be reproduced or fit with high precision. Except for the internal length scale, all the other model parameters can be determined from standard material properties (i.e., Young's modulus, failure strength, fracture energy and the target softening law). Some representative numerical examples are presented for the validation. It is found that both the internal length scale and the mesh size have little influences on the overall global responses, so long as the former can be well resolved by sufficiently fine mesh. In particular, for the benchmark tests of concrete the numerical results of load versus displacement curve and crack paths both agree well with the experimental data, showing validity of the proposed phase-field theory for the modeling of damage and quasi-brittle failure in solids.

  4. Autonomous sensing of composites with carbon nanotubes for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Yingtao; Yekani Fard, Masoud; Rajadas, Abhishek; Chattopadhyay, Aditi

    2012-04-01

    The development of structural health monitoring techniques leads to the integration of sensing capability within engineering structures. This study investigates the application of multi walled carbon nanotubes in polymer matrix composites for autonomous damage detection through changes in electrical resistance. The autonomous sensing capabilities of fiber reinforced nanocomposites are studied under multiple loading conditions including tension loads. Single-lap joints with different joint lengths are tested. Acoustic emission sensing is used to validate the matrix crack propagation. A digital image correlation system is used to measure the shear strain field of the joint area. The joints with 1.5 inch length have better autonomous sensing capabilities than those with 0.5 inch length. The autonomous sensing capabilities of nanocomposites are found to be sensitive to crack propagation and can revolutionize the research on composite structural health management in the near future.

  5. Relating Cohesive Zone Model to Linear Elastic Fracture Mechanics

    NASA Technical Reports Server (NTRS)

    Wang, John T.

    2010-01-01

    The conditions required for a cohesive zone model (CZM) to predict a failure load of a cracked structure similar to that obtained by a linear elastic fracture mechanics (LEFM) analysis are investigated in this paper. This study clarifies why many different phenomenological cohesive laws can produce similar fracture predictions. Analytical results for five cohesive zone models are obtained, using five different cohesive laws that have the same cohesive work rate (CWR-area under the traction-separation curve) but different maximum tractions. The effect of the maximum traction on the predicted cohesive zone length and the remote applied load at fracture is presented. Similar to the small scale yielding condition for an LEFM analysis to be valid. the cohesive zone length also needs to be much smaller than the crack length. This is a necessary condition for a CZM to obtain a fracture prediction equivalent to an LEFM result.

  6. Mode I analysis of a cracked circular disk subject to a couple and a force

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1977-01-01

    Mode 1 stress intensity coefficients were obtained for an edge-cracked disk (round compact specimen). Results for this plane elastostatic problem, obtained by a boundary collocation analysis are presented for ratios 0.35 less than A/D less than 1, where A is the crack length and D is the disk diameter. The results presented are for two complementary types of loading. By superposition of these results the stress intensity factor K sub I for any practical load line location of a pin-loaded round compact specimen can be obtained.

  7. Effect of Impact Damage on the Fatigue Response of TiAl Alloy-ABB-2

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Lerch, B. A.; Pereira, J. M.; Nathal, M. V.; Nazmy, M. Y.; Staubli, M.; Clemens, D. R.

    2001-01-01

    The ability of gamma-TiAl to withstand potential foreign or domestic object damage is a technical risk to the implementation of gamma-TiAl in low pressure turbine (LPT) blade applications. In the present study, the impact resistance of TiAl alloy ABB-2 was determined and compared to the impact resistance of Ti(48)Al(2)Nb(2)Cr. Specimens were impacted with four different impact conditions with impact energies ranging from 0.22 to 6.09 J. After impacting, the impact damage was characterized by crack lengths on both the front and backside of the impact. Due to the flat nature of gamma-TiAl's S-N (stress vs. cycles to failure) curve, step fatigue tests were used to determine the fatigue strength after impacting. Impact damage increased with increasing impact energy and led to a reduction in the fatigue strength of the alloy. For similar crack lengths, the fatigue strength of impacted ABB-2 was similar to the fatigue strength of impacted Ti(48)Al(2)Nb(2)Cr, even though the tensile properties of the two alloys are significantly different. Similar to Ti(48)Al(2)Nb(2)Cr, ABB-2 showed a classical mean stress dependence on fatigue strength. The fatigue strength of impacted ABB-2 could be accurately predicted using a threshold analysis.

  8. Kinetic studies of the stress corrosion cracking of D6AC steel

    NASA Technical Reports Server (NTRS)

    Noronha, P. J.

    1975-01-01

    The effect of load interactions on the crack growth velocity of D6AC steel under stress corrosion cracking conditions was determined. The environment was a 3.5 percent salt solution. The modified-wedge opening load specimens were fatigue precracked and subjected to a deadweight loading in creep machines. The effects of load shedding on incubation times and crack growth rates were measured using high-sensitivity compliance measurement techniques. Load shedding results in an incubation time, the length of which depends on the amount of load shed and the baseline stress intensity. The sequence of unloading the specimen also controls the subsequent incubation period. The incubation period is shorter when load shedding passes through zero load than when it does not if the specimen initially had the same baseline stress intensity. The crack growth rates following the incubation period are also different from the steady-state crack growth rate at the operating stress intensity. These data show that the susceptibility of this alloy system to stress corrosion cracking depends on the plane-strain fracture toughness and on the yield strength of the material.

  9. Automatic crack detection and classification method for subway tunnel safety monitoring.

    PubMed

    Zhang, Wenyu; Zhang, Zhenjiang; Qi, Dapeng; Liu, Yun

    2014-10-16

    Cracks are an important indicator reflecting the safety status of infrastructures. This paper presents an automatic crack detection and classification methodology for subway tunnel safety monitoring. With the application of high-speed complementary metal-oxide-semiconductor (CMOS) industrial cameras, the tunnel surface can be captured and stored in digital images. In a next step, the local dark regions with potential crack defects are segmented from the original gray-scale images by utilizing morphological image processing techniques and thresholding operations. In the feature extraction process, we present a distance histogram based shape descriptor that effectively describes the spatial shape difference between cracks and other irrelevant objects. Along with other features, the classification results successfully remove over 90% misidentified objects. Also, compared with the original gray-scale images, over 90% of the crack length is preserved in the last output binary images. The proposed approach was tested on the safety monitoring for Beijing Subway Line 1. The experimental results revealed the rules of parameter settings and also proved that the proposed approach is effective and efficient for automatic crack detection and classification.

  10. Three dimensional finite-element analysis of finite-thickness fracture specimens

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Newman, J. C., Jr.

    1977-01-01

    The stress-intensity factors for most of the commonly used fracture specimens (center-crack tension, single and double edge-crack tension, and compact), those that have a through-the-thickness crack, were calculated using a three dimensional finite-element elastic stress analysis. Three-dimensional singularity elements were used around the crack front. The stress intensity factors along the crack front were evaluated by using a force method, developed herein, that requires no prior assumption of either plane stress or plane strain. The calculated stress-intensity factors from the present analysis were compared with those from the literature whenever possible and were generally found to be in good agreement. The stress-intensity factors at the midplane for all specimens analyzed were within 3 percent of the two dimensional plane strain values. The stress intensity factors at the specimen surfaces were considerably lower than at the midplanes. For the center-crack tension specimens with large thickness to crack-length ratios, the stress-intensity factor reached a maximum near the surface of the specimen. In all other specimens considered the maximum stress intensity occurred at the midplane.

  11. Automatic Crack Detection and Classification Method for Subway Tunnel Safety Monitoring

    PubMed Central

    Zhang, Wenyu; Zhang, Zhenjiang; Qi, Dapeng; Liu, Yun

    2014-01-01

    Cracks are an important indicator reflecting the safety status of infrastructures. This paper presents an automatic crack detection and classification methodology for subway tunnel safety monitoring. With the application of high-speed complementary metal-oxide-semiconductor (CMOS) industrial cameras, the tunnel surface can be captured and stored in digital images. In a next step, the local dark regions with potential crack defects are segmented from the original gray-scale images by utilizing morphological image processing techniques and thresholding operations. In the feature extraction process, we present a distance histogram based shape descriptor that effectively describes the spatial shape difference between cracks and other irrelevant objects. Along with other features, the classification results successfully remove over 90% misidentified objects. Also, compared with the original gray-scale images, over 90% of the crack length is preserved in the last output binary images. The proposed approach was tested on the safety monitoring for Beijing Subway Line 1. The experimental results revealed the rules of parameter settings and also proved that the proposed approach is effective and efficient for automatic crack detection and classification. PMID:25325337

  12. Shapes formed by interacting cracks

    NASA Astrophysics Data System (ADS)

    Daniels, Karen

    2012-02-01

    Brittle failure through multiple cracks occurs in a wide variety of contexts, from microscopic failures in dental enamel and cleaved silicon to geological faults and planetary ice crusts. In each of these situations, with complicated stress geometries and different microscopic mechanisms, pairwise interactions between approaching cracks nonetheless produce characteristically curved fracture paths. We investigate the origins of this widely observed ``en passant'' crack pattern by fracturing a rectangular slab which is notched on each long side and subjected to quasi-static uniaxial strain from the short side. The two cracks propagate along approximately straight paths until they pass each other, after which they curve and release a lens-shaped fragment. We find that, for materials with diverse mechanical properties, each curve has an approximately square-root shape, and that the length of each fragment is twice its width. We are able to explain the origins of this universal shape with a simple geometrical model.

  13. Cold Cracking During Direct-Chill Casting

    NASA Astrophysics Data System (ADS)

    Eskin, D. G.; Lalpoor, M.; Katgerman, L.

    Cold cracking phenomenon is the least studied, yet very important defect occurring during direct chill casting. The spontaneous nature of this defect makes its systematic study almost impossible, and the computer simulation of the thermomechanical behavior of the ingot during its cooling after the end of solidification requires constitutive parameters of high-strength aluminum alloys in the as-cast condition, which are not readily available. In this paper we describe constitutive behavior of high strength 7xxx series aluminum alloys in the as-cast condition based on experimentally measured tensile properties at different strain rates and temperatures, plane strain fracture toughness at different temperatures, and thermal contraction. In addition, fracture and structure of the specimens and real cold-cracked billets are examined. As a result a fracture-mechanics-based criterion of cold cracking is suggested based on the critical crack length, and is validated upon pilot-scale billet casting.

  14. Flaw growth of 7075, 7475, 7050 and 7049 aluminum alloy plate in stress corrosion environments: 4-year marine atmosphere results

    NASA Technical Reports Server (NTRS)

    Hasse, K. R.; Dorward, R. C.

    1981-01-01

    After nearly 53 months of exposure to marine atmosphere, crack growth in SL DCB specimens from 7075, 7475, 7050, and 7049-T7X plate has slowed to the arbitrary 10 to the -10 power m/sec used to define threshold stress intensity. Because some specimens appear to be approaching crack arrest, the importance of self-loading from corrosion product wedging as a significant driving force for crack propagation in overaged materials is questioned. Crack length-time data were analyzed using a computer curve fitting program which minimized the effects of normal data scatter, and provided a clearer picture of material performance. Precracked specimen data are supported by the results of smooth specimen tests. Transgranular stress corrosion cracking was observed in TL DCB specimens from all four alloys. This process is extremely slow and is characterized by a striated surface morphology.

  15. High-temperature tensile-hold crack-growth behavior of HASTELLOY® X alloy compared to HAYNES® 188 and HAYNES® 230® alloys

    NASA Astrophysics Data System (ADS)

    Lee, S. Y.; Lu, Y. L.; Liaw, P. K.; Choo, H.; Thompson, S. A.; Blust, J. W.; Browning, P. F.; Bhattacharya, A. K.; Aurrecoechea, J. M.; Klarstrom, D. L.

    2008-03-01

    The creep-fatigue crack-growth tests of HASTELLOY® X alloy were carried out at the temperatures of 649°C, 816°C, and 927°C in laboratory air. The experiments were conducted under a constant stress-intensity-factor-range (Δ K) control mode with a R-ratio of 0.05. In the constant Δ K tests, a Δ K of 27.5 MPa sqrt{m} and a triangular waveform with a frequency of 0.333 Hz were used. Various tensile hold times at the maximum load were imposed to study fatigue and creep-fatigue interactions. Crack lengths were measured by a direct current potential drop method. In this paper, effects of hold time and temperature on the crack-growth rates are discussed. Furthermore, the crack-growth rates of the HASTELLOY® X alloy are compared to those of the HAYNES® 188 and HAYNES® 230® superalloys.

  16. Bridge Crack Detection Using Multi-Rotary Uav and Object-Base Image Analysis

    NASA Astrophysics Data System (ADS)

    Rau, J. Y.; Hsiao, K. W.; Jhan, J. P.; Wang, S. H.; Fang, W. C.; Wang, J. L.

    2017-08-01

    Bridge is an important infrastructure for human life. Thus, the bridge safety monitoring and maintaining is an important issue to the government. Conventionally, bridge inspection were conducted by human in-situ visual examination. This procedure sometimes require under bridge inspection vehicle or climbing under the bridge personally. Thus, its cost and risk is high as well as labor intensive and time consuming. Particularly, its documentation procedure is subjective without 3D spatial information. In order cope with these challenges, this paper propose the use of a multi-rotary UAV that equipped with a SONY A7r2 high resolution digital camera, 50 mm fixed focus length lens, 135 degrees up-down rotating gimbal. The target bridge contains three spans with a total of 60 meters long, 20 meters width and 8 meters height above the water level. In the end, we took about 10,000 images, but some of them were acquired by hand held method taken on the ground using a pole with 2-8 meters long. Those images were processed by Agisoft PhotoscanPro to obtain exterior and interior orientation parameters. A local coordinate system was defined by using 12 ground control points measured by a total station. After triangulation and camera self-calibration, the RMS of control points is less than 3 cm. A 3D CAD model that describe the bridge surface geometry was manually measured by PhotoscanPro. They were composed of planar polygons and will be used for searching related UAV images. Additionally, a photorealistic 3D model can be produced for 3D visualization. In order to detect cracks on the bridge surface, we utilize object-based image analysis (OBIA) technique to segment the image into objects. Later, we derive several object features, such as density, area/bounding box ratio, length/width ratio, length, etc. Then, we can setup a classification rule set to distinguish cracks. Further, we apply semi-global-matching (SGM) to obtain 3D crack information and based on image scale we can calculate the width of a crack object. For spalling volume calculation, we also apply SGM to obtain dense surface geometry. Assuming the background is a planar surface, we can fit a planar function and convert the surface geometry into a DSM. Thus, for spalling area its height will be lower than the plane and its value will be negative. We can thus apply several image processing technique to segment the spalling area and calculate the spalling volume as well. For bridge inspection and UAV image management within a laboratory, we develop a graphic user interface. The major functions include crack auto-detection using OBIA, crack editing, i.e. delete and add cracks, crack attributing, 3D crack visualization, spalling area/volume calculation, bridge defects documentation, etc.

