Evaluation of Stress Corrosion Resistance Properties of 15CrMoR(H) in H2S Environment
NASA Astrophysics Data System (ADS)
Zhang, Yiliang; Wang, Jing; Wu, Mingyao; Li, Shurui; Liu, Wenbin
To evaluate the hydrogen resistant properties of the 15CrMoR(H) with new smelting process, according to NACE and National Standards, three tests including NACE standard tensile test, NACE standard bent-beam test and hydrogen induced cracking test are executed in saturated hydrogen sulfide(H2S) environment. Stress-life mathematical model of this material is given by analyzing and fitting the results of tensile test. Test results show that the threshold sth of tensile test is 0.7R eL(252MPa); the threshold nominal stress SC of bent-beam is higher than 4.5 R eL (1620MPa); for HIC test, the crack length rate CLR is 4.40%, the crack thickness rate CTR is 0.87% and the crack sensitive rate CSR is 0.04%. Compare with EFC standard, the safety margin of HIC test is 3.4, 3.4 and 37.5 times respectively. All the experimental results show that the new 15CrMoR(H) material has excellent H2S environmental cracking resistance properties.
Evaluation of Heat-affected Zone Hydrogen-induced Cracking in High-strength Steels
NASA Astrophysics Data System (ADS)
Yue, Xin
Shipbuilding is heavily reliant on welding as a primary fabrication technique. Any high performance naval steel must also possess good weldability. It is therefore of great practical importance to conduct weldability testing of naval steels. Among various weldability issues of high-strength steels, hydrogen-induced cracking (HIC) in the heat-affected zone (HAZ) following welding is one of the biggest concerns. As a result, in the present work, research was conducted to study the HAZ HIC susceptibility of several naval steels. Since the coarse-grained heat-affected zone (CGHAZ) is generally known to be the most susceptible to HIC in the HAZ region, the continuous cooling transformation (CCT) behavior of the CGHAZ of naval steels HSLA-65, HSLA-100, and HY-100 was investigated. The CGHAZ microstructure over a range of cooling rates was characterized, and corresponding CCT diagrams were constructed. It was found that depending on the cooling rate, martensite, bainite, ferrite and pearlite can form in the CGHAZ of HSLA-65. For HSLA-100 and HY-100, only martensite and bainite formed over the range of cooling rates that were simulated. The constructed CCT diagrams can be used as a reference to select welding parameters to avoid the formation of high-hardness martensite in the CGHAZ, in order to ensure resistance to hydrogen-induced cracking. Implant testing was conducted on the naval steels to evaluate their susceptibility to HAZ HIC. Stress vs. time to failure curves were plotted, and the lower critical stress (LCS), normalized critical stress ratio (NCSR) and embrittlement index (EI) for each steel were determined, which were used to quantitatively compare HIC susceptibility. The CGHAZ microstructure of the naval steels was characterized, and the HIC fracture behavior was studied. Intergranular (IG), quasi-cleavage (QC) and microvoid coalescence (MVC) fracture modes were found to occur in sequence during the crack initiation and propagation process. This was rationalized using Beachem's model. Based on the implant test results, it can be concluded that with respect to HAZ HIC susceptibility, the four steels from the most susceptible to the least, are HY-100, BA-160, HSLA-100 and HSLA-65. Increasing diffusible hydrogen content showed that HSLA-100 has better tolerance to the increase in hydrogen levels than BA-160 and HY-100, with HY-100 exhibiting the least tolerance to hydrogen increase in weld joint. For the BA-160 steel, the effect of welding parameters on HAZ HIC susceptibility was investigated. It was shown that both increasing heat input and using preheat can improve the HAZ HIC resistance of BA-160. It was also found that using a PWHT at 650°C for 1 hour to reduce HIC susceptibility of BA-160 steel is also beneficial for the strength recovery in the softened as-welded CGHAZ. This is attributed to the re-precipitation of strengthening phases during the PWHT process that are dissolved in the CGHAZ during heating to the high temperature and do not re-precipitate completely during cooling.
NASA Astrophysics Data System (ADS)
Masoumi, Mohammad; Coelho, Hana Livia Frota; Tavares, Sérgio Souto Maior; Silva, Cleiton Carvalho; de Abreu, Hamilton Ferreira Gomes
2017-08-01
Hydrogen-induced cracking (HIC) causes considerable economic losses in a wide range of steels exposed to corrosive environments. The effect of crystallographic texture and grain boundary distributions tailored by rolling at 850 °C in three different steels with a body-centered cube structure was investigated on HIC resistance. The x-ray and electron backscattered diffraction techniques were used to characterize texture evolutions during the rolling process. The findings revealed a significant improvement against HIC based on texture engineering. In addition, increasing the number of {111} and {110} grains, associated with minimizing the number of {001} grains in warm-rolled samples, reduced HIC susceptibility. Moreover, the results showed that boundaries associated with low {hkl} indexing and denser packing planes had more resistance against crack propagation.
NASA Astrophysics Data System (ADS)
El-Azhari, O. A.; Gajam, S. Y.
2015-03-01
The gas/condensate pipe line under investigation is a 12 inch diameter, 48 km ASTM, A106 steel pipeline, carrying hydrocarbons containing wet CO2 and H2S.The pipe line had exploded in a region 100m distance from its terminal; after 24 years of service. Hydrogen induced cracking (HIC) and sour gas corrosion were expected due to the presence of wet H2S in the gas analysis. In other areas of pipe line ultrasonic testing was performed to determine whether the pipeline can be re-operated. The results have shown presence of internal planner defects, this was attributed to the existence of either laminations, type II inclusions or some service defects such as HIC and step wise cracking (SWC).Metallurgical investigations were conducted on fractured samples as per NACE standard (TM-0284-84). The obtained results had shown macroscopic cracks in the form of SWC, microstructure of steel had MnS inclusions. Crack sensitivity analyses were calculated and the microhardness testing was conducted. These results had confirmed that the line material was suffering from sour gas deteriorations. This paper correlates the field UT inspection findings with those methods investigated in the laboratory. Based on the results obtained a new HIC resistance material pipeline needs to be selected.
NASA Astrophysics Data System (ADS)
Liu, Zhenguang; Gao, Xiuhua; Du, Linxiu; Li, Jianping; Zhou, Xiaowei; Wang, Xiaonan; Wang, Yuxin; Liu, Chuan; Xu, Guoxiang; Misra, R. D. K.
2018-05-01
In this study, hydrogen induced cracking (HIC), sulfide stress corrosion cracking (SSCC) and hydrogen embrittlement (HE) were carried out to study hydrogen assisted cracking behavior (HIC, SSCC and HE) of high strength pipeline steel used for armor layer of flexible pipe in ocean. The CO2 corrosion behavior of designed steel with high strength was studied by using immersion experiment. The experimental results demonstrate that the corrosion resistance of designed steel with tempered martensite to HIC, SSCC and HE is excellent according to specific standards, which contributes to the low concentration of dislocation and vacancies previously formed in cold rolling process. The corrosion mechanism of hydrogen induced cracking of designed steel, which involves in producing process, microstructure and cracking behavior, is proposed. The designed steel with tempered martensite shows excellent corrosion resistance to CO2 corrosion. Cr-rich compound was first formed on the coupon surface exposed to CO2-saturated brine condition and chlorine, one of the corrosion ions in solution, was rich in the inner layer of corrosion products.
Corrosion fatigue crack growth behavior of titanium alloys in aqueous solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shipilov, S.A.
1998-01-01
The corrosion fatigue crack growth (FCG) behavior, the effect of applied potential on corrosion FCG rates, and the fracture surfaces of VT20 (near-{alpha}) and TS6 (near-{beta}) titanium alloys were studied. Environments were aqueous solutions of sodium chloride (NaCl), sodium hydroxide (NaOH), potassium hydroxide (KOH), ferric chloride (FeCl{sub 3}), and chromic acid (H{sub 2}CrO{sub 4}) with and without NaCl. Depending upon solution composition, corrosion FCG rates were found to be higher or lower than those in air. Cathodic polarization retarded the corrosion FCG, while anodic polarization accelerated insignificantly or almost did not influence it in most of the solutions investigated. However,more » cathodic polarization accelerated corrosion FCG in 0.6 M FeCl{sub 3} and 0.5 M to 2 M H{sub 2}CrO{sub 4} + 0.01 M to 0.1 M NaCl solutions by a dozen times when the maximum stress intensity (K{sub max}) exceeded certain critical values. When K{sub max} was lower than the critical values, the same cathodic polarization (with all other /conditions being equal) retarded corrosion FCG. Results suggested the accelerated crack growth at cathodic potentials resulted from hydrogen-induced cracking (HIC). Therefore, critical values of K{sub max}, as well as the stress intensity range ({Delta}K) were regarded as corresponding to the beginning of corrosion FCG according to a HIC mechanism and designated as K{sub HIC} and {Delta}K{sub HIC}.« less
Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller
NASA Astrophysics Data System (ADS)
Sun, Jiao; Chen, Songying; Qu, Yanpeng; Li, Jianfeng
2015-03-01
Corrosion failure, especially stress corrosion cracking and corrosion fatigue, is the main cause of centrifugal compressor impeller failure. And it is concealed and destructive. This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments, and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution (AD), the hydrogen-induced cracking (HIC), and the combined AD and HIC mechanisms. The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking. The effects of stress ratio, loading frequency, and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized. The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments, which contain sulfide, chlorides, and carbonate, are analyzed. The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments. The current research methods for centrifugal compressor impeller corrosion failure are analyzed. Physical analysis, numerical simulation, and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.
NASA Astrophysics Data System (ADS)
Zhang, Zhiying
Environmentally assisted cracking (EAC) of armour wires in flexible pipes, power cables and umbilicals is a major concern with the development of oil and gas fields and wind farms in harsh environments. Hydrogen induced cracking (HIC) or hydrogen embrittlement (HE) of steel armour wires used in deep-water and ultra-deep-water has been evaluated. Simulated tests have been carried out in simulated sea water, under conditions where the susceptibility is the highest, i.e. at room temperature, at the maximum negative cathodic potential and at the maximum stress level expected in service for 150 hours. Examinations of the tested specimens have not revealed cracking or blistering, and measurement of hydrogen content has confirmed hydrogen charging. In addition, sulphide stress cracking (SSC) and chloride stress cracking (CSC) of nickel-based alloy armour wires used in harsh down-hole environments has been evaluated. Simulated tests have been carried out in simulated solution containing high concentration of chloride, with high hydrogen sulphide partial pressure, at high stress level and at 120 °C for 720 hours. Examinations of the tested specimens have not revealed cracking or blistering. Subsequent tensile tests of the tested specimens at ambient pressure and temperature have revealed properties similar to the as-received specimens.
Effective Process Design for the Production of HIC-Resistant Linepipe Steels
NASA Astrophysics Data System (ADS)
Nieto, J.; Elías, T.; López, G.; Campos, G.; López, F.; Garcia, R.; De, Amar K.
2013-09-01
Production of slabs for sour service applications requires stringent control in slab internal quality and secondary processing so as to guarantee resistance against hydrogen-induced cracking (HIC). ArcelorMittal Steelmaking facility at Lazaro Cardenas, Mexico had recently implemented key steelmaking and casting processing technologies for production of sound, centerline free slabs for catering to the growing API Linepipe and off-shore market for sour service applications. State-of-the-art steelmaking with use of residual-free Direct-reduced Iron and continuous casting facilities with dynamic soft reduction were introduced for the production of slabs with ultra clean centerline. Introduction of controlled cooling of slabs for atomic hydrogen control well below 2 ppm has enabled production of slabs suitable for excellent HIC-resistant plate processing. Substantial tonnages of slabs were produced for production of API X52-X65 grade plates and pipes for sour service. Stringent quality control at each stage of steelmaking, casting, and slab inspection ensured slabs with excellent internal quality suitable for HIC resistance to be guaranteed in final product (Plates & Pipes). Details of production steps which resulted in successful HIC-resistant slab production have been described in this article.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Zhili; Bunn, Jeffrey R; Tzelepis, Demetrios A
Hydrogen induced cracking (HIC) has been a persistent issue in welding of high-strength steels. Mitigating residual stresses is one of the most efficient ways to control HIC. The current study develops a proactive in-process weld residual stress mitigation technique, which manipulates the thermal expansion and contraction sequence in the weldments during welding process. When the steel weld is cooled after welding, martensitic transformation will occur at a temperature below 400 C. Volume expansion in the weld due to the martensitic transformation will reduce tensile stresses in the weld and heat affected zone and in some cases produce compressive residual stressesmore » in the weld. Based on this concept, a customized filler wire which undergoes a martensitic phase transformation during cooling was developed. The new filler wire shows significant improvement in terms of reducing the tendency of HIC in high strength steels. Bulk residual stress mapping using neutron diffraction revealed reduced tensile and compressive residual stresses in the welds made by the new filler wire.« less
diffHic: a Bioconductor package to detect differential genomic interactions in Hi-C data.
Lun, Aaron T L; Smyth, Gordon K
2015-08-19
Chromatin conformation capture with high-throughput sequencing (Hi-C) is a technique that measures the in vivo intensity of interactions between all pairs of loci in the genome. Most conventional analyses of Hi-C data focus on the detection of statistically significant interactions. However, an alternative strategy involves identifying significant changes in the interaction intensity (i.e., differential interactions) between two or more biological conditions. This is more statistically rigorous and may provide more biologically relevant results. Here, we present the diffHic software package for the detection of differential interactions from Hi-C data. diffHic provides methods for read pair alignment and processing, counting into bin pairs, filtering out low-abundance events and normalization of trended or CNV-driven biases. It uses the statistical framework of the edgeR package to model biological variability and to test for significant differences between conditions. Several options for the visualization of results are also included. The use of diffHic is demonstrated with real Hi-C data sets. Performance against existing methods is also evaluated with simulated data. On real data, diffHic is able to successfully detect interactions with significant differences in intensity between biological conditions. It also compares favourably to existing software tools on simulated data sets. These results suggest that diffHic is a viable approach for differential analyses of Hi-C data.
The new car assessment program: does it predict the relative safety of vehicles in actual crashes?
Nirula, Ram; Mock, Charles N; Nathens, Avery B; Grossman, David C
2004-10-01
Federal motor vehicle safety standards are based on crash test dummy analyses that estimate the relative risk of traumatic brain injury (TBI) and severe thoracic injury (STI) by quantifying head (Head Injury Criterion [HIC]) and chest (Chest Gravity Score [CGS]) acceleration. The New Car Assessment Program (NCAP) combines these probabilities to yield the vehicle's five-star rating. The validity of the NCAP system as it relates to an actual motor vehicle crash (MVC) remains undetermined. We therefore sought to determine whether HIC and CGS accurately predict TBI and STI in actual crashes, and compared the NCAP five-star rating system to the rates of TBI and/or STI in actual MVCs. We analyzed frontal crashes with restrained drivers from the 1994 to 1998 National Automotive Sampling System. The relationship of HIC and CGS to the probabilities of TBI and STI derived from crash tests were respectively compared with the HIC-TBI and CGS-STI risk relationships observed in actual crashes while controlling for covariates. Receiver operating characteristic curves determined the sensitivity and specificity of HIC and CGS as predictors of TBI and STI, respectively. Estimates of the likelihood of TBI and/or STI (in actual MVCs) were compared with the expected probabilities of TBI and STI (determined by crash test analysis), as they relate to NCAP ratings. The crash tests overestimate TBI likelihood at HIC scores >800 and underestimate it at scores <500. STI likelihood is overestimated when CGS exceeds 40 g. Receiver operating characteristic curves demonstrated poor sensitivity and specificity of HIC and CGS in predicting injury. The actual MVC injury probability estimates did not vary between vehicles of different NCAP rating. HIC and CGS are poor predictors of TBI and STI in actual MVCs. The NCAP five-star rating system is unable to differentiate vehicles of varying crashworthiness in actual MVCs. More sensitive parameters need to be developed and incorporated into vehicle crash safety testing to provide consumers and automotive manufacturers with useful tools with which to measure vehicle safety.
Sim3C: simulation of Hi-C and Meta3C proximity ligation sequencing technologies.
DeMaere, Matthew Z; Darling, Aaron E
2018-02-01
Chromosome conformation capture (3C) and Hi-C DNA sequencing methods have rapidly advanced our understanding of the spatial organization of genomes and metagenomes. Many variants of these protocols have been developed, each with their own strengths. Currently there is no systematic means for simulating sequence data from this family of sequencing protocols, potentially hindering the advancement of algorithms to exploit this new datatype. We describe a computational simulator that, given simple parameters and reference genome sequences, will simulate Hi-C sequencing on those sequences. The simulator models the basic spatial structure in genomes that is commonly observed in Hi-C and 3C datasets, including the distance-decay relationship in proximity ligation, differences in the frequency of interaction within and across chromosomes, and the structure imposed by cells. A means to model the 3D structure of randomly generated topologically associating domains is provided. The simulator considers several sources of error common to 3C and Hi-C library preparation and sequencing methods, including spurious proximity ligation events and sequencing error. We have introduced the first comprehensive simulator for 3C and Hi-C sequencing protocols. We expect the simulator to have use in testing of Hi-C data analysis algorithms, as well as more general value for experimental design, where questions such as the required depth of sequencing, enzyme choice, and other decisions can be made in advance in order to ensure adequate statistical power with respect to experimental hypothesis testing.
Pham, Dien G.; Madico, Guillermo E.; Quinn, Thomas C.; Enzler, Mark J.; Smith, Thomas F.; Gaydos, Charlotte A.
1998-01-01
An inherent problem in the diagnostic PCR assay is the presence of ill-defined inhibitors of amplification which may cause false-negative results. Addition of an amplifiable fragment of foreign DNA in the PCR to serve as a hybrid internal control (HIC) would allow for a simple way to identify specimens containing inhibitors. Two oligonucleotide hybrid primers were synthesized to contain nucleic acid sequences of the Chlamydia pneumoniae 16S rRNA primers in a position flanking two primers that target the sequences of a 650-bp lambda phage DNA segment. By using the hybrid primers, hybrid DNA comprising a large sequence of lambda phage DNA flanked by short pieces of chlamydia DNA was subsequently generated by PCR, cloned into a plasmid vector, and purified. Plasmids containing the hybrid DNA were diluted and used as a HIC by adding them to each C. pneumoniae PCR test. Consequently, C. pneumoniae primers were able to amplify both chlamydia DNA and the HIC DNA. The production of a 689-bp HIC DNA band on an acrylamide gel indicated that the specimen contained no inhibitors and that internal conditions were compatible with PCR. Subsequently, a biotinylated RNA probe for the HIC was transcribed from a nested sequence of the HIC and was used for its hybridization. Detection of the HIC DNA-RNA hybrid was achieved by enzyme immunoassay (EIA). This PCR-EIA system with a HIC was initially tested with 12 previously PCR-positive and 14 previously PCR-negative specimens. Of the 12 PCR-positive specimens, 11 were reconfirmed as positive; 1 had a negative HIC value, indicating inhibition. Of the 14 previously PCR-negative specimens, 13 were confirmed as true negative; 1 had a negative HIC value, indicating inhibition. The assay was then used with 237 nasopharyngeal specimens from patients with pneumonia. Twenty-one of 237 (8.9%) were positive for C. pneumoniae, and 42 (17.7%) were found to inhibit the PCR. Specimens showing inhibitory activity were diluted 1:10 and were retested. Ten specimens were still inhibitory to the PCR and required further DNA purification. No additional positive samples were detected and 3 nasopharyngeal specimens remained inhibitory to PCR. Coamplification of a HIC DNA can help confirm true-negative PCR results by ruling out the presence of inhibitors of DNA amplification. PMID:9650936
Hi-C OBSERVATIONS OF SUNSPOT PENUMBRAL BRIGHT DOTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alpert, Shane E.; Tiwari, Sanjiv K.; Moore, Ronald L.
We report observations of bright dots (BDs) in a sunspot penumbra using High Resolution Coronal Imager (Hi-C) data in 193 Å and examine their sizes, lifetimes, speeds, and intensities. The sizes of the BDs are on the order of 1″ and are therefore hard to identify in the Atmospheric Imaging Assembly (AIA) 193 Å images, which have a 1.″2 spatial resolution, but become readily apparent with Hi-C's spatial resolution, which is five times better. We supplement Hi-C data with data from AIA's 193 Å passband to see the complete lifetime of the BDs that appeared before and/or lasted longer thanmore » Hi-C's three-minute observation period. Most Hi-C BDs show clear lateral movement along penumbral striations, either toward or away from the sunspot umbra. Single BDs often interact with other BDs, combining to fade away or brighten. The BDs that do not interact with other BDs tend to have smaller displacements. These BDs are about as numerous but move slower on average than Interface Region Imaging Spectrograph (IRIS) BDs, which was recently reported by Tian et al., and the sizes and lifetimes are on the higher end of the distribution of IRIS BDs. Using additional AIA passbands, we compare the light curves of the BDs to test whether the Hi-C BDs have transition region (TR) temperatures like those of the IRIS BDs. The light curves of most Hi-C BDs peak together in different AIA channels, indicating that their temperatures are likely in the range of the cooler TR (1−4 × 10{sup 5} K).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao Zhengliang; Deblis, Ryan; Glenn, Honor
2007-11-15
Hic-5 is a LIM-Only member of the paxillin superfamily of focal adhesion proteins. It has been shown to regulate a range of biological processes including: senescence, tumorigenesis, steroid hormone action, integrin signaling, differentiation, and apoptosis. To better understand the roles of Hic-5 during development, we initiated a detailed analysis of Hic-5 expression and function in C{sub 2}C{sub 12} myoblasts, a well-established model for myogenesis. We have found that: (1) myoblasts express at least 6 distinct Hic-5 isoforms; (2) the two predominant isoforms, Hic-5{alpha} and Hic-5{beta}, are differentially expressed during myogenesis; (3) any experimentally induced change in Hic-5 expression results inmore » a substantial increase in apoptosis during differentiation; (4) ectopic expression of Hic-5{alpha} is permissive to differentiation while expression of either Hic-5{beta} or antisense Hic-5 blocks myoblast fusion but not chemodifferentiation; (5) Hic-5 localizes to focal adhesions in C{sub 2}C{sub 12} myoblasts and perturbation of Hic-5 leads to defects in cell spreading; (6) alterations in Hic-5 expression interfere with the normal dynamics of laminin expression; and (7) ectopic laminin, but not fibronectin, can rescue the Hic-5-induced blockade of myoblast survival and differentiation. Our data demonstrate differential roles for individual Hic-5 isoforms during myogenesis and support the hypothesis that Hic-5 mediates these effects via integrin signaling.« less
Hi-C Observations of Penumbral Bright Dots
NASA Astrophysics Data System (ADS)
Alpert, S.; Tiwari, S. K.; Moore, R. L.; Savage, S. L.; Winebarger, A. R.
2014-12-01
We use high-quality data obtained by the High Resolution Coronal Imager (Hi-C) to examine bright dots (BDs) in a sunspot's penumbra. The sizes of these BDs are on the order of 1 arcsecond (1") and are therefore hard to identify using the Atmospheric Imaging Assembly's (AIA) 0.6" pixel-1 resolution. These BDs become readily apparent with Hi-C's 0.1" pixel-1 resolution. Tian et al. (2014) found penumbral BDs in the transition region (TR) by using the Interface Region Imaging Spectrograph (IRIS). However, only a few of their dots could be associated with any enhanced brightness in AIA channels. In this work, we examine the characteristics of the penumbral BDs observed by Hi-C in a sunspot penumbra, including their sizes, lifetimes, speeds, and intensity. We also attempt to relate these BDs to the IRIS BDs. There are fewer Hi-C BDs in the penumbra than seen by IRIS, though different sunspots were studied. We use 193Å Hi-C data from July 11, 2012 which observed from ~18:52:00 UT--18:56:00 UT and supplement it with data from AIA's 193Å passband to see the complete lifetime of the dots that were born before and/or lasted longer than Hi-C's 5-minute observation period. We use additional AIA passbands and compare the light curves of the BDs at different temperatures to test whether the Hi-C BDs are TR BDs. We find that most Hi-C BDs show clear movement, and of those that do, they move in a radial direction, toward or away from the sunspot umbra. Single BDs interact with other BDs, combining to fade away or brighten. The BDs that do not interact with other BDs tend to move less. Our BDs are similar to the exceptional IRIS BDs: they move slower on average and their sizes and lifetimes are on the high end of the distribution of IRIS BDs. We infer that our penumbral BDs are some of the larger BDs observed by IRIS, those that are bright enough in TR emission to be seen in the 193Å band of Hi-C.
Okazaki, Satoshi; Schirripa, Marta; Loupakis, Fotios; Cao, Shu; Zhang, Wu; Yang, Dongyun; Ning, Yan; Berger, Martin D; Miyamoto, Yuji; Suenaga, Mitsukuni; Iqubal, Syma; Barzi, Afsaneh; Cremolini, Chiara; Falcone, Alfredo; Battaglin, Francesca; Salvatore, Lisa; Borelli, Beatrice; Helentjaris, Timothy G; Lenz, Heinz-Josef
2017-11-15
The hypermethylated in cancer 1/sirtuin 1 (HIC1/SIRT1) axis plays an important role in regulating the nucleotide excision repair pathway, which is the main oxaliplatin-induced damage-repair system. On the basis of prior evidence that the variable number of tandem repeat (VNTR) sequence located near the promoter lesion of HIC1 is associated with HIC1 gene expression, the authors tested the hypothesis that this VNTR is associated with clinical outcome in patients with metastatic colorectal cancer who receive oxaliplatin-based chemotherapy. Four independent cohorts were tested. Patients who received oxaliplatin-based chemotherapy served as the training cohort (n = 218), and those who received treatment without oxaliplatin served as the control cohort (n = 215). Two cohorts of patients who received oxaliplatin-based chemotherapy were used for validation studies (n = 176 and n = 73). The VNTR sequence near HIC1 was analyzed by polymerase chain reaction analysis and gel electrophoresis and was tested for associations with the response rate, progression-free survival, and overall survival. In the training cohort, patients who harbored at least 5 tandem repeats (TRs) in both alleles had a significantly shorter PFS compared with those who had fewer than 4 TRs in at least 1 allele (9.5 vs 11.6 months; hazard ratio, 1.93; P = .012), and these findings remained statistically significant after multivariate analysis (hazard ratio, 2.00; 95% confidence interval, 1.13-3.54; P = .018). This preliminary association was confirmed in the validation cohort, and patients who had at least 5 TRs in both alleles had a worse PFS compared with the other cohort (7.9 vs 9.8 months; hazard ratio, 1.85; P = .044). The current findings suggest that the VNTR sequence near HIC1 could be a predictive marker for oxaliplatin-based chemotherapy in patients with metastatic colorectal cancer. Cancer 2017;123:4506-14. © 2017 American Cancer Society. © 2017 American Cancer Society.
Hi-C Observations of Penumbral Bright Dots: Comparison with the IRIS Results
NASA Technical Reports Server (NTRS)
Alpert, S. E.; Tiwari, S. K.; Moore, R. L.; Savage, S. L.; Winebarger, A. R.
2014-01-01
We observed bright dots (BDs) in a sunspot penumbra by using data acquired by the High Resolution Coronal Imager (Hi-C). The sizes of these BDs are on the order of 1 arcsecond (1') and are therefore hard to identify using the Atmospheric Imaging Assembly's (AIA) 0.6' pixel -1 resolution. These BDs become readily apparent with Hi-C's 0.1' pixel -1 resolution. Tian et al. (2014) found penumbral BDs in the transition region (TR) by using the Interface Region Imaging Spectrograph (IRIS). However, only a few of their dots could be associated with any enhanced brightness in AIA channels. In this work, we examine the characteristics of the penumbral BDs observed by Hi-C in a sunspot penumbra, including their sizes, lifetimes, speeds, and intensity. We also attempt to relate these BDs to the IRIS BDs. There are fewer Hi-C BDs in the penumbra than seen by IRIS, though different sunspots were studied and Hi-C had a short observation time. We use 193 A Hi-C data from July 11, 2012 which observed from 18:52:00 UT{18:56:00 UT and supplement it with data from AIA's 193 A passband to see the complete lifetime of the dots that were born before and/or lasted longer than Hi-C's 5-minute observation period. We use additional AIA passbands and compare the light curves of the BDs at different temperatures to test whether the Hi-C BDs are TR BDs. We find that most Hi-C BDs show clear movement, and of those that do, they move in a radial direction, toward or away from the sunspot umbra, sometimes doing both. BDs interact with other BDs, combining to fade away or brighten. The BDs that do not interact with other BDs tend to move less and last longer. We examine the properties of the Hi-C BDs and compare them with the IRIS BDs. Our BDs are similar to the exceptional values of the IRIS BDs: they move slower on average and their sizes and lifetimes are on the higher end of the distributions of IRIS BDs. We infer that our penumbral BDs are some of the larger BDs observed by IRIS.
Capturing Three-Dimensional Genome Organization in Individual Cells by Single-Cell Hi-C.
Nagano, Takashi; Wingett, Steven W; Fraser, Peter
2017-01-01
Hi-C is a powerful method to investigate genome-wide, higher-order chromatin and chromosome conformations averaged from a population of cells. To expand the potential of Hi-C for single-cell analysis, we developed single-cell Hi-C. Similar to the existing "ensemble" Hi-C method, single-cell Hi-C detects proximity-dependent ligation events between cross-linked and restriction-digested chromatin fragments in cells. A major difference between the single-cell Hi-C and ensemble Hi-C protocol is that the proximity-dependent ligation is carried out in the nucleus. This allows the isolation of individual cells in which nearly the entire Hi-C procedure has been carried out, enabling the production of a Hi-C library and data from individual cells. With this new method, we studied genome conformations and found evidence for conserved topological domain organization from cell to cell, but highly variable interdomain contacts and chromosome folding genome wide. In addition, we found that the single-cell Hi-C protocol provided cleaner results with less technical noise suggesting it could be used to improve the ensemble Hi-C technique.
Farook, Justin M; Morrell, Dennis J; Lewis, Ben; Littleton, John M; Barron, Susan
2007-01-01
Topiramate has emerged as one of the promising drugs for the treatment of alcoholism and alcohol addiction. Recent studies have shown that topiramate reduces harmful drinking and initiates abstinence in humans, but little is known as to why this drug is effective. In the present study, we examined the effects of topiramate in reducing convulsions during alcohol withdrawal using a procedure called the handling-induced convulsion (HIC) test in male Swiss-Webster mice. In addition, we examined the ability of topiramate to reduce alcohol conditioned and anxiety related behaviours during conditioned abstinence using the elevated plus maze (EPM) test. HICs were examined 10 h after the 3rd daily alcohol (2.5 g/kg; 20% w/v)+4 methylpyrazole (4MP) (9 mg/kg) intraperitoneal (i.p.) injection with topiramate (0, 10 or 20 mg/kg ip) administered 30 min before testing. In the EPM, alcohol (1.75 g/kg; 20%, i.p.) or saline was administered daily for 9 days and subjects were immediately placed on the maze. Anxiety related behaviours included the amount of time spent and number of entries in the open or closed arms and grooming bouts, and conditioned behaviours including the stretched-attend posture were examined 24 h after the last day of alcohol injection. Topiramate (10 and 20 mg/kg) significantly reduced HIC scores (P<0.05) compared to the alcohol/saline group. In the EPM, topiramate (20 mg/kg) reduced the stretched-attend postures (P<0.001) compared to the alcohol/saline group. These findings suggest that topiramate reduces HICs during alcohol withdrawal and alcohol-conditioned behaviours during conditioned abstinence in Swiss-Webster mice.
Hospital incident command system (HICS) performance in Iran; decision making during disasters
2012-01-01
Background Hospitals are cornerstones for health care in a community and must continue to function in the face of a disaster. The Hospital Incident Command System (HICS) is a method by which the hospital operates when an emergency is declared. Hospitals are often ill equipped to evaluate the strengths and vulnerabilities of their own management systems before the occurrence of an actual disaster. The main objective of this study was to measure the decision making performance according to HICS job actions sheets using tabletop exercises. Methods This observational study was conducted between May 1st 2008 and August 31st 2009. Twenty three Iranian hospitals were included. A tabletop exercise was developed for each hospital which in turn was based on the highest probable risk. The job action sheets of the HICS were used as measurements of performance. Each indicator was considered as 1, 2 or 3 in accordance with the HICS. Fair performance was determined as < 40%; intermediate as 41-70%; high as 71-100% of the maximum score of 192. Descriptive statistics, T-test, and Univariate Analysis of Variance were used. Results None of the participating hospitals had a hospital disaster management plan. The performance according to HICS was intermediate for 83% (n = 19) of the participating hospitals. No hospital had a high level of performance. The performance level for the individual sections was intermediate or fair, except for the logistic and finance sections which demonstrated a higher level of performance. The public hospitals had overall higher performances than university hospitals (P = 0.04). Conclusions The decision making performance in the Iranian hospitals, as measured during table top exercises and using the indicators proposed by HICS was intermediate to poor. In addition, this study demonstrates that the HICS job action sheets can be used as a template for measuring the hospital response. Simulations can be used to assess preparedness, but the correlation with outcome remains to be studied. PMID:22309772
Jørgensen, Mikkel G; Pandey, Deo P; Jaskolska, Milena; Gerdes, Kenn
2009-02-01
Toxin-antitoxin (TA) loci are common in free-living bacteria and archaea. TA loci encode a stable toxin that is neutralized by a metabolically unstable antitoxin. The antitoxin can be either a protein or an antisense RNA. So far, six different TA gene families, in which the antitoxins are proteins, have been identified. Recently, Makarova et al. (K. S. Makarova, N. V. Grishin, and E. V. Koonin, Bioinformatics 22:2581-2584, 2006) suggested that the hicAB loci constitute a novel TA gene family. Using the hicAB locus of Escherichia coli K-12 as a model system, we present evidence that supports this inference: expression of the small HicA protein (58 amino acids [aa]) induced cleavage in three model mRNAs and tmRNA. Concomitantly, the global rate of translation was severely reduced. Using tmRNA as a substrate, we show that HicA-induced cleavage does not require the target RNA to be translated. Expression of HicB (145 aa) prevented HicA-mediated inhibition of cell growth. These results suggest that HicB neutralizes HicA and therefore functions as an antitoxin. As with other antitoxins (RelB and MazF), HicB could resuscitate cells inhibited by HicA, indicating that ectopic production of HicA induces a bacteriostatic rather than a bactericidal condition. Nutrient starvation induced strong hicAB transcription that depended on Lon protease. Mining of 218 prokaryotic genomes revealed that hicAB loci are abundant in bacteria and archaea.
Adhikari, Badri; Trieu, Tuan; Cheng, Jianlin
2016-11-07
Reconstructing three-dimensional structures of chromosomes is useful for visualizing their shapes in a cell and interpreting their function. In this work, we reconstruct chromosomal structures from Hi-C data by translating contact counts in Hi-C data into Euclidean distances between chromosomal regions and then satisfying these distances using a structure reconstruction method rigorously tested in the field of protein structure determination. We first evaluate the robustness of the overall reconstruction algorithm on noisy simulated data at various levels of noise by comparing with some of the state-of-the-art reconstruction methods. Then, using simulated data, we validate that Spearman's rank correlation coefficient between pairwise distances in the reconstructed chromosomal structures and the experimental chromosomal contact counts can be used to find optimum conversion rules for transforming interaction frequencies to wish distances. This strategy is then applied to real Hi-C data at chromosome level for optimal transformation of interaction frequencies to wish distances and for ranking and selecting structures. The chromosomal structures reconstructed from a real-world human Hi-C dataset by our method were validated by the known two-compartment feature of the human chromosome organization. We also show that our method is robust with respect to the change of the granularity of Hi-C data, and consistently produces similar structures at different chromosomal resolutions. Chromosome3D is a robust method of reconstructing chromosome three-dimensional models using distance restraints obtained from Hi-C interaction frequency data. It is available as a web application and as an open source tool at http://sysbio.rnet.missouri.edu/chromosome3d/ .
Rabbani, Fauziah; Jafri, S M Wasin; Abbas, Farhat; Pappas, Gregory; Brommels, Mats; Tomson, Goran
2007-01-01
High-income countries (HICs) are increasingly making use of the balanced scorecard (BSC) in healthcare. Evidence about BSC usage in low-income countries (LICs) is deficient. This study assessed feasibility of BSC use in LICs. Systematic review of electronic databases shows that the BSC improved patient, staff, clinical, and financial outcomes in HICs. To translate the experience of BSC use in HICs to their use in LICs, the applicability parameters of the National Committee for Quality Assurance were applied. Despite contextual challenges, pilot testing of BSC use can be undertaken in selected LICs. Committed leadership, cultural readiness, quality information systems, viable strategic plans, and optimum resources are required.
Mifsud, Borbala; Martincorena, Inigo; Darbo, Elodie; Sugar, Robert; Schoenfelder, Stefan; Fraser, Peter; Luscombe, Nicholas M
2017-01-01
Hi-C is one of the main methods for investigating spatial co-localisation of DNA in the nucleus. However, the raw sequencing data obtained from Hi-C experiments suffer from large biases and spurious contacts, making it difficult to identify true interactions. Existing methods use complex models to account for biases and do not provide a significance threshold for detecting interactions. Here we introduce a simple binomial probabilistic model that resolves complex biases and distinguishes between true and false interactions. The model corrects biases of known and unknown origin and yields a p-value for each interaction, providing a reliable threshold based on significance. We demonstrate this experimentally by testing the method against a random ligation dataset. Our method outperforms previous methods and provides a statistical framework for further data analysis, such as comparisons of Hi-C interactions between different conditions. GOTHiC is available as a BioConductor package (http://www.bioconductor.org/packages/release/bioc/html/GOTHiC.html).
High Integrity Can Design Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaber, E.L.
1998-08-01
The National Spent Nuclear Fuel Program is chartered with facilitating the disposition of DOE-owned spent nuclear fuel to allow disposal at a geologic repository. This is done through coordination with the repository program and by assisting DOE Site owners of SNF with needed information, standardized requirements, packaging approaches, etc. The High Integrity Can (HIC) will be manufactured to provide a substitute or barrier enhancement for normal fuel geometry and cladding. The can would be nested inside the DOE standardized canister which is designed to interface with the repository waste package. The HIC approach may provide the following benefits over typicalmore » canning approaches for DOE SNF. (a) It allows ready calculation and management of criticality issues for miscellaneous. (b) It segments and further isolates damaged or otherwise problem materials from normal SNF in the repository package. (c) It provides a very long term corrosion barrier. (d) It provides an extra internal pressure barrier for particulates, gaseous fission products, hydrogen, and water vapor. (e) It delays any potential release of fission products to the repository environment. (f) It maintains an additional level of fuel geometry control during design basis accidents, rock-fall, and seismic events. (g) When seal welded, it could provide the additional containment required for shipments involving plutonium content in excess of 20 Ci. (10 CFR 71.63.b) if integrated with an appropriate cask design. Long term corrosion protection is central to the HIC concept. The material selected for the HIC (Hastelloy C-22) has undergone extensive testing for repository service. The most severe theoretical interactions between iron, repository water containing chlorides and other repository construction materials have been tested. These expected chemical species have not been shown capable of corroding the selected HIC material. Therefore, the HIC should provide a significant barrier to DOE SNF dispersal long after most commercial SNF has degraded and begun moving into the repository environment.« less
Experimental provocation of 'ice-cream headache' by ice cubes and ice water.
Mages, Stephan; Hensel, Ole; Zierz, Antonia Maria; Kraya, Torsten; Zierz, Stephan
2017-04-01
Background There are various studies on experimentally provoked 'ice-cream headache' or 'headache attributed to ingestion or inhalation of a cold stimulus' (HICS) using different provocation protocols. The aim of this study was to compare two provocation protocols. Methods Ice cubes pressed to the palate and fast ingestion of ice water were used to provoke HICS and clinical features were compared. Results The ice-water stimulus provoked HICS significantly more often than the ice-cube stimulus (9/77 vs. 39/77). Ice-water-provoked HICS had a significantly shorter latency (median 15 s, range 4-97 s vs. median 68 s, range 27-96 s). There was no difference in pain localisation. Character after ice-cube stimulation was predominantly described as pressing and after ice-water stimulation as stabbing. A second HICS followed in 10/39 (26%) of the headaches provoked by ice water. Lacrimation occurred significantly more often in volunteers with than in those without HICS. Discussion HICS provoked by ice water was more frequent, had a shorter latency, different pain character and higher pain intensity than HICS provoked by ice cubes. The finding of two subsequent HICS attacks in the same volunteers supports the notion that two types of HICS exist. Lacrimation during HICS indicates involvement of the trigeminal-autonomic reflex.
Liu, X J; Jin, C; Wu, L M; Dong, S J; Zeng, S M; Li, J L
2016-07-29
Matrix proteins that either weakly acidic or unusually highly acidic have important roles in shell biomineralization. In this study, we have identified and characterized hic22, a weakly acidic matrix protein, from the nacreous layer of Hyriopsis cumingii. Total protein was extracted from the nacre using 5 M EDTA and hic22 was purified using a DEAE-sepharose column. The N-terminal amino acid sequence of hic22 was determined and the complete cDNA encoding hic22 was cloned and sequenced by rapid amplification of cDNA ends-polymerase chain reaction. Finally, the localization and distribution of hic22 was determined by in situ hybridization. Our results revealed that hic22 encodes a 22-kDa protein composed of 185 amino acids. Tissue expression analysis and in situ hybridization indicated that hic22 is expressed in the dorsal epithelial cells of the mantle pallial; moreover, significant expression levels of hic22 were observed after the early formation of the pearl sac (days 19-77), implying that hic22 may play an important role in biomineralization of the nacreous layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusano, Shuichi, E-mail: skusano@m2.kufm.kagoshima-u.ac.jp; Yoshimitsu, Makoto; Hachiman, Miho
The I-mfa domain proteins HIC (also known as MDFIC) and I-mfa (also known as MDFI) are candidate tumor suppressor genes that are involved in cellular and viral transcriptional regulation. Here, we show that HIC and I-mfa directly interact with human T-cell leukemia virus type-1 (HTLV-1) Tax protein in vitro. In addition, HIC and I-mfa repress Tax-dependent transactivation of an HTLV-1 long terminal repeat (LTR) reporter construct in COS-1, Jurkat and high-Tax-producing HTLV-1-infected T cells. HIC also interacts with Tax through its I-mfa domain in vivo and represses Tax-dependent transactivation of HTLV-1 LTR and NF-κB reporter constructs in an interaction-dependent manner.more » Furthermore, we show that HIC decreases the nuclear distribution and stimulates the proteasomal degradation of Tax. These data reveal that HIC specifically interacts with HTLV-1 Tax and negatively regulates Tax transactivational activity by altering its subcellular distribution and stability. - Highlights: • I-mfa domain proteins, HIC and I-mfa, specifically interact with HTLV-1 Tax. • HIC and I-mfa repress the Tax-dependent transactivation of HTLV-1 LTR. • HIC represses the Tax-dependent transactivation of NF-κΒ. • HIC decreases the nuclear distribution of Tax. • HIC stimulates the proteasomal degradation of Tax.« less
Hutchinson, T Paul; Anderson, Robert W G; Searson, Daniel J
2012-01-01
Tests are routinely conducted where instrumented headforms are projected at the fronts of cars to assess pedestrian safety. Better information would be obtained by accounting for performance over the range of expected impact conditions in the field. Moreover, methods will be required to integrate the assessment of secondary safety performance with primary safety systems that reduce the speeds of impacts. Thus, we discuss how to estimate performance over a range of impact conditions from performance in one test and how this information can be combined with information on the probability of different impact speeds to provide a balanced assessment of pedestrian safety. Theoretical consideration is given to 2 distinct aspects to impact safety performance: the test impact severity (measured by the head injury criterion, HIC) at a speed at which a structure does not bottom out and the speed at which bottoming out occurs. Further considerations are given to an injury risk function, the distribution of impact speeds likely in the field, and the effect of primary safety systems on impact speeds. These are used to calculate curves that estimate injuriousness for combinations of test HIC, bottoming out speed, and alternative distributions of impact speeds. The injuriousness of a structure that may be struck by the head of a pedestrian depends not only on the result of the impact test but also the bottoming out speed and the distribution of impact speeds. Example calculations indicate that the relationship between the test HIC and injuriousness extends over a larger range than is presently used by the European New Car Assessment Programme (Euro NCAP), that bottoming out at speeds only slightly higher than the test speed can significantly increase the injuriousness of an impact location and that effective primary safety systems that reduce impact speeds significantly modify the relationship between the test HIC and injuriousness. Present testing regimes do not take fully into account the relationship between impact severity and variations in impact conditions. Instead, they assess injury risk at a single impact speed. Hence, they may fail to differentiate risks due to the effects of bottoming out under different impact conditions. Because the level of injuriousness changes across a wide range of HIC values, even slight improvements to very stiff structures need to be encouraged through testing. Indications are that the potential of autonomous braking systems is substantial and needs to be weighted highly in vehicle safety assessments.
Hi-C Observations of Penumbral Bright Dots
NASA Technical Reports Server (NTRS)
Alpert, S. E.; Tiwari, S. K.; Moore, R. L.; Savage, S. L.; Winebarger, A. R.
2014-01-01
We use high-quality data obtained by the High Resolution Coronal Imager (Hi-C) to examine bright dots (BDs) in a sunspot's penumbra. The sizes of these BDs are on the order of 1 arcsecond (1") and are therefore hard to identify using the Atmospheric Imaging Assembly's (AIA) 0.6" pixel(exp -1) resolution. These BD become readily apparent with Hi-C's 0.1" pixel(exp -1) resolution. Tian et al. (2014) found penumbral BDs in the transition region (TR) by using the Interface Region Imaging Spectrograph (IRIS). However, only a few of their dots could be associated with any enhanced brightness in AIA channels. In this work, we examine the characteristics of the penumbral BDs observed by Hi-C in a sunspot penumbra, including their sizes, lifetimes, speeds, and intensity. We also attempt to find any association of these BDs to the IRIS BDs. There are fewer Hi-C BDs in the penumbra than seen by IRIS, though different sunspots were studied. We use 193 Angstroms Hi-C data from July 11, 2012 which observed from approximately 18:52:00 UT- 18:56:00 UT and supplement it with data from AIA's 193 Angstrom passband to see the complete lifetime of the dots that were born before and/or lasted longer than Hi- C's 5-minute observation period. We use additional AIA passbands and compare the light curves of the BDs at different temperatures to test whether the Hi-C BDs are TR BDs. We find that most Hi-C BDs show clear movement, and of those that do, they move in a radial direction, toward or away from the sunspot umbra. Single BDs interact with other BDs, combining to fade away or brighten. The BDs that do not interact with other BDs tend to move less. Many of the properties of our BDs are similar to the extreme values of the IRIS BDs, e.g., they move slower on average and their sizes and lifetimes are on the higher end of the IRIS BDs. We infer that our penumbral BDs are the large-scale end of the distribution of BDs observed by IRIS.
NASA Technical Reports Server (NTRS)
Cirtain, Jonathan
2013-01-01
Hi-C obtained the highest spatial and temporal resolution observatoins ever taken in the solar corona. Hi-C reveals dynamics and structure at the limit of its temporal and spatial resolution. Hi-C observed ubiquitous fine-scale flows consistent with the local sound speed.
Bhattacharyya, Onil; Wu, Diane; Mossman, Kathryn; Hayden, Leigh; Gill, Pavan; Cheng, Yu-Ling; Daar, Abdallah; Soman, Dilip; Synowiec, Christina; Taylor, Andrea; Wong, Joseph; von Zedtwitz, Max; Zlotkin, Stanley; Mitchell, William; McGahan, Anita
2017-01-25
Low- and middle-income countries (LMICs) are developing novel approaches to healthcare that may be relevant to high-income countries (HICs). These include products, services, organizational processes, or policies that improve access, cost, or efficiency of healthcare. However, given the challenge of replication, it is difficult to identify innovations that could be successfully adapted to high-income settings. We present a set of criteria for evaluating the potential impact of LMIC innovations in HIC settings. An initial framework was drafted based on a literature review, and revised iteratively by applying it to LMIC examples from the Center for Health Market Innovations (CHMI) program database. The resulting criteria were then reviewed using a modified Delphi process by the Reverse Innovation Working Group, consisting of 31 experts in medicine, engineering, management and political science, as well as representatives from industry and government, all with an expressed interest in reverse innovation. The resulting 8 criteria are divided into two steps with a simple scoring system. First, innovations are assessed according to their success within the LMIC context according to metrics of improving accessibility, cost-effectiveness, scalability, and overall effectiveness. Next, they are scored for their potential for spread to HICs, according to their ability to address an HIC healthcare challenge, compatibility with infrastructure and regulatory requirements, degree of novelty, and degree of current collaboration with HICs. We use examples to illustrate where programs which appear initially promising may be unlikely to succeed in a HIC setting due to feasibility concerns. This study presents a framework for identifying reverse innovations that may be useful to policymakers and funding agencies interested in identifying novel approaches to addressing cost and access to care in HICs. We solicited expert feedback and consensus on an empirically-derived set of criteria to create a practical tool for funders that can be used directly and tested prospectively using current databases of LMIC programs.
Iteratively improving Hi-C experiments one step at a time.
Golloshi, Rosela; Sanders, Jacob T; McCord, Rachel Patton
2018-06-01
The 3D organization of eukaryotic chromosomes affects key processes such as gene expression, DNA replication, cell division, and response to DNA damage. The genome-wide chromosome conformation capture (Hi-C) approach can characterize the landscape of 3D genome organization by measuring interaction frequencies between all genomic regions. Hi-C protocol improvements and rapid advances in DNA sequencing power have made Hi-C useful to study diverse biological systems, not only to elucidate the role of 3D genome structure in proper cellular function, but also to characterize genomic rearrangements, assemble new genomes, and consider chromatin interactions as potential biomarkers for diseases. Yet, the Hi-C protocol is still complex and subject to variations at numerous steps that can affect the resulting data. Thus, there is still a need for better understanding and control of factors that contribute to Hi-C experiment success and data quality. Here, we evaluate recently proposed Hi-C protocol modifications as well as often overlooked variables in sample preparation and examine their effects on Hi-C data quality. We examine artifacts that can occur during Hi-C library preparation, including microhomology-based artificial template copying and chimera formation that can add noise to the downstream data. Exploring the mechanisms underlying Hi-C artifacts pinpoints steps that should be further optimized in the future. To improve the utility of Hi-C in characterizing the 3D genome of specialized populations of cells or small samples of primary tissue, we identify steps prone to DNA loss which should be considered to adapt Hi-C to lower cell numbers. Copyright © 2018 Elsevier Inc. All rights reserved.
The hospital incident command system: modified model for hospitals in iran.
Djalali, Ahmadreza; Hosseinijenab, Vahid; Peyravi, Mahmoudreza; Nekoei-Moghadam, Mahmood; Hosseini, Bashir; Schoenthal, Lisa; Koenig, Kristi L
2015-03-27
Effectiveness of hospital management of disasters requires a well-defined and rehearsed system. The Hospital Incident Command System (HICS), as a standardized method for command and control, was established in Iranian hospitals, but it has performed fairly during disaster exercises. This paper describes the process for, and modifications to HICS undertaken to optimize disaster management in hospitals in Iran. In 2013, a group of 11 subject matter experts participated in an expert consensus modified Delphi to develop modifications to the 2006 version of HICS. The following changes were recommended by the expert panel and subsequently implemented: 1) A Quality Control Officer was added to the Command group; 2) Security was defined as a new section; 3) Infrastructure and Business Continuity Branches were moved from the Operations Section to the Logistics and the Administration Sections, respectively; and 4) the Planning Section was merged within the Finance/Administration Section. An expert consensus group developed a modified HICS that is more feasible to implement given the managerial organization of hospitals in Iran. This new model may enhance hospital performance in managing disasters. Additional studies are needed to test the feasibility and efficacy of the modified HICS in Iran, both during simulations and actual disasters. This process may be a useful model for other countries desiring to improve disaster incident management systems for their hospitals.
The Receptor Tyrosine Kinase EphA2 Is a Direct Target Gene of Hypermethylated in Cancer 1 (HIC1)*
Foveau, Bénédicte; Boulay, Gaylor; Pinte, Sébastien; Van Rechem, Capucine; Rood, Brian R.; Leprince, Dominique
2012-01-01
The tumor suppressor gene hypermethylated in cancer 1 (HIC1), which encodes a transcriptional repressor, is epigenetically silenced in many human tumors. Here, we show that ectopic expression of HIC1 in the highly malignant MDA-MB-231 breast cancer cell line severely impairs cell proliferation, migration, and invasion in vitro. In parallel, infection of breast cancer cell lines with a retrovirus expressing HIC1 also induces decreased mRNA and protein expression of the tyrosine kinase receptor EphA2. Moreover, chromatin immunoprecipitation (ChIP) and sequential ChIP experiments demonstrate that endogenous HIC1 proteins are bound, together with the MTA1 corepressor, to the EphA2 promoter in WI38 cells. Taken together, our results identify EphA2 as a new direct target gene of HIC1. Finally, we observe that inactivation of endogenous HIC1 through RNA interference in normal breast epithelial cells results in the up-regulation of EphA2 and is correlated with increased cellular migration. To conclude, our results involve the tumor suppressor HIC1 in the transcriptional regulation of the tyrosine kinase receptor EphA2, whose ligand ephrin-A1 is also a HIC1 target gene. Thus, loss of the regulation of this Eph pathway through HIC1 epigenetic silencing could be an important mechanism in the pathogenesis of epithelial cancers. PMID:22184117
Coronal Heating Observed with Hi-C
NASA Technical Reports Server (NTRS)
Winebarger, Amy R.
2013-01-01
The recent launch of the High-Resolution Coronal Imager (Hi-C) as a sounding rocket has offered a new, different view of the Sun. With approx 0.3" resolution and 5 second cadence, Hi-C reveals dynamic, small-scale structure within a complicated active region, including coronal braiding, reconnection regions, Alfven waves, and flows along active region fans. By combining the Hi-C data with other available data, we have compiled a rich data set that can be used to address many outstanding questions in solar physics. Though the Hi-C rocket flight was short (only 5 minutes), the added insight of the small-scale structure gained from the Hi-C data allows us to look at this active region and other active regions with new understanding. In this talk, I will review the first results from the Hi-C sounding rocket and discuss the impact of these results on the coronal heating problem.
Liu, Xiaojun; Zeng, Shimei; Dong, Shaojian; Jin, Can; Li, Jiale
2015-01-01
In this study, we clone and characterize a novel matrix protein, hic31, from the mantle of Hyriopsis cumingii. The amino acid composition of hic31 consists of a high proportion of Glycine residues (26.67%). Tissue expression detection by RT-PCR indicates that hic31 is expressed specifically at the mantle edge. In situ hybridization results reveals strong signals from the dorsal epithelial cells of the outer fold at the mantle edge, and weak signals from inner epithelial cells of the same fold, indicating that hic31 is a prismatic-layer matrix protein. Although BLASTP results identify no shared homology with other shell-matrix proteins or any other known proteins, the hic31 tertiary structure is similar to that of collagen I, alpha 1 and alpha 2. It has been well proved that collagen forms the basic organic frameworks in way of collagen fibrils and minerals present within or outside of these fibrils. Therefore, hic31 might be a framework-matrix protein involved in the prismatic-layer biomineralization. Besides, the gene expression of hic31 increase in the early stages of pearl sac development, indicating that hic31 may play important roles in biomineralization of the pearl prismatic layer.
Understanding spatial organizations of chromosomes via statistical analysis of Hi-C data
Hu, Ming; Deng, Ke; Qin, Zhaohui; Liu, Jun S.
2015-01-01
Understanding how chromosomes fold provides insights into the transcription regulation, hence, the functional state of the cell. Using the next generation sequencing technology, the recently developed Hi-C approach enables a global view of spatial chromatin organization in the nucleus, which substantially expands our knowledge about genome organization and function. However, due to multiple layers of biases, noises and uncertainties buried in the protocol of Hi-C experiments, analyzing and interpreting Hi-C data poses great challenges, and requires novel statistical methods to be developed. This article provides an overview of recent Hi-C studies and their impacts on biomedical research, describes major challenges in statistical analysis of Hi-C data, and discusses some perspectives for future research. PMID:26124977
Viano, David C; Parenteau, Chantal S
2016-07-03
Insurance Institute for Highway Safety (IIHS) high-hooded side impacts were analyzed for matched vehicle tests with and without side airbags. The comparison provides a measure of the effectiveness of side airbags in reducing biomechanical responses for near-side occupants struck by trucks, SUVs, and vans at 50 km/h. The IIHS moving deformable barrier (MDB) uses a high-hooded barrier face. It weighs 1,500 kg and impacts the driver side perpendicular to the vehicle at 50 km/h. SID IIs dummies are placed in the driver and left second-row seats. They represent fifth percentile female occupants. IIHS tests were reviewed for matches with one test with a side airbag and another without it in 2003-2007 model year (MY) vehicles. Four side airbag systems were evaluated: (1) curtain and torso side airbags, (2) head and torso side airbag, (3) curtain side airbag, and (4) torso side airbag. There were 24 matched IIHS vehicle tests: 13 with and without a curtain and torso side airbags, 4 with and without a head and torso side airbag, 5 with and without a side curtain airbag, and 2 with and without a torso airbag. The head, chest, and pelvis responses were compared for each match and the average difference was determined across all matches for a type of side airbag. The average reduction in head injury criterion (HIC) was 68 ± 16% (P < .001) with curtain and torso side airbags compared to the HIC without side airbags. The average HIC was 296 with curtain and torso side airbags and 1,199 without them. The viscous response (VC) was reduced 54 ± 19% (P < .005) with curtain and torso side airbags. The combined acetabulum and ilium force (7 ± 15%) and pelvic acceleration (-2 ± 17%) were essentially similar in the matched tests. The head and torso side airbag reduced HIC by 42 ± 30% (P < .1) and VC by 32 ± 26% compared to vehicles without a side airbag. The average HIC was 397 with the side head and torso airbag compared to 729 without it. The curtain airbag and torso airbag only showed lower head responses but essentially no difference in the chest and pelvis responses. The curtain and torso side airbags effectively reduced biomechanical responses for the head and chest in 50 km/h side impacts with a high-hooded deformable barrier. The reductions in the IIHS tests are directionally the same as estimated fatality reductions in field crashes reported by NHTSA for side airbags.
HicAB toxin-antitoxin complex from Escherichia coli: expression and crystallization.
Yang, Jingsi; Xu, Bingshuang; Gao, Zengqiang; Zhou, Ke; Liu, Peng; Dong, Yuhui; Zhang, Jianjun; Liu, Quansheng
2017-09-01
Toxin-antitoxin (TA) systems are widespread in both bacteria and archaea, where they enable cells to adapt to environmental cues. TA systems play crucial roles in various cellular processes, such as programmed cell death, cell growth, persistence and virulence. Here, two distinct forms of the type II toxin-antitoxin complex HicAB were identified and characterized in Escherichia coli K-12, and both were successfully overexpressed and purified. The two proposed forms, HicAB L and HicAB S , differed in the presence or absence of a seven-amino-acid segment at the N-terminus in the antitoxin HicB. The short form HicAB S readily crystallized under the conditions 0.1 M Tris-HCl pH 8.0, 20%(w/v) PEG 6000, 0.2 M ammonium sulfate. The HicAB S crystal diffracted and data were collected to 2.5 Å resolution. The crystal belonged to space group I222 or I2 1 2 1 2 1 , with unit-cell parameters a = 67.04, b = 66.31, c = 120.78 Å. Matthews coefficient calculation suggested the presence of two molecules each of HicA and HicB S in the asymmetric unit, with a solvent content of 55.28% and a Matthews coefficient (V M ) of 2.75 Å 3 Da -1 .
Ma, Wenxiu; Ay, Ferhat; Lee, Choli; Gulsoy, Gunhan; Deng, Xinxian; Cook, Savannah; Hesson, Jennifer; Cavanaugh, Christopher; Ware, Carol B; Krumm, Anton; Shendure, Jay; Blau, C Anthony; Disteche, Christine M; Noble, William S; Duan, ZhiJun
2018-06-01
The folding and three-dimensional (3D) organization of chromatin in the nucleus critically impacts genome function. The past decade has witnessed rapid advances in genomic tools for delineating 3D genome architecture. Among them, chromosome conformation capture (3C)-based methods such as Hi-C are the most widely used techniques for mapping chromatin interactions. However, traditional Hi-C protocols rely on restriction enzymes (REs) to fragment chromatin and are therefore limited in resolution. We recently developed DNase Hi-C for mapping 3D genome organization, which uses DNase I for chromatin fragmentation. DNase Hi-C overcomes RE-related limitations associated with traditional Hi-C methods, leading to improved methodological resolution. Furthermore, combining this method with DNA capture technology provides a high-throughput approach (targeted DNase Hi-C) that allows for mapping fine-scale chromatin architecture at exceptionally high resolution. Hence, targeted DNase Hi-C will be valuable for delineating the physical landscapes of cis-regulatory networks that control gene expression and for characterizing phenotype-associated chromatin 3D signatures. Here, we provide a detailed description of method design and step-by-step working protocols for these two methods. Copyright © 2018 Elsevier Inc. All rights reserved.
Loop Evolution Observed with AIA and Hi-C
NASA Technical Reports Server (NTRS)
Mulu-Moore, Fana; Winebarger, Amy R.; Cirtain, Jonathan W.; Kobayashi, Ken; Korreck, Kelly E.; Golub, Leon; Kuzin, Sergei; Walsh, Robert William; DeForest, Craig E.; De Pontieu, Bart;
2012-01-01
In the past decade, the evolution of EUV loops has been used to infer the loop substructure. With the recent launch of High Resolution Coronal Imager (Hi-C), this inference can be validated. In this presentation we discuss the first results of loop analysis comparing AIA and Hi-C data. In the past decade, the evolution of EUV loops has been used to infer the loop substructure. With the recent launch of High Resolution Coronal Imager (Hi-C), this inference can be validated. In this presentation we discuss the first results of loop analysis comparing AIA and Hi-C data.
Stone, Orrin J; Biette, Kelly M; Murphy, Patrick J M
2014-01-01
Hydrophobic interaction chromatography (HIC) most commonly requires experimental determination (i.e., scouting) in order to select an optimal chromatographic medium for purifying a given target protein. Neither a two-step purification of untagged green fluorescent protein (GFP) from crude bacterial lysate using sequential HIC and size exclusion chromatography (SEC), nor HIC column scouting elution profiles of GFP, have been previously reported. Bacterial lysate expressing recombinant GFP was sequentially adsorbed to commercially available HIC columns containing butyl, octyl, and phenyl-based HIC ligands coupled to matrices of varying bead size. The lysate was fractionated using a linear ammonium phosphate salt gradient at constant pH. Collected HIC eluate fractions containing retained GFP were then pooled and further purified using high-resolution preparative SEC. Significant differences in presumptive GFP elution profiles were observed using in-line absorption spectrophotometry (A395) and post-run fluorimetry. SDS-PAGE and western blot demonstrated that fluorometric detection was the more accurate indicator of GFP elution in both HIC and SEC purification steps. Comparison of composite HIC column scouting data indicated that a phenyl ligand coupled to a 34 µm matrix produced the highest degree of target protein capture and separation. Conducting two-step protein purification using the preferred HIC medium followed by SEC resulted in a final, concentrated product with >98% protein purity. In-line absorbance spectrophotometry was not as precise of an indicator of GFP elution as post-run fluorimetry. These findings demonstrate the importance of utilizing a combination of detection methods when evaluating purification strategies. GFP is a well-characterized model protein, used heavily in educational settings and by researchers with limited protein purification experience, and the data and strategies presented here may aid in development other of HIC-compatible protein purification schemes.
Coronal Fine Structure in Dynamic Events Observed by Hi-C
NASA Technical Reports Server (NTRS)
Winebarger, Amy; Schuler, Timothy
2013-01-01
The High-Resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket on 2012 July 11 and captured roughly 345 s of high spatial and temporal resolution images of the solar corona in a narrowband 193 Angstrom channel. We have analyzed the fluctuations in intensity of Active Region 11520. We selected events based on a lifetime greater than 11 s (two Hi-C frames) and intensities greater than a threshold determined from the photon and readout noise. We compare the Hi-C events with those determined from AIA. We find that HI-C detects shorter and smaller events than AIA. We also find that the intensity increase in the Hi-C events is approx. 3 times greater than the intensity increase in the AIA events we conclude the events are related to linear sub-structure that is unresolved by AIA
Discovery of Finely Structured Dynamic Solar Corona Observed in the Hi-C Telescope
NASA Technical Reports Server (NTRS)
Winebarger, A.; Cirtain, J.; Golub, L.; DeLuca, E.; Savage, S.; Alexander, C.; Schuler, T.
2014-01-01
In the summer of 2012, the High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to be smoothly varying, i.e. have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70 percent of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent.
DISCOVERY OF FINELY STRUCTURED DYNAMIC SOLAR CORONA OBSERVED IN THE Hi-C TELESCOPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winebarger, Amy R.; Cirtain, Jonathan; Savage, Sabrina
In the Summer of 2012, the High-resolution Coronal Imager (Hi-C) flew on board a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to bemore » smoothly varying, i.e., have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70% of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent.« less
Nagano, Takashi; Lubling, Yaniv; Yaffe, Eitan; Wingett, Steven W; Dean, Wendy; Tanay, Amos; Fraser, Peter
2015-12-01
Hi-C is a powerful method that provides pairwise information on genomic regions in spatial proximity in the nucleus. Hi-C requires millions of cells as input and, as genome organization varies from cell to cell, a limitation of Hi-C is that it only provides a population average of genome conformations. We developed single-cell Hi-C to create snapshots of thousands of chromatin interactions that occur simultaneously in a single cell. To adapt Hi-C to single-cell analysis, we modified the protocol to include in-nucleus ligation. This enables the isolation of single nuclei carrying Hi-C-ligated DNA into separate tubes, followed by reversal of cross-links, capture of biotinylated ligation junctions on streptavidin-coated magnetic beads and PCR amplification of single-cell Hi-C libraries. The entire laboratory protocol can be carried out in 1 week, and although we have demonstrated its use in mouse T helper (TH1) cells, it should be applicable to any cell type or species for which standard Hi-C has been successful. We also developed an analysis pipeline to filter noise and assess the quality of data sets in a few hours. Although the interactome maps produced by single-cell Hi-C are sparse, the data provide useful information to understand cellular variability in nuclear genome organization and chromosome structure. Standard wet and dry laboratory skills in molecular biology and computational analysis are required.
HiCRep: assessing the reproducibility of Hi-C data using a stratum-adjusted correlation coefficient
Yang, Tao; Zhang, Feipeng; Yardımcı, Galip Gürkan; Song, Fan; Hardison, Ross C.; Noble, William Stafford; Yue, Feng; Li, Qunhua
2017-01-01
Hi-C is a powerful technology for studying genome-wide chromatin interactions. However, current methods for assessing Hi-C data reproducibility can produce misleading results because they ignore spatial features in Hi-C data, such as domain structure and distance dependence. We present HiCRep, a framework for assessing the reproducibility of Hi-C data that systematically accounts for these features. In particular, we introduce a novel similarity measure, the stratum adjusted correlation coefficient (SCC), for quantifying the similarity between Hi-C interaction matrices. Not only does it provide a statistically sound and reliable evaluation of reproducibility, SCC can also be used to quantify differences between Hi-C contact matrices and to determine the optimal sequencing depth for a desired resolution. The measure consistently shows higher accuracy than existing approaches in distinguishing subtle differences in reproducibility and depicting interrelationships of cell lineages. The proposed measure is straightforward to interpret and easy to compute, making it well-suited for providing standardized, interpretable, automatable, and scalable quality control. The freely available R package HiCRep implements our approach. PMID:28855260
Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus.
Zhang, Yan; An, Lin; Xu, Jie; Zhang, Bo; Zheng, W Jim; Hu, Ming; Tang, Jijun; Yue, Feng
2018-02-21
Although Hi-C technology is one of the most popular tools for studying 3D genome organization, due to sequencing cost, the resolution of most Hi-C datasets are coarse and cannot be used to link distal regulatory elements to their target genes. Here we develop HiCPlus, a computational approach based on deep convolutional neural network, to infer high-resolution Hi-C interaction matrices from low-resolution Hi-C data. We demonstrate that HiCPlus can impute interaction matrices highly similar to the original ones, while only using 1/16 of the original sequencing reads. We show that the models learned from one cell type can be applied to make predictions in other cell or tissue types. Our work not only provides a computational framework to enhance Hi-C data resolution but also reveals features underlying the formation of 3D chromatin interactions.
The effect of motorcycle helmet fit on estimating head impact kinematics from residual liner crush.
Bonin, Stephanie J; Gardiner, John C; Onar-Thomas, Arzu; Asfour, Shihab S; Siegmund, Gunter P
2017-09-01
Proper helmet fit is important for optimizing head protection during an impact, yet many motorcyclists wear helmets that do not properly fit their heads. The goals of this study are i) to quantify how a mismatch in headform size and motorcycle helmet size affects headform peak acceleration and head injury criteria (HIC), and ii) to determine if peak acceleration, HIC, and impact speed can be estimated from the foam liner's maximum residual crush depth or residual crush volume. Shorty-style helmets (4 sizes of a single model) were tested on instrumented headforms (4 sizes) during linear impacts between 2.0 and 10.5m/s to the forehead region. Helmets were CT scanned to quantify residual crush depth and volume. Separate linear regression models were used to quantify how the response variables (peak acceleration (g), HIC, and impact speed (m/s)) were related to the predictor variables (maximum crush depth (mm), crush volume (cm 3 ), and the difference in circumference between the helmet and headform (cm)). Overall, we found that increasingly oversized helmets reduced peak headform acceleration and HIC for a given impact speed for maximum residual crush depths less than 7.9mm and residual crush volume less than 40cm 3 . Below these levels of residual crush, we found that peak headform acceleration, HIC, and impact speed can be estimated from a helmet's residual crush. Above these crush thresholds, large variations in headform kinematics are present, possibly related to densification of the foam liner during the impact. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tanihara, Shinichi
2015-01-01
Uncoded diagnoses in health insurance claims (HICs) may introduce bias into Japanese health statistics dependent on computerized HICs. This study's aim was to identify the causes and characteristics of uncoded diagnoses. Uncoded diagnoses from computerized HICs (outpatient, inpatient, and the diagnosis procedure-combination per-diem payment system [DPC/PDPS]) submitted to the National Health Insurance Organization of Kumamoto Prefecture in May 2010 were analyzed. The text documentation accompanying the uncoded diagnoses was used to classify diagnoses in accordance with the International Classification of Diseases-10 (ICD-10). The text documentation was also classified into four categories using the standard descriptions of diagnoses defined in the master files of the computerized HIC system: 1) standard descriptions of diagnoses, 2) standard descriptions with a modifier, 3) non-standard descriptions of diagnoses, and 4) unclassifiable text documentation. Using these classifications, the proportions of uncoded diagnoses by ICD-10 disease category were calculated. Of the uncoded diagnoses analyzed (n = 363 753), non-standard descriptions of diagnoses for outpatient, inpatient, and DPC/PDPS HICs comprised 12.1%, 14.6%, and 1.0% of uncoded diagnoses, respectively. The proportion of uncoded diagnoses with standard descriptions with a modifier for Diseases of the eye and adnexa was significantly higher than the overall proportion of uncoded diagnoses among every HIC type. The pattern of uncoded diagnoses differed by HIC type and disease category. Evaluating the proportion of uncoded diagnoses in all medical facilities and developing effective coding methods for diagnoses with modifiers, prefixes, and suffixes should reduce number of uncoded diagnoses in computerized HICs and improve the quality of HIC databases.
Death at no cost? Persons with no health insurance claims in the last year of life in Switzerland.
Panczak, Radoslaw; von Wyl, Viktor; Reich, Oliver; Luta, Xhyljeta; Maessen, Maud; Stuck, Andreas E; Berlin, Claudia; Schmidlin, Kurt; Goodman, David C; Egger, Matthias; Clough-Gorr, Kerri; Zwahlen, Marcel
2018-03-14
Lack of health insurance claims (HIC) in the last year of life might indicate suboptimal end-of-life care, but reasons for no HIC are not fully understood because information on causes of death is often missing. We investigated association of no HIC with characteristics of individuals and their place of residence. We analysed HIC of persons who died between 2008 and 2010, which were obtained from six providers of mandatory Swiss health insurance. We probabilistically linked these persons to death certificates to get cause of death information and analysed data using sex-stratified, multivariable logistic regression. Supplementary analyses looked at selected subgroups of persons according to the primary cause of death. The study population included 113,277 persons (46% males). Among these persons, 1199 (proportion 0.022, 95% CI: 0.021-0.024) males and 803 (0.013, 95% CI: 0.012-0.014) females had no HIC during the last year of life. We found sociodemographic and health differentials in the lack of HIC at the last year of life among these 2002 persons. The likelihood of having no HIC decreased steeply with older age. Those who died of cancer were more likely to have HIC (adjusted odds ratio for males 0.17, 95% CI: 0.13-0.22; females 0.19, 95% CI: 0.12-0.28) whereas those dying of mental and behavioural disorders (AOR males 1.83, 95% CI:1.42-2.37; females 1.65, 95% CI: 1.27-2.14), and males dying of suicide (AOR 2.15, 95% CI: 1.72-2.69) and accidents (AOR 2.41, 95% CI: 1.96-2.97) were more likely to have none. Single, widowed, and divorced persons also were more likely to have no HIC (AORs in range of 1.29-1.80). There was little or no association between the lack of HIC and characteristics of region of residence. Patterns of no HIC differed across main causes of death. Associations with age and civil status differed in particular for persons who died of cancer, suicide, accidents and assaults, and mental and behavioural disorders. Particular groups might be more likely to not seek care or not report health insurance costs to insurers. Researchers should be aware of this aspect of health insurance data and account for persons who lack HIC.
Shimizu, Yoichi; Temma, Takashi; Hara, Isao; Makino, Akira; Kondo, Naoya; Ozeki, Ei-Ichi; Ono, Masahiro; Saji, Hideo
2014-08-01
Membrane type-1 matrix metalloproteinase (MT1-MMP) is a protease activating MMP-2 that mediates cleavage of extracellular matrix components and plays pivotal roles in tumor migration, invasion and metastasis. Because in vivo noninvasive imaging of MT1-MMP would be useful for tumor diagnosis, we developed a novel near-infrared (NIR) fluorescence probe that can be activated following interaction with MT1-MMP in vivo. MT1-hIC7L is an activatable fluorescence probe comprised of anti-MT1-MMP monoclonal antibodies conjugated to self-assembling polymer micelles that encapsulate NIR dyes (IC7-1, λem : 858 nm) at concentrations sufficient to cause fluorescence self-quenching. In aqueous buffer, MT1-hIC7L fluorescence was suppressed to background levels and increased approximately 35.5-fold in the presence of detergent. Cellular uptake experiments revealed that in MT1-MMP positive C6 glioma cells, MT1-hIC7L showed significantly higher fluorescence that increased with time as compared to hIC7L, a negative control probe lacking the anti-MT1-MMP monoclonal antibody. In MT1-MMP negative MCF-7 breast adenocarcinoma cells, both MT1-hIC7L and hIC7L showed no obvious fluorescence. In addition, the fluorescence intensity of C6 cells treated with MT1-hIC7L was suppressed by pre-treatment with an MT1-MMP endocytosis inhibitor (P < 0.05). In vivo optical imaging using probes intravenously administered to tumor-bearing mice showed that MT1-hIC7L specifically visualized C6 tumors (tumor-to-background ratios: 3.8 ± 0.3 [MT1-hIC7L] vs 3.1 ± 0.2 [hIC7L] 48 h after administration, P < 0.05), while the probes showed similarly low fluorescence in MCF-7 tumors. Together, these results show that MT1-hIC7L would be a potential activatable NIR probe for specifically detecting MT1-MMP-expressing tumors. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.
