Science.gov

Sample records for craniovertebral junction tumors

  1. Anaesthesia management in craniovertebral junctional anomalies

    PubMed Central

    Mascarenhas, Oswald

    2016-01-01

    Craniovertebral Junctional (CVJ) anomalies are developmental disorders that affect the skeleton and enclosed neuraxis at the junction of cranium and cervical spine. The high prevalence of airway obstruction and restrictive pulmonary disease in combination with cardiovascular manifestations poses a high anaesthetic risk to these patients. This article provides a discussion of management of anaesthesia in patients with craniovertebral anomalies, the evaluation of risk factors in these patients and their management, including emergency airway issues. PMID:27891026

  2. Craniovertebral Junction Instability: A Review of Facts about Facets

    PubMed Central

    2015-01-01

    Craniovertebral junction surgery involves an appropriate philosophical, biomechanical and anatomical understanding apart from high degree of technical skill and ability of controlling venous and arterial bleeding. The author presents his 30-year experience with treating complex craniovertebral junction instability related surgical issues. The facets of atlas and axis form the primary site of movements at the craniovertebral junction. All craniovertebral junction instability is essentially localized to the atlantoaxial facet joint. Direct manipulation and fixation of the facets forms the basis of treatment for instability. PMID:26240728

  3. Anatomy and biomechanics of the craniovertebral junction.

    PubMed

    Lopez, Alejandro J; Scheer, Justin K; Leibl, Kayla E; Smith, Zachary A; Dlouhy, Brian J; Dahdaleh, Nader S

    2015-04-01

    The craniovertebral junction (CVJ) has unique anatomical structures that separate it from the subaxial cervical spine. In addition to housing vital neural and vascular structures, the majority of cranial flexion, extension, and axial rotation is accomplished at the CVJ. A complex combination of osseous and ligamentous supports allow for stability despite a large degree of motion. An understanding of anatomy and biomechanics is essential to effectively evaluate and address the various pathological processes that may affect this region. Therefore, the authors present an up-to-date narrative review of CVJ anatomy, normal and pathological biomechanics, and fixation techniques.

  4. Transoral approach to the craniovertebral junction.

    PubMed

    Landeiro, José Alberto; Boechat, Sávio; Christoph, Daniel de Holanda; Gonçalves, Mariângela Barbi; Castro, Igor de; Lapenta, Mario Alberto; Ribeiro, Carlos Henrique

    2007-12-01

    The transoral approach provides a safe exposure to lesions in the midline and the ventral side of the craniovertebral junction. The advantages of the transoral approach are 1) the impinging bony pathology and granulation tissue are accessible only via the ventral route; 2) the head is placed in the extended position, thus decreasing the angulation of the brainstem during the surgery; and 3) surgery is done through the avascular median pharyngeal raphe and clivus. We analyzed the clinical effects of odontoidectomy after treating 38 patients with basilar invagination. The anterior transoral operation to treat irreducible ventral compression in patients with basilar invagination was performed in 38 patients. The patients ages ranged from 34 to 67 years. Fourteen patients had associated Chiari malformation and eight had previously undergone posterior decompressive surgery. The main indication for surgery was significant neurological deterioration. Symptoms and signs included neck pain, myelopathy, lower cranial nerve dysfunction, nystagmus and gait disturbance. Extended exposure was performed in 24 patients. The surgery was beneficial to the majority of patients. There was one death within 10 days of surgery, due to pulmonary embolism. Postoperative complications included two cases of pneumonia, three cases of oronasal fistula with regurgitation and one cerebrospinal fluid leak. In patients with marked ventral compression, the transoral approach provides direct access to the anterior face of the craniovertebral junction and effective means for odontoidectomy.

  5. Top 50 most-cited articles on craniovertebral junction surgery

    PubMed Central

    Alan, Nima; Cohen, Jonathan Andrew; Zhou, James; Pease, Matthew; Kanter, Adam S; Okonkwo, David O; Hamilton, David Kojo

    2017-01-01

    Background: Craniovertebral junction is a complex anatomical location posing unique challenges to the surgical management of its pathologies. We aimed to identify the fifty most-cited articles that are dedicated to this field. Methods: A keyword search using the Thomson Reuters Web of Knowledge was conducted to identify articles relevant to the field of craniovertebral junction surgery. The articles were reviewed based on title, abstract, and methods, if necessary, and then ranked based on the total number of citations to identify the fifty most-cited articles. Characteristics of the articles were determined and analyzed. Results: The earliest top-cited article was published in 1948. When stratified by decade, 1990s was the most productive with 16 articles. The most-cited article was by Anderson and Dalonzo on a classification of odontoid fractures. By citation rate, the most-cited article was by Herms and Melcher who described Goel's technique of atlantoaxial fixation using C1 lateral mass screws and C2 pedicle screws with rod fixation. Atlantoaxial fixation was the most common topic. The United States, Barrow Neurological Institute, and VH Sonntag were the most represented country, institute, and author, respectively. The significant majority of articles were designed as case series providing level IV evidence. Conclusion: Using citation analysis, we have provided a list of the most-cited articles representing important contributions of various authors from many institutions across the world to the field of craniovertebral junction surgery. PMID:28250633

  6. Pediatric bony craniovertebral junction abnormalities: Institutional experience of 10 years

    PubMed Central

    Kale, S. S.; Ailawadhi, Pankaj; Yerramneni, Vamsi Krishna; Chandra, P. S.; Kumar, Rajender; Sharma, B. S.; Mahapatra, A. K.

    2011-01-01

    Objective: To study the clinical features and treatment outcome of pediatric patients with bony craniovertebral abnormalities. Materials and Methods: The authors studied 189 consecutive cases of pediatric bony craniovertebral junction abnormalities operated between 2001 and March, 2010. Results: The pathologies were developmental (n = 162), traumatic (n = 18) and tuberculous (n = 9). Surgical procedures included transoral decompression (n = 118), occipitocervical fusion (OCF, n = 139), C 1 -C 2 fusion (n = 45), and posterior fossa decompression (n = 5). Methods for OCF included contoured stainless steel rods (n = 86), titanium lateral mass screws and plates (n = 47) and steel wires (n = 6). Constructs of all patients of posterior fixation with contoured rods and wires or lateral mass screw and rod who could be followed up were either stable/fused or were fused and stable. No implant failure was noticed among these two surgical procedures. However, 6 patients with C 1-C 2 fusion had broken wires on follow-up requiring repeat posterior fixation. Good neurological outcome was observed even in poor-grade patients. No significant effect on the curvature or growth of the spine was observed at follow-up. Conclusions: Pediatric craniovertebral junction anomalies can be managed successfully with good outcomes using a low cost contoured rod and wires. PMID:22069436

  7. Craniovertebral junction lesions: our experience with the transoral surgical approach.

    PubMed

    Mouchaty, Homère; Perrini, Paolo; Conti, Renato; Di Lorenzo, Nicola

    2009-06-01

    The aim of this study is to review our experience with the transoral surgical management of anterior craniovertebral junction (CVJ) lesions with particular attention to the decision making and to the indication for a consecutive stabilization. During 10 years (1998-2007), 52 consecutive patients presenting exclusively fixed anterior compression at the cervicomedullary junction underwent transoral surgery. Mean age was 55.85 years (range 17-75 years). Encountered lesions were: malformation (32 cases), rheumatoid arthritis (11 cases), tumor (5 cases) or trauma (4 cases). A total of 79% of patients presented with chronic/recurrent headache (cranial and/or high-cervical pain), 73% with varying degrees of quadrip aresis, and 29% with lower cranial nerve deficits. All of the patients but two, with posterior stabilization performed elsewhere, underwent synchronous anterior decompression and posterior occipitocervical fixation. Adjuncts to the transoral approach (Le Fort I with or without splitting of the palate), tailored to the local anatomy and to the extension of the lesions, were performed in seven cases. Follow-up ranged between 4 and 96 months. Of 35 patients with severe preoperative neurological deficits, 33 improved. The remaining 15 patients who presented with mild symptoms, healed throughout the follow-up. Perioperative mortality occurred in two cases and surgical morbidity in eight cases (dural laceration, cerebrospinal fluid leak with meningitis, malocclusion, oral wound dehiscence and occipital wound infection). Delayed instability occurred in one patient because of cranial settling of C2 vertebral body. A successful surgery achieving a stable decompression at the CVJ is an expertise demanding procedure. It requires accurate preoperative evaluation and, appropriate choice of decompression technique and stabilization instruments. Enlarged transoral approaches (despite higher morbidity) are a supportive means in cases of severe basilar invagination, cranial

  8. Endoscopic transoral surgery for craniovertebral junction anomalies. Technical note.

    PubMed

    Husain, Mazhar; Rastogi, Manu; Ojha, Bal Krishna; Chandra, Anil; Jha, Deepak K

    2006-10-01

    Craniovertebral junction (CVJ) anomalies continue to be challenging for neurosurgeons because of the complex anatomy of this region. To date, microsurgical decompression via a transoral route is the standard treatment for anteriorly located compressive lesions of the cervicomedullary junction (CMJ). The results obtained by minimizing surgical trauma are fewer complications, shorter hospital stays, and reduced overall psychological burden. Endoscopic surgery is becoming a leading modality in minimally invasive neurosurgical treatment. The authors performed surgery in 11 patients with irreducible osseous dislocations resulting from CVJ abnormality during a 2-year period. Anterior CMJ decompression was achieved in all patients by performing neuroendoscopically controlled transoral excision of bone and soft tissues. The surgical technique and results will be discussed. The use of the endoscope offers several advantages in cases requiring a transoral approach to the lower clivus and atlantoaxial region. The use of minimally invasive endoscopic techniques has the potential to reduce the need for a wider cranial base opening and to decrease postoperative complications.

  9. Surgical Intervention for Instability of the Craniovertebral Junction

    PubMed Central

    TAKAYASU, Masakazu; AOYAMA, Masahiro; JOKO, Masahiro; TAKEUCHI, Mikinobu

    2016-01-01

    Surgical approaches for stabilizing the craniovertebral junction (CVJ) are classified as either anterior or posterior approaches. Among the anterior approaches, the established method is anterior odontoid screw fixation. Posterior approaches are classified as either atlanto-axial fixation or occipito-cervical (O-C) fixation. Spinal instrumentation using anchor screws and rods has become a popular method for posterior cervical fixation. Because this method achieves greater stability and higher success rates for fusion without the risk of sublaminar wiring, it has become a substitute for previous methods that used bone grafting and wiring. Several types of anchor screws are available, including C1/2 transarticular, C1 lateral mass, C2 pedicle, and translaminar screws. Appropriate anchor screws should be selected according to characteristics such as technical feasibility, safety, and strength. With these stronger anchor screws, shorter fixation has become possible. The present review discusses the current status of surgical interventions for stabilizing the CVJ. PMID:27041630

  10. Acute obstructive hydrocephalus complicating decompression surgery of the craniovertebral junction

    PubMed Central

    Ohya, Junichi; Chikuda, Hirotaka; Nakatomi, Hirofumi; Sakamoto, Ryuji; Saito, Nobuhito; Tanaka, Sakae

    2016-01-01

    Obstructive hydrocephalus has been described as a rare complication following foramen magnum decompression for Chiari malformation. However, there are few reports of obstructive hydrocephalus after spinal surgery for other pathologies of the craniovertebral junction (CVJ). The authors herein report a 52-year-old female with achondroplasia presenting with an 8-month history of myelopathy due to spinal cord compression at CVJ. She underwent resection of the C1 posterior arch and part of the edge of the occipital bone. A computed tomography (CT) scan obtained 1-week after the surgery revealed bilateral infratentorial fluid collection. The patient was first managed conservatively; however, on the 17th day, her consciousness level showed sudden deterioration. Emergency CT demonstrated marked hydrocephalus due to obstruction of the cerebral aqueduct. Acute obstructive hydrocephalus can occur late after decompression surgery at the CVJ, and thus should be included in the differential diagnosis of a deteriorating mental status. PMID:27366268

  11. Three-dimensional models: an emerging investigational revolution for craniovertebral junction surgery.

    PubMed

    Goel, Atul; Jankharia, Bhavin; Shah, Abhidha; Sathe, Prashant

    2016-12-01

    Complex craniovertebral junctional anomalies can be daunting to treat surgically, and preoperative information regarding the osseous abnormalities, course of the vertebral arteries, size of the pedicles, and location of the transverse foramina is invaluable to surgeons operating on these challenging cases. The authors present their experience with the emerging technology of 3D model acquisition for surgery in 11 cases of complex craniovertebral junction region anomalies. For each case, a 3D printed model was made from thin CT scans using a 64-slice CT scanner. The inclination of the joints, the presence of false articulations, the size of the pedicles, and the course of the vertebral arteries were studied preoperatively on the 3D models. The sizes of the plates and screws to be used and the angle of insertion of the screws were calculated based on the data from the models. The model was scaled to actual size and was kept beside the operating surgeon in its anatomical position during surgery. The potential uses of the models and their advantages over conventional radiological investigations are discussed. The authors conclude that 3D models can be an invaluable aid during surgery for complex craniovertebral junction anomalies. The information available from a real life-size model supersedes the information available from 3D CT reconstructions and can also be superior to virtual simulation. The models are both cost effective and easy to build and the authors suggest that they may form the basis of investigations in the near future for craniovertebral junction surgery.

  12. Endoscopic Endonasal Approaches to the Craniovertebral Junction: A Systematic Review of the Literature

    PubMed Central

    Fujii, Tatsuhiro; Platt, Andrew; Zada, Gabriel

    2015-01-01

    Background We reviewed the current literature pertaining to extended endoscopic endonasal approaches to the craniovertebral junction. Methods A systematic literature review was utilized to identify published surgical cases of endoscopic endonasal approaches to the craniovertebral junction. Full-text manuscripts were examined for various measures of surgical indications, patient characteristics, operative technique, and surgical outcomes. Results We identified 71 cases involving endoscopic endonasal approaches for surgical management of a variety of pathologies located within the craniovertebral junction. Patient ages ranged from 3 to 87 years, with 40 females and 31 males. Five patients required tracheostomy, two were reintubated, and all others experienced an average intubation duration of 0.54 days following surgery. Fifty-eight patients (81.7%) underwent an additional posterior decompression or fusion either before or after the endonasal procedure. A complete resection of the pathologic lesion was reported in 57 cases (83.8%), another five were successful biopsies, and four resulted in partial resection. The follow-up time ranged from 0.5 to 57 months. Conclusion Although the transoral approach has been the standard for anterior surgical management for the past several decades, our systematic review illustrates that the extended endoscopic endonasal approach is a safe and effective alternative for most pathologies affecting the craniovertebral junction. PMID:26682128

  13. Multidetector Computed Tomography and Magnetic Resonance Imaging Evaluation of Craniovertebral junction Abnormalities

    PubMed Central

    Dhadve, Rajshree U.; Garge, Shaileshkumar S.; Vyas, Pooja D.; Thakker, Nirav R.; Shah, Sonali H.; Jaggi, Sunila T.; Talwar, Inder A.

    2015-01-01

    Background: Craniovertebral junction (CVJ) abnormalities constitute an important group of treatable neurological disorders with diagnostic dilemma. Their precise diagnosis, identification of probable etiology, and pretreatment evaluation significantly affects prognosis and quality of life of patients. Aims: The study was to classify various craniovertebral junction disorders according to their etiology and to define the importance of precise diagnosis for pretreatment evaluation with multidetector computed tomography (MDCT) and magnetic resonance imaging (MRI). Materials and Methods: This is a prospective observational study of 62 patients referred to our department between October 2012 and September 2014. All patients suspected to have a craniovertebral junction disorder were included in the study, from all age groups and both genders. Detailed clinical history was taken. Radiographs of cervical spine were collected if available. All patients were subjected to MDCT and/or MRI. Results: In our study of 62 patients; 39 were males and 23 were females, with male to female ratio of 1.6:1. Most common age group was 2nd -3rd decade (19 patients, 30.64%). Developmental anomalies (33 patients, 53.22%) were the most common etiology group followed by traumatic (10 patients, 16.12%), degenerative (eight patients, 12.90%), infective (four patients, 6.45%), inflammatory and neoplastic (three patients each, 4.8%), and no cause found in one patient. Conclusions: CVJ abnormalities constitute an important group of treatable neurological disorders, especially in certain ethnic groups and are approached with much caution by clinicians. Thus, it is essential that radiologists should be able to make a precise diagnosis of craniovertebral junction abnormalities, classify them into etiological group, and rule out important mimickers on MDCT and/or MRI, as this information ultimately helps determine the management of such abnormalities, prognosis, and quality of life of patients. PMID

  14. Comparative quantitative analysis of osseous anatomy of the craniovertebral junction of tiger, horse, deer, and humans

    PubMed Central

    Goel, Atul; Shah, Abhidha; Kothari, Manu; Gaikwad, Santosh; Dhande, Prakash L.

    2011-01-01

    Aim: To compare the osseous anatomy of the craniovertebral junction of a horse, deer, and tiger with that of a human being. The variation in the structure of bones in these animals is analyzed. Materials and Methods: Various dimensions of the bones of the craniovertebral junction of the horse, deer, and tiger were quantitatively measured, and their differences with those of human bones were compared and analyzed. Results: Apart from the sizes and weights, there are a number of structural variations in the bones of these animals that depend on their functional needs. The more remarkable difference in joint morphology is noticed in the occipitoatlantal joint. The occipitoatlantal articulation is remarkably large and deep, resembling a ‘hinge joint’ in all the three animals studied. The odontoid process is ‘C shaped’ in the deer and horse and is ‘denslike’ in the tiger and humans. The transverse processes of the atlas are in the form of large wings in all the three animals. The arches of the atlas are large and flat, but the traverse of the vertebral artery resembles, to an extent, to that of human vertebral artery. The rotatory movements of the head at the craniovertebral junction are wider ranged in the horse and deer as compared with those of the tiger and humans. The bones of the craniovertebral junction of all the three animals are adapted to the remarkable thickness and strength of the extensor muscles of the nape of the neck. Conclusions: Despite the wide variations in the size of the bones, the basic patterns of structure, vascular and neural relationship, and joint alignments have remarkable similarities and a definite pattern of differences. PMID:22013373

  15. Trombone tongue: a new clinical sign for significant medullary compression at the craniovertebral junction. Case report.

    PubMed

    Lee, Cheong H; Casey, Adrian T H; Allibone, James B; Chelvarajah, Ramesh

    2006-12-01

    The authors describe a previously unreported clinical sign that may indicate the onset of significant compression of the medulla oblongata in cases of craniovertebral junction abnormalities. This 17-year-old boy presented with mild bilateral leg weakness. Imaging studies revealed severe basilar invagination and a marked Chiari malformation. While awaiting surgery, his tongue developed an involuntary constant protrusion-intrusion repetitive motion. The onset of this so-named "trombone tongue" sign was followed shortly afterward by rapidly progressive spastic tetraparesis. After the authors performed a transmaxillary clivectomy, foramen magnum decompression, and occipitocervical fusion, they noted that the abnormal tongue motion promptly resolved and the tetraparesis gradually improved. The authors discuss their current understanding of the central control of tongue movements and present a hypothesis on the pathogenesis of trombone tongue based on the neuroanatomical basis of another abnormal tongue movement sign, lingual myoclonus.

  16. A cephalometric method to diagnosis the craniovertebral junction abnormalities in osteogenesis imperfecta patients

    PubMed Central

    Ríos-Rodenas, Mercedes; Gutiérrez-Díez, María-Pilar; Feijóo, Gonzalo; Mourelle, Maria-Rosa; Garcilazo, Mario; Ortega-Aranegui, Ricardo

    2015-01-01

    Osteogenesis imperfecta (OI) is a hereditary bone fragility disorder that in most patients is caused by mutations affecting collagen type I. Their typical oral and craneofacial characteristics (Dentinogenesis imperfecta type I and class III malocclusion), involve the dentist in the multidisciplinary team that treat these patients. It is usual to perform lateral skull radiographs for the orthodontic diagnosis. In addition, this radiograph is useful to analyse the junctional area between skull base and spine, that could be damaged in OI. Pathology in the craneovertebral junction (CVJ) is a serious complication of OI with a prevalence ranging from rare to 37%. To diagnosis early skull base anomalies in these patients, previously the neurological symptoms have been appear, we make a simple cephalometric analysis of the CVJ. This method has four measurements and one angle. Once we calculate the values of the OI patient, we compare the result with the mean and the standard deviations of an age-appropriate average in healthy controls. If the patient has a result more than 2,5 SDs above the age-appropriate average in healthy controls, we should to refer the patient to his/her pediatrician or neurologist. These doctors have to consider acquiring another diagnostic images to be used to determine cranial base measurements with more reliability. Thereby, dentists who treat these patients, must be aware of the normal radiological anatomy of the cervical spine on the lateral cephalogram. Key words:Osteogenesis imperfecta, craniovertebral junction, cephalometric. PMID:25810828

  17. A cephalometric method to diagnosis the craniovertebral junction abnormalities in osteogenesis imperfecta patients.

    PubMed

    Ríos-Rodenas, Mercedes; de Nova, Joaquín; Gutiérrez-Díez, María-Pilar; Feijóo, Gonzalo; Mourelle, Maria-Rosa; Garcilazo, Mario; Ortega-Aranegui, Ricardo

    2015-02-01

    Osteogenesis imperfecta (OI) is a hereditary bone fragility disorder that in most patients is caused by mutations affecting collagen type I. Their typical oral and craneofacial characteristics (Dentinogenesis imperfecta type I and class III malocclusion), involve the dentist in the multidisciplinary team that treat these patients. It is usual to perform lateral skull radiographs for the orthodontic diagnosis. In addition, this radiograph is useful to analyse the junctional area between skull base and spine, that could be damaged in OI. Pathology in the craneovertebral junction (CVJ) is a serious complication of OI with a prevalence ranging from rare to 37%. To diagnosis early skull base anomalies in these patients, previously the neurological symptoms have been appear, we make a simple cephalometric analysis of the CVJ. This method has four measurements and one angle. Once we calculate the values of the OI patient, we compare the result with the mean and the standard deviations of an age-appropriate average in healthy controls. If the patient has a result more than 2,5 SDs above the age-appropriate average in healthy controls, we should to refer the patient to his/her pediatrician or neurologist. These doctors have to consider acquiring another diagnostic images to be used to determine cranial base measurements with more reliability. Thereby, dentists who treat these patients, must be aware of the normal radiological anatomy of the cervical spine on the lateral cephalogram. Key words:Osteogenesis imperfecta, craniovertebral junction, cephalometric.

  18. Craniovertebral junction 360°: A combined microscopic and endoscopic anatomical study

    PubMed Central

    Jhawar, Sukhdeep Singh; Nunez, Maximiliano; Pacca, Paolo; Voscoboinik, Daniel Seclen; Truong, Huy

    2016-01-01

    Objectives: Craniovertebral junction (CVJ) can be approached from various corridors depending on the location and extent of disease. A three-dimensional understanding of anatomy of CVJ is paramount for safe surgery in this region. Aim of this cadaveric study is to elucidate combined microscopic and endoscopic anatomy of critical neurovascular structures in this area in relation to bony and muscular landmarks. Materials and Methods: Eight fresh-frozen cadaveric heads injected with color silicon were used for this study. A stepwise dissection was done from anterior, posterior, and lateral sides with reference to bony and muscular landmarks. Anterior approach was done endonasal endoscopically. Posterior and lateral approaches were done with a microscope. In two specimens, both anterior and posterior approaches were done to delineate the course of vertebral artery and lower cranial nerves from ventral and dorsal aspects. Results: CVJ can be accessed through three corridors, namely, anterior, posterior, and lateral. Access to clivus, foreman magnum, occipital cervical joint, odontoid, and atlantoaxial joint was studied anteriorly with an endoscope. Superior and inferior clival lines, supracondylar groove, hypoglossal canal, arch of atlas and body of axis, and occipitocervical joint act as useful bony landmarks whereas longus capitis and rectus capitis anterior are related muscles to this approach. In posterior approach, spinous process of axis, arch of atlas, C2 ganglion, and transverse process of atlas and axis are bony landmarks. Rectus capitis posterior major, superior oblique, inferior oblique, and rectus capitis lateralis (RCLa) are muscles related to this approach. Occipital condyles, transverse process of atlas, and jugular tubercle are main bony landmarks in lateral corridor whereas RCLa and posterior belly of digastric muscle are the main muscular landmarks. Conclusion: With advances in endoscopic and microscopic techniques, access to lesions and bony anomalies

  19. Craniovertebral junction realignment for the treatment of basilar invagination with syringomyelia: preliminary report of 12 cases.

    PubMed

    Goel, Atul; Sharma, Praveen

    2005-10-01

    Twelve selected patients, eight males and four females aged 14 to 50 years, with syringomyelia associated with congenital craniovertebral bony anomalies including basilar invagination and fixed atlantoaxial dislocation, and associated Chiari I malformation in eight, were treated by atlantoaxial joint manipulation and restoration of the craniovertebral region alignment between October 2002 and March 2004. Three patients had a history of trauma prior to the onset of symptoms. Spastic quadriparesis and ataxia were the most prominent symptoms. The mean duration of symptoms was 11 months. The atlantoaxial dislocation and basilar invagination were reduced by manual distraction of the facets of the atlas and axis, stabilization by placement of bone graft and metal spacers within the joint, and direct atlantoaxial fixation using an inter-articular plate and screw method technique. Following surgery all patients showed symptomatic improvement and restoration of craniovertebral alignment during follow up from 3 to 20 months (mean 7 months). Radiological improvement of the syrinx could not be evaluated as stainless steel metal plates, screws, and spacers were used for fixation. Manipulation of the atlantoaxial joints and restoring the anatomical craniovertebral alignments in selected cases of syringomyelia leads to remarkable and sustained clinical recovery, and is probably the optimum surgical treatment.

  20. Role of dynamic computed tomography scans in patients with congenital craniovertebral junction malformations

    PubMed Central

    da Silva, Otávio Turolo; Ghizoni, Enrico; Tedeschi, Helder; Joaquim, Andrei Fernandes

    2017-01-01

    AIM To evaluate the role of dynamic computed tomography (CT) scan imaging in diagnosing craniovertebral junction (CVJ) instability in patients with congenital CVJ malformations. METHODS Patients with symptomatic congenital CVJ malformations who underwent posterior fossa decompression and had a preoperative dynamic CT scan in flexion and extended position were included in this study. Measurements of the following craniometrical parameters were taken in flexed and extended neck position: Atlanto-dental interval (ADI), distance of the odontoid tip to the Chamberlain’s line, and the clivus-canal angle (CCA). Assessment of the facet joints congruence was also performed in both positions. Comparison of the values obtained in flexion and extension were compared using a paired Student’s t-test. RESULTS A total of ten patients with a mean age of 37.9 years were included. In flexion imaging, the mean ADI was 1.76 mm, the mean CCA was 125.4° and the mean distance of the odontoid tip to the Chamberlain’s line was + 9.62 mm. In extension, the mean ADI was 1.46 mm (P = 0.29), the mean CCA was 142.2° (P < 0.01) and the mean distance of the odontoid tip to the Chamberlain’s line was + 7.11 mm (P < 0.05). Four patients (40%) had facetary subluxation demonstrated in dynamic imaging, two of them with mobile subluxation (both underwent CVJ fixation). The other two patients with a fixed subluxation were not initially fixed. One patient with atlantoaxial assimilation and C23 fusion without initial facet subluxation developed a latter CVJ instability diagnosed with a dynamic CT scan. Patients with basilar invagination had a lower CCA variation compared to the whole group. CONCLUSION Craniometrical parameters, as well as the visualization of the facets location, may change significantly according to the neck position. Dynamic imaging can provide additional useful information to the diagnosis of CVJ instability. Future studies addressing the relationship between craniometrical

  1. The utility of a multimaterial 3D printed model for surgical planning of complex deformity of the skull base and craniovertebral junction.

    PubMed

    Pacione, Donato; Tanweer, Omar; Berman, Phillip; Harter, David H

    2016-11-01

    Utilizing advanced 3D printing techniques, a multimaterial model was created for the surgical planning of a complex deformity of the skull base and craniovertebral junction. The model contained bone anatomy as well as vasculature and the previously placed occipital cervical instrumentation. Careful evaluation allowed for a unique preoperative perspective of the craniovertebral deformity and instrumentation options. This patient-specific model was invaluable in choosing the most effective approach and correction strategy, which was not readily apparent from standard 2D imaging. Advanced 3D multimaterial printing provides a cost-effective method of presurgical planning, which can also be used for both patient and resident education.

  2. Embryonic and early fetal period development and morphogenesis of human craniovertebral junction.

    PubMed

    Hita-Contreras, Fidel; Roda, Olga; Martínez-Amat, Antonio; Cruz-Díaz, David; Mérida-Velasco, Juan A; Sánchez-Montesinos, Indalecio

    2014-04-01

    Several studies have focused on the cartilaginous, articular, and ligamentous development of the craniovertebral joint (CVJ), but there are no unifying criteria regarding the origin and morphogenetic timetable of the structures that make up the CVJ. In our study, serial sections of 53 human embryonic (n = 27) and fetal (n = 26) specimens from O'Rahilly stages 17-23 and 9-13 weeks, respectively, have been analyzed. Our results demonstrate that the chondrification of the pars basioccipitalis and exoccipitalis becomes observable at stage 19, and all future bones in the CVJ are in their cartilaginous form except for the future odontoid process. In addition, two chondrification centers appear for the body of the axis. From stage 21, the apical, alar, and transverse atlantal ligaments begin to acquire a ligamentous structure and the odontoid process initiates its chondrogenic phase. Stage 22 witnesses the first signs of the articular cavities of the atlanto-occipital joint, and by stage 23 all joints have cavities except for the transverse-odontoid joint, which will wait until week 9. In week 10, the ossification of the basilar part of the occipital bone begins, followed by the rest of the structures except for the odontoid process, which will start at week 13, thus completing the osteogenesis of all bones in the CVJ. The results of this study could help in establishing the anatomical basis of the normally functioning CVJ and for detecting its related pathologies, abnormalities, and malformations.

  3. Knock and Drill Technique: A Simple Tips for the Instrumentation in Complex Craniovertebral Junction Anomalies without using Fluoroscopy

    PubMed Central

    Srivastava, Arun; Sardhara, Jayesh; Behari, Sanjay; Pavaman, Sindgikar; Joseph, Jeena; Das, Kuntal; Mehrotra, Anant; Jaiswal, Awadhesh K.; Bhaishora, Kamlesh

    2017-01-01

    Context: Existence of complex variable bony and vertebral artery (VA) anomalies at craniovertebral junction (CVJ) in subset of complex CVJ anomalies demands individualized instrumentation policy and placing screws in each bone requires strategic preoperative planning and intraoperative skills. Aim: To evaluate the clinical accuracy of knock and drill (K and D) technique for the screw placement in complex CVJ anomalies. Settings and Design: Prospective study and operative technical note. Materials and Methods: Totally 36 consecutive patients (16 - pediatrics, 20 - adult patients) of complex CVJ: Complete/partial occipitalized C1 vertebra; at least one hypoplastic (C1/C2) articular mass, rotational component, and variations in the third part of VA were included in this study. Preoperative detail computed tomography (CT) CT CVJ with three-dimensional reconstruction was done for the assessment of CVJ anatomy and facet joint orientation. The accuracy of novel technique was assessed with postoperative CT to evaluate cortical breach in between 5th and 7th postoperative day in all the patients. All patients were underwent clinico-radiological evaluation at 6-month follow-up. Results: Totally 144 screws were placed using K and D technique (pediatric group - 64 screws, adult patients - 80 screws). Total of 12 screws were placed in C1 lateral mass in both age group without any bony cortical breach and complication. Sixteen C2 pedicle screws and 12 C2 pars screw in pediatrics and 18 C2 pedicle screws in adult patients were placed without any bony breach or VA injury. Out of thirty subaxial lateral mass screws in pediatric group, the bony breach was encountered with one screw (3.3%). Total of 38 C2 pars screws was placed in adult group in which bony breach along with VA injury was encounter with 1screw (2.6%). Conclusion: A simple technique of K and D for placing a screw increases the accuracy and spectrum of bony purchase and has the potential to reduce the complication in

  4. Association of Craniovertebral Junction Anomalies, Klippel-Feil Syndrome, Ruptured Dermoid Cyst and Mirror Movement in One Patient: A Unique Case and Literature Review.

    PubMed

    Zhang, Yu-Kun; Geng, Su-Min; Liu, Pi-Nan; Lv, Gang

    2016-01-01

    The Klippel-Feil syndrome (KFS) has been reported to be associated with intracranial neoplasms, most frequently epidermoid or dermoid cysts. To our knowledge, however, patients who present with a posterior fossa dermoid cyst (DC) and KFS are extremely rare with only 24 previously reported cases in the English literature worldwide. Therefore, we present the first report of a patient with a craniocervical ruptured DC accompanied by craniovertebral junction (CVJ) anomalies, KFS and mirror movement. Meanwhile, a literature review of KFS accompanying with posterior fossa DC discusses these conditions from the embryological, anatomical, clinical and therapeutic perspectives. Additionally, the combination of CVJ anomalies, KFS and DC may represent a new syndrome that has previously gone unnoticed.

  5. Calcification of the Alar Ligament Mimics Fracture of the Craniovertebral Junction (CVJ): An Incidental Finding from Computerised Tomography of the Cervical Spine Following Trauma.

    PubMed

    Che Mohamed, Siti Kamariah; Abd Aziz, Azian

    2009-10-01

    When performing a radiological assessment for a trauma case with associated head injury, a fragment of dense tissue detected near the craniovertebral junction would rapidly be assessed as a fractured bone fragment. However, if further imaging and evaluation of the cervical spine with computerised tomography (CT) did not demonstrate an obvious fracture, then the possibility of ligament calcification would be considered. We present a case involving a previously healthy 44-yearold man who was admitted following a severe head injury from a road traffic accident. CT scans of the head showed multiple intracranial haemorrhages, while scans of the cervical spine revealed a small, well-defined, ovoid calcification in the right alar ligament. This was initially thought to be a fracture fragment. Although such calcification is uncommon, accident and emergency physicians and radiologists may find this useful as a differential diagnosis in patients presenting with neck pain or traumatic head injury.

  6. Reinforcing endothelial junctions prevents microvessel permeability increase and tumor cell adhesion in microvessels in vivo

    NASA Astrophysics Data System (ADS)

    Fu, Bingmei M.; Yang, Jinlin; Cai, Bin; Fan, Jie; Zhang, Lin; Zeng, Min

    2015-10-01

    Tumor cell adhesion to the microvessel wall is a critical step during tumor metastasis. Vascular endothelial growth factor (VEGF), a secretion of tumor cells, can increase microvessel permeability and tumor cell adhesion in the microvessel. To test the hypothesis that inhibiting permeability increase can reduce tumor cell adhesion, we used in vivo fluorescence microscopy to measure both microvessel permeability and adhesion rates of human mammary carcinoma MDA-MB-231 cells in post-capillary venules of rat mesentery under the treatment of VEGF and a cAMP analog, 8-bromo-cAMP, which can decrease microvessel permeability. By immunostaining adherens junction proteins between endothelial cells forming the microvessel wall, we further investigated the structural mechanism by which cAMP abolishes VEGF-induced increase in microvessel permeability and tumor cell adhesion. Our results demonstrate that 1) Pretreatment of microvessels with cAMP can abolish VEGF-enhanced microvessel permeability and tumor cell adhesion; 2) Tumor cells prefer to adhere to the endothelial cell junctions instead of cell bodies; 3) VEGF increases microvessel permeability and tumor cell adhesion by compromising endothelial junctions while cAMP abolishes these effects of VEGF by reinforcing the junctions. These results suggest that strengthening the microvessel wall integrity can be a potential approach to inhibiting hematogenous tumor metastasis.

  7. Reinforcing endothelial junctions prevents microvessel permeability increase and tumor cell adhesion in microvessels in vivo

    PubMed Central

    Fu, Bingmei M.; Yang, Jinlin; Cai, Bin; Fan, Jie; Zhang, Lin; Zeng, Min

    2015-01-01

    Tumor cell adhesion to the microvessel wall is a critical step during tumor metastasis. Vascular endothelial growth factor (VEGF), a secretion of tumor cells, can increase microvessel permeability and tumor cell adhesion in the microvessel. To test the hypothesis that inhibiting permeability increase can reduce tumor cell adhesion, we used in vivo fluorescence microscopy to measure both microvessel permeability and adhesion rates of human mammary carcinoma MDA-MB-231 cells in post-capillary venules of rat mesentery under the treatment of VEGF and a cAMP analog, 8-bromo-cAMP, which can decrease microvessel permeability. By immunostaining adherens junction proteins between endothelial cells forming the microvessel wall, we further investigated the structural mechanism by which cAMP abolishes VEGF-induced increase in microvessel permeability and tumor cell adhesion. Our results demonstrate that 1) Pretreatment of microvessels with cAMP can abolish VEGF-enhanced microvessel permeability and tumor cell adhesion; 2) Tumor cells prefer to adhere to the endothelial cell junctions instead of cell bodies; 3) VEGF increases microvessel permeability and tumor cell adhesion by compromising endothelial junctions while cAMP abolishes these effects of VEGF by reinforcing the junctions. These results suggest that strengthening the microvessel wall integrity can be a potential approach to inhibiting hematogenous tumor metastasis. PMID:26507779

  8. Direct endothelial junction restoration results in significant tumor vascular normalization and metastasis inhibition in mice

    PubMed Central

    Agrawal, Vijayendra; Maharjan, Sony; Kim, Kyeojin; Kim, Nam-Jung; Son, Jimin; Lee, Keunho; Choi, Hyun-Jung; Rho, Seung-Sik; Ahn, Sunjoo; Won, Moo-Ho; Ha, Sang-Jun; Koh, Gou Young; Kim, Young-Myeong; Suh, Young-Ger; Kwon, Young-Guen

    2014-01-01

    Tumor blood vessels are leaky and immature, which causes inadequate blood supply to tumor tissues resulting in hypoxic microenvironment and promotes metastasis. Here we have explored tumor vessel modulating activity of Sac-1004, a recently developed molecule in our lab, which directly potentiates VE-cadherin-mediated endothelial cell junction. Sac-1004 could enhance vascular junction integrity in tumor vessels and thereby inhibit vascular leakage and enhance vascular perfusion. Improved perfusion enabled Sac-1004 to have synergistic anti-tumor effect on cisplatin-mediated apoptosis of tumor cells. Interestingly, characteristics of normalized blood vessels namely reduced hypoxia, improved pericyte coverage and decreased basement membrane thickness were readily observed in tumors treated with Sac-1004. Remarkably, Sac-1004 was also able to inhibit lung and lymph node metastasis in MMTV and B16BL6 tumor models. This was in correlation with a reduction in epithelial-to-mesenchymal transition of tumor cells with considerable diminution in expression of related transcription factors. Moreover, cancer stem cell population dropped substantially in Sac-1004 treated tumor tissues. Taken together, our results showed that direct restoration of vascular junction could be a significant strategy to induce normalization of tumor blood vessels and reduce metastasis. PMID:24811731

  9. Connexin 43 mediated gap junctional communication enhances breast tumor cell diapedesis in culture

    PubMed Central

    Pollmann, Mary-Ann; Shao, Qing; Laird, Dale W; Sandig, Martin

    2005-01-01

    Introduction Metastasis involves the emigration of tumor cells through the vascular endothelium, a process also known as diapedesis. The molecular mechanisms regulating tumor cell diapedesis are poorly understood, but may involve heterocellular gap junctional intercellular communication (GJIC) between tumor cells and endothelial cells. Method To test this hypothesis we expressed connexin 43 (Cx43) in GJIC-deficient mammary epithelial tumor cells (HBL100) and examined their ability to form gap junctions, establish heterocellular GJIC and migrate through monolayers of human microvascular endothelial cells (HMVEC) grown on matrigel-coated coverslips. Results HBL100 cells expressing Cx43 formed functional heterocellular gap junctions with HMVEC monolayers within 30 minutes. In addition, immunocytochemistry revealed Cx43 localized to contact sites between Cx43 expressing tumor cells and endothelial cells. Quantitative analysis of diapedesis revealed a two-fold increase in diapedesis of Cx43 expressing cells compared to empty vector control cells. The expression of a functionally inactive Cx43 chimeric protein in HBL100 cells failed to increase migration efficiency, suggesting that the observed up-regulation of diapedesis in Cx43 expressing cells required heterocellular GJIC. This finding is further supported by the observation that blocking homocellular and heterocellular GJIC with carbenoxolone in co-cultures also reduced diapedesis of Cx43 expressing HBL100 tumor cells. Conclusion Collectively, our results suggest that heterocellular GJIC between breast tumor cells and endothelial cells may be an important regulatory step during metastasis. PMID:15987459

  10. Epithelial Junction Opener Improves Oncolytic Adenovirus Therapy in Mouse Tumor Models

    PubMed Central

    Yumul, Roma; Richter, Maximilian; Lu, Zhuo-Zhuang; Saydaminova, Kamola; Wang, Hongjie; Wang, Chung-Huei Katherine; Carter, Darrick; Lieber, André

    2016-01-01

    A central resistance mechanism in solid tumors is the maintenance of epithelial junctions between malignant cells that prevent drug penetration into the tumor. Human adenoviruses (Ads) have evolved mechanisms to breach epithelial barriers. For example, during Ad serotype 3 (Ad3) infection of epithelial tumor cells, massive amounts of subviral penton-dodecahedral particles (PtDd) are produced and released from infected cells to trigger the transient opening of epithelial junctions, thus facilitating lateral virus spread. We show here that an Ad3 mutant that is disabled for PtDd production is significantly less effective in killing of epithelial human xenograft tumors than the wild-type Ad3 virus. Intratumoral spread and therapeutic effect of the Ad3 mutant was enhanced by co-administration of a small recombinant protein (JO; produced in Escherichia coli) that incorporated the minimal junction opening domains of PtDd. We then demonstrated that co-administration of JO with replication-competent Ads that do not produce PtDd (Ad5, Ad35) resulted in greater attenuation of tumor growth than virus injection alone. Furthermore, we genetically modified a conditionally replicating Ad5-based oncolytic Ad (Ad5Δ24) to express a secreted form of JO upon replication in tumor cells. The JO-expressing virus had a significantly greater antitumor effect than the unmodified AdΔ24 version. Our findings indicate that epithelial junctions limit the efficacy of oncolytic Ads and that this problem can be address by co-injection or expression of JO. JO has also the potential for improving cancer therapy with other types of oncolytic viruses. PMID:26993072

  11. Submucosal tunneling and endoscopic resection of submucosal tumors at the esophagogastric junction

    PubMed Central

    Zhou, De-Jun; Dai, Zhen-Bo; Wells, Malcolm M; Yu, Dan-Lei; Zhang, Jing; Zhang, Lei

    2015-01-01

    AIM: To evaluate the safety and efficacy of submucosal tunneling and endoscopic resection (STER) for treating submucosal tumors (SMTs). METHODS: Between August 2012 and October 2013, 21 patients with SMTs originating from the muscularis propria (MP) layer at the esophagogastric junction were treated by STER of their tumors. Key steps of the procedure include: (1) mucosal incision: a 2-cm longitudinal mucosal incision was made 5 cm proximal to the tumor; (2) submucosal tunneling: a submucosal tunnel was created 5 cm proximal to and 1 to 2 cm distal to the tumor; (3) tumor resection: the SMT was resected under direct endoscopic viewing; (4) hemostasis: while finishing the tumor resection, careful hemostasis of the MP defect and the tunnel was performed; and (5) mucosal closure: the mucosal incision site was closed by using hemostatic clips. During the operation, equipment used included a cap-fitted endoscope, an insulated-tip knife, a hook knife, hemostatic forceps, an injection needle, a snare, an endoclip, and a high-frequency generator. Carbon dioxide (CO2) insufflation was achieved by using a CO2 insufflator. RESULTS: The median age of the patients was 46.2 years (range, 35-59 years), and the majority were male (18 male vs 3 female). Complete resection rate was 100% (21/21). Eighteen lesions were resected en bloc. Mean tumor size was 23 mm (range, 10-40 mm), and mean procedure time was 62.9 min (range, 45-90 min). Pathological diagnosis of these tumors included leiomyoma (15 out of 21) and gastrointestinal stromal tumor (6 out of 21). Full-thickness MP resection was performed in 9 of 21 patients (42.9%), with mediastinal and subcutaneous emphysema occurring in all nine. At the completion of the procedure, all patients received closure of the incision with hemoclips. One patient required percutaneous drainage. The remaining 20 patients required no further endoscopic or surgical intervention. There were no incidents of massive or delayed bleeding. The median follow

  12. Positional Magnetic Resonance Imaging for People With Ehlers-Danlos Syndrome or Suspected Craniovertebral or Cervical Spine Abnormalities: An Evidence-Based Analysis

    PubMed Central

    2015-01-01

    Background Ehlers-Danlos syndrome (EDS) is an inherited disorder affecting the connective tissue. EDS can manifest with symptoms attributable to the spine or craniovertebral junction (CVJ). In addition to EDS, numerous congenital, developmental, or acquired disorders can increase ligamentous laxity in the CVJ and cervical spine. Resulting abnormalities can lead to morbidity and serious neurologic complications. Appropriate imaging and diagnosis is needed to determine patient management and need for complex surgery. Some spinal abnormalities cause symptoms or are more pronounced while patients sit, stand, or perform specific movements. Positional magnetic resonance imaging (pMRI) allows imaging of the spine or CVJ with patients in upright, weight-bearing positions and can be combined with dynamic maneuvers, such as flexion, extension, or rotation. Imaging in these positions could allow diagnosticians to better detect spinal or CVJ abnormalities than recumbent MRI or even a combination of other available imaging modalities might allow. Objectives To determine the diagnostic impact and clinical utility of pMRI for the assessment of (a) craniovertebral or spinal abnormalities among people with EDS and (b) major craniovertebral or cervical spine abnormalities among symptomatic people. Data Sources A literature search was performed using Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid Embase, and EBM Reviews, for studies published from January 1, 1998, to September 28, 2014. Review Methods Studies comparing pMRI to recumbent MRI or other available imaging modalities for diagnosis and management of spinal or CVJ abnormalities were reviewed. All studies of spinal or CVJ imaging in people with EDS were included as well as studies among people with suspected major CVJ or cervical spine abnormalities (cervical or craniovertebral spine instability, basilar invagination, cranial settling, cervical stenosis, spinal cord compression, Chiari

  13. Suboccipital craniectomy with opening of the fourth ventricle and duraplasty: study of 192 cases of craniovertebral malformations.

    PubMed

    Silva, José Alberto Gonçalves da; Santos Jr, Adailton Arcanjo dos; Costa, Maria do Desterro Leiros da; Almeida, Everardo Bandeira de

    2013-09-01

    The prime objective in the surgical treatment of basilar impression (BI), Chiari malformation (CM), and/or syringomyelia (SM) is based on restoration of the normal cerebrospinal fluid (CSF) dynamics at the craniovertebral junction and creation of a large artificial cisterna magna, avoiding the caudal migration of the hindbrain. It is observed that a large craniectomy might facilitate an upward migration of the posterior fossa structures. There are many surgical techniques to decompress the posterior fossa; however, a gold standard approach remains unclear. The authors present the results of 192 cases of BI, CM, and SM treated between 1975 and 2008 and whose surgical treatment was characterized by a large craniectomy without tonsillectomy with the patient in the sitting position, large opening of the fourth ventricle, and duraplasty.

  14. Neurenteric cyst of the craniocervical junction--case report.

    PubMed

    Abe, K; Oyama, K; Mori, K; Ishimaru, S; Eguchi, M; Maeda, M

    1999-11-01

    A 60-year-old female presented with occipital headache and limitation of neck movement. Neurological examination showed weakness of the right sternocleidomastoid muscle. Magnetic resonance imaging revealed a cystic lesion at the craniocervical junction and posterior compression of the brain stem. The lesion was totally removed through the transcondylar approach. The histological diagnosis was neurenteric cyst. The transcondylar approach provides a direct operative view of the clivus and anterior craniovertebral junction.

  15. Impact of Gastric Filling on Radiation Dose Delivered to Gastroesophageal Junction Tumors

    SciTech Connect

    Bouchard, Myriam; McAleer, Mary Frances; Starkschall, George

    2010-05-01

    Purpose: This study examined the impact of gastric filling variation on target coverage of gastroesophageal junction (GEJ) tumors in three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), or IMRT with simultaneous integrated boost (IMRT-SIB) plans. Materials and Methods: Eight patients previously receiving radiation therapy for esophageal cancer had computed tomography (CT) datasets acquired with full stomach (FS) and empty stomach (ES). We generated treatment plans for 3DCRT, IMRT, or IMRT-SIB for each patient on the ES-CT and on the FS-CT datasets. The 3DCRT and IMRT plans were planned to 50.4 Gy to the clinical target volume (CTV), and the same for IMRT-SIB plus 63.0 Gy to the gross tumor volume (GTV). Target coverage was evaluated using dose-volume histogram data for patient treatments simulated with ES-CT sets, assuming treatment on an FS for the entire course, and vice versa. Results: FS volumes were a mean of 3.3 (range, 1.7-7.5) times greater than ES volumes. The volume of the GTV receiving >=50.4 Gy (V{sub 50.4Gy}) was 100% in all situations. The planning GTV V{sub 63Gy} became suboptimal when gastric filling varied, regardless of whether simulation was done on the ES-CT or the FS-CT set. Conclusions: Stomach filling has a negligible impact on prescribed dose delivered to the GEJ GTV, using either 3DCRT or IMRT planning. Thus, local relapses are not likely to be related to variations in gastric filling. Dose escalation for GEJ tumors with IMRT-SIB may require gastric filling monitoring.

  16. Reversed cellular polarity in primary cutaneous mucinous carcinoma: A study on tight junction protein expression in sweat gland tumors.

    PubMed

    Nagasawa, Yusuke; Ishida-Yamamoto, Akemi

    2017-04-01

    Primary cutaneous mucinous carcinoma (PCMC) is a rare sweat gland tumor characterized by the presence of abundant mucin around the tumor islands, but the molecular mechanisms for this structure are not well elucidated. Because mucin is epithelial in nature, it is likely to be produced by epithelial tumor cells, not by surrounding stromal cells. We hypothesized that the abundant mucin is a result of reversed cellular polarity of the tumor. To test this hypothesis, we conducted an immunohistological study to investigate expression of tight junction (TJ) proteins occludin and ZO-1 in PCMC, as well as in normal sweat glands and other sweat gland tumors. Dot-like or linear expression of TJ proteins was observed at ductal structures of sweat glands, and ductal or cystic structures of related tumors. In PCMC, however, TJ protein expression was clearly visible at the edges of tumor cell islands. This study provides evidence to show that the characteristic histological structure of PCMC is caused by inverse polarization of the tumor cells, and that TJ proteins are useful markers of ductal differentiation in sweat gland tumors.

  17. Tight Junction Proteins Claudin-3 and Claudin-4 Control Tumor Growth and Metastases12

    PubMed Central

    Shang, Xiying; Lin, Xinjian; Alvarez, Edwin; Manorek, Gerald; Howell, Stephen B

    2012-01-01

    The extent of tight junction (TJ) formation is one of many factors that regulate motility, invasion, and metastasis. Claudins are required for the formation and maintenance of TJs. Claudin-3 (CLDN3) and claudin-4 (CLDN4) are highly expressed in the majority of ovarian cancers. We report here that CLDN3 and CLDN4 each serve to constrain the growth of human 2008 cancer xenografts and limit metastatic potential. Knockdown of CLDN3 increased in vivo growth rate by 2.3-fold and knockdown of CLDN4 by 3.7-fold in the absence of significant change in in vitro growth rate. Both types of tumors exhibited increase in birth rate as measured by Ki67 staining and decrease in death rate as reflected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Knockdown of either claudin did not alter expression of other TJ protein but did reduce TJ formation as measured by transepithelial resistance and paracellular flux of dextran, enhance migration and invasion in in vitro assays, and increase lung colonization following intravenous injection. Knockdown of CLDN3 and CLDN4 increased total lung metastatic burden by 1.7-fold and 2.4-fold, respectively. Loss of either CLDN3 or CLDN4 resulted in down-regulation of E-cadherin mRNA and protein, increased inhibitory phosphorylation of glycogen synthase kinase-3β (GSK-3β), and activation of β-catenin pathway signaling as evidenced by increases in nuclear β-catenin, the dephosphorylated form of the protein, and transcriptional activity of β-catenin/T-cell factor (TCF). We conclude that both CLDN3 and CLDN4 mediate interactions with other cells in vivo that restrain growth and metastatic potential by sustaining expression of E-cadherin and limiting β-catenin signaling. PMID:23097631

  18. The importance of craniovertebral and cervicomedullary angles in cervicogenic headache

    PubMed Central

    Çoban, Gökçen; Çöven, İlker; Çifçi, Bilal Egemen; Yıldırım, Erkan; Yazıcı, Ayşe Canan; Horasanlı, Bahriye

    2014-01-01

    PURPOSE Many studies have indicated that cervicogenic headache may originate from the cervical structures innervated by the upper cervical spinal nerves. To date, no study has investigated whether narrowing of the craniovertebral angle (CVA) or cervicomedullary angle (CMA) affects the three upper cervical spinal nerves. The aim of this study was to investigate the effect of CVA and/or CMA narrowing on the occurrence of cervicogenic headache. MATERIALS AND METHODS Two hundred and five patients diagnosed with cervicogenic headache were included in the study. The pain scores of patients were determined using a visual analog scale. The nonheadache control group consisted of 40 volunteers. CVA and CMA values were measured on sagittal T2-weighted magnetic resonance imaging (MRI), on two occasions by two radiologists. Angle values and categorized pain scores were compared statistically between the groups. RESULTS Intraobserver and interobserver agreement was over 97% for all measurements. Pain scores increased with decreasing CVA and CMA values. Mean angle values were significantly different among the pain categories (P < 0.001). The pain score was negatively correlated with CMA (Spearman correlation coefficient, rs, −0.676; P < 0.001) and CVA values (rs, −0.725; P < 0.001). CONCLUSION CVA or CMA narrowing affects the occurrence of cervicogenic headache. There is an inverse relationship between the angle values and pain scores. PMID:24317332

  19. Knowledge and use of craniovertebral instability testing by Australian physiotherapists.

    PubMed

    Osmotherly, P G; Rivett, D A

    2011-08-01

    Internationally, manual therapy has moved towards formalised guidelines for pre-manipulative screening of the cervical spine. A controversial aspect to emerge from this involves craniovertebral instability (CVI) testing. This study examined current practice, knowledge and attitudes of Australian physiotherapists regarding pre-manipulative testing for CVI. Members of Musculoskeletal Physiotherapy Australia were surveyed by formally validated questionnaire. Sub-group analysis was performed by post-graduate musculoskeletal qualification. The response rate was 37.8%. Respondents provided differing definitions of CVI; 46.5% describing loss of anatomical integrity and 24.9% a biomechanical problem. Over half indicated they rarely or never used stress tests for CVI screening. Of 42 published signs and symptoms associated with CVI, seven were identified by more than 50% of respondents. Of published disorders associated with CVI, four were considered worthy of testing by more than 30% of respondents. Support for inclusion of information on CVI in pre-manipulative guidelines was given by 87% of respondents. Recommendations for screening tests received less support, particularly among physiotherapists holding post-graduate musculoskeletal qualifications (p = 0.0002). These results indicate disagreement regarding the nature and presentation of CVI. Clinical testing is inconsistent, reflecting underlying confusion about CVI. Currently, there is not an appropriate level of knowledge or willingness to recommend guidelines for CVI screening.

  20. Mesenchymal-epithelial transitions: spontaneous and cumulative syntheses of epithelial marker molecules and their assemblies to novel cell junctions connecting human hematopoietic tumor cells to carcinomatoid tissue structures.

    PubMed

    Franke, Werner W; Rickelt, Steffen

    2011-12-01

    Using biochemical as well as light- and electron-microscopic immunolocalization methods, in cultures of unicellular human blood tumor cells, we have studied the phenomenon of spontaneous and cumulative syntheses of certain epithelial proteins and glycoproteins and their assemblies to two major kinds of novel cell-cell junctions, adhering junctions (AJs) and junctions based on the epithelial cell adhesion molecule (EpCAM). More than two decades, we have selected and characterized clonal sublines of multipotential hematopoietic K562 cells, which are enriched in newly formed AJs based on cis-clusters of desmoglein Dsg2, in some sublines accompanied by desmocollin Dsc2. Both desmosomal cadherins can be anchored in a submembranous plaque containing plakoglobin and plakophilins Pkp2 and Pkp3, with or without other armadillo proteins and desmoplakin. Also, these cells are often connected by an additional, extended junction system, in which the transmembrane epithelial glycoprotein EpCAM is associated with a cytoplasmic plaque rich in several actin-binding proteins such as afadin, α-actinin, ezrin and vinculin. Both kinds of junctions contribute to connections of K562 cells into epithelioid monolayers or even three-dimensional, tissue-like structures, thus markedly changing the cell biological nature and behavior of the resulting tumor subforms (mesenchymal-epithelial transitions). We discuss molecular mechanisms involved in the formation and function of these junctions, also with respect to tumor spread and metastasis, as well as diagnostic and therapeutic consequences.

  1. Clinical management of gastroesophageal junction tumors: past and recent evidences for the role of radiotherapy in the multidisciplinary approach.

    PubMed

    Cellini, Francesco; Morganti, Alessio G; Di Matteo, Francesco M; Mattiucci, Gian Carlo; Valentini, Vincenzo

    2014-02-05

    Gastroesophageal cancers (such as esophageal, gastric and gastroesophageal-junction -GEJ- lesions) are worldwide a leading cause of death being relatively rare but highly aggressive. In the past years, a clear shift in the location of upper gastrointestinal tract tumors has been recorded, both affecting the scientific research and the modern clinical practice. The integration of pre- or peri-operative multimodal approaches, as radiotherapy and chemotherapy (often combined), seems promising to further improve clinical outcome for such presentations. In the past, the definition of GEJ led to controversies and confusion: GEJ tumors have been managed either grouped to gastric or esophageal lesions, following slightly different surgical, radiotherapeutic and systemic approaches. Recently, the American Joint Committee on Cancer (AJCC) changed the staging and classification system of GEJ to harmonize some staging issues for esophageal and gastric cancer. This review discusses the most relevant historical and recent evidences of neoadjuvant treatment involving Radiotherapy for GEJ tumors, and describes the efficacy of such treatment in the frame of multimodal integrated therapies, from the new point of view of the recent classification of such tumors.

  2. [Cerebrovenous orthostatic reactivity in pathology of the craniovertebral junction (Chiari malformation)].

    PubMed

    Shakhnovich, V A; Mitrofanova, E V; Shimanskiy, V N; Konovalov, N A; Shkarubo, A N

    2015-01-01

    Мальформация Киари характеризуется вклинением миндалин мозжечка в большое затылочное отверстие, что приводит к нарушению циркуляции ликвора через краниовертебральный переход. Адекватным методом для выявления этих нарушений являются ортостатические нагрузки, которые приводят к перемещению ликвора через краниовертебральный переход. Возникающие при этом изменения внутричерепного давления оказывают влияние на церебровенозную ортостатическую реактивность (ЦВОР), которая оценивается неинвазивно при мальформации Киари. Материал и методы. Исследование проведено у 35 больных с мальформацией Киари (Киари I — 26 больных, Киари II — 9) в возрасте от 4 до 58 лет. Среди обследованных больных у 4 была выявлена гидроцефалия, у 6 — сирингомиелия. Методом транскраниальной допплерографии регистрировали венозный кровоток в прямом синусе мозга при изменении положения тела на ортостоле от +90° до –30°. Результаты. У больных с мальформацией Киари ЦВОР существенно отличается от нормы (более чем в 90% случаев) как ее увеличением (иногда в 5—6 раз по сравнению с верхней границей нормы — значительная гиперреактивность), так и полным отсутствием каких-либо изменений при ортостатической нагрузке (ареактивность). У больных c мальформацией Киари до хирургического лечения ЦВОР чаще всего характеризуется ареактивностью, а также умеренной или значительной гиперреактивностью. После хирургического лечения (декомпрессия большого затылочного отверстия) у больных с мальформацией Киари отмечается существенная нормализация краниовертебральных объемных соотношений, а ЦВОР чаще всего характеризуется нормореактивностью (63%), реже — умеренной гиперреактивностью. Скорость венозного кровотока в прямом синусе мозга при мальформации Киари до операции бывает повышена, а после хирургического лечения нормализуется. Выводы. Выявлена высокая частота нарушений ЦВОР (более 90% случаев) у больных с мальформацией Киари. После хирургического лечения этих больных больше чем в половине наблюдений (63%) отмечается полная нормализация ЦВОР.

  3. [Posterior decompression of the craniovertebral junction in children with Chiari malformation: a surgery extent issue].