  17. Influence of surrounding environment on subcritical crack growth in marble

    NASA Astrophysics Data System (ADS)

    Nara, Yoshitaka; Kashiwaya, Koki; Nishida, Yuki; , Toshinori, Ii

    2017-06-01

    Understanding subcritical crack growth in rock is essential for determining appropriate measures to ensure the long-term integrity of rock masses surrounding structures and for construction from rock material. In this study, subcritical crack growth in marble was investigated experimentally, focusing on the influence of the surrounding environment on the relationship between the crack velocity and stress intensity factor. The crack velocity increased with increasing temperature and/or relative humidity. In all cases, the crack velocity increased with increasing stress intensity factor. However, for Carrara marble (CM) in air, we observed a region in which the crack velocity still increased with temperature, but the increase in the crack velocity with increasing stress intensity factor was not significant. This is similar to Region II of subcritical crack growth observed in glass in air. Region II in glass is controlled by mass transport to the crack tip. In the case of rock, the transport of water to the crack tip is important. In general, Region II is not observed for subcritical crack growth in rock materials, because rocks contain water. Because the porosity of CM is very low, the amount of water contained in the marble is also very small. Therefore, our results imply that we observed Region II in CM. Because the crack velocity increased in both water and air with increasing temperature and humidity, we concluded that dry conditions at low temperature are desirable for the long-term integrity of a carbonate rock mass. Additionally, mass transport to the crack tip is an important process for subcritical crack growth in rock with low porosity.

  18. Fracture of a composite reinforced by unidirectional fibers

    NASA Astrophysics Data System (ADS)

    Hasanov, F. F.

    2014-11-01

    An elastic medium weakened by a periodic system of circular holes filled with homogeneous elastic fibers whose surface is coated with a homogeneous film is considered. A fracture model for a medium with a periodic structure is proposed, which is based on an analysis of the fracture zone near the crack tip. It is assumed that the fracture zone is a layer of finite length containing a material with partially broken bonds between separate structural elements (end zone). The fracture zone is considered as part of the crack. The bonds between crack faces in the end zone are modeled by applying the cohesive forces caused by the presence of bonds to the crack surface. An analysis of the limit equilibrium of shear cracks in the end zone of the model is performed on the basis of a nonlocal fracture criterion together with a force condition for the motion of crack tip and a deformation condition for determining the motion of faces of end-zone cracks. In the analysis, relationships between the cohesive forces and the shear of crack faces are established, the stress state near the crack is assessed with account of external loading, cohesive forces, and fiber arrangement, and the critical external loads as functions of geometric parameters of the composite are determined.

  19. Networks of channels for self-healing composite materials

    NASA Astrophysics Data System (ADS)

    Bejan, A.; Lorente, S.; Wang, K.-M.

    2006-08-01

    This is a fundamental study of how to vascularize a self-healing composite material so that healing fluid reaches all the crack sites that may occur randomly through the material. The network of channels is built into the material and is filled with pressurized healing fluid. When a crack forms, the pressure drops at the crack site and fluid flows from the network into the crack. The objective is to discover the network configuration that is capable of delivering fluid to all the cracks the fastest. The crack site dimension and the total volume of the channels are fixed. It is argued that the network must be configured as a grid and not as a tree. Two classes of grids are considered and optimized: (i) grids with one channel diameter and regular polygonal loops (square, triangle, hexagon) and (ii) grids with two channel sizes. The best architecture of type (i) is the grid with triangular loops. The best architecture of type (ii) has a particular (optimal) ratio of diameters that departs from 1 as the crack length scale becomes smaller than the global scale of the vascularized structure from which the crack draws its healing fluid. The optimization of the ratio of channel diameters cuts in half the time of fluid delivery to the crack.

  20. Recrystallization-Induced Surface Cracks of Carbon Ions Irradiated 6H-SiC after Annealing.

    PubMed

    Ye, Chao; Ran, Guang; Zhou, Wei; Shen, Qiang; Feng, Qijie; Lin, Jianxin

    2017-10-25

    Single crystal 6H-SiC wafers with 4° off-axis [0001] orientation were irradiated with carbon ions and then annealed at 900 °C for different time periods. The microstructure and surface morphology of these samples were investigated by grazing incidence X-ray diffraction (GIXRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Ion irradiation induced SiC amorphization, but the surface was smooth and did not have special structures. During the annealing process, the amorphous SiC was recrystallized to form columnar crystals that had a large amount of twin structures. The longer the annealing time was, the greater the amount of recrystallized SiC would be. The recrystallization volume fraction was accorded with the law of the Johnson-Mehl-Avrami equation. The surface morphology consisted of tiny pieces with an average width of approximately 30 nm in the annealed SiC. The volume shrinkage of irradiated SiC layer and the anisotropy of newly born crystals during annealing process produced internal stress and then induced not only a large number of dislocation walls in the non-irradiated layer but also the initiation and propagation of the cracks. The direction of dislocation walls was perpendicular to the growth direction of the columnar crystal. The longer the annealing time was, the larger the length and width of the formed crack would be. A quantitative model of the crack growth was provided to calculate the length and width of the cracks at a given annealing time.

  1. Growth Kinematics of Opening-Mode Fractures

    NASA Astrophysics Data System (ADS)

    Eichhubl, P.; Alzayer, Y.; Laubach, S.; Fall, A.

    2014-12-01

    Fracture aperture is a primary control on flow in fractured reservoirs of low matrix permeability including unconventional oil and gas reservoirs and most geothermal systems. Guided by principles of linear elastic fracture mechanics, fracture aperture is generally assumed to be a linear function of fracture length and elastic material properties. Natural opening-mode fractures with significant preserved aperture are observed in core and outcrop indicative of fracture opening strain accommodated by permanent solution-precipitation creep. Fracture opening may thus be decoupled from length growth if the material effectively weakens after initial elastic fracture growth by either non-elastic deformation processes or changes in elastic properties. To investigate the kinematics of fracture length and aperture growth, we reconstructed the opening history of three opening-mode fractures that are bridged by crack-seal quartz cement in Travis Peak Sandstone of the SFOT-1 well, East Texas. Similar crack-seal cement bridges had been interpreted to form by repeated incremental fracture opening and subsequent precipitation of quartz cement. We imaged crack-seal cement textures for bridges sampled at varying distance from the tips using scanning electron microscope cathodoluminescence, and determined the number and thickness of crack-seal cement increments as a function of position along the fracture length and height. Observed trends in increment number and thickness are consistent with an initial stage of fast fracture propagation relative to aperture growth, followed by a stage of slow propagation and pronounced aperture growth. Consistent with fluid inclusion observations indicative of fracture opening and propagation occurring over 30-40 m.y., we interpret the second phase of pronounced aperture growth to result from fracture opening strain accommodated by solution-precipitation creep and concurrent slow, possibly subcritical, fracture propagation. Similar deformation mechanisms are envisioned to govern fracture growth over shorter timescales in reactive chemical subsurface environments including CO2 reservoirs, organic-rich shales, and geothermal systems.

  2. Probabilistic finite elements for fracture mechanics

    NASA Technical Reports Server (NTRS)

    Besterfield, Glen

    1988-01-01

    The probabilistic finite element method (PFEM) is developed for probabilistic fracture mechanics (PFM). A finite element which has the near crack-tip singular strain embedded in the element is used. Probabilistic distributions, such as expectation, covariance and correlation stress intensity factors, are calculated for random load, random material and random crack length. The method is computationally quite efficient and can be expected to determine the probability of fracture or reliability.

  3. A comparison of Probability Of Detection (POD) data determined using different statistical methods

    NASA Astrophysics Data System (ADS)

    Fahr, A.; Forsyth, D.; Bullock, M.

    1993-12-01

    Different statistical methods have been suggested for determining probability of detection (POD) data for nondestructive inspection (NDI) techniques. A comparative assessment of various methods of determining POD was conducted using results of three NDI methods obtained by inspecting actual aircraft engine compressor disks which contained service induced cracks. The study found that the POD and 95 percent confidence curves as a function of crack size as well as the 90/95 percent crack length vary depending on the statistical method used and the type of data. The distribution function as well as the parameter estimation procedure used for determining POD and the confidence bound must be included when referencing information such as the 90/95 percent crack length. The POD curves and confidence bounds determined using the range interval method are very dependent on information that is not from the inspection data. The maximum likelihood estimators (MLE) method does not require such information and the POD results are more reasonable. The log-logistic function appears to model POD of hit/miss data relatively well and is easy to implement. The log-normal distribution using MLE provides more realistic POD results and is the preferred method. Although it is more complicated and slower to calculate, it can be implemented on a common spreadsheet program.

  4. Multifractality analysis of crack images from indirect thermal drying of thin-film dewatered sludge

    NASA Astrophysics Data System (ADS)

    Wang, Weiyun; Li, Aimin; Zhang, Xiaomin; Yin, Yulei

    2011-07-01

    Crack formation is inevitable during sludge drying because of the existence of uneven thermal stress. Experiments have been conducted to study crack pattern formation in thin film sludge. Crack images show that the thinner the sewage sludge film, the more even the crack distribution. The crack changes from a flaky texture to a banded structure with increasing thickness. Multifractal methods are proposed to analyze the crack image of four different thicknesses of dried sludge. Several parameters are conducted for quantification of the crack image and the results indicate that the width of spectra increases with thicker sludge film, that is to say, nonunifromity of crack distribution increases with increasing thickness, which proves that the multifractal method is sensitive enough to quantify the crack distribution and can be seen as a new approach for the changing research of crack images of sewage sludge drying.

  5. Plates and shells containing a surface crack under general loading conditions

    NASA Technical Reports Server (NTRS)

    Joseph, Paul F.; Erdogan, Fazil

    1987-01-01

    Various through and part-through crack problems in plates and shells are considered. The line-spring model of Rice and Levy is generalized to the skew-symmetric case to solve surface crack problems involving mixed-mode, coplanar crack growth. Compliance functions are introduced which are valid for crack depth to thickness ratios at least up to .95. This includes expressions for tension and bending as well as expressions for in-plane shear, out-of-plane shear, and twisting. Transverse shear deformation is taken into account in the plate and shell theories and this effect is shown to be important in comparing stress intensity factors obtained from the plate theory with three-dimensional solutions. Stress intensity factors for cylinders obtained by the line-spring model also compare well with three-dimensional solution. By using the line-spring approach, stress intensity factors can be obtained for the through crack and for part-through crack of any crack front shape, without recalculation integrals that take up the bulk of the computer time. Therefore, parameter studies involving crack length, crack depth, shell type, and shell curvature are made in some detail. The results will be useful in brittle fracture and in fatigue crack propagation studies. All problems considered are of the mixed boundary value type and are reducted to strongly singular integral equations which make use of the finite-part integrals of Hadamard. The equations are solved numerically in a manner that is very efficient.

  6. Three-dimensional analysis of chevron-notched specimens by boundary integral method

    NASA Technical Reports Server (NTRS)

    Mendelson, A.; Ghosn, L.

    1983-01-01

    The chevron-notched short bar and short rod specimens was analyzed by the boundary integral equations method. This method makes use of boundary surface elements in obtaining the solution. The boundary integral models were composed of linear triangular and rectangular surface segments. Results were obtained for two specimens with width to thickness ratios of 1.45 and 2.00 and for different crack length to width ratios ranging from 0.4 to 0.7. Crack opening displacement and stress intensity factors determined from displacement calculations along the crack front and compliance calculations were compared with experimental values and with finite element analysis.

  7. Displacement coefficients along the inner boundaries of radially cracked ring segments subject to forces and couples

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1978-01-01

    Displacement results of plane boundary collocation analysis are given for various locations on the inner boundaries of radially cracked ring segments (C-shaped specimens) subject to two complementary types of loading. Results are presented for ratios of outer to inner radius in the range of 1.1 to 2.5 and ratios a/W in the range 0.1 to 0.8, where a is the crack length for a specimen of wall thickness W. By combination of these results the resultant displacement coefficient or the corresponding influence coefficient can be obtained for any practical load line location of a pin-loaded specimen.

  8. Fatigue pre-cracking and fracture toughness in polycrystalline tungsten and molybdenum

    NASA Astrophysics Data System (ADS)

    Taguchi, Katsuya; Nakadate, Kazuhito; Matsuo, Satoru; Tokunaga, Kazutoshi; Kurishita, Hiroaki

    2018-01-01

    Fatigue pre-cracking performance and fracture toughness in polycrystalline tungsten (W) and molybdenum (Mo) have been investigated in relation to grain boundary (GB) configuration with respect to the crack advance direction. Sub-sized, single edge notched bend (SENB) specimens with three different orientations, R-L (ASTM notation) for a forged Mo rod and L-S and T-S for a rolled W plate, were pre-cracked in two steps: fully uniaxial compression fatigue loading to provoke crack initiation and its stable growth from the notch root, and subsequent 3-point bend (3PB) fatigue loading to extend the crack. The latter step intends to minimize the influence of the residual tensile stresses generated during compression fatigue by moving the crack tip away from the plastic zone. It is shown that fatigue pre-cracking performance, especially pre-crack extension behavior, is significantly affected by the specimen orientation. The R-L orientation, giving the easiest cracking path, permitted crack extension completely beyond the plastic zone, while the L-S and T-S orientations with the thickness cracking direction of the rolled plate sustained the crack lengths around or possibly within the plastic zone size due to difficulty in crack advance through an aligned grain structure. Room temperature fracture toughness tests revealed that the 3PB fatigued specimens exhibited appreciably higher fracture toughness by about 30% for R-L, 40% for L-S and 60% for T-S than the specimens of each orientation pre-cracked by compression fatigue only. This indicates that 3PB fatigue provides the crack tip front out of the residual tensile stress zone by crack extension or leads to reduction in the residual stresses at the crack tip front. Strong dependence of fracture toughness on GB configuration was evident. The obtained fracture toughness values are compared with those in the literature and its strong GB configuration dependence is discussed in connection with the appearance of pop-in.

  9. Cohesive zone model for intergranular slow crack growth in ceramics: influence of the process and the microstructure

    NASA Astrophysics Data System (ADS)

    Romero de la Osa, M.; Estevez, R.; Olagnon, C.; Chevalier, J.; Tallaron, C.

    2011-10-01

    Ceramic polycrystals are prone to slow crack growth (SCG) which is stress and environmentally assisted, similarly to observations reported for silica glasses. The kinetics of fracture are known to be dependent on the load level, the temperature and the relative humidity. In addition, evidence is available on the influence of the microstructure on the SCG rate with an increase in the crack velocity with decreasing the grain size. Crack propagation takes place beyond a load threshold, which is grain size dependent. We present a cohesive zone model for the intergranular failure process. The methodology accounts for an intrinsic opening that governs the length of the cohesive zone and allows the investigation of grain size effects. A rate and temperature-dependent cohesive model is proposed (Romero de la Osa M, Estevez R et al 2009 J. Mech. Adv. Mater. Struct. 16 623-31) to mimic the reaction-rupture mechanism. The formulation is inspired by Michalske and Freiman's picture (Michalske and Freiman 1983 J. Am. Ceram. Soc. 66 284-8) together with a recent study by Zhu et al (2005 J. Mech. Phys. Solids 53 1597-623) of the reaction-rupture mechanism. The present investigation extends a previous work (Romero de la Osa et al 2009 Int. J. Fracture 158 157-67) in which the problem is formulated. Here, we explore the influence of the microstructure in terms of grain size, their elastic properties and residual thermal stresses originating from the cooling from the sintering temperature down to ambient conditions. Their influence on SCG for static loadings is reported and the predictions compared with experimental trends. We show that the initial stress state is responsible for the grain size dependence reported experimentally for SCG. Furthermore, the account for the initial stresses enables the prediction of a load threshold below which no crack growth is observed: a crack arrest takes place when the crack path meets a region in compression.