Murphy, Patrick J. M.
2014-01-01
Background Hydrophobic interaction chromatography (HIC) most commonly requires experimental determination (i.e., scouting) in order to select an optimal chromatographic medium for purifying a given target protein. Neither a two-step purification of untagged green fluorescent protein (GFP) from crude bacterial lysate using sequential HIC and size exclusion chromatography (SEC), nor HIC column scouting elution profiles of GFP, have been previously reported. Methods and Results Bacterial lysate expressing recombinant GFP was sequentially adsorbed to commercially available HIC columns containing butyl, octyl, and phenyl-based HIC ligands coupled to matrices of varying bead size. The lysate was fractionated using a linear ammonium phosphate salt gradient at constant pH. Collected HIC eluate fractions containing retained GFP were then pooled and further purified using high-resolution preparative SEC. Significant differences in presumptive GFP elution profiles were observed using in-line absorption spectrophotometry (A395) and post-run fluorimetry. SDS-PAGE and western blot demonstrated that fluorometric detection was the more accurate indicator of GFP elution in both HIC and SEC purification steps. Comparison of composite HIC column scouting data indicated that a phenyl ligand coupled to a 34 µm matrix produced the highest degree of target protein capture and separation. Conclusions Conducting two-step protein purification using the preferred HIC medium followed by SEC resulted in a final, concentrated product with >98% protein purity. In-line absorbance spectrophotometry was not as precise of an indicator of GFP elution as post-run fluorimetry. These findings demonstrate the importance of utilizing a combination of detection methods when evaluating purification strategies. GFP is a well-characterized model protein, used heavily in educational settings and by researchers with limited protein purification experience, and the data and strategies presented here may aid in development other of HIC-compatible protein purification schemes. PMID:25254496
HiCRep: assessing the reproducibility of Hi-C data using a stratum-adjusted correlation coefficient.
Yang, Tao; Zhang, Feipeng; Yardımcı, Galip Gürkan; Song, Fan; Hardison, Ross C; Noble, William Stafford; Yue, Feng; Li, Qunhua
2017-11-01
Hi-C is a powerful technology for studying genome-wide chromatin interactions. However, current methods for assessing Hi-C data reproducibility can produce misleading results because they ignore spatial features in Hi-C data, such as domain structure and distance dependence. We present HiCRep, a framework for assessing the reproducibility of Hi-C data that systematically accounts for these features. In particular, we introduce a novel similarity measure, the stratum adjusted correlation coefficient (SCC), for quantifying the similarity between Hi-C interaction matrices. Not only does it provide a statistically sound and reliable evaluation of reproducibility, SCC can also be used to quantify differences between Hi-C contact matrices and to determine the optimal sequencing depth for a desired resolution. The measure consistently shows higher accuracy than existing approaches in distinguishing subtle differences in reproducibility and depicting interrelationships of cell lineages. The proposed measure is straightforward to interpret and easy to compute, making it well-suited for providing standardized, interpretable, automatable, and scalable quality control. The freely available R package HiCRep implements our approach. © 2017 Yang et al.; Published by Cold Spring Harbor Laboratory Press.
Anti-parallel Filament Flows and Bright Dots Observed in the EUV with Hi-C
NASA Technical Reports Server (NTRS)
Alexander, Caroline E.; Regnier, Stephane; Walsh, Robert; Winebarger, Amy
2013-01-01
Hi-C obtained the highest spatial and temporal resolution observations ever taken in the solar EUV corona. Hi-C reveals dynamics and structure at the limit of its temporal and spatial resolution. Hi-C observed various fine-scale features that SDO/AIA could not pick out. For the first time in the corona, Hi-C revealed magnetic braiding and component reconnection consistent with coronal heating. Hi-C shows evidence of reconnection and heating in several different regions and magnetic configurations with plasma being heated to 0.3 - 8 x 10(exp 6) K temperatures. Surprisingly, many of the first results highlight plasma at temperatures that are not at the peak of the response functions.
Kumar, Rajendra; Sobhy, Haitham
2017-01-01
Abstract Hi-C experiments generate data in form of large genome contact maps (Hi-C maps). These show that chromosomes are arranged in a hierarchy of three-dimensional compartments. But to understand how these compartments form and by how much they affect genetic processes such as gene regulation, biologists and bioinformaticians need efficient tools to visualize and analyze Hi-C data. However, this is technically challenging because these maps are big. In this paper, we remedied this problem, partly by implementing an efficient file format and developed the genome contact map explorer platform. Apart from tools to process Hi-C data, such as normalization methods and a programmable interface, we made a graphical interface that let users browse, scroll and zoom Hi-C maps to visually search for patterns in the Hi-C data. In the software, it is also possible to browse several maps simultaneously and plot related genomic data. The software is openly accessible to the scientific community. PMID:28973466
The Substructure of the Solar Corona Observed in the Hi-C Telescope
NASA Technical Reports Server (NTRS)
Winebarger, A.; Cirtain, J.; Golub, L.; DeLuca, E.; Savage, S.; Alexander, C.; Schuler, T.
2014-01-01
In the summer of 2012, the High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore calculate how the intensity scales from a low-resolution (AIA) pixels to high-resolution (Hi-C) pixels for both the dynamic events and "background" emission (meaning, the steady emission over the 5 minutes of data acquisition time). We find there is no evidence of substructure in the background corona; the intensity scales smoothly from low-resolution to high-resolution Hi-C pixels. In transient events, however, the intensity observed with Hi-C is, on average, 2.6 times larger than observed with AIA. This increase in intensity suggests that AIA is not resolving these events. This result suggests a finely structured dynamic corona embedded in a smoothly varying background.
Kusano, Shuichi; Yoshimitsu, Makoto; Hachiman, Miho; Ikeda, Masanori
2015-12-01
The I-mfa domain proteins HIC (also known as MDFIC) and I-mfa (also known as MDFI) are candidate tumor suppressor genes that are involved in cellular and viral transcriptional regulation. Here, we show that HIC and I-mfa directly interact with human T-cell leukemia virus type-1 (HTLV-1) Tax protein in vitro. In addition, HIC and I-mfa repress Tax-dependent transactivation of an HTLV-1 long terminal repeat (LTR) reporter construct in COS-1, Jurkat and high-Tax-producing HTLV-1-infected T cells. HIC also interacts with Tax through its I-mfa domain in vivo and represses Tax-dependent transactivation of HTLV-1 LTR and NF-κB reporter constructs in an interaction-dependent manner. Furthermore, we show that HIC decreases the nuclear distribution and stimulates the proteasomal degradation of Tax. These data reveal that HIC specifically interacts with HTLV-1 Tax and negatively regulates Tax transactivational activity by altering its subcellular distribution and stability. Copyright © 2015 Elsevier Inc. All rights reserved.
Improvement of the Threespine Stickleback Genome Using a Hi-C-Based Proximity-Guided Assembly.
Peichel, Catherine L; Sullivan, Shawn T; Liachko, Ivan; White, Michael A
2017-09-01
Scaffolding genomes into complete chromosome assemblies remains challenging even with the rapidly increasing sequence coverage generated by current next-generation sequence technologies. Even with scaffolding information, many genome assemblies remain incomplete. The genome of the threespine stickleback (Gasterosteus aculeatus), a fish model system in evolutionary genetics and genomics, is not completely assembled despite scaffolding with high-density linkage maps. Here, we first test the ability of a Hi-C based proximity-guided assembly (PGA) to perform a de novo genome assembly from relatively short contigs. Using Hi-C based PGA, we generated complete chromosome assemblies from a distribution of short contigs (20-100 kb). We found that 96.40% of contigs were correctly assigned to linkage groups (LGs), with ordering nearly identical to the previous genome assembly. Using available bacterial artificial chromosome (BAC) end sequences, we provide evidence that some of the few discrepancies between the Hi-C assembly and the existing assembly are due to structural variation between the populations used for the 2 assemblies or errors in the existing assembly. This Hi-C assembly also allowed us to improve the existing assembly, assigning over 60% (13.35 Mb) of the previously unassigned (~21.7 Mb) contigs to LGs. Together, our results highlight the potential of the Hi-C based PGA method to be used in combination with short read data to perform relatively inexpensive de novo genome assemblies. This approach will be particularly useful in organisms in which it is difficult to perform linkage mapping or to obtain high molecular weight DNA required for other scaffolding methods. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Biomechanics of head injury in olympic taekwondo and boxing.
Fife, G P; O'Sullivan, D; Pieter, W
2013-12-01
The purpose was to examine differences between taekwondo kicks and boxing punches in resultant linear head acceleration (RLA), head injury criterion (HIC15), peak head velocity, and peak foot and fist velocities. Data from two existing publications on boxing punches and taekwondo kicks were compared. For taekwondo head impacts a Hybrid II Crash Dummy (Hybrid II) head was instrumented with a tri-axial accelerometer mounted inside the Hybrid II head. The Hybrid II was fixed to a height-adjustable frame and fitted with a protective taekwondo helmet. For boxing testing, a Hybrid III Crash Dummy head was instrumented with an array of tri-axial accelerometers mounted at the head centre of gravity. Differences in RLA between the roundhouse kick (130.11±51.67 g) and hook punch (71.23±32.19 g, d = 1.39) and in HIC15 (clench axe kick: 162.63±104.10; uppercut: 24.10±12.54, d = 2.29) were observed. Taekwondo kicks demonstrated significantly larger magnitudes than boxing punches for both RLA and HIC.
Top tether effectiveness during side impacts.
Majstorovic, Jordan; Bing, Julie; Dahle, Eric; Bolte, John; Kang, Yun-Seok
2018-02-28
Few studies have looked at the effectiveness of the top tether during side impacts. In these studies, limited anthropomorphic test device (ATD) data were collected and/or few side impact scenarios were observed. The goal of this study was to further understand the effects of the top tether on ATD responses and child restraint system (CRS) kinematics during various side impact conditions. A series of high-speed near-side and far-side sled tests were performed using the FMVSS213 side impact sled buck and Q3s ATD. Tests were performed at both 10° and 30° impacts with respect to the pure lateral direction. Two child restraints, CRS A and CRS B, were attached to the bench using flexible lower anchors. Each test scenario was performed with the presence and absence of a top tether. Instrumentation recorded Q3s responses and CRS kinematics, and the identical test scenarios with and without a top tether attachment were compared. For the far-side lateral (10°) and oblique (30°) impacts, top tether attachment increased resultant head accelerations by 8-38% and head injury criterion (HIC 15 ) values by 20-140%. However, the top tether was effective in reducing lateral head excursion by 5-25%. For near-side impacts, the top tether resulted in less than 10% increases in both resultant head acceleration and HIC 15 in the lateral impact direction. For near-side oblique impacts, the top tether increased HIC 15 by 17.3% for CRS A and decreased it by 19.5% for CRS B. However, the injury values determined from both impact conditions were below current injury assessment reference values (IARVs). Additionally, the top tether proved beneficial in preventing forward and lateral CRS rotations. The results show that the effects of the top tether on Q3s responses were dependent on impact type, impact angle, and CRS. Tether attachments that increased head accelerations and HIC 15 values were generally counterbalanced by a reduction in head excursion and CRS rotation compared to nontethered scenarios.
Mapping 3D genome architecture through in situ DNase Hi-C.
Ramani, Vijay; Cusanovich, Darren A; Hause, Ronald J; Ma, Wenxiu; Qiu, Ruolan; Deng, Xinxian; Blau, C Anthony; Disteche, Christine M; Noble, William S; Shendure, Jay; Duan, Zhijun
2016-11-01
With the advent of massively parallel sequencing, considerable work has gone into adapting chromosome conformation capture (3C) techniques to study chromosomal architecture at a genome-wide scale. We recently demonstrated that the inactive murine X chromosome adopts a bipartite structure using a novel 3C protocol, termed in situ DNase Hi-C. Like traditional Hi-C protocols, in situ DNase Hi-C requires that chromatin be chemically cross-linked, digested, end-repaired, and proximity-ligated with a biotinylated bridge adaptor. The resulting ligation products are optionally sheared, affinity-purified via streptavidin bead immobilization, and subjected to traditional next-generation library preparation for Illumina paired-end sequencing. Importantly, in situ DNase Hi-C obviates the dependence on a restriction enzyme to digest chromatin, instead relying on the endonuclease DNase I. Libraries generated by in situ DNase Hi-C have a higher effective resolution than traditional Hi-C libraries, which makes them valuable in cases in which high sequencing depth is allowed for, or when hybrid capture technologies are expected to be used. The protocol described here, which involves ∼4 d of bench work, is optimized for the study of mammalian cells, but it can be broadly applicable to any cell or tissue of interest, given experimental parameter optimization.
Optimization and quality control of genome-wide Hi-C library preparation.
Zhang, Xiang-Yuan; He, Chao; Ye, Bing-Yu; Xie, De-Jian; Shi, Ming-Lei; Zhang, Yan; Shen, Wen-Long; Li, Ping; Zhao, Zhi-Hu
2017-09-20
Highest-throughput chromosome conformation capture (Hi-C) is one of the key assays for genome- wide chromatin interaction studies. It is a time-consuming process that involves many steps and many different kinds of reagents, consumables, and equipments. At present, the reproducibility is unsatisfactory. By optimizing the key steps of the Hi-C experiment, such as crosslinking, pretreatment of digestion, inactivation of restriction enzyme, and in situ ligation etc., we established a robust Hi-C procedure and prepared two biological replicates of Hi-C libraries from the GM12878 cells. After preliminary quality control by Sanger sequencing, the two replicates were high-throughput sequenced. The bioinformatics analysis of the raw sequencing data revealed the mapping-ability and pair-mate rate of the raw data were around 90% and 72%, respectively. Additionally, after removal of self-circular ligations and dangling-end products, more than 96% of the valid pairs were reached. Genome-wide interactome profiling shows clear topological associated domains (TADs), which is consistent with previous reports. Further correlation analysis showed that the two biological replicates strongly correlate with each other in terms of both bin coverage and all bin pairs. All these results indicated that the optimized Hi-C procedure is robust and stable, which will be very helpful for the wide applications of the Hi-C assay.
Rees, Chris A; Lukolyo, Heather; Keating, Elizabeth M; Dearden, Kirk A; Luboga, Samuel A; Schutze, Gordon E; Kazembe, Peter N
2017-11-01
Interest in global health has increased greatly in the past two decades. Concomitantly, the number and complexity of research partnerships between high-income (HIC) and low- and middle-income countries (LMICs) has grown. We aimed to determine whether there is authorship parity (equitable representation and author order) or parasitism (no authors from study countries) in paediatric research conducted in LMICs. We reviewed all articles published from 2006 to 2015 in the four paediatric journals with the highest Eigenfactor scores. We limited our review to articles from LMICs and abstracted information on author affiliation and order, funding source and study design. We calculated Student's t-tests and chi-square using Fisher's exact test with Monte Carlo estimates. There were 24 169 articles published during the study period, and 1243 met inclusion criteria. Of those, 95.9% (n = 1,192) included at least one author affiliated with a LMIC. Among multicountry studies (n = 165), 40.4% did not include authors from every LMIC involved. Of the 9876 authors, most were affiliated with institutions from upper-middle-income countries (41.7%) and HICs (32.7%), with far fewer affiliated with lower middle-income (15.5%) and low-income countries (5.4%) (P < 0.001). In articles from low-income countries, first and last authors from HICs were more common than authors with low-income country affiliations (P < 0.001). Authorship parasitism was rare overall but common in multicountry studies. In studies conducted in low-income countries, HIC authors more commonly occupied first and last author positions than authors from the study countries. Where LMIC authors make substantial contributions, researchers should strive for authorship parity. © 2017 John Wiley & Sons Ltd.
HiCUP: pipeline for mapping and processing Hi-C data.
Wingett, Steven; Ewels, Philip; Furlan-Magaril, Mayra; Nagano, Takashi; Schoenfelder, Stefan; Fraser, Peter; Andrews, Simon
2015-01-01
HiCUP is a pipeline for processing sequence data generated by Hi-C and Capture Hi-C (CHi-C) experiments, which are techniques used to investigate three-dimensional genomic organisation. The pipeline maps data to a specified reference genome and removes artefacts that would otherwise hinder subsequent analysis. HiCUP also produces an easy-to-interpret yet detailed quality control (QC) report that assists in refining experimental protocols for future studies. The software is freely available and has already been used for processing Hi-C and CHi-C data in several recently published peer-reviewed studies.
Coalition for Global Clinical Surgical Education: The Alliance for Global Clinical Training.
Graf, Jahanara; Cook, Mackenzie; Schecter, Samuel; Deveney, Karen; Hofmann, Paul; Grey, Douglas; Akoko, Larry; Mwanga, Ali; Salum, Kitembo; Schecter, William
Assessment of the effect of the collaborative relationship between the high-income country (HIC) surgical educators of the Alliance for Global Clinical Training (Alliance) and the low-income country surgical educators at the Muhimbili University of Health and Allied Sciences/Muhimbili National Hospital (MUHAS/MNH), Dar Es Salaam, Tanzania, on the clinical global surgery training of the HIC surgical residents participating in the program. A retrospective qualitative analysis of Alliance volunteer HIC faculty and residents' reports, volunteer case lists and the reports of Alliance academic contributions to MUHAS/MNH from 2012 to 2017. In addition, a survey was circulated in late 2016 to all the residents who participated in the program since its inception. Twelve HIC surgical educators provided rotating 1-month teaching coverage at MUHAS/MNH between academic years 2012 and 2017 for a total of 21 months. During the same time period 11 HIC residents accompanied the HIC faculty for 1-month rotations. HIC surgery residents joined the MUHAS/MNH Department of Surgery, made significant teaching contributions, performed a wide spectrum of "open procedures" including hand-sewn intestinal anastomoses. Most had had either no or limited previous exposure to hand-sewn anastomoses. All of the residents commented that this was a maturing and challenging clinical rotation due to the complexity of the cases, the limited resources available and the ethical and emotional challenges of dealing with preventable complications and death in a resource constrained environment. The Alliance provides an effective clinical global surgery rotation at MUHAS/MNH for HIC Surgery Departments wishing to provide such an opportunity for their residents and faculty. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Belaghzal, Houda; Dekker, Job; Gibcus, Johan H
2017-07-01
Chromosome conformation capture-based methods such as Hi-C have become mainstream techniques for the study of the 3D organization of genomes. These methods convert chromatin interactions reflecting topological chromatin structures into digital information (counts of pair-wise interactions). Here, we describe an updated protocol for Hi-C (Hi-C 2.0) that integrates recent improvements into a single protocol for efficient and high-resolution capture of chromatin interactions. This protocol combines chromatin digestion and frequently cutting enzymes to obtain kilobase (kb) resolution. It also includes steps to reduce random ligation and the generation of uninformative molecules, such as unligated ends, to improve the amount of valid intra-chromosomal read pairs. This protocol allows for obtaining information on conformational structures such as compartment and topologically associating domains, as well as high-resolution conformational features such as DNA loops. Copyright © 2017 Elsevier Inc. All rights reserved.
BIOMECHANICS OF HEAD INJURY IN OLYMPIC TAEKWONDO AND BOXING
Fife, G.P.; Pieter, W.
2013-01-01
Objective The purpose was to examine differences between taekwondo kicks and boxing punches in resultant linear head acceleration (RLA), head injury criterion (HIC15), peak head velocity, and peak foot and fist velocities. Data from two existing publications on boxing punches and taekwondo kicks were compared. Methods For taekwondo head impacts a Hybrid II Crash Dummy (Hybrid II) head was instrumented with a tri-axial accelerometer mounted inside the Hybrid II head. The Hybrid II was fixed to a height-adjustable frame and fitted with a protective taekwondo helmet. For boxing testing, a Hybrid III Crash Dummy head was instrumented with an array of tri-axial accelerometers mounted at the head centre of gravity. Results Differences in RLA between the roundhouse kick (130.11±51.67 g) and hook punch (71.23±32.19 g, d = 1.39) and in HIC15 (clench axe kick: 162.63±104.10; uppercut: 24.10±12.54, d = 2.29) were observed. Conclusions Taekwondo kicks demonstrated significantly larger magnitudes than boxing punches for both RLA and HIC. PMID:24744497
Liu, Chang
2017-01-01
The spatial organization of the genome in the nucleus is critical for many cellular processes. It has been broadly accepted that the packing of chromatin inside the nucleus is not random, but structured at several hierarchical levels. The Hi-C method combines Chromatin Conformation Capture and high-throughput sequencing, which allows interrogating genome-wide chromatin interactions. Depending on the sequencing depth, chromatin packing patterns derived from Hi-C experiments can be viewed on a chromosomal scale or at a local genic level. Here, I describe a protocol of plant in situ Hi-C library preparation, which covers procedures starting from tissue fixation to library amplification.
Lando, David; Stevens, Tim J; Basu, Srinjan; Laue, Ernest D
2018-01-01
Single-cell chromosome conformation capture approaches are revealing the extent of cell-to-cell variability in the organization and packaging of genomes. These single-cell methods, unlike their multi-cell counterparts, allow straightforward computation of realistic chromosome conformations that may be compared and combined with other, independent, techniques to study 3D structure. Here we discuss how single-cell Hi-C and subsequent 3D genome structure determination allows comparison with data from microscopy. We then carry out a systematic evaluation of recently published single-cell Hi-C datasets to establish a computational approach for the evaluation of single-cell Hi-C protocols. We show that the calculation of genome structures provides a useful tool for assessing the quality of single-cell Hi-C data because it requires a self-consistent network of interactions, relating to the underlying 3D conformation, with few errors, as well as sufficient longer-range cis- and trans-chromosomal contacts.
Ron, Gil; Globerson, Yuval; Moran, Dror; Kaplan, Tommy
2017-12-21
Proximity-ligation methods such as Hi-C allow us to map physical DNA-DNA interactions along the genome, and reveal its organization into topologically associating domains (TADs). As the Hi-C data accumulate, computational methods were developed for identifying domain borders in multiple cell types and organisms. Here, we present PSYCHIC, a computational approach for analyzing Hi-C data and identifying promoter-enhancer interactions. We use a unified probabilistic model to segment the genome into domains, which we then merge hierarchically and fit using a local background model, allowing us to identify over-represented DNA-DNA interactions across the genome. By analyzing the published Hi-C data sets in human and mouse, we identify hundreds of thousands of putative enhancers and their target genes, and compile an extensive genome-wide catalog of gene regulation in human and mouse. As we show, our predictions are highly enriched for ChIP-seq and DNA accessibility data, evolutionary conservation, eQTLs and other DNA-DNA interaction data.
Lin, Da; Hong, Ping; Zhang, Siheng; Xu, Weize; Jamal, Muhammad; Yan, Keji; Lei, Yingying; Li, Liang; Ruan, Yijun; Fu, Zhen F; Li, Guoliang; Cao, Gang
2018-05-01
Chromosome conformation capture (3C) technologies can be used to investigate 3D genomic structures. However, high background noise, high costs, and a lack of straightforward noise evaluation in current methods impede the advancement of 3D genomic research. Here we developed a simple digestion-ligation-only Hi-C (DLO Hi-C) technology to explore the 3D landscape of the genome. This method requires only two rounds of digestion and ligation, without the need for biotin labeling and pulldown. Non-ligated DNA was efficiently removed in a cost-effective step by purifying specific linker-ligated DNA fragments. Notably, random ligation could be quickly evaluated in an early quality-control step before sequencing. Moreover, an in situ version of DLO Hi-C using a four-cutter restriction enzyme has been developed. We applied DLO Hi-C to delineate the genomic architecture of THP-1 and K562 cells and uncovered chromosomal translocations. This technology may facilitate investigation of genomic organization, gene regulation, and (meta)genome assembly.
Inter-chromosomal Contact Properties in Live-Cell Imaging and in Hi-C.
Maass, Philipp G; Barutcu, A Rasim; Weiner, Catherine L; Rinn, John L
2018-03-15
Imaging (fluorescence in situ hybridization [FISH]) and genome-wide chromosome conformation capture (Hi-C) are two major approaches to the study of higher-order genome organization in the nucleus. Intra-chromosomal and inter-chromosomal interactions (referred to as non-homologous chromosomal contacts [NHCCs]) have been observed by several FISH-based studies, but locus-specific NHCCs have not been detected by Hi-C. Due to crosslinking, neither of these approaches assesses spatiotemporal properties. Toward resolving the discrepancies between imaging and Hi-C, we sought to understand the spatiotemporal properties of NHCCs in living cells by CRISPR/Cas9 live-cell imaging (CLING). In mammalian cells, we find that NHCCs are stable and occur as frequently as intra-chromosomal interactions, but NHCCs occur at farther spatial distance that could explain their lack of detection in Hi-C. By revealing the spatiotemporal properties in living cells, our study provides fundamental insights into the biology of NHCCs. Copyright © 2018 Elsevier Inc. All rights reserved.
HiC-spector: a matrix library for spectral and reproducibility analysis of Hi-C contact maps.
Yan, Koon-Kiu; Yardimci, Galip Gürkan; Yan, Chengfei; Noble, William S; Gerstein, Mark
2017-07-15
Genome-wide proximity ligation based assays like Hi-C have opened a window to the 3D organization of the genome. In so doing, they present data structures that are different from conventional 1D signal tracks. To exploit the 2D nature of Hi-C contact maps, matrix techniques like spectral analysis are particularly useful. Here, we present HiC-spector, a collection of matrix-related functions for analyzing Hi-C contact maps. In particular, we introduce a novel reproducibility metric for quantifying the similarity between contact maps based on spectral decomposition. The metric successfully separates contact maps mapped from Hi-C data coming from biological replicates, pseudo-replicates and different cell types. Source code in Julia and Python, and detailed documentation is available at https://github.com/gersteinlab/HiC-spector . koonkiu.yan@gmail.com or mark@gersteinlab.org. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Liou, Wei-Kai; Bhagat, Kaushal Kumar; Chang, Chun-Yen
2016-06-01
The present study compares the highly interactive cloud-classroom (HIC) system with traditional methods of teaching materials science that utilize crystal structure picture or real crystal structure model, in order to examine its learning effectiveness across three dimensions: knowledge, comprehension and application. The aim of this study was to evaluate the (HIC) system, which incorporates augmented reality, virtual reality and cloud-classroom to teach basic materials science courses. The study followed a pretest-posttest quasi-experimental research design. A total of 92 students (aged 19-20 years), in a second-year undergraduate program, participated in this 18-week-long experiment. The students were divided into an experimental group and a control group. The experimental group (36 males and 10 females) was instructed utilizing the HIC system, while the control group (34 males and 12 females) was led through traditional teaching methods. Pretest, posttest, and delayed posttest scores were evaluated by multivariate analysis of covariance. The results indicated that participants in the experimental group who used the HIC system outperformed the control group, in the both posttest and delayed posttest, across three learning dimensions. Based on these results, the HIC system is recommended to be incorporated in formal materials science learning settings.
OneD: increasing reproducibility of Hi-C samples with abnormal karyotypes.
Vidal, Enrique; le Dily, François; Quilez, Javier; Stadhouders, Ralph; Cuartero, Yasmina; Graf, Thomas; Marti-Renom, Marc A; Beato, Miguel; Filion, Guillaume J
2018-05-04
The three-dimensional conformation of genomes is an essential component of their biological activity. The advent of the Hi-C technology enabled an unprecedented progress in our understanding of genome structures. However, Hi-C is subject to systematic biases that can compromise downstream analyses. Several strategies have been proposed to remove those biases, but the issue of abnormal karyotypes received little attention. Many experiments are performed in cancer cell lines, which typically harbor large-scale copy number variations that create visible defects on the raw Hi-C maps. The consequences of these widespread artifacts on the normalized maps are mostly unexplored. We observed that current normalization methods are not robust to the presence of large-scale copy number variations, potentially obscuring biological differences and enhancing batch effects. To address this issue, we developed an alternative approach designed to take into account chromosomal abnormalities. The method, called OneD, increases reproducibility among replicates of Hi-C samples with abnormal karyotype, outperforming previous methods significantly. On normal karyotypes, OneD fared equally well as state-of-the-art methods, making it a safe choice for Hi-C normalization. OneD is fast and scales well in terms of computing resources for resolutions up to 5 kb.
Quantification of DNA cleavage specificity in Hi-C experiments.
Meluzzi, Dario; Arya, Gaurav
2016-01-08
Hi-C experiments produce large numbers of DNA sequence read pairs that are typically analyzed to deduce genomewide interactions between arbitrary loci. A key step in these experiments is the cleavage of cross-linked chromatin with a restriction endonuclease. Although this cleavage should happen specifically at the enzyme's recognition sequence, an unknown proportion of cleavage events may involve other sequences, owing to the enzyme's star activity or to random DNA breakage. A quantitative estimation of these non-specific cleavages may enable simulating realistic Hi-C read pairs for validation of downstream analyses, monitoring the reproducibility of experimental conditions and investigating biophysical properties that correlate with DNA cleavage patterns. Here we describe a computational method for analyzing Hi-C read pairs to estimate the fractions of cleavages at different possible targets. The method relies on expressing an observed local target distribution downstream of aligned reads as a linear combination of known conditional local target distributions. We validated this method using Hi-C read pairs obtained by computer simulation. Application of the method to experimental Hi-C datasets from murine cells revealed interesting similarities and differences in patterns of cleavage across the various experiments considered. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Vignier, Nicolas; Desgrées du Loû, Annabel; Pannetier, Julie; Ravalihasy, Andrainolo; Gosselin, Anne; Lert, France; Lydié, Nathalie; Bouchaud, Olivier; Dray Spira, Rosemary
2018-01-01
Migrants' access to care depends on their health insurance coverage in the host country. We aimed to evaluate in France the dynamic and the determinants of health insurance coverage acquisition among sub-Saharan migrants. In the PARCOURS life-event retrospective survey conducted in 2012-2013 in health-care facilities in the Paris region, data on health insurance coverage (HIC) each year since arrival in France has been collected among three groups of sub-Saharan migrants recruited in primary care centres (N = 763), centres for HIV care (N = 923) and for chronic hepatitis B care (N = 778). Year to year, the determinants of the acquisition and lapse of HIC were analysed with mixed-effects logistic regression models. In the year of arrival, 63.4% of women and 55.3% of men obtained HIC. But three years after arrival, still 14% of women and 19% of men had not obtained HIC. HIC acquisition was accelerated in case of HIV or hepatitis B infection, for migrants arrived after 2000, and for women in case of pregnancy and when they were studying. Conversely, it was slowed down in case of lack of a residency permit and lack of financial resources for men. In addition, women and men without residency permits were more likely to have lost HIC when they had one. In France, the health insurance system aiming at protecting all, including undocumented migrants, leads to a prompt access to HIC for migrants from sub-Saharan Africa. Nevertheless, this access may be impaired by administrative and social insecurities.
Lazaris, Charalampos; Kelly, Stephen; Ntziachristos, Panagiotis; Aifantis, Iannis; Tsirigos, Aristotelis
2017-01-05
Chromatin conformation capture techniques have evolved rapidly over the last few years and have provided new insights into genome organization at an unprecedented resolution. Analysis of Hi-C data is complex and computationally intensive involving multiple tasks and requiring robust quality assessment. This has led to the development of several tools and methods for processing Hi-C data. However, most of the existing tools do not cover all aspects of the analysis and only offer few quality assessment options. Additionally, availability of a multitude of tools makes scientists wonder how these tools and associated parameters can be optimally used, and how potential discrepancies can be interpreted and resolved. Most importantly, investigators need to be ensured that slight changes in parameters and/or methods do not affect the conclusions of their studies. To address these issues (compare, explore and reproduce), we introduce HiC-bench, a configurable computational platform for comprehensive and reproducible analysis of Hi-C sequencing data. HiC-bench performs all common Hi-C analysis tasks, such as alignment, filtering, contact matrix generation and normalization, identification of topological domains, scoring and annotation of specific interactions using both published tools and our own. We have also embedded various tasks that perform quality assessment and visualization. HiC-bench is implemented as a data flow platform with an emphasis on analysis reproducibility. Additionally, the user can readily perform parameter exploration and comparison of different tools in a combinatorial manner that takes into account all desired parameter settings in each pipeline task. This unique feature facilitates the design and execution of complex benchmark studies that may involve combinations of multiple tool/parameter choices in each step of the analysis. To demonstrate the usefulness of our platform, we performed a comprehensive benchmark of existing and new TAD callers exploring different matrix correction methods, parameter settings and sequencing depths. Users can extend our pipeline by adding more tools as they become available. HiC-bench consists an easy-to-use and extensible platform for comprehensive analysis of Hi-C datasets. We expect that it will facilitate current analyses and help scientists formulate and test new hypotheses in the field of three-dimensional genome organization.
Hi-C Observations of an Active Region Corona, and Investigation of the Underlying Magnetic Structure
NASA Technical Reports Server (NTRS)
Tiwari, S. K.; Alexander, C. E.; Winebarger, A.; Moore, R. L.
2014-01-01
The solar corona is much hotter (>=10(exp 6) K) than its surface (approx 6000 K), puzzling astrophysicists for several decades. Active region (AR) corona is again hotter than the quiet Sun (QS) corona by a factor of 4-10. The most widely accepted mechanism that could heat the active region corona is the energy release by current dissipation via reconnection of braided magnetic field structure, first proposed by E. N. Parker three decades ago. The first observational evidence for this mechanism has only recently been presented by Cirtain et al. by using High-resolution Coronal Imager (Hi-C) observations of an AR corona at a spatial resolution of 0.2 arcsec, which is required to resolve the coronal loops, and was not available before the rocket flight of Hi-C in July 2012. The Hi-C project is led by NASA/MSFC. In the case of the QS, work done by convection/granulation on the inter-granular feet of the coronal field lines translates into the heat observed in the corona. In the case of the AR, as here, there could be flux emergence, cancellation/submergence, or shear flows generating large stress and tension in coronal field loops which is released as heat in the corona. We are currently investigating the changes taking place in photospheric feet of the magnetic field involved with brightenings in the Hi-C AR corona. For this purpose, we are also using SDO/AIA data of +/- 2 hours around the 5 minutes Hi-C flight. In the present talk, I will first summarize some of the results of the Hi-C observations and then present some results from our recent analysis on what photospheric processes feed the magnetic energy that dissipates into heat in coronal loops.
Desgrées du Loû, Annabel; Pannetier, Julie; Ravalihasy, Andrainolo; Gosselin, Anne; Lert, France; Lydié, Nathalie; Bouchaud, Olivier; Dray Spira, Rosemary
2018-01-01
Background Migrants’ access to care depends on their health insurance coverage in the host country. We aimed to evaluate in France the dynamic and the determinants of health insurance coverage acquisition among sub-Saharan migrants. Methods In the PARCOURS life-event retrospective survey conducted in 2012–2013 in health-care facilities in the Paris region, data on health insurance coverage (HIC) each year since arrival in France has been collected among three groups of sub-Saharan migrants recruited in primary care centres (N = 763), centres for HIV care (N = 923) and for chronic hepatitis B care (N = 778). Year to year, the determinants of the acquisition and lapse of HIC were analysed with mixed-effects logistic regression models. Results In the year of arrival, 63.4% of women and 55.3% of men obtained HIC. But three years after arrival, still 14% of women and 19% of men had not obtained HIC. HIC acquisition was accelerated in case of HIV or hepatitis B infection, for migrants arrived after 2000, and for women in case of pregnancy and when they were studying. Conversely, it was slowed down in case of lack of a residency permit and lack of financial resources for men. In addition, women and men without residency permits were more likely to have lost HIC when they had one. Conclusion In France, the health insurance system aiming at protecting all, including undocumented migrants, leads to a prompt access to HIC for migrants from sub-Saharan Africa. Nevertheless, this access may be impaired by administrative and social insecurities. PMID:29447257
Hyriopsis cumingii Hic52-A novel nacreous layer matrix protein with a collagen-like structure.
Liu, Xiaojun; Pu, Jingwen; Zeng, Shimei; Jin, Can; Dong, Shaojian; Li, Jiale
2017-09-01
Nacre is a product of a precisely regulated biomineralization process and a major contributor to the luster of pearls. Nacre is composed of calcium carbonate and an organic matrix of proteins that is secreted from mollusc mantle tissue and is exclusively associated with shell formation. In this study, hic52, a novel matrix protein gene from mantle of Hyriopsis cumingii, was cloned and functionally analyzed. The full-length cDNA of hic52 encoded 542 amino acids and contained a signal peptide of 18 amino acids. Excluding the signal peptide, the theoretical molecular mass of the polypeptide was 52.2kDa. The predicted isoelectric point was 10.37, indicating a basic shell protein. The amino acid sequence of hic52 featured high proportion of Gly (28.8%) and Gln (12.4%) residues. The predicted tertiary structure was characterized as having similarities to collagen I, alpha 1 and alpha 2 in the structure. The polypeptide sequence shared no homology with collagen. The hic52 expression pattern by quantitative real-time PCR and in situ hybridization exhibits at the dorsal epithelial cells of the mantle. Expression increased during the stages of pearl sac development. The data showed that hic52 is probably a framework shell protein that mediates and controls the nacreous biomineralization process. Copyright © 2017 Elsevier B.V. All rights reserved.
A model for 'reverse innovation' in health care.
Depasse, Jacqueline W; Lee, Patrick T
2013-08-30
'Reverse innovation,' a principle well established in the business world, describes the flow of ideas from emerging to more developed economies. There is strong and growing interest in applying this concept to health care, yet there is currently no framework for describing the stages of reverse innovation or identifying opportunities to accelerate the development process. This paper combines the business concept of reverse innovation with diffusion of innovation theory to propose a model for reverse innovation as a way to innovate in health care. Our model includes the following steps: (1) identifying a problem common to lower- and higher-income countries; (2) innovation and spread in the low-income country (LIC); (3) crossover to the higher-income country (HIC); and (4) innovation and spread in the HIC. The crucial populations in this pathway, drawing from diffusion of innovation theory, are LIC innovators, LIC early adopters, and HIC innovators. We illustrate the model with three examples of current reverse innovations. We then propose four sets of specific actions that forward-looking policymakers, entrepreneurs, health system leaders, and researchers may take to accelerate the movement of promising solutions through the reverse innovation pipeline: (1) identify high-priority problems shared by HICs and LICs; (2) create slack for change, especially for LIC innovators, LIC early adopters, and HIC innovators; (3) create spannable social distances between LIC early adopters and HIC innovators; and (4) measure reverse innovation activity globally.
Xu, Zheng; Zhang, Guosheng; Duan, Qing; Chai, Shengjie; Zhang, Baqun; Wu, Cong; Jin, Fulai; Yue, Feng; Li, Yun; Hu, Ming
2016-03-11
Genome-wide association studies (GWAS) have identified thousands of genetic variants associated with complex traits and diseases. However, most of them are located in the non-protein coding regions, and therefore it is challenging to hypothesize the functions of these non-coding GWAS variants. Recent large efforts such as the ENCODE and Roadmap Epigenomics projects have predicted a large number of regulatory elements. However, the target genes of these regulatory elements remain largely unknown. Chromatin conformation capture based technologies such as Hi-C can directly measure the chromatin interactions and have generated an increasingly comprehensive catalog of the interactome between the distal regulatory elements and their potential target genes. Leveraging such information revealed by Hi-C holds the promise of elucidating the functions of genetic variants in human diseases. In this work, we present HiView, the first integrative genome browser to leverage Hi-C results for the interpretation of GWAS variants. HiView is able to display Hi-C data and statistical evidence for chromatin interactions in genomic regions surrounding any given GWAS variant, enabling straightforward visualization and interpretation. We believe that as the first GWAS variants-centered Hi-C genome browser, HiView is a useful tool guiding post-GWAS functional genomics studies. HiView is freely accessible at: http://www.unc.edu/~yunmli/HiView .
Reconstructing spatial organizations of chromosomes through manifold learning
Deng, Wenxuan; Hu, Hailin; Ma, Rui; Zhang, Sai; Yang, Jinglin; Peng, Jian; Kaplan, Tommy; Zeng, Jianyang
2018-01-01
Abstract Decoding the spatial organizations of chromosomes has crucial implications for studying eukaryotic gene regulation. Recently, chromosomal conformation capture based technologies, such as Hi-C, have been widely used to uncover the interaction frequencies of genomic loci in a high-throughput and genome-wide manner and provide new insights into the folding of three-dimensional (3D) genome structure. In this paper, we develop a novel manifold learning based framework, called GEM (Genomic organization reconstructor based on conformational Energy and Manifold learning), to reconstruct the three-dimensional organizations of chromosomes by integrating Hi-C data with biophysical feasibility. Unlike previous methods, which explicitly assume specific relationships between Hi-C interaction frequencies and spatial distances, our model directly embeds the neighboring affinities from Hi-C space into 3D Euclidean space. Extensive validations demonstrated that GEM not only greatly outperformed other state-of-art modeling methods but also provided a physically and physiologically valid 3D representations of the organizations of chromosomes. Furthermore, we for the first time apply the modeled chromatin structures to recover long-range genomic interactions missing from original Hi-C data. PMID:29408992
Mixed retention mechanism of proteins in weak anion-exchange chromatography.
Liu, Peng; Yang, Haiya; Geng, Xindu
2009-10-30
Using four commercial weak anion-exchange chromatography (WAX) columns and 11 kinds of different proteins, we experimentally examined the involvement of hydrophobic interaction chromatography (HIC) mechanism in protein retention on the WAX columns. The HIC mechanism was found to operate in all four WAX columns, and each of these columns had a better resolution in the HIC mode than in the corresponding WAX mode. Detailed analysis of the molecular interactions in a chromatographic system indicated that it is impossible to completely eliminate hydrophobic interactions from a WAX column. Based on these results, it may be possible to employ a single WAX column for protein separation by exploiting mixed modes (WAX and HIC) of retention. The stoichiometric displacement theory and two linear plots were used to show that mechanism of the mixed modes of retention in the system was a combination of two kinds of interactions, i.e., nonselective interactions in the HIC mode and selective interactions in the IEC mode. The obtained U-shaped elution curve of proteins could be distinguished into four different ranges of salt concentration, which also represent four retention regions.
Reconstructing spatial organizations of chromosomes through manifold learning.
Zhu, Guangxiang; Deng, Wenxuan; Hu, Hailin; Ma, Rui; Zhang, Sai; Yang, Jinglin; Peng, Jian; Kaplan, Tommy; Zeng, Jianyang
2018-05-04
Decoding the spatial organizations of chromosomes has crucial implications for studying eukaryotic gene regulation. Recently, chromosomal conformation capture based technologies, such as Hi-C, have been widely used to uncover the interaction frequencies of genomic loci in a high-throughput and genome-wide manner and provide new insights into the folding of three-dimensional (3D) genome structure. In this paper, we develop a novel manifold learning based framework, called GEM (Genomic organization reconstructor based on conformational Energy and Manifold learning), to reconstruct the three-dimensional organizations of chromosomes by integrating Hi-C data with biophysical feasibility. Unlike previous methods, which explicitly assume specific relationships between Hi-C interaction frequencies and spatial distances, our model directly embeds the neighboring affinities from Hi-C space into 3D Euclidean space. Extensive validations demonstrated that GEM not only greatly outperformed other state-of-art modeling methods but also provided a physically and physiologically valid 3D representations of the organizations of chromosomes. Furthermore, we for the first time apply the modeled chromatin structures to recover long-range genomic interactions missing from original Hi-C data.
Kohrt, Brandon A.; Upadhaya, Nawaraj; Luitel, Nagendra P.; Maharjan, Sujen M.; Kaiser, Bonnie N.; MacFarlane, Elizabeth K.; Khan, Noreen
2014-01-01
Background Collaborations among researchers, clinicians, and individuals with mental illness from high-income countries (HICs) and low- and middle-income countries (LMICs) are crucial to produce research, interventions, and policies that are relevant, feasible, and ethical. However, global mental health and cultural psychiatry research publications have been dominated by HIC investigators. Objective The aim of this review was to present recommendations for collaborative writing with a focus on early career researchers in HICs and LMICs. Methods A workshop was conducted with HIC and LMIC investigators in Nepal to discuss lessons learned for collaborative writing. The researchers had experience in cross-cultural psychiatric epidemiology, health services research, randomized controlled trials, and projects with war and disaster-affected populations in complex humanitarian emergencies including child soldiers and refugees. Additional lessons learned were contributed from researchers engaged in similar collaborations in Haiti. Findings A step-by-step process for collaborative writing was developed. Conclusions HIC and LMIC writing collaborations will encourage accurate, ethical, and contextually grounded publications to foster understanding and facilitate reduction of the global burden of mental illness. PMID:24976552
High-throughput screening of chromatographic separations: II. Hydrophobic interaction.
Kramarczyk, Jack F; Kelley, Brian D; Coffman, Jonathan L
2008-07-01
A high-throughput screen (HTS) was developed to evaluate the selectivity of various hydrophobic interaction chromatography (HIC) resins for separating a mAb from aggregate species. Prior to the resin screen, the solubility of the protein was assessed to determine the allowable HIC operating region by examining 384 combinations of pH, salt, and protein concentration. The resin screen then incorporated 480 batch-binding and elution conditions with eight HIC resins in combination with six salts. The results from the screen were reproducible, and demonstrated quantitative recovery of the mAb and aggregate. The translation of the HTS batch-binding data to lab-scale chromatography columns was tested for four conditions spanning the range of product binding and selectivity. After accounting for the higher number of theoretical plates in the columns, the purity and recovery of the lab-scale column runs agreed with the HTS results demonstrating the predictive power of the filterplate system. The HTS data were further analyzed by the calculation of pertinent thermodynamic parameters such as the partition coefficient, K(P), and the separation factor, alpha. The separation factor was used to rank the purification capabilities of the resin and salt conditions explored. (c) 2008 Wiley Periodicals, Inc.
Automated Hydrophobic Interaction Chromatography Column Selection for Use in Protein Purification
Murphy, Patrick J. M.; Stone, Orrin J.; Anderson, Michelle E.
2011-01-01
In contrast to other chromatographic methods for purifying proteins (e.g. gel filtration, affinity, and ion exchange), hydrophobic interaction chromatography (HIC) commonly requires experimental determination (referred to as screening or "scouting") in order to select the most suitable chromatographic medium for purifying a given protein 1. The method presented here describes an automated approach to scouting for an optimal HIC media to be used in protein purification. HIC separates proteins and other biomolecules from a crude lysate based on differences in hydrophobicity. Similar to affinity chromatography (AC) and ion exchange chromatography (IEX), HIC is capable of concentrating the protein of interest as it progresses through the chromatographic process. Proteins best suited for purification by HIC include those with hydrophobic surface regions and able to withstand exposure to salt concentrations in excess of 2 M ammonium sulfate ((NH4)2SO4). HIC is often chosen as a purification method for proteins lacking an affinity tag, and thus unsuitable for AC, and when IEX fails to provide adequate purification. Hydrophobic moieties on the protein surface temporarily bind to a nonpolar ligand coupled to an inert, immobile matrix. The interaction between protein and ligand are highly dependent on the salt concentration of the buffer flowing through the chromatography column, with high ionic concentrations strengthening the protein-ligand interaction and making the protein immobile (i.e. bound inside the column) 2. As salt concentrations decrease, the protein-ligand interaction dissipates, the protein again becomes mobile and elutes from the column. Several HIC media are commercially available in pre-packed columns, each containing one of several hydrophobic ligands (e.g. S-butyl, butyl, octyl, and phenyl) cross-linked at varying densities to agarose beads of a specific diameter 3. Automated column scouting allows for an efficient approach for determining which HIC media should be employed for future, more exhaustive optimization experiments and protein purification runs 4. The specific protein being purified here is recombinant green fluorescent protein (GFP); however, the approach may be adapted for purifying other proteins with one or more hydrophobic surface regions. GFP serves as a useful model protein, due to its stability, unique light absorbance peak at 397 nm, and fluorescence when exposed to UV light 5. Bacterial lysate containing wild type GFP was prepared in a high-salt buffer, loaded into a Bio-Rad DuoFlow medium pressure liquid chromatography system, and adsorbed to HiTrap HIC columns containing different HIC media. The protein was eluted from the columns and analyzed by in-line and post-run detection methods. Buffer blending, dynamic sample loop injection, sequential column selection, multi-wavelength analysis, and split fraction eluate collection increased the functionality of the system and reproducibility of the experimental approach. PMID:21968976
Saberi, Saeed; Farré, Pau; Cuvier, Olivier; Emberly, Eldon
2015-05-23
A variety of DNA binding proteins are involved in regulating and shaping the packing of chromatin. They aid the formation of loops in the DNA that function to isolate different structural domains. A recent experimental technique, Hi-C, provides a method for determining the frequency of such looping between all distant parts of the genome. Given that the binding locations of many chromatin associated proteins have also been measured, it has been possible to make estimates for their influence on the long-range interactions as measured by Hi-C. However, a challenge in this analysis is the predominance of non-specific contacts that mask out the specific interactions of interest. We show that transforming the Hi-C contact frequencies into free energies gives a natural method for separating out the distance dependent non-specific interactions. In particular we apply Principal Component Analysis (PCA) to the transformed free energy matrix to identify the dominant modes of interaction. PCA identifies systematic effects as well as high frequency spatial noise in the Hi-C data which can be filtered out. Thus it can be used as a data driven approach for normalizing Hi-C data. We assess this PCA based normalization approach, along with several other normalization schemes, by fitting the transformed Hi-C data using a pairwise interaction model that takes as input the known locations of bound chromatin factors. The result of fitting is a set of predictions for the coupling energies between the various chromatin factors and their effect on the energetics of looping. We show that the quality of the fit can be used as a means to determine how much PCA filtering should be applied to the Hi-C data. We find that the different normalizations of the Hi-C data vary in the quality of fit to the pairwise interaction model. PCA filtering can improve the fit, and the predicted coupling energies lead to biologically meaningful insights for how various chromatin bound factors influence the stability of DNA loops in chromatin.
Principles of Chromosome Architecture Revealed by Hi-C.
Eagen, Kyle P
2018-06-01
Chromosomes are folded and compacted in interphase nuclei, but the molecular basis of this folding is poorly understood. Chromosome conformation capture methods, such as Hi-C, combine chemical crosslinking of chromatin with fragmentation, DNA ligation, and high-throughput DNA sequencing to detect neighboring loci genome-wide. Hi-C has revealed the segregation of chromatin into active and inactive compartments and the folding of DNA into self-associating domains and loops. Depletion of CTCF, cohesin, or cohesin-associated proteins was recently shown to affect the majority of domains and loops in a manner that is consistent with a model of DNA folding through extrusion of chromatin loops. Compartmentation was not dependent on CTCF or cohesin. Hi-C contact maps represent the superimposition of CTCF/cohesin-dependent and -independent folding states. Copyright © 2018 Elsevier Ltd. All rights reserved.
A model for ‘reverse innovation’ in health care
2013-01-01
‘Reverse innovation,’ a principle well established in the business world, describes the flow of ideas from emerging to more developed economies. There is strong and growing interest in applying this concept to health care, yet there is currently no framework for describing the stages of reverse innovation or identifying opportunities to accelerate the development process. This paper combines the business concept of reverse innovation with diffusion of innovation theory to propose a model for reverse innovation as a way to innovate in health care. Our model includes the following steps: (1) identifying a problem common to lower- and higher-income countries; (2) innovation and spread in the low-income country (LIC); (3) crossover to the higher-income country (HIC); and (4) innovation and spread in the HIC. The crucial populations in this pathway, drawing from diffusion of innovation theory, are LIC innovators, LIC early adopters, and HIC innovators. We illustrate the model with three examples of current reverse innovations. We then propose four sets of specific actions that forward-looking policymakers, entrepreneurs, health system leaders, and researchers may take to accelerate the movement of promising solutions through the reverse innovation pipeline: (1) identify high-priority problems shared by HICs and LICs; (2) create slack for change, especially for LIC innovators, LIC early adopters, and HIC innovators; (3) create spannable social distances between LIC early adopters and HIC innovators; and (4) measure reverse innovation activity globally. PMID:24001367
Hi-Corrector: a fast, scalable and memory-efficient package for normalizing large-scale Hi-C data.
Li, Wenyuan; Gong, Ke; Li, Qingjiao; Alber, Frank; Zhou, Xianghong Jasmine
2015-03-15
Genome-wide proximity ligation assays, e.g. Hi-C and its variant TCC, have recently become important tools to study spatial genome organization. Removing biases from chromatin contact matrices generated by such techniques is a critical preprocessing step of subsequent analyses. The continuing decline of sequencing costs has led to an ever-improving resolution of the Hi-C data, resulting in very large matrices of chromatin contacts. Such large-size matrices, however, pose a great challenge on the memory usage and speed of its normalization. Therefore, there is an urgent need for fast and memory-efficient methods for normalization of Hi-C data. We developed Hi-Corrector, an easy-to-use, open source implementation of the Hi-C data normalization algorithm. Its salient features are (i) scalability-the software is capable of normalizing Hi-C data of any size in reasonable times; (ii) memory efficiency-the sequential version can run on any single computer with very limited memory, no matter how little; (iii) fast speed-the parallel version can run very fast on multiple computing nodes with limited local memory. The sequential version is implemented in ANSI C and can be easily compiled on any system; the parallel version is implemented in ANSI C with the MPI library (a standardized and portable parallel environment designed for solving large-scale scientific problems). The package is freely available at http://zhoulab.usc.edu/Hi-Corrector/. © The Author 2014. Published by Oxford University Press.
Shannon information entropy in heavy-ion collisions
NASA Astrophysics Data System (ADS)
Ma, Chun-Wang; Ma, Yu-Gang
2018-03-01
The general idea of information entropy provided by C.E. Shannon "hangs over everything we do" and can be applied to a great variety of problems once the connection between a distribution and the quantities of interest is found. The Shannon information entropy essentially quantify the information of a quantity with its specific distribution, for which the information entropy based methods have been deeply developed in many scientific areas including physics. The dynamical properties of heavy-ion collisions (HICs) process make it difficult and complex to study the nuclear matter and its evolution, for which Shannon information entropy theory can provide new methods and observables to understand the physical phenomena both theoretically and experimentally. To better understand the processes of HICs, the main characteristics of typical models, including the quantum molecular dynamics models, thermodynamics models, and statistical models, etc., are briefly introduced. The typical applications of Shannon information theory in HICs are collected, which cover the chaotic behavior in branching process of hadron collisions, the liquid-gas phase transition in HICs, and the isobaric difference scaling phenomenon for intermediate mass fragments produced in HICs of neutron-rich systems. Even though the present applications in heavy-ion collision physics are still relatively simple, it would shed light on key questions we are seeking for. It is suggested to further develop the information entropy methods in nuclear reactions models, as well as to develop new analysis methods to study the properties of nuclear matters in HICs, especially the evolution of dynamics system.
Maliken, Bryan D; Avrin, William F; Nelson, James E; Mooney, Jody; Kumar, Sankaran; Kowdley, Kris V
2012-01-01
There is an ongoing clinical need for novel methods to measure hepatic iron content (HIC) noninvasively. Both magnetic resonance imaging (MRI) and superconducting quantum interference device (SQUID) methods have previously shown promise for estimation of HIC, but these methods can be expensive and are not widely available. Room-temperature susceptometry (RTS) represents an inexpensive alternative and was previously found to be strongly correlated with HIC estimated by SQUID measurements among patients with transfusional iron overload related to thalassemia. The goal of the current study was to examine the relationship between RTS and biochemical HIC measured in liver biopsy specimens in a more varied patient cohort. Susceptometry was performed in a diverse group of patients with hyperferritinemia due to hereditary hemochromatosis (HHC) (n = 2), secondary iron overload (n = 3), nonalcoholic fatty liver disease (NAFLD) (n = 2), and chronic viral hepatitis (n = 3) within one month of liver biopsy in the absence of iron depletion therapy. The correlation coefficient between HIC estimated by susceptometry and by biochemical iron measurement in liver tissue was 0.71 (p = 0.022). Variance between liver iron measurement and susceptometry measurement was primarily related to reliance on the patient's body-mass index (BMI) to estimate the magnetic susceptibility of tissue overlying the liver. We believe RTS holds promise for noninvasive measurement of HIC. Improved measurement techniques, including more accurate overlayer correction, may further improve the accuracy of liver susceptometry in patients with liver disease.
Deakin, Nicholas O.; Turner, Christopher E.
2011-01-01
Individual metastatic tumor cells exhibit two interconvertible modes of cell motility during tissue invasion that are classified as either mesenchymal or amoeboid. The molecular mechanisms by which invasive breast cancer cells regulate this migratory plasticity have yet to be fully elucidated. Herein we show that the focal adhesion adaptor protein, paxillin, and the closely related Hic-5 have distinct and unique roles in the regulation of breast cancer cell lung metastasis by modulating cell morphology and cell invasion through three-dimensional extracellular matrices (3D ECMs). Cells depleted of paxillin by RNA interference displayed a highly elongated mesenchymal morphology, whereas Hic-5 knockdown induced an amoeboid phenotype with both cell populations exhibiting reduced plasticity, migration persistence, and velocity through 3D ECM environments. In evaluating associated signaling pathways, we determined that Rac1 activity was increased in cells devoid of paxillin whereas Hic-5 silencing resulted in elevated RhoA activity and associated Rho kinase–induced nonmuscle myosin II activity. Hic-5 was essential for adhesion formation in 3D ECMs, and analysis of adhesion dynamics and lifetime identified paxillin as a key regulator of 3D adhesion assembly, stabilization, and disassembly. PMID:21148292
Kohrt, Brandon A; Upadhaya, Nawaraj; Luitel, Nagendra P; Maharjan, Sujen M; Kaiser, Bonnie N; MacFarlane, Elizabeth K; Khan, Noreen
2014-01-01
Collaborations among researchers, clinicians, and individuals with mental illness from high-income countries (HICs) and low- and middle-income countries (LMICs) are crucial to produce research, interventions, and policies that are relevant, feasible, and ethical. However, global mental health and cultural psychiatry research publications have been dominated by HIC investigators. The aim of this review was to present recommendations for collaborative writing with a focus on early career investigators researchers in HICs and LMICs. A workshop was conducted with HIC and LMIC investigators in Nepal to discuss lessons learned for collaborative writing. The researchers had experience in cross-cultural psychiatric epidemiology, health services research, randomized controlled trials, and projects with war and disaster-affected populations in complex humanitarian emergencies including child soldiers and refugees. Additional lessons learned were contributed from researchers engaged in similar collaborations in Haiti. A step-by-step process for collaborative writing was developed. HIC and LMIC writing collaborations will encourage accurate, ethical, and contextually grounded publications to foster understanding and facilitate reduction of the global burden of mental illness. Copyright © 2014 Icahn School of Medicine at Mount Sinai. Published by Elsevier Inc. All rights reserved.
1964-02-01
Temporary quarters in the Huntsville Industrial Center (HIC) building located in downtown Huntsville, Alabama, as Marshall Space Flight Center (MSFC) grew. This image shows drafting specialists from the Propulsion and Vehicle Engineering Laboratory at work in the HIC building.
DeMaere, Matthew Z.
2016-01-01
Background Chromosome conformation capture, coupled with high throughput DNA sequencing in protocols like Hi-C and 3C-seq, has been proposed as a viable means of generating data to resolve the genomes of microorganisms living in naturally occuring environments. Metagenomic Hi-C and 3C-seq datasets have begun to emerge, but the feasibility of resolving genomes when closely related organisms (strain-level diversity) are present in the sample has not yet been systematically characterised. Methods We developed a computational simulation pipeline for metagenomic 3C and Hi-C sequencing to evaluate the accuracy of genomic reconstructions at, above, and below an operationally defined species boundary. We simulated datasets and measured accuracy over a wide range of parameters. Five clustering algorithms were evaluated (2 hard, 3 soft) using an adaptation of the extended B-cubed validation measure. Results When all genomes in a sample are below 95% sequence identity, all of the tested clustering algorithms performed well. When sequence data contains genomes above 95% identity (our operational definition of strain-level diversity), a naive soft-clustering extension of the Louvain method achieves the highest performance. Discussion Previously, only hard-clustering algorithms have been applied to metagenomic 3C and Hi-C data, yet none of these perform well when strain-level diversity exists in a metagenomic sample. Our simple extension of the Louvain method performed the best in these scenarios, however, accuracy remained well below the levels observed for samples without strain-level diversity. Strain resolution is also highly dependent on the amount of available 3C sequence data, suggesting that depth of sequencing must be carefully considered during experimental design. Finally, there appears to be great scope to improve the accuracy of strain resolution through further algorithm development. PMID:27843713
NCAP test improvements with pretensioners and load limiters.
Walz, Marie
2004-03-01
New Car Assessment Program (NCAP) test scores, measured by the United States Department of Transportation's (USDOT) National Highway Traffic Safety Administration (NHTSA), were analyzed in order to assess the benefits of equipping safety belt systems with pretensioners and load limiters. Safety belt pretensioners retract the safety belt almost instantly in a crash to remove excess slack. They tie the occupant to the vehicle's deceleration early during the crash, reducing the peak load experienced by the occupant. Load limiters and other energy management systems allow safety belts to yield in a crash, preventing the shoulder belt from directing too much energy on the chest of the occupant. In NCAP tests, vehicles are crashed into a fixed barrier at 35 mph. During the test, instruments measure the accelerations of the head and chest, as well as the force on the legs of anthropomorphic dummies secured in the vehicle by safety belts. NCAP data from model year 1998 through 2001 cars and light trucks were examined. The combination of pretensioners and load limiters is estimated to reduce Head Injury Criterion (HIC) by 232, chest acceleration by an average of 6.6 g's, and chest deflection (displacement) by 10.6 mm, for drivers and right front passengers. The unit used to measure chest acceleration (g) is defined as a unit of force equal to the force exerted by gravity. All of these reductions are statistically significant. When looked at individually, pretensioners are more effective in reducing HIC scores for both drivers and right front passengers, as well as chest acceleration and chest deflection scores for drivers. Load limiters show greater reductions in chest acceleration and chest deflection scores for right front passengers. By contrast, in make-models for which neither load limiters nor pretensioners have been added, there is little change during 1998 to 2001 in HIC, chest acceleration, or chest deflection values in NCAP tests.
Zhou, Wei; Yu, Yu; Yang, Mei; Chen, Lizhang; Xiao, Shuiyuan
2018-05-18
Mental health policy can be an essential and powerful tool to improve a population's mental health. However, around one third of countries do not possess a mental health policy, and there are large disparities in population coverage rates between high- and low-income countries. The goal of this study is to identify the transition and implementation challenges of mental health policies in both high-income countries (HICs) as well as middle- and low-income countries (MLICs). PubMed, Cochrane Library and Campbell Library were searched from inception to 31 December 2017, for studies on implemented mental health policies at the national level. Abstracts and the main texts of papers were double screened, and extracted data were analysed through thematic synthesis. A total of 93 papers were included in this study, covering 24 HICs, 28 MLICs and 5 regions. Studies on mental health policies, especially those of MLICs, kept increasing, but MLICs were still underrepresented in terms of publication quantity and study frequency. Based on the included studies, nine policy domains were summarized: service organizing, service provision, service quality, human resources, legislation and human rights, advocacy, administration, surveillance and research, and financing and budgeting. HICs incrementally enriched their policy content in all domains over centuries of development; following HICs' experience, mental health policies in MLICs have boomed since the 1990s and quickly extended to all domains. Implementation problems in HICs were mainly related to service organizing and service provision; for MLICs, more severe implementation problems converged on financing and budgeting, administration and human resources. Mental health policy developments in both HICs and MLICs present a process of diversification and enrichment. In terms of implementation, MLICs are faced with more and greater challenges than HICs, especially in funding, human resources and administration. Therefore, future efforts should not only be made on helping MLICs developing mental health policies, but also on promoting policy implementation under MLICs' local context.
Lin, C-M; Liao, C-M
2014-11-01
To assess the two opposing effects of alcohol tax policy interventions (tax rate increase in 2002 and decrease in 2009) on hospitalization in monetary terms of alcohol-attributed diseases (AADs) in Taiwan. An interrupted time-series analysis. Admissions data from 1996 to 2010 were retrieved from the National Health Insurance Research Database claims file and analysed in this study. Data for 430,388 males and 34,874 females aged 15 or above who were admitted due to an AAD were collected. An interrupted time-series analysis examining the effects of the implementation of alcohol tax policy on quarterly adjusted hospital inpatient charges (HICs) for AADs was employed. The study showed significant (p < 0.001) changes in the adjusted HICs for AADs in 2002. Quarterly HICs showed an abrupt 14.8% decline (i.e., a 1.3 million US dollar reduction) after the first tax policy was implemented. No change in quarterly HICs for AADs was found after the alcohol tax increase. The total cost of treating these AAD inpatients over the course of the 15-year period was 640.9 million US dollars. Each inpatient with an AAD costs an average of $900-$2000 depending on the patient's sex and age with the cost increasing gradually after the two tax interventions. More than 80% of the HICs were attributed to alcoholic liver diseases. Psychoses accounted for 6%-18% of the total HICs. Alcohol abuse and alcohol poisoning accounted for less than 2% of the total HICs. This study provides evidence that alcohol taxation has resulted in an immediate reduction of medical expenditures related to AADs. The policy of increasing alcohol tax rates may have favourable influences on health care resources related to treating AADs. Copyright © 2014 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Anders, Eric Falk; Findeisen, Annette; Nowak, Andreas; Rüdiger, Mario; Usichenko, Taras Ivanovich
2012-12-01
Acupuncture is a promising option in the treatment of functional bowel disorders. The aim of this study was to evaluate the feasibility and acceptance of acupuncture for the treatment of hospital-induced constipation (HIC) in children. Bilateral stimulation of acupuncture point LI11 was applied in 10 children with HIC using fixed indwelling acupuncture needles (0.9 mm long) before considering starting conventional local constipation therapy with laxative suppositories. The clinical records were studied retrospectively for feasibility, acceptance and effectiveness of acupuncture. Acupuncture was feasible in all children and application of the indwelling needles was tolerated without fear. Side effects were not observed. After a median of 3 days of HIC, all children defaecated within 2 h after LI11 stimulation. No patient required conventional local constipation therapy. Acupuncture for the treatment of HIC is feasible and acceptable. Its effect should be verified in a randomised controlled trial.
Sparkling extreme-ultraviolet bright dots observed with Hi-C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Régnier, S.; Alexander, C. E.; Walsh, R. W.
Observing the Sun at high time and spatial scales is a step toward understanding the finest and fundamental scales of heating events in the solar corona. The high-resolution coronal (Hi-C) instrument has provided the highest spatial and temporal resolution images of the solar corona in the EUV wavelength range to date. Hi-C observed an active region on 2012 July 11 that exhibits several interesting features in the EUV line at 193 Å. One of them is the existence of short, small brightenings 'sparkling' at the edge of the active region; we call these EUV bright dots (EBDs). Individual EBDs havemore » a characteristic duration of 25 s with a characteristic length of 680 km. These brightenings are not fully resolved by the SDO/AIA instrument at the same wavelength; however, they can be identified with respect to the Hi-C location of the EBDs. In addition, EBDs are seen in other chromospheric/coronal channels of SDO/AIA, which suggests a temperature between 0.5 and 1.5 MK. Based on their frequency in the Hi-C time series, we define four different categories of EBDs: single peak, double peak, long duration, and bursty. Based on a potential field extrapolation from an SDO/HMI magnetogram, the EBDs appear at the footpoints of large-scale, trans-equatorial coronal loops. The Hi-C observations provide the first evidence of small-scale EUV heating events at the base of these coronal loops, which have a free magnetic energy of the order of 10{sup 26} erg.« less
Steinberg, H O; Brechtel, G; Johnson, A; Fineberg, N; Baron, A D
1994-09-01
The purpose of this study was to examine whether insulin's effect to vasodilate skeletal muscle vasculature is mediated by endothelium-derived nitric oxide (EDNO). N-monomethyl-L-arginine (L-NMMA), a specific inhibitor of NO synthase, was administered directly into the femoral artery of normal subjects at a dose of 16 mg/min and leg blood flow (LBF) was measured during an infusion of saline (NS) or during a euglycemic hyperinsulinemic clamp (HIC) designed to approximately double LBF. In response to the intrafemoral artery infusion of L-NMMA, LBF decreased from 0.296 +/- 0.032 to 0.235 +/- 0.022 liters/min during NS and from 0.479 +/- 0.118 to 0.266 +/- 0.052 liters/min during HIC, P < 0.03. The proportion of NO-dependent LBF during NS and HIC was approximately 20% and approximately 40%, respectively, P < 0.003 (NS vs. HIC). To elucidate whether insulin increases EDNO synthesis/release or EDNO action, vasodilative responses to graded intrafemoral artery infusions of the endothelium-dependent vasodilator methacholine chloride (MCh) or the endothelium-independent vasodilator sodium nitroprusside (SNP) were studied in normal subjects during either NS or HIC. LBF increments in response to intrafemoral artery infusions of MCh but not SNP were augmented during HIC versus NS, P < 0.03. In summary, insulin-mediated vasodilation is EDNO dependent. Insulin vasodilation of skeletal muscle vasculature most likely occurs via increasing EDNO synthesis/release. Thus, insulin appears to be a novel modulator of the EDNO system.
Goyal, Abhinav; Bhatt, Deepak L; Steg, P Gabriel; Gersh, Bernard J; Alberts, Mark J; Ohman, E Magnus; Corbalán, Ramón; Eagle, Kim A; Gaxiola, Efrain; Gao, Runlin; Goto, Shinya; D'Agostino, Ralph B; Califf, Robert M; Smith, Sidney C; Wilson, Peter W F
2010-09-21
Studies report a protective effect of higher attained educational level (AEL) on cardiovascular outcomes. However, most of these studies have been conducted in high-income countries (HICs) and lack representation from low- and middle-income countries (LMICs), which bear >80% of the global burden of cardiovascular disease. The Reduction of Atherothrombosis for Continued Health (REACH) Registry is a prospective study of 67 888 subjects with either established atherothrombotic (coronary, cerebrovascular, and/or peripheral arterial) disease or multiple atherothrombotic risk factors enrolled from 5587 physician practices in 44 countries. At baseline, AEL (0 to 8 years, 9 to 12 years, trade or technical school, and university) was self-reported for 61 332 subjects. Outcomes included the baseline prevalence of atherothrombotic risk factors and the rate of incident cardiovascular events (cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke) through 23 months across AEL groups, stratified by sex and world region (LMICs or HICs). Educational attainment was inversely associated with age and diabetes mellitus and directly associated with hypercholesterolemia in all subjects. However, for other risk factors such as obesity, smoking, hypertension, and baseline burden of vascular disease, AEL was protective (inversely associated) in HICs but not protective in LMICs. The protective effect of greater AEL on incident cardiovascular events was strongest in men from HICs (P<0.0001), more modest in women from HICs (P=0.0026) and in men from LMICs (P=0.082), and essentially absent in women from LMICs (P=0.32). In contrast to HICs, higher AEL may not be protective against cardiovascular events in LMICs, particularly in women.
Comparison of Hi-C results using in-solution versus in-nucleus ligation.
Nagano, Takashi; Várnai, Csilla; Schoenfelder, Stefan; Javierre, Biola-Maria; Wingett, Steven W; Fraser, Peter
2015-08-26
Chromosome conformation capture and various derivative methods such as 4C, 5C and Hi-C have emerged as standard tools to analyze the three-dimensional organization of the genome in the nucleus. These methods employ ligation of diluted cross-linked chromatin complexes, intended to favor proximity-dependent, intra-complex ligation. During development of single-cell Hi-C, we devised an alternative Hi-C protocol with ligation in preserved nuclei rather than in solution. Here we directly compare Hi-C methods employing in-nucleus ligation with the standard in-solution ligation. We show in-nucleus ligation results in consistently lower levels of inter-chromosomal contacts. Through chromatin mixing experiments we show that a significantly large fraction of inter-chromosomal contacts are the result of spurious ligation events formed during in-solution ligation. In-nucleus ligation significantly reduces this source of experimental noise, and results in improved reproducibility between replicates. We also find that in-nucleus ligation eliminates restriction fragment length bias found with in-solution ligation. These improvements result in greater reproducibility of long-range intra-chromosomal and inter-chromosomal contacts, as well as enhanced detection of structural features such as topologically associated domain boundaries. We conclude that in-nucleus ligation captures chromatin interactions more consistently over a wider range of distances, and significantly reduces both experimental noise and bias. In-nucleus ligation creates higher quality Hi-C libraries while simplifying the experimental procedure. We suggest that the entire range of 3C applications are likely to show similar benefits from in-nucleus ligation.
Temporary Laboratory Office in Huntsville Industrial Center Building
NASA Technical Reports Server (NTRS)
1964-01-01
Temporary quarters in the Huntsville Industrial Center (HIC) building located in downtown Huntsville, Alabama, as Marshall Space Flight Center (MSFC) grew. This image shows drafting specialists from the Propulsion and Vehicle Engineering Laboratory at work in the HIC building.
Zhao, Kailou; Yang, Li; Wang, Xuejiao; Bai, Quan; Yang, Fan; Wang, Fei
2012-08-30
We have explored a novel dual-function stationary phase which combines both strong cation exchange (SCX) and hydrophobic interaction chromatography (HIC) characteristics. The novel dual-function stationary phase is based on porous and spherical silica gel functionalized with ligand containing sulfonic and benzyl groups capable of electrostatic and hydrophobic interaction functionalities, which displays HIC character in a high salt concentration, and IEC character in a low salt concentration in mobile phase employed. As a result, it can be employed to separate proteins with SCX and HIC modes, respectively. The resolution and selectivity of the dual-function stationary phase were evaluated under both HIC and SCX modes with standard proteins and can be comparable to that of conventional IEC and HIC columns. More than 96% of mass and bioactivity recoveries of proteins can be achieved in both HIC and SCX modes, respectively. The results indicated that the novel dual-function column could replace two individual SCX and HIC columns for protein separation. Mixed retention mechanism of proteins on this dual-function column based on stoichiometric displacement theory (SDT) in LC was investigated to find the optimal balance of the magnitude of electrostatic and hydrophobic interactions between protein and the ligand on the silica surface in order to obtain high resolution and selectivity for protein separation. In addition, the effects of the hydrophobicity of the ligand of the dual-function packings and pH of the mobile phase used on protein separation were also investigated in detail. The results show that the ligand with suitable hydrophobicity to match the electrostatic interaction is very important to prepare the dual-function stationary phase, and a better resolution and selectivity can be obtained at pH 6.5 in SCX mode. Therefore, the dual-function column can replace two individual SCX and HIC columns for protein separation and be used to set up two-dimensional liquid chromatography with a single column (2DLC-1C), which can also be employed to separate three kinds of active proteins completely, such as lysozyme, ovotransferrin and ovalbumin from egg white. The result is very important not only to the development of new 2DLC technology with a single column for proteomics, but also to recombinant protein drug production for saving column expense and simplifying the process in biotechnology. Copyright © 2012 Elsevier B.V. All rights reserved.