    PubMed

    Korshunov, A E; Kushel', Yu V

    Цель исследования — выработать рациональный подход к выбору объема задней декомпрессии при аномалии Киари-1 у детей. Материал и методы. С 2001 по 2015 г. задняя декомпрессия выполнена 76 детям в возрасте до 18 лет с аномалией Киари-1. У 52 (68%) детей имелась сирингомиелия. В 14 (18%) случаях выполнена экстрадуральная декомпрессия (ЭДД); в 21 (28%) случае — экстраарахноидальная дуропластика (ЭАД); в 21 (28%) — интраарахноидальная диссекция и дуропластика; в 20 (26%) — стентирование отверстия Мажанди и дуропластика. Результаты. Осложнения возникли у 15 (20%) больных, одно из них с летальным исходом (летальность 1,3%). Частота осложнений была выше после (1) интраарахноидальной диссекции (p=0,0009) и стентирования (p=0,02). Реоперации потребовались у 8 (11%) больных. Суммарная частота осложнений и реопераций была наименьшей после ЭАД (10%). Заключение. ЭАД — метод выбора при аномалии Киари-1 у детей. ЭДД может быть принята как первичная опция, но требует отбора подходящих пациентов. Интраарахноидальная диссекция, в том числе со стентированием, не оправдана при первичных вмешательствах, но может быть неизбежной при ревизии.

  4. Analysis of Measurement Accuracy for Craniovertebral Junction Pathology : Most Reliable Method for Cephalometric Analysis

    PubMed Central

    Lee, Ho Jin; Kim, Il Sup; Kwon, Jae Yeol; Lee, Sang Won

    2013-01-01

    Objective This study was designed to determine the most reliable cephalometric measurement technique in the normal population and patients with basilar invagination (BI). Methods Twenty-two lateral radiographs of BI patients and 25 lateral cervical radiographs of the age, sex-matched normal population were selected and measured on two separate occasions by three spine surgeons using six different measurements. Statistical analysis including intraclass correlation coefficient (ICC) was carried out using the SPSS software (V. 12.0). Results Redlund-Johnell and Modified (M)-Ranawat had a highest ICC score in both the normal and BI groups in the inter-observer study. The M-Ranawat method (0.83) had a highest ICC score in the normal group, and the Redlund-Johenll method (0.80) had a highest ICC score in the BI group in the intra-observer test. The McGregor line had a lowest ICC score and a poor ICC grade in both groups in the intra-observer study. Generally, the measurement method using the odontoid process did not produce consistent results due to inter and intra-observer differences in determining the position of the odontoid tip. Opisthion and caudal point of the occipital midline curve are somewhat ambiguous landmarks, which induce variable ICC scores. Conclusion On the contrary to other studies, Ranawat method had a lower ICC score in the inter-observer study. C2 end-plate and C1 arch can be the most reliable anatomical landmarks. PMID:24294449

  5. HER3 Expression Is a Marker of Tumor Progression in Premalignant Lesions of the Gastroesophageal Junction

    PubMed Central

    Zhang, Paul J.; Furth, Emma E.; Ginsberg, Gregory G.; McMillan, Matthew T.; Datta, Jashodeep; Czerniecki, Brian J.; Roses, Robert E.

    2016-01-01

    Overexpression of receptor tyrosine kinases (RTK), including members of the HER family, has prognostic and therapeutic significance in invasive esophagogastric carcinoma. RTK expression in premalignant gastroesophageal lesions has not been extensively explored. Formalin-fixed paraffin-embedded tissue samples of esophageal biopsy specimens from 73 patients with Barrett’s esophagus with either low-grade dysplasia (LGD) (n = 32) or high-grade dysplasia (HGD) (n = 59) were analyzed for HER1, HER2, HER3 and CMET expression by immunohistochemistry (IHC). Immunophenotype was correlated with histologic and clinical features. High-grade dysplasia (HGD) was associated with overexpression of HER1 (20.7% vs. 3.1%, p = 0.023), HER2 (5.3% vs. 0.0%, p = 0.187) and HER3 (47.4% vs. 9.4%, p<0.001) compared to low-grade dysplasia (LGD). There was a significant association of HER2 (20.0% vs. 2.1%, p = 0.022) and HER3 (80.0% vs. 40.4%, p = 0.023) overexpression in HGD lesions associated with foci of invasive carcinoma compared to those without invasive foci. Overexpression of CMET was observed in 42.9% of specimens, was increasingly observed with HGD compared to LGD (58.3% vs. 36.7%, p = 0.200), and was most often co-expressed with HER3 (62.5% of HER3-positive specimens vs. 38.2% of HER3-negative specimens, p = 0.212). In summary, HER3 is frequently overexpressed in high-grade dysplastic lesions of the gastroesophageal junction and may be a marker of invasive progression. These data provide rationale for targeting HER2 and HER3 pathways in an early disease setting to prevent disease progression. PMID:27559738

  6. A novel role for junctional adhesion molecule-A in tumor proliferation: modulation by an anti-JAM-A monoclonal antibody.

    PubMed

    Goetsch, Liliane; Haeuw, Jean-François; Beau-Larvor, Charlotte; Gonzalez, Alexandra; Zanna, Laurence; Malissard, Martine; Lepecquet, Anne-Marie; Robert, Alain; Bailly, Christian; Broussas, Matthieu; Corvaia, Nathalie

    2013-03-15

    To identify new potential targets in oncology, functional approaches were developed using tumor cells as immunogens to select monoclonal antibodies targeting membrane receptors involved in cell proliferation. For that purpose cancer cells were injected into mice and resulting hybridomas were screened for their ability to inhibit cell proliferation in vitro. Based on this functional approach coupled to proteomic analysis, a monoclonal antibody specifically recognizing the human junctional adhesion molecule-A (JAM-A) was defined. Interestingly, compared to both normal and tumor tissues, we observed that JAM-A was mainly overexpressed on breast, lung and kidney tumor tissues. In vivo experiments demonstrated that injections of anti-JAM-A antibody resulted in a significant tumor growth inhibition of xenograft human tumors. Treatment with monoclonal antibody induced a decrease of the Ki67 expression and downregulated JAM-A levels. All together, our results show for the first time that JAM-A can interfere with tumor proliferation and suggest that JAM-A is a potential novel target in oncology. The results also demonstrate that a functional approach coupled to a robust proteomic analysis can be successful to identify new antibody target molecules that lead to promising new antibody-based therapies against cancers.

  7. Damaged ligaments at the craniocervical junction presenting as an extradural tumour: a differential diagnosis in the elderly.

    PubMed Central

    Crockard, H A; Sett, P; Geddes, J F; Stevens, J M; Kendall, B E; Pringle, J A

    1991-01-01

    An extradural mass at the craniocervical junction causing progressive neurological disability in five elderly patients is described. The lesion, which might be confused with a meningioma or other tumour, is composed of amorphous degenerate fibrocartilaginous material and could be due to degeneration of the ligaments responsible for atlanto-axial stability. Recognition of the condition early is important as the patient's clinical condition will deteriorate without decompression. Anterior transoral removal is relatively simple, unlike surgery for tumours in the area, and will not destabilise the craniovertebral junction. It is likely that a proportion of these lesions are undetected, misdiagnosed or untreated to the detriment of the patient. Images PMID:1955901

  8. Inhibition of gap junctional intercellular communication and activation of mitogen-activated protein kinase by tumor-promoting organic peroxides and protection by resveratrol.

    PubMed

    Upham, Brad L; Guzvić, Miodrag; Scott, Jacob; Carbone, Joseph M; Blaha, Ludek; Coe, Chad; Li, Lan Lan; Rummel, Alisa M; Trosko, James E

    2007-01-01

    Dicumyl peroxide (di-CuOOH) and benzoyl peroxide (BzOOH) act as tumor promoters in SENCAR mice, whereas di-tert-butylhydroperoxide does not. Tumor promotion requires the removal of growth suppression by inhibition of gap junctional intercellular communication (GJIC) and the induction of mitogenic intracellular pathways. We showed that di-CuOOH and BzOOH both reversibly inhibited GJIC and transiently activated mitogen-activated protein kinase, specifically, the extracellular receptor kinase at noncytotoxic conditions in WB-F344 rat liver epithelial cells, whereas the non-tumor-promoting di-tert-butylhydroperoxide did not inhibit GJIC or activate extracellular receptor kinase. di-CuOOH but not BzOOH inhibited GJIC through a phosphatidylcholine-specific phospholipase C-dependent mechanism. N-acetylcysteine (NAC) was needed to prevent a cytotoxic, glutathione-depleting effect of BzOOH, whereas di-CuOOH was noncytotoxic and did not alter glutathione levels at all doses and times tested. Pretreatment of WB-F344 cells with resveratrol, a polyphenolic antioxidant present in red wine, prevented at physiological doses the inhibition of GJIC by di-CuOOH but not from BzOOH and was effective in significantly preventing extracellular receptor kinase activation by both peroxides. NAC did not prevent any of the peroxide effects on either GJIC or extracellular receptor kinase, suggesting a specific antioxidant effect of resveratrol.

  9. Role of effective canal diameter in assessing the pre-operative and the post-operative status of patients with bony cranio-vertebral anomalies

    PubMed Central

    Mehrotra, Anant; Srivastava, Arun; Sahu, Rabi N.; Kumar, Raj

    2016-01-01

    Introduction: The effective canal diameter (ECD) for the cranio-vertebral junction is measured from the posterior surface of the dens to the nearest posterior bony structure (foramen magnum or the posterior arch of the atlas). The ECD is the space which is occupied by the buffer space (which can be compromised without producing any signs or symptoms) and the cord itself. We intend to study the role of the ECD (especially in patients with markedly reduced ECD) in producing the symptoms and also the outcome of surgery in patients with bony cranio-vertebral junction (CVJ) anomalies. Materials and Methods: A total of 67 consecutive patients from the period of January 2009 through June 2010 were prospectively included in the study. These patients were operated by a single experienced surgeon (the senior author) at the Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow. The ECD and the pre-operative Kumar and Kalra score (K and K score) (4) was calculated for all patients. The K and K score was also calculated at the time of discharge, at three months and six months follow-up. The patients were divided into three groups based on the ECD into 5 mm to 10 mm group, 10 mm to 15 mm group, and >15 mm group. Results: There were 53 male (79.1%) patients and 14 female patients (20.9%) with mean age of presentation 27.10 years (±15.01 years) with range of 4-59 years. The duration of symptoms in our series varied from 1-120 months with mean of 23.79 months. The mean effective canal diameter was 9.027 mm (±2.23 mm) with range of 5-16 mm. The mean pre-operative K and K score was 19.27 (±4.19). There were 39 patients who had an ECD between 5 mm to 10 mm, 24 patients with ECD between 10 mm to 15 mm, and 4 patients with ECD more than 15 mm. The correlation coefficients between the effective canal diameter and the pre-operative and the post-operative Kumar and Kalra score at the time of discharge, 3 months and 6 months were 0.404 (P < 0.001), 0.320 (P < 0.008), 0

  10. Clinical measurement of craniovertebral angle by electronic head posture instrument: a test of reliability and validity.

    PubMed

    Cheung Lau, Herman Mun; Wing Chiu, Thomas Tai; Lam, Tai-Hing

    2009-08-01

    The study was a cross-sectional reliability study with the objective of assessing the reliability and validity of the Electronic Head Posture Instrument (EHPI) in measuring the craniovertebral (CV) angle for subjects with or without neck pain. Twenty-six subjects (mean age=36.88, SD+/-9.95) with chronic neck pain and 27 subjects (mean age=31.85, SD+/-7.63) without neck pain were recruited. The CV angle was measured by the EHPI which consists of an electronic angle finder, a transparent plastic base and a camera stand. Two therapists were recruited to assess the intra- and inter-rater reliability of the EHPI in two separate sessions of measurement. The difference in CV angle between the two groups was determined. The CV angle of the patient group (mean 43.94, SD+/-3.61) was significantly smaller (p<0.001) than that of the normal group (mean 50.58, SD+/-2.09). Intra-rater (intra-class correlation coefficient (ICC) ranged from 0.86 to 0.94) and inter-rater (ICC ranged from 0.85 to 0.91) reliability of the EHPI in measuring CV angle for both groups of subjects were high. In conclusion the EHPI was found to be reliable and valid in measuring the CV angle for subjects with or without neck pain.

  11. The "pseudo-craniovertebral articulation" in the deep-sea fish Stomias boa (Teleostei: Stomiidae).

    PubMed

    Schnell, Nalani K; Bernstein, Peter; Maier, Wolfgang

    2008-05-01

    Many predatory deep-sea fishes show highly specialized modifications of their feeding apparatus, e.g., elongate jaws studded with long daggerlike teeth, often combined with a very distensible stomach, to be capable of swallowing relatively large prey. These striking features can be observed in members of the marine teleost family Stomiidae. The present study gives a detailed morphological description of the mesopelagic predatory fish, Stomias boa, based on a combined approach of clearing and double staining, serial sections and dissection. In this genus, large pads made of dense connective tissue extend from the first enlarged neural arch to the ventral side of the chordal sheath, embracing the prominent exoccipitals and thus constituting a kind of double ball- and socket joint for the head. The notochordal occipito-vertebral gap is enlarged, probably not by loss of vertebral centra as is proposed for other genera of the stomiid family, e.g., in Astronesthes or Photostomias. We conclude that this "pseudo-craniovertebral articulation" serves as a functional substitute for the absent vertebrae and strengthens the flexible, anterior part of the vertebral column during extreme dorsal expansion of the gape during prey capture and swallowing.

  12. Contribution of the intercalated adenosine at the helical junction to the stability of the gag-pro frameshifting pseudoknot from mouse mammary tumor virus.

    PubMed

    Theimer, C A; Giedroc, D P

    2000-03-01

    The mouse mammary tumor virus (MMTV) gag-pro frameshifting pseudoknot is an H-type RNA pseudoknot that contains an unpaired adenosine (A14) at the junction of the two helical stems required for efficient frameshifting activity. The thermodynamics of folding of the MMTV vpk pseudoknot have been compared with a structurally homologous mutant RNA containing a G x U to G-C substitution at the helical junction (U13C RNA), and an A14 deletion mutation in that context (U13CdeltaA14 RNA). Dual wavelength optical melting and differential scanning calorimetry reveal that the unpaired adenosine contributes 0.7 (+/-0.2) kcal mol(-1) at low salt and 1.4 (+/-0.2) kcal mol(-1) to the stability (deltaG(0)37) at 1 M NaCl. This stability increment derives from a favorable enthalpy contribution to the stability deltadeltaH = 6.6 (+/-2.1) kcal mol(-1) with deltadeltaG(0)37 comparable to that predicted for the stacking of a dangling 3' unpaired adenosine on a G-C or G x U base pair. Group 1A monovalent ions, NH4+, Mg2+, and Co(NH3)6(3+) ions stabilize the A14 and deltaA14 pseudoknots to largely identical extents, revealing that the observed differences in stability in these molecules do not derive from a differential or specific accumulation of ions in the A14 versus deltaA14 pseudoknots. Knowledge of this free energy contribution may facilitate the prediction of RNA pseudoknot formation from primary nucleotide sequence (Gultyaev et al., 1999, RNA 5:609-617).

  13. Nanotube junctions

    DOEpatents

    Crespi, Vincent Henry; Cohen, Marvin Lou; Louie, Steven Gwon Sheng; Zettl, Alexander Karlwalter

    2003-01-01

    The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

  14. Nanotube junctions

    DOEpatents

    Crespi, Vincent Henry; Cohen, Marvin Lou; Louie, Steven Gwon; Zettl, Alexander Karlwalte

    2004-12-28

    The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

  15. Josephson junction

    DOEpatents

    Wendt, J.R.; Plut, T.A.; Martens, J.S.

    1995-05-02

    A novel method for fabricating nanometer geometry electronic devices is described. Such Josephson junctions can be accurately and reproducibly manufactured employing photolithographic and direct write electron beam lithography techniques in combination with aqueous etchants. In particular, a method is described for manufacturing planar Josephson junctions from high temperature superconducting material. 10 figs.

  16. Josephson junction

    DOEpatents

    Wendt, Joel R.; Plut, Thomas A.; Martens, Jon S.

    1995-01-01

    A novel method for fabricating nanometer geometry electronic devices is described. Such Josephson junctions can be accurately and reproducibly manufactured employing photolithographic and direct write electron beam lithography techniques in combination with aqueous etchants. In particular, a method is described for manufacturing planar Josephson junctions from high temperature superconducting material.

  17. Gap junctions.

    PubMed

    Goodenough, Daniel A; Paul, David L

    2009-07-01

    Gap junctions are aggregates of intercellular channels that permit direct cell-cell transfer of ions and small molecules. Initially described as low-resistance ion pathways joining excitable cells (nerve and muscle), gap junctions are found joining virtually all cells in solid tissues. Their long evolutionary history has permitted adaptation of gap-junctional intercellular communication to a variety of functions, with multiple regulatory mechanisms. Gap-junctional channels are composed of hexamers of medium-sized families of integral proteins: connexins in chordates and innexins in precordates. The functions of gap junctions have been explored by studying mutations in flies, worms, and humans, and targeted gene disruption in mice. These studies have revealed a wide diversity of function in tissue and organ biology.

  18. Gap Junctions

    PubMed Central

    Goodenough, Daniel A.; Paul, David L.

    2009-01-01

    Gap junctions are aggregates of intercellular channels that permit direct cell–cell transfer of ions and small molecules. Initially described as low-resistance ion pathways joining excitable cells (nerve and muscle), gap junctions are found joining virtually all cells in solid tissues. Their long evolutionary history has permitted adaptation of gap-junctional intercellular communication to a variety of functions, with multiple regulatory mechanisms. Gap-junctional channels are composed of hexamers of medium-sized families of integral proteins: connexins in chordates and innexins in precordates. The functions of gap junctions have been explored by studying mutations in flies, worms, and humans, and targeted gene disruption in mice. These studies have revealed a wide diversity of function in tissue and organ biology. PMID:20066080

  19. Lack of tumor-promoting effects of flavonoids: studies on rat liver preneoplastic foci and on in vivo and in vitro gap junctional intercellular communication.

    PubMed

    Chaumontet, C; Suschetet, M; Honikman-Leban, E; Krutovskikh, V A; Berges, R; Le Bon, A M; Heberden, C; Shahin, M M; Yamasaki, H; Martel, P

    1996-01-01

    Possible tumor-promoting activity of four flavonoids, quercetin (QC), tangeretin (TG), flavone (FO), and flavanone (FN), was examined in a rat liver short-term carcinogenesis assay as well as with in vivo and in vitro assays of inhibition of gap junctional intercellular communication (GJIC). Rat hepatocarcinogenesis was induced by aflatoxin B1 treatment followed by a selection phase (2-acetylaminofluorene treatment and partial hepatectomy), then treatment with or without test chemicals (in vivo studies of antipromotion were not performed). Using glutathione S-transferase placental form (GST-P)-positive foci, we compared the effects of flavonoids (at 1,000 ppm in the diet) with the effects of phenobarbital (PB) on the occurrence of liver preneoplastic lesions. In addition, we studied the effects of flavonoids on GJIC in the livers derived from these experiments and in two types of cultured cells. No significant difference in the number and area of GST-P-positive foci was found after one or three months of treatment between any flavonoid group and control group. In the positive control group, PB markedly increased the numbers and areas of preneoplastic lesions at three months. Whereas PB also decreased by 60% the average size of lucifer yellow dye spread in slices of liver parenchyma free of preneoplastic lesions among the different flavonoids, only TG decreased the dye transfer in vivo: by 30% at one month and 50% at three months. With the dye transfer assay applied to a rat liver epithelial cell line (REL) and the Chinese hamster V79 metabolic cooperation assay, none of the tested flavonoids (< or = 25 microM) inhibited GJIC. Conversely, protective properties were seen for some of the compounds in antipromotion in vitro studies, because TG and FN enhanced the dye transfer in REL cells and FO, TG, and QC partly prevented the inhibition of metabolic cooperation by 12-O-tetradecanoylphorbol-13-acetate. Thus, taken together, our results suggest that QC, FO, and FN do

  20. Gap Junctions

    PubMed Central

    Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik

    2013-01-01

    Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981-2035, 2012. PMID:23723031

  1. Tumor

    MedlinePlus

    ... plants (aflatoxins) Excessive sunlight exposure Genetic problems Obesity Radiation exposure Viruses Types of tumors known to be caused by or linked with viruses are: Cervical cancer (human papillomavirus) Most anal cancers (human papillomavirus) Some throat ...

  2. [Gap junctions and cancer: implications and perspectives].

    PubMed

    Mesnil, Marc

    2004-02-01

    Gap junctions are made of intercellular channels which permit the diffusion from cytoplasm to cytoplasm of small hydrophilic molecules (<1,200 Da) such as ions, sugars, amino acids, nucleotides, second messengers (calcium, inositol triphosphate, etc.). Since their discovery in the early sixties, several groups have described the loss of their function in cancer cells. The accumulation of such data led to the hypothesis that gap junctions are involved in the carcinogenesis process. This assumption has been confirmed by data establishing that gap junctional intercellular communication is inhibited by most of the tumor promoters and that the restoration of such a communication, by transfection of cDNAs encoding gap junction proteins (connexins), inhibits the aberrant growth rates of tumorigenic cells. Despite these important informations, several fundamental questions remain still open. First, we do not know how gap junctions mediate such a tumor suppressor effect and whether it may depend either on the cell type or on the connexin type. Moreover, most of the data concerning a possible involvement of gap junctions in carcinogenesis have been obtained from in vitro and animal models. The very few results which have been currently collected from human tumors are not sufficient to have a clear idea concerning the real involvement of gap junctions in sporadic human cancers. These points as well as other unresolved questions about the role of gap junctional intercellular communication in carcinogenesis are mentioned. To bring some answers, some prospects are proposed with the objective to use gap junctions for increasing the effect of anticancer therapies.

  3. Epidemiologic Study of Human Epidermal Growth Factor Receptor 2 Expression in Advanced/Metastatic Gastric Cancer: an Assessment of Human Epidermal Growth Factor Receptor 2 Status in Tumor Tissue Samples of Gastric and Gastro-Esophageal Junction Cancer

    PubMed Central

    Seo, Kyung Won; Jeon, Taeyong; Kim, Sewon; Kim, Sung Soo; Kim, Kwanghee; Suh, Byoung-Jo; Hwang, Sunhwi; Choi, SeongHee; Ryu, Seungwan; Min, Jae Seok; Lee, Young-Joon; Jee, Ye Seob; Chae, Hyeondong

    2017-01-01

    Purpose The Trastuzumab for gastric cancer (GC) trial identified human epidermal growth factor receptor 2 (HER2) as a predictor of successful treatment with trastuzumab (HER2 receptor targeting agent) among patients with advanced/metastatic GC. To date, the prevalence of HER2 overexpression in the Korean population is unknown. The present study aimed to assess the incidence of HER2 positivity among GC and gastroesophageal (GE) junction cancer samples and the relationship between HER2 overexpression and clinicopathological characteristics in Korean patients. Materials and Methods Tumor samples collected from 1,695 patients with histologically proven GC or GE junction enrolled at 14 different hospitals in Korea were examined. After gathering clinicopathological data of all patients, HER2 status was assessed by immunohistochemistry (IHC) at each hospital, and IHC 2+ cases were subjected to silver-enhanced in situ hybridization at 3 central laboratories. Results A total of 182 specimens tested positive for HER2, whereas 1,505 tested negative. Therefore, the overall HER2-positive rate in this study was 10.8% (95% confidence interval=9.3%–12.3%). The HER2-positive rate was higher among intestinal-type cases (17.6%) than among other types, and was higher among patients older than 70 years and 50 years of age, compared to other age groups. Conclusions Our evaluation of the HER2 positivity rate (10.8%) among Korean patients with GC and GE junction indicated the necessity of epidemiological data when conducting studies related to HER2 expression in GC and GE junction. PMID:28337363

  4. Clinical management of cranio-vertebral instability after whiplash, when guidelines should be adapted: a case report.

    PubMed

    Rebbeck, Trudy; Liebert, Ann

    2014-12-01

    Cranio-vertebral instability (CVI) due to loss of bony or ligamentous integrity is one of the sequelae that may result after a whiplash mechanism injury. Due to the lack of specificity of diagnostic tests, this condition is often missed and the default classification of whiplash associated disorder (WAD) is assigned. This case report describes a 14-year-old boy who was initially classified with WAD II after a rugby injury. He was initially advised to return to usual activity, a treatment recommended in clinical guidelines for WAD. Due to an adverse response to this course of action, his primary carer, a musculoskeletal physiotherapist, continued with facilitating secondary referrals that ultimately led to a specialist physiotherapist. The patient was subsequently found to have CVI arising from a loss of bony integrity due to spina bifida atlanto, a congenital defect in the atlas. Treatment thus was immobilization and stabilization, a treatment usually recommended against in WAD guidelines. The patient recovered and within 8 weeks had returned to school and non-contact sports. This case study, therefore, presents a scenario where current clinical guidelines for whiplash could not be followed, and where pursuing clinical reasoning led to accurate diagnosis as well as safe and tailored management. The case also highlights the integrated roles that primary and specialist health professionals should play in the clinical pathway of care after WAD. As a result, an expanded diagnostic algorithm and pathway of care for WAD are proposed.

  5. Measurement of craniovertebral angle by the Modified Head Posture Spinal Curvature Instrument: A reliability and validity study.

    PubMed

    Subbarayalu, Arun Vijay

    2016-01-01

    The Modified Head Posture Spinal Curvature Instrument (MHPSCI) is an extension of the Head Posture Spinal Curvature Instrument. Two specific modifications were made in the original design by adding a third arm projecting horizontally from the protractor to objectively fix the pivot exactly over the C7 vertebra and the addition of a spirit-level to properly align the instrument. In order to demonstrate reliability and validity, this study was conducted using patients with postural neck pain (N = 65) and healthy subjects (N = 20). All the subjects were working at a selected Information Technology Industry in India and had been recruited using a criterion-based sampling approach. The craniovertebral (CV) angle of each subject was evaluated by two raters consecutively. The measurements were taken by using both MHPSCI and the standard photographic method in a standardized sitting posture for the purpose of establishing criterion-validity of the instrument. The results of this study indicate a good inter-rater reliability (ICC = 0.76; CI = 0.65-0.84) as well as intra-rater reliability (ICC = 0.87; CI = 0.82-0.91) between three successive CV angle measurements (with 2 minutes interval between each measurement) through MHPSCI. While keeping the digital photographic measurement as a standard, this study established that the MHPSCI is a valid tool for measuring the CV angle as shown by non-significant difference (p > 0.01) and high correlation between the two methods (r = 0.79-0.84). This study demonstrates that the MHPSCI is a reliable and valid instrument for measuring CV angle in subjects with or without postural neck pain.

  6. Detection of human papillomavirus in esophageal and gastroesophageal junction tumors: A retrospective study by real-time polymerase chain reaction in an instutional experience from Turkey and review of literature.

    PubMed

    Türkay, Düriye Özer; Vural, Çiğdem; Sayan, Murat; Gürbüz, Yeşim

    2016-02-01

    Esophageal cancer is a poor-prognosis malignancy that ranks eighth among all cancer types, and its prevalence shows differences among geographical regions. Although the most important risk factors for esophageal carcinoma are alcohol and smoking, viral infections, particularly HPV infection, are also considered among etiological agents. Our study aims to detect the presence of HPV in esophageal cancers in our patient population and to investigate its correlation with clinico-pathological parameters. We investigated the presence of HPV-DNA by real-time polymerase chain reaction in a total of 52 patients with esophageal cancer. Subtype analysis was performed in positive cases and was correlated with selected clinico-pathological parameters. Five (9.6%) of 52 tumor samples, 3 squamous cell carcinomas (3/33 cases) and 2 adenocarcinomas (2/19 cases), were HPV-DNA-positive. Subtype analysis could be performed in four HPV-DNA-positive cases, of which three were HPV type-39 and 1 was type-16. The Marmara region, where the present study was carried out, is a region with low-moderate risk for esophageal cancer, and the prevalence of HPV-DNA in these tumors is similar to the prevalence of HPV-DNA reported in the literature for regions with similar risk. In conclusion, we detected HPV DNA in a subset of esophageal and gastroesophageal junction tumors. HPV infection may have a role in esophageal carcinogenesis and high-risk HPV subtypes can particularly be considered among risk factors since the prevalence of high risk HPV infection has also been found to be increased in regions with a high risk for esophageal cancer compared to low-moderate risk regions.

  7. Phosphatidylcholine passes through lateral tight junctions for paracellular transport to the apical side of the polarized intestinal tumor cell-line CaCo2.

    PubMed

    Stremmel, Wolfgang; Staffer, Simone; Gan-Schreier, Hongying; Wannhoff, Andreas; Bach, Margund; Gauss, Annika

    2016-09-01

    Phosphatidylcholine (PC) is the most abundant phospholipid in intestinal mucus, indicative of a specific transport system across the mucosal epithelium to the intestinal lumen. To elucidate this transport mechanism, we employed a transwell tissue culture system with polarized CaCo2 cells. It was shown that PC could not substantially be internalized by the cells. However, after basal application of increasing PC concentrations, an apical transport of 47.1±6.3nmolh(-1)mMPC(-1) was observed. Equilibrium distribution studies with PC applied in equal concentrations to the basal and apical compartments showed a 1.5-fold accumulation on the expense of basal PC. Disruption of tight junctions (TJ) by acetaldehyde or PPARγ inhibitors or by treatment with siRNA to TJ proteins suppressed paracellular transport by at least 50%. Transport was specific for the choline containing the phospholipids PC, lysoPC and sphingomyelin. We showed that translocation is driven by an electrochemical gradient generated by apical accumulation of Cl(-) and HCO3(-) through CFTR. Pretreatment with siRNA to mucin 3 which anchors in the apical plasma membrane of mucosal cells inhibited the final step of luminal PC secretion. PC accumulates in intestinal mucus using a paracellular, apically directed transport route across TJs.

  8. Viral-cellular junction fragment from a human papillomavirus type 16-positive tumor is competent in transformation of NIH 3T3 cells

    SciTech Connect

    Le, J.Y.; Defendi, V.

    1988-11-01

    A 4.4-kilobase DNA fragment (T4.4) from a human tumor was found to be competent to fully transform NIH 3T3 cells. This competency resides in the whole hybrid DNA fragment, since the separate viral or cellular DNA sequences were not active. Abundant E6-E7 transcripts were found in the transformed cells. When the cellular fragments were substituted with polyadenylation sequences from polyomavirus or simian virus 40 DNA, little or no restoration of transforming activity was observed. In experiments in which an exogenous reporting gene, that for chloramphenicol acetyltransferase, was used, the possibility was excluded that the cellular flanking sequences act as a traditional enhancer; yet, when the cellular sequences were placed downstream of a cloramphenicol acetyltransferase expression vector (pSV2 CAT), activity of the reference gene was clearly enhanced. These results indicate that DNA containing human papillomavirus type 16 open reading frames E6 and E7 isolated from the genome of a human tumor has transforming potential, but this potential is realized when the viral DNA is joined to cellular sequences, and that the cellular sequences function in a more complex way than by simply providing polyadenylation signals.

  9. Benzo[a]pyrene-7,8-diol-9,10-epoxide inhibits gap junction intercellular communication via phosphorylation of tumor progression locus 2 in WB-F344 rat liver epithelial cells.

    PubMed

    Lee, Bo Kyung; Chung, Min-Yu; Lee, Ki Won

    2015-05-01

    Benzo[a]pyrene-7,8-diol-9,10-epoxide (B[a]PDE), a major metabolite of benzo[a]pyrene, has been reported to function as a human carcinogen. However, the molecular mechanism of how B[a]PDE regulates signaling pathways during tumor promotion remains unclear. In this study, we investigated the effects of B[a]PDE on the regulation of gap junction intercellular communication (GJIC), one of the major carcinogenic processes, and its main regulatory signaling pathways using WB-F344 rat liver epithelial (WB-F344 RLE) cells. Treatment of benzo[a]pyrene or B[a]PDE resulted in GJIC inhibition, and B[a]PDE was more active at lower concentrations than benzo[a]pyrene in the suppression of GJIC. This suggests that B[a]PDE is a stronger GJIC inhibitor. B[a]PDE at 1 µM reversibly inhibited GJIC in WB-F344 RLE cells, which was attributable to hyperphosphorylation of connexin43 (Cx43) via phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) and extracellular signal-regulated kinase (ERK). We found that B[a]PDE induced phosphorylation of tumor progression locus 2 (Tpl2), a direct upstream regulator of MEK. Tpl2 inhibitor recovered B[a]PDE-induced GJIC inhibition and attenuated B[a]PDE-induced MEK/ERK phosphorylation in WB-F344 RLE cells. Collectively, our results suggest that B[a]PDE suppresses GJIC by activating Tpl2 and subsequently the MEK/ERK pathway and Cx43 phosphorylation in WB-F344 RLE cells. These results outline the potential importance of Tpl2 as a novel therapeutic target for B[a]PDE-induced GJIC inhibition during cancer promotion.

  10. Epithelial adhesive junctions

    PubMed Central

    Capaldo, Christopher T.; Farkas, Attila E.

    2014-01-01

    Epithelial adhesive cell-to-cell contacts contain large, plasma membrane-spanning multiprotein aggregates that perform vital structural and signaling functions. Three prominent adhesive contacts are the tight junction, adherens junction, and the desmosome. Each junction type has unique cellular functions and a complex molecular composition. In this review, we comment on recent and exciting advances in our understanding of junction composition and function. PMID:24592313

  11. Wideband rotating junctions

    NASA Astrophysics Data System (ADS)

    Pochernyaev, V. N.

    1993-06-01

    Rotating junctions of coaxial-waveguide and waveguide type with a traveling wave coefficient exceeding 0.8 in a wide frequency range are considered. The design of these junctions is based on a method of the theory of electrodynamic circuits. Numerical results are obtained for rotating junctions of partially filled rectangular waveguide type and their particular cases.

  12. Indian Ocean Triple Junction

    SciTech Connect

    Tapscott, C.R.; Patriat, P.; Fisher, R.L.; Sclater, J.G.; Hoskins, H.; Parsons, B.

    1980-09-10

    The boundaries of three major plates (Africa, India, and Antarctica) meet in a triple junction in the Indian Ocean near 25 /sup 0/S, 70 /sup 0/E. Using observed bathymetry and magnetic anomalies, we locate the junction to within 5 km and show that it is a ridge-ridge-ridge type. Relative plate motion is N60 /sup 0/E at 50 mm/yr (full rate) across the Central Indian Ridge, N47 /sup 0/E at 60 mm/yr across the Southeast Indian Ridge, and N3 /sup 0/W at 15 mm/yr across te Southwest Indian Ridge; the observed velocity triangle is closed. Poles of instantaneous relative plate motion are determined for all plate pairs. The data in the South Atlantic and Indian oceans are consistent with a rigid African plate without significant internal deformation. Two of the ridges at the triple junction are normal midocean spreading centers with well-defined median valleys. The Southwest Indian Ridge, however, has a peculiar morphology near the triple junction, that of an elongate triangular deep, with the triple junction at its apex. The floor of the deep represents crust formed at the Southwest Indian Ridge, and the morphology is a consequence of the evolution of the triple junction and is similar to that at the Galapagos Triple Junction. Though one cannot determine with precision the stability conditions at the triple junction, the development of the junction over the last 10 m.y. can be mapped, and the topographic expressions of the triple junction traces may be detected on the three plates.

  13. The effect of feedback respiratory exercise on muscle activity, craniovertebral angle, and neck disability index of the neck flexors of patients with forward head posture

    PubMed Central

    Kang, Jeong-il; Jeong, Dae-Keun; Choi, Hyun

    2016-01-01

    [Purpose] This study aimed to simultaneously investigate the activities of the sternocleidomastoid muscle and scalenus anterior muscle, which are agonists of neck and breathing accessory muscles, by implementing breathing exercises. [Subjects and Methods] Thirteen subjects were selected for the experimental group, which performed feedback respiratory exercises with McKenzie exercises, and 12 subjects were selected for the control group, which performed McKenzie exercises alone. The intervention program was performed for 30 minutes a session, once a day, four times a week, and for 2 weeks before conducting the experiment. Before intervention, muscle activity was measured using surface electromyogram, and the neck disability index was evaluated. [Results] There were meaningful differences in activities of the sternocleidomastoid muscle and the scalenus anterior muscle, craniovertebral angle, and neck disability index within both the experimental group and control group after intervention. There also were meaningful differences in sternocleidomastoid muscle and neck disability index changes between groups. [Conclusion] Neck flexors as accessory respiratory muscle can affect inefficient respiratory imbalance of forward head posture patients. Multimodal intervention method should be studied continually and not be exposed to upper chest breathing patterns by preventing such phenomenon. PMID:27799674

  14. The effect of feedback respiratory exercise on muscle activity, craniovertebral angle, and neck disability index of the neck flexors of patients with forward head posture.

    PubMed

    Kang, Jeong-Il; Jeong, Dae-Keun; Choi, Hyun

    2016-09-01

    [Purpose] This study aimed to simultaneously investigate the activities of the sternocleidomastoid muscle and scalenus anterior muscle, which are agonists of neck and breathing accessory muscles, by implementing breathing exercises. [Subjects and Methods] Thirteen subjects were selected for the experimental group, which performed feedback respiratory exercises with McKenzie exercises, and 12 subjects were selected for the control group, which performed McKenzie exercises alone. The intervention program was performed for 30 minutes a session, once a day, four times a week, and for 2 weeks before conducting the experiment. Before intervention, muscle activity was measured using surface electromyogram, and the neck disability index was evaluated. [Results] There were meaningful differences in activities of the sternocleidomastoid muscle and the scalenus anterior muscle, craniovertebral angle, and neck disability index within both the experimental group and control group after intervention. There also were meaningful differences in sternocleidomastoid muscle and neck disability index changes between groups. [Conclusion] Neck flexors as accessory respiratory muscle can affect inefficient respiratory imbalance of forward head posture patients. Multimodal intervention method should be studied continually and not be exposed to upper chest breathing patterns by preventing such phenomenon.

  15. A rare presentation of lipoma on mandibular mucogingival junction

    PubMed Central

    Sharma, Gaurav; Jain, Kanu; Nagpal, Archna; Baiju, Chandrababu Sudha

    2016-01-01

    Lipoma is the most common tumor of mesenchymal tissues of body, but its occurrence in oral cavity is infrequent. Buccal mucosa is the most common intraoral site of lipoma followed by tongue, floor of the mouth, and buccal vestibule. The involvement of mucogingival junction is rare. We present a unique case report of oral lipoma occurring on mandibular mucogingival junction with review of literature which has emphasis on differential diagnosis. PMID:27143835

  16. Quantum junction solar cells.

    PubMed

    Tang, Jiang; Liu, Huan; Zhitomirsky, David; Hoogland, Sjoerd; Wang, Xihua; Furukawa, Melissa; Levina, Larissa; Sargent, Edward H

    2012-09-12

    Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO(2)); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics.

  17. A collision tumor of esophagus.

    PubMed

    Yao, Bin; Guan, Shanghui; Huang, Xiaochen; Su, Peng; Song, Qingxu; Cheng, Yufeng

    2015-01-01

    The collision tumor is defined by Meyer as that arisen from the accidental meeting and eventual intermingling of two independent neoplasms, which is quite rare. Most of them occur in the junction of different epithelial types of tissue such as oral cavity, esophagogastric junction, anorectaljunction and cervix, while collision tumors occurring in the liver, gallbladder, pancreatic, urinary bladder also have been reported. Here we present a case of 55-year-old Chinese man diagnosed as a collision tumor composed of leiomyosarcoma and squamous cell carcinoma (SqCC) in the lower third part of esophagus with 6 years survival after surgery and radiotherapy.

  18. Four-junction superconducting circuit

    NASA Astrophysics Data System (ADS)

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J. Q.

    2016-06-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit.

  19. Dot junction solar cells

    NASA Technical Reports Server (NTRS)

    Daud, T.; Crotty, G. T.

    1986-01-01

    A design of solar cells with reduced junction area on the cell surface is investigated for reduction of saturation current and increase in open-circuit voltage. Equidiameter dot junctions distributed across the surface of the cell offer an efficient alternative, with variations in dot diameter and in the spacing between dots giving the required variations in the ratio of junction area to total surface area. A simplified analysis for short-circuit current and other cell parameters, which enables cell design optimization, is presented. Experimental solar-cell performance results, as functions of different area ratios, are presented and compared with the model. It is shown that saturation current reduction is possible for achieving efficiencies as high as 18 percent in flat-plate terrestrial applications.

  20. Victory Junction Gang Camp

    ERIC Educational Resources Information Center

    Shell, Ryan

    2007-01-01

    This article describes the Victory Junction Gang Camp, a not-for-profit, NASCAR-themed camp for children with chronic medical conditions that serves 24 different disease groups. The mission of the camp is to give children life-changing camping experiences that are exciting, fun, and empowering in a safe and medically sound environment. While doing…

  1. Intercellular junctions in myriapods.

    PubMed

    Dallai, R; Bigliardi, E; Lane, N J

    1990-01-01

    Tissue from the intestinal tract of myriapods, including millipedes, centipedes and pauropods were examined in tracer-impregnated sections and freeze-fracture replicas. The foregut and hindgut of all three classes exhibit pleated septate junctions; these display undulating intercellular ribbons in thin sections. In replicas they show discrete intramembranous particle (IMP) arrays aligned in rows in parallel; with one another. The tissues of the hindgut also possess scalariform junctions, characterized by cross-striated intercellular clefts in sections and IMP-enriched membranes in replicas. Gap junctions occur in all groups, but they are atypical in replicas in that their component IMPs do not always fracture onto the E face, as is characteristic of other arthropods; some IMPs cleave to the P face and others to the E face. The midgut of these organisms exhibits smooth septate junctions with conventional straight septal ribbons and occasional interseptal columns. However the intramembranous appearance in replicas is variable, particularly in centipedes, in that the rows of IMPs in chemically-unfixed propanecryofixed tissues, are prominent and adhere preferentially to the E face, with complementary P face grooves, while in fixed tissues the IMPs are much less distinct and fracture to either P face or E face. They tend not to protrude far beyond the mid-plane of the membrane bilayer and lie in rows which commonly take on the form of a network. Individual rows of the network sometimes curve to run beside a second row, over a short distance, before bending away into another part of the network. The aligned particle rows, which are much more prominent in millipedes, where they frequently lie in close parallel appositions, do not fuse into ridges as often occurs in insect tissues. The myriapod junctions, therefore, are of the same general kind as are found in the gut tract of other arthropod groups, but differ with respect to the subtleties of their intramembranous

  2. Fractional order junctions

    NASA Astrophysics Data System (ADS)

    Machado, J. Tenreiro

    2015-01-01

    Gottfried Leibniz generalized the derivation and integration, extending the operators from integer up to real, or even complex, orders. It is presently recognized that the resulting models capture long term memory effects difficult to describe by classical tools. Leon Chua generalized the set of lumped electrical elements that provide the building blocks in mathematical models. His proposal of the memristor and of higher order elements broadened the scope of variables and relationships embedded in the development of models. This paper follows the two directions and proposes a new logical step, by generalizing the concept of junction. Classical junctions interconnect system elements using simple algebraic restrictions. Nevertheless, this simplistic approach may be misleading in the presence of unexpected dynamical phenomena and requires including additional "parasitic" elements. The novel γ -junction includes, as special cases, the standard series and parallel connections and allows a new degree of freedom when building models. The proposal motivates the search for experimental and real world manifestations of the abstract conjectures.

  3. Thermoelectricity in molecular junctions.

    PubMed

    Reddy, Pramod; Jang, Sung-Yeon; Segalman, Rachel A; Majumdar, Arun

    2007-03-16

    By trapping molecules between two gold electrodes with a temperature difference across them, the junction Seebeck coefficients of 1,4-benzenedithiol (BDT), 4,4'-dibenzenedithiol, and 4,4''-tribenzenedithiol in contact with gold were measured at room temperature to be +8.7 +/- 2.1 microvolts per kelvin (muV/K), +12.9 +/- 2.2 muV/K, and +14.2 +/- 3.2 muV/K, respectively (where the error is the full width half maximum of the statistical distributions). The positive sign unambiguously indicates p-type (hole) conduction in these heterojunctions, whereas the Au Fermi level position for Au-BDT-Au junctions was identified to be 1.2 eV above the highest occupied molecular orbital level of BDT. The ability to study thermoelectricity in molecular junctions provides the opportunity to address these fundamental unanswered questions about their electronic structure and to begin exploring molecular thermoelectric energy conversion.

  4. Merkel cell tumor.

    PubMed

    Kitazawa, M; Watanabe, H; Kobayashi, H; Ohnishi, Y; Shitara, A; Nitto, H

    1987-06-01

    A Merkel cell tumor appeared on the left cheek of an 83-year-old female was reported. The tumor was located mainly in the dermis and infiltrated to the subcutaneous adipose tissue with an involvement of the blood vessels and lymphatics at the periphery. Electron-microscopically, few of the dense-cored granules and the single globular aggregates of intermediate filaments at the nuclear indentations were observed. Electron-microscopic uranaffin reaction proved positive reaction on the dense-cored granules. Half of the cytoplasmic border was smooth, while the rest had short projections. Desmosomes or junctional complexes were not detected among the tumor cells. Immunohistochemically, the cytoplasm of tumor cell showed positive reaction to both neuron-specific enolase (NSE) and keratin. The single globular positive spots of the latter were localized in accordance with the aggregates of intermediate filaments. These findings suggested a neurogenic origin with double differentiation, epithelial and neuroendocrine, of the Merkel cell tumor.

  5. The Importance of Platybasia and the Palatine Line in Patient Selection for Endonasal Surgery of the Craniocervical Junction: A Radiographic Study of 12 Patients

    PubMed Central

    El-Sayed, Ivan H.; Wu, Jau-Ching; Dhillon, Nripendra; Ames, Christopher P.; Mummaneni, Praveen

    2011-01-01

    Objectives Ventral decompressive surgery of the craniocervical junction is performed to manage a variety of conditions, including basilar invagination which can be associated with platybasia. We have noted that the anatomic changes of platybasia could affect the height of the odontoid over a line drawn along the nasal cavity floor, the palatine line (PL). This anatomic change may influence the use of nasal endoscopic surgery for patients with platybasia who also have basilar invagination. We investigated if the height of the craniocervical junction is elevated over the PL in patients with and without platybasia. Methods We conducted a retrospective review of consecutive craniovertebral junction surgical cases over a 14 month period. During that time we treated twelve patients, including 4 with platybasia and 8 without. The average age was 50 (range 18–64) years old. Pre- and post-operation radiographic images were evaluated and charts reviewed. Results The mean height of the odontoid over the PL without platybasia was 3.5mm (range 0–19.0). In those with platybasia, it was 15.5mm (range 7–26.0) (p=.021). There was a statistically significant rise in the height of the clival tip and C1 ring in patient with platybasia as well. Conclusion Platybasia is associated with a rise in the odontoid and craniocervical junction over the PL. This rise in height has implications for endoscopic approach selection in patients with platybasia. Platybasia patients with basilar invagination may be better suited to a transnasal approach. PMID:21839972

  6. Signatures of topological Josephson junctions

    NASA Astrophysics Data System (ADS)

    Peng, Yang; Pientka, Falko; Berg, Erez; Oreg, Yuval; von Oppen, Felix

    2016-08-01

    Quasiparticle poisoning and diabatic transitions may significantly narrow the window for the experimental observation of the 4 π -periodic dc Josephson effect predicted for topological Josephson junctions. Here, we show that switching-current measurements provide accessible and robust signatures for topological superconductivity which persist in the presence of quasiparticle poisoning processes. Such measurements provide access to the phase-dependent subgap spectrum and Josephson currents of the topological junction when incorporating it into an asymmetric SQUID together with a conventional Josephson junction with large critical current. We also argue that pump-probe experiments with multiple current pulses can be used to measure the quasiparticle poisoning rates of the topological junction. The proposed signatures are particularly robust, even in the presence of Zeeman fields and spin-orbit coupling, when focusing on short Josephson junctions. Finally, we also consider microwave excitations of short topological Josephson junctions which may complement switching-current measurements.

  7. An induced junction photovoltaic cell

    NASA Technical Reports Server (NTRS)

    Call, R. L.

    1974-01-01

    Silicon solar cells operating with induced junctions rather than diffused junctions have been fabricated and tested. Induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. Measurements of the response of the inversion layer cell to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. The greater sensitivity occurs because of the shallow junction and the strong electric field at the surface.

  8. GUARD RING SEMICONDUCTOR JUNCTION

    DOEpatents

    Goulding, F.S.; Hansen, W.L.

    1963-12-01

    A semiconductor diode having a very low noise characteristic when used under reverse bias is described. Surface leakage currents, which in conventional diodes greatly contribute to noise, are prevented from mixing with the desired signal currents. A p-n junction is formed with a thin layer of heavily doped semiconductor material disposed on a lightly doped, physically thick base material. An annular groove cuts through the thin layer and into the base for a short distance, dividing the thin layer into a peripheral guard ring that encircles the central region. Noise signal currents are shunted through the guard ring, leaving the central region free from such currents. (AEC)

  9. YBCO Josephson Junction Arrays

    DTIC Science & Technology

    1993-07-14

    Also, CaRuO 3 is chemically compatible with YBa2Cu30 7 and its conductivity does not appear to be strongly dependent on doping or oxygen concentration...barrier conductivity is quite high. The first YBa2Cu30 7 layer and the SrTiO3 layer are deposited first and then patterned with ion milling (to help form...the edge junction will dominate any leakage through the SrTiO3 , thus the integrity of that dielectric will not be a concern here. The integrity of the

  10. Ion bipolar junction transistors

    PubMed Central

    Tybrandt, Klas; Larsson, Karin C.; Richter-Dahlfors, Agneta; Berggren, Magnus

    2010-01-01

    Dynamic control of chemical microenvironments is essential for continued development in numerous fields of life sciences. Such control could be achieved with active chemical circuits for delivery of ions and biomolecules. As the basis for such circuitry, we report a solid-state ion bipolar junction transistor (IBJT) based on conducting polymers and thin films of anion- and cation-selective membranes. The IBJT is the ionic analogue to the conventional semiconductor BJT and is manufactured using standard microfabrication techniques. Transistor characteristics along with a model describing the principle of operation, in which an anionic base current amplifies a cationic collector current, are presented. By employing the IBJT as a bioelectronic circuit element for delivery of the neurotransmitter acetylcholine, its efficacy in modulating neuronal cell signaling is demonstrated. PMID:20479274

  11. Ion bipolar junction transistors.

    PubMed

    Tybrandt, Klas; Larsson, Karin C; Richter-Dahlfors, Agneta; Berggren, Magnus

    2010-06-01

    Dynamic control of chemical microenvironments is essential for continued development in numerous fields of life sciences. Such control could be achieved with active chemical circuits for delivery of ions and biomolecules. As the basis for such circuitry, we report a solid-state ion bipolar junction transistor (IBJT) based on conducting polymers and thin films of anion- and cation-selective membranes. The IBJT is the ionic analogue to the conventional semiconductor BJT and is manufactured using standard microfabrication techniques. Transistor characteristics along with a model describing the principle of operation, in which an anionic base current amplifies a cationic collector current, are presented. By employing the IBJT as a bioelectronic circuit element for delivery of the neurotransmitter acetylcholine, its efficacy in modulating neuronal cell signaling is demonstrated.

  12. Organotypic slice cultures of human gastric and esophagogastric junction cancer.

    PubMed

    Koerfer, Justus; Kallendrusch, Sonja; Merz, Felicitas; Wittekind, Christian; Kubick, Christoph; Kassahun, Woubet T; Schumacher, Guido; Moebius, Christian; Gaßler, Nikolaus; Schopow, Nikolas; Geister, Daniela; Wiechmann, Volker; Weimann, Arved; Eckmann, Christian; Aigner, Achim; Bechmann, Ingo; Lordick, Florian

    2016-07-01

    Gastric and esophagogastric junction cancers are heterogeneous and aggressive tumors with an unpredictable response to cytotoxic treatment. New methods allowing for the analysis of drug resistance are needed. Here, we describe a novel technique by which human tumor specimens can be cultured ex vivo, preserving parts of the natural cancer microenvironment. Using a tissue chopper, fresh surgical tissue samples were cut in 400 μm slices and cultivated in 6-well plates for up to 6 days. The slices were processed for routine histopathology and immunohistochemistry. Cytokeratin stains (CK8, AE1/3) were applied for determining tumor cellularity, Ki-67 for proliferation, and cleaved caspase-3 staining for apoptosis. The slices were analyzed under naive conditions and following 2-4 days in vitro exposure to 5-FU and cisplatin. The slice culture technology allowed for a good preservation of tissue morphology and tumor cell integrity during the culture period. After chemotherapy exposure, a loss of tumor cellularity and an increase in apoptosis were observed. Drug sensitivity of the tumors could be assessed. Organotypic slice cultures of gastric and esophagogastric junction cancers were successfully established. Cytotoxic drug effects could be monitored. They may be used to examine mechanisms of drug resistance in human tissue and may provide a unique and powerful ex vivo platform for the prediction of treatment response.

  13. Bone tumor

    MedlinePlus

    Tumor - bone; Bone cancer; Primary bone tumor; Secondary bone tumor; Bone tumor - benign ... The cause of bone tumors is unknown. They often occur in areas of the bone that grow rapidly. Possible causes include: Genetic defects ...

  14. Somatostatin regulates tight junction proteins expression in colitis mice.

    PubMed

    Li, Xiao; Wang, Qian; Xu, Hua; Tao, Liping; Lu, Jing; Cai, Lin; Wang, Chunhui

    2014-01-01

    Tight junction plays a critical role in intestinal defence. The alteration and perturbation of tight junction proteins could induce intestine barrier damage, and lead to the malabsorption of electrolytes and water. Previous studies had showed that colonic infection and inflammation could lead to the alteration of tight junction function, and somatostatin could protect intestinal epithelia. Thus, this study could explore that whether somatostatin could regulate tight junction in colitis mice. Colitis mice with diarrhea were induced by Citrobacter rodentium (CR) and Dextran sulfate sodium (DSS). In CR infected model, cladudin-1 and claudin-3 expression significantly decreased compared with the control mice (P<0.05); after octreotide treatment, claudin-1 and claudin-3 expression significantly increased compared with untreated CR infected mice (P<0.05). In DSS colitis model, occludin and claudin-3 expression significantly decreased compared with the control mice (P<0.05); and octreotide treatment could only significantly upregulate claudin-3 expression compared with untreated DSS colitis mice (P<0.05). To testify our results in vivo, we repeated the models in caco-2 cells by exposed with enteropathogenic Escherichia coli (E. Coli) and Tumor necrosis factor α (TNF-α). The results in vitro were consistent with in vivo study. The results suggested that somatostatin play a role in intestinal barrier protection by modulating tight junction proteins expression.

  15. Somatostatin regulates tight junction proteins expression in colitis mice

    PubMed Central

    Li, Xiao; Wang, Qian; Xu, Hua; Tao, Liping; Lu, Jing; Cai, Lin; Wang, Chunhui

    2014-01-01

    Tight junction plays a critical role in intestinal defence. The alteration and perturbation of tight junction proteins could induce intestine barrier damage, and lead to the malabsorption of electrolytes and water. Previous studies had showed that colonic infection and inflammation could lead to the alteration of tight junction function, and somatostatin could protect intestinal epithelia. Thus, this study could explore that whether somatostatin could regulate tight junction in colitis mice. Colitis mice with diarrhea were induced by Citrobacter rodentium (CR) and Dextran sulfate sodium (DSS). In CR infected model, cladudin-1 and claudin-3 expression significantly decreased compared with the control mice (P < 0.05); after octreotide treatment, claudin-1 and claudin-3 expression significantly increased compared with untreated CR infected mice (P < 0.05). In DSS colitis model, occludin and claudin-3 expression significantly decreased compared with the control mice (P < 0.05); and octreotide treatment could only significantly upregulate claudin-3 expression compared with untreated DSS colitis mice (P < 0.05). To testify our results in vivo, we repeated the models in caco-2 cells by exposed with enteropathogenic Escherichia coli (E. Coli) and Tumor necrosis factor α (TNF-α). The results in vitro were consistent with in vivo study. The results suggested that somatostatin play a role in intestinal barrier protection by modulating tight junction proteins expression. PMID:24966923

  16. The Role of Chemical Inhibition of Gap Junctional Intercellular Communication in Toxicology.

    DTIC Science & Technology

    1988-02-14

    cell communication, tumor promoters, terato- 0620 gens, neurotoxins, protein kinase C, chemical toxicity. 19 ABSTRACT (Continue on reverse if necessary...hypothesis that chemical modulation of gap junctional intercellular communication can lead to many toxic endpoints, such as teratogenesis, tumor promotion... tumor promotion, reproductive-, immune- and neurotoxicities. To date, after two years into the project, we have initiated work on all of the specific aims

  17. Thermopower measurements in molecular junctions.

    PubMed

    Rincón-García, Laura; Evangeli, Charalambos; Rubio-Bollinger, Gabino; Agraït, Nicolás

    2016-08-07

    The measurement of thermopower in molecular junctions offers complementary information to conductance measurements and is becoming essential for the understanding of transport processes at the nanoscale. In this review, we discuss the recent advances in the study of the thermoelectric properties of molecular junctions. After presenting the theoretical background for thermoelectricity at the nanoscale, we review the experimental techniques for measuring the thermopower in these systems and discuss the main results. Finally, we consider the challenges in the application of molecular junctions in viable thermoelectric devices.

  18. Ribozyme Targeting the Novel Fusion Junction of EGFRvIII in Breast Cancer

    DTIC Science & Technology

    2003-07-01

    targeting the novel junction of EGFRvyII. * Demonstrate the therapeutic efficacy of an anti-EGFRvIll hammerhead ribozyme targeting the endogenous...first demonstration of the therapeutic efficacy of an anti-EGFRvlII hammerhead ribozyme targeting the endogenous EGFRvAII expression against human...202-687-7505.designed and generated a tumor specific hammerhead ribozyme E-mail: Tangc@georgetown.edu targeted to the novel fusion junction of

  19. Thermal conductance of superlattice junctions

    SciTech Connect

    Lu, Simon; McGaughey, Alan J. H.

    2015-05-15

    We use molecular dynamics simulations and the lattice-based scattering boundary method to compute the thermal conductance of finite-length Lennard-Jones superlattice junctions confined by bulk crystalline leads. The superlattice junction thermal conductance depends on the properties of the leads. For junctions with a superlattice period of four atomic monolayers at temperatures between 5 and 20 K, those with mass-mismatched leads have a greater thermal conductance than those with mass-matched leads. We attribute this lead effect to interference between and the ballistic transport of emergent junction vibrational modes. The lead effect diminishes when the temperature is increased, when the superlattice period is increased, and when interfacial disorder is introduced, but is reversed in the harmonic limit.

  20. Josephson junction Q-spoiler

    DOEpatents

    Clarke, J.; Hilbert, C.; Hahn, E.L.; Sleator, T.

    1986-03-25

    An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.

  1. Josephson junction Q-spoiler

    DOEpatents

    Clarke, John; Hilbert, Claude; Hahn, Erwin L.; Sleator, Tycho

    1988-01-01

    An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.

  2. Control of Junction Flow

    NASA Astrophysics Data System (ADS)

    Su, T.-C.; Bingham, C.; Kellier, L.

    2001-11-01

    Control for horseshoe vortices resulting from boundary layer separation in front of a structure has long been sought without satisfactory results. Tests were carried out in a water channel with the objective of seeking such a control. The water channel has a test section of .6m wide, .4m deep and 8m long, with an adjustable mean flow speed of up to .5m/s. Flow visualization technique was used to elucidate the flow process. To control the horseshoe vortex a long airfoil of 1cm chord was placed horizontally near the ground upstream of a 10cm thin square plate. It was found that the original horseshoe vortex moved toward and circulated around the airfoil. The junction flow immediately upstream of the obstacle was noticeably steady and free of disturbance. The process was insensitive to the streamwise location of the airfoil, horseshoe's vortical structure, stream speed and acceleration, upstream vortical influx, and magnitude/sign of airfoil's angle of attack. Experimental results with obliquely mounted square cylinder were similar, which demonstrated that controls were effective for all angles of attack.

  3. Electronic thermometry in tunable tunnel junction

    DOEpatents

    Maksymovych, Petro

    2016-03-15

    A tunable tunnel junction thermometry circuit includes a variable width tunnel junction between a test object and a probe. The junction width is varied and a change in thermovoltage across the junction with respect to the change in distance across the junction is determined. Also, a change in biased current with respect to a change in distance across the junction is determined. A temperature gradient across the junction is determined based on a mathematical relationship between the temperature gradient, the change in thermovoltage with respect to distance and the change in biased current with respect to distance. Thermovoltage may be measured by nullifying a thermoelectric tunneling current with an applied voltage supply level. A piezoelectric actuator may modulate the probe, and thus the junction width, to vary thermovoltage and biased current across the junction. Lock-in amplifiers measure the derivatives of the thermovoltage and biased current modulated by varying junction width.

  4. Octagonal Defects at Carbon Nanotube Junctions

    PubMed Central

    Jaskólski, W.; Pelc, M.; Chico, Leonor; Ayuela, A.