  10. Crack Instability Predictions Using a Multi-Term Approach

    NASA Technical Reports Server (NTRS)

    Zanganeh, Mohammad; Forman, Royce G.

    2015-01-01

    Present crack instability analysis for fracture critical flight hardware is normally performed using a single parameter, K(sub C), fracture toughness value obtained from standard ASTM 2D geometry test specimens made from the appropriate material. These specimens do not sufficiently match the boundary conditions and the elastic-plastic constraint characteristics of the hardware component, and also, the crack instability of most commonly used aircraft and aerospace structural materials have some amount of stable crack growth before fracture which makes the normal use of a K(sub C) single parameter toughness value highly approximate. In the past, extensive studies have been conducted to improve the single parameter (K or J controlled) approaches by introducing parameters accounting for the geometry or in-plane constraint effects. Using 'J-integral' and 'A' parameter as a measure of constraint is one of the most accurate elastic-plastic crack solutions currently available. In this work the feasibility of the J-A approach for prediction of the crack instability was investigated first by ignoring the effects of stable crack growth i.e. using a critical J and A and second by considering the effects of stable crack growth using the corrected J-delta a using the 'A' parameter. A broad range of initial crack lengths and a wide range of specimen geometries including C(T), M(T), ESE(T), SE(T), Double Edge Crack (DEC), Three-Hole-Tension (THT) and NC (crack from a notch) manufactured from Al7075 were studied. Improvements in crack instability predictions were observed compared to the other methods available in the literature.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Michael J.

    The Hydrogen Fracture Toughness Tester (HFTT) is a mechanical testing machine designed for conducting fracture mechanics tests on materials in high-pressure hydrogen gas. The tester is needed for evaluating the effects of hydrogen on the cracking properties of tritium reservoir materials. It consists of an Instron Model 8862 Electromechanical Test Frame; an Autoclave Engineering Pressure Vessel, an Electric Potential Drop Crack Length Measurement System, associated computer control and data acquisition systems, and a high-pressure hydrogen gas manifold and handling system.

  12. Durable Hybrid Coatings Annual Performance Report (2009)

    DTIC Science & Technology

    2009-10-01

    results based on lengths of cracks on different topcoat/primer combinations. Non- topcoated High gloss Low gloss White enamel 0 5 10 15 20 25 30...SR-285, showed extensive cracking and delamination upon cure and, thus, were eliminated from further investigation. Figure 3.15 shows the viscosity...solids polyurethane gloss enamel (AKZO NOBEL 646-58-7925 with AKZO NOBEL X- 501 curing component) and a Mg-rich primer developed at NDSU.16 In this

  13. Analysis of acoustic emission cumulative signal strength of steel fibre reinforced concrete (SFRC) beams strengthened with carbon fibre reinforced polymer (CFRP)

    NASA Astrophysics Data System (ADS)

    Abdul Hakeem, Z.; Noorsuhada, M. N.; Azmi, I.; Noor Syafeekha, M. S.; Soffian Noor, M. S.

    2017-12-01

    In this study, steel fibre reinforced concrete (SFRC) beams strengthened with carbon fibre reinforced polymer (CFRP) were investigated using acoustic emission (AE) technique. Three beams with dimension of 150 mm width, 200 mm depth and 1500 mm length were fabricated. The results generated from AE parameters were analysed as well as signal strength and cumulative signal strength. Three relationships were produced namely load versus deflection, signal strength versus time and cumulative signal strength with respect to time. Each relationship indicates significant physical behaviour as the crack propagated in the beams. It is found that an addition of steel fibre in the concrete mix and strengthening of CFRP increase the ultimate load of the beam and the activity of signal strength. Moreover, the highest signal strength generated can be identified. From the study, the occurrence of crack in the beam can be predicted using AE signal strength.

  14. Comparison of fatigue crack growth of riveted and bonded aircraft lap joints made of Aluminium alloy 2024-T3 substrates - A numerical study

    NASA Astrophysics Data System (ADS)

    Pitta, S.; Rojas, J. I.; Crespo, D.

    2017-05-01

    Aircraft lap joints play an important role in minimizing the operational cost of airlines. Hence, airlines pay more attention to these technologies to improve efficiency. Namely, a major time consuming and costly process is maintenance of aircraft between the flights, for instance, to detect early formation of cracks, monitoring crack growth, and fixing the corresponding parts with joints, if necessary. This work is focused on the study of repairs of cracked aluminium alloy (AA) 2024-T3 plates to regain their original strength; particularly, cracked AA 2024-T3 substrate plates repaired with doublers of AA 2024-T3 with two configurations (riveted and with adhesive bonding) are analysed. The fatigue life of the substrate plates with cracks of 1, 2, 5, 10 and 12.7mm is computed using Fracture Analysis 3D (FRANC3D) tool. The stress intensity factors for the repaired AA 2024-T3 plates are computed for different crack lengths and compared using commercial FEA tool ABAQUS. The results for the bonded repairs showed significantly lower stress intensity factors compared with the riveted repairs. This improves the overall fatigue life of the bonded joint.

  15. Effect of Measured Welding Residual Stresses on Crack Growth

    NASA Technical Reports Server (NTRS)

    Hampton, Roy W.; Nelson, Drew; Doty, Laura W. (Technical Monitor)

    1998-01-01

    Welding residual stresses in thin plate A516-70 steel and 2219-T87 aluminum butt weldments were measured by the strain-gage hole drilling and X-ray diffraction methods. The residual stress data were used to construct 3D strain fields which were modeled as thermally induced strains. These 3D strain fields were then analyzed with the WARP31) FEM fracture analysis code in order to predict their effect on fatigue and on fracture. For analyses of fatigue crack advance and subsequent verification testing, fatigue crack growth increments were simulated by successive saw-cuts and incremental loading to generate, as a function of crack length, effects on crack growth of the interaction between residual stresses and load induced stresses. The specimen experimental response was characterized and compared to the WARM linear elastic and elastic-plastic fracture mechanics analysis predictions. To perform the fracture analysis, the plate material's crack tearing resistance was determined by tests of thin plate M(T) specimens. Fracture analyses of these specimen were performed using WARP31D to determine the critical Crack Tip Opening Angle [CTOA] of each material. These critical CTOA values were used to predict crack tearing and fracture in the weldments. To verify the fracture predictions, weldment M(T) specimen were tested in monotonic loading to fracture while characterizing the fracture process.

  16. Crack Extension and Possibility of Debonding in Encapsulation-Based Self-Healing Materials.

    PubMed

    Li, Wenting; Jiang, Zhengwu; Yang, Zhenghong

    2017-05-27

    The breakage of capsules upon crack propagation is crucial for achieving crack healing in encapsulation-based self-healing materials. A mesomechanical model was developed in this study to simulate the process of crack propagation in a matrix and the potential of debonding. The model used the extended finite element method (XFEM) combined with a cohesive zone model (CZM) in a two-dimensional (2D) configuration. The configuration consisted of an infinite matrix with an embedded crack and a capsule nearby, all subjected to a uniaxial remote tensile load. A parametric study was performed to investigate the effect of geometry, elastic parameters and fracture properties on the fracture response of the system. The results indicated that the effect of the capsule wall on the fracture behavior of the matrix is insignificant for t c / R c ≤ 0.05. The matrix strength influenced the ultimate crack length, while the Young's modulus ratio E c / E m only affected the rate of crack propagation. The potential for capsule breakage or debonding was dependent on the comparative strength between capsule and interface (S c /S int ), provided the crack could reach the capsule. The critical value of S c ,cr /S int,cr was obtained using this model for materials design.

  17. Stress-Dependent Matrix Cracking in 2D Woven SiC-Fiber Reinforced Melt-Infiltrated SiC Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2003-01-01

    The matrix cracking of a variety of SiC/SiC composites has been characterized for a wide range of constituent variation. These composites were fabricated by the 2-dimensional lay-up of 0/90 five-harness satin fabric consisting of Sylramic fiber tows that were then chemical vapor infiltrated (CVI) with BN, CVI with SiC, slurry infiltrated with SiC particles followed by molten infiltration of Si. The composites varied in number of plies, the number of tows per length, thickness, and the size of the tows. This resulted in composites with a fiber volume fraction in the loading direction that ranged from 0.12 to 0.20. Matrix cracking was monitored with modal acoustic emission in order to estimate the stress-dependent distribution of matrix cracks. It was found that the general matrix crack properties of this system could be fairly well characterized by assuming that no matrix cracks originated in the load-bearing fiber, interphase, chemical vapor infiltrated Sic tow-minicomposites, i.e., all matrix cracks originate in the 90 degree tow-minicomposites or the large unreinforced Sic-Si matrix regions. Also, it was determined that the larger tow size composites had a much narrower stress range for matrix cracking compared to the standard tow size composites.

  18. Validation of the Two-Parameter-Fracture Criterion for Various Crack Configurations Made of 2014-T6 (TL) Aluminum Alloy Using Finite Element Fracture Simulations

    NASA Astrophysics Data System (ADS)

    McQuilkin, Martin

    The Two-Parameter- Fracture-Criterion (TPFC) was validated using an elastic-plastic two-dimensional (2D) finite-element code, ZIP2D, with the plane-strain- core concept. Fracture simulations were performed on three crack configurations: (1) middle-crack-tension, M(T), (2) single-edge- crack-tension, SE(T), and (3) single-edge crack-bend, SE(B), specimens. They were made of 2014-T6 (TL) aluminum alloy. Fracture test data from Thomas Orange work (NASA) were only available on M(T) specimens (one-half width, w = 1.5 to 6 in.) and they were all tested at cryogenic (-320 o F) temperature. All crack configurations were analysed over a very wide range of widths (w = 0.75 to 24 in.) and crack-length- to-width ratios ranged from 0.2 to 0.8. The TPFC was shown to fit the simulated fracture data fairly well (within 6.5%) for all crack configurations for net-section stresses less than the material proportional limit. For M(T) specimens, a simple approximation was shown to work well for net-section stresses greater than the proportional limit. Further study is needed for net-section stresses greater than the proportional limit for the SE(T) and SE(B) specimens.

  19. Remote monitoring and prognosis of fatigue cracking in steel bridges with acoustic emission

    NASA Astrophysics Data System (ADS)

    Yu, Jianguo Peter; Ziehl, Paul; Pollock, Adrian

    2011-04-01

    Acoustic emission (AE) monitoring is desirable to nondestructively detect fatigue damage in steel bridges. Investigations of the relationship between AE signals and crack growth behavior are of paramount importance prior to the widespread application of passive piezoelectric sensing for monitoring of fatigue crack propagation in steel bridges. Tests have been performed to detect AE from fatigue cracks in A572G50 steel. Noise induced AE signals were filtered based on friction emission tests, loading pattern, and a combined approach involving Swansong II filters and investigation of waveforms. The filtering methods based on friction emission tests and load pattern are of interest to the field evaluation using sparse datasets. The combined approach is suitable for data filtering and interpretation of actual field tests. The pattern recognition program NOESIS (Envirocoustics) was utilized for the evaluation of AE data quality. AE parameters are associated with crack length, crack growth rate, maximum stress intensity and stress intensity range. It is shown that AE hits, counts, absolute energy, and signal strength are able to provide warnings at the critical cracking level where cracking progresses from stage II (stable propagation) to stage III (unstable propagation which may result in failure). Absolute energy rate and signal strength rate may be better than count rate to assess the remaining fatigue life of inservice steel bridges.

  20. Does an inter-flaw length control the accuracy of rupture forecasting in geological materials?

    NASA Astrophysics Data System (ADS)

    Vasseur, Jérémie; Wadsworth, Fabian B.; Heap, Michael J.; Main, Ian G.; Lavallée, Yan; Dingwell, Donald B.

    2017-10-01

    Multi-scale failure of porous materials is an important phenomenon in nature and in material physics - from controlled laboratory tests to rockbursts, landslides, volcanic eruptions and earthquakes. A key unsolved research question is how to accurately forecast the time of system-sized catastrophic failure, based on observations of precursory events such as acoustic emissions (AE) in laboratory samples, or, on a larger scale, small earthquakes. Until now, the length scale associated with precursory events has not been well quantified, resulting in forecasting tools that are often unreliable. Here we test the hypothesis that the accuracy of the forecast failure time depends on the inter-flaw distance in the starting material. We use new experimental datasets for the deformation of porous materials to infer the critical crack length at failure from a static damage mechanics model. The style of acceleration of AE rate prior to failure, and the accuracy of forecast failure time, both depend on whether the cracks can span the inter-flaw length or not. A smooth inverse power-law acceleration of AE rate to failure, and an accurate forecast, occurs when the cracks are sufficiently long to bridge pore spaces. When this is not the case, the predicted failure time is much less accurate and failure is preceded by an exponential AE rate trend. Finally, we provide a quantitative and pragmatic correction for the systematic error in the forecast failure time, valid for structurally isotropic porous materials, which could be tested against larger-scale natural failure events, with suitable scaling for the relevant inter-flaw distances.

  1. The detection of fatigue cracks by nondestructive testing methods

    NASA Technical Reports Server (NTRS)

    Rummel, W. D.; Todd, P. H., Jr.; Frecska, S. A.; Rathke, R. A.

    1974-01-01

    X-radiographic penetrant, ultrasonic, eddy current, holographic, and acoustic emission techniques were optimized and applied to the evaluation of 2219-T87 aluminum alloy test specimens. One hundred eighteen specimens containing a total of 328 fatigue cracks were evaluated. The cracks ranged in length from 0.500 inch (1.27 cm) to 0.007 inch (0.018 cm) and in depth from 0.178 inch (0.451 cm) and 0.001 inch (0.003 cm). Specimen thicknesses were nominally 0.060 inch (0.152 cm) and 0.210 inch (0.532 cm) and surface finishes were nominally 32 and 125 rms and 64 and 200 rms respectively. Specimens were evaluated in the as-milled surface condition, in the chemically milled surface condition and, after proof loading, in a randomized inspection sequence. Results of the nondestructive test (NDT) evaluations were compared with actual crack size obtained by measurement of the fractured specimens. Inspection data was then analyzed to provide a statistical basis for determinating the threshold crack detection sensitivity (the largest crack size that would be missed) for each of the inspection techniques at a 95% probability and 95% confidence level.