Blasco, Gerard; Puig, Josep; Daunis-I-Estadella, Josep; Molina, Xavier; Xifra, Gemma; Fernández-Aranda, Fernando; Pedraza, Salvador; Ricart, Wifredo; Portero-Otín, Manuel; Fernández-Real, José Manuel
2014-11-01
The linkage among the tissue iron stores, insulin resistance (IR), and cognition remains unclear in the obese population. We aimed to identify the factors that contribute to increased hepatic iron concentration (HIC) and brain iron overload (BIO), as evaluated by MRI, and to evaluate their impact on cognitive performance in obese and nonobese subjects. We prospectively recruited 23 middle-aged obese subjects without diabetes (13 women; age 50.4 ± 7.7 years; BMI 43.7 ± 4.48 kg/m2) and 20 healthy nonobese volunteers (10 women; age 48.8 ± 9.5 years; BMI 24.3 ± 3.54 kg/m2) in whom iron load was assessed in white and gray matter and the liver by MRI. IR was measured from HOMA-IR and an oral glucose tolerance test. A battery of neuropsychological tests was used to evaluate the cognitive performance. Multivariate regression analysis was used to identify the independent associations of BIO and cognitive performance. A significant increase in iron load was detected at the caudate nucleus (P < 0.001), lenticular nucleus (P = 0.004), hypothalamus (P = 0.002), hippocampus (P < 0.001), and liver (P < 0.001) in obese subjects. There was a positive correlation between HIC and BIO at caudate (r = 0.517, P < 0.001), hypothalamus (r = 0.396, P = 0.009), and hippocampus (r = 0.347, P < 0.023). The area under the curve of insulin was independently associated with BIO at the caudate (P = 0.001), hippocampus (P = 0.028), and HIC (P = 0.025). BIOs at the caudate (P = 0.028), hypothalamus (P = 0.006), and lenticular nucleus (P = 0.012) were independently associated with worse cognitive performance. Obesity and IR may contribute to increased HIC and BIO being associated with worse cognitive performance. BIO could be a potentially useful MRI biomarker for IR and obesity-associated cognitive dysfunction. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
CscoreTool: fast Hi-C compartment analysis at high resolution.
Zheng, Xiaobin; Zheng, Yixian
2018-05-01
The genome-wide chromosome conformation capture (Hi-C) has revealed that the eukaryotic genome can be partitioned into A and B compartments that have distinctive chromatin and transcription features. Current Principle Component Analyses (PCA)-based method for the A/B compartment prediction based on Hi-C data requires substantial CPU time and memory. We report the development of a method, CscoreTool, which enables fast and memory-efficient determination of A/B compartments at high resolution even in datasets with low sequencing depth. https://github.com/scoutzxb/CscoreTool. xzheng@carnegiescience.edu. Supplementary data are available at Bioinformatics online.
Guidelines in lower-middle income countries.
Olayemi, Edeghonghon; Asare, Eugenia V; Benneh-Akwasi Kuma, Amma A
2017-06-01
Guidelines include recommendations intended to optimize patient care; used appropriately, they make healthcare consistent and efficient. In most lower-middle income countries (LMICs), there is a paucity of well-designed guidelines; as a result, healthcare workers depend on guidelines developed in Higher Income Countries (HICs). However, local guidelines are more likely to be implemented because they are applicable to the specific environment; and consider factors such as availability of resources, specialized skills and local culture. If guidelines developed in HICs are to be implemented in LMICs, developers need to incorporate local experts in their development. Involvement of local stakeholders may improve the rates of implementation by identifying and removing barriers to implementation in LMICs. Another option is to encourage local experts to adapt them for use in LMICs; these guidelines may recommend strategies different from those used in HICs, but will be aimed at achieving the best practicable standard of care. Infrastructural deficits in LMICs could be improved by learning from and building on the successful response to the human immunodeficiency virus/acquired immunodeficiency syndrome pandemic through interactions between HICs and LMICs. Similarly, collaborations between postgraduate medical colleges in both HICs and LMICs may help specialist doctors training in LMICs develop skills required for guideline development and implementation. © 2017 John Wiley & Sons Ltd.
Johansson, Karolina; Frederiksen, Søren S; Degerman, Marcus; Breil, Martin P; Mollerup, Jørgen M; Nilsson, Bernt
2015-02-13
The two main chromatographic modes based on hydrophobicity, hydrophobic interaction chromatography (HIC) and reversed-phase chromatography (RPC), are widely used for both analytical and preparative chromatography of proteins in the pharmaceutical industry. Despite the extensive application of these separation methods, and the vast amount of studies performed on HIC and RPC over the decades, the underlying phenomena remain elusive. As part of a systematic study of the influence of mobile phase modulators in hydrophobicity-based chromatography, we have investigated the effects of both KCl and ethanol on the retention of three insulin variants on two HIC adsorbents and two RPC adsorbents. The focus was on the linear adsorption range, separating the modulator effects from the capacity effects, but some complementary experiments at higher load were included to further investigate observed phenomena. The results show that the modulators have the same effect on the two RPC adsorbents in the linear range, indicating that the modulator concentration only affects the activity of the solute in the mobile phase, and not that of the solute-ligand complex, or that of the ligand. Unfortunately, the HIC adsorbents did not show the same behavior. However, the insulin variants displayed a strong tendency toward self-association on both HIC adsorbents; on one in particular. Since this causes peak fronting, the retention is affected, and this could probably explain the lack of congruity. This conclusion was supported by the results from the non-linear range experiments which were indicative of double-layer adsorption on the HIC adsorbents, while the RPC adsorbents gave the anticipated increased tailing at higher load. Copyright © 2015 Elsevier B.V. All rights reserved.
Oluwadare, Oluwatosin; Cheng, Jianlin
2017-11-14
With the development of chromosomal conformation capturing techniques, particularly, the Hi-C technique, the study of the spatial conformation of a genome is becoming an important topic in bioinformatics and computational biology. The Hi-C technique can generate genome-wide chromosomal interaction (contact) data, which can be used to investigate the higher-level organization of chromosomes, such as Topologically Associated Domains (TAD), i.e., locally packed chromosome regions bounded together by intra chromosomal contacts. The identification of the TADs for a genome is useful for studying gene regulation, genomic interaction, and genome function. Here, we formulate the TAD identification problem as an unsupervised machine learning (clustering) problem, and develop a new TAD identification method called ClusterTAD. We introduce a novel method to represent chromosomal contacts as features to be used by the clustering algorithm. Our results show that ClusterTAD can accurately predict the TADs on a simulated Hi-C data. Our method is also largely complementary and consistent with existing methods on the real Hi-C datasets of two mouse cells. The validation with the chromatin immunoprecipitation (ChIP) sequencing (ChIP-Seq) data shows that the domain boundaries identified by ClusterTAD have a high enrichment of CTCF binding sites, promoter-related marks, and enhancer-related histone modifications. As ClusterTAD is based on a proven clustering approach, it opens a new avenue to apply a large array of clustering methods developed in the machine learning field to the TAD identification problem. The source code, the results, and the TADs generated for the simulated and real Hi-C datasets are available here: https://github.com/BDM-Lab/ClusterTAD .
GraphTeams: a method for discovering spatial gene clusters in Hi-C sequencing data.
Schulz, Tizian; Stoye, Jens; Doerr, Daniel
2018-05-08
Hi-C sequencing offers novel, cost-effective means to study the spatial conformation of chromosomes. We use data obtained from Hi-C experiments to provide new evidence for the existence of spatial gene clusters. These are sets of genes with associated functionality that exhibit close proximity to each other in the spatial conformation of chromosomes across several related species. We present the first gene cluster model capable of handling spatial data. Our model generalizes a popular computational model for gene cluster prediction, called δ-teams, from sequences to graphs. Following previous lines of research, we subsequently extend our model to allow for several vertices being associated with the same label. The model, called δ-teams with families, is particular suitable for our application as it enables handling of gene duplicates. We develop algorithmic solutions for both models. We implemented the algorithm for discovering δ-teams with families and integrated it into a fully automated workflow for discovering gene clusters in Hi-C data, called GraphTeams. We applied it to human and mouse data to find intra- and interchromosomal gene cluster candidates. The results include intrachromosomal clusters that seem to exhibit a closer proximity in space than on their chromosomal DNA sequence. We further discovered interchromosomal gene clusters that contain genes from different chromosomes within the human genome, but are located on a single chromosome in mouse. By identifying δ-teams with families, we provide a flexible model to discover gene cluster candidates in Hi-C data. Our analysis of Hi-C data from human and mouse reveals several known gene clusters (thus validating our approach), but also few sparsely studied or possibly unknown gene cluster candidates that could be the source of further experimental investigations.
Single-nucleus Hi-C of mammalian oocytes and zygotes.
Gassler, Johanna; Flyamer, Ilya M; Tachibana, Kikuë
2018-01-01
The 3D folding of the genome is linked to essential nuclear processes including gene expression, DNA repair, and replication. Chromatin conformation capture assays such as Hi-C are providing unprecedented insights into higher-order chromatin structure. Bulk Hi-C of millions of cells enables detection of average chromatin features at high resolution but is challenging to apply to rare cell types. This chapter describes our recently developed single-nucleus Hi-C (snHi-C) approach for detection of chromatin contacts in single nuclei of murine oocytes and one-cell embryos (zygotes). The step-by-step protocol includes isolation of these cells, extraction of nuclei, fixation, restriction digestion, ligation, and whole genome amplification. Contacts obtained by snHi-C allow detection of chromatin features including loops, topologically associating domains, and compartments when averaged over the genome. The combination of snHi-C with other single-cell techniques in these and other rare cell types will likely provide a comprehensive picture of how chromatin architecture shapes cell identity. © 2018 Elsevier Inc. All rights reserved.
Valero-Mora, Pedro M; Tontsch, Anita; Welsh, Ruth; Morris, Andrew; Reed, Steven; Touliou, Katerina; Margaritis, Dimitris
2013-09-01
This paper provides an overview of the experiences using Highly Instrumented Cars (HICs) in three research Centres across Europe; Spain, the UK and Greece. The data collection capability of each car is described and an overview presented relating to the relationship between the level of instrumentation and the research possible. A discussion then follows which considers the advantages and disadvantages of using HICs for ND research. This includes the obtrusive nature of the data collection equipment, the cost of equipping the vehicles with sophisticated Data Acquisition Systems (DAS) and the challenges for data storage and analysis particularly with respect to video data. It is concluded that the use of HICs substantially increases the depth of knowledge relating to the driver's behaviour and their interaction with the vehicle and surroundings. With careful study design and integration into larger studies with Low(ly) instrumented Cars (LICs), HICs can contribute significantly and in a relatively naturalistic manner to the driver behaviour research. Copyright © 2012 Elsevier Ltd. All rights reserved.
Thiboonboon, Kittiphong; Santatiwongchai, Benjarin; Chantarastapornchit, Varit; Rattanavipapong, Waranya; Teerawattananon, Yot
2016-12-01
For more than three decades, the number and influence of economic evaluations of healthcare interventions have been increasing and gaining attention from a policy level. However, concerns about the credibility of these studies exist, particularly in studies from low- and middle- income countries (LMICs). This analysis was performed to explore economic evaluations conducted in LMICs in terms of methodological variations, quality of reporting and evidence used for the analyses. These results were compared with those studies conducted in high-income countries (HICs). Rotavirus vaccine was selected as a case study, as it is one of the interventions that many studies in both settings have explored. The search to identify individual studies on rotavirus vaccines was performed in March 2014 using MEDLINE and the National Health Service Economic Evaluation Database. Only full economic evaluations, comparing cost and outcomes of at least two alternatives, were included for review. Selected criteria were applied to assess methodological variation, quality of reporting and quality of evidence used. Eighty-five studies were included, consisting of 45 studies in HICs and 40 studies in LMICs. Seventy-five percent of the studies in LMICs were published by researchers from HICs. Compared with studies in HICs, the LMIC studies showed less methodological variety. In terms of the quality of reporting, LMICs had a high adherence to technical criteria, but HICs ultimately proved to be better. The same trend applied for the quality of evidence used. Although the quality of economic evaluations in LMICs was not as high as those from HICs, it is of an acceptable level given several limitations that exist in these settings. However, the results of this study may not reflect the fact that LMICs have developed a better research capacity in the domain of health economics, given that most of the studies were in theory led by researchers from HICs. Putting more effort into fostering the development of both research infrastructure and capacity building as well as encouraging local engagement in LMICs is thus necessary.
Football helmet drop tests on different fields using an instrumented Hybrid III head.
Viano, David C; Withnall, Chris; Wonnacott, Michael
2012-01-01
An instrumented Hybrid III head was placed in a Schutt ION 4D football helmet and dropped on different turfs to study field types and temperature on head responses. The head was dropped 0.91 and 1.83 m giving impacts of 4.2 and 6.0 m/s on nine different football fields (natural, Astroplay, Fieldturf, or Gameday turfs) at turf temperatures of -2.7 to 23.9 °C. Six repeat tests were conducted for each surface at 0.3 m (1') intervals. The Hybrid III was instrumented with triaxial accelerometers to determine head responses for the different playing surfaces. For the 0.91-m drops, peak head acceleration varied from 63.3 to 117.1 g and HIC(15) from 195 to 478 with the different playing surfaces. The lowest response was with Astroplay, followed by the engineered natural turf. Gameday and Fieldturf involved higher responses. The differences between surfaces decreased in the 1.83 m tests. The cold weather testing involved higher accelerations, HIC(15) and delta V for each surface. The helmet drop test used in this study provides a simple and convenient means of evaluating the compliance and energy absorption of football playing surfaces. The type and temperature of the playing surface influence head responses.
Rackiewicz, Michal; Große-Hovest, Ludger; Alpert, Andrew J; Zarei, Mostafa; Dengjel, Jörn
2017-06-02
Hydrophobic interaction chromatography (HIC) is a robust standard analytical method to purify proteins while preserving their biological activity. It is widely used to study post-translational modifications of proteins and drug-protein interactions. In the current manuscript we employed HIC to separate proteins, followed by bottom-up LC-MS/MS experiments. We used this approach to fractionate antibody species followed by comprehensive peptide mapping as well as to study protein complexes in human cells. HIC-reversed-phase chromatography (RPC)-mass spectrometry (MS) is a powerful alternative to fractionate proteins for bottom-up proteomics experiments making use of their distinct hydrophobic properties.
Benefits, barriers, and limitations on the use of Hospital Incident Command System.
Shooshtari, Shahin; Tofighi, Shahram; Abbasi, Shirin
2017-01-01
Hospital Incident Command System (HICS) has been established with the mission of prevention, response, and recovery in hazards. Regarding the key role of hospitals in medical management of events, the present study is aimed at investigating benefits, barriers, and limitations of applying HICS in hospital. Employing a review study, articles related to the aforementioned subject published from 1995 to 2016 were extracted from accredited websites and databases such as PubMed, Google Scholar, Elsevier, and SID by searching keywords such as HICS, benefits, barriers, and limitations. Then, those articles were summarized and reported. Using of HICS can cause creating preparedness in facing disasters, constructive management in strategies of controlling events, and disasters. Therefore, experiences indicate that there are some limitations in the system such as failure to assess the strength and severity of vulnerabilities of hospital, no observation of standards for disaster management in the design, constructing and equipping hospitals, and the absence of a model for evaluating the system. Accordingly, the conducted studies were investigated for probing the performance HICS. With regard to the role of health in disaster management, it requires advanced international methods in facing disasters. Using accurate models for assessing, the investigation of preparedness of hospitals in precrisis conditions based on components such as command, communications, security, safety, development of action plans, changes in staff's attitudes through effective operational training and exercises and creation of required maneuvers seems necessary.
Three invariant Hi-C interaction patterns: Applications to genome assembly.
Oddes, Sivan; Zelig, Aviv; Kaplan, Noam
2018-06-01
Assembly of reference-quality genomes from next-generation sequencing data is a key challenge in genomics. Recently, we and others have shown that Hi-C data can be used to address several outstanding challenges in the field of genome assembly. This principle has since been developed in academia and industry, and has been used in the assembly of several major genomes. In this paper, we explore the central principles underlying Hi-C-based assembly approaches, by quantitatively defining and characterizing three invariant Hi-C interaction patterns on which these approaches can build: Intrachromosomal interaction enrichment, distance-dependent interaction decay and local interaction smoothness. Specifically, we evaluate to what degree each invariant pattern holds on a single locus level in different species, cell types and Hi-C map resolutions. We find that these patterns are generally consistent across species and cell types but are affected by sequencing depth, and that matrix balancing improves consistency of loci with all three invariant patterns. Finally, we overview current Hi-C-based assembly approaches in light of these invariant patterns and demonstrate how local interaction smoothness can be used to easily detect scaffolding errors in extremely sparse Hi-C maps. We suggest that simultaneously considering all three invariant patterns may lead to better Hi-C-based genome assembly methods. Copyright © 2018 Elsevier Inc. All rights reserved.
Searching for collaboration in international nursing partnerships: a literature review.
George, E K; Meadows-Oliver, M
2013-03-01
Nurses from low-income countries (LICs) face extreme nursing shortages, faculty shortages and a lack of professional development opportunities. Nurses from high-income countries (HICs) can leverage their wealth of resources to collaborate with nursing colleagues in LICs to expand clinical, education and research capacity. In turn, nurses from HICs gain stronger competency in the care they provide, improved communication skills and an increased understanding of global health issues. The purpose of this literature review is to identify international nursing clinical, education and research partnerships among nurses from LICs and HICs and to analyse the degree of collaboration involved in each partnership using DeSantis' counterpart concept. We conducted a systematic review of international nursing partnerships in the scientific literature from January 2001 to July 2012. A total of nine articles met inclusion criteria for analysis. All of the articles discuss lessons learnt in building international nursing partnerships among nurses from HICs and LICs. However, the articles failed to meet the criteria set forth by DeSantis' counterpart concept to achieve fully collaborative nursing partnerships. International nursing partnerships require more foresight and planning to create partnerships in which the benefits derived by nurses from LICs equal those of their colleagues from HICs. By striving for such collaboration, international nursing partnerships can help build nursing clinical, education and research capacity in LICs. © 2013 The Authors. International Nursing Review © 2013 International Council of Nurses.
Identification of copy number variations and translocations in cancer cells from Hi-C data.
Chakraborty, Abhijit; Ay, Ferhat
2017-10-18
Eukaryotic chromosomes adapt a complex and highly dynamic three-dimensional (3D) structure, which profoundly affects different cellular functions and outcomes including changes in epigenetic landscape and in gene expression. Making the scenario even more complex, cancer cells harbor chromosomal abnormalities (e.g., copy number variations (CNVs) and translocations) altering their genomes both at the sequence level and at the level of 3D organization. High-throughput chromosome conformation capture techniques (e.g., Hi-C), which are originally developed for decoding the 3D structure of the chromatin, provide a great opportunity to simultaneously identify the locations of genomic rearrangements and to investigate the 3D genome organization in cancer cells. Even though Hi-C data has been used for validating known rearrangements, computational methods that can distinguish rearrangement signals from the inherent biases of Hi-C data and from the actual 3D conformation of chromatin, and can precisely detect rearrangement locations de novo have been missing. In this work, we characterize how intra and inter-chromosomal Hi-C contacts are distributed for normal and rearranged chromosomes to devise a new set of algorithms (i) to identify genomic segments that correspond to CNV regions such as amplifications and deletions (HiCnv), (Nurtdinov et al.) to call inter-chromosomal translocations and their boundaries (HiCtrans) from Hi-C experiments, and (iii) to simulate Hi-C data from genomes with desired rearrangements and abnormalities (AveSim) in order to select optimal parameters for and to benchmark the accuracy of our methods. Our results on 10 different cancer cell lines with Hi-C data show that we identify a total number of 105 amplifications and 45 deletions together with 90 translocations, whereas we identify virtually no such events for two karyotypically normal cell lines. Our CNV predictions correlate very well with whole genome sequencing (WGS) data among chromosomes with CNV events for a breast cancer cell line (r=0.89) and capture most of the CNVs we simulate using Avesim. For HiCtrans predictions, we report evidence from the literature for 30 out of 90 translocations for eight of our cancer cell lines. Furthermore, we show that our tools identify and correctly classify relatively understudied rearrangements such as double minutes (DMs) and homogeneously staining regions (HSRs). Considering the inherent limitations of existing techniques for karyotyping (i.e., missing balanced rearrangements and those near repetitive regions), the accurate identification of CNVs and translocations in a cost-effective and high-throughput setting is still a challenge. Our results show that the set of tools we develop effectively utilize moderately sequenced Hi-C libraries (100-300 million reads) to identify known and de novo chromosomal rearrangements/abnormalities in well-established cancer cell lines. With the decrease in required number of cells and the increase in attainable resolution, we believe that our framework will pave the way towards comprehensive mapping of genomic rearrangements in primary cells from cancer patients using Hi-C. CNV calling: https://github.com/ay-lab/HiCnvTranslocation calling: https://github.com/ay-lab/HiCtransHi-C simulation: https://github.com/ay-lab/AveSim. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Rodriguez-Aller, Marta; Guillarme, Davy; Beck, Alain; Fekete, Szabolcs
2016-01-25
The goal of this work is to provide some recommendations for method development in HIC using monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs) as model drug candidates. The effects of gradient steepness, mobile phase pH, salt concentration and type, as well as organic modifier were evaluated for tuning selectivity and retention in HIC. Except the nature of the stationary phase, which was not discussed in this study, the most important parameter for modifying selectivity was the gradient steepness. The addition of organic solvent (up to 15% isopropanol) in the mobile phase was also found to be useful for mAbs analysis, since it could provide some changes in elution order, in some cases. On the contrary, isopropanol was not beneficial with ADCs, since the most hydrophobic DAR species (DAR6 and DAR8) cannot be eluted from the stationary phase under these conditions. This study also illustrates the possibility to perform HIC method development using optimization software, such as Drylab. The optimum conditions suggested by the software were tested using therapeutic mAbs and commercial cysteine linked ADC (brentuximab-vedotin) and the average retention time errors between predicted and experimental retention times were ∼ 1%. Copyright © 2015 Elsevier B.V. All rights reserved.
The ability of flexible car bonnets to mitigate the consequences of frontal impact with pedestrians
NASA Astrophysics Data System (ADS)
Stanisławek, Sebastian; Niezgoda, Tadeusz
2018-01-01
The paper presents the results of numerical research on a vehicle representing a Toyota Yaris passenger sedan hitting a pedestrian. A flexible car body is suggested as an interesting way to increase safety. The authors present a simple low-cost bonnet buffer concept that may mitigate the effects of frontal impact. Computer simulation was the method chosen to solve the problem efficiently. The Finite Element Method (FEM) implemented in the LS-DYNA commercial code was used. The testing procedure was based on the Euro NCAP protocol. A flexible bonnet buffer shows its usefulness in preventing casualties in typical accidents. In the best scenario, the HIC15 parameter is only 380 when such a buffer is installed. In comparison, an accident involving a car without any protection produces an HIC15 of 970, which is very dangerous for pedestrians.
Simple Strategy to Prevent Severe Head Trauma in Judo —Biomechanical Analysis—
Murayama, Haruo; Hitosugi, Masahito; Motozawa, Yasuki; Ogino, Masahiro; Koyama, Katsuhiro
2013-01-01
To determine whether the use of an under-mat has an effect on impact forces to the head in Judo, a Judo expert threw an anthropomorphic test device using the Osoto-gari and Ouchi-gari techniques onto a tatami (judo mat) with and without an under-mat. Head acceleration was measured and the head injury criterion (HIC) values with or without under-mat were compared. The use of an under-mat significantly decreased (p = 0.021) the HIC values from 1174.7 ± 246.7 (without under-mat) to 539.3 ± 43.5 in Ouchi-gari and from 330.0 ± 78.3 (without under-mat) to 156.1 ± 30.4 in Osoto-gari. The use of an under-mat simply reduces impact forces to the head in Judo. Rule changes are not necessary and the enjoyment and health benefits of Judo are maintained. PMID:24067767
Simple strategy to prevent severe head trauma in Judo.
Murayama, Haruo; Hitosugi, Masahito; Motozawa, Yasuki; Ogino, Masahiro; Koyama, Katsuhiro
2013-01-01
To determine whether the use of an under-mat has an effect on impact forces to the head in Judo, a Judo expert threw an anthropomorphic test device using the Osoto-gari and Ouchi-gari techniques onto a tatami (judo mat) with and without an under-mat. Head acceleration was measured and the head injury criterion (HIC) values with or without under-mat were compared. The use of an under-mat significantly decreased (p = 0.021) the HIC values from 1174.7 ± 246.7 (without under-mat) to 539.3 ± 43.5 in Ouchi-gari and from 330.0 ± 78.3 (without under-mat) to 156.1 ± 30.4 in Osoto-gari. The use of an under-mat simply reduces impact forces to the head in Judo. Rule changes are not necessary and the enjoyment and health benefits of Judo are maintained.
An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data
Carty, Mark; Zamparo, Lee; Sahin, Merve; González, Alvaro; Pelossof, Raphael; Elemento, Olivier; Leslie, Christina S.
2017-01-01
Here we present HiC-DC, a principled method to estimate the statistical significance (P values) of chromatin interactions from Hi-C experiments. HiC-DC uses hurdle negative binomial regression account for systematic sources of variation in Hi-C read counts—for example, distance-dependent random polymer ligation and GC content and mappability bias—and model zero inflation and overdispersion. Applied to high-resolution Hi-C data in a lymphoblastoid cell line, HiC-DC detects significant interactions at the sub-topologically associating domain level, identifying potential structural and regulatory interactions supported by CTCF binding sites, DNase accessibility, and/or active histone marks. CTCF-associated interactions are most strongly enriched in the middle genomic distance range (∼700 kb–1.5 Mb), while interactions involving actively marked DNase accessible elements are enriched both at short (<500 kb) and longer (>1.5 Mb) genomic distances. There is a striking enrichment of longer-range interactions connecting replication-dependent histone genes on chromosome 6, potentially representing the chromatin architecture at the histone locus body. PMID:28513628
Combining fluorescence imaging with Hi-C to study 3D genome architecture of the same single cell.
Lando, David; Basu, Srinjan; Stevens, Tim J; Riddell, Andy; Wohlfahrt, Kai J; Cao, Yang; Boucher, Wayne; Leeb, Martin; Atkinson, Liam P; Lee, Steven F; Hendrich, Brian; Klenerman, Dave; Laue, Ernest D
2018-05-01
Fluorescence imaging and chromosome conformation capture assays such as Hi-C are key tools for studying genome organization. However, traditionally, they have been carried out independently, making integration of the two types of data difficult to perform. By trapping individual cell nuclei inside a well of a 384-well glass-bottom plate with an agarose pad, we have established a protocol that allows both fluorescence imaging and Hi-C processing to be carried out on the same single cell. The protocol identifies 30,000-100,000 chromosome contacts per single haploid genome in parallel with fluorescence images. Contacts can be used to calculate intact genome structures to better than 100-kb resolution, which can then be directly compared with the images. Preparation of 20 single-cell Hi-C libraries using this protocol takes 5 d of bench work by researchers experienced in molecular biology techniques. Image acquisition and analysis require basic understanding of fluorescence microscopy, and some bioinformatics knowledge is required to run the sequence-processing tools described here.
Hi-C Observations of an Active Region Corona, and Investigation of the Underlying Magnetic Structure
NASA Technical Reports Server (NTRS)
Tiwari, Sanjiv K.; Alexander, Caroline E.; Winebarger, Amy R.; Moore, Ronald L.
2014-01-01
Hi-C: first observational evidence of field line braiding in the AR corona; NLFFF extrapolations support. Flux emergence and/or cancellation in the coronal braided region generate large stresses and tension in the coronal field loops which is released as heat in the corona. The field in these sub-regions are highly sheared and have apparent high speed plasma flows, therefore, the contribution from shearing flows to power the coronal and transition region heating can not be ruled out! The spatial resolution of Hi-C is five times better than AIA. The cadence of Hi-C is 2.5 - 6 times better than AIA. The 193 Å was selected because of the strong emission line of Fe XII (peak formation temperature of 1.5 MK). Hi-C collected data for 345 s @ 5.4 s cadence. The Hi-C target region was NOAA AR 11520; 11 July 2012, 18:51-18:57 UT. NLFFF extrapolation confirms the braided structure, and free magnetic energy estimates in the given volume.
Farook, Justin M.; Krazem, Ali; Littleton, John M.; Barron, Susan
2008-01-01
In the present study, we examined the effects of acamprosate for its ability to reduce handling induced convulsions (HICs) during alcohol withdrawal. Diazepam was used as a positive control. Swiss Webster male mice received three daily IP injections of alcohol (2.5 g/kg) or alcohol (2.5 g/kg) + methylpyrazole (4-MP) (9 mg/kg). (4-MP, being an alcohol dehydrogenase inhibitor slows down the breakdown of alcohol. 4-MP in combination with alcohol exhibits a dramatic increase in blood alcohol level compared to alcohol alone). Ten hours following the last alcohol injection, the mice were picked up by the tail and examined for their seizure susceptibility (HICs). Diazepam, a benzodiazepine known to reduce seizures during alcohol withdrawal, significantly reduced these HICs at doses of 0.25, 0.5 and 1mg/kg (p’s < 0.001). Acamprosate, an anti-relapse compound used clinically in newly abstinent alcoholics, also reduced these HICs at doses of 100, 200 and 300mg/kg (p’s < 0.05). This study supports the use of acamprosate during periods of alcohol withdrawal as well as during abstinence. PMID:18577392
Baumann, Pascal; Baumgartner, Kai; Hubbuch, Jürgen
2015-05-29
Hydrophobic interaction chromatography (HIC) is one of the most frequently used purification methods in biopharmaceutical industry. A major drawback of HIC, however, is the rather low dynamic binding capacity (DBC) obtained when compared to e.g. ion exchange chromatography (IEX). The typical purification procedure for HIC includes binding at neutral pH, independently of the proteins nature and isoelectric point. Most approaches to process intensification are based on resin and salt screenings. In this paper a combination of protein solubility data and varying binding pH leads to a clear enhancement of dynamic binding capacity. This is shown for three proteins of acidic, neutral, and alkaline isoelectric points. High-throughput solubility screenings as well as miniaturized and parallelized breakthrough curves on Media Scout RoboColumns (Atoll, Germany) were conducted at pH 3-10 on a fully automated robotic workstation. The screening results show a correlation between the DBC and the operational pH, the protein's isoelectric point and the overall solubility. Also, an inverse relationship of DBC in HIC and the binding kinetics was observed. By changing the operational pH, the DBC could be increased up to 30% compared to the standard purification procedure performed at neutral pH. As structural changes of the protein are reported during HIC processes, the applied samples and the elution fractions were proven not to be irreversibly unfolded. Copyright © 2015 Elsevier B.V. All rights reserved.
Dynamic Moss Observed with Hi-C
NASA Technical Reports Server (NTRS)
Alexander, Caroline; Winebarger, Amy; Morton, Richard; Savage, Sabrina
2014-01-01
The High-resolution Coronal Imager (Hi-C), flown on 11 July 2012, has revealed an unprecedented level of detail and substructure within the solar corona. Hi-C imaged a large active region (AR11520) with 0.2-0.3'' spatial resolution and 5.5s cadence over a 5 minute period. An additional dataset with a smaller FOV, the same resolution, but with a higher temporal cadence (1s) was also taken during the rocket flight. This dataset was centered on a large patch of 'moss' emission that initially seemed to show very little variability. Image processing revealed this region to be much more dynamic than first thought with numerous bright and dark features observed to appear, move and disappear over the 5 minute observation. Moss is thought to be emission from the upper transition region component of hot loops so studying its dynamics and the relation between the bright/dark features and underlying magnetic features is important to tie the interaction of the different atmospheric layers together. Hi-C allows us to study the coronal emission of the moss at the smallest scales while data from SDO/AIA and HMI is used to give information on these structures at different heights/temperatures. Using the high temporal and spatial resolution of Hi-C the observed moss features were tracked and the distribution of displacements, speeds, and sizes were measured. This allows us to comment on both the physical processes occurring within the dynamic moss and the scales at which these changes are occurring.
Cheng, Raymond; Barton, James C; Morrison, Elizabeth D; Phatak, Pradyumna D; Krawitt, Edward L; Gordon, Stuart C; Kowdley, Kris V
2009-07-01
There are limited data comparing hepatic phenotype among hemochromatosis patients with different HFE genotypes. The goal of this study was to compare hepatic histopathologic features and hepatic iron concentration (HIC) among patients with phenotypic hemochromatosis and different HFE genotypes. We studied 182 US patients with phenotypic hemochromatosis. Degree of hepatic fibrosis, pattern of iron deposition, presence of steatosis or necroinflammation, and HIC were compared among different HFE genotypes. C282Y/H63D compound heterozygotes and patients with HFE genotypes other than C282Y/C282Y were more likely to have stainable Kupffer cell iron (31.1% vs. 9.5%; P=0.02), portal or lobular inflammation (28.9% vs. 15.6%; P=0.03), and steatosis (33.3% vs. 10.2%; P<0.01) on liver biopsy than C282Y homozygotes. Mean log10 HIC (P<0.05) and log10 ferritin (P<0.05) were higher among C282Y homozygotes than in patients with other HFE genotypes. In a logistic regression analysis using age, sex, HFE genotype, log10 ferritin, and log10 HIC as independent variables, log10 serum ferritin (P=0.0008), male sex (P=0.0086), and log10 HIC (P=0.047), but not HFE genotype (P=0.0554) were independently associated with presence or absence of advanced hepatic fibrosis. C282Y/H63D compound heterozygotes and other non-C282Y homozygotes which express the hepatic hemochromatosis phenotype frequently have evidence of steatosis or chronic hepatitis and lower body iron stores than C282Y homozygotes. These data suggest that presence of concomitant liver disease may explain expression of the hemochromatosis phenotype among non-C282Y homozygotes. Increased age, HIC, and ferritin are associated with advanced hepatic fibrosis, regardless of HFE genotype.
ERIC Educational Resources Information Center
Liou, Wei-Kai; Bhagat, Kaushal Kumar; Chang, Chun-Yen
2016-01-01
The present study compares the highly interactive cloud-classroom (HIC) system with traditional methods of teaching materials science that utilize crystal structure picture or real crystal structure model, in order to examine its learning effectiveness across three dimensions: knowledge, comprehension and application. The aim of this study was to…
Development of a EUV Test Facility at the Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
West, Edward; Pavelitz, Steve; Kobayashi, Ken; Robinson, Brian; Cirtain, Johnathan; Gaskin, Jessica; Winebarger, Amy
2011-01-01
This paper will describe a new EUV test facility that is being developed at the Marshall Space Flight Center (MSFC) to test EUV telescopes. Two flight programs, HiC - high resolution coronal imager (sounding rocket) and SUVI - Solar Ultraviolet Imager (GOES-R), set the requirements for this new facility. This paper will discuss those requirements, the EUV source characteristics, the wavelength resolution that is expected and the vacuum chambers (Stray Light Facility, Xray Calibration Facility and the EUV test chamber) where this facility will be used.
Brandt, William Cunha; Silva-Concilio, Lais Regiane; Neves, Ana Christina Claro; de Souza-Junior, Eduardo Jose Carvalho; Sinhoreti, Mario Alexandre Coelho
2013-09-01
The aim of this study was to evaluate in vitro the Knoop hardness in the top and bottom of composite photo activated by different methods when different mold materials were used. Z250 (3M ESPE) and XL2500 halogen unit (3M ESPE) were used. For hardness test, conical restorations were made in extracted bovine incisors (tooth mold) and also metal mold (approximately 2 mm top diameter × 1.5 mm bottom diameter × 2 mm in height). Different photoactivation methods were tested: high-intensity continuous (HIC), low-intensity continuous (LIC), soft-start, or pulse-delay (PD), with constant radiant exposure. Knoop readings were performed on top and bottom restoration surfaces. Data were submitted to two-way ANOVA and Tukey's test (p = 0.05). On the top, regardless of the mold used, no significant difference in the Knoop hardness (Knoop hardness number, in kilograms-force per square millimeter) was observed between the photoactivation methods. On the bottom surface, the photoactivation method HIC shows higher means of hardness than LIC when tooth and metal were used. Significant differences of hardness on the top and in the bottom were detected between tooth and metal. The photoactivation method LIC and the material mold can interfere in the hardness values of composite restorations.
Coronal Loop Evolution Observed with AIA and Hi-C
NASA Technical Reports Server (NTRS)
Mulu-Moore, Fana; Winebarger, A.; Cirtain, J.; Kobayashi, K.; Korreck, K.; Golub, L.; Kuzin. S.; Walsh, R.; DeForest, C.; DePontieu, B.;
2012-01-01
Despite much progress toward understanding the dynamics of the solar corona, the physical properties of coronal loops are not yet fully understood. Recent investigations and observations from different instruments have yielded contradictory results about the true physical properties of coronal loops. In the past, the evolution of loops has been used to infer the loop substructure. With the recent launch of High Resolution Coronal Imager (Hi-C), this inference can be validated. In this poster we discuss the first results of loop analysis comparing AIA and Hi-C data. We find signatures of cooling in a pixel selected along a loop structure in the AIA multi-filter observations. However, unlike previous studies, we find that the cooling time is much longer than the draining time. This is inconsistent with previous cooling models.
A maximum entropy model for chromatin structure
NASA Astrophysics Data System (ADS)
Farre, Pau; Emberly, Eldon; Emberly Group Team
The DNA inside the nucleus of eukaryotic cells shows a variety of conserved structures at different length scales These structures are formed by interactions between protein complexes that bind to the DNA and regulate gene activity. Recent high throughput sequencing techniques allow for the measurement both of the genome wide contact map of the folded DNA within a cell (HiC) and where various proteins are bound to the DNA (ChIP-seq). In this talk I will present a maximum-entropy method capable of both predicting HiC contact maps from binding data, and binding data from HiC contact maps. This method results in an intuitive Ising-type model that is able to predict how altering the presence of binding factors can modify chromosome conformation, without the need of polymer simulations.
Fredriksson, Rikard; Shin, Jaeho; Untaroiu, Costin D
2011-08-01
To study the potential of active, passive, and integrated (combined active and passive) safety systems in reducing pedestrian upper body loading in typical impact configurations. Finite element simulations using models of generic sedan car fronts and the Polar II pedestrian dummy were performed for 3 impact configurations at 2 impact speeds. Chest contact force, head injury criterion (HIC(15)), head angular acceleration, and the cumulative strain damage measure (CSDM(0.25)) were employed as injury parameters. Further, 3 countermeasures were modeled: an active autonomous braking system, a passive deployable countermeasure, and an integrated system combining the active and passive systems. The auto-brake system was modeled by reducing impact speed by 10 km/h (equivalent to ideal full braking over 0.3 s) and introducing a pitch of 1 degree and in-crash deceleration of 1 g. The deployable system consisted of a deployable hood, lifting 100 mm in the rear, and a lower windshield air bag. All 3 countermeasures showed benefit in a majority of impact configurations in terms of injury prevention. The auto-brake system reduced chest force in a majority of the configurations and decreased HIC(15), head angular acceleration, and CSDM in all configurations. Averaging all impact configurations, the auto-brake system showed reductions of injury predictors from 20 percent (chest force) to 82 percent (HIC). The passive deployable countermeasure reduced chest force and HIC(15) in a majority of configurations and head angular acceleration and CSDM in all configurations, although the CSDM decrease in 2 configurations was minimal. On average a reduction from 20 percent (CSDM) to 58 percent (HIC) was recorded in the passive deployable countermeasures. Finally, the integrated system evaluated in this study reduced all injury assessment parameters in all configurations compared to the reference situations. The average reductions achieved by the integrated system ranged from 56 percent (CSDM) to 85 percent (HIC). Both the active (autonomous braking) and passive deployable system studied had a potential to decrease pedestrian upper body loading. An integrated pedestrian safety system combining the active and passive systems increased the potential of the individual systems in reducing pedestrian head and chest loading.
Chromosome Conformation of Human Fibroblasts Grown in 3-Dimensional Spheroids
Chen, Haiming; Comment, Nicholas; Chen, Jie; Ronquist, Scott; Hero, Alfred; Ried, Thomas; Rajapakse, Indika
2015-01-01
In the study of interphase chromosome organization, genome-wide chromosome conformation capture (Hi-C) maps are often generated using 2-dimensional (2D) monolayer cultures. These 2D cells have morphological deviations from cells that exist in 3-dimensional (3D) tissues in vivo, and may not maintain the same chromosome conformation. We used Hi-C maps to test the extent of differences in chromosome conformation between human fibroblasts grown in 2D cultures and those grown in 3D spheroids. Significant differences in chromosome conformation were found between 2D cells and those grown in spheroids. Intra-chromosomal interactions were generally increased in spheroid cells, with a few exceptions, while inter-chromosomal interactions were generally decreased. Overall, chromosomes located closer to the nuclear periphery had increased intra-chromosomal contacts in spheroid cells, while those located more centrally had decreased interactions. This study highlights the necessity to conduct studies on the topography of the interphase nucleus under conditions that mimic an in vivo environment. PMID:25738643
Moreno-Navarrete, José María; Moreno, María; Puig, Josep; Blasco, Gerard; Ortega, Francisco; Xifra, Gemma; Ricart, Wifredo; Fernández-Real, José Manuel
2017-10-01
Serum hepcidin concentration is known to increase in parallel to circulating markers of iron stores. We aimed to investigate whether this is reflected at the tissue level in subjects with obesity. Serum hepcidin and ferritin levels (ELISA) and hepatic iron content (using magnetic resonance imaging) were analyzed longitudinally in 44 participants (19 without obesity and 25 with obesity). In a subgroup of 16 participants with obesity, a weight loss intervention was performed. Serum hepcidin, ferritin and hepatic iron content (HIC) were significantly increased in participants with obesity. Age- and gender-adjusted serum hepcidin was positively correlated with BMI, hsCRP, ferritin and HIC. In addition, age- and gender-adjusted serum hepcidin was positively correlated with ferritin and HIC in both non-obese and obese participants. In multivariate regression analysis, hepatic iron content (p < 0.01) and serum ferritin (p < 0.001) contributed independently to circulating hepcidin concentration variation after controlling for age, gender, BMI and hsCRP. Diet intervention-induced weight loss led to decreased serum hepcidin (p = 0.01), serum ferritin concentration (p = 0.01) and HIC (p = 0.002). Of note, the percent change of serum hepcidin strongly correlated with the percent change of serum ferritin (r = 0.69, p = 0.01) and HIC (r = 0.61, p = 0.03) even after controlling for age and gender. Serum hepcidin is a reliable marker of the hepatic iron content in subjects with obesity. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Allele-specific control of replication timing and genome organization during development.
Rivera-Mulia, Juan Carlos; Dimond, Andrew; Vera, Daniel; Trevilla-Garcia, Claudia; Sasaki, Takayo; Zimmerman, Jared; Dupont, Catherine; Gribnau, Joost; Fraser, Peter; Gilbert, David M
2018-05-07
DNA replication occurs in a defined temporal order known as the replication-timing (RT) program. RT is regulated during development in discrete chromosomal units, coordinated with transcriptional activity and 3D genome organization. Here, we derived distinct cell types from F1 hybrid musculus X castaneus mouse crosses and exploited the high single nucleotide polymorphism (SNP) density to characterize allelic differences in RT (Repli-seq), genome organization (Hi-C and promoter-capture Hi-C), gene expression (total nuclear RNA-seq) and chromatin accessibility (ATAC-seq). We also present HARP: a new computational tool for sorting SNPs in phased genomes to efficiently measure allele-specific genome-wide data. Analysis of six different hybrid mESC clones with different genomes (C57BL/6, 129/sv and CAST/Ei), parental configurations and gender revealed significant RT asynchrony between alleles across ~12% of the autosomal genome linked to sub-species genomes but not to parental origin, growth conditions or gender. RT asynchrony in mESCs strongly correlated with changes in Hi-C compartments between alleles but not SNP density, gene expression, imprinting or chromatin accessibility. We then tracked mESC RT asynchronous regions during development by analyzing differentiated cell types including extraembryonic endoderm stem (XEN) cells, 4 male and female primary mouse embryonic fibroblasts (MEFs) and neural precursor cells (NPCs) differentiated in vitro from mESCs with opposite parental configurations. We found that RT asynchrony and allelic discordance in Hi-C compartments seen in mESCs was largely lost in all differentiated cell types, coordinated with a more uniform Hi-C compartment arrangement, suggesting that genome organization of homologues converges to similar folding patterns during cell fate commitment. Published by Cold Spring Harbor Laboratory Press.
Loeffler, Ralf B; McCarville, M Beth; Wagstaff, Anne W; Smeltzer, Matthew P; Krafft, Axel J; Song, Ruitian; Hankins, Jane S; Hillenbrand, Claudia M
2017-01-01
Liver R2* values calculated from multi-gradient echo (mGRE) magnetic resonance images (MRI) are strongly correlated with hepatic iron concentration (HIC) as shown in several independently derived biopsy calibration studies. These calibrations were established for axial single-slice breath-hold imaging at the location of the portal vein. Scanning in multi-slice mode makes the exam more efficient, since whole-liver coverage can be achieved with two breath-holds and the optimal slice can be selected afterward. Navigator echoes remove the need for breath-holds and allow use in sedated patients. To evaluate if the existing biopsy calibrations can be applied to multi-slice and navigator-controlled mGRE imaging in children with hepatic iron overload, by testing if there is a bias-free correlation between single-slice R2* and multi-slice or multi-slice navigator controlled R2*. This study included MRI data from 71 patients with transfusional iron overload, who received an MRI exam to estimate HIC using gradient echo sequences. Patient scans contained 2 or 3 of the following imaging methods used for analysis: single-slice images (n = 71), multi-slice images (n = 69) and navigator-controlled images (n = 17). Small and large blood corrected region of interests were selected on axial images of the liver to obtain R2* values for all data sets. Bland-Altman and linear regression analysis were used to compare R2* values from single-slice images to those of multi-slice images and navigator-controlled images. Bland-Altman analysis showed that all imaging method comparisons were strongly associated with each other and had high correlation coefficients (0.98 ≤ r ≤ 1.00) with P-values ≤0.0001. Linear regression yielded slopes that were close to 1. We found that navigator-gated or breath-held multi-slice R2* MRI for HIC determination measures R2* values comparable to the biopsy-validated single-slice, single breath-hold scan. We conclude that these three R2* methods can be interchangeably used in existing R2*-HIC calibrations.
Metabolic regulation of SIRT1 transcription via a HIC1:CtBP corepressor complex
Zhang, Qinghong; Wang, Su-Yan; Fleuriel, Capucine; Leprince, Dominique; Rocheleau, Jonathan V.; Piston, David W.; Goodman, Richard H.
2007-01-01
The Sir2 histone deacetylases are important for gene regulation, metabolism, and longevity. A unique feature of these enzymes is their utilization of NAD+ as a cosubstrate, which has led to the suggestion that Sir2 activity reflects the cellular energy state. We show that SIRT1, a mammalian Sir2 homologue, is also controlled at the transcriptional level through a mechanism that is specific for this isoform. Treatment with the glycolytic blocker 2-deoxyglucose (2-DG) decreases association of the redox sensor CtBP with HIC1, an inhibitor of SIRT1 transcription. We propose that the reduction in transcriptional repression mediated by HIC1, due to the decrease of CtBP binding, increases SIRT1 expression. This mechanism allows the specific regulation of SIRT1 in response to nutrient deprivation. PMID:17213307
Wolff, Joachim; Bhardwaj, Vivek; Nothjunge, Stephan; Richard, Gautier; Renschler, Gina; Gilsbach, Ralf; Manke, Thomas; Backofen, Rolf; Ramírez, Fidel; Grüning, Björn A
2018-06-13
Galaxy HiCExplorer is a web server that facilitates the study of the 3D conformation of chromatin by allowing Hi-C data processing, analysis and visualization. With the Galaxy HiCExplorer web server, users with little bioinformatic background can perform every step of the analysis in one workflow: mapping of the raw sequence data, creation of Hi-C contact matrices, quality assessment, correction of contact matrices and identification of topological associated domains (TADs) and A/B compartments. Users can create publication ready plots of the contact matrix, A/B compartments, and TADs on a selected genomic locus, along with additional information like gene tracks or ChIP-seq signals. Galaxy HiCExplorer is freely usable at: https://hicexplorer.usegalaxy.eu and is available as a Docker container: https://github.com/deeptools/docker-galaxy-hicexplorer.
Schofield, E C; Carver, T; Achuthan, P; Freire-Pritchett, P; Spivakov, M; Todd, J A; Burren, O S
2016-08-15
Promoter capture Hi-C (PCHi-C) allows the genome-wide interrogation of physical interactions between distal DNA regulatory elements and gene promoters in multiple tissue contexts. Visual integration of the resultant chromosome interaction maps with other sources of genomic annotations can provide insight into underlying regulatory mechanisms. We have developed Capture HiC Plotter (CHiCP), a web-based tool that allows interactive exploration of PCHi-C interaction maps and integration with both public and user-defined genomic datasets. CHiCP is freely accessible from www.chicp.org and supports most major HTML5 compliant web browsers. Full source code and installation instructions are available from http://github.com/D-I-L/django-chicp ob219@cam.ac.uk. © The Author 2016. Published by Oxford University Press. All rights reserved.
Health Insurance Instability Among Older Immigrants: Region of Origin Disparities in Coverage
Hardy, Melissa
2015-01-01
Objectives. We provide a detailed analysis of how the dynamics of health insurance coverage (HIC) at older ages differs among Latino, Asian, and European immigrants in the United States. Method. Using Survey of Income and Program Participation data from the 2004 and 2008 panels, we estimate discrete-time event history models to examine first and second transitions into and out of HIC, highlighting substantial differences in hazard rates among immigrants aged 50–64 from Asia, Latin America, and Europe. Results. We find that the likelihood of having HIC at first observation and the rates of gaining and losing coverage within a relatively short time frame are least favorable for older Latino immigrants, although immigrants from all three regions are at a disadvantage relative to native-born non-Hispanic Whites. This disparity among immigrant groups persists even when lower rates of citizenship, greater difficulty with English, and low-skill job placements are taken into account. Discussion. Factors that have contributed to the lower rates and shorter durations of HIC among older immigrants, particularly those from Latin America, may not be easily resolved by the Affordable Care Act. The importance of region of origin and assimilation characteristics for the risk of being uninsured in later life argues that immigration and health care policy should be jointly addressed. PMID:25637934
Deformation of Polymer Composites in Force Protection Systems
NASA Astrophysics Data System (ADS)
Nazarian, Oshin
Systems used for protecting personnel, vehicles and infrastructure from ballistic and blast threats derive their performance from a combination of the intrinsic properties of the constituent materials and the way in which the materials are arranged and attached to one another. The present work addresses outstanding issues in both the intrinsic properties of high-performance fiber composites and the consequences of how such composites are integrated into force protection systems. One aim is to develop a constitutive model for the large-strain intralaminar shear deformation of an ultra-high molecular weight polyethylene (UHMWPE) fiber-reinforced composite. To this end, an analytical model based on a binary representation of the constituent phases is developed and validated using finite element analyses. The model is assessed through comparisons with experimental measurements on cross-ply composite specimens in the +/-45° orientation. The hardening behavior and the limiting tensile strain are attributable to rotations of fibers in the plastic domain and the effects of these rotations on the internal stress state. The model is further assessed through quasi-static punch experiments and dynamic impact tests using metal foam projectiles. The finite element model based on this model accurately captures both the back-face deflection-time history and the final plate profile (especially the changes caused by fiber pull-in). A separate analytical framework for describing the accelerations caused by head impact during, for example, the secondary collision of a vehicle occupant with the cabin interior during an external event is also presented. The severity of impact, characterized by the Head Injury Criterion (HIC), is used to assess the efficacy of crushable foams in mitigating head injury. The framework is used to identify the optimal foam strength that minimizes the HIC for prescribed mass and velocity, subject to constraints on foam thickness. The predictive capability of the model is evaluated through comparisons with a series of experimental measurements from impacts of an instrumented headform onto several commercial foams. Additional comparisons are made with the results of finite element simulations. An analytical model for the planar impact of a cylindrical mass on a foam is also developed. This model sets a theoretical bound for the reduction in HIC by utilizing a "plate-on-foam" design. Experimental results of impact tests on foams coupled with stiff composite plates are presented, with comparisons to the theoretical limits predicted by the analytical model. Design maps are developed from the analytical models, illustrating the variations in the HIC with foam strength and impact velocity.
Shear fatigue crack growth - A literature survey
NASA Technical Reports Server (NTRS)
Liu, H. W.
1985-01-01
Recent studies of shear crack growth are reviewed, emphasizing test methods and data analyses. The combined mode I and mode II elastic crack tip stress fields are considered. The development and design of the compact shear specimen are described, and the results of fatigue crack growth tests using compact shear specimens are reviewed. The fatigue crack growth tests are discussed and the results of inclined cracks in tensile panels, center cracks in plates under biaxial loading, cracked beam specimens with combined bending and shear loading, center-cracked panels and double edge-cracked plates under cyclic shear loading are examined and analyzed in detail.
Amoatey Odonkor, Charles; Addison, William; Smith, Sean; Osei-Bonsu, Ernest; Tang, Teresa; Erdek, Michael
2017-02-01
The goal of this study was to elucidate the attitudes, beliefs, and barriers interfering with cancer pain management, the degree of barrier interference with trainees’ care of patients, and the relationships among prohibitive factors to pain management for physicians in a low–middle-income countries (LMICs) vs high-income countries (HICs). A multi-institutional cross-sectional survey of physicians in specialties with a focus in pain management training was performed. All surveys were completed anonymously from July 1, 2015, to November 30, 2015. One hundred and twenty physicians participated in the survey. Surveys were based on prior questionnaires published in the literature. Descriptive statistics were calculated, and chi-square (ℵ2) analysis, Fisher’s exact test, and Spearman rank correlation analyses were performed. Compared with their peers in HICs, physicians in LMICs reported less experience with cancer pain management despite seeing more cancer patients with advanced disease (41% vs 15.2%, p < 0.05). Some barriers were common to both environments, but a few were unique to each setting. Organized by percentage of severity of interference, cultural values/beliefs about pain (84% vs 76%) and lack of training and expertise (87% vs 78%) were significantly more prohibitive for physicians in LMICs than those in HICs; p < 0.05. There are significant differences in perceived barriers and degree of prohibitive factors to cancer pain management among trainee physicians in low- vs high-resource environments. Understanding these differences may spur further collaboration in the design of contextually relevant solutions, which could potentially help improve the adequacy of cancer pain management
Control of Hydrogen Embrittlement in High Strength Steel Using Special Designed Welding Wire
2016-03-01
microstructure 4. A low near ambient temperature is reached. • All four factor must be simultaneously present 3 Mitigating HIC and Improving Weld Fatigue...Performance Through Weld Residual Stress Control UNCLASIFIED:DISTRIBUTION A. Approved for public release: distribution unlimited. Click to edit Master...title style 4 • Welding of Armor Steels favors all these conditions for HIC • Hydrogen Present in Sufficient Degree – Derived from moisture in the
Single cell Hi-C reveals cell-to-cell variability in chromosome structure
Schoenfelder, Stefan; Yaffe, Eitan; Dean, Wendy; Laue, Ernest D.; Tanay, Amos; Fraser, Peter
2013-01-01
Large-scale chromosome structure and spatial nuclear arrangement have been linked to control of gene expression and DNA replication and repair. Genomic techniques based on chromosome conformation capture assess contacts for millions of loci simultaneously, but do so by averaging chromosome conformations from millions of nuclei. Here we introduce single cell Hi-C, combined with genome-wide statistical analysis and structural modeling of single copy X chromosomes, to show that individual chromosomes maintain domain organisation at the megabase scale, but show variable cell-to-cell chromosome territory structures at larger scales. Despite this structural stochasticity, localisation of active gene domains to boundaries of territories is a hallmark of chromosomal conformation. Single cell Hi-C data bridge current gaps between genomics and microscopy studies of chromosomes, demonstrating how modular organisation underlies dynamic chromosome structure, and how this structure is probabilistically linked with genome activity patterns. PMID:24067610
Hi-C and AIA observations of transverse magnetohydrodynamic waves in active regions
NASA Astrophysics Data System (ADS)
Morton, R. J.; McLaughlin, J. A.
2013-05-01
The recent launch of the High resolution Coronal imager (Hi-C) provided a unique opportunity of studying the EUV corona with unprecedented spatial resolution. We utilize these observations to investigate the properties of low-frequency (50-200 s) active region transverse waves, whose omnipresence had been suggested previously. The five-fold improvement in spatial resolution over SDO/AIA reveals coronal loops with widths 150-310 km and that these loops support transverse waves with displacement amplitudes <50 km. However, the results suggest that wave activity in the coronal loops is of low energy, with typical velocity amplitudes <3 km s-1. An extended time-series of SDO data suggests that low-energy wave behaviour is typical of the coronal structures both before and after the Hi-C observations. Appendix A and five movies associated to Figs. A.2-A.6 are available in electronic form at http://www.aanda.org
Stable tearing behavior of a thin-sheet material with multiple cracks
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Newman, J. C., Jr.; Sutton, M. A.; Amstutz, B. E.
1994-01-01
Fracture tests were conducted on 2.3mm thick, 305mm wide sheets of 2024-T3 aluminum alloy with 1-5 collinear cracks. The cracks were introduced (crack history) into the specimens by three methods: (1) saw cutting; (2) fatigue precracking at a low stress range; and (3) fatigue precracking at a high stress range. For the single crack tests, the initial crack history influenced the stress required for the onset of stable crack growth and the first 10mm of crack growth. The effect on failure stress was about 4 percent or less. For the multiple crack tests, the initial crack history was shown to cause differences of more than 20 percent in the link-up stress and 13 percent in failure stress. An elastic-plastic finite element analysis employing the Crack Tip Opening Angle (CTOA) fracture criterion was used to predict the fracture behavior of the single and multiple crack tests. The numerical predictions were within 7 percent of the observed link-up and failure stress in all the tests.
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Newman, J. C., Jr.; Sutton, M. A.; Amstutz, B. E.
1994-01-01
Fracture tests were conducted on 2.3mm thick, 305mm wide sheets of 2024-T3 aluminum alloy with from one to five collinear cracks. The cracks were introduced (crack history) into the specimens by three methods: saw cutting, fatigue precracking at a low stress range, and fatigue precracking at a high stress range. For the single crack tests, the initial crack history influenced the stress required for the onset of stable crack growth and the first 10mm of crack growth. The effect on failure stress was about 4 percent or less. For the multiple crack tests, the initial crack history was shown to cause differences of more than 20 percent in the link-up stress and 13 percent in failure stress. An elastic-plastic finite element analysis employing the CTOA fracture criterion was used to predict the fracture behavior of the single and multiple crack tests. The numerical predictions were within 7 percent of the observed link-up and failure stress in all the tests.
Fatigue Crack Closure Analysis Using Digital Image Correlation
NASA Technical Reports Server (NTRS)
Leser, William P.; Newman, John A.; Johnston, William M.
2010-01-01
Fatigue crack closure during crack growth testing is analyzed in order to evaluate the critieria of ASTM Standard E647 for measurement of fatigue crack growth rates. Of specific concern is remote closure, which occurs away from the crack tip and is a product of the load history during crack-driving-force-reduction fatigue crack growth testing. Crack closure behavior is characterized using relative displacements determined from a series of high-magnification digital images acquired as the crack is loaded. Changes in the relative displacements of features on opposite sides of the crack are used to generate crack closure data as a function of crack wake position. For the results presented in this paper, remote closure did not affect fatigue crack growth rate measurements when ASTM Standard E647 was strictly followed and only became a problem when testing parameters (e.g., load shed rate, initial crack driving force, etc.) greatly exceeded the guidelines of the accepted standard.
Corsi, Daniel J; Gilmore, Anna B; Kruger, Annamarie; Igumbor, Ehimario; Chifamba, Jephat; Yang, Wang; Wei, Li; Iqbal, Romaina; Mony, Prem; Gupta, Rajeev; Vijayakumar, Krishnapillai; Mohan, V; Kumar, Rajesh; Rahman, Omar; Yusoff, Khalid; Ismail, Noorhassim; Zatonska, Katarzyna; Altuntas, Yuksel; Rosengren, Annika; Bahonar, Ahmad; Yusufali, AfzalHussein; Dagenais, Gilles; Lear, Scott; Diaz, Rafael; Avezum, Alvaro; Lopez-Jaramillo, Patricio; Lanas, Fernando; Rangarajan, Sumathy; Teo, Koon; McKee, Martin; Yusuf, Salim
2017-01-01
Objectives This study examines in a cross-sectional study ‘the tobacco control environment’ including tobacco policy implementation and its association with quit ratio. Setting 545 communities from 17 high-income, upper-middle, low-middle and low-income countries (HIC, UMIC, LMIC, LIC) involved in the Environmental Profile of a Community's Health (EPOCH) study from 2009 to 2014. Participants Community audits and surveys of adults (35–70 years, n=12 953). Primary and secondary outcome measures Summary scores of tobacco policy implementation (cost and availability of cigarettes, tobacco advertising, antismoking signage), social unacceptability and knowledge were associated with quit ratios (former vs ever smokers) using multilevel logistic regression models. Results Average tobacco control policy score was greater in communities from HIC. Overall 56.1% (306/545) of communities had >2 outlets selling cigarettes and in 28.6% (154/539) there was access to cheap cigarettes (<5cents/cigarette) (3.2% (3/93) in HIC, 0% UMIC, 52.6% (90/171) LMIC and 40.4% (61/151) in LIC). Effective bans (no tobacco advertisements) were in 63.0% (341/541) of communities (81.7% HIC, 52.8% UMIC, 65.1% LMIC and 57.6% LIC). In 70.4% (379/538) of communities, >80% of participants disapproved youth smoking (95.7% HIC, 57.6% UMIC, 76.3% LMIC and 58.9% LIC). The average knowledge score was >80% in 48.4% of communities (94.6% HIC, 53.6% UMIC, 31.8% LMIC and 35.1% LIC). Summary scores of policy implementation, social unacceptability and knowledge were positively and significantly associated with quit ratio and the associations varied by gender, for example, communities in the highest quintile of the combined scores had 5.0 times the quit ratio in men (Odds ratio (OR) 5·0, 95% CI 3.4 to 7.4) and 4.1 times the quit ratio in women (OR 4.1, 95% CI 2.4 to 7.1). Conclusions This study suggests that more focus is needed on ensuring the tobacco control policy is actually implemented, particularly in LMICs. The gender-related differences in associations of policy, social unacceptability and knowledge suggest that different strategies to promoting quitting may need to be implemented in men compared to women. PMID:28363924
Fracture Property of Y-Shaped Cracks of Brittle Materials under Compression
Zhang, Xiaoyan; Zhu, Zheming; Liu, Hongjie
2014-01-01
In order to investigate the properties of Y-shaped cracks of brittle materials under compression, compression tests by using square cement mortar specimens with Y-shaped crack were conducted. A true triaxial loading device was applied in the tests, and the major principle stresses or the critical stresses were measured. The results show that as the branch angle θ between the branch crack and the stem crack is 75°, the cracked specimen has the lowest strength. In order to explain the test results, numerical models of Y-shaped cracks by using ABAQUS code were established, and the J-integral method was applied in calculating crack tip stress intensity factor (SIF). The results show that when the branch angle θ increases, the SIF K I of the branch crack increases from negative to positive and the absolute value K II of the branch crack first increases, and as θ is 50°, it is the maximum, and then it decreases. Finally, in order to further investigate the stress distribution around Y-shaped cracks, photoelastic tests were conducted, and the test results generally agree with the compressive test results. PMID:25013846
Small crack test program for helicopter materials
NASA Technical Reports Server (NTRS)
Annigeri, Bal; Schneider, George
1994-01-01
Crack propagation tests were conducted to determine crack growth behavior in five helicopter materials for surface cracks between 0.005 to 0.020 inches in depth. Constant amplitude tests were conducted at stress ratios R equals 0.1 and 0.5, and emphasis was placed on near threshold data (i.e., 10-8 to 10-6 inches/cycle). Spectrum tests were conducted using a helicopter spectrum. The test specimen was an unnotched tension specimen, and cracks were initiated from a small EDM notch. An optical/video system was used to monitor crack growth. The material for the test specimens was obtained from helicopter part forgings. Testing was conducted at stresses below yield to reflect actual stresses in helicopter parts.
Producing genome structure populations with the dynamic and automated PGS software.
Hua, Nan; Tjong, Harianto; Shin, Hanjun; Gong, Ke; Zhou, Xianghong Jasmine; Alber, Frank
2018-05-01
Chromosome conformation capture technologies such as Hi-C are widely used to investigate the spatial organization of genomes. Because genome structures can vary considerably between individual cells of a population, interpreting ensemble-averaged Hi-C data can be challenging, in particular for long-range and interchromosomal interactions. We pioneered a probabilistic approach for the generation of a population of distinct diploid 3D genome structures consistent with all the chromatin-chromatin interaction probabilities from Hi-C experiments. Each structure in the population is a physical model of the genome in 3D. Analysis of these models yields new insights into the causes and the functional properties of the genome's organization in space and time. We provide a user-friendly software package, called PGS, which runs on local machines (for practice runs) and high-performance computing platforms. PGS takes a genome-wide Hi-C contact frequency matrix, along with information about genome segmentation, and produces an ensemble of 3D genome structures entirely consistent with the input. The software automatically generates an analysis report, and provides tools to extract and analyze the 3D coordinates of specific domains. Basic Linux command-line knowledge is sufficient for using this software. A typical running time of the pipeline is ∼3 d with 300 cores on a computer cluster to generate a population of 1,000 diploid genome structures at topological-associated domain (TAD)-level resolution.
DETECTING NANOFLARE HEATING EVENTS IN SUBARCSECOND INTER-MOSS LOOPS USING Hi-C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winebarger, Amy R.; Moore, Ronald; Cirtain, Jonathan
2013-07-01
The High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket on 2012 July 11 and captured roughly 345 s of high-spatial and temporal resolution images of the solar corona in a narrowband 193 A channel. In this paper, we analyze a set of rapidly evolving loops that appear in an inter-moss region. We select six loops that both appear in and fade out of the Hi-C images during the short flight. From the Hi-C data, we determine the size and lifetimes of the loops and characterize whether these loops appear simultaneously along their length or first appear at onemore » footpoint before appearing at the other. Using co-aligned, co-temporal data from multiple channels of the Atmospheric Imaging Assembly on the Solar Dynamics Observatory, we determine the temperature and density of the loops. We find the loops consist of cool ({approx}10{sup 5} K), dense ({approx}10{sup 10} cm{sup -3}) plasma. Their required thermal energy and their observed evolution suggest they result from impulsive heating similar in magnitude to nanoflares. Comparisons with advanced numerical simulations indicate that such dense, cold and short-lived loops are a natural consequence of impulsive magnetic energy release by reconnection of braided magnetic field at low heights in the solar atmosphere.« less
Computational Identification of Genomic Features That Influence 3D Chromatin Domain Formation.
Mourad, Raphaël; Cuvier, Olivier
2016-05-01
Recent advances in long-range Hi-C contact mapping have revealed the importance of the 3D structure of chromosomes in gene expression. A current challenge is to identify the key molecular drivers of this 3D structure. Several genomic features, such as architectural proteins and functional elements, were shown to be enriched at topological domain borders using classical enrichment tests. Here we propose multiple logistic regression to identify those genomic features that positively or negatively influence domain border establishment or maintenance. The model is flexible, and can account for statistical interactions among multiple genomic features. Using both simulated and real data, we show that our model outperforms enrichment test and non-parametric models, such as random forests, for the identification of genomic features that influence domain borders. Using Drosophila Hi-C data at a very high resolution of 1 kb, our model suggests that, among architectural proteins, BEAF-32 and CP190 are the main positive drivers of 3D domain borders. In humans, our model identifies well-known architectural proteins CTCF and cohesin, as well as ZNF143 and Polycomb group proteins as positive drivers of domain borders. The model also reveals the existence of several negative drivers that counteract the presence of domain borders including P300, RXRA, BCL11A and ELK1.
Computational Identification of Genomic Features That Influence 3D Chromatin Domain Formation
Mourad, Raphaël; Cuvier, Olivier
2016-01-01
Recent advances in long-range Hi-C contact mapping have revealed the importance of the 3D structure of chromosomes in gene expression. A current challenge is to identify the key molecular drivers of this 3D structure. Several genomic features, such as architectural proteins and functional elements, were shown to be enriched at topological domain borders using classical enrichment tests. Here we propose multiple logistic regression to identify those genomic features that positively or negatively influence domain border establishment or maintenance. The model is flexible, and can account for statistical interactions among multiple genomic features. Using both simulated and real data, we show that our model outperforms enrichment test and non-parametric models, such as random forests, for the identification of genomic features that influence domain borders. Using Drosophila Hi-C data at a very high resolution of 1 kb, our model suggests that, among architectural proteins, BEAF-32 and CP190 are the main positive drivers of 3D domain borders. In humans, our model identifies well-known architectural proteins CTCF and cohesin, as well as ZNF143 and Polycomb group proteins as positive drivers of domain borders. The model also reveals the existence of several negative drivers that counteract the presence of domain borders including P300, RXRA, BCL11A and ELK1. PMID:27203237
Proof test and fatigue crack growth modeling on 2024-T3 aluminum alloy
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Poe, C. C., Jr.; Dawicke, D. S.
1990-01-01
Pressure proof testing of aircraft fuselage structures has been suggested as a means of screening critical crack sizes and of extending their useful life. The objective of this paper is to study the proof-test concept and to model the crack-growth process on a ductile material. Simulated proof and operational fatigue life tests have been conducted on cracked panels made of 2024-T3 aluminum alloy sheet material. A fatigue crack-closure model was modified to simulate the proof test and operational fatigue cycling. Using crack-growth rate and resistance-curve data, the model was able to predict crack growth during and after the proof load. These tests and analyses indicate that the proof test increases fatigue life; but the beneficial life, after a 1.33 or 1.5 proof, was less than a few hundred cycles.
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Sutton, M. A.
1993-01-01
The stable tearing behavior of thin sheets 2024-T3 aluminum alloy was studied for middle crack tension specimens having initial cracks that were: flat cracks (low fatigue stress) and 45 degrees through-thickness slant cracks (high fatigue stress). The critical crack-tip-opening angle (CTOA) values during stable tearing were measured by two independent methods, optical microscopy and digital image correlation. Results from the two methods agreed well. The CTOA measurements and observations of the fracture surfaces showed that the initial stable tearing behavior of low and high fatigue stress tests is significantly different. The cracks in the low fatigue stress tests underwent a transition from flat-to-slant crack growth, during which the CTOA values were high and significant crack tunneling occurred. After crack growth equal to about the thickness, CTOA reached a constant value of 6 deg and after crack growth equal to about twice the thickness, crack tunneling stabilized. The initial high CTOA values, in the low fatigue crack tests, coincided with large three-dimensional crack front shape changes due to a variation in the through-thickness crack tip constraint. The cracks in the high fatigue stress tests reach the same constant CTOA value after crack growth equal to about the thickness, but produced only a slightly higher CTOA value during initial crack growth. For crack growth on the 45 degree slant, the crack front and local field variables are still highly three-dimensional. However, the constant CTOA values and stable crack front shape may allow the process to be approximated with two-dimensional models.
Magnetic Structure of Sites of Braiding in Hi-C Active Region
NASA Technical Reports Server (NTRS)
Tiwari, S. K.; Alexander, C. E.; Winebarger, A.; Moore, R. L.
2014-01-01
High-resolution Coronal Imager (Hi-C) observations of an active region (AR) corona, at a spatial resolution of 0.2 arcsec, have offered the first direct evidence of field lines braiding, which could deliver sufficient energy to heat the AR corona by current dissipation via magnetic reconnection, a proposal given by Parker three decades ago. The energy required to heat the corona must be transported from the photosphere along the field lines. The mechanism that drives the energy transport to the corona is not yet fully understood. To investigate simultaneous magnetic and intensity structure in and around the AR in detail, we use SDO/HMI+AIA data of + / - 2 hours around the 5 minute Hi-C flight. In the case of the QS, work done by convection/granulation on the inter-granular feet of the coronal field lines probably translates into the heat observed in the corona. In the case of the AR, as here, there could be flux emergence, cancellation/submergence, or shear flows generating large stress and tension in coronal field loops which is released as heat in the corona. However, to the best of our knowledge, there is no observational evidence available to these processes. We investigate the changes taking place in the photospheric feet of the magnetic field involved with brightenings in the Hi-C AR corona. Using HMI 45s magnetograms of four hours we find that, out of the two Hi-C sub-regions where the braiding of field lines were recently detected, flux emergence takes place in one region and flux cancellation in the other. The field in these sub-regions are highly sheared and have apparent high speed plasma flows at their feet. Therefore, shearing flows plausibly power much of the coronal and transition region heating in these areas of the AR. In addition, the presence of large flux emergence/cancellation strongly suggests that the work done by these processes on the pre-existing field also drives much of the observed heating.
NASA Astrophysics Data System (ADS)
Koshti, Ajay M.
2018-03-01
Like other NDE methods, eddy current surface crack detectability is determined using probability of detection (POD) demonstration. The POD demonstration involves eddy current testing of surface crack specimens with known crack sizes. Reliably detectable flaw size, denoted by, a90/95 is determined by statistical analysis of POD test data. The surface crack specimens shall be made from a similar material with electrical conductivity close to the part conductivity. A calibration standard with electro-discharged machined (EDM) notches is typically used in eddy current testing for surface crack detection. The calibration standard conductivity shall be within +/- 15% of the part conductivity. This condition is also applicable to the POD demonstration crack set. Here, a case is considered, where conductivity of the crack specimens available for POD testing differs by more than 15% from that of the part to be inspected. Therefore, a direct POD demonstration of reliably detectable flaw size is not applicable. Additional testing is necessary to use the demonstrated POD test data. An approach to estimate the reliably detectable flaw size in eddy current testing for part made from material A using POD crack specimens made from material B with different conductivity is provided. The approach uses additional test data obtained on EDM notch specimens made from materials A and B. EDM notch test data from the two materials is used to create a transfer function between the demonstrated a90/95 size on crack specimens made of material B and the estimated a90/95 size for part made of material A. Two methods are given. For method A, a90/95 crack size for material B is given and POD data is available. Objective of method A is to determine a90/95 crack size for material A using the same relative decision threshold that was used for material B. For method B, target crack size a90/95 for material A is known. Objective is to determine decision threshold for inspecting material A.
Application of a bus seat buffer to mitigate frontal crash effects
NASA Astrophysics Data System (ADS)
Stanisławek, Sebastian; Dziewulski, Paweł; Sławiński, Grzegorz
2018-01-01
The paper considers the problem of coach occupant safety during crash events. The authors present a simple low-cost seat buffer concept which may mitigate the effects of frontal impact. The method of computer simulation was chosen to solve the problem efficiently. The Finite Element Method (FEM) implemented in the LS-DYNA commercial code was used. The testing procedure was based on European Commission regulations, under which vehicles move at a defined speed. Simulations have shown that seat occupants suffer serious trauma during a crash, with the head experiencing relatively high acceleration, thus resulting in an HIC36 of 1490. The installation of a protective buffer mounted on the upper part of the seat reduced the HIC36 to only 510. However, in its current form it does not meet the requirements of the regulations. Further modifications to the overlay shape and structure are essential in order to better improve the deceleration of passengers' bodies. Moreover, a detailed model of seats and their anchorage should be taken into account. A more flexible structure should provide more positive and more accurate results.