    2013-01-01

    We investigate knee-shaped junctions of semiconductor zigzag carbon nanotubes. Two dissimilar octagons appear at such junctions; one of them can reconstruct into a pair of pentagons. The junction with two octagons presents two degenerate localized states at Fermi energy (EF). The reconstructed junction has only one state near EF, indicating that these localized states are related to the octagonal defects. The inclusion of Coulomb interaction splits the localized states in the junction with two octagons, yielding an antiferromagnetic system. PMID:24089604

  5. Irinotecan disrupts tight junction proteins within the gut

    PubMed Central

    Wardill, Hannah R; Bowen, Joanne M; Al-Dasooqi, Noor; Sultani, Masooma; Bateman, Emma; Stansborough, Romany; Shirren, Joseph; Gibson, Rachel J

    2014-01-01

    Chemotherapy for cancer causes significant gut toxicity, leading to severe clinical manifestations and an increased economic burden. Despite much research, many of the underlying mechanisms remain poorly understood hindering effective treatment options. Recently there has been renewed interest in the role tight junctions play in the pathogenesis of chemotherapy-induced gut toxicity. To delineate the underlying mechanisms of chemotherapy-induced gut toxicity, this study aimed to quantify the molecular changes in key tight junction proteins, ZO-1, claudin-1, and occludin, using a well-established preclinical model of gut toxicity. Female tumor-bearing dark agouti rats received irinotecan or vehicle control and were assessed for validated parameters of gut toxicity including diarrhea and weight loss. Rats were killed at 6, 24, 48, 72, 96, and 120 h post-chemotherapy. Tight junction protein and mRNA expression in the small and large intestines were assessed using semi-quantitative immunohistochemistry and RT-PCR. Significant changes in protein expression of tight junction proteins were seen in both the jejunum and colon, correlating with key histological changes and clinical features. mRNA levels of claudin-1 were significantly decreased early after irinotecan in the small and large intestines. ZO-1 and occludin mRNA levels remained stable across the time-course of gut toxicity. Findings strongly suggest irinotecan causes tight junction defects which lead to mucosal barrier dysfunction and the development of diarrhea. Detailed research is now warranted to investigate posttranslational regulation of tight junction proteins to delineate the underlying pathophysiology of gut toxicity and identify future therapeutic targets. PMID:24316664

  6. Genomic similarity between gastroesophageal junction and esophageal Barrett's adenocarcinomas

    PubMed Central

    Kuick, Rork; Thomas, Dafydd G.; Nadal, Ernest; Lin, Jules; Chang, Andrew C.; Reddy, Rishindra M.; Orringer, Mark B.; Taylor, Jeremy M. G.; Wang, Thomas D.; Beer, David G.

    2016-01-01

    The current high mortality rate of esophageal adenocarcinoma (EAC) reflects frequent presentation at an advanced stage. Recent efforts utilizing fluorescent peptides have identified overexpressed cell surface targets for endoscopic detection of early stage Barrett's-derived EAC. Unfortunately, 30% of EAC patients present with gastroesophageal junction adenocarcinomas (GEJAC) and lack premalignant Barrett's metaplasia, limiting this early detection strategy. We compared mRNA profiles from 52 EACs (tubular EAC; tEAC) collected above the gastroesophageal junction with 70 GEJACs, 8 normal esophageal and 5 normal gastric mucosa samples. We also analyzed our previously published whole-exome sequencing data in a large cohort of these tumors. Principal component analysis, hierarchical clustering and survival-based analyses demonstrated that GEJAC and tEAC were highly similar, with only modest differences in expression and mutation profiles. The combined expression cohort allowed identification of 49 genes coding cell surface targets overexpressed in both GEJAC and tEAC. We confirmed that three of these candidates (CDH11, ICAM1 and CLDN3) were overexpressed in tumors when compared to normal esophagus, normal gastric and non-dysplastic Barrett's, and localized to the surface of tumor cells. Molecular profiling of tEAC and GEJAC tumors indicated extensive similarity and related molecular processes. Identified genes that encode cell surface proteins overexpressed in both Barrett's-derived EAC and those that arise without Barrett's metaplasia will allow simultaneous detection strategies. PMID:27363029

  7. Conducting polyaniline nanowire electrode junction

    NASA Astrophysics Data System (ADS)

    Gaikwad, Sumedh; Bodkhe, Gajanan; Deshmukh, Megha; Patil, Harshada; Rushi, Arti; Shirsat, Mahendra D.; Koinkar, Pankaj; Kim, Yun-Hae; Mulchandani, Ashok

    2015-03-01

    In this paper, a synthesis of conducting polyaniline nanowires electrode junction (CPNEJ) has been reported. Conducting polyaniline nanowires electrode junction on Si/SiO2 substrate (having 3 μm gap between two gold microelectrodes) is prepared. Polyaniline nanowires with diameter (ca. 140 nm to 160 nm) were synthesized by one step electrochemical polymerization using galvanostatic (constant current) technique to bridge this gap. The surface morphology of CPNEJ was studied by scanning electron microscope (SEM). The synthesized CPNEJ is an excellent platform for biosensor applications.

  8. Inhibition of connexin43 gap junction channels by the endocrine disruptor ioxynil

    SciTech Connect

    Leithe, Edward; Kjenseth, Ane; Bruun, Jarle; Sirnes, Solveig; Rivedal, Edgar

    2010-08-15

    Gap junctions are intercellular plasma membrane domains containing channels that mediate transport of ions, metabolites and small signaling molecules between adjacent cells. Gap junctions play important roles in a variety of cellular processes, including regulation of cell growth and differentiation, maintenance of tissue homeostasis and embryogenesis. The constituents of gap junction channels are a family of trans-membrane proteins called connexins, of which the best-studied is connexin43. Connexin43 functions as a tumor suppressor protein in various tissue types and is frequently dysregulated in human cancers. The pesticide ioxynil has previously been shown to act as an endocrine disrupting chemical and has multiple effects on the thyroid axis. Furthermore, both ioxynil and its derivative ioxynil octanoate have been reported to induce tumors in animal bioassays. However, the molecular mechanisms underlying the possible tumorigenic effects of these compounds are unknown. In the present study we show that ioxynil and ioxynil octanoate are strong inhibitors of connexin43 gap junction channels. Both compounds induced rapid loss of connexin43 gap junctions at the plasma membrane and increased connexin43 degradation. Ioxynil octanoate, but not ioxynil, was found to be a strong activator of ERK1/2. The compounds also had different effects on the phosphorylation status of connexin43. Taken together, the data show that ioxynil and ioxynil octanoate are potent inhibitors of intercellular communication via gap junctions.

  9. Simple Electronic Analog of a Josephson Junction.

    ERIC Educational Resources Information Center

    Henry, R. W.; And Others

    1981-01-01

    Demonstrates that an electronic Josephson junction analog constructed from three integrated circuits plus an external reference oscillator can exhibit many of the circuit phenomena of a real Josephson junction. Includes computer and other applications of the analog. (Author/SK)

  10. The Yolla Bolly junction revisited

    SciTech Connect

    Blake, M.C.; Jayko, A.S. ); Jones, D.L. . Dept. of Geology and Geophysics); Engebretson, D.C. . Dept. of Geology)

    1993-04-01

    West of Red Bluff, California, rocks of the northern Coast Ranges, Klamath-Sierra Nevada, and Great Valley provinces come together at what has been called the Yolla Bolly junction. Mapping of the Red Bluff and Willows 1:100,000 quadrangles has greatly clarified the enigmatic features of this complex area. Terranes of the Klamath Mountains and their Cretaceous sedimentary cover have been thrust northwestward over the Elder Creek terrane and Franciscan rocks, north of the left-lateral Cold Fork fault zone. The Condrey Mountain window (Franciscan Pickett Peak terrane) provides a measure of the magnitude of this thrusting (ca 90 km). South of the Cold Fork fault zone, the Franciscan and Elder Creek terranes were driven southeastward as tectonic wedges onto Sierran-Klamath basement. Timing of this scissor-tectonics is not constrained near the junction, but further north in southwest Oregon, Lower Eocene strata were deformed by overthrusting of the Klamath block whereas Upper Eocene strata overlap the thrust, indicating that thrusting occurred between about 52 and 60 Ma. Plate reconstructions for this time interval indicate the close proximity of the Kula-Farallon-North America triple junction and that old (ca 100 m.y.) Farallon lithosphere was being subducted north of the junction whereas to the south, very young (ca 10 m.y.) Kula plate was presumably obducted onto North America.

  11. 27 CFR 9.164 - River Junction.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false River Junction. 9.164... River Junction. (a) Name. The name of the viticultural area described in this section is “River Junction.” (b) Approved maps. The appropriate maps for determining the boundaries of the River...

  12. 27 CFR 9.164 - River Junction.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false River Junction. 9.164... River Junction. (a) Name. The name of the viticultural area described in this section is “River Junction.” (b) Approved maps. The appropriate maps for determining the boundaries of the River...

  13. Ear Tumors

    MedlinePlus

    ... Outer Ear Ear Blockages Ear Tumors External Otitis (Swimmer's Ear) Malignant External Otitis Perichondritis Tumors of the ... Outer Ear Ear Blockages Ear Tumors External Otitis (Swimmer's Ear) Malignant External Otitis Perichondritis NOTE: This is ...

  14. The Role of Chemical Inhibition of Gap-Junctional Intercellular Communication in Toxicology

    DTIC Science & Technology

    1991-03-31

    Florida. Inhibition of gap junctional intercellular communication (GJIC has been implicated as an important epigenetic modulation during...Annual Meeting of the Society of Toxicology, February 1991, Dallas, Texas. A major epigenetic modulation induced by many tumor promoters both in vivo...GJIC in rat pancreatic epithelial cells. The results indicated that many chlorinated pesticides , the phorbol ester tumor promoter, TPA, and a number of

  15. [Ultrastructural characteristics of gap junctions in human glial brain tumors].

    PubMed

    Kirichenko, E Yu; Savchenko, A F; Kozachenko, D V; Matsionis, A E; Logvinov, A K

    2017-01-01

    Цель. Электронно-микроскопическое исследование межклеточной сообщаемости в образцах гемистоцитарной астроцитомы, олигодендроглиомы и глиобластомы. Материал и методы. Фрагменты ткани опухоли, резецированные оперативным путем, фиксировали в 2,5% растворе глутаральдегида, постфиксировали в 1% растворе OsO4, обезвоживали и заливали в эпоксидную смолу. Ультратонкие срезы просматривали под электронным микроскопом Jem 1011 («Jeol», Япония). Результаты. В образцах астроцитом идентифицировали одиночные и близкорасположенные щелевые контакты (ЩК), сформированные тонкими отростками, имеющими ультраструктуру астроглиальных. При этом отмечено полное отсутствие химических синапсов в гемистоцитарной астроцитоме и глиобластоме. Выявленные ЩК имели небольшую длину и деформированные нексусы. В образцах олигодендроглиомы вокруг химических синапсов наблюдались сохранные астроглиальные отростки, однако межглиальные ЩК обнаружены не были. Заключение. Проведенное исследование показало присутствие межклеточных ЩК с некоторыми ультраструктурными отличиями в образцах опухолей астроглиального происхождения разной степени градации. По современным данным, ЩК в астроцитомах способны создавать устойчивую самоподдерживающуюся сеть, способствующую прогрессированию опухоли и обеспечивающую сопротивление терапевтическому воздействию. В то же время заметная редукция количества ЩК, наиболее выраженная в образце олигодендроглиомы, может способствовать ускорению миграции опухолевых клеток в окружающую паренхиму. Безусловно, изучение ЩК должно быть продолжено на большей по численности группе глиальных опухолей для подтверждения выявленных в настоящей работе особенностей межклеточной коммуникации.

  16. Tight junction proteins: from barrier to tumorigenesis.

    PubMed

    Runkle, E Aaron; Mu, David

    2013-08-28

    The tight junction is a multi-protein complex and is the apical most junctional complex in certain epithelial and endothelial cells. A great deal of attention has been devoted to the understanding of these proteins in contributing to the barrier function - that is, regulating the paracellular flux or permeability between adjacent cells. However, tight junction proteins are now recognized as having functions beyond the barrier. The focus of this review is to discuss the barrier function of the tight junction and to summarize the literature with a focus on the role of tight junction proteins in proliferation, transformation, and metastasis.

  17. Tight Junction Proteins: From Barrier to Tumorigenesis

    PubMed Central

    Runkle, E. Aaron; Mu, David

    2013-01-01

    The tight junction is a multi-protein complex and is the apical most junctional complex in certain epithelial and endothelial cells. A great deal of attention has been devoted to the understanding of these proteins in contributing to the barrier function - that is, regulating the paracellular flux or permeability between adjacent cells. However, tight junction proteins are now recognized as having functions beyond the barrier. The focus of this review is to discuss the barrier function of the tight junction and to summarize the literature with a focus on the role of tight junction proteins in proliferation, transformation, and metastasis. PMID:23743355

  18. Tumor Types: Understanding Brain Tumors

    MedlinePlus

    ... Resources Tools & Publications Tumor Types: Understanding Brain Tumors World Health Organization (WHO) Updates Official Classification of Tumors ... Central Nervous System On May 9, 2016, the World Health Organization (WHO) published an official reclassification of ...

  19. Tight Junction Proteins in Human Schwann Cell Autotypic Junctions

    PubMed Central

    Alanne, Maria H.; Pummi, Kati; Heape, Anthony M.; Grènman, Reidar; Peltonen, Juha; Peltonen, Sirkku

    2009-01-01

    Tight junctions (TJs) form physical barriers in various tissues and regulate paracellular transport of ions, water, and molecules. Myelinating Schwann cells form highly organized structures, including compact myelin, nodes of Ranvier, paranodal regions, Schmidt-Lanterman incisures, periaxonal cytoplasmic collars, and mesaxons. Autotypic TJs are formed in non-compacted myelin compartments between adjacent membrane lamellae of the same Schwann cell. Using indirect immunofluorescence and RT-PCR, we analyzed the expression of adherens junction (E-cadherin) and TJ [claudins, zonula occludens (ZO)-1, occludin] components in human peripheral nerve endoneurium, showing clear differences with published rodent profiles. Adult nerve paranodal regions contained E-cadherin, claudin-1, claudin-2, and ZO-1. Schmidt-Lanterman incisures contained E-cadherin, claudin-1, claudin-2, claudin-3, claudin-5, ZO-1, and occludin. Mesaxons contained E-cadherin, claudin-1, claudin-2, claudin-3, ZO-1, and occludin. None of the proteins studied were associated with nodal inter-Schwann cell junctions. Fetal nerve expression of claudin-1, claudin-3, ZO-1, and occludin was predominantly punctate, with a mesaxonal labeling pattern, but paranodal (ZO-1, claudin-3) and Schmidt-Lanterman incisure (claudins-1 and -3) expression profiles typical of compact myelin were visible by gestational week 37. The clear differences observed between human and published rodent nerve profiles emphasize the importance of human studies when translating the results of animal models to human diseases. (J Histochem Cytochem 57:523–529, 2009) PMID:19153196

  20. Seebeck effect in molecular junctions.

    PubMed

    Zimbovskaya, Natalya A

    2016-05-11

    Advances in the fabrication and characterization of nanoscale systems presently allow for a better understanding of their thermoelectric properties. As is known, the building blocks of thermoelectricity are the Peltier and Seebeck effects. In the present work we review results of theoretical studies of the Seebeck effect in single-molecule junctions and similar systems. The behavior of thermovoltage and thermopower in these systems is controlled by several factors including the geometry of molecular bridges, the characteristics of contacts between the bridge and the electrodes, the strength of the Coulomb interactions between electrons on the bridge, and of electron-phonon interactions. We describe the impact of these factors on the thermopower. Also, we discuss a nonlinear Seebeck effect in molecular junctions.

  1. Seebeck effect in molecular junctions

    NASA Astrophysics Data System (ADS)

    Zimbovskaya, Natalya A.

    2016-05-01

    Advances in the fabrication and characterization of nanoscale systems presently allow for a better understanding of their thermoelectric properties. As is known, the building blocks of thermoelectricity are the Peltier and Seebeck effects. In the present work we review results of theoretical studies of the Seebeck effect in single-molecule junctions and similar systems. The behavior of thermovoltage and thermopower in these systems is controlled by several factors including the geometry of molecular bridges, the characteristics of contacts between the bridge and the electrodes, the strength of the Coulomb interactions between electrons on the bridge, and of electron-phonon interactions. We describe the impact of these factors on the thermopower. Also, we discuss a nonlinear Seebeck effect in molecular junctions.

  2. Thermocouple, multiple junction reference oven

    NASA Technical Reports Server (NTRS)

    Leblanc, L. P. (Inventor)

    1981-01-01

    An improved oven for maintaining the junctions of a plurality of reference thermocouples at a common and constant temperature is described. The oven is characterized by a cylindrical body defining a heat sink with axially extended-cylindrical cavity a singularized heating element which comprises a unitary cylindrical heating element consisting of a resistance heating coil wound about the surface of metallic spool with an axial bore defined and seated in the cavity. Other features of the oven include an annular array of radially extended bores defined in the cylindrical body and a plurality of reference thermocouple junctions seated in the bores in uniformly spaced relation with the heating element, and a temperature sensing device seated in the axial bore for detecting temperature changes as they occur in the spool and circuit to apply a voltage across the coil in response to detected drops in temperatures of the spool.

  3. Thermoelectric efficiency of molecular junctions.

    PubMed

    Perroni, C A; Ninno, D; Cataudella, V

    2016-09-21

    Focus of the review is on experimental set-ups and theoretical proposals aimed to enhance thermoelectric performances of molecular junctions. In addition to charge conductance, the thermoelectric parameter commonly measured in these systems is the thermopower, which is typically rather low. We review recent experimental outcomes relative to several junction configurations used to optimize the thermopower. On the other hand, theoretical calculations provide estimations of all the thermoelectric parameters in the linear and non-linear regime, in particular of the thermoelectric figure of merit and efficiency, completing our knowledge of molecular thermoelectricity. For this reason, the review will mainly focus on theoretical studies analyzing the role of not only electronic, but also of the vibrational degrees of freedom. Theoretical results about thermoelectric phenomena in the coherent regime are reviewed focusing on interference effects which play a significant role in enhancing the figure of merit. Moreover, we review theoretical studies including the effects of molecular many-body interactions, such as electron-vibration couplings, which typically tend to reduce the efficiency. Since a fine tuning of many parameters and coupling strengths is required to optimize the thermoelectric conversion in molecular junctions, new theoretically proposed set-ups are discussed in the conclusions.

  4. Squeezed States in Josephson Junctions.

    NASA Astrophysics Data System (ADS)

    Hu, X.; Nori, F.

    1996-03-01

    We have studied quantum fluctuation properties of Josephson junctions in the limit of large Josephson coupling energy and small charging energy, when the eigenstates of the system can be treated as being nearly localized. We have considered(X. Hu and F. Nori, preprints.) a Josephson junction in a variety of situations, e.g., coupled to one or several of the following elements: a capacitor, an inductor (in a superconducting ring), and an applied current source. By solving an effective Shrödinger equation, we have obtained squeezed vacuum (coherent) states as the ground states of a ``free-oscillating'' (linearly-driven) Josephson junction, and calculated the uncertainties of its canonical momentum, charge, and coordinate, phase. We have also shown that the excited states of the various systems we consider are similar to the number states of a simple harmonic oscillator but with different fluctuation properties. Furthermore, we have obtained the time-evolution operators for these systems. These operators can make it easier to calculate the time-dependence of the expectation values and fluctuations of various quantities starting from an arbitrary initial state.

  5. MicroRNA Regulation of Endothelial Junction Proteins and Clinical Consequence

    PubMed Central

    Zhuang, Yugang; Peng, Hu; Mastej, Victoria

    2016-01-01

    Cellular junctions play a critical role in structural connection and signal communication between cells in various tissues. Although there are structural and functional varieties, cellular junctions include tight junctions, adherens junctions, focal adhesion junctions, and tissue specific junctions such as PECAM-1 junctions in endothelial cells (EC), desmosomes in epithelial cells, and hemidesmosomes in EC. Cellular junction dysfunction and deterioration are indicative of clinical diseases. MicroRNAs (miRNA) are ~20 nucleotide, noncoding RNAs that play an important role in posttranscriptional regulation for almost all genes. Unsurprisingly, miRNAs regulate junction protein gene expression and control junction structure integrity. In contrast, abnormal miRNA regulation of junction protein gene expression results in abnormal junction structure, causing related diseases. The major components of tight junctions include zonula occluden-1 (ZO-1), claudin-1, claudin-5, and occludin. The miRNA regulation of ZO-1 has been intensively investigated. ZO-1 and other tight junction proteins such as claudin-5 and occludin were positively regulated by miR-126, miR-107, and miR21 in different models. In contrast, ZO-1, claudin-5, and occludin were negatively regulated by miR-181a, miR-98, and miR150. Abnormal tight junction miRNA regulation accompanies cerebral middle artery ischemia, brain trauma, glioma metastasis, and so forth. The major components of adherens junctions include VE-cadherin, β-catenin, plakoglobin, P120, and vinculin. VE-cadherin and β-catenin were regulated by miR-9, miR-99b, miR-181a, and so forth. These regulations directly affect VE-cadherin-β-catenin complex stability and further affect embryo and tumor angiogenesis, vascular development, and so forth. miR-155 and miR-126 have been shown to regulate PECAM-1 and affect neutrophil rolling and EC junction integrity. In focal adhesion junctions, the major components are integrin β4, paxillin, and focal

  6. Transfer of functional microRNAs between glioblastoma and microvascular endothelial cells through gap junctions

    PubMed Central

    Thuringer, Dominique; Boucher, Jonathan; Jego, Gaetan; Pernet, Nicolas; Cronier, Laurent; Hammann, Arlette; Solary, Eric; Garrido, Carmen

    2016-01-01

    Extensive invasion and angiogenesis are hallmark features of malignant glioblastomas. Here, we co-cultured U87 human glioblastoma cells and human microvascular endothelial cells (HMEC) to demonstrate the exchange of microRNAs that initially involve the formation of gap junction communications between the two cell types. The functional inhibition of gap junctions by carbenoxolone blocks the transfer of the anti-tumor miR-145-5p from HMEC to U87, and the transfer of the pro-invasive miR-5096 from U87 to HMEC. These two microRNAs exert opposite effects on angiogenesis in vitro. MiR-5096 was observed to promote HMEC tubulogenesis, initially by increasing Cx43 expression and the formation of heterocellular gap junctions, and secondarily through a gap-junction independent pathway. Our results highlight the importance of microRNA exchanges between tumor and endothelial cells that in part involves the formation of functional gap junctions between the two cell types. PMID:27661112

  7. Transfer of functional microRNAs between glioblastoma and microvascular endothelial cells through gap junctions.

    PubMed

    Thuringer, Dominique; Boucher, Jonathan; Jego, Gaetan; Pernet, Nicolas; Cronier, Laurent; Hammann, Arlette; Solary, Eric; Garrido, Carmen

    2016-11-08

    Extensive invasion and angiogenesis are hallmark features of malignant glioblastomas. Here, we co-cultured U87 human glioblastoma cells and human microvascular endothelial cells (HMEC) to demonstrate the exchange of microRNAs that initially involve the formation of gap junction communications between the two cell types. The functional inhibition of gap junctions by carbenoxolone blocks the transfer of the anti-tumor miR-145-5p from HMEC to U87, and the transfer of the pro-invasive miR-5096 from U87 to HMEC. These two microRNAs exert opposite effects on angiogenesis in vitro. MiR-5096 was observed to promote HMEC tubulogenesis, initially by increasing Cx43 expression and the formation of heterocellular gap junctions, and secondarily through a gap-junction independent pathway. Our results highlight the importance of microRNA exchanges between tumor and endothelial cells that in part involves the formation of functional gap junctions between the two cell types.

  8. The Dissolution of Double Holliday Junctions

    PubMed Central

    Bizard, Anna H.; Hickson, Ian D.

    2014-01-01

    Double Holliday junctions (dHJS) are important intermediates of homologous recombination. The separate junctions can each be cleaved by DNA structure-selective endonucleases known as Holliday junction resolvases. Alternatively, double Holliday junctions can be processed by a reaction known as “double Holliday junction dissolution.” This reaction requires the cooperative action of a so-called “dissolvasome” comprising a Holliday junction branch migration enzyme (Sgs1/BLM RecQ helicase) and a type IA topoisomerase (Top3/TopoIIIα) in complex with its OB (oligonucleotide/oligosaccharide binding) fold containing accessory factor (Rmi1). This review details our current knowledge of the dissolution process and the players involved in catalyzing this mechanistically complex means of completing homologous recombination reactions. PMID:24984776

  9. Physics and Applications of NIS Junctions

    SciTech Connect

    Ullom, J N

    2001-08-24

    This paper reviews the physics and applications of Normal-Insulator-Superconductor (NIS) tunnel junctions. The current-voltage properties of NIS junctions are diode-like with a strong temperature dependence. Hence, these structures can be used as sensitive thermometers at temperatures well below the energy gap, {Delta}, of the superconducting electrode. For junction voltages comparable to {Delta}/q, current flow removes energy from the normal electrode. This property has been exploited to build refrigerators capable of cooling thin-film circuits from 0.3 K to 0.1 K. Calorimeters and bolometers for the detection of X-rays and millimeter-wave radiation, respectively, have successfully been built from NIS junctions. NIS junctions have also been used to probe the superconducting state. Finally, recent ideas for the use of NIS junctions as simple circuit elements are described.

  10. In vitro formation of gap junction vesicles.

    PubMed

    Goodenough, D A

    1976-02-01

    A method is described that uses trypsin digestion combined with collagenase-hyaluronidase which produces a population of gap junction vesicles. The hexagonal lattice of subunits ("connexons") comprising the gapjunctions appears unaltered by various structural criteria and by buoyant density measurements. The gap junction vesciles are closed by either a single or a double profile of nonjunctional "membrane," which presents a smooth, particle-free fracture face. Horseradish peroxidase and cytochrome c studies have revealed that about 20% of the gap junction vesicles are impermeable to proteins 12,000 daltons or larger. The increased purity of the trypsinized junction preparation suggests that one of the disulfide reduction products of the gap-junction principal protein may be a nonjunctional contaminating peptide. The gap junction appears to be composed of a single 18,000-dalton protein, connexin, which may be reduced to a single 9,000-dalton peak. The number of peptides in this reduced peak are still unknown.

  11. Magnetic tunnel junction pattern technique

    NASA Astrophysics Data System (ADS)

    Chen, Eugene; Schwarz, Benjamin; Choi, Chang Ju; Kula, Witold; Wolfman, Jerome; Ounadjela, Kamel; Geha, Sam

    2003-05-01

    We have developed a magnetic tunnel junction (MTJ) pattern technique that involves transforming the magnetic layer above the tunnel barrier in unwanted areas into an insulator, thus providing insulation between different MTJ devices without suffering common tunnel barrier shorting problems. With this technique, 90%-100% yielding MTJ devices have been observed. MTJ results using this process are superior to an etching based process. Switching distribution of patterned magnetic bits is also narrower using this novel technique. Process control and the ability to stop on the tunnel barrier have been demonstrated.

  12. Thermoelectric effects in nanoscale junctions.

    PubMed

    Dubi, Yonatan; Di Ventra, Massimiliano

    2009-01-01

    Despite its intrinsic nonequilibrium origin, thermoelectricity in nanoscale systems is usually described within a static scattering approach which disregards the dynamical interaction with the thermal baths that maintain energy flow. Using the theory of open quantum systems, we show instead that unexpected properties, such as a resonant structure and large sign sensitivity, emerge if the nonequilibrium nature of this problem is considered. Our approach also allows us to define and study a local temperature, which shows hot spots and oscillations along the system according to the coupling of the latter to the electrodes. This demonstrates that Fourier's lawa paradigm of statistical mechanicsis generally violated in nanoscale junctions.

  13. Method for shallow junction formation

    DOEpatents

    Weiner, K.H.

    1996-10-29

    A doping sequence is disclosed that reduces the cost and complexity of forming source/drain regions in complementary metal oxide silicon (CMOS) integrated circuit technologies. The process combines the use of patterned excimer laser annealing, dopant-saturated spin-on glass, silicide contact structures and interference effects creates by thin dielectric layers to produce source and drain junctions that are ultrashallow in depth but exhibit low sheet and contact resistance. The process utilizes no photolithography and can be achieved without the use of expensive vacuum equipment. The process margins are wide, and yield loss due to contact of the ultrashallow dopants is eliminated. 8 figs.

  14. Method for shallow junction formation

    DOEpatents

    Weiner, Kurt H.

    1996-01-01

    A doping sequence that reduces the cost and complexity of forming source/drain regions in complementary metal oxide silicon (CMOS) integrated circuit technologies. The process combines the use of patterned excimer laser annealing, dopant-saturated spin-on glass, silicide contact structures and interference effects creates by thin dielectric layers to produce source and drain junctions that are ultrashallow in depth but exhibit low sheet and contact resistance. The process utilizes no photolithography and can be achieved without the use of expensive vacuum equipment. The process margins are wide, and yield loss due to contact of the ultrashallow dopants is eliminated.

  15. Mammary tumors

    SciTech Connect

    Weller, R.E.

    1988-10-01

    Mammary neoplasia is one of the more common malignancies affecting domestic species. Despite their importance, they are often over- diagnosed, undertreated and subject to several misconceptions propagated by veterinarians and pet owners alike. Mammary neoplasia is the most frequent tumor type encountered in the female accounting for almost half of all malignancies reported. The canine has the highest incidence of mammary tumors of all domestic species. In the dog, about 65 percent of mammary tumors are benign mixed tumors, and 25 percent are carcinomas. The rest are adenomas, myoepitheliomas, and malignant mixed tumors. The age distribution of mammary tumors closely follows the age distribution of most tumors in the dog. Mammary tumors are rare in dogs 2 years old, but incidence begins to increase sharply at approximately 6 years of age. Median age at diagnosis is about 10 years. No breed predilection has been consistently reported.

  16. Brain Tumors

    MedlinePlus

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  17. Urogenital tumors

    SciTech Connect

    Weller, R.E.

    1994-03-01

    An overview is provided for veterinary care of urogenital tumors in companion animals, especially the dog. Neoplasms discussed include tumors of the kidney, urinary bladder, prostate, testis, ovary, vagina, vulva and the canine transmissible venereal tumor. Topics addressed include description, diagnosis and treatment.

  18. Wilms Tumor

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Wilms Tumor KidsHealth > For Parents > Wilms Tumor Print A A A What's in this article? ... their child has cancer. Fortunately, most kids with Wilms tumor, a rare kidney cancer, survive and go on ...

  19. Electrodeposited, Transverse Nanowire Electroluminescent Junctions.

    PubMed

    Qiao, Shaopeng; Xu, Qiang; Dutta, Rajen K; Le Thai, Mya; Li, Xiaowei; Penner, Reginald M

    2016-09-27

    The preparation by electrodeposition of transverse nanowire electroluminescent junctions (tn-ELJs) is described, and the electroluminescence (EL) properties of these devices are characterized. The lithographically patterned nanowire electrodeposition process is first used to prepare long (millimeters), linear, nanocrystalline CdSe nanowires on glass. The thickness of these nanowires along the emission axis is 60 nm, and the width, wCdSe, along the electrical axis is adjustable from 100 to 450 nm. Ten pairs of nickel-gold electrical contacts are then positioned along the axis of this nanowire using lithographically directed electrodeposition. The resulting linear array of nickel-CdSe-gold junctions produces EL with an external quantum efficiency, EQE, and threshold voltage, Vth, that depend sensitively on wCdSe. EQE increases with increasing electric field and also with increasing wCdSe, and Vth also increases with wCdSe and, therefore, the electrical resistance of the tn-ELJs. Vth down to 1.8(±0.2) V (for wCdSe ≈ 100 nm) and EQE of 5.5(±0.5) × 10(-5) (for wCdSe ≈ 450 nm) are obtained. tn-ELJs produce a broad EL emission envelope, spanning the wavelength range from 600 to 960 nm.

  20. Tracheobronchial tumors

    PubMed Central

    Milenkovic, Branislava

    2016-01-01

    Tumors of trachea and bronchi are uncommon and can occur in the form of benign or low- and high-grade malignant tumors. Although tracheobronchial tumors (TBTs) represent only 0.6% of all pulmonary tumors, they are clinically significant. Delays in diagnosis of these tumors commonly occur because the signs and symptoms caused by these tumors are nonspecific and chest radiographs are often considered unremarkable. Therefore, novel radiological techniques and better access to flexible bronchoscopy enable detection of larger number of TBT. The purpose of this article is to provide a review of tracheal and bronchial tumors and discuss significant aspects of the different TBT with focus on clinical manifestations and diagnostic procedures. PMID:28066620

  1. Ballistic Graphene Josephson Junctions from the Short to the Long Junction Regimes

    NASA Astrophysics Data System (ADS)

    Borzenets, I. V.; Amet, F.; Ke, C. T.; Draelos, A. W.; Wei, M. T.; Seredinski, A.; Watanabe, K.; Taniguchi, T.; Bomze, Y.; Yamamoto, M.; Tarucha, S.; Finkelstein, G.

    2016-12-01

    We investigate the critical current IC of ballistic Josephson junctions made of encapsulated graphene-boron-nitride heterostructures. We observe a crossover from the short to the long junction regimes as the length of the device increases. In long ballistic junctions, IC is found to scale as ∝exp (-kBT /δ E ). The extracted energies δ E are independent of the carrier density and proportional to the level spacing of the ballistic cavity. As T →0 the critical current of a long (or short) junction saturates at a level determined by the product of δ E (or Δ ) and the number of the junction's transversal modes.

  2. Slit Diaphragms Contain Tight Junction Proteins

    PubMed Central

    Fukasawa, Hirotaka; Bornheimer, Scott; Kudlicka, Krystyna; Farquhar, Marilyn G.

    2009-01-01

    Slit diaphragms are essential components of the glomerular filtration apparatus, as changes in these junctions are the hallmark of proteinuric diseases. Slit diaphragms, considered specialized adherens junctions, contain both unique membrane proteins (e.g., nephrin, podocin, and Neph1) and typical adherens junction proteins (e.g., P-cadherin, FAT, and catenins). Whether slit diaphragms also contain tight junction proteins is unknown. Here, immunofluorescence, immunogold labeling, and cell fractionation demonstrated that rat slit diaphragms contain the tight junction proteins JAM-A (junctional adhesion molecule A), occludin, and cingulin. We found these proteins in the same protein complexes as nephrin, podocin, CD2AP, ZO-1, and Neph1 by cosedimentation, coimmunoprecipitation, and pull-down assays. PAN nephrosis increased the protein levels of JAM-A, occludin, cingulin, and ZO-1 several-fold in glomeruli and loosened their attachment to the actin cytoskeleton. These data extend current information about the molecular composition of slit diaphragms by demonstrating the presence of tight junction proteins, although slit diaphragms lack the characteristic morphologic features of tight junctions. The contribution of these proteins to the assembly of slit diaphragms and potential signaling cascades requires further investigation. PMID:19478094

  3. Dressed fluxon in a Josephson window junction

    NASA Astrophysics Data System (ADS)

    Caputo, Jean Guy; Flytzanis, Nikos; Devoret, Michel

    1994-09-01

    The static fluxon solutions of a Josephson window junction have been studied numerically. We show that the effect of the idle region surrounding the junction is to ``dress'' the fluxon causing its energy to increase. This effect can be predicted accurately by a simple model.

  4. Analysis of Tight Junction Formation and Integrity

    SciTech Connect

    Karakaya, Mahmut; Kerekes, Ryan A; Morrell-Falvey, Jennifer L; Foster, Carmen M; Retterer, Scott T

    2012-01-01

    In this paper, we study segmentation of tight junctions and analyze the formation and integrity of tight junctions in large-scale confocal image stacks, a challenging biological problem because of the low spatial resolution images and the presence of breaks in tight junction structure. We present an automated, three-step processing approach for tight junction analysis. In our approach, we first localize each individual nucleus in the image by using thresholding, morphological filters and active contours. By using each nucleus position as a seed point, we automatically segment the cell body based on the active contour. We then use an intensity-based skeletonization algorithm to generate the boundary regions for each cell, and features are extracted from tight junctions associated with each cell to assess tight junction continuity. Based on qualitative results and quantitative comparisons, we show that we are able to automatically segment tight junctions and compute relevant features that provide a quantitative measure of tight junction formation to which the permeability of the cell monolayer can ultimately be correlated.

  5. ARHGAP18: an endogenous inhibitor of angiogenesis, limiting tip formation and stabilizing junctions

    PubMed Central

    Chang, Garry HK; Lay, Angelina J; Ting, Ka Ka; Zhao, Yang; Coleman, Paul R; Powter, Elizabeth E; Formaz-Preston, Ann; Jolly, Christopher J; Bower, Neil I; Hogan, Benjamin M; Rinkwitz, Silke; Becker, Thomas S; Vadas, Mathew A; Gamble, Jennifer R

    2014-01-01

    The formation of the vascular network requires a tightly controlled balance of pro-angiogenic and stabilizing signals. Perturbation of this balance can result in dysregulated blood vessel morphogenesis and drive pathologies including cancer. Here, we have identified a novel gene, ARHGAP18, as an endogenous negative regulator of angiogenesis, limiting pro-angiogenic signaling and promoting vascular stability. Loss of ARHGAP18 promotes EC hypersprouting during zebrafish and murine retinal vessel development and enhances tumor vascularization and growth. Endogenous ARHGAP18 acts specifically on RhoC and relocalizes to the angiogenic and destabilized EC junctions in a ROCK dependent manner, where it is important in reaffirming stable EC junctions and suppressing tip cell behavior, at least partially through regulation of tip cell genes, Dll4, Flk-1 and Flt-4. These findings highlight ARHGAP18 as a specific RhoGAP to fine tune vascular morphogenesis, limiting tip cell formation and promoting junctional integrity to stabilize the angiogenic architecture. PMID:25425145

  6. Zipper and freeway shear zone junctions

    NASA Astrophysics Data System (ADS)

    Passchier, Cees; Platt, John

    2016-04-01

    Ductile shear zones are usually presented as isolated planar high-strain domains in a less deformed wall rock, characterised by shear sense indicators such as characteristic deflected foliation traces. Many shear zones, however, form branched systems and if movement on such branches is contemporaneous, the resulting geometry can be complicated and lead to unusual fabric geometries in the wall rock. For Y-shaped shear zone junctions with three simultaneously operating branches, and with slip directions at a high angle to the branch line, eight basic types of shear zone triple junctions are possible, divided into three groups. The simplest type, called freeway junctions, have similar shear sense on all three branches. If shear sense is different on the three branches, this can lead to space problems. Some of these junctions have shear zone branches that join to form a single branch, named zipper junctions, or a single shear zone which splits to form two, known as wedge junctions. Closing zipper junctions are most unusual, since they form a non-active high-strain zone with opposite deflection of foliations. Shear zipper and shear wedge junctions have two shear zones with similar shear sense, and one with the opposite sense. All categories of shear zone junctions show characteristic flow patterns in the shear zone and its wall rock. Shear zone junctions with slip directions normal to the branch line can easily be studied, since ideal sections of shear sense indicators lie in the plane normal to the shear zone branches and the branch line. Expanding the model to allow slip oblique and parallel to the branch line in a full 3D setting gives rise to a large number of geometries in three main groups. Slip directions can be parallel on all branches but oblique to the branch line: two slip directions can be parallel and a third oblique, or all three branches can have slip in different directions. Such more complex shear zone junctions cannot be studied to advantage in a

  7. Shear zone junctions: Of zippers and freeways

    NASA Astrophysics Data System (ADS)

    Passchier, Cees W.; Platt, John P.

    2017-02-01

    Ductile shear zones are commonly treated as straight high-strain domains with uniform shear sense and characteristic curved foliation trails, bounded by non-deforming wall rock. Many shear zones, however, are branched, and if movement on such branches is contemporaneous, the resulting shape can be complicated and lead to unusual shear sense arrangement and foliation geometries in the wall rock. For Y-shaped shear zone triple junctions with three joining branches and transport direction at a high angle to the branchline, only eight basic types of junction are thought to be stable and to produce significant displacement. The simplest type, called freeway junctions, have similar shear sense in all three branches. The other types show joining or separating behaviour of shear zone branches similar to the action of a zipper. Such junctions may have shear zone branches that join to form a single branch (closing zipper junction), or a single shear zone that splits to form two branches, (opening zipper junction). All categories of shear zone junctions show characteristic foliation patterns and deflection of markers in the wall rock. Closing zipper junctions are unusual, since they form a non-active zone with opposite deflection of foliations in the wall rock known as an extraction fault or wake. Shear zipper junctions can form domains of overprinting shear sense along their flanks. A small and large field example are given from NE Spain and Eastern Anatolia. The geometry of more complex, 3D shear zone junctions with slip parallel and oblique to the branchline is briefly discussed.

  8. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    SciTech Connect

    Cleland, A.N.

    1991-04-01

    Experiments investigating the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very small capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters; the tunneling rate in the moderately damped (Q {approx} 1) junction is seen to be reduced by a factor of 300 from that predicted for an undamped junction. The phase is seen to be a good quantum-mechanical variable. The experiments on small capacitance tunnel junctions extend the measurements on the larger-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wavefunction has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias. I present the first clear observation of the Coulomb blockade in single junctions. The electrical environment of the tunnel junction, however, strongly affects the behavior of the junction: higher resistance leads are observed to greatly sharpen the Coulomb blockade over that seen with lower resistance leads. I present theoretical descriptions of how the environment influences the junctions; comparisons with the experimental results are in reasonable agreement.

  9. Electrostatic control of thermoelectricity in molecular junctions.

    PubMed

    Kim, Youngsang; Jeong, Wonho; Kim, Kyeongtae; Lee, Woochul; Reddy, Pramod

    2014-11-01

    Molecular junctions hold significant promise for efficient and high-power-output thermoelectric energy conversion. Recent experiments have probed the thermoelectric properties of molecular junctions. However, electrostatic control of thermoelectric properties via a gate electrode has not been possible due to technical challenges in creating temperature differentials in three-terminal devices. Here, we show that extremely large temperature gradients (exceeding 1 × 10(9) K m(-1)) can be established in nanoscale gaps bridged by molecules, while simultaneously controlling their electronic structure via a gate electrode. Using this platform, we study prototypical Au-biphenyl-4,4'-dithiol-Au and Au-fullerene-Au junctions to demonstrate that the Seebeck coefficient and the electrical conductance of molecular junctions can be simultaneously increased by electrostatic control. Moreover, from our studies of fullerene junctions, we show that thermoelectric properties can be significantly enhanced when the dominant transport orbital is located close to the chemical potential (Fermi level) of the electrodes. These results illustrate the intimate relationship between the thermoelectric properties and charge transmission characteristics of molecular junctions and should enable systematic exploration of the recent computational predictions that promise extremely efficient thermoelectric energy conversion in molecular junctions.

  10. Microtubules regulate disassembly of epithelial apical junctions

    PubMed Central

    Ivanov, Andrei I; McCall, Ingrid C; Babbin, Brian; Samarin, Stanislav N; Nusrat, Asma; Parkos, Charles A

    2006-01-01

    Background Epithelial tight junction (TJ) and adherens junction (AJ) form the apical junctional complex (AJC) which regulates cell-cell adhesion, paracellular permeability and cell polarity. The AJC is anchored on cytoskeletal structures including actin microfilaments and microtubules. Such cytoskeletal interactions are thought to be important for the assembly and remodeling of apical junctions. In the present study, we investigated the role of microtubules in disassembly of the AJC in intestinal epithelial cells using a model of extracellular calcium depletion. Results Calcium depletion resulted in disruption and internalization of epithelial TJs and AJs along with reorganization of perijunctional F-actin into contractile rings. Microtubules reorganized into dense plaques positioned inside such F-actin rings. Depolymerization of microtubules with nocodazole prevented junctional disassembly and F-actin ring formation. Stabilization of microtubules with either docetaxel or pacitaxel blocked contraction of F-actin rings and attenuated internalization of junctional proteins into a subapical cytosolic compartment. Likewise, pharmacological inhibition of microtubule motors, kinesins, prevented contraction of F-actin rings and attenuated disassembly of apical junctions. Kinesin-1 was enriched at the AJC in cultured epithelial cells and it also accumulated at epithelial cell-cell contacts in normal human colonic mucosa. Furthermore, immunoprecipitation experiments demonstrated association of kinesin-1 with the E-cadherin-catenin complex. Conclusion Our data suggest that microtubules play a role in disassembly of the AJC during calcium depletion by regulating formation of contractile F-actin rings and internalization of AJ/TJ proteins. PMID:16509970

  11. Molecular mechanism of double Holliday junction dissolution

    PubMed Central

    2014-01-01

    Processing of homologous recombination intermediates is tightly coordinated to ensure that chromosomal integrity is maintained and tumorigenesis avoided. Decatenation of double Holliday junctions, for example, is catalysed by two enzymes that work in tight coordination and belong to the same ‘dissolvasome’ complex. Within the dissolvasome, the RecQ-like BLM helicase provides the translocase function for Holliday junction migration, while the topoisomerase III alpha-RMI1 subcomplex works as a proficient DNA decatenase, together resulting in double-Holliday-junction unlinking. Here, we review the available architectural and biochemical knowledge on the dissolvasome machinery, with a focus on the structural interplay between its components. PMID:25061510

  12. Circuit Theory of Unconventional Superconductor Junctions

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Nazarov, Yu. V.; Kashiwaya, S.

    2003-04-01

    We extend the circuit theory of superconductivity to cover transport and proximity effect in mesoscopic systems that contain unconventional superconductor junctions. The approach fully accounts for zero-energy Andreev bound states forming at the surface of unconventional superconductors. As a simple application, we investigate the transport properties of a diffusive normal metal in series with a d-wave superconductor junction. We reveal the competition between the formation of Andreev bound states and proximity effect that depends on the crystal orientation of the junction interface.

  13. Graded junction termination extensions for electronic devices

    NASA Technical Reports Server (NTRS)

    Merrett, J. Neil (Inventor); Isaacs-Smith, Tamara (Inventor); Sheridan, David C. (Inventor); Williams, John R. (Inventor)

    2006-01-01

    A graded junction termination extension in a silicon carbide (SiC) semiconductor device and method of its fabrication using ion implementation techniques is provided for high power devices. The properties of silicon carbide (SiC) make this wide band gap semiconductor a promising material for high power devices. This potential is demonstrated in various devices such as p-n diodes, Schottky diodes, bipolar junction transistors, thyristors, etc. These devices require adequate and affordable termination techniques to reduce leakage current and increase breakdown voltage in order to maximize power handling capabilities. The graded junction termination extension disclosed is effective, self-aligned, and simplifies the implementation process.

  14. Graded junction termination extensions for electronic devices

    NASA Technical Reports Server (NTRS)

    Merrett, J. Neil (Inventor); Isaacs-Smith, Tamara (Inventor); Sheridan, David C. (Inventor); Williams, John R. (Inventor)

    2007-01-01

    A graded junction termination extension in a silicon carbide (SiC) semiconductor device and method of its fabrication using ion implementation techniques is provided for high power devices. The properties of silicon carbide (SiC) make this wide band gap semiconductor a promising material for high power devices. This potential is demonstrated in various devices such as p-n diodes, Schottky diodes, bipolar junction transistors, thyristors, etc. These devices require adequate and affordable termination techniques to reduce leakage current and increase breakdown voltage in order to maximize power handling capabilities. The graded junction termination extension disclosed is effective, self-aligned, and simplifies the implementation process.

  15. Aquaporins and Brain Tumors

    PubMed Central

    Maugeri, Rosario; Schiera, Gabriella; Di Liegro, Carlo Maria; Fricano, Anna; Iacopino, Domenico Gerardo; Di Liegro, Italia

    2016-01-01

    Brain primary tumors are among the most diverse and complex human cancers, and they are normally classified on the basis of the cell-type and/or the grade of malignancy (the most malignant being glioblastoma multiforme (GBM), grade IV). Glioma cells are able to migrate throughout the brain and to stimulate angiogenesis, by inducing brain capillary endothelial cell proliferation. This in turn causes loss of tight junctions and fragility of the blood–brain barrier, which becomes leaky. As a consequence, the most serious clinical complication of glioblastoma is the vasogenic brain edema. Both glioma cell migration and edema have been correlated with modification of the expression/localization of different isoforms of aquaporins (AQPs), a family of water channels, some of which are also involved in the transport of other small molecules, such as glycerol and urea. In this review, we discuss relationships among expression/localization of AQPs and brain tumors/edema, also focusing on the possible role of these molecules as both diagnostic biomarkers of cancer progression, and therapeutic targets. Finally, we will discuss the possibility that AQPs, together with other cancer promoting factors, can be exchanged among brain cells via extracellular vesicles (EVs). PMID:27367682

  16. Effect of caveolin-1 on the expression of tight junction-associated proteins in rat glioma-derived microvascular endothelial cells

    PubMed Central

    Li, Yao; Liu, Li-Bo; Ma, Teng; Wang, Ping; Xue, Yi-Xue

    2015-01-01

    Caveolin-1 affects the permeability of blood-tumor barrier (BTB) by regulating the expression of tight junction-associated proteins. However, the effect is still controversial. In the present work, we studied the regulative effect of caveolin-1 on the expression of tight junction-associated proteins and BTB via directly silencing and overexpressing of caveolin-1 by recombinant adenovirus transduction of glioma-derived microvascular endothelial cells in rat brain. The results show that the caveolin-1 downregulation resulted in decreased expression of tight junction-associated proteins, opening of tight junctions, and increasing the permeability of BTB, whereas the overexpression of caveolin-1 presented the opposite effects. Therefore, we conclude that caveolin-1 regulates the expression of tight junction-associated proteins in a positive manner, which further plays a role in the regulation of BTB permeability. This finding provides a novel therapeutic target for selectively opening of BTB. PMID:26722502

  17. Role of Nampt and Visceral Adiposity in Esophagogastric Junction Adenocarcinoma

    PubMed Central

    Li, Haijun; Bai, E.; Zhang, Yong; Jia, Zhuoqi

    2017-01-01

    Nampt including eNampt and iNampt may contribute to mediating obesity-associated cancers. This study investigated the role of Nampt in esophagogastric junction adenocarcinoma (EGA), a cancer strongly correlated with obesity. Visceral adiposity was defined by waist circumference or VFA. eNampt in sera were measured by enzyme-linked immunosorbent assay. iNampt expression in EGA was determined by PCR, western blot, and immunohistochemistry. Sera eNampt were significantly elevated in these overweight and obese patients, especially for viscerally obese patients, and positively correlated with BMI, waist circumference, VFA, and also primary tumor, regional lymph nodes, and TNM stage (P < 0.05). iNampt expression in both the mRNA and protein levels was upregulated in EGAs (P < 0.05). iNampt staining was found primarily in the cytoplasm and nuclei and significantly associated with tumor, lymph nodes, and TNM stage and also correlated positively with serum eNampt, BMI, total fat area, VFA, superficial fat area, and waist circumference (P < 0.05). iNampt, eNampt, tumor, lymph nodes, and TNM stage correlated to the survival of EGAs, and iNampt expression and TNM stage affected the prognosis independently (P < 0.05). This study highlighted the association of eNampt/iNampt with visceral obesity and a potential impact on the biology of EGA. PMID:28168205

  18. Hypothalamic tumor

    MedlinePlus

    ... occur at any age. They are often more aggressive in adults than in children. In adults, tumors ... The treatment depends on how aggressive the tumor is, and whether it is a glioma or another type of cancer. Treatment may involve combinations of surgery, radiation , ...

  19. Carcinoid Tumors

    MedlinePlus

    Carcinoid tumors are rare, slow-growing cancers. They usually start in the lining of the digestive tract or in the lungs. They grow ... trouble breathing. Surgery is the main treatment for carcinoid tumors. If they haven't spread to other parts of the body, surgery can cure the cancer.

  20. Pituitary Tumors

    MedlinePlus

    ... pituitary is the "master control gland" - it makes hormones that affect growth and the functions of other glands in the body. Pituitary tumors are common, but often they don't cause health ... tumor produces hormones and disrupts the balance of hormones in your ...

  1. Pindborg tumor

    PubMed Central

    Caliaperoumal, Santhosh Kumar; Gowri, S.; Dinakar, J.

    2016-01-01

    Calcifying epithelial odontogenic tumor (CEOT), also known as Pindborg tumor, is a rare odontogenic epithelial neoplasm. So far, nearly 200 cases have been reported in the literature. We are reporting a case of CEOT in a 42-year-old male patient with painless bony swelling in the mandible. The clinical, radiographic, and histopathologic features are discussed with relevant references. PMID:27041911

  2. Tunnel junction multiple wavelength light-emitting diodes

    DOEpatents

    Olson, Jerry M.; Kurtz, Sarah R.

    1992-01-01

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect.

  3. Tunnel junction multiple wavelength light-emitting diodes

    DOEpatents

    Olson, J.M.; Kurtz, S.R.

    1992-11-24

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect. 5 figs.

  4. Current trends in salivary gland tight junctions

    PubMed Central

    Baker, Olga J.

    2016-01-01

    ABSTRACT Tight junctions form a continuous intercellular barrier between epithelial cells that is required to separate tissue spaces and regulate selective movement of solutes across the epithelium. They are composed of strands containing integral membrane proteins (e.g., claudins, occludin and tricellulin, junctional adhesion molecules and the coxsackie adenovirus receptor). These proteins are anchored to the cytoskeleton via scaffolding proteins such as ZO-1 and ZO-2. In salivary glands, tight junctions are involved in polarized saliva secretion and barrier maintenance between the extracellular environment and the glandular lumen. This review seeks to provide an overview of what is currently known, as well as the major questions and future research directions, regarding tight junction expression, organization and function within salivary glands. PMID:27583188

  5. Presynaptic spike broadening reduces junctional potential amplitude.

    PubMed

    Spencer, A N; Przysiezniak, J; Acosta-Urquidi, J; Basarsky, T A

    1989-08-24

    Presynaptic modulation of action potential duration may regulate synaptic transmission in both vertebrates and invertebrates. Such synaptic plasticity is brought about by modifications to membrane currents at presynaptic release sites, which, in turn, lead to changes in the concentration of cytosolic calcium available for mediating transmitter release. The 'primitive' neuromuscular junction of the jellyfish Polyorchis penicillatus is a useful model of presynaptic modulation. In this study, we show that the durations of action potentials in the motor neurons of this jellyfish are negatively correlated with the amplitude of excitatory junctional potentials. We present data from in vitro voltage-clamp experiments showing that short duration voltage spikes, which elicit large excitatory junctional potentials in vivo, produce larger and briefer calcium currents than do long duration action potentials, which elicit small excitatory junctional potentials.

  6. Chirality effect in disordered graphene ribbon junctions

    NASA Astrophysics Data System (ADS)

    Long, Wen

    2012-05-01

    We investigate the influence of edge chirality on the electronic transport in clean or disordered graphene ribbon junctions. By using the tight-binding model and the Landauer-Büttiker formalism, the junction conductance is obtained. In the clean sample, the zero-magnetic-field junction conductance is strongly chirality-dependent in both unipolar and bipolar ribbons, whereas the high-magnetic-field conductance is either chirality-independent in the unipolar or chirality-dependent in the bipolar ribbon. Furthermore, we study the disordered sample in the presence of magnetic field and find that the junction conductance is always chirality-insensitive for both unipolar and bipolar ribbons with adequate disorders. In addition, the disorder-induced conductance plateaus can exist in all chiral bipolar ribbons provided the disorder strength is moderate. These results suggest that we can neglect the effect of edge chirality in fabricating electronic devices based on the magnetotransport in a disordered graphene ribbon.

  7. Adrenocortical Gap Junctions and Their Functions

    PubMed Central

    Bell, Cheryl L.; Murray, Sandra A.

    2016-01-01

    Adrenal cortical steroidogenesis and proliferation are thought to be modulated by gap junction-mediated direct cell–cell communication of regulatory molecules between cells. Such communication is regulated by the number of gap junction channels between contacting cells, the rate at which information flows between these channels, and the rate of channel turnover. Knowledge of the factors regulating gap junction-mediated communication and the turnover process are critical to an understanding of adrenal cortical cell functions, including development, hormonal response to adrenocorticotropin, and neoplastic dedifferentiation. Here, we review what is known about gap junctions in the adrenal gland, with particular attention to their role in adrenocortical cell steroidogenesis and proliferation. Information and insight gained from electrophysiological, molecular biological, and imaging (immunocytochemical, freeze fracture, transmission electron microscopic, and live cell) techniques will be provided. PMID:27445985

  8. Enhancement at the junction of silver nanorods.

    PubMed

    Gu, Geun Hoi; Suh, Jung Sang

    2008-08-19

    The enhancement of surface enhanced Raman scattering (SERS) at the junction of linearly joined silver nanorods (31 nm in diameter) deposited in the pores of anodic aluminum oxide templates was studied systematically by excitation with a 632.8 nm laser line. The single and joined silver nanorod arrays showed a similar extinction spectrum when their length was the same. Maximum enhancement was observed from the junction system of two nanorods of the same size with a total length of 62 nm. This length also corresponded to the optimum length of single nanorods for SERS by excitation with a 632.8 nm laser line. The enhancement at the junction was approximately 40 times higher than that of the 31 nm single nanorod, while it was 4 times higher than that of the 62 nm single nanorod. The enhancement factor at the junction after oxide removal was approximately 3.9 x 10 (9).

  9. UTE MRI of the Osteochondral Junction

    PubMed Central

    Biswas, Reni; Chen, Karen; Chang, Eric Y.; Chung, Christine B.

    2014-01-01

    The osteochondral junction is composed of numerous tissue components and serves important functions relating to structural stability and proper nutrition in joints such as the knee and spine. Conventional MR techniques have been inadequate at imaging the tissues of the osteochondral junction primarily because of the intrinsically short T2 nature of these tissues, rendering them “invisible” with the standard acquisitions. Ultrashort time to echo (UTE) MR techniques acquire sufficient MR signal of osteochondral tissues, thereby allowing direct evaluation. This article reviews the anatomy of the osteochondral junction of the knee and the spine, technical aspects of UTE MRI, and the application of UTE MRI for evaluation of the osteochondral junction. PMID:25061547

  10. Mutant Sodium Channel for Tumor Therapy

    PubMed Central

    Tannous, Bakhos A; Christensen, Adam P; Pike, Lisa; Wurdinger, Thomas; Perry, Katherine F; Saydam, Okay; Jacobs, Andreas H; García-Añoveros, Jaime; Weissleder, Ralph; Sena-Esteves, Miguel; Corey, David P; Breakefield, Xandra O

    2009-01-01

    Viral vectors have been used to deliver a wide range of therapeutic genes to tumors. In this study, a novel tumor therapy was achieved by the delivery of a mammalian brain sodium channel, ASIC2a, carrying a mutation that renders it constitutively open. This channel was delivered to tumor cells using a herpes simplex virus-1/Epstein–Barr virus (HSV/EBV) hybrid amplicon vector in which gene expression was controlled by a tetracycline regulatory system (tet-on) with silencer elements. Upon infection and doxycycline induction of mutant channel expression in tumor cells, the open channel led to amiloride-sensitive sodium influx as assessed by patch clamp recording and sodium imaging in culture. Within hours, tumor cells swelled and died. In addition to cells expressing the mutant channel, adjacent, noninfected cells connected by gap junctions also died. Intratumoral injection of HSV/EBV amplicon vector encoding the mutant sodium channel and systemic administration of doxycycline led to regression of subcutaneous tumors in nude mice as assessed by in vivo bioluminescence imaging. The advantage of this direct mode of tumor therapy is that all types of tumor cells become susceptible and death is rapid with no time for the tumor cells to become resistant. PMID:19259066

  11. Heat dissipation in atomic-scale junctions.

    PubMed

    Lee, Woochul; Kim, Kyeongtae; Jeong, Wonho; Zotti, Linda Angela; Pauly, Fabian; Cuevas, Juan Carlos; Reddy, Pramod

    2013-06-13

    Atomic and single-molecule junctions represent the ultimate limit to the miniaturization of electrical circuits. They are also ideal platforms for testing quantum transport theories that are required to describe charge and energy transfer in novel functional nanometre-scale devices. Recent work has successfully probed electric and thermoelectric phenomena in atomic-scale junctions. However, heat dissipation and transport in atomic-scale devices remain poorly characterized owing to experimental challenges. Here we use custom-fabricated scanning probes with integrated nanoscale thermocouples to investigate heat dissipation in the electrodes of single-molecule ('molecular') junctions. We find that if the junctions have transmission characteristics that are strongly energy dependent, this heat dissipation is asymmetric--that is, unequal between the electrodes--and also dependent on both the bias polarity and the identity of the majority charge carriers (electrons versus holes). In contrast, junctions consisting of only a few gold atoms ('atomic junctions') whose transmission characteristics show weak energy dependence do not exhibit appreciable asymmetry. Our results unambiguously relate the electronic transmission characteristics of atomic-scale junctions to their heat dissipation properties, establishing a framework for understanding heat dissipation in a range of mesoscopic systems where transport is elastic--that is, without exchange of energy in the contact region. We anticipate that the techniques established here will enable the study of Peltier effects at the atomic scale, a field that has been barely explored experimentally despite interesting theoretical predictions. Furthermore, the experimental advances described here are also expected to enable the study of heat transport in atomic and molecular junctions--an important and challenging scientific and technological goal that has remained elusive.

  12. Semiconductor tunnel junction with enhancement layer

    DOEpatents

    Klem, John F.; Zolper, John C.

    1997-01-01

    The incorporation of a pseudomorphic GaAsSb layer in a runnel diode structure affords a new degree of freedom in designing runnel junctions for p-n junction device interconnects. Previously only doping levels could be varied to control the tunneling properties. This invention uses the valence band alignment band of the GaAsSb with respect to the surrounding materials to greatly relax the doping requirements for tunneling.