  2. Study of fatigue crack propagation in Ti-1Al-1Mn based on the calculation of cold work evolution

    NASA Astrophysics Data System (ADS)

    Plekhov, O. A.; Kostina, A. A.

    2017-05-01

    The work proposes a numerical method for lifetime assessment for metallic materials based on consideration of energy balance at crack tip. This method is based on the evaluation of the stored energy value per loading cycle. To calculate the stored and dissipated parts of deformation energy an elasto-plastic phenomenological model of energy balance in metals under the deformation and failure processes was proposed. The key point of the model is strain-type internal variable describing the stored energy process. This parameter is introduced based of the statistical description of defect evolution in metals as a second-order tensor and has a meaning of an additional strain due to the initiation and growth of the defects. The fatigue crack rate was calculated in a framework of a stationary crack approach (several loading cycles for every crack length was considered to estimate the energy balance at crack tip). The application of the proposed algorithm is illustrated by the calculation of the lifetime of the Ti-1Al-1Mn compact tension specimen under cyclic loading.

  3. A dynamic model of a cantilever beam with a closed, embedded horizontal crack including local flexibilities at crack tips

    NASA Astrophysics Data System (ADS)

    Liu, J.; Zhu, W. D.; Charalambides, P. G.; Shao, Y. M.; Xu, Y. F.; Fang, X. M.

    2016-11-01

    As one of major failure modes of mechanical structures subjected to periodic loads, embedded cracks due to fatigue can cause catastrophic failure of machineries. Understanding the dynamic characteristics of a structure with an embedded crack is helpful for early crack detection and diagnosis. In this work, a new three-segment beam model with local flexibilities at crack tips is developed to investigate the vibration of a cantilever beam with a closed, fully embedded horizontal crack, which is assumed to be not located at its clamped or free end or distributed near its top or bottom side. The three-segment beam model is assumed to be a linear elastic system, and it does not account for the nonlinear crack closure effect; the top and bottom segments always stay in contact at their interface during the beam vibration. It can model the effects of local deformations in the vicinity of the crack tips, which cannot be captured by previous methods in the literature. The middle segment of the beam containing the crack is modeled by a mechanically consistent, reduced bending moment. Each beam segment is assumed to be an Euler-Bernoulli beam, and the compliances at the crack tips are analytically determined using a J-integral approach and verified using commercial finite element software. Using compatibility conditions at the crack tips and the transfer matrix method, the nature frequencies and mode shapes of the cracked cantilever beam are obtained. The three-segment beam model is used to investigate the effects of local flexibilities at crack tips on the first three natural frequencies and mode shapes of the cracked cantilever beam. A stationary wavelet transform (SWT) method is used to process the mode shapes of the cracked cantilever beam; jumps in single-level SWT decomposition detail coefficients can be used to identify the length and location of an embedded horizontal crack.

  4. Investigation on the Cracking Character of Jointed Rock Mass Beneath TBM Disc Cutter

    NASA Astrophysics Data System (ADS)

    Yang, Haiqing; Liu, Junfeng; Liu, Bolong

    2018-04-01

    With the purpose to investigate the influence of joint dip angle and spacing on the TBM rock-breaking efficacy and cracking behaviour, experiments that include miniature cutter head tests are carried out on sandstone rock material. In the experiment, prefabricated joints of different forms are made in rock samples. Then theoretical analysis is conducted to improve the calculating models of the fractured work and crack length of rock in the TBM process. The experimental results indicate that lower rupture angles appear for specimens with joint dip angles between 45° and 60°. Meanwhile, rock-breaking efficacy for rock mass with joint dip angles in this interval is also higher. Besides, the fracture patterns are transformed from compressive shear mode to tensile shear mode as the joint spacing decreases. As a result, failure in a greater extent is resulted for specimens with smaller joint spacings. The results above suggest that joint dip angle between 45° and 60° and joint spacing of 1 cm are the optimal rock-breaking conditions for the tested specimens. Combining the present experimental data and taking the joint dip angle and spacing into consideration, the calculating model for rock fractured work that proposed by previous scholars is improved. Finally, theoretical solution of rock median and side crack length is also derived based on the analytical method of elastoplastic invasion fracture for indenter. The result of the analytical solution is also in good agreement with the actual measured experimental result. The present study may provide some primary knowledge about the rock cracking character and breaking efficacy under different engineering conditions.

  5. Influence of leucite content on slow crack growth of dental porcelains.

    PubMed

    Cesar, Paulo F; Soki, Fabiana N; Yoshimura, Humberto N; Gonzaga, Carla C; Styopkin, Victor

    2008-08-01

    To determine the stress corrosion susceptibility coefficient, n, of seven dental porcelains (A: Ceramco I; B: Ceramco-II; C: Ceramco-III; D: d.Sign; E: Cerabien; F: Vitadur-Alpha; and G: Ultropaline) after aging in air or artificial saliva, and correlate results with leucite content (LC). Bars were fired according to manufacturers' instructions and polished before induction of cracks by a Vickers indenter (19.6N, 20s). Four specimens were stored in air/room temperature, and three in saliva/37 degrees C. Five indentations were made per specimen and crack lengths measured at the following times: approximately 0; 1; 3; 10; 30; 100; 300; 1000 and 3000 h. The stress corrosion coefficient n was calculated by linear regression analysis after plotting crack length as a function of time, considering that the slope of the curve was [2/(3n+2)]. Microstructural analysis was performed to determine LC. LC of the porcelains were 22% (A and B); 6% (C); 15% (D); 0% (E and F); and 13% (G). Except for porcelains A and D, all materials showed a decrease in their n values when stored in artificial saliva. However, the decrease was more pronounced for porcelains B, F, and G. Ranking of materials varied according to storage media (in air, porcelain G showed higher n compared to A, while in saliva both showed similar coefficients). No correlation was found between n values and LC in air or saliva. Storage media influenced the n value obtained for most of the materials. LC did not affect resistance to slow crack growth regardless of the test environment.

  6. Recrystallization-Induced Surface Cracks of Carbon Ions Irradiated 6H-SiC after Annealing

    PubMed Central

    Ye, Chao; Ran, Guang; Zhou, Wei; Shen, Qiang; Feng, Qijie; Lin, Jianxin

    2017-01-01

    Single crystal 6H-SiC wafers with 4° off-axis [0001] orientation were irradiated with carbon ions and then annealed at 900 °C for different time periods. The microstructure and surface morphology of these samples were investigated by grazing incidence X-ray diffraction (GIXRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Ion irradiation induced SiC amorphization, but the surface was smooth and did not have special structures. During the annealing process, the amorphous SiC was recrystallized to form columnar crystals that had a large amount of twin structures. The longer the annealing time was, the greater the amount of recrystallized SiC would be. The recrystallization volume fraction was accorded with the law of the Johnson–Mehl–Avrami equation. The surface morphology consisted of tiny pieces with an average width of approximately 30 nm in the annealed SiC. The volume shrinkage of irradiated SiC layer and the anisotropy of newly born crystals during annealing process produced internal stress and then induced not only a large number of dislocation walls in the non-irradiated layer but also the initiation and propagation of the cracks. The direction of dislocation walls was perpendicular to the growth direction of the columnar crystal. The longer the annealing time was, the larger the length and width of the formed crack would be. A quantitative model of the crack growth was provided to calculate the length and width of the cracks at a given annealing time. PMID:29068408

  7. Quasi-Brittle Fracture of Compact Specimens with Sharp Notches and U-Shaped Cuts

    NASA Astrophysics Data System (ADS)

    Kornev, V. M.; Demeshkin, A. G.

    2018-01-01

    A two-parameter (coupled) discrete-integral criterion of fracture is proposed. It can be used to construct fracture diagrams for compact specimens with sharp cracks. Curves separating the stress-crack length plane into three domains are plotted. These domains correspond to the absence of fracture, damage accumulation in the pre-fracture region under repeated loading, and specimen fragmentation under monotonic loading. Constants used for the analytical description of fracture diagrams for quasi-brittle materials with cracks are selected with the use of approximation of the classical stress-strain diagrams for the initial material and the critical stress intensity factor. Predictions of the proposed theory are compared with experimental results on fracture of compact specimens with different radii made of polymethylmethacrylate (PMMA) and solid rubber with crack-type effects in the form of U-shaped cuts.

  8. A comparison of constant-load and constant-deflection stress-corrosion tests on precracked DCB specimens. [Double Cantilever Beam

    NASA Technical Reports Server (NTRS)

    Dorward, R. C.; Hasse, K. R.

    1978-01-01

    A comparison is made between measurements of stress-corrosion crack propagation made by a constant-load procedure and by a constant-deflection procedure. Precracked double cantilever beam specimens from 7075 aluminum alloy plate were used. The specimens were oriented in such a way that cracking would begin in the short-transverse plane and would propagate in the rolling direction. The specimens were subjected to a buffered salt-chromate solution and a 3.6% synthetic sea salt solution. The measurements were made optically with a binocular microscope. Stress intensities and crack lengths were calculated and crack velocities were obtained. Velocity was plotted against the average calculated stress intensity. Good agreement between the two methods was found for the salt-chromate solution, although some descrepancies were noted for the artificial sea salt solution.

  9. Vibrations Caused By Cracked Turbopump Bearing Race

    NASA Technical Reports Server (NTRS)

    Goggin, David G.; Dweck, Robert A.

    1990-01-01

    Expansion gives rise to eccentricity. Report presents analysis of dynamic effects caused by cracking of inner race of ball bearing in turbopump. Crack manifested itself via increase in vibrations synchronous with rotation and smaller increase at twice frequency of rotation. Analysis conducted to verify these increases were caused solely by crack and to understand implications for future such cracks.

  10. Some remarks on elastic crack-tip stress fields.

    NASA Technical Reports Server (NTRS)

    Rice, J. R.

    1972-01-01

    It is shown that if the displacement field and stress intensity factor are known as functions of crack length for any symmetrical load system acting on a linear elastic body in plane strain, then the stress intensity factor for any other symmetrical load system whatsoever on the same body may be directly determined. The result is closely related to Bueckner's (1970) weight function, through which the stress intensity factor is expressed as a sum of work-like products between applied forces and values of the weight function at their points of application. An example of the method is given wherein the solution for a crack in a remotely uniform stress field is used to generate the expression for the stress intensity factor due to an arbitrary traction distribution on the faces of a crack. A corresponding theory is developed in an appendix for three-dimensional crack problems, although this appears to be directly useful chiefly for problems in which there is axial symmetry.

  11. Finite element analysis-based study of fiber Bragg grating sensor for cracks detection in reinforced concrete

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Xin, Xiangjun; Song, Jun; Wang, Honggang; Sai, Yaozhang

    2018-02-01

    Fiber Bragg sensor is applied for detecting and monitoring the cracks that occur in the reinforced concrete. We use the three-dimensional finite element model to provide the three-axial stresses along the fiber Bragg sensor and then converted the stresses as a wavelength deformation of fiber Bragg grating (FBG) reflected spectrum. For the crack detection, an FBG sensor with 10-mm length is embedded in the reinforced concrete, and its reflection spectrum is measured after loading is applied to the concrete slab. As a result, the main peak wavelength and the ratio of the peak reflectivity to the maximal side-mode reflectivity of the optic-fiber grating represent the fracture severity. The fact that the sharp decreasing of the ratio of the peak reflectivity to the maximal side-mode reflectivity represents the early crack is confirmed by the theoretical calculation. The method can be used to detect the cracks in the reinforced concrete and give safety evaluation of large-scale infrastructure.

  12. Experiments on the Effects of Confining Pressure During Reaction-Driven Cracking

    NASA Astrophysics Data System (ADS)

    Skarbek, R. M.; Savage, H. M.; Kelemen, P. B.; Lambart, S.; Robinson, B.

    2016-12-01

    Cracking caused by reaction-driven volume increase is an important process in many geological settings. In particular, the interaction of brittle rocks with reactive fluids can create fractures that modify the permeability and reactive surface area, leading to a large variety of feedbacks. The conditions controlling reaction-driven cracking are poorly understood, especially at geologically relevant confining pressures. We conducted two sets of experiments to study the effects of confining pressure on cracking during the formation of gypsum from anhydrite CaSO4 + 2H2O = CaSO4•2H2O, and portlandite from calcium oxide CaO + H2O = Ca(OH)2. In the first set of experiments, we cold-pressed CaSO4, or CaO powder to form cylinders. Samples were confined in steel, and compressed with an axial load of 0.1 to 4 MPa. Water was allowed to infiltrate the initially unsaturated samples through the bottom face via capillary and Darcian flow across a micro-porous frit. The height of the sample was recorded during the experiment, and serves as a measure of volume change due to the hydration reaction. We also recorded acoustic emissions (AEs) using piezoelectric transducers (PZTs), to serve as a measure of cracking during an experiment. Experiments were stopped when the recorded volume change reached 80% - 100% of the stoichiometrically calculated volume change of the reaction. In a second set of experiments, we pressed CaSO4 powder to form cylinders 8.9 cm in length and 3.5 cm in diameter for testing in a tri-axial press with ports for fluid input and output, across the top and bottom faces of the sample. The tri-axial experiments were set up to investigate the reaction-driven cracking process for a range of confining pressures. Cracking during experiments was monitored using strain gauges and PZTs attached to the sample. We measured permeability during experiments by imposing a fluid pressure gradient across the sample. These experiments elucidate the role of cracking caused by crystallization pressure in many important hydration reactions.

  13. A re-evaluation of finite-element models and stress-intensity factors for surface cracks emanating from stress concentrations

    NASA Technical Reports Server (NTRS)

    Tan, P. W.; Raju, I. S.; Shivakumar, K. N.; Newman, J. C., Jr.

    1988-01-01

    A re-evaluation of the 3-D finite-element models and methods used to analyze surface crack at stress concentrations is presented. Previous finite-element models used by Raju and Newman for surface and corner cracks at holes were shown to have ill-shaped elements at the intersection of the hole and crack boundaries. These ill-shaped elements tended to make the model too stiff and, hence, gave lower stress-intensity factors near the hole-crack intersection than models without these elements. Improved models, without these ill-shaped elements, were developed for a surface crack at a circular hole and at a semi-circular edge notch. Stress-intensity factors were calculated by both the nodal-force and virtual-crack-closure methods. Both methods and different models gave essentially the same results. Comparisons made between the previously developed stress-intensity factor equations and the results from the improved models agreed well except for configurations with large notch-radii-to-plate-thickness ratios. Stress-intensity factors for a semi-elliptical surface crack located at the center of a semi-circular edge notch in a plate subjected to remote tensile loadings were calculated using the improved models. The ratio of crack depth to crack length ranged form 0.4 to 2; the ratio of crack depth to plate thickness ranged from 0.2 to 0.8; and the ratio of notch radius to the plate thickness ranged from 1 to 3. The models had about 15,000 degrees-of-freedom. Stress-intensity factors were calculated by using the nodal-force method.