Comparison of responses to two high-intensity intermittent exercise protocols.
Gist, Nicholas H; Freese, Eric C; Cureton, Kirk J
2014-11-01
The purpose of this study was to compare peak cardiorespiratory, metabolic, and perceptual responses to acute bouts of sprint interval cycling (SIC) and a high-intensity intermittent calisthenics (HIC) protocol consisting of modified "burpees." Eleven (8 men and 3 women) moderately trained, college-aged participants (age = 21.9 ± 2.1, body mass index = 24.8 ± 1.9, V[Combining Dot Above]O2peak = 54.1 ± 5.4 ml·kg·min) completed 4 testing sessions across 9 days with each session separated by 48-72 hours. Using a protocol of 4 repeated bouts of 30-second "all-out" efforts interspersed with 4-minute active recovery periods, responses to SIC and HIC were classified relative to peak values. Mean values for %V[Combining Dot Above]O2peak and %HRpeak for SIC (80.4 ± 5.3% and 86.8 ± 3.9%) and HIC (77.6 ± 6.9% and 84.6 ± 5.3%) were not significantly different (p > 0.05). Effect sizes (95% confidence interval) calculated for mean differences were: %V[Combining Dot Above]O2peak Cohen's d = 0.51 (0.48-0.53) and %HRpeak Cohen's d = 0.57 (0.55-0.59). A low-volume, high-intensity bout of repeated whole-body calisthenic exercise induced cardiovascular responses that were not significantly different but were ∼1/2SD lower than "all-out" SIC. These results suggest that in addition to the benefit of reduced time commitment, a high-intensity interval protocol of calisthenics elicits vigorous cardiorespiratory and perceptual responses and may confer physiological adaptations and performance improvements similar to those reported for SIC. The potential efficacy of this alternative interval training method provides support for its application by athletes, coaches, and strength and conditioning professionals.
Jain, Tushar; Boland, Todd; Lilov, Asparouh; Burnina, Irina; Brown, Michael; Xu, Yingda; Vásquez, Maximiliano
2017-12-01
The hydrophobicity of a monoclonal antibody is an important biophysical property relevant for its developability into a therapeutic. In addition to characterizing heterogeneity, Hydrophobic Interaction Chromatography (HIC) is an assay that is often used to quantify the hydrophobicity of an antibody to assess downstream risks. Earlier studies have shown that retention times in this assay can be correlated to amino-acid or atomic propensities weighted by the surface areas obtained from protein 3-dimensional structures. The goal of this study is to develop models to enable prediction of delayed HIC retention times directly from sequence. We utilize the randomforest machine learning approach to estimate the surface exposure of amino-acid side-chains in the variable region directly from the antibody sequence. We obtain mean-absolute errors of 4.6% for the prediction of surface exposure. Using experimental HIC data along with the estimated surface areas, we derive an amino-acid propensity scale that enables prediction of antibodies likely to have delayed retention times in the assay. We achieve a cross-validation Area Under Curve of 0.85 for the Receiver Operating Characteristic curve of our model. The low computational expense and high accuracy of this approach enables real-time assessment of hydrophobic character to enable prioritization of antibodies during the discovery process and rational engineering to reduce hydrophobic liabilities. Structure data, aligned sequences, experimental data and prediction scores for test-cases, and R scripts used in this work are provided as part of the Supplementary Material. tushar.jain@adimab.com. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Ulianov, Sergey V.; Khrameeva, Ekaterina E.; Gavrilov, Alexey A.; Flyamer, Ilya M.; Kos, Pavel; Mikhaleva, Elena A.; Penin, Aleksey A.; Logacheva, Maria D.; Imakaev, Maxim V.; Chertovich, Alexander; Gelfand, Mikhail S.; Shevelyov, Yuri Y.; Razin, Sergey V.
2016-01-01
Recent advances enabled by the Hi-C technique have unraveled many principles of chromosomal folding that were subsequently linked to disease and gene regulation. In particular, Hi-C revealed that chromosomes of animals are organized into topologically associating domains (TADs), evolutionary conserved compact chromatin domains that influence gene expression. Mechanisms that underlie partitioning of the genome into TADs remain poorly understood. To explore principles of TAD folding in Drosophila melanogaster, we performed Hi-C and poly(A)+ RNA-seq in four cell lines of various origins (S2, Kc167, DmBG3-c2, and OSC). Contrary to previous studies, we find that regions between TADs (i.e., the inter-TADs and TAD boundaries) in Drosophila are only weakly enriched with the insulator protein dCTCF, while another insulator protein Su(Hw) is preferentially present within TADs. However, Drosophila inter-TADs harbor active chromatin and constitutively transcribed (housekeeping) genes. Accordingly, we find that binding of insulator proteins dCTCF and Su(Hw) predicts TAD boundaries much worse than active chromatin marks do. Interestingly, inter-TADs correspond to decompacted inter-bands of polytene chromosomes, whereas TADs mostly correspond to densely packed bands. Collectively, our results suggest that TADs are condensed chromatin domains depleted in active chromatin marks, separated by regions of active chromatin. We propose the mechanism of TAD self-assembly based on the ability of nucleosomes from inactive chromatin to aggregate, and lack of this ability in acetylated nucleosomal arrays. Finally, we test this hypothesis by polymer simulations and find that TAD partitioning may be explained by different modes of inter-nucleosomal interactions for active and inactive chromatin. PMID:26518482
Eddy current testing for blade edge micro cracks of aircraft engine
NASA Astrophysics Data System (ADS)
Zhang, Wei-min; Xu, Min-dong; Gao, Xuan-yi; Jin, Xin; Qin, Feng
2017-10-01
Based on the problems of low detection efficiency in the micro cracks detection of aircraft engine blades, a differential excitation eddy current testing system was designed and developed. The function and the working principle of the system were described, the problems which contained the manufacture method of simulated cracks, signal generating, signal processing and the signal display method were described. The detection test was carried out by taking a certain model aircraft engine blade with simulated cracks as a tested specimen. The test data was processed by digital low-pass filter in the computer and the crack signals of time domain display and Lissajous figure display were acquired. By comparing the test results, it is verified that Lissajous figure display shows better performance compared to time domain display when the crack angle is small. The test results show that the eddy current testing system designed in this paper is feasible to detect the micro cracks on the aeroengine blade and can effectively improve the detection efficiency of micro cracks in the practical detection work.
Three-dimensional reconstruction of single-cell chromosome structure using recurrence plots.
Hirata, Yoshito; Oda, Arisa; Ohta, Kunihiro; Aihara, Kazuyuki
2016-10-11
Single-cell analysis of the three-dimensional (3D) chromosome structure can reveal cell-to-cell variability in genome activities. Here, we propose to apply recurrence plots, a mathematical method of nonlinear time series analysis, to reconstruct the 3D chromosome structure of a single cell based on information of chromosomal contacts from genome-wide chromosome conformation capture (Hi-C) data. This recurrence plot-based reconstruction (RPR) method enables rapid reconstruction of a unique structure in single cells, even from incomplete Hi-C information.
Three-dimensional reconstruction of single-cell chromosome structure using recurrence plots
NASA Astrophysics Data System (ADS)
Hirata, Yoshito; Oda, Arisa; Ohta, Kunihiro; Aihara, Kazuyuki
2016-10-01
Single-cell analysis of the three-dimensional (3D) chromosome structure can reveal cell-to-cell variability in genome activities. Here, we propose to apply recurrence plots, a mathematical method of nonlinear time series analysis, to reconstruct the 3D chromosome structure of a single cell based on information of chromosomal contacts from genome-wide chromosome conformation capture (Hi-C) data. This recurrence plot-based reconstruction (RPR) method enables rapid reconstruction of a unique structure in single cells, even from incomplete Hi-C information.
Massively multiplex single-cell Hi-C
Ramani, Vijay; Deng, Xinxian; Qiu, Ruolan; Gunderson, Kevin L; Steemers, Frank J; Disteche, Christine M; Noble, William S; Duan, Zhijun; Shendure, Jay
2016-01-01
We present single-cell combinatorial indexed Hi-C (sciHi-C), which applies the concept of combinatorial cellular indexing to chromosome conformation capture. In this proof-of-concept, we generate and sequence six sciHi-C libraries comprising a total of 10,696 single cells. We use sciHi-C data to separate cells by karytoypic and cell-cycle state differences and identify cell-to-cell heterogeneity in mammalian chromosomal conformation. Our results demonstrate that combinatorial indexing is a generalizable strategy for single-cell genomics. PMID:28135255
Short-crack growth behaviour in an aluminum alloy: An AGARD cooperative test program
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Edwards, P. R.
1988-01-01
An AGARD Cooperative Test Program on the growth of short fatigue cracks was conducted to define the significance of the short-crack effect, to compare test results from various laboratories, and to evaluate an existing analytical crack-growth prediction model. The initiation and growth of short fatigue cracks (5 micrometer to 2 mm) from the surface of a semi-circular notch in 2024-T3 aluminum alloy sheet material were monitored under various load histories. The cracks initiated from inclusion particle clusters or voids on the notch surface and generally grew as surface cracks. Tests were conducted under several constant-amplitude (stress ratios of -2, -1, 0, and 0.5) and spectrum (FALSTAFF and Gaussian) loading conditions at 3 stress levels each. Short crack growth was recorded using a plastic-replica technique. Over 250 edge-notched specimens were fatigue tested and nearly 950 cracks monitored by 12 participants from 9 countries. Long crack-growth rate data for cracks greater than 2 mm in length were obtained over a wide range in rates (10 to the -8 to 10 to the -1 mm/cycle) for all constant-amplitude loading conditions. Long crack-growth rate data for the FALSTAFF and Gaussian load sequences were also obtained.
Three-dimensional measurements of fatigue crack closure
NASA Technical Reports Server (NTRS)
Ray, S. K.; Grandt, A. F., Jr.
1984-01-01
Fatigue crack growth and retardation experiments conducted in polycarbonate test specimen are described. The transparent test material allows optical interferometry measurements of the fatigue crack opening (and closing) profiles. Crack surface displacements are obtained through the specimen thickness and three dimensional aspects of fatigue crack closure are discussed.
Some important considerations in the development of stress corrosion cracking test methods.
NASA Technical Reports Server (NTRS)
Wei, R. P.; Novak, S. R.; Williams, D. P.
1972-01-01
Discussion of some of the precaution needs the development of fracture-mechanics based test methods for studying stress corrosion cracking involves. Following a review of pertinent analytical fracture mechanics considerations and of basic test methods, the implications for test corrosion cracking studies of the time-to-failure determining kinetics of crack growth and life are examined. It is shown that the basic assumption of the linear-elastic fracture mechanics analyses must be clearly recognized and satisfied in experimentation and that the effects of incubation and nonsteady-state crack growth must also be properly taken into account in determining the crack growth kinetics, if valid data are to be obtained from fracture-mechanics based test methods.
NASA Astrophysics Data System (ADS)
Chiariello, Andrea M.; Bianco, Simona; Annunziatella, Carlo; Esposito, Andrea; Nicodemi, Mario
2017-11-01
Technologies such as Hi-C and GAM have revealed that chromosomes are not randomly folded into the nucleus of cells, but are composed by a sequence of contact domains (TADs), each typically 0.5 Mb long. However, the larger scale organization of the genome remains still not well understood. To investigate the scaling behaviour of chromosome folding, here we apply an approach à la Kadanoff, inspired by the Renormalization Group theory, to Hi-C interaction data, across different cell types and chromosomes. We find that the genome is characterized by complex scaling features, where the average size of contact domains exhibits a power-law behaviour with the rescaling level. That is compatible with the existence of contact domains extending across length scales up to chromosomal sizes. The scaling exponent is statistically indistinguishable among the different murine cell types analysed. These results point toward a scenario of a universal higher-order spatial architecture of the genome, which could reflect fundamental, organizational principles.
Jiang, Canping; Flansburg, Lisa; Ghose, Sanchayita; Jorjorian, Paul; Shukla, Abhinav A
2010-12-15
The concept of design space has been taking root under the quality by design paradigm as a foundation of in-process control strategies for biopharmaceutical manufacturing processes. This paper outlines the development of a design space for a hydrophobic interaction chromatography (HIC) process step. The design space included the impact of raw material lot-to-lot variability and variations in the feed stream from cell culture. A failure modes and effects analysis was employed as the basis for the process characterization exercise. During mapping of the process design space, the multi-dimensional combination of operational variables were studied to quantify the impact on process performance in terms of yield and product quality. Variability in resin hydrophobicity was found to have a significant influence on step yield and high-molecular weight aggregate clearance through the HIC step. A robust operating window was identified for this process step that enabled a higher step yield while ensuring acceptable product quality. © 2010 Wiley Periodicals, Inc.
Ulianov, Sergey V; Tachibana-Konwalski, Kikue; Razin, Sergey V
2017-10-01
Recent years have witnessed an explosion of the single-cell biochemical toolbox including chromosome conformation capture (3C)-based methods that provide novel insights into chromatin spatial organization in individual cells. The observations made with these techniques revealed that topologically associating domains emerge from cell population averages and do not exist as static structures in individual cells. Stochastic nature of the genome folding is likely to be biologically relevant and may reflect the ability of chromatin fibers to adopt a number of alternative configurations, some of which could be transiently stabilized and serve regulatory purposes. Single-cell Hi-C approaches provide an opportunity to analyze chromatin folding in rare cell types such as stem cells, tumor progenitors, oocytes, and totipotent cells, contributing to a deeper understanding of basic mechanisms in development and disease. Here, we review key findings of single-cell Hi-C and discuss possible biological reasons and consequences of the inferred dynamic chromatin spatial organization. © 2017 WILEY Periodicals, Inc.
2010 Award for Outstanding Doctoral Thesis Research in Biological Physics Talk: How the Genome Folds
NASA Astrophysics Data System (ADS)
Lieberman-Aiden, Erez
2011-03-01
I describe Hi-C, a novel technology for probing the three-dimensional architecture of whole genomes by coupling proximity-based ligation with massively parallel sequencing. Working with collaborators at the Broad Institute and UMass Medical School, we used Hi-C to construct spatial proximity maps of the human genome at a resolution of 1Mb. These maps confirm the presence of chromosome territories and the spatial proximity of small, gene-rich chromosomes. We identified an additional level of genome organization that is characterized by the spatial segregation of open and closed chromatin to form two genome-wide compartments. At the megabase scale, the chromatin conformation is consistent with a fractal globule, a knot-free conformation that enables maximally dense packing while preserving the ability to easily fold and unfold any genomic locus. The fractal globule is distinct from the more commonly used globular equilibrium model. Our results demonstrate the power of Hi-C to map the dynamic conformations of whole genomes.
Juicebox.js Provides a Cloud-Based Visualization System for Hi-C Data.
Robinson, James T; Turner, Douglass; Durand, Neva C; Thorvaldsdóttir, Helga; Mesirov, Jill P; Aiden, Erez Lieberman
2018-02-28
Contact mapping experiments such as Hi-C explore how genomes fold in 3D. Here, we introduce Juicebox.js, a cloud-based web application for exploring the resulting datasets. Like the original Juicebox application, Juicebox.js allows users to zoom in and out of such datasets using an interface similar to Google Earth. Juicebox.js also has many features designed to facilitate data reproducibility and sharing. Furthermore, Juicebox.js encodes the exact state of the browser in a shareable URL. Creating a public browser for a new Hi-C dataset does not require coding and can be accomplished in under a minute. The web app also makes it possible to create interactive figures online that can complement or replace ordinary journal figures. When combined with Juicer, this makes the entire process of data analysis transparent, insofar as every step from raw reads to published figure is publicly available as open source code. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Chen, Bifan; Lin, Ziqing; Alpert, Andrew J; Fu, Cexiong; Zhang, Qunying; Pritts, Wayne A; Ge, Ying
2018-06-19
Therapeutic monoclonal antibodies (mAbs) are an important class of drugs for a wide spectrum of human diseases. Liquid chromatography (LC) coupled to mass spectrometry (MS) is one of the techniques in the forefront for comprehensive characterization of analytical attributes of mAbs. Among various protein chromatography modes, hydrophobic interaction chromatography (HIC) is a popular offline nondenaturing separation technique utilized to purify and analyze mAbs, typically with the use of non-MS-compatible mobile phases. Herein we demonstrate for the first time, the application of direct HIC-MS and HIC-tandem MS (MS/MS) with electron capture dissociation (ECD) for analyzing intact mAbs on quadrupole-time-of-flight (Q-TOF) and Fourier transform ion cyclotron resonance (FTICR) mass spectrometers, respectively. Our method allows for rapid determination of relative hydrophobicity, intact masses, and glycosylation profiles of mAbs as well as sequence and structural characterization of the complementarity-determining regions in an online configuration.
Monitoring crack extension in fracture toughness tests by ultrasonics
NASA Technical Reports Server (NTRS)
Klima, S. J.; Fisher, D. M.; Buzzard, R. J.
1975-01-01
An ultrasonic method was used to observe the onset of crack extension and to monitor continued crack growth in fracture toughness specimens during three point bend tests. A 20 MHz transducer was used with commercially available equipment to detect average crack extension less than 0.09 mm. The material tested was a 300-grade maraging steel in the annealed condition. A crack extension resistance curve was developed to demonstrate the usefulness of the ultrasonic method for minimizing the number of tests required to generate such curves.
Health insurance instability among older immigrants: region of origin disparities in coverage.
Reyes, Adriana M; Hardy, Melissa
2015-03-01
We provide a detailed analysis of how the dynamics of health insurance coverage (HIC) at older ages differs among Latino, Asian, and European immigrants in the United States. Using Survey of Income and Program Participation data from the 2004 and 2008 panels, we estimate discrete-time event history models to examine first and second transitions into and out of HIC, highlighting substantial differences in hazard rates among immigrants aged 50-64 from Asia, Latin America, and Europe. We find that the likelihood of having HIC at first observation and the rates of gaining and losing coverage within a relatively short time frame are least favorable for older Latino immigrants, although immigrants from all three regions are at a disadvantage relative to native-born non-Hispanic Whites. This disparity among immigrant groups persists even when lower rates of citizenship, greater difficulty with English, and low-skill job placements are taken into account. Factors that have contributed to the lower rates and shorter durations of HIC among older immigrants, particularly those from Latin America, may not be easily resolved by the Affordable Care Act. The importance of region of origin and assimilation characteristics for the risk of being uninsured in later life argues that immigration and health care policy should be jointly addressed. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Dynamic Moss Observed with Hi-C
NASA Technical Reports Server (NTRS)
Alexander, Caroline; Winebarger, Amy; Morton, Richard; Savage, Sabrina
2014-01-01
The High-resolution Coronal Imager (Hi-C), flown on 11 July 2012, has revealed an unprecedented level of detail and substructure within the solar corona. Hi--C imaged a large active region (AR11520) with 0.2-0.3'' spatial resolution and 5.5s cadence over a 5 minute period. An additional dataset with a smaller FOV, the same resolution, but with a higher temporal cadence (1s) was also taken during the rocket flight. This dataset was centered on a large patch of 'moss' emission that initially seemed to show very little variability. Image processing revealed this region to be much more dynamic than first thought with numerous bright and dark features observed to appear, move and disappear over the 5 minute observation. Moss is thought to be emission from the upper transition region component of hot loops so studying its dynamics and the relation between the bright/dark features and underlying magnetic features is important to tie the interaction of the different atmospheric layers together. Hi-C allows us to study the coronal emission of the moss at the smallest scales while data from SDO/AIA and HMI is used to give information on these structures at different heights/temperatures. Using the high temporal and spatial resolution of Hi-C the observed moss features were tracked and the distribution of displacements, speeds, and sizes were measured. This allows us to comment on both the physical processes occurring within the dynamic moss and the scales at which these changes are occurring.
Thermo-Mechanical Fatigue Crack Growth of RR1000
Pretty, Christopher John; Whitaker, Mark Thomas; Williams, Steve John
2017-01-01
Non-isothermal conditions during flight cycles have long led to the requirement for thermo-mechanical fatigue (TMF) evaluation of aerospace materials. However, the increased temperatures within the gas turbine engine have meant that the requirements for TMF testing now extend to disc alloys along with blade materials. As such, fatigue crack growth rates are required to be evaluated under non-isothermal conditions along with the development of a detailed understanding of related failure mechanisms. In the current work, a TMF crack growth testing method has been developed utilising induction heating and direct current potential drop techniques for polycrystalline nickel-based superalloys, such as RR1000. Results have shown that in-phase (IP) testing produces accelerated crack growth rates compared with out-of-phase (OOP) due to increased temperature at peak stress and therefore increased time dependent crack growth. The ordering of the crack growth rates is supported by detailed fractographic analysis which shows intergranular crack growth in IP test specimens, and transgranular crack growth in 90° OOP and 180° OOP tests. Isothermal tests have also been carried out for comparison of crack growth rates at the point of peak stress in the TMF cycles. PMID:28772394
Chow, Clara K; Corsi, Daniel J; Gilmore, Anna B; Kruger, Annamarie; Igumbor, Ehimario; Chifamba, Jephat; Yang, Wang; Wei, Li; Iqbal, Romaina; Mony, Prem; Gupta, Rajeev; Vijayakumar, Krishnapillai; Mohan, V; Kumar, Rajesh; Rahman, Omar; Yusoff, Khalid; Ismail, Noorhassim; Zatonska, Katarzyna; Altuntas, Yuksel; Rosengren, Annika; Bahonar, Ahmad; Yusufali, AfzalHussein; Dagenais, Gilles; Lear, Scott; Diaz, Rafael; Avezum, Alvaro; Lopez-Jaramillo, Patricio; Lanas, Fernando; Rangarajan, Sumathy; Teo, Koon; McKee, Martin; Yusuf, Salim
2017-03-31
This study examines in a cross-sectional study 'the tobacco control environment' including tobacco policy implementation and its association with quit ratio. 545 communities from 17 high-income, upper-middle, low-middle and low-income countries (HIC, UMIC, LMIC, LIC) involved in the Environmental Profile of a Community's Health (EPOCH) study from 2009 to 2014. Community audits and surveys of adults (35-70 years, n=12 953). Summary scores of tobacco policy implementation (cost and availability of cigarettes, tobacco advertising, antismoking signage), social unacceptability and knowledge were associated with quit ratios (former vs ever smokers) using multilevel logistic regression models. Average tobacco control policy score was greater in communities from HIC. Overall 56.1% (306/545) of communities had >2 outlets selling cigarettes and in 28.6% (154/539) there was access to cheap cigarettes (<5cents/cigarette) (3.2% (3/93) in HIC, 0% UMIC, 52.6% (90/171) LMIC and 40.4% (61/151) in LIC). Effective bans (no tobacco advertisements) were in 63.0% (341/541) of communities (81.7% HIC, 52.8% UMIC, 65.1% LMIC and 57.6% LIC). In 70.4% (379/538) of communities, >80% of participants disapproved youth smoking (95.7% HIC, 57.6% UMIC, 76.3% LMIC and 58.9% LIC). The average knowledge score was >80% in 48.4% of communities (94.6% HIC, 53.6% UMIC, 31.8% LMIC and 35.1% LIC). Summary scores of policy implementation, social unacceptability and knowledge were positively and significantly associated with quit ratio and the associations varied by gender, for example, communities in the highest quintile of the combined scores had 5.0 times the quit ratio in men (Odds ratio (OR) 5·0, 95% CI 3.4 to 7.4) and 4.1 times the quit ratio in women (OR 4.1, 95% CI 2.4 to 7.1). This study suggests that more focus is needed on ensuring the tobacco control policy is actually implemented, particularly in LMICs. The gender-related differences in associations of policy, social unacceptability and knowledge suggest that different strategies to promoting quitting may need to be implemented in men compared to women. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Periodic Overload and Transport Spectrum Fatigue Crack Growth Tests of Ti62222STA and Al2024T3 Sheet
NASA Technical Reports Server (NTRS)
Phillips, Edward P.
1999-01-01
Variable amplitude loading crack growth tests have been conducted to provide data that can be used to evaluate crack growth prediction codes. Tests with periodic overloads or overloads followed by underloads were conducted on titanium alloy Ti-6Al-2Sn-2Zr-2Mo-2Cr solution treated and aged (Ti62222STA) material at room temperature and at 350 F. Spectrum fatigue crack growth tests were conducted on two materials (Ti62222STA and aluminum alloy 2024-T3) using two transport lower-wing test spectra at two temperatures (room temperature and 350 F (Ti only)). Test lives (growth from an initial crack half-length of 0.15 in. to failure) were recorded in all tests and the crack length against cycles (or flights) data were recorded in many of the tests. The following observations were made regarding the test results: (1) in tests of the Ti62222STA material, the tests at 350 F had longer lives than those at room temperature, (2) in tests to the MiniTwist spectrum, the Al2024T3 material showed much greater crack growth retardations due to the highest stresses in the spectrum than did the Ti62222STA material, and (3) comparisons of material crack growth performances on an "equal weight" basis were spectrum dependent.
NASA Astrophysics Data System (ADS)
Qi, Pan; Shao, Wenbin; Liao, Shusheng
2016-02-01
For quantitative defects detection research on heat transfer tube in nuclear power plants (NPP), two parts of work are carried out based on the crack as the main research objects. (1) Production optimization of calibration tube. Firstly, ASME, RSEM and homemade crack calibration tubes are applied to quantitatively analyze the defects depth on other designed crack test tubes, and then the judgment with quantitative results under crack calibration tube with more accuracy is given. Base on that, weight analysis of influence factors for crack depth quantitative test such as crack orientation, length, volume and so on can be undertaken, which will optimize manufacture technology of calibration tubes. (2) Quantitative optimization of crack depth. Neural network model with multi-calibration curve adopted to optimize natural crack test depth generated in in-service tubes shows preliminary ability to improve quantitative accuracy.
Detecting Gear Tooth Fatigue Cracks in Advance of Complete Fracture
NASA Technical Reports Server (NTRS)
Zakrajsek, James J.; Lewicki, David G.
1996-01-01
Results of using vibration-based methods to detect gear tooth fatigue cracks are presented. An experimental test rig was used to fail a number of spur gear specimens through bending fatigue. The gear tooth fatigue crack in each test was initiated through a small notch in the fillet area of a tooth on the gear. The primary purpose of these tests was to verify analytical predictions of fatigue crack propagation direction and rate as a function of gear rim thickness. The vibration signal from a total of three tests was monitored and recorded for gear fault detection research. The damage consisted of complete rim fracture on the two thin rim gears and single tooth fracture on the standard full rim test gear. Vibration-based fault detection methods were applied to the vibration signal both on-line and after the tests were completed. The objectives of this effort were to identify methods capable of detecting the fatigue crack and to determine how far in advance of total failure positive detection was given. Results show that the fault detection methods failed to respond to the fatigue crack prior to complete rim fracture in the thin rim gear tests. In the standard full rim gear test all of the methods responded to the fatigue crack in advance of tooth fracture; however, only three of the methods responded to the fatigue crack in the early stages of crack propagation.
Investigation of Low-Cycle Bending Fatigue of AISI 9310 Steel Spur Gears
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Krantz, Timothy L.; Lerch, Bradley A.; Burke, Christopher S.
2007-01-01
An investigation of the low-cycle bending fatigue of spur gears made from AISI 9310 gear steel was completed. Tests were conducted using the single-tooth bending method to achieve crack initiation and propagation. Tests were conducted on spur gears in a fatigue test machine using a dedicated gear test fixture. Test loads were applied at the highest point of single tooth contact. Gear bending stresses for a given testing load were calculated using a linear-elastic finite element model. Test data were accumulated from 1/4 cycle to several thousand cycles depending on the test stress level. The relationship of stress and cycles for crack initiation was found to be semi-logarithmic. The relationship of stress and cycles for crack propagation was found to be linear. For the range of loads investigated, the crack propagation phase is related to the level of load being applied. Very high loads have comparable crack initiation and propagation times whereas lower loads can have a much smaller number of cycles for crack propagation cycles as compared to crack initiation.
Investigation of Low-Cycle Bending Fatigue of AISI 9310 Steel Spur Gears
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Krantz, Timothy L.; Lerch, Bradley A.; Burke, Christopher S.
2007-01-01
An investigation of the low-cycle bending fatigue of spur gears made from AISI 9310 gear steel was completed. Tests were conducted using the single-tooth bending method to achieve crack initiation and propagation. Tests were conducted on spur gears in a fatigue test machine using a dedicated gear test fixture. Test loads were applied at the highest point of single tooth contact. Gear bending stresses for a given testing load were calculated using a linear-elastic finite element model. Test data were accumulated from 1/4 cycle to several thousand cycles depending on the test stress level. The relationship of stress and cycles for crack initiation was found to be semilogarithmic. The relationship of stress and cycles for crack propagation was found to be linear. For the range of loads investigated, the crack propagation phase is related to the level of load being applied. Very high loads have comparable crack initiation and propagation times whereas lower loads can have a much smaller number of cycles for crack propagation cycles as compared to crack initiation.
Champatisingh, D; Sahu, P K; Pal, A; Nanda, G S
2011-04-01
To assess the anticataleptic and antiepileptic activity of leaves of Mucuna pruriens in albino rats. Haloperidol-induced catalepsy (HIC), maximum electro-shock (MES) method, pilocarpine-induced Status epilepticus (PISE) and single-dose effect of M. pruriens were employed. M. pruriens (100 mg/kg) had significant anticataleptic and antiepileptic activity in HIC, MES, and PISE. M. pruriens extract has the potential to be an anticataleptic and antiepileptic drug. Dopamine and 5-HT may have a role in such activity.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-24
...This document proposes to amend Federal Motor Vehicle Safety Standard (FMVSS) No. 213, Child Restraint Systems, regarding a Hybrid III 10-year-old child test dummy that the agency seeks to use in the compliance test procedures of the standard. This document supplements a 2005 notice of proposed rulemaking (NPRM) and a 2008 SNPRM previously published in this rulemaking (RIN 2127-AJ44) regarding this test dummy. In the 2005 NPRM, in response to Anton's Law, NHTSA proposed to adopt the 10-year-old child test dummy into FMVSS No. 213 to test child restraints for older children. Subsequently, to address variation that was found in dummy readings due to chin-to-chest contact, NHTSA published the 2008 SNPRM to propose a NHTSA-developed procedure for positioning the test dummy in belt-positioning seats. Comments on the SNPRM objected to the positioning procedure, and some suggested an alternative procedure developed by the University of Michigan Transportation Research Institute (UMTRI). Today's SNPRM proposes to use the UMTRI procedure to position the test dummy rather than the NHTSA-developed procedure. We note that the 10-year-old child dummy may sometimes experience stiff contact between its chin and upper sternal bib region which may result in an unrealistically high value of the head injury criterion (HIC) \\1\\ referenced in the standard. Accordingly, NHTSA proposes that the dummy's HIC measurement will not be used to assess the compliance of the tested child restraint. This SNPRM also proposes other amendments to FMVSS No. 213, including a proposal to permit NHTSA to use, at the manufacturer's option, the Hybrid II or Hybrid III versions of the 6-year-old test dummy, and a proposal to use the UMTRI procedure to position the Hybrid III 6-year- old and 10-year-old dummies when testing belt-positioning seats. ---------------------------------------------------------------------------
Fatigue crack growth in 2024-T3 aluminum under tensile and transverse shear stresses
NASA Technical Reports Server (NTRS)
Viz, Mark J.; Zehnder, Alan T.
1994-01-01
The influence of transverse shear stresses on the fatigue crack growth rate in thin 2024-T3 aluminum alloy sheets is investigated experimentally. The tests are performed on double-edge cracked sheets in cyclic tensile and torsional loading. This loading generates crack tip stress intensity factors in the same ratio as the values computed for a crack lying along a lap joint in a pressurized aircraft fuselage. The relevant fracture mechanics of cracks in thin plates along with the details of the geometrically nonlinear finite element analyses used for the test specimen calibration are developed and discussed. Preliminary fatigue crack growth data correlated using the fully coupled stress intensity factor calibration are presented and compared with fatigue crack growth data from pure delta K(sub I)fatigue tests.
Fracture Behavior of Ceramics Under Displacement Controlled Loading
NASA Technical Reports Server (NTRS)
Calomino, Anthony; Brewer, David; Ghosn, Louis
1994-01-01
A Mode I fracture specimen and loading method has been developed which permits the observation of stable crack extension in monolithic and in situ toughened ceramics. The developed technique was used to conduct room temperature tests on commercial grade alumina (Coors' AD-995) and silicon nitride (Norton NC-132). The results of these tests are reported. Crack growth for the alumina remained subcritical throughout testing revealing possible effects of environmental stress corrosion. The crack growth resistance curve for the alumina is presented. The silicon nitride tests displayed a series of stable (slow) crack growth segments interrupted by dynamic (rapid) crack extension. Crack initiation and arrest stress intensity factors, K(sub Ic) and K(sub Ia), for silicon nitride are reported. The evolution of the specimen design through testing is briefly discussed.
NASA Technical Reports Server (NTRS)
Jacobs, Jeremy B.; Castner, Willard L.
2007-01-01
A viewgraph presentation describing cracks and failure analysis of an orbiter reaction control system is shown. The topics include: 1) Endeavour STS-113 Landing; 2) RCS Thruster; 3) Thruster Cross-Section; 4) RCS Injector; 5) RCS Thruster, S/N 120l 6) Counterbore Cracks; 7) Relief Radius Cracks; 8) RCS Thruster Cracking History; 9) Thruster Manufacturing Timelines; 10) Laboratory Reproduction of Injector Cracking; 11) The Brownfield Specimen; 12) HF EtchantTests/Specimen Loading; 13) Specimen #3 HF + 600F; 14) Specimen #3 IG Fracture; 15) Specimen #5 HF + 600F; 16) Specimen #5 Popcorn ; 17) Specimen #5 Cleaned and Bent; 18) HF Exposure Test Matrix; 19) Krytox143AC Tests; 20) KrytoxTests/Specimen Loading; 21) Specimen #13 Krytox + 600F; and 22) KrytoxExposure Test Matrix.
NASA Astrophysics Data System (ADS)
Ahmed, Abubaker Ali
As part of the structural integrity research of the National Aging Aircraft Research Program, a comprehensive study on multiple-site damage (MSD) initiation and growth in a pristine lap-joint fuselage panel has been conducted. The curved stiffened fuselage panel was tested at the Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility located at the Federal Aviation Administration William J. Hughes Technical Center. A strain survey test was conducted to verify proper load application. The panel was then subjected to a fatigue test with constant-amplitude cyclic loading. The applied loading spectrum included underload marker cycles so that crack growth history could be reconstructed from post-test fractographic examinations. Crack formation and growth were monitored via nondestructive and high-magnification visual inspections. Strain gage measurements recorded during the strain survey tests indicated that the inner surface of the skin along the upper rivet row of the lap joint experienced high tensile stresses due to local bending. During the fatigue loading, cracks were detected by eddy-current inspections at multiple rivet holes along the upper rivet row. Through-thickness cracks were detected visually after about 80% of the fatigue life. Once MSD cracks from two adjacent rivet holes linked up, there was a quick deterioration in the structural integrity of the lap joint. The linkup resulted in a 2.87" (72.9-mm) lead fatigue crack that rapidly propagated across 12 rivet holes and crossed over into the next skin bay, at which stage the fatigue test was terminated. A post-fatigue residual strength test was then conducted by loading the panel quasi-statically up to final failure. The panel failed catastrophically when the crack extended instantaneously across three additional bays. Post-test fractographic examinations of the fracture surfaces in the lap joint of the fuselage panel were conducted to characterize subsurface crack initiation and growth. Results showed evidence of fretting damage and crack initiation at multiple locations near the rivet holes along the faying surface of the skin. The subsurface cracks grew significantly along the faying surface before reaching the outer surface of the skin, forming elliptical crack fronts. A finite element model (FE) of the panel was constructed and geometrically-nonlinear analyses conducted to determine strain distribution under the applied loads. The FE model was validated by comparing the analysis results with the strain gage measurements recorded during the strain survey test. The validated FE model was then used to determine stress-intensity factors at the crack tips. Stress-intensity factor results indicated that crack growth in the lap joint was under mixed-mode; however, the opening-mode stress intensity factor was dominant. The stress-intensity factors computed from the FE analysis were used to conduct cycle-by-cycle integration of fatigue crack growth. In the cycle-by-cycle integration, the NASGRO crack growth model was used with its parameters selected to account for the effects of plasticity-induced crack closure and the test environment on crack growth rate. Fatigue crack growth predictions from cycle-by-cycle computation were in good agreement with the experimental measured crack growth data. The results of the study provide key insights into the natural development and growth of MSD cracks in the pristine lap joint. The data provided by the study represent a valuable source for the evaluation and validation of analytical methodologies used for predicting MSD crack initiation and growth.
NASA Astrophysics Data System (ADS)
Wang, Yiheng; Liu, Tong; Xu, Dong; Shi, Huidong; Zhang, Chaoyang; Mo, Yin-Yuan; Wang, Zheng
2016-01-01
The hypo- or hyper-methylation of the human genome is one of the epigenetic features of leukemia. However, experimental approaches have only determined the methylation state of a small portion of the human genome. We developed deep learning based (stacked denoising autoencoders, or SdAs) software named “DeepMethyl” to predict the methylation state of DNA CpG dinucleotides using features inferred from three-dimensional genome topology (based on Hi-C) and DNA sequence patterns. We used the experimental data from immortalised myelogenous leukemia (K562) and healthy lymphoblastoid (GM12878) cell lines to train the learning models and assess prediction performance. We have tested various SdA architectures with different configurations of hidden layer(s) and amount of pre-training data and compared the performance of deep networks relative to support vector machines (SVMs). Using the methylation states of sequentially neighboring regions as one of the learning features, an SdA achieved a blind test accuracy of 89.7% for GM12878 and 88.6% for K562. When the methylation states of sequentially neighboring regions are unknown, the accuracies are 84.82% for GM12878 and 72.01% for K562. We also analyzed the contribution of genome topological features inferred from Hi-C. DeepMethyl can be accessed at http://dna.cs.usm.edu/deepmethyl/.
Wang, Yiheng; Liu, Tong; Xu, Dong; Shi, Huidong; Zhang, Chaoyang; Mo, Yin-Yuan; Wang, Zheng
2016-01-22
The hypo- or hyper-methylation of the human genome is one of the epigenetic features of leukemia. However, experimental approaches have only determined the methylation state of a small portion of the human genome. We developed deep learning based (stacked denoising autoencoders, or SdAs) software named "DeepMethyl" to predict the methylation state of DNA CpG dinucleotides using features inferred from three-dimensional genome topology (based on Hi-C) and DNA sequence patterns. We used the experimental data from immortalised myelogenous leukemia (K562) and healthy lymphoblastoid (GM12878) cell lines to train the learning models and assess prediction performance. We have tested various SdA architectures with different configurations of hidden layer(s) and amount of pre-training data and compared the performance of deep networks relative to support vector machines (SVMs). Using the methylation states of sequentially neighboring regions as one of the learning features, an SdA achieved a blind test accuracy of 89.7% for GM12878 and 88.6% for K562. When the methylation states of sequentially neighboring regions are unknown, the accuracies are 84.82% for GM12878 and 72.01% for K562. We also analyzed the contribution of genome topological features inferred from Hi-C. DeepMethyl can be accessed at http://dna.cs.usm.edu/deepmethyl/.
A preliminary study of crack initiation and growth at stress concentration sites
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Gallagher, J. P.; Hartman, G. A.; Rajendran, A. M.
1982-01-01
Crack initiation and propagation models for notches are examined. The Dowling crack initiation model and the E1 Haddad et al. crack propagation model were chosen for additional study. Existing data was used to make a preliminary evaluation of the crack propagation model. The results indicate that for the crack sizes in the test, the elastic parameter K gave good correlation for the crack growth rate data. Additional testing, directed specifically toward the problem of small cracks initiating and propagating from notches is necessary to make a full evaluation of these initiation and propagation models.
Mode I and mixed I/III crack initiation and propagation behavior of V-4Cr-4Ti alloy at 25{degrees}C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, H.X.; Kurtz, R.J.; Jones, R.H.
1997-04-01
The mode I and mixed-mode I/III fracture behavior of the production-scale heat (No. 832665) of V-4Cr-4Ti has been investigated at 25{degrees}C using compact tension (CT) specimens for a mode I crack and modified CT specimens for a mixed-mode I/III crack. The mode III to mode I load ratio was 0.47. Test specimens were vacuum annealed at 1000{degrees}C for 1 h after final machining. Both mode I and mixed-mode I/III specimens were fatigue cracked prior to J-integral testing. It was noticed that the mixed-mode I/III crack angle decreased from an initial 25 degrees to approximately 23 degrees due to crack planemore » rotation during fatigue cracking. No crack plane rotation occurred in the mode I specimen. The crack initiation and propagation behavior was evaluated by generating J-R curves. Due to the high ductility of this alloy and the limited specimen thickness (6.35 mm), plane strain requirements were not met so valid critical J-integral values were not obtained. However, it was found that the crack initiation and propagation behavior was significantly different between the mode I and the mixed-mode I/III specimens. In the mode I specimen crack initiation did not occur, only extensive crack tip blunting due to plastic deformation. During J-integral testing the mixed-mode crack rotated to an increased crack angle (in contrast to fatigue precracking) by crack blunting. When the crack initiated, the crack angle was about 30 degrees. After crack initiation the crack plane remained at 30 degrees until the test was completed. Mixed-mode crack initiation was difficult, but propagation was easy. The fracture surface of the mixed-mode specimen was characterized by microvoid coalescence.« less
Photomultiplier tube failure under hydrostatic pressure in future neutrino detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chambliss, K.; Diwan, M.; Simos, N.
Failure of photomultiplier tubes (PMTs) under hydrostatic pressure is a concern in neutrino detection, specifically, in the proposed Long-Baseline Neutrino Experiment project. Controlled hydrostatic implosion tests were performed on prototypic PMT bulbs of 10-inch diameter and recorded using high speed filming techniques to capture failures in detail. These high-speed videos were analyzed frame-by-frame in order to identify the origin of a crack, measure the progression of individual crack along the surface of the bulb as it propagates through the glass, and estimate crack velocity. Crack velocity was calculated for each individual crack, and an average velocity was determined for allmore » measurable cracks on each bulb. Overall, 32 cracks were measured in 9 different bulbs tested. Finite element modeling (FEM) of crack formation and growth in prototypic PMT shows stress concentration near the middle section of the PMT bulbs that correlates well with our crack velocity measurements in that section. The FEM model predicts a crack velocity value that is close to the terminal crack velocity reported. Our measurements also reveal significantly reduced crack velocities compared to terminal crack velocities measured in glasses using fracture mechanics testing and reported in literature.« less
Photomultiplier tube failure under hydrostatic pressure in future neutrino detectors
Chambliss, K.; Diwan, M.; Simos, N.; ...
2014-10-09
Failure of photomultiplier tubes (PMTs) under hydrostatic pressure is a concern in neutrino detection, specifically, in the proposed Long-Baseline Neutrino Experiment project. Controlled hydrostatic implosion tests were performed on prototypic PMT bulbs of 10-inch diameter and recorded using high speed filming techniques to capture failures in detail. These high-speed videos were analyzed frame-by-frame in order to identify the origin of a crack, measure the progression of individual crack along the surface of the bulb as it propagates through the glass, and estimate crack velocity. Crack velocity was calculated for each individual crack, and an average velocity was determined for allmore » measurable cracks on each bulb. Overall, 32 cracks were measured in 9 different bulbs tested. Finite element modeling (FEM) of crack formation and growth in prototypic PMT shows stress concentration near the middle section of the PMT bulbs that correlates well with our crack velocity measurements in that section. The FEM model predicts a crack velocity value that is close to the terminal crack velocity reported. Our measurements also reveal significantly reduced crack velocities compared to terminal crack velocities measured in glasses using fracture mechanics testing and reported in literature.« less
Law, Iain R; Walters, Lucie
2015-11-11
Previous studies have demonstrated a correlation between medical students who undertake international medical electives (IMEs) in resource poor settings and their reported career preference for primary care in underserved areas such as rural practice. This study examines whether a similar correlation exists in the Australian medical school context. Data was extracted from the Medical Schools Outcomes Database (MSOD) of Australian medical students that completed commencing student and exit questionnaires between 2006 and 2011. Student responses were categorized according to preferred training program and preferred region of practice at commencement. The reported preferences at exit of students completing IMEs in low and middle income countries (LMIC) were compared to those completing electives in high income countries (HIC). The effect of elective experience for students expressing a preference for primary care at commencement was non-significant, with 40.32 % of LMIC and 42.11 % of HIC students maintaining a preference for primary care. Similarly there were no significant changes following LMIC electives for students expressing a preference for specialist training at commencement with 11.81 % of LMIC and 10.23 % of HIC students preferring primary care at exit. The effect of elective experience for students expressing a preference for rural practice at commencement was non-significant, with 41.51 % of LMIC and 49.09 % of HIC students preferring rural practice at exit. Similarly there were no significant changes following LMIC electives for students expressing a preference for urban practice at commencement, with 7.84 % of LMIC and 6.70 % of HIC students preferring rural practice at exit. This study did not demonstrate an association between elective experience in resource poor settings and a preference for primary care or rural practice. This suggests that the previously observed correlation between LMIC electives and interest in primary care in disadvantaged communities is likely dependent on student and elective program characteristics and supports the need for further research and critical examination of elective programs at Australian medical schools.
A method for evaluating the fatigue crack growth in spiral notch torsion fracture toughness test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jy -An John; Tan, Ting
The spiral notch torsion test (SNTT) has been a recent breakthrough in measuring fracture toughness for different materials, including metals, ceramics, concrete, and polymers composites. Due to its high geometry constraint and unique loading condition, SNTT can be used to measure the fracture toughness with smaller specimens without concern of size effects. The application of SNTT to brittle materials has been proved to be successful. The micro-cracks induced by original notches in brittle materials could ensure crack growth in SNTT samples. Therefore, no fatigue pre-cracks are needed. The application of SNTT to the ductile material to generate valid toughness datamore » will require a test sample with sufficient crack length. Fatigue pre-crack growth techniques are employed to introduce sharp crack front into the sample. Previously, only rough calculations were applied to estimate the compliance evolution in the SNTT crack growth process, while accurate quantitative descriptions have never been attempted. This generates an urgent need to understand the crack evolution during the SNTT fracture testing process of ductile materials. Here, the newly developed governing equations for SNTT crack growth estimate are discussed in the paper.« less
A method for evaluating the fatigue crack growth in spiral notch torsion fracture toughness test
Wang, Jy -An John; Tan, Ting
2018-05-21
The spiral notch torsion test (SNTT) has been a recent breakthrough in measuring fracture toughness for different materials, including metals, ceramics, concrete, and polymers composites. Due to its high geometry constraint and unique loading condition, SNTT can be used to measure the fracture toughness with smaller specimens without concern of size effects. The application of SNTT to brittle materials has been proved to be successful. The micro-cracks induced by original notches in brittle materials could ensure crack growth in SNTT samples. Therefore, no fatigue pre-cracks are needed. The application of SNTT to the ductile material to generate valid toughness datamore » will require a test sample with sufficient crack length. Fatigue pre-crack growth techniques are employed to introduce sharp crack front into the sample. Previously, only rough calculations were applied to estimate the compliance evolution in the SNTT crack growth process, while accurate quantitative descriptions have never been attempted. This generates an urgent need to understand the crack evolution during the SNTT fracture testing process of ductile materials. Here, the newly developed governing equations for SNTT crack growth estimate are discussed in the paper.« less
The Effect of the Laboratory Specimen on Fatigue Crack Growth Rate
NASA Technical Reports Server (NTRS)
Forth, S. C.; Johnston, W. M.; Seshadri, B. R.
2006-01-01
Over the past thirty years, laboratory experiments have been devised to develop fatigue crack growth rate data that is representative of the material response. The crack growth rate data generated in the laboratory is then used to predict the safe operating envelope of a structure. The ability to interrelate laboratory data and structural response is called similitude. In essence, a nondimensional term, called the stress intensity factor, was developed that includes the applied stresses, crack size and geometric configuration. The stress intensity factor is then directly related to the rate at which cracks propagate in a material, resulting in the material property of fatigue crack growth response. Standardized specimen configurations and experimental procedures have been developed for laboratory testing to generate crack growth rate data that supports similitude of the stress intensity factor solution. In this paper, the authors present laboratory fatigue crack growth rate test data and finite element analyses that show similitude between standard specimen configurations tested using the constant stress ratio test method is unobtainable.
Krafft, Axel J; Loeffler, Ralf B; Song, Ruitian; Tipirneni-Sajja, Aaryani; McCarville, M Beth; Robson, Matthew D; Hankins, Jane S; Hillenbrand, Claudia M
2017-11-01
Hepatic iron content (HIC) quantification via transverse relaxation rate (R2*)-MRI using multi-gradient echo (mGRE) imaging is compromised toward high HIC or at higher fields due to the rapid signal decay. Our study aims at presenting an optimized 2D ultrashort echo time (UTE) sequence for R2* quantification to overcome these limitations. Two-dimensional UTE imaging was realized via half-pulse excitation and radial center-out sampling. The sequence includes chemically selective saturation pulses to reduce streaking artifacts from subcutaneous fat, and spatial saturation (sSAT) bands to suppress out-of-slice signals. The sequence employs interleaved multi-echo readout trains to achieve dense temporal sampling of rapid signal decays. Evaluation was done at 1.5 Tesla (T) and 3T in phantoms, and clinical applicability was demonstrated in five patients with biopsy-confirmed massively high HIC levels (>25 mg Fe/g dry weight liver tissue). In phantoms, the sSAT pulses were found to remove out-of-slice contamination, and R2* results were in excellent agreement to reference mGRE R2* results (slope of linear regression: 1.02/1.00 for 1.5/3T). UTE-based R2* quantification in patients with massive iron overload proved successful at both field strengths and was consistent with biopsy HIC values. The UTE sequence provides a means to measure R2* in patients with massive iron overload, both at 1.5T and 3T. Magn Reson Med 78:1839-1851, 2017. © 2017 Wiley Periodicals, Inc. © 2017 International Society for Magnetic Resonance in Medicine.
Regional variation in acute stroke care organisation.
Muñoz Venturelli, Paula; Robinson, Thompson; Lavados, Pablo M; Olavarría, Verónica V; Arima, Hisatomi; Billot, Laurent; Hackett, Maree L; Lim, Joyce Y; Middleton, Sandy; Pontes-Neto, Octavio; Peng, Bin; Cui, Liying; Song, Lily; Mead, Gillian; Watkins, Caroline; Lin, Ruey-Tay; Lee, Tsong-Hai; Pandian, Jeyaraj; de Silva, H Asita; Anderson, Craig S
2016-12-15
Few studies have assessed regional variation in the organisation of stroke services, particularly health care resourcing, presence of protocols and discharge planning. Our aim was to compare stroke care organisation within middle- (MIC) and high-income country (HIC) hospitals participating in the Head Position in Stroke Trial (HeadPoST). HeadPoST is an on-going international multicenter crossover cluster-randomized trial of 'sitting-up' versus 'lying-flat' head positioning in acute stroke. As part of the start-up phase, one stroke care organisation questionnaire was completed at each hospital. The World Bank gross national income per capita criteria were used for classification. 94 hospitals from 9 countries completed the questionnaire, 51 corresponding to MIC and 43 to HIC. Most participating hospitals had a dedicated stroke care unit/ward, with access to diagnostic services and expert stroke physicians, and offering intravenous thrombolysis. There was no difference for the presence of a dedicated multidisciplinary stroke team, although greater access to a broad spectrum of rehabilitation therapists in HIC compared to MIC hospitals was observed. Significantly more patients arrived within a 4-h window of symptoms onset in HIC hospitals (41 vs. 13%; P<0.001), and a significantly higher proportion of acute ischemic stroke patients received intravenous thrombolysis (10 vs. 5%; P=0.002) compared to MIC hospitals. Although all hospitals provided advanced care for people with stroke, differences were found in stroke care organisation and treatment. Future multilevel analyses aims to determine the influence of specific organisational factors on patient outcomes. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Dyk, Jacob
Purpose: There is an increasing awareness of the disparity in Medical Physics needs between high income countries (HICs) and low-to-middle income countries (LMICs). This is especially evident with the growing incidence of cancer in LMICs. Projections from the recent Lancet Oncology Commission on Expanding Global Access to Radiotherapy indicate that an additional 22,000 Medical Physicists will be required by 2035 to provide uniform access to radiation therapy globally. This paper addresses possibilities and challenges associated with closing the Medical Physics gap between HICs and LMICs. Methods: Medical Physics and Oncology related organizations involved in providing support to enhance cancer therapymore » in LMICs were reviewed, especially as related to education, training and human resource development. Results: More than 35 organizations involved in addressing the cancer crisis in LMICs were found. Of these, 16 involve Medical Physics activities, with 7 being specific Medical Physics-related organizations. Ten of the 16 are involved in some LMIC activities with 6 having a major emphasis on LMIC contexts. Conclusions: The development of Medical Physics human resource capacity is a major challenge for LMICs. Fifty-five countries have no radiation therapy capabilities and by implication no capacity to train Medical Physicists. Overt attention with structured and altruistic actions by HIC contexts will help make inroads into the LMIC needs. Clear options throughout career structures in support of global health considerations combined with strong partnerships between interested parties in HICs and LMICs will enhance the development of safe and resource-appropriate strategies for advancing Medical Physics capabilities.« less
Ibarra-Herrera, Celeste C; Reddy-Vennapusa, Rami; Rito-Palomares, Marco; Fernández-Lahore, Marcelo
2013-12-01
Hydrophobic interaction chromatography (HIC) is an important tool in the industrial purification of proteins from various sources. The HIC separation behavior of individual (or model) proteins has been widely researched by others. On the contrary, this study focused on the fractionation ability of HIC when it is challenged with whole proteomes. The impact of the nature of three different proteomes, that is, yeast, soybean, and Chinese hamster ovary cells, on HIC separation was investigated. In doing so, chromatography fractions obtained under standardized conditions were evaluated in terms of their overall hydrophobicity--as measured by fluorescence dye binding. This technique allowed for the calculation of an average protein surface hydrophobicity (S(0)) for each fraction; a unique correlation between S(0) and the observed chromatographic behavior was established in each case. Following a similar strategy, the effect of three different ligands (polypropylene glycol, phenyl, and butyl) and two adsorbent particle sizes (65 and 100 µm) on the chromatographic behavior of the yeast proteome was evaluated. As expected, the superficial hydrophobicity of the proteins eluted is correlated with the salt concentration of its corresponding elution step. The findings reveled how--and in which extent--the type of ligand and the size of the beads actually influenced the fractionation of the complex biological mixture. Summarizing, the approach presented here can be instrumental to the study of the performance of chromatography adsorbents under conditions close to industrial practice and to the development of downstream processing strategies. Copyright © 2013 John Wiley & Sons, Ltd.
Global increase and geographic convergence in antibiotic consumption between 2000 and 2015
Van Boeckel, Thomas P.; Martinez, Elena M.; Pant, Suraj; Gandra, Sumanth; Levin, Simon A.; Goossens, Herman
2018-01-01
Tracking antibiotic consumption patterns over time and across countries could inform policies to optimize antibiotic prescribing and minimize antibiotic resistance, such as setting and enforcing per capita consumption targets or aiding investments in alternatives to antibiotics. In this study, we analyzed the trends and drivers of antibiotic consumption from 2000 to 2015 in 76 countries and projected total global antibiotic consumption through 2030. Between 2000 and 2015, antibiotic consumption, expressed in defined daily doses (DDD), increased 65% (21.1–34.8 billion DDDs), and the antibiotic consumption rate increased 39% (11.3–15.7 DDDs per 1,000 inhabitants per day). The increase was driven by low- and middle-income countries (LMICs), where rising consumption was correlated with gross domestic product per capita (GDPPC) growth (P = 0.004). In high-income countries (HICs), although overall consumption increased modestly, DDDs per 1,000 inhabitants per day fell 4%, and there was no correlation with GDPPC. Of particular concern was the rapid increase in the use of last-resort compounds, both in HICs and LMICs, such as glycylcyclines, oxazolidinones, carbapenems, and polymyxins. Projections of global antibiotic consumption in 2030, assuming no policy changes, were up to 200% higher than the 42 billion DDDs estimated in 2015. Although antibiotic consumption rates in most LMICs remain lower than in HICs despite higher bacterial disease burden, consumption in LMICs is rapidly converging to rates similar to HICs. Reducing global consumption is critical for reducing the threat of antibiotic resistance, but reduction efforts must balance access limitations in LMICs and take account of local and global resistance patterns. PMID:29581252
Eichbaum, Quentin
2017-04-01
Many health professions education programs in high-income countries (HICs) have adopted a competency-based approach to learning. Although global health programs have followed this trend, defining and assessing competencies has proven problematic, particularly in resource-constrained settings of low- and middle-income countries (LMICs) where HIC students and trainees perform elective work. In part, this is due to programs failing to take sufficient account of local learning, cultural, and health contexts.A major divide between HIC and LMIC settings is that the learning contexts of HICs are predominantly individualist, whereas those of LMICs are generally collectivist. Individualist cultures view learning as something that the individual acquires independent of context and can possess; collectivist cultures view learning as arising dynamically from specific contexts through group participation.To bridge the individualist-collectivist learning divide, the author proposes that competencies be classified as either acquired or participatory. Acquired competencies can be transferred across contexts and assessed using traditional psychometric approaches; participatory competencies are linked to contexts and require alternative assessment approaches. The author proposes assessing participatory competencies through the approach of self-directed assessment seeking, which includes multiple members of the health care team as assessors.The proposed classification of competencies as acquired or participatory may apply across health professions. The author suggests advancing participatory competencies through mental models of sharing. In global health education, the author recommends developing three new competency domains rooted in participatory learning, collectivism, and sharing: resourceful learning; transprofessionalism and transformative learning; and social justice and health equity.
NASA Technical Reports Server (NTRS)
Elber, W.
1973-01-01
The fracture strength and cyclic crack-growth properties of surface-flawed, shot-peened D6AC steel plate were investigated. For short crack lengths (up to 1.5mm) simple linear elastic fracture mechanics - based only on applied loading - did not predict the fracture strengths. Also, Paris' Law for cyclic crack growth did not correlate the crack-growth behavior. To investigate the effect of shot-peening, additional fracture and crack-growth tests were performed on material which was precompressed to remove the residual stresses left by the shot-peening. Both tests and analysis show that the shot-peening residual stresses influence the fracture and crack-growth properties of the material. The analytical method of compensating for residual stresses and the fracture and cyclic crack-growth test results and predictions are presented.
Effects of shot-peening residual stresses on the fracture and crack-growth properties of D6AC steel
NASA Technical Reports Server (NTRS)
Elber, W.
1974-01-01
The fracture strength and cyclic crack-growth properties of surface-flawed, shot-peened D6AC steel plate were investigated. For short crack lengths (up to 1.5 mm) simple linear elastic fracture mechanics - based only on applied loading - did not predict the fracture strengths. Also, Paris' Law for cyclic crack growth did not correlate the crack-growth behavior. To investigate the effect of shot-peening, additional fracture and crack-growth tests were performed on material which was precompressed to remove the residual stresses left by the shot-peening. Both tests and analysis show that shot-peening residual stresses influence the fracture and crack-growth properties of the material. This report presents the analytical method of compensating for residual stresses and the fracture and cyclic crack-growth test results and predictions.
Characterization of Cracking and Crack Growth Properties of the C5A Aircraft Tie-Box Forging
NASA Technical Reports Server (NTRS)
Piascik, Robert S.; Smith, Stephen W.; Newman, John A.; Willard, Scott A.
2003-01-01
Detailed destructive examinations were conducted to characterize the integrity and material properties of two aluminum alloy (7075-T6) horizontal stabilizer tie box forgings removed.from US. Air Force C5A and C5B transport aircraft. The C5B tie box forging was,found to contain no evidence of cracking. Thirteen cracks were found in the CSA,forging. All but one of the cracks observed in the C5A component were located along the top cap region (one crack was located in the bottom cap region). The cracks in the C5A component initiated at fastener holes and propagated along a highly tunneled intergranular crack path. The tunneled crack growth configuration is a likelv result of surface compressive stress produced during peening of the .forging suijace. The tie box forging ,fatigue crack growth, fracture and stress corrosion cracking (SCC) properties were characterized. Reported herein are the results of laboratory air ,fatigue crack growth tests and 95% relative humidity SCC tests conducted using specimens machined from the C5A ,forging. SCC test results revealed that the C5A ,forging material was susceptible to intergranular environmental assisted cracking: the C5A forging material exhibited a SCC crack-tip stress-intensity factor threshold of less than 6 MPadn. Fracture toughness tests revealed that the C5A forging material exhibited a fracture toughness that was 25% less than the C5B forging. The C5A forging exhibited rapid laboratory air fatigue crack growth rates having a threshold crack-tip stress-intensity factor range of less than 0.8 MPa sup m. Detailed fractographic examinations revealed that the ,fatigue crack intergranular growth crack path was similar to the cracking observed in the C5A tie box forging. Because both fatigue crack propagation and SCC exhibit similar intergranular crack path behavior, the damage mechanism resulting in multi-site cracking of tie box forgings cannot be determined unless local cyclic stresses can be quantified.
Liu, Fuming; Dong, Aixia; Liu, Chaoqun; Wu, Wenqing
2018-01-01
In this study, the asphalt mixture (porosity <2%) was tested for use between the upper and middle layers of the asphalt pavement to improve its interlayer structure and to enhance its related waterproof and anti-cracking ability. Considering the weather characteristics and traffic conditions in Jiangxi Province, appropriate raw materials were selected. Based on the technical indexes of the raw materials, expected porosity (<2%), and AC-5 standard for the asphalt mixture, experiments were conducted to determine the best gradation range of the waterproof and anti-cracking layer, and to obtain the optimum amount of the asphalt and fiber used based on Marshall tests. The high-temperature rutting test, low-temperature cracking test, and water stability test were conducted to evaluate the pavement performance of the waterproof and anti-cracking layer. A waterproof and anti-cracking layer was added between the upper and middle layers of the asphalt pavement, which has excellent performance for avoiding cracks and water damage.
NASA Technical Reports Server (NTRS)
Hall, L. R.; Finger, R. W.
1972-01-01
Fracture and crack growth resistance characteristics of 304 stainless steel alloy weldments as relating to retesting of cryogenic vessels were examined. Welding procedures were typical of those used in full scale vessel fabrication. Fracture resistance survey tests were conducted in room temperature air, liquid nitrogen and liquid hydrogen. In air, both surface-flawed and center-cracked panels containing cracks in weld metal, fusion line, heat-affected zone, or parent metal were tested. In liquid nitrogen and liquid hydrogen, tests were conducted using center-cracked panels containing weld centerline cracks. Load-unload, sustained load, and cyclic load tests were performed in air or hydrogen gas, liquid nitrogen, and liquid hydrogen using surface-flawed specimens containing weld centerline cracks. Results were used to evaluate the effectiveness of periodic proof overloads in assuring safe and reliable operation of over-the-road cryogenic dewars.
Kinetics and microscopic processes of long term fracture in polyethylene piping materials
NASA Astrophysics Data System (ADS)
Brown, N.; Lu, X.
1992-07-01
The report contains 9 completed works as follows: The Dependence of Slow Crack Growth in a Polyethylene Copolymer on Testing Temperature and Morphology; A Test of Slow Crack Growth Failure of PE Under Constant Load; Effect of Annealing on Slow Crack Growth in an Ethylene-Hexene Copolymer; The Fundamental Material Parameters that Govern Slow Crack Growth in Linear Polyethylene; Slow Crack Growth in Blends of HDPE and UHMWPE; The Mechanism of Fatigue Failure in a Polyethylene Copolymer; PENT Quality Control Test for PE Gas Pipes and Resins; International Round Robin Study of a Fatigue Test Approach to the Ranking of Polyethylene Pipe Material; and Proposed ASTM Specification for ASTM F17.40 Test Methods Committee.
NASA Astrophysics Data System (ADS)
Falk, Martin; Naumova, Natasha; Fudenberg, Geoffrey; Feodorova, Yana; Imakaev, Maxim; Dekker, Job; Solovei, Irina; Mirny, Leonid
The organization of interphase nuclei differs dramatically across cell types in a functionally-relevant fashion. A striking example is found in the rod photoreceptors of nocturnal mammals, where the conventional nuclear organization is inverted. In particular, in murine rods, constitutive heterochromatin is packed into a single chromocenter in the nuclear center, which is encircled by a shell of facultative heterochromatin and then by an outermost shell of euchromatin. Surprisingly, Hi-C maps of conventional and inverted nuclei display remarkably similar compartmentalization between heterochromatin and euchromatin. Here, we simulate a de novo polymer model that is capable of replicating both conventional and inverted geometries while preserving the patterns of compartmentalization as observed by Hi-C. In this model, chromatin is a polymer composed of three classes of monomers arranged in blocks representing constitutive heterochromatin, facultative heterochromatin, and euchromatin. Different classes of monomers have different levels of attraction to each other and to the nuclear lamina. Our results indicate that preferential interactions between facultative heterochromatin and constitutive heterochromatin provide a possible mechanism to explain nuclear inversion when association with the lamina is lost.
Bobály, Balázs; Randazzo, Giuseppe Marco; Rudaz, Serge; Guillarme, Davy; Fekete, Szabolcs
2017-01-20
The goal of this work was to evaluate the potential of non-linear gradients in hydrophobic interaction chromatography (HIC), to improve the separation between the different homologous species (drug-to-antibody, DAR) of commercial antibody-drug conjugates (ADC). The selectivities between Brentuximab Vedotin species were measured using three different gradient profiles, namely linear, power function based and logarithmic ones. The logarithmic gradient provides the most equidistant retention distribution for the DAR species and offers the best overall separation of cysteine linked ADC in HIC. Another important advantage of the logarithmic gradient, is its peak focusing effect for the DAR0 species, which is particularly useful to improve the quantitation limit of DAR0. Finally, the logarithmic behavior of DAR species of ADC in HIC was modelled using two different approaches, based on i) the linear solvent strength theory (LSS) and two scouting linear gradients and ii) a new derived equation and two logarithmic scouting gradients. In both cases, the retention predictions were excellent and systematically below 3% compared to the experimental values. Copyright © 2016 Elsevier B.V. All rights reserved.
Mirzaei, Reza; Saei, Azad; Torkashvand, Fatemeh; Azarian, Bahareh; Jalili, Ahmad; Noorbakhsh, Farshid; Vaziri, Behrouz; Hadjati, Jamshid
2016-08-01
Dendritic cells (DCs) are potent antigen-presenting cells (APCs) that can promote antitumor immunity when pulsed with tumor antigens and then matured by stimulatory agents. Despite apparent progress in DC-based cancer immunotherapy, some discrepancies were reported in generating potent DCs. Listeria monocytogenes as an intracellular microorganism is able to effectively activate DCs through engaging pattern-recognition receptors (PRRs). This study aimed to find the most potent components derived from L. monocytogenes inducing DC maturation. The preliminary results demonstrated that the ability of protein components is higher than DNA components to promote DC maturation and activation. Protein lysate fractionation demonstrated that fraction 2 HIC (obtained by hydrophobic interaction chromatography) was able to efficiently mature DCs. F2HIC-matured DCs are able to induce allogeneic CD8(+) T cells proliferation better than LPS-matured DCs and induce IFN-γ producing CD8(+) T cells. Mass spectrometry results showed that F2HIC contains 109 proteins. Based on the bioinformatics analysis for these 109 proteins, elongation factor Tu (EF-Tu) could be considered as a PRR ligand for stimulating DC maturation.
Characteristics of lead induced stress corrosion cracking of alloy 690 in high temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, K.K.; Lim, J.K.; Watanabe, Yutaka
1996-10-01
Slow strain rate tests (SSRT) were conducted on alloy 690 in various lead chloride solutions and metal lead added to 100 ppm chloride solution at 288 C. The corrosion potential (rest potential) for the alloy was measured with SSRT tests. The cracking was observed by metallographic examination and electron probe micro analyzer. Also, the corrosion behavior of the alloy was evaluated by anodic polarized measurement at 30 C. Resulting from the tests, cracking was characterized by cracking behavior, crack length and crack growth rate, and lead effects on cracking. The cracking was mainly intergranular in mode, approximately from 60 ummore » to 450 um in crack length, and approximately 10{sup {minus}6} to 10{sup {minus}7} mmS-1 in crack velocity. The cracking was evaluated through the variation the corrosion potential in potential-time and lead behavior during SSRTs. The lead effect in corrosion was evaluated through active to passive transition behavior in anodic polarized curves. The corrosion reactions in the cracking region were confirmed by electron probe microanalysis. Alloy 690 is used for steam generation tubes in pressurized water reactors.« less
Crack networks in damaged glass
NASA Astrophysics Data System (ADS)
Mallet, Celine; Fortin, Jerome; Gueguen, Yves
2013-04-01
We investigate how cracks develop and propagate in synthetic glass samples. Cracks are introduced in glass by a thermal shock of 300oC. Crack network is documented from optical and electronic microscopy on these samples that have been submitted to a thermal shock only. Samples are cylinder of 80 mm length and 40 mm diameter. Sections were cut along the cylinder axis and perpendicular to it. Using SEM, crack lengths and apertures can be measured. Optical microscopy allows to get the crack distribution over the entire sample. The sample average crack length is 3 mm. The average aperture is 6 ± 3μm. There is however a clear difference between the sample core, where the crack network has approximatively a transverse isotrope symmetry and the outer ring, where cracks are smaller and more numerous. By measuring before and after the thermal treatment the radial P and S wave velocities in room conditions, we can determine the total crack density which is 0.24. Thermally cracked samples, as described above, were submitted to creep tests. Constant axial stress and lateral stress were applied. Several experiments were performed at different stress values. Samples are saturated for 48 hours (to get an homogeneous pore fluid distribution), the axial stress is increased up to 80% of the sample strength. Stress step tests were performed in order to get creep data. The evolution of strain (axial and radial strain) is measured using strain gages, gap sensors (for the global axial strain) and pore volume change (for the volumetric strain). Creep data are interpreted as evidence of sub-critical crack growth in the cracked glass samples. The above microstructural observations are used, together with a crack propagation model, to account for the creep behavior. Assuming that (i) the observed volumetric strain rate is due to crack propagation and (ii) crack aspect ratio is constant we calculate the creep rate. We obtain some value on the crack propagation during a 24 hours of constant stress test. At each of these test, crack propagate of 0.3 to 0.4 mm. From the initial average crack length of 3 mm, the crack reach the size of 5.8 mm at the end of a complete creep test (with 8 constant stress step of 24 hours).
Dynamic Response and Residual Helmet Liner Crush Using Cadaver Heads and Standard Headforms.
Bonin, S J; Luck, J F; Bass, C R; Gardiner, J C; Onar-Thomas, A; Asfour, S S; Siegmund, G P
2017-03-01
Biomechanical headforms are used for helmet certification testing and reconstructing helmeted head impacts; however, their biofidelity and direct applicability to human head and helmet responses remain unclear. Dynamic responses of cadaver heads and three headforms and residual foam liner deformations were compared during motorcycle helmet impacts. Instrumented, helmeted heads/headforms were dropped onto the forehead region against an instrumented flat anvil at 75, 150, and 195 J. Helmets were CT scanned to quantify maximum liner crush depth and crush volume. General linear models were used to quantify the effect of head type and impact energy on linear acceleration, head injury criterion (HIC), force, maximum liner crush depth, and liner crush volume and regression models were used to quantify the relationship between acceleration and both maximum crush depth and crush volume. The cadaver heads generated larger peak accelerations than all three headforms, larger HICs than the International Organization for Standardization (ISO), larger forces than the Hybrid III and ISO, larger maximum crush depth than the ISO, and larger crush volumes than the DOT. These significant differences between the cadaver heads and headforms need to be accounted for when attempting to estimate an impact exposure using a helmet's residual crush depth or volume.
Cardiomyocyte H9c2 cells present a valuable alternative to fish lethal testing for azoxystrobin.
Rodrigues, Elsa T; Pardal, Miguel Â; Laizé, Vincent; Cancela, M Leonor; Oliveira, Paulo J; Serafim, Teresa L
2015-11-01
The present study aims at identifying, among six mammalian and fish cell lines, a sensitive cell line whose in vitro median inhibitory concentration (IC50) better matches the in vivo short-term Sparus aurata median lethal concentration (LC50). IC50s and LC50 were assessed after exposure to the widely used fungicide azoxystrobin (AZX). Statistical results were relevant for most cell lines after 48 h of AZX exposure, being H9c2 the most sensitive cells, as well as the ones which provided the best prediction of fish toxicity, with a LC50,96h/IC50,48h = 0.581. H9c2 cell proliferation upon 72 h of AZX exposure revealed a LC50,96h/IC50,72h = 0.998. Therefore, identical absolute sensitivities were attained for both in vitro and in vivo assays. To conclude, the H9c2 cell-based assay is reliable and represents a suitable ethical alternative to conventional fish assays for AZX, and could be used to get valuable insights into the toxic effects of other pesticides. Copyright © 2015 Elsevier Ltd. All rights reserved.
A review of ice accretion data from a model rotor icing test and comparison with theory
NASA Technical Reports Server (NTRS)
Britton, Randall K.; Bond, Thomas H.
1991-01-01
An experiment was conducted by the Helicopter Icing Consortium (HIC) in the NASA Lewis Icing Research Tunnel (IRT) in which a 1/6 scale fuselage model of a UH-60A Black Hawk helicopter with a generic rotor was subjected to a wide range of icing conditions. The HIC consists of members from NASA, Bell Helicopter, Boeing Helicopter, McDonnell Douglas Helicopters, Sikorsky Aircraft, and Texas A&M University. Data was taken in the form of rotor torque, internal force balance measurements, blade strain gage loading, and two dimensional ice shape tracings. A review of the ice shape data is performed with special attention given to repeatability and correctness of trends in terms of radial variation, rotational speed, icing time, temperature, liquid water content, and volumetric median droplet size. Moreover, an indepth comparison between the experimental data and the analysis of NASA's ice accretion code LEWICE is given. Finally, conclusions are drawn as to the quality of the ice accretion data and the predictability of the data base as a whole. Recommendations are also given for improving data taking technique as well as potential future work.
Gear crack propagation investigations
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Ballarini, Roberto
1996-01-01
Analytical and experimental studies were performed to investigate the effect of gear rim thickness on crack propagation life. The FRANC (FRacture ANalysis Code) computer program was used to simulate crack propagation. The FRANC program used principles of linear elastic fracture mechanics, finite element modeling, and a unique re-meshing scheme to determine crack tip stress distributions, estimate stress intensity factors, and model crack propagation. Various fatigue crack growth models were used to estimate crack propagation life based on the calculated stress intensity factors. Experimental tests were performed in a gear fatigue rig to validate predicted crack propagation results. Test gears were installed with special crack propagation gages in the tooth fillet region to measure bending fatigue crack growth. Good correlation between predicted and measured crack growth was achieved when the fatigue crack closure concept was introduced into the analysis. As the gear rim thickness decreased, the compressive cyclic stress in the gear tooth fillet region increased. This retarded crack growth and increased the number of crack propagation cycles to failure.