  13. Semiconductor tunnel junction with enhancement layer

    DOEpatents

    Klem, J.F.; Zolper, J.C.

    1997-10-21

    The incorporation of a pseudomorphic GaAsSb layer in a runnel diode structure affords a new degree of freedom in designing runnel junctions for p-n junction device interconnects. Previously only doping levels could be varied to control the tunneling properties. This invention uses the valence band alignment band of the GaAsSb with respect to the surrounding materials to greatly relax the doping requirements for tunneling. 5 figs.

  14. Gravitational wave bursts from cosmic superstrings with Y-junctions

    SciTech Connect

    Binetruy, P.; Bohe, A.; Hertog, T.; Steer, D. A.

    2009-12-15

    Cosmic superstring loops generically contain strings of different tensions that meet at Y-junctions. These loops evolve nonperiodically in time, and have cusps and kinks that interact with the junctions. We study the effect of junctions on the gravitational wave signal emanating from cosmic string cusps and kinks. We find that earlier results on the strength of individual bursts from cusps and kinks on strings without junctions remain largely unchanged, but junctions give rise to additional contributions to the gravitational wave signal coming from strings expanding at the speed of light at a junction and kinks passing through a junction.

  15. Multi-junction solar cell device

    DOEpatents

    Friedman, Daniel J.; Geisz, John F.

    2007-12-18

    A multi-junction solar cell device (10) is provided. The multi-junction solar cell device (10) comprises either two or three active solar cells connected in series in a monolithic structure. The multi-junction device (10) comprises a bottom active cell (20) having a single-crystal silicon substrate base and an emitter layer (23). The multi-junction device (10) further comprises one or two subsequent active cells each having a base layer (32) and an emitter layer (23) with interconnecting tunnel junctions between each active cell. At least one layer that forms each of the top and middle active cells is composed of a single-crystal III-V semiconductor alloy that is substantially lattice-matched to the silicon substrate (22). The polarity of the active p-n junction cells is either p-on-n or n-on-p. The present invention further includes a method for substantially lattice matching single-crystal III-V semiconductor layers with the silicon substrate (22) by including boron and/or nitrogen in the chemical structure of these layers.

  16. Exercise regulation of intestinal tight junction proteins.

    PubMed

    Zuhl, Micah; Schneider, Suzanne; Lanphere, Katherine; Conn, Carole; Dokladny, Karol; Moseley, Pope

    2014-06-01

    Gastrointestinal distress, such as diarrhoea, cramping, vomiting, nausea and gastric pain are common among athletes during training and competition. The mechanisms that cause these symptoms are not fully understood. The stress of heat and oxidative damage during exercise causes disruption to intestinal epithelial cell tight junction proteins resulting in increased permeability to luminal endotoxins. The endotoxin moves into the blood stream leading to a systemic immune response. Tight junction integrity is altered by the phosphoylation state of the proteins occludin and claudins, and may be regulated by the type of exercise performed. Prolonged exercise and high-intensity exercise lead to an increase in key phosphorylation enzymes that ultimately cause tight junction dysfunction, but the mechanisms are different. The purpose of this review is to (1) explain the function and physiology of tight junction regulation, (2) discuss the effects of prolonged and high-intensity exercise on tight junction permeability leading to gastrointestinal distress and (3) review agents that may increase or decrease tight junction integrity during exercise.

  17. Predictive modelling of ferroelectric tunnel junctions

    NASA Astrophysics Data System (ADS)

    Velev, Julian P.; Burton, John D.; Zhuravlev, Mikhail Ye; Tsymbal, Evgeny Y.

    2016-05-01

    Ferroelectric tunnel junctions combine the phenomena of quantum-mechanical tunnelling and switchable spontaneous polarisation of a nanometre-thick ferroelectric film into novel device functionality. Switching the ferroelectric barrier polarisation direction produces a sizable change in resistance of the junction—a phenomenon known as the tunnelling electroresistance effect. From a fundamental perspective, ferroelectric tunnel junctions and their version with ferromagnetic electrodes, i.e., multiferroic tunnel junctions, are testbeds for studying the underlying mechanisms of tunnelling electroresistance as well as the interplay between electric and magnetic degrees of freedom and their effect on transport. From a practical perspective, ferroelectric tunnel junctions hold promise for disruptive device applications. In a very short time, they have traversed the path from basic model predictions to prototypes for novel non-volatile ferroelectric random access memories with non-destructive readout. This remarkable progress is to a large extent driven by a productive cycle of predictive modelling and innovative experimental effort. In this review article, we outline the development of the ferroelectric tunnel junction concept and the role of theoretical modelling in guiding experimental work. We discuss a wide range of physical phenomena that control the functional properties of ferroelectric tunnel junctions and summarise the state-of-the-art achievements in the field.

  18. Graphene tunnel junctions with aluminum oxide barrier

    NASA Astrophysics Data System (ADS)

    Feng, Ying; Trainer, Daniel J.; Chen, Ke

    2016-10-01

    We report a development of graphene tunnel junctions made by chemical vapor deposition grown graphene and sputtered aluminum insulating by an in-situ grown aluminum oxide. The thin oxide layer formed in between the metal layer and the two-dimensional material is a crucial part of a tunnel junction. We characterized surface morphology of oxide layers and studied tunneling spectra of lead and silver tunnel junctions to estimate the quality of the aluminum oxide. The Brinkman-Rowell-Dynes model was applied to fit the conductance-voltage plots to calculate the thickness of oxide layers. Junctions with graphene both on bottom and on top were fabricated and their tunneling properties were characterized after exposure to air for weeks to test time stability. Furthermore, the resistances of graphene tunnel junctions with aluminum oxide formed naturally and in an oxygen atmosphere were studied. Our results demonstrate that in-situ aluminum oxide is an effective barrier for graphene tunnel junctions. The methods of barrier formation enable the realization of more tunnel devices and circuits based on graphene.

  19. Innate Immune Cells Induce Hemorrhage in Tumors during Thrombocytopenia

    PubMed Central

    Ho-Tin-Noé, Benoit; Carbo, Carla; Demers, Mélanie; Cifuni, Stephen M.; Goerge, Tobias; Wagner, Denisa D.

    2009-01-01

    Platelets are crucial regulators of tumor vascular homeostasis and continuously prevent tumor hemorrhage through secretion of their granules. However, the reason for tumor bleeding in the absence of platelets remains unknown. Tumors are associated with inflammation, a cause of hemorrhage in thrombocytopenia. Here, we investigated the role of the inflamed tumor microenvironment in the induction of tumor vessel injury in thrombocytopenic mice. Using s.c. injections of vascular endothelial growth factor or tumor necrosis factor-α combined with depletion of neutrophils, we demonstrate that enhancing the opening of endothelial cell junctions was not sufficient to cause bleeding in the absence of platelets; instead, induction of tissue hemorrhage in thrombocytopenia required recruitment of leukocytes. Immunohistology revealed that thrombocytopenia-induced tumor hemorrhage occurs at sites of macrophage and neutrophil accumulation. Mice deficient in β2 or β3 integrins, which have decreased neutrophil and/or macrophage infiltration in their tumor stroma, were protected from thrombocytopenia-induced tumor hemorrhage, indicating that, in the absence of platelets, stroma-infiltrating leukocytes induced tumor vessel injury. This injury was independent of reactive oxygen species generation and of complement activation, as suggested by the persistence of tumor hemorrhage in C3- and nicotinamide adenine dinucleotide phosphate oxidase-deficient thrombocytopenic mice. Our results show that platelets counteract tumor-associated inflammation and that the absence of this platelet function elicits vascular injuries by tumor-infiltrating innate immune cells. PMID:19729481

  20. Overexpression of YWHAZ as an independent prognostic factor in adenocarcinoma of the esophago-gastric junction

    PubMed Central

    Watanabe, Nobuyuki; Komatsu, Shuhei; Ichikawa, Daisuke; Miyamae, Mahito; Ohashi, Takuma; Okajima, Wataru; Kosuga, Toshiyuki; Konishi, Hirotaka; Shiozaki, Atsushi; Fujiwara, Hitoshi; Okamoto, Kazuma; Tsuda, Hitoshi; Otsuji, Eigo

    2016-01-01

    Several studies have demonstrated that YWHAZ (14-3-3ζ), included in the 14-3-3 family of proteins, is implicated in the initiation and progression of cancers. To detect a novel treatment target for adenocarcinoma of the esophagogastric junction (AEG), we tested whether YWHAZ acted as a cancer-promoting gene through its overexpression in AEG. We analyzed YWHAZ protein expression in 92 consecutive primary AEG tumors, which had been curatively resected in our institution between 2000 and 2010. Overexpression of the YWHAZ protein was frequently detected in primary AEG tumor samples (46% (42/92)). Overexpression of YWHAZ was significantly correlated with Siewert type III tumor, larger tumor size (≥40 mm) and higher rates of lymph node metastasis and recurrence. Patients with YWHAZ-overexpressing tumors had a worse overall rate of survival than those with non-expressing tumors (P = 0.011, log-rank test) in an intensity expression-dependent manner. Patients with YWHAZ-overexpression tumors had worse overall survival rates than those with lower-expression tumors. YWHAZ positivity was independently associated with a worse outcome in the multivariate analysis (P = 0.0015, hazard ratio 4.49 [1.736-13.06]). In conclusion, YWHAZ plays a crucial role in poor outcomes of patients with AEG through its overexpression, which highlights its usefulness as a prognosticator and potential therapeutic target and indicator in AEG. PMID:27904785

  1. Charge transport in nanoscale junctions.

    PubMed

    Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas

    2008-09-03

    many particle excitations, new surface states in semiconductor electrodes, various mechanisms for single molecule rectification of the current, inelastic electron spectra and SERS spectroscopy. Three terminal architectures allowing (electrochemical) gating and transistor effects. Electrochemical nanojunctions and gating: intermolecular electron transfer in multi-redox metalloproteins, contact force modulation, characteristic current-noise patterns due to conformational fluctuations, resonance effects and electrocatalysis. Novel architectures: linear coupled quantum-dot-bridged junctions, electrochemical redox mediated transfer in two center systems leading to double maxima current-voltage plots and negative differential resistance, molecular-nanoparticle hybrid junctions and unexpected mesoscopic effects in polymeric wires. Device integration: techniques for creating stable metal/molecule/metal junctions using 'nano-alligator clips' and integration with 'traditional' silicon-based technology. The Guest Editors would like to thank all of the authors and referees of this special issue for their meticulous work in making each paper a valuable contribution to this research area, the early-bird authors for their patience, and Journal of Physics: Condensed Matter editorial staff in Bristol for their continuous support.

  2. Tumor Markers

    MedlinePlus

    ... types: Germ cell tumors, lymphoma, leukemia, melanoma, and neuroblastoma Tissue analyzed: Blood How used: To assess stage, ... NSE) Cancer types: Small cell lung cancer and neuroblastoma Tissue analyzed: Blood How used: To help in ...

  3. Wilms' Tumor

    MedlinePlus

    ... team and have training in child development, recreation, psychology or social work. If your child must remain ... conditions/wilms-tumor/basics/definition/CON-20043492 . Mayo Clinic Footer Legal Conditions and Terms Any use of ...

  4. Tumor Grade

    MedlinePlus

    ... Other Funding Find NCI funding for small business innovation, technology transfer, and contracts Training Cancer Training at ... much of the tumor tissue has normal breast (milk) duct structures Nuclear grade : an evaluation of the ...

  5. Spinal tumor

    MedlinePlus

    ... Livingstone; 2014:chap 49. Read More Brain tumor - children Hodgkin lymphoma Metastasis Spinal cord trauma Review Date 8/15/2016 Updated by: Todd Gersten, MD, Hematology/Oncology, Florida Cancer Specialists & Research Institute, Wellington, FL. Review ...

  6. Wilms tumor

    MedlinePlus

    ... a type of kidney cancer that occurs in children. Causes WT is the most common form of childhood kidney cancer. The exact cause of this tumor in most children is unknown. A missing iris of the eye ( ...

  7. Pituitary tumor

    MedlinePlus

    ... enough of its hormones. This condition is called hypopituitarism . The causes of pituitary tumors are unknown. Some ... Cyst Endocrine glands Gigantism Growth hormone test Hyperthyroidism Hypopituitarism Multiple endocrine neoplasia (MEN) I Prolactin blood test ...

  8. Irinotecan disrupts tight junction proteins within the gut : implications for chemotherapy-induced gut toxicity.

    PubMed

    Wardill, Hannah R; Bowen, Joanne M; Al-Dasooqi, Noor; Sultani, Masooma; Bateman, Emma; Stansborough, Romany; Shirren, Joseph; Gibson, Rachel J

    2014-02-01

    Chemotherapy for cancer causes significant gut toxicity, leading to severe clinical manifestations and an increased economic burden. Despite much research, many of the underlying mechanisms remain poorly understood hindering effective treatment options. Recently there has been renewed interest in the role tight junctions play in the pathogenesis of chemotherapy-induced gut toxicity. To delineate the underlying mechanisms of chemotherapy-induced gut toxicity, this study aimed to quantify the molecular changes in key tight junction proteins, ZO-1, claudin-1, and occludin, using a well-established preclinical model of gut toxicity. Female tumor-bearing dark agouti rats received irinotecan or vehicle control and were assessed for validated parameters of gut toxicity including diarrhea and weight loss. Rats were killed at 6, 24, 48, 72, 96, and 120 h post-chemotherapy. Tight junction protein and mRNA expression in the small and large intestines were assessed using semi-quantitative immunohistochemistry and RT-PCR. Significant changes in protein expression of tight junction proteins were seen in both the jejunum and colon, correlating with key histological changes and clinical features. mRNA levels of claudin-1 were significantly decreased early after irinotecan in the small and large intestines. ZO-1 and occludin mRNA levels remained stable across the time-course of gut toxicity. Findings strongly suggest irinotecan causes tight junction defects which lead to mucosal barrier dysfunction and the development of diarrhea. Detailed research is now warranted to investigate posttranslational regulation of tight junction proteins to delineate the underlying pathophysiology of gut toxicity and identify future therapeutic targets.

  9. Model Building to Facilitate Understanding of Holliday Junction and Heteroduplex Formation, and Holliday Junction Resolution

    ERIC Educational Resources Information Center

    Selvarajah, Geeta; Selvarajah, Susila

    2016-01-01

    Students frequently expressed difficulty in understanding the molecular mechanisms involved in chromosomal recombination. Therefore, we explored alternative methods for presenting the two concepts of the double-strand break model: Holliday junction and heteroduplex formation, and Holliday junction resolution. In addition to a lecture and…

  10. [Ultrastructure of capillary permeability in human brain tumors. 3: Mechanisms of contrast enhancement in non-glial tumors].

    PubMed

    Fukushima, M; Shibata, S; Inoue, M; Mori, K

    1986-03-01

    In order to elucidate mechanisms of contrast enhancement on computed tomography observed in non-glial tumors, tumors vessels were studied with conventional ultrathin section and freeze-fracture replica techniques. The materials were obtained from surgically removed specimens in 19 cases of tumors (6 of meningioma, 6 of hemangioblastoma, 5 of pituitary adenoma, and 2 of acoustic neurinoma). The following results were obtained. The common findings of these non-glial tumor vessels in ultrathin preparations were surface infoldings, increased pinocytotic vesticles and many fenestrations of endothelial cells, irregularity of basal laminae, and enlarged perivascular spaces. In freeze-fracture replicas of vascular endothelium, pinocytotic vesicles and fenestrations were 22 and 26 per micron2 on the average respectively. Tight junctions between endothelial cells were composed of one or two strands which appeared to be a discontinuous array of particles. As for the each non-glial tumor, menigiomas showed endothelial thickness and finger-like projections, variable lengths of tight junctions and marked enlargement of perivascular space which contained many collagen fibrils. Thinning of endothelium and many fenestrations were observed in hemangioblastomas, pituitary adenomas, and acoustic neurinomas. Fenestrations were most frequently observed in pituitary adenomas. The results indicate that extravasation of contrast material through fenestrations has an important role in marked contrast enhancement of non-glial tumors, in addition to the osmotic opening of tight junctions by contrast material. The irregular basal lamina and large perivascular space may also contribute to an increased extravasation of contrast material.

  11. Clathrin and Cx43 gap junction plaque endoexocytosis

    SciTech Connect

    Nickel, Beth M.; DeFranco, B. Hewa; Gay, Vernon L.; Murray, Sandra A.

    2008-10-03

    In earlier transmission electron microscopic studies, we have described pentilaminar gap junctional membrane invaginations and annular gap junction vesicles coated with short, electron-dense bristles. The similarity between these electron-dense bristles and the material surrounding clathrin-coated pits led us to suggest that the dense bristles associated with gap junction structures might be clathrin. To confirm that clathrin is indeed associated with annular gap junction vesicles and gap junction plaques, quantum dot immuno-electron microscopic techniques were used. We report here that clathrin associates with both connexin 43 (Cx43) gap junction plaques and pentilaminar gap junction vesicles. An important finding was the preferential localization of clathrin to the cytoplasmic surface of the annular or of the gap junction plaque membrane of one of the two contacting cells. This is consistent with the possibility that the direction of gap junction plaque internalization into one of two contacting cells is regulated by clathrin.

  12. Tunnel junctions, cantilevers, and potentials

    NASA Astrophysics Data System (ADS)

    Tanner, Shawn

    We have developed a process for making sub-micrometer dimensional cantilevers, clamped beams, and more complicate electro-mechanical structures that carry integrated electrical leads. Such objects are perhaps useful as test structures for connecting to and measuring the electrical properties of molecular sized objects, as high frequency electromechanical components for radio and microwave frequency applications, and as sensor components for studying the fluctuation physics of small machines. Our process uses two realigned electron-beam lithography steps, a thin film angled deposition system, and differential removal of sacrificial aluminum layers to produce freely suspended sub-micron electromechanical components. We have produced cantilevers and beams on a variety of substrates (silica, silicon, and poly-imide) and have produced insulating, conductive, and multi-layer mechanical structures. We have measured mechanical resonances in the 10 MHz range by electrostatically actuating the cantilevers while in a magnetic field (3500 gauss) and measuring the voltage that results across the front edge of the cantilever. Two structures are fabricated sharing a common ground so that a balanced detection technique can be used to eliminate background signals. Due to the square dependence of the electrostatic force on the voltage, they can be resonated by a drive voltage of 1/2 the natural frequency or at the natural frequency. Two separate attempts have been made to apply these resonators. First, a process was developed to integrate a tunnel junction with the cantilever. These devices can possibly be used for probing small-scale systems such as molecules. We have verified the exponential variation of the tunneling resistance with both substrate flex and electrostatic gating. Second, a novel gate structure was developed to create a double potential well for resonator motion. This is accomplished by placing a multilayer structure in front of the hairpin cantilever consisting two

  13. YBCO step-edge junctions with high IcRn

    NASA Astrophysics Data System (ADS)

    Mitchell, E. E.; Foley, C. P.

    2010-06-01

    Step-edge junctions represent one type of grain boundary Josephson junction employed in high-temperature superconducting junction technology. To date, the majority of results published in the literature focus on [001]-tilt grain boundary junctions (GBJs) produced using bicrystal substrates. We investigate the step morphology and YBCO (yttrium barium copper oxide) film structure of YBCO-based step-edge junctions on MgO [001] substrates which structurally resemble [100]-tilt junctions. High-resolution electron microscopy reveals a clean GBJ interface of width ~ 1 nm and a single junction at the top edge. The dependence of the transport properties on the MgO step-edge and junction morphology is examined at 4.2 K, to enable direct comparison with results for other junction studies such as [001]-tilt and [100]-tilt junctions and building on previously published 77 K data. MgO step-edge junctions show a slower reduction in critical current density with step angle compared with [001]-tilt junctions. For optimized step parameters, transport measurements revealed large critical current and normal resistance (IcRN) products (~3-5 mV), comparable with the best results obtained in other kinds of [100]-tilt GBJs in YBCO at 4.2 K. Junction-based devices such as SQUIDs (superconducting quantum interference devices) and THz imagers show excellent performance when MgO-based step-edge junctions are used.

  14. Semiconductor Lasers Containing Quantum Wells in Junctions

    NASA Technical Reports Server (NTRS)

    Yang, Rui Q.; Qiu, Yueming

    2004-01-01

    In a recent improvement upon In(x)Ga(1-x)As/InP semiconductor lasers of the bipolar cascade type, quantum wells are added to Esaki tunnel junctions, which are standard parts of such lasers. The energy depths and the geometric locations and thicknesses of the wells are tailored to exploit quantum tunneling such that, as described below, electrical resistances of junctions and concentrations of dopants can be reduced while laser performances can be improved. In(x)Ga(1-x)As/InP bipolar cascade lasers have been investigated as sources of near-infrared radiation (specifically, at wavelengths of about 980 and 1,550 nm) for photonic communication systems. The Esaki tunnel junctions in these lasers have been used to connect adjacent cascade stages and to enable transport of charge carriers between them. Typically, large concentrations of both n (electron-donor) and p (electron-acceptor) dopants have been necessary to impart low electrical resistances to Esaki tunnel junctions. Unfortunately, high doping contributes free-carrier absorption, thereby contributing to optical loss and thereby, further, degrading laser performance. In accordance with the present innovation, quantum wells are incorporated into the Esaki tunnel junctions so that the effective heights of barriers to quantum tunneling are reduced (see figure).

  15. Dislocation Multi-junctions and Strain Hardening

    SciTech Connect

    Bulatov, V; Hsiung, L; Tang, M; Arsenlis, A; Bartelt, M; Cai, W; Florando, J; Hiratani, M; Rhee, M; Hommes, G; Pierce, T; Diaz de la Rubia, T

    2006-06-20

    At the microscopic scale, the strength of a crystal derives from the motion, multiplication and interaction of distinctive line defects--dislocations. First theorized in 1934 to explain low magnitudes of crystal strength observed experimentally, the existence of dislocations was confirmed only two decades later. Much of the research in dislocation physics has since focused on dislocation interactions and their role in strain hardening: a common phenomenon in which continued deformation increases a crystal's strength. The existing theory relates strain hardening to pair-wise dislocation reactions in which two intersecting dislocations form junctions tying dislocations together. Here we report that interactions among three dislocations result in the formation of unusual elements of dislocation network topology, termed hereafter multi-junctions. The existence of multi-junctions is first predicted by Dislocation Dynamics (DD) and atomistic simulations and then confirmed by the transmission electron microscopy (TEM) experiments in single crystal molybdenum. In large-scale Dislocation Dynamics simulations, multi-junctions present very strong, nearly indestructible, obstacles to dislocation motion and furnish new sources for dislocation multiplication thereby playing an essential role in the evolution of dislocation microstructure and strength of deforming crystals. Simulation analyses conclude that multi-junctions are responsible for the strong orientation dependence of strain hardening in BCC crystals.

  16. Dislocation multi-junctions and strain hardening.

    PubMed

    Bulatov, Vasily V; Hsiung, Luke L; Tang, Meijie; Arsenlis, Athanasios; Bartelt, Maria C; Cai, Wei; Florando, Jeff N; Hiratani, Masato; Rhee, Moon; Hommes, Gregg; Pierce, Tim G; de la Rubia, Tomas Diaz

    2006-04-27

    At the microscopic scale, the strength of a crystal derives from the motion, multiplication and interaction of distinctive line defects called dislocations. First proposed theoretically in 1934 (refs 1-3) to explain low magnitudes of crystal strength observed experimentally, the existence of dislocations was confirmed two decades later. Much of the research in dislocation physics has since focused on dislocation interactions and their role in strain hardening, a common phenomenon in which continued deformation increases a crystal's strength. The existing theory relates strain hardening to pair-wise dislocation reactions in which two intersecting dislocations form junctions that tie the dislocations together. Here we report that interactions among three dislocations result in the formation of unusual elements of dislocation network topology, termed 'multi-junctions'. We first predict the existence of multi-junctions using dislocation dynamics and atomistic simulations and then confirm their existence by transmission electron microscopy experiments in single-crystal molybdenum. In large-scale dislocation dynamics simulations, multi-junctions present very strong, nearly indestructible, obstacles to dislocation motion and furnish new sources for dislocation multiplication, thereby playing an essential role in the evolution of dislocation microstructure and strength of deforming crystals. Simulation analyses conclude that multi-junctions are responsible for the strong orientation dependence of strain hardening in body-centred cubic crystals.

  17. Spinal Cord Tumor

    MedlinePlus

    Spinal cord tumor Overview By Mayo Clinic Staff A spinal tumor is a growth that develops within your ... as vertebral tumors. Tumors that begin within the spinal cord itself are called spinal cord tumors. There are ...

  18. What Is Wilms Tumor?

    MedlinePlus

    ... Treatment? Wilms Tumor About Wilms Tumor What Is Wilms Tumor? Cancer starts when cells in the body begin ... live normal, healthy lives with just one kidney. Wilms tumors Wilms tumors are the most common cancers in ...

  19. Side-stream smoking reduces intestinal inflammation and increases expression of tight junction proteins

    PubMed Central

    Wang, Hui; Zhao, Jun-Xing; Hu, Nan; Ren, Jun; Du, Min; Zhu, Mei-Jun

    2012-01-01

    AIM: To investigate the effect of side-stream smoking on gut microflora composition, intestinal inflammation and expression of tight junction proteins. METHODS: C57BL/6 mice were exposed to side-stream cigarette smoking for one hour daily over eight weeks. Cecal contents were collected for microbial composition analysis. Large intestine was collected for immunoblotting and quantitative reverse transcriptase polymerase chain reaction analyses of the inflammatory pathway and tight junction proteins. RESULTS: Side-stream smoking induced significant changes in the gut microbiota with increased mouse intestinal bacteria, Clostridium but decreased Fermicutes (Lactoccoci and Ruminococcus), Enterobacteriaceae family and Segmented filamentous baceteria compared to the control mice. Meanwhile, side-stream smoking inhibited the nuclear factor-κB pathway with reduced phosphorylation of p65 and IκBα, accompanied with unchanged mRNA expression of tumor necrosis factor-α or interleukin-6. The contents of tight junction proteins, claudin3 and ZO2 were up-regulated in the large intestine of mice exposed side-stream smoking. In addition, side-stream smoking increased c-Jun N-terminal kinase and p38 MAPK kinase signaling, while inhibiting AMP-activated protein kinase in the large intestine. CONCLUSION: Side-stream smoking altered gut microflora composition and reduced the inflammatory response, which was associated with increased expression of tight junction proteins. PMID:22611310

  20. Methods for the fabrication of thermally stable magnetic tunnel junctions

    SciTech Connect

    Chang, Y. Austin; Yang, Jianhua J.; Ladwig, Peter F.

    2009-08-25

    Magnetic tunnel junctions and method for making the magnetic tunnel junctions are provided. The magnetic tunnel junctions are characterized by a tunnel barrier oxide layer sandwiched between two ferromagnetic layers. The methods used to fabricate the magnetic tunnel junctions are capable of completely and selectively oxidizing a tunnel junction precursor material using an oxidizing gas containing a mixture of gases to provide a tunnel junction oxide without oxidizing the adjacent ferromagnetic materials. In some embodiments the gas mixture is a mixture of CO and CO.sub.2 or a mixture of H.sub.2 and H.sub.2O.

  1. Thermionic refrigeration at CNT-CNT junctions

    NASA Astrophysics Data System (ADS)

    Li, C.; Pipe, K. P.

    2016-10-01

    Monte Carlo (MC) simulation is used to study carrier energy relaxation following thermionic emission at the junction of two van der Waals bonded single-walled carbon nanotubes (SWCNTs). An energy-dependent transmission probability gives rise to energy filtering at the junction, which is predicted to increase the average electron transport energy by as much as 0.115 eV, leading to an effective Seebeck coefficient of 386 μV/K. MC results predict a long energy relaxation length (˜8 μm) for hot electrons crossing the junction into the barrier SWCNT. For SWCNTs of optimal length, an analytical transport model is used to show that thermionic cooling can outweigh parasitic heat conduction due to high SWCNT thermal conductivity, leading to a significant cooling capacity (2.4 × 106 W/cm2).

  2. Junction-side illuminated silicon detector arrays

    DOEpatents

    Iwanczyk, Jan S.; Patt, Bradley E.; Tull, Carolyn

    2004-03-30

    A junction-side illuminated detector array of pixelated detectors is constructed on a silicon wafer. A junction contact on the front-side may cover the whole detector array, and may be used as an entrance window for light, x-ray, gamma ray and/or other particles. The back-side has an array of individual ohmic contact pixels. Each of the ohmic contact pixels on the back-side may be surrounded by a grid or a ring of junction separation implants. Effective pixel size may be changed by separately biasing different sections of the grid. A scintillator may be coupled directly to the entrance window while readout electronics may be coupled directly to the ohmic contact pixels. The detector array may be used as a radiation hardened detector for high-energy physics research or as avalanche imaging arrays.

  3. Studies of silicon PN junction solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1975-01-01

    Silicon pn junction solar cells made with low-resistivity substrates show poorer performance than traditional theory predicts. The purpose of this research was to identify and characterize the physical mechanisms responsible for the discrepancy. Attention was concentrated on the open circuit voltage in shallow junction cells of 0.1 ohm-cm substrate resistivity. A number of possible mechanisms that can occur in silicon devices were considered. Two mechanisms which are likely to be of main importance in explaining the observed low values of open-circuit voltage were found: (1) recombination losses associated with defects introduced during junction formation, and (2) inhomogeneity of defects and impurities across the area of the cell. To explore these theoretical anticipations, various diode test structures were designed and fabricated and measurement configurations for characterizing the defect properties and the areal inhomogeneity were constructed.

  4. Electrostatic Modeling of Vacuum Insulator Triple Junctions

    SciTech Connect

    Tully, L K; Goerz, D A; Houck, T L; Javedani, J B

    2006-10-25

    Triple junctions are often initiation points for insulator flashover in pulsed power devices. The two-dimensional finite-element TriComp [1] modeling software suite was utilized for its electrostatic field modeling package to investigate electric field behavior in the anode and cathode triple junctions of a high voltage vacuum-insulator interface. TriComp enables simple extraction of values from a macroscopic solution for use as boundary conditions in a subset solution. Electric fields computed with this zoom capability correlate with theoretical analysis of the anode and cathode triple junctions within submicron distances for nominal electrode spacing of 1.0 cm. This paper will discuss the iterative zoom process with TriComp finite-element software and the corresponding theoretical verification of the results.

  5. Photocurrent Measurements of Carbon Nanotube PN Junctions

    NASA Astrophysics Data System (ADS)

    Gabor, Nathaniel; Zhong, Zhaohui; Bosnick, Ken; Park, Jiwoong; McEuen, Paul

    2007-03-01

    Gated p-n junctions in semiconducting nanotubes have recently drawn much attention for their electronic and optoelectronic characteristics [1,2,3]. We investigate the photocurrent response at a nanotube gated p-n junction using a focused laser illumination source. We find that the photocurrent at zero source-drain bias increases linearly with optical power for the component of light along the length of the nanotube. Scanned photocurrent imaging demonstrates that carrier generation occurs primarily between the p- and n- type segments of the device. Measurements in an optical cryostat down to 4K reveal large photoresponse and step-like structure in the reverse bias photocurrent. These results show that nanotube p-n junctions are highly sensitive, nanoscale photodetectors. [1] J.U. Lee et al, App. Phys. Lett. 85, 145 (2004). [2] J.U. Lee, App. Phys. Lett. 87, 073101 (2005). [3] K. Bosnick et al, App. Phys. Lett. 89, 163121 (2006).

  6. Tunnel junction based memristors as artificial synapses

    PubMed Central

    Thomas, Andy; Niehörster, Stefan; Fabretti, Savio; Shepheard, Norman; Kuschel, Olga; Küpper, Karsten; Wollschläger, Joachim; Krzysteczko, Patryk; Chicca, Elisabetta

    2015-01-01

    We prepared magnesia, tantalum oxide, and barium titanate based tunnel junction structures and investigated their memristive properties. The low amplitudes of the resistance change in these types of junctions are the major obstacle for their use. Here, we increased the amplitude of the resistance change from 10% up to 100%. Utilizing the memristive properties, we looked into the use of the junction structures as artificial synapses. We observed analogs of long-term potentiation, long-term depression and spike-time dependent plasticity in these simple two terminal devices. Finally, we suggest a possible pathway of these devices toward their integration in neuromorphic systems for storing analog synaptic weights and supporting the implementation of biologically plausible learning mechanisms. PMID:26217173

  7. Numerical Investigation of Josephson Junction Structures

    SciTech Connect

    Hristov, I.; Dimova, S.; Boyadjiev, T.

    2009-10-29

    Multilayered long Josephson Junction Structures form an interesting physical system where both nonlinearity and interaction between subsystems play an important role. Such systems allow to study physical effects that do not occur in single Josephson junction.The Sakai-Bodin-Pedersen model--a system of perturbed sine-Gordon equations--is used to study the dynamic states of stacks of inductively coupled long Josephson Junctions (LJJs). The corresponding static problem is numerically investigated as well. In order to study the stability of possible static solutions a Sturm-Liouville problem is generated and solved.The transitions from static to dynamic state and the scenario of these transitions are analyzed depending on the model parameters. Different physical characteristics--current-voltage characteristics, individual instant voltages and internal magnetic fields, are calculated and interpreted.

  8. Brownian refrigeration by hybrid tunnel junctions

    NASA Astrophysics Data System (ADS)

    Peltonen, J. T.; Helle, M.; Timofeev, A. V.; Solinas, P.; Hekking, F. W. J.; Pekola, J. P.

    2011-10-01

    Voltage fluctuations generated in a hot resistor can cause extraction of heat from a colder normal metal electrode of a hybrid tunnel junction between a normal metal and a superconductor. We extend the analysis presented in Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.98.210604 98, 210604 (2007) of this heat rectifying system, bearing resemblance to a Maxwell’s demon. Explicit analytic calculations show that the entropy of the total system is always increasing. We then consider a single-electron transistor configuration with two hybrid junctions in series, and show how the cooling is influenced by charging effects. We analyze also the cooling effect from nonequilibrium fluctuations instead of thermal noise, focusing on the shot noise generated in another tunnel junction. We conclude by discussing limitations for an experimental observation of the effect.

  9. Case of Superficial Cancer Located at the Pharyngoesophageal Junction Which Was Dissected by Endoscopic Laryngopharyngeal Surgery Combined with Endoscopic Submucosal Dissection

    PubMed Central

    Kawano, Tatsuyuki; Sugimoto, Taro; Yamaguchi, Kazuya; Kawamura, Yuudai; Matsui, Toshihiro; Okuda, Masafumi; Ogo, Taichi; Kume, Yuuichiro; Nakajima, Yutaka; Mora, Andres; Okada, Takuya; Hoshino, Akihiro; Tokairin, Yutaka; Nakajima, Yasuaki; Okada, Ryuhei; Kiyokawa, Yusuke; Nomura, Fuminori; Asakage, Takahiro; Shimoda, Ryo; Ito, Takashi

    2017-01-01

    Aims. In order to determine the indications of transoral surgery for a tumor located at the pharyngoesophageal junction, the trumpet maneuver with transnasal endoscopy was used. Its efficacy is reported here. Material and Methods. An 88-year-old woman complaining of dysphagia, diagnosed with cervical esophageal cancer, and hoping to preserve her voice and swallowing function was admitted to our hospital. Conventional endoscopy showed that the tumor had invaded the hypopharynx. When inspecting the hypopharynx and the orifice of the esophagus, we asked the patient to blow hard and puff her cheeks with her mouth closed (trumpet maneuver). After the trumpet maneuver, the pharyngeal mucosa was stretched out. The pedicle of the tumor arose from the left-anterior wall of the pharyngoesophageal junction, so we decided to perform endoscopic resection. Result. Under general anesthesia, the curved laryngoscope made it possible to view the whole hypopharynx, including the apex of the piriform sinus and the orifice of the esophagus. The cervical esophageal cancer was pulled up to the hypopharynx. Under collaboration between a head and neck surgeon and an endoscopist, the tumor was resected en bloc by endoscopic laryngopharyngeal surgery combined with endoscopic submucosal dissection. Conclusion. Transnasal endoscopy using the trumpet maneuver is useful for a precise diagnosis of the pharyngoesophageal junction. Close collaboration between head and neck surgeons and endoscopists can provide good results in treating tumors of the pharyngoesophageal junction. PMID:28154766

  10. Electronic Properties of Carbon Nanotubes and Junctions

    NASA Technical Reports Server (NTRS)

    Anantram, M. P.; Han, Jie; Yang, Liu; Govindan, T. R.; Jaffe, R.; Saini, Subhash (Technical Monitor)

    1998-01-01

    Metallic and semiconducting Single Wall Carbon Nanotubes (CNT) have recently been characterized using scanning tunneling microscopy (STM) and the manipulation of individual CNT has been demonstrated. These developments make the prospect of using CNT as molecular wires and possibly as electronic devices an even more interesting one. We have been modeling various electronic properties such as the density of states and the transmission coefficient of CNT wires and junctions. These studies involve first calculating the stability of junctions using molecular dynamics simulations and then calculating the electronic properties using a pi-electron tight binding Hamiltonian. We have developed the expertise to calculate the electronic properties of both finite-sized CNT and CNT systems with semi-infinite boundary conditions. In this poster, we will present an overview of some of our results. The electronic application of CNT that is most promising at this time is their use as molecular wires. The conductance can however be greatly reduced because of reflection due to defects and contacts. We have modeled the transmission through CNT in the presence of two types of defects: weak uniform disorder and strong isolated scatterers. We find that the conductance is affected in significantly different manners due to these defects Junctions of CNT have also been imaged using STM. This makes it essential to derive rules for the formation of junctions between tubes of different chirality, study their relative energies and electronic properties. We have generalized the rules for connecting two different CNT and have calculated the transmission and density of states through CNT junctions. Metallic and semiconducting CNT can be joined to form a stable junction and their current versus voltage characteristics are asymmetric. CNT are deformed by the application of external forces including interactions with a substrate or other CNT. In many experiments, these deformation are expected to

  11. Non-invasive microfluidic gap junction assay.

    PubMed

    Chen, Sisi; Lee, Luke P

    2010-03-01

    Gap junctions are protein channels between cells that allow direct electrical and metabolic coupling via the exchange of biomolecules and ions. Their expression, though ubiquitous in most mammalian cell types, is especially important for the proper functioning of cardiac and neuronal systems. Many existing methods for studying gap junction communication suffer from either unquantifiable data or difficulty of use. Here, we measure the extent of dye spread and effective diffusivities through gap junction connected cells using a quantitative microfluidic cell biology platform. After loading dye by hydrodynamic focusing of calcein/AM, dye transfer dynamics into neighboring, unexposed cells can be monitored via timelapse fluorescent microscopy. By using a selective microfluidic dye loading over a confluent layer of cells, we found that high expression of gap junctions in C6 cells transmits calcein across the monolayer with an effective diffusivity of 3.4 x 10(-13) m(2)/s, which are highly coupled by Cx43. We also found that the gap junction blocker 18alpha-GA works poorly in the presence of serum even at high concentrations (50 microM); however, it is highly effective down to 2.5 microM in the absence of serum. Furthermore, when the drug is washed out, dye spread resumes rapidly within 1 min for all doses, indicating the drug does not affect transcriptional regulation of connexins in these Cx43+ cells, in contrast to previous studies. This integrated microfluidic platform enables the in situ monitoring of gap junction communication, yielding dynamic information about intercellular molecular transfer and pharmacological inhibition and recovery.

  12. Structure and function of gap junction proteins: role of gap junction proteins in embryonic heart development.

    PubMed

    Ahir, Bhavesh K; Pratten, Margaret K

    2014-01-01

    Intercellular (cell-to-cell) communication is a crucial and complex mechanism during embryonic heart development. In the cardiovascular system, the beating of the heart is a dynamic and key regulatory process, which is functionally regulated by the coordinated spread of electrical activity through heart muscle cells. Heart tissues are composed of individual cells, each bearing specialized cell surface membrane structures called gap junctions that permit the intercellular exchange of ions and low molecular weight molecules. Gap junction channels are essential in normal heart function and they assist in the mediated spread of electrical impulses that stimulate synchronized contraction (via an electrical syncytium) of cardiac tissues. This present review describes the current knowledge of gap junction biology. In the first part, we summarise some relevant biochemical and physiological properties of gap junction proteins, including their structure and function. In the second part, we review the current evidence demonstrating the role of gap junction proteins in embryonic development with particular reference to those involved in embryonic heart development. Genetics and transgenic animal studies of gap junction protein function in embryonic heart development are considered and the alteration/disruption of gap junction intercellular communication which may lead to abnormal heart development is also discussed.

  13. Overexpression of junctional adhesion molecule-A and EphB2 predicts poor survival in lung adenocarcinoma patients.

    PubMed

    Zhao, Chen; Wang, Aili; Lu, Funian; Chen, Hongxia; Fu, Pin; Zhao, Xianda; Chen, Honglei

    2017-02-01

    Junctional adhesion molecules are important components of tight junctions, and Eph/ephrin proteins constitute the largest family of receptor tyrosine kinases. Both junctional adhesion molecules and Eph/ephrin are involved in normal tissue development and cancer progression. However, the expression levels and clinical significances of junctional adhesion molecule-A, a member of junctional adhesion molecules, and EphB2, a member of Eph/ephrin family, in lung adenocarcinoma patients are unclear. Therefore, in this study, we aimed to identify the expression and prognostic values of junctional adhesion molecule-A and EphB2 in lung adenocarcinoma patients' cohort. In our study, 70 (55.6%) showed high expression of junctional adhesion molecule-A protein and 51 (40.5%) showed high expression of EphB2 protein in 126 lung adenocarcinoma tissues. Junctional adhesion molecule-A and EphB2 expressions were both significantly increased in tumor tissues compared with noncancerous lung tissues. Kaplan-Meier analysis and log-rank test indicated that low expression of junctional adhesion molecule-A and EphB2 proteins can predict better survival and low mortality rate of lung adenocarcinomas. In univariate analysis, high expression levels of junctional adhesion molecule-A and EphB2 were both found to be significantly correlated with poor overall survival of lung adenocarcinoma patients (hazard ratio = 1.791, 95% confidence interval = 1.041-3.084, p = 0.035; hazard ratio = 1.762, 95% confidence interval = 1.038-2.992, p = 0.036, respectively). The multivariate Cox proportional hazard model demonstrated that EphB2 expression is an independent prognosis parameter in lung adenocarcinoma patients (hazard ratio = 1.738, 95% confidence interval = 1.023-2.952, p = 0.016). Taken together, high expression of junctional adhesion molecule-A and EphB2 can predict poor overall survival and high mortality rate, and EphB2 is an independent prognostic biomarker in

  14. Complementary junction heterostructure field-effect transistor

    DOEpatents

    Baca, A.G.; Drummond, T.J.; Robertson, P.J.; Zipperian, T.E.

    1995-12-26

    A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits. 10 figs.

  15. Complementary junction heterostructure field-effect transistor

    DOEpatents

    Baca, Albert G.; Drummond, Timothy J.; Robertson, Perry J.; Zipperian, Thomas E.

    1995-01-01

    A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits.

  16. Josephson junctions with alternating critical current density

    SciTech Connect

    Mints, R.G.; Kogan, V.G.

    1997-04-01

    The magnetic-field dependence of the critical current I{sub c}(H) is considered for a short Josephson junction with the critical current density j{sub c} alternating along the tunnel contact. Two model cases, periodic and randomly alternating j{sub c}, are treated in detail. Recent experimental data on I{sub c}(H) for grain-boundary Josephson junctions in YBa{sub 2}Cu{sub 3}O{sub x} are discussed. {copyright} {ital 1997} {ital The American Physical Society}

  17. Fluctuation of heat current in Josephson junctions

    SciTech Connect

    Virtanen, P.; Giazotto, F.

    2015-02-15

    We discuss the statistics of heat current between two superconductors at different temperatures connected by a generic weak link. As the electronic heat in superconductors is carried by Bogoliubov quasiparticles, the heat transport fluctuations follow the Levitov–Lesovik relation. We identify the energy-dependent quasiparticle transmission probabilities and discuss the resulting probability density and fluctuation relations of the heat current. We consider multichannel junctions, and find that heat transport in diffusive junctions is unique in that its statistics is independent of the phase difference between the superconductors.

  18. Resolving Atomic Connectivity in Graphene Nanostructure Junctions.

    PubMed

    Dienel, Thomas; Kawai, Shigeki; Söde, Hajo; Feng, Xinliang; Müllen, Klaus; Ruffieux, Pascal; Fasel, Roman; Gröning, Oliver

    2015-08-12

    We report on the structural characterization of junctions between atomically well-defined graphene nanoribbons (GNRs) by means of low-temperature, noncontact scanning probe microscopy. We show that the combination of simultaneously acquired frequency shift and tunneling current maps with tight binding (TB) simulations allows a comprehensive characterization of the atomic connectivity in the GNR junctions. The proposed approach can be generally applied to the investigation of graphene nanomaterials and their interconnections and is thus expected to become an important tool in the development of graphene-based circuitry.

  19. Superior sulcus tumors (Pancoast tumors)

    PubMed Central

    Battistella, Lucia; Mammana, Marco; Calabrese, Francesca; Rea, Federico

    2016-01-01

    Superior Sulcus Tumors, frequently termed as Pancoast tumors, are a wide range of tumors invading the apical chest wall. Due to its localization in the apex of the lung, with the potential invasion of the lower part of the brachial plexus, first ribs, vertebrae, subclavian vessels or stellate ganglion, the superior sulcus tumors cause characteristic symptoms, like arm or shoulder pain or Horner’s syndrome. The management of superior sulcus tumors has dramatically evolved over the past 50 years. Originally deemed universally fatal, in 1956, Shaw and Paulson introduced a new treatment paradigm with combined radiotherapy and surgery ensuring 5-year survival of approximately 30%. During the 1990s, following the need to improve systemic as well as local control, a trimodality approach including induction concurrent chemoradiotherapy followed by surgical resection was introduced, reaching 5-year survival rates up to 44% and becoming the standard of care. Many efforts have been persecuted, also, to obtain higher complete resection rates using appropriate surgical approaches and involving multidisciplinary team including spine surgeon or vascular surgeon. Other potential treatment options are under consideration like prophylactic cranial irradiation or the addition of other chemotherapy agents or biologic agents to the trimodality approach. PMID:27429965

  20. A proposed route to independent measurements of tight junction conductance at discrete cell junctions

    PubMed Central

    Zhou, Lushan; Zeng, Yuhan; Baker, Lane A; Hou, Jianghui

    2015-01-01

    Direct recording of tight junction permeability is of pivotal importance to many biologic fields. Previous approaches bear an intrinsic disadvantage due to the difficulty of separating tight junction conductance from nearby membrane conductance. Here, we propose the design of Double whole-cell Voltage Clamp - Ion Conductance Microscopy (DVC-ICM) based on previously demonstrated potentiometric scanning of local conductive pathways. As proposed, DVC-ICM utilizes two coordinated whole-cell patch-clamps to neutralize the apical membrane current during potentiometric scanning, which in models described here will profoundly enhance the specificity of tight junction recording. Several potential pitfalls are considered, evaluated and addressed with alternative countermeasures. PMID:26716077

  1. Functional heterologous gap junctions in Fundulus ovarian follicles maintain meiotic arrest and permit hydration during oocyte maturation.

    PubMed

    Cerdá, J L; Petrino, T R; Wallace, R A

    1993-11-01

    The physiological significance of heterologous gap junctions between granulosa cells and the oocyte was investigated in late vitellogenic ovarian follicles of the teleost Fundulus heteroclitus. Lucifer Yellow injected into the oocyte readily passed to the overlying granulosa cells, demonstrating effective dye-coupling. Passage of the fluorescent dye, and hence intercellular communication, was inhibited both by the tumor-promoting phorbol ester phorbol 12-myristate 13-acetate (PMA) and by 1-octanol, known uncouplers of gap junctions in a variety of invertebrate and vertebrate cell types. Octanol alone also initiated resumption of meiosis in follicle-enclosed oocytes, indicating that granulosa cells normally maintain meiotic arrest, as apparently occurs in mammalian and amphibian follicles. Both PMA and octanol also consistently inhibited the hydration process that normally accompanies meiotic maturation. These results support a previously suggested hypothesis that K+, which is the primary osmotic effector for oocyte hydration, is translocated via gap junction from granulosa cells to the maturing oocyte.

  2. Pituitary Tumors

    MedlinePlus

    ... almost always benign (not cancerous), but can cause hormonal imbalances and interfere with the normal function of the pituitary gland. Because the pituitary affects so many functions of the body, ... the tumor mass or hormonal changes (either too much or too little hormone). ...

  3. Unarmed, tumor-specific monoclonal antibody effectively treats brain tumors

    PubMed Central

    Sampson, John H.; Crotty, Laura E.; Lee, Samson; Archer, Gary E.; Ashley, David M.; Wikstrand, Carol J.; Hale, Laura P.; Small, Clayton; Dranoff, Glenn; Friedman, Allan H.; Friedman, Henry S.; Bigner, Darell D.

    2000-01-01

    The epidermal growth factor receptor (EGFR) is often amplified and rearranged structurally in tumors of the brain, breast, lung, and ovary. The most common mutation, EGFRvIII, is characterized by an in-frame deletion of 801 base pairs, resulting in the generation of a novel tumor-specific epitope at the fusion junction. A murine homologue of the human EGFRvIII mutation was created, and an IgG2a murine mAb, Y10, was generated that recognizes the human and murine equivalents of this tumor-specific antigen. In vitro, Y10 was found to inhibit DNA synthesis and cellular proliferation and to induce autonomous, complement-mediated, and antibodydependent cell-mediated cytotoxicity. Systemic treatment with i.p. Y10 of s.c. B16 melanomas transfected to express stably the murine EGFRvIII led to long-term survival in all mice treated (n = 20; P < 0.001). Similar therapy with i.p. Y10 failed to increase median survival of mice with EGFRvIII-expressing B16 melanomas in the brain; however, treatment with a single intratumoral injection of Y10 increased median survival by an average 286%, with 26% long-term survivors (n = 117; P < 0.001). The mechanism of action of Y10 in vivo was shown to be independent of complement, granulocytes, natural killer cells, and T lymphocytes through in vivo complement and cell subset depletions. Treatment with Y10 in Fc receptor knockout mice demonstrated the mechanism of Y10 to be Fc receptor-dependent. These data indicate that an unarmed, tumor-specific mAb may be an effective immunotherapy against human tumors and potentially other pathologic processes in the “immunologically privileged” central nervous system. PMID:10852962

  4. Ballistic bipolar junctions in chemically gated graphene ribbons

    PubMed Central

    Baringhaus, Jens; Stöhr, Alexander; Forti, Stiven; Starke, Ulrich; Tegenkamp, Christoph

    2015-01-01

    The realization of ballistic graphene pn-junctions is an essential task in order to study Klein tunneling phenomena. Here we show that intercalation of Ge under the buffer layer of pre-structured SiC-samples succeeds to make truly nano-scaled pn-junctions. By means of local tunneling spectroscopy the junction width is found to be as narrow as 5 nm which is a hundred times smaller compared to electrically gated structures. The ballistic transmission across the junction is directly proven by systematic transport measurements with a 4-tip STM. Various npn- and pnp-junctions are studied with respect to the barrier length. The pn-junctions are shown to act as polarizer and analyzer with the second junction becoming transparent in case of a fully ballistic barrier. This can be attributed to the almost full suppression of electron transmission through the junction away from normal incidence. PMID:25898259

  5. Gap junction- and hemichannel-independent actions of connexins

    PubMed Central

    Jiang, Jean X.; Gu, Sumin

    2007-01-01

    Connexins have been known to be the protein building blocks of gap junctions and mediate cell–cell communication. In contrast to the conventional dogma, recent evidence suggests that in addition to forming gap junction channels, connexins possess gap junction-independent functions. One important gap junction-independent function for connexins is to serve as the major functional component for hemichannels, the un-apposed halves of gap junctions. Hemichannels, as independent functional units, play roles that are different from that of gap junctions in the cell. The other functions of connexins appear to be gap junction- and hemichannel-independent. Published studies implicate the latter functions of connexins in cell growth, differentiation, tumorigenicity, injury, and apoptosis, although the mechanistic aspects of these actions remain largely unknown. In this review, gap junction- and hemichannel-independent functions of connexins are summarized, and the molecular mechanisms underlying these connexin functions are speculated and discussed. PMID:15955305

  6. Gap junction-mediated transfer of miR-145-5p from microvascular endothelial cells to colon cancer cells inhibits angiogenesis.

    PubMed

    Thuringer, Dominique; Jego, Gaetan; Berthenet, Kevin; Hammann, Arlette; Solary, Eric; Garrido, Carmen

    2016-05-10

    Gap junctional communication between cancer cells and blood capillary cells is crucial to tumor growth and invasion. Gap junctions may transfer microRNAs (miRs) among cells. Here, we explore the impact of such a transfer in co-culture assays, using the antitumor miR-145 as an example. The SW480 colon carcinoma cells form functional gap junction composed of connexin-43 (Cx43) with human microvascular endothelial cells (HMEC). When HMEC are loaded with miR-145-5p mimics, the miR-145 level drastically increases in SW480. The functional inhibition of gap junctions, using either a gap channel blocker or siRNA targeting Cx43, prevents this increase. The transfer of miR-145 also occurs from SW480 to HMEC but not in non-contact co-cultures, excluding the involvement of soluble exosomes. The miR-145 transfer to SW480 up-regulates their Cx43 expression and inhibits their ability to promote angiogenesis. Our results indicate that the gap junctional communication can inhibit tumor growth by transferring miRs from one endothelial cell to neighboring tumor cells. This "bystander" effect could find application in cancer therapy.

  7. Specificity of Interaction between Clostridium perfringens Enterotoxin and Claudin-Family Tight Junction Proteins

    PubMed Central

    Mitchell, Leslie A.; Koval, Michael

    2010-01-01

    Clostridium perfringens enterotoxin (CPE), a major cause of food poisoning, forms physical pores in the plasma membrane of intestinal epithelial cells. The ability of CPE to recognize the epithelium is due to the C-terminal binding domain, which binds to a specific motif on the second extracellular loop of tight junction proteins known as claudins. The interaction between claudins and CPE plays a key role in mediating CPE toxicity by facilitating pore formation and by promoting tight junction disassembly. Recently, the ability of CPE to distinguish between specific claudins has been used to develop tools for studying roles for claudins in epithelial barrier function. Moreover, the high affinity of CPE to selected claudins makes CPE a useful platform for targeted drug delivery to tumors expressing these claudins. PMID:22069652

  8. Homeostatic Signaling by Cell–Cell Junctions and Its Dysregulation during Cancer Progression

    PubMed Central

    Yu, Yang; Elble, Randolph C.

    2016-01-01

    The transition of sessile epithelial cells to a migratory, mesenchymal phenotype is essential for metazoan development and tissue repair, but this program is exploited by tumor cells in order to escape the confines of the primary organ site, evade immunosurveillance, and resist chemo-radiation. In addition, epithelial-to-mesenchymal transition (EMT) confers stem-like properties that increase efficiency of colonization of distant organs. This review evaluates the role of cell–cell junctions in suppressing EMT and maintaining a quiescent epithelium. We discuss the conflicting data on junctional signaling in cancer and recent developments that resolve some of these conflicts. We focus on evidence from breast cancer, but include other organ sites where appropriate. Current and potential strategies for inhibition of EMT are discussed. PMID:26901232

  9. High voltage series connected tandem junction solar battery

    DOEpatents

    Hanak, Joseph J.

    1982-01-01

    A high voltage series connected tandem junction solar battery which comprises a plurality of strips of tandem junction solar cells of hydrogenated amorphous silicon having one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon, arranged in a tandem configuration, can have the same bandgap or differing bandgaps. The tandem junction strip solar cells are series connected to produce a solar battery of any desired voltage.

  10. Polyphosphonium-based ion bipolar junction transistors

    PubMed Central

    Gabrielsson, Erik O.; Berggren, Magnus

    2014-01-01

    Advancements in the field of electronics during the past few decades have inspired the use of transistors in a diversity of research fields, including biology and medicine. However, signals in living organisms are not only carried by electrons but also through fluxes of ions and biomolecules. Thus, in order to implement the transistor functionality to control biological signals, devices that can modulate currents of ions and biomolecules, i.e., ionic transistors and diodes, are needed. One successful approach for modulation of ionic currents is to use oppositely charged ion-selective membranes to form so called ion bipolar junction transistors (IBJTs). Unfortunately, overall IBJT device performance has been hindered due to the typical low mobility of ions, large geometries of the ion bipolar junction materials, and the possibility of electric field enhanced (EFE) water dissociation in the junction. Here, we introduce a novel polyphosphonium-based anion-selective material into npn-type IBJTs. The new material does not show EFE water dissociation and therefore allows for a reduction of junction length down to 2 μm, which significantly improves the switching performance of the ion transistor to 2 s. The presented improvement in speed as well the simplified design will be useful for future development of advanced iontronic circuits employing IBJTs, for example, addressable drug-delivery devices. PMID:25553192

  11. Radiation comb generation with extended Josephson junctions

    SciTech Connect

    Solinas, P.; Bosisio, R.; Giazotto, F.

    2015-09-21

    We propose the implementation of a Josephson radiation comb generator based on an extended Josephson junction subject to a time dependent magnetic field. The junction critical current shows known diffraction patterns and determines the position of the critical nodes when it vanishes. When the magnetic flux passes through one of such critical nodes, the superconducting phase must undergo a π-jump to minimize the Josephson energy. Correspondingly, a voltage pulse is generated at the extremes of the junction. Under periodic driving, this allows us to produce a comb-like voltage pulses sequence. In the frequency domain, it is possible to generate up to hundreds of harmonics of the fundamental driving frequency, thus mimicking the frequency comb used in optics and metrology. We discuss several implementations through a rectangular, cylindrical, and annular junction geometries, allowing us to generate different radiation spectra and to produce an output power up to 10 pW at 50 GHz for a driving frequency of 100 MHz.

  12. Gallium nitride junction field-effect transistor

    DOEpatents

    Zolper, John C.; Shul, Randy J.

    1999-01-01

    An all-ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorous co-implantation, in selected III-V semiconductor materials.

  13. Gallium nitride junction field-effect transistor

    DOEpatents

    Zolper, J.C.; Shul, R.J.

    1999-02-02

    An ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same are disclosed. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorus co-implantation, in selected III-V semiconductor materials. 19 figs.

  14. Axion mass estimates from resonant Josephson junctions

    NASA Astrophysics Data System (ADS)

    Beck, Christian

    2015-03-01

    Recently it has been proposed that dark matter axions from the galactic halo can produce a small Shapiro step-like signal in Josephson junctions whose Josephson frequency resonates with the axion mass (Beck, 2013). Here we show that the axion field equations in a voltage-driven Josephson junction environment allow for a nontrivial solution where the axion-induced electrical current manifests itself as an oscillating supercurrent. The linear change of phase associated with this nontrivial solution implies the formal existence of a large magnetic field in a tiny surface area of the weak link region of the junction which makes incoming axions decay into microwave photons. We derive a condition for the design of Josephson junction experiments so that they can act as optimum axion detectors. Four independent recent experiments are discussed in this context. The observed Shapiro step anomalies of all four experiments consistently point towards an axion mass of (110±2) μeV. This mass value is compatible with the recent BICEP2 results and implies that Peccei-Quinn symmetry breaking was taking place after inflation.

  15. Polyphosphonium-based ion bipolar junction transistors.

    PubMed

    Gabrielsson, Erik O; Tybrandt, Klas; Berggren, Magnus

    2014-11-01

    Advancements in the field of electronics during the past few decades have inspired the use of transistors in a diversity of research fields, including biology and medicine. However, signals in living organisms are not only carried by electrons but also through fluxes of ions and biomolecules. Thus, in order to implement the transistor functionality to control biological signals, devices that can modulate currents of ions and biomolecules, i.e., ionic transistors and diodes, are needed. One successful approach for modulation of ionic currents is to use oppositely charged ion-selective membranes to form so called ion bipolar junction transistors (IBJTs). Unfortunately, overall IBJT device performance has been hindered due to the typical low mobility of ions, large geometries of the ion bipolar junction materials, and the possibility of electric field enhanced (EFE) water dissociation in the junction. Here, we introduce a novel polyphosphonium-based anion-selective material into npn-type IBJTs. The new material does not show EFE water dissociation and therefore allows for a reduction of junction length down to 2 μm, which significantly improves the switching performance of the ion transistor to 2 s. The presented improvement in speed as well the simplified design will be useful for future development of advanced iontronic circuits employing IBJTs, for example, addressable drug-delivery devices.