  14. Evaluation of enamel micro-cracks characteristics after removal of metal brackets in adult patients.

    PubMed

    Dumbryte, Irma; Linkeviciene, Laura; Malinauskas, Mangirdas; Linkevicius, Tomas; Peciuliene, Vytaute; Tikuisis, Kristupas

    2013-06-01

    The purpose of this study was to evaluate and compare enamel micro-crack characteristics of adult patients before and after removal of metal brackets. After the examination with scanning electron microscopy (SEM), 45 extracted human teeth were divided into three groups of equal size: group 1, the teeth having enamel micro-cracks, group 2, the teeth without initial enamel micro-cracks, and group 3, control group to study the effect of dehydration on existing micro-cracks or formation of new ones. For all the teeth in groups 1 and 2, the same bonding and debonding procedures of metal brackets were conducted. The length and width of the longest enamel micro-crack were measured for all the teeth before and after removal of metal brackets. The changes in the location of the micro-cracks were also evaluated. In group 3, teeth were subjected to the same analysis but not bonded. The mean overall width of micro-cracks after removal of metal brackets was 3.82 μm greater than before bonding procedure (P < 0.05). Also, a significant difference was noticed between the width of micro-cracks in first zone (cervical third) and third zone (occlusal third) after debonding procedure (P < 0.05). New enamel micro-cracks were found in 6 of 15 (40 per cent) examined teeth. Greatest changes in the width of enamel micro-cracks after debonding procedure appear in the cervical third of the tooth. On the basis of this result, the dentist must pay extra care and attention to this specific area of enamel during removal of metal brackets in adult patients.

  15. A pressurized cylindrical shell with a fixed end which contains an axial part-through or through crack

    NASA Technical Reports Server (NTRS)

    Yahsi, O. S.; Erdogan, F.

    1985-01-01

    In this paper a cylindrical shell having a very stiff end plate or a flange is considered. It is assumed that near the end the cylinder contains an axial flow which may be modeled as a part-through surface crack or through crack. The primary objective is to study the effect of the end constraining on the stress intensity factor which is the main fracture mechanics parameter. The applied loads acting on the cylinder are assumed to be axisymmetric. Thus the crack problem under consideration is symmetric with respect to the plane of the crack and consequently only the mode I stress intensity factors are nonzero. With this limitation, the general perturbation problem for a cylinder with a built-in end containing an axial crack is considered. Reissner's shell theory is used to formulate the problem. The part-through crack problem is treated by using a line-spring model. In the case of a crack tip terminating at the fixed end it is shown that the integral equation of the shell problem has the same generalized Cauchy kernel as the corresponding plane stress elasticity problem. Even though the problem is formulated for a general surface crack profile and arbitrary crack surface tractions, the numerical results are obtained only for a semielliptic part-through axial crack located at the inside or outside surface of the cylinder and for internal pressure acting on the cylinder. The stress intensity factors are calculated and presented for a relatively wide range of dimensionless length parameters of the problem.

  16. Concurrent Structural Fatigue Damage Prognosis Under Uncertainty

    DTIC Science & Technology

    2014-04-30

    stage is manufactured by Ernest F. Fullam Inc., which is now merged to MTI Instruments Inc.. The maximum gage length between mechanical grips is...closure measurement techniques, Vol. 31, Issue 4, 1988, pp. 703–712 23. M.N. James, M.N. Pacey, L.W. Wei,E.A. Patterson , Characterisation of...34. International Journal of Fatigue, 1999, pp. S35–S46. 39. Newman JC., Jr ."A crack opening stress equation for fatigue crack growth" International

  17. Qualitative and quantitative interpretation of SEM image using digital image processing.

    PubMed

    Saladra, Dawid; Kopernik, Magdalena

    2016-10-01

    The aim of the this study is improvement of qualitative and quantitative analysis of scanning electron microscope micrographs by development of computer program, which enables automatic crack analysis of scanning electron microscopy (SEM) micrographs. Micromechanical tests of pneumatic ventricular assist devices result in a large number of micrographs. Therefore, the analysis must be automatic. Tests for athrombogenic titanium nitride/gold coatings deposited on polymeric substrates (Bionate II) are performed. These tests include microshear, microtension and fatigue analysis. Anisotropic surface defects observed in the SEM micrographs require support for qualitative and quantitative interpretation. Improvement of qualitative analysis of scanning electron microscope images was achieved by a set of computational tools that includes binarization, simplified expanding, expanding, simple image statistic thresholding, the filters Laplacian 1, and Laplacian 2, Otsu and reverse binarization. Several modifications of the known image processing techniques and combinations of the selected image processing techniques were applied. The introduced quantitative analysis of digital scanning electron microscope images enables computation of stereological parameters such as area, crack angle, crack length, and total crack length per unit area. This study also compares the functionality of the developed computer program of digital image processing with existing applications. The described pre- and postprocessing may be helpful in scanning electron microscopy and transmission electron microscopy surface investigations. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  18. Rupture Dynamics along Thrust Dipping Fault: Inertia Effects due to Free Surface Wave Interactions

    NASA Astrophysics Data System (ADS)

    Vilotte, J. P.; Scala, A.; Festa, G.

    2017-12-01

    We numerically investigate the dynamic interaction between free surface and up-dip, in-plane rupture propagation along thrust faults, under linear slip-weakening friction. With reference to shallow along-dip rupture propagation during large subduction earthquakes, we consider here low dip-angle fault configurations with fixed strength excess and depth-increasing initial stress. In this configuration, the rupture undergoes a break of symmetry with slip-induced normal stress perturbations triggered by the interaction with reflected waves from the free surface. We found that both body-waves - behind the crack front - and surface waves - at the crack front - can trigger inertial effects. When waves interact with the rupture before this latter reaches its asymptotic speed, the rupture can accelerate toward the asymptotic speed faster than in the unbounded symmetric case, as a result of these inertial effects. Moreover, wave interaction at the crack front also affects the slip rate generating large ground motion on the hanging wall. Imposing the same initial normal stress, frictional strength and stress drop while varying the static friction coefficient we found that the break of symmetry makes the rupture dynamics dependent on the absolute value of friction. The higher the friction the stronger the inertial effect both in terms of rupture acceleration and slip amount. When the contact condition allows the fault interface to open close to the free surface, the length of the opening zone is shown to depend on the propagation length, the initial normal stress and the static friction coefficient. These new results are shown to agree with analytical results of rupture propagation in bounded media, and open new perspectives for understanding the shallow rupture of large subduction earthquakes and tsunami sources.

  19. Initiation and propagation of a PKN hydraulic fracture in permeable rock: Toughness dominated regime

    NASA Astrophysics Data System (ADS)

    Sarvaramini, E.; Garagash, D.

    2011-12-01

    The present work investigates the injection of a low-viscosity fluid into a pre-existing fracture with constrained height (PKN), as in waterflooding or supercritical CO2 injection. Contrary to conventional hydraulic fracturing, where 'cake build up' limits diffusion to a small zone, the low viscosity fluid allows for diffusion over a wider range of scales. Over large injection times the pattern becomes 2 or 3-D, necessitating a full-space diffusion modeling. In addition, the dissipation of energy associated with fracturing of rock dominates the energy needed for the low-viscosity fluid flow into the propagating crack. As a result, the fracture toughness is important in evaluating both the initiation and the ensuing propagation of these fractures. Classical PKN hydraulic fracturing model, amended to account for full-space leak-off and the toughness [Garagash, unpublished 2009], is used to evaluate the pressure history and fluid leak-off volume during the injection of low viscosity fluid into a pre-existing and initially stationary. In order to find the pressure history, the stationary crack is first subject to a step pressure increase. The response of the porous medium to the step pressure increase in terms of fluid leak-off volume provides the fundamental solution, which then can be used to find the transient pressurization using Duhamel theorem [Detournay & Cheng, IJSS 1991]. For the step pressure increase an integral equation technique is used to find the leak-off rate history. For small time the solution must converge to short time asymptote, which corresponds to 1-D diffusion pattern. However, as the diffusion length in the zone around the fracture increases the assumption of a 1-D pattern is no longer valid and the diffusion follows a 2-D pattern. The solution to the corresponding integral equation gives the leak-off rate history, which is used to find the cumulative leak-off volume. The transient pressurization solution is obtained using global conservation of fluid injected into the fracture. With increasing pressure in the fracture due to the fluid injection, the energy release rate eventually becomes equal to the toughness and fracture propagates. The evolution of the fracture length is established using the method similar to the one employed for the stationary crack.

  20. A Review of the Proposed K (sub Isi) Offset-Secant Method for Size-Independent Linear-Elastic Toughness Evaluation

    NASA Technical Reports Server (NTRS)

    James, Mark; Wells, Doug; Allen, Phillip; Wallin, Kim

    2017-01-01

    The proposed size-independent linear-elastic fracture toughness, K (sub Isi), for potential inclusion in ASTM E399 targets a consistent 0.5 millimeters crack extension for all specimen sizes through an offset secant that is a function of the specimen ligament length. The K (sub Isi) method also includes an increase in allowable deformation, and the removal of the P (sub max)/P (sub Q) criterion. A finite element study of the K (sub Isi) test method confirms the viability of the increased deformation limit, but has also revealed a few areas of concern. Findings: 1. The deformation limit, b (sub o) greater than or equal to 1.1 times (K (sub I) divided by delta (sub ys) squared) maintains a K-dominant crack tip field with limited plastic contribution to the fracture energy; 2. The three dimensional effects on compliance and the shape of the force versus CMOD (Crack-Mouth Opening Displacement) trace are significant compared to a plane strain assumption; 3. The non-linearity in the force versus CMOD trace at deformations higher than the current limit of 2.5 times (K (sub I) divided by delta (sub ys) squared) is sufficient to introduce error or even "false calls" regarding crack extension when using a constant offset secant line. This issue is more significant for specimens with W (width) greater than or equal to 2 inches; 4. A non-linear plasticity correction factor in the offset secant may improve the viability of the method at deformations between 2.5 times (K (sub I) divided by delta (sub ys) squared) and 1.1 times (K (sub I) divided by delta (sub ys) squared).

  1. Displacement coefficients along the inner boundaries of radially cracked ring segments subject to forces and couples

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1977-01-01

    Displacement results of plane boundary collocation analysis are given for various locations on the inner boundaries of radially cracked ring segments (C-shaped specimens) subject to two complementary types of loading. Results are presented for ratios of outer to inner radius R sub o/R sub i in the range of 1.1 to 2.5, and ratios a/W in the range 0.1 to 0.8 where a is the crack length for a specimen of wall thickness W. By combination of these results the resultant displacement coefficient delta or the corresponding influence coefficient, can be obtained for any practical load line location of a pin loaded specimen.

  2. Microsecond enamel ablation with 10.6μm CO2 laser radiation

    NASA Astrophysics Data System (ADS)

    Góra, W. S.; McDonald, A.; Hand, D. P.; Shephard, J. D.

    2016-02-01

    Lasers have been previously been used for dental applications, however there remain issues with thermally-induced cracking. In this paper we investigate the impact of pulse length on CO2 laser ablation of human dental enamel. Experiments were carried in vitro on molar teeth without any modification to the enamel surface, such as grinding or polishing. In addition to varying the pulse length, we also varied pulse energy and focal position, to determine the most efficient ablation of dental hard tissue and more importantly to minimize or eradicate cracking. The maximum temperature rise during the multi pulse ablation process was monitored using a set of thermocouples embedded into the pulpal chamber. The application of a laser device in dental surgery allows removal of tissue with higher precision, which results in minimal loss of healthy dental tissue. In this study we use an RF discharge excited CO2 laser operating at 10.6μm. The wavelength of 10.6 μm overlaps with a phosphate band (PO3-4) absorption in dental hard tissue hence the CO2 laser radiation has been selected as a potential source for modification of the tissue. This research describes an in-depth analysis of single pulse laser ablation. To determine the parameters that are best suited for the ablation of hard dental tissue without thermal cracking, a range of pulse lengths (10-200 μs), and fluences (0-100 J/cm2) are tested. In addition, different laser focusing approaches are investigated to select the most beneficial way of delivering laser radiation to the surface (divergent/convergent beam). To ensure that these processes do not increase the temperature above the critical threshold and cause the necrosis of the tissue a set of thermocouples was placed into the pulpal chambers. Intermittent laser radiation was investigated with and without application of a water spray to cool down the ablation site and the adjacent area. Results show that the temperature can be kept below the critical threshold either by using water spray or by decreasing the repetition rate. We demonstrate that CO2 laser pulses with pulse lengths in the regime of 10 μs can provide precise enamel tissue removal without introducing any unwanted thermal damage.

  3. Concrete Cracking Prediction Including the Filling Proportion of Strand Corrosion Products.

    PubMed

    Wang, Lei; Dai, Lizhao; Zhang, Xuhui; Zhang, Jianren

    2016-12-23

    The filling of strand corrosion products during concrete crack propagation is investigated experimentally in the present paper. The effects of stirrups on the filling of corrosion products and concrete cracking are clarified. A prediction model of crack width is developed incorporating the filling proportion of corrosion products and the twisting shape of the strand. Experimental data on cracking angle, crack width, and corrosion loss obtained from accelerated corrosion tests of concrete beams are presented. The proposed model is verified by experimental data. Results show that the filling extent of corrosion products varies with crack propagation. The rust filling extent increases with the propagating crack until a critical width. Beyond the critical width, the rust-filling extent remains stable. Using stirrups can decrease the critical crack width. Stirrups can restrict crack propagation and reduce the rust filling. The tangent of the cracking angle increases with increasing corrosion loss. The prediction of corrosion-induced crack is sensitive to the rust-filling extent.

  4. Concrete Cracking Prediction Including the Filling Proportion of Strand Corrosion Products

    PubMed Central

    Wang, Lei; Dai, Lizhao; Zhang, Xuhui; Zhang, Jianren

    2016-01-01

    The filling of strand corrosion products during concrete crack propagation is investigated experimentally in the present paper. The effects of stirrups on the filling of corrosion products and concrete cracking are clarified. A prediction model of crack width is developed incorporating the filling proportion of corrosion products and the twisting shape of the strand. Experimental data on cracking angle, crack width, and corrosion loss obtained from accelerated corrosion tests of concrete beams are presented. The proposed model is verified by experimental data. Results show that the filling extent of corrosion products varies with crack propagation. The rust filling extent increases with the propagating crack until a critical width. Beyond the critical width, the rust-filling extent remains stable. Using stirrups can decrease the critical crack width. Stirrups can restrict crack propagation and reduce the rust filling. The tangent of the cracking angle increases with increasing corrosion loss. The prediction of corrosion-induced crack is sensitive to the rust-filling extent. PMID:28772367

  5. Brittle fracture in viscoelastic materials as a pattern-formation process

    NASA Astrophysics Data System (ADS)

    Fleck, M.; Pilipenko, D.; Spatschek, R.; Brener, E. A.