Essais de fissuration a froid appliques aux metaux d'apport inoxydables martensitiques 410NiMo
NASA Astrophysics Data System (ADS)
Paquin, Mathieu
Martensitic stainless steels have represented since few years a material of choice for the manufacture of mechanical parts such as hydroelectric turbines. The development of the alloy has led to grades with very low amount of carbon giving them a good weldability. The assembly of these parts, made by autogenous welding, requires the use of materials with low transformation temperature (LTT) such as 410NiMo. These filler metals are also used for assembly by heterogeneous welding of steel parts susceptible to cold cracking. The transformation of austenite to martensite occurring at low temperature, residual stresses from single-pass welding operation are different from those normally found and reduce the risk of cracking. By cons, industrial experience shows that in situation of multipass welding, the risks of cold cracking are still present. This project aimed to determine a cracking test for assessing susceptibility to cold cracking of 13%Cr-4%Ni stainless steel according to the welding procedure, in autogenous welding situation. Literature contains much information about cold cracking phenomena. That phenomena occurs under three conditions. These conditions are: a high diffusible hydrogen level, significant residual stresses and a brittle microstructure. It seems that despite the low mass ratio of carbon (0.022%C) and the low diffusible hydrogen level (< 3 ml/100g) risks of cold cracking remain present during multipass deposits. Use of cracking tests was necessary to assess the sensitivity to cracking of the martensitic stainless steel. Before the work preliminary tests have been made or tested Tekken GBOP and testing to determine that to obtain the most representative of the industrial reality results. Then they have been modified to reverse the compression stress in the seam test to tension by the addition of a second weld. This inversion occurs in multipass welding and has been targeted as an important factor in the occurrence of cold cracking phenomenon. The results of these tests show that Tekken test is not suitable for LTT testing. It was also demonstrated that GBOP test with two juxtaposed seams configuration gave results consistent with the industrial observations. The second stage of the project was to study the cracking test selected. Acoustic emission tests were done during welding and cooling of GBOP test. These tests were conducted in order to detect when the cracking of the test occurred and to validate the method of inspection. This inspection is done after separation of the specimen, by observation of the fracture surface. Usually, cliveage zone on the fracture surface can be associated with cold cracking and dimple zones can be associated with the specimen separation. Through these tests, it was possible to validate this assertion. Then the relevance of the addition of a second weld has been validated by studying the residual stress by the contour method. It was possible to observe an area of the first bead in tension, promoting cracking of the test. Finally, some test runs were made with various filler metals in order to confirm that the utilization of the modified GBOP test for 13%Cr-4%Ni was adequate. A fractographic study of some sample was also made.
NASA Astrophysics Data System (ADS)
Moradian, Zabihallah; Einstein, Herbert H.; Ballivy, Gerard
2016-03-01
Determination of the cracking levels during the crack propagation is one of the key challenges in the field of fracture mechanics of rocks. Acoustic emission (AE) is a technique that has been used to detect cracks as they occur across the specimen. Parametric analysis of AE signals and correlating these parameters (e.g., hits and energy) to stress-strain plots of rocks let us detect cracking levels properly. The number of AE hits is related to the number of cracks, and the AE energy is related to magnitude of the cracking event. For a full understanding of the fracture process in brittle rocks, prismatic specimens of granite containing pre-existing flaws have been tested in uniaxial compression tests, and their cracking process was monitored with both AE and high-speed video imaging. In this paper, the characteristics of the AE parameters and the evolution of cracking sequences are analyzed for every cracking level. Based on micro- and macro-crack damage, a classification of cracking levels is introduced. This classification contains eight stages (1) crack closure, (2) linear elastic deformation, (3) micro-crack initiation (white patch initiation), (4) micro-crack growth (stable crack growth), (5) micro-crack coalescence (macro-crack initiation), (6) macro-crack growth (unstable crack growth), (7) macro-crack coalescence and (8) failure.
Fracture Testing of Integral Stiffened Structure
NASA Technical Reports Server (NTRS)
Newman, John A.; Smith, Stephen W.; Piascik, Robert S.; Dawicke, David S.; Johnston, William M.; Willard, Scott A.
2008-01-01
Laboratory testing was conducted to evaluate safety concerns for integrally-stiffened tanks that were found to have developed cracks during pressurization testing. Cracks occurred at fastener holes where additional stiffeners were attached to the integrally-stiffened tank structure. Tests were conducted to obtain material properties and to reproduce the crack morphologies that were observed in service to help determine if the tanks are safe for operation. Reproducing the cracking modes observed during pressurization testing required a complex loading state involving both a tensile load in the integrally-stiffened structure and a pin-load at a fastener hole.
Champatisingh, D.; Sahu, P.K.; Pal, A.; Nanda, G.S.
2011-01-01
Objective: To assess the anticataleptic and antiepileptic activity of leaves of Mucuna pruriens in albino rats. Materials and Methods: Haloperidol-induced catalepsy (HIC), maximum electro-shock (MES) method, pilocarpine-induced Status epilepticus (PISE) and single-dose effect of M. pruriens were employed. Results: M. pruriens (100 mg/kg) had significant anticataleptic and antiepileptic activity in HIC, MES, and PISE. Conclusions: M. pruriens extract has the potential to be an anticataleptic and antiepileptic drug. Dopamine and 5-HT may have a role in such activity. PMID:21572658
DOT National Transportation Integrated Search
2012-10-01
Presently, one of the principal performance concerns of hot-mix asphalt (HMA) pavements is premature : cracking, particularly of HMA surfacing mixes. Regrettably, however, while many USA transportation agencies have : implemented design-level tests t...
NASA Technical Reports Server (NTRS)
Delgado, Irebert R.; Steinetz, Bruce M.; Rimnac, Clare M.; Lewandowski, John J.
2008-01-01
The fatigue crack growth behavior of Grainex Mar-M 247 is evaluated for NASA s Turbine Seal Test Facility. The facility is used to test air-to-air seals primarily for use in advanced jet engine applications. Because of extreme seal test conditions of temperature, pressure, and surface speeds, surface cracks may develop over time in the disk bolt holes. An inspection interval is developed to preclude catastrophic disk failure by using experimental fatigue crack growth data. By combining current fatigue crack growth results with previous fatigue strain-life experimental work, an inspection interval is determined for the test disk. The fatigue crack growth life of the NASA disk bolt holes is found to be 367 cycles at a crack depth of 0.501 mm using a factor of 2 on life at maximum operating conditions. Combining this result with previous fatigue strain-life experimental work gives a total fatigue life of 1032 cycles at a crack depth of 0.501 mm. Eddy-current inspections are suggested starting at 665 cycles since eddy current detection thresholds are currently at 0.381 mm. Inspection intervals are recommended every 50 cycles when operated at maximum operating conditions.
On Generating Fatigue Crack Growth Thresholds
NASA Technical Reports Server (NTRS)
Forth, Scott C.; Newman, James, Jr.; Forman, Royce G.
2003-01-01
The fatigue crack growth threshold, defining crack growth as either very slow or nonexistent, has been traditionally determined with standardized load reduction methodologies. These experimental procedures can induce load history effects that result in crack closure. This history can affect the crack driving force, i.e. during the unloading process the crack will close first at some point along the wake or blunt at the crack tip, reducing the effective load at the crack tip. One way to reduce the effects of load history is to propagate a crack under constant amplitude loading. As a crack propagates under constant amplitude loading, the stress intensity factor range, Delta K, will increase, as will the crack growth rate. da/dN. A fatigue crack growth threshold test procedure is experimentally validated that does not produce load history effects and can be conducted at a specified stress ratio, R. The authors have chosen to study a ductile aluminum alloy where the plastic deformations generated during testing may be of the magnitude to impact the crack opening.
NASA Technical Reports Server (NTRS)
Dicus, D. L.
1984-01-01
The effects of water vapor on fatigue crack growth in 7475-T651 aluminum alloy plate at frequencies of 1 Hz and 10 Hz were investigated. Twenty-five mm thick compact specimens were subjected to constant amplitude fatigue testing at a load ratio of 0.2. Fatigue crack growth rates were calculated from effective crack lengths determined using a compliance method. Tests were conducted in hard vacuum and at water vapor partial pressures ranging from 94 Pa to 3.8 kPa. Fatigue crack growth rates were frequency insensitive under all environment conditions tested. For constant stress intensity factor ranges crack growth rate transitions occurred at low and high water vapor pressures. Crack growth rates at intermediate pressures were relatively constant and showed reasonable agreement with published data for two Al-Cu-Mg alloys. The existence of two crack growth rate transitions suggests either a change in rate controlling kinetics or a change in corrosion fatigue mechanism as a function of water vapor pressure. Reduced residual deformation and transverse cracking specimens tested in water vapor versus vacuum may be evidence of embrittlement within the plastic zone due to environmental interaction.
NASA Technical Reports Server (NTRS)
Dicus, D. L.
1982-01-01
The effects of water vapor on fatigue crack growth in 7475-T651 aluminum alloy plate at frequencies of 1 Hz and 10 Hz were investigated. Twenty-five mm thick compact specimens were subjected to constant amplitude fatigue testing at a load ratio of 0.2. Fatigue crack growth rates were calculated from effective crack lengths determined using a compliance method. Tests were conducted in hard vacuum and at water vapor partial pressures ranging from 94 Pa to 3.8 kPa. Fatigue crack growth rates were frequency insensitive under all environment conditions tested. For constant stress intensity factor ranges crack growth rate transitions occurred at low and high water vapor pressures. Crack growth rates at intermediate pressures were relatively constant and showed reasonable agreement with published data for two Al-Cu-Mg alloys. The existence of two crack growth rate transitions suggests either a change in rate controlling kinetics or a change in corrosion fatigue mechanism as a function of water vapor pressure. Reduced residual deformation and transverse cracking specimens tested in water vapor versus vacuum may be evidence of embrittlement within the plastic zone due to environmental interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wire, G. L.; Mills, W. J.
2002-08-01
Fatigue crack propagation (FCP) rates for 304 stainless steel (304SS) were determined in 24 degree C and 288 degree C air and 288 degree C water using double-edged notch (DEN) specimens of 304 stainless steel (304 SS). Test performed at matched loading conditions in air and water at 288 degree C with 20-6- cc h[sub]2/kg h[sub]2O provided a direct comparison of the relative crack growth rates in air and water over a wide range of crack growth rates. The DEN crack extension ranged from short cracks (0.03-0.25 mm) to long cracks up to 4.06 mm, which are consistent with conventionalmore » deep crack tests. Crack growth rates of 304 SS in water were about 12 times the air rate. This 12X environmental enhancement persisted to crack extensions up to 4.06 mm, far outside the range associated with short crack effects. The large environmental degradation for 304 SS crack growth is consistent with the strong reduction of fatigue life in high hydrogen water. Further, very similar environmental effects w ere reported in fatigue crack growth tests in hydrogen water chemistry (HWC). Most literature data in high hydrogen water show only a mild environmental effect for 304 SS, of order 2.5 times air or less, but the tests were predominantly performed at high cyclic stress intensity or equivalently, high air rates. The environmental effect in low oxygen environments at low stress intensity depends strongly on both the stress ratio, R, and the load rise time, T[sub]r, as recently reported for austenitic stainless steel in BWR water. Fractography was performed for both tests in air and water. At 288 degree C in water, the fracture surfaces were crisply faceted with a crystallographic appearance, and showed striations under high magnification. The cleavage-like facets on the fracture surfaces suggest that hydrogen embrittlement is the primary cause of accelerated cracking.« less
Ahn, Tae-Ho; Kim, Hong-gi; Ryou, Jae-Suk
2016-01-01
This study focused on the development of a crack repair stick as a new repair method along with self-healing materials that can be used to easily repair the cracks in a concrete structure at the construction site. In developing this new repair technique, the self-healing efficiency of various cementitious materials was considered. Likewise, a crack repair stick was developed to apply to concrete structures with 0.3 mm or lower crack widths. The crack repair stick was made with different materials, such as cement, an expansive material (C12A7), a swelling material, and calcium carbonate, to endow it with a self-healing property. To verify the performance of the crack repair stick for concrete structures, two types of procedures (field experiment and field absorption test) were carried out. As a result of such procedures, it was concluded that the developed crack repair stick could be used on concrete structures to reduce repair expenses and for the improved workability, usability, and serviceability of such structures. On the other hand, to evaluate the self-healing performance of the crack repair stick, various tests were conducted, such as the relative dynamic modulus of elasticity test, the water tightness test, the water permeability test, observation via a microscope, and scanning electron microscope (SEM) analysis. From the results, it is found that water leakage can be prevented and that the durability of a concrete structure can be improved through self-healing. Also, it was verified that the cracks were perfectly closed after 28 days due to application of the crack repair stick. These results indicate the usability of the crack repair stick for concrete structures, and its self-healing efficiency. PMID:28773776
Glasman, Laura R.; Dickson-Gomez, Julia; Lechuga, Julia; Tarima, Sergey; Bodnar, Gloria; de Mendoza, Lorena Rivas
2016-01-01
In El Salvador, crack users are at high risk for HIV but they are not targeted by efforts to promote early HIV diagnosis. We evaluated the promise of peer-referral chains with incentives to increase HIV testing and identify undiagnosed HIV infections among networks of crack users in San Salvador. For 14 months, we offered HIV testing in communities with a high prevalence of crack use. For the following 14 months, we promoted chains in which crack users from these communities referred their peers to HIV testing and received a small monetary incentive. We recorded the monthly numbers of HIV testers, and their crack use, sexual risk behaviors and test results. After launching the referral chains, the monthly numbers of HIV testers increased significantly (Z = 6.90, p < .001) and decayed more slowly (Z = 5.93, p < .001), and the total number of crack-using testers increased nearly fourfold. Testers in the peer-referral period reported fewer HIV risk behaviors, but a similar percentage (~5 %) tested HIV positive in both periods. More women than men received an HIV-positive diagnosis throughout the study (χ2(1, N = 799) = 4.23, p = .040). Peer-referral chains with incentives can potentially increase HIV testing among networks of crack users while retaining a focus on high-risk individuals. PMID:26687093
NASA Technical Reports Server (NTRS)
Domack, M. S.
1985-01-01
A research program was conducted to critically assess the effects of precracked specimen configuration, stress intensity solutions, compliance relationships and other experimental test variables for stress corrosion testing of 7075-T6 aluminum alloy plate. Modified compact and double beam wedge-loaded specimens were tested and analyzed to determine the threshold stress intensity factor and stress corrosion crack growth rate. Stress intensity solutions and experimentally determined compliance relationships were developed and compared with other solutions available in the literature. Crack growth data suggests that more effective crack length measurement techniques are necessary to better characterize stress corrosion crack growth. Final load determined by specimen reloading and by compliance did not correlate well, and was considered a major source of interlaboratory variability. Test duration must be determined systematically, accounting for crack length measurement resolution, time for crack arrest, and experimental interferences. This work was conducted as part of a round robin program sponsored by ASTM committees G1.06 and E24.04 to develop a standard test method for stress corrosion testing using precracked specimens.
Behavior of Fatigue Crack Tip Opening in Air and Corrosive Atmosphere
NASA Astrophysics Data System (ADS)
Hayashi, Morihito; Toeda, Kazunori
In the study, a formula for predicting fatigue crack tip opening displacement is deduced firstly. And then, due to comparing actual crack growth rate with the deduced formula, the crack tip configuration factor is defined to figure out the crack tip opening configuration that is useful to clarify the behavior of fatigue crack tip formation apparently. Applying the concept, the crack growth of 7/3 brass and 6/4 brass is predicted from the formula, by replacing material properties such as plastic flow resistance, Young modulus, the Poisson ratio, and fatigue toughness, and fatigue test conditions such as the stress intensity factor range, the load ratio, and cycle frequency. Furthermore, the theoretically expected results are verified with the fatigue tests which were carried out on CT specimens under different load conditions of load ratio, cycle frequency, and cyclic peak load, in different environments of air or corrosive ammonia atmosphere, for various brasses. And by comparing and discussing the calculated crack growth rate with attained experimental results, the apparent configuration factor at the crack tip is determined. And through the attained factor which changes along with crack growth, the behaviors of fatigue crack tip formation under different test conditions have been found out.
NASA Technical Reports Server (NTRS)
Everett, R. A., Jr.; Matthews, W. T.; Prabhakaran, R.; Newman, J. C., Jr.; Dubberly, M. J.
2001-01-01
Fatigue and crack growth tests have been conducted on 4340 steel and 2024-T3 aluminum alloy, respectively, to assess the effects of shot peening on fatigue life and the effects of shot and laser peening on crack growth. Two current programs involving fixed and rotary-wing aircraft will not be using shot peened structures. Since the shot peening compressive residual stress depth is usually less than the 0.05-inch initial damage tolerance crack size, it is believed by some that shot peening should have no beneficial effects toward retarding crack growth. In this study cracks were initiated from an electronic-discharged machining flaw which was cycled to produce a fatigue crack of approximately 0.05-inches in length and then the specimens were peened. Test results showed that after peening the crack growth rates were noticeably slower when the cracks were fairly short for both the shot and laser peened specimens resulting in a crack growth life that was a factor of 2 to 4 times greater than the results of the average unpeened test. Once the cracks reached a length of approximately 0.1-inches the growth rates were about the same for the peened and unpeened specimens. Fatigue tests on 4340 steel showed that the endurance limit of a test specimen with a 0.002-inch-deep machining-like scratch was reduced by approximately 40 percent. However, if the "scratched" specimen was shot peened after inserting the scratch, the fatigue life returned to almost 100 percent of the unflawed specimens original fatigue life.
Testing and analysis of flat and curved panels with multiple cracks
NASA Technical Reports Server (NTRS)
Broek, David; Jeong, David Y.; Thomson, Douglas
1994-01-01
An experimental and analytical investigation of multiple cracking in various types of test specimens is described in this paper. The testing phase is comprised of a flat unstiffened panel series and curved stiffened and unstiffened panel series. The test specimens contained various configurations for initial damage. Static loading was applied to these specimens until ultimate failure, while loads and crack propagation were recorded. This data provides the basis for developing and validating methodologies for predicting linkup of multiple cracks, progression to failure, and overall residual strength. The results from twelve flat coupon and ten full scale curved panel tests are presented. In addition, an engineering analysis procedure was developed to predict multiple crack linkup. Reasonable agreement was found between predictions and actual test results for linkup and residual strength for both flat and curved panels. The results indicate that an engineering analysis approach has the potential to quantitatively assess the effect of multiple cracks in the arrest capability of an aircraft fuselage structure.
Study on underclad cracking in nuclear reactor vessel steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horiya, T.; Takeda, T.; Yamato, K.
1985-02-01
Susceptibility to underclad cracking in nuclear reactor vessel steels, such as SA533 Grade B Class 1 and SA508 Class 2, was studied in detail. A convenient simulation test method using simulated HAZ specimens of small size has been developed for quantitative evaluation of susceptibility to underclad cracks. The method can predict precisely the cracking behavior in weldments of steels with relative low crack susceptibility. The effect of chemical compositions on susceptibility to the cracking was examined systematically using the developed simulation test method and the following index was obtained from the test results: U = 20(V) + 7(C) + 4(Mo)more » + (Cr) + (Cu) - 0.5(Mn) + 1.5 log(X) X = Al . . . Al/2N less than or equal to 1 X = 2N . . . Al/2N > 1 It was confirmed that the new index (U) is useful for the prediction of crack susceptibility of the nuclear vessel steels; i.e., no crack initiation is detected in weldments in the roller bend test for steels having U value below 0.90.« less
Crack sealer fill characteristics.
DOT National Transportation Integrated Search
2010-06-01
Laboratory testing was conducted to determine the extent of crack fill for crack sealers composed of methyl methacrylate, : epoxy, urethane, and high molecular weight methacrylate. The test specimens consisted of eight-inch long concrete : cylinders ...
Creep Behavior and Durability of Cracked CMC
NASA Technical Reports Server (NTRS)
Bhatt, R. T.; Fox, Dennis; Smith, Craig
2015-01-01
To understand failure mechanisms and durability of cracked Ceramic matrix composites (CMCs), Melt Infiltration (MI) SiCSiC composites with Sylramic-iBN fibers and full Chemical vapour infiltration SiCSiC composites with Sylramic-ion bombarded BN (iBN) and Hi-Nicalon -S fibers were pre-cracked between 150 to 200 megapascal and then creep and Sustained Peak Low Cycle Fatigue (SPLCF) tested at 13150 C at stress levels from 35 to 103 megapascal for up to 200 hours under furnace and burner rig conditions. In addition creep testing was also conducted on pre-cracked full Chemical vapour infiltration SiCSiC composites at 14500 C between 35 and 103 megapascal for up to 200 hours under furnace conditions. If the specimens survived the 200 hour durability tests, then they were tensile tested at room temperature to determine their residual tensile properties. The failed specimens were examined by Scanning electron microscope (SEM) to determine the failure modes and mechanisms. The influence of crack healing matrix, fiber types, crack density, testing modes and interface oxidation on durability of cracked Ceramic matrix composites (CMCs) will be discussed.
New Risk Curves for NHTSA's Brain Injury Criterion (BrIC): Derivations and Assessments.
Laituri, Tony R; Henry, Scott; Pline, Kevin; Li, Guosong; Frankstein, Michael; Weerappuli, Para
2016-11-01
The National Highway Traffic Safety Administration (NHTSA) recently published a Request for Comments regarding a potential upgrade to the US New Car Assessment Program (US NCAP) - a star-rating program pertaining to vehicle crashworthiness. Therein, NHTSA (a) cited two metrics for assessing head risk: Head Injury Criterion (HIC15) and Brain Injury Criterion (BrIC), and (b) proposed to conduct risk assessment via its risk curves for those metrics, but did not prescribe a specific method for applying them. Recent studies, however, have indicated that the NHTSA risk curves for BrIC significantly overstate field-based head injury rates. Therefore, in the present three-part study, a new set of BrIC-based risk curves was derived, an overarching head risk equation involving risk curves for both BrIC and HIC15 was assessed, and some additional candidatepredictor- variable assessments were conducted. Part 1 pertained to the derivation. Specifically, data were pooled from various sources: Navy volunteers, amateur boxers, professional football players, simple-fall subjects, and racecar drivers. In total, there were 4,501 cases, with brain injury reported in 63. Injury outcomes were approximated on the Abbreviated Injury Scale (AIS). The statistical analysis was conducted subject to ordinal logistic regression analysis (OLR), such that the various levels of brain injury were cast as a function of BrIC. The resulting risk curves, with Goodman Kruksal Gamma=0.83, were significantly different than those from NHTSA. Part 2 pertained to the assessment relative to field data. Two perspectives were considered: "aggregate" (ΔV=0-56 km/h) and "point" (high-speed, regulatory focus). For the aggregate perspective, the new risk curves for BrIC were applied in field models pertaining to belted, mid-size, adult drivers in 11-1 o'clock, full-engagement frontal crashes in the National Automotive Sampling System (NASS, 1993-2014 calendar years). For the point perspective, BrIC data from tests were used. The assessments were conducted for minor, moderate, and serious injury levels for both Newer Vehicles (airbag-fitted) and Older Vehicles (not airbag-fitted). Curve-based injury rates and NASS-based injury rates were compared via average percent difference (AvgPctDiff). The new risk curves demonstrated significantly better fidelity than those from NHTSA. For example, for the aggregate perspective (n=12 assessments), the results were as follows: AvgPctDiff (present risk curves) = +67 versus AvgPctDiff (NHTSA risk curves) = +9378. Part 2 also contained a more comprehensive assessment. Specifically, BrIC-based risk curves were used to estimate brain-related injury probabilities, HIC15-based risk curves from NHTSA were used to estimate bone/other injury probabilities, and the maximum of the two resulting probabilities was used to represent the attendant headinjury probabilities. (Those HIC15-based risk curves yielded AvgPctDiff=+85 for that application.) Subject to the resulting 21 assessments, similar results were observed: AvgPctDiff (present risk curves) = +42 versus AvgPctDiff (NHTSA risk curves) = +5783. Therefore, based on the results from Part 2, if the existing BrIC metric is to be applied by NHTSA in vehicle assessment, we recommend that the corresponding risk curves derived in the present study be considered. Part 3 pertained to the assessment of various other candidate brain-injury metrics. Specifically, Parts 1 and 2 were revisited for HIC15, translation acceleration (TA), rotational acceleration (RA), rotational velocity (RV), and a different rotational brain injury criterion from NHTSA (BRIC). The rank-ordered results for the 21 assessments for each metric were as follows: RA, HIC15, BRIC, TA, BrIC, and RV. Therefore, of the six studied sets of OLR-based risk curves, the set for rotational acceleration demonstrated the best performance relative to NASS.
Overload and Underload Effects on the Fatigue Crack Growth Behavior of the 2024-T3 Aluminum Alloy
NASA Technical Reports Server (NTRS)
Dawicke, David S.
1997-01-01
Fatigue crack growth tests were conducted on 0.09 inch thick, 3.0 inch wide middle-crack tension specimens cut from sheets of 2024-T3 aluminum alloy. The tests were conducted using a load sequence that consisted of a single block of 2,500 cycles of constant amplitude loading followed by an overload/underload combination. The largest fatigue crack growth life occurred for the tests with the overload stress equal to 2 times the constant amplitude stress and the underload stress equal to the constant amplitude minimum stress. For the tests with compressive underloads, the fatigue crack growth life decreased with increasing compressive underload stress.
Hot-crack test for aluminium alloys welds using TIG process
NASA Astrophysics Data System (ADS)
Niel, A.; Deschaux-Beaume, F.; Bordreuil, C.; Fras, G.
2010-06-01
Hot cracking is a critical defect frequently observed during welding of aluminium alloys. In order to better understand the interaction between cracking phenomenon, process parameters, mechanical factors and microstructures resulting from solidification after welding, an original hot-cracking test during welding is developed. According to in-situ observations and post mortem analyses, hot cracking mechanisms are investigated, taking into account the interaction between microstructural parameters, depending on the thermal cycles, and mechanical parameters, depending on geometry and clamping conditions of the samples and on the thermal field on the sample. Finally, a process map indicating the limit between cracking and non-cracking zones according to welding parameters is presented.
Experiences of ICU survivors in a low middle income country- a multicenter study.
Pieris, Lalitha; Sigera, Ponsuge Chathurani; De Silva, Ambepitiyawaduge Pubudu; Munasinghe, Sithum; Rashan, Aasiyah; Athapattu, Priyantha Lakmini; Jayasinghe, Kosala Saroj Amarasiri; Samarasinghe, Kerstein; Beane, Abi; Dondorp, Arjen M; Haniffa, Rashan
2018-03-21
Stressful patient experiences during the intensive care unit (ICU) stay is associated with reduced satisfaction in High Income Countries (HICs) but has not been explored in Lower and Middle Income Countries (LMICs). This study describes the recalled experiences, stress and satisfaction as perceived by survivors of ICUs in a LMIC. This follow-up study was carried out in 32 state ICUs in Sri Lanka between July and December 2015.ICU survivors' experiences, stress factors encountered and level of satisfaction were collected 30 days after ICU discharge by a telephone questionnaire adapted from Granja and Wright. Of 1665 eligible ICU survivors, 23.3% died after ICU discharge, 49.1% were uncontactable and 438 (26.3%) patients were included in the study. Whilst 78.1% (n = 349) of patients remembered their admission to the hospital, only 42.3% (n = 189) could recall their admission to the ICU. The most frequently reported stressful experiences were: being bedridden (34.2%), pain (34.0%), general discomfort (31.7%), daily needle punctures (32.9%), family worries (33.6%), fear of dying and uncertainty in the future (25.8%). The majority of patients (376, 84.12%) found the atmosphere of the ICU to be friendly and calm. Overall, the patients found the level of health care received in the ICU to be "very satisfactory" (93.8%, n = 411) with none of the survivors stating they were either "dissatisfied" or "very dissatisfied". In common with HIC, survivors were very satisfied with their ICU care. In contrast to HIC settings, specific ICU experiences were frequently not recalled, but those remembered were reported as relatively stress-free. Stressful experiences, in common with HIC, were most frequently related to uncertainty about the future, dependency, family, and economic concerns.
Hepatic iron concentration correlates with insulin sensitivity in nonalcoholic fatty liver disease.
Britton, Laurence; Bridle, Kim; Reiling, Janske; Santrampurwala, Nishreen; Wockner, Leesa; Ching, Helena; Stuart, Katherine; Subramaniam, V Nathan; Jeffrey, Gary; St Pierre, Tim; House, Michael; Gummer, Joel; Trengove, Robert; Olynyk, John; Crawford, Darrell; Adams, Leon
2018-06-01
Rodent and cell-culture models support a role for iron-related adipokine dysregulation and insulin resistance in the pathogenesis of nonalcoholic fatty liver disease (NAFLD); however, substantial human data are lacking. We examined the relationship between measures of iron status, adipokines, and insulin resistance in patients with NAFLD in the presence and absence of venesection. This study forms part of the Impact of Iron on Insulin Resistance and Liver Histology in Nonalcoholic Steatohepatitis (IIRON2) study, a prospective randomized controlled trial of venesection for adults with NAFLD. Paired serum samples at baseline and 6 months (end of treatment) in controls (n = 28) and patients who had venesection (n = 23) were assayed for adiponectin, leptin, resistin, retinol binding protein-4, tumor necrosis factor α, and interleukin-6, using a Quantibody, customized, multiplexed enzyme-linked immunosorbent assay array. Hepatic iron concentration (HIC) was determined using MR FerriScan. Unexpectedly, analysis revealed a significant positive correlation between baseline serum adiponectin concentration and HIC, which strengthened after correction for age, sex, and body mass index (rho = 0.36; P = 0.007). In addition, there were significant inverse correlations between HIC and measures of insulin resistance (adipose tissue insulin resistance (Adipo-IR), serum insulin, serum glucose, homeostasis model assessment of insulin resistance, hemoglobin A1c, and hepatic steatosis), whereas a positive correlation was noted with the insulin sensitivity index. Changes in serum adipokines over 6 months did not differ between the control and venesection groups. Conclusion: HIC positively correlates with serum adiponectin and insulin sensitivity in patients with NAFLD. Further study is required to establish causality and mechanistic explanations for these associations and their relevance in the pathogenesis of insulin resistance and NAFLD. ( Hepatology Communications 2018;2:644-653).
Development of head injury assessment reference values based on NASA injury modeling.
Somers, Jeffrey T; Granderson, Bradley; Melvin, John W; Tabiei, Ala; Lawrence, Charles; Feiveson, Alan; Gernhardt, Michael; Ploutz-Snyder, Robert; Patalak, John
2011-11-01
NASA is developing a new crewed vehicle and desires a lower risk of injury compared to automotive or commercial aviation. Through an agreement with the National Association of Stock Car Auto Racing, Inc. (NASCAR®), an analysis of NASCAR impacts was performed to develop new injury assessment reference values (IARV) that may be more relevant to NASA's context of vehicle landing operations. Head IARVs associated with race car impacts were investigated by analyzing all NASCAR recorded impact data for the 2002-2008 race seasons. From the 4015 impact files, 274 impacts were selected for numerical simulation using a custom NASCAR restraint system and Hybrid III 50th percentile male Finite Element Model (FEM) in LS-DYNA. Head injury occurred in 27 of the 274 selected impacts, and all of the head injuries were mild concussions with or without brief loss of consciousness. The 247 noninjury impacts selected were representative of the range of crash dynamics present in the total set of impacts. The probability of head injury was estimated for each metric using an ordered probit regression analysis. Four metrics had good correlation with the head injury data: head resultant acceleration, head change in velocity, HIC 15, and HIC 36. For a 5% risk of AIS≥1/AIS≥2 head injuries, the following IARVs were found: 121.3/133.2 G (head resultant acceleration), 20.3/22.0 m/s (head change in velocity), 1,156/1,347 (HIC 15), and 1,152/1,342 (HIC 36) respectively. Based on the results of this study, further analysis of additional datasets is recommended before applying these results to future NASA vehicles.
NASA Technical Reports Server (NTRS)
Smith, Stephen W.; Seshadri, Banavara R.; Newman, John A.
2015-01-01
The experimental methods to determine near-threshold fatigue crack growth rate data are prescribed in ASTM standard E647. To produce near-threshold data at a constant stress ratio (R), the applied stress-intensity factor (K) is decreased as the crack grows based on a specified K-gradient. Consequently, as the fatigue crack growth rate threshold is approached and the crack tip opening displacement decreases, remote crack wake contact may occur due to the plastically deformed crack wake surfaces and shield the growing crack tip resulting in a reduced crack tip driving force and non-representative crack growth rate data. If such data are used to life a component, the evaluation could yield highly non-conservative predictions. Although this anomalous behavior has been shown to be affected by K-gradient, starting K level, residual stresses, environmental assisted cracking, specimen geometry, and material type, the specifications within the standard to avoid this effect are limited to a maximum fatigue crack growth rate and a suggestion for the K-gradient value. This paper provides parallel experimental and computational simulations for the K-decreasing method for two materials (an aluminum alloy, AA 2024-T3 and a titanium alloy, Ti 6-2-2-2-2) to aid in establishing clear understanding of appropriate testing requirements. These simulations investigate the effect of K-gradient, the maximum value of stress-intensity factor applied, and material type. A material independent term is developed to guide in the selection of appropriate test conditions for most engineering alloys. With the use of such a term, near-threshold fatigue crack growth rate tests can be performed at accelerated rates, near-threshold data can be acquired in days instead of weeks without having to establish testing criteria through trial and error, and these data can be acquired for most engineering materials, even those that are produced in relatively small product forms.
An investigation of the elevated temperature cracking susceptibility of alloy C-22 weld-metal
NASA Astrophysics Data System (ADS)
Gallagher, Morgan Leo
Alloy C-22 is one of the most corrosion resistant Ni-Cr-Mo alloys available today, and is particularly versatile. As a result, Alloy C-22 is being considered for use in the construction of storage canisters for permanent disposal of radioactive waste in the Yucca Mountain Project. However, in such a critical application, weld related defects (such as these two forms of cracking) are simply unacceptable. Solidification cracking occurs when weld shrinkage strains are applied to liquid films that result from microsegregation during solidification. Many nickel-base alloys are susceptible to solidification cracking since they solidify as austenite and many of their alloying additions partition during solidification and form low melting eutectic constituents. The transvarestraint test was used to quantify the susceptibility of Alloy C-22 to solidification cracking. The solidification cracking temperature range (SCTR) was found to be approximately 50°C (90°F); this SCTR predicts that Alloy-C-22 will have only slightly higher susceptibility than known crack-resistant alloys, such as duplex stainless-steel 2205 and austenitic stainless-steel Type 304 (FN6). Ductility-dip cracking (DDC) is a solid-state cracking phenomenon that occurs below the effective solidus temperature in highly restrained austenitic alloys. Although this type of cracking is relatively uncommon, it can be costly in critical applications where there is a low tolerance for defects. This investigation used two separate tests to quantify the susceptibility of the alloy to DDC: the hot-ductility test and the strain-to-fracture (STF) test. The hot-ductility test revealed that Alloy C-22 weld-metal exhibits an intermediate temperature ductility-dip, with ductility recovery at the upper end of the testing temperature range. The ductility minimum in the hot-ductility tests occurred around 950°C (1742°F) in both the on-heating and on-cooling tests. The strain-to-fracture test also revealed Alloy C-22 to be susceptible to ductility-dip cracking. Alloy C-22 displayed a low threshold strain necessary to initiate cracking, a wide temperature range over which cracking occurred, and no recovery of ductility at the upper end of the testing temperature range. The recovery of ductility at the upper end of the testing temperature range in the hotductility test, and the absence of this recovery in the STF test, is explained by the recrystallization behavior of the metal. Alloy C-22 has a low stacking-fault-energy, as compared to other DDC susceptible nickel-base alloys, and accordingly requires higher levels of deformation before recrystallization begins. With the relatively low strains experienced by the samples in the STF test (less than ten-percent), cracking will occur before enough strain is accumulated to cause recrystallization. In the hot-ductility test, where the sample is pulled to failure, sufficient strain (forty-percent or greater) is applied such that recrystallization occurs. This recrystallization is responsible for the recovery of ductility at the high end of the testing temperature range in the hot-ductility test. The low threshold strain that is observed in the STF test is in part explained by the behavior of the metal during the thermal cycle of the test. Experimental observations indicate that tortuous (wavy) solidification grain boundaries (SGB) migrate, or straighten, during the temperature upslope and hold period of the STF test. This migration of the grain boundaries reduces the mechanical locking effect that tortuous grain boundaries provide, allowing cracking to occur at lower applied strains. Button-melting experiments were conducted to examine the effect of compositional variation on both solidification cracking and ductility-dip cracking susceptibility of the alloy. Molybdenum, tungsten, and iron were selected for variation, as previous research has shown these three elements to be significantly enriched or depleted in the terminal solidification products of Alloy C-22 weld-metal. The solidification temperature range and volume fraction of secondary phases were used as indicators of the susceptibility of the experimental alloys to solidification cracking and ductility-dip cracking, respectively. Previous research on nickel-base alloys has demonstrated that the solidification temperature range of an alloy is directly proportional to the susceptibility of the alloy to solidification cracking. Experiments conducted within this investigation indicate that increasing the volume fraction of secondary phases in Alloy C-22 acts to increase the elevated temperature cracking-resistance and ductility of the alloy. The solidification temperature ranges of the Alloy C-22 variants examined within the button-melting experiments did not significantly widen or narrow with increases in composition. These same compositional variations demonstrated that increasing amounts of molybdenum, tungsten, and iron increased the volume fraction of secondary phases, with each element having relatively the same potency. Based on the button melting experiments and thermodynamic simulations, it is expected that Alloy C-22 will have good resistance to weld solidification cracking over its entire composition range. (Abstract shortened by UMI.)
Fatigue crack identification method based on strain amplitude changing
NASA Astrophysics Data System (ADS)
Guo, Tiancai; Gao, Jun; Wang, Yonghong; Xu, Youliang
2017-09-01
Aiming at the difficulties in identifying the location and time of crack initiation in the castings of helicopter transmission system during fatigue tests, by introducing the classification diagnostic criteria of similar failure mode to find out the similarity of fatigue crack initiation among castings, an engineering method and quantitative criterion for detecting fatigue cracks based on strain amplitude changing is proposed. This method is applied on the fatigue test of a gearbox housing, whose results indicates: during the fatigue test, the system alarms when SC strain meter reaches the quantitative criterion. The afterwards check shows that a fatigue crack less than 5mm is found at the corresponding location of SC strain meter. The test result proves that the method can provide accurate test data for strength life analysis.
Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronevich, Joseph A.; Somerday, Brian P.; San Marchi, Chris W.
Banded ferrite-pearlite X65 pipeline steel was tested in high pressure hydrogen gas to evaluate the effects of oriented pearlite on hydrogen assisted fatigue crack growth. Test specimens were oriented in the steel pipe such that cracks propagated either parallel or perpendicular to the banded pearlite. The ferrite-pearlite microstructure exhibited orientation dependent behavior in which fatigue crack growth rates were significantly lower for cracks oriented perpendicular to the banded pearlite compared to cracks oriented parallel to the bands. Thus the reduction of hydrogen assisted fatigue crack growth across the banded pearlite is attributed to a combination of crack-tip branching and impededmore » hydrogen diffusion across the banded pearlite.« less
Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels
Ronevich, Joseph A.; Somerday, Brian P.; San Marchi, Chris W.
2015-09-10
Banded ferrite-pearlite X65 pipeline steel was tested in high pressure hydrogen gas to evaluate the effects of oriented pearlite on hydrogen assisted fatigue crack growth. Test specimens were oriented in the steel pipe such that cracks propagated either parallel or perpendicular to the banded pearlite. The ferrite-pearlite microstructure exhibited orientation dependent behavior in which fatigue crack growth rates were significantly lower for cracks oriented perpendicular to the banded pearlite compared to cracks oriented parallel to the bands. Thus the reduction of hydrogen assisted fatigue crack growth across the banded pearlite is attributed to a combination of crack-tip branching and impededmore » hydrogen diffusion across the banded pearlite.« less
Microstructural characterization of hydrogen induced cracking in TRIP-assisted steel by EBSD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laureys, A., E-mail: Aurelie.Laureys@UGent.be; Depover, T.; Petrov, R.
2016-02-15
The present work evaluates hydrogen induced cracking by performing an elaborate EBSD (Electron BackScatter Diffraction) study in a steel with transformation induced plasticity (TRIP-assisted steel). This type of steel exhibits a multiphase microstructure which undergoes a deformation induced phase transformation. Additionally, each microstructural constituent displays a different behavior in the presence of hydrogen. The aim of this study is to obtain a better understanding on the mechanisms governing hydrogen induced crack initiation and propagation in the hydrogen saturated multiphase structure. Tensile tests on notched samples combined with in-situ electrochemical hydrogen charging were conducted. The tests were interrupted at stresses justmore » after reaching the tensile strength, i.e. before macroscopic failure of the material. This allowed to study hydrogen induced crack initiation and propagation by SEM (Scanning Electron Microscopy) and EBSD. A correlation was found between the presence of martensite, which is known to be very susceptible to hydrogen embrittlement, and the initiation of hydrogen induced cracks. Initiation seems to occur mostly by martensite decohesion. High strain regions surrounding the hydrogen induced crack tips indicate that further crack propagation may have occurred by the HELP (hydrogen-enhanced localized plasticity) mechanism. Small hydrogen induced cracks located nearby the notch are typically S-shaped and crack propagation was dominantly transgranularly. The second stage of crack propagation consists of stepwise cracking by coalescence of small hydrogen induced cracks. - Highlights: • Hydrogen induced cracking in TRIP-assisted steel is evaluated by EBSD. • Tensile tests were conducted on notched hydrogen saturated samples. • Crack initiation occurs by a H-Enhanced Interface DEcohesion (HEIDE) mechanism. • Crack propagation involves growth and coalescence of small cracks. • Propagation is governed by the characteristics of phases on the crack path.« less
Fatigue crack growth in an aluminum alloy-fractographic study
NASA Astrophysics Data System (ADS)
Salam, I.; Muhammad, W.; Ejaz, N.
2016-08-01
A two-fold approach was adopted to understand the fatigue crack growth process in an Aluminum alloy; fatigue crack growth test of samples and analysis of fractured surfaces. Fatigue crack growth tests were conducted on middle tension M(T) samples prepared from an Aluminum alloy cylinder. The tests were conducted under constant amplitude loading at R ratio 0.1. The stress applied was from 20,30 and 40 per cent of the yield stress of the material. The fatigue crack growth data was recorded. After fatigue testing, the samples were subjected to detailed scanning electron microscopic (SEM) analysis. The resulting fracture surfaces were subjected to qualitative and quantitative fractographic examinations. Quantitative fracture analysis included an estimation of crack growth rate (CGR) in different regions. The effect of the microstructural features on fatigue crack growth was examined. It was observed that in stage II (crack growth region), the failure mode changes from intergranular to transgranular as the stress level increases. In the region of intergranular failure the localized brittle failure was observed and fatigue striations are difficult to reveal. However, in the region of transgranular failure the crack path is independent of the microstructural features. In this region, localized ductile failure mode was observed and well defined fatigue striations were present in the wake of fatigue crack. The effect of interaction of growing fatigue crack with microstructural features was not substantial. The final fracture (stage III) was ductile in all the cases.
On the Crack Bifurcation and Fanning of Crack Growth Data
NASA Technical Reports Server (NTRS)
Forman, Royce G.; Zanganeh, Mohammad
2015-01-01
Crack growth data obtained from ASTM load shedding method for different R values show some fanning especially for aluminum alloys. It is believed by the authors and it has been shown before that the observed fanning is due to the crack bifurcation occurs in the near threshold region which is a function of intrinsic properties of the alloy. Therefore, validity of the ASTM load shedding test procedure and results is confirmed. However, this position has been argued by some experimentalists who believe the fanning is an artifact of the test procedure and thus the obtained results are invalid. It has been shown that using a special test procedure such as using compressively pre-cracked specimens will eliminate the fanning effect. Since not using the fanned data fit can result in a significantly lower calculated cyclic life, design of a component, particularly for rotorcraft and propeller systems will considerably be impacted and therefore this study is of paramount importance. In this effort both test procedures i.e. ASTM load shedding and the proposed compressive pre-cracking have been used to study the fatigue crack growth behavior of compact tension specimens made of aluminum alloy 2524-T3. Fatigue crack growth paths have been closely observed using SEM machines to investigate the effects of compression pre-cracking on the crack bifurcation behavior. The results of this study will shed a light on resolving the existing argument by better understanding of near threshold fatigue crack growth behavior.
Investigation of the ElectroPuls E3000 Test Machine for Fatigue Testing of Structural Materials
2016-12-01
sharpening of the crack tip and deformation of a portion of the newly formed surface (the surface created during loading portion of the cycle) during...cracking process is that the size of the final plastic zone formed by pre-cracking can affect the crack growth rate in subsequent testing. To...similar. In other structural materials, such as aluminium , striations are often well-defined. Typically, fatigue striations on an aluminium fracture
A Comparison of Single-Cycle Versus Multiple-Cycle Proof Testing Strategies
NASA Technical Reports Server (NTRS)
McClung, R. C.; Chell, G. G.; Millwater, H. R.; Russell, D. A.; Millwater, H. R.
1999-01-01
Single-cycle and multiple-cycle proof testing (SCPT and MCPT) strategies for reusable aerospace propulsion system components are critically evaluated and compared from a rigorous elastic-plastic fracture mechanics perspective. Earlier MCPT studies are briefly reviewed. New J-integral estimation methods for semielliptical surface cracks and cracks at notches are derived and validated. Engineering methods are developed to characterize crack growth rates during elastic-plastic fatigue crack growth (FCG) and the tear-fatigue interaction near instability. Surface crack growth experiments are conducted with Inconel 718 to characterize tearing resistance, FCG under small-scale yielding and elastic-plastic conditions, and crack growth during simulated MCPT. Fractography and acoustic emission studies provide additional insight. The relative merits of SCPT and MCPT are directly compared using a probabilistic analysis linked with an elastic-plastic crack growth computer code. The conditional probability of failure in service is computed for a population of components that have survived a previous proof test, based on an assumed distribution of initial crack depths. Parameter studies investigate the influence of proof factor, tearing resistance, crack shape, initial crack depth distribution, and notches on the MCPT versus SCPT comparison. The parameter studies provide a rational basis to formulate conclusions about the relative advantages and disadvantages of SCPT and MCPT. Practical engineering guidelines are proposed to help select the optimum proof test protocol in a given application.
A Comparison of Single-Cycle Versus Multiple-Cycle Proof Testing Strategies
NASA Technical Reports Server (NTRS)
McClung, R. C.; Chell, G. G.; Millwater, H. R.; Russell, D. A.; Orient, G. E.
1996-01-01
Single-cycle and multiple-cycle proof testing (SCPT and MCPT) strategies for reusable aerospace propulsion system components are critically evaluated and compared from a rigorous elastic-plastic fracture mechanics perspective. Earlier MCPT studies are briefly reviewed. New J-integral estimation methods for semi-elliptical surface cracks and cracks at notches are derived and validated. Engineering methods are developed to characterize crack growth rates during elastic-plastic fatigue crack growth (FCG) and the tear-fatigue interaction near instability. Surface crack growth experiments are conducted with Inconel 718 to characterize tearing resistance, FCG under small-scale yielding and elastic-plastic conditions, and crack growth during simulated MCPT. Fractography and acoustic emission studies provide additional insight. The relative merits of SCPT and MCPT are directly compared using a probabilistic analysis linked with an elastic-plastic crack growth computer code. The conditional probability of failure in service is computed for a population of components that have survived a previous proof test, based on an assumed distribution of initial crack depths. Parameter studies investigate the influence of proof factor, tearing resistance, crack shape, initial crack depth distribution, and notches on the MCPT vs. SCPT comparison. The parameter studies provide a rational basis to formulate conclusions about the relative advantages and disadvantages of SCPT and MCPT. Practical engineering guidelines are proposed to help select the optimum proof test protocol in a given application.
NASA Astrophysics Data System (ADS)
Xu, Weichao; Shen, Jingling; Zhang, Cunlin; Tao, Ning; Feng, Lichun
2008-03-01
The applications of ultrasonic infrared thermal wave nondestructive evaluation for crack detection of several materials, which often used in aviation alloy. For instance, steel and carbon fiber. It is difficult to test cracks interfacial or vertical with structure's surface by the traditional nondestructive testing methods. Ultrasonic infrared thermal wave nondestructive testing technology uses high-power and low-frequency ultrasonic as heat source to excite the sample and an infrared video camera as a detector to detect the surface temperature. The ultrasonic emitter launch pulses of ultrasonic into the skin of the sample, which causes the crack interfaces to rub and dissipate energy as heat, and then caused local increase in temperature at one of the specimen surfaces. The infrared camera images the returning thermal wave reflections from subsurface cracks. A computer collects and processes the thermal images according to different properties of samples to get the satisfied effect. In this paper, a steel plate with fatigue crack we designed and a juncture of carbon fiber composite that has been used in a space probe were tested and get satisfying results. The ultrasonic infrared thermal wave nondestructive detection is fast, sensitive for cracks, especially cracks that vertical with structure's surface. It is significative for nondestructive testing in manufacture produce and application of aviation, cosmography and optoelectronics.
NASA Technical Reports Server (NTRS)
Young, Richard D.; Rouse, Marshall; Ambur, Damodar R.; Starnes, James H., Jr.
1999-01-01
The results of residual strength pressure tests and nonlinear analyses of stringer- and frame-stiffened aluminum fuselage panels with longitudinal cracks are presented. Two types of damage are considered: a longitudinal crack located midway between stringers, and a longitudinal crack adjacent to a stringer and along a row of fasteners in a lap joint that has multiple-site damage (MSD). In both cases, the longitudinal crack is centered on a severed frame. The panels are subjected to internal pressure plus axial tension loads. The axial tension loads are equivalent to a bulkhead pressure load. Nonlinear elastic-plastic residual strength analyses of the fuselage panels are conducted using a finite element program and the crack-tip-opening-angle (CTOA) fracture criterion. Predicted crack growth and residual strength results from nonlinear analyses of the stiffened fuselage panels are compared with experimental measurements and observations. Both the test and analysis results indicate that the presence of MSD affects crack growth stability and reduces the residual strength of stiffened fuselage shells with long cracks.
NASA Technical Reports Server (NTRS)
Young, Richard D.; Rouse, Marshall; Ambur, Damodar R.; Starnes, James H., Jr.
1998-01-01
The results of residual strength pressure tests and nonlinear analyses of stringer- and frame-stiffened aluminum fuselage panels with longitudinal cracks are presented. Two types of damage are considered: a longitudinal crack located midway between stringers, and a longitudinal crack adjacent to a stringer and along a row of fasteners in a lap joint that has multiple-site damage (MSD). In both cases, the longitudinal crack is centered on a severed frame. The panels are subjected to internal pressure plus axial tension loads. The axial tension loads are equivalent to a bulkhead pressure load. Nonlinear elastic-plastic residual strength analyses of the fuselage panels are conducted using a finite element program and the crack-tip-opening-angle (CTOA) fracture criterion. Predicted crack growth and residual strength results from nonlinear analyses of the stiffened fuselage panels are compared with experimental measurements and observations. Both the test and analysis results indicate that the presence of MSD affects crack growth stability and reduces the residual strength of stiffened fuselage shells with long cracks.
Fracture mechanics life analytical methods verification testing
NASA Technical Reports Server (NTRS)
Favenesi, J. A.; Clemons, T. G.; Riddell, W. T.; Ingraffea, A. R.; Wawrzynek, P. A.
1994-01-01
The objective was to evaluate NASCRAC (trademark) version 2.0, a second generation fracture analysis code, for verification and validity. NASCRAC was evaluated using a combination of comparisons to the literature, closed-form solutions, numerical analyses, and tests. Several limitations and minor errors were detected. Additionally, a number of major flaws were discovered. These major flaws were generally due to application of a specific method or theory, not due to programming logic. Results are presented for the following program capabilities: K versus a, J versus a, crack opening area, life calculation due to fatigue crack growth, tolerable crack size, proof test logic, tearing instability, creep crack growth, crack transitioning, crack retardation due to overloads, and elastic-plastic stress redistribution. It is concluded that the code is an acceptable fracture tool for K solutions of simplified geometries, for a limited number of J and crack opening area solutions, and for fatigue crack propagation with the Paris equation and constant amplitude loads when the Paris equation is applicable.
Assessment and prediction of drying shrinkage cracking in bonded mortar overlays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beushausen, Hans, E-mail: hans.beushausen@uct.ac.za; Chilwesa, Masuzyo
2013-11-15
Restrained drying shrinkage cracking was investigated on composite beams consisting of substrate concrete and bonded mortar overlays, and compared to the performance of the same mortars when subjected to the ring test. Stress development and cracking in the composite specimens were analytically modeled and predicted based on the measurement of relevant time-dependent material properties such as drying shrinkage, elastic modulus, tensile relaxation and tensile strength. Overlay cracking in the composite beams could be very well predicted with the analytical model. The ring test provided a useful qualitative comparison of the cracking performance of the mortars. The duration of curing wasmore » found to only have a minor influence on crack development. This was ascribed to the fact that prolonged curing has a beneficial effect on tensile strength at the onset of stress development, but is in the same time not beneficial to the values of tensile relaxation and elastic modulus. -- Highlights: •Parameter study on material characteristics influencing overlay cracking. •Analytical model gives good quantitative indication of overlay cracking. •Ring test presents good qualitative indication of overlay cracking. •Curing duration has little effect on overlay cracking.« less
Glasman, Laura R; Dickson-Gomez, Julia; Lechuga, Julia; Tarima, Sergey; Bodnar, Gloria; de Mendoza, Lorena Rivas
2016-06-01
In El Salvador, crack users are at high risk for HIV but they are not targeted by efforts to promote early HIV diagnosis. We evaluated the promise of peer-referral chains with incentives to increase HIV testing and identify undiagnosed HIV infections among networks of crack users in San Salvador. For 14 months, we offered HIV testing in communities with a high prevalence of crack use. For the following 14 months, we promoted chains in which crack users from these communities referred their peers to HIV testing and received a small monetary incentive. We recorded the monthly numbers of HIV testers, and their crack use, sexual risk behaviors and test results. After launching the referral chains, the monthly numbers of HIV testers increased significantly (Z = 6.90, p < .001) and decayed more slowly (Z = 5.93, p < .001), and the total number of crack-using testers increased nearly fourfold. Testers in the peer-referral period reported fewer HIV risk behaviors, but a similar percentage (~5 %) tested HIV positive in both periods. More women than men received an HIV-positive diagnosis throughout the study (χ(2)(1, N = 799) = 4.23, p = .040). Peer-referral chains with incentives can potentially increase HIV testing among networks of crack users while retaining a focus on high-risk individuals.
A nonlinear fracture mechanics approach to the growth of small cracks
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.
1983-01-01
An analytical model of crack closure is used to study the crack growth and closure behavior of small cracks in plates and at notches. The calculated crack opening stresses for small and large cracks, together with elastic and elastic plastic fracture mechanics analyses, are used to correlate crack growth rate data. At equivalent elastic stress intensity factor levels, calculations predict that small cracks in plates and at notches should grow faster than large cracks because the applied stress needed to open a small crack is less than that needed to open a large crack. These predictions agree with observed trends in test data. The calculations from the model also imply that many of the stress intensity factor thresholds that are developed in tests with large cracks and with load reduction schemes do not apply to the growth of small cracks. The current calculations are based upon continuum mechanics principles and, thus, some crack size and grain structure exist where the underlying fracture mechanics assumptions become invalid because of material inhomogeneity (grains, inclusions, etc.). Admittedly, much more effort is needed to develop the mechanics of a noncontinuum. Nevertheless, these results indicate the importance of crack closure in predicting the growth of small cracks from large crack data.
Crack Growth Simulation and Residual Strength Prediction in Airplane Fuselages
NASA Technical Reports Server (NTRS)
Chen, Chuin-Shan; Wawrzynek, Paul A.; Ingraffea, Anthony R.
1999-01-01
The objectives were to create a capability to simulate curvilinear crack growth and ductile tearing in aircraft fuselages subjected to widespread fatigue damage and to validate with tests. Analysis methodology and software program (FRANC3D/STAGS) developed herein allows engineers to maintain aging aircraft economically, while insuring continuous airworthiness, and to design more damage-tolerant aircraft for the next generation. Simulations of crack growth in fuselages were described. The crack tip opening angle (CTOA) fracture criterion, obtained from laboratory tests, was used to predict fracture behavior of fuselage panel tests. Geometrically nonlinear, elastic-plastic, thin shell finite element crack growth analyses were conducted. Comparisons of stress distributions, multiple stable crack growth history, and residual strength between measured and predicted results were made to assess the validity of the methodology. Incorporation of residual plastic deformations and tear strap failure was essential for accurate residual strength predictions. Issue related to predicting crack trajectory in fuselages were also discussed. A directional criterion, including T-stress and fracture toughness orthotropy, was developed. Curvilinear crack growth was simulated in coupon and fuselage panel tests. Both T-stress and fracture toughness orthotropy were essential to predict the observed crack paths. Flapping of fuselages were predicted. Measured and predicted results agreed reasonable well.
Adhesion testing procedure for hot-poured crack sealants.
DOT National Transportation Integrated Search
2008-11-01
Crack sealing is a common pavement maintenance treatment because it extends pavement service life significantly. : However, crack sealant often fails prematurely due to a loss of adhesion. Because current test methods are mostly : empirical and only ...
Change in size and impact performance of football helmets from the 1970s to 2010.
Viano, David C; Halstead, David
2012-01-01
Linear impactor tests were conducted on football helmets from the 1970s-1980s to complement recently reported tests on 1990 s and 2010 s helmets. Helmets were placed on the Hybrid III head with an array of accelerometers to determine translational and rotational acceleration. Impacts were at four sites on the helmet shell at 3.6-11.2 m/s. The four generations of helmets show a continuous improvement in response from bare head impacts in terms of Head Injury Criterion (HIC), peak head acceleration and peak rotational acceleration. Helmets of 2010 s weigh 1.95 ± 0.2 kg and are 2.7 times heavier than 1970s designs. They are also 4.3 cm longer, 7.6 cm higher, and 4.9 cm wider. The extra size and weight allow the use of energy absorbing padding that lowers forces in helmet impacts. For frontal impacts at 7.4 m/s, the four best performing 2010 s helmets have HIC of 148 ± 23 compared to 179 ± 42 for the 1990 s baseline, 231 ± 27 for the 1980s, 253 ± 22 for the 1970s helmets, and 354 ± 3 for the bare head. The additional size and padding of the best 2010 s helmets provide superior attenuation of impact forces in normal play and in conditions associated with concussion than helmets of the 1970s-1990 s.
Inspecting cracks in foam insulation
NASA Technical Reports Server (NTRS)
Cambell, L. W.; Jung, G. K.
1979-01-01
Dye solution indicates extent of cracking by penetrating crack and showing original crack depth clearly. Solution comprised of methylene blue in denatured ethyl alcohol penetrates cracks completely and evaporates quickly and is suitable technique for usage in environmental or structural tests.
Ali, Abdulbaset; Hu, Bing; Ramahi, Omar
2015-05-15
This work presents a real life experiment of implementing an artificial intelligence model for detecting sub-millimeter cracks in metallic surfaces on a dataset obtained from a waveguide sensor loaded with metamaterial elements. Crack detection using microwave sensors is typically based on human observation of change in the sensor's signal (pattern) depicted on a high-resolution screen of the test equipment. However, as demonstrated in this work, implementing artificial intelligence to classify cracked from non-cracked surfaces has appreciable impact in terms of sensing sensitivity, cost, and automation. Furthermore, applying artificial intelligence for post-processing data collected from microwave sensors is a cornerstone for handheld test equipment that can outperform rack equipment with large screens and sophisticated plotting features. The proposed method was tested on a metallic plate with different cracks and the obtained experimental results showed good crack classification accuracy rates.
Ali, Abdulbaset; Hu, Bing; Ramahi, Omar M.
2015-01-01
This work presents a real-life experiment implementing an artificial intelligence model for detecting sub-millimeter cracks in metallic surfaces on a dataset obtained from a waveguide sensor loaded with metamaterial elements. Crack detection using microwave sensors is typically based on human observation of change in the sensor's signal (pattern) depicted on a high-resolution screen of the test equipment. However, as demonstrated in this work, implementing artificial intelligence to classify cracked from non-cracked surfaces has appreciable impacts in terms of sensing sensitivity, cost, and automation. Furthermore, applying artificial intelligence for post-processing the data collected from microwave sensors is a cornerstone for handheld test equipment that can outperform rack equipment with large screens and sophisticated plotting features. The proposed method was tested on a metallic plate with different cracks, and the experimental results showed good crack classification accuracy rates. PMID:25988871
NASA Astrophysics Data System (ADS)
Song, N. N.; Wu, F.
2016-04-01
An active sensing diagnostic system using PZT based smart rebar for SHM of RC structure has been currently under investigation. Previous test results showed that the system could detect the de-bond of concrete from reinforcement, and the diagnostic signals were increased exponentially with the de-bonding size. Previous study also showed that the smart rebar could function well like regular reinforcement to undertake tension stresses. In this study, a smart rebar network has been used to detect the crack damage of concrete based on guided waves. Experimental test has been carried out for the study. In the test, concrete beams with 2 reinforcements have been built. 8 sets of PZT elements were mounted onto the reinforcement bars in an optimized way to form an active sensing diagnostic system. A 90 kHz 5-cycle Hanning-windowed tone burst was used as input. Multiple cracks have been generated on the concrete structures. Through the guided bulk waves propagating in the structures from actuators and sensors mounted from different bars, crack damage could be detected clearly. Cases for both single and multiple cracks were tested. Different crack depths from the surface and different crack numbers have been studied. Test result shows that the amplitude of sensor output signals is deceased linearly with a propagating crack, and is decreased exponentially with increased crack numbers. From the study, the active sensing diagnostic system using PZT based smart rebar network shows a promising way to provide concrete crack damage information through the "talk" among sensors.
Microstructural examination of fatigue crack tip in high strength steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuoka, C.; Yoshizawa, H.; Nakagawa, Y.G.
1993-10-01
Fatigue tests were performed to examine how microstructural conditioning influences crack initiation and propagation in SA508 class 3 low-carbon steel. A 3-mm-long crack was introduced in compact tension (CT) fatigue test specimens under four different loads in order to obtain crack tip plastic zones at different stress intensity factor ranges, [Delta]K = 18, 36, 54, and 72 MPa[radical]m. The microstructure of the plastic zones around the crack tip were examined by transmission electron microscopy (TEM) and selected area electron diffraction (SAD). Micro-orientation of the dislocation cells in the plastic zones of all of the CT samples increased to 4 degmore » from the level of an as-received sample. Four-point bending fatigue tests were performed for plate shape samples with a large cyclic strain range. The SAD value of the bending samples was also 4 deg in the damaged area where cracks already initiated at an early stage of the fatigue process. These test results indicate that the microstructural conditioning is a prerequisite for the fatigue crack initiation and propagation in SA508. These observations may lead to better understanding of how fatigue initiation processes transit to cracks.« less
An evaluation of the pressure proof test concept for thin sheet 2024-T3
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Poe, C. C., Jr.; Newman, J. C., Jr.; Harris, C. E.
1990-01-01
The concept of pressure proof testing of fuselage structures with fatigue cracks to insure structural integrity was evaluated from a fracture mechanics viewpoint. A generic analytical and experimental investigation was conducted on uniaxially loaded flat panels with crack configurations and stress levels typical of longitudinal lap-splice joints in commercial transport aircraft fuselage. The results revealed that the remaining fatigue life after a proof test was longer than that without the proof test because of crack growth retardation due to increased crack closure. However, based on a crack length that is slightly less than the critical value at the maximum proof test stress, the minimum assured life or proof test interval must be no more than 550 pressure cycles for a 1.33 proof factor and 1530 pressure cycles for a 1.5 proof factor to prevent in-flight failures.
An evaluation of the pressure proof test concept for thin sheet 2024-T3
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Poe, C. C., Jr.; Newman, James C., Jr.; Harris, Charles E.
1990-01-01
The concept of pressure proof testing of fuselage structures with fatigue cracks to insure structural integrity was evaluated from a fracture mechanics viewpoint. A generic analytical and experimental investigation was conducted on uniaxially loaded flat panels with crack configurations and stress levels typical of longitudinal lap splice joints in commercial transport aircraft fuselages. The results revealed that the remaining fatigue life after a proof test was longer than that without the proof test because of crack growth retardation due to increased crack closure. However, based on a crack length that is slightly less than the critical value at the maximum proof test stress, the minimum assured life or proof test interval must be no more than 550 pressure cycles for a 1.33 proof factor and 1530 pressure cycles for a 1.5 proof factor to prevent in-flight failures.
NASA Technical Reports Server (NTRS)
Snider, H. L.; Reeder, F. L.; Dirkin, W. J.
1972-01-01
Fourteen C-130 airplane center wings, each containing service-imposed fatigue damage resulting from 4000 to 13,000 accumulated flight hours, were tested to determine their fatigue crack propagation and static residual strength characteristics. Eight wings were subjected to a two-step constant amplitude fatigue test prior to static testing. Cracks up to 30 inches long were generated in these tests. Residual static strengths of these wings ranged from 56 to 87 percent of limit load. The remaining six wings containing cracks up to 4 inches long were statically tested as received from field service. Residual static strengths of these wings ranged from 98 to 117 percent of limit load. Damage-tolerant structural design features such as fastener holes, stringers, doublers around door cutouts, and spanwise panel splices proved to be effective in retarding crack propagation.
Near-Threshold Fatigue Crack Growth Behavior of Fine-Grain Nickel-Based Alloys
NASA Technical Reports Server (NTRS)
Newman, John A.; Piascik, Robert S.
2003-01-01
Constant-Kmax fatigue crack growth tests were performed on two finegrain nickel-base alloys Inconel 718 (DA) and Ren 95 to determine if these alloys exhibit near-threshold time-dependent crack growth behavior observed for fine-grain aluminum alloys in room-temperature laboratory air. Test results showed that increases in K(sub max) values resulted in increased crack growth rates, but no evidence of time-dependent crack growth was observed for either nickel-base alloy at room temperature.
Development of Standard Methods of Testing and Analyzing Fatigue Crack Growth Rate Data
1978-05-01
nitrogen cooled cryostat; high temperature tests were conducted using resistance heating tapes . An automatic controller maintained test temperatures...Cracking," Int. J. Fracture, Vol. 9, 1973, pp. 63-74. 87. P. Paris and F. Erdogan , "A Critical Analysis of Crack Propagation Laws," Trans. ASME, Ser. D: J...requirements of Sec. 7.2 and Appendix B. 200 REFERENCES 1. P. C. Paris and F. Erdogan , "A Critical Analysis of Crack Propagation Laws", Trans. ASME, Ser. D: 3
Influence of bitumen type on cracking resistance of asphalt mixtures used in pavement overlays
NASA Astrophysics Data System (ADS)
Jaskula, P.; Szydlowski, C.; Stienss, M.
2018-05-01
Cracking is one of the predominant distresses occurring in flexible pavements, especially in old pavements that were rehabilitated with an asphalt overlay. In such cases asphalt mixtures should be designed to ensure high resistance to reflective cracking because new asphalt layers are exposed to existing cracks of the old pavement. The nature of these cracks can be various (transverse, longitudinal as well as crazy cracking). One factor that minimizes this type of distress is the proper mix design process, which should involve selection of specific bitumen binder and mineral mix gradation. However, still there is no universally adopted laboratory test method that would allow to clearly assess resistance of asphalt mixtures to reflective cracking. This paper describes the usage of one of the devices developed to test asphalt mixtures in terms of such distress – Texas Overlay Tester. For this test, samples prepared in laboratory conditions (i.e. compacted with the use of Superpave Gyratory Compactor) as well as obtained in the field (by core drilling) can be used. The results are obtained not only quickly and easily, but also with sufficient repeatability. The described method characterizes both crack initiation and crack propagation properties of asphalt mixtures. In this work one type of mineral mixture was tested with 4 different types of bitumen (one neat bitumen, two ordinary polymer-modified and one polymer-modified with high polymer content). For selected cases extra additives (rubber and loose fibres) were also tested. In total, six asphalt mixtures were tested. A ranking of the used binders was created on the basis of the results in order to conclude which bitumen would ensure the best performance characteristics in terms of reflective cracking. The results have clearly shown that deliberate choice of the binder used in the asphalt mixture for the overlay will significantly improve its reflective cracking resistance or even fatigue resistance.
Form and function of topologically associating genomic domains in budding yeast.
Eser, Umut; Chandler-Brown, Devon; Ay, Ferhat; Straight, Aaron F; Duan, Zhijun; Noble, William Stafford; Skotheim, Jan M
2017-04-11
The genome of metazoan cells is organized into topologically associating domains (TADs) that have similar histone modifications, transcription level, and DNA replication timing. Although similar structures appear to be conserved in fission yeast, computational modeling and analysis of high-throughput chromosome conformation capture (Hi-C) data have been used to argue that the small, highly constrained budding yeast chromosomes could not have these structures. In contrast, herein we analyze Hi-C data for budding yeast and identify 200-kb scale TADs, whose boundaries are enriched for transcriptional activity. Furthermore, these boundaries separate regions of similarly timed replication origins connecting the long-known effect of genomic context on replication timing to genome architecture. To investigate the molecular basis of TAD formation, we performed Hi-C experiments on cells depleted for the Forkhead transcription factors, Fkh1 and Fkh2, previously associated with replication timing. Forkhead factors do not regulate TAD formation, but do promote longer-range genomic interactions and control interactions between origins near the centromere. Thus, our work defines spatial organization within the budding yeast nucleus, demonstrates the conserved role of genome architecture in regulating DNA replication, and identifies a molecular mechanism specifically regulating interactions between pericentric origins.
Reorganization of chromosome architecture in replicative cellular senescence.
Criscione, Steven W; De Cecco, Marco; Siranosian, Benjamin; Zhang, Yue; Kreiling, Jill A; Sedivy, John M; Neretti, Nicola
2016-02-01
Replicative cellular senescence is a fundamental biological process characterized by an irreversible arrest of proliferation. Senescent cells accumulate a variety of epigenetic changes, but the three-dimensional (3D) organization of their chromatin is not known. We applied a combination of whole-genome chromosome conformation capture (Hi-C), fluorescence in situ hybridization, and in silico modeling methods to characterize the 3D architecture of interphase chromosomes in proliferating, quiescent, and senescent cells. Although the overall organization of the chromatin into active (A) and repressive (B) compartments and topologically associated domains (TADs) is conserved between the three conditions, a subset of TADs switches between compartments. On a global level, the Hi-C interaction matrices of senescent cells are characterized by a relative loss of long-range and gain of short-range interactions within chromosomes. Direct measurements of distances between genetic loci, chromosome volumes, and chromatin accessibility suggest that the Hi-C interaction changes are caused by a significant reduction of the volumes occupied by individual chromosome arms. In contrast, centromeres oppose this overall compaction trend and increase in volume. The structural model arising from our study provides a unique high-resolution view of the complex chromosomal architecture in senescent cells.
Mpofu, Charles; Gupta, Tarun Sen; Hays, Richard
2016-09-01
Medical migration appears to be an increasing global phenomenon, with complex contributing factors. Although it is acknowledged that such movements are inevitable, given the current globalized economy, the movement of health professionals from their country of training raises questions about equity of access and quality of care. Concerns arise if migration occurs from low- and middle-income countries (LMICs) to high-income countries (HICs). The actions of HICs receiving medical practitioners from LMICs are examined through the global justice theories of John Rawls and Immanuel Kant. These theories were initially proposed by Pogge (1988) and Tan (1997) and, in this work, are extended to the issue of medical migration. Global justice theories propose that instead of looking at health needs and workforce issues within their national boundaries, HICs should be guided by principles of justice relevant to the needs of health systems on a global scale. Issues of individual justice are also considered within the framework of rights and social responsibilities of individual medical practitioners. Local and international policy changes are suggested based on both global justice theories and the ideals of individual justice.
Population-based 3D genome structure analysis reveals driving forces in spatial genome organization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tjong, Harianto; Li, Wenyuan; Kalhor, Reza
Conformation capture technologies (e.g., Hi-C) chart physical interactions between chromatin regions on a genome-wide scale. However, the structural variability of the genome between cells poses a great challenge to interpreting ensemble-averaged Hi-C data, particularly for long-range and interchromosomal interactions. Here, we present a probabilistic approach for deconvoluting Hi-C data into a model population of distinct diploid 3D genome structures, which facilitates the detection of chromatin interactions likely to co-occur in individual cells. Here, our approach incorporates the stochastic nature of chromosome conformations and allows a detailed analysis of alternative chromatin structure states. For example, we predict and experimentally confirm themore » presence of large centromere clusters with distinct chromosome compositions varying between individual cells. The stability of these clusters varies greatly with their chromosome identities. We show that these chromosome-specific clusters can play a key role in the overall chromosome positioning in the nucleus and stabilizing specific chromatin interactions. By explicitly considering genome structural variability, our population-based method provides an important tool for revealing novel insights into the key factors shaping the spatial genome organization.« less
Population-based 3D genome structure analysis reveals driving forces in spatial genome organization
Tjong, Harianto; Li, Wenyuan; Kalhor, Reza; ...
2016-03-07
Conformation capture technologies (e.g., Hi-C) chart physical interactions between chromatin regions on a genome-wide scale. However, the structural variability of the genome between cells poses a great challenge to interpreting ensemble-averaged Hi-C data, particularly for long-range and interchromosomal interactions. Here, we present a probabilistic approach for deconvoluting Hi-C data into a model population of distinct diploid 3D genome structures, which facilitates the detection of chromatin interactions likely to co-occur in individual cells. Here, our approach incorporates the stochastic nature of chromosome conformations and allows a detailed analysis of alternative chromatin structure states. For example, we predict and experimentally confirm themore » presence of large centromere clusters with distinct chromosome compositions varying between individual cells. The stability of these clusters varies greatly with their chromosome identities. We show that these chromosome-specific clusters can play a key role in the overall chromosome positioning in the nucleus and stabilizing specific chromatin interactions. By explicitly considering genome structural variability, our population-based method provides an important tool for revealing novel insights into the key factors shaping the spatial genome organization.« less
A Study of the Effect of the Front-End Styling of Sport Utility Vehicles on Pedestrian Head Injuries
Qin, Qin; Chen, Zheng; Bai, Zhonghao; Cao, Libo
2018-01-01
Background The number of sport utility vehicles (SUVs) on China market is continuously increasing. It is necessary to investigate the relationships between the front-end styling features of SUVs and head injuries at the styling design stage for improving the pedestrian protection performance and product development efficiency. Methods Styling feature parameters were extracted from the SUV side contour line. And simplified finite element models were established based on the 78 SUV side contour lines. Pedestrian headform impact simulations were performed and validated. The head injury criterion of 15 ms (HIC15) at four wrap-around distances was obtained. A multiple linear regression analysis method was employed to describe the relationships between the styling feature parameters and the HIC15 at each impact point. Results The relationship between the selected styling features and the HIC15 showed reasonable correlations, and the regression models and the selected independent variables showed statistical significance. Conclusions The regression equations obtained by multiple linear regression can be used to assess the performance of SUV styling in protecting pedestrians' heads and provide styling designers with technical guidance regarding their artistic creations.