  16. Costochondral junction osteomyelitis in 3 septic foals

    PubMed Central

    Cesarini, Carla; Macieira, Susana; Girard, Christiane; Drolet, Richard; d’Anjou, Marc-André; Jean, Daniel

    2011-01-01

    The costochondral junction constitutes a potential site of infection in septic foals and it could be favored by thoracic trauma. Standard radiographs and ultrasonography are useful tools for diagnosis of this condition and ultrasound-guided needle aspiration could permit the definitive confirmation of infection. PMID:22210943

  17. Gap junctional communication during limb cartilage differentiation.

    PubMed

    Coelho, C N; Kosher, R A

    1991-03-01

    The onset of cartilage differentiation in the developing limb bud is characterized by a transient cellular condensation process in which prechondrogenic mesenchymal cells become closely apposed to one another prior to initiating cartilage matrix deposition. During this condensation process intimate cell-cell interactions occur which are necessary to trigger chondrogenic differentiation. In the present study, we demonstrate that extensive cell-cell communication via gap junctions as assayed by the intercellular transfer of lucifer yellow dye occurs during condensation and the onset of overt chondrogenesis in high density micromass cultures prepared from the homogeneous population of chondrogenic precursor cells comprising the distal subridge region of stage 25 embryonic chick wing buds. Furthermore, in heterogeneous micromass cultures prepared from the mesodermal cells of whole stage 23/24 limb buds, extensive gap junctional communication is limited to differentiating cartilage cells, while the nonchondrogenic cells of the cultures that are differentiating into the connective tissue lineage exhibit little or no intercellular communication via gap junctions. These results provide a strong incentive for considering and further investigating the possible involvement of cell-cell communication via gap junctions in the regulation of limb cartilage differentiation.

  18. All-carbon molecular tunnel junctions.

    PubMed

    Yan, Haijun; Bergren, Adam Johan; McCreery, Richard L

    2011-11-30

    This Article explores the idea of using nonmetallic contacts for molecular electronics. Metal-free, all-carbon molecular electronic junctions were fabricated by orienting a layer of organic molecules between two carbon conductors with high yield (>90%) and good reproducibility (rsd of current density at 0.5 V <30%). These all-carbon devices exhibit current density-voltage (J-V) behavior similar to those with metallic Cu top contacts. However, the all-carbon devices display enhanced stability to bias extremes and greatly improved thermal stability. Completed carbon/nitroazobenzene(NAB)/carbon junctions can sustain temperatures up to 300 °C in vacuum for 30 min and can be scanned at ±1 V for at least 1.2 × 10(9) cycles in air at 100 °C without a significant change in J-V characteristics. Furthermore, these all-carbon devices can withstand much higher voltages and current densities than can Cu-containing junctions, which fail upon oxidation and/or electromigration of the copper. The advantages of carbon contacts stem mainly from the strong covalent bonding in the disordered carbon materials, which resists electromigration or penetration into the molecular layer, and provides enhanced stability. These results highlight the significance of nonmetallic contacts for molecular electronics and the potential for integration of all-carbon molecular junctions with conventional microelectronics.

  19. Regulation of Traffic Lights at Road Junctions

    NASA Astrophysics Data System (ADS)

    Cutolo, Alfredo; Manzo, Rosanna; Rarità, Luigi

    2009-08-01

    In this work, we aim to investigate the effects of traffic lights regulation at road junctions, modelled by a fluid dynamic approach. Numerical simulations prove that it is possible to plan some optimization strategies for green and red phases for networks consisting of more nodes.

  20. The dynamic organic p-n junction.

    PubMed

    Matyba, Piotr; Maturova, Klara; Kemerink, Martijn; Robinson, Nathaniel D; Edman, Ludvig

    2009-08-01

    Static p-n junctions in inorganic semiconductors are exploited in a wide range of today's electronic appliances. Here, we demonstrate the in situ formation of a dynamic p-n junction structure within an organic semiconductor through electrochemistry. Specifically, we use scanning kelvin probe microscopy and optical probing on planar light-emitting electrochemical cells (LECs) with a mixture of a conjugated polymer and an electrolyte connecting two electrodes separated by 120 microm. We find that a significant portion of the potential drop between the electrodes coincides with the location of a thin and distinct light-emission zone positioned >30 microm away from the negative electrode. These results are relevant in the context of a long-standing scientific debate, as they prove that electrochemical doping can take place in LECs. Moreover, a study on the doping formation and dissipation kinetics provides interesting detail regarding the electronic structure and stability of the dynamic organic p-n junction, which may be useful in future dynamic p-n junction-based devices.

  1. Single molecule junction conductance and binding geometry

    NASA Astrophysics Data System (ADS)

    Kamenetska, Maria

    This Thesis addresses the fundamental problem of controlling transport through a metal-organic interface by studying electronic and mechanical properties of single organic molecule-metal junctions. Using a Scanning Tunneling Microscope (STM) we image, probe energy-level alignment and perform STM-based break junction (BJ) measurements on molecules bound to a gold surface. Using Scanning Tunneling Microscope-based break-junction (STM-BJ) techniques, we explore the effect of binding geometry on single-molecule conductance by varying the structure of the molecules, metal-molecule binding chemistry and by applying sub-nanometer manipulation control to the junction. These experiments are performed both in ambient conditions and in ultra high vacuum (UHV) at cryogenic temperatures. First, using STM imaging and scanning tunneling spectroscopy (STS) measurements we explore binding configurations and electronic properties of an amine-terminated benzene derivative on gold. We find that details of metal-molecule binding affect energy-level alignment at the interface. Next, using the STM-BJ technique, we form and rupture metal-molecule-metal junctions ˜104 times to obtain conductance-vs-extension curves and extract most likely conductance values for each molecule. With these measurements, we demonstrated that the control of junction conductance is possible through a choice of metal-molecule binding chemistry and sub-nanometer positioning. First, we show that molecules terminated with amines, sulfides and phosphines bind selectively on gold and therefore demonstrate constant conductance levels even as the junction is elongated and the metal-molecule attachment point is modified. Such well-defined conductance is also obtained with paracyclophane molecules which bind to gold directly through the pi system. Next, we are able to create metal-molecule-metal junctions with more than one reproducible conductance signatures that can be accessed by changing junction geometry. In the

  2. 30 CFR 57.12007 - Junction box connection procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Junction box connection procedures. 57.12007... Electricity Surface and Underground § 57.12007 Junction box connection procedures. Trailing cable and power-cable connections to junction boxes shall not be made or broken under load....

  3. Overview of the Grand Junction Office from Bluff east of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of the Grand Junction Office from Bluff east of facility. Note Buildings #35. #33 and #31A in lower left of photograph. VIEW WEST - Department of Energy, Grand Junction Office, 2597 B3/4 Road, Grand Junction, Mesa County, CO

  4. Graphene junction field-effect transistor

    NASA Astrophysics Data System (ADS)

    Ou, Tzu-Min; Borsa, Tomoko; van Zeghbroeck, Bart

    2014-03-01

    We have demonstrated for the first time a novel graphene transistor gated by a graphene/semiconductor junction rather than an insulating gate. The transistor operates much like a semiconductor junction Field Effect Transistor (jFET) where the depletion layer charge in the semiconductor modulates the mobile charge in the channel. The channel in our case is the graphene rather than another semiconductor layer. An increased reverse bias of the graphene/n-silicon junction increases the positive charge in the depletion region and thereby reduces the total charge in the graphene. We fabricated individual graphene/silicon junctions as well as graphene jFETs (GjFETs) on n-type (4.5x1015 cm-3) silicon with Cr/Au electrodes and 3 μm gate length. As a control device, we also fabricated back-gated graphene MOSFETs using a 90nm SiO2 on a p-type silicon substrate (1019 cm-3) . The graphene was grown by APCVD on copper foil and transferred with PMMA onto the silicon substrate. The GjFET exhibited an on-off ratio of 3.75, an intrinsic graphene doping of 1.75x1012 cm-2, compared to 1.17x1013 cm-2 in the MOSFET, and reached the Dirac point at 13.5V. Characteristics of the junctions and transistors were measured as a function of temperature and in response to light. Experimental data and a comparison with simulations will be presented.

  5. Multiphase Flow in Micro-fracture Junctions

    NASA Astrophysics Data System (ADS)

    Basagaoglu, H.; Meakin, P.; Succi, S.; Wildenschild, D.

    2005-12-01

    A two-dimensional two-phase lattice-Boltzmann model was used to simulate immiscible fluid flow in four micro-fracture geometries closely related to geological fractured systems: (1) a fracture junction with fractal surfaces embedded in a non-porous matrix; (2) a fracture junction embedded in a heterogeneous porous matrix; (3) a heterogeneous porous medium overlying a fracture with fractal surfaces; and (4) a fracture network with fractal surfaces enclosed by a non-porous medium. The spatio-temporal distributions of fluids in fracture junctions were controlled by interplays between velocity-dependent contact angle dynamics, mediated by surface roughness, and pore-scale gravitational, viscous, and capillary forces. All simulations were conducted with actual physical units. Sensitivities of lateral and vertical spreads of fluids in the fracture junctions to the orientation of fracture junctions (tilted vs. vertical) and the wetting strength of fluids were analyzed via temporal moment analyses for the first two geometries. The simulation results revealed that the receding and advancing contact angles varied strongly with the transient fluid velocity. The patterns and distributions of thin films (continuous vs. discontinuous) on rough fracture walls were largely controlled by the wetting strength of the fluids. The spatio-temporal distributions of fluids were highly sensitive to the domain size and boundary conditions (periodic, no-flow, constant density, and flux-type). Single- and two-sided wetting of fracture aperture walls and long-term entrapment of a nonwetting less-dense fluid by a wetting dense fluid were observed in the simulations. These numerical results are useful for the design of experiments and for analyzing the relative strengths of pore-scale processes in more complex and realistic fracture systems such as those encountered at the Yucca Mountain and Idaho National Laboratory sites.

  6. Holliday junction trap shows how cells use recombination and a junction-guardian role of RecQ helicase

    PubMed Central

    Xia, Jun; Chen, Li-Tzu; Mei, Qian; Ma, Chien-Hui; Halliday, Jennifer A.; Lin, Hsin-Yu; Magnan, David; Pribis, John P.; Fitzgerald, Devon M.; Hamilton, Holly M.; Richters, Megan; Nehring, Ralf B.; Shen, Xi; Li, Lei; Bates, David; Hastings, P. J.; Herman, Christophe; Jayaram, Makkuni; Rosenberg, Susan M.

    2016-01-01

    DNA repair by homologous recombination (HR) underpins cell survival and fuels genome instability, cancer, and evolution. However, the main kinds and sources of DNA damage repaired by HR in somatic cells and the roles of important HR proteins remain elusive. We present engineered proteins that trap, map, and quantify Holliday junctions (HJs), a central DNA intermediate in HR, based on catalytically deficient mutant RuvC protein of Escherichia coli. We use RuvCDefGFP (RDG) to map genomic footprints of HR at defined DNA breaks in E. coli and demonstrate genome-scale directionality of double-strand break (DSB) repair along the chromosome. Unexpectedly, most spontaneous HR-HJ foci are instigated, not by DSBs, but rather by single-stranded DNA damage generated by replication. We show that RecQ, the E. coli ortholog of five human cancer proteins, nonredundantly promotes HR-HJ formation in single cells and, in a novel junction-guardian role, also prevents apparent non-HR–HJs promoted by RecA overproduction. We propose that one or more human RecQ orthologs may act similarly in human cancers overexpressing the RecA ortholog RAD51 and find that cancer genome expression data implicate the orthologs BLM and RECQL4 in conjunction with EME1 and GEN1 as probable HJ reducers in such cancers. Our results support RecA-overproducing E. coli as a model of the many human tumors with up-regulated RAD51 and provide the first glimpses of important, previously elusive reaction intermediates in DNA replication and repair in single living cells. PMID:28090586

  7. Myosin-dependent remodeling of adherens junctions protects junctions from Snail-dependent disassembly

    PubMed Central

    Weng, Mo

    2016-01-01

    Although Snail is essential for disassembly of adherens junctions during epithelial–mesenchymal transitions (EMTs), loss of adherens junctions in Drosophila melanogaster gastrula is delayed until mesoderm is internalized, despite the early expression of Snail in that primordium. By combining live imaging and quantitative image analysis, we track the behavior of E-cadherin–rich junction clusters, demonstrating that in the early stages of gastrulation most subapical clusters in mesoderm not only persist, but move apically and enhance in density and total intensity. All three phenomena depend on myosin II and are temporally correlated with the pulses of actomyosin accumulation that drive initial cell shape changes during gastrulation. When contractile myosin is absent, the normal Snail expression in mesoderm, or ectopic Snail expression in ectoderm, is sufficient to drive early disassembly of junctions. In both cases, junctional disassembly can be blocked by simultaneous induction of myosin contractility. Our findings provide in vivo evidence for mechanosensitivity of cell–cell junctions and imply that myosin-mediated tension can prevent Snail-driven EMT. PMID:26754645

  8. Model building to facilitate understanding of holliday junction and heteroduplex formation, and holliday junction resolution.

    PubMed

    Selvarajah, Geeta; Selvarajah, Susila

    2016-07-08

    Students frequently expressed difficulty in understanding the molecular mechanisms involved in chromosomal recombination. Therefore, we explored alternative methods for presenting the two concepts of the double-strand break model: Holliday junction and heteroduplex formation, and Holliday junction resolution. In addition to a lecture and computer-animated video, we included a model building activity using pipe cleaners. Biotechnology undergraduates (n = 108) used the model to simulate Holliday junction and heteroduplex formation, and Holliday junction resolution. Based on student perception, an average of 12.85 and 78.35% students claimed that they completely and partially understood the two concepts, respectively. A test conducted to ascertain their understanding about the two concepts showed that 66.1% of the students provided the correct response to the three multiple choice questions. A majority of the 108 students attributed the inclusion of model building to their better understanding of Holliday junction and heteroduplex formation, and Holliday junction resolution. This underlines the importance of incorporating model building, particularly in concepts that require spatial visualization. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(4):381-390, 2016.

  9. "Cancer tumor".

    NASA Astrophysics Data System (ADS)

    Bronshtehn, V. A.

    The title is a phrase borrowed from a speech by a Leningrad pressman, V. E. Lvov, who called upon those attending a theoretical conference on ideological issues in astronomy held by the Leningrad Branch of the All-Union Astronomic and Geodetic Society (13 - 4 December 1948), "to make a more radical emphasis on the negative role of relativistic cosmology which is a cancer tumor disintegrating the contemporary astronomy theory, and a major ideological enemy of a materialist astronomy".

  10. E–N-cadherin heterodimers define novel adherens junctions connecting endoderm-derived cells

    PubMed Central

    Straub, Beate K.; Rickelt, Steffen; Zimbelmann, Ralf; Grund, Christine; Kuhn, Caecilia; Iken, Marcus; Ott, Michael; Schirmacher, Peter

    2011-01-01

    Intercellular junctions play a pivotal role in tissue development and function and also in tumorigenesis. In epithelial cells, decrease or loss of E-cadherin, the hallmark molecule of adherens junctions (AJs), and increase of N-cadherin are widely thought to promote carcinoma progression and metastasis. In this paper, we show that this “cadherin switch” hypothesis does not hold for diverse endoderm-derived cells and cells of tumors derived from them. We show that the cadherins in a major portion of AJs in these cells can be chemically cross-linked in E–N heterodimers. We also show that cells possessing E–N heterodimer AJs can form semistable hemihomotypic AJs with purely N-cadherin–based AJs of mesenchymally derived cells, including stroma cells. We conclude that these heterodimers are the major AJ constituents of several endoderm-derived tissues and tumors and that the prevailing concept of antagonistic roles of these two cadherins in developmental and tumor biology has to be reconsidered. PMID:22105347

  11. Subsets of ATP-sensitive potassium channel (KATP) inhibitors increase gap junctional intercellular communication in metastatic cancer cell lines independent of SUR expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gap junctional intercellular communication (GJIC) is a process whereby cells share molecules and nutrients with each other by physical contact through cell membrane pores. In tumor cells, GJIC is often altered, suggesting that this process may be important in the context of cancer. Certain ion chan...

  12. Proatlas segmentation anomalies: Surgical management of five cases and review of the literature

    PubMed Central

    Muthukumar, Natarajan

    2016-01-01

    Objective: Proatlas segementation anomalies are due to defective re-segmentation of the proatlas sclerotome. These anomalies of the craniovertebral junction are rare and have multiple presentations. The aim of this study is to report this author's personal experience in managing five of these patients with different radiological findings necessitating different surgical strategies and to provide a brief review of the relevant literature. Materials and Methods: Five patients, all in the second decade of life were treated between 2010 and 2013. There were three males and two females. All the patients presented with spastic quadriparesis and/or cerebellar signs. Patients underwent plain radiographs, MRI and CT of the craniovertebral junction. CT of the cranioveretebral junction was the key to the diagnosis of this anomaly. Postoperatively, patients were assessed with plain radiographs and CT in all patients and MRI in one. Results: Two patients underwent craniovertebral realignment with occipitocervical fixation, two patients underwent C1-C2 fixation using Goel-Harms technique and one patient underwent craniovertebral realignment with C1-C2 fixation using spacers in the atlanatoaxial joint and foramen magnum decompression. All patients improved during follow up. Conclusions: Proatlas segmentation defects are rare anomalies of the craniovertebral junction. Routine use of thin section CT of the craniovertebral junction and an awareness of this entity and its multivarious presentations are necessary for clinicians dealing with abnormalities of the craniovertebral junction. PMID:27195027

  13. Brain tumor - primary - adults

    MedlinePlus

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... Primary brain tumors include any tumor that starts in the brain. Primary brain tumors can start from brain cells, ...

  14. Understanding Brain Tumors

    MedlinePlus

    ... to Know About Brain Tumors . What is a Brain Tumor? A brain tumor is an abnormal growth
 ... Tumors” from Frankly Speaking Frankly Speaking About Cancer: Brain Tumors Download the full book Questions to ask ...

  15. Brain tumor - children

    MedlinePlus

    ... children; Neuroglioma - children; Oligodendroglioma - children; Meningioma - children; Cancer - brain tumor (children) ... The cause of primary brain tumors is unknown. Primary brain tumors may ... (spread to nearby areas) Cancerous (malignant) Brain tumors ...

  16. Adrenal Gland Tumors: Statistics

    MedlinePlus

    ... Gland Tumor: Statistics Request Permissions Adrenal Gland Tumor: Statistics Approved by the Cancer.Net Editorial Board , 03/ ... primary adrenal gland tumor is very uncommon. Exact statistics are not available for this type of tumor ...

  17. Brain Tumor Diagnosis

    MedlinePlus

    ... Types of Brain Scans X-rays Laboratory Tests DNA Profiling Biopsy Procedure Malignant and Benign Brain Tumors Tumor ... Types of Brain Scans X-rays Laboratory Tests DNA Profiling Biopsy Procedure Malignant and Benign Brain Tumors Tumor ...

  18. Markers of squamocolumnar junction cells in normal tonsils and oropharyngeal cancer with and without HPV infection.

    PubMed

    Morbini, Patrizia; Capello, Gian Luca; Alberizzi, Paola; Benazzo, Marco; Paglino, Chiara; Comoli, Patrizia; Pedrazzoli, Paolo

    2015-07-01

    HPV infection has been identified recently as the causative agent of a subset of squamous cell carcinomas arising in oropharyngeal tonsils. Factors influencing the susceptibility of tonsillar epithelium to HPV-induced oncogenesis are far from being elucidated. A 5-protein signature including cytokeratin (CK)7, anterior gradient (AGR)2, cluster differentiation (CD)63, matrix metalloproteinase (MMP)7, and guanine deaminase (GDA) has recently been found to identify a residual embryonic cell population in the squamocolumnar (SC) junction of the cervix, susceptible to HPV infection, and cancers originating from these cells. The expression of SC junction markers was investigated with immunohistochemistry in normal tonsils and in oropharyngeal carcinomas (OPC) fully characterised for HPV. All markers were constantly expressed in the reticulated epithelial cells of the tonsillar crypts, with variable diffusion and intensity; in OPC, positivity was observed in 36,5%, 29,2%, 39%, 17%, and 25% of cases with respectively AGR2, CK7, GDA, CD63, and MMP7 antibodies. No OPC was positive for all markers; 6 were completely negative. AGR2 and CK7 showed significant association with tumor- and HPV-related parameters. AGR2 expression was associated with tumor origin in the tongue base (p=0.013); CK7 was associated with non-keratinising morphology (p=0.013). p16 tumor cell expression was associated with AGR2 (p=0.021); transcriptionally active HPV infection was associated with AGR2 and CK7 (p=0.024 and 0.043). Expression of SC junction markers in tonsillar crypt cells might be related to the embryological development of tonsillar structures; their partial association with HPV oncogenic infection could help to identify HPV-susceptible cells and related OPC.

  19. [Development of CT manifestations and anatomic studies on thoracic-abdominal junctional zone].

    PubMed

    Ye, Yilan; Deng, Wen; Yang, Zhigang

    2010-12-01

    Thoracic-abdominal junctional zone is an area from the inferior chest to superior belly. The inferior chest contains inferior pulmonary lobes, pulmonary ligament, inferior mediastinum and lower thoracic cavity,while the superior belly contains upper abdominal cavity, spatium retroperitonaeale, abdominal aorta, inferior vena cava, liver, stomach, adrenal glands, kidneys and spleen. This article is to review the CT manifestations and anatomy of diseases such as infection, trauma, hemorrhage, hernia and tumor involving this area. It could provides anatomic and pathological information for instituting clinical treatments.

  20. AMP-activated protein kinase fortifies epithelial tight junctions during energetic stress via its effector GIV/Girdin

    PubMed Central

    Aznar, Nicolas; Patel, Arjun; Rohena, Cristina C; Dunkel, Ying; Joosen, Linda P; Taupin, Vanessa; Kufareva, Irina; Farquhar, Marilyn G; Ghosh, Pradipta

    2016-01-01

    Loss of epithelial polarity impacts organ development and function; it is also oncogenic. AMPK, a key sensor of metabolic stress stabilizes cell-cell junctions and maintains epithelial polarity; its activation by Metformin protects the epithelial barrier against stress and suppresses tumorigenesis. How AMPK protects the epithelium remains unknown. Here, we identify GIV/Girdin as a novel effector of AMPK, whose phosphorylation at a single site is both necessary and sufficient for strengthening mammalian epithelial tight junctions and preserving cell polarity and barrier function in the face of energetic stress. Expression of an oncogenic mutant of GIV (cataloged in TCGA) that cannot be phosphorylated by AMPK increased anchorage-independent growth of tumor cells and helped these cells to evade the tumor-suppressive action of Metformin. This work defines a fundamental homeostatic mechanism by which the AMPK-GIV axis reinforces cell junctions against stress-induced collapse and also provides mechanistic insight into the tumor-suppressive action of Metformin. DOI: http://dx.doi.org/10.7554/eLife.20795.001 PMID:27813479

  1. Demonstration of an ac Josephson junction laser

    NASA Astrophysics Data System (ADS)

    Cassidy, M. C.; Bruno, A.; Rubbert, S.; Irfan, M.; Kammhuber, J.; Schouten, R. N.; Akhmerov, A. R.; Kouwenhoven, L. P.

    2017-03-01

    Superconducting electronic devices have reemerged as contenders for both classical and quantum computing due to their fast operation speeds, low dissipation, and long coherence times. An ultimate demonstration of coherence is lasing. We use one of the fundamental aspects of superconductivity, the ac Josephson effect, to demonstrate a laser made from a Josephson junction strongly coupled to a multimode superconducting cavity. A dc voltage bias applied across the junction provides a source of microwave photons, and the circuit’s nonlinearity allows for efficient down-conversion of higher-order Josephson frequencies to the cavity’s fundamental mode. The simple fabrication and operation allows for easy integration with a range of quantum devices, allowing for efficient on-chip generation of coherent microwave photons at low temperatures.

  2. String networks with junctions in competition models

    NASA Astrophysics Data System (ADS)

    Avelino, P. P.; Bazeia, D.; Losano, L.; Menezes, J.; de Oliveira, B. F.

    2017-03-01

    In this work we give specific examples of competition models, with six and eight species, whose three-dimensional dynamics naturally leads to the formation of string networks with junctions, associated with regions that have a high concentration of enemy species. We study the two- and three-dimensional evolution of such networks, both using stochastic network and mean field theory simulations. If the predation, reproduction and mobility probabilities do not vary in space and time, we find that the networks attain scaling regimes with a characteristic length roughly proportional to t 1 / 2, where t is the physical time, thus showing that the presence of junctions, on its own, does not have a significant impact on their scaling properties.

  3. Junction between surfaces of two topological insulators

    NASA Astrophysics Data System (ADS)

    Sen, Diptiman; Deb, Oindrila

    2012-02-01

    We study scattering from a line junction which separates the surfaces of two three-dimensional topological insulators; some aspects of this problem were recently studied in Takahashi and Murakami, Phys. Rev. Lett. 107, 166805 (2011). The velocities of the Dirac electrons on the two surfaces may be unequal and may even have opposite signs; in the latter case, we find that the electrons must, in general, go into the two-dimensional interface separating the two topological insulators. We also study what happens if the two surfaces are at an angle φ with respect to each other. We find in this case that there are bound states which propagate along the line junction with a velocity and direction of spin which depend on the bending angle φ.

  4. Junction conditions in extended Teleparallel gravities

    SciTech Connect

    De la Cruz-Dombriz, Álvaro; Dunsby, Peter K.S.; Sáez-Gómez, Diego E-mail: peter.dunsby@uct.ac.za

    2014-12-01

    In the context of extended Teleparallel gravity theories, we address the issue of junction conditions required to guarantee the correct matching of different regions of spacetime. In the absence of shells/branes, these conditions turn out to be more restrictive than their counterparts in General Relativity as in other extended theories of gravity. In fact, the general junction conditions on the matching hypersurfaces depend on the underlying theory and a new condition on the induced tetrads in order to avoid delta-like distributions in the field equations. This result imposes strict consequences on the viability of standard solutions such as the Einstein-Straus-like construction. We find that the continuity of the scalar torsion is required in order to recover the usual General Relativity results.

  5. Current distributions in stripe Majorana junctions

    NASA Astrophysics Data System (ADS)

    Osca, Javier; Llorenç, Serra

    2017-02-01

    We calculate current and density distributions in stripe (2D planar) junctions between normal and Majorana nanowires having a finite ( y) transverse length. In presence of a magnetic field with vertical and in-plane components, the y-symmetry of the charge current distribution in the normal lead changes strongly across the Majorana phase transition: from center-symmetric if a Majorana mode is present to laterally-shifted (as expected by the Hall effect) if the field is tilted such as to destroy the Majorana mode due to the projection rule. We compare quasi-particle and charge distributions of current and density, as well as spin magnetizations. The Majorana mode causes opposite spin accumulations on the transverse sides of the junction and the emergence of a spin current.

  6. Vibrational Heat Transport in Molecular Junctions.

    PubMed

    Segal, Dvira; Agarwalla, Bijay Kumar

    2016-05-27

    We review studies of vibrational energy transfer in a molecular junction geometry, consisting of a molecule bridging two heat reservoirs, solids or large chemical compounds. This setup is of interest for applications in molecular electronics, thermoelectrics, and nanophononics, and for addressing basic questions in the theory of classical and quantum transport. Calculations show that system size, disorder, structure, dimensionality, internal anharmonicities, contact interaction, and quantum coherent effects are factors that combine to determine the predominant mechanism (ballistic/diffusive), effectiveness (poor/good), and functionality (linear/nonlinear) of thermal conduction at the nanoscale. We review recent experiments and relevant calculations of quantum heat transfer in molecular junctions. We recount the Landauer approach, appropriate for the study of elastic (harmonic) phononic transport, and outline techniques that incorporate molecular anharmonicities. Theoretical methods are described along with examples illustrating the challenge of reaching control over vibrational heat conduction in molecules.

  7. Magnetoamplification in a bipolar magnetic junction transistor.

    PubMed

    Rangaraju, N; Peters, J A; Wessels, B W

    2010-09-10

    We have demonstrated the first bipolar magnetic junction transistor using a dilute magnetic semiconductor. For an InMnAs p-n-p transistor magnetoamplification is observed at room temperature. The observed magnetoamplification is attributed to the magnetoresistance of the magnetic semiconductor InMnAs heterojunction. The magnetic field dependence of the transistor characteristics confirm that the magnetoamplification results from the junction magnetoresistance. To describe the experimentally observed transistor characteristics, we propose a modified Ebers-Moll model that includes a series magnetoresistance attributed to spin-selective conduction. The capability of magnetic field control of the amplification in an all-semiconductor transistor at room temperature potentially enables the creation of new computer logic architecture where the spin of the carriers is utilized.

  8. Excess junction current of silicon solar cells

    NASA Technical Reports Server (NTRS)

    Wang, E. Y.; Legge, R. N.; Christidis, N.

    1973-01-01

    The current-voltage characteristics of n(plus)-p silicon solar cells with 0.1, 1.0, 2.0, and 10 ohm-cm p-type base materials have been examined in detail. In addition to the usual I-V measurements, we have studied the temperature dependence of the slope of the I-V curve at the origin by the lock-in technique. The excess junction current coefficient (Iq) deduced from the slope at the origin depends on the square root of the intrinsic carrier concentration. The Iq obtained from the I-V curve fitting over the entire forward bias region at various temperatures shows the same temperature dependence. This result, in addition to the presence of an aging effect, suggest that the surface channel effect is the dominant cause of the excess junction current.

  9. Cusps on cosmic superstrings with junctions

    SciTech Connect

    Davis, Anne-Christine; Rajamanoharan, Senthooran; Nelson, William; Sakellariadou, Mairi E-mail: william.nelson@kcl.ac.uk E-mail: mairi.sakellariadou@kcl.ac.uk

    2008-11-15

    The existence of cusps on non-periodic strings ending on D-branes is demonstrated and the conditions for which such cusps are generic are derived. The dynamics of F-strings, D-strings and FD-string junctions are investigated. It is shown that pairs of FD-string junctions, such as would form after intercommutations of F-strings and D-strings, generically contain cusps. This new feature of cosmic superstrings opens up the possibility of extra channels of energy loss from a string network. The phenomenology of cusps on such cosmic superstring networks is compared to that of cusps formed on networks of their field theory analogues, the standard cosmic strings.

  10. [Paroxysmal junctional reciprocal tachycardia and fetoplacental anasarca].

    PubMed

    Maurier, F; Delisle, G; Guay, M

    1985-02-01

    Foeto-placental anasarca was diagnosed at 34 weeks gestation in a patient with acute hydramnios. Foetal tachycardia at 300 bpm was recorded. This obstetrical problem led to the birth of a premature baby with generalised oedema, for which the only apparent cause was the tachycardia. This was identified as a paroxysmal junctional reciprocating tachycardia, initiating on atrial extrasystolic echos, terminating on R waves, with lengthening of the PR interval at the onset of tachycardia, without acceleration of the sinus rate and P'R = RP'. Paroxysmal junctional reciprocating tachycardia in utero was responsible for congestive cardiac failure and foeto-placental anasarca. The cardiac failure was treated by foetal delivery, artificial respiration and digoxin. The association of digoxin-disopyramide reduces the frequency of attacks of tachycardia and treatment may be stopped after one year's follow-up.

  11. Novel tunnelling barriers for spin tunnelling junctions

    NASA Astrophysics Data System (ADS)

    Sharma, Manish

    A tunnel junction consists of two metal electrodes separated by an insulating barrier thin enough for electrons to tunnel across. With ferromagnetic electrodes, a spin-dependent tunnelling (SDT) effect, electrons of one spin tunnelling preferentially over those of the other, is observed. When the electrodes are switched from a parallel to an anti-parallel alignment, the tunnelling current changes and gives rise to tunnelling magnetoresistance (TMR). Since 1995, interest in SDT junctions has increased as TMR in excess of 15% has been achieved, making viable their use in non-volatile memory and magnetic sensors applications. In this work, two key issues of SDT junctions are addressed: spin polarization of the electrode and the tunnel barrier. Spin polarization, a measure of electron states of up and down spins, is widely believed to be an intrinsic property of the electrode. In junctions with barriers formed by plasma oxidation of composite Ta/Al films, the surprising effect of the resistance being lower with the electrodes aligned antiparallel was observed. Junctions with Ta/Al barriers and those with Al/Ta barriers behave opposite to each other and exhibit an inversion only when the Ta side of the barrier is biased positive. This demonstrates the spin polarization is also influenced by the barrier material. Half-metallic materials such as magnetite (Fe3O4) have a gap in one of the spins' states at the fermi level, thus having a theoretical spin polarization of 100%. In this work, an ultrathin Fe3O 4 layer was added between the Al2O3 barrier and the NiFe electrode. The TMR increased sharply from 4% to 16% for thicknesses less than 0.5nm. As the tunnel barrier must be thinner than 2nm, choice of the barrier material becomes critical. Presently, Al2O3 is the best known barrier. In looking for alternative materials, AlN and AlON were formed by plasma nitridation and oxy-nitridation of deposited Al films. TMR results of up to 18% and resistance-area products down to 3

  12. Spontaneous supercurrent induced by ferromagnetic pi junctions.

    PubMed

    Bauer, A; Bentner, J; Aprili, M; Della Rocca, M L; Reinwald, M; Wegscheider, W; Strunk, C

    2004-05-28

    We present magnetization measurements of mesoscopic superconducting niobium loops containing a ferromagnetic (PdNi) pi junction. The loops are prepared on top of the active area of a micro-Hall sensor based on high mobility GaAs/AlGaAs heterostructures. We observe asymmetric switching of the loop between different magnetization states when reversing the sweep direction of the magnetic field. This provides evidence for a spontaneous current induced by the intrinsic phase shift of the pi junction. In addition, the presence of the spontaneous current near zero applied field is directly revealed by an increase of the magnetic moment with decreasing temperature, which results in half integer flux quantization in the loop at low temperatures.

  13. Physiology and Function of the Tight Junction

    PubMed Central

    Anderson, James M.; Van Itallie, Christina M.

    2009-01-01

    Understanding of tight junctions has evolved from their historical perception as inert solute barriers to recognition of their physiological and biochemical complexity. Many proteins are specifically localized to tight junctions, including cytoplasmic actin-binding proteins and adhesive transmembrane proteins. Among the latter are claudins, which are critical barrier proteins. Current information suggests that the paracellular barrier is most usefully modeled as having two physiologic components: a system of charge-selective small pores, 4 Å in radius, and a second pathway created by larger discontinuities in the barrier, lacking charge or size discrimination. The first pathway is influenced by claudin expression patterns and the second is likely controlled by different proteins and signals. Recent information on claudin function and disease-causing mutations have led to a more complete understanding of their role in barrier formation, but progress is impeded by lack of high resolution structural information. PMID:20066090

  14. Vibrational Heat Transport in Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Segal, Dvira; Agarwalla, Bijay Kumar

    2016-05-01

    We review studies of vibrational energy transfer in a molecular junction geometry, consisting of a molecule bridging two heat reservoirs, solids or large chemical compounds. This setup is of interest for applications in molecular electronics, thermoelectrics, and nanophononics, and for addressing basic questions in the theory of classical and quantum transport. Calculations show that system size, disorder, structure, dimensionality, internal anharmonicities, contact interaction, and quantum coherent effects are factors that combine to determine the predominant mechanism (ballistic/diffusive), effectiveness (poor/good), and functionality (linear/nonlinear) of thermal conduction at the nanoscale. We review recent experiments and relevant calculations of quantum heat transfer in molecular junctions. We recount the Landauer approach, appropriate for the study of elastic (harmonic) phononic transport, and outline techniques that incorporate molecular anharmonicities. Theoretical methods are described along with examples illustrating the challenge of reaching control over vibrational heat conduction in molecules.

  15. Quantum computing with Josephson junction circuits

    NASA Astrophysics Data System (ADS)

    Xu, Huizhong

    This work concerns the study of Josephson junction circuits in the context of their usability for quantum computing. The zero-voltage state of a current-biased Josephson junction has a set of metastable quantum energy levels. If a junction is well isolated from its environment, it will be possible to use the two lowest states as a qubit in a quantum computer. I first examine the meaning of isolation theoretically. Using a master equation, I analyzed the effect of dissipation on escape rates and suggested a simple method, population depletion technique, to measure the relaxation time (T1). Using a stochastic Bloch equation to analyze the dependence of microwave resonance peak width on current noise, I found decoherence due to current noise depends on the noise spectrum. For high frequency noise with a cutoff frequency fc much larger than 1/T1, I found decoherence due to noise can be described by a dephasing rate that is proportional to the noise spectral density. However, for low frequency noise such that its cutoff frequency fc is much smaller than 1/T 1, decoherence due to noise depends on the total rms current noise. I then analyze and test a few qubit isolation schemes, including resistive isolation, inductor-capacitor (LC) isolation, half-wavelength resonant isolation and inductor-junction (LJ) isolation. I found the resistive isolation scheme has a severe heating problem. Macroscopic quantum tunneling and energy level quantization were observed in the LC isolated Nb/AlOx/Nb and AL/ALOx/Al junction qubits at 25 mK. Relaxation times of 4--12 ns and spectroscopic coherence times of 1--3 ns were obtained for these LC isolated qubits. I found the half-wavelength isolated junction qubit has a relaxation time of about 20 ns measured by the population-depletion techniques, but no energy levels were observed in this qubit. Experimental results suggest the LJ isolated qubit has a longer relaxation and coherence times than all my previously examined samples. Using a

  16. Neuro-muscular junction block stimulator simulator.

    PubMed

    Sprick, Cyle

    2006-03-01

    Improved technology and higher fidelity are making medical simulations increasingly popular. A simulated peripheral nerve stimulator and thumb actuator has been developed for use with the SimMan Universal Patient Simulator. This device incorporates a handheld control box, a McKibben pneumatic muscle and articulated thumb, and a remote software interface for the simulation facilitator. The system simulates the action of a peripheral nerve stimulator on the ulnar nerve, and the effects of neuromuscular junction blocking agents on the thumb motion.

  17. Electronic and optical spectroscopy of molecular junctions

    NASA Astrophysics Data System (ADS)

    Preiner, Michael J.

    Electronic transport through molecules has been intensively studied in recent years, due to scientific interest in fundamental questions about charge transport and the technological promise of nanoscale circuitry. A wide range of range of experimental platforms have been developed to electronically probe both single molecules and molecular monolayers. However, it remains challenging to fabricate reliable electronic contacts to molecules, and the vast majority of molecular electronic architectures are not amenable to standard characterization techniques, such as optical spectroscopy. Thus the field of molecular electronics has been hampered with problems of reproducibility, and many fundamental questions about electronic transport remain unanswered. This thesis describes four significant contributions towards the fabrication and characterization of molecular electronic devices: (1) The development of a new method for creating robust, large area junctions where the electronic transport is through a single monolayer of molecules. This method utilizes atomic layer deposition (ALD) to grow an ultrathin oxide layer on top of a molecular monolayer, which protects the molecules against subsequent processing. (2) A new method for rapid imaging and analysis of single defects in molecular monolayers. This method also electrically passivates defects as it labels them. (3) Hot carrier spectroscopy of molecular junctions. Using optically excited hot carriers, we demonstrate the ability to probe the energy level lineup inside buried molecular junctions. (4) Efficient coupling of optical fields to metal-insulator-metal (MIM) surface plasmon modes. We show both theoretical and experimental work illustrating the ability to create very intense optical fields inside MIM systems. The intense fields generated in this manner have natural extensions to a variety of applications, such as photon assisted tunneling in molecular junctions, optical modulators, and ultrafast optoelectronic

  18. Semiconductor junction formation by directed heat

    DOEpatents

    Campbell, Robert B.

    1988-03-24

    The process of the invention includes applying precursors 6 with N- and P-type dopants therein to a silicon web 2, with the web 2 then being baked in an oven 10 to drive off excessive solvents, and the web 2 is then heated using a pulsed high intensity light in a mechanism 12 at 1100.degree.-1150.degree. C. for about 10 seconds to simultaneously form semiconductor junctions in both faces of the web.

  19. Quantum dynamics in the bosonic Josephson junction

    SciTech Connect

    Chuchem, Maya; Cohen, Doron; Smith-Mannschott, Katrina; Hiller, Moritz; Kottos, Tsampikos; Vardi, Amichay

    2010-11-15

    We employ a semiclassical picture to study dynamics in a bosonic Josephson junction with various initial conditions. Phase diffusion of coherent preparations in the Josephson regime is shown to depend on the initial relative phase between the two condensates. For initially incoherent condensates, we find a universal value for the buildup of coherence in the Josephson regime. In addition, we contrast two seemingly similar on-separatrix coherent preparations, finding striking differences in their convergence to classicality as the number of particles increases.

  20. Defect formation in long Josephson junctions

    SciTech Connect

    Gordeeva, Anna V.; Pankratov, Andrey L.

    2010-06-01

    We study numerically a mechanism of vortex formation in a long Josephson junction within the framework of the one-dimensional sine-Gordon model. This mechanism is switched on below the critical temperature. It is shown that the number of fluxons versus velocity of cooling roughly scales according to the power law with the exponent of either 0.25 or 0.5 depending on the temperature variation in the critical current density.

  1. Josephson junction microwave modulators for qubit control

    NASA Astrophysics Data System (ADS)

    Naaman, O.; Strong, J. A.; Ferguson, D. G.; Egan, J.; Bailey, N.; Hinkey, R. T.

    2017-02-01

    We demonstrate Josephson junction based double-balanced mixer and phase shifter circuits operating at 6-10 GHz and integrate these components to implement both a monolithic amplitude/phase vector modulator and an I/Q quadrature mixer. The devices are actuated by flux signals, dissipate no power on chip, exhibit input saturation powers in excess of 1 nW, and provide cryogenic microwave modulation solutions for integrated control of superconducting qubits.

  2. Loss of tight junction proteins (Claudin 1, 4, and 7) correlates with aggressive behavior in colorectal carcinoma

    PubMed Central

    Süren, Dinç; Yıldırım, Mustafa; Kaya, Vildan; Alikanoğlu, Arsenal Sezgin; Bülbüller, Nurullah; Yıldız, Mustafa; Sezer, Cem

    2014-01-01

    Background Tight junction proteins in the cell organize paracellular permeability and they play a critical role in apical cell-to-cell adhesion and epithelial polarity. Claudins are major integral membrane proteins of tight junctions, especially Claudin 1, 4, and 7, which are known as the impermeability Claudins. In this study, we investigated the importance of loss of Claudin 1, 4, and 7 expression, and their relation to tumor progression in colorectal cancer patients. Material/Methods Loss of Claudin 1, 4, and 7 expression was examined by immunohistochemical method in 70 patients diagnosed with colorectal cancer. Cases with loss of Claudin expression in <1/3 of tumor cells were classified as mild loss, whereas cases with loss of Claudin expression ≥1/3 of tumor cells were classified as moderate-to-marked loss in order to evaluate the relation between loss of Claudin 1, 4, and 7 expression and clinicopathologic data. Results The severe suppression of Claudin 1, 4, and 7 expression was found to be significantly related to the depth of tumor invasion, positive regional lymph nodes, histological grade, lymphovascular invasion, perineural invasion, and lymphocytic response. Additionally, severity of loss in Claudin 4 expression was found to have a relation with distant metastasis. Conclusions Claudin 1, 4, and 7 are important building blocks of paracellular adhesion molecules. Their decreased expression in colorectal cancer seems to have critical effects on cell proliferation, motility, invasion, and immune response against the tumor. PMID:25038829

  3. Comparative analysis of the gap junction protein from rat heart and liver: is there a tissue specificity of gap junctions?

    PubMed

    Gros, D B; Nicholson, B J; Revel, J P

    1983-12-01

    Gap junctions have been isolated from both rat heart and liver, tissues where junctions are typical in appearance and physiology. The purity of the fractions obtained was monitored by electron microscopy (thin-sectioning and negative staining) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The myocardial gap junctions are comprised of a single polypeptide of Mr 28,000, apparently derived from a protein of Mr 30,000. Hepatic gap junctions are also comprised of a single native protein of Mr 28,000 as previously reported. Exhaustive trypsin digestion of the isolated junctions cleaves both of these proteins similarly, while leaving their characteristic junctional lattice structures intact. However, comparison of heart and liver junctional proteins by two-dimensional peptide mapping of tryptic and alpha-chymotryptic fragments, followed by high pressure liquid chromatography, reveals no homology between these proteins.

  4. Josephson junction in a thin film

    SciTech Connect

    Kogan, V. G.; Dobrovitski, V. V.; Clem, J. R.; Mawatari, Yasunori; Mints, R. G.

    2001-04-01

    The phase difference {phi}(y) for a vortex at a line Josephson junction in a thin film attenuates at large distances as a power law, unlike the case of a bulk junction where it approaches exponentially the constant values at infinities. The field of a Josephson vortex is a superposition of fields of standard Pearl vortices distributed along the junction with the line density {phi}'(y)/2{pi}. We study the integral equation for {phi}(y) and show that the phase is sensitive to the ratio l/{Lambda}, where l={lambda}{sub J}{sup 2}/{lambda}{sub L}, {Lambda}=2{lambda}{sub L}{sup 2}/d, {lambda}{sub L}, and {lambda}{sub J} are the London and Josephson penetration depths, and d is the film thickness. For l<<{Lambda}, the vortex ''core'' of the size l is nearly temperature independent, while the phase ''tail'' scales as l{Lambda}/y{sup 2}={lambda}{sub J}2{lambda}{sub L}/d/y{sup 2}; i.e., it diverges as T{yields}T{sub c}. For l>>{Lambda}, both the core and the tail have nearly the same characteristic length l{Lambda}.

  5. Hemichannel and junctional properties of connexin 50.

    PubMed Central

    Beahm, Derek L; Hall, James E

    2002-01-01

    Lens fiber connexins, cx50 and cx46 (alpha3 and alpha8), belong to a small subset of connexins that can form functional hemichannels in nonjunctional membranes. Knockout of either cx50 or cx46 results in a cataract, so the properties of both connexins are likely essential for proper physiological functioning of the lens. Although portions of the sequences of these two connexins are nearly identical, their hemichannel properties are quite different. Cx50 hemichannels are much more sensitive to extracellular acidification than cx46 hemichannels and differ from cx46 hemichannels both in steady-state and kinetic properties. Comparison of the two branches of the cx50 hemichannel G-V curve with the junctional G-V curve suggests that cx50 gap junctions gate with positive relative polarity. The histidine-modifying reagent, diethyl pyrocarbonate, reversibly blocks cx50 hemichannel currents but not cx46 hemichannel currents. Because cx46 and cx50 have very similar amino acid sequences, one might expect that replacing the two histidines unique to the third transmembrane region of cx50 with the corresponding cx46 residues would produce mutants more closely resembling cx46. In fact this does not happen. Instead the mutant cx50H161N does not form detectable hemichannels but forms gap junctions indistinguishable from wild type. Cx50H176Q is oocyte lethal, and the double mutant, cx50H61N/H176Q, neither forms hemichannels nor kills oocytes. PMID:11916859

  6. Josephson effect in a Weyl SNS junction

    NASA Astrophysics Data System (ADS)

    Madsen, Kevin A.; Bergholtz, Emil J.; Brouwer, Piet W.

    2017-02-01

    We calculate the Josephson current density j (ϕ ) for a Weyl superconductor-normal-metal-superconductor junction for which the outer terminals are superconducting Weyl metals and the normal layer is a Weyl (semi)metal. We describe the Weyl (semi)metal using a simple model with two Weyl points. The model has broken time-reversal symmetry, but inversion symmetry is present. We calculate the Josephson current for both zero and finite temperature for the two pairing mechanisms inside the superconductors that have been proposed in the literature, zero-momentum BCS-like pairing and finite-momentum FFLO-like pairing, and assuming the short-junction limit. For both pairing types we find that the current is proportional to the normal-state junction conductivity, with a proportionality coefficient that shows quantitative differences between the two pairing mechanisms. The current for the BCS-like pairing is found to be independent of the chemical potential, whereas the current for the FFLO-like pairing is not.

  7. Primary thermometry with nanoscale tunnel junctions

    SciTech Connect

    Hirvi, K.P.; Kauppinen, J.P.; Paalanen, M.A.; Pekola, J.P.

    1995-10-01

    We have found current-voltage (I-V) and conductance (dI/dV) characteristics of arrays of nanoscale tunnel junctions between normal metal electrodes to exhibit suitable features for primary thermometry. The current through a uniform array depends on the ratio of the thermal energy k{sub B}T and the electrostatic charging energy E{sub c} of the islands between the junctions and is completely blocked by Coulomb repulsion at T=0 and at small voltages eV/2 {<=} Ec. In the opposite limit, k{sub B}T {much_gt} E{sub c}, the width of the conductance minimum scales linearly and universally with T and N, the number of tunnel junctions, and qualifies as a primary thermometer. The zero bias drop in the conductance is proportional to T{sup -1} and can be used as a secondary thermometer. We will show with Monte Carlo simulations how background charge and nonuniformities of the array will affect the thermometer.

  8. Molecular Diffusion through Cyanobacterial Septal Junctions.

    PubMed

    Nieves-Morión, Mercedes; Mullineaux, Conrad W; Flores, Enrique

    2017-01-03

    Heterocyst-forming cyanobacteria grow as filaments in which intercellular molecular exchange takes place. During the differentiation of N2-fixing heterocysts, regulators are transferred between cells. In the diazotrophic filament, vegetative cells that fix CO2 through oxygenic photosynthesis provide the heterocysts with reduced carbon and heterocysts provide the vegetative cells with fixed nitrogen. Intercellular molecular transfer has been traced with fluorescent markers, including calcein, 5-carboxyfluorescein, and the sucrose analogue esculin, which are observed to move down their concentration gradient. In this work, we used fluorescence recovery after photobleaching (FRAP) assays in the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 to measure the temperature dependence of intercellular transfer of fluorescent markers. We find that the transfer rate constants are directly proportional to the absolute temperature. This indicates that the "septal junctions" (formerly known as "microplasmodesmata") linking the cells in the filament allow molecular exchange by simple diffusion, without any activated intermediate state. This constitutes a novel mechanism for molecular transfer across the bacterial cytoplasmic membrane, in addition to previously characterized mechanisms for active transport and facilitated diffusion. Cyanobacterial septal junctions are functionally analogous to the gap junctions of metazoans.

  9. Junction point on partially singular trajectories

    NASA Astrophysics Data System (ADS)

    Odia, Ameze; Bell, David J.

    2012-12-01

    In recent times, several works have been performed on the design of fuel optimal trajectories for space navigation. These works show the possibility of the existence of partially singular trajectories for systems that are linear analytic (Park et al. 2010). Linear analytic systems may show the existence of partially singular subarcs, and the point where these subarcs meet is called a junction point. Thus, knowledge about junction conditions became necessary when solving the optimal control problem for such systems. This led to the development of two 'theorems' on junction conditions, given by McDanell and Powers (McDanell, J.P. and Powers W.F. (1971), 'Necessary Conditions for Joining Optimal Singular and Nonsingular Sub Arcs', SIAM Journal of Control, 9, 161-173). However, the second 'theorem', which is now known as a conjecture, could not satisfy all classes of linear analytic system. Therefore, the aim of this study was to detect and correct the errors in the derivation of the McDanell and Powers conjecture. The error in their derivations was corrected and then tested on two newly mathematically constructed systems. The results of these tests were found to be satisfactory. This implies that by making the necessary corrections, the conjecture can still be useful in generating a general theorem for all classes of systems.

  10. STUDIES ON AN EPITHELIAL (GLAND) CELL JUNCTION

    PubMed Central

    Loewenstein, Werner R.; Kanno, Yoshinobu

    1964-01-01

    Membrane permeability of an epithelial cell junction (Drosophila salivary gland) was examined with intracellular microelectrodes and with fluorescent tracers. In contrast to the non-junctional cell membrane surface, which has a low permeability to ions (10-4 mho/cm2), the junctional membrane surface is highly permeable. In fact, it introduces no substantial restriction to ion flow beyond that in the cytoplasm; the resistance through a chain of cells (150 Ω cm) is only slightly greater than in extruded cytoplasm (100 Ω cm). The diffusion resistance along the intercellular space to the exterior, on the other hand, is very high. Here, there exists an ion barrier of, at least, 104Ω cm2. As a result, small ions and fluorescein move rather freely from one cell to the next, but do not leak appreciably through the intercellular space to the exterior. The organ here, rather than the single cell, appears to be the unit of ion environment. The possible underlying structural aspects are discussed. PMID:14206423

  11. Single-Stage Operation for Giant Schwannoma at the Craniocervical Junction with Minimal Laminectomy: A Case Report and Literature Review

    PubMed Central

    Yoon, Sun; Park, Hunho; Lee, Kyu-Sung; Park, Seoung Woo

    2016-01-01

    Here we report a single-stage operation we performed on a patient with a large schwannoma that extended from the lower clivus to the cervico-thoracic junction caudally. A number of authors have previously performed multilevel laminectomy to remove giant schwannomas that extend for considerable length. This technique has caused cervical instability such as kyphosis or gooseneck deformity on several occasions. We removed the tumor with a left lateral suboccipital craniectomy with laminectomy only at C1 and without any subsequent surgery-related neurologic deficits. However, this technique requires meticulous preoperative evaluation on existence of Cerebrospinal fluid (CSF) cleft between the tumor and spinal cord on magnetic resonance imaging, of tumor origin located at the upper cervical root, and of detachment of tumor from the origin site. PMID:27800002

  12. Molecular beam epitaxy growth of germanium junctions for multi-junction solar cell applications

    NASA Astrophysics Data System (ADS)

    Masuda, T.; Faucher, J.; Lee, M. L.

    2016-11-01

    We report on the molecular beam epitaxy (MBE) growth and device characteristics of Ge solar cells. Integrating a Ge bottom cell beneath a lattice-matched triple junction stack grown by MBE could enable ultra-high efficiencies without metamorphic growth or wafer bonding. However, a diffused junction cannot be readily formed in Ge by MBE due to the low sticking coefficient of group-V molecules on Ge surfaces. We therefore realized Ge junctions by growth of homo-epitaxial n-Ge on p-Ge wafers within a standard III-V MBE system. We then fabricated Ge solar cells, finding growth temperature and post-growth annealing to be key factors for achieving high efficiency. Open-circuit voltage and fill factor values of ~0.175 V and ~0.59 without a window layer were obtained, both of which are comparable to diffused Ge junctions formed by metal-organic vapor phase epitaxy. We also demonstrate growth of high-quality, single-domain GaAs on the Ge junction, as needed for subsequent growth of III-V subcells, and that the surface passivation afforded by the GaAs layer slightly improves the Ge cell performance.

  13. Gap junctions in several tissues share antigenic determinants with liver gap junctions.

    PubMed Central

    Dermietzel, R; Leibstein, A; Frixen, U; Janssen-Timmen, U; Traub, O; Willecke, K

    1984-01-01

    Using affinity-purified antibodies against mouse liver gap junction protein (26 K), discrete fluorescent spots were seen by indirect immunofluorescence labelling on apposed membranes of contiguous cells in several mouse and rat tissues: pancreas (exocrine part), kidney, small intestine (epithelium and circular smooth muscle), Fallopian tube, endometrium, and myometrium of delivering rats. No reaction was seen on sections of myocardium, ovaries and lens. Specific labelling of gap junction plaques was demonstrated by immunoelectron microscopy on ultrathin frozen sections through liver and the exocrine part of pancreas after treatment with gold protein A. Weak immunoreactivity was found on the endocrine part of the pancreas (i.e., Langerhans islets) after glibenclamide treatment of mice and rats, which causes an increase of insulin secretion and of the size as well as the number of gap junction plaques in cells of Langerhans islets. Furthermore, the affinity purified anti-liver 26 K antibodies were shown by immunoblot to react with proteins of similar mol. wt. in pancreas and kidney membranes. Taken together these results suggest that gap junctions from several, morphogenetically different tissues have specific antigenic sites in common. The different extent of specific immunoreactivity of anti-liver 26 K antibodies with different tissues is likely due to differences in size and number of gap junctions although structural differences cannot be excluded. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:6209130

  14. On the structural organization of isolated bovine lens fiber junctions.

    PubMed

    Zampighi, G; Simon, S A; Robertson, J D; McIntosh, T J; Costello, M J

    1982-04-01

    Junctions between fiber cells of bovine lenses have been isolated in milligram quantities, without using detergents or proteases. The structure of the isolated junctions has been studied by thin-section, negative-stain, and freeze-fracture electron microscopy and by x-ray diffraction. The junctions are large and most often have an undulating surface topology as determined by thin sectioning and freeze-fracture. These undulations resemble the tongue-and-groove interdigitations between lens fiber cells previously seen by others (D. H. Dickson and G. W. Crock, 1972, Invest. Ophthalmol. 11:809-815). In sections, the isolated junctions display a pentalamellar structure approximately 13-14 nm in overall thickness, which is significantly thinner than liver gap junctions. Each junctional membrane contains in the plane of the lipid bilayers distinct units arranged in a square lattice with a center-to-center spacing of 6.6 nm. Freeze-fracture replicas of the junctions fractured transversely show that the repeating units extend across the entire thickness of each membrane. Each unit is probably constructed from four identical subunits, with each subunit containing a protein of an apparent molecular weight of 27,000. We conclude that the lens junctions are structurally and chemically, different from gap junctions and could represent a new kind of intercellular contact, not simply another crystalline state of the gap junction protein.

  15. The gap junction as a "Biological Rosetta Stone": implications of evolution, stem cells to homeostatic regulation of health and disease in the Barker hypothesis.

    PubMed

    Trosko, James E

    2011-03-01

    The discovery of the gap junction structure, its functions and the family of the "connexin" genes, has been basically ignored by the major biological disciplines. These connexin genes code for proteins that organize to form membrane-associated hemi-channels, "connexons", co-join with the connexons of neighboring cells to form gap junctions. Gap junctions appeared in the early evolution of the metazoan. Their fundamental functions, (e.g., to synchronize electrotonic and metabolic functions of societies of cells, and to regulate cell proliferation, cell differentiation, and apoptosis), were accomplished via integrating the extra-cellular triggering of intra-cellular signaling, and therefore, regulating gene expression. These functions have been documented by genetic mutations of the connexin genes and by chemical modulation of gap junctions. Via genetic alteration of connexins in knock-out and transgenic mice, as well as inherited connexin mutations in various human syndromes, the gap junction has been shown to be directly linked to many normal cell functions and multiple diseases, such as birth defects, reproductive, neurological disorders, immune dysfunction and cancer. Specifically, the modulation of gap junctional intercellular communication (GJIC), either by increasing or decreasing its functions by non-mutagenic chemicals or by oncogenes or tumor suppressor genes in normal or "initiated" stem cells and their progenitor cells, can have a major impact on tumor promotion or cancer chemoprevention and chemotherapy. The overview of the roles of the gap junction in the evolution of the metazoan and its potential in understanding a "systems" view of human health and aging and the diseases of aging will be attempted.

  16. The Junctional Adhesion Molecule-B regulates JAM-C-dependent melanoma cell metastasis.

    PubMed

    Arcangeli, Marie-Laure; Frontera, Vincent; Bardin, Florence; Thomassin, Jeanne; Chetaille, Bruno; Adams, Susanne; Adams, Ralf H; Aurrand-Lions, Michel

    2012-11-16

    Metastasis is a major clinical issue and results in poor prognosis for most cancers. The Junctional Adhesion Molecule-C (JAM-C) expressed by B16 melanoma and endothelial cells has been involved in metastasis of tumor cells through homophilic JAM-C/JAM-C trans-interactions. Here, we show that JAM-B expressed by endothelial cells contributes to murine B16 melanoma cells metastasis through its interaction with JAM-C on tumor cells. We further show that this adhesion molecular pair mediates melanoma cell adhesion to primary Lung Microvascular Endothelial Cells and that it is functional in vivo as demonstrated by the reduced metastasis of B16 cells in Jam-b deficient mice.

  17. Spontaneous leiomyomas of the gastroesophageal junction in a chimpanzee (Pan troglodytes).

    PubMed

    Gumber, Sanjeev; Stovall, Melissa I; Breding, Eileen; Crane, Maria M

    2014-06-01

    A 49-y-old, female chimpanzee presented with a history of cardiac failure. Postmortem examination revealed lesions consistent with congestive heart failure and 2 incidental, round, firm, pale-tan intramural nodules (diameter, 2 cm) in the stomach at the gastroesophageal junction (GEJ). Histologically, the GEJ nodules were diagnosed as benign spindle-cell tumors. Immunohistochemical evaluation revealed neoplastic cells diffusely labeled with α-smooth muscle actin and vimentin, multifocally labeled for desmin, and were negative for c-kit (CD117). Electron microscopy revealed intracytoplasmic bundles of myofilaments with dense bodies, basal lamina, and few pinocytic vesicles in the neoplastic cells. According to these findings, leiomyomas of the GEJ were diagnosed. Gastrointestinal stromal tumors have been documented to occur in chimpanzees, but there are no reports of GEJ leiomyomas. To our knowledge, this report is the first description of spontaneous leiomyomas of the GEJ in a chimpanzee.