    2011-04-01

    A continuum model of crack propagation in brittle viscoelastic materials is presented and discussed. Thereby, the phenomenon of fracture is understood as an elastically induced nonequilibrium interfacial pattern formation process. In this spirit, a full description of a propagating crack provides the determination of the entire time dependent shape of the crack surface, which is assumed to be extended over a finite and self-consistently selected length scale. The mechanism of crack propagation, that is, the motion of the crack surface, is then determined through linear nonequilibrium transport equations. Here we consider two different mechanisms, a first-order phase transformation and surface diffusion. We give scaling arguments showing that steady-state solutions with a self-consistently selected propagation velocity and crack shape can exist provided that elastodynamic or viscoelastic effects are taken into account, whereas static elasticity alone is not sufficient. In this respect, inertial effects as well as viscous damping are identified to be sufficient crack tip selection mechanisms. Exploring the arising description of brittle fracture numerically, we study steady-state crack propagation in the viscoelastic and inertia limit as well as in an intermediate regime, where both effects are important. The arising free boundary problems are solved by phase field methods and a sharp interface approach using a multipole expansion technique. Different types of loading, mode I, mode III fracture, as well as mixtures of them, are discussed.

  6. A methodology for the investigation of toughness and crack propagation in mouse bone.

    PubMed

    Carriero, Alessandra; Zimmermann, Elizabeth A; Shefelbine, Sandra J; Ritchie, Robert O

    2014-11-01

    Bone fracture is a health concern for those with aged bone and brittle bone diseases. Mouse bone is widely used as a model of human bone, especially to investigate preclinical treatment strategies. However, little is known about the mechanisms of mouse bone fracture and its similarities and differences from fracture in human bone. In this work we present a methodology to investigate the fracture toughness during crack initiation and crack propagation for mouse bone. Mouse femora were dissected, polished on their periosteal surface, notched on the posterior surface at their mid-diaphysis, and tested in three-point bending under displacement control at a rate of 0.1mm/min using an in situ loading stage within an environmental scanning electron microscope. We obtained high-resolution real-time imaging of the crack initiation and propagation in mouse bone. From the images we can measure the crack extension at each step of the crack growth and calculate the toughness of the bone (in terms of stress intensity factor (K) and work to fracture (Wf)) as a function of stable crack length (Δa), thus generating a resistance curve for the mouse bone. The technique presented here provides insight into the evolution of microdamage and the toughening mechanisms that resist crack propagation, which are essential for preclinical development of treatments to enhance bone quality and combat fracture risk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Crack classification and evolution in anisotropic shale during cyclic loading tests by acoustic emission

    NASA Astrophysics Data System (ADS)

    Wang, Miaomiao; Tan, Chengxuan; Meng, Jing; Yang, Baicun; Li, Yuan

    2017-08-01

    Characterization and evolution of the cracking mode in shale formation is significant, as fracture networks are an important element in shale gas exploitation. In this study we determine the crack modes and evolution in anisotropic shale under cyclic loading using the acoustic emission (AE) parameter-analysis method based on the average frequency and RA (rise-time/amplitude) value. Shale specimens with bedding-plane orientations parallel and perpendicular to the axial loading direction were subjected to loading cycles with increasing peak values until failure occurred. When the loading was parallel to the bedding plane, most of the cracks at failure were shear cracks, while tensile cracks were dominant in the specimens that were loaded normal to the bedding direction. The evolution of the crack mode in the shale specimens observed in the loading-unloading sequence except for the first cycle can be divided into three stages: (I) no or several cracks (AE events) form as a result of the Kaiser effect, (II) tensile and shear cracks increase steadily at nearly equal proportions, (III) tensile cracks and shear cracks increase abruptly, with more cracks forming in one mode than in the other. As the dominant crack motion is influenced by the bedding, the failure mechanism is discussed based on the evolution of the different crack modes. Our conclusions can increase our understanding of the formation mechanism of fracture networks in the field.

  8. Observation of Intralaminar Cracking in the Edge Crack Torsion Specimen

    NASA Technical Reports Server (NTRS)

    Czabaj, Michael W.; Ratcliffe, James G.; Davidson, Barry D.

    2013-01-01

    The edge crack torsion (ECT) test is evaluated to determine its suitability for measuring fracture toughness associated with mode III delamination growth onset. A series of ECT specimens with preimplanted inserts with different lengths is tested and examined using nondestructive and destructive techniques. Ultrasonic inspection of all tested specimens reveals that delamination growth occurs at one interface ply beneath the intended midplane interface. Sectioning and optical microscopy suggest that the observed delamination growth results from coalescence of angled intralaminar matrix cracks that form and extend across the midplane plies. The relative orientation of these cracks is approximately 45 deg with respect to the midplane, suggesting their formation is caused by resolved principal tensile stresses arising due to the global mode-III shear loading. Examination of ECT specimens tested to loads below the level corresponding to delamination growth onset reveals that initiation of intralaminar cracking approximately coincides with the onset of nonlinearity in the specimen's force-displacement response. The existence of intralaminar cracking prior to delamination growth onset and the resulting delamination extension at an unintended interface render the ECT test, in its current form, unsuitable for characterization of mode III delamination growth onset. The broader implications of the mechanisms observed in this study are also discussed with respect to the current understanding of shear-driven delamination in tape-laminate composites.

  9. Numerical determination of Paris law constants for carbon steel using a two-scale model

    NASA Astrophysics Data System (ADS)

    Mlikota, M.; Staib, S.; Schmauder, S.; Božić, Ž.

    2017-05-01

    For most engineering alloys, the long fatigue crack growth under a certain stress level can be described by the Paris law. The law provides a correlation between the fatigue crack growth rate (FCGR or da/dN), the range of stress intensity factor (ΔK), and the material constants C and m. A well-established test procedure is typically used to determine the Paris law constants C and m, considering standard specimens, notched and pre-cracked. Definition of all the details necessary to obtain feasible and comparable Paris law constants are covered by standards. However, these cost-expensive tests can be replaced by appropriate numerical calculations. In this respect, this paper deals with the numerical determination of Paris law constants for carbon steel using a two-scale model. A micro-model containing the microstructure of a material is generated using the Finite Element Method (FEM) to calculate the fatigue crack growth rate at a crack tip. The model is based on the Tanaka-Mura equation. On the other side, a macro-model serves for the calculation of the stress intensity factor. The analysis yields a relationship between the crack growth rates and the stress intensity factors for defined crack lengths which is then used to determine the Paris law constants.

  10. Development of Detectability Limits for On-Orbit Inspection of Space Shuttle Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Stephan, Ryan A.; Johnson, David G.; Mastropietro, A. J.; Ancarrow, Walt C.

    2005-01-01

    At the conclusion of the Columbia Accident Investigation, one of the recommendations of the Columbia Accident Investigation Board (CAIB) was that NASA develop and implement an inspection plan for the Reinforced Carbon-Carbon (RCC) system components of the Space Shuttle. To address these issues, a group of scientists and engineers at NASA Langley Research Center proposed the use of an IR camera to inspect the RCC. Any crack in an RCC panel changes the thermal resistance of the material in the direction perpendicular to the crack. The change in thermal resistance can be made visible by introducing a heat flow across the crack and using an IR camera to image the resulting surface temperature distribution. The temperature difference across the crack depends on the change in the thermal resistance, the length of the crack, the local thermal gradient, and the rate of radiation exchange with the environment. This paper describes how the authors derived the minimum thermal gradient detectability limits for a through crack in an RCC panel. This paper will also show, through the use of a transient, 3-dimensional, finite element model, that these minimum gradients naturally exist on-orbit. The results from the finite element model confirm that there are sufficient thermal gradient to detect a crack on 96% of the RCC leading edge.

  11. Fracture toughness of brittle materials determined with chevron notch specimens

    NASA Technical Reports Server (NTRS)

    Shannon, J. L., Jr.; Bubsey, R. T.; Pierce, W. S.; Munz, D.

    1981-01-01

    Short bar, short rod, and four-point-bend chevron-notch specimens were used to determine the plane strain fracture toughness of hot-pressed silicon nitride and sintered aluminum oxide brittle ceramics. The unique advantages of this specimen type are: (1) the production of a sharp natural crack during the early stage of test loading, so that no precracking is required, and (2) the load passes through a maximum at a constant, material-independent crack length-to-width ratio for a specific geometry, so that no post-test crack measurement is required. The plane strain fracture toughness is proportional to the maximum test load and functions of the specimen geometry and elastic compliance. Although results obtained for silicon nitride are in good mutual agreement and relatively free of geometry and size effects, aluminum oxide results were affected in both these respects by the rising crack growth resistance curve of the material.

  12. Mixed mode stress-intensity-factors in mode-3 loaded middle crack tension specimen

    NASA Technical Reports Server (NTRS)

    Shivakumar, Kunigal N.

    1992-01-01

    A three dimensional stress analysis of a middle-crack tension specimen subjected to mode-3 type loading was performed using fracture mechanics based finite element code FRAC3D. Three-dimensional stress intensity factors were calculated for a range of specimen thicknesses that represent the structures used in aerospace and nuclear industries. Calculated SIF for very thick specimen (thickness-to-crack length b/a greater than or equal to 30) agreed very well with the antiplane solution in the literature. The K(sub II) stress field exists near the intersection of the crack front and free surface in a boundary-layer region covers the complete thickness of the plate and K(sub II) dominates all through the thickness. For very thin plates (b/a is less than .1), the average K(sub II) is larger than K(sub III) (about 25% for b/a = 0.1).

  13. Fatigue-life behavior and matrix fatigue crack spacing in unnotched SCS-6/Timetal 21S metal matrix composites

    NASA Technical Reports Server (NTRS)

    Ward, G. T.; Herrmann, D. J.; Hillberry, B. M.

    1993-01-01

    Fatigue tests of the SCS-6/Timetal 21S composite system were performed to characterize the fatigue behavior for unnotched conditions. The stress-life behavior of the unnotched (9/90)2s laminates was investigated for stress ratios of R = 0.1 and R = 0.3. The occurrence of matrix cracking was also examined in these specimens. This revealed multiple matrix crack initiation sites throughout the composite, as well as evenly spaced surface cracks along the length of the specimens. No difference in fatigue lives were observed for stress ratios of R = 0.1 and R = 0.3 when compared on a stress range basis. The unnotched SCS-6/Timetal 21S composites had shorter fatigue lives than the SCS-6/Ti-15-3 composites, however the neat Timetal 21S matrix material had a longer fatigue life than the neat Ti-15-3.

  14. Crack depth profiling using guided wave angle dependent reflectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volker, Arno, E-mail: arno.volker@tno.nl; Pahlavan, Lotfollah, E-mail: arno.volker@tno.nl; Blacquiere, Gerrit, E-mail: arno.volker@tno.nl

    2015-03-31

    Tomographic corrosion monitoring techniques have been developed, using two rings of sensors around the circumference of a pipe. This technique is capable of providing a detailed wall thickness map, however this might not be the only type of structural damage. Therefore this concept is expanded to detect and size cracks and small corrosion defects like root corrosion. The expanded concept uses two arrays of guided-wave transducers, collecting both reflection and transmission data. The data is processed such that the angle-dependent reflectivity is obtained without using a baseline signal of a defect-free situation. The angle-dependent reflectivity is the input of anmore » inversion scheme that calculates a crack depth profile. From this profile, the depth and length of the crack can be determined. Preliminary experiments show encouraging results. The depth sizing accuracy is in the order of 0.5 mm.« less

  15. Construction of edge cracks pre-criterion model based on hot rolling experiment and simulation of AZ31 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Ning, Fangkun; Jia, Weitao; Hou, Jian; Chen, Xingrui; Le, Qichi

    2018-05-01

    Various fracture criteria, especially Johnson and Cook (J-C) model and (normalized) Cockcroft and Latham (C-L) criterion were contrasted and discussed. Based on normalized C-L criterion, adopted in this paper, FE simulation was carried out and hot rolling experiments under temperature range of 200 °C–350 °C, rolling reduction rate of 25%–40% and rolling speed from 7–21 r/min was implemented. The microstructure was observed by optical microscope and damage values of simulation results were contrasted with the length of cracks on diverse parameters. The results show that the plate generated less edge cracks and the microstructure emerged slight shear bands and fine dynamic recrystallization grains rolled at 350 °C, 40% reduction and 14 r/min. The edge cracks pre-criterion model was obtained combined with Zener-Hollomon equation and deformation activation energy.

  16. Stress Ratio Effects on Crack Opening Loads and Crack Growth Rates in Aluminum Alloy 2024

    NASA Technical Reports Server (NTRS)

    Riddell, William T.; Piascik, Robert S.

    1998-01-01

    The effects of stress ratio (R) and crack opening behavior on fatigue crack growth rates (da/dN) for aluminum alloy (AA) 2024-T3 were investigated using constant-delta K testing, closure measurements, and fractography. Fatigue crack growth rates were obtained for a range of delta K and stress ratios. Results show that constant delta K fatigue crack growth for R ranging from near 0 to 1 is divided into three regions. In Region 1, at low R, da/dN increases with increasing R. In Region 2, at intermediate R, fatigue crack growth rates are relatively independent of R. In Region 3, at high R, further increases in da/dN are observed with increasing R.

  17. Weldability of High-tensile Steels from Experience in Airplane Construction, with Special Reference to Welding Crack Susceptibility

    NASA Technical Reports Server (NTRS)

    Muller, J

    1935-01-01

    The concept of welding crack tendency is explained and illustrated with practical examples. All pertinent causes are enumerated, and experimental measures are given through which the secondary effects can be removed and the principal causes analyzed: 1) welding stresses; and 2) material defects. The variations in length and stresses incident to welding a small bar as free weld, with restrained elongation and restrained elongation and contraction, are explored in three fundamental experiments.

  18. Evaluation of mechanical properties of some glycine complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagaraju, D.; Raja Shekar, P. V., E-mail: pvrsleo@gmail.com; Chandra, Ch. Sateesh

    2014-04-24

    The variation of Vickers hardness with load for (101) glycine zinc chloride (GZC), (001) glycine lithium sulphate (GLS), (001) triglycine sulphate (TGS) and (010) glycine phosphite (GPI) crystals was studied. From the cracks initiated along the corners of the indentation impression, crack lengths were measured and the fracture toughness value and brittle index number were determined. The hardness related parameters viz. yield strength and Young’s modulus were also estimated. The anisotropic nature of the crystals was studied using Knoop indentation technique.

  19. Mechanical behavior and failure phenomenon of an in situ-toughened silicon nitride

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Choi, Sung R.; Freedman, Marc R.; Jenkins, Michael G.

    1990-01-01

    The Weibull modulus, fracture toughness and crack growth resistance of an in-situ toughened, silicon nitride material used to manufacture a turbine combustor were determined from room temperature to 1371 C. The material exhibited an elongated grain structure that resulted in improved fracture toughness, nonlinear crack growth resistance, and good elevated temperature strength. However, low temperature strength was limited by grains of excessive length (30 to 100 microns). These excessively long grains were surrounded by regions rich in sintering additives.