Magnetic structure of sites of braiding in Hi-C active region
NASA Astrophysics Data System (ADS)
Tiwari, Sanjiv Kumar; Alexander, Caroline; Winebarger, Amy R.; Moore, Ronald L.
2014-06-01
High-resolution Coronal Imager (Hi-C) observations of an active region (AR) corona, at a spatial resolution of 0.2 arcsec, have offered the first direct evidence of field lines braiding, which could deliver sufficient energy to heat the AR corona by current dissipation via magnetic reconnection, a proposal given by Parker three decades ago. The energy required to heat the corona must be transported from the photosphere along the field lines. The mechanism that drives the energy transport to the corona is not yet fully understood.To investigate simultaneous magnetic and intensity structure in and around the AR in detail, we use SDO/HMI+AIA data of + / - 2 hours around the 5 minute Hi-C flight. In the case of the QS, work done by convection/granulation on the inter-granular feet of the coronal field lines probably translates into the heat observed in the corona. In the case of the AR, as here, there could be flux emergence, cancellation/submergence, or shear flows generating large stress and tension in coronal field loops which is released as heat in the corona. However, to the best of our knowledge, there is no observational evidence available to these processes. We investigate the changes taking place in the photospheric feet of the magnetic field involved with brightenings in the Hi-C AR corona. Using HMI 45s magnetograms of four hours we find that, out of the two Hi-C sub-regions where the braiding of field lines were recently detected, flux emergence takes place in one region and flux cancellation in the other. The field in these sub-regions are highly sheared and have apparent high speed plasma flows at their feet. Therefore, shearing flows plausibly power much of the coronal and transition region heating in these areas of the AR. In addition, the presence of large flux emergence/cancellation strongly suggests that the work done by these processes on the pre-existing field also drives much of the observed heating.For this work, SKT and CEA were supported by an appointment to the NASA Postdoctoral Program at the NASA Marshall Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA, and AW and RLM were supported by funding from the Living With a Star Targeted Research and Technology Program of the Heliophysics Division of NASA's Science Mission Directorate.
Fabrication and testing of prestressed composite rotor blade spar specimens
NASA Technical Reports Server (NTRS)
Gleich, D.
1974-01-01
Prestressed composite spar specimens were fabricated and evaluated by crack propagation and ballistic penetration tests. The crack propagation tests on flawed specimens showed that the prestressed composite spar construction significantly suppresses crack growth. Damage from three high velocity 30 caliber projectile hits was confined to three small holes in the ballistic test specimen. No fragmentation or crack propagation was observed indicating good ballistic damage resistance. Rotor attachment approaches and improved structural performance configurations were identified. Design theory was verified by tests. The prestressed composite spar configuration consisted of a compressively prestressed high strength ARDEFORM 301 stainless steel liner overwrapped with pretensioned S-994 fiberglass.
NASA Technical Reports Server (NTRS)
Willard, S. A.
1997-01-01
Groups of striations called marker bands generated on a fatigue fracture surface can be used to mark the position of an advancing fatigue crack at known intervals. A technique has been developed that uses the distance between multiple sets of marker bands to obtain a vs. N, crack front shape, and fatigue crack growth rate data for small cracks. This technique is particularly usefull for specimens that require crack length measurements during testing that cannot be obtained because corrosion obscures the surface of the specimen. It is also useful for specimens with unusual or non-symmetric shapes where it is difficult to obtain accurate crack lengths using traditional methods such as compliance or electric potential difference in the early stages of testing.
NASA Technical Reports Server (NTRS)
Armstrong, E. S.
1986-01-01
An experimental program has been planned at the NASA Lewis Research Center to build confidence in the feasibility of liquid oxygen cooling for hydrocarbon fueled rocket engines. Although liquid oxygen cooling has previously been incorporated in test hardware, more runtime is necessary to gain confidence in this concept. In the previous tests, small oxygen leaks developed at the throat of the thrust chamber and film cooled the hot-gas side of the chamber wall without resulting in catastrophic failure. However, more testing is necessary to demonstrate that a catastrophic failure would not occur if cracks developed further upstream between the injector and the throat, where the boundary layer has not been established. Since under normal conditions cracks are expected to form in the throat region of the thrust chamber, cracks must be initiated artificially in order to control their location. Several methods of crack initiation are discussed in this report. Four thrust chambers, three with cracks and one without, should be tested. The axial location of the cracks should be varied parametrically. Each chamber should be instrumented to determine the effects of the cracks, as well as the overall performance and durability of the chambers.
Fatigue crack propagation behavior of stainless steel welds
NASA Astrophysics Data System (ADS)
Kusko, Chad S.
The fatigue crack propagation behavior of austenitic and duplex stainless steel base and weld metals has been investigated using various fatigue crack growth test procedures, ferrite measurement techniques, light optical microscopy, stereomicroscopy, scanning electron microscopy, and optical profilometry. The compliance offset method has been incorporated to measure crack closure during testing in order to determine a stress ratio at which such closure is overcome. Based on this method, an empirically determined stress ratio of 0.60 has been shown to be very successful in overcoming crack closure for all da/dN for gas metal arc and laser welds. This empirically-determined stress ratio of 0.60 has been applied to testing of stainless steel base metal and weld metal to understand the influence of microstructure. Regarding the base metal investigation, for 316L and AL6XN base metals, grain size and grain plus twin size have been shown to influence resulting crack growth behavior. The cyclic plastic zone size model has been applied to accurately model crack growth behavior for austenitic stainless steels when the average grain plus twin size is considered. Additionally, the effect of the tortuous crack paths observed for the larger grain size base metals can be explained by a literature model for crack deflection. Constant Delta K testing has been used to characterize the crack growth behavior across various regions of the gas metal arc and laser welds at the empirically determined stress ratio of 0.60. Despite an extensive range of stainless steel weld metal FN and delta-ferrite morphologies, neither delta-ferrite morphology significantly influence the room temperature crack growth behavior. However, variations in weld metal da/dN can be explained by local surface roughness resulting from large columnar grains and tortuous crack paths in the weld metal.
Prediction of Low-Temperature Cracking Using Superpave Binder Specifications
DOT National Transportation Integrated Search
1996-02-01
Six different AC-20 asphalt cements were used in a Pennsylvania project in September 1976. Two of the six test pavements developed low-temperature cracking in January 1977. The remaining four test pavements started to develop cracks to different degr...
Microstructural examination of
NASA Astrophysics Data System (ADS)
Fukuoka, C.; Yoshizawa, H.; Nakagawa, Y. G.; Lapides, M. E.
1993-10-01
Fatigue tests were performed to examine how microstructural conditioning influences crack initiation and propagation in SA508 class 3 low-carbon steel. A 3-mm-long crack was introduced in compact tension (CT) fatigue test specimens under four different loads in order to obtain crack tip plastic zones at different stress intensity factor ranges, ΔK = 18, 36, 54, and 72 MPa√m. The microstructure of the plastic zones around the crack tip were examined by trans- mission electron microscopy (TEM) and selected area electron diffraction (SAD). Micro- orientation of the dislocation cells in the plastic zones of all of the CT samples increased to 4 deg from the level of an as-received sample. Four-point bending fatigue tests were performed for plate shape samples with a large cyclic strain range. The SAD value of the bending samples was also 4 deg in the damaged area where cracks already initiated at an early stage of the fatigue process. These test results indicate that the microstructural conditioning is a prerequisite for the fatigue crack initiation and propagation in SA508. These observations may lead to better under- standing of how fatigue initiation processes transit to cracks.
Experimental studies of rock fracture behavior related to hydraulic fracture
NASA Astrophysics Data System (ADS)
Ma, Zifeng
The objective of this experimental investigation stems from the uncontrollable of the hydraulic fracture shape in the oil and gas production field. A small-scale laboratory investigation of crack propagation in sandstone was first performed with the objective to simulate the field fracture growth. Test results showed that the fracture resistance increased with crack extension, assuming that there was an interaction between crack faces (bridging, interlocking, and friction). An acoustic emission test was conducted to examine the existence of the interaction by locating AE events and analyzing waveform. Furthermore, the effects of confining stress, loading rate, stress field, and strength heterogeneous on the tortuosity of the fracture surface were experimentally investigated in the study. Finally, a test was designed and conducted to investigate the crack propagation in a stratified media with permeability contrast. Crack was observed to arrested in an interface. The phenomenon of delamination along an interface between layers with permeability contrast was observed. The delamination was proposed to be the cause of crack arrest and crack jump in the saturated stratified materials under confinement test.
A Statistics-Based Cracking Criterion of Resin-Bonded Silica Sand for Casting Process Simulation
NASA Astrophysics Data System (ADS)
Wang, Huimin; Lu, Yan; Ripplinger, Keith; Detwiler, Duane; Luo, Alan A.
2017-02-01
Cracking of sand molds/cores can result in many casting defects such as veining. A robust cracking criterion is needed in casting process simulation for predicting/controlling such defects. A cracking probability map, relating to fracture stress and effective volume, was proposed for resin-bonded silica sand based on Weibull statistics. Three-point bending test results of sand samples were used to generate the cracking map and set up a safety line for cracking criterion. Tensile test results confirmed the accuracy of the safety line for cracking prediction. A laboratory casting experiment was designed and carried out to predict cracking of a cup mold during aluminum casting. The stress-strain behavior and the effective volume of the cup molds were calculated using a finite element analysis code ProCAST®. Furthermore, an energy dispersive spectroscopy fractographic examination of the sand samples confirmed the binder cracking in resin-bonded silica sand.
NASA Astrophysics Data System (ADS)
Hicks, P. D.; Robinson, F. P. A.
1986-10-01
Corrosion fatigue (CF) tests have been carried out on SA508 Cl 3 pressure vessel steel, in simulated P.W.R. environments. The test variables investigated included air and P.W.R. water environments, frequency variation over the range 1 Hz to 10 Hz, transverse and longitudinal crack growth directions, temperatures of 20 °C and 50 °C, and R-ratios of 0.2 and 0.7. It was found that decreasing the test frequency increased fatigue crack growth rates (FCGR) in P.W.R. environments, P.W.R. environment testing gave enhanced crack growth (vs air tests), FCGRs were greater for cracks growing in the longitudinal direction, slight increases in temperature gave noticeable accelerations in FCGR, and several air tests gave FCGR greater than those predicted by the existing ASME codes. Fractographic evidence indicates that FCGRs were accelerated by a hydrogen embrittlement mechanism. The presence of elongated MnS inclusions aided both mechanical fatigue and hydrogen embrittlement processes, thus producing synergistically fast FCGRs. Both anodic dissolution and hydrogen embrittlement mechanisms have been proposed for the environmental enhancement of crack growth rates. Electrochemical potential measurements and potentiostatic tests have shown that sample isolation of the test specimens from the clevises in the apparatus is not essential during low temperature corrosion fatigue testing.
Effects of powder characteristics on injection molding and burnout cracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bandyopadhyay, G.; French, K.W.
Silicon nitride particle size and size distributions were varied widely to determine their effects on burnout cracking of injection-molded test parts containing thick and thin sections. Elimination of internal cracking required significant burnout shrinkage, which did not occur by changes of particle size and size distribution. However, isopressing of test parts after burnout provided the dimensional shrinkage necessary for producing crack-free components.
A study of creep crack growth in 2219-T851
NASA Astrophysics Data System (ADS)
Bensussan, Philippe L.; Jablonski, David A.; Pelloux, Regis M.
1984-01-01
Creep crack growth rates were measured in high strength 2219-T851 aluminum alloy with a computerized fully automated test procedure. Crack growth tests were performed on CT specimens with side grooves. The experimental set-up is described. During a test, the specimen is cyclically loaded on a servohydraulic testing machine under computer control, maintained at maximum load for a given hold time at each cycle, unloaded, and then reloaded. Crack lengths are obtained from compliance measurements recorded during each unloading. It is shown that the measured crack growth rates per cycle do represent creep crack growth rates per unit time for hold times longer than 10 seconds. The validity of LEFM concepts for side-grooved specimens is reviewed, and compliance and stress intensity factor calibrations for such specimens are reported. For the range of testing conditions of this study, 2219-T851 is shown to be creep brittle in terms of concepts of fracture mechanics of creeping solids. It is found that, under these testing conditions, a correlation exists between the creep crack growth rates under plane strain conditions and the stress intensity factor ( da/dt = A K 3.8 at 175 °C) for simple K histories in a regime of steady or quasi-steady state crack growth. The micromechanisms of fracture are determined to be of complex nature. The fracture mode is observed to be mixed inter- and transgranular, the relative amount of intergranular fracture decreasing as K and da/dt increase.
NASA Technical Reports Server (NTRS)
Ziola, Steven M.
2014-01-01
Digital Wave Corp. (DWC) was retained by Jacobs ATOM at NASA Ames Research Center to perform cyclic pressure crack growth sensitivity testing on a multilayer pressure vessel instrumented with DWC's Modal Acoustic Emission (MAE) system, with captured wave analysis to be performed using DWCs WaveExplorerTM software, which has been used at Ames since 2001. The objectives were to document the ability to detect and characterize a known growing crack in such a vessel using only MAE, to establish the sensitivity of the equipment vs. crack size and / or relevance in a realistic field environment, and to obtain fracture toughness materials properties in follow up testing to enable accurate crack growth analysis. This report contains the results of the testing.
Failure Pressure and Leak Rate of Steam Generator Tubes With Stress Corrosion Cracks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majumdar, S.; Kasza, K.; Park, J.Y.
2002-07-01
This paper illustrates the use of an 'equivalent rectangular crack' approach to predict leak rates through laboratory generated stress corrosion cracks. A comparison between predicted and observed test data on rupture and leak rate from laboratory generated stress corrosion cracks are provided. Specimen flaws were sized by post-test fractography in addition to pre-test advanced eddy current technique. The test failure pressures and leak rates are shown to be closer to those predicted on the basis of fractography than on NDE. However, the predictions based on NDE results are encouraging, particularly because they have the potential to determine a more detailedmore » geometry of ligamentous cracks from which more accurate predictions of failure pressure and leak rate can be made in the future. (authors)« less
Crack Initiation and Growth Behavior at Corrosion Pit in 2024-T3 Aluminum Alloy
2014-09-01
63 Figure B.1: The crack length vs. number of cycles during fatigue testing for the 2AI-01 specimen...number of cycles during fatigue testing for the the 2AI- 02 specimen...64 Figure B.3: The crack length vs. number of cycles during fatigue testing for the 2Sl-01 specimen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palin, D., E-mail: d.palin@tudelft.nl; Jonkers, H. M.; Wiktor, V.
Concrete has an autogenous ability to heal cracks potentially contributing to its functional water tightness and durability. Here, we quantify the crack-healing capacity of sea-water submerged mortar specimens through a simple and rapid permeability test. Defined crack width geometries were created in blast furnace slag cement specimens allowing healed specimens to be quantified against unhealed specimens. Specimens with 0.2 mm wide cracks were not permeable after 28 days submersion. Specimens with 0.4 mm cracks had decreases in permeability of 66% after 28 days submersion, and 50–53% after 56 days submersion. Precipitation of aragonite and brucite in the cracks was themore » main cause of crack healing. Healing potential was dependent on the initial crack width, thermodynamic considerations and the amount of ions available in the crack. To our knowledge, this is the first study to quantify the functional autogenous healing capacity of cracked sea-water exposed cementitious specimens.« less
NASA Technical Reports Server (NTRS)
Wu, X. R.; Newman, J. C.; Zhao, W.; Swain, M. H.; Ding, C. F.; Phillips, E. P.
1998-01-01
The small crack effect was investigated in two high-strength aluminium alloys: 7075-T6 bare and LC9cs clad alloy. Both experimental and analytical investigations were conducted to study crack initiation and growth of small cracks. In the experimental program, fatigue tests, small crack and large crack tests A,ere conducted under constant amplitude and Mini-TWIST spectrum loading conditions. A pronounced small crack effect was observed in both materials, especially for the negative stress ratios. For all loading conditions, most of the fatigue life of the SENT specimens was shown to be crack propagation from initial material defects or from the cladding layer. In the analysis program, three-dimensional finite element and A weight function methods were used to determine stress intensity factors and to develop SIF equations for surface and corner cracks at the notch in the SENT specimens. A plastisity-induced crack-closure model was used to correlate small and large crack data, and to make fatigue life predictions, Predicted crack-growth rates and fatigue lives agreed well with experiments. A total fatigue life prediction method for the aluminum alloys was developed and demonstrated using the crack-closure model.
Rolling contact fatigue strengths of shot-peened and crack-healed ceramics
NASA Astrophysics Data System (ADS)
Takahashi, K.; Oki, T.
2018-06-01
The effects of shot-peening (SP) and crack-healing on the rolling contact fatigue (RCF) strengths of Al2O3/SiC composite ceramics were investigated. Non-shot-peened, shot- peened, and shot-peened + crack-healed specimens were prepared. SP was performed using ZrO2 beads. The shot-peened + crack-healed specimen was crack-healed after SP. X-ray diffraction clearly showed that SP induced a compressive residual stress up to 300 MPa at the specimen surfaces. Furthermore, the shot-peened + crack-healed specimen retained a compressive residual stress of 200 MPa. The apparent surface fracture toughness of the shot- peened specimens increased owing to the positive effects of the compressive residual stress. RCF tests were performed using a thrust load-bearing test device. The RCF lives of the shot- peened specimens did not improve compared to that of the non-shot-peened specimen, because the numerous SP-introduced surface cracks could act as crack initiation sites during the RCF tests. However, the RCF life of the shot-peened + crack-healed specimen did improve compared to those of non-shot-peened and shot-peened specimens, implying that combining SP and crack-healing was an effective strategy for improving the RCF lives of Al2O3/SiC composite ceramics.
Monitoring the corrosion process of reinforced concrete using BOTDA and FBG sensors.
Mao, Jianghong; Chen, Jiayun; Cui, Lei; Jin, Weiliang; Xu, Chen; He, Yong
2015-04-15
Expansion and cracking induced by the corrosion of reinforcement concrete is the major factor in the failure of concrete durability. Therefore, monitoring of concrete cracking is critical for evaluating the safety of concrete structures. In this paper, we introduce a novel monitoring method combining Brillouin optical time domain analysis (BOTDA) and fiber Bragg grating (FBG), based on mechanical principles of concrete expansion cracking. BOTDA monitors concrete expansion and crack width, while FBG identifies the time and position of cracking. A water-pressure loading simulation test was carried out to determine the relationship between fiber strain, concrete expansion and crack width. An electrical accelerated corrosion test was also conducted to evaluate the ability of this novel sensor to monitor concrete cracking under practical conditions.
Test Method Variability in Slow Crack Growth Properties of Sealing Glasses
NASA Technical Reports Server (NTRS)
Salem, J. A.; Tandon, R.
2010-01-01
The crack growth properties of several sealing glasses were measured by using constant stress rate testing in 2 and 95 percent RH (relative humidity). Crack growth parameters measured in high humidity are systematically smaller (n and B) than those measured in low humidity, and crack velocities for dry environments are 100x lower than for wet environments. The crack velocity is very sensitive to small changes in RH at low RH. Biaxial and uniaxial stress states produced similar parameters. Confidence intervals on crack growth parameters that were estimated from propagation of errors solutions were comparable to those from Monte Carlo simulation. Use of scratch-like and indentation flaws produced similar crack growth parameters when residual stresses were considered.
Firing test of propellant-cracked solid motor under X-ray TV
NASA Astrophysics Data System (ADS)
Fujiwara, Tsutomu; Tanemura, Toshiharu; Itoh, Katsuya; Kakuta, Yoshiaki; Shimizu, Morio; Takahashi, Michio
This paper presents the effects of a big crack on the combustion behaviors of the scaled-down Japanese H-I upper stage motors of the National Space Development Agency (NASDA). The big crack was generated by cooling down the propellant grain below -100 C; the crack was identified and measured with the X-ray computer tomography (CT) system designed for medical use. It was found that the crack spread widely from inner bore to liner and fore-and-aft of the motor. The firing test of the propellant-cracked solid motor was performed under X-ray TV observation, and the motor exploded just after the ignition because of the abrupt chamber pressure increase due to flame propagation into the crack.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Ziqing; Toloczko, Mychailo; Kruska, Karen
Stress corrosion crack initiation of two thermally-treated, cold-worked (CW) alloy 690 (UNS N06690) materials was investigated in 360oC simulated PWR primary water using constant load tensile (CLT) tests and blunt notch compact tension (BNCT) tests equipped with direct current potential drop (DCPD) for in-situ detection of cracking. SCC initiation was not detected by DCPD for either the 21% or 31%CW CLT specimens loaded at their yield stress after ~9,220 hours, however intergranular (IG) precursor damage and isolated surface cracks were observed on the specimens. The two 31%CW BNCT specimens loaded at moderate stress intensity after several cyclic loading ramps showedmore » DCPD-indicated crack initiation after 10,400 hours of exposure at constant stress intensity, which was resulted from significant growth of IG cracks. The 21%CW BNCT specimens only exhibited isolated small IG surface cracks and showed no apparent DCPD change throughout the test. Post-test cross-section examinations revealed many grain boundary (GB) nano-cavities in the bulk of all the CLT and BNCT specimens particularly for the 31%CW materials. Cavities were also found along GBs extending to the surface suggesting an important role in crack nucleation. This paper provides an overview of the evolution of GB cavities and discusses their effects on crack initiation in CW alloy 690.« less
Elevated Temperature Crack Propagation
NASA Technical Reports Server (NTRS)
Orange, Thomas W.
1994-01-01
This paper is a summary of two NASA contracts on high temperature fatigue crack propagation in metals. The first evaluated the ability of fairly simple nonlinear fracture parameters to correlate crack propagation. Hastelloy-X specimens were tested under isothermal and thermomechanical cycling at temperatures up to 980 degrees C (1800 degrees F). The most successful correlating parameter was the crack tip opening displacement derived from the J-integral. The second evaluated the ability of several path-independent integrals to correlate crack propagation behavior. Inconel 718 specimens were tested under isothermal, thermomechanical, temperature gradient, and creep conditions at temperatures up to 650 degrees C (1200 degrees F). The integrals formulated by Blackburn and by Kishimoto correlated the data reasonably well under all test conditions.
STRESS CORROSION CRACK GROWTH RESPONSE FOR ALLOY 152/52 DISSIMILAR METAL WELDS IN PWR PRIMARY WATER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toloczko, Mychailo B.; Olszta, Matthew J.; Overman, Nicole R.
2015-08-15
As part of ongoing research into primary water stress corrosion cracking (PWSCC) susceptibility of alloy 690 and its welds, SCC tests have been conducted on alloy 152/52 dissimilar metal (DM) welds with cracks positioned with the goal to assess weld dilution and fusion line effects on SCC susceptibility. No increased crack growth rate was found when evaluating a 20% Cr dilution zone in alloy 152M joined to carbon steel (CS) that had not undergone a post-weld heat treatment (PWHT). However, high SCC crack growth rates were observed when the crack reached the fusion line of that material where it propagatedmore » both on the fusion line and in the heat affected zone (HAZ) of the carbon steel. Crack surface and crack profile examinations of the specimen revealed that cracking in the weld region was transgranular (TG) with weld grain boundaries not aligned with the geometric crack growth plane of the specimen. The application of a typical pressure vessel PWHT on a second set of alloy 152/52 – carbon steel DM weld specimens was found to eliminate the high SCC susceptibility in the fusion line and carbon steel HAZ regions. PWSCC tests were also performed on alloy 152-304SS DM weld specimens. Constant K crack growth rates did not exceed 5x10-9 mm/s in this material with post-test examinations revealing cracking primarily on the fusion line and slightly into the 304SS HAZ.« less
Crack identification and evolution law in the vibration failure process of loaded coal
NASA Astrophysics Data System (ADS)
Li, Chengwu; Ai, Dihao; Sun, Xiaoyuan; Xie, Beijing
2017-08-01
To study the characteristics of coal cracks produced in the vibration failure process, we set up a static load and static and dynamic combination load failure test simulation system, prepared with different particle size, formation pressure, and firmness coefficient coal samples. Through static load damage testing of coal samples and then dynamic load (vibration exciter) and static (jack) combination destructive testing, the crack images of coal samples under the load condition were obtained. Combined with digital image processing technology, an algorithm of crack identification with high precision and in real-time is proposed. With the crack features of the coal samples under different load conditions as the research object, we analyzed the distribution of cracks on the surface of the coal samples and the factors influencing crack evolution using the proposed algorithm and a high-resolution industrial camera. Experimental results showed that the major portion of the crack after excitation is located in the rear of the coal sample where the vibration exciter cannot act. Under the same disturbance conditions, crack size and particle size exhibit a positive correlation, while crack size and formation pressure exhibit a negative correlation. Soft coal is more likely to lead to crack evolution than hard coal, and more easily causes instability failure. The experimental results and crack identification algorithm provide a solid basis for the prevention and control of instability and failure of coal and rock mass, and they are helpful in improving the monitoring method of coal and rock dynamic disasters.
AE characteristic for monitoring of fatigue crack in steel bridge members
NASA Astrophysics Data System (ADS)
Yoon, Dong-Jin; Jung, Juong-Chae; Park, Philip; Lee, Seung-Seok
2000-06-01
Acoustic emission technique was employed for the monitoring of crack activity in both steel bridge members and laboratory specimen. Laboratory experiment was carried out to identify AE characteristics of fatigue cracks for compact tension specimen. The relationship between a stress intensity factor and AE signals activity as well as conventional AE parameter analysis was discussed. A field test was also conducted on a railway bridge, which contain several fatigue cracks. Crack activities were investigated while in service with strain measurement. From the results, in the laboratory tests, the features of three parameters such as the length of crack growth, the AE energy, and the cumulative AE events, showed the almost same trend in their increase as the number of fatigue cycle increased. From the comparisons of peak amplitude and AE energy with stress intensity factor, it was verified that the higher stress intensity factors generated AE signals with higher peak amplitude and a large number of AE counts. In the field test, real crack propagation signals were captured and the crack activity was verified in two cases.
Evaluation of the fuselage lap joint fatigue and terminating action repair
NASA Technical Reports Server (NTRS)
Samavedam, Gopal; Thomson, Douglas; Jeong, David Y.
1994-01-01
Terminating action is a remedial repair which entails the replacement of shear head countersunk rivets with universal head rivets which have a larger shank diameter. The procedure was developed to eliminate the risk of widespread fatigue damage (WFD) in the upper rivet row of a fuselage lap joint. A test and evaluation program has been conducted by Foster-Miller, Inc. (FMI) to evaluate the terminating action repair of the upper rivet row of a commercial aircraft fuselage lap splice. Two full scale fatigue tests were conducted on fuselage panels using the growth of fatigue cracks in the lap joint. The second test was performed to evaluate the effectiveness of the terminating action repair. In both tests, cyclic pressurization loading was applied to the panels while crack propagation was recorded at all rivet locations at regular intervals to generate detailed data on conditions of fatigue crack initiation, ligament link-up, and fuselage fracture. This program demonstrated that the terminating action repair substantially increases the fatigue life of a fuselage panel structure and effectively eliminates the occurrence of cracking in the upper rivet row of the lap joint. While high cycle crack growth was recorded in the middle rivet row during the second test, failure was not imminent when the test was terminated after cycling to well beyond the service life. The program also demonstrated that the initiation, propagation, and linkup of WFD in full-scale fuselage structures can be simulated and quantitatively studied in the laboratory. This paper presents an overview of the testing program and provides a detailed discussion of the data analysis and results. Crack distribution and propagation rates and directions as well as frequency of cracking are presented for both tests. The progression of damage to linkup of adjacent cracks and to eventual overall panel failure is discussed. In addition, an assessment of the effectiveness of the terminating action repair and the occurrence of cracking in the middle rivet row is provided, and conclusions of practical interest are drawn.
KATO, Maki; SHIMODAIRA, Yoshie; SATO, Takeshi; IIDA, Hiromi
2014-01-01
Abstract: Protecting children from injuries caused by fall accidents from playground equipment is important. Therefore, measures toward minimizing the risk of fall accident injuries are required. The risk of injury can be evaluated using ASTM F1292. In this test, G-max and the HIC are used to estimate the risk of injury. However, the measurement procedure is too complicated for application to a large number of installed equipment. F1292 requires simplified by reducing the number of phases, even with a small risk of loss in accuracy. With this in mind, this study proposes a shortened measurement procedure and a transformation equation to estimate the risk as same as F1292. As the result of experiments, it was revealed that G-max and the HIC values for both procedures linearly increase with drop height. The differences in outcomes between the regression equations of the standardized procedure and those of the shortened procedure can be used as a correction value. They can be added to the value measured by the shortened procedure. This suggests that the combination of the shortened procedure and transformation equation would be equivalent to F1292, with the advantage of being more easily and efficiently applied to the evaluation of installed playground equipment. PMID:25088989
Kato, Maki; Shimodaira, Yoshie; Sato, Takeshi; Iida, Hiromi
2014-01-01
Protecting children from injuries caused by fall accidents from playground equipment is important. Therefore, measures toward minimizing the risk of fall accident injuries are required. The risk of injury can be evaluated using ASTM F1292. In this test, G-max and the HIC are used to estimate the risk of injury. However, the measurement procedure is too complicated for application to a large number of installed equipment. F1292 requires simplified by reducing the number of phases, even with a small risk of loss in accuracy. With this in mind, this study proposes a shortened measurement procedure and a transformation equation to estimate the risk as same as F1292. As the result of experiments, it was revealed that G-max and the HIC values for both procedures linearly increase with drop height. The differences in outcomes between the regression equations of the standardized procedure and those of the shortened procedure can be used as a correction value. They can be added to the value measured by the shortened procedure. This suggests that the combination of the shortened procedure and transformation equation would be equivalent to F1292, with the advantage of being more easily and efficiently applied to the evaluation of installed playground equipment.
New Development on Modelling Fluctuations and Fragmentation in Heavy-Ion Collisions
NASA Astrophysics Data System (ADS)
Lin, Hao; Danielewicz, Pawel
2017-09-01
During heavy-ion collisions (HIC), colliding nuclei form an excited composite system. Instabilities present in the system may deform the shape of the system exotically, leading to a break-up into fragments. Many experimental efforts have been devoted to the nuclear multifragmentation phenomenon, while traditional HIC models, lacking in proper treatment of fluctuations, fall short in explaining it. In view of this, we are developing a new model to implement realistic fluctuations into transport simulation. The new model is motivated by the Brownian motion description of colliding particles. The effects of two-body collisions are recast in one-body diffusion processes. Vastly different dynamical paths are sampled by solving Langevin equations in momentum space. It is the stochastic sampling of dynamical paths that leads to a wide spread of exit channels. In addition, the nucleon degree of freedom is used to enhance the fluctuations. The model has been tested in reactions such as 112Sn + 112Sn and 58Ni + 58Ni, where reasonable results are yielded. An exploratory comparison on the 112Sn + 112Sn reaction at 50 MeV/nucleon with two other models, the stochastic mean-field (SMF) and the antisymmetrized molecular dynamics (AMD) models, has also been conducted. Work supported by the NSF Grant No. PHY-1403906.
Test methods for environment-assisted cracking
NASA Astrophysics Data System (ADS)
Turnbull, A.
1992-03-01
The test methods for assessing environment assisted cracking of metals in aqueous solution are described. The advantages and disadvantages are examined and the interrelationship between results from different test methods is discussed. The source of differences in susceptibility to cracking occasionally observed from the varied mechanical test methods arises often from the variation between environmental parameters in the different test conditions and the lack of adequate specification, monitoring, and control of environmental variables. Time is also a significant factor when comparing results from short term tests with long exposure tests. In addition to these factors, the intrinsic difference in the important mechanical variables, such as strain rate, associated with the various mechanical tests methods can change the apparent sensitivity of the material to stress corrosion cracking. The increasing economic pressure for more accelerated testing is in conflict with the characteristic time dependence of corrosion processes. Unreliable results may be inevitable in some cases but improved understanding of mechanisms and the development of mechanistically based models of environment assisted cracking which incorporate the key mechanical, material, and environmental variables can provide the framework for a more realistic interpretation of short term data.
Improved method for determining the stress relaxation at the crack tip
NASA Astrophysics Data System (ADS)
Grinevich, A. V.; Erasov, V. S.; Avtaev, V. V.
2017-10-01
A technique is suggested to determine the stress relaxation at the crack tip during tests of a specimen of a new type at a constant crack opening fixed by a stay bolt. The shape and geometry of the specimen make it possible to set the load and to determine the crack closure force after long-term exposure using the force transducer of a tensile-testing machine. The stress relaxation at the crack tip is determined in a V95pchT2 alloy specimen at elevated temperatures.
Hydrogen accelerated fatigue crack growth of friction stir welded X52 steel pipe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronevich, Joseph Allen; Somerday, Brian P.; Feng, Zhili
Friction stir welded steel pipelines were tested in high pressure hydrogen gas to examine the effects of hydrogen accelerated fatigue crack growth. Fatigue crack growth rate (da/dN) vs. stress-intensity factor range (ΔK) relationships were measured for an X52 friction stir welded pipe tested in 21 MPa hydrogen gas at a frequency of 1 Hz and R = 0.5. Tests were performed on three regions: base metal (BM), center of friction stir weld (FSW), and 15 mm off-center of the weld. For all three material regions, tests in hydrogen exhibited accelerated fatigue crack growth rates that exceeded an order of magnitudemore » compared to companion tests in air. Among tests in hydrogen, fatigue crack growth rates were modestly higher in the FSW than the BM and 15 mm off-center tests. Select regions of the fracture surfaces associated with specified ΔK levels were examined which revealed intergranular fracture in the BM and 15 mm off-center specimens but an absence of intergranular features in the FSW specimens. In conclusion, the X52 friction stir weld and base metal tested in hydrogen exhibited fatigue crack growth rate relationships that are comparable to those for conventional arc welded steel pipeline of similar strength found in the literature.« less
Hydrogen accelerated fatigue crack growth of friction stir welded X52 steel pipe
Ronevich, Joseph Allen; Somerday, Brian P.; Feng, Zhili
2016-11-17
Friction stir welded steel pipelines were tested in high pressure hydrogen gas to examine the effects of hydrogen accelerated fatigue crack growth. Fatigue crack growth rate (da/dN) vs. stress-intensity factor range (ΔK) relationships were measured for an X52 friction stir welded pipe tested in 21 MPa hydrogen gas at a frequency of 1 Hz and R = 0.5. Tests were performed on three regions: base metal (BM), center of friction stir weld (FSW), and 15 mm off-center of the weld. For all three material regions, tests in hydrogen exhibited accelerated fatigue crack growth rates that exceeded an order of magnitudemore » compared to companion tests in air. Among tests in hydrogen, fatigue crack growth rates were modestly higher in the FSW than the BM and 15 mm off-center tests. Select regions of the fracture surfaces associated with specified ΔK levels were examined which revealed intergranular fracture in the BM and 15 mm off-center specimens but an absence of intergranular features in the FSW specimens. In conclusion, the X52 friction stir weld and base metal tested in hydrogen exhibited fatigue crack growth rate relationships that are comparable to those for conventional arc welded steel pipeline of similar strength found in the literature.« less
Reliability analysis of structures under periodic proof tests in service
NASA Technical Reports Server (NTRS)
Yang, J.-N.
1976-01-01
A reliability analysis of structures subjected to random service loads and periodic proof tests treats gust loads and maneuver loads as random processes. Crack initiation, crack propagation, and strength degradation are treated as the fatigue process. The time to fatigue crack initiation and ultimate strength are random variables. Residual strength decreases during crack propagation, so that failure rate increases with time. When a structure fails under periodic proof testing, a new structure is built and proof-tested. The probability of structural failure in service is derived from treatment of all the random variables, strength degradations, service loads, proof tests, and the renewal of failed structures. Some numerical examples are worked out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Ziqing; Kruska, Karen; Toloczko, Mychailo B.
Stress corrosion crack initiation of two thermally-treated, cold-worked (CW) alloy 690 materials was investigated in 360oC simulated PWR primary water using constant load tensile (CLT) tests and blunt notch compact tension (BNCT) tests equipped with direct current potential drop (DCPD) for in-situ detection of cracking. SCC initiation was not detected by DCPD for the 21% and 31%CW CLT specimens loaded at their yield stress after ~9,220 h, however intergranular (IG) precursor damage and isolated surface cracks were observed on the specimens. The two 31%CW BNCT specimens loaded at moderate stress intensity after several cyclic loading ramps showed DCPD-indicated crack initiationmore » after 10,400h exposure at constant stress intensity, which resulted from significant growth of IG cracks. The 21%CW BNCT specimens only exhibited isolated small IG surface cracks and showed no apparent DCPD change throughout the test. Interestingly, post-test cross-section examinations revealed many grain boundary (GB) nano-cavities in the bulk of all the CLT and BNCT specimens particularly for the 31%CW materials. Cavities were also found along GBs extending to the surface suggesting an important role in crack nucleation. This paper provides an overview of the evolution of GB cavities and will discuss their effects on crack initiation in CW alloy 690.« less
Remote monitoring and prognosis of fatigue cracking in steel bridges with acoustic emission
NASA Astrophysics Data System (ADS)
Yu, Jianguo Peter; Ziehl, Paul; Pollock, Adrian
2011-04-01
Acoustic emission (AE) monitoring is desirable to nondestructively detect fatigue damage in steel bridges. Investigations of the relationship between AE signals and crack growth behavior are of paramount importance prior to the widespread application of passive piezoelectric sensing for monitoring of fatigue crack propagation in steel bridges. Tests have been performed to detect AE from fatigue cracks in A572G50 steel. Noise induced AE signals were filtered based on friction emission tests, loading pattern, and a combined approach involving Swansong II filters and investigation of waveforms. The filtering methods based on friction emission tests and load pattern are of interest to the field evaluation using sparse datasets. The combined approach is suitable for data filtering and interpretation of actual field tests. The pattern recognition program NOESIS (Envirocoustics) was utilized for the evaluation of AE data quality. AE parameters are associated with crack length, crack growth rate, maximum stress intensity and stress intensity range. It is shown that AE hits, counts, absolute energy, and signal strength are able to provide warnings at the critical cracking level where cracking progresses from stage II (stable propagation) to stage III (unstable propagation which may result in failure). Absolute energy rate and signal strength rate may be better than count rate to assess the remaining fatigue life of inservice steel bridges.
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Telesman, Jack; Banik, Anthony; McDevitt, Erin
2014-01-01
Intergranular fatigue crack initiation and growth due to environmental degradation, especially at notched features, can often limit the fatigue life of disk superalloys at high temperatures. For clear comparisons, the effects of alloy composition on cracking in air needs to be understood and compared separately from variables associated with notches and cracks such as effective stress concentration, plastic flow, stress relaxation, and stress redistribution. The objective of this study was to attempt using simple tensile tests of specimens with uniform gage sections to compare the effects of varied alloy composition on environment-assisted cracking of several powder metal and cast and wrought superalloys including ME3, LSHR, Udimet 720(TradeMark) ATI 718Plus(Registered TradeMark) alloy, Haynes 282(Trademark), and Inconel 740(TradeMark) Slow and fast strain-rate tensile tests were found to be a useful tool to compare propensities for intergranular surface crack initiation and growth. The effects of composition and heat treatment on tensile fracture strain and associated failure modes were compared. Environment interactions were determined to often limit ductility, by promoting intergranular surface cracking. The response of various superalloys and heat treatments to slow strain rate tensile testing varied substantially, showing that composition and microstructure can significantly influence environmental resistance to cracking.
Fracture analysis of stiffened panels under biaxial loading with widespread cracking
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Dawicke, D. S.
1995-01-01
An elastic-plastic finite-element analysis with a critical crack-tip-opening angle (CTOA) fracture criterion was used to model stable crack growth and fracture of 2024-T3 aluminum alloy (bare and clad) panels for several thicknesses. The panels had either single or multiple-site damage (MSD) cracks subjected to uniaxial or biaxial loading. Analyses were also conducted on cracked stiffened panels with single or MSD cracks. The critical CTOA value for each thickness was determined by matching the failure load on a middle-crack tension specimen. Comparisons were made between the critical angles determined from the finite-element analyses and those measured with photographic methods. Predicted load-against-crack extension and failure loads for panels under biaxial loading, panels with MSD cracks, and panels with various number of stiffeners were compared with test data, whenever possible. The predicted results agreed well with the test data even for large-scale plastic deformations. The analyses were also able to predict stable tearing behavior of a large lead crack in the presence of MSD cracks. The analyses were then used to study the influence of stiffeners on residual strength in the presence of widespread fatigue cracking. Small MSD cracks were found to greatly reduce the residual strength for large lead cracks even for stiffened panels.
Fracture analysis of stiffened panels under biaxial loading with widespread cracking
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.
1995-01-01
An elastic-plastic finite-element analysis with a critical crack-tip opening angle (CTOA) fracture criterion was used to model stable crack growth and fracture of 2024-T3 aluminum alloy (bare and clad) panels for several thicknesses. The panels had either single or multiple-site damage (MSD) cracks subjected to uniaxial or biaxial loading. Analyses were also conducted on cracked stiffened panels with single or MSD cracks. The critical CTOA value for each thickness was determined by matching the failure load on a middle-crack tension specimen. Comparisons were made between the critical angles determined from the finite-element analyses and those measured with photographic methods. Predicted load-against-crack extension and failure loads for panels under biaxial loading, panels with MSD cracks, and panels with various numbers of stiffeners were compared with test data whenever possible. The predicted results agreed well with the test data even for large-scale plastic deformations. The analyses were also able to predict stable tearing behavior of a large lead crack in the presence of MSD cracks. The analyses were then used to study the influence of stiffeners on residual strength in the presence of widespread fatigue cracking. Small MSD cracks were found to greatly reduce the residual strength for large lead cracks even for stiffened panels.
The characterization of widespread fatigue damage in fuselage structure
NASA Technical Reports Server (NTRS)
Piascik, Robert S.; Willard, Scott A.; Miller, Matthew
1994-01-01
The characteristics of widespread fatigue damage (WSFD) in fuselage riveted structure were established by detailed nondestructive and destructive examinations of fatigue damage contained in a full size fuselage test article. The objectives of this were to establish an experimental data base for validating emerging WSFD analytical prediction methodology and to identify first order effects that contribute to fatigue crack initiation and growth. Detailed examinations were performed on a test panel containing four bays of a riveted lap splice joint. The panel was removed from a full scale fuselage test article after receiving 60,000 full pressurization cycles. The results of in situ examinations document the progression of fuselage skin fatigue crack growth through crack linkup. Detailed tear down examinations and fractography of the lap splice joint region revealed fatigue crack initiation sites, crack morphology, and crack linkup geometry. From this large data base, distributions of crack size and locations are presented and discussions of operative damage mechanisms are offered.
The characterization of widespread fatigue damage in fuselage structure
NASA Technical Reports Server (NTRS)
Piascik, Robert S.; Willard, Scott A.; Miller, Matthew
1994-01-01
The characteristics of widespread fatigue damage (WSFD) in fuselage riveted structure were established by detailed nondestructive and destructive examinations of fatigue damage contained in a full size fuselage test article. The objectives of this work were to establish an experimental data base for validating emerging WSFD analytical prediction methodology and to identify first order effects that contribute to fatigue crack initiation and growth. Detailed examinations were performed on a test panel containing four bays of a riveted lap splice joint. The panel was removed from a full scale fuselage test article after receiving 60,000 full pressurization cycles. The results of in situ examinations document the progression of fuselage skin fatigue crack growth through crack linkup. Detailed tear down examinations and fractography of the lap splice joint region revealed fatigue crack initiation sites, crack morphology and crack linkup geometry. From this large data base, distributions of crack size and locations are presented and discussions of operative damage mechanisms are offered.
Fatigue and Fracture Characterization of GlasGridRTM Reinforced Asphalt Concrete Pavement
NASA Astrophysics Data System (ADS)
Safavizadeh, Seyed Amirshayan
The purpose of this research is to develop an experimental and analytical framework for describing, modeling, and predicting the reflective cracking patterns and crack growth rates in GlasGridRTM-reinforced asphalt pavements. In order to fulfill this objective, the effects of different interfacial conditions (mixture and tack coat type, and grid opening size) on reflective cracking-related failure mechanisms and the fatigue and fracture characteristics of fiberglass grid-reinforced asphalt concrete beams were studied by means of four- and threepoint bending notched beam fatigue tests (NBFTs) and cyclic and monotonic interface shear tests. The digital image correlation (DIC) technique was utilized for obtaining the displacement and strain contours of specimen surfaces during each test. The DIC analysis results were used to develop crack tip detection methods that were in turn used to determine interfacial crack lengths in the shear tests, and vertical and horizontal (interfacial) crack lengths in the notched beam fatigue tests. Linear elastic fracture mechanics (LEFM) principles were applied to the crack length data to describe the crack growth. In the case of the NBFTs, a finite element (FE) code was developed and used for modeling each beam at different stages of testing and back-calculating the stress intensity factors (SIFs) for the vertical and horizontal cracks. The local effect of reinforcement on the stiffness of the system at a vertical crack-interface intersection or the resistance of the grid system to the deflection differential at the joint/crack (hereinafter called joint stiffness) for GlasGrid-reinforced asphalt concrete beams was determined by implementing a joint stiffness parameter into the finite element code. The strain level dependency of the fatigue and fracture characteristics of the GlasGrid-reinforced beams was studied by performing four-point bending notched beam fatigue tests at strain levels of 600, 750, and 900 microstrain. These beam tests were conducted at 15°C, 20°C, and 23°C, with the main focus being to find the characteristics at 20°C. The results obtained from the tests at the different temperatures were used to investigate the effects of temperature on the reflective cracking performance of the gridreinforced beam specimens. The temperature tests were also used to investigate the validity of the time-temperature superposition (t-TS) principle in shear and the beam fatigue performance of the grid-reinforced specimens. The NBFT results suggest that different interlayer conditions do not reflect a unique failure mechanism, and thus, in order to predict and model the performance of grid-reinforced pavement, all the mechanisms involved in weakening its structural integrity, including damage within the asphalt layers and along the interface, must be considered. The shear and beam fatigue test results suggest that the grid opening size, interfacial bond quality, and mixture type play important roles in the reflective cracking performance of GlasGrid-reinforced asphalt pavements. According to the NBTF results, GlasGrid reinforcement retards reflective crack growth by stiffening the composite system and introducing a joint stiffness parameter. The results also show that the higher the bond strength and interlayer stiffness values, the higher the joint stiffness and retardation effects. The t-TS studies proved the validity of this principle in terms of the reflective crack growth of the grid-reinforced beam specimens and the shear modulus and shear strength of the grid-reinforced interfaces.
Pretensioned concrete girder end crack control : research brief.
DOT National Transportation Integrated Search
2017-02-01
Research Objectives: : Prove through physical testing and observation that debonding strands can reduce or eliminate critical girder end cracking : Eliminate cracking in the bottom flange of the girders, where cracks could allow moisture to r...
Adhesion mechanisms of bituminous crack sealant to aggregate and laboratory test development
NASA Astrophysics Data System (ADS)
Hajialiakbari Fini, Elham
Crack sealing is a common pavement maintenance treatment because it extends pavement service life. However, crack sealant often fails prematurely due to a loss of adhesion. Since current test methods are mostly empirical and only provide a qualitative measure of bond strength, they cannot predict sealant adhesive failure accurately. Hence, there is an urgent need for test methods based on bituminous sealant rheology that can better predict sealant field performance. This study introduces three laboratory tests aimed to assess the bond property of hot-poured crack sealant to pavement crack walls. The three tests are designed to serve the respective needs of producers, engineers, and researchers. The first test implements the principle of surface energy to measure the thermodynamic work of adhesion, which is the energy spent in separating the two materials at the interface. The work of adhesion is reported as a measure of material compatibility at an interface. The second test is a direct adhesion test, a mechanical test which is designed to closely resemble both the installation process and the crack expansion due to thermal loading. This test uses the Direct Tension Test (DTT) device. The principle of the test is to apply a tensile force to detach the sealant from its aggregate counterpart. The maximum load, Pmax, and the energy to separation, E, are calculated and reported to indicate interface bonding. The third test implements the principles of fracture mechanics in a pressurized circular blister test. The apparatus is specifically designed to conduct the test for bituminous crack sealant, asphalt binder, or other bitumen-based materials. In this test, a fluid is injected at a constant rate at the interface between the substrate (aggregate or a standard material) and the adhesive (crack sealant) to create a blister. The fluid pressure and blister height are measured as functions of time; the data is used to calculate Interfacial Fracture Energy (IFE), which is a fundamental property that can be used to predict adhesion. The stable interface debonding process makes this test attractive. This test also may be used to estimate the optimum annealing time, and to quantify other interface characteristics, such as the moisture susceptibility of a bond. In addition, the elastic modulus of the sealant and its residual stresses can be determined analytically. While the direct adhesion test is proposed as part of newly-developed performance-based guidelines for the selection of hot-poured crack sealant, the blister test may be used to estimate the optimum annealing time, in addition to IFE determination.
Crack-growth behavior in thick welded plates of Inconel 718 at room and cryogenic temperatures
NASA Technical Reports Server (NTRS)
Forman, R. G.
1974-01-01
Results of mechanical-properties and axial-load fatigue and fracture tests performed on thick welded plates of Inconel 718 superalloy are presented. The test objectives were to determine the tensile strength properties and the crack-growth behavior in electron-beam, plasma-arc, and gas tungsten are welds for plates 1.90 cm (0.75 in) thick. Base-metal specimens were also tested to determine the flaw-growth behavior. The tests were performed in room-temperature-air and liquid nitrogen environments. The experimental crack-growth-rate data are correlated with theoretical crack-growth-rate predictions for semielliptical surface flaws.
Double torsion fracture mechanics testing of shales under chemically reactive conditions
NASA Astrophysics Data System (ADS)
Chen, X.; Callahan, O. A.; Holder, J. T.; Olson, J. E.; Eichhubl, P.
2015-12-01
Fracture properties of shales is vital for applications such as shale and tight gas development, and seal performance of carbon storage reservoirs. We analyze the fracture behavior from samples of Marcellus, Woodford, and Mancos shales using double-torsion (DT) load relaxation fracture tests. The DT test allows the determination of mode-I fracture toughness (KIC), subcritical crack growth index (SCI), and the stress-intensity factor vs crack velocity (K-V) curves. Samples are tested at ambient air and aqueous conditions with variable ionic concentrations of NaCl and CaCl2, and temperatures up to 70 to determine the effects of chemical/environmental conditions on fracture. Under ambient air condition, KIC determined from DT tests is 1.51±0.32, 0.85±0.25, 1.08±0.17 MPam1/2 for Marcellus, Woodford, and Mancos shales, respectively. Tests under water showed considerable change of KIC compared to ambient condition, with 10.6% increase for Marcellus, 36.5% decrease for Woodford, and 6.7% decrease for Mancos shales. SCI under ambient air condition is between 56 and 80 for the shales tested. The presence of water results in a significant reduction of the SCI from 70% to 85% compared to air condition. Tests under chemically reactive solutions are currently being performed with temperature control. K-V curves under ambient air conditions are linear with stable SCI throughout the load-relaxation period. However, tests conducted under water result in an initial cracking period with SCI values comparable to ambient air tests, which then gradually transition into stable but significantly lower SCI values of 10-20. The non-linear K-V curves reveal that crack propagation in shales is initially limited by the transport of chemical agents due to their low permeability. Only after the initial cracking do interactions at the crack tip lead to cracking controlled by faster stress corrosion reactions. The decrease of SCI in water indicates higher crack propagation velocity due to faster stress corrosion rate in water than in ambient air. The experimental results are applicable for the prediction of fracture initiation based on KIC, modeling fracture pattern based on SCI, and the estimation of dynamic fracture propagation such as crack growth velocity and crack re-initiation.
Fracture behavior of large-scale thin-sheet aluminum alloy
NASA Technical Reports Server (NTRS)
Dewit, Roland; Fields, Richard J.; Mordfin, Leonard; Low, Samuel R.; Harne, Donald
1994-01-01
A series of fracture tests on large-scale, pre-cracked, aluminum alloy panels is being carried out to examine and to characterize the process by which cracks propagate and link up in this material. Extended grips and test fixtures were specially designed to enable the panel specimens to be loaded in tension, in a 1780-kN-capacity universal testing machine. Twelve panel specimens, each consisting of a single sheet of bare 2024-T3 aluminum alloy, 3988 mm high, 2286 mm wide, and 1.016 mm thick are being fabricated with simulated through-cracks oriented horizontally at mid-height. Using existing information, a test matrix has been set up that explores regions of failure that are controlled by fracture mechanics, with additional tests near the boundary between plastic collapse and fracture. In addition, a variety of multiple site damage (MSD) configurations have been included to distinguish between various proposed linkage mechanisms. All tests but one use anti-buckling guides. At this writing seven specimens have been tested. Three were fabricated with a single central crack, three others had multiple cracks on each side of the central crack, and one had a single crack but no anti-buckling guides. Each fracture event was recorded on film, video, computer, magnetic tape, and occasionally optical microscopy. The visual showed the crack tip with a load meter in the field of view, using motion picture film for one tip and SVHS video tape for the other. The computer recorded the output of the testing machine load cell, the stroke, and twelve strain gages at 1.5 second intervals. A wideband FM magnetic tape recorder was used to record data from the same sources. The data were analyzed by two different procedures: (1) the plastic zone model based on the residual strength diagram; and (2) the R-curve. The first three tests were used to determine the basic material properties, and these results were then used in the analysis of the two subsequent tests with MSD cracks. There is good agreement between measured values and results obtained from the model.
DOT National Transportation Integrated Search
1990-06-01
Elber's crack closure model is studied in relation to the results of laboratory spectrum crack growth tests on compact tension specimens (CTS) fabricated from rail effected by mean of an analysis of a center cracked panel (CCP) subjected to an equiva...
Observation of Intralaminar Cracking in the Edge Crack Torsion Specimen
NASA Technical Reports Server (NTRS)
Czabaj, Michael W.; Ratcliffe, James G.; Davidson, Barry D.
2013-01-01
The edge crack torsion (ECT) test is evaluated to determine its suitability for measuring fracture toughness associated with mode III delamination growth onset. A series of ECT specimens with preimplanted inserts with different lengths is tested and examined using nondestructive and destructive techniques. Ultrasonic inspection of all tested specimens reveals that delamination growth occurs at one interface ply beneath the intended midplane interface. Sectioning and optical microscopy suggest that the observed delamination growth results from coalescence of angled intralaminar matrix cracks that form and extend across the midplane plies. The relative orientation of these cracks is approximately 45 deg with respect to the midplane, suggesting their formation is caused by resolved principal tensile stresses arising due to the global mode-III shear loading. Examination of ECT specimens tested to loads below the level corresponding to delamination growth onset reveals that initiation of intralaminar cracking approximately coincides with the onset of nonlinearity in the specimen's force-displacement response. The existence of intralaminar cracking prior to delamination growth onset and the resulting delamination extension at an unintended interface render the ECT test, in its current form, unsuitable for characterization of mode III delamination growth onset. The broader implications of the mechanisms observed in this study are also discussed with respect to the current understanding of shear-driven delamination in tape-laminate composites.
NASA Technical Reports Server (NTRS)
Dicus, D. L.
1981-01-01
Compact specimens of 25 mm thick aluminum alloy plate were subjected to constant amplitude fatigue testing at a load ratio of 0.2. Crack growth rates were determined at frequencies of 1 Hz and 10 Hz in hard vacuum and laboratory air, and in mixtures of water vapor and nitrogen at water vapor partial pressures ranging from 94 Pa to 3.8 kPa. A significant effect of water vapor on fatigue crack growth rates was observed at the lowest water vapor pressure tested. Crack rates changed little for pressures up to 1.03 kPa, but abruptly accelerated at higher pressures. At low stress intensity factor ranges, cracking rates at the lowest and highest water vapor pressure tested were, respectively, two and five times higher than rates in vacuum. Although a frequency was observed in laboratory air, cracking rates in water vapor and vacuum are insensitive to a ten-fold change in frequency. Surfaces of specimens tested in water vapor and vacuum exhibited different amounts of residual deformation. Reduced deformation on the fracture surfaces of the specimens tested in water vapor suggests embrittlement of the plastic zone ahead of the crack tip as a result of environmental interaction.
Analytical Round Robin for Elastic-Plastic Analysis of Surface Cracked Plates, Phase II Results
NASA Technical Reports Server (NTRS)
Allen, P. A.; Wells, D. N.
2017-01-01
The second phase of an analytical round robin for the elastic-plastic analysis of surface cracks in flat plates was conducted under the auspices of ASTM Interlaboratory Study 732. The interlaboratory study (ILS) had 10 participants with a broad range of expertise and experience, and experimental results from a surface crack tension test in 4142 steel plate loaded well into the elastic-plastic regime provided the basis for the study. The participants were asked to evaluate a surface crack tension test according to the version of the surface crack initiation toughness testing standard published at the time of the ILS, E2899-13. Data were provided to each participant that represent the fundamental information that would be provided by a mechanical test laboratory prior to evaluating the test result. Overall, the participant’s test analysis results were in good agreement and constructive feedback was received that has resulted in an improved published version of the standard E2899-15.
Monitoring the Corrosion Process of Reinforced Concrete Using BOTDA and FBG Sensors
Mao, Jianghong; Chen, Jiayun; Cui, Lei; Jin, Weiliang; Xu, Chen; He, Yong
2015-01-01
Expansion and cracking induced by the corrosion of reinforcement concrete is the major factor in the failure of concrete durability. Therefore, monitoring of concrete cracking is critical for evaluating the safety of concrete structures. In this paper, we introduce a novel monitoring method combining Brillouin optical time domain analysis (BOTDA) and fiber Bragg grating (FBG), based on mechanical principles of concrete expansion cracking. BOTDA monitors concrete expansion and crack width, while FBG identifies the time and position of cracking. A water-pressure loading simulation test was carried out to determine the relationship between fiber strain, concrete expansion and crack width. An electrical accelerated corrosion test was also conducted to evaluate the ability of this novel sensor to monitor concrete cracking under practical conditions. PMID:25884790
Orientation effects on the measurement and analysis of critical CTOA in an aluminum alloy sheet
NASA Technical Reports Server (NTRS)
Sutton, M. A.; Dawicke, D. S.; Newman, J. C., Jr.
1994-01-01
Fracture tests were conducted on 76.2mm wide, 2.3mm thick middle crack tension (M(T)) specimens machined from 2024-T3 aluminum sheet. The specimens were tested on the T-L orientation and comparisons were made to similar tests conducted in the L-T orientation. Measurement of critical crack tip opening angle (CTOA), applied stress, and crack front shape were made as a function of crack extension. A two-dimensional, elastic-plastic finite element analysis was used to simulate the fracture behavior for both orientations. The results indicate that the T-L orientation had a 10 percent lower stress at fracture than similar tests conducted in the L-T orientation. Correspondingly, the critical CTOA in the T-L tests reached a constant value of 4.7 degrees after 2-3mm of crack extension and the L-T tests reached a value of 6 degrees. The fracture surfaces of the T-L specimens were observed to remain flat, while those of the L-T specimens transitioned to a 45 degree slant fracture after about 2-3mm of crack extension. The tunneling behavior of the two orientations also differed; the T-L specimens reached a deeply tunneled stabilized crack front shape while, the L-T specimens were observed to have only a small amount of tunneling once the crack began to grow on the 45 degree slant. The two-dimensional, elastic-plastic finite element analysis was able to simulate the fracture behavior for both the T-L and L-T orientations.
NASA Astrophysics Data System (ADS)
Zhou, Xiao-Ping; Zhang, Jian-Zhi; Wong, Louis Ngai Yuen
2018-05-01
The crack initiation, growth, wrapping and coalescence of two 3D pre-existing cross-embedded flaws in PMMA specimens under uniaxial compression are investigated. The stress-strain curves of PMMA specimens with 3D cross-embedded flaws are obtained. The tested PMMA specimens exhibit dominant elastic deformation and eventual brittle failure. The experimental results show that four modes of crack initiation and five modes of crack coalescence are observed. The initiations of oblique secondary crack and anti-wing crack in 3D cracking behaviors are first reported as well as the coalescence of anti-wing cracks. Moreover, two types of crack wrapping are found. Substantial wrapping of petal cracks, which includes open and closed modes of wrapping, appears to be the major difference between 2D and 3D cracking behaviors of pre-existing flaws, which are also first reported. Petal crack wraps symmetrically from either the propagated wing cracks or the coalesced wing cracks. Besides, only limited growth of petal cracks is observed, and ultimate failure of specimens is induced by the further growth of the propagated wing crack. The fracture mechanism of the tested PMMA specimens is finally revealed. In addition, the initiation stress and the peak stress versus the geometry of two 3D pre-existing cross-embedded flaws are also investigated in detail.
The role of cyclic plastic zone size on fatigue crack growth behavior in high strength steels
NASA Astrophysics Data System (ADS)
Korda, Akhmad A.; Miyashita, Y.; Mutoh, Y.
2015-09-01
The role of cyclic plastic zone in front of the crack tip was studied in high strength steels. Estimated plastic zone size would be compared with actual observation. Strain controlled fatigue tests of the steels were carried out to obtain cyclic stress-strain curves for plastic zone estimation. Observations of plastic zone were carried out using in situ SEM fatigue crack growth tests under a constant-ΔK. Hard microstructures in structural steels showed to inhibit the extent of plastic deformation around the crack tip. The rate of crack growth can be correlated with the size of plastic zone. The smaller the plastic zone size, the slower the fatigue crack growth.
Kim, Young-Gon; Song, Kuk-Hyun; Lee, Dong-Hoon; Joo, Sung-Min
2018-03-01
The demand of crack tip opening displacement (CTOD) test which evaluates fracture toughness of a cracked material is very important to ensure the stability of structure under severe service environment. The validity of the CTOD test result is judged using several criterions of the specification standards. One of them is the artificially generated fatigue pre-crack length inside the specimen. For acceptable CTOD test results, fatigue pre-crack must have a reasonable sharp crack front. The propagation of fatigue crack started from the tip of the machined notch, which might have propagated irregularly due to residual stress field. To overcome this problem, test codes suggest local compression method, reversed bending method and stepwise high-R ratio method to reduce the disparity of residual stress distribution inside the specimen. In this paper, the relation between the degree of local compression and distribution of welding residual stress has been analyzed by finite element analyses in order to determine the amount of effective local compression of the test piece. Analysis results show that initial welding residual stress is dramatically varied three-dimensionally while cutting, notch machining and local compressing due to the change of internal restraint force. From the simulation result, the authors find that there is an optimum amount of local compression to modify regularly for generating fatigue pre-crack propagation. In the case of 0.5% compressions of the model width is the most effective for uniforming residual stress distribution.
Characterization of crack growth under combined loading
NASA Technical Reports Server (NTRS)
Feldman, A.; Smith, F. W.; Holston, A., Jr.
1977-01-01
Room-temperature static and cyclic tests were made on 21 aluminum plates in the shape of a 91.4x91.4-cm Maltese cross with 45 deg flaws to develop crack growth and fracture toughness data under mixed-mode conditions. During cyclic testing, it was impossible to maintain a high proportion of shear-mode deformation on the crack tips. Cracks either branched or turned. Under static loading, cracks remained straight if shear stress intensity exceeded normal stress intensity. Mixed-mode crack growth rate data compared reasonably well with published single-mode data, and measured crack displacements agreed with the straight and branched crack analyses. Values of critical strain energy release rate at fracture for pure shear were approximately 50% higher than for pure normal opening, and there was a large reduction in normal stress intensity at fracture in the presence of high shear stress intensity. Net section stresses were well into the inelastic range when fracture occurred under high shear on the cracks.
Crack branching in cross-ply composites
NASA Astrophysics Data System (ADS)
La Saponara, Valeria
2001-10-01
The purpose of this research work is to examine the behavior of an interface crack in a cross-ply laminate which is subject to static and fatigue loading. The failure mechanism analyzed here is crack branching (or crack kinking or intra-layer crack): the delamination located between two different plies starts growing as an interface crack and then may branch into the less tough ply. The specimens were manufactured from different types of Glass/Epoxy and Graphite/Epoxy, by hand lay-up, vacuum bagging and cure in autoclave. Each specimen had a delamination starter. Static mixed mode tests and compressive fatigue tests were performed. Experiments showed the scale of the problem, one ply thickness, and some significant features, like contact in the branched crack. The amount of scatter in the experiments required use of statistics. Exploratory Data Analysis and a factorial design of experiments based on a 8 x 8 Hadamard matrix were used. Experiments and statistics show that there is a critical branching angle above which crack growth is greatly accelerated. This angle seems: (1) not to be affected by the specimens' life; (2) not to depend on the specimen geometry and loading conditions; (3) to strongly depend on the amount of contact in the branched crack. Numerical analysis was conducted to predict crack propagation based on the actual displacement/load curves for static tests. This method allows us to predict the total crack propagation in 2D conditions, while neglecting branching. Finally, the existence of a solution based on analytic continuation is discussed.
Ford, Audrey C; Gramling, Hannah; Li, Samuel C; Sov, Jessica V; Srinivasan, Amrita; Pruitt, Lisa A
2018-03-01
Polycarbonate polyurethane has cartilage-like, hygroscopic, and elastomeric properties that make it an attractive material for orthopedic joint replacement application. However, little data exists on the cyclic loading and fracture behavior of polycarbonate polyurethane. This study investigates the mechanisms of fatigue crack growth in polycarbonate polyurethane with respect to time dependent effects and conditioning. We studied two commercially available polycarbonate polyurethanes, Bionate® 75D and 80A. Tension testing was performed on specimens at variable time points after being removed from hydration and variable strain rates. Fatigue crack propagation characterized three aspects of loading. Study 1 investigated the impact of continuous loading (24h/day) versus intermittent loading (8-10h/day) allowing for relaxation overnight. Study 2 evaluated the effect of frequency and study 3 examined the impact of hydration on the fatigue crack propagation in polycarbonate polyurethane. Samples loaded intermittently failed instantaneously and prematurely upon reloading while samples loaded continuously sustained longer stable cracks. Crack growth for samples tested at 2 and 5Hz was largely planar with little crack deflection. However, samples tested at 10Hz showed high degrees of crack tip deflection and multiple crack fronts. Crack growth in hydrated samples proceeded with much greater ductile crack mouth opening displacement than dry samples. An understanding of the failure mechanisms of this polymer is important to assess the long-term structural integrity of this material for use in load-bearing orthopedic implant applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effects of Changing Stress Amplitude on the Rate of Fatigue-Crack Propagation in Two Aluminum Alloys
NASA Technical Reports Server (NTRS)
Hudson, C. Michael; Hardrath, Herbert F.
1961-01-01
A series of fatigue tests with specimens subjected to constant amplitude and two-step axial loads were conducted on 12-inch-wide sheet specimens of 2024-T3 and 7075-T6 aluminum alloy to study the effects of a change in stress level on fatigue-crack propagation. Comparison of the results of the tests in which the specimens were tested at first a high and then a low stress level with those of the constant-stress- amplitude tests indicated that crack propagation was generally delayed after the transition to the lower stress level. In the tests in which the specimens were tested at first a low and then a high stress level, crack propagation continued at the expected rate after the change in stress levels.
New methods to quantify the cracking performance of cementitious systems made with internal curing
NASA Astrophysics Data System (ADS)
Schlitter, John L.
The use of high performance concretes that utilize low water-cement ratios have been promoted for use in infrastructure based on their potential to increase durability and service life because they are stronger and less porous. Unfortunately, these benefits are not always realized due to the susceptibility of high performance concrete to undergo early age cracking caused by shrinkage. This problem is widespread and effects federal, state, and local budgets that must maintain or replace deterioration caused by cracking. As a result, methods to reduce or eliminate early age shrinkage cracking have been investigated. Internal curing is one such method in which a prewetted lightweight sand is incorporated into the concrete mixture to provide internal water as the concrete cures. This action can significantly reduce or eliminate shrinkage and in some cases causes a beneficial early age expansion. Standard laboratory tests have been developed to quantify the shrinkage cracking potential of concrete. Unfortunately, many of these tests may not be appropriate for use with internally cured mixtures and only provide limited amounts of information. Most standard tests are not designed to capture the expansive behavior of internally cured mixtures. This thesis describes the design and implementation of two new testing devices that overcome the limitations of current standards. The first device discussed in this thesis is called the dual ring. The dual ring is a testing device that quantifies the early age restrained shrinkage performance of cementitious mixtures. The design of the dual ring is based on the current ASTM C 1581-04 standard test which utilizes one steel ring to restrain a cementitious specimen. The dual ring overcomes two important limitations of the standard test. First, the standard single ring test cannot restrain the expansion that takes place at early ages which is not representative of field conditions. The dual ring incorporates a second restraining ring which is located outside of the sample to provide restraint against expansion. Second, the standard ring test is a passive test that only relies on the autogenous and drying shrinkage of the mixture to induce cracking. The dual ring test can be an active test because it has the ability to vary the temperature of the specimen in order to induce thermal stress and produce cracking. This ability enables the study of the restrained cracking capacity as the mixture ages in order to quantify crack sensitive periods of time. Measurements made with the dual ring quantify the benefits from using larger amounts of internal curing. Mixtures that resupplied internal curing water to match that of chemical shrinkage could sustain three times the magnitude of thermal change before cracking. The second device discussed in this thesis is a large scale slab testing device. This device tests the cracking potential of 15' long by 4" thick by 24" wide slab specimens in an environmentally controlled chamber. The current standard testing devices can be considered small scale and encounter problems when linking their results to the field due to size effects. Therefore, the large scale slab testing device was developed in order to calibrate the results of smaller scale tests to real world field conditions such as a pavement or bridge deck. Measurements made with the large scale testing device showed that the cracking propensity of the internally cured mixtures was reduced and that a significant benefit could be realized.
Corrosion of NiTi Wires with Cracked Oxide Layer
NASA Astrophysics Data System (ADS)
Racek, Jan; Šittner, Petr; Heller, Luděk; Pilch, Jan; Petrenec, Martin; Sedlák, Petr
2014-07-01
Corrosion behavior of superelastic NiTi shape memory alloy wires with cracked TiO2 surface oxide layers was investigated by electrochemical corrosion tests (Electrochemical Impedance Spectroscopy, Open Circuit Potential, and Potentiodynamic Polarization) on wires bent into U-shapes of various bending radii. Cracks within the oxide on the surface of the bent wires were observed by FIB-SEM and TEM methods. The density and width of the surface oxide cracks dramatically increase with decreasing bending radius. The results of electrochemical experiments consistently show that corrosion properties of NiTi wires with cracked oxide layers (static load keeps the cracks opened) are inferior compared to the corrosion properties of the straight NiTi wires covered by virgin uncracked oxides. Out of the three methods employed, the Electrochemical Impedance Spectroscopy seems to be the most appropriate test for the electrochemical characterization of the cracked oxide layers, since the impedance curves (Nyquist plot) of differently bent NiTi wires can be associated with increasing state of the surface cracking and since the NiTi wires are exposed to similar conditions as the surfaces of NiTi implants in human body. On the other hand, the potentiodynamic polarization test accelerates the corrosion processes and provides clear evidence that the corrosion resistance of bent superelastic NiTi wires degrades with oxide cracking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruschau, J.J.; Coate, J.E.
1996-12-31
Specimens were machined from lower wing skin extrusions of a transport aircraft, precracked under fatigue loading, repaired with a boron/epoxy patch, and subsequently fatigue tested under simulated flight loading conditions to evaluate the effectiveness of an adhesively bonded repair patch. Testing was performed at RT and -54{degrees}C for two configurations: one with the crack running up the integral stiffener (riser), the other running down the riser towards the outer skin surface. Cracks were initiated from a single 6.35 mm diameter hole located in the riser portion of the 7075-T6 wing skin material. Ultrasonic inspections were performed during fatigue loading tomore » determine crack growth and damage underneath the patch. Limited results show the adhesively bonded patch was successful in stopping or greatly reducing any further crack growth. Under laboratory air conditions, no crack growth occurred following 30,000 equivalent flight hours, double the expected life of the patched structure. Similarly at -54{degrees}C, no crack growth was observed for a patched crack growing up the riser following 15,000 EFH. For the case of a crack growing down the riser at the lower test temperature, some crack growth was measured, though at a greatly reduced rate.« less
Preliminary results on the fracture analysis of multi-site cracking of lap joints in aircraft skins
NASA Astrophysics Data System (ADS)
Beuth, J. L., Jr.; Hutchinson, John W.
1992-07-01
Results of a fracture mechanics analysis relevant to fatigue crack growth at rivets in lap joints of aircraft skins are presented. Multi-site damage (MSD) is receiving increased attention within the context of problems of aging aircraft. Fracture analyses previously carried out include small-scale modeling of rivet/skin interactions, larger-scale two-dimensional models of lap joints similar to that developed here, and full scale three-dimensional models of large portions of the aircraft fuselage. Fatigue testing efforts have included flat coupon specimens, two-dimensional lap joint tests, and full scale tests on specimens designed to closely duplicate aircraft sections. Most of this work is documented in the proceedings of previous symposia on the aging aircraft problem. The effect MSD has on the ability of skin stiffeners to arrest the growth of long skin cracks is a particularly important topic that remains to be addressed. One of the most striking features of MSD observed in joints of some test sections and in the joints of some of the older aircraft fuselages is the relative uniformity of the fatigue cracks from rivet to rivet along an extended row of rivets. This regularity suggests that nucleation of the cracks must not be overly difficult. Moreover, it indicates that there is some mechanism which keeps longer cracks from running away from shorter ones, or, equivalently, a mechanism for shorter cracks to catch-up with longer cracks. This basic mechanism has not been identified, and one of the objectives of the work is to see to what extent the mechanism is revealed by a fracture analysis of the MSD cracks. Another related aim is to present accurate stress intensity factor variations with crack length which can be used to estimate fatigue crack growth lifetimes once cracks have been initiated. Results are presented which illustrate the influence of load shedding from rivets with long cracks to neighboring rivets with shorter cracks. Results are also included for the effect of residual stress due to the riveting process itself.
Preliminary results on the fracture analysis of multi-site cracking of lap joints in aircraft skins
NASA Technical Reports Server (NTRS)
Beuth, J. L., Jr.; Hutchinson, John W.
1992-01-01
Results of a fracture mechanics analysis relevant to fatigue crack growth at rivets in lap joints of aircraft skins are presented. Multi-site damage (MSD) is receiving increased attention within the context of problems of aging aircraft. Fracture analyses previously carried out include small-scale modeling of rivet/skin interactions, larger-scale two-dimensional models of lap joints similar to that developed here, and full scale three-dimensional models of large portions of the aircraft fuselage. Fatigue testing efforts have included flat coupon specimens, two-dimensional lap joint tests, and full scale tests on specimens designed to closely duplicate aircraft sections. Most of this work is documented in the proceedings of previous symposia on the aging aircraft problem. The effect MSD has on the ability of skin stiffeners to arrest the growth of long skin cracks is a particularly important topic that remains to be addressed. One of the most striking features of MSD observed in joints of some test sections and in the joints of some of the older aircraft fuselages is the relative uniformity of the fatigue cracks from rivet to rivet along an extended row of rivets. This regularity suggests that nucleation of the cracks must not be overly difficult. Moreover, it indicates that there is some mechanism which keeps longer cracks from running away from shorter ones, or, equivalently, a mechanism for shorter cracks to catch-up with longer cracks. This basic mechanism has not been identified, and one of the objectives of the work is to see to what extent the mechanism is revealed by a fracture analysis of the MSD cracks. Another related aim is to present accurate stress intensity factor variations with crack length which can be used to estimate fatigue crack growth lifetimes once cracks have been initiated. Results are presented which illustrate the influence of load shedding from rivets with long cracks to neighboring rivets with shorter cracks. Results are also included for the effect of residual stress due to the riveting process itself.