  18. The structural organization and protein composition of lens fiber junctions

    PubMed Central

    1989-01-01

    The structural organization and protein composition of lens fiber junctions isolated from adult bovine and calf lenses were studied using combined electron microscopy, immunolocalization with monoclonal and polyclonal anti-MIP and anti-MP70 (two putative gap junction-forming proteins), and freeze-fracture and label-fracture methods. The major intrinsic protein of lens plasma membranes (MIP) was localized in single membranes and in an extensive network of junctions having flat and undulating surface topologies. In wavy junctions, polyclonal and monoclonal anti-MIPs labeled only the cytoplasmic surface of the convex membrane of the junction. Label-fracture experiments demonstrated that the convex membrane contained MIP arranged in tetragonal arrays 6-7 nm in unit cell dimension. The apposing concave membrane of the junction displayed fracture faces without intramembrane particles or pits. Therefore, wavy junctions are asymmetric structures composed of MIP crystals abutted against particle-free membranes. In thin junctions, anti-MIP labeled the cytoplasmic surfaces of both apposing membranes with varying degrees of asymmetry. In thin junctions, MIP was found organized in both small clusters and single membranes. These small clusters also abut against particle-free apposing membranes, probably in a staggered or checkerboard pattern. Thus, the structure of thin and wavy junctions differed only in the extent of crystallization of MIP, a property that can explain why this protein can produce two different antibody-labeling patterns. A conclusion of this study is that wavy and thin junctions do not contain coaxially aligned channels, and, in these junctions, MIP is unlikely to form gap junction-like channels. We suggest MIP may behave as an intercellular adhesion protein which can also act as a volume-regulating channel to collapse the lens extracellular space. Junctions constructed of MP70 have a wider overall thickness (18-20 nm) and are abundant in the cortical regions

  19. Phosphorylation on Ser-279 and Ser-282 of connexin43 regulates endocytosis and gap junction assembly in pancreatic cancer cells

    PubMed Central

    Johnson, Kristen E.; Mitra, Shalini; Katoch, Parul; Kelsey, Linda S.; Johnson, Keith R.; Mehta, Parmender P.

    2013-01-01

    The molecular mechanisms regulating the assembly of connexins (Cxs) into gap junctions are poorly understood. Using human pancreatic tumor cell lines BxPC3 and Capan-1, which express Cx26 and Cx43, we show that, upon arrival at the cell surface, the assembly of Cx43 is impaired. Connexin43 fails to assemble, because it is internalized by clathrin-mediated endocytosis. Assembly is restored upon expressing a sorting-motif mutant of Cx43, which does not interact with the AP2 complex, and by expressing mutants that cannot be phosphorylated on Ser-279 and Ser-282. The mutants restore assembly by preventing clathrin-mediated endocytosis of Cx43. Our results also document that the sorting-motif mutant is assembled into gap junctions in cells in which the expression of endogenous Cx43 has been knocked down. Remarkably, Cx43 mutants that cannot be phosphorylated on Ser-279 or Ser-282 are assembled into gap junctions only when connexons are composed of Cx43 forms that can be phosphorylated on these serines and forms in which phosphorylation on these serines is abolished. Based on the subcellular fate of Cx43 in single and contacting cells, our results document that the endocytic itinerary of Cx43 is altered upon cell–cell contact, which causes Cx43 to traffic by EEA1-negative endosomes en route to lysosomes. Our results further show that gap-junctional plaques formed of a sorting motif–deficient mutant of Cx43, which is unable to be internalized by the clathrin-mediated pathway, are predominantly endocytosed in the form of annular junctions. Thus the differential phosphorylation of Cx43 on Ser-279 and Ser-282 is fine-tuned to control Cx43’s endocytosis and assembly into gap junctions. PMID:23363606

  20. Electron Transport through Porphyrin Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Zhou, Qi

    The goal of this work is to study the properties that would affect the electron transport through a porphyrin molecular junction. This work contributes to the field of electron transport in molecular junctions in the following 3 aspects. First of all, by carrying out experiments comparing the conductance of the iron (III) porphyrin (protected) and the free base porphyrin (protected), it is confirmed that the molecular energy level broadening and shifting occurs for porphyrin molecules when coupled with the metal electrodes, and this level broadening and shifting plays an important role in the electron transport through molecular junctions. Secondly, by carrying out an in-situ deprotection of the acetyl-protected free base porphyrin molecules, it is found out that the presence of acetyl groups reduces the conductance. Thirdly, by incorporating the Matrix-assisted laser desorption/ionization (MALDI) spectrum and the in-situ deprotection prior to formation of molecular junctions, it allows a more precise understanding of the molecules involved in the formation of molecular junctions, and therefore allows an accurate analysis of the conductance histogram. The molecules are prepared by self-assembly and the junctions are formed using a Scanning Tunneling Microscopy (STM) molecular break junction technique. The porphyrin molecules are characterized by MALDI in solution before self-assembly to a gold/mica substrate. The self-assembled monolayers (SAMs) of porphyrins on gold are characterized by Ultraviolet-visible (UV-Vis) reflection spectroscopy to confirm that the molecules are attached to the substrate. The SAMs are then characterized by Angle-Resolved X-ray photoelectron spectroscopy (ARXPS) to determine the thickness and the average molecular orientation of the molecular layer. The electron transport is measured by conductance-displacement (G-S) experiments under a given bias (-0.4V). The conductance value of a single molecule is identified by a statistical analysis

  1. The critical power to maintain thermally stable molecular junctions.

    PubMed

    Wang, Yanlei; Xu, Zhiping

    2014-07-09

    With the rise of atomic-scale devices such as molecular electronics and scanning probe microscopies, energy transport processes through molecular junctions have attracted notable research interest recently. In this work, heat dissipation and transport across diamond/benzene/diamond molecular junctions are explored by performing atomistic simulations. We identify the critical power Pcr to maintain thermal stability of the junction through efficient dissipation of local heat. We also find that the molecule-probe contact features a power-dependent interfacial thermal resistance RK in the order of 10(9) kW(-1). Moreover, both Pcr and RK display explicit dependence on atomic structures of the junction, force and temperature. For instance, Pcr can be elevated in multiple-molecule junctions, and streching the junction enhances RK by a factor of 2. The applications of these findings in molecular electronics and scanning probing measurements are discussed, providing practical guidelines in their rational design.

  2. The critical power to maintain thermally stable molecular junctions

    NASA Astrophysics Data System (ADS)

    Wang, Yanlei; Xu, Zhiping

    2014-07-01

    With the rise of atomic-scale devices such as molecular electronics and scanning probe microscopies, energy transport processes through molecular junctions have attracted notable research interest recently. In this work, heat dissipation and transport across diamond/benzene/diamond molecular junctions are explored by performing atomistic simulations. We identify the critical power Pcr to maintain thermal stability of the junction through efficient dissipation of local heat. We also find that the molecule-probe contact features a power-dependent interfacial thermal resistance RK in the order of 109 kW-1. Moreover, both Pcr and RK display explicit dependence on atomic structures of the junction, force and temperature. For instance, Pcr can be elevated in multiple-molecule junctions, and streching the junction enhances RK by a factor of 2. The applications of these findings in molecular electronics and scanning probing measurements are discussed, providing practical guidelines in their rational design.

  3. Single P-N junction tandem photovoltaic device

    DOEpatents

    Walukiewicz, Wladyslaw; Ager, III, Joel W.; Yu, Kin Man

    2011-10-18

    A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

  4. Single P-N junction tandem photovoltaic device

    DOEpatents

    Walukiewicz, Wladyslaw [Kensington, CA; Ager, III, Joel W.; Yu, Kin Man [Lafayette, CA

    2012-03-06

    A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

  5. Structure, regulation and function of gap junctions in liver

    PubMed Central

    Maes, Michaël; Decrock, Elke; Wang, Nan; Leybaert, Luc; da Silva, Tereza Cristina; Veloso Alves Pereira, Isabel; Jaeschke, Hartmut; Cogliati, Bruno; Vinken, Mathieu

    2016-01-01

    Gap junctions are a specialized group of cell-to-cell junctions that mediate direct intercellular communication between cells. They arise from the interaction of 2 hemichannels of adjacent cells, which in turn are composed of 6 connexin proteins. In liver, gap junctions are predominantly found in hepatocytes and play critical roles in virtually all phases of the hepatic life cycle, including cell growth, differentiation, liver-specific functionality and cell death. Liver gap junctions are directed through a broad variety of mechanisms ranging from epigenetic control of connexin expression to posttranslational regulation of gap junction activity. This paper reviews established and novel aspects regarding the architecture, control and functional relevance of liver gap junctions. PMID:27001459

  6. Electron optics with p-n junctions in ballistic graphene

    NASA Astrophysics Data System (ADS)

    Chen, Shaowen; Han, Zheng; Elahi, Mirza M.; Habib, K. M. Masum; Wang, Lei; Wen, Bo; Gao, Yuanda; Taniguchi, Takashi; Watanabe, Kenji; Hone, James; Ghosh, Avik W.; Dean, Cory R.

    2016-09-01

    Electrons transmitted across a ballistic semiconductor junction are expected to undergo refraction, analogous to light rays across an optical boundary. In graphene, the linear dispersion and zero-gap band structure admit highly transparent p-n junctions by simple electrostatic gating. Here, we employ transverse magnetic focusing to probe the propagation of carriers across an electrostatically defined graphene junction. We find agreement with the predicted Snell’s law for electrons, including the observation of both positive and negative refraction. Resonant transmission across the p-n junction provides a direct measurement of the angle-dependent transmission coefficient. Comparing experimental data with simulations reveals the crucial role played by the effective junction width, providing guidance for future device design. Our results pave the way for realizing electron optics based on graphene p-n junctions.

  7. Coherent diffraction of thermal currents in long Josephson tunnel junctions

    NASA Astrophysics Data System (ADS)

    Guarcello, Claudio; Giazotto, Francesco; Solinas, Paolo

    2016-08-01

    We discuss heat transport in thermally-biased long Josephson tunnel junctions in the presence of an in-plane magnetic field. In full analogy with the Josephson critical current, the phase-dependent component of the heat current through the junction displays coherent diffraction. Thermal transport is analyzed as a function of both the length and the damping of the junction, highlighting deviations from the standard "Fraunhofer" pattern characteristic of short junctions. The heat current diffraction patterns show features strongly related to the formation and penetration of Josephson vortices, i.e., solitons. We show that a dynamical treatment of the system is crucial for the realistic description of the Josephson junction, and it leads to peculiar results. In fact, hysteretic behaviors in the diffraction patterns when the field is swept up and down are observed, corresponding to the trapping of vortices in the junction.

  8. How Are Wilms Tumors Diagnosed?

    MedlinePlus

    ... Tumor Early Detection, Diagnosis, and Staging How Are Wilms Tumors Diagnosed? Wilms tumors are usually found when a ... Your Child’s Doctor About Wilms Tumor? More In Wilms Tumor About Wilms Tumor Causes, Risk Factors, and Prevention ...

  9. Geometrical theory of triple junctions of CSL boundaries.

    PubMed

    Gertsman, V Y

    2001-07-01

    When three grain boundaries having misorientations generating coincidence site lattices (CSLs) meet at a triple junction, a common (triple-junction) CSL is formed. A theory is developed as a set of theorems establishing the relationships between the geometrical parameters of the grain-boundary and triple-junction CSLs. Application of the theory is demonstrated in detail for the case of the cubic crystal system. It is also shown how the theory can be extended to an arbitrary crystal lattice.

  10. Observing Holliday junction branch migration one step at a time

    NASA Astrophysics Data System (ADS)

    Ha, Taekjip

    2004-03-01

    During genetic recombination, two homologous DNA molecules undergo strand exchange to form a four-way DNA (Holliday) junction and the recognition and processing of this species by branch migration and junction resolving enzymes determine the outcome. We have used single molecule fluorescence techniques to study two intrinsic structural dynamics of the Holliday junction, stacking conformer transitions and spontaneous branch migration. Our studies show that the dynamics of branch migration, resolved with one base pair resolution, is determined by the stability of conformers which in turn depends on the local DNA sequences. Therefore, the energy landscape of Holliday junction branch migation is not uniform, but is rugged.

  11. Towards field theory in spaces with multivolume junctions

    NASA Astrophysics Data System (ADS)

    Fomin, P. I.; Shtanov, Yu V.

    2002-06-01

    We consider a spacetime formed by several pieces with common timelike boundary which plays the role of a junction between them. We establish junction conditions for fields of various spins and derive the resulting laws of wave propagation through the junction, which turn out to be quite similar for fields of all spins. As an application, we consider the case of multivolume junctions in four-dimensional spacetime that may arise in the context of the theory of quantum creation of a closed universe on the background of a big mother universe. The theory developed can also be applied to braneworld models and to the superstring theory.

  12. Imaging snake orbits at graphene n -p junctions

    NASA Astrophysics Data System (ADS)

    Kolasiński, K.; Mreńca-Kolasińska, A.; Szafran, B.

    2017-01-01

    We consider conductance mapping of the snake orbits confined along the n -p junction defined in graphene by the electrostatic doping in the quantum Hall regime. We explain the periodicity of conductance oscillations at the magnetic field and the Fermi energy scales by the properties of the n -p junction as a conducting channel. We evaluate the conductance maps for a floating gate scanning the surface of the device. In the quantum Hall conditions the currents flow near the edges of the sample and along the n -p junction. The conductance mapping resolves only the n -p junction and not the edges. The conductance oscillations along the junction are found in the maps with periodicity related to the cyclotron orbits of the scattering current. Stronger probe potentials provide support to localized resonances at one of the sides of the junction with current loops that interfere with the n -p junction currents. The interference results in a series of narrow lines parallel to the junction with positions that strongly depend on the magnetic field through the Aharonov-Bohm effect. The consequences of a limited transparency of finite-width n -p junctions are also discussed.

  13. Photoresponse in arrays of thermoelectric nanowire junctions

    NASA Astrophysics Data System (ADS)

    Huber, T. E.; Scott, R.; Johnson, S.; Brower, T.; Belk, J. H.; Hunt, J. H.

    2013-07-01

    We report the first demonstration of optical detection by thermoelectric nanowire junctions. We employed devices composed of bismuth nanowire arrays which are capped with a transparent indium tin oxide electrode. The incident surface features very low optical reflectivity and enhanced light trapping. The unique attributes of the thermoelectric arrays are the combination of strong temporal and optical wavelength dependences of the photocurrent. Under infrared illumination, the signal can be completely described by thermoelectric effects considering cooling rates given by heat diffusion through the array. In addition, under visible illumination, we observe a photovoltaic response.

  14. Plasmon Enhanced Hetero-Junction Solar Cell

    NASA Astrophysics Data System (ADS)

    Long, Gen; Ching, Levine; Sadoqi, Mostafa; Xu, Huizhong

    2015-03-01

    Here we report a systematic study of plasmon-enhanced hetero-junction solar cells made of colloidal quantum dots (PbS) and nanowires (ZnO), with/without metal nanoparticles (Au). The structure of solar cell devices was characterized by AFM, SEM and profilometer, etc. The power conversion efficiencies of solar cell devices were characterized by solar simulator (OAI TriSOL, AM1.5G Class AAA). The enhancement in the photocurrent due to introduction of metal nanoparticles was obvious. We believe this is due to the plasmonic effect from the metal nanoparticles. The correlation between surface roughness, film uniformity and device performance was also studied.

  15. Collisions of Strings with Y Junctions

    SciTech Connect

    Copeland, E. J.; Kibble, T. W. B.; Steer, D. A.

    2006-07-14

    We study the dynamics of Nambu-Goto strings with junctions at which three strings meet. In particular, we exhibit one simple exact solution and examine the process of intercommuting of two straight strings in which they exchange partners but become joined by a third string. We show that there are important kinematical constraints on this process. The exchange cannot occur if the strings meet with very large relative velocity. This may have important implications for the evolution of cosmic superstring networks and non-Abelian string networks.

  16. Charge Transport Processes in Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Smith, Christopher Eugene

    Molecular electronics (ME) has evolved into a rich area of exploration that combines the fields of chemistry, materials, electronic engineering and computational modeling to explore the physics behind electronic conduction at the molecular level. Through studying charge transport properties of single molecules and nanoscale molecular materials the field has gained the potential to bring about new avenues for the miniaturization of electrical components where quantum phenomena are utilized to achieve solid state molecular device functionality. Molecular junctions are platforms that enable these studies and consist of a single molecule or a small group of molecules directly connected to electrodes. The work presented in this thesis has built upon the current understanding of the mechanisms of charge transport in ordered junctions using self-assembled monolayer (SAM) molecular thin films. Donor and acceptor compounds were synthesized and incorporated into SAMs grown on metal substrates then the transport properties were measured with conducting probe atomic force microscopy (CP-AFM). In addition to experimentally measured current-voltage (I-V) curves, the transport properties were addressed computationally and modeled theoretically. The key objectives of this project were to 1) investigate the impact of molecular structure on hole and electron charge transport, 2) understand the nature of the charge carriers and their structure-transport properties through long (<4 nm) conjugated molecular wires, and 3) quantitatively extract interfacial properties characteristic to macroscopic junctions, such as energy level alignment and molecule-contact electronic coupling from experimental I-V curves. Here, we lay ground work for creating a more complete picture of charge transport in macroscopically ordered molecular junctions of controlled architecture, length and charge carrier. The polaronic nature of hopping transport has been predicted in long, conjugated molecular wires

  17. Nonintrusive Measurement Of Temperature Of LED Junction

    NASA Technical Reports Server (NTRS)

    Leidecker, Henning; Powers, Charles

    1991-01-01

    Temperature inferred from spectrum of emitted light. Method of determining temperature of junction based on two relevant characteristics of LED. Gap between valence and conduction electron-energy bands in LED material decreases with increasing temperature, causing wavelength of emitted photon to increase with temperature. Other, as temperature increases, non-radiative processes dissipate more of input electrical energy as heat and less as photons in band-gap wavelenth region; optical and quantum efficiencies decrease with increasing temperature. In principal, either characteristic alone used to determine temperature. However, desirable to use both to obtain indication of uncertainty.

  18. Magic-T Junction using Microstrip/Slotline Transitions

    NASA Technical Reports Server (NTRS)

    U-yen, Kongpop; Wollack, Edward J.; Doiron, Terence

    2008-01-01

    An improved broadband planar magic-T junction that incorporates microstrip/slotline transitions has been developed. In comparison with a prior broadband magic-T junction incorporating microstrip/slotline transitions, this junction offers superior broadband performance. In addition, because this junction is geometrically simpler and its performance is less affected by fabrication tolerances, the benefits of the improved design can be realized at lower fabrication cost. There are potential uses for junctions like this one in commercial microwave communication receivers, radar and polarimeter systems, and industrial microwave instrumentation. A magic-T junction is a four-port waveguide junction consisting of a combination of an H-type and an E-type junction. An E-type junction is so named because it includes a junction arm that extends from a main waveguide in the same direction as that of the electric (E) field in the waveguide. An H-type junction is so named because it includes a junction arm parallel to the magnetic (H) field in a main waveguide. A magic-T junction includes two input ports (here labeled 1 and 2, respectively) and two output ports (here labeled E and H, respectively). In an ideal case, (1) a magic-T junction is lossless, (2) the input signals add (that is, they combine in phase with each other) at port H, and (3) the input signals subtract (that is, they combine in opposite phase) at port E. The prior junction over which the present junction is an improvement affords in-phase-combining characterized by a broadband frequency response, and features a small slotline area to minimize in-band loss. However, with respect to isolation between ports 1 and 2 and return loss at port E, it exhibits narrowband frequency responses. In addition, its performance is sensitive to misalignment of microstrip and slotline components: this sensitivity is attributable to a limited number of quarter-wavelength (lambda/4) transmission-line sections for matching impedances

  19. Involvement of the helix-loop-helix protein Id-1 in the glucocorticoid regulation of tight junctions in mammary epithelial cells.

    PubMed

    Woo, P L; Cercek, A; Desprez, P Y; Firestone, G L

    2000-09-15

    Mammary epithelial cell-cell junctions undergo morphological and structural differentiation during pregnancy and lactation, but little is known about the transcriptional regulators that are involved in this process. In Con8 mammary epithelial tumor cells, we have previously documented that the synthetic glucocorticoid, dexamethasone, induces the reorganization of the tight junction and adherens junction and stimulates the monolayer transepithelial electrical resistance (TER), a reliable in vitro measurement of tight junction sealing. Western blots demonstrated that dexamethasone treatment rapidly and strongly stimulated the level of the Id-1 protein, which is a serum-inducible helix-loop-helix transcriptional repressor. The steroid induction of Id-1 was robust by 4 h of treatment and maintained over a 24-h period. Isopropyl-1-thio-beta-d-galactopyranoside-inducible expression of exogenous Id-1 in Con8 cells was shown to strongly facilitate the dexamethasone induction of TER in the absence of serum without altering the dexamethasone-dependent reorganization of ZO-1, beta-catenin, or F-actin. Ectopic overexpression of Id-1 in the SCp2 nontumorigenic mammary epithelial cells, which does not undergo complete dexamethasone-dependent tight junction reorganization, enhanced the dexamethasone-induced ZO-1 tight junction localization and stimulated the monolayer TER. Moreover, antisense reduction of Id-1 protein in SCp2 cells prevented the apical junction reorganization and dexamethasone-stimulated TER. Our results implicate Id-1 as acting as a critical regulator of mammary epithelial cell-cell interactions at an early step in the glucocorticoid-dependent signaling pathway that controls tight junction integrity.

  20. Full potential of radial junction Si thin film solar cells with advanced junction materials and design

    NASA Astrophysics Data System (ADS)

    Qian, Shengyi; Misra, Soumyadeep; Lu, Jiawen; Yu, Zhongwei; Yu, Linwei; Xu, Jun; Wang, Junzhuan; Xu, Ling; Shi, Yi; Chen, Kunji; Roca i Cabarrocas, Pere

    2015-07-01

    Combining advanced materials and junction design in nanowire-based thin film solar cells requires a different thinking of the optimization strategy, which is critical to fulfill the potential of nano-structured photovoltaics. Based on a comprehensive knowledge of the junction materials involved in the multilayer stack, we demonstrate here, in both experimental and theoretical manners, the potential of hydrogenated amorphous Si (a-Si:H) thin film solar cells in a radial junction (RJ) configuration. Resting upon a solid experimental basis, we also assess a more advanced tandem RJ structure with radially stacking a-Si:H/nanocrystalline Si (nc-Si:H) PIN junctions, and show that a balanced photo-current generation with a short circuit current density of Jsc = 14.2 mA/cm2 can be achieved in a tandem RJ cell, while reducing the expensive nc-Si:H absorber thickness from 1-3 μ m (in planar tandem cells) to only 120 nm. These results provide a clearly charted route towards a high performance Si thin film photovoltaics.

  1. Brain Tumors (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Brain Tumors KidsHealth > For Parents > Brain Tumors Print A ... radiation therapy or chemotherapy, or both. Types of Brain Tumors There are many different types of brain ...

  2. Pediatric Brain Tumor Foundation

    MedlinePlus

    ... you insights into your child's treatment. LEARN MORE Brain tumors and their treatment can be deadly so ... Pediatric Brain Tumor Foundation Board Read more >> Pediatric Brain Tumor Foundation 302 Ridgefield Court, Asheville, NC 28806 ...

  3. Childhood Brain Tumors

    MedlinePlus

    Brain tumors are abnormal growths inside the skull. They are among the most common types of childhood ... still be serious. Malignant tumors are cancerous. Childhood brain and spinal cord tumors can cause headaches and ...

  4. Tumors and Pregnancy

    MedlinePlus

    Tumors during pregnancy are rare, but they can happen. Tumors can be either benign or malignant. Benign tumors aren't cancer. Malignant ones are. The most common cancers in pregnancy are breast cancer, cervical cancer, lymphoma, and melanoma. ...

  5. Neuroendocrine Tumor: Statistics

    MedlinePlus

    ... Tumor > Neuroendocrine Tumor: Statistics Request Permissions Neuroendocrine Tumor: Statistics Approved by the Cancer.Net Editorial Board , 11/ ... the body. It is important to remember that statistics on how many people survive this type of ...

  6. Pathology of eyelid tumors

    PubMed Central

    Pe’er, Jacob

    2016-01-01

    The eyelids are composed of four layers: skin and subcutaneous tissue including its adnexa, striated muscle, tarsus with the meibomian glands, and the palpebral conjunctiva. Benign and malignant tumors can arise from each of the eyelid layers. Most eyelid tumors are of cutaneous origin, mostly epidermal, which can be divided into epithelial and melanocytic tumors. Benign epithelial lesions, cystic lesions, and benign melanocytic lesions are very common. The most common malignant eyelid tumors are basal cell carcinoma in Caucasians and sebaceous gland carcinoma in Asians. Adnexal and stromal tumors are less frequent. The present review describes the more important eyelid tumors according to the following groups: Benign and malignant epithelial tumors, benign and malignant melanocytic tumors, benign and malignant adnexal tumors, stromal eyelid tumors, lymphoproliferative and metastatic tumors, other rare eyelid tumors, and inflammatory and infections lesions that simulate neoplasms. PMID:27146927

  7. Overview of Heart Tumors

    MedlinePlus

    ... the heart. Most heart tumors are metastatic cancer. Did You Know... Noncancerous tumors can be as deadly ... slow the tumor's growth. Resources In This Article Did You Know 1 Did You Know... Table 2 ...

  8. Hand and Wrist Tumors

    MedlinePlus

    ... Guide Journal of Hand Surgery (JHS) Home Anatomy Hand Tumors and Wrist Tumors Email to a friend * ... are seen commonly. CAUSES Common Types of Wrist Hand Tumors Ganglion Cysts (Figure 1): This is the ...

  9. Brain Tumors (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Brain Tumors KidsHealth > For Parents > Brain Tumors A A ... radiation therapy or chemotherapy, or both. Types of Brain Tumors There are many different types of brain ...

  10. Lung Carcinoid Tumor: Surgery

    MedlinePlus

    ... Tumor Treating Lung Carcinoid Tumors Surgery to Treat Lung Carcinoid Tumors Surgery is the main treatment for ... often be cured by surgery alone. Types of lung surgery Different operations can be used to treat ( ...

  11. Fabrication of magnetic tunnel junctions with epitaxial and textured ferromagnetic layers

    DOEpatents

    Chang, Y. Austin; Yang, Jianhua Joshua

    2008-11-11

    This invention relates to magnetic tunnel junctions and methods for making the magnetic tunnel junctions. The magnetic tunnel junctions include a tunnel barrier oxide layer sandwiched between two ferromagnetic layers both of which are epitaxial or textured with respect to the underlying substrate upon which the magnetic tunnel junctions are grown. The magnetic tunnel junctions provide improved magnetic properties, sharper interfaces and few defects.

  12. Rabies virus binding at neuromuscular junctions.

    PubMed

    Burrage, T G; Tignor, G H; Smith, A L

    1985-04-01

    Morphological, immunocytochemical, biochemical, and immunological techniques have been used to describe rabies virus binding to a sub-cellular unit and molecular complex at the neuromuscular junction (NMJ). Early after infection in vivo, virus antigen and virus particles were found by immunofluorescence, electron microscopy and immunoelectron microscopy in regions of high density acetylcholine receptors (AChR) at NMJs. One monoclonal antibody (alpha-Mab) to the alpha subunit of the AChR blocked attachment of radio-labeled rabies virus to cultured muscle cells bearing high density patches of AChR. A sub-cellular structure, resembling an array of AChR monomers, bound both rabies virus antigens and alpha-Mab. By immunoblotting with electrophoretically transferred motor endplate proteins, rabies virus proteins and alpha-Mab bound to two proteins of 43 000 and 110 000 daltons. A rabies virus glycoprotein antibody detected virus antigen bound to the 110 000 dalton protein. An auto-immune (anti-idiotypic) response followed immunization of mice with rabies virus glycoprotein antigen; the antibody was directed to the 110 000 dalton protein. This auto-antibody altered the kinetics of neutralization by rabies virus antibody and induced the formation of rabies virus antibody after inoculation of mice. These results define, at the neuromuscular junction, a rabies virus receptor which may be part of the acetylcholine receptor complex.

  13. Edge currents in frustrated Josephson junction ladders

    NASA Astrophysics Data System (ADS)

    Marques, A. M.; Santos, F. D. R.; Dias, R. G.

    2016-09-01

    We present a numerical study of quasi-1D frustrated Josephson junction ladders with diagonal couplings and open boundary conditions, in the large capacitance limit. We derive a correspondence between the energy of this Josephson junction ladder and the expectation value of the Hamiltonian of an analogous tight-binding model, and show how the overall superconducting state of the chain is equivalent to the minimum energy state of the tight-binding model in the subspace of one-particle states with uniform density. To satisfy the constraint of uniform density, the superconducting state of the ladder is written as a linear combination of the allowed k-states of the tight-binding model with open boundaries. Above a critical value of the parameter t (ratio between the intra-rung and inter-rung Josephson couplings) the ladder spontaneously develops currents at the edges, which spread to the bulk as t is increased until complete coverage is reached. Above a certain value of t, which varies with ladder size (t = 1 for an infinite-sized ladder), the edge currents are destroyed. The value t = 1 corresponds, in the tight-binding model, to the opening of a gap between two bands. We argue that the disappearance of the edge currents with this gap opening is not coincidental, and that this points to a topological origin for these edge current states.

  14. Virus interaction with the apical junctional complex.

    PubMed

    Gonzalez-Mariscal, Lorenza; Garay, Erika; Lechuga, Susana

    2009-01-01

    In order to infect pathogens must breach the epithelial barriers that separate the organism from the external environment or that cover the internal cavities and ducts of the body. Epithelia seal the passage through the paracellular pathway with the apical junctional complex integrated by tight and adherens junctions. In this review we describe how viruses like coxsackie, swine vesicular disease virus, adenovirus, reovirus, feline calcivirus, herpes viruses 1 and 2, pseudorabies, bovine herpes virus 1, poliovirus and hepatitis C use as cellular receptors integral proteins present at the AJC of epithelial cells. Interaction with these proteins contributes in a significant manner in defining the particular tropism of each virus. Besides these proteins, viruses exhibit a wide range of cellular co-receptors among which proteins present in the basolateral cell surface like integrins are often found. Therefore targeting proteins of the AJC constitutes a strategy that might allow viruses to bypass the physical barrier that blocks their access to receptors expressed on the basolateral surface of epithelial cells.

  15. Ultrafast Photophysics of Organic Semiconductor Junctions

    NASA Astrophysics Data System (ADS)

    Burghardt, Irene; Bittner, Eric R.; Tamura, Hiroyuki; Pereverzev, Andrey; Ramon, John Glenn S.

    This contribution gives an overview of our recent studies of the electronic structure and ultrafast photophysics of semiconductor polymer junctions. We focus on the phonon-assisted exciton dissociation at donor-acceptor heterojunctions, using state-of-the-art electronic structure methods in conjunction with vibronic coupling models and multiconfigurational quantum dynamical techniques. The decay of the photogenerated exciton towards an interfacial charge-separated state is an ultrafast (femtosecond to picosecond scale) process which precedes photocurrent generation. We describe this process using a linear vibronic coupling model parametrized for two to three electronic states and 20-30 phonon modes. Several representative interface configurations are considered, which are shown to differ significantly in their cross-chain interactions but exhibit an efficient exciton dissociation in all cases investigated. The exciton decay depends critically on the presence of intermediate states and on the dynamical interplay between high-frequency (C=C stretch) and lowfrequency (ring-torsional) modes. The resulting molecular-level picture of exciton dissociation could contribute to the design of efficient polymer junctions.

  16. Functional ferroelectric tunnel junctions on silicon

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Wang, Zhe; Zeng, Shengwei; Han, Kun; Huang, Lisen; Schlom, Darrell G.; Venkatesan, T.; Ariando; Chen, Jingsheng

    2015-07-01

    The quest for solid state non-volatility memory devices on silicon with high storage density, high speed, low power consumption has attracted intense research on new materials and novel device architectures. Although flash memory dominates in the non-volatile memory market currently, it has drawbacks, such as low operation speed, and limited cycle endurance, which prevents it from becoming the “universal memory”. In this report, we demonstrate ferroelectric tunnel junctions (Pt/BaTiO3/La0.67Sr0.33MnO3) epitaxially grown on silicon substrates. X-ray diffraction spectra and high resolution transmission electron microscope images prove the high epitaxial quality of the single crystal perovskite films grown on silicon. Furthermore, the write speed, data retention and fatigue properties of the device compare favorably with flash memories. The results prove that the silicon-based ferroelectric tunnel junction is a very promising candidate for application in future non-volatile memories.

  17. Angular craniometry in craniocervical junction malformation.

    PubMed

    Botelho, Ricardo Vieira; Ferreira, Edson Dener Zandonadi

    2013-10-01

    The craniometric linear dimensions of the posterior fossa have been relatively well studied, but angular craniometry has been poorly studied and may reveal differences in the several types of craniocervical junction malformation. The objectives of this study were to evaluate craniometric angles compared with normal subjects and elucidate the main angular differences among the types of craniocervical junction malformation and the correlation between craniocervical and cervical angles. Angular craniometries were studied using primary cranial angles (basal and Boogard's) and secondary craniocervical angles (clivus canal and cervical spine lordosis). Patients with basilar invagination had significantly wider basal angles, sharper clivus canal angles, larger Boogard's angles, and greater cervical lordosis than the Chiari malformation and control groups. The Chiari malformation group does not show significant differences when compared with normal controls. Platybasia occurred only in basilar invagination and is suggested to be more prevalent in type II than in type I. Platybasic patients have a more acute clivus canal angle and show greater cervical lordosis than non-platybasics. The Chiari group does not show significant differences when compared with the control, but the basilar invagination groups had craniometric variables significantly different from normal controls. Hyperlordosis observed in the basilar inavagination group was associated with craniocervical kyphosis conditioned by acute clivus canal angles.

  18. Molecular Diffusion through Cyanobacterial Septal Junctions

    PubMed Central

    Nieves-Morión, Mercedes

    2017-01-01

    ABSTRACT Heterocyst-forming cyanobacteria grow as filaments in which intercellular molecular exchange takes place. During the differentiation of N2-fixing heterocysts, regulators are transferred between cells. In the diazotrophic filament, vegetative cells that fix CO2 through oxygenic photosynthesis provide the heterocysts with reduced carbon and heterocysts provide the vegetative cells with fixed nitrogen. Intercellular molecular transfer has been traced with fluorescent markers, including calcein, 5-carboxyfluorescein, and the sucrose analogue esculin, which are observed to move down their concentration gradient. In this work, we used fluorescence recovery after photobleaching (FRAP) assays in the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 to measure the temperature dependence of intercellular transfer of fluorescent markers. We find that the transfer rate constants are directly proportional to the absolute temperature. This indicates that the “septal junctions” (formerly known as “microplasmodesmata”) linking the cells in the filament allow molecular exchange by simple diffusion, without any activated intermediate state. This constitutes a novel mechanism for molecular transfer across the bacterial cytoplasmic membrane, in addition to previously characterized mechanisms for active transport and facilitated diffusion. Cyanobacterial septal junctions are functionally analogous to the gap junctions of metazoans. PMID:28049144

  19. Annealing free magnetic tunnel junction sensors

    NASA Astrophysics Data System (ADS)

    Knudde, S.; Leitao, D. C.; Cardoso, S.; Freitas, P. P.

    2017-04-01

    Annealing is a major step in the fabrication of magnetic tunnel junctions (MTJs). It sets the exchange bias between the pinned and antiferromagnetic layers, and helps to increase the tunnel magnetoresistance (TMR) in both amorphous and crystalline junctions. Recent research on MTJs has focused on MgO-based structures due to their high TMR. However, the strict process control and mandatory annealing step can limit the scope of the application of these structures as sensors. In this paper, we present AlOx-based MTJs that are produced by ion beam sputtering and remote plasma oxidation and show optimum transport properties with no annealing. The microfabricated devices show TMR values of up to 35% and using NiFe/CoFeB free layers provides tunable linear ranges, leading to coercivity-free linear responses with sensitivities of up to 5.5%/mT. The top-pinned synthetic antiferromagnetic reference shows a stability of about 30 mT in the microfabricated devices. Sensors with linear ranges of up to 60 mT are demonstrated. This paves the way for the integration of MTJ sensors in heat-sensitive applications such as flexible substrates, or for the design of low-footprint on-chip multiaxial sensing devices.

  20. Tricellular Tight Junctions in the Inner Ear

    PubMed Central

    2016-01-01

    Tight junctions (TJs) are structures that seal the space between the epithelial cell sheets. In the inner ear, the barrier function of TJs is indispensable for the separation of the endolymphatic and perilymphatic spaces, which is essential for the generation and maintenance of the endocochlear potential (EP). TJs are formed by the intercellular binding of membrane proteins, known as claudins, and mutations in these proteins cause deafness in humans and mice. Within the epithelial cell sheet, however, a bound structure is present at the site where the corners of three cells meet (tricellular tight junctions (tTJs)), and the maintenance of the barrier function at this location cannot be explained by the claudins alone. Tricellulin and the angulin family of proteins (angulin-1/LSR, angulin-2/ILDR1, and angulin-3/ILDR2) have been identified as tTJ-associated proteins. Tricellulin and ILDR1 are localized at the tTJ and alterations in these proteins have been reported to be involved in deafness. In this review, we will present the current state of knowledge for tTJs. PMID:27195292

  1. Conductance spectroscopy of topological superconductor wire junctions

    NASA Astrophysics Data System (ADS)

    Setiawan, F.; Brydon, Philip; Sau, Jay

    We study the zero-temperature transport properties of one-dimensional normal metal-superconductor (NS) junctions with topological superconductors across their topological transitions. Working within the Blonder-Tinkham-Klapwijk (BTK) formalism generalized for topological NS junctions, we analytically calculate the differential conductance for tunneling into two models of a topological superconductor: a spinless intrinsic p-wave superconductor and a spin-orbit-coupled s-wave superconductor in a Zeeman field. The zero-bias conductance takes nonuniversal values in the nontopological phase while it is robustly quantized at 2e2 / h in the topological regime. Despite this quantization at zero voltage, the zero-bias conductance only develops a peak (or a local maximum) as a function of voltage for sufficiently large interfacial barrier strength, or certain parameter regimes of spin-orbit coupling strength. Our calculated BTK conductance also shows that the conductance is finite inside the superconducting gap region because of the finite barrier transparency, providing a possible mechanism for the observed ``soft gap'' feature in the experimental studies. Work is done in collaboration with Sankar Das Sarma and supported by Microsoft Q, LPS-CMTC, and JQI-NSF-PFC.

  2. Thermoelectrics in an array of molecular junctions.

    PubMed

    Müller, K-H

    2008-07-28

    The room temperature thermoelectric properties of a three-dimensional array of molecular junctions are calculated. The array is composed of n-doped silicon nanoparticles where the surfaces are partially covered with polar molecules and the nanoparticles are bridged by trans-polyacetylene molecules. The role of the polar molecules is to reduce the band bending in the n-doped silicon nanoparticles and to shift the electronic resonances of the bridging molecules to the nanoparticle conduction band edges where the molecular resonances act as electron energy filters. The transmission coefficients of the bridging molecules that appear in the formulas for the Seebeck coefficient, the electrical conductance, and the electronic thermal conductance, are calculated using the nonequilibrium Green's function technique. A simple tight-binding Hamiltonian is used to describe the bridging molecules, and the self-energy term is calculated using the parabolic conduction band approximation. The dependencies of the thermoelectric properties of the molecular junctions on the silicon doping concentration and on the molecule-nanoparticle coupling are discussed. The maximal achievable thermoelectric figure of merit ZT of the array is estimated as a function of the phononic thermal conductance of the bridging molecules and the doping of the nanoparticles. The power factor of the array is also calculated. For sufficiently small phononic thermal conductances of the bridging molecules, very high ZT values are predicted.

  3. Switching and Rectification in Carbon-Nanotube Junctions

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Andriotis, Antonis N.; Menon, Madhu; Chernozatonskii, Leonid

    2003-01-01

    Multi-terminal carbon-nanotube junctions are under investigation as candidate components of nanoscale electronic devices and circuits. Three-terminal "Y" junctions of carbon nanotubes (see Figure 1) have proven to be especially interesting because (1) it is now possible to synthesize them in high yield in a controlled manner and (2) results of preliminary experimental and theoretical studies suggest that such junctions could exhibit switching and rectification properties. Following the preliminary studies, current-versus-voltage characteristics of a number of different "Y" junctions of single-wall carbon nanotubes connected to metal wires were computed. Both semiconducting and metallic nanotubes of various chiralities were considered. Most of the junctions considered were symmetric. These computations involved modeling of the quantum electrical conductivity of the carbon nanotubes and junctions, taking account of such complicating factors as the topological defects (pentagons, heptagons, and octagons) present in the hexagonal molecular structures at the junctions, and the effects of the nanotube/wire interfaces. A major component of the computational approach was the use of an efficient Green s function embedding scheme. The results of these computations showed that symmetric junctions could be expected to support both rectification and switching. The results also showed that rectification and switching properties of a junction could be expected to depend strongly on its symmetry and, to a lesser degree, on the chirality of the nanotubes. In particular, it was found that a zigzag nanotube branching at a symmetric "Y" junction could exhibit either perfect rectification or partial rectification (asymmetric current-versus-voltage characteristic, as in the example of Figure 2). It was also found that an asymmetric "Y" junction would not exhibit rectification.

  4. Low resistance junctions in crayfish. Structural changes with functional uncoupling

    PubMed Central

    1976-01-01

    Electrical uncoupling of crayfish septate lateral giant axons is paralleled by structural changes in the gap junctions. The changes are characterized by a tighter aggregation of the intramembrane particles and a decrease in the overall width of the junction and the thickness of the gap. Preliminary measurements indicate also a decrease in particle diameter. The uncoupling is produced by in vitro treatment of crayfish abdominal cords either with a Ca++, Mg++-free solution containing EDTA, followed by return to normal saline (Van Harreveld's solution), or with VAn Harreveld's solution containing dinitrophenol (DNP). The uncoupling is monitored by the intracellular recording of the electrical resistance at a septum between lateral giant axons. The junctions of the same septum are examined in thin sections; those of other ganglia of the same chain used for the electrical measurements are studied by freeze-fracture. In controls, most junctions contain a more or less regular array of particles repeating at a center to center distance of approximately 200 A. The overall width of the junctions is approximately 200 A and the gap thickness is 40-50 A. Vesicles (400-700 A in diameter) are closely apposed to the junctional membranes. In uncoupled axons, most junctions contain a hexagonal array of particles repeating at a center to center distance of 150-155 A. The overall width of the junctions is approximately 180 A and the gap thickness is 20-30 A. These junctions are usually curved and are rarely associated with vesicles. Isolated, PTA-stained junctions, also believed to be uncoupled, display similar structural features. There are reasons to believe that the changes in structure and permeability are triggered by an increase in the intracellular free Ca++ concentration. Most likely, the changes in permeability are caused by conformational changes in some components of the intramembrane particles at the gap junctions. PMID:820701

  5. Concomitant Sertoli and Leydig Cell Tumor of the Testis: A Case Report

    PubMed Central

    Tazi, Mohammed Fadl; Ahallal, Youness; Khallouk, Abdelhak; Elfatemi, Hinde; Bendahou, Mohcine; Tazi, Elmehdi; El Fassi, Mohammed Jamal; Farih, Moulay Hassan

    2011-01-01

    A rare intratubular gonadal stromal tumor was present in the testis of a 45-year-old man who was admitted to our hospital with the chief complaint of gradual enlargement of the left testis. Tumoral markers were negative and no extension was observed. The tumor comprised an intratubular mixture of two types of tumor cells with intercellular junctions: the predominant tumor cells were consistent with a Sertoli cell origin and cells comprising the minor population consistent with a Leydig cell origin. The patient is disease free after 6-month follow-up. The case is considered to be a testicular mixed tubular Sertoli-Leydig cell tumor. It highlights a rare type of primary tumor of the testis that features a good prognosis. PMID:22114547

  6. Primary esophageal and gastro-esophageal junction cancer xenograft models: clinicopathological features and engraftment.

    PubMed

    Dodbiba, Lorin; Teichman, Jennifer; Fleet, Andrew; Thai, Henry; Sun, Bin; Panchal, Devang; Patel, Devalben; Tse, Alvina; Chen, Zhuo; Faluyi, Olusola O; Renouf, Daniel J; Girgis, Hala; Bandarchi, Bizhan; Schwock, Joerg; Xu, Wei; Bristow, Robert G; Tsao, Ming-Sound; Darling, Gail E; Ailles, Laurie E; El-Zimaity, Hala; Liu, Geoffrey

    2013-04-01

    There are very few xenograft models available for the study of esophageal (E) and gastro-esophageal junction (GEJ) cancer. Using a NOD/SCID model, we implanted 90 primary E and GEJ tumors resected from patients and six endoscopic biopsy specimens. Of 69 resected tumors with histologically confirmed viable adenocarcinoma or squamous cell carcinoma, 22 (32%) was engrafted. One of 11 tumors, considered to have had a complete pathological response to neo-adjuvant chemo-radiation, also engrafted. Of the 23 patients whose tumors were engrafted, 65% were male; 30% were early stage while 70% were late stage; 22% received neo-adjuvant chemo-radiation; 61% were GEJ cancers. Engraftment occurred in 18/54 (33%) adenocarcinomas and 5/16 (31%) squamous cell carcinomas. Small endoscopic biopsy tissue had a 50% (3/6) engraftment rate. Of the factors analyzed, pretreatment with chemo-radiation and well/moderate differentiation showed significantly lower correlation with engraftment (P<0.05). In the subset of patients who did not receive neo-adjuvant chemo-radiation, 18/41 (44%) engrafted compared with those with pretreatment where 5/29 (17%, P=0.02) engrafted. Primary xenograft lines may be continued through 4-12 passages. Xenografts maintained similar histology and morphological characteristics with only minor variations even after multiple passaging in most instances.

  7. Claudins and the Modulation of Tight Junction Permeability

    PubMed Central

    Günzel, Dorothee

    2013-01-01

    Claudins are tight junction membrane proteins that are expressed in epithelia and endothelia and form paracellular barriers and pores that determine tight junction permeability. This review summarizes our current knowledge of this large protein family and discusses recent advances in our understanding of their structure and physiological functions. PMID:23589827

  8. Diencephalic-Mesencephalic Junction Dysplasia: A Novel Recessive Brain Malformation

    ERIC Educational Resources Information Center

    Zaki, Maha S.; Saleem, Sahar N.; Dobyns, William B.; Barkovich, A. James; Bartsch, Hauke; Dale, Anders M.; Ashtari, Manzar; Akizu, Naiara; Gleeson, Joseph G.; Grijalvo-Perez, Ana Maria

    2012-01-01

    We describe six cases from three unrelated consanguineous Egyptian families with a novel characteristic brain malformation at the level of the diencephalic-mesencephalic junction. Brain magnetic resonance imaging demonstrated a dysplasia of the diencephalic-mesencephalic junction with a characteristic "butterfly"-like contour of the…

  9. Fast temporal fluctuations in single-molecule junctions.

    PubMed

    Ochs, Roif; Secker, Daniel; Elbing, Mark; Mayor, Marcel; Weber, Heiko B

    2006-01-01

    The noise within the electrical current through single-molecule junctions is studied cryogenic temperature. The organic sample molecules were contacted with the mechanically controlled break-junction technique. The noise spectra refer to a where only few Lorentzian fluctuators occur in the conductance. The frequency dependence shows qualitative variations from sample to sample.

  10. 10. VIEW UPSTREAM OF PIPELINE SECTION AT JUNCTION OF HUME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW UPSTREAM OF PIPELINE SECTION AT JUNCTION OF HUME CEMENT PIPE AND CAST-IRON (460'). NOTE CYLINDRICAL COLLAR OF CEMENT SECTIONS AND BELL JUNCTIONS OF IRON PIPE. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  11. Septal Junctions in Filamentous Heterocyst-Forming Cyanobacteria.

    PubMed

    Flores, Enrique; Herrero, Antonia; Forchhammer, Karl; Maldener, Iris

    2016-02-01

    In the filaments of heterocyst-forming cyanobacteria, septal junctions that traverse the septal peptidoglycan join adjacent cells, allowing intercellular communication. Perforations in the septal peptidoglycan have been observed, and proteins involved in the formation of such perforations and putative protein components of the septal junctions have been identified, but their relationships are debated.

  12. Conditions for synchronization in Josephson-junction arrays

    SciTech Connect

    Chernikov, A.A.; Schmidt, G.

    1995-12-31

    An effective perturbation theoretical method has been developed to study the dynamics of Josephson Junction series arrays. It is shown that the inclusion of Junction capacitances, often ignored, has a significant impact on synchronization. Comparison of analytic with computational results over a wide range of parameters shows excellent agreement.

  13. 75 FR 30756 - FM Table of Allotments, Pacific Junction, Iowa

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 73 FM Table of Allotments, Pacific Junction, Iowa AGENCY: Federal Communications... Channel 299C2 at Pacific Junction, Iowa. The reference coordinates for Channel 299C2 at Pacific...

  14. 75 FR 76294 - Radio Broadcasting Services: Pacific Junction, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ... COMMISSION 47 CFR Part 73 Radio Broadcasting Services: Pacific Junction, IA AGENCY: Federal Communications Commission. ACTION: Final rule. SUMMARY: The staff deletes FM Channel 299C2 at Pacific Junction, Iowa... landing system configurations and the Commission's spacing requirements Further, there are no other...

  15. Processing of Superconductor-Normal-Superconductor Josephson Edge Junctions

    NASA Technical Reports Server (NTRS)

    Kleinsasser, A. W.; Barner, J. B.

    1997-01-01

    The electrical behavior of epitaxial superconductor-normal-superconductor (SNS) Josephson edge junctions is strongly affected by processing conditions. Ex-situ processes, utilizing photoresist and polyimide/photoresist mask layers, are employed for ion milling edges for junctions with Yttrium-Barium-Copper-Oxide (YBCO) electrodes and primarily Co-doped YBCO interlayers.

  16. TEMPORAL CHANGE IN GAP JUNCTION FUNCTION IN PRIMARY HEPATOCYTES

    EPA Science Inventory

    TEMPORAL CHANGES IN GAP JUNCTION FUNCTION IN PRIMARY *

    The objective of this study was to examine the reduction in gap junction communication (GJC) in primary hepatocytes due to coincident melatonin and magnetic field treatments to determine if these conditions could prov...

  17. Josephson junctions in high-T/sub c/ superconductors

    DOEpatents

    Falco, C.M.; Lee, T.W.

    1981-01-14

    The invention includes a high T/sub c/ Josephson sperconducting junction as well as the method and apparatus which provides the junction by application of a closely controlled and monitored electrical discharge to a microbridge region connecting two portions of a superconducting film.

  18. Genetic deletion of the desmosomal component desmoplakin promotes tumor microinvasion in a mouse model of pancreatic neuroendocrine carcinogenesis.

    PubMed

    Chun, Matthew G H; Hanahan, Douglas

    2010-09-16

    We used the RIP1-Tag2 (RT2) mouse model of islet cell carcinogenesis to profile the transcriptome of pancreatic neuroendocrine tumors (PNET) that were either non-invasive or highly invasive, seeking to identify pro- and anti-invasive molecules. Expression of multiple components of desmosomes, structures that help maintain cellular adhesion, was significantly reduced in invasive carcinomas. Genetic deletion of one of these desmosomal components, desmoplakin, resulted in increased local tumor invasion without affecting tumor growth parameters in RT2 PNETs. Expression of cadherin 1, a component of the adherens junction adhesion complex, was maintained in these tumors despite the genetic deletion of desmoplakin. Our results demonstrate that loss of desmoplakin expression and resultant disruption of desmosomal adhesion can promote increased local tumor invasion independent of adherens junction status.

  19. The current-phase relation in HTS Josephson junctions

    NASA Astrophysics Data System (ADS)

    Il'ichev, E.; Zakosarenko, V.; Ijsselsteijn, R. P. J.; Schultze, V.; Meyer, H.-G.; Hoenig, H. E.

    The current-phase relation of YBa2Cu3O7-x step-edge as well as 24° and 45° grain boundary Josephson junctions has been investigated experimentally. The junctions were incorporated into a washer-shaped superconducting ring with inductance L≈80-300 pH. The ring was inductively coupled to a tank circuit with a resonance frequency 9…40 MHz. The current-phase relation was obtained from the measurement of the impedance of the phase-biased junction. It is shown, that experimentally observed deviations from harmonic behavior of the apparent current-phase relation for step-edge and 24° grain boundary junctions can be explained by the influence of thermal noise. The current-phase relation of 45° grain boundary junctions was found to be extremely non-harmonic. The reasons of this unusual behavior are discussed.

  20. Evolution of perpendicular magnetized tunnel junctions upon annealing

    NASA Astrophysics Data System (ADS)

    Devolder, Thibaut; Couet, S.; Swerts, J.; Furnemont, A.

    2016-04-01

    We study the evolution of perpendicularly magnetized tunnel junctions under 300 to 400 °C annealing. The hysteresis loops do not evolve much during annealing and they are not informative of the underlying structural evolutions. These evolutions are better revealed by the frequencies of the ferromagnetic resonance eigenmodes of the tunnel junction. Their modeling provides the exchange couplings and the layers' anisotropies within the stack which can serve as a diagnosis of the tunnel junction state after each annealing step. The anisotropies of the two CoFeB-based parts and the two Co/Pt-based parts of the tunnel junction decay at different rates during annealing. The ferromagnet exchange coupling through the texture-breaking Ta layer fails above 375 °C. The Ru spacer meant to promote a synthetic antiferromagnet behavior is also insufficiently robust to annealing. Based on these evolutions we propose optimization routes for the next generation tunnel junctions.

  1. Temperature dependence of charge transport in conjugated single molecule junctions

    NASA Astrophysics Data System (ADS)

    Huisman, Eek; Kamenetska, Masha; Venkataraman, Latha

    2011-03-01

    Over the last decade, the break junction technique using a scanning tunneling microscope geometry has proven to be an important tool to understand electron transport through single molecule junctions. Here, we use this technique to probe transport through junctions at temperatures ranging from 5K to 300K. We study three amine-terminated (-NH2) conjugated molecules: a benzene, a biphenyl and a terphenyl derivative. We find that amine groups bind selectively to undercoordinate gold atoms gold all the way down to 5K, yielding single molecule junctions with well-defined conductances. Furthermore, we find that the conductance of a single molecule junction increases with temperature and we present a mechanism for this temperature dependent transport result. Funded by a Rubicon Grant from The Netherlands Organisation for Scientific Research (NWO) and the NSEC program of NSF under grant # CHE-0641523.

  2. Quasi-optical Josephson-junction oscillator arrays

    NASA Technical Reports Server (NTRS)

    Stern, J. A.; Leduc, H. G.; Zmuidzinas, J.

    1993-01-01

    Josephson junctions are natural voltage-controlled oscillators capable of generating submillimeter-wavelength radiation, but a single junction usually can produce only 100 nW of power and often has a broad spectral linewidth. The authors are investigating 2D quasi-optical power combining arrays of 103 and 104 NbN/MgO/NbN and Nb/Al-AlO(x)/Nb junctions to overcome these limitations. The junctions are dc-biased in parallel and are distributed along interdigitated lines. The arrays couple to a resonant mode of a Fabry-Perot cavity to achieve mutual phase-locking. The array configuration has a relatively low impedance, which should allow the capacitance of the junctions to be tuned out at the oscillation frequency.

  3. Subgap conductivity in SIN-junctions of high barrier transparency

    NASA Astrophysics Data System (ADS)

    Lotkhov, S. V.; Balashov, D. V.; Khabipov, M. I.; Buchholz, F.-I.; Zorin, A. B.

    2006-11-01

    We investigate the current-voltage characteristics of high-transparency superconductor-insulator-normal metal (SIN) junctions with the specific tunnel resistance ρ ≲ 30 Ω μm2. The junctions were fabricated from different superconducting and normal conducting materials, including Nb, Al, AuPd and Cu. The subgap leakage currents were found to be appreciably larger than those given by the standard tunnelling model. We explain our results using the model of two-electron tunnelling in the coherent diffusive transport regime. We demonstrate that even in the high-transparency SIN-junctions, a noticeable reduction of the subgap current can be achieved by splitting a junction into several submicron sub-junctions. These structures can be used as nonlinear low-noise shunts in rapid-single-flux-quantum (RSFQ) circuitry for controlling Josephson qubits.

  4. Design of Steerable Wavelets to Detect Multifold Junctions.

    PubMed

    Püspöki, Zsuzsanna; Uhlmann, Virginie; Vonesch, Cédric; Unser, Michael

    2016-02-01

    We propose a framework for the detection of junctions in images. Although the detection of edges and key points is a well examined and described area, the multiscale detection of junction centers, especially for odd orders, poses a challenge in pattern analysis. The goal of this paper is to build optimal junction detectors based on 2D steerable wavelets that are polar-separable in the Fourier domain. The approaches we develop are general and can be used for the detection of arbitrary symmetric and asymmetric junctions. The backbone of our construction is a multiscale pyramid with a radial wavelet function where the directional components are represented by circular harmonics and encoded in a shaping matrix. We are able to detect M -fold junctions in different scales and orientations. We provide experimental results on both simulated and real data to demonstrate the effectiveness of the algorithm.

  5. Fixed-Gap Tunnel Junction for Reading DNA Nucleotides

    PubMed Central

    2015-01-01

    Previous measurements of the electronic conductance of DNA nucleotides or amino acids have used tunnel junctions in which the gap is mechanically adjusted, such as scanning tunneling microscopes or mechanically controllable break junctions. Fixed-junction devices have, at best, detected the passage of whole DNA molecules without yielding chemical information. Here, we report on a layered tunnel junction in which the tunnel gap is defined by a dielectric layer, deposited by atomic layer deposition. Reactive ion etching is used to drill a hole through the layers so that the tunnel junction can be exposed to molecules in solution. When the metal electrodes are functionalized with recognition molecules that capture DNA nucleotides via hydrogen bonds, the identities of the individual nucleotides are revealed by characteristic features of the fluctuating tunnel current associated with single-molecule binding events. PMID:25380505

  6. ASC Induces Apoptosis via Activation of Caspase-9 by Enhancing Gap Junction-Mediated Intercellular Communication.

    PubMed

    Kitazawa, Masato; Hida, Shigeaki; Fujii, Chifumi; Taniguchi, Shun'ichiro; Ito, Kensuke; Matsumura, Tomio; Okada, Nagisa; Sakaizawa, Takashi; Kobayashi, Akira; Takeoka, Michiko; Miyagawa, Shin-Ichi

    2017-01-01

    ASC (apoptosis-associated speck-like protein containing a CARD) is a key adaptor molecule of inflammasomes that mediates inflammatory and apoptotic signals. Aberrant methylation-induced silencing of ASC has been observed in a variety of cancer cells, thus implicating ASC in tumor suppression, although this role remains incompletely defined especially in the context of closely neighboring cell proliferation. As ASC has been confirmed to be silenced by abnormal methylation in HT1080 fibrosarcoma cells as well, this cell line was investigated to characterize the precise role and mechanism of ASC in tumor progression. The effects of ASC were examined using in vitro cell cultures based on comparisons between low and high cell density conditions as well as in a xenograft murine model. ASC overexpression was established by insertion of the ASC gene into pcDNA3 and pMX-IRES-GFP vectors, the latter being packed into a retrovirus and subjected to reproducible competitive assays using parental cells as an internal control, for evaluation of cell viability. p21 and p53 were silenced using shRNA. Cell viability was suppressed in ASC-expressing transfectants as compared with control cells at high cell density conditions in in vitro culture and colony formation assays and in in vivo ectopic tumor formation trials. This suppression was not detected in low cell density conditions. Furthermore, remarkable progression of apoptosis was observed in ASC-introduced cells at a high cell density, but not at a low one. ASC-dependent apoptosis was mediated not by p21, p53, or caspase-1, but rather by cleavage of caspase-9 as well as by suppression of the NF-κB-related X-linked inhibitor-of-apoptosis protein. Caspase-9 cleavage was observed to be dependent on gap junction formation. The remarkable effect of ASC on the induction of apoptosis through caspase-9 and gap junctions revealed in this study may lead to promising new approaches in anticancer therapy.

  7. Altered patterns of cardiac intercellular junction distribution in hypertrophic cardiomyopathy.

    PubMed Central

    Sepp, R.; Severs, N. J.; Gourdie, R. G.

    1996-01-01

    OBJECTIVE: To examine the distribution pattern of intercellular junctions (the mechanically coupling desmosomes and the electrically coupling gap junctions) in hypertrophic cardiomyopathy (HCM) hearts showing myofibre disarray. DESIGN: Samples from six necropsied hearts were studied, representing the interventricular septum and the free walls of the left and right ventricles. Immunohistochemical labelling of desmoplakin was used as a marker for desmosomes, and of connexin43 as a marker for gap junctions, in single and double stainings. The slides were examined by confocal laser scanning microscopy. RESULTS: Marked disorganisation of intercalated discs was observed in areas featuring myofibre disarray. Besides overall derangement, localised abnormalities in desmosome organisation were evident, which included: (1) the formation of abnormally enlarged megadiscs; (2) the presence of intersecting disc structures; and (3) aberrant side to side desmosomal connections. Gap junctional abnormalities included: (1) random distribution of gap junctions over the surface of myocytes, rather than localisation to intercalated discs; (2) abundant side to side gap junction connections between adjacent myocytes; and (3) formation of abnormally shaped gap junctions. Circles of myocytes continuously interconnected by gap junctions were also observed. Regions of the diseased hearts lacking myofibre disarray, and control hearts of normal patients and patients with other cardiac diseases, did not show these alterations. CONCLUSIONS: The disorganisation of the intercellular junctions associated with myofibre disarray in HCM may play an important role in the pathophysiological manifestations of the disease. The remodelling of gap junction distribution may underlie the formation of an arrhythmogenic substrate, thereby contributing to the generation and maintenance of cardiac arrhythmias associated with HCM. Images PMID:8944586

  8. Epidemiology of Brain Tumors.

    PubMed

    McNeill, Katharine A

    2016-11-01

    Brain tumors are the commonest solid tumor in children, leading to significant cancer-related mortality. Several hereditary syndromes associated with brain tumors are nonfamilial. Ionizing radiation is a well-recognized risk factor for brain tumors. Several industrial exposures have been evaluated for a causal association with brain tumor formation but the results are inconclusive. A casual association between the common mutagens of tobacco, alcohol, or dietary factors has not yet been established. There is no clear evidence that the incidence of brain tumors has changed over time. This article presents the descriptive epidemiology of the commonest brain tumors of children and adults.