  20. Experimental compliance calibration of the compact fracture toughness specimen

    NASA Technical Reports Server (NTRS)

    Fisher, D. M.; Buzzard, R. J.

    1980-01-01

    Compliances and stress intensity coefficients were determined over crack length to width ratios from 0.1 to 0.8. Displacements were measured at the load points, load line, and crack mouth. Special fixturing was devised to permit accurate measurement of load point displacement. The results are in agreement with the currently used results of boundary collocation analyses. The errors which occur in stress intensity coefficients or specimen energy input determinations made from load line displacement measurements rather than from load point measurements are emphasized.

  1. Recommendations for the Interagency Ship Structure Committee’s Fiscal 1985 Research Program.

    DTIC Science & Technology

    1984-01-01

    Houston, TX Mr. D. Price , (84), National Ocean and Atmospheric Administration, Rockville, MD Mr. D. A. Sarno, (84), ARMCO Inc., Middletown, OH Mr. R. W...A. B. Stevovy Dr. V. R. Porter AMERICAN BUREAU Of SKIPPING U.S. COAST GUARD ACADEMY Dr. D. Liu* Lt. John Tuttle - Liaison Mr. 1. L. Stern T-TU.S...which defines the combination of fastest running crack length and stress level that must be exceeded for a crack to 4 % % k ipS penetrate a structural

  2. Marine Structural Steel Toughness Data Bank. Volume 3

    DTIC Science & Technology

    1991-08-28

    Headings: Break? Did specimen fracture completely? CODIc Critical COD CODi Initial COD CVN Energy Charpy V Energy Crack lgth Crack Length Curve Curve...BS5762 -Standard Year Test Temp CODIc degC mm -30 0.57 -30 0.68 -30 . 1.26 not rporw(continued) Main Stutua To n ssDta:an Material BS4360 Gr50D Page...Initial JI. . . .. ._I. . . Maximum 1, ]max * Tearing Modulus ......... Standard Method ~P S5762 -Standard Year_______________ Test Tcmp CODIc degC mm

  3. Development of a Novel Approach for Fatigue Life Prediction of Structural Materials

    DTIC Science & Technology

    2008-12-01

    applied when the crack length was 8.45 mm and 14.96 mm, respectively, on these two specimens. A third specimen was subjected to a constant amplitude...The crack growth rate at the middle point (the third point) was determined from the derivative of the parabola. The stress intensity factor for...minimum load was identical in the two loading steps (Fig. 32(b)). The third specimen experienced two-step loading with identical /?-ratio in the two

  4. An Evaluation of Apical Cracks in Teeth Undergoing Orthograde Root Canal Instrumentation.

    PubMed

    Rose, Elizabeth; Svec, Timothy

    2015-12-01

    Dentinal damage and cracks induced by orthograde preparation methods have been reported in studies using extracted teeth. The purpose of this in situ investigation was to evaluate dentinal cracks in nonextracted teeth after final instrumentation. The null hypothesis is that orthograde root canal instrumentation will have no effect on crack initiation in teeth retained in the natural periodontium. Mandibular first and second premolars of pig jaws were selected. Forty single-rooted canals were divided into 5 groups (n = 8): (1) WaveOne (Dentsply Tulsa Dental Specialties, Tulsa, OK) 25/08; (2) ProTaper rotary S1, S2, F2 (25/08) (Dentsply Tulsa Dental Specialties); (3) crown-down GT hand files 20/12, 20/10, 20/08 (Dentsply Tulsa Dental Specialties); (4) positive control (purposefully cracked); and (5) negative control (uninstrumented teeth). After instrumentation, superficial soft tissue was removed, and bone was carefully peeled away with surgical burs to the level of the root apices. Roots were resected 1 mm coronal to the working length, stained with caries indicator dye, and transilluminated; images were captured and viewed at 30× magnification to determine the presence or absence of dentinal cracks. WaveOne, ProTaper rotary, and GT hand files produced no cracks. All positive controls had cracks; all negative controls had no cracks. Within the limits of this investigation, the presence of natural periodontal structures may prevent cracking or dentinal damage in teeth receiving orthograde root canal instrumentation. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Accurate Critical Stress Intensity Factor Griffith Crack Theory Measurements by Numerical Techniques

    PubMed Central

    Petersen, Richard C.

    2014-01-01

    Critical stress intensity factor (KIc) has been an approximation for fracture toughness using only load-cell measurements. However, artificial man-made cracks several orders of magnitude longer and wider than natural flaws have required a correction factor term (Y) that can be up to about 3 times the recorded experimental value [1-3]. In fact, over 30 years ago a National Academy of Sciences advisory board stated that empirical KIc testing was of serious concern and further requested that an accurate bulk fracture toughness method be found [4]. Now that fracture toughness can be calculated accurately by numerical integration from the load/deflection curve as resilience, work of fracture (WOF) and strain energy release (SIc) [5, 6], KIc appears to be unnecessary. However, the large body of previous KIc experimental test results found in the literature offer the opportunity for continued meta analysis with other more practical and accurate fracture toughness results using energy methods and numerical integration. Therefore, KIc is derived from the classical Griffith Crack Theory [6] to include SIc as a more accurate term for strain energy release rate (𝒢Ic), along with crack surface energy (γ), crack length (a), modulus (E), applied stress (σ), Y, crack-tip plastic zone defect region (rp) and yield strength (σys) that can all be determined from load and deflection data. Polymer matrix discontinuous quartz fiber-reinforced composites to accentuate toughness differences were prepared for flexural mechanical testing comprising of 3 mm fibers at different volume percentages from 0-54.0 vol% and at 28.2 vol% with different fiber lengths from 0.0-6.0 mm. Results provided a new correction factor and regression analyses between several numerical integration fracture toughness test methods to support KIc results. Further, bulk KIc accurate experimental values are compared with empirical test results found in literature. Also, several fracture toughness mechanisms are discussed especially for fiber-reinforced composites. PMID:25620817

  6. Crack Turning and Arrest Mechanisms for Integral Structure

    NASA Technical Reports Server (NTRS)

    Pettit, Richard; Ingraffea, Anthony

    1999-01-01

    In the course of several years of research efforts to predict crack turning and flapping in aircraft fuselage structures and other problems related to crack turning, the 2nd order maximum tangential stress theory has been identified as the theory most capable of predicting the observed test results. This theory requires knowledge of a material specific characteristic length, and also a computation of the stress intensity factors and the T-stress, or second order term in the asymptotic stress field in the vicinity of the crack tip. A characteristic length, r(sub c), is proposed for ductile materials pertaining to the onset of plastic instability, as opposed to the void spacing theories espoused by previous investigators. For the plane stress case, an approximate estimate of r(sub c), is obtained from the asymptotic field for strain hardening materials given by Hutchinson, Rice and Rosengren (HRR). A previous study using of high order finite element methods to calculate T-stresses by contour integrals resulted in extremely high accuracy values obtained for selected test specimen geometries, and a theoretical error estimation parameter was defined. In the present study, it is shown that a large portion of the error in finite element computations of both K and T are systematic, and can be corrected after the initial solution if the finite element implementation utilizes a similar crack tip discretization scheme for all problems. This scheme is applied for two-dimensional problems to a both a p-version finite element code, showing that sufficiently accurate values of both K(sub I) and T can be obtained with fairly low order elements if correction is used. T-stress correction coefficients are also developed for the singular crack tip rosette utilized in the adaptive mesh finite element code FRANC2D, and shown to reduce the error in the computed T-stress significantly. Stress intensity factor correction was not attempted for FRANC2D because it employs a highly accurate quarter-point scheme to obtain stress intensity factors.

  7. [The cause of polyurethane catheter cracking during constant infusion of etoposide (VP-16) injection].

    PubMed

    Yokoyama, H; Aoyama, T; Matsuyama, T; Yamamura, Y; Nakajima, K; Nakamura, K; Sato, H; Kotaki, H; Chiba, S; Hirai, H; Yazaki, Y; Iga, T

    1998-12-01

    We studied the cause of cracking of a clinically used polyurethane (PU) catheter during the constant infusion of etoposide (VP-16) injection (Lastet), administered without dilution to patients as a part of combination high-dose chemotherapy. After VP-16 injection was infused into the PU catheter at a constant infusion rate (30 ml/h) for 24 h, a decrease in the elasticity (36% of untreated) and on increase in the length of the catheter (3.7%) were observed. These changes were significantly higher than those treated with the control saline. The similar changes of the PU catheter were observed after treatment with a basal solution containing polyethylene glycol 400 (PEG 400), polysorbate 80 and ethanol, which is the vehicle of the VP-16 injection, and with ethanol alone. Moreover, obvious degeneration of the internal wall (occurrence of spots like melting) and cutting face (micro-cracking) of the catheter was observed with an electron microscope after treatment with the vehicle. On the other hand, the elasticity or extension of the PU catheter were not changed after treatment with saline or PEG 400. From these findings, it was suggested that the degeneration and subsequent cracking of the PU catheter during the infusion of VP-16 injection was caused by ethanol contained in its injection solution. No cracking or morphological changes of polyvinyl chloride (PVC) and silicone catheters were found after treatment with the vehicle solution. However, since it has been reported in previous reports that di(2-ethylhexyl)phthalate was leached from PVC bags, the high dose chemotherapy with the dilution-free VP-16 injection should be achieved safely and effectively using a silicon catheter, rather than the PU catheter.

  8. Detection of freeze-thaw weathering effect using X-ray micro computed tomography

    NASA Astrophysics Data System (ADS)

    Park, J.; Hyun, C.; Park, H.

    2011-12-01

    Physical weathering caused by repeated freeze-thaw action of water inside rock pores or cracks was artificially simulated in laboratory. The tests were conducted on three rock types, i.e. diorite, basalt, and tuff, which are the major rock types around King Sejong Station of Korea located in Barton Peninsula, King George Island, Antarctica. The temperature of freeze-thaw cycle was also set with simulated the air temperature of the station, i.e. the maximum temperature was + 10 °C and the minimum temperature was - 20 °C. Three cylindrical specimens composed of one for each rock type with 24.6 mm diameter and 14.5 ~ 17.7 mm length were prepared, and 2 mm diameter and 7 mm shallow depth hole was drilled on the center of the specimens. To exaggerate the effect of the freeze-thaw weathering, all tests were conducted under completely saturated condition. 50 cycles of the freeze-thaw test was carried, and X-ray micro computed tomography (CT) images of each rock specimen were obtained after every 10 cycles. Using X-ray micro CT images, 3D structure was rendered and pore and crack structures were extracted. The changes of porosity, absorption rate and pore and crack structure were detected. Porosity of all specimens was decreased linearly and absorption rate of all specimens was increased linearly as weathering processes; the pore connection and crack propagation was detected in 3D rendering pore and crack structure. The change of tuff specimen is the most remarkable among three rock types used in the research, because of its relatively high initial absorption rate and low strength. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST) (No. 2011-0027520).

  9. A Technique for Mapping Characteristic Lengths to Preserve Energy Dissipated via Strain Softening in a Multiscale Analysis

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.

    2014-01-01

    It is often advantageous to account for the microstructure of the material directly using multiscale modeling. For computational tractability, an idealized repeating unit cell (RUC) is used to capture all of the pertinent features of the microstructure. Typically, the RUC is dimensionless and depends only on the relative volume fractions of the different phases in the material. This works well for non-linear and inelastic behavior exhibiting a positive-definite constitutive response. Although, once the material exhibits strain softening, or localization, a mesh objective failure theories, such as smeared fracture theories, nodal and element enrichment theories (XFEM), cohesive elements or virtual crack closure technique (VCCT), can be utilized at the microscale, but the dimensions of the RUC must then be defined. One major challenge in multiscale progressive damage modeling is relating the characteristic lengths across the scales in order to preserve the energy that is dissipated via localization at the microscale. If there is no effort to relate the size of the macroscale element to the microscale RUC, then the energy that is dissipated will remain mesh dependent at the macroscale, even if it is regularized at the microscale. Here, a technique for mapping characteristic lengths across the scales is proposed. The RUC will be modeled using the generalized method of cells (GMC) micromechanics theory, and local failure in the matrix constituent subcells will be modeled using the crack band theory. The subcell characteristic lengths used in the crack band calculations will be mapped to the macroscale finite element in order to regularize the local energy in a manner consistent with the global length scale. Examples will be provided with and without the regularization, and they will be compared to a baseline case where the size and shape of the element and RUC are coincident (ensuring energy is preserved across the scales).

  10. Stress intensity factors for deep cracks emanating from the corner formed by a hole intersecting a plate surface

    NASA Technical Reports Server (NTRS)

    Mcgowan, J. J.; Smith, C. W.

    1974-01-01

    A technique consisting of a marriage between stress freezing photoelasticity and a numerical method was used to obtain stress intensity factors for natural cracks emanating from the corner at which a hole intersects a plate surface. Geometrics studied were: crack depth to thickness ratios of approximately 0.2, 0.5, and 0.75; crack depth to crack length ratios of approximately 1.0 to 2.0. All final crack geometries were grown under monotonic loading and growth was not self similar with most of the growth occurring through the thickness under remote extension. Stress intensity plate surface K sub s factors were determined at the intersection of the flaw border with the plate surface K sub s and with the edge of the hole K sub h. Results showed that for the relatively shallow flaws K sub h approximately equal to 1.5 K sub s, for the moderately deep flaws K sub h approximately equal to K sub s, and for the deep flaws K sub h approximately equal to 0.5 K sub s, revealing a severe sensitivity of K to flaw geometry.

  11. Results of the second Round Robin on opening-load measurement conducted by ASTM Task Group E24.04.04 on crack closure measurement and analysis

    NASA Technical Reports Server (NTRS)

    Phillips, E. P.

    1993-01-01

    A second experimental Round Robin on the measurement of the crack opening load in fatigue crack growth tests has been completed by the ASTM Task Group E24.04.04 on Crack Closure Measurement and Analysis. Fourteen laboratories participated in the testing of aluminum alloy compact tension specimens. Opening-load measurements were made at three crack lengths during constant Delta K, constant stress ratio tests by most of the participants. Four participants made opening-load measurements during threshold tests. All opening-load measurements were based on the analysis of specimens compliance behavior, where the displacement/strain was measured either at the crack mouth or the mid-height back face location. The Round Robin data were analyzed for opening load using two non-subjective analysis methods: the compliance offset and the correlation coefficient methods. The scatter in the opening load results was significantly reduced when some of the results were excluded from the analysis population based on an accept/reject criterion for raw data quality. The compliance offset and correlation coefficient opening load analysis methods produced similar results for data populations that had been screened to eliminate poor quality data.