Some observations on loss of static strength due to fatigue cracks
NASA Technical Reports Server (NTRS)
Illg, Walter; Hardrath, Herbert F
1955-01-01
Static tensile tests were performed on simple notched specimens containing fatigue cracks. Four types of aluminum alloys were investigated: 2024-T3(formerly 24S-T3) and 7075-T6(formerly 75S-T6) in sheet form, and 2024-T4(formerly 24S-T4) and 7075-T6(formerly 75S-T6) in extruded form. The cracked specimens were tested statically under four conditions: unmodified and with reduced eccentricity of loading by three methods. Results of static tests on C-46 wings containing fatigue cracks are also reported.
Fracture Test Methods for Plastically Responding COPV Liners
NASA Technical Reports Server (NTRS)
Dawicke, David S.; Lewis, Joseph C.
2009-01-01
An experimental procedure for evaluating the validity of using uniaxial tests to provide a conservative bound on the fatigue crack growth rate behavior small cracks in bi-axially loaded Composite Overwrapped Pressure Vessel (COPV) liners is described. The experimental procedure included the use of a laser notch to quickly generate small surface fatigue cracks with the desired size and aspect ratios. An out-of-plane constraint system was designed to allow fully reversed, fully plastic testing of thin sheet uniaxial coupons. Finally, a method was developed to determine to initiate small cracks in the liner of COPVs.
Residual Strength Analyses of Riveted Lap-Splice Joints
NASA Technical Reports Server (NTRS)
Seshadri, B. R.; Newman, J. C., Jr.
2000-01-01
The objective of this paper was to analyze the crack-linkup behavior in riveted-stiffened lap-splice joint panels with small multiple-site damage (MSD) cracks at several adjacent rivet holes. Analyses are based on the STAGS (STructural Analysis of General Shells) code with the critical crack-tip-opening angle (CTOA) fracture criterion. To account for high constraint around a crack front, the "plane strain core" option in STAGS was used. The importance of modeling rivet flexibility with fastener elements that accurately model load transfer across the joint is discussed. Fastener holes are not modeled but rivet connectivity is accounted for by attaching rivets to the sheet on one side of the cracks that simulated both the rivet diameter and MSD cracks. Residual strength analyses made on 2024-T3 alloy (1.6-mm thick) riveted-lap-splice joints with a lead crack and various size MSD cracks were compared with test data from Boeing Airplane Company. Analyses were conducted for both restrained and unrestrained buckling conditions. Comparison of results from these analyses and results from lap-splice-joint test panels, which were partially restrained against buckling indicate that the test results were bounded by the failure loads predicted by the analyses with restrained and unrestrained conditions.
Reward sensitivity predicts ice cream-related attentional bias assessed by inattentional blindness.
Li, Xiaoming; Tao, Qian; Fang, Ya; Cheng, Chen; Hao, Yangyang; Qi, Jianjun; Li, Yu; Zhang, Wei; Wang, Ying; Zhang, Xiaochu
2015-06-01
The cognitive mechanism underlying the association between individual differences in reward sensitivity and food craving is unknown. The present study explored the mechanism by examining the role of reward sensitivity in attentional bias toward ice cream cues. Forty-nine college students who displayed high level of ice cream craving (HICs) and 46 who displayed low level of ice cream craving (LICs) performed an inattentional blindness (IB) task which was used to assess attentional bias for ice cream. In addition, reward sensitivity and coping style were assessed by the Behavior Inhibition System/Behavior Activation System Scales and Simplified Coping Style Questionnaire. Results showed significant higher identification rate of the critical stimulus in the HICs than LICs, suggesting greater attentional bias for ice cream in the HICs. It was indicated that attentional bias for food cues persisted even under inattentional condition. Furthermore, a significant correlation was found between the attentional bias and reward sensitivity after controlling for coping style, and reward sensitivity predicted attentional bias for food cues. The mediation analyses showed that attentional bias mediated the relationship between reward sensitivity and food craving. Those findings suggest that the association between individual differences in reward sensitivity and food craving may be attributed to attentional bias for food-related cues. Copyright © 2015 Elsevier Ltd. All rights reserved.
Noormahomed, Emilia Virginia; Carrilho, Carla; Ismail, Mamudo; Noormahomed, Sérgio; Nguenha, Alcido; Benson, Constance A.; Mocumbi, Ana Olga; Schooley, Robert T.
2017-01-01
ABSTRACT Background: Collaborations among researchers based in lower and middle income countries (LMICs) and high income countries (HICs) have made major discoveries related to diseases disproportionately affecting LMICs and have been vital to the development of research communities in LMICs. Such collaborations have generally been scientifically and structurally driven by HICs. Objectives: In this report we outline a paradigm shift in collaboration, exemplified by the Medical Education Partnership Initiative (MEPI), in which the formulation of priorities and administrative infrastructure reside in the LMIC. Methods: This descriptive report outlines the critical features of the MEPI partnership. Results: In the MEPI, LMIC program partners translate broad program goals and define metrics into priorities that are tailored to local conditions. Program funds flow to a LMIC-based leadership group that contracts with peers from HICs to provide technical and scientific advice and consultation in a 'reverse funds flow' model. Emphasis is also placed on strengthening administrative capacity within LMIC institutions. A rigorous monitoring and evaluation process modifies program priorities on the basis of evolving opportunities to maximize program impact. Conclusions: Vesting LMIC partners with the responsibility for program leadership, and building administrative and fiscal capacity in LMIC institutions substantially enhances program relevance, impact and sustainability. PMID:28452653
IC-Finder: inferring robustly the hierarchical organization of chromatin folding
Haddad, Noelle
2017-01-01
Abstract The spatial organization of the genome plays a crucial role in the regulation of gene expression. Recent experimental techniques like Hi-C have emphasized the segmentation of genomes into interaction compartments that constitute conserved functional domains participating in the maintenance of a proper cell identity. Here, we propose a novel method, IC-Finder, to identify interaction compartments (IC) from experimental Hi-C maps. IC-Finder is based on a hierarchical clustering approach that we adapted to account for the polymeric nature of chromatin. Based on a benchmark of realistic in silico Hi-C maps, we show that IC-Finder is one of the best methods in terms of reliability and is the most efficient numerically. IC-Finder proposes two original options: a probabilistic description of the inferred compartments and the possibility to explore the various hierarchies of chromatin organization. Applying the method to experimental data in fly and human, we show how the predicted segmentation may depend on the normalization scheme and how 3D compartmentalization is tightly associated with epigenomic information. IC-Finder provides a robust and generic ‘all-in-one’ tool to uncover the general principles of 3D chromatin folding and their influence on gene regulation. The software is available at http://membres-timc.imag.fr/Daniel.Jost/DJ-TIMC/Software.html. PMID:28130423
A Probabilistic Graphical Model to Detect Chromosomal Domains
NASA Astrophysics Data System (ADS)
Heermann, Dieter; Hofmann, Andreas; Weber, Eva
To understand the nature of a cell, one needs to understand the structure of its genome. For this purpose, experimental techniques such as Hi-C detecting chromosomal contacts are used to probe the three-dimensional genomic structure. These experiments yield topological information, consistently showing a hierarchical subdivision of the genome into self-interacting domains across many organisms. Current methods for detecting these domains using the Hi-C contact matrix, i.e. a doubly-stochastic matrix, are mostly based on the assumption that the domains are distinct, thus non-overlapping. For overcoming this simplification and for being able to unravel a possible nested domain structure, we developed a probabilistic graphical model that makes no a priori assumptions on the domain structure. Within this approach, the Hi-C contact matrix is analyzed using an Ising like probabilistic graphical model whose coupling constant is proportional to each lattice point (entry in the contact matrix). The results show clear boundaries between identified domains and the background. These domain boundaries are dependent on the coupling constant, so that one matrix yields several clusters of different sizes, which show the self-interaction of the genome on different scales. This work was supported by a Grant from the International Human Frontier Science Program Organization (RGP0014/2014).
OBSERVING CORONAL NANOFLARES IN ACTIVE REGION MOSS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Testa, Paola; DeLuca, Ed; Golub, Leon
2013-06-10
The High-resolution Coronal Imager (Hi-C) has provided Fe XII 193A images of the upper transition region moss at an unprecedented spatial ({approx}0.''3-0.''4) and temporal (5.5 s) resolution. The Hi-C observations show in some moss regions variability on timescales down to {approx}15 s, significantly shorter than the minute-scale variability typically found in previous observations of moss, therefore challenging the conclusion of moss being heated in a mostly steady manner. These rapid variability moss regions are located at the footpoints of bright hot coronal loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly in the 94 A channel, and by the Hinode/X-Raymore » Telescope. The configuration of these loops is highly dynamic, and suggestive of slipping reconnection. We interpret these events as signatures of heating events associated with reconnection occurring in the overlying hot coronal loops, i.e., coronal nanoflares. We estimate the order of magnitude of the energy in these events to be of at least a few 10{sup 23} erg, also supporting the nanoflare scenario. These Hi-C observations suggest that future observations at comparable high spatial and temporal resolution, with more extensive temperature coverage, are required to determine the exact characteristics of the heating mechanism(s).« less
Dalal, Koustuv; Lin, Zhiquin; Gifford, Mervyn; Svanström, Leif
2013-12-01
To estimate the economic loss due to road traffic injuries (RTIs) of the World Health Organization (WHO) member countries and to explore the relationship between the economic loss and relevant health system factors. Data from the World Bank and the WHO were applied to set up the databases. Disability-adjusted life year (DALY) and gross domestic product per capita were used to estimate the economic loss relating to RTIs. Regression analysis was used. Data were analyzed by IBM SPSS Statistics, Versions 20.0. In 2005, the total economic loss of RTIs was estimated to be 167,752.4 million United States Dollars. High income countries (HIC) showed the greatest economic losses. The majority (96%) of the top 25 countries with the greatest DALY losses are low and middle income countries while 48% of the top 25 countries with the highest economic losses are HIC. The linear regression model indicates an inverse relationship between nurse density in the health system and economic loss due to RTI. RTIs cause enormous death and DALYs loss in low-middle income countries and enormous economic loss in HIC. More road traffic prevention programs should be promoted in these areas to reduce both incidence and economic burden of RTIs.
7075-T6 and 2024-T351 Aluminum Alloy Fatigue Crack Growth Rate Data
NASA Technical Reports Server (NTRS)
Forth, Scott C.; Wright, Christopher W.; Johnston, William M., Jr.
2005-01-01
Experimental test procedures for the development of fatigue crack growth rate data has been standardized by the American Society for Testing and Materials. Over the past 30 years several gradual changes have been made to the standard without rigorous assessment of the affect these changes have on the precision or variability of the data generated. Therefore, the ASTM committee on fatigue crack growth has initiated an international round robin test program to assess the precision and variability of test results generated using the standard E647-00. Crack growth rate data presented in this report, in support of the ASTM roundrobin, shows excellent precision and repeatability.
Hydrogen-Induced Delayed Cracking in TRIP-Aided Lean-Alloyed Ferritic-Austenitic Stainless Steels.
Papula, Suvi; Sarikka, Teemu; Anttila, Severi; Talonen, Juho; Virkkunen, Iikka; Hänninen, Hannu
2017-06-03
Susceptibility of three lean-alloyed ferritic-austenitic stainless steels to hydrogen-induced delayed cracking was examined, concentrating on internal hydrogen contained in the materials after production operations. The aim was to study the role of strain-induced austenite to martensite transformation in the delayed cracking susceptibility. According to the conducted deep drawing tests and constant load tensile testing, the studied materials seem not to be particularly susceptible to delayed cracking. Delayed cracks were only occasionally initiated in two of the materials at high local stress levels. However, if a delayed crack initiated in a highly stressed location, strain-induced martensite transformation decreased the crack arrest tendency of the austenite phase in a duplex microstructure. According to electron microscopy examination and electron backscattering diffraction analysis, the fracture mode was predominantly cleavage, and cracks propagated along the body-centered cubic (BCC) phases ferrite and α'-martensite. The BCC crystal structure enables fast diffusion of hydrogen to the crack tip area. No delayed cracking was observed in the stainless steel that had high austenite stability. Thus, it can be concluded that the presence of α'-martensite increases the hydrogen-induced cracking susceptibility.
Hydrogen-Induced Delayed Cracking in TRIP-Aided Lean-Alloyed Ferritic-Austenitic Stainless Steels
Papula, Suvi; Sarikka, Teemu; Anttila, Severi; Talonen, Juho; Virkkunen, Iikka; Hänninen, Hannu
2017-01-01
Susceptibility of three lean-alloyed ferritic-austenitic stainless steels to hydrogen-induced delayed cracking was examined, concentrating on internal hydrogen contained in the materials after production operations. The aim was to study the role of strain-induced austenite to martensite transformation in the delayed cracking susceptibility. According to the conducted deep drawing tests and constant load tensile testing, the studied materials seem not to be particularly susceptible to delayed cracking. Delayed cracks were only occasionally initiated in two of the materials at high local stress levels. However, if a delayed crack initiated in a highly stressed location, strain-induced martensite transformation decreased the crack arrest tendency of the austenite phase in a duplex microstructure. According to electron microscopy examination and electron backscattering diffraction analysis, the fracture mode was predominantly cleavage, and cracks propagated along the body-centered cubic (BCC) phases ferrite and α’-martensite. The BCC crystal structure enables fast diffusion of hydrogen to the crack tip area. No delayed cracking was observed in the stainless steel that had high austenite stability. Thus, it can be concluded that the presence of α’-martensite increases the hydrogen-induced cracking susceptibility. PMID:28772975
NASA Technical Reports Server (NTRS)
Choi, Sung H.; Salem, J. A.; Nemeth, N. N.
1998-01-01
High-temperature slow-crack-growth behaviour of hot-pressed silicon carbide was determined using both constant-stress-rate ("dynamic fatigue") and constant-stress ("static fatigue") testing in flexure at 1300 C in air. Slow crack growth was found to be a governing mechanism associated with failure of the material. Four estimation methods such as the individual data, the Weibull median, the arithmetic mean and the median deviation methods were used to determine the slow crack growth parameters. The four estimation methods were in good agreement for the constant-stress-rate testing with a small variation in the slow-crack-growth parameter, n, ranging from 28 to 36. By contrast, the variation in n between the four estimation methods was significant in the constant-stress testing with a somewhat wide range of n= 16 to 32.
Mitigation of Crack Damage in Metallic Materials
NASA Technical Reports Server (NTRS)
Leser, Patrick E.; Newman, John A.; Smith, Stephen W.; Leser, William P.; Wincheski, Russell A.; Wallace, Terryl A.; Glaessgen, Edward H.; Piascik, Robert S.
2014-01-01
A system designed to mitigate or heal crack damage in metallic materials has been developed where the protected material or component is coated with a low-melting temperature film. After a crack is formed, the material is heated, melting the film which then infiltrates the crack opening through capillary action. Upon solidification, the healing material inhibits further crack damage in two ways. While the crack healing material is intact, it acts like an adhesive that bonds or bridges the crack faces together. After fatigue loading damages, the healing material in the crack mouth inhibits further crack growth by creating artificially-high crack closure levels. Mechanical test data show that this method sucessfully arrests or retards crack growth in laboratory specimens.
Population aging, macroeconomic changes, and global diabetes prevalence, 1990-2008.
Sudharsanan, Nikkil; Ali, Mohammed K; Mehta, Neil K; Narayan, K M Venkat
2015-01-01
Diabetes is an important contributor to global morbidity and mortality. The contributions of population aging and macroeconomic changes to the growth in diabetes prevalence over the past 20 years are unclear. We used cross-sectional data on age- and sex-specific counts of people with diabetes by country, national population estimates, and country-specific macroeconomic variables for the years 1990, 2000, and 2008. Decomposition analysis was performed to quantify the contribution of population aging to the change in global diabetes prevalence between 1990 and 2008. Next, age-standardization was used to estimate the contribution of age composition to differences in diabetes prevalence between high-income (HIC) and low-to-middle-income countries (LMICs). Finally, we used non-parametric correlation and multivariate first-difference regression estimates to examine the relationship between macroeconomic changes and the change in diabetes prevalence between 1990 and 2008. Globally, diabetes prevalence grew by two percentage points between 1990 (7.4 %) and 2008 (9.4 %). Population aging was responsible for 19 % of the growth, with 81 % attributable to increases in the age-specific prevalences. In both LMICs and HICs, about half the growth in age-specific prevalences was from increasing levels of diabetes between ages 45-65 (51 % in HICs and 46 % in LMICs). After age-standardization, the difference in the prevalence of diabetes between LMICs and HICs was larger (1.9 % point difference in 1990; 1.5 % point difference in 2008). We found no evidence that macroeconomic changes were associated with the growth in diabetes prevalence. Population aging explains a minority of the recent growth in global diabetes prevalence. The increase in global diabetes between 1990 and 2008 was primarily due to an increase in the prevalence of diabetes at ages 45-65. We do not find evidence that basic indicators of economic growth, development, globalization, or urbanization were related to rising levels of diabetes between 1990 and 2008.
Fatigue crack growth under general-yielding cyclic-loading
NASA Technical Reports Server (NTRS)
Minzhong, Z.; Liu, H. W.
1986-01-01
In low cycle fatigue, cracks are initiated and propagated under general yielding cyclic loading. For general yielding cyclic loading, Dowling and Begley have shown that fatigue crack growth rate correlates well with the measured delta J. The correlation of da/dN with delta J was also studied by a number of other investigators. However, none of thse studies have correlated da/dN with delta J calculated specifically for the test specimens. Solomon measured fatigue crack growth in specimens in general yielding cyclic loading. The crack tips fields for Solomon's specimens are calculated using the finite element method and the J values of Solomon's tests are evaluated. The measured crack growth rate in Solomon's specimens correlates very well with the calculated delta J.
Statistical analysis of 59 inspected SSME HPFTP turbine blades (uncracked and cracked)
NASA Technical Reports Server (NTRS)
Wheeler, John T.
1987-01-01
The numerical results of statistical analysis of the test data of Space Shuttle Main Engine high pressure fuel turbopump second-stage turbine blades, including some with cracks are presented. Several statistical methods use the test data to determine the application of differences in frequency variations between the uncracked and cracked blades.
Applications of infrared thermography for nondestructive testing of fatigue cracks in steel bridges
NASA Astrophysics Data System (ADS)
Sakagami, Takahide; Izumi, Yui; Kobayashi, Yoshihiro; Mizokami, Yoshiaki; Kawabata, Sunao
2014-05-01
In recent years, fatigue crack propagations in aged steel bridge which may lead to catastrophic structural failures have become a serious problem. For large-scale steel structures such as orthotropic steel decks in highway bridges, nondestructive inspection of deteriorations and fatigue damages are indispensable for securing their safety and for estimating their remaining strength. As conventional NDT techniques for steel bridges, visual testing, magnetic particle testing and ultrasonic testing have been commonly employed. However, these techniques are time- and labor- consuming techniques, because special equipment is required for inspection, such as scaffolding or a truck mount aerial work platform. In this paper, a new thermography NDT technique, which is based on temperature gap appeared on the surface of structural members due to thermal insulation effect of the crack, is developed for detection of fatigue cracks. The practicability of the developed technique is demonstrated by the field experiments for highway steel bridges in service. Detectable crack size and factors such as measurement time, season or spatial resolution which influence crack detectability are investigated.
NASA Astrophysics Data System (ADS)
Annaniah, Luruthudass; Devarajan, Mutharasu; San, Teoh Kok
To ensure the highest quality & long-term reliability of LED components it is necessary to examine LED dice that have sustained mechanical damage during the manufacturing process. This paper has demonstrated that detection of die crack in mass manufactured LEDs can be achieved by measuring Temperature Sensitive Parameters (TSPs) during final testing. A newly-designed apparatus and microcontroller was used for this investigation in order to achieve the millisecond switching time needed for detecting thermal transient effects and at the same time meet the expected speed for mass manufacturing. Evaluations conducted at lab scale shows that thermal transient behaviour of cracked die is significantly different than that of an undamaged die. Having an established test limits to differentiate cracked dice, large volume tests in a production environment were used to confirm the effectiveness of this test method. Failure Bin Analysis (FBA) of this high volume experiment confirmed that all the cracked die LEDs were detected and the undamaged LEDs passed this test without over-rejection. The work verifies that tests based on TSP are effective in identifying die cracks and it is believed that the method could be extended to other types of rejects that have thermal transient signatures such as die delamination.
A comparison of fatigue life prediction methodologies for rotorcraft
NASA Technical Reports Server (NTRS)
Everett, R. A., Jr.
1990-01-01
Because of the current U.S. Army requirement that all new rotorcraft be designed to a 'six nines' reliability on fatigue life, this study was undertaken to assess the accuracy of the current safe life philosophy using the nominal stress Palmgrem-Miner linear cumulative damage rule to predict the fatigue life of rotorcraft dynamic components. It has been shown that this methodology can predict fatigue lives that differ from test lives by more than two orders of magnitude. A further objective of this work was to compare the accuracy of this methodology to another safe life method called the local strain approach as well as to a method which predicts fatigue life based solely on crack growth data. Spectrum fatigue tests were run on notched (k(sub t) = 3.2) specimens made of 4340 steel using the Felix/28 tests fairly well, being slightly on the unconservative side of the test data. The crack growth method, which is based on 'small crack' crack growth data and a crack-closure model, also predicted the fatigue lives very well with the predicted lives being slightly longer that the mean test lives but within the experimental scatter band. The crack growth model was also able to predict the change in test lives produced by the rainflow reconstructed spectra.
NASA Technical Reports Server (NTRS)
Phillips, Edward P.
1997-01-01
An experimental study was conducted to determine the effects of combined bending and membrane cyclic stresses on the fatigue crack growth behavior of aluminum sheet material. The materials used in the tests were 0.040-in.- thick 2024-T3 alclad and 0.090-in.-thick 2024-T3 bare sheet. In the tests, the membrane stresses were applied as a constant amplitude loading at a stress ratio (minimum to maximum stress) of 0.02, and the bending stresses were applied as a constant amplitude deflection in phase with the membrane stresses. Tests were conducted at ratios of bending to membrane stresses (B/M) of 0, 0.75, and 1.50. The general trends of the results were for larger effects of bending for the higher B/M ratios, the lower membrane stresses, and the thicker material. The addition of cyclic bending stresses to a test with cyclic membrane stresses had only a small effect on the growth rates of through-thickness cracks in the thin material, but had a significant effect on the crack growth rates of through-thickness cracks in the thick material. Adding bending stresses to a test had the most effect on the initiation and early growth of cracks and had less effect on the growth of long through-thickness cracks.
Fracture of concrete caused by the reinforcement corrosion products
NASA Astrophysics Data System (ADS)
Nguyen, Q. T.; Millard, A.; Caré, S.; L'Hostis, V.; Berthaud, Y.
2006-11-01
One of the most current degradations in reinforced concrete structures is related to the corrosion of the reinforcements. The corrosion products during active corrosion induce a mechanical pressure on the surrounding concrete that leads to cover cracking along the rebar. The objective of this work is to study the cracking of concrete due to the corrosion of the reinforcements. The phenomenon of corrosion/cracking is studied in experiments through tests of accelerated corrosion on plate and cylindrical specimens. A CCD camera is used to take images every hour and the pictures are analyzed by using the intercorrelation image technique (Correli^LMT) to derive the displacement and strain field. Thus the date of appearance of the first through crack is detected and the cinematic crack initiations are observed during the test. A finite element model that allows prediction of the mechanical consequences of the corrosion of steel in reinforced concrete structures is proposed. From the comparison between the test results and numerical simulations, it may be concluded that the model is validated in term of strains up to the moment when the crack becomes visible, and in terms of crack pattern.
Flexural Behavior of HPFRCC Members with Inhomogeneous Material Properties.
Shin, Kyung-Joon; Jang, Kyu-Hyeon; Choi, Young-Cheol; Lee, Seong-Cheol
2015-04-21
In this paper, the flexural behavior of High-performance Fiber-Reinforced Cementitious Composite (HPFRCC) has been investigated, especially focusing on the localization of cracks, which significantly governs the flexural behavior of HPFRCC members. From four points bending tests with HPFRCC members, it was observed that almost evenly distributed cracks formed gradually, followed by a localized crack that determined the failure of the members. In order to investigate the effect of a localized crack on the flexural behavior of HPFRCC members, an analytical procedure has been developed with the consideration of intrinsic inhomogeneous material properties of HPFRCC such as cracking and ultimate tensile strengths. From the comparison, while the predictions with homogeneous material properties overestimated flexural strength and ductility of HPFRCC members, it was found that the analysis results considering localization effect with inhomogeneous material properties showed good agreement with the test results, not only the flexural strength and ductility but also the crack widths. The test results and the developed analysis procedure presented in this paper can be usefully applied for the prediction of flexural behaviors of HPFRCC members by considering the effect of localized cracking behavior.
NASA Technical Reports Server (NTRS)
Johnston, William M.; Newman, James C. (Technical Monitor)
2002-01-01
A series of fracture tests were conducted on Middle-crack tension M(T) and compact tension C(T) specimens to determine the effects of specimen type, specimen width, notch tip sharpness and buckling on the fracture behavior of cracked thin sheet (0.04 inch thick) 2024-T3 aluminum alloy material. A series of M(T) specimens were tested with three notch tip configurations: (1) a fatigue pre-cracked notch, (2) a 0.010-inch-diameter wire electrical discharge machined (EDM) notch, and (3) a EDM notch sharpened with a razor blade. The test procedures are discussed and the experimental results for failure stress, load vs. crack extension and the material stress-strain response are reported.
NASA Astrophysics Data System (ADS)
Kim, Young Suk; Kim, Sung Soo
2016-09-01
We show that enhanced stress corrosion cracking (SCC) initiation in cold-rolled Alloy 690 with decreasing strain rate is related to the rate of short-range ordering (SRO) but not to the time-dependent corrosion process. Evidence for SRO is provided by aging tests on cold-rolled Alloy 690 at 623 K and 693 K (350 °C and 420 °C), respectively, which demonstrate its enhanced lattice contraction and hardness increase with aging temperature and time, respectively. Secondary intergranular cracks formed only in thermally treated and cold-rolled Alloy 690 during SCC tests, which are not SCC cracks, are caused by its lattice contraction by SRO before SCC tests but not by the orientation effect.
DOT National Transportation Integrated Search
2008-11-01
Crack sealing has been widely used as a routine preventative maintenance practice. Given its proper : installation, crack sealants can extend pavement service life by three to five years. However, current : specifications for the selection of crack s...
Crack Growth Behavior in the Threshold Region for High Cycle Fatigue Loading
NASA Technical Reports Server (NTRS)
Forman, R. G.; Zanganeh, M.
2014-01-01
This paper describes the results of a research program conducted to improve the understanding of fatigue crack growth rate behavior in the threshold growth rate region and to answer a question on the validity of threshold region test data. The validity question relates to the view held by some experimentalists that using the ASTM load shedding test method does not produce valid threshold test results and material properties. The question involves the fanning behavior observed in threshold region of da/dN plots for some materials in which the low R-ratio data fans out from the high R-ratio data. This fanning behavior or elevation of threshold values in the low R-ratio tests is generally assumed to be caused by an increase in crack closure in the low R-ratio tests. Also, the increase in crack closure is assumed by some experimentalists to result from using the ASTM load shedding test procedure. The belief is that this procedure induces load history effects which cause remote closure from plasticity and/or roughness changes in the surface morphology. However, experimental studies performed by the authors have shown that the increase in crack closure is a result of extensive crack tip bifurcations that can occur in some materials, particularly in aluminum alloys, when the crack tip cyclic yield zone size becomes less than the grain size of the alloy. This behavior is related to the high stacking fault energy (SFE) property of aluminum alloys which results in easier slip characteristics. Therefore, the fanning behavior which occurs in aluminum alloys is a function of intrinsic dislocation property of the alloy, and therefore, the fanned data does represent the true threshold properties of the material. However, for the corrosion sensitive steel alloys tested in laboratory air, the occurrence of fanning results from fretting corrosion at the crack tips, and these results should not be considered to be representative of valid threshold properties because the fanning is eliminated when testing is performed in dry air.
Humidity Testing of PME and BME Ceramic Capacitors with Cracks
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.; Herzberger, Jaemi
2014-01-01
Cracks in ceramic capacitors are one of the major causes of failures during operation of electronic systems. Humidity testing has been successfully used for many years to verify the absence of cracks and assure quality of military grade capacitors. Traditionally, only precious metal electrode (PME) capacitors were used in high reliability applications and the existing requirements for humidity testing were developed for this type of parts. With the advance of base metal electrode (BME) capacitors, there is a need for assessment of the applicability of the existing techniques for the new technology capacitors. In this work, variety of different PME and BME capacitors with introduced cracks were tested in humid environments at different voltages and temperatures. Analysis of the test results indicates differences in the behavior and failure mechanisms for BME and PME capacitors and the need for different testing conditions.
Aspects of fracture mechanics in cryogenic model design. Part 2: NTF materials
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Lisagor, W. B.
1983-01-01
Results of fatigue crack growth and fracture toughness tests conducted on three candidate materials are presented. Fatigue crack growth and fracture toughness tests were conducted on NITRONIC 40 at room temperature and -275 F. Fracture toughness tests were also conducted on Vascomax 200 and 250 maraging steel from room temperature to -320 F. NITRONIC 40 was used to make the Pathfinder 1 model. The fatigue crack growth rate tests were conducted at room temperature and -275 F on three-point notch bend specimens. The fracture toughness tests on the as received and stress relieved materials at -275 F were conducted on the center crack tension specimens. Toughness tests were also conducted on Vascomax CVM-200 and CVM-250 maraging steel from room temperature to -320 F using round and rectangular compact specimens.
Proof-test-based life prediction of high-toughness pressure vessels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panontin, T.L.; Hill, M.R.
1996-02-01
The paper examines the problems associated with applying proof-test-based life prediction to vessels made of high-toughness metals. Two A106 Gr B pipe specimens containing long, through-wall circumferential flaws were tested. One failed during hydrostatic testing and the other during tension-tension cycling following a hydrostatic test. Quantitative fractography was used to verify experimentally obtained fatigue crack growth rates and a variety of LEFM and EPFM techniques were used to analyze the experimental results. The results show that: plastic collapse analysis provides accurate predictions of screened (initial) crack size when the flow stress is determined experimentally; LEFM analysis underestimates the crack sizemore » screened by the proof test and overpredicts the subsequent fatigue life of the vessel when retardation effects are small (i.e., low proof levels); and, at a high proof-test level (2.4 {times} operating pressure), the large retardation effect on fatigue crack growth due to the overload overwhelmed the deleterious effect on fatigue life from stable tearing during the proof test and alleviated the problem of screening only long cracks due to the high toughness of the metal.« less
NASA Technical Reports Server (NTRS)
Namkung, M.; Nath, S.; Wincheski, B.; Fulton, J. P.
1994-01-01
A major part of fracture mechanics is concerned with studying the initiation and propagation of fatigue cracks. This typically requires constant monitoring of crack growth during fatigue cycles and the knowledge of the precise location of the crack tip at any given time. One technique currently available for measuring fatigue crack length is the Potential Drop method. The method, however, may be inaccurate if the direction of crack growth deviates considerably from what was assumed initially or the curvature of the crack becomes significant. Another popular approach is to optically view the crack using a high magnification microscope, but this entails a person constantly monitoring it. The present proposed technique uses an automated scheme, in order to eliminate the need for a person to constantly monitor the experiment. Another technique under development elsewhere is to digitize an optical image of the test specimen surface and then apply a pattern recognition algorithm to locate the crack tip. A previous publication showed that the self nulling eddy current probe successfully tracked a simulated crack in an aluminum sample. This was the impetus to develop an online real time crack monitoring system. An automated system has been developed which includes a two axis scanner mounted on the tensile testing machine, the probe and its instrumentation and a personal computer (PC) to communicate and control all the parameters. The system software controls the testing parameters as well as monitoring the fatigue crack as it propagates. This paper will discuss the experimental setup in detail and demonstrate its capabilities. A three dimensional finite element model is utilized to model the magnetic field distribution due to the probe and how the probe voltage changes as it scans the crack. Experimental data of the probe for different samples under zero load, static load and high cycle fatigue load will be discussed. The final section summarizes the major accomplishments of the present work, the elements of the future R&D needs and the advantages and disadvantages of using this system in the laboratory and field.
The static breaking technique for sustainable and eco-environmental coal mining.
Bing-yuan, Hao; Hui, Huang; Zi-jun, Feng; Kai, Wang
2014-01-01
The initiating explosive devices are prohibited in rock breaking near the goaf of the highly gassy mine. It is effective and applicable to cracking the hard roof with static cracking agent. By testing the static cracking of cubic limestone (size: 200 × 200 × 200 mm) with true triaxial rock mechanics testing machine under the effect of bidirectional stress and by monitoring the evolution process of the cracks generated during the acoustic emission experiment of static cracking, we conclude the following: the experiment results of the acoustic emission show that the cracks start from the lower part of the hole wall until they spread all over the sample. The crack growth rate follows a trend of "from rapidness to slowness." The expansion time is different for the two bunches of cracks. The growth rates can be divided into the rapid increasing period and the rapid declining period, of which the growth rate in declining period is less than that in the increasing period. Also, the growth rate along the vertical direction is greater than that of the horizontal direction. Then the extended model for the static cracking is built according to the theories of elastic mechanics and fracture mechanics. Thus the relation formula between the applied forces of cracks and crack expansion radius is obtained. By comparison with the test results, the model proves to be applicable. In accordance with the actual geological situation of Yangquan No. 3 Mine, the basic parameters of manpower manipulated caving breaking with static crushing are settled, which reaps bumper industrial effects.
NASA Technical Reports Server (NTRS)
Gutierrez-Lemini, Danton; McCool, Alex (Technical Monitor)
2001-01-01
A method is developed to establish the J-resistance function for an isotropic linear viscoelastic solid of constant Poisson's ratio using the single-specimen technique with constant-rate test data. The method is based on the fact that, for a test specimen of fixed crack size under constant rate, the initiation J-integral may be established from the crack size itself, the actual external load and load-point displacement at growth initiation, and the relaxation modulus of the viscoelastic solid, without knowledge of the complete test record. Since crack size alone, of the required data, would be unknown at each point of the load-vs-load-point displacement curve of a single-specimen test, an expression is derived to estimate it. With it, the physical J-integral at each point of the test record may be established. Because of its basis on single-specimen testing, not only does the method not require the use of multiple specimens with differing initial crack sizes, but avoids the need for tracking crack growth as well.
Residual Strength Analyses of Monolithic Structures
NASA Technical Reports Server (NTRS)
Forth, Scott (Technical Monitor); Ambur, Damodar R. (Technical Monitor); Seshadri, B. R.; Tiwari, S. N.
2003-01-01
Finite-element fracture simulation methodology predicts the residual strength of damaged aircraft structures. The methodology uses the critical crack-tip-opening-angle (CTOA) fracture criterion to characterize the fracture behavior of the material. The CTOA fracture criterion assumes that stable crack growth occurs when the crack-tip angle reaches a constant critical value. The use of the CTOA criterion requires an elastic- plastic, finite-element analysis. The critical CTOA value is determined by simulating fracture behavior in laboratory specimens, such as a compact specimen, to obtain the angle that best fits the observed test behavior. The critical CTOA value appears to be independent of loading, crack length, and in-plane dimensions. However, it is a function of material thickness and local crack-front constraint. Modeling the local constraint requires either a three-dimensional analysis or a two-dimensional analysis with an approximation to account for the constraint effects. In recent times as the aircraft industry is leaning towards monolithic structures with the intention of reducing part count and manufacturing cost, there has been a consistent effort at NASA Langley to extend critical CTOA based numerical methodology in the analysis of integrally-stiffened panels.In this regard, a series of fracture tests were conducted on both flat and curved aluminum alloy integrally-stiffened panels. These flat panels were subjected to uniaxial tension and during the test, applied load-crack extension, out-of-plane displacements and local deformations around the crack tip region were measured. Compact and middle-crack tension specimens were tested to determine the critical angle (wc) using three-dimensional code (ZIP3D) and the plane-strain core height (hJ using two-dimensional code (STAGS). These values were then used in the STAGS analysis to predict the fracture behavior of the integrally-stiffened panels. The analyses modeled stable tearing, buckling, and crack branching at the integral stiffener using different values of critical CTOA for different material thicknesses and orientation. Comparisons were made between measured and predicted load-crack extension, out-of-plane displacements and local deformations around the crack tip region. Simultaneously, three-dimensional capabilities to model crack branching and to monitor stable crack growth of multiple cracks in a large thick integrally-stiffened flat panels were implemented in three-dimensional finite element code (ZIP3D) and tested by analyzing the integrally-stiffened panels tested at Alcoa. The residual strength of the panels predicted from STAGS and ZP3D code compared very well with experimental data. In recent times, STAGS software has been updated with new features and now one can have combinations of solid and shell elements in the residual strength analysis of integrally-stiffened panels.
NASA Astrophysics Data System (ADS)
Ohtsu, Masayasu
1991-04-01
An application of a moment tensor analysis to acoustic emission (AE) is studied to elucidate crack types and orientations of AE sources. In the analysis, simplified treatment is desirable, because hundreds of AE records are obtained from just one experiment and thus sophisticated treatment is realistically cumbersome. Consequently, a moment tensor inversion based on P wave amplitude is employed to determine six independent tensor components. Selecting only P wave portion from the full-space Green's function of homogeneous and isotropic material, a computer code named SiGMA (simplified Green's functions for the moment tensor analysis) is developed for the AE inversion analysis. To classify crack type and to determine crack orientation from moment tensor components, a unified decomposition of eigenvalues into a double-couple (DC) part, a compensated linear vector dipole (CLVD) part, and an isotropic part is proposed. The aim of the decomposition is to determine the proportion of shear contribution (DC) and tensile contribution (CLVD + isotropic) on AE sources and to classify cracks into a crack type of the dominant motion. Crack orientations determined from eigenvectors are presented as crack-opening vectors for tensile cracks and fault motion vectors for shear cracks, instead of stereonets. The SiGMA inversion and the unified decomposition are applied to synthetic data and AE waveforms detected during an in situ hydrofracturing test. To check the accuracy of the procedure, numerical experiments are performed on the synthetic waveforms, including cases with 10% random noise added. Results show reasonable agreement with assumed crack configurations. Although the maximum error is approximately 10% with respect to the ratios, the differences on crack orientations are less than 7°. AE waveforms detected by eight accelerometers deployed during the hydrofracturing test are analyzed. Crack types and orientations determined are in reasonable agreement with a predicted failure plane from borehole TV observation. The results suggest that tensile cracks are generated first at weak seams and then shear cracks follow on the opened joints.
Development of brain injury criteria (BrIC).
Takhounts, Erik G; Craig, Matthew J; Moorhouse, Kevin; McFadden, Joe; Hasija, Vikas
2013-11-01
Rotational motion of the head as a mechanism for brain injury was proposed back in the 1940s. Since then a multitude of research studies by various institutions were conducted to confirm/reject this hypothesis. Most of the studies were conducted on animals and concluded that rotational kinematics experienced by the animal's head may cause axonal deformations large enough to induce their functional deficit. Other studies utilized physical and mathematical models of human and animal heads to derive brain injury criteria based on deformation/pressure histories computed from their models. This study differs from the previous research in the following ways: first, it uses two different detailed mathematical models of human head (SIMon and GHBMC), each validated against various human brain response datasets; then establishes physical (strain and stress based) injury criteria for various types of brain injury based on scaled animal injury data; and finally, uses Anthropomorphic Test Devices (ATDs) (Hybrid III 50th Male, Hybrid III 5th Female, THOR 50th Male, ES-2re, SID-IIs, WorldSID 50th Male, and WorldSID 5th Female) test data (NCAP, pendulum, and frontal offset tests) to establish a kinematically based brain injury criterion (BrIC) for all ATDs. Similar procedures were applied to college football data where thousands of head impacts were recorded using a six degrees of freedom (6 DOF) instrumented helmet system. Since animal injury data used in derivation of BrIC were predominantly for diffuse axonal injury (DAI) type, which is currently an AIS 4+ injury, cumulative strain damage measure (CSDM) and maximum principal strain (MPS) were used to derive risk curves for AIS 4+ anatomic brain injuries. The AIS 1+, 2+, 3+, and 5+ risk curves for CSDM and MPS were then computed using the ratios between corresponding risk curves for head injury criterion (HIC) at a 50% risk. The risk curves for BrIC were then obtained from CSDM and MPS risk curves using the linear relationship between CSDM - BrIC and MPS - BrIC respectively. AIS 3+, 4+ and 5+ field risk of anatomic brain injuries was also estimated using the National Automotive Sampling System - Crashworthiness Data System (NASS-CDS) database for crash conditions similar to the frontal NCAP and side impact conditions that the ATDs were tested in. This was done to assess the risk curve ratios derived from HIC risk curves. The results of the study indicated that: (1) the two available human head models - SIMon and GHBMC - were found to be highly correlated when CSDMs and max principal strains were compared; (2) BrIC correlates best to both - CSDM and MPS, and rotational velocity (not rotational acceleration) is the mechanism for brain injuries; and (3) the critical values for angular velocity are directionally dependent, and are independent of the ATD used for measuring them. The newly developed brain injury criterion is a complement to the existing HIC, which is based on translational accelerations. Together, the two criteria may be able to capture most brain injuries and skull fractures occurring in automotive or any other impact environment. One of the main limitations for any brain injury criterion, including BrIC, is the lack of human injury data to validate the criteria against, although some approximation for AIS 2+ injury is given based on the angular velocities calculated at 50% probability of concussion in college football players instrumented with 5 DOF helmet system. Despite the limitations, a new kinematic rotational brain injury criterion - BrIC - may offer a way to capture brain injuries in situations when using translational accelerations based HIC alone may not be sufficient.
Peloquin, John M; Elliott, Dawn M
2016-04-01
Cracks in fibrous soft tissue, such as intervertebral disc annulus fibrosus and knee meniscus, cause pain and compromise joint mechanics. A crack concentrates stress at its tip, making further failure and crack extension (fracture) more likely. Ex vivo mechanical testing is an important tool for studying the loading conditions required for crack extension, but prior work has shown that it is difficult to reproduce crack extension. Most prior work used edge crack specimens in uniaxial tension, with the crack 90° to the edge of the specimen. This configuration does not necessarily represent the loading conditions that cause in vivo crack extension. To find a potentially better choice for experiments aiming to reproduce crack extension, we used finite element analysis to compare, in factorial combination, (1) center crack vs. edge crack location, (2) biaxial vs. uniaxial loading, and (3) crack-fiber angles ranging from 0° to 90°. The simulated material was annulus fibrosus fibrocartilage with a single fiber family. We hypothesized that one of the simulated test cases would produce a stronger stress concentration than the commonly used uniaxially loaded 90° crack-fiber angle edge crack case. Stress concentrations were compared between cases in terms of fiber-parallel stress (representing risk of fiber rupture), fiber-perpendicular stress (representing risk of matrix rupture), and fiber shear stress (representing risk of fiber sliding). Fiber-perpendicular stress and fiber shear stress concentrations were greatest in edge crack specimens (of any crack-fiber angle) and center crack specimens with a 90° crack-fiber angle. However, unless the crack is parallel to the fiber direction, these stress components alone are insufficient to cause crack opening and extension. Fiber-parallel stress concentrations were greatest in center crack specimens with a 45° crack-fiber angle, either biaxially or uniaxially loaded. We therefore recommend that the 45° center crack case be tried in future experiments intended to study crack extension by fiber rupture. Copyright © 2015 Elsevier Ltd. All rights reserved.
The application of Newman crack-closure model to predicting fatigue crack growth
NASA Astrophysics Data System (ADS)
Si, Erjian
1994-09-01
Newman crack-closure model and the relevant crack growth program were applied to the analysis of crack growth under constant amplitude and aircraft spectrum loading on a number of aluminum alloy materials. The analysis was performed for available test data of 2219-T851, 2024-T3, 2024-T351, 7075-T651, 2324-T39, and 7150-T651 aluminum materials. The results showed that the constraint factor is a significant factor in the method. The determination of the constraint factor is discussed. For constant amplitude loading, satisfactory crack growth lives could be predicted. For the above aluminum specimens, the ratio of predicted to experimental lives, Np/Nt, ranged from 0.74 to 1.36. The mean value of Np/Nt was 0.97. For a specified complex spectrum loading, predicted crack growth lives are not in very good agreement with the test data. Further effort is needed to correctly simulate the transition between plane strain and plane stress conditions, existing near the crack tip.
Slow crack growth in spinel in water
NASA Technical Reports Server (NTRS)
Schwantes, S.; Elber, W.
1983-01-01
Magnesium aluminate spinel was tested in a water environment at room temperature to establish its slow crack-growth behavior. Ring specimens with artificial flaws on the outside surface were loaded hydraulically on the inside surface. The time to failure was measured. Various precracking techniques were evaluated and multiple precracks were used to minimize the scatter in the static fatigue tests. Statistical analysis techniques were developed to determine the strength and crack velocities for a single flaw. Slow crack-growth rupture was observed at stress intensities as low as 70 percent of K sub c. A strengthening effect was observed in specimens that had survived long-time static fatigue tests.
DUCTILE-PHASE TOUGHENED TUNGSTEN FOR PLASMA-FACING MATERIALS IN FUSION REACTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henager, Charles H.; Setyawan, Wahyu; Roosendaal, Timothy J.
2017-05-01
Tungsten (W) and W-alloys are the leading candidates for plasma-facing components in nuclear fusion reactor designs because of their high melting point, strength retention at high temperatures, high thermal conductivity, and low sputtering yield. However, tungsten is brittle and does not exhibit the required fracture toughness for licensing in nuclear applications. A promising approach to increasing fracture toughness of W-alloys is by ductile-phase toughening (DPT). In this method, a ductile phase is included in a brittle matrix to prevent on inhibit crack propagation by crack blunting, crack bridging, crack deflection, and crack branching. Model examples of DPT tungsten are exploredmore » in this study, including W-Cu and W-Ni-Fe powder product composites. Three-point and four-point notched and/or pre-cracked bend samples were tested at several strain rates and temperatures to help understand deformation, cracking, and toughening in these materials. Data from these tests are used for developing and calibrating crack-bridging models. Finite element damage mechanics models are introduced as a modeling method that appears to capture the complexity of crack growth in these materials.« less
Research on fatigue cracking growth parameters in asphaltic mixtures using computed tomography
NASA Astrophysics Data System (ADS)
Braz, D.; Lopes, R. T.; Motta, L. M. G.
2004-01-01
Distress of asphalt concrete pavement due to repeated bending from traffic loads has been a well-recognized problem in Brazil. If it is assumed that fatigue cracking growth is governed by the conditions at the crack tip, and that the crack tip conditions can be characterized by the stress intensity factor, then fatigue cracking growth as a function of stress intensity range Δ K can be determined. Computed tomography technique is used to detect crack evolution in asphaltic mixtures which were submitted to fatigue tests. Fatigue tests under conditions of controlled stress were carried out using diametral compression equipment and repeat loading. The aim of this work is imaging several specimens at different stages of the fatigue tests. In preliminary studies it was noted that the trajectory of a crack was influenced by the existence of voids in the originally unloaded specimens. Cracks would first be observed in the central region of a specimen, propagating in the direction of the extremities. Analyzing the graphics, that represent the fatigue cracking growth (d c/d N) as a function of stress intensity factor (Δ K), it is noticed that the curve has practically shown the same behavior for all specimens at the same level of the static tension rupture stress. The experimental values obtained for the constants A and n (of the Paris-Erdogan Law) present good agreement with the results obtained by Liang and Zhou.
Fracture modes in human teeth.
Lee, J J-W; Kwon, J-Y; Chai, H; Lucas, P W; Thompson, V P; Lawn, B R
2009-03-01
The structural integrity of teeth under stress is vital to functional longevity. We tested the hypothesis that this integrity is limited by fracture of the enamel. Experiments were conducted on molar teeth, with a metal rod loaded onto individual cusps. Fracture during testing was tracked with a video camera. Two longitudinal modes of cracking were observed: median cracking from the contact zone, and margin cracking along side walls. Median cracks initiated from plastic damage at the contact site, at first growing slowly and then accelerating to the tooth margin. Margin cracks appeared to originate from the cemento-enamel junction, and traversed the tooth wall adjacent to the loaded cusp from the gingival to the occlusal surface. All cracks remained confined within the enamel shell up to about 550 N. At higher loads, additional crack modes--such as enamel chipping and delamination--began to manifest themselves, leading to more comprehensive failure of the tooth structure.
Numerical and experimental study on buckling and postbuckling behavior of cracked cylindrical shells
NASA Astrophysics Data System (ADS)
Saemi, J.; Sedighi, M.; Shariati, M.
2015-09-01
The effect of crack on load-bearing capacity and buckling behavior of cylindrical shells is an essential consideration in their design. In this paper, experimental and numerical buckling analysis of steel cylindrical shells of various lengths and diameters with cracks have been studied using the finite element method, and the effect of crack position, crack orientation and the crack length-to-cylindrical shell perimeter ( λ = a/(2 πr)) and shell length-to-diameter ( L/ D) ratios on the buckling and post-buckling behavior of cylindrical shells has been investigated. For several specimens, buckling test was performed using an INSTRON 8802 servo hydraulic machine, and the results of experimental tests were compared to numerical results. A very good correlation was observed between numerical simulation and experimental results. Finally, based on the experimental and numerical results, sensitivity of the buckling load to the shell length, crack length and orientation has also been investigated.
Fatigue crack growth in unidirectional and cross-ply SCS-6/Timetal 21S titanium matrix composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrmann, D.J.
1994-01-01
Fatigue crack growth in unidirectional and cross-ply SCS-6/ Timetal(R) 21S titanium matrix composite was investigated. Fatigue crack growth tests were performed on (0){sub 4}, (90){sub 4}, and (0/90){sub s} center notch specimens. The (0){sub 4} and (0/90){sub s} fatigue crack growth rates decreased initially. Specimens removed prior to failure were polished to the first row of fibers and intact fibers in the wake of the matrix crack were observed. These bridging fibers reduced the stress intensity range that the matrix material was subjected to, thus reducing the crack growth rate. The crack growth rate eventually increased as fibers failed inmore » the crack wake but the fatigue crack growth rate was still much slower than that of unreinforced Timetal(R) 21S. A model was developed to study the mechanics of a cracked unidirectional composite with any combination of intact and broken fibers in the wake of a matrix crack. The model was correlated to fatigue crack growth rate tests. The model was verified by comparing predicted displacements near the crack surface with Elber gage (1.5 mm gage length extensometer) measurements. The fatigue crack growth rate for the (90){sub 4} specimens was faster than that of unreinforced Timetal(registered trademark) 21S. Elber gage displacement measurements were in agreement with linear elastic fracture mechanics predictions, suggesting that linear elastic fracture mechanics may be applicable to transversely loaded titanium matrix composites.« less
Small-crack effects in high-strength aluminum alloys
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Wu, X. R.; Venneri, S. L.; Li, C. G.
1994-01-01
The National Aeronautics and Space Administration and the Chinese Aeronautical Establishment participated in a Fatigue and Fracture Mechanics Cooperative Program. The program objectives were to identify and characterize crack initiation and growth of small cracks (10 microns to 2 mm long) in commonly used US and PRC aluminum alloys, to improve fracture mechanics analyses of surface- and corner-crack configurations, and to develop improved life-prediction methods. Fatigue and small-crack tests were performed on single-edgenotch tension (SENT) specimens and large-crack tests were conducted on center-crack tension specimens for constant-amplitude (stress ratios of -1, 0, and 0.5) and Mini-TWIST spectrum loading. The plastic replica method was used to monitor the initiation and growth of small fatigue cracks at the semicircular notch. Crack growth results from each laboratory on 7075-T6 bare and LC9cs clad aluminum alloys agreed well and showed that fatigue life was mostly crack propagation from a material defect (inclusion particles or void) or from the cladding layer. Finite-element and weight-function methods were used to determine stress intensity factors for surface and corner cracks in the SENT specimens. Equations were then developed and used in a crack growth and crack-closure model to correlate small- and large-crack data and to make life predictions for various load histories. The cooperative program produced useful experimental data and efficient analysis methods for improving life predictions. The results should ultimately improve aircraft structural reliability and safety.
A fracture criterion for widespread cracking in thin-sheet aluminum alloys
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Dawicke, D. S.; Sutton, M. A.; Bigelow, C. A.
1993-01-01
An elastic-plastic finite-element analysis was used with a critical crack-tip-opening angle (CTOA) fracture criterion to model stable crack growth in thin-sheet 2024-T3 aluminum alloy panels with single and multiple-site damage (MSD) cracks. Comparisons were made between critical angles determined from the analyses and those measured with photographic methods. Calculated load against crack extension and load against crack-tip displacement on single crack specimens agreed well with test data even for large-scale plastic deformations. The analyses were also able to predict the stable tearing behavior of large lead cracks in the presence of stably tearing MSD cracks. Small MSD cracks significantly reduced the residual strength for large lead cracks.
Feature selection for examining behavior by pathology laboratories.
Hawkins, S; Williams, G; Baxter, R
2001-08-01
Australia has a universal health insurance scheme called Medicare, which is managed by Australia's Health Insurance Commission. Medicare payments for pathology services generate voluminous transaction data on patients, doctors and pathology laboratories. The Health Insurance Commission (HIC) currently uses predictive models to monitor compliance with regulatory requirements. The HIC commissioned a project to investigate the generation of new features from the data. Feature generation has not appeared as an important step in the knowledge discovery in databases (KDD) literature. New interesting features for use in predictive modeling are generated. These features were summarized, visualized and used as inputs for clustering and outlier detection methods. Data organization and data transformation methods are described for the efficient access and manipulation of these new features.
Choudhary, Lokesh; Singh Raman, R K; Hofstetter, Joelle; Uggowitzer, Peter J
2014-09-01
The complex interaction between physiological stresses and corrosive human body fluid may cause premature failure of metallic biomaterials due to the phenomenon of stress corrosion cracking. In this study, the susceptibility to stress corrosion cracking of biodegradable and aluminium-free magnesium alloys ZX50, WZ21 and WE43 was investigated by slow strain rate tensile testing in a simulated human body fluid. Slow strain rate tensile testing results indicated that each alloy was susceptible to stress corrosion cracking, and this was confirmed by fractographic features of transgranular and/or intergranular cracking. However, the variation in alloy susceptibility to stress corrosion cracking is explained on the basis of their electrochemical and microstructural characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torronen, K.; Kemppainen, M.
1981-10-01
This paper describes the findings and interpretations of the fractographic survey conducted for the International Cyclic Crack Growth Rate (ICCGR) cooperative group round-robin specimens. Specimens of A533B pressure vessel steel were tested at several laboratories in the United States and elsewhere with the same nominal test parameters. A rather wide scatter of the results was found. A fractographic and metallographic survey was carried out in order to clarify the scatter and to evaluate the micromechanism of the crack growth. The fractographic findings are reported in detail and correlated to the crack growth behavior. A hydrogen-assisted crack propagation mechanism based onmore » the fractography is proposed and applied to the observed crack growth behavior.« less
CHROMIUM PLATING FOR PROTECTION AGAINST STRESS CORROSION CRACKING OF HARDENED AISI 410 STEEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suss, H.
1958-04-22
Because of its high corrosion resistance properties, chromium electroplate should offer protection to AISI 419 steel against stress corrosion cracking. Tests have been made (KAPL and Bettis) on chromium plates on test specimens as deposited by two different sources in conformance with Bettis and USMC specifications. These deposits either offered protection to hardened (RC36- 42) AISI 410 against stress corrosion cracking, or caused accelerated stress corrosion cracking under conditions which did not crack unplated material. At present there is no significant data which could give definite clues for these extreme differences in the corrosive protective values. The results of testsmore » so far strongly question tbe value of chromium plate as a means to protect AISI 410 against stress corrosion cracking. (A.C.)« less
NASA Technical Reports Server (NTRS)
MacKay, Rebecca A.; Smith, Stephen W.; Shah, Sandeep R.; Piascik, Robert S.
2005-01-01
The shuttle orbiter s reaction control system (RCS) primary thruster serial number 120 was found to contain cracks in the counter bores and relief radius after a chamber repair and rejuvenation was performed in April 2004. Relief radius cracking had been observed in the 1970s and 1980s in seven thrusters prior to flight; however, counter bore cracking had never been seen previously in RCS thrusters. Members of the Materials Super Problem Resolution Team (SPRT) of the NASA Engineering and Safety Center (NESC) conducted a detailed review of the relevant literature and of the documentation from the previous RCS thruster failure analyses. It was concluded that the previous failure analyses lacked sufficient documentation to support the conclusions that stress corrosion cracking or hot-salt cracking was the root cause of the thruster cracking and lacked reliable inspection controls to prevent cracked thrusters from entering the fleet. The NESC team identified and performed new materials characterization and mechanical tests. It was determined that the thruster intergranular cracking was due to hydrogen embrittlement and that the cracking was produced during manufacturing as a result of processing the thrusters with fluoride-containing acids. Testing and characterization demonstrated that appreciable environmental crack propagation does not occur after manufacturing.
Fatigue of Self-Healing Nanofiber-based Composites: Static Test and Subcritical Crack Propagation.
Lee, Min Wook; Sett, Soumyadip; Yoon, Sam S; Yarin, Alexander L
2016-07-20
Here, we studied the self-healing of composite materials filled with epoxy-containing nanofibers. An initial incision in the middle of a composite sample stretched in a static fatigue test can result in either crack propagation or healing. In this study, crack evolution was observed in real time. A binary epoxy, which acted as a self-healing agent, was encapsulated in two separate types of interwoven nano/microfibers formed by dual-solution blowing, with the core containing either epoxy or hardener and the shell being formed from poly(vinylidene fluoride)/ poly(ethylene oxide) mixture. The core-shell fibers were encased in a poly(dimethylsiloxane) matrix. When the fibers were damaged by a growing crack in this fiber-reinforced composite material because of static stretching in the fatigue test, they broke and released the healing agent into the crack area. The epoxy used in this study was cured and solidified for approximately an hour at room temperature, which then conglutinated and healed the damaged location. The observations were made for at least several hours and in some cases up to several days. It was revealed that the presence of the healing agent (the epoxy) in the fibers successfully prevented the propagation of cracks in stretched samples subjected to the fatigue test. A theoretical analysis of subcritical cracks was performed, and it revealed a jumplike growth of subcritical cracks, which was in qualitative agreement with the experimental results.
Effect of Measured Welding Residual Stresses on Crack Growth
NASA Technical Reports Server (NTRS)
Hampton, Roy W.; Nelson, Drew; Doty, Laura W. (Technical Monitor)
1998-01-01
Welding residual stresses in thin plate A516-70 steel and 2219-T87 aluminum butt weldments were measured by the strain-gage hole drilling and X-ray diffraction methods. The residual stress data were used to construct 3D strain fields which were modeled as thermally induced strains. These 3D strain fields were then analyzed with the WARP31) FEM fracture analysis code in order to predict their effect on fatigue and on fracture. For analyses of fatigue crack advance and subsequent verification testing, fatigue crack growth increments were simulated by successive saw-cuts and incremental loading to generate, as a function of crack length, effects on crack growth of the interaction between residual stresses and load induced stresses. The specimen experimental response was characterized and compared to the WARM linear elastic and elastic-plastic fracture mechanics analysis predictions. To perform the fracture analysis, the plate material's crack tearing resistance was determined by tests of thin plate M(T) specimens. Fracture analyses of these specimen were performed using WARP31D to determine the critical Crack Tip Opening Angle [CTOA] of each material. These critical CTOA values were used to predict crack tearing and fracture in the weldments. To verify the fracture predictions, weldment M(T) specimen were tested in monotonic loading to fracture while characterizing the fracture process.
Search for a test for fracture potential of asphalt mixes : close out meeting.
DOT National Transportation Integrated Search
2012-08-01
Presentation Outline : 1)Part A Introduction : 2)Part B The OT test method : 3)Part C Surrogate crack tests (6 No.) : 4)Part D Comparison of the crack test methods : 5)Part E Summary & recommendations : 6)Miscellaneous & discussions
Stress-Corrosion Cracking in Martensitic PH Stainless Steels
NASA Technical Reports Server (NTRS)
Humphries, T.; Nelson, E.
1984-01-01
Precipitation-hardening alloys evaluated in marine environment tests. Report describes marine-environment stress-corrosion cracking (SCC) tests of three martensitic precipitation hardening (PH) stainless-steel alloys.
Separating the Influence of Environment from Stress Relaxation Effects on Dwell Fatigue Crack Growth
NASA Technical Reports Server (NTRS)
Telesman, Jack; Gabb, Tim; Ghosn, Louis J.
2016-01-01
Seven different microstructural variations of LSHR were produced by controlling the cooling rate and the subsequent aging and thermal exposure heat treatments. Through cyclic fatigue crack growth testing performed both in air and vacuum, it was established that four out of the seven LSHR heat treatments evaluated, possessed similar intrinsic environmental resistance to cyclic crack growth. For these four heat treatments, it was further shown that the large differences in dwell crack growth behavior which still persisted, were related to their measured stress relaxation behavior. The apparent differences in their dwell crack growth resistance were attributed to the inability of the standard linear elastic fracture mechanics (LEFM) stress intensity parameter to account for visco-plastic behavior. Crack tip stress relaxation controls the magnitude of the remaining local tensile stresses which are directly related to the measured dwell crack growth rates. It was hypothesized that the environmentally weakened grain boundary crack tip regions fail during the dwells when their strength is exceeded by the remaining local crack tip tensile stresses. It was shown that the classical creep crack growth mechanisms such as grain boundary sliding did not contribute to crack growth, but the local visco-plastic behavior still plays a very significant role by determining the crack tip tensile stress field which controls the dwell crack growth behavior. To account for the influence of the visco-plastic behavior on the crack tip stress field, an empirical modification to the LEFM stress intensity parameter, Kmax, was developed by incorporating into the formulation the remaining stress level concept as measured by simple stress relaxation tests. The newly proposed parameter, Ksrf, did an excellent job in correlating the dwell crack growth rates for the four heat treatments which were shown to have similar intrinsic environmental cyclic fatigue crack growth resistance.
Bechtle, Sabine; Fett, Theo; Rizzi, Gabriele; Habelitz, Stefan; Schneider, Gerold A
2010-05-01
Fracture toughness resistance curves describe a material's resistance against crack propagation. These curves are often used to characterize biomaterials like bone, nacre or dentin as these materials commonly exhibit a pronounced increase in fracture toughness with crack extension due to co-acting mechanisms such as crack bridging, crack deflection and microcracking. The knowledge of appropriate stress intensity factors which depend on the sample and crack geometry is essential for determining these curves. For the dental biomaterials enamel and dentin it was observed that, under bending and tensile loading, crack propagation occurs under certain constant angles to the initial notch direction during testing procedures used for fracture resistance curve determination. For this special crack geometry (a kink crack of finite length in a finite body) appropriate geometric function solutions are missing. Hence, we present in this study new mixed-mode stress intensity factors for kink cracks with finite kink length within samples of finite dimensions for two loading cases (tension and bending) which were derived from a combination of mixed-mode stress intensity factors of kink cracks with infinitely small kinks and of slant cracks. These results were further applied to determine the fracture resistance curves of enamel and dentin by testing single edge notched bending (SENB) specimens. It was found that kink cracks with finite kink length exhibit identical stress fields to slant cracks as soon as the kink length exceeds 0.15 times the initial straight crack or notch length. The use of stress intensity factor solutions for infinitely small kink cracks for the determination of dentin fracture resistance curves (as was done by other researchers) leads to an overestimation of dentin's fracture resistance of up to 30%. Copyright 2010 Elsevier Ltd. All rights reserved.
Nootropic activity of tuber extract of Pueraria tuberosa (Roxb).
Rao, N Venkata; Pujar, Basavaraj; Nimbal, S K; Shantakumar, S M; Satyanarayana, S
2008-08-01
Nootropic effect of alcoholic (ALE; 50, 75, 100 mg/kg) and aqueous (AQE; 100, 200, 400 mg/kg) extracts of P. tuberosa was evaluated by using Elevated Plus Maze (EPM), scopolamine-induced amnesia (SIA), diazepam-induced amnesia (DIA), clonidine-induced (NA-mediated) hypothermia (CIH), lithium-induced (5-HT mediated) head twitches (LIH) and haloperidol-induced (DA- mediated) catalepsy (HIC) models. Piracetam was used as the standard drug. A significant increase in inflexion ratio (IR) was recorded in EPM, SIA and DIA models. A significant reversal effect was observed on rectal temperature in CIH model, reduction of head twitches in LIH models. However no significant reduction in catalepsy scores in HIC models were observed with test extracts and standard piracetam. The results indicate that nootropic activity observed with ALE and AQE of tuber extracts of P. tuberosa could be through improved learning and memory either by augmenting the noradrenaline (NA) transmission or by interfering with 5-hydroxytryptamine (5-HT) release. Further, the extracts neither facilitated nor blocked release of the dopamine (DA). Thus ALE and AQE elicited significant nootropic effect in mice and rats by interacting with cholinergic, GABAnergic, adrenergic and serotonergic systems. Phytoconstituents like flavonoids have been reported for their nootropic effect and these are present in both ALE and AQE extracts of tubers of P. tuberosa (Roxb) and these active principles may be responsible for nootropic activity.
Anomalous Transport Properties of Dense QCD in a Magnetic Field
NASA Astrophysics Data System (ADS)
de la Incera, Vivian
2017-06-01
Despite recent advancements in the study and understanding of the phase diagram of strongly interacting matter, the region of high baryonic densities and low temperatures has remained difficult to reach in the lab. Things are expected to change with the planned HIC experiments at FAIR in Germany and NICA in Russia, which will open a window to the high-density-low-temperature segment of the QCD phase map, providing a unique opportunity to test the validity of model calculations that have predicted the formation of spatially inhomogeneous phases with broken chiral symmetry at intermediate-to-high densities. Such a density region is also especially relevant for the physics of neutron stars, as they have cores that can have several times the nuclear saturation density. On the other hand, strong magnetic fields, whose presence is fairly common in HIC and in neutron stars, can affect the properties of these exotic phases and lead to signatures potentially observable in these two settings. In this paper, I examine the anomalous transport properties produced by the spectral asymmetry of the lowest Landau level (LLL) in a QCD-inspired NJL model with a background magnetic field that exhibits chiral symmetry breaking at high density via the formation of a Dual Chiral Density Wave (DCDW) condensate. It turns out that in this model the electromagnetic interactions are described by the axion electrodynamics equations and there is a dissipationless Hall current.
A total life prediction model for stress concentration sites
NASA Technical Reports Server (NTRS)
Hartman, G. A.; Dawicke, D. S.
1983-01-01
Fatigue crack growth tests were performed on center crack panels and radial crack hole samples. The data were reduced and correlated with the elastic parameter K taking into account finite width and corner crack corrections. The anomalous behavior normally associated with short cracks was not observed. Total life estimates for notches were made by coupling an initiation life estimate with a propagation life estimate.
A total life prediction model for stress concentration sites
NASA Technical Reports Server (NTRS)
Hartman, G. A.; Dawicke, D. S.
1983-01-01
Fatigue crack growth tests were performed on center crack panels and radial crack hole samples. The data were reduced and correlated with the elastic parameter-K taking into account finite width and corner crack corrections. The anomalous behavior normally associated with short cracks was not observed. Total life estimates for notches were made by coupling an initiation life estimate with a propagation life estimate.
Detection of fatigue cracks by nondestructive testing methods
NASA Technical Reports Server (NTRS)
Anderson, R. T.; Delacy, T. J.; Stewart, R. C.
1973-01-01
The effectiveness was assessed of various NDT methods to detect small tight cracks by randomly introducing fatigue cracks into aluminum sheets. The study included optimizing NDT methods calibrating NDT equipment with fatigue cracked standards, and evaluating a number of cracked specimens by the optimized NDT methods. The evaluations were conducted by highly trained personnel, provided with detailed procedures, in order to minimize the effects of human variability. These personnel performed the NDT on the test specimens without knowledge of the flaw locations and reported on the flaws detected. The performance of these tests was measured by comparing the flaws detected against the flaws present. The principal NDT methods utilized were radiographic, ultrasonic, penetrant, and eddy current. Holographic interferometry, acoustic emission monitoring, and replication methods were also applied on a reduced number of specimens. Generally, the best performance was shown by eddy current, ultrasonic, penetrant and holographic tests. Etching provided no measurable improvement, while proof loading improved flaw detectability. Data are shown that quantify the performances of the NDT methods applied.
Sonic environment tests of an insulator/ablator material
NASA Technical Reports Server (NTRS)
Jackson, L. R.; Taylor, A. H.; Rucker, C. E.
1977-01-01
A 50.8 cm (20 inch) square panel of perpyrolized insulator/ablator was subjected to six 30-minute tests at 160 and 158 dB in the Langley Thermo-Acoustic Fatigue Apparatus (TAFA). This environment simulates the aerodynamic and engine noise encountered by a research airplane while in captive flight on the B-52 pylon during takeoff and climb. The pyrolized layer sustained damage in the form of three chips and numerous cracks. The chips occurred during the first test. Some cracking resulted during aerodynamic heating tests, and additional cracking resulted from the sonic environment tests.
Evaluation of sonic IR for NDE at Lawrence Livermore National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, W O
2001-02-01
Sonic IR was evaluated as an NDE technique at LLNL using a commercial ThermoSoniX system from Indigo Systems Corp. The main effort was to detect small cracks in aluminum oxide, a dense stiff ceramic. Test coupons were made containing 0.2-mm cracks by surface grinding, 1-mm cracks by compression with a Vickers bit, and 4-mm cracks by 3-point bending. Only the 3-point bend cracks produced thermal images. Several parts shattered during testing, perhaps by being forced at resonance by the 20-kHz acoustic probe. Tests on damaged carbon composite coupons produced thermal images that were in excellent agreement with ultrasonic inspection. Themore » composite results also showed some dependence on contact location of the acoustic probe, and on the method of support. Tests on glass with surface damage produced weak images at the pits. Tests on metal ballistic targets produced thermal images at the impact sites. Modal analyses suggest that the input frequency should be matched to the desired response, and also that forced resonance damaged some parts.« less
Subcritical crack growth of selected aerospace pressure vessel materials
NASA Technical Reports Server (NTRS)
Hall, L. R.; Bixler, W. D.
1972-01-01
This experimental program was undertaken to determine the effects of combined cyclic/sustained loads, stress level, and crack shape on the fatigue crack growth rate behavior of cracks subjected to plane strain conditions. Material/environment combinations tested included: 2219-T87 aluminum plate in gaseous helium, room air, and 3.5% NaCl solution at room temperature, liquid nitrogen, and liquid hydrogen; 5Al-2.5 Sn (ELI) titanium plate in liquid nitrogen and liquid hydrogen and 6AL-4V (ELI) STA titanium plate in gaseous helium and methanol at room temperature. Most testing was accomplished using surface flawed specimens instrumented with a clip gage to continuously monitor crack opening displacements at the specimen surface. Tapered double cantilever beam specimens were also tested. Static fracture and ten hour sustained load tests were conducted to determine fracture toughness and apparent threshold stress intensity values. Cyclic tests were performed using sinusoidal loading profiles at 333 MHz (20 cpm) and trapezoidal loading profiles at both 8.3 MHz (0.5 cpm) and 3.3 MHz (0.2 cpm). Data were evaluated using modified linear elastic fracture mechanics parameters.
NASA Technical Reports Server (NTRS)
Phillips, E. P.
1993-01-01
A second experimental Round Robin on the measurement of the crack opening load in fatigue crack growth tests has been completed by the ASTM Task Group E24.04.04 on Crack Closure Measurement and Analysis. Fourteen laboratories participated in the testing of aluminum alloy compact tension specimens. Opening-load measurements were made at three crack lengths during constant Delta K, constant stress ratio tests by most of the participants. Four participants made opening-load measurements during threshold tests. All opening-load measurements were based on the analysis of specimens compliance behavior, where the displacement/strain was measured either at the crack mouth or the mid-height back face location. The Round Robin data were analyzed for opening load using two non-subjective analysis methods: the compliance offset and the correlation coefficient methods. The scatter in the opening load results was significantly reduced when some of the results were excluded from the analysis population based on an accept/reject criterion for raw data quality. The compliance offset and correlation coefficient opening load analysis methods produced similar results for data populations that had been screened to eliminate poor quality data.
NASA Technical Reports Server (NTRS)
Delgado, Irebert R.
2015-01-01
An experimental and analytical fatigue life study was performed on the Grainex Mar-M 247 disk used in NASA s Turbine Seal Test Facility. To preclude fatigue cracks from growing to critical size in the NASA disk bolt holes due to cyclic loading at severe test conditions, a retirement-for-cause methodology was adopted to detect and monitor cracks within the bolt holes using eddy-current inspection. For the NASA disk material that was tested, the fatigue strain-life to crack initiation at a total strain of 0.5 percent, a minimum to maximum strain ratio of 0, and a bolt hole temperature of 649 C was calculated to be 665 cycles using -99.95 percent prediction intervals. The fatigue crack propagation life was calculated to be 367 cycles after implementing a safety factor of 2 on life. Thus, the NASA disk bolt hole total life or retirement life was determined to be 1032 cycles at a crack depth of 0.501 mm. An initial NASA disk bolt hole inspection at 665 cycles is suggested with 50 cycle inspection intervals thereafter to monitor fatigue crack growth.
Behavior and influence of desiccation cracking in loess landfill covers
NASA Astrophysics Data System (ADS)
Wu, Tao; Lan, Ji-wu; Qiu, Qing-wen; He, Hai-jie; Li, He
2017-11-01
In the northwest region of China, loess was the main closure cover material of local landfills. Tests in a full-scale testing facility were conducted to investigate the behavior and influence of desiccation cracking in loess landfill covers. The desiccation cracks in the loess landfill cover intersected with T-shape, and the intersection angles were close to 90 degrees. The desiccation cracks formed as a result of drying, and would heal with the increase of moisture content of the loess. In addition, desiccation cracking in loess covers would promote the formation of preferential flow channels. As a consequence, the gas permeability of the loess cover was improved, and methane emissions increased obviously.