  9. The organization of adherens junctions and desmosomes at the cardiac intercalated disc is independent of gap junctions.

    PubMed

    Gutstein, David E; Liu, Fang-Yu; Meyers, Marian B; Choo, Andrew; Fishman, Glenn I

    2003-03-01

    Adherens junctions and desmosomes are responsible for mechanically coupling myocytes in the heart and are found closely apposed to gap junction plaques at the intercalated discs of cardiomyocytes. It is not known whether loss of cardiac gap junctions, such as described in cardiac disease states, may influence the expression patterns of other intercalated disc-associated proteins. We investigated whether the major cardiac gap junction protein connexin43 (Cx43) may be responsible for regulating adherens junctions, desmosomes and their associated catenins, in terms of abundance and localization at the intercalated discs of cardiomyocytes. In order to study the effect of loss of cardiac gap junctions on the intercalated disc-associated proteins, we used a combination of immunoblotting, immunofluorescence with confocal microscopy and electron microscopy to evaluate heart tissue from mice with cardiac-specific conditional knockout of Cx43. We found that the cardiac adherens junctions, desmosomes and their associated catenins, as well as vinculin and ZO-1, maintain their normal abundance, structural appearance and localization in the absence of Cx43. We conclude from these data that Cx43 is not required for the organization of the cell adhesion junctions and their associated catenins at the intercalated disc in the adult cardiac myocyte.

  10. Metal-free molecular junctions on ITO via amino-silane binding-towards optoelectronic molecular junctions.

    PubMed

    Sergani, S; Furmansky, Y; Visoly-Fisher, I

    2013-11-15

    Light control over currents in molecular junctions is desirable as a non-contact input with high spectral and spatial resolution provided by the photonic input and the molecular electronics element, respectively. Expanding the study of molecular junctions to non-metallic transparent substrates, such as indium tin oxide (ITO), is vital for the observation of molecular optoelectronic effects. Non-metallic electrodes are expected to decrease the probability of quenching of molecular photo-excited states, light-induced plasmonic effects, or significant electrode expansion under visible light. We have developed micron-sized, metal free, optically addressable ITO molecular junctions with a conductive polymer serving as the counter-electrode. The electrical transport was shown to be dominated by the nature of the self-assembled monolayer (SAM). The use of amino-silane (APTMS) as the chemical binding scheme to ITO was found to be significant in determining the transport properties of the junctions. APTMS allows high junction yields and the formation of dense molecular layers preventing electrical short. However, polar amino-silane binding to the ITO significantly decreased the conductance compared to thiol-bound SAMs, and caused tilted geometry and disorder in the molecular layer. As the effect of the molecular structure on transport properties is clearly observed in our junctions, such metal-free junctions are suitable for characterizing the optoelectronic properties of molecular junctions.

  11. Metal-free molecular junctions on ITO via amino-silane binding—towards optoelectronic molecular junctions

    NASA Astrophysics Data System (ADS)

    Sergani, S.; Furmansky, Y.; Visoly-Fisher, I.

    2013-11-01

    Light control over currents in molecular junctions is desirable as a non-contact input with high spectral and spatial resolution provided by the photonic input and the molecular electronics element, respectively. Expanding the study of molecular junctions to non-metallic transparent substrates, such as indium tin oxide (ITO), is vital for the observation of molecular optoelectronic effects. Non-metallic electrodes are expected to decrease the probability of quenching of molecular photo-excited states, light-induced plasmonic effects, or significant electrode expansion under visible light. We have developed micron-sized, metal free, optically addressable ITO molecular junctions with a conductive polymer serving as the counter-electrode. The electrical transport was shown to be dominated by the nature of the self-assembled monolayer (SAM). The use of amino-silane (APTMS) as the chemical binding scheme to ITO was found to be significant in determining the transport properties of the junctions. APTMS allows high junction yields and the formation of dense molecular layers preventing electrical short. However, polar amino-silane binding to the ITO significantly decreased the conductance compared to thiol-bound SAMs, and caused tilted geometry and disorder in the molecular layer. As the effect of the molecular structure on transport properties is clearly observed in our junctions, such metal-free junctions are suitable for characterizing the optoelectronic properties of molecular junctions.

  12. Investigation of Photoelectrode Redox Polymer Junctions

    DTIC Science & Technology

    2007-11-02

    15, 1985 Arlington, VA 22217 13. MUMMER OF’ AGES 1C. NdONIT ORING A~jE.4CY NAME ACORISZ53II d~ifetwM( IrO ConrWfiun OttiCO) IS. 1ICLtI~TY CY-AS&5 (of...junction is exposed to selected .chemical species. DD 1472 eOInlCN o’ INOV is i’s OesoL ITZ UNCLASSIFIED e"~ A44101CrATION OF THIS P AGE (W~ign 0...configuration consisting of a platinum working electrode, a platinum counter 2 V ELTRON RESEARCH INC. electrode and a Ag / Ag + reference electrode was

  13. Ultrafast endocytosis at Caenorhabditis elegans neuromuscular junctions

    PubMed Central

    Watanabe, Shigeki; Liu, Qiang; Davis, M Wayne; Hollopeter, Gunther; Thomas, Nikita; Jorgensen, Nels B; Jorgensen, Erik M

    2013-01-01

    Synaptic vesicles can be released at extremely high rates, which places an extraordinary demand on the recycling machinery. Previous ultrastructural studies of vesicle recycling were conducted in dissected preparations using an intense stimulation to maximize the probability of release. Here, a single light stimulus was applied to motor neurons in intact Caenorhabditis elegans nematodes expressing channelrhodopsin, and the animals rapidly frozen. We found that docked vesicles fuse along a broad active zone in response to a single stimulus, and are replenished with a time constant of about 2 s. Endocytosis occurs within 50 ms adjacent to the dense projection and after 1 s adjacent to adherens junctions. These studies suggest that synaptic vesicle endocytosis may occur on a millisecond time scale following a single physiological stimulus in the intact nervous system and is unlikely to conform to current models of endocytosis. DOI: http://dx.doi.org/10.7554/eLife.00723.001 PMID:24015355

  14. Fully magnetic manganite spin filter tunnel junctions

    NASA Astrophysics Data System (ADS)

    Prasad, Bhagwati; Blamire, Mark G.

    2016-09-01

    In this paper we demonstrate spintronic devices which combine magnetic tunnel junctions with a spin-filtering tunnel barrier. These consist of an ultrathin ferromagnetic insulating barrier, Sm0.75Sr0.25MnO3, sandwiched between two ferromagnetic half-metallic manganite electrodes, La0.7Sr0.3MnO3 and La0.7Ca0.3MnO3, in a nanopillar structure. Depending on the relative magnetic configurations of barrier and electrode layers, three resistance states are well defined, which therefore represent a potential three-state memory concept. These results open the way for the development of spintronic devices by exploiting the many degrees of freedom of perovskite manganite heterostructure systems.

  15. Cascade Electronic Refrigerator Using Superconducting Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Nguyen, H. Q.; Peltonen, J. T.; Meschke, M.; Pekola, J. P.

    2016-11-01

    Microrefrigerators that operate in the subkelvin regime are key devices in quantum technology. A well-studied candidate, an electronic cooler using normal-metal-insulator-superconductor (N -I -S ) tunnel junctions, offers substantial performance and power. However, its superconducting electrodes are severely overheated due to exponential suppression of their thermal conductance towards low temperatures, and the cooler performs unsatisfactorily—especially in powerful devices needed for practical applications. We employ a second N -I -S cooling stage to thermalize the hot superconductor at the backside of the main N -I -S cooler. Not only providing a lower bath temperature, the second-stage cooler actively evacuates quasiparticles out of the hot superconductor, especially in the low-temperature limit. We demonstrate the apparent advantage of our approach. This cascade design can also be employed to manage excess heat in other cryoelectronic devices.

  16. Josephson junctions with tunable weak links.

    PubMed

    Schön, J H; Kloc, C; Hwang, H Y; Batlogg, B

    2001-04-13

    The electrical properties of organic molecular crystals, such as polyacenes or C60, can be tuned from insulating to superconducting by application of an electric field. By structuring the gate electrode of such a field-effect switch, the charge carrier density, and therefore also the superfluid density, can be modulated. Hence, weak links that behave like Josephson junctions can be fabricated between two superconducting regions. The coupling between the superconducting regions can be tuned and controlled over a wide range by the applied gate bias. Such devices might be used in superconducting circuits, and they are a useful scientific tool to study superconducting material parameters, such as the superconducting gap, as a function of carrier concentration or transition temperature.

  17. Work fluctuations in bosonic Josephson junctions

    NASA Astrophysics Data System (ADS)

    Lena, R. G.; Palma, G. M.; De Chiara, G.

    2016-05-01

    We calculate the first two moments and full probability distribution of the work performed on a system of bosonic particles in a two-mode Bose-Hubbard Hamiltonian when the self-interaction term is varied instantaneously or with a finite-time ramp. In the instantaneous case, we show how the irreversible work scales differently depending on whether the system is driven to the Josephson or Fock regime of the bosonic Josephson junction. In the finite-time case, we use optimal control techniques to substantially decrease the irreversible work to negligible values. Our analysis can be implemented in present-day experiments with ultracold atoms and we show how to relate the work statistics to that of the population imbalance of the two modes.

  18. Quantum Phase Transition in Josephson Junction Arrays

    NASA Astrophysics Data System (ADS)

    Moon, K.; Girvin, S. M.

    1997-03-01

    One-dimensional Josephson junction arrays of SQUIDS exhibit a novel superconductor-insulator phase transition. The critical regime can be accessed by tuning the effective Josephson coupling energy using a weak magnetic field applied to the SQUIDS. The role of instantons induced by quantum fluctuations will be discussed. One novel feature of these systems which can be explained in terms of quantum phase slips is that in some regimes, the array resistance decreases with increasing length of the array. We calculate the finite temperature crossover function for the array resistance and compare our theoretical results with the recent experiments by D. Haviland and P. Delsing at Chalmers. This work is supported by DOE grant #DE-FG02-90ER45427 and by NSF DMR-9502555.

  19. Studies of silicon pn junction solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.; Neugroschel, A.

    1977-01-01

    Modifications of the basic Shockley equations that result from the random and nonrandom spatial variations of the chemical composition of a semiconductor were developed. These modifications underlie the existence of the extensive emitter recombination current that limits the voltage over the open circuit of solar cells. The measurement of parameters, series resistance and the base diffusion length is discussed. Two methods are presented for establishing the energy bandgap narrowing in the heavily-doped emitter region. Corrections that can be important in the application of one of these methods to small test cells are examined. Oxide-charge-induced high-low-junction emitter (OCI-HLE) test cells which exhibit considerably higher voltage over the open circuit than was previously seen in n-on-p solar cells are described.

  20. Field-effect P-N junction

    DOEpatents

    Regan, William; Zettl, Alexander

    2015-05-05

    This disclosure provides systems, methods, and apparatus related to field-effect p-n junctions. In one aspect, a device includes an ohmic contact, a semiconductor layer disposed on the ohmic contact, at least one rectifying contact disposed on the semiconductor layer, a gate including a layer disposed on the at least one rectifying contact and the semiconductor layer and a gate contact disposed on the layer. A lateral width of the rectifying contact is less than a semiconductor depletion width of the semiconductor layer. The gate contact is electrically connected to the ohmic contact to create a self-gating feedback loop that is configured to maintain a gate electric field of the gate.

  1. Controlling local currents in molecular junctions

    NASA Astrophysics Data System (ADS)

    Yadalam, Hari Kumar; Harbola, Upendra

    2016-09-01

    The effects of nonequilibrium constraints and dephasing on the circulating currents in molecular junctions are analyzed. Circulating currents are manifestations of quantum effects and can be induced either by externally applied bias or an external magnetic field through the molecular system. In a symmetric Aharonov-Bohm ring, bond currents have two contributions, bias driven and magnetic field driven. We analyze the competition between these two contributions and show that, as a consequence, current through one of the branches can be completely suppressed. We then study the effect of asymmetry (as a result of chemical substitution) on the current pathways inside the molecule and study asymmetry-induced circulating currents (without magnetic field) by tuning the coupling strength of the substituent (at finite bias).

  2. Terbinafine inhibits gap junctional intercellular communication.

    PubMed

    Lee, Ju Yeun; Yoon, Sei Mee; Choi, Eun Ju; Lee, Jinu

    2016-09-15

    Terbinafine is an antifungal agent that selectively inhibits fungal sterol synthesis by blocking squalene epoxidase. We evaluated the effect of terbinafine on gap junctional intercellular communication (GJIC). Fluorescence recovery after photobleaching (FRAP) and I-YFP GJIC assays revealed that terbinafine inhibits GJIC in a reversible and dose-dependent manner in FRT-Cx43 and LN215 cells. Treatment with terbinafine did not affect Cx43 phosphorylation status or intracellular Ca(2+) concentration, well-known action mechanisms of various GJIC blockers. While a structurally related chemical, naftifine, attenuated GJIC, epigallocatechin gallate, another potent squalene epoxidase inhibitor with a different structure, did not. These results suggest that terbinafine inhibits GJIC with a so far unknown mechanism of action.

  3. Permanent junctional reciprocating tachycardia in a dog.

    PubMed

    Santilli, Roberto A; Santos, Luis F N; Perego, Manuela

    2013-09-01

    A 5-year-old male English Bulldog was presented with a 1-year history of paroxysmal supraventricular tachycardia (SVT) partially responsive to amiodarone. At admission the surface ECG showed sustained runs of a narrow QRS complex tachycardia, with a ventricular cycle length (R-R interval) of 260 ms, alternating with periods of sinus rhythm. Endocardial mapping identified the electrogenic mechanism of the SVT as a circus movement tachycardia with retrograde and decremental conduction along a concealed postero-septal atrioventricular pathway (AP) and anterograde conduction along the atrioventricular node. These characteristics were indicative of a permanent junctional reciprocating tachycardia (PJRT). Radiofrequency catheter ablation of the AP successfully terminated the PJRT, with no recurrence of tachycardia on Holter monitoring at 12 months follow-up.

  4. Hypoxia in Microscopic Tumors

    PubMed Central

    Li, Xiao-Feng; O’Donoghue, Joseph A

    2008-01-01

    Tumor hypoxia has been commonly observed in a broad spectrum of primary solid malignancies. Hypoxia is associated with tumor progression, increased aggressiveness, enhanced metastatic potential and poor prognosis. Hypoxic tumor cells are resistant to radiotherapy and some forms of chemotherapy. Using an animal model, we recently showed that microscopic tumors less than 1 mm diameter were severely hypoxic. In this review, models and techniques for the study of hypoxia in microscopic tumors are discussed. PMID:18384940

  5. Incompressible Turbulent Wing-Body Junction Flow

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, R.; Cagle, Corey D.; Chandra, S.

    1998-01-01

    The overall objective of this study is to contribute to the optimized design of fan bypass systems in advanced turbofan engines. Increasing the engine bypass ratios have provided a major boost in engine performance improvement over the last fifty years. An engine with high bypass ratio (11-16:1) such as the Advanced Ducted Propulsion (ADP) is being developed and is expected to provide an additional 25% improvement in overall efficiency over the early turbofans. Such significant improvements in overall efficiency would reduce the cost per seat mile, which is a major government and Industry challenge for the 21th century. The research is part of the Advanced Subsonic Technology (AST) program that involves a NASA, U.S. Industry and FAA partnership with the goal of a safe and highly productive global air transportation system. The immediate objective of the study is to perform numerical simulation of duct-strut interactions to elucidate the loss mechanisms associated with this configuration that is typical of advanced turbofan engines such as ADP. However, at present experimental data for a duct-strut configuration are not available. Thus, as a first step a wing-body junction flow would be studied and is the specific objective of the present study. At the outset it is to be recognized that while duct-strut interaction flow is similar to that of wing-body junction flows, there are some differences owing to the presence of a wall at both ends of the strut. Likewise, some differences are due to the sheared inflow (as opposed to a uniform inflow) velocity profile. It is however expected that some features of a wing-body junction flow would persist. Next, some of the salient aspects of the complex flow near a wing-body junction, as revealed by various studies reported in the literature will be reviewed. One of the principle characteristics of the juncture flow, is the presence of the mean flow components in a plane perpendicular to the direction of the oncoming free

  6. Connexin expression in epidermal cell lines from SENCAR mouse skin tumors.

    PubMed

    Budunova, I V; Carbajal, S; Viaje, A; Slaga, T J

    1996-03-01

    Alteration of gap-junctional intercellular communication (GJIC) has long been proposed to be involved in carcinogenesis. Previously, we reported that the level of gap junctional intercellular communication in mouse skin carcinoma cell lines is significantly lower than in papilloma cell lines and normal mouse keratinocytes Klann et al., Cancer Res 49:699-705, 1989). Here, we present data on expression of the gap-junctional protein connexins (Cx) 26, Cx31.1, and Cx43 in a comprehensive panel of keratinocyte cell lines representing different stages of mouse skin carcinogenesis and the effect of different conditions of propagation on Cx phenotype. Northern and western blot analyses and immunostaining showed that all cell lines studied in vitro expressed Cx43 but most did not express Cx31.1 or Cx26. The abundance of Cx43 expression on plasma membranes correlated well with the level of GJIC. In vivo expression of Cx43 and Cx26 was strongly increased. Whereas none of tumorigenic cell lines expressed Cx26 gap junctions in culture, those growing as tumors in nude mice began to express Cx26 protein. The comparison of Cx expression on the keratinocyte membranes in three different groups of tumors (papillomas and squamous cell and spindle cell carcinomas) clearly revealed that the abundance of Cx43 and Cx26 expression directly correlated with the level of tumor differentiation. All studied tumors were Cx31.1 negative. These results suggest that both Cx expression and gap-junction permeability are gradually reduced during the tumor progression stage of mouse skin carcinogenesis.

  7. Mechanical deformations of boron nitride nanotubes in crossed junctions

    SciTech Connect

    Zhao, Yadong; Chen, Xiaoming; Ke, Changhong; Park, Cheol; Fay, Catharine C.; Stupkiewicz, Stanislaw

    2014-04-28

    We present a study of the mechanical deformations of boron nitride nanotubes (BNNTs) in crossed junctions. The structure and deformation of the crossed tubes in the junction are characterized by using atomic force microscopy. Our results show that the total tube heights are reduced by 20%–33% at the crossed junctions formed by double-walled BNNTs with outer diameters in the range of 2.21–4.67 nm. The measured tube height reduction is found to be in a nearly linear relationship with the summation of the outer diameters of the two tubes forming the junction. The contact force between the two tubes in the junction is estimated based on contact mechanics theories and found to be within the range of 4.2–7.6 nN. The Young's modulus of BNNTs and their binding strengths with the substrate are quantified, based on the deformation profile of the upper tube in the junction, and are found to be 1.07 ± 0.11 TPa and 0.18–0.29 nJ/m, respectively. Finally, we perform finite element simulations on the mechanical deformations of the crossed BNNT junctions. The numerical simulation results are consistent with both the experimental measurements and the analytical analysis. The results reported in this paper contribute to a better understanding of the structural and mechanical properties of BNNTs and to the pursuit of their applications.

  8. Epithelial junctions and Rho family GTPases: the zonular signalosome

    PubMed Central

    Citi, Sandra; Guerrera, Diego; Spadaro, Domenica; Shah, Jimit

    2014-01-01

    The establishment and maintenance of epithelial cell-cell junctions is crucially important to regulate adhesion, apico-basal polarity and motility of epithelial cells, and ultimately controls the architecture and physiology of epithelial organs. Junctions are supported, shaped and regulated by cytoskeletal filaments, whose dynamic organization and contractility are finely tuned by GTPases of the Rho family, primarily RhoA, Rac1 and Cdc42. Recent research has identified new molecular mechanisms underlying the cross-talk between these GTPases and epithelial junctions. Here we briefly summarize the current knowledge about the organization, molecular evolution and cytoskeletal anchoring of cell-cell junctions, and we comment on the most recent advances in the characterization of the interactions between Rho GTPases and junctional proteins, and their consequences with regards to junction assembly and regulation of cell behavior in vertebrate model systems. The concept of “zonular signalosome” is proposed, which highlights the close functional relationship between proteins of zonular junctions (zonulae occludentes and adhaerentes) and the control of cytoskeletal organization and signaling through Rho GTPases, transcription factors, and their effectors. PMID:25483301

  9. Thin-film Josephson junctions with alternating critical current density

    NASA Astrophysics Data System (ADS)

    Moshe, Maayan; Kogan, V. G.; Mints, R. G.

    2009-01-01

    We study the field dependence of the maximum current Im(H) in narrow edge-type thin-film Josephson junctions with alternating critical current density. Im(H) is evaluated within nonlocal Josephson electrodynamics taking into account the stray fields that affect the difference of the order-parameter phases across the junction and therefore the tunneling currents. We find that the phase difference along the junction is proportional to the applied field, depends on the junction geometry, but is independent of the Josephson critical current density gc , i.e., it is universal. An explicit form for this universal function is derived for small currents through junctions of the width W≪Λ , the Pearl length. The result is used to calculate Im(H) . It is shown that the maxima of Im(H)∝1/H and the zeros of Im(H) are equidistant but only in high fields. We find that the spacing between zeros is proportional to 1/W2 . The general approach is applied to calculate Im(H) for a superconducting quantum interference device with two narrow edge-type junctions. If gc changes sign periodically or randomly, as it does in grain boundaries of high- Tc materials and superconductor-ferromagnet-superconductor heterostructures, Im(H) not only acquires the major side peaks, but due to nonlocality the following peaks decay much slower than in bulk junctions.

  10. Josephson radiation from InSb-nanowire junction

    NASA Astrophysics Data System (ADS)

    van Woerkom, David; Proutski, Alexander; Krivachy, Tamas; Bouman, Daniel; van Gulik, Ruben; Gul, Onder; Cassidy, Maja; Car, Diana; Bakkers, Erik; Kouwenhoven, Leo; Geresdi, Attila

    Semiconducting nanowire Josephson junctions has recently gained interest as building blocks for Majorana circuits and gate-tuneable superconducting qubits . Here we investigate the rich physics of the Andreev bound state spectrum of InSb nanowire junctions utilizing the AC Josephson relation 2eV_bias =hf . We designed and characterized an on-chip microwave circuit coupling the nanowire junction to an Al/AlOx/Al tunnel junction. The DC response of the tunnel junction is affected by photon-assisted quasiparticle current, which gives us the possibility to measure the radiation spectrum of the nanowire junction up to several tens of GHz in frequency. Our circuit design allows for voltage or phase biasing of the Josephson junction enabling direct mapping of Andreev bound states. We discuss our fabrication methods and choice of materials to achieve radiation detection up to a magnetic field of few hundred milliTesla, compatible with Majorana states in spin-orbit coupled nanowires. This work has been supported by the Netherlands Foundations FOM, Abstract NWO and Microsoft Corporation Station Q.

  11. High electronic couplings of single mesitylene molecular junctions.

    PubMed

    Komoto, Yuki; Fujii, Shintaro; Nishino, Tomoaki; Kiguchi, Manabu

    2015-01-01

    We report on an experimental analysis of the charge transport properties of single mesitylene (1,3,5-trimethylbenzene) molecular junctions. The electronic conductance and the current-voltage characteristics of mesitylene molecules wired into Au electrodes were measured by a scanning tunnelling microscopy-based break-junction method at room temperature in a liquid environment. We found the molecular junctions exhibited two distinct conductance states with high conductance values of ca. 10(-1) G 0 and of more than 10(-3) G 0 (G 0 = 2e (2)/h) in the electronic conductance measurements. We further performed a statistical analysis of the current-voltage characteristics of the molecular junctions in the two states. Within a single channel resonant tunnelling model, we obtained electronic couplings in the molecular junctions by fitting the current-voltage characteristics to the single channel model. The origin of the high conductance was attributed to experimentally obtained large electronic couplings of the direct π-bonded molecular junctions (ca. 0.15 eV). Based on analysis of the stretch length of the molecular junctions and the large electronic couplings obtained from the I-V analysis, we proposed two structural models, in which (i) mesitylene binds to the Au electrode perpendicular to the charge transport direction and (ii) mesitylene has tilted from the perpendicular orientation.

  12. A histone octamer blocks branch migration of a Holliday junction.

    PubMed Central

    Grigoriev, M; Hsieh, P

    1997-01-01

    The Holliday junction is a key intermediate in genetic recombination. Here, we examine the effect of a nucleosome core on movement of the Holliday junction in vitro by spontaneous branch migration. Histone octamers consisting of H2A, H2B, H3, and H4 are reconstituted onto DNA duplexes containing an artificial nucleosome-positioning sequence consisting of a tandem array of an alternating AT-GC sequence motif. Characterization of the reconstituted branch migration substrates by micrococcal nuclease mapping and exonuclease III and hydroxyl radical footprinting reveal that 70% of the reconstituted octamers are positioned near the center of the substrate and the remaining 30% are located at the distal end, although in both cases some translational degeneracy is observed. Branch migration assays with the octamer-containing substrates reveal that the Holliday junction cannot migrate spontaneously through DNA organized into a nucleosomal core unless DNA-histone interactions are completely disrupted. Similar results are obtained with branch migration substrates containing an octamer positioned on a naturally occurring sequence derived from the yeast GLN3 locus. Digestion of Holliday junctions with T7 endonuclease I establishes that the junction is not trapped by the octamer but can branch migrate in regions free of histone octamers. Our findings suggest that migration of Holliday junctions during recombination and the recombinational repair of DNA damage requires proteins not only to accelerate the intrinsic rate of branch migration but also to facilitate the passage of the Holliday junction through a nucleosome. PMID:9372946

  13. Tumor macroenvironment and metabolism.

    PubMed

    Al-Zoughbi, Wael; Al-Zhoughbi, Wael; Huang, Jianfeng; Paramasivan, Ganapathy S; Till, Holger; Pichler, Martin; Guertl-Lackner, Barbara; Hoefler, Gerald

    2014-04-01

    In this review we introduce the concept of the tumor macroenvironment and explore it in the context of metabolism. Tumor cells interact with the tumor microenvironment including immune cells. Blood and lymph vessels are the critical components that deliver nutrients to the tumor and also connect the tumor to the macroenvironment. Several factors are then released from the tumor itself but potentially also from the tumor microenvironment, influencing the metabolism of distant tissues and organs. Amino acids, and distinct lipid and lipoprotein species can be essential for further tumor growth. The role of glucose in tumor metabolism has been studied extensively. Cancer-associated cachexia is the most important tumor-associated systemic syndrome and not only affects the quality of life of patients with various malignancies but is estimated to be the cause of death in 15%-20% of all cancer patients. On the other hand, systemic metabolic diseases such as obesity and diabetes are known to influence tumor development. Furthermore, the clinical implications of the tumor macroenvironment are explored in the context of the patient's outcome with special consideration for pediatric tumors. Finally, ways to target the tumor macroenvironment that will provide new approaches for therapeutic concepts are described.

  14. Distal gap junctions and active dendrites can tune network dynamics.

    PubMed

    Saraga, Fernanda; Ng, Leo; Skinner, Frances K

    2006-03-01

    Gap junctions allow direct electrical communication between CNS neurons. From theoretical and modeling studies, it is well known that although gap junctions can act to synchronize network output, they can also give rise to many other dynamic patterns including antiphase and other phase-locked states. The particular network pattern that arises depends on cellular, intrinsic properties that affect firing frequencies as well as the strength and location of the gap junctions. Interneurons or GABAergic neurons in hippocampus are diverse in their cellular characteristics and have been shown to have active dendrites. Furthermore, parvalbumin-positive GABAergic neurons, also known as basket cells, can contact one another via gap junctions on their distal dendrites. Using two-cell network models, we explore how distal electrical connections affect network output. We build multi-compartment models of hippocampal basket cells using NEURON and endow them with varying amounts of active dendrites. Two-cell networks of these model cells as well as reduced versions are explored. The relationship between intrinsic frequency and the level of active dendrites allows us to define three regions based on what sort of network dynamics occur with distal gap junction coupling. Weak coupling theory is used to predict the delineation of these regions as well as examination of phase response curves and distal dendritic polarization levels. We find that a nonmonotonic dependence of network dynamic characteristics (phase lags) on gap junction conductance occurs. This suggests that distal electrical coupling and active dendrite levels can control how sensitive network dynamics are to gap junction modulation. With the extended geometry, gap junctions located at more distal locations must have larger conductances for pure synchrony to occur. Furthermore, based on simulations with heterogeneous networks, it may be that one requires active dendrites if phase-locking is to occur in networks formed

  15. Regulation and roles for claudin-family tight junction proteins

    PubMed Central

    Findley, Mary K.; Koval, Michael

    2009-01-01

    Transmembrane proteins known as claudins play a critical role in tight junctions by regulating paracellular barrier permeability. The control of claudin assembly into tight junctions requires a complex interplay between several classes of claudins, other transmembrane proteins and scaffold proteins. Claudins are also subject to regulation by post-translational modifications including phosphorylation and palmitoylation. Several human diseases have been linked to claudin mutations, underscoring the physiologic function of these proteins. Roles for claudins in regulating cell phenotype and growth control also are beginning to emerge, suggesting a multifaceted role for claudins in regulation of cells beyond serving as a simple structural element of tight junctions. PMID:19319969

  16. Soft nanostructuring of YBCO Josephson junctions by phase separation.

    PubMed

    Gustafsson, D; Pettersson, H; Iandolo, B; Olsson, E; Bauch, T; Lombardi, F

    2010-12-08

    We have developed a new method to fabricate biepitaxial YBa2 Cu3 O7-δ (YBCO) Josephson junctions at the nanoscale, allowing junctions widths down to 100 nm and simultaneously avoiding the typical damage in grain boundary interfaces due to conventional patterning procedures. By using the competition between the superconducting YBCO and the insulating Y2 BaCuO5 phases during film growth, we formed nanometer sized grain boundary junctions in the insulating Y2 BaCuO5 matrix as confirmed by high-resolution transmission electron microscopy. Electrical transport measurements give clear indications that we are close to probing the intrinsic properties of the grain boundaries.

  17. Spin polarization of Co(0001)/graphene junctions from first principles.

    PubMed

    Sipahi, G M; Žutić, Igor; Atodiresei, N; Kawakami, R K; Lazić, P

    2014-03-12

    Junctions comprised of ferromagnets and nonmagnetic materials are one of the key building blocks in spintronics. With the recent breakthroughs of spin injection in ferromagnet/graphene junctions it is possible to consider spin-based applications that are not limited to magnetoresistive effects. However, for critical studies of such structures it is crucial to establish accurate predictive methods that would yield atomically resolved information on interfacial properties. By focusing on Co(0001)/graphene junctions and their electronic structure, we illustrate the inequivalence of different spin polarizations. We show atomically resolved spin polarization maps as a useful approach to assess the relevance of Co(0001)/graphene for different spintronics applications.

  18. Junction Temperature Measurement of IGBTs Using Short Circuit Current

    SciTech Connect

    Wang, Fei; Xu, Zhuxian; Ning, Puqi

    2012-01-01

    In this paper, a method is proposed to measure the junction temperatures of IGBT discrete devices and modules using short circuit current. Experimental results show that the short circuit current has good sensitivity, linearity and selectivity, which is suitable to be used as temperature sensitive electrical parameters (TSEP). Test circuit and hardware design are proposed for junction temperature measurement in single phase and three phase convertes. By connecting a temperature measurement unit to the converter and giving a short circuit pulse, the IGBT junction temperature can be measured.

  19. Effect of current injection into thin-film Josephson junctions

    DOE PAGES

    Kogan, V. G.; Mints, R. G.

    2014-11-11

    New thin-film Josephson junctions have recently been tested in which the current injected into one of the junction banks governs Josephson phenomena. One thus can continuously manage the phase distribution at the junction by changing the injected current. Our method of calculating the distribution of injected currents is also proposed for a half-infinite thin-film strip with source-sink points at arbitrary positions at the film edges. The strip width W is assumed small relative to Λ=2λ2/d;λ is the bulk London penetration depth of the film material and d is the film thickness.

  20. Effect of current injection into thin-film Josephson junctions

    SciTech Connect

    Kogan, V. G.; Mints, R. G.

    2014-11-11

    New thin-film Josephson junctions have recently been tested in which the current injected into one of the junction banks governs Josephson phenomena. One thus can continuously manage the phase distribution at the junction by changing the injected current. Our method of calculating the distribution of injected currents is also proposed for a half-infinite thin-film strip with source-sink points at arbitrary positions at the film edges. The strip width W is assumed small relative to Λ=2λ2/d;λ is the bulk London penetration depth of the film material and d is the film thickness.

  1. Ischemic preconditioning protects against gap junctional uncoupling in cardiac myofibroblasts.

    PubMed

    Sundset, Rune; Cooper, Marie; Mikalsen, Svein-Ole; Ytrehus, Kirsti

    2004-01-01

    Ischemic preconditioning increases the heart's tolerance to a subsequent longer ischemic period. The purpose of this study was to investigate the role of gap junction communication in simulated preconditioning in cultured neonatal rat cardiac myofibroblasts. Gap junctional intercellular communication was assessed by Lucifer yellow dye transfer. Preconditioning preserved intercellular coupling after prolonged ischemia. An initial reduction in coupling in response to the preconditioning stimulus was also observed. This may protect neighboring cells from damaging substances produced during subsequent regional ischemia in vivo, and may preserve gap junctional communication required for enhanced functional recovery during subsequent reperfusion.

  2. Posterior Fossa Tumors.

    PubMed

    Brandão, Lara A; Young Poussaint, Tina

    2017-02-01

    Pediatric brain tumors are the leading cause of death from solid tumors in childhood. The most common posterior fossa tumors in children are medulloblastoma, atypical teratoid/rhabdoid tumor, cerebellar pilocytic astrocytoma, ependymoma, and brainstem glioma. Location, and imaging findings on computed tomography (CT) and conventional MR (cMR) imaging may provide important clues to the most likely diagnosis. Moreover, information obtained from advanced MR imaging techniques increase diagnostic confidence and help distinguish between different histologic tumor types. Here we discuss the most common posterior fossa tumors in children, including typical imaging findings on CT, cMR imaging, and advanced MR imaging studies.

  3. Carcinoembryonic antigen promotes colorectal cancer progression by targeting adherens junction complexes

    SciTech Connect

    Bajenova, Olga; Chaika, Nina; Tolkunova, Elena; Davydov-Sinitsyn, Alexander; Gapon, Svetlana; Thomas, Peter; O’Brien, Stephen

    2014-06-10

    Oncomarkers play important roles in the detection and management of human malignancies. Carcinoembryonic antigen (CEA, CEACAM5) and epithelial cadherin (E-cadherin) are considered as independent tumor markers in monitoring metastatic colorectal cancer. They are both expressed by cancer cells and can be detected in the blood serum. We investigated the effect of CEA production by MIP101 colorectal carcinoma cell lines on E-cadherin adherens junction (AJ) protein complexes. No direct interaction between E-cadherin and CEA was detected; however, the functional relationships between E-cadherin and its AJ partners: α-, β- and p120 catenins were impaired. We discovered a novel interaction between CEA and beta-catenin protein in the CEA producing cells. It is shown in the current study that CEA overexpression alters the splicing of p120 catenin and triggers the release of soluble E-cadherin. The influence of CEA production by colorectal cancer cells on the function of E-cadherin junction complexes may explain the link between the elevated levels of CEA and the increase in soluble E-cadherin during the progression of colorectal cancer. - Highlights: • Elevated level of CEA increases the release of soluble E-cadherin during the progression of colorectal cancer. • CEA over-expression alters the binding preferences between E-cadherin and its partners: α-, β- and p120 catenins in adherens junction complexes. • CEA produced by colorectal cancer cells interacts with beta-catenin protein. • CEA over-expression triggers the increase in nuclear beta-catenin. • CEA over-expression alters the splicing of p120 catenin protein.

  4. Alteration of Tight Junction Proteins Is an Early Event in Psoriasis

    PubMed Central

    Kirschner, Nina; Poetzl, Claudia; von den Driesch, Peter; Wladykowski, Ewa; Moll, Ingrid; Behne, Martin J.; Brandner, Johanna M.

    2009-01-01

    Psoriasis is an inflammatory skin disease characterized by hyperproliferation of keratinocytes, impaired barrier function, and pronounced infiltration of inflammatory cells. Tight junctions (TJs) are cell-cell junctions that form paracellular barriers for solutes and inflammatory cells. Altered localization of TJ proteins in the epidermis was described in plaque-type psoriasis. Here we show that localization of TJ proteins is already altered in early-stage psoriasis. Occludin, ZO-1, and claudin-4 are found in more layers than in normal epidermis, and claudin-1 and -7 are down-regulated in the basal and in the uppermost layers. In plaque-type psoriasis, the staining patterns of occludin and ZO-1 do not change, whereas the claudins are further down-regulated. Near transmigrating granulocytes, all TJ proteins except for junctional adhesion molecule-A are down-regulated. Treatment of cultured keratinocytes with interleukin-1β and tumor necrosis factor-α, which are present at elevated levels in psoriatic skin, results in an increase of transepithelial resistance at early time points and a decrease at later time points. Injection of interleukin-1β into an ex vivo skin model leads to an up-regulation of occludin and ZO-1, resembling TJ protein alteration in early psoriasis. Our results show for the first time that alteration of TJ proteins is an early event in psoriasis and is not the consequence of the more profound changes found in plaque-type psoriasis. Our data indicate that cytokines are involved in alterations of TJ proteins observed in psoriasis. PMID:19661441

  5. The epithelial barrier is maintained by in vivo tight junction expansion during pathologic intestinal epithelial shedding

    PubMed Central

    Marchiando, Amanda M.; Shen, Le; Graham, W. Vallen; Edelblum, Karen L.; Duckworth, Carrie A.; Guan, Yanfang; Montrose, Marshall H.; Turner, Jerrold R.; Watson, Alastair J.M.

    2011-01-01

    BACKGROUND & AIMS Tumor necrosis factor (TNF) increases intestinal epithelial cell shedding and apoptosis, potentially challenging the barrier between the gastrointestinal lumen and internal tissues. We investigated the mechanism of tight junction remodeling and barrier maintenance, as well as the roles of cytoskeletal regulatory molecules during TNF-induced shedding. METHODS We studied wild-type and transgenic mice that express the fluorescent-tagged proteins enhanced green fluorescent protein–occludin or monomeric red fluorescent protein1–ZO-1. After injection of high doses of TNF (7.5µg, i.p.), laparotomies were performed and segments of small intestine were opened to visualize the mucosa by video confocal microscopy. Pharmacologic inhibitors and knockout mice were used to determine the roles of caspase activation, actomyosin, and microtubule remodeling and membrane trafficking in epithelial shedding. RESULTS Changes detected included redistribution of the tight junction proteins ZO-1 and occluding to lateral membranes of shedding cells. These proteins ultimately formed a funnel around the shedding cell that defined the site of barrier preservation. Claudins, E-cadherin, F-actin, myosin II, Rho-associated kinase (ROCK), and myosin light chain kinase (MLCK) were also recruited to lateral membranes. Caspase activity, myosin motor activity, and microtubules were required to initiate shedding, whereas completion of the process required microfilament remodeling and ROCK, MLCK, and dynamin II activities. CONCLUSIONS Maintenance of the epithelial barrier during TNF-induced cell shedding is a complex process that involves integration of microtubules, microfilaments, and membrane traffic to remove apoptotic cells. This process is accompanied by redistribution of apical junctional complex proteins to form intercellular barriers between lateral membranes and maintain mucosal function. PMID:21237166

  6. RWGSCAT - RECTANGULAR WAVEGUIDE JUNCTION SCATTERING PROGRAM

    NASA Technical Reports Server (NTRS)

    Hoppe, D. J.

    1994-01-01

    In order to optimize frequency response and determine the tolerances required to meet RF specifications, accurate computer modeling of passive rectangular waveguide components is often required. Many rectangular waveguide components may be represented either exactly or approximately as a number of different size rectangular waveguides which are connected in series. RWGSCAT, Rectangular WaveGuide junction SCATtering program, solves for the scattering properties of a waveguide device. This device must consist of a number of rectangular waveguide sections of different cross sectional area which are connected in series. Devices which fall into this category include step transformers, filters, and smooth or corrugated rectangular horns. RWGSCAT will model such devices and accurately predict the reflection and transmission characteristics, taking into account higher order (other than dominant TE 10) mode excitation if it occurs, as well as multiple reflections and stored energy at each discontinuity. For devices which are large with respect to the wavelength of operation, the characteristics of the device may be required for computing a higher order mode or a number of higher order modes exciting the device. Such interactions can be represented by defining a scattering matrix for each discontinuity in the device, and then cascading the individual scattering matrices in order to determine the scattering matrix for the overall device. The individual matrices are obtained using the mode matching method. RWGSCAT is written in FORTRAN 77 for IBM PC series and compatible computers running MS-DOS. It has been successfully compiled and implemented using Lahey FORTRAN 77 under MS-DOS. A sample MS-DOS executable is provided on the distribution medium. It requires 377K of RAM for execution. Sample input data is also provided on the distribution medium. The standard distribution medium for this program is one 5.25 inch 360K MS-DOS format diskette. The contents of the diskette are

  7. Regulation of vascular endothelial junction stability and remodeling through Rap1-Rasip1 signaling.

    PubMed

    Wilson, Christopher W; Ye, Weilan

    2014-01-01

    The ability of blood vessels to sense and respond to stimuli such as fluid flow, shear stress, and trafficking of immune cells is critical to the proper function of the vascular system. Endothelial cells constantly remodel their cell-cell junctions and the underlying cytoskeletal network in response to these exogenous signals. This remodeling, which depends on regulation of the linkage between actin and integral junction proteins, is controlled by a complex signaling network consisting of small G proteins and their various downstream effectors. In this commentary, we summarize recent developments in understanding the small G protein RAP1 and its effector RASIP1 as critical mediators of endothelial junction stabilization, and the relationship between RAP1 effectors and modulation of different subsets of endothelial junctions.   The vasculature is a dynamic organ that is constantly exposed to a variety of signaling stimuli and mechanical stresses. In embryogenesis, nascent blood vessels form via a process termed vasculogenesis, wherein mesodermally derived endothelial precursor cells aggregate into cords, which subsequently form a lumen that permits trafficking of plasma and erythrocytes. (1)(,) (2) Angiogenesis occurs after establishment of this primitive vascular network, where new vessels sprout from existing vessels, migrate into newly expanded tissues, and anastomose to form a functional and complex circulatory network. (1)(,) (2) In the mouse, this process occurs through the second half of embryogenesis and into postnatal development in some tissues, such as the developing retinal vasculature. (3) Further, angiogenesis occurs in a variety of pathological conditions, such as diabetic retinopathy, age-related macular degeneration, inflammatory diseases such as rheumatoid arthritis, wound healing, and tumor growth. (1)(,) (2)(,) (4) Both vasculogenesis and angiogenesis are driven through signaling by vascular endothelial growth factor (VEGF), and therapeutic

  8. Krukenberg tumor with yolk sac tumor differentiation.

    PubMed

    Zamecnik, Michal; Voltr, Lubomir; Stuk, Jan; Chlumska, Alena

    2008-04-01

    An unusual case of bilateral Krukenberg tumor with foci of yolk sac tumor (YST) differentiation occurring in a 50-year-old patient is reported. The primary tumor was in the gastric antrum, and it showed morphology of poorly differentiated adenocarcinoma with diffuse and solid growth pattern. A component of typical YST was not found in the gastric primary and lymph node metastases, although some cells in these locations were positive for alpha-fetoprotein. In the ovarian metastases, YST element showed microcystic/reticular and solid patterns, whereas the adenocarcinoma component was of diffuse type with signet ring cells and with some undifferentiated areas. The case represents further example of the somatic cell-derived tumor with focal germ cell-type differentiation and the first report of YST differentiation in Krukenberg tumor.

  9. Dendrobium chrysotoxum Lindl. Alleviates Diabetic Retinopathy by Preventing Retinal Inflammation and Tight Junction Protein Decrease

    PubMed Central

    Yu, Zengyang; Gong, Chenyuan; Lu, Bin; Yang, Li; Sheng, Yuchen; Ji, Lili; Wang, Zhengtao

    2015-01-01

    Diabetic retinopathy (DR) is a serious complication of diabetes mellitus. This study aimed to observe the alleviation of the ethanol extract of Dendrobium chrysotoxum Lindl. (DC), a traditional Chinese herbal medicine, on DR and its engaged mechanism. After DC (30 or 300 mg/kg) was orally administrated, the breakdown of blood retinal barrier (BRB) in streptozotocin- (STZ-) induced diabetic rats was attenuated by DC. Decreased retinal mRNA expression of tight junction proteins (including occludin and claudin-1) in diabetic rats was also reversed by DC. Western blot analysis and retinal immunofluorescence staining results further confirmed that DC reversed the decreased expression of occludin and claudin-1 proteins in diabetic rats. DC reduced the increased retinal mRNA expressions of intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor α (TNFα), interleukin- (IL-) 6, and IL-1β in diabetic rats. In addition, DC alleviated the increased 1 and phosphorylated p65, IκB, and IκB kinase (IKK) in diabetic rats. DC also reduced the increased serum levels of TNFα, interferon-γ (IFN-γ), IL-6, IL-1β, IL-8, IL-12, IL-2, IL-3, and IL-10 in diabetic rats. Therefore, DC can alleviate DR by inhibiting retinal inflammation and preventing the decrease of tight junction proteins, such as occludin and claudin-1. PMID:25685822

  10. Expression analysis of the TGF-β/SMAD target genes in adenocarcinoma of esophagogastric junction

    PubMed Central

    Peng, Defeng; Fu, Lin

    2016-01-01

    Abstract The TGF-β/SMAD signaling pathway is found to play pivotal roles in cell growth, differentiation and tumorigenesis. Its target genes are closely related to the biological behaviors of some malignancies. The aim of this study was to analyze the expression of the target genes of this pathway, including growth-related c-myc, p21, p15, and metastasis-related Snail, ZEB1 and Twist1 in the adenocarcinomas of esophagogastric junction (AEJ) tissues. Clinical esophagogastric junction tissues from 25 cases of AEJ patients and 10 cases of non-tumorous tissues from the same site were collected. Quantitative real-time poly chain reactions were carried out to analyze the expression of the above referred target genes of TGF-β/SMAD pathway. A notable up-regulation in the mRNA expression of p15, Snail, ZEB1, down-regulation of c-myc, was found whereas there were no significant change of p21 and Twist1. The findings suggests that the TGF-β/SMAD pathway might be abnormally activated in AEJ since most of the target genes of this pathway exhibited altered expression at mRNA level.

  11. Anti-angiogenic Therapy in Patients with Advanced Gastric and Gastroesophageal Junction Cancer: A Systematic Review.

    PubMed

    Chen, Li-Tzong; Oh, Do-Youn; Ryu, Min-Hee; Yeh, Kun-Huei; Yeo, Winnie; Carlesi, Roberto; Cheng, Rebecca; Kim, Jongseok; Orlando, Mauro; Kang, Yoon-Koo

    2017-01-03

    Despite advancements in therapy for advanced gastric and gastroesophageal junction cancers, their prognosis remains dismal. Tumor angiogenesis plays a key role in cancer growth and metastasis, and recent studies indicate that pharmacologic blockade of angiogenesis is a promising approach to therapy. In this systematic review, we summarize current literature on the clinical benefit of anti-angiogenic agents in advanced gastric cancer. We conducted a systematic search of PubMed and conference proceedings including the American Society of Clinical Oncology, the European Society for Medical Oncology, and the European Cancer Congress. Included studies aimed to prospectively evaluate the efficacy and safety of anti-angiogenic agents in advanced gastric or gastroesophageal junction cancer. Each trial investigated at least one of the following endpoints: overall survival, progression-free survival/time to progression, and/or objective response rate. Our search yielded 139 publications. Forty-two met the predefined inclusion criteria. Included studies reported outcomes with apatinib, axitinib, bevacizumab, orantinib, pazopanib, ramucirumab, regorafenib, sorafenib, sunitinib, telatinib, and vandetanib. Second-line therapy with ramucirumab and third-line therapy with apatinib are the only anti-angiogenic agents so far shown to significantly improve survival of patients with advanced gastric cancer. Overall, agents that specifically target the vascular endothelial growth factor ligand or receptor have better safety profile compared to multi-target tyrosine kinase inhibitors.

  12. Oncogenic extracellular HSP70 disrupts the gap-junctional coupling between capillary cells

    PubMed Central

    Thuringer, Dominique; Berthenet, Kevin; Cronier, Laurent; Jego, Gaetan; Solary, Eric; Garrido, Carmen

    2015-01-01

    High levels of circulating heat shock protein 70 (HSP70) are detected in many cancers. In order to explore the effects of extracellular HSP70 on human microvascular endothelial cells (HMEC), we initially used gap-FRAP technique. Extracellular human HSP70 (rhHSP70), but not rhHSP27, blocks the gap-junction intercellular communication (GJIC) between HMEC, disrupts the structural integrity of HMEC junction plaques, and decreases connexin43 (Cx43) expression, which correlates with the phosphorylation of Cx43 serine residues. Further exploration of these effects identified a rapid transactivation of the Epidermal Growth Factor Receptor in a Toll-Like Receptor 4-dependent manner, preceding its internalization. In turn, cytosolic Ca2+ oscillations are generated. Both GJIC blockade and Ca2+ mobilization partially depend on ATP release through Cx43 and pannexin (Panx-1) channels, as demonstrated by blocking activity or expression of channels, and inactivating extracellular ATP. By monitoring dye-spreading into adjacent cells, we show that HSP70 released from human monocytes in response to macrophage colony-stimulating factor, prevents the formation of GJIC between monocytes and HMEC. Therapeutic manipulation of this pathway could be of interest in inflammatory and tumor growth. PMID:25868858

  13. Children's Brain Tumor Foundation

    MedlinePlus

    ... CBTF Justin's Hope Fund Grant Recipients Grants Children’s Brain Tumor Foundation, A non-profit organization, was founded ... and the long term outlook for children with brain and spinal cord tumors through research, support, education, ...

  14. Lacrimal gland tumor

    MedlinePlus

    ... B. Lacrimal gland tumors. In: Tasman W, Jaeger EA, eds. Duane's Ophthalmology . 16th ed. Philadelphia, PA: Lippincott ... JA. Secondary orbital tumors. In: Tasman W, Jaeger EA, eds. Duane's Ophthalmology . 16th ed. Philadelphia, PA: Lippincott ...

  15. Gastric stromal tumor.

    PubMed

    Ovali, Gülgün Yilmaz; Tarhan, Serdar; Serter, Selim; Pabuşçu, Yüksel

    2005-06-01

    Gastric stromal tumors are rare neoplasms of the stomach. In this report we present a gastric stromal tumor with an exophytic growth pattern, and describe magnetic resonance imaging and endoscopic ultrasonography findings.

  16. Tumor suppressor ARF

    PubMed Central

    Través, Paqui G.; Luque, Alfonso; Hortelano, Sonsoles

    2012-01-01

    ARF (alternative reading frame) is one of the most important tumor regulator playing critical roles in controlling tumor initiation and progression. Recently, we have demonstrated a novel and unexpected role for ARF as modulator of inflammatory responses. PMID:23162766

  17. Stages of Pituitary Tumors

    MedlinePlus

    ... tumors that may spread to bones of the skull or the sinus cavity below the pituitary gland. ... sella (the bone at the base of the skull , where the pituitary gland sits). Recurrent Pituitary Tumors ...

  18. American Brain Tumor Association

    MedlinePlus

    ... Molecule Read More ABTA News April 6, 2017 Chicago-Based American Brain Tumor Association’s Breakthrough for Brain ... Association 8550 W. Bryn Mawr Ave. Ste 550 Chicago, IL 60631 © 2014 American Brain Tumor Association Phone: ...

  19. Pancreatic islet cell tumor

    MedlinePlus

    ... functions. These include blood sugar level and the production of stomach acid. Tumors that arise from islet ... try and shrink the tumors. If the abnormal production of hormones is causing symptoms, you may receive ...

  20. Renal primitive neuroectodermal tumors.

    PubMed

    Bartholow, Tanner; Parwani, Anil

    2012-06-01

    Primitive neuroectodermal tumors exist as a part of the Ewing sarcoma/primitive neuroectodermal tumor family. These tumors most commonly arise in the chest wall and paraspinal regions; cases with a renal origin are rare entities, but have become increasingly reported in recent years. Although such cases occur across a wide age distribution, the average age for a patient with a renal primitive neuroectodermal tumor is the mid- to late 20s, with both males and females susceptible. Histologically, these tumors are characterized by pseudorosettes. Immunohistochemically, CD99 is an important diagnostic marker. Clinically, these are aggressive tumors, with an average 5-year disease-free survival rate of only 45% to 55%. Given that renal primitive neuroectodermal tumor bears many similarities to other renal tumors, it is important to review the histologic features, immunostaining profile, and genetic abnormalities that can be used for its correct diagnosis.

  1. Posterior fossa tumor

    MedlinePlus

    ... and the tumor can easily press on delicate structures if it grows. Depending on the type and size of the tumor, radiation treatment may also be used after surgery. Support Groups You can ease the stress of illness ...

  2. 23. Tunnel junction, view from the lower elevator room. Lyon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Tunnel junction, view from the lower elevator room. Lyon - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  3. 39. Launch Control Equipment Room, seen from tunnel junction. Lyon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. Launch Control Equipment Room, seen from tunnel junction. Lyon - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  4. Interface Structure and Transport of Complex Oxide Junctions

    SciTech Connect

    Nelson-Cheeseman, B. B.; Wong, F.; Chopdekar, R. V.; Chi, M.; Arenholz, E.; Browning, N. D.; Suzuki, Y.

    2008-02-01

    The interface structure and magnetism of hybrid magnetic tunnel junction-spin filter devices have been investigated and correlated with the transport behavior exhibited. Magnetic tunnel junctions made of theoretically predicted half-metallic electrodes (perovskite La0.7Sr0.3MnO3 and spinel Fe3O4) sandwiching a spinel NiMn2O4 tunnel barrier exhibit very high crystalline quality as observed by transmission electron microscopy. Structurally abrupt interfaces allow for the distinct magnetic switching of the electrodes as well as large junction magnetoresistance. The change in the magnetic anisotropy observed at the spinel-spinel interface supports the presence of limited interdiffusion and the creation of a magnetically soft interfacial layer, whose strong exchange coupling to the Fe3O4 electrode likely accounts for the low background magnetoresistance observed in these junctions, and the successful spin filtering when the barrier layer is ferrimagnetic.

  5. Fabrication and analysis of dot junction silicon solar cells

    NASA Technical Reports Server (NTRS)

    Crotty, G. T.; Daud, T.

    1985-01-01

    A design of solar cells with reduced junction area on the cell surface is investigated for reduction of saturation current and increase in open-circuit voltage. Equidiameter dot junctions distributed across the surface of the cell offer an efficient alternative, with variations in dot diameter and in the spacing between dots giving the required variations in the ratio of junctions area to total surface area. A simplified analysis for short-circuit current and other cell parameters, which enables cell design optimization, is presented. Efficiencies beyond 18 percent are obtainable in flat-plate terrestrial applications. Experimental solar-cell performance results, as functions of different area ratios, and bulk doping are presented. It is shown that saturation current reduction and open-circuit voltage increase is obtained by reduced junction area.

  6. View of Highway 140 and Overhang Rock. Location of junction ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Highway 140 and Overhang Rock. Location of junction with Old Coulterville Road behind rock. Looking north-northwest - All Year Highway, Between Arch Rock & Yosemite Valley, El Portal, Mariposa County, CA

  7. Molecular electronics: some views on transport junctions and beyond.

    PubMed

    Joachim, Christian; Ratner, Mark A

    2005-06-21

    The field of molecular electronics comprises a fundamental set of issues concerning the electronic response of molecules as parts of a mesoscopic structure and a technology-facing area of science. We will overview some important aspects of these subfields. The most advanced ideas in the field involve the use of molecules as individual logic or memory units and are broadly based on using the quantum state space of the molecule. Current work in molecular electronics usually addresses molecular junction transport, where the molecule acts as a barrier for incoming electrons: This is the fundamental Landauer idea of "conduction as scattering" generalized to molecular junction structures. Another point of view in terms of superexchange as a guiding mechanism for coherent electron transfer through the molecular bridge is discussed. Molecules generally exhibit relatively strong vibronic coupling. The last section of this overview focuses on vibronic effects, including inelastic electron tunneling spectroscopy, hysteresis in junction charge transport, and negative differential resistance in molecular transport junctions.

  8. Thermoelectricity in atom-sized junctions at room temperatures

    PubMed Central

    Tsutsui, Makusu; Morikawa, Takanori; Arima, Akihide; Taniguchi, Masateru

    2013-01-01

    Atomic and molecular junctions are an emerging class of thermoelectric materials that exploit quantum confinement effects to obtain an enhanced figure of merit. An important feature in such nanoscale systems is that the electron and heat transport become highly sensitive to the atomic configurations. Here we report the characterization of geometry-sensitive thermoelectricity in atom-sized junctions at room temperatures. We measured the electrical conductance and thermoelectric power of gold nanocontacts simultaneously down to the single atom size. We found junction conductance dependent thermoelectric voltage oscillations with period 2e2/h. We also observed quantum suppression of thermovoltage fluctuations in fully-transparent contacts. These quantum confinement effects appeared only statistically due to the geometry-sensitive nature of thermoelectricity in the atom-sized junctions. The present method can be applied to various nanomaterials including single-molecules or nanoparticles and thus may be used as a useful platform for developing low-dimensional thermoelectric building blocks. PMID:24270238

  9. High thermopower of mechanically stretched single-molecule junctions

    PubMed Central

    Tsutsui, Makusu; Morikawa, Takanori; He, Yuhui; Arima, Akihide

    2015-01-01

    Metal-molecule-metal junction is a promising candidate for thermoelectric applications that utilizes quantum confinement effects in the chemically defined zero-dimensional atomic structure to achieve enhanced dimensionless figure of merit ZT. A key issue in this new class of thermoelectric nanomaterials is to clarify the sensitivity of thermoelectricity on the molecular junction configurations. Here we report simultaneous measurements of the thermoelectric voltage and conductance on Au-1,4-benzenedithiol (BDT)-Au junctions mechanically-stretched in-situ at sub-nanoscale. We obtained the average single-molecule conductance and thermopower of 0.01 G0 and 15 μV/K, respectively, suggesting charge transport through the highest occupied molecular orbital. Meanwhile, we found the single-molecule thermoelectric transport properties extremely-sensitive to the BDT bridge configurations, whereby manifesting the importance to design the electrode-molecule contact motifs for optimizing the thermoelectric performance of molecular junctions. PMID:26112999

  10. Thermoelectricity in atom-sized junctions at room temperatures.

    PubMed

    Tsutsui, Makusu; Morikawa, Takanori; Arima, Akihide; Taniguchi, Masateru

    2013-11-25

    Atomic and molecular junctions are an emerging class of thermoelectric materials that exploit quantum confinement effects to obtain an enhanced figure of merit. An important feature in such nanoscale systems is that the electron and heat transport become highly sensitive to the atomic configurations. Here we report the characterization of geometry-sensitive thermoelectricity in atom-sized junctions at room temperatures. We measured the electrical conductance and thermoelectric power of gold nanocontacts simultaneously down to the single atom size. We found junction conductance dependent thermoelectric voltage oscillations with period 2e(2)/h. We also observed quantum suppression of thermovoltage fluctuations in fully-transparent contacts. These quantum confinement effects appeared only statistically due to the geometry-sensitive nature of thermoelectricity in the atom-sized junctions. The present method can be applied to various nanomaterials including single-molecules or nanoparticles and thus may be used as a useful platform for developing low-dimensional thermoelectric building blocks.

  11. High thermopower of mechanically stretched single-molecule junctions.

    PubMed

    Tsutsui, Makusu; Morikawa, Takanori; He, Yuhui; Arima, Akihide; Taniguchi, Masateru

    2015-06-26

    Metal-molecule-metal junction is a promising candidate for thermoelectric applications that utilizes quantum confinement effects in the chemically defined zero-dimensional atomic structure to achieve enhanced dimensionless figure of merit ZT. A key issue in this new class of thermoelectric nanomaterials is to clarify the sensitivity of thermoelectricity on the molecular junction configurations. Here we report simultaneous measurements of the thermoelectric voltage and conductance on Au-1,4-benzenedithiol (BDT)-Au junctions mechanically-stretched in-situ at sub-nanoscale. We obtained the average single-molecule conductance and thermopower of 0.01 G0 and 15 μV/K, respectively, suggesting charge transport through the highest occupied molecular orbital. Meanwhile, we found the single-molecule thermoelectric transport properties extremely-sensitive to the BDT bridge configurations, whereby manifesting the importance to design the electrode-molecule contact motifs for optimizing the thermoelectric performance of molecular junctions.