  12. Numerical modeling of nonlinear modulation of coda wave interferometry in a multiple scattering medium with the presence of a localized micro-cracked zone

    NASA Astrophysics Data System (ADS)

    Chen, Guangzhi; Pageot, Damien; Legland, Jean-Baptiste; Abraham, Odile; Chekroun, Mathieu; Tournat, Vincent

    2018-04-01

    The spectral element method is used to perform a parametric sensitivity study of the nonlinear coda wave interferometry (NCWI) method in a homogeneous sample with localized damage [1]. The influence of a strong pump wave on a localized nonlinear damage zone is modeled as modifications to the elastic properties of an effective damage zone (EDZ), depending on the pump wave amplitude. The local change of the elastic modulus and the attenuation coefficient have been shown to vary linearly with respect to the excitation amplitude of the pump wave as in previous experimental studies of Zhang et al. [2]. In this study, the boundary conditions of the cracks, i.e. clapping effects is taken into account in the modeling of the damaged zone. The EDZ is then modeled with random cracks of random orientations, new parametric studies are established to model the pump wave influence with two new parameters: the change of the crack length and the crack density. The numerical results reported constitute another step towards quantification and forecasting of the nonlinear acoustic response of a cracked material, which proves to be necessary for quantitative non-destructive evaluation.

  13. Incidence of apical root cracks and apical dentinal detachments after canal preparation with hand and rotary files at different instrumentation lengths.

    PubMed

    Liu, Rui; Kaiwar, Anjali; Shemesh, Hagay; Wesselink, Paul R; Hou, Benxiang; Wu, Min-Kai

    2013-01-01

    The aim of this study was to compare the incidence of apical root cracks and dentinal detachments after canal preparation with hand and rotary files at different instrumentation lengths. Two hundred forty mandibular incisors were mounted in resin blocks with simulated periodontal ligaments, and the apex was exposed. The root canals were instrumented with rotary and hand files, namely K3, ProTaper, and nickel-titanium Flex K files to the major apical foramen (AF), short AF, or beyond AF. Digital images of the apical surface of every tooth were taken during the apical enlargement at each file change. Development of dentinal defects was determined by comparing these images with the baseline image. Multinomial logistic regression test was performed to identify influencing factors. Apical crack developed in 1 of 80 teeth (1.3%) with hand files and 31 of 160 teeth (19.4%) with rotary files. Apical dentinal detachment developed in 2 of 80 teeth (2.5%) with hand files and 35 of 160 teeth (21.9%) with rotary files. Instrumentation with rotary files terminated 2 mm short of AF and did not cause any cracks. Significantly less cracks and detachments occurred when instrumentation with rotary files was terminated short of AF, as compared with that terminated at or beyond AF (P < .05). The AF deviated from the anatomic apex in 128 of 240 teeth (53%). Significantly more apical dentinal detachments appeared in teeth with a deviated AF (P = .033). Rotary instruments caused more dentinal defects than hand instruments; instrumentation short of AF reduced the risk of dentinal defects. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Decrepitation and crack healing of fluid inclusions in San Carlos olivine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wanamaker, B.J.; Wong, Tengfong; Evans, B.

    1990-09-10

    Fluid inclusions break, or decrepitate, when the fluid pressure exceeds the least principal lithostatic stress by a critical amount. After decrepitation, excess fluid pressure is relaxed, resulting in crack arrest; subsequently, crack healing may occur. The authors developed a linear elastic fracture mechanics model to analyze new data on decrepitation and crack arrest in San Carlos Olivine, compared the model with previous fluid inclusion investigations, and used it to interpret some natural decrepitation microstructures. The common experimental observation that smaller inclusions may sustain higher internal fluid pressures without decrepitating may be rationalized by assuming that flaws associated with the inclusionmore » scale with the inclusion size. According to the model, the length of the crack formed by decrepitation depends on the lithostatic pressure at the initiation of cracking, the initial sizes of the flaw and the inclusion, and the critical stress intensity factor. Further experiments show that microcracks in San Carlos olivine heal within several days at 1,280 to 1,400{degree}C; healing rates depend on the crack geometry, temperature, and chemistry of the buffering gas. The regression distance of the crack tip during healing can be related to time through a power law with exponent n = 0.6. Chemical changes which become apparent after extremely long heat-treatments significantly affect the healing rates. Many of the inclusions in the San Carlos xenoliths stretched, decrepitated, and finally healed during uplift. The crack arrest model indicates that completely healed cracks had an initial fluid pressure of the order of 1 GPa. Using the crack arrest model and the healing kinetics, they estimate the ascent rate of these xenoliths to be between 0.001 and 0.1 m/s.« less

  15. Separation of crack extension modes in orthotropic delamination models

    NASA Technical Reports Server (NTRS)

    Beuth, Jack L.

    1995-01-01

    In the analysis of an interface crack between dissimilar elastic materials, the mode of crack extension is typically not unique, due to oscillatory behavior of near-tip stresses and displacements. This behavior currently limits the applicability of interfacial fracture mechanics as a means to predict composite delamination. The Virtual Crack Closure Technique (VCCT) is a method used to extract mode 1 and mode 2 energy release rates from numerical fracture solutions. The mode of crack extension extracted from an oscillatory solution using the VCCT is not unique due to the dependence of mode on the virtual crack extension length, Delta. In this work, a method is presented for using the VCCT to extract Delta-independent crack extension modes for the case of an interface crack between two in-plane orthotropic materials. The method does not involve altering the analysis to eliminate its oscillatory behavior. Instead, it is argued that physically reasonable, Delta-independent modes of crack extension can be extracted from oscillatory solutions. Knowledge of near-tip fields is used to determine the explicit Delta dependence of energy release rate parameters. Energy release rates are then defined that are separated from the oscillatory dependence on Delta. A modified VCCT using these energy release rate definitions is applied to results from finite element analyses, showing that Delta-independent modes of crack extension result. The modified technique has potential as a consistent method for extracting crack extension modes from numerical solutions. The Delta-independent modes extracted using this technique can also serve as guides for testing the convergence of finite element models. Direct applications of this work include the analysis of planar composite delamination problems, where plies or debonded laminates are modeled as in-plane orthotropic materials.

  16. P-S & S-P Elastic Wave Conversions from Linear Arrays of Oriented Microcracks

    NASA Astrophysics Data System (ADS)

    Jiang, L.; Modiriasari, A.; Bobet, A.; Pyrak-Nolte, L. J.

    2017-12-01

    Natural and induced processes can produce oriented mechanical discontinuities such as en echelon cracks, fractures and faults. Previous research has shown that compressional to shear (P-S) wave conversions occur at normal incidence to a fracture because of cross-coupling fracture compliances (Nakagawa et al., 2000). Here, experiments and computer simulation are presented to demonstrate the link among cross-coupling stiffness, microcrack orientation and energy partitioning among P, S, and P-S/S-P waves. A FormLabs 2 3D printer was used to fabricate 7 samples (50 mm x 50 mm x 100 mm) with linear arrays of microcracks oriented at 0, 15, 30, 45, 60, 75, and 900 with a print resolution of 0.025 mm. The microcracks were elliptical in cross-sections (2 mm long by 1 mm wide), through the 50 mm thickness of sample, and spaced 3 mm (center-to-center for adjacent cracks). A 25 mm length of each sample contained no microcracks to act as a reference material. Broadband transducers (0.2-1.5 MHz) were used to transmit and receive P and polarized S wave signals that were propagated at normal incidence to the linear array of microcracks. P-wave amplitude increased, while S-wave amplitude remained relatively constant, as the microcrack orientation increased from 0o to 90o. At normal incidence, P-S and S-P wave conversions emerged and increased in amplitude as the crack inclination increased from 00 to 450. From 450 to 900, the amplitude of these converted modes decreased. Between negative and positive crack angles, the P-to-S and S-to-P waves were 1800 phase reversed. The observed energy partitioning matched the computed compliances obtained from numerical simulations with ABAQUS. The cross-coupling compliance for cracks inclined at 450 was found to be the smallest magnitude. 3D printing enabled the study of microstructural effects on macro-scale wave measurements. Information on the orientation of microcracks or even en echelon fractures and faults is contained in P-S conversions even at normal incidence. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022) and by the National Science Foundation, Geomechanics and Geotechnical Systems Program (award No. CMMI-1162082).

  17. Microscopic Characterization of Tensile and Shear Fracturing in Progressive Failure in Marble

    NASA Astrophysics Data System (ADS)

    Cheng, Yi; Wong, Louis Ngai Yuen

    2018-01-01

    Compression-induced tensile and shear fractures were reported to be the two fundamental fracture types in rock fracturing tests. This study investigates such tensile and shear fracturing process in marble specimens containing two different flaw configurations. Observations first reveal that the development of a tensile fracture is distinct from shear fracture with respect to their nucleation, propagation, and eventual formation in macroscale. Second, transgranular cracks and grain-scale spallings become increasingly abundant in shear fractures as loading increases, which is almost not observed in tensile fractures. Third, one or some dominant extensional microcracks are commonly observed in the center of tensile fractures, while such development of microcracks is almost absent in shear fractures. Microcracks are generally of a length comparable to grain size and distribute uniformly within the damage zone of the shear fracture. Fourth, the width of densely damaged zone in the shear fracture is nearly 10 times of that in the tensile fracture. Quantitative measurement on microcrack density suggests that (1) microcrack density in tensile and shear fractures display distinct characteristics with increasing loading, (2) transgranular crack density in the shear fracture decreases logarithmically with the distance away from the shear fracture center, and (3) whatever the fracture type, the anisotropy can only be observed for transgranular cracks with a large density, which partially explains why microcrack anisotropy usually tends to be unobvious until approaching peak stress in specimens undergoing brittle failure. Microcracking characteristics observed in this work likely shed light to some phenomena and conclusions generalized in seismological studies.

  18. Stress Mapping in Glass-to-Metal Seals using Indentation Crack Lengths.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strong, Kevin; Buchheit, Thomas E.; Diebold, Thomas Wayne

    Predicting the residual stress which develops during fabrication of a glass-to-metal compression seal requires material models that can accurately predict the effects of processing on the sealing glass. Validation of the predictions requires measurements on representative test geometries to accurately capture the interaction between the seal materials during a processing cycle required to form the seal, which consists of a temperature excursion through the glass transition temperature of the sealing glass. To this end, a concentric seal test geometry, referred to as a short cylinder seal, consisting of a stainless steel shell enveloping a commercial sealing glass disk has beenmore » designed, fabricated, and characterized as a model validation test geometry. To obtain data to test/validate finite element (FE) stress model predictions of this geometry, spatially-resolved residual stress was calculated from the measured lengths of the cracks emanating from radially positioned Vickers indents in the glass disk portion of the seal. The indentation crack length method is described, and the spatially-resolved residual stress determined experimentally are compared to FE stress predictions made using a nonlinear viscoelastic material model adapted to inorganic sealing glasses and an updated rate dependent material model for 304L stainless steel. The measurement method is a first to achieve a degree of success for measuring spatially resolved residual stress in a glass-bearing geometry and a favorable comparison between measurements and simulation was observed.« less

  19. Stress Mapping in Glass-to-Metal Seals using Indentation Crack Lengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchheit, Thomas E.; Strong, Kevin; Newton, Clay S.

    Predicting the residual stress which develops during fabrication of a glass-to-metal compression seal requires material models that can accurately predict the effects of processing on the sealing glass. Validation of the predictions requires measurements on representative test geometries to accurately capture the interaction between the seal materials during a processing cycle required to form the seal, which consists of a temperature excursion through the glass transition temperature of the sealing glass. To this end, a concentric seal test geometry, referred to as a short cylinder seal, consisting of a stainless steel shell enveloping a commercial sealing glass disk has beenmore » designed, fabricated, and characterized as a model validation test geometry. To obtain data to test/validate finite element (FE) stress model predictions of this geometry, spatially-resolved residual stress was calculated from the measured lengths of the cracks emanating from radially positioned Vickers indents in the glass disk portion of the seal. The indentation crack length method is described, and the spatially-resolved residual stress determined experimentally are compared to FE stress predictions made using a nonlinear viscoelastic material model adapted to inorganic sealing glasses and an updated rate dependent material model for 304L stainless steel. The measurement method is a first to achieve a degree of success for measuring spatially resolved residual stress in a glass-bearing geometry and a favorable comparison between measurements and simulation was observed.« less

  20. Resonance of a fluid-driven crack: Radiation properties and implications for the source of long-period events and harmonic tremor

    NASA Astrophysics Data System (ADS)

    Chouet, Bernard

    1988-05-01

    A dynamic source model is presented, in which a three-dimensional crack containing a viscous compressible fluid is excited into resonance by an impulsive pressure transient applied over a small area ΔS of the crack surface. The crack excitation depends critically on two dimensionless parameters called the crack stiffness, C = (b/μ)(L/d), and viscous damping loss, F = (12ηL)/(ρƒd2α), where b is the bulk modulus, η is the viscosity, ρƒ is the density of the fluid, μ is the rigidity, α is the compressional velocity of the solid, L is the crack length, and d is the crack thickness. The first parameter characterizes the ability of the crack to vibrate and shapes the spectral signature of the source, and the second quantifies the effect of fluid viscosity on the duration of resonance. Resonance is sustained by a very slow wave trapped in the fluid-filled crack. This guided wave, called the crack wave, is similar to the tube wave propagating in a fluid-filled borehole; it is inversely dispersive, showing a phase velocity that decreases with increasing wavelength, and its wave speed is always lower than the acoustic velocity of the fluid, decreasing rapidly as the crack stiffness increases. The source spectrum shows many sharp peaks characterizing the individual modes of vibration of the crack; the variation of spectral shape, both in the number and width of peaks, is surprisingly complex, reflecting the interference between the lateral and longitudinal modes of resonance, as well as nodes for these modes. The far-field spectrum is marked by narrow-band dominant and subdominant peaks that reflect the interaction of the various source modes. The frequency of the dominant spectral peak radiated by the source is independent of the radiation direction. The frequency, bandwidth, and spacing of the resonant peaks are strongly dependent on the crack stiffness, larger values of the stiffness factor shifting these peaks to lower frequencies and decreasing their bandwidth. The excitation of a particular mode depends on the position of the trigger and on the extent of the crack surface affected by the pressure transient. Fluid viscosity decreases the amplitudes of the main spectral peaks, smears out the finer structure of the spectrum, and greatly reduces the duration of the radiated signal. The energy loss by radiation is stronger for high frequencies, producing a seismic signature that is marked by a high-frequency content near the onset of the signal and dominated by a longer-period component of much longer duration in the signal coda. Such signature is in harmony with those displayed by long-period events observed on active volcanoes and in hydrofracture experiments. The very low velocity which is possible in a crack with high stiffness (C ≥ 100) also provides an attractive explanation for very long period tremor, such as type 2 tremor at Aso volcano, Japan, without the requirement of an unrealistically large magma container. The standing wave pattern set up on the crack surface by the sustained resonance in the fluid is observable in the near field of the crack, suggesting that the location and extent of the source may be estimated from the mapping of the pattern of nodes and antinodes seen in its vicinity. According to the model, the long-period event and harmonic tremor share the same source but differ in the boundary conditions for fluid flow and in the triggering mechanism setting up the resonance of the source, the former being viewed as the impulse response of the tremor generating system and the latter representing the excitation due to more complex forcing functions.

Top