2011-09-01
detection of a fatigue crack via 3D LDV measurements, both in aluminum plates. All the referenced LDV/guided wave studies made use of PZT or similar...Figure 1a). (b) (a) (c) Figure 1: (a) Test specimen in MTS fatigue test machine, (b) hole with 5 mm crack, (c) PZT placement with...mm thick aluminum plates with a small (1.59 mm) center hole added to facilitate growth of a fatigue crack. One plate was left undamaged while the
Crack Growth Behavior in the Threshold Region for High Cycle Fatigue Loading
NASA Technical Reports Server (NTRS)
Forman, Royce G.; Zanganehgheshlaghi, Mohannad
2014-01-01
The research results described in this paper presents a new understanding of the behavior of fatigue crack growth in the threshold region. It is believed by some crack growth experts that the ASTM load shedding test method does not produce true or valid threshold properties. The concern involves the observed fanning of threshold region da/dN data plots for some materials in which the low R-ratio data fans out or away from the high R-ratio data. This data fanning or elevation of threshold values is obviously caused by an increase in crack closure in the low R-ratio tested specimens. This increase in crack closure is assumed by some investigators to be caused by a plastic wake on the crack surfaces that was created during the load shedding test phase. This study shows that the increase in crack closure is the result of an extensive occurrence of crack bifurcation behavior in some materials, particularly in aluminum alloys, when the crack tip cyclic yield zone size becomes less than the grain size of the alloy. This behavior is related to the high stacking fault energy (SFE) property of aluminum alloys which results in easier slip characteristics. Therefore, the particular fanning behavior in aluminum alloys is a function of intrinsic dislocation property of the materials and that the fanned data represents valid material properties. However, for corrosion sensitive steel alloys used in this study the fanning was caused by a build-up of iron oxide at the crack tip from fretting corrosion.
The Effects of Hot Corrosion Pits on the Fatigue Resistance of a Disk Superalloy
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Telesman, Jack; Hazel, Brian; Mourer, David P.
2009-01-01
The effects of hot corrosion pits on low cycle fatigue life and failure modes of the disk superalloy ME3 were investigated. Low cycle fatigue specimens were subjected to hot corrosion exposures producing pits, then tested at low and high temperatures. Fatigue lives and failure initiation points were compared to those of specimens without corrosion pits. Several tests were interrupted to estimate the fraction of fatigue life that fatigue cracks initiated at pits. Corrosion pits significantly reduced fatigue life by 60 to 98 percent. Fatigue cracks initiated at a very small fraction of life for high temperature tests, but initiated at higher fractions in tests at low temperature. Critical pit sizes required to promote fatigue cracking were estimated, based on measurements of pits initiating cracks on fracture surfaces.
Replacement/Refurbishment of JSC/NASA POD Specimens
NASA Technical Reports Server (NTRS)
Castner, Willard L.
2010-01-01
The NASA Special NDE certification process requires demonstration of NDE capability by test per NASA-STD-5009. This test is performed with fatigue cracked specimens containing very small cracks. The certification test results are usually based on binomial statistics and must meet a 90/95 Probability of Detection (POD). The assumption is that fatigue cracks are tightly closed, difficult to detect, and inspectors and processes passing such a test are well qualified for inspecting NASA fracture critical hardware. The JSC NDE laboratory has what may be the largest inventory that exists of such fatigue cracked NDE demonstration specimens. These specimens were produced by the hundreds in the late 1980s and early 1990s. None have been produced since that time and the condition and usability of the specimens are questionable.
Fracture Mechanics Testing of Titanium 6AL-4V in AF-M315E
NASA Technical Reports Server (NTRS)
Sampson, J. W.; Martinez, J.; McLean, C.
2016-01-01
The Green Propellant Infusion Mission (GPIM) will demonstrate the performance of AF-M315E monopropellant on orbit. Flight certification requires a safe-life analysis of the titanium alloy fuel tank to ensure inherent processing flaws will not cause failure during the design life of the tank. Material property inputs for this analysis require testing to determine the stress intensity factor for environment-assisted cracking (KEAC) of Ti 6Al-4V in combination with the AF-M315E monopropellant. Testing of single-edge notched, or SE(B), specimens representing the bulk tank membrane and weld material were performed in accordance with ASTM E1681. Specimens with fatigue pre-cracks were loaded into test fixtures so that the crack tips were exposed to AF-M315E at 50 C for a duration of 1,000 hours. Specimens that did not fail during exposure were opened to inspect the crack surfaces for evidence of crack growth. The threshold stress intensity value, KEAC, is the highest applied stress intensity that produced neither a failure of the specimen during the exposure nor showed evidence of crack growth. The threshold stress intensity factor for environment-assisted cracking of the Ti 6Al-4V forged tank material was found to be at least 22 ksivin and at least 31 ksivin for the weld material when exposed to AF-M315E monopropellant.
Axial crack propagation and arrest in pressurized fuselage
NASA Technical Reports Server (NTRS)
Kosai, M.; Shimamoto, A.; Yu, C.-T.; Walker, S. I.; Kobayashi, A. S.; Tan, P.
1994-01-01
The crack arrest capability of a tear strap in a pressurized precracked fuselage was studied through instrumented axial rupture tests of small scale models of an idealized fuselage. Upon pressurization, rapid crack propagation initiated at an axial through crack along the stringer and immediately kinked due to the mixed modes 1 and 2 state caused by the one-sided opening of the crack flap. The diagonally running crack further turned at the tear straps. Dynamic finite element analysis of the rupturing cylinder showed that the crack kinked and also ran straight in the presence of a mixed mode state according to a modified two-parameter crack kinking criterion.
Thermal fatigue performance of integrally cast automotive turbine wheels
NASA Technical Reports Server (NTRS)
Humphreys, V. E.; Hofer, K. E.
1980-01-01
Fluidized bed thermal fatigue testing was conducted on 16 integrally cast automotive turbine wheels for 1000-10,000 (600 sec total) thermal cycles at 935/50 C. The 16 wheels consisted of 14 IN-792 + 1% Hf and 2 gatorized AF2-1DA wheels; 6 of the IN-792 + Hf wheels contained crack arrest pockets inside the blade root flange. Temperature transients during the thermal cycling were measured in three calibration tests using either 18 or 30 thermocouples per wheel. Thermal cracking based on crack length versus accumulated cycles was greatest for unpocketed wheels developing cracks in 8-13 cycles compared to 75-250 cycles for unpocketed wheels. However, pocketed wheels survived up to 10,000 cycles with crack lengths less than 20 mm, whereas two unpocketed wheels developed 45 mm long cracks in 1000-2000 cycles.
Fatigue crack closure behavior at high stress ratios
NASA Technical Reports Server (NTRS)
Turner, C. Christopher; Carman, C. Davis; Hillberry, Ben M.
1988-01-01
Fatigue crack delay behavior at high stress ratio caused by single peak overloads was investigated in two thicknesses of 7475-T731 aluminum alloy. Closure measurements indicated no closure occurred before or throughout the overload plastic zones following the overload. This was further substantiated by comparing the specimen compliance following the overload with the compliance of a low R ratio test when the crack was fully open. Scanning electron microscope studies revealed that crack tunneling and possibly reinitiation of the crack occurred, most likely a result of crack-tip blunting. The number of delay cycles was greater for the thinner mixed mode stress state specimen than for the thicker plane strain stress state specimen, which is similar to low R ratio test results and may be due to a larger plastic zone for the mixed mode cased.
Cracking of Beams Strengthened with Externally Bonded SRP Tapes
NASA Astrophysics Data System (ADS)
Krzywoń, Rafał
2017-10-01
Paper discusses strengthening efficiency of relatively new kind of SRP composite based on high strength steel wires. They are made of ultra-high strength steel primarily used in cords of car tires. Through advanced treatment, the mechanical properties of SRP steel are similar to other high carbon cold drawn steels used in construction industry. Strength significantly exceed 2000 MPa, there is no perfect plasticity at yield stress level. Almost linear stress-strain relationship makes SRP steel mechanical properties similar to carbon fibers. Also flexibility and weight ratio of the composite overlay is slightly worse than CFRP strip. Despite these advantages SRP is not as popular as other composites reinforced with fibers of high strength. This is due to the small number of studies of SRP behavior and applicability. Paper shows selected results of the laboratory test of beams strengthened with use of SRP and CFRP externally bonded overlays. Attention has been focused primarily on the phenomenon of cracking. Comparison include the cracking moment, crack width and spacing, coverage of crack zone. Despite the somewhat lower rigidity of SRP tapes, they have a much better adhesion to concrete, so that the crack width is comparable in almost the whole load range. The paper also includes an assessment of the common methods of checking the condition of cracking in relation to the tested SRP strengthening. The paper presents actual calculation procedures to determine the crack spacing and crack width. The discussed formulas are verified with results of provided laboratory tests.
NASA Technical Reports Server (NTRS)
Rummel, W. D.; Rathke, R. A.; Todd, P. H., Jr.; Mullen, S. J.
1975-01-01
Liquid penetrant, ultrasonic, eddy current and X-radiographic techniques were optimized and applied to the evaluation of 2219-T87 aluminum alloy test specimens in integrally stiffened panel, and weld panel configurations. Fatigue cracks in integrally stiffened panels, lack-of-fusion in weld panels, and fatigue cracks in weld panels were the flaw types used for evaluation. A 2319 aluminum alloy weld filler rod was used for all welding to produce the test specimens. Forty seven integrally stiffened panels containing a total of 146 fatigue cracks, ninety three lack-of-penetration (LOP) specimens containing a total of 239 LOP flaws, and one-hundred seventeen welded specimens containing a total of 293 fatigue cracks were evaluated. Nondestructive test detection reliability enhancement was evaluated during separate inspection sequences in the specimens in the 'as-machined or as-welded', post etched and post proof loaded conditions. Results of the nondestructive test evaluations were compared to the actual flaw size obtained by measurement of the fracture specimens after completing all inspection sequences. Inspection data were then analyzed to provide a statistical basis for determining the flaw detection reliability.
Forward modeling transient brightenings and microflares around an active region observed with Hi-C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobelski, Adam R.; McKenzie, David E., E-mail: kobelski@solar.physics.montana.edu
Small-scale flare-like brightenings around active regions are among the smallest and most fundamental of energetic transient events in the corona, providing a testbed for models of heating and active region dynamics. In a previous study, we modeled a large collection of these microflares observed with Hinode/X-Ray Telescope (XRT) using EBTEL and found that they required multiple heating events, but could not distinguish between multiple heating events on a single strand, or multiple strands each experiencing a single heating event. We present here a similar study, but with extreme-ultraviolet data of Active Region 11520 from the High Resolution Coronal Imager (Hi-C)more » sounding rocket. Hi-C provides an order of magnitude improvement to the spatial resolution of XRT, and a cooler temperature sensitivity, which combine to provide significant improvements to our ability to detect and model microflare activity around active regions. We have found that at the spatial resolution of Hi-C (≈0.''3), the events occur much more frequently than expected (57 events detected, only 1 or 2 expected), and are most likely made from strands of the order of 100 km wide, each of which is impulsively heated with multiple heating events. These findings tend to support bursty reconnection as the cause of the energy release responsible for the brightenings.« less
Fatigue damage assessment of high-usage in-service aircraft fuselage structure
NASA Astrophysics Data System (ADS)
Mosinyi, Bao Rasebolai
As the commercial and military aircraft fleets continue to age, there is a growing concern that multiple-site damage (MSD) can compromise structural integrity. Multiple site damage is the simultaneous occurrence of many small cracks at independent structural locations, and is the natural result of fatigue, corrosion, fretting and other possible damage mechanisms. These MSD cracks may linkup and form a fatigue lead crack of critical length. The presence of MSD also reduces the structure's ability to withstand longer cracks. The objective of the current study is to assess, both experimentally and analytically, MSD formation and growth in the lap joint of curved panels removed from a retired aircraft. A Boeing 727-232 airplane owned and operated by Delta Air Lines, and retired at its design service goal, was selected for the study. Two panels removed from the left-hand side of the fuselage crown, near stringer 4L, were subjected to extended fatigue testing using the Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility located at the Federal Aviation Administration (FAA) William J. Hughes Technical Center. The state of MSD was continuously assessed using several nondestructive inspection (NDI) methods. Damage to the load attachment points of the first panel resulted in termination of the fatigue test at 43,500 fatigue cycles, before cracks had developed in the lap joint. The fatigue test for the second panel was initially conducted under simulated in-service loading conditions for 120,000 cycles, and no cracks were detected in the skin of the panel test section. Artificial damage was then introduced into the panel at selected rivets in the critical (lower) rivet row, and the fatigue loads were increased. Visually detectable crack growth from the artificial notches was first seen after 133,000 cycles. The resulting lead crack grew along the lower rivet row, eventually forming an 11.8" long unstable crack after 141,771 cycles, at which point the test was terminated. Posttest fractograpic examinations of the crack surfaces were conducted, revealing the presence of subsurface MSD at the critical rivet row of the lap joint. Special attention was also given to the stringer clips that attach the fuselage frames to the stringers, since they also experienced cracking during the fatigue tests. The performance of the different conventional and emerging NDI methods was also assessed, and some of the emerging NDI methods were quite effective in detecting and measuring the length of subsurface cracks. Delta Air Lines conducted a separate destructive investigation on the state of damage along the right-hand side of the fuselage, near stringer 4R. A comparison of these two studies showed that the lap joint on the left hand-side of the aircraft, along stringer 4L, had better fatigue life than the one on the opposite side, along stringer 4R. The cause of the difference in fatigue life was investigated by close examination of the rivet installation qualities, and was found to be a result of better rivet installation along the lap joint at stringer 4L. Finite element models for both the skin and substructures of the panels were developed and geometrically nonlinear finite element analyses were conducted to verify the loading conditions and to determine near-field parameters governing MSD initiation and growth. Fatigue crack growth predictions based on the NASGRO equation were in good agreement with the experimental crack growth data for through-the-thickness cracks. For subsurface cracks, simulation of crack growth was found to correlate better with fractography data when an empirical crack growth model was used. The results of the study contribute to the understanding of the initiation and growth of MSD in the inner skin layer of a lap joint, and provide valuable data for the evaluation and validation of analytical methodologies to predict MSD initiation and growth and a better understanding on the effect of manufacturing quality on damage accumulation along the lap joint.
An evaluation of the pressure proof test concept for 2024-T3 aluminium alloy sheet
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Poe, C. C., Jr.; Newman, J. C.; Harris, C. E.
1991-01-01
The concept of pressure proof testing of fuselage structures with fatigue cracks to insure structural integrity was evaluated from a fracture mechanics viewpoint. A generic analytical and experimental investigation was conducted on uniaxially loaded flat panels with crack configurations and stress levels typical of longitudinal lap splice joints in commercial transport aircraft fuselages. The results revealed that the remaining fatigue life after a proof cycle was longer than that without the proof cycle because of crack growth retardation due to increased crack closure. However, based on a crack length that is slightly less than the critical value at the maximum proof stress, the minimum assured life or proof test interval must be no more than 550 pressure cycles for a 1.33 proof factor and 1530 pressure cycles for a 1.5 proof factor to prevent in-flight failures.
CRACK GROWTH RESPONSE OF ALLOY 690 IN SIMULATED PWR PRIMARY WATER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toloczko, Mychailo B.; Bruemmer, Stephen M.
2009-12-01
The stress corrosion crack growth response of three extruded alloy 690 CRDM tube heats was investigated in several thermomechanical conditions. Extremely low propagation rates (< 1 x 10{sup -9} mm/s) were observed under constant stress intensity factor (K) loading at 325-350 C in the as-received, thermally treated (TT) materials despite using a variety of transitioning techniques. Post-test observation of the crack-growth surfaces revealed only isolated intergranular (IG) cracking. One-dimensional cold rolling to 17% reduction and testing in the S-L orientation did not promote enhanced stress corrosion rates. However, somewhat higher propagation rates were observed in a 30% cold-rolled alloy 690TTmore » specimen tested in the T-L orientation. Cracking of the cold-rolled material was promoted on grain boundaries oriented parallel to the rolling plane with the % IG increasing with the amount of cold rolling.« less
... a hiccup is a quick closing of your vocal cords. This is what causes the "hic" sound ... or excited A bloated stomach Certain medicines Abdominal surgery Metabolic disorders Central nervous system disorders Hiccups usually ...
Testing and analysis of flat and curved panels with multiple cracks
DOT National Transportation Integrated Search
1994-08-01
An experimental and analytical investigation of multiple cracking in various types of test specimens is described in this paper. The testing phase is comprised of a flat unstiffened panel series and curved stiffened and unstiffened panel series. The ...
NASA Astrophysics Data System (ADS)
Kong, Xiangxiong; Li, Jian; Collins, William; Bennett, Caroline; Laflamme, Simon; Jo, Hongki
2017-04-01
A large-area electronics (LAE) strain sensor, termed soft elastomeric capacitor (SEC), has shown great promise in fatigue crack monitoring. The SEC is able to monitor strain changes over a mesoscale structural surface and endure large deformations without being damaged under cracking. Previous tests verified that the SEC is able to detect, localize, and monitor fatigue crack activities under low-cycle fatigue loading. In this paper, to examine the SEC's capability of monitoring high-cycle fatigue cracks, a compact specimen is tested under cyclic tension, designed to ensure realistic crack opening sizes representative of those in real steel bridges. To overcome the difficulty of low signal amplitude and relatively high noise level under high-cycle fatigue loading, a robust signal processing method is proposed to convert the measured capacitance time history from the SEC sensor to power spectral densities (PSD) in the frequency domain, such that signal's peak-to-peak amplitude can be extracted at the dominant loading frequency. A crack damage indicator is proposed as the ratio between the square root of the amplitude of PSD and load range. Results show that the crack damage indicator offers consistent indication of crack growth.
Spectrum Fatigue of 7075-T651 Aluminum Alloy under Overloading and Underloading
2016-03-15
underload, stress ratio, and environment on fatigue crack growth. Fatigue crack growth tests were conducted with a 7075-T651 aluminum alloy under constant...the UniGrow equation, the variation of crack length with number of loading cycle was predicted. The prediction and the fatigue test life were found to...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18 REPORT NO. NAWCADPAX/TIM-2015/282 ii SUMMARY Fatigue tests of 7075-T651
Crack growth through the thickness of thin-sheet Hydrided Zircaloy-4
NASA Astrophysics Data System (ADS)
Raynaud, Patrick A. C.
In recent years, the limits on fuel burnup have been increased to allow an increase in the amount of energy produced by a nuclear fuel assembly thus reducing waste volume and allowing greater capacity factors. As a result, it is paramount to ensure safety after longer reactor exposure times in the case of design-basis accidents, such as reactivity-initiated accidents (RIA). Previously proposed failure criteria do not directly address the particular cladding failure mechanism during a RIA, in which crack initiation in brittle outer-layers is immediately followed by crack growth through the thickness of the thin-wall tubing. In such a case, the fracture toughness of hydrided thin-wall cladding material must be known for the conditions of through-thickness crack growth in order to predict the failure of high-burnup cladding. The fracture toughness of hydrided Zircaloy-4 in the form of thin-sheet has been examined for the condition of through-thickness crack growth as a function of hydride content and distribution at 25°C, 300°C, and 375°C. To achieve this goal, an experimental procedure was developed in which a linear hydride blister formed across the width of a four-point bend specimen was used to inject a sharp crack that was subsequently extended by fatigue pre-cracking. The electrical potential drop method was used to monitor the crack length during fracture toughness testing, thus allowing for correlation of the load-displacement record with the crack length. Elastic-plastic fracture mechanics were used to interpret the experimental test results in terms of fracture toughness, and J-R crack growth resistance curves were generated. Finite element modeling was performed to adapt the classic theories of fracture mechanics applicable to thick-plate specimens to the case of through-thickness crack growth in thin-sheet materials, and to account for non-uniform crack fronts. Finally, the hydride microstructure was characterized in the vicinity of the crack tip by means of digital image processing, so as to understand the influence of the hydride microstructure on fracture toughness, at the various test temperatures. Crack growth occurred through a microstructure which varied within the thickness of the thin-sheet Zircaloy-4 such that the hydrogen concentration and the radial hydride content decreased with increasing distance from the hydride blister. At 25°C, the fracture toughness was sensitive to the changes in hydride microstructure, such that the toughness KJi decreased from 39 MPa√m to 24 MPa√m with increasing hydrogen content and increasing the fraction of radial hydrides. The hydride particles present in the Zircaloy-4 substrate fractured ahead of the crack tip, and crack growth occurred by linking the crack-tip with the next hydride-induced primary void ahead of it. Unstable crack growth was observed at 25°C prior to any stable crack growth in the specimens where the hydrogen content was the highest. At 375°C as well as in most cases at 300°C, the hydride particles were resistant to cracking and the resistance to crack-growth initiation was very high. As a result, for this bend test procedure, crack extension was solely due to crack-tip blunting instead of crack growth in all tests at 375°C and in most cases at 300°C. The lower bound for fracture toughness at these temperatures, the parameter KJPmax, had values of K JPmax˜54MPa√m at both 300°C and 375°C. For cases where stable crack growth occurred at 300°C, the fracture toughness was K Ji˜58MPa√m and the tearing modulus was twice as high as that at 25°C. It is believed that the failure of hydrided Zircaloy-4 thin-wall cladding can be predicted using fracture mechanics analyses when failure occurs by crack growth. This failure mechanism was observed to occur in all cases at 25°C and in some cases at 300°C. However, at more elevated temperatures, such as 375°C, failure will likely occur by a mechanism other than crack growth, possibly by an imperfection-induced shear instability.
Analysis of small crack behavior for airframe applications
NASA Technical Reports Server (NTRS)
Mcclung, R. C.; Chan, K. S.; Hudak, S. J., Jr.; Davidson, D. L.
1994-01-01
The small fatigue crack problem is critically reviewed from the perspective of airframe applications. Different types of small cracks-microstructural, mechanical, and chemical-are carefully defined and relevant mechanisms identified. Appropriate analysis techniques, including both rigorous scientific and practical engineering treatments, are briefly described. Important materials data issues are addressed, including increased scatter in small crack data and recommended small crack test methods. Key problems requiring further study are highlighted.
NASA Astrophysics Data System (ADS)
Yang, Bing; Liao, Zhen; Qin, Yahang; Wu, Yayun; Liang, Sai; Xiao, Shoune; Yang, Guangwu; Zhu, Tao
2017-05-01
To describe the complicated nonlinear process of the fatigue short crack evolution behavior, especially the change of the crack propagation rate, two different calculation methods are applied. The dominant effective short fatigue crack propagation rates are calculated based on the replica fatigue short crack test with nine smooth funnel-shaped specimens and the observation of the replica films according to the effective short fatigue cracks principle. Due to the fast decay and the nonlinear approximation ability of wavelet analysis, the self-learning ability of neural network, and the macroscopic searching and global optimization of genetic algorithm, the genetic wavelet neural network can reflect the implicit complex nonlinear relationship when considering multi-influencing factors synthetically. The effective short fatigue cracks and the dominant effective short fatigue crack are simulated and compared by the Genetic Wavelet Neural Network. The simulation results show that Genetic Wavelet Neural Network is a rational and available method for studying the evolution behavior of fatigue short crack propagation rate. Meanwhile, a traditional data fitting method for a short crack growth model is also utilized for fitting the test data. It is reasonable and applicable for predicting the growth rate. Finally, the reason for the difference between the prediction effects by these two methods is interpreted.
Crack closure, a literature study
NASA Astrophysics Data System (ADS)
Holmgren, M.
1993-08-01
In this report crack closure is treated. The state of the art is reviewed. Different empirical formulas for determining the crack closure are compared with each other, and their benefits are discussed. Experimental techniques for determining the crack closure stress are discussed, and some results from fatigue tests are also reported. Experimental data from the literature are reported.
NASA Technical Reports Server (NTRS)
Hudson, C. M.; Lewis, P. E.
1979-01-01
A round-robin study was conducted which evaluated and compared different methods currently in practice for predicting crack growth in surface-cracked specimens. This report describes the prediction methods used by the Fracture Mechanics Engineering Section, at NASA-Langley Research Center, and presents a comparison between predicted crack growth and crack growth observed in laboratory experiments. For tests at higher stress levels, the correlation between predicted and experimentally determined crack growth was generally quite good. For tests at lower stress levels, the predicted number of cycles to reach a given crack length was consistently higher than the experimentally determined number of cycles. This consistent overestimation of the number of cycles could have resulted from a lack of definition of crack-growth data at low values of the stress intensity range. Generally, the predicted critical flaw sizes were smaller than the experimentally determined critical flaw sizes. This underestimation probably resulted from using plane-strain fracture toughness values to predict failure rather than the more appropriate values based on maximum load.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chopra, O. K.; Chung, H. M.; Gruber, E. E.
This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors from July 1998 to December 1998. Topics that have been investigated include (a) environmental effects on fatigue S-N behavior of primary pressure boundary materials, (b) irradiation-assisted stress corrosion cracking of austenitic stainless steels (SSs), and (c) EAC of Alloys 600 and 690. Fatigue tests have been conducted to determine the crack initiation and crack growth characteristics of austenitic SSs in LWR environments. Procedures are presented for incorporating the effects of reactor coolant environments on the fatigue life of pressure vesselmore » and piping steels. Slow-strain-rate tensile tests and posttest fractographic analyses were conducted on several model SS alloys irradiated to {approx}0.3 and 0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) in helium at 289 C in the Halden reactor. The results have been used to determine the influence of alloying and impurity elements on the susceptibility of these steels to irradiation-assisted stress corrosion cracking. Fracture toughness J-R curve tests were also conducted on two heats of Type 304 SS that were irradiated to {approx}0.3 x 10{sup 21} n {center_dot} cm{sup -2} in the Halden reactor. Crack-growth-rate tests have been conducted on compact-tension specimens of Alloys 600 and 690 under constant load to evaluate the resistance of these alloys to stress corrosion cracking in LWR environments.« less
Natural Crack Sizing Based on Eddy Current Image and Electromagnetic Field Analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endo, H.; Uchimoto, T.; Takagi, T.
2006-03-06
An eddy current testing (ECT) system with multi-coil type probes is applied to size up cracks fabricated on austenite stainless plates. We have developed muti-channel ECT system to produce data as digital images. The probes consist of transmit-receive type sensors as elements to classify crack directions, working as two scan direction modes simultaneously. Template matching applied to the ECT images determines regions of interest in sizing up cracks. Finite element based inversion sizes up the crack depth from the measured ECT signal. The present paper demonstrates this approach for fatigue crack and stress corrosion cracking.
Controlled crack shapes for indentation fracture of soda-lime glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, S.M.; Scattergood, R.O.
1992-01-01
Radial cracks for indented soda-lime glass aged in distilled water were highly elliptical because of truncation by lateral cracks. Indentation in silicone oil minimized radial/lateral crack interaction but still produced cracks having nominally constant ellipticity during bend testing. Analysis of applied stress/indentation crack length data using stress intensity factors based on half-penny crack shape resulted in apparent R-curve behavior and/or overestimation of the fracture toughness. Incorporation of elliptical shape factors eliminated the R-curve behavior and reduced measured toughness to near the accepted value for soda-lime glass.
On fractography of shallow and deep HY-100 cracked bend specimens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, D.W.; Zarzour, J.F.; Kleinosky, M.J.
1994-12-01
The influence of shallow cracks on the fracture behavior of structural components has been studied extensively in recent years. Finite element analyses have indicated dramatic differences in the crack-tip stress states between shallow and deep cracked bend specimens. In this study, an experimental program was carried out to investigate the fracture behavior of HY-100 steel containing various initial flaw depths. Four a/w ratios ranging from 0.05 to 0.5 were chosen for the notched three-point bend tests. Test results showed that higher fracture toughness values are associated with specimens having shorter surface cracks. Also, fractographic studies indicated that two sets ofmore » dimples are present for a/w = 0.5 specimen, one set of equiaxed dimple for a/w = 0.05 specimen near the crack initiation zone. As the crack grows, increase in the volume fraction of the small dimple were observed. Finally, it showed that the characteristic features of the fracture surfaces can be correlated with the previous numerical predictions.« less
NASA Technical Reports Server (NTRS)
Obrien, T. Kevin; Hooper, S. J.
1991-01-01
Quasi-static tension tests were conducted on AS4/3501-6 graphite epoxy laminates. Dye penetrant enhanced x-radiography was used to document the onset of matrix cracking and the onset of local delaminations at the intersection of the matrix cracks and the free edge. Edge micrographs taken after the onset of damage were used to verify the location of the matrix cracks and local delamination through the laminate thickness. A quasi-3D finite element analysis was conducted to calculate the stresses responsible for matrix cracking in the off-axis plies. Laminated plate theory indicated that the transverse normal stresses were compressive. However, the finite element analysis yielded tensile transverse normal stresses near the free edge. Matrix cracks formed in the off-axis plies near the free edge where in-plane transverse stresses were tensile and had their greatest magnitude. The influence of the matrix crack on interlaminar stresses is also discussed.
Fatigue, Creep-Fatigue, and Thermomechanical Fatigue Life Testing of Alloys
NASA Technical Reports Server (NTRS)
Halford, Gary R.; Lerch, Bradley A.; McGaw, Michael A.
2000-01-01
The fatigue crack initiation resistance of an alloy is determined by conducting a series of tests over a range of values of stress amplitude or strain range. The observed number of cycles to failure is plotted against the stress amplitude or strain range to obtain a fatigue curve. The fatigue properties quoted for an alloy are typically the constants used in the equation(s) that describe the fatigue curve. Fatigue lives of interest may be as low as 10(exp 2) or higher than 10(exp 9) cycles. Because of the enormous scatter associated with fatigue, dozens of tests may be needed to confidently establish a fatigue curve, and the cost may run into several thousands of dollars. To further establish the effects on fatigue life of the test temperature, environment, alloy condition, mean stress effects, creep-fatigue effects, thermomechanical cycling, etc. requires an extraordinarily large and usually very costly test matrix. The total effort required to establish the fatigue resistance of an alloy should not be taken lightly. Fatigue crack initiation tests are conducted on relatively small and presumed to be initially crack-free, samples of an alloy that are intended to be representative of the alloy's metallurgical and physical condition. Generally, samples are smooth and have uniformly polished surfaces within the test section. Some may have intentionally machined notches of well-controlled geometry, but the surface at the root of the notch is usually not polished. The purpose of polishing is to attain a reproducible surface finish. This is to eliminate surface finish as an uncontrolled variable. Representative test specimen geometries will be discussed later. Test specimens are cyclically loaded until macroscopically observable cracks initiate and eventually grow to failure. Normally, the fatigue failure life of a specimen is defined as the number of cycles to separation of the specimen into two pieces. Alternative definitions are becoming more common, particularly for low-cycle fatigue testing, wherein some prescribed indication of impending failure due to cracking is adopted. Specific criteria will be described later. As a rule, cracks that develop during testing are not measured nor are the test parameters intentionally altered owing to the presence of cracking.
NASA Technical Reports Server (NTRS)
Reuter, Walter G. (Editor); Underwood, John H. (Editor); Newman, James C., Jr. (Editor)
1990-01-01
The present volume on surface-crack growth modeling, experimental methods, and structures, discusses elastoplastic behavior, the fracture analysis of three-dimensional bodies with surface cracks, optical measurements of free-surface effects on natural surfaces and through cracks, an optical and finite-element investigation of a plastically deformed surface flaw under tension, fracture behavior prediction for rapidly loaded surface-cracked specimens, and surface cracks in thick laminated fiber composite plates. Also discussed are a novel study procedure for crack initiation and growth in thermal fatigue testing, the growth of surface cracks under fatigue and monotonically increasing load, the subcritical growth of a surface flaw, surface crack propagation in notched and unnotched rods, and theoretical and experimental analyses of surface cracks in weldments.
Al-Khudairi, Othman; Hadavinia, Homayoun; Little, Christian; Gillmore, Gavin; Greaves, Peter; Dyer, Kirsten
2017-10-03
In this paper, the sensitivity of the structural integrity of wind turbine blades to debonding of the shear web from the spar cap was investigated. In this regard, modal analysis, static and fatigue testing were performed on a 45.7 m blade for three states of the blade: (i) as received blade (ii) when a crack of 200 mm was introduced between the web and the spar cap and (iii) when the crack was extended to 1000 mm. Calibration pull-tests for all three states of the blade were performed to obtain the strain-bending moment relationship of the blade according to the estimated target bending moment (BM) which the blade is expected to experience in its service life. The resultant data was used to apply appropriate load in the fatigue tests. The blade natural frequencies in flapwise and edgewise directions over a range of frequency domain were found by modal testing for all three states of the blade. The blade first natural frequency for each state was used for the flapwise fatigue tests. These were performed in accordance with technical specification IEC TS 61400-23. The fatigue results showed that, for a 200 mm crack between the web and spar cap at 9 m from the blade root, the crack did not propagate at 50% of the target BM up to 62,110 cycles. However, when the load was increased to 70% of target BM, some damages were detected on the pressure side of the blade. When the 200 mm crack was extended to 1000 mm, the crack began to propagate when the applied load exceeded 100% of target BM and the blade experienced delaminations, adhesive joint failure, compression failure and sandwich core failure.
Al-Khudairi, Othman; Little, Christian; Gillmore, Gavin; Greaves, Peter; Dyer, Kirsten
2017-01-01
In this paper, the sensitivity of the structural integrity of wind turbine blades to debonding of the shear web from the spar cap was investigated. In this regard, modal analysis, static and fatigue testing were performed on a 45.7 m blade for three states of the blade: (i) as received blade (ii) when a crack of 200 mm was introduced between the web and the spar cap and (iii) when the crack was extended to 1000 mm. Calibration pull-tests for all three states of the blade were performed to obtain the strain-bending moment relationship of the blade according to the estimated target bending moment (BM) which the blade is expected to experience in its service life. The resultant data was used to apply appropriate load in the fatigue tests. The blade natural frequencies in flapwise and edgewise directions over a range of frequency domain were found by modal testing for all three states of the blade. The blade first natural frequency for each state was used for the flapwise fatigue tests. These were performed in accordance with technical specification IEC TS 61400-23. The fatigue results showed that, for a 200 mm crack between the web and spar cap at 9 m from the blade root, the crack did not propagate at 50% of the target BM up to 62,110 cycles. However, when the load was increased to 70% of target BM, some damages were detected on the pressure side of the blade. When the 200 mm crack was extended to 1000 mm, the crack began to propagate when the applied load exceeded 100% of target BM and the blade experienced delaminations, adhesive joint failure, compression failure and sandwich core failure. PMID:28972548
The detection of fatigue cracks by nondestructive testing methods
NASA Technical Reports Server (NTRS)
Rummel, W. D.; Todd, P. H., Jr.; Frecska, S. A.; Rathke, R. A.
1974-01-01
X-radiographic penetrant, ultrasonic, eddy current, holographic, and acoustic emission techniques were optimized and applied to the evaluation of 2219-T87 aluminum alloy test specimens. One hundred eighteen specimens containing a total of 328 fatigue cracks were evaluated. The cracks ranged in length from 0.500 inch (1.27 cm) to 0.007 inch (0.018 cm) and in depth from 0.178 inch (0.451 cm) and 0.001 inch (0.003 cm). Specimen thicknesses were nominally 0.060 inch (0.152 cm) and 0.210 inch (0.532 cm) and surface finishes were nominally 32 and 125 rms and 64 and 200 rms respectively. Specimens were evaluated in the as-milled surface condition, in the chemically milled surface condition and, after proof loading, in a randomized inspection sequence. Results of the nondestructive test (NDT) evaluations were compared with actual crack size obtained by measurement of the fractured specimens. Inspection data was then analyzed to provide a statistical basis for determinating the threshold crack detection sensitivity (the largest crack size that would be missed) for each of the inspection techniques at a 95% probability and 95% confidence level.
NASA Astrophysics Data System (ADS)
Auzoux, Q.; Allais, L.; Caës, C.; Monnet, I.; Gourgues, A. F.; Pineau, A.
2010-05-01
Microstructural modifications induced by welding of 316 stainless steels and their effect on creep properties and relaxation crack propagation were examined. Cumulative strain due to multi-pass welding hardens the materials by increasing the dislocation density. Creep tests were conducted on three plates from different grades of 316 steel at 600 °C, with various carbon and nitrogen contents. These plates were tested both in the annealed condition and after warm rolling, which introduced pre-strain. It was found that the creep strain rate and ductility after warm rolling was reduced compared with the annealed condition. Moreover, all steels exhibited intergranular crack propagation during relaxation tests on Compact Tension specimens in the pre-strained state, but not in the annealed state. These results confirmed that the reheat cracking risk increases with both residual stress triaxiality and pre-strain. On the contrary, high solute content and strain-induced carbide precipitation, which are thought to increase reheat cracking risk of stabilised austenitic stainless steels did not appear as key parameters in reheat cracking of 316 stainless steels.
Crack Growth Simulation and Residual Strength Prediction in Airplane Fuselages
NASA Technical Reports Server (NTRS)
Chen, Chuin-Shan; Wawrzynek, Paul A.; Ingraffea, Anthony R.
1999-01-01
This is the final report for the NASA funded project entitled "Crack Growth Prediction Methodology for Multi-Site Damage." The primary objective of the project was to create a capability to simulate curvilinear fatigue crack growth and ductile tearing in aircraft fuselages subjected to widespread fatigue damage. The second objective was to validate the capability by way of comparisons to experimental results. Both objectives have been achieved and the results are detailed herein. In the first part of the report, the crack tip opening angle (CTOA) fracture criterion, obtained and correlated from coupon tests to predict fracture behavior and residual strength of built-up aircraft fuselages, is discussed. Geometrically nonlinear, elastic-plastic, thin shell finite element analyses are used to simulate stable crack growth and to predict residual strength. Both measured and predicted results of laboratory flat panel tests and full-scale fuselage panel tests show substantial reduction of residual strength due to the occurrence of multi-site damage (MSD). Detailed comparisons of n stable crack growth history, and residual strength between the predicted and experimental results are used to assess the validity of the analysis methodology. In the second part of the report, issues related to crack trajectory prediction in thin shells; an evolving methodology uses the crack turning phenomenon to improve the structural integrity of aircraft structures are discussed, A directional criterion is developed based on the maximum tangential stress theory, but taking into account the effect of T-stress and fracture toughness orthotropy. Possible extensions of the current crack growth directional criterion to handle geometrically and materially nonlinear problems are discussed. The path independent contour integral method for T-stress evaluation is derived and its accuracy is assessed using a p- and hp-version adaptive finite element method. Curvilinear crack growth is simulated in coupon tests and in full-scale fuselage panel tests. Both T-stress and fracture toughness orthotropy are found to be essential to predict the observed crack paths. The analysis methodology and software program (FRANC3D/STAGS) developed herein allows engineers to maintain aging aircraft economically while insuring continuous airworthiness. Consequently, it will improve the technology to support the safe operation of the current aircraft fleet as well as the design of more damage-tolerant aircraft for the next generation fleet.
Predictive Computational Modeling of Chromatin Folding
NASA Astrophysics Data System (ADS)
di Pierro, Miichele; Zhang, Bin; Wolynes, Peter J.; Onuchic, Jose N.
In vivo, the human genome folds into well-determined and conserved three-dimensional structures. The mechanism driving the folding process remains unknown. We report a theoretical model (MiChroM) for chromatin derived by using the maximum entropy principle. The proposed model allows Molecular Dynamics simulations of the genome using as input the classification of loci into chromatin types and the presence of binding sites of loop forming protein CTCF. The model was trained to reproduce the Hi-C map of chromosome 10 of human lymphoblastoid cells. With no additional tuning the model was able to predict accurately the Hi-C maps of chromosomes 1-22 for the same cell line. Simulations show unknotted chromosomes, phase separation of chromatin types and a preference of chromatin of type A to sit at the periphery of the chromosomes.
Environmentally assisted cracking in light water reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chopra, O. K.; Chung, H. M.; Clark, R. W.
2007-11-06
This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from January to December 2002. Topics that have been investigated include: (a) environmental effects on fatigue crack initiation in carbon and low-alloy steels and austenitic stainless steels (SSs), (b) irradiation-assisted stress corrosion cracking (IASCC) of austenitic SSs in BWRs, (c) evaluation of causes and mechanisms of irradiation-assisted cracking of austenitic SS in PWRs, and (d) cracking in Ni-alloys and welds. A critical review of the ASME Code fatigue design margins and an assessment of the conservation in the currentmore » choice of design margins are presented. The existing fatigue {var_epsilon}-N data have been evaluated to define the effects of key material, loading, and environmental parameters on the fatigue lives of carbon and low-alloy steels and austenitic SSs. Experimental data are presented on the effects of surface roughness on fatigue crack initiation in these materials in air and LWR environments. Crack growth tests were performed in BWR environments on SSs irradiated to 0.9 and 2.0 x 10{sup 21} n x cm{sup -2}. The crack growth rates (CGRs) of the irradiated steels are a factor of {approx}5 higher than the disposition curve proposed in NUREG-0313 for thermally sensitized materials. The CGRs decreased by an order of magnitude in low-dissolved oxygen (DO) environments. Slow-strain-rate tensile (SSRT) tests were conducted in high-purity 289 C water on steels irradiated to {approx}3 dpa. The bulk S content correlated well with the susceptibility to intergranular SCC in 289 C water. The IASCC susceptibility of SSs that contain >0.003 wt. % S increased drastically. bend tests in inert environments at 23 C were conducted on broken pieces of SSRT specimens and on unirradiated specimens of the same materials after hydrogen charging. The results of the tests and a review of other data in the literature indicate that IASCC in 289 C water is dominated by a crack-tip grain-boundary process that involves S. An initial IASCC model has been proposed. A crack growth test was completed on mill annealed Alloy 600 in high-purity water at 289 C and 320 C under various environmental and loading conditions. The results from this test are compared with data obtained earlier on several other heats of Alloy 600.« less
Fractography of a bis-GMA resin.
Davis, D M; Waters, N E
1989-07-01
The fracture behavior of a bis-GMA resin was studied by means of the double-torsion test. The fracture parameter measured was the stress-intensity factor. Fracture occurred in either a stick-slip (unstable) or continuous (stable) manner, depending upon the test conditions. When stick-slip propagation occurred, the fracture surfaces showed characteristic crack-arrest lines. The fracture surfaces were examined by use of a reflected-light optical microscope. The stress-intensity factor for crack initiation was found to be related to the size of the crack-arrest line which, in turn, could be related to the Dugdale model for plastic zone size. The evidence supported the concept that the behavior of the crack during propagation was controlled by the amount of plastic deformation occurring at the crack tip.
Material Characterization for the Analysis of Skin/Stiffener Separation
NASA Technical Reports Server (NTRS)
Davila, Carlos G.; Leone, Frank A.; Song, Kyongchan; Ratcliffe, James G.; Rose, Cheryl A.
2017-01-01
Test results show that separation failure in co-cured skin/stiffener interfaces is characterized by dense networks of interacting cracks and crack path migrations that are not present in standard characterization tests for delamination. These crack networks result in measurable large-scale and sub-ply-scale R curve toughening mechanisms, such as fiber bridging, crack migration, and crack delving. Consequently, a number of unknown issues exist regarding the level of analysis detail that is required for sufficient predictive fidelity. The objective of the present paper is to examine some of the difficulties associated with modeling separation failure in stiffened composite structures. A procedure to characterize the interfacial material properties is proposed and the use of simplified models based on empirical interface properties is evaluated.
An investigation of reheat cracking in the weld heat affected zone of type 347 stainless steel
NASA Astrophysics Data System (ADS)
Phung-On, Isaratat
2007-12-01
Reheat cracking has been a persistent problem for welding of many alloys such as the stabilized stainless steels: Types 321 and 347 as well as Cr-Mo-V steels. Similar problem occurs in Ni-base superalloys termed "strain-age cracking". Cracking occurs during the post weld heat treatment. The HAZ is the most susceptible area due to metallurgical reactions in solid state during both heating and cooling thermal cycle. Many investigations have been conducted to understand the RHC mechanism. There is still no comprehensive mechanism to explain its underlying mechanism. In this study, there were two proposed cracking mechanisms. The first is the formation of a PFZ resulting in local weakening and strain localization. The second is the creep-like grain boundary sliding that causes microvoid formation at the grain boundaries and the triple point junctions. Cracking occurs due to the coalescence of the microvoids that form. In this study, stabilized grade stainless steel, Type 347, was selected for investigation of reheat cracking mechanism due to the simplicity of its microstructure and understanding of its metallurgical behavior. The Gleeble(TM) 3800 system was employed due to its capability for precise control of both thermal and mechanical simulation. Cylindrical samples were subjected to thermal cycles for the HAZ simulation followed by PWHT as the reheat cracking test. "Susceptibility C-curves" were plotted as a function of PWHT temperatures and time to failure at applied stress levels of 70% and 80% yield strength. These C-curves show the possible relationship of the reheat cracking susceptibility and carbide precipitation behavior. To identify the mechanism, the sample shape was modified containing two flat surfaces at the center section. These flat surfaces were electro-polished and subjected to the HAZ simulation followed by the placement of the micro-indentation arrays. Then, the reheat cracking test was performed. The cracking mechanism was identified by tracing the shifting of the micro-indentations compared to their original locations. At the 80% stress level, the cracking mechanism was identified as the PFZ weakening, while at the 70% stress as the creep-like grain boundary sliding. A design of experiment (DOE) using a D-optimal design was successfully employed in this study to investigate the effects of microstructures on the reheat cracking susceptibility. The microstructures were modified by heat treatment prior to the reheat cracking test. The grain size and cooling rate were found to have moderate effects on cracking susceptibility. The amount (volume fraction) of MC carbide (NbC) had a significant effect on time to failure. The more NbC formed prior to test, the longer time to failure, and the more resistance to reheat cracking. On the other hand, the amount of GB carbide (M23C6) had an insignificant effect. The statistical interaction between MC carbide with other testing parameters also had strong effect. The PWHT temperature also had significant effect as can be predicted from the susceptibility C-curves. The heat treatment schedules, during cooling and during heating schedules, were also investigated. During cooling schedule was the same schedule done earlier in this study. On the other hand, during heating schedule allowed the sample cool to room temperature prior microstructure modification followed by the reheat cracking test. During heating schedule showed an improvement in resistance to reheat cracking. Microstructure of the crack samples showed the intergranular cracking path and wedge shapes along cracking boundaries. There was also the evidence of grain boundary sliding as a result of the creep-like grain boundary sliding cracking mechanism. SEM showed the intergranular cracking and grain separation with precipitates decorated on the fracture surfaces. The precipitates were identified as Nb-rich, MC carbide (NbC). The fracture surfaces showed micro-ductility and microvoid coalescence. The size of microvoid corresponds to the size of precipitate that forms. In addition, there was intragranular cracking in some location indicating that another failure mechanism may also be possible. It was believed that failure may occur along a precipitate free zone. However, the distinct PFZ could not be detected. A SS-DTA technique was also implemented in order to determine precipitation temperatures of the material. The results showed the possible precipitation temperatures in the range of 850°C to 650°C. However, the results were not confidently reliable due to the small amount of carbide formed that affects the sensitivity of the SS-DTA. A simple grain boundary sliding model was generated proposing that the sliding is operated by the shear stress resulting from the formation of precipitate in the grain interior. Then, the sliding results in the microvoid formation and coalescence followed by cracking. In addition, a simple finite element model was generated to provide the illustration of the shear stress built up by the formation of precipitate. The model showed that shear stress can cause the grain boundary movement/sliding. Based on the results from this study, the recommendation for the selection of post weld heat treatment schedule as well as welding procedures can be determined for the prevention of the reheat cracking. A residual stress should be kept below the critical value during welding and post weld heat treating. The testing procedures used in this study can be applied as the guidelines to conduct the reheat cracking susceptibility test for material selection.
Distribution of Inclusion-Initiated Fatigue Cracking in Powder Metallurgy Udimet 720 Characterized
NASA Technical Reports Server (NTRS)
Bonacuse, Peter J.; Kantzos, Pete T.; Barrie, Robert; Telesman, Jack; Ghosn, Louis J.; Gabb, Timothy P.
2004-01-01
In the absence of extrinsic surface damage, the fatigue life of metals is often dictated by the distribution of intrinsic defects. In powder metallurgy (PM) alloys, relatively large defects occur rarely enough that a typical characterization with a limited number of small volume fatigue test specimens will not adequately sample inclusion-initiated damage. Counterintuitively, inclusion-initiated failure has a greater impact on the distribution in PM alloy fatigue lives because they tend to have fewer defects than their cast and wrought counterparts. Although the relative paucity of defects in PM alloys leads to higher mean fatigue lives, the distribution in observed lives tends to be broader. In order to study this important failure initiation mechanism without expending an inordinate number of specimens, a study was undertaken at the NASA Glenn Research Center where known populations of artificial inclusions (seeds) were introduced to production powder. Fatigue specimens were machined from forgings produced from the seeded powder. Considerable effort has been expended in characterizing the crack growth rate from inclusion-initiated cracks in seeded PM alloys. A rotating and translating positioning system, with associated software, was devised to map the surface inclusions in low-cycle fatigue (LCF) test bars and to monitor the crack growth from these inclusions. The preceding graph illustrates the measured extension in fatigue cracks from inclusions on a seeded LCF test bar subjected to cyclic loading at a strain range of 0.8 percent and a strain ratio (max/min) of zero. Notice that the observed inclusions fall into three categories: some do not propagate at all (arrest), some propagate with a decreasing crack growth rate, and a few propagate at increasing rates that can be modeled by fracture mechanics. The following graph shows the measured inclusion-initiated crack growth rates from 10 interrupted LCF tests plotted against stress intensities calculated for semi-elliptical cracks with the observed surface lengths. The expected scatter in the crack growth rates for stress intensity ranges near threshold is observed. These data will be used to help determine the distribution in growth rates of cracks emanating from inclusions as well as the proportion of cracks that arrest under various loading conditions.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Salem, Jonathan A.
1998-01-01
The service life of structural ceramic components is often limited by the process of slow crack growth. Therefore, it is important to develop an appropriate testing methodology for accurately determining the slow crack growth design parameters necessary for component life prediction. In addition, an appropriate test methodology can be used to determine the influences of component processing variables and composition on the slow crack growth and strength behavior of newly developed materials, thus allowing the component process to be tailored and optimized to specific needs. At the NASA Lewis Research Center, work to develop a standard test method to determine the slow crack growth parameters of advanced ceramics was initiated by the authors in early 1994 in the C 28 (Advanced Ceramics) committee of the American Society for Testing and Materials (ASTM). After about 2 years of required balloting, the draft written by the authors was approved and established as a new ASTM test standard: ASTM C 1368-97, Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress-Rate Flexural Testing at Ambient Temperature. Briefly, the test method uses constant stress-rate testing to determine strengths as a function of stress rate at ambient temperature. Strengths are measured in a routine manner at four or more stress rates by applying constant displacement or loading rates. The slow crack growth parameters required for design are then estimated from a relationship between strength and stress rate. This new standard will be published in the Annual Book of ASTM Standards, Vol. 15.01, in 1998. Currently, a companion draft ASTM standard for determination of the slow crack growth parameters of advanced ceramics at elevated temperatures is being prepared by the authors and will be presented to the committee by the middle of 1998. Consequently, Lewis will maintain an active leadership role in advanced ceramics standardization within ASTM. In addition, the authors have been and are involved with several international standardization organizations including the Versailles Project on Advanced Materials and Standards (VAMAS), the International Energy Agency (IEA), and the International Organization for Standardization (ISO). The associated standardization activities involve fracture toughness, strength, elastic modulus, and the machining of advanced ceramics.
Comparison of two computer codes for crack growth analysis: NASCRAC Versus NASA/FLAGRO
NASA Technical Reports Server (NTRS)
Stallworth, R.; Meyers, C. A.; Stinson, H. C.
1989-01-01
Results are presented from the comparison study of two computer codes for crack growth analysis - NASCRAC and NASA/FLAGRO. The two computer codes gave compatible conservative results when the part through crack analysis solutions were analyzed versus experimental test data. Results showed good correlation between the codes for the through crack at a lug solution. For the through crack at a lug solution, NASA/FLAGRO gave the most conservative results.
Time-dependent crack growth behavior of alloy 617 and alloy 230 at elevated temperatures
NASA Astrophysics Data System (ADS)
Roy, Shawoon Kumar
2011-12-01
Two Ni-base solid-solution-strengthened superalloys: INCONEL 617 and HAYNES 230 were studied to check sustained loading crack growth (SLCG) behavior at elevated temperatures appropriate for Next Generation Nuclear Plant (NGNP) applictaions with constant stress intensity factor (Kmax= 27.75 MPa✓m) in air. The results indicate a time-dependent rate controlling process which can be characterized by a linear elastic fracture mechanics (LEFM) parameter -- stress intensity factor (K). At elevated temperatures, the crack growth mechanism was best described using a damage zone concept. Based on results and study, SAGBOE (stress accelerated grain boundary oxidation embrittlement) is considered the primary reason for time-dependent SLCG. A thermodynamic equation was considered to correlate all the SLCG results to determine the thermal activation energy in the process. A phenomenological model based on a time-dependent factor was developed considering the previous researcher's time-dependent fatigue crack propagation (FCP) results and current SLCG results to relate cycle-dependent and time-dependent FCP for both alloys. Further study includes hold time (3+300s) fatigue testing and no hold (1s) fatigue testing with various load ratios (R) at 700°C with a Kmax of 27.75 MPa✓m. Study results suggest an interesting point: crack growth behavior is significantly affected with the change in R value in cycle-dependent process whereas in time-dependent process, change in R does not have any significant effect. Fractography study showed intergranular cracking mode for all time-dependent processes and transgranular cracking mode for cycle-dependent processes. In Alloy 230, SEM images display intergranular cracking with carbide particles, dense oxides and dimple mixed secondary cracks for time-dependent 3+300s FCP and SLCG test. In all cases, Alloy 230 shows better crack growth resistance compared to Alloy 617.
Caustic stress corrosion tests for the LLTR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Indig, M.E.
1976-05-01
A series of tests have been performed in order to determine the effects of the caustic resulting from the Na/H/sub 2/O reaction on the materials used in the LLTR-MSG series of testing. Stainless steel, 2 /sup 1///sub 4/ Cr--1 Mo and carbon steel have been evaluated. Stress corrosion cracking susceptibility and general corrosion are reported. Over the range of temperature, caustic concentration and heating rate tested the stainless steel stressed to 90% of yield or above suffered cracking. Whereas, the 2-/sup 1///sub 4/ Cr--1 Mo and carbon steel were not cracked.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogt, H.; Speidel, M.O.
1996-12-01
The effect of temperature on stress corrosion crack growth rates was studied using four commercial alloys: an Al-Mg-Zn alloy (7000-Series), an Al-Cu alloy (2000-Series), a Mg-rare earth alloy and a Zr 2.5% Nb alloy. Stress Corrosion crack growth rate data were obtained using fracture mechanic specimens which were tested in high purity water in the temperature range of {minus}10 C to 320 C, depending on the alloy. Attention was directed towards region 2 behavior, where the crack propagation rate is independent of stress intensity but sensitive to test temperature. The experimental activation energies of the different alloys were compared withmore » literature on rate-controlling steps in order to identify the possible stress corrosion cracking mechanisms. The results were also compared with the activation energies obtained from general corrosion and hydrogen diffusion experiments.« less
Nonlinear ultrasonic fatigue crack detection using a single piezoelectric transducer
NASA Astrophysics Data System (ADS)
An, Yun-Kyu; Lee, Dong Jun
2016-04-01
This paper proposes a new nonlinear ultrasonic technique for fatigue crack detection using a single piezoelectric transducer (PZT). The proposed technique identifies a fatigue crack using linear (α) and nonlinear (β) parameters obtained from only a single PZT mounted on a target structure. Based on the different physical characteristics of α and β, a fatigue crack-induced feature is able to be effectively isolated from the inherent nonlinearity of a target structure and data acquisition system. The proposed technique requires much simpler test setup and less processing costs than the existing nonlinear ultrasonic techniques, but fast and powerful. To validate the proposed technique, a real fatigue crack is created in an aluminum plate, and then false positive and negative tests are carried out under varying temperature conditions. The experimental results reveal that the fatigue crack is successfully detected, and no positive false alarm is indicated.
Strain rate effects in stress corrosion cracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parkins, R.N.
Slow strain rate testing (SSRT) was initially developed as a rapid, ad hoc laboratory method for assessing the propensity for metals an environments to promote stress corrosion cracking. It is now clear, however, that there are good theoretical reasons why strain rate, as opposed to stress per se, will often be the controlling parameter in determining whether or not cracks are nucleated and, if so, are propagated. The synergistic effects of the time dependence of corrosion-related reactions and microplastic strain provide the basis for mechanistic understanding of stress corrosion cracking in high-pressure pipelines and other structures. However, while this maymore » be readily comprehended in the context of laboratory slow strain tests, its extension to service situations may be less apparent. Laboratory work involving realistic stressing conditions, including low-frequency cyclic loading, shows that strain or creep rates give good correlation with thresholds for cracking and with crack growth kinetics.« less
Fracture Toughness of Thin Plates by the Double-Torsion Test Method
NASA Technical Reports Server (NTRS)
Salem, Jonathan A.; Radovic, Miladin; Lara-Curzio, Edgar; Nelson, George
2006-01-01
Double torsion testing can produce fracture toughness values without crack length measurement that are comparable to those measured via standardized techniques such as the chevron-notch, surface-crack-in-flexure and precracked beam if the appropriate geometry is employed, and the material does not exhibit increasing crack growth resistance. Results to date indicate that 8 < W/d < 80 and L/W > 2 are required if crack length is not considered in stress intensity calculations. At L/W = 2, the normalized crack length should be 0.35 < a/L < 0.65; whereas for L/W = 3, 0.2 < a/L < 0.75 is acceptable. In addition, the load-points need to roll to reduce friction. For an alumina exhibiting increasing crack growth resistance, values corresponding to the plateau of the R-curve were measured. For very thin plates (W/d > 80) nonlinear effects were encountered.
Evaluation of shrinkage and cracking in concrete of ring test by acoustic emission method
NASA Astrophysics Data System (ADS)
Watanabe, Takeshi; Hashimoto, Chikanori
2015-03-01
Drying shrinkage of concrete is one of the typical problems related to reduce durability and defilation of concrete structures. Lime stone, expansive additive and low-heat Portland cement are used to reduce drying shrinkage in Japan. Drying shrinkage is commonly evaluated by methods of measurement for length change of mortar and concrete. In these methods, there is detected strain due to drying shrinkage of free body, although visible cracking does not occur. In this study, the ring test was employed to detect strain and age cracking of concrete. The acoustic emission (AE) method was adopted to detect micro cracking due to shrinkage. It was recognized that in concrete using lime stone, expansive additive and low-heat Portland cement are effective to decrease drying shrinkage and visible cracking. Micro cracking due to shrinkage of this concrete was detected and evaluated by the AE method.
NASA Astrophysics Data System (ADS)
Hilyati, S.; Nizam, Z. M.; Zurisman, M. A. A.; Azhar, A. T. S.
2017-06-01
During the last two decades, reinforced concrete (RC) has been extensively used in most of the world as one of the common construction material due to its advantages and durability. However, RC structures exposed to marine environments are subjected to chloride attack. Chlorides from seawater penetrate into RC structures are not only causing severe corrosion problems but also affect the durability and serviceability of such structures. This paper investigates the influence of transverse reinforcement and spacing of reinforcing bars on concrete cover cracking of two-way RC slab specimens using accelerated corrosion tests. The experimental program involved the testing of four RC slab specimens and was generally designed to observe the crack width and the time of crack to propagate. An improved model for predicting the timing of crack propagation based on the experimental data was then developed.
NASA Technical Reports Server (NTRS)
Wheitner, Jeffrey A.; Houser, Donald R.
1994-01-01
The fatigue life of a gear tooth can be thought of as the sum of the number of cycles required to initiate a crack, N(sub i), plus the number of cycles required to propagate the crack to such a length that fracture occurs, N(sub p). The factors that govern crack initiation are thought to be related to localized stress or strain at a point, while propagation of a fatigue crack is a function of the crack tip parameters such as crack shape, stress state, and stress intensity factor. During a test there is no clear transition between initiation and propagation. The mechanisms of initiation and propagation are quite different and modeling them separately produces a higher degree of accuracy, but then the question that continually arises is 'what is a crack?' The total life prediction in a fracture mechanics model presently hinges on the assumption of an initial crack length, and this length can significantly affect the total life prediction. The size of the initial crack is generally taken to be in the range of 0.01 in. to 0.2 in. Several researchers have used various techniques to determine the beginning of the crack propagation stage. Barhorst showed the relationship between dynamic stiffness changes and crack propagation. Acoustic emissions, which are stress waves produced by the sudden movement of stressed materials, have also been successfully used to monitor the growth of cracks in tensile and fatigue specimens. The purpose of this research is to determine whether acoustic emissions can be used to define the beginning of crack propagation in a gear using a single-tooth bending fatigue test.
Crack classification in concrete beams using AE parameters
NASA Astrophysics Data System (ADS)
Bahari, N. A. A. S.; Shahidan, S.; Abdullah, S. R.; Ali, N.; Zuki, S. S. Mohd; Ibrahim, M. H. W.; Rahim, M. A.
2017-11-01
The acoustic emission (AE) technique is an effective tool for the evaluation of crack growth. The aim of this study is to evaluate crack classification in reinforced concrete beams using statistical analysis. AE has been applied for the early monitoring of reinforced concrete structures using AE parameters such as average frequency, rise time, amplitude counts and duration. This experimental study focuses on the utilisation of this method in evaluating reinforced concrete beams. Beam specimens measuring 150 mm × 250 mm × 1200 mm were tested using a three-point load flexural test using Universal Testing Machines (UTM) together with an AE monitoring system. The results indicated that RA value can be used to determine the relationship between tensile crack and shear movement in reinforced concrete beams.
Thermal Analysis in Support of the Booster Separation Motor Crack Investigation
NASA Technical Reports Server (NTRS)
Davis, Darrell; Prickett, Terry; Turner, Larry D. (Technical Monitor)
2001-01-01
During a post-test inspection of a Booster Separation Motor (BSM) from a Lot Acceptance Test (LAT), a crack was noticed in the graphite throat. Since this was an out-of-family occurrence, an investigation team was formed to determine the cause of the crack. This paper will describe thermal analysis techniques used in support of this investigation. Models were generated to predict gradients in nominal motor conditions, as well as potentially anomalous conditions. Analysis was also performed on throats that were tested in the Laser Hardened Material Evaluation Laboratory (LHMEL). Some of these throats were pre-cracked, while others represented configurations designed to amplify effects of thermal stresses. Results from these analyses will be presented in this paper.
Thermal Analysis in Support of the Booster Separation Motor Crack Investigation
NASA Technical Reports Server (NTRS)
Davis, Darrell; Prickett, Terry
2002-01-01
During a post-test inspection of a Booster Separation Motor (BSM) from a Lot Acceptance Test (LAT), a crack was noticed in the graphite throat. Since this was an out-of-family occurrence, an investigation team was formed to determine the cause of the crack. This paper will describe thermal analysis techniques used in support of this investigation. Models were generated to predict gradients in nominal motor conditions, as well as potentially anomalous conditions. Analysis was also performed on throats that were tested in the Laser Hardened Material Evaluation Laboratory (LHMEL). Some of these throats were pre-cracked, while others represented configurations designed to amplify effects of thermal stresses. Results from these analyses will be presented in this paper.
A computerized test system for thermal-mechanical fatigue crack growth
NASA Technical Reports Server (NTRS)
Marchand, N.; Pelloux, R. M.
1986-01-01
A computerized testing system to measure fatigue crack growth under thermal-mechanical fatigue conditions is described. Built around a servohydraulic machine, the system is capable of a push-pull test under stress-controlled or strain-controlled conditions in the temperature range of 25 to 1050 C. Temperature and mechanical strain are independently controlled by the closed-loop system to simulate the complex inservice strain-temperature relationship. A d-c electrical potential method is used to measure crack growth rates. The correction procedure of the potential signal to take into account powerline and RF-induced noises and thermal changes is described. It is shown that the potential drop technique can be used for physical mechanism studies and for modelling crack tip processes.
NASA Technical Reports Server (NTRS)
Sullivan, T. L.
1971-01-01
Through- and surface-cracked specimens of two thicknesses were tested in uniaxial tension. Surface-cracked specimens were generally found to be stronger than through-cracked specimens with the same crack length. Apparent surface-crack fracture toughness calculated using the Anderson modified Irwin equation remained relatively constant for cracks as deep as 90 percent of the sheet thickness. Subcritical growth of surface cracks was investigated. Comparison of chamber and open air welds showed chamber welds to be slightly tougher. Both methods produced welds with toughness that compared favorably with that of the parent metal. Weld efficiencies were above 94 percent.
Further Development of Crack Growth Detection Techniques for US Test and Research Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohse, Gordon; Carpenter, David M.; Ostrovsky, Yakov
One of the key issues facing Light Water Reactors (LWRs) in extending lifetimes beyond 60 years is characterizing the combined effect of irradiation and water chemistry on material degradation and failure. Irradiation Assisted Stress Corrosion Cracking (IASCC), in which a crack propagates in a susceptible material under stress in an aggressive environment, is a mechanism of particular concern. Full understanding of IASCC depends on real time crack growth data acquired under relevant irradiation conditions. Techniques to measure crack growth in actively loaded samples under irradiation have been developed outside the US - at the Halden Boiling Water Reactor, for example.more » Several types of IASCC tests have also been deployed at the MITR, including passively loaded crack growth measurements and actively loaded slow strain rate tests. However, there is not currently a facility available in the US to measure crack growth on actively loaded, pre-cracked specimens in LWR irradiation environments. A joint program between the Idaho National Laboratory (INL) and the Massachusetts Institute of Technology (MIT) Nuclear Reactor Laboratory (NRL) is currently underway to develop and demonstrate such a capability for US test and research reactors. Based on the Halden design, the samples will be loaded using miniature high pressure bellows and a compact loading mechanism, with crack length measured in real time using the switched Direct Current Potential Drop (DCPD) method. The basic design and initial mechanical testing of the load system and implementation of the DCPD method have been previously reported. This paper presents the results of initial autoclave testing at INL and the adaptation of the design for use in the high pressure, high temperature water loop at the MITR 6 MW research reactor, where an initial demonstration is planned in mid-2015. Materials considerations for the high pressure bellows are addressed. Design modifications to the loading mechanism required by the size constraints of the MITR water loop are described. The safety case for operation of the high pressure gas-driven bellows mechanism is also presented. Key issues are the design and response of systems to limit gas flow in the event of a high pressure gas leak in the in-core autoclave. Integrity of the autoclave must be maintained and reactivity effects due to voiding of the loop coolant must be shown to be within the reactor technical specifications. The technical development of the crack growth monitor for application in the INL Advanced Test Reactor or the MITR can act as a template for adaptation of this technology in other reactors. (authors)« less
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Gyekenyesi, John P.
2000-01-01
Slow crack growth analysis was performed with three different loading histories including constant stress-rate/constant stress-rate testing (Case 1 loading), constant stress/constant stress-rate testing (Case 2 loading), and cyclic stress/constant stress-rate testing (Case 2 loading). Strength degradation due to slow crack growth and/or damage accumulation was determined numerically as a function of percentage of interruption time between the two loading sequences for a given loading history. The numerical solutions were examined with the experimental data determined at elevated temperatures using four different advanced ceramic materials, two silicon nitrides, one silicon carbide and one alumina for the Case 1 loading history, and alumina for the Case 3 loading history. The numerical solutions were in reasonable agreement with the experimental data, indicating that notwithstanding some degree of creep deformation presented for some test materials slow crack growth was a governing mechanism associated with failure for all the test materials.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Gyekenyesi, John P.
2000-01-01
Slow crack growth analysis was performed with three different loading histories including constant stress-rate/constant stress-rate testing (Case I loading), constant stress/constant stress-rate testing (Case II loading), and cyclic stress/constant stress-rate testing (Case III loading). Strength degradation due to slow crack growth arid/or damage accumulation was determined numerically as a Function of percentage of interruption time between the two loading sequences for a given loading history. The numerical solutions were examined with the experimental data determined at elevated temperatures using four different advanced ceramic materials, two silicon nitrides, one silicon carbide and one alumina for the Case I loading history, and alumina for the Case II loading history. The numerical solutions were in reasonable agreement with the experimental data, indicating that notwithstanding some degree of creep deformation presented for some test materials slow crack growth was a governing mechanism associated with failure for all the test material&
Creep and cracking of concrete hinges: insight from centric and eccentric compression experiments.
Schlappal, Thomas; Schweigler, Michael; Gmainer, Susanne; Peyerl, Martin; Pichler, Bernhard
2017-01-01
Existing design guidelines for concrete hinges consider bending-induced tensile cracking, but the structural behavior is oversimplified to be time-independent. This is the motivation to study creep and bending-induced tensile cracking of initially monolithic concrete hinges systematically. Material tests on plain concrete specimens and structural tests on marginally reinforced concrete hinges are performed. The experiments characterize material and structural creep under centric compression as well as bending-induced tensile cracking and the interaction between creep and cracking of concrete hinges. As for the latter two aims, three nominally identical concrete hinges are subjected to short-term and to longer-term eccentric compression tests. Obtained material and structural creep functions referring to centric compression are found to be very similar. The structural creep activity under eccentric compression is significantly larger because of the interaction between creep and cracking, i.e. bending-induced cracks progressively open and propagate under sustained eccentric loading. As for concrete hinges in frame-like integral bridge construction, it is concluded (i) that realistic simulation of variable loads requires consideration of the here-studied time-dependent behavior and (ii) that permanent compressive normal forces shall be limited by 45% of the ultimate load carrying capacity, in order to avoid damage of concrete hinges under sustained loading.
Fracture mechanics analysis for various fiber/matrix interface loadings
NASA Technical Reports Server (NTRS)
Naik, R. A.; Crews, J. H., Jr.
1991-01-01
Fiber/matrix (F/M) cracking was analyzed to provide better understanding and guidance in developing F/M interface fracture toughness tests. Two configurations, corresponding to F/M cracking at a broken fiber and at the free edge, were investigated. The effects of mechanical loading, thermal cooldown, and friction were investigated. Each configuration was analyzed for two loadings: longitudinal and normal to the fiber. A nonlinear finite element analysis was performed to model friction and slip at the F/M interface. A new procedure for fitting a square-root singularity to calculated stresses was developed to determine stress intensity factors (K sub I and K sub II) for a bimaterial interface crack. For the case of F/M cracking at a broken fiber with longitudinal loading, crack tip conditions were strongly influenced by interface friction. As a result, an F/M interface toughness test based on this case was not recommended because nonlinear data analysis methods would be required. For the free edge crack configuration, both mechanical and thermal loading caused crack opening, thereby avoiding frictional effects. A F/M interface toughness test based on this configuration would provide data for K(sub I)/K(sub II) ratios of about 0.7 and 1.6 for fiber and radial normal loading, respectively. However, thermal effects must be accounted for in the data analysis.
Fracture mechanics analysis for various fiber/matrix interface loadings
NASA Technical Reports Server (NTRS)
Naik, Rajiv A.; Crews, John H., Jr.
1992-01-01
Fiber/matrix (F/M) cracking was analyzed to provide better understanding and guidance in developing F/M interface fracture toughness tests. Two configurations, corresponding to F/M cracking at a broken fiber and at the free edge, were investigated. The effects of mechanical loading, thermal cooldown, and friction were investigated. Each configuration was analyzed for two loadings: longitudinal and normal to the fiber. A nonlinear finite element analysis was performed to model friction and slip at the F/M interface. A new procedure for fitting a square-root singularity to calculated stresses was developed to determine stress intensity factors (K sub I and K sub II) for a bimaterial interface crack. For the case of F/M cracking at a broken fiber with longitudinal loading, crack tip conditions were strongly influenced by interface friction. As a result, an F/M interface toughness test based on this case was not recommended because nonlinear data analysis methods would be required. For the free edge crack configuration, both mechanical and thermal loading caused crack opening, theory avoiding fractional effects. A F/M interface toughness test based on this configuration would provide data for K(sub I/K(sub II) ratios of about 0.7 and 1.6 for fiber and radial normal loading, respectively. However, thermal effects must be accounted for in the data analysis.
Fracture mechanics analysis for various fiber/matrix interface loadings
NASA Technical Reports Server (NTRS)
Naik, R. A.; Crews, J. H., Jr.
1991-01-01
Fiber/matrix (F/M) cracking was analyzed to provide better understanding and guidance in developing F/M interface fracture toughness tests. Two configurations, corresponding to F/M cracking at a broken fiber and at the free edge, were investigated. The effects of mechanical loading, thermal cooldown, and friction were investigated. Each configuration was analyzed for two loadings: longitudinal and normal to the fiber. A nonlinear finite element analysis was performed to model friction and slip at the F/M interface. A new procedure for fitting a square-root singularity to calculated stresses was developed to determine stress intensity factors (K sub I and K sub II) for a bimaterial interface crack. For the case of F/M cracking at a broken fiber with longitudinal loading, crack tip conditions were strongly influenced by interface friction. As a result, an F/M interface toughness test based on this case was not recommended because nonlinear data analysis methods would be required. For the free edge crack configuration, both mechanical and thermal loading caused crack opening, thereby avoiding frictional effects. An F/M interface toughness test based on this configuration would provide data for K(sub I)/K(sub II) ratios of about 0.7 and 1.6 for fiber and radial normal loading, respectively. However, thermal effects must be accounted for in the data analysis.
A comparison of single-cycle versus multiple-cycle proof testing strategies
NASA Technical Reports Server (NTRS)
Hudak, S. J., Jr.; Mcclung, R. C.; Bartlett, M. L.; Fitzgerald, J. H.; Russell, D. A.
1990-01-01
An evaluation of single-cycle and multiple-cycle proof testing (MCPT) strategies for SSME components is described. Data for initial sizes and shapes of actual SSME hardware defects are analyzed statistically. Closed-form estimates of the J-integral for surface flaws are derived with a modified reference stress method. The results of load- and displacement-controlled stable crack growth tests on thin IN-718 plates with deep surface flaws are summarized. A J-resistance curve for the surface-cracked configuration is developed and compared with data from thick compact tension specimens. The potential for further crack growth during large unload/reload cycles is discussed, highlighting conflicting data in the literature. A simple model for ductile crack growth during MCPT based on the J-resistance curve is used to study the potential effects of key variables. The projected changes in the crack size distribution during MCPT depend on the interactions between several key parameters, including the number of proof cycles, the nature of the resistance curve, the initial crack size distribution, the component boundary conditions (load vs. displacement control), and the magnitude of the applied load or displacement. The relative advantages of single-cycle and multiple-cycle proof testing appear to be specific, therefore, to individual component geometry, material, and loading.
Cascaded image analysis for dynamic crack detection in material testing
NASA Astrophysics Data System (ADS)
Hampel, U.; Maas, H.-G.
Concrete probes in civil engineering material testing often show fissures or hairline-cracks. These cracks develop dynamically. Starting at a width of a few microns, they usually cannot be detected visually or in an image of a camera imaging the whole probe. Conventional image analysis techniques will detect fissures only if they show a width in the order of one pixel. To be able to detect and measure fissures with a width of a fraction of a pixel at an early stage of their development, a cascaded image analysis approach has been developed, implemented and tested. The basic idea of the approach is to detect discontinuities in dense surface deformation vector fields. These deformation vector fields between consecutive stereo image pairs, which are generated by cross correlation or least squares matching, show a precision in the order of 1/50 pixel. Hairline-cracks can be detected and measured by applying edge detection techniques such as a Sobel operator to the results of the image matching process. Cracks will show up as linear discontinuities in the deformation vector field and can be vectorized by edge chaining. In practical tests of the method, cracks with a width of 1/20 pixel could be detected, and their width could be determined at a precision of 1/50 pixel.