  12. Macroscopic quantum tunnelling in spin filter ferromagnetic Josephson junctions.

    PubMed

    Massarotti, D; Pal, A; Rotoli, G; Longobardi, L; Blamire, M G; Tafuri, F

    2015-06-09

    The interfacial coupling of two materials with different ordered phases, such as a superconductor (S) and a ferromagnet (F), is driving new fundamental physics and innovative applications. For example, the creation of spin-filter Josephson junctions and the demonstration of triplet supercurrents have suggested the potential of a dissipationless version of spintronics based on unconventional superconductivity. Here we demonstrate evidence for active quantum applications of S-F-S junctions, through the observation of macroscopic quantum tunnelling in Josephson junctions with GdN ferromagnetic insulator barriers. We show a clear transition from thermal to quantum regime at a crossover temperature of about 100 mK at zero magnetic field in junctions, which present clear signatures of unconventional superconductivity. Following previous demonstration of passive S-F-S phase shifters in a phase qubit, our result paves the way to the active use of spin filter Josephson systems in quantum hybrid circuits.

  13. Studies of silicon p-n junction solar cells

    NASA Technical Reports Server (NTRS)

    Neugroschel, A.; Lindholm, F. A.

    1979-01-01

    To provide theoretical support for investigating different ways to obtain high open-circuit voltages in p-n junction silicon solar cells, an analytical treatment of heavily doped transparent-emitter devices is presented that includes the effects of bandgap narrowing, Fermi-Dirac statistics, a doping concentration gradient, and a finite surface recombination velocity at the emitter surface. Topics covered include: (1) experimental determination of bandgap narrowing in the emitter of silicon p-n junction devices; (2) heavily doped transparent regions in junction solar cells, diodes, and transistors; (3) high-low-emitter solar cell; (4) determination of lifetimes and recombination currents in p-n junction solar cells; (5) MOS and oxide-charged-induced BSF solar cells; and (6) design of high efficiency solar cells for space and terrestrial applications.

  14. Manipulating Josephson junctions in thin-films by nearby vortices

    SciTech Connect

    Kogan, V G; Mints, R G

    2014-07-01

    It is shown that a vortex trapped in one of the banks of a planar edge-type Josephson junction in a narrow thin-film superconducting strip can change drastically the dependence of the junction critical current on the applied field, I-c(H). When the vortex is placed at certain discrete positions in the strip middle, the pattern I-c(H) has zero at H = 0 instead of the traditional maximum of '0-type' junctions. The number of these positions is equal to the number of vortices trapped at the same location. When the junction-vortex separation exceeds similar to W, the strip width, I-c(H) is no longer sensitive to the vortex presence. The same is true for any separation if the vortex approaches the strip edges. (C) 2014 Elsevier B.V. All rights reserved.

  15. Perspective: Thermal and thermoelectric transport in molecular junctions

    NASA Astrophysics Data System (ADS)

    Cui, Longji; Miao, Ruijiao; Jiang, Chang; Meyhofer, Edgar; Reddy, Pramod

    2017-03-01

    With the advent of molecular electronics, tremendous attention has been paid towards understanding the structure-function relationship of molecular junctions. Understanding how heat is transported, dissipated, and converted into electricity in molecular junctions is of great importance for designing thermally robust molecular circuits and high-performance energy conversion devices. Further, the study of thermal and thermoelectric phenomena in molecular junctions provides novel insights into the limits of applicability of classical laws. Here, we present a review of the computational and experimental progress made in probing thermoelectric effects, thermal conduction, heat dissipation, and local heating/cooling in self-assembled monolayer and single molecule junctions. We also discuss some outstanding challenges and potential future directions.

  16. BLACKSMITH SHOP ROOF STRUCTURE AT JUNCTION BETWEEN 60 FT. AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BLACKSMITH SHOP ROOF STRUCTURE AT JUNCTION BETWEEN 60 FT. AND 90 FT. SPAN ROOF TRUSSES, LOOKING SOUTH. - Southern Pacific, Sacramento Shops, Blacksmith Shop, 111 I Street, Sacramento, Sacramento County, CA

  17. Macroscopic quantum tunnelling in spin filter ferromagnetic Josephson junctions

    PubMed Central

    Massarotti, D.; Pal, A.; Rotoli, G.; Longobardi, L.; Blamire, M. G.; Tafuri, F.

    2015-01-01

    The interfacial coupling of two materials with different ordered phases, such as a superconductor (S) and a ferromagnet (F), is driving new fundamental physics and innovative applications. For example, the creation of spin-filter Josephson junctions and the demonstration of triplet supercurrents have suggested the potential of a dissipationless version of spintronics based on unconventional superconductivity. Here we demonstrate evidence for active quantum applications of S-F-S junctions, through the observation of macroscopic quantum tunnelling in Josephson junctions with GdN ferromagnetic insulator barriers. We show a clear transition from thermal to quantum regime at a crossover temperature of about 100 mK at zero magnetic field in junctions, which present clear signatures of unconventional superconductivity. Following previous demonstration of passive S-F-S phase shifters in a phase qubit, our result paves the way to the active use of spin filter Josephson systems in quantum hybrid circuits. PMID:26054495

  18. Flux Cloning Anomalities in Josephson Nano-Junctions

    NASA Astrophysics Data System (ADS)

    Hassan, Hanaa Farhan; Kusmartsev, Feo V.

    2010-12-01

    The propagation of single flux quanta in T-shaped Josephson junctions gives rise to the flux cloning phenomenon. We have studied numerically the dynamics of flux cloning in cases of extended Josephson junctions. The changing thicknesses of T-junctions lead to new and interesting effects in terms of their dynamics. We have found out that when an additional Josephson transmission line is larger than the main Josephson transmission line, numerical simulations do not show the cloning phenomenon and soliton is reflected when it approaches the T junction. This strange result may be happened because the soliton losses more energy in the sharp edge. Although the vortex is moving very highly and it has huge energy but it still does not give birth to a new vortex. We have investigated conditions at which flux cloning occurs when both widths, W and W0, are changing.

  19. Flux Cloning Anomalities in Josephson Nano-Junctions

    NASA Astrophysics Data System (ADS)

    Hassan, Hanaa Farhan; Kusmartsev, Feo V.

    The propagation of single flux quanta in T-shaped Josephson junctions gives rise to the flux cloning phenomenon. We have studied numerically the dynamics of flux cloning in cases of extended Josephson junctions. The changing thicknesses of T-junctions lead to new and interesting effects in terms of their dynamics. We have found out that when an additional Josephson transmission line is larger than the main Josephson transmission line, numerical simulations do not show the cloning phenomenon and soliton is reflected when it approaches the T junction. This strange result may be happened because the soliton losses more energy in the sharp edge. Although the vortex is moving very highly and it has huge energy but it still does not give birth to a new vortex. We have investigated conditions at which flux cloning occurs when both widths, W and W0, are changing.

  20. 14. Junction of the Tempe Canal and Western Canal, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Junction of the Tempe Canal and Western Canal, looking north. Photographer: Mark Durben, February 1989. Source: SRPA - Tempe Canal, South Side Salt River in Tempe, Mesa & Phoenix, Tempe, Maricopa County, AZ

  1. 8. VIEW SOUTHWEST, DETAIL OF JUNCTION OF EAST AND NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW SOUTHWEST, DETAIL OF JUNCTION OF EAST AND NORTH ELEVATIONS AT PORCH ROOF LEVEL SHOWING GLAZED HEADERS AND BELT COURSE - David Sterrett House, State Game Lands Plot No. 169 (Upper Mifflin Township), Newville, Cumberland County, PA

  2. Memory cell operation based on small Josephson junctions arrays

    NASA Astrophysics Data System (ADS)

    Braiman, Y.; Nair, N.; Rezac, J.; Imam, N.

    2016-12-01

    In this paper we analyze a cryogenic memory cell circuit based on a small coupled array of Josephson junctions. All the basic memory operations (e.g., write, read, and reset) are implemented on the same circuit and different junctions in the array can in principle be utilized for these operations. The presented memory operation paradigm is fundamentally different from conventional single quantum flux operation logics (SFQ). As an example, we demonstrate memory operation driven by a SFQ pulse employing an inductively coupled array of three Josephson junctions. We have chosen realistic Josephson junction parameters based on state-of-the-art fabrication capabilities and have calculated access times and access energies for basic memory cell operations. We also implemented an optimization procedure based on the simulated annealing algorithm to calculate the optimized and typical values of access times and access energies.

  3. Pure valley and spin polarization current in ferromagnetic graphene junction

    NASA Astrophysics Data System (ADS)

    Wu, Qing-Ping; Liu, Zheng-Fang; Chen, Ai-Xi; Xiao, Xian-Bo; Miao, Guo-Xing

    2017-02-01

    We investigate the band structure and spin- and valley-dependent transport in ferromagnetic graphene double junctions using the transfer matrix method. The ferromagnetic double junctions include a lateral layout of normal/magnetic vector potential/normal/effective exchange field/normal graphene regions. We find that the strain combined with magnetic vector potentials breaks the valley degeneracy, and the strain combined with the effective exchange field breaks the spin degeneracy, so that there exists a spin- and valley-dependent gap in the ferromagnetic graphene double junctions, which allows only one spin species with special valley characteristics to be transported. Thus, this type of junction can achieve simultaneously pure spin- and pure valley-polarized currents and function as a perfect valley filter and a perfect spin filter. The exact nature of the valley filtering and spin filtering can be tuned by the strain, magnetic barrier, and effective exchange field strength.

  4. 10. DETAIL OF JUNCTION BETWEEN LOWER CHORD, VERTICAL LACED CHANNEL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL OF JUNCTION BETWEEN LOWER CHORD, VERTICAL LACED CHANNEL, FLOOR BEAM, EYE BAR, AND U-BOLT. WEST ABUTMENT. - River Road Bridge, Spanning Spring Creek in Spring Creek Township, Hallton, Elk County, PA

  5. PAINT SHOP, DETAIL OF FABRICATED COLUMN AT JUNCTION OF WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PAINT SHOP, DETAIL OF FABRICATED COLUMN AT JUNCTION OF WEST BAY (ORIGINAL) AND CENTER BAYS (SECOND ADDITION), LOOKING NORTHEAST. - Southern Pacific, Sacramento Shops, Paint Shop, 111 I Street, Sacramento, Sacramento County, CA

  6. 27. INTERIOR OF UTILITY ROOM SHOWING ELECTRICAL JUNCTION CABINET, HOPPER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. INTERIOR OF UTILITY ROOM SHOWING ELECTRICAL JUNCTION CABINET, HOPPER WINDOW, OPEN DOOR TO KITCHEN NO. 2, AND METAL SINK. VIEW TO SOUTHWEST. - Bishop Creek Hydroelectric System, Plant 6, Cashbaugh-Kilpatrick House, Bishop Creek, Bishop, Inyo County, CA

  7. Local gate effect of mechanically deformed crossed carbon nanotube junction.

    PubMed

    Qing, Quan; Nezich, Daniel A; Kong, Jing; Wu, Zhongyun; Liu, Zhongfan

    2010-11-10

    In this work, we have demonstrated that the local deformation at the crossed carbon nanotube (CNT) junctions can introduce significant tunable local gate effect under ambient environment. Atomic force microscope (AFM) manipulation of the local deformation yielded a variation in transconductance that was retained after removing the AFM tip. Application of a large source-drain voltage and pressing the CNT junction above a threshold pressure can respectively erase and recover the transconductance modulation reversibly. The local gate effect is found to be independent of the length of the crossed CNT and attributed to the charges residing at the deformed junctions due to formation of localized states. The number of localized charges is estimated to be in the range of 10(2) to 10(3). These results may find potential applications in electromechanical sensors and could have important implications for designing nonvolatile devices based on crossed CNT junctions.

  8. Large eddy simulation of a wing-body junction flow

    NASA Astrophysics Data System (ADS)

    Ryu, Sungmin; Emory, Michael; Campos, Alejandro; Duraisamy, Karthik; Iaccarino, Gianluca

    2014-11-01

    We present numerical simulations of the wing-body junction flow experimentally investigated by Devenport & Simpson (1990). Wall-junction flows are common in engineering applications but relevant flow physics close to the corner region is not well understood. Moreover, performance of turbulence models for the body-junction case is not well characterized. Motivated by the insufficient investigations, we have numerically investigated the case with Reynolds-averaged Naiver-Stokes equation (RANS) and Large Eddy Simulation (LES) approaches. The Vreman model applied for the LES and SST k- ω model for the RANS simulation are validated focusing on the ability to predict turbulence statistics near the junction region. Moreover, a sensitivity study of the form of the Vreman model will also be presented. This work is funded under NASA Cooperative Agreement NNX11AI41A (Technical Monitor Dr. Stephen Woodruff)

  9. 55. View of junction of unlined canal and lined canal, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    55. View of junction of unlined canal and lined canal, looking southwest. Photo by Brian C. Morris, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  10. 54. View of junction of unlined canal and lined canal, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. View of junction of unlined canal and lined canal, looking southwest. Photo by Brian C. Morris, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  11. B & P Junction Substation & Interlocking Tower. Baltimore, Baltimore ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    B & P Junction Substation & Interlocking Tower. Baltimore, Baltimore City, MD. Sec. 1201, MP 95.85. - Northeast Railroad Corridor, Amtrak route between District of Columbia/Maryland state line & Maryland/Delaware state line, Baltimore, Independent City, MD

  12. High-efficiency thermal switch based on topological Josephson junctions

    NASA Astrophysics Data System (ADS)

    Sothmann, Björn; Giazotto, Francesco; Hankiewicz, Ewelina M.

    2017-02-01

    We propose theoretically a thermal switch operating by the magnetic-flux controlled diffraction of phase-coherent heat currents in a thermally biased Josephson junction based on a two-dimensional topological insulator. For short junctions, the system shows a sharp switching behavior while for long junctions the switching is smooth. Physically, the switching arises from the Doppler shift of the superconducting condensate due to screening currents induced by a magnetic flux. We suggest a possible experimental realization that exhibits a relative temperature change of 40% between the on and off state for realistic parameters. This is a factor of two larger than in recently realized thermal modulators based on conventional superconducting tunnel junctions.

  13. Chaos synchronization in gap-junction-coupled neurons

    NASA Astrophysics Data System (ADS)

    Yoshioka, Masahiko

    2005-06-01

    Depending on temperature, the modified Hodgkin-Huxley (MHH) equations exhibit a variety of dynamical behaviors, including intrinsic chaotic firing. We analyze synchronization in a large ensemble of MHH neurons that are interconnected with gap junctions. By evaluating tangential Lyapunov exponents we clarify whether the synchronous state of neurons is chaotic or periodic. Then, we evaluate transversal Lyapunov exponents to elucidate if this synchronous state is stable against infinitesimal perturbations. Our analysis elucidates that with weak gap junctions, the stability of the synchronization of MHH neurons shows rather complicated changes with temperature. We, however, find that with strong gap junctions, the synchronous state is stable over the wide range of temperature irrespective of whether synchronous state is chaotic or periodic. It turns out that strong gap junctions realize the robust synchronization mechanism, which well explains synchronization in interneurons in the real nervous system.

  14. Evidence for nonlocal electrodynamics in planar Josephson junctions.

    PubMed

    Boris, A A; Rydh, A; Golod, T; Motzkau, H; Klushin, A M; Krasnov, V M

    2013-09-13

    We study the temperature dependence of the critical current modulation I(c)(H) for two types of planar Josephson junctions: a low-Tc Nb/CuNi/Nb and a high-Tc YBa2Cu3O(7-δ) bicrystal grain-boundary junction. At low T both junctions exhibit a conventional behavior, described by the local sine-Gordon equation. However, at elevated T the behavior becomes qualitatively different: the I(c)(H) modulation field ΔH becomes almost T independent and neither ΔH nor the critical field for the penetration of Josephson vortices vanish at Tc. Such an unusual behavior is in good agreement with theoretical predictions for junctions with nonlocal electrodynamics. We extract absolute values of the London penetration depth λ from our data and show that a crossover from local to nonlocal electrodynamics occurs with increasing T when λ(T) becomes larger than the electrode thickness.

  15. Tunnel junction enhanced nanowire ultraviolet light emitting diodes

    SciTech Connect

    Sarwar, A. T. M. Golam; May, Brelon J.; Deitz, Julia I.; Grassman, Tyler J.; McComb, David W.; Myers, Roberto C.

    2015-09-07

    Polarization engineered interband tunnel junctions (TJs) are integrated in nanowire ultraviolet (UV) light emitting diodes (LEDs). A ∼6 V reduction in turn-on voltage is achieved by the integration of tunnel junction at the base of polarization doped nanowire UV LEDs. Moreover, efficient hole injection into the nanowire LEDs leads to suppressed efficiency droop in TJ integrated nanowire LEDs. The combination of both reduced bias voltage and increased hole injection increases the wall plug efficiency in these devices. More than 100 μW of UV emission at ∼310 nm is measured with external quantum efficiency in the range of 4–6 m%. The realization of tunnel junction within the nanowire LEDs opens a pathway towards the monolithic integration of cascaded multi-junction nanowire LEDs on silicon.

  16. RadNet Air Data From Grand Junction, CO

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Grand Junction, CO from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  17. Homeostatic plasticity at the Drosophila neuromuscular junction.

    PubMed

    Frank, C Andrew

    2014-03-01

    In biology, homeostasis refers to how cells maintain appropriate levels of activity. This concept underlies a balancing act in the nervous system. Synapses require flexibility (i.e. plasticity) to adjust to environmental challenges. Yet there must also exist regulatory mechanisms that constrain activity within appropriate physiological ranges. An abundance of evidence suggests that homeostatic regulation is critical in this regard. In recent years, important progress has been made toward identifying molecules and signaling processes required for homeostatic forms of neuroplasticity. The Drosophila melanogaster third instar larval neuromuscular junction (NMJ) has been an important experimental system in this effort. Drosophila neuroscientists combine genetics, pharmacology, electrophysiology, imaging, and a variety of molecular techniques to understand how homeostatic signaling mechanisms take shape at the synapse. At the NMJ, homeostatic signaling mechanisms couple retrograde (muscle-to-nerve) signaling with changes in presynaptic calcium influx, changes in the dynamics of the readily releasable vesicle pool, and ultimately, changes in presynaptic neurotransmitter release. Roles in these processes have been demonstrated for several molecules and signaling systems discussed here. This review focuses primarily on electrophysiological studies or data. In particular, attention is devoted to understanding what happens when NMJ function is challenged (usually through glutamate receptor inhibition) and the resulting homeostatic responses. A significant area of study not covered in this review, for the sake of simplicity, is the homeostatic control of synapse growth, which naturally, could also impinge upon synapse function in myriad ways. This article is part of the Special Issue entitled 'Homeostatic Synaptic Plasticity'.

  18. Quantum interference in topological insulator Josephson junctions

    NASA Astrophysics Data System (ADS)

    Song, Juntao; Liu, Haiwen; Liu, Jie; Li, Yu-Xian; Joynt, Robert; Sun, Qing-feng; Xie, X. C.

    2016-05-01

    Using nonequilibrium Green's functions, we studied numerically the transport properties of a Josephson junction, superconductor-topological insulator-superconductor hybrid system. Our numerical calculation shows first that proximity-induced superconductivity is indeed observed in the edge states of a topological insulator adjoining two superconducting leads and second that the special characteristics of topological insulators endow the edge states with an enhanced proximity effect with a superconductor but do not forbid the bulk states to do the same. In a size-dependent analysis of the local current, it was found that a few residual bulk states can lead to measurable resistance, whereas because these bulk states spread over the whole sample, their contribution to the interference pattern is insignificant when the sample size is in the micrometer range. Based on these numerical results, it is concluded that the apparent disappearance of residual bulk states in the superconducting interference process as described by Hart et al. [Nat. Phys. 10, 638 (2014), 10.1038/nphys3036] is just due to the effects of size: the contribution of the topological edge states outweighs that of the residual bulk states.

  19. Gamma Radiation Tolerance of Magnetic Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Ren, Fanghui; Jander, Albrecht; Dhagat, Pallavi; Nordman, Cathy

    2011-10-01

    Determining the radiation tolerance of magnetic tunnel junctions (MTJ), which are the storage elements of non-volatile magnetoresistive random access memories (MRAM), is important for investigating their potential application in space. In this effort, the effect of gamma radiation on MTJs with MgO tunnel barriers was studied. Experimental and control groups of samples were characterized by ex situ measurements of the magnetoresistive hysteresis loops and I-V curves. The experimental group was exposed to gamma rays from a ^60Co source. The samples initially received a dose of 5.9 Mrad (Si) after which they were again characterized electrically and magnetically. Irradiation was then continued for a cumulative dose of 10 Mrad and the devices re-measured. The result shows no change in magnetic properties such as coercivity or exchange coupling due to irradiation. After correcting for differences in temperature at the time of testing, the tunneling magnetoresistance was also found to be unchanged. Thus, it has been determined that MgO-based MTJs are highly tolerant of gamma radiation, particularly in comparison to silicon field-effect transistors which have been shown to degrade with gamma ray exposure even as low as 100 Krad [Zhiyuan Hu. et al., IEEE trans. on Nucl. Sci., vol. 58, 2011].

  20. Spin-crossover molecule based thermoelectric junction

    SciTech Connect

    Ghosh, Dibyajyoti; Parida, Prakash; Pati, Swapan K.

    2015-05-11

    Using ab-initio numerical methods, we explore the spin-dependent transport and thermoelectric properties of a spin-crossover molecule (i.e., iron complex of 2-(1H-pyrazol-1-yl)-6-(1H-tetrazole-5-yl)pyridine) based nano-junction. We demonstrate a large magnetoresistance, efficient conductance-switching, and spin-filter activity in this molecule-based two-terminal device. The spin-crossover process also modulates the thermoelectric entities. It can efficiently switch the magnitude as well as spin-polarization of the thermocurrent. We find that thermocurrent is changed by ∼4 orders of magnitude upon spin-crossover. Moreover, it also substantially affects the thermopower and consequently, the device shows extremely efficient spin-crossover magnetothermopower generation. Furthermore, by tuning the chemical potential of electrodes into a certain range, a pure spin-thermopower can be achieved for the high-spin state. Finally, the reasonably large values of figure-of-merit in the presence and absence of phonon demonstrate a large heat-to-voltage conversion efficiency of the device. We believe that our study will pave an alternative way of tuning the transport and thermoelectric properties through the spin-crossover process and can have potential applications in generation of spin-dependent current, information storage, and processing.

  1. Seebeck effect in magnetic tunnel junctions.

    PubMed

    Walter, Marvin; Walowski, Jakob; Zbarsky, Vladyslav; Münzenberg, Markus; Schäfers, Markus; Ebke, Daniel; Reiss, Günter; Thomas, Andy; Peretzki, Patrick; Seibt, Michael; Moodera, Jagadeesh S; Czerner, Michael; Bachmann, Michael; Heiliger, Christian

    2011-10-01

    Creating temperature gradients in magnetic nanostructures has resulted in a new research direction, that is, the combination of magneto- and thermoelectric effects. Here, we demonstrate the observation of one important effect of this class: the magneto-Seebeck effect. It is observed when a magnetic configuration changes the charge-based Seebeck coefficient. In particular, the Seebeck coefficient changes during the transition from a parallel to an antiparallel magnetic configuration in a tunnel junction. In this respect, it is the analogue to the tunnelling magnetoresistance. The Seebeck coefficients in parallel and antiparallel configurations are of the order of the voltages known from the charge-Seebeck effect. The size and sign of the effect can be controlled by the composition of the electrodes' atomic layers adjacent to the barrier and the temperature. The geometric centre of the electronic density of states relative to the Fermi level determines the size of the Seebeck effect. Experimentally, we realized 8.8% magneto-Seebeck effect, which results from a voltage change of about -8.7 μV K⁻¹ from the antiparallel to the parallel direction close to the predicted value of -12.1 μV K⁻¹. In contrast to the spin-Seebeck effect, it can be measured as a voltage change directly without conversion of a spin current.

  2. Superconducting qubits with semiconductor nanowire Josephson junctions

    NASA Astrophysics Data System (ADS)

    Petersson, K. D.; Larsen, T. W.; Kuemmeth, F.; Jespersen, T. S.; Krogstrup, P.; Nygård, J.; Marcus, C. M.

    2015-03-01

    Superconducting transmon qubits are a promising basis for a scalable quantum information processor. The recent development of semiconducting InAs nanowires with in situ molecular beam epitaxy-grown Al contacts presents new possibilities for building hybrid superconductor/semiconductor devices using precise bottom up fabrication techniques. Here, we take advantage of these high quality materials to develop superconducting qubits with superconductor-normal-superconductor Josephson junctions (JJs) where the normal element is an InAs semiconductor nanowire. We have fabricated transmon qubits in which the conventional Al-Al2O3-Al JJs are replaced by a single gate-tunable nanowire JJ. Using spectroscopy to probe the qubit we observe fluctuations in its level splitting with gate voltage that are consistent with universal conductance fluctuations in the nanowire's normal state conductance. Our gate-tunable nanowire transmons may enable new means of control for large scale qubit architectures and hybrid topological quantum computing schemes. Research supported by Microsoft Station Q, Danish National Research Foundation, Villum Foundation, Lundbeck Foundation and the European Commission.

  3. Parallel Quantum Circuit in a Tunnel Junction

    PubMed Central

    Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian

    2016-01-01

    Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N2 power law is preserved for Ωab(N) and for Vab(N). PMID:27453262

  4. A CMOS compatible, ferroelectric tunnel junction.

    PubMed

    Ambriz Vargas, Fabian; Kolhatkar, Gitanjali; Broyer, Maxime; Hadj Youssef, Azza; Nouar, Rafik; Sarkissian, Andranik; Thomas, Reji; Gomez-Yanez, Carlos; Gauthier, Marc A; Ruediger, Andreas

    2017-04-03

    In recent years, the experimental demonstration of Ferroelectric Tunnel Junctions (FTJ) based on perovskite tunnel barriers has been reported. However, integrating these perovskite materials into conventional silicon memory technology remains challenging due to their lack of compatibility with the complementary metal oxide semiconductor process (CMOS). The present communication reports the fabrication of an FTJ based on a CMOS compatible tunnel barrier Hf0.5Zr0.5O2 (6 unit cells thick) on an equally CMOS compatible TiN electrode. Analysis of the FTJ by grazing angle incidence X-ray diffraction confirmed the formation of the non-centrosymmetric orthorhombic phase (Pbc2_1, ferroelectric phase). The FTJ characterization is followed by the reconstruction of the electrostatic potential profile in the as-grown TiN/Hf0.5Zr0.5O2/Pt heterostructure. A direct tunneling current model across a trapezoidal barrier was used to correlate the electronic and electrical properties of our FTJ devices. The good agreement between the experimental and the theoretical model attests to the tunneling electroresistance effect (TER) in our FTJ device. A TER ratio of ~15 was calculated for the present FTJ device at low read voltage (+0.2 V). This study makes Hf0.5Zr0.5O2 a promising candidate for integration into conventional Si memory technology.

  5. Parallel Quantum Circuit in a Tunnel Junction

    NASA Astrophysics Data System (ADS)

    Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian

    2016-07-01

    Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N2 power law is preserved for Ωab(N) and for Vab(N).

  6. Parallel Quantum Circuit in a Tunnel Junction.

    PubMed

    Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian

    2016-07-25

    Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N(2) power law is preserved for Ωab(N) and for Vab(N).

  7. Regulation of gap junctional communication during human trophoblast differentiation.

    PubMed

    Cronier, L; Hervé, J C; Délèze, J; Malassiné, A

    During pregnancy, the trophoblast, supporting the main functions of the placenta, develops from the fusion of cytotrophoblastic cells into a syncytiotrophoblast. Gap junction channels consisting of connexins link the cytosols of cells in contact. Gap junctional communication has been involved in the control of cell and tissue differentiation. Recently, a gap junctional communication was demonstrated in trophoblast cell culture by means of the fluorescence recovery after photobleaching (gap-FRAP) technique. This gap junctional communication appeared to be stimulated by human chorionic gonadotropin (hCG). Therefore, the specificity of hCG action and the signalling mechanisms implicated in gap junctional communication were investigated by means of gap-FRAP. In culture, cytotrophoblastic cells develop into cellular aggregates, then into a syncytium, within 1-2 days after plating. During this in vitro differentiation, gap junctional communication was measured, and the maximum percentage of coupling between adjacent cells occurred on the fourth day. In the presence of 500 mIU/ml hCG, the percentage of coupled cells was increased at all stages of culture, and the highest proportion of coupled cells was observed after 2 days instead of 4 days in control conditions. The hCG action was specific, since the addition of heat-inactivated hCG of oFSH or of bTSH did not affect gap junctional communication in trophoblastic cells. The addition of a polyclonal hCG antibody decreased basal gap junctional communication as well as the response to exogenous hCG. Moreover, the presence of 8Br-cAMP (0.5 or 1 mM) mimicked the stimulation by hCG. Interestingly, H89 (2 microM), a specific protein kinase-A inhibitor, dramatically decreased the responses to hCG (500 mIU/ml) and the 8Br-cAMP (0.5 mM) stimulation of trophoblastic gap junctional communication. Calphostin (1 or 2 microM), a specific protein kinase-C inhibitor, strongly stimulated gap junctional communication. In conclusion, the

  8. Microvasculature of the esophagus and gastroesophageal junction: Lesson learned from submucosal endoscopy

    PubMed Central

    Maselli, Roberta; Inoue, Haruhiro; Ikeda, Haruo; Onimaru, Manabu; Yoshida, Akira; Santi, Esperanza Grace; Sato, Hiroki; Hayee, Bu’Hussain; Kudo, Shin-Ei

    2016-01-01

    Advanced therapeutic endoscopy, in particular endoscopic mucosal resection, endoscopic submucosal dissection, per-oral endoscopic myotomy, submucosal endoscopic tumor resection opened a new era where direct esophageal visualization is possible. Combining these information with advanced diagnostic endoscopy, the esophagus is organized, from the luminal side to outside, into five layers (epithelium, lamina propria with lamina muscularis mucosa, submucosa, muscle layer, adventitia). A specific vascular system belonging to each layer is thus visible: Mucosa with the intra papillary capillary loop in the epithelium and the sub-epithelial capillary network in the lamina propria and, at the lower esophageal sphincter (LES) level with the palisade vessels; submucosa with the drainage vessels and the spindle veins at LES level; muscle layer with the perforating vessels; peri-esophageal veins in adventitia. These structures are particularly important to define endoscopic landmark for the gastro-esophageal junction, helpful in performing submucosal therapeutic endoscopy. PMID:27909548

  9. [Introduction to the structure and functions of junction communications or gap junctions].

    PubMed

    Rousset, B

    1996-01-01

    Cell-to-cell communication through gap junctions (GJ) represents a direct route of exchange of informations between neighboring cells within tissues and organs. GJ are formed from the assembly of a large number of channels that differ from the other known channels because they connect the cytoplasm of adjacent cells. The GJ channel is built from two parts: the connexons. A connexon inserted into the plasma membrane of a cell interacts with another connexon belonging to an adjacent cell. Connexons are composed of proteins with four transmembrane domains that are named connexins (Cx). Six Cx form a connexon. Cx belong to a protein family with 13 known members at present. Each Cx is defined by its molecular mass in kDa (ex: Cx32, Cx43...). A given cell type expresses one or several Cx. The cell to cell transfer of molecules through GJ channels exhibit a size selectivity; only molecules with a molecular mass lower than 1000 Da such as ions and second messengers freely pass through GJ. Depending on the Cx they are made of, GJ seem to differ somewhat in their permeability properties. Cell-to-cell communication via GJ is a regulated process. GJ channels can be either open or closed. GJ mediated cell-to-cell communication or junctional coupling can be detected and quantified by visualization of the cell to cell transfer of a fluorescent probe (such as Lucifer Yellow...) previously introduced in a single cell by microinjection. The presence of GJ channels can also be identified by recording the passage of an electric current between contiguous cells. GJ are involved in numerous fundamental biological processes from the embryonic development to the homeostasis in adult tissues and organs. GJ coordinate cell activities and sometimes synchronize cell behaviour. This is the case for the propagation of the excitation wave in the cardiac muscle and smooth muscle. GJ mediate metabolic cooperation between cells; they represent a way of supply of nutrients for tissues that are

  10. Distribution of gap junctions and square array junctions in the mammalian lens.

    PubMed

    Costello, M J; McIntosh, T J; Robertson, J D

    1989-05-01

    The morphology of membrane specializations of the cortex and nucleus of bovine lenses has been analyzed for both isolated membrane fractions and intact tissue fragments. Fractions of fiber cell membranes isolated from the outer cortex and the inner nucleus of lenses have been compared using x-ray diffraction, electron microscopy, SDS polyacrylamide gels and Western blots. Each fraction has distinctive structural characteristics. In x-ray experiments, the cortical fraction gives no sharp equatorial reflections (from the plane of the membrane), whereas the nuclear fraction gives sharp equatorial reflections which index on a square lattice of 6.6 nm. In thin-section electron micrographs, the cortical fraction is composed primarily of closed vesicles and flat membrane sheets, some of which contain pentalamellar structures similar in appearance to the 16-18 nm thick gap junctions found in other tissues. The nuclear fraction contains mostly undulating membrane pairs which often show 11-14 nm pentalamellar profiles and occasionally thicker junctions. In freeze-fracture images the cortical membranes display irregular clusters of intramembrane particles which resemble gap junctions, whereas the nuclear membranes contain numerous large square arrays with a 6.6 nm repeat and few irregular clusters or individual intramembrane particles. Images of fragments of intact lenses used in the membrane isolations give similar results; in the cortex the area covered by gap junctions is over 50 times the area covered by square lattices, whereas nuclear fiber cell membranes contain large square arrays. Thus, cortical and nuclear fiber cell membranes have quite different morphologies. In particular, the size of the square arrays of protein increases as the fiber cells mature. SDS polyacrylamide gels from cortical and nuclear fractions are similar in that they both contain MP26 as the major band. However, Western blot analysis shows increasing quantities of lower molecular weight, 25 kD and

  11. Improved GaAs solar cells with very thin junctions

    NASA Technical Reports Server (NTRS)

    Hovel, H. J.; Woodall, J. M.

    1976-01-01

    Violet cells with 500-1000 A junction depths have been made in GaAs by narrow junction diffusion followed by anodization. The best AM0 efficiencies obtained by this technique have been 10.5% (14% at AM1). GaAlAs-GaAs structures with very thin GaAlAs layers are much more promising, and efficiencies of over 18% at AM0 have been measured (21.9% at AM1).

  12. Josephson Junction Arrays with Positional Disorder: Experiments and Simulations

    DTIC Science & Technology

    1988-02-01

    Caislinuo an loe*@*. old* it no.ee.q Aid taoncitI y IOcA flMwb~wJ Josephson junctions Positional disorder Monta Carlo simulations 20. AUSTRACT (Conoidiie an...both experiments and Monte Carlo siimulations. We have fabricated 50 x 50 arrays of Pb/Cu proximity-effect junctions, with controlled positional...However, our experiments show no evidence for the predicted reentrant phase transition. Our Monte Carlo simulations of XY spin systems with positional

  13. Evidence for a minigap in YBCO grain boundary Josephson junctions.

    PubMed

    Lucignano, P; Stornaiuolo, D; Tafuri, F; Altshuler, B L; Tagliacozzo, A

    2010-10-01

    Self-assembled YBaCuO diffusive grain boundary submicron Josephson junctions offer a realization of a special regime of the proximity effect, where normal state coherence prevails on the superconducting coherence in the barrier region. Resistance oscillations from the current-voltage characteristic encode mesoscopic information on the junction and more specifically on the minigap induced in the barrier. Their persistence at large voltages is evidence of the long lifetime of the antinodal (high energy) quasiparticles.

  14. Prism-coupled light emission from tunnel junctions

    NASA Technical Reports Server (NTRS)

    Ushioda, S.; Rutledge, J. E.; Pierce, R. M.

    1985-01-01

    Completely p-polarized light emission has been observed from smooth Al-AlO(x)-Au tunnel junctions placed on a prism coupler. The angle and polarization dependence demonstrate unambiguously that the emitted light is radiated by the fast-mode surface plasmon polariton. The emission spectra suggest that the dominant process for the excitation of the fast mode is through conversion of the slow mode to the fast mode mediated by residual roughness on the junction surface.

  15. Improved High/Low Junction Silicon Solar Cell

    NASA Technical Reports Server (NTRS)

    Neugroschel, A.; Pao, S. C.; Lindholm, F. A.; Fossum, J. G.

    1986-01-01

    Method developed to raise value of open-circuit voltage in silicon solar cells by incorporating high/low junction in cell emitter. Power-conversion efficiency of low-resistivity silicon solar cell considerably less than maximum theoretical value mainly because open-circuit voltage is smaller than simple p/n junction theory predicts. With this method, air-mass-zero opencircuit voltage increased from 600 mV level to approximately 650 mV.

  16. Quantum statistical theory of semiconductor junctions in thermal equilibrium

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1977-01-01

    Free carrier and electric field distributions of one-dimensional semiconductor junctions are evaluated using a quantum mechanical phase-space distribution and its corresponding Boltzmann equation. Attention is given to quantum and exchange corrections in cases of high doping concentrations when carrier densities become degenerate. Quantitative differences between degenerate and classical junction characteristics, e.g., maximum electric field and built-in voltage and carrier concentration within the transition region, are evaluated numerically.

  17. Raman Scattering at Plasmonic Junctions Shorted by Conductive Molecular Bridges

    SciTech Connect

    El-Khoury, Patrick Z.; Hu, Dehong; Apkarian, V. Ara; Hess, Wayne P.

    2013-04-10

    Intensity spikes in Raman scattering, accompanied by switching between line spectra and band spectra, can be assigned to shorting the junction plasmon through molecular conductive bridges. This is demonstrated through Raman trajectories recorded at a plasmonic junction formed by a gold AFM tip in contact with a silver surface coated either with biphenyl-4,4’-dithiol or biphenyl-4-thiol. The fluctuations are absent in the monothiol. In effect, the making and breaking of chemical bonds is tracked.

  18. Malignant tumors of childhood

    SciTech Connect

    Brooks, B.J.

    1986-01-01

    This book contains 34 papers about malignant tumors. some of the titles are: Invasive Cogenital Mesoblastic Nephroma, Leukemia Update, Unusual Perinatal Neoplasms, Lymphoma Update, Gonadal Germ Cell Tumors in Children, Nutritional Status and Cancer of Childhood, and Chemotherapy of Brain tumors in Children.

  19. Tracing the Tumor Lineage

    PubMed Central

    Navin, Nicholas E.; Hicks, James

    2010-01-01

    Defining the pathways through which tumors progress is critical to our understanding and treatment of cancer. We do not routinely sample patients at multiple time points during the progression of their disease, and thus our research is limited to inferring progression a posteriori from the examination of a single tumor sample. Despite this limitation, inferring progression is possible because the tumor genome contains a natural history of the mutations that occur during the formation of the tumor mass. There are two approaches to reconstructing a lineage of progression: (1) inter-tumor comparisons, and (2) intra-tumor comparisons. The inter-tumor approach consists of taking single samples from large collections of tumors and comparing the complexity of the genomes to identify early and late mutations. The intra-tumor approach involves taking multiple samples from individual heterogeneous tumors to compare divergent clones and reconstruct a phylogenetic lineage. Here we discuss how these approaches can be used to interpret the current models for tumor progression. We also compare data from primary and metastatic copy number profiles to shed light on the final steps of breast cancer progression. Finally, we discuss how recent technical advances in single cell genomics will herald a new era in understanding the fundamental basis of tumor heterogeneity and progression. PMID:20537601

  20. Liver Tumors (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Liver Tumors KidsHealth > For Parents > Liver Tumors Print A A A What's in this ... Malignant (Cancerous) Tumors Symptoms Diagnosis Treatment Coping The liver is the body's largest solid organ. Lying next ...

  1. Treatment Option Overview (Pancreatic Neuroendocrine Tumors / Islet Cell Tumors)

    MedlinePlus

    ... the tumor and a special camera that detects radioactivity is used to show where the tumors are ... the tumor and a special camera that detects radioactivity is used to show where the tumors are ...

  2. Predicting helical topologies in RNA junctions as tree graphs.

    PubMed

    Laing, Christian; Jung, Segun; Kim, Namhee; Elmetwaly, Shereef; Zahran, Mai; Schlick, Tamar

    2013-01-01

    RNA molecules are important cellular components involved in many fundamental biological processes. Understanding the mechanisms behind their functions requires knowledge of their tertiary structures. Though computational RNA folding approaches exist, they often require manual manipulation and expert intuition; predicting global long-range tertiary contacts remains challenging. Here we develop a computational approach and associated program module (RNAJAG) to predict helical arrangements/topologies in RNA junctions. Our method has two components: junction topology prediction and graph modeling. First, junction topologies are determined by a data mining approach from a given secondary structure of the target RNAs; second, the predicted topology is used to construct a tree graph consistent with geometric preferences analyzed from solved RNAs. The predicted graphs, which model the helical arrangements of RNA junctions for a large set of 200 junctions using a cross validation procedure, yield fairly good representations compared to the helical configurations in native RNAs, and can be further used to develop all-atom models as we show for two examples. Because junctions are among the most complex structural elements in RNA, this work advances folding structure prediction methods of large RNAs. The RNAJAG module is available to academic users upon request.

  3. The string-junction picture of multiquark states: an update

    NASA Astrophysics Data System (ADS)

    Rossi, G. C.; Veneziano, G.

    2016-06-01

    We recall and update, both theoretically and phenomenologically, our (nearly) forty-years-old proposal of a string-junction as a necessary complement to the conventional classification of hadrons based just on their quark-antiquark constituents. In that proposal single (though in general metastable) hadronic states are associated with "irreducible" gauge-invariant operators consisting of Wilson lines (visualized as strings of color flux tubes) that may either end on a quark or an antiquark, or annihilate in triplets at a junction J or an anti-junction overline{J} . For the junction-free sector (ordinary qoverline{q} mesons and glueballs) the picture is supported by large- N (number of colors) considerations as well as by a lattice strong-coupling expansion. Both imply the famous OZI rule suppressing quark-antiquark annihilation diagrams. For hadrons with J and/or overline{J} constituents the same expansions support our proposal, including its generalization of the OZI rule to the suppression of J-overline{J} annihilation diagrams. Such a rule implies that hadrons with junctions are "mesophobic" and thus unusually narrow if they are below threshold for decaying into as many baryons as their total number of junctions (two for a tetraquark, three for a pentaquark). Experimental support for our claim, based on the observation that narrow multiquark states typically lie below (well above) the relevant baryonic (mesonic) thresholds, will be presented.

  4. Engineering design of artificial vascular junctions for 3D printing.

    PubMed

    Han, Xiaoxiao; Bibb, Richard; Harris, Russell

    2016-06-20

    Vascular vessels, including arteries, veins and capillaries, are being printed using additive manufacturing technologies, also known as 3D printing. This paper demonstrates that it is important to follow the vascular design by nature as close as possible when 3D printing artificial vascular branches. In previous work, the authors developed an algorithm of computational geometry for constructing smooth junctions for 3D printing. In this work, computational fluid dynamics (CFDs) is used to compare the wall shear stress and blood velocity field for the junctions of different designs. The CFD model can reproduce the expected wall shear stress at locations remote from the junction. For large vessels such as veins, it is shown that ensuring the smoothness of the junction and using smaller joining angles as observed in nature is very important to avoid high wall shear stress and recirculation. The issue is however less significant for capillaries. Large joining angles make no difference to the hemodynamic behavior, which is also consistent with the fact that most capillary junctions have large joining angles. The combination of the CFD analysis and the junction construction method form a complete design method for artificial vascular vessels that can be 3D printed using additive manufacturing technologies.

  5. Dynamic gap junctional communication: a delimiting model for tissue responses.

    PubMed Central

    Christ, G J; Brink, P R; Ramanan, S V

    1994-01-01

    Gap junctions are aqueous intercellular channels formed by a diverse class of membrane-spanning proteins, known as connexins. These aqueous pores provide partial cytoplasmic continuity between cells in most tissues, and are freely permeable to a host of physiologically relevant second messenger molecules/ionic species (e.g., Ca2+, IP3, cAMP, cGMP). Despite the fact that these second messenger molecules/ionic species have been shown to alter junctional patency, there is no clear basis for understanding how dynamic and transient changes in the intracellular concentration of second messenger molecules might modulate the extent of intercellular communication among coupled cells. Thus, we have modified the tissue monolayer model of Ramanan and Brink (1990) to account for both the up-regulatory and down-regulatory effects on junctions by second messenger molecules that diffuse through gap junctions. We have chosen the vascular wall as our morphological correlate because of its anisotropy and large investment of gap junctions. The model allows us to illustrate the putative behavior of gap junctions under a variety of physiologically relevant conditions. The modeling studies demonstrated that transient alterations in intracellular second messenger concentrations are capable of producing 50-125% changes in the number of cells recruited into a functional syncytial unit, after activation of a single cell. Moreover, the model conditions required to demonstrate such physiologically relevant changes in intercellular diffusion among coupled cells are commonly observed in intact tissues and cultured cells. Images FIGURE 2 PMID:7811948

  6. Intraepithelial lymphocytes express junctional molecules in murine small intestine

    SciTech Connect

    Inagaki-Ohara, Kyoko . E-mail: INAGAKI@med.miyazaki-u.ac.jp; Sawaguchi, Akira; Suganuma, Tatsuo; Matsuzaki, Goro; Nawa, Yukifumi

    2005-06-17

    Intestinal intraepithelial lymphocytes (IEL) that reside at basolateral site regulate the proliferation and differentiation of epithelial cells (EC) for providing a first line of host defense in intestine. However, it remains unknown how IEL interact and communicate with EC. Here, we show that IEL express junctional molecules like EC. We identified mRNA expression of the junctional molecules in IEL such as zonula occludens (ZO)-1, occludin and junctional adhesion molecule (JAM) (tight junction), {beta}-catenin and E-cadherin (adherens junction), and connexin26 (gap junction). IEL constitutively expressed occludin and E-cadherin at protein level, while other T cells in the thymus, spleen, liver, mesenteric lymph node, and Peyer's patches did not. {gamma}{delta} IEL showed higher level of these expressions than {alpha}{beta} IEL. The expression of occludin was augmented by anti-CD3 Ab stimulation. These results suggest the possibility of a novel role of IEL concerning epithelial barrier and communication between IEL and EC.

  7. Defining functional interactions during biogenesis of epithelial junctions

    PubMed Central

    Erasmus, J. C.; Bruche, S.; Pizarro, L.; Maimari, N.; Pogglioli, T.; Tomlinson, C.; Lees, J.; Zalivina, I.; Wheeler, A.; Alberts, A.; Russo, A.; Braga, V. M. M.

    2016-01-01

    In spite of extensive recent progress, a comprehensive understanding of how actin cytoskeleton remodelling supports stable junctions remains to be established. Here we design a platform that integrates actin functions with optimized phenotypic clustering and identify new cytoskeletal proteins, their functional hierarchy and pathways that modulate E-cadherin adhesion. Depletion of EEF1A, an actin bundling protein, increases E-cadherin levels at junctions without a corresponding reinforcement of cell–cell contacts. This unexpected result reflects a more dynamic and mobile junctional actin in EEF1A-depleted cells. A partner for EEF1A in cadherin contact maintenance is the formin DIAPH2, which interacts with EEF1A. In contrast, depletion of either the endocytic regulator TRIP10 or the Rho GTPase activator VAV2 reduces E-cadherin levels at junctions. TRIP10 binds to and requires VAV2 function for its junctional localization. Overall, we present new conceptual insights on junction stabilization, which integrate known and novel pathways with impact for epithelial morphogenesis, homeostasis and diseases. PMID:27922008

  8. Oocyte triplet pairing for electrophysiological investigation of gap junctional coupling

    PubMed Central

    Hayar, Abdallah; Charlesworth, Amanda; Garcia-Rill, Edgar

    2010-01-01

    Gap junctions formed by expressing connexin subunits in Xenopus oocytes provide a valuable tool for revealing the gating properties of intercellular gap junctions in electrically coupled cells. We describe a new method that consists of simultaneous triple recordings from 3 apposed oocytes expressing exogenous connexins. The advantages of this method is that in one single experiment, one oocyte serves as control while a pair of oocytes, which have been manipulated differently, may be tested for different gap junctional properties. Moreover, we can study simultaneously the gap junctional coupling of 3 different pairs of oocytes in the same preparation. If the experiment consists of testing the effect of a single drug, this approach will reduce the time required, as background coupling in control pairs of oocytes does not need to be measured separately as with the conventional 2 oocyte pairing. The triplet approach also increases confidence that any changes seen in junctional communication are due to the experimental treatment and not variation in the preparation of oocytes or execution of the experiment. In this study, we show the example of testing the gap junctional properties among three oocytes, two of which are expressing rat connexin36. PMID:20230857

  9. Nonequilibrium and relaxation effects in tunnel superconducting junctions

    NASA Astrophysics Data System (ADS)

    Bezuglyi, E. V.; Vasenko, A. S.; Bratus', E. N.

    2017-02-01

    The specific property of a planar tunnel junction with thin-film diffusive plates and long enough leads is an essential enhancement of its transmission coefficient compared to the bare transparency of the tunnel barrier [1, 2]. In voltage-biased junctions, this creates favorable conditions for strong nonequilibrium of quasiparticles in the junction plates and leads, produced by multiparticle tunneling. We study theoretically the interplay between the nonequilibrium and relaxation processes in such junctions and found that nonequilibrium in the leads noticeably modifies the current-voltage characteristic at {eV}> 2{{Δ }}, especially the excess current, whereas strong diffusive relaxation restores the result of the classical tunnel model. At {eV}≤slant 2{{Δ }}, the diffusive relaxation decreases the peaks of the multiparticle currents. The inelastic relaxation in the junction plates essentially suppresses the n-particle currents (n> 2) by the factor n for odd and n/2 for even n. The results may be important for the problem of decoherence in Josephson-junction based superconducting qubits.

  10. Entropy Flow Through Near-Critical Quantum Junctions

    NASA Astrophysics Data System (ADS)

    Friedan, Daniel

    2017-03-01

    This is the continuation of Friedan (J Stat Phys, 2017. doi: 10.1007/s10955-017-1752-8). Elementary formulas are derived for the flow of entropy through a circuit junction in a near-critical quantum circuit close to equilibrium, based on the structure of the energy-momentum tensor at the junction. The entropic admittance of a near-critical junction in a bulk-critical circuit is expressed in terms of commutators of the chiral entropy currents. The entropic admittance at low frequency, divided by the frequency, gives the change of the junction entropy with temperature—the entropic "capacitance". As an example, and as a check on the formalism, the entropic admittance is calculated explicitly for junctions in bulk-critical quantum Ising circuits (free fermions, massless in the bulk), in terms of the reflection matrix of the junction. The half-bit of information capacity per end of critical Ising wire is re-derived by integrating the entropic "capacitance" with respect to temperature, from T=0 to T=∞.

  11. Chemical Tumor Promoters, Oncogenes and Growth Factors: Modulators of Gap Junctional Intercellular Communication

    DTIC Science & Technology

    1991-01-01

    Bennett and D.C. Spray, Cold Spring Harbor Laboratory, Cold Spring Harbor , NY, 1985, p. 289. 5. Madhukar, B.V., J.E. Trosko and C.C. Chang. in Cell...P.D. Hoerger. Cold Spring Harbor Labo- ratory, Cold Spring Harbor , N.Y., 1988. p. 139. 42. Lacey, S.W.. Amer. 1. Med. Sci. 29:39 (1986). 43

  12. Ultimate efficiency limit of single-junction perovskite and dual-junction perovskite/silicon two-terminal devices

    NASA Astrophysics Data System (ADS)

    Almansouri, Ibraheem; Ho-Baillie, Anita; Green, Martin A.

    2015-08-01

    Theoretical calculation based on detailed balance and incorporating different realistic optical and electrical losses predicts conversion efficiency beyond 22% for single-junction perovskite devices. In dual-junction perovskite/silicon devices, theoretical conversion efficiency around 40% is been determined. However, dramatic drop in the conversion efficiency is shown to be due to the glass reflection and FTO parasitic absorption losses. Additionally, practical conversion efficiency limits of dual-junction two-terminal perovskite/silicon tandem solar cell of 30% are achievable as reported in this work using state-of-the-art demonstrated devices. Additionally, various crystalline silicon (industry and laboratory demonstrated) technologies are used as the bottom cell for the current matched tandem cell stacks with higher relative improvements when using commercial c-Si solar cells. Moreover, the effect of eliminating the parasitic resistances and enhancing the external radiative efficiency (ERE) in the perovskite junction on tandem performance are also investigated enhancing the stack efficiencies.

  13. Spatial inhomogeneous barrier heights at graphene/semiconductor Schottky junctions

    NASA Astrophysics Data System (ADS)

    Tomer, Dushyant

    Graphene, a semimetal with linear energy dispersion, forms Schottky junction when interfaced with a semiconductor. This dissertation presents temperature dependent current-voltage and scanning tunneling microscopy/spectroscopy (STM/S) measurements performed on graphene Schottky junctions formed with both three and two dimensional semiconductors. To fabricate Schottky junctions, we transfer chemical vapor deposited monolayer graphene onto Si- and C-face SiC, Si, GaAs and MoS2 semiconducting substrates using polymer assisted chemical method. We observe three main type of intrinsic spatial inhomogeneities, graphene ripples, ridges and semiconductor steps in STM imaging that can exist at graphene/semiconductor junctions. Tunneling spectroscopy measurements reveal fluctuations in graphene Dirac point position, which is directly related to the Schottky barrier height. We find a direct correlation of Dirac point variation with the topographic undulations of graphene ripples at the graphene/SiC junction. However, no such correlation is established at graphene/Si and Graphene/GaAs junctions and Dirac point variations are attributed to surface states and trapped charges at the interface. In addition to graphene ripples and ridges, we also observe atomic scale moire patterns at graphene/MoS2 junction due to van der Waals interaction at the interface. Periodic topographic modulations due to moire pattern do not lead to local variation in graphene Dirac point, indicating that moire pattern does not contribute to fluctuations in electronic properties of the heterojunction. We perform temperature dependent current-voltage measurements to investigate the impact of topographic inhomogeneities on electrical properties of the Schottky junctions. We observe temperature dependence in junction parameters, such as Schottky barrier height and ideality factor, for all types of Schottky junctions in forward bias measurements. Standard thermionic emission theory which assumes a perfect

  14. Simulations and interpretation of fractional giant Shapiro steps in two-dimensional Josephson-junction arrays

    SciTech Connect

    Octavio, M. ); Free, J.U. Physics Department, Harvard University, Cambridge, Massachusetts ); Benz, S.P. ); Newrock, R.S.; Mast, D.B. ); Lobb, C.J. )

    1991-09-01

    We present simulations of two-dimensional Josephson-junction arrays to study giant Shapiro steps in these arrays. The amplitude and frequency dependence of the step widths is found to be more complex than in single junctions. The fractional step widths are found to decrease more rapidly with increasing frequency or rf current than conventional steps in single junctions. The washboard model of single junctions is extended to arrays to explain these differences between arrays and single junctions.

  15. Optimal Normal Tissue Sparing in Craniospinal Axis Irradiation Using IMRT With Daily Intrafractionally Modulated Junction(s)

    SciTech Connect

    Kusters, Johannes M.A.M.; Louwe, Rob J.W.; Kollenburg, Peter G.M. van; Kunze-Busch, Martina C.; Gidding, Corrie E.M.; Lindert, Erik J. van; Kaanders, Johannes H.A.M.; Janssens, Geert O.R.J.

    2011-12-01

    Purpose: To develop a treatment technique for craniospinal irradiation using intensity-modulated radiotherapy (IMRT) with improved dose homogeneity at the field junction(s), increased target volume conformity, and minimized dose to the organs at risk (OARs). Methods and Materials: Five patients with high-risk medulloblastoma underwent CT simulation in supine position. For each patient, an IMRT plan with daily intrafractionally modulated junction(s) was generated, as well as a treatment plan based on conventional three-dimensional planning (3DCRT). A dose of 39.6 Gy in 22 daily fractions of 1.8 Gy was prescribed. Dose-volume parameters for target volumes and OARs were compared for the two techniques. Results: The maximum dose with IMRT was <107% in all patients. V{sub <95} and V{sub >107} were <1 cm{sup 3} for IMRT compared with 3-9 cm{sup 3} for the craniospinal and 26-43 cm{sup 3} for the spinal-spinal junction with 3DCRT. These observations corresponded with a lower homogeneity index and a higher conformity index for the spinal planning target volume with IMRT. IMRT provided considerable sparing of acute and late reacting tissues. V{sub 75} for the esophagus, gastroesophageal junction, and intestine was 81%, 81%, and 22% with 3DCRT versus 5%, 0%, and 1% with IMRT, respectively. V{sub 75} for the heart and thyroid was 42% and 32% vs. 0% with IMRT. Conclusion: IMRT with daily intrafractionally modulated junction results in a superior target coverage and junction homogeneity compared with 3DCRT. A significant dose reduction can be obtained for acute as well as late-reacting tissues.

  16. AdS and ds Entropy from String Junctions or the Function of Junction Conjunctions

    NASA Astrophysics Data System (ADS)

    Silverstein, Eva

    Flux compactifications of string theory exhibiting the possibility of discretely tuning the cosmological constant to small values have been constructed. The highly tuned vacua in this discretuum have curvature radii which scale as large powers of the flux quantum numbers, exponential in the number of cycles in the compactiflcation. By the arguments of Susskind/Witten (in the AdS case) and Gibbons/Hawking (in the dS case), we expect correspondingly large entropies associated with these vacua. If they are to provide a dual description of these vacua on their Coulomb branch, branes traded for the flux need to account for this entropy at the appropriate energy scale. In this note, we argue that simple string junctions and webs ending on the branes can account for this large entropy, obtaining a rough estimate for junction entropy that agrees with the existing rough estimates for the spacing of the discretuum. In particular, the brane entropy can account for the (A)dS entropy far away from string scale correspondence limits.

  17. Microstructure of Josephson junctions: Effect on supercurrent transport in YBCO grain boundary and barrier layer junctions

    SciTech Connect

    Merkle, K.L.; Huang, Y.

    1998-01-01

    The electric transport of high-temperature superconductors, such as YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} (YBCO), can be strongly restricted by the presence of high-angle grain boundaries (GB). This weak-link behavior is governed by the macroscopic GB geometry and the microscopic grain boundary structure and composition at the atomic level. Whereas grain boundaries present a considerable impediment to high current applications of high T{sub c} materials, there is considerable commercial interest in exploiting the weak-link-nature of grain boundaries for the design of microelectronic devices, such as superconducting quantum interference devices (SQUIDs). The Josephson junctions which form the basis of this technology can also be formed by introducing artificial barriers into the superconductor. The authors have examined both types of Josephson junctions by EM techniques in an effort to understand the connection between microstructure/chemistry and electrical transport properties. This knowledge is a valuable resource for the design and production of improved devices.

  18. Junction-to-Case Thermal Resistance of a Silicon Carbide Bipolar Junction Transistor Measured

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.

    2006-01-01

    Junction temperature of a prototype SiC-based bipolar junction transistor (BJT) was estimated by using the base-emitter voltage (V(sub BE)) characteristic for thermometry. The V(sub BE) was measured as a function of the base current (I(sub B)) at selected temperatures (T), all at a fixed collector current (I(sub C)) and under very low duty cycle pulse conditions. Under such conditions, the average temperature of the chip was taken to be the same as that of the temperature-controlled case. At increased duty cycle such as to substantially heat the chip, but same I(sub C) pulse height, the chip temperature was identified by matching the V(sub BE) to the thermometry curves. From the measured average power, the chip-to-case thermal resistance could be estimated, giving a reasonable value. A tentative explanation for an observed bunching with increasing temperature of the calibration curves may relate to an increasing dopant atom ionization. A first-cut analysis, however, does not support this.

  19. Targeting the tumor microenvironment

    PubMed Central

    Bournazou, Eirini; Bromberg, Jacqueline

    2013-01-01

    Persistent JAK-STAT3 signaling is implicated in many aspects of tumorigenesis. Apart from its tumor-intrinsic effects, STAT3 also exerts tumor-extrinsic effects, supporting tumor survival and metastasis. These involve the regulation of paracrine cytokine signaling, alterations in metastatic sites rendering these permissive for the growth of cancer cells and subversion of host immune responses to create an immunosuppressive environment. Targeting this signaling pathway is considered a novel promising therapeutic approach, especially in the context of tumor immunity. In this article, we will review to what extent JAK-STAT3-targeted therapies affect the tumor microenvironment and whether the observed effects underlie responsiveness to therapy. PMID:24058812

  20. Tumor Endothelial Cells

    PubMed Central

    Dudley, Andrew C.

    2012-01-01

    The vascular endothelium is a dynamic cellular “organ” that controls passage of nutrients into tissues, maintains the flow of blood, and regulates the trafficking of leukocytes. In tumors, factors such as hypoxia and chronic growth factor stimulation result in endothelial dysfunction. For example, tumor blood vessels have irregular diameters; they are fragile, leaky, and blood flow is abnormal. There is now good evidence that these abnormalities in the tumor endothelium contribute to tumor growth and metastasis. Thus, determining the biological basis underlying these abnormalities is critical for understanding the pathophysiology of tumor progression and facilitating the design and delivery of effective antiangiogenic therapies. PMID:22